
Learn to Program
with Python

—
Take your first steps in programming
and learn the powerful Python
programming language
—
Irv Kalb

www.it-ebooks.info

http://www.it-ebooks.info/

 Learn to Program
with Python

Irv Kalb

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Program with Python

Irv Kalb
Mountain View, California, USA

ISBN-13 (pbk): 978-1-4842-1868-6 ISBN-13 (electronic): 978-1-4842-2172-3
DOI 10.1007/ 978-1-4842-2172-3

Library of Congress Control Number: 2016949498

Copyright © 2016 by Irv Kalb

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Michael Thomas
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan, Jonathan

Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott,
Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available to readers at
 www.apress.com/9781484218686 . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484218686
www.apress.com/source-code
http://www.it-ebooks.info/

 Th is book is dedicated to the memory of my mother, Lorraine Kalb.

 I started learning about programming when I was 16 years old, at Columbia
High School in Maplewood, NJ. We were extremely fortunate to have a very

early computer, an IBM 1130, that students could use.

 I remember learning the basics of the Fortran programming language and
writing a simple program that would add two numbers together and print the
result. I was thrilled when I fi nally got my program to work correctly. It was a

rewarding feeling to be able to get this huge, complicated machine to do
exactly what I wanted it to do.

 I clearly remember explaining to my mother that I wrote this program that
got the computer to add 9 and 5 and come up with an answer of 14. She said

that she didn’t need a computer to do that. I tried to explain to her that getting
the answer of 14 was not the important part. What was important was that I had

written a program that would add any two numbers and print the result.
She still didn’t get it, but she was happy for me and very supportive.

 Hopefully, through my explanations in this book, you will get it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author ...xvii

About the Technical Reviewer ..xix

Acknowledgments ..xxi

 ■Chapter 1: Getting Started ... 1

 ■Chapter 2: Variables and Assignment Statements .. 7

 ■Chapter 3: Built-in Functions ... 35

 ■Chapter 4: User-Defi ned Functions .. 47

 ■Chapter 5: if, else, and elif Statements .. 71

 ■Chapter 6: Loops .. 103

 ■Chapter 7: Lists ... 133

 ■Chapter 8: Strings.. 165

 ■Chapter 9: File Input/Output .. 181

 ■Chapter 10: Internet Data .. 209

 ■Chapter 11: Data Structures .. 227

 ■Chapter 12: Where to Go from Here ... 257

Index ... 261

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author ... xvii

About the Technical Reviewer .. xix

Acknowledgments .. xxi

 ■Chapter 1: Getting Started ..1

Welcome ... 1

What Is Python? ... 1

Installing Python ... 2

IDLE and the Python Shell .. 2

Hello World ... 3

Creating, Saving, and Running a Python File .. 4

IDLE on Multiple Platforms ... 6

Summary .. 6

 ■Chapter 2: Variables and Assignment Statements ...7

A Sample Python Program ... 8

The Building Blocks of Programming ... 9

Four Types of Data .. 10

Integers.. 10

Floats ... 10

Strings ... 10

Booleans .. 11

Examples of Data ... 11

Form with Underlying Data .. 12

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

viii

Variables ... 13

Assignment Statements ... 16

Variable Names .. 18

Naming Convention .. 19

Keywords .. 20

Case Sensitivity .. 21

More Complicated Assignment Statements.. 21

Print Statements .. 22

Simple Math ... 24

Order of Operations .. 26

First Python Programs .. 27

Shorthand Naming Convention ... 28

Adding Comments .. 30

Full-Line Comment ... 30

Add a Comment After a Line of Code .. 30

Multiline Comment ... 30

Whitespace ... 31

Errors .. 32

Syntax Error .. 32

Exception Error ... 33

Logic Error .. 34

Summary .. 34

 ■Chapter 3: Built-in Functions ... 35

Overview of Built-in Functions ... 35

Function Call .. 36

Arguments .. 36

Results ... 36

Built-in type Function ... 36

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

ix

Getting Input from the User .. 38

Conversion Functions ... 39

int Function ... 39

fl oat Function .. 39

str Function .. 39

First Real Programs .. 40

Concatenation .. 42

Another Programming Exercise .. 43

Using Function Calls Inside Assignment Statements ... 45

Summary .. 46

 ■Chapter 4: User-Defi ned Functions .. 47

A Recipe as an Analogy for Building Software ... 48

Ingredients .. 48

Directions ... 48

Defi nition of a Function .. 50

Building Our First Function ... 51

Calling a User-Defi ned Function ... 51

Receiving Data in a User-Defi ned Function: Parameters .. 53

Building User-Defi ned Functions with Parameters... 54

Building a Simple Function that Does Addition .. 56

Building a Function to Calculate an Average .. 57

Returning a Value from a Function: The return Statement ... 57

Returning No Value: None ... 59

Returning More Than One Value ... 59

Specifi c and General Variable Names in Calls and Functions .. 60

Temperature Conversion Functions .. 61

Placement of Functions in a Python File .. 62

Never Write Multiple Copies of the Same Code .. 62

Constants ... 64

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

x

Scope ... 64

Global Variables and Local Variables with the Same Names .. 67

Finding Errors in Functions: Traceback .. 68

Summary .. 70

 ■Chapter 5: if, else, and elif Statements .. 71

Flowcharting .. 72

The if Statement ... 74

Comparison Operators .. 76

Examples of if Statements ... 76

Nested if Statement ... 77

The else Statement .. 78

Using if/else Inside a Function ... 80

The elif Statement .. 80

Using Many elif Statements ... 82

A Grading Program ... 84

A Small Sample Program: Absolute Value .. 84

Programming Challenges ... 86

Negative, Positive, Zero... 86

isSquare.. 88

isEven ... 91

isRectangle ... 93

Conditional Logic .. 94

The Logical not Operator ... 95

The Logical and Operator ... 95

The Logical or Operator ... 96

Precedence of Comparison and Logical Operators .. 97

Booleans in if Statements .. 98

Program to Calculate Shipping ... 98

Summary .. 101

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

xi

 ■Chapter 6: Loops .. 103

User’s View of the Game .. 104

Loops .. 105

The while Statement .. 106

First Loop in a Real Program .. 108

Increment and Decrement .. 109

Running a Program Multiple Times .. 110

Python Built-in Packages ... 111

Generating a Random Number ... 112

Simulation of Flipping a Coin ... 113

Other Examples of Using Random Numbers .. 114

Creating an Infi nite Loop .. 115

A New Style of Building a Loop: while True, and break .. 116

The continue Statement ... 118

Asking If the User Wants to Repeat: the Empty String ... 120

Pseudocode .. 120

Building the “Guess the Number” Program .. 121

Playing a Game Multiple Times .. 125

Error Checking with try/except .. 127

Building Error-Checking Utility Functions ... 129

Coding Challenge ... 130

Summary .. 132

 ■Chapter 7: Lists ... 133

Collections of Data ... 134

Lists .. 134

Elements .. 135

Python Syntax for a List ... 135

Empty List... 136

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

xii

Position of an Element in a List: Index ... 136

Accessing an Element in a List .. 137

Using a Variable or Expression as an Index in a List .. 138

Changing a Value in a List .. 140

Using Negative Indices ... 140

Building a Simple Mad Libs Game .. 141

Adding a List to Our Mad Libs Game .. 142

Determining the Number of Elements in a List: The len Function 143

Programming Challenge 1 .. 144

Using a List Argument with a Function .. 146

Accessing All Elements of a List: Iteration ... 147

for Statements and for Loops ... 148

Programming Challenge 2 .. 150

Generating a Range of Numbers .. 151

Programming Challenge 3 .. 152

Scientifi c Simulations... 154

List Manipulation .. 157

List Manipulation Example: An Inventory Example ... 158

Pizza Toppings Example ... 159

Summary .. 163

 ■Chapter 8: Strings.. 165

len Function Applied to Strings .. 166

Indexing Characters in a String .. 166

Accessing Characters in a String ... 167

Iterating Through Characters in a String .. 168

Creating a Substring: A Slice .. 170

Programming Challenge 1: Creating a Slice ... 171

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

xiii

Additional Slicing Syntax .. 173

Slicing As Applied to a List ... 174

Strings Are Not Changeable ... 174

Programming Challenge 2: Searching a String .. 175

Built-in String Operations ... 176

Examples of String Operations ... 178

Programming Challenge 3: Directory Style .. 178

Summary .. 180

 ■Chapter 9: File Input/Output .. 181

Saving Files on a Computer.. 182

Defi ning a Path to a File ... 182

Reading from and Writing to a File ... 184

File Handle ... 185

The Python os Package .. 186

Building Reusable File I/O Functions .. 186

Example Using Our File I/O Functions .. 187

Importing Our Own Modules... 188

Saving Data to a File and Reading It Back ... 190

Building an Adding Game ... 192

Programming Challenge 1 .. 192

Programming Challenge 2 .. 193

Writing/Reading One Piece of Data to and from a File ... 196

Writing/Reading Multiple Pieces of Data to and from a File ... 197

The join Function .. 197

The split Function ... 198

Final Version of the Adding Game ... 199

Writing and Reading a Line at a Time with a File ... 201

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

xiv

Example: Multiple Choice Test .. 203

A Compiled Version of a Module ... 208

Summary .. 208

 ■Chapter 10: Internet Data .. 209

Request/Response Model ... 209

Request with Values ... 211

Example URL: Getting a Stock Price ... 211

Pretending to Be a Browser ... 212

API .. 213

Example Program to Get Stock Price Information Using an API 214

Example Program to Get Exchange Rate Information .. 216

Example Program to Get Powerball Information .. 219

API Key ... 223

URL Encoding ... 223

Summary .. 225

 ■Chapter 11: Data Structures .. 227

Tuple ... 228

Lists of Lists ... 230

Representing a Grid or a Spreadsheet ... 231

Representing the World of an Adventure Game .. 231

Reading a Comma-Separated Value (.csv) File .. 234

Dictionary ... 238

Using the in Operator on a Dictionary .. 240

Programming Challenge ... 241

A Python Dictionary to Represent a Programming Dictionary 242

Iterating Through a Dictionary .. 243

Combining Lists and Dictionaries ... 244

JSON: JavaScript Object Notation .. 246

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ CONTENTS

xv

Example Program to Get Weather Data .. 248

XML Data .. 250

Accessing Repeating Groupings in JSON and XML .. 253

Summary .. 255

 ■Chapter 12: Where to Go from Here ... 257

Python Language Documentation .. 257

Python Standard Library ... 257

Python External Packages .. 258

Python Development Environments ... 259

Places to Find Answers to Questions ... 259

Projects and Practice, Practice, Practice .. 260

Summary .. 260

Index ... 261

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

 About the Author

 Irv Kalb is an adjunct professor at UCSC (University of California, Santa
Cruz) Extension Silicon Valley, Cogswell Polytechnical College, and the
Art Institute of California-Silicon Valley. He has been teaching software
development classes since 2010.

 Irv has worked as a software developer, manager of software
developers, and manager of software development projects. He has
worked as an independent consultant for many years with his own
company, Furry Pants Productions, where he has concentrated on
educational software. Prior to that, he worked as an employee for a
number of high-tech companies. He has a BS and MS in computer science.

 Recently, he has been a mentor to a number of local competitive
robotics teams.

 His previous publications include numerous technical articles,
two children’s edutainment CD-ROMs (about Darby the Dalmatian), an online e-book on object-oriented
programming in the Lingo programming language, and the first book on Ultimate Frisbee,
 Ultimate: Fundamentals of the Sport (Revolutionary Publications, 1983).

 He was highly involved in the early development of the sport of Ultimate Frisbee.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

xix

 About the Technical Reviewer

 Michael Thomas has worked in software development for more than 20
years as an individual contributor, team lead, program manager, and vice
president of engineering. Michael has more than 10 years of experience
working with mobile devices. His current focus is in the medical sector,
using mobile devices to accelerate information transfer between patients
and health care providers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

 Acknowledgments

 I would like to thank the following people, without whom, this book would not have been possible:
 My wonderful wife, Doreen, who is the glue that keeps our family together.
 Our two sons, Jamie and Robbie, who keep us on our toes.
 Our two cats, Chester and Cody (who we think of as people).
 Mariah Armstrong, who created all the graphics in this book. I am not an artist (I don’t even play one

on TV). Mariah was able to take my “chicken scratches” and turn them into very clear and understandable
pieces of art.

 Chris Sasso and Ravi Chityala for their technical review and helpful suggestions.
 Luke Kwan, Catherine Chanse, and Christina Ri, at the Art Institute of California-Silicon Valley
 Andy Hou at the UCSC-Silicon Valley Extension.
 Jerome Solomon at Cogswell Polytechnical College who first suggested that I consider getting into Python.
 Mark Powers, Matthew Moodie, Michael Thomas, and Steve Anglin at Apress for all the work they did

reviewing, editing, etc., and expertly answering all my questions.
 All the students that have been in my classes over many years at the Art Institute California-Silicon

Valley, at Cogswell Polytechnical College, and at the UCSC Silicon Valley Extension. Their feedback,
suggestions, smiles, frowns, light-bulb moments, frustrations, and knowing head-nods were extremely
helpful in shaping the content of this book.

 Finally, Guido van Rossum, without whom, Python would not exist.

www.it-ebooks.info

http://www.it-ebooks.info/

1© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_1

 CHAPTER 1

 Getting Started

 Welcome
 Congratulations, you have made a wise decision. No, not the decision to buy this book, although I think that
will turn out to be a wise decision also. I mean that you have made a good decision to learn the basics of
computer programming using the Python language.

 In this book, I teach you the fundamentals of writing computer software. I assume that you have never
written any software before, so I start completely from scratch. The only requirements are that you possess
a basic knowledge of algebra and a good sense of logic. As the book progresses, each chapter builds upon
the information learned in the previous chapter(s). The overall goal is to give you a solid introduction to the
way that computer code and data interact to form well-written programs. I introduce the key elements of
software, including variables, functions, if / else statements, loops, lists, and strings. I give you many real-
world examples that should help explain the uses of each of these elements. I also give definitions to help
you with the new vocabulary that I introduce. This book is not intended to be comprehensive. Instead, it is an
introduction that gives you a solid foundation in programming. The approach is highly interactive, asking you
to create small programs along the way, where you get a chance to practice what has been explained in each
chapter. By the end of the book, you should be comfortable writing small to medium-sized programs in Python.

 This first chapter covers the following topics:

• What Python is

• How to get Python installed on your computer

• IDLE and the Python Shell

• Writing your first program: Hello World

• How to create, save, and run Python files

• IDLE on multiple platforms

 What Is Python?
 Python is a general-purpose programming language. That means that it was designed and developed to
write software for a wide variety of disciplines. Python has been used to write applications to solve problems
in biology, chemistry, financial analysis, numerical analysis, robotics, and many other fields. It is also widely
used as a scripting language for use by computer administrators, who use it to capture and replay sequences
of computer commands. Contrast this with a language like HTML (HyperText Markup Language), which was
designed for the single purpose of allowing people to specify the layout of a web page.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2172-3_1)
contains supplementary material, which is available to authorized users.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2172-3_1
http://www.it-ebooks.info/

CHAPTER 1 ■ GETTING STARTED

2

 Once you learn the basic concepts of a programming language like Python, you find that you can pick up a
new computer language very quickly. No matter what the language-and there are many-the underlying concepts
are very similar. The key things that you learn about-variables, assignment statements, if statements, while
loops, function calls-are all concepts that are easily transferable to any other programming language.

 Installing Python
 Python was created in the 1990s by Guido van Rossum. He is affectionately known as the Python’s
“Benevolent Dictator for Life.” The language has two current versions: 2.7 and 3.5. This book uses version
2.7, which is widely used in schools and in industry. It is very mature-meaning that it is known to work
very well and is still considered state of the art. Most importantly, you won’t run into any problems with
this version because it has been “battle tested.” (Where appropriate, throughout the book, I point out how
something presented in Python 2 might be handled in Python 3.)

 Python is maintained as an “open source” project by a group called the Python Software Foundation.
Because it is open source, Python is free. There is no single company that owns and/or sells the software. You
can get everything you need to write and run all the Python programs in this book by simply downloading
Python off the Internet. I’ll explain how to get it and install it.

 The center of the Python universe is at www.python.org .
 Bring up the browser of your choice and go to that address. The site changes over time, but the essential

functionality should remain the same. On the main page, there should be a Downloads button or rollover. From
here, you should be able to select Windows, Mac, or Other Platforms (which includes Linux). After choosing
your operating system, you should get an opportunity to choose between versions 3.x.y (whatever is the current
subversion of Python 3) and version 2.x.y (whatever is the current subversion of Python 2). Choose version 2.x.y.

 Clicking the button downloads an installer file. On a Mac, the downloaded file has a name like python-
2.7.20-macosx10.6pkg . On a Windows computer, the file has a name like python-2.7.10-msi . On either
platform, find the file that was downloaded and double-click it. This should start the installation process.
The install should be very simple.

 IDLE and the Python Shell
 There are many different “software development environments” (applications) that you can use to write
code in Python. It may seem odd that you use a program to write a program, but that’s what a software
development environment is. Some of these environments are free; others can be costly. They differ in the
tools that they offer to help programmers be more efficient.

 In this book, the environment that we will use is called IDLE. You might think that IDLE is an acronym,
maybe Interactive DeveLopment Environment. When the name was chosen, it didn’t mean anything. In fact,
the name Python doesn’t refer to the snake. Apparently, Guido van Rossum was a big fan of Monty Python’s
Flying Circus , a TV series by a well-known comedy group from Britain, and named the language after them.
One of the founding members of the group was Eric Idle. The name IDLE is a reference to him.

 IDLE is free. When you download and run the Python installer, it installs IDLE on your computer. Once
installed, you can find IDLE on a Mac by opening the applications folder and locating the folder named
Python 2.7. Once you open it, you should see the IDLE application. To open IDLE, double-click the icon.
On Windows, IDLE is installed in the standard Program Files folder. If your version of Windows has a Start
button, then you should click the Start button and type IDLE in the type-in field. Otherwise, you might have
to do a Control + R or a Control + Q to bring up a dialog box where you can type IDLE . However you open
IDLE, you should see a window with contents that look something like this:

 Python 2.7.6 (v2.7.6:3a1db0d2747e, Nov 10 2013, 00:18:52)
 [GCC 4.0.1 (Apple Inc. build 5493)] on darwin

www.it-ebooks.info

http://www.python.org/
http://www.it-ebooks.info/

CHAPTER 1 ■ GETTING STARTED

3

 Type "copyright", "credits" or "license()" for more information.
 >>>

 This window is called the Python Shell. In fact, the title of the window should be Python 2.x.y Shell.

 Hello World
 There is a tradition that when programmers learn a new computer language, they try writing what is called
the Hello World program. That is, just to make sure that they can get something to work, they write a simple
program that writes out Hello World!

 Let’s do that now with Python. The Python Shell (commonly just called the Shell) gives you a prompt that
looks like three greater-than signs (this is called the chevron prompt or simply the prompt). When you see the
prompt, it means that the Shell is ready for you to type something. Throughout this book, I strongly encourage
you to use the IDLE environment by trying out code as I explain it. At the prompt, enter the following:

 >>> print 'Hello World!'

 Then press the Return key or the Enter key. When you do, you should see this:

 >>> print 'Hello World!'
 Hello World!
 >>>

 Congratulations! You have just written your first computer program. You told the computer to do
something, and it did exactly what you told it to do. My work is done here. Now you may not be ready to add
“Python programming” to your résumé and get a job as a professional computer programmer, but you are off
to a good start!

 ■ Note If you don’t like the font and/or size of the text used in the Shell, you can choose IDLE ➤ Preferences
(Mac) or Configure IDLE (Windows), and easily change either or both.

 One of the key advantages of the Python language is how readable it is. The program is simply the word
 print followed by whatever you want to be printed (inside quotes). Anyone can understand the Hello World
program written in Python. But to make this point very clear, let’s see what you have to do to write the Hello
World program in some other popular languages.

 You probably have heard of the language called C, which is perhaps the most widely used programming
language in the world. Here is what you have to write in C to get the same results:

 #include <stdio.h>

 int main(void)
 {
 printf("Hello World!\n");
 return 0;
 }

 Notice all the brackets, parentheses, braces, and semicolons that you need to have, along with how
many lines you have to write.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ GETTING STARTED

4

 There is another language called C++, which is a modification of the original C language to give it more
power. Here’s what the Hello World program looks like in C++:

 #include "std_lib_facilities.h"

 int main()
 {
 cout << "Hello World!\n";
 return 0;
 }

 Not surprisingly, it also has many brackets, parentheses, braces, and semicolons.
 Finally, here is the same Hello World program written in Java, yet another popular computer language:

 public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
 }

 Again, there are many brackets, parentheses, and semicolons, and many words whose meanings are not
immediately obvious.

 By comparison, notice how English-like, simple, and readable the Python version is. The readability
and simplicity are big reasons why Python is growing in popularity, especially as a language used to teach
programming to beginners.

 Creating, Saving, and Running a Python File
 So far, you have only seen a single line of Python code:

 >>> print 'Hello World!'

 You typed it into the Shell and pressed Enter or Return to make it run. Typing one line at a time into the
Shell is a great way to learn Python, and it is very handy for trying out things quickly. But soon I’ll have you
writing programs with tens, hundreds, and maybe thousands of lines of code. The Shell is not an appropriate
place for writing large programs. Python, like every other computer language, allows you to put the code that
you write into a file and save it. Programs saved this way can be opened at any time and run without having
to retype them. I’ll explain how we do this in Python.

 Just like any standard word processor or spreadsheet program, to create a new file, you go to the
File menu and select New File (denoted from here on as File ➤ New File). You can also use the keyboard
shortcuts of Control + N (Windows) or Command + N (Mac).

 This opens a new blank editing window, waiting for you to enter Python code. It behaves just like any
text editing program that you have ever used. You enter your Python code, line by line, similar to the way that
you did it in the Shell. However, when you press Return or Enter at the end of a line, the line does not run-it
does not produce immediate results as it did in the Shell. Instead, the cursor just moves down to allow you
to enter another line. You can use all the standard text-editing features that you are used to-Cut, Copy, Paste,
Find, Replace, etc. You can move around the lines of code using the arrow keys or by clicking the mouse.
When a program gets long enough, scrolling becomes enabled. You can select multiple lines using the
standard click-and-drag, or click to create a starting point and Shift-click to mark an ending point.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ GETTING STARTED

5

 Let’s build a simple program containing three print statements. Open a new file. Notice that when you
open the file, it is named Untitled in the window title. Enter the following:

 print 'I am now entering Python code into a Python file.'
 print 'When I press Return or Enter here, nothing happens.'
 print 'This is the last line.'

 When you type the word print , IDLE colorizes it (both here in the editing window and when you type it
in the Shell). This is IDLE letting you know that this is a word that it recognizes. IDLE also turns all the words
enclosed in quotes to green. This also is an acknowledgement from IDLE that it has an understanding of
what you are trying to say.

 Notice that when you started typing, the window title changed to the name '*Untitled*' . The asterisks
around the name are there to show that the contents of the file have been changed, but the file has not
been saved. That is, IDLE knows about the new content, but it has not yet been written to the hard disk. To
save the file, press the standard Control + S (Windows) or Command + S (Mac). Alternatively, you can do
a File ➤ Save. Since this is the first time the file is being saved, you see the standard Save dialog box. Feel
free to navigate to a folder where you are able to find your Python files(s), or click the New Folder button to
create a new folder. In the top of the box, where it says “Save as”, enter a name for this file. Since we are just
testing things out, you can name the file Test. However, Python files should always end with a .py extension.
Therefore, you should enter the name Test.py in the Save As box.

 ■ Note If you save your Python file without a .py extension, IDLE will not recognize it as a Python file. If
Python does not know that your file is a Python file, it will not colorize your code. This may not seem important
now, but it will turn out to be very helpful when you start writing larger programs. So make it a habit right from
the start to always end your Python file names with the .py extension.

 Now that we have a saved Python file, we want to run or “execute” the statements in the file. To do that,
select Run ➤ Run Module, or press the F5 shortcut key. If everything went well, the program should print the
following in the Shell:

 I am now entering Python code into a Python file.
 When I press Return or Enter here, nothing happens.
 This is the last line.

 Now let’s quit out of IDLE. Quitting is done using Control + Q (Windows) or Command + Q (Mac) keys.
Alternatively, you can select IDLE ➤ Exit (Windows) or IDLE ➤ Quit IDLE (Mac).

 When you are ready to open IDLE again, you have choices. First, you can open IDLE by typing IDLE into
the Start menu (Windows) or by double-clicking the IDLE icon (Mac). If you then want to open a previously
saved Python file, you can select File ➤ Open … and navigate to the file that you want to open.

 However, if you want to open IDLE and open a previously saved Python file, you can navigate to the
saved Python file (e.g., find the Test.py file that you just saved) and open IDLE by opening the file. On
Windows, if you double-click the icon, a window typically opens and closes very fast. This runs the Python
program, but does not keep the window open. Instead, to open the file and IDLE, you need to right-click the
file icon. From the context menu that appears, select the second item, Edit with IDLE.

 On a Mac, you can simply double-click the file icon. If double-clicking the Python file opens a program
other than IDLE, you can fix that with a one-time change. Quit whatever program opened. Select the Python
file. Do a Command I (or File ➤ Get Info …), which opens a long dialog box. In the section labeled “Open
with”, select the IDLE application (IDLE.app). Finally, click the Change All … button. Once you do that, you
should be able to double-click any file whose name ends in .py and it should open with IDLE.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ GETTING STARTED

6

 Programming typically involves iterations of edits to one or more Python files. Each time you make
changes and you want to test the new code, you must save the file and then run it. If you don’t save the file
before you try to run it, IDLE will prompt you by asking you to save the file. You quickly become familiar
with the typical development cycle of edit your code, save the file (Command or Control + S), and run the
program (F5).

 IDLE on Multiple Platforms
 One other very nice feature of Python and IDLE is that the environment is almost completely platform-
independent. That is, the IDLE environment looks almost identical on a Windows computer, on a Mac,
and on a Linux system. The only differences that you see are those associated with the particular operating
system (e.g., the look of the window’s title bar, the location of the menus, the look of the dialog boxes, etc.).
These are very minor details. Overall, the platform that you run on does not matter.

 But perhaps even more importantly, the code that you write is platform independent. If you create a
Python file on one platform, you can move that file to another platform and it will open and run just fine.
Many programmers use multiple systems to develop Python code. In fact, while I typically develop most
of my Python code on a Mac, I often bring these same files into classrooms, and open them and teach with
them on Windows systems.

 Summary
 In this chapter, you got up and running with Python. You should now have Python installed on your
computer and have a good understanding of what the IDLE environment is. You built the standard Hello
World program in the Shell, and then used the editor window to build, save, and run a simple multiline
Python program (whose name ends in .py) made up of print statements. Finally, you learned that Python
and the IDLE environment are platform independent.

www.it-ebooks.info

http://www.it-ebooks.info/

7© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_2

 CHAPTER 2

 Variables and Assignment
Statements

 This chapter covers the following topics:

• A sample Python program

• Building blocks of programming

• Four types of data

• What a variable is

• Rules for naming variables

• Giving a variable a value with an assignment statement

• A good way to name variables

• Special Python keywords

• Case sensitivity

• More complicated assignment statements

• Print statements

• Basic math operators

• Order of operations and parentheses

• A few small sample programs

• Additional naming conventions

• How to add comments in a program

• Use of “whitespace”

• Errors in programs

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

8

 A Sample Python Program
 Let’s jump right in and see an example of what Python code looks like. You are probably familiar with a
simple toy called the Magic 8 Ball, made by Mattel, Inc. To play with the toy, you ask it a yes-or-no question,
turn the ball over, and the ball gives you one of a number of possible answers. Here is the output of a Python
program that simulates the Magic 8 Ball:

 Ask the Magic 8 Ball a question (Return or Enter to quit): Will this be a great book?
 Absolutely!

 Ask the Magic 8 Ball a question (Return or Enter to quit): Will I learn to program in
Python?
 Answer is foggy, ask again later.

 Ask the Magic 8 Ball a question (Return or Enter to quit): Will I learn to program in
Python?
 You may rely on it.

 Ask the Magic 8 Ball a question (Return or Enter to quit): Will I be able to play football
in the NFL?
 No way, dude!

 Ask the Magic 8 Ball a question (Return or Enter to quit): Will I make a million dollars?
 Absolutely!

 Ask the Magic 8 Ball a question (Return or Enter to quit): Does the Magic 8 Ball ever make
mistakes?
 No way, dude!

 Ask the Magic 8 Ball a question (Return or Enter to quit):

 Now, let’s jump right in and take a look at the underlying code of this program. I’m showing you this just
to give you a feeling for what Python code looks like. I am certainly not expecting you to understand much of
this code. At this point, the details are not important. Here it is:

 import random # Allow the program to use random numbers

 while True:
 print # prints a blank line

 usersQuestion = raw_input('Ask the Magic 8 Ball a question (Return or Enter to quit): ')
 if usersQuestion == '':
 break # we're done

 randomAnswer = random.randrange(8) # pick a random number

 if randomAnswer == 0:
 print 'It is certain.'

 elif randomAnswer == 1:
 print 'Absolutely!'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

9

 elif randomAnswer == 2:
 print 'You may rely on it.'

 elif randomAnswer == 3:
 print 'Answer is foggy, ask again later.'

 elif randomAnswer == 4:
 print 'Concentrate and ask again.'

 elif randomAnswer == 5:
 print 'Unsure at this point, try again.'

 elif randomAnswer == 6:
 print 'No way, dude!'

 elif randomAnswer == 7:
 print 'No, no, no, no, no.'

 Here’s a very quick explanation:
 At the top, there is a line that allows the program to use random numbers.
 Then there is a line that says, while True . This line creates something called a loop , which is a portion

of a program that runs over and over again. In this case, it allows the user to ask a question and get an
answer, and then enter another question and get another answer, and on and on.

 Moving down, there is a line that causes Ask the Magic 8 Ball a question to be printed out and
allows the user to type a question for the Magic 8 Ball to answer.

 Skipping down a few lines, the program generates a random number between 0 and 7.
 After generating the random number, the program then checks to see if the value of the random number

is 0. If so, it tells the user the answer, It is certain. .
 Otherwise, if the value of the randomly chosen number is 1, it tells the user, You may rely on it. .
 The rest of the lines do similar work, checking the random number and giving different outputs.
 After the program prints an answer, since the program is inside the loop, the program goes around again

and tells the user to ask another question. And the process keeps going.
 As I said, don’t worry about the details of the program-just get a sense of how the program does what it

does. But there are some things to notice.
 First, see how readable this code is. With only this brief introduction, you can probably get a feeling for

the basic logical flow of how the program operates.
 Second, notice that the program asks the user for input, does some computation, and generates some

output. These are the three main steps in almost all computer programs.
 Let’s get into programming 101. This may be extremely basic, but I want to start right at the beginning,

create a solid foundation, and then build on that.

 The Building Blocks of Programming
 The two basic building blocks of programming are code and data . Code is a set of instructions that tell the
computer what to perform and how it should perform. But I want to start our discussion with data.

 Data is the quantities, characters, and/or symbols on which operations are performed with a computer.
Anything that you need the computer to remember is a piece of data. Simple examples of data include the
number of students in class, grade point average, name, whether a switch is in an on or off position, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

10

 There are many different types of data, but in this book, I deal mostly with four basic types, which
I describe in the next section.

 Four Types of Data
 The four basic types of date are called integer numbers , floating-point numbers , strings , and Booleans .
The following explains and provides examples of each of these types of data.

 Integers
 Integer numbers (or simply, integers) are counting numbers like 1, 2, 3, but also include 0 and negative
numbers. The following are examples of data that are expressed as integers:

• Number of people in a room

• Personal or team score in a game

• Course number

• Date in a month

• Temperature (in terms of number of degrees)

 Floats
 Floating-point numbers (or simply, floats) are numbers that have a decimal point in them. The following are
examples of data that are expressed as floating-point numbers:

• Grade point average

• Price of something

• Percentages

• Irrational numbers, like pi

 Strings
 Strings (also called text) are any sequences of characters. Examples of data that are expressed as strings
include the following:

• Name

• Address

• Course name

• Title of a book, song, or movie

• Sentence

• Name of a file on a computer

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

11

 Booleans
 Booleans are a type of data that can only have one of two values: True or False. Booleans are named after an
English mathematician named George Boole, who created an entire field of logic based around these
two-state data items. The following are some examples of data that can be expressed as Booleans:

• The state of a light switch: True for on, False for off

• Inside or outside: True for inside, False for outside

• Whether someone is alive or not: True for alive, False for dead

• If someone is listening: True for listening, False for not listening

 It might seem that integer and floating-point data have overlaps. For example, there is an integer 0 and there
is a floating point 0.0. There is an integer 1 and a floating point 1.0. While these might appear to be the same thing
to us humans, integers and floats are handled very differently inside the computer. Without getting too wrapped
up in the details, it is easier for the computer to represent and operate with integers. But when we have a value with
a decimal point, we need to use a floating-point number instead. Whenever we represent a value, we choose the
appropriate numeric data type. As you will see, Python makes a clear distinction between these two types of data.

 There are many other types of data in the computer world. For example, you are probably familiar with
music being stored in mp3 format or video being stored in mp4, etc. These are other representations of data.
However, to make things simple and clear, I’ll use just the four basic types of data in most of this book.

 Examples of Data
 Now let’s take a look at what the actual data looks like for each of the four different data types.

• Integer numbers are whole or counting numbers. These are some examples:

 12, 50, 0, -3, -25

• Floating-point numbers are any numbers that contain a decimal point. These are
some examples:

 1.5, .5, -3.21, 1.0, 0.0

• Strings represent textual data or any sequence of characters. String data is always
represented with quote characters before and after the sequence of characters.
In Python, you can use either the single (’) or the double-quote character (”). The
following are examples of strings:

 'Joe', 'Schmoe', "Joe", "Schmoe", 'This is some string data', "OK"

 The string 'Joe' and the string "Joe" are exactly the same. The quotes are not
actually part of the string. They are there to allow Python to understand that you
are talking about a string. You can choose to use either pair of quoting characters.
Single quotes are generally easier to use because you don’t have to hold down
the Shift key to type them.

 However, if you want to include a quote character inside a string, you can enclose
the string in the other quote characters. For example, you might write this:

 "Here's a string with a single quote in it"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

12

 Or this:

 'Here is a string that includes two "double quote" symbols inside of it'

 Think back to the Hello World program that you wrote earlier, and you will
realize that the 'Hello World!' that you used was an example of a string.

• Boolean data can only have one of two values: True or False. The words True and
False must be spelled with this capitalization:

 True
 False

 Form with Underlying Data
 To make the distinctions among these different data types more clear, here is a fake but typical form that you
might see if you buy something online. Imagine you wanted to buy some widgets (generic items), and you go to
the Widgets’R’Us.com site to buy them. You might be presented with a form like the one shown in Figure 2-1 .

 As the end user, you would type characters into each of these fields. But as the programmer who is
writing this program, you have to think about what types of data you would use to represent the information
that the user entered into these fields.

 The first two fields, Name and Address, are string data. The user enters characters, and we would think
of these as strings.

 The Number of Widgets field represents a piece of integer data; for example, 10. It wouldn’t make sense
to order 12 and a half widgets, so this is certainly an integer.

 Total to Pay is a floating-point number; for example, 37.25. We think of money written as dollars, a
decimal point, and cents. So you would use a floating-point piece of data to represent this.

 Receipt is what an end user commonly sees as a check box. But if you were writing the program behind
this form, you would represent the answer to the receipt question with a Boolean: True if the box is checked
on, False if the box is checked off. From now on, no matter what device you see this on, you will see check
boxes differently. You now realize that every time you see one, the underlying program is representing your
choice with a piece of Boolean data.

 Figure 2-1. Sample form where the fields represent different types of data

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

13

 Variables
 In programming, we need to remember and manipulate data all the time. This is a fundamental part of
computer programming. In order to store and manipulate data, we use a variable.

 ■ Definition A variable is a named memory location that holds a value.

 The contents of a variable can change or vary over time; this is where the word comes from.
 You probably have heard that the term RAM that stands for random-access memory . It is the active part

of storage inside your computer. You can think of this memory as a simple list or array of numbered slots,
starting at 0 and going up to as much memory as you have in your computer. The amount doesn’t matter, but
Figure 2-2 is a diagram showing memory starting a slot 0 and going up to the final slot of 4 gigabytes.

 Every one of these memory locations can be used as a variable. That is, you can store a piece of data in
any free memory slot.

 Figure 2-2. Random-access memory diagram

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

14

 ■ Note Behind the scenes, the way that Python stores data and variable names is more complex. For
example, different types of data (integer, float, string, and Boolean) take up different amounts of memory rather
than a single “slot”. But thinking of each piece of data as being stored in a single slot in memory provides a
good “mental model”-a good way to think about what a variable is.

 Let’s take an example of what a variable is and how it might be used. Imagine you are playing a
computer game. A game typically has to keep track of your score. To do this, a programmer has written
code that creates a variable, gives the variable a name, and puts some starting value into the variable. In a
game, a score typically starts with a value of 0, and the value of the variable changes over time. As the game
is played, every time something good happens in the game, the programmer’s code may add to the value
of the variable. If the game calls for it, if something bad happens in the game, the programmer’s code could
subtract from the value of the variable.

 In Figure 2-3 , I have arbitrarily chosen slot 3 in memory as the location where the variable score should
be saved. Notice that slot 3 is named score and it has a value of 0 in it. In fact, Python makes the choice
of where in memory to store data. Since you will always refer to a variable by name, you don’t care where
in memory the variable is stored. In this example, whenever you use the name score , Python will use the
memory location 3.

 Figure 2-3. Random access memory diagram with one variable defined

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

15

 Another way to think of a variable is as an envelope or a box into which you can put a value. A variable
is a container-a storage space-with a name. The contents are the value. The name never changes, but the
contents can change over time.

 Using the example of a score, imagine that we have an envelope or box with the name score on it. Inside,
we put the contents-a value. Let’s start off with a value of 0, as shown in Figure 2-4 .

 If the user does something good in the game (kills a bad guy, makes a good shot, finds a hidden item,
etc.), the user gains 50 points. We take the current value (contents) of the score, which is 0, and add 50. The
value of score becomes 50, as shown in Figure 2-5 .

 Figure 2-4. Visualization of a variable as an envelope

 Figure 2-5. Visualization of a variable with a different value

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

16

 Let’s say that the user does something else good and is awarded another 30 points. We take the current
value of 50 and add 30 to it, giving us a total of 80, as shown in Figure 2-6 . So we have the variable called
 score (which is actually a memory location), and its value is changing over time. The program remembers
the current value by having it stored in a variable.

 Assignment Statements
 I have talked about variables and how they are used to store data, but I haven’t shown you yet how to use a
variable in Python. Let’s do that right now.

 So much for the theory. In Python, you create and give a value to a variable with an assignment
statement.

 ■ Definition An assignment statement is a line of code in which a variable is given a value.

 An assignment statement has this general form:

 <variable> = <expression>

 When I put things in less than and greater than brackets, like this <variable> , it means that you should
replace that whole thing (including the brackets) with something that you choose. Anything written like this
 <variable> is a placeholder.

 Figure 2-6. Visualization of a variable with yet a different value

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

17

 It works like this: the <expression> -everything on the right side of the equals sign-is evaluated and a
value is computed. The resulting value is assigned to (put into) the variable on the left.

 This is best explained with some simple examples. Try entering these lines into the Python Shell:

 >>> age = 29
 >>> name = 'Fred'
 >>> alive = True
 >>> gpa = 3.9
 >>>

 Notice that when you type an opening quote (such as in typing in a value for the variable name), IDLE
recognizes that you are typing a string and turns all characters green until you type the matching closing quote.

 Also notice that when you typed the word True , it turned color (probably purple). This is an indication that
Python has discovered a special word. Python colorizes the word to show you that it is a word that it recognizes.

 When Python runs (or executes) assignment statements like these, it first looks to see if the variable to be
assigned was previously used. If the variable had never been seen before, Python allocates an empty slot of
memory, attaches a name to it, and puts in the given value. Therefore, when you entered the following line
and pressed Return or Enter, Python first looked to see if it had ever seen the variable name age before:

 >>> age = 29
 >>>

 Since it had not, it allocated a memory slot somewhere (again, we don’t care where) attached the age label
to it, and then put the value 29 into that memory slot. A similar sequence happened for the other variables.

 In pure computer programming terms, the equals sign is not called “equals,” it is called the assignment
operator . In an assignment statement, everything on the right of the equals sign is calculated, and the result
is assigned to the variable on the left.

 Whenever you see an assignment statement, you can read or think of the equals sign by saying these words:

• “is assigned”

• “is given the value of”

• “is set to”

• “becomes”

• “gets”

 For example, it might be helpful and clearer to you to read this line:

 >>> age = 29

 as:

 “age is assigned 29”

 or:

 “age is given the value of 29”

 or:

 “age is set to 29”

 or:

 “age becomes 29”

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

18

 After executing that line, enter the following line and press Return or Enter:

 >>> age = 31

 Python does the same sequence of steps, but now it finds that there already is a variable named age .

Rather than creating a new variable, Python overwrites the current value of the variable age with the new
value of 31, as shown in Figure 2-7 . If you remember the conceptual way of representing a variable as a
container (for example, as an envelope), think of this line as replacing the old value inside the envelope with
a new value. The variable name age stays the same, but the contents change.

 Variable Names
 By definition, every variable must have a name. It is best to make variable names as descriptive as possible.
For example, let’s say I was building a virtual aquarium. I would use a variable to keep track of the number of
fish in my aquarium. Python doesn’t care what you use for a variable name. You could use a name as simple
as x , or you could use some odd sequence of characters, such as xddqfmmp . Or you could create a name like
 numberOfFishInAquarium . This name is much clearer. Names like this make code much more readable and
understandable in the long run.

 In Python (and all computer languages), there are rules about naming a variable. Here are Python’s
rules about the name of a variable:

• Must start with a letter (or an underscore)

• Cannot start with a digit

 Figure 2-7. Visualization of a variable as the result of an assignment statement

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

19

• Can have up to 256 total characters

• Can include letters, digits, underscores, dollar signs, etc.

• Cannot contain spaces

• Cannot contain math symbols (+, -, /, *, parentheses)

 We’ve seen some examples of legal names, such as age , name , score , alive , numberOfFishInAquarium .
But here are some examples of illegal names:

• 49ers (starts with a digit)

• table+chairs (contains a plus sign)

• my age (contains a space)

• (coins) (uses parentheses)

 Naming Convention

 ■ Definition A convention is an agreed upon way of doing things.

 In the real world, we have many examples of conventions. When we want to get in an elevator, we let
people get out of the elevator before new people get in. We always shake hands with our right hand. When
we answer a phone, the convention is to say “Hello.” In the United States, we drive on the right-hand side of
the road. This is not only a convention; it’s the law.

 In programming, you can create any variable name that you wish as long as it follows the rules.
However, when creating variable names, I strongly encourage you to use a naming convention , which is a
consistent approach for creating names for variables. If you create a name, like score , where the name is just
one word, the convention is to use all lowercase letters.

 However, we often want to create descriptive names made by putting together two or more words. Take,
for example, the variable name numberOfFishInAquarium , which is created by putting together five words. In
the Python world, there seem to be two common naming conventions.

 The first naming convention, and the one that I prefer, is called camel case . The rules of the camel case
convention are very simple:

• The first word is all lowercase.

• For every additional word in the name:

• Make the first letter uppercase.

• All other letters are lowercase.

 Here are some examples of variable names that follow the camel case naming convention:

 thisIsAVariableName
 anotherVariableName
 countOfBadGuys
 computerScore

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

20

 humanScore
 bonusPointsForCollectingMushrooms

 The term camel case describes the way variable names look when using this convention. Every time you
see an uppercase letter, which starts a new word, it looks like a hump on a camel. Notice how names that
follow the camel case naming convention are easy to read.

 There is another convention that some Python programmers use, which is to separate words with
underscores:

 this_is_a_variable_name
 number_fish_in_aquarium

 But to me, this seems more difficult to both read and write. I am showing this alternative convention
here because if you look at other people’s code written in Python, you will probably see variable names
written this way.

 I have used the camel case naming convention for years and I will use camel case throughout this book.
If you are coding on your own, obviously you can use whatever names you want, but it really is a good idea to
be consistent when naming variables. If you do programming in a class or for a company, the teacher or the
company may insist on a particular naming convention so that all programmers can easily understand each
other’s code.

 Keywords
 I’m sure that you have heard that computers only understand ones and zeros. This is true. When you write
code in Python, Python cannot run or “execute” your code directly. Instead, it takes the code that you write
and “compiles” it. That is, Python converts your code into a language of ones and zeros that the computer
can understand. Every language has such a compiler. When the Python compiler reads your code, it looks for
special words called keywords to understand what your code is trying to say.

 ■ Note Python actually has an “interpreter” that turns your code into a machine-independent “byte code.”
But to make things simple, I refer to this as the “Python compiler.”

 The following is a list of the Python keywords. Don’t worry about the details right now. I’m just showing
you these now to let you know that you cannot use these words as a variable name.

 and as assert break class
 continue def del elif else
 except exec if import in
 is lambda not or pass
 print raise return try while
 yield True False None

 You have already seen three of these keywords. We used the word print in our Hello World program,
and the words True and False are the only allowable values in a Boolean variable. True , False , and None are
the only keywords that begin with an uppercase letter. Whenever you type a Python keyword, IDLE changes
the color of the word. Earlier, when you typed the following, the word print turned orange or purple:

 print 'Hello World!'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

21

 This is IDLE looking over your shoulder and telling you that this is a Python keyword. The important
thing to learn here is that you cannot use any of these keywords as a variable name. If you attempt to do so,
the Python compiler will generate an error message when it tries to compile your program.

 Case Sensitivity
 The computer language called C was developed in the early 1970s. It was one of the first “high-level”
computer languages and has had a great deal of influence on many current computer languages. Languages
such as C++, JavaScript, ActionScript (language of Flash), and Java can all trace their roots to C. There are
many similarities among these languages, but each one has a different purpose.

 As I mentioned, all computer languages have a compiler that changes the code that you write in that
language into lower-level instructions (based on ones and zeros) that the computer really understands. The
compilation step happens before you run your program. When C was created, computers were very slow.
The people who created C wanted the C compiler to be as fast as possible. One way they made it fast was
to enforce a rule that said that variable names and keywords would be case sensitive-that is, case matters.
As humans, we could certainly recognize if our names were spelled with varying degrees of uppercase or
lowercase. If I saw my name written as irv, Irv, or IRV, I would know that someone was talking about or to me.

 However, because of the need for speed in the C compiler to read and understand a programmer’s
variable names, a variable named myVariable is not the same as one named one named myvariable and is
 not the same as one named MyVariable . Each of these represent a unique variable.

 This is important to bring up here because Python has this same trait. Variable names and keywords
in Python are all case sensitive. For example, print is not the same as Print . This will bite you many times
over. You will spend a great deal of time scratching your head about why your program won’t compile, only
to realize hours later that you used a lowercase letter where you needed an uppercase one. This is another
reason that following a strict naming convention makes sense. If you follow a naming convention such as
camel case, you will make fewer uppercase/lowercase naming errors.

 More Complicated Assignment Statements
 Now that we have an understanding of the rules of naming variables, and a naming convention that will help
us name variables, let’s look at some more details of assignment statements.

 Remember that this is the general form of an assignment statement:

 <variable> = <expression>

 So far, I’ve only shown assign statements that give a variable a simple value. But the <expression> part
on the right side of the equals sign (the assignment operator) can be as simple or as complicated as you need
it to be. The right-hand side can also contain variables. Here’s an example:

 >>> myAge = 31
 >>> yourAge = myAge
 >>>

 The first line creates and sets a variable named myAge to 31. The second line creates a variable named
 yourAge and sets it to the current value of the variable myAge . After running these two lines, both variables
would be set to the value 31.

 An assignment statement computes the value of whatever is on the right-hand side of the equals sign
and assigns it to the variable on the left-hand side. Whenever a variable appears in an expression (on the
right side of an assignment statement), the expression is evaluated (computed) by using the value of each

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

22

variable. That is, as the programmer, you write the name of a variable, but when the statement runs, the
computer uses the current value of that variable at that time.

 Here’s a simple example doing some addition:

 >>> numberOfMales = 5
 >>> numberOfFemales = 6
 >>> numberOfPeople = numberOfMales + numberOfFemales
 >>>

 First, we use two assignment statements to create two variables: numberOfMales and numberOfFemales .
In the third line, we see those two variables on the right side of the equals sign (the assignment operator). To
generate a result, Python uses the value of those variables, 5 and 6, does the math, gets an answer of 11, and
assigns that result into the variable on the left side of the equals sign- numberOfPeople .

 I want to make it very clear that the equals sign in an assignment statement is very different from the
way an equals sign is used in math. In math, the equals sign implies that the things on the left side and the
right side have the same value.

 To drive this point home, consider these two lines of code:

 >>> myAge = 25
 >>> myAge = myAge + 1
 >>>

 If you are a mathematician, the second line will jump out at you as an impossibility; that is, there is no
value of myAge for which that statement is true.

 However, this is not an equation; it is an assignment statement. Here is what the second line says
(starting on the right-hand side): take the current value of the variable myAge , add 1 to it, and put the
resulting value back into the variable myAge . This statement effectively changes the value of the variable
 myAge by adding 1 to it. Using a variable to count something is done all the time in programming, and it is
very common to see lines like this in code.

 Print Statements
 Now, how do we know if things are working? We would like to have a way to reach into a variable and see
the value inside. Remember the print statement from our Hello World program? The print statement is
very “general purpose.” You ask it to print something and it prints whatever you ask it to print into the Shell
window. The general print statement looks like this:

 print <whatever you want to see>

 Here are some examples in the Shell:

 >>> eggsInOmlette = 3
 >>> print eggsInOmlette
 3
 >>> knowsHowToCook = True
 >>> print knowsHowToCook
 True
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

23

 The print statement can also print multiple things on a single line. You can do this by separating the
items you want to print with commas. When the print statement runs, each comma is replaced by a space:

 >>> print eggsInOmlette, knowsHowToCook
 3 True
 >>>

 You can use this to nicely format your output. For example, it allows you to print a description of what
variable you are printing:

 >>> eggsInOmlette = 3
 >>> print 'eggsInOmlette is:', eggsInOmlette
 eggsInOmlette is: 3
 >>> knowsHowToCook = True
 >>> print 'knowsHowToCook is:', knowsHowToCook
 knowsHowToCook is: True
 >>> print 'eggsInOmlette and knowsHowToCook are', eggsInOmlette, 'and', knowsHowToCook
 eggsInOmlette and knowsHowToCook are 3 and True
 >>>

 Here are more examples of assignment statements and print statements, using all four types of data:

 >>> numberInADozen = 12
 >>> print 'There are', numberInADozen, 'items in a dozen'
 There are 12 items in a dozen
 >>> learningPython = True
 >>> print 'It is', learningPython, 'that I am learning Python'
 It is True that I am learning Python
 >>> priceOfCandy = 1.99
 >>> print 'My candy costs', priceOfCandy
 My candy costs 1.99
 >>> myFullName = 'Irv Kalb'
 >>> print 'My full name is', myFullName
 My full name is Irv Kalb
 >>>

 There is one additional note about the print statement. To make things a little clearer in your output,
you may want to include one or more blank lines. To create a blank line of output, you can use a blank print
statement. Just write the word print without anything else on the line, like this:

 >>> print

 ■ Note In Python 3, the print statement has a different form (syntax). In Python 3, the print statement must
have parentheses around the item(s) that you want to print, as follows: print (<item1>, <item2>, ...) This
is perhaps the most noticeable difference between Python 2 and Python 3. If you see code elsewhere written in
Python 3 that uses parentheses in print statements, you can often modify these statements to work in Python 2
by removing the outermost set of parentheses.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

24

 Simple Math
 Now let’s move on to some simple math for use in assignment statements. Python and all computer
languages include the following standard set of math operators:

• + Add

• - Subtract

• / Divide

• * Multiply

• ** Raise to the power of

• % Modulo (also known as remainder)

• () Grouping (we’ll come back to this)

 Let’s try some very simple math. For demonstration purposes, I’ll just use variables named x and y . In
the Shell, try the following:

 >>> x = 9
 >>> y = 6
 >>> print x + y
 15
 >>> print x - y
 3
 >>> print x * y
 54
 >>> print x / y
 1
 >>>

 Everything seems fine until we try the divide. You probably would have expected 9 divided by 6 to
generate 1.5.

 By default, since both of our numbers are integers, Python does what is called integer arithmetic . That is,
if you are using all integers, the answers to math operations are going to be integers. Therefore, 9 divided by
6 is actually 1 as an integer divide; that is, with no remainder.

 If you want to do a floating-point divide, you need to use at least one floating-point value in the divide
expression. For example, let’s define floatingPointX and set it to 9.0, and then do the division:

 >>> floatingPointX = 9.0
 >>> y = 6
 >>> print floatingPointX / y
 1.5
 >>>

 Now we get the floating-point answer of 1.5 that we expected.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

25

 ■ Note In Python 3, the division operator works differently. In Python 3, if you use the slash to do a division,
you will always get a floating-point answer. If you want to do an explicit integer division, you must use a new
operator; two slashes, for example: forcedIntegerAnswer = integer1 // integer2

 COMPUTERS CAN REPRESENT INTEGERS PERFECTLY

 As humans, we represent integers using base 10 (digits from 0 to 9). Computers represent integers using
base 2 (using only ones and zeroes). But there is an exact mapping between the two bases. For every base
10 number, there is an exactly equivalent base 2 number. However, because of the way that computers
represent floating-point numbers, this is not the case for floating-point numbers. There is no such mapping
between base 10 fractions and base 2 fractions. When representing floating-point fractional numbers,
there is often some small amount of “rounding”; that is, floating-point fractional numbers are a close
approximation of the intended number. For example, if we attempt to divide 5.0 by 9.0, we see this:

 >>> print 5.0 / 9.0
 0.555555555556

 The decimal values goes on forever, but when represented as a float, the value gets rounded off.

 Let’s try out the last two math operators. “Raise to the power of” is very straightforward. In the following
code, we want to raise x to the power of y :

 >>> x = 2
 >>> y = 3
 >>> print x ** y
 8
 >>>

 Finally, there is modulo. The modulo operator -the percent sign-gives you the remainder of a division.
Remember that with an integer division, the result is just the integer result. The modulo operator allows you to get
the remainder. Here’s an example. Imagine that you have a puppy that is 29 months old. Using an integer divide
and the modulo operator, we can do an easy conversion to find out the age of the puppy is in years and months.

 >>> ageInMonths = 29
 >>> years = ageInMonths / 12
 >>> months = ageInMonths % 12
 >>> print "My puppy's age is", years, "years and", months, "months."
 My puppy's age is 2 years and 5 months.
 >>>

 If we reverse the process, you can see how we can get back to the original number:

 >>> puppysAge = (years * 12) + months
 >>> print "Puppy's age in months is:", puppysAge
 Puppy's age in months is: 29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

26

 Order of Operations
 Back in elementary school, in a lesson about math, my teacher went through a long description of a topic
called the “order of operations.” We were told that some math operators had precedence over other ones. For
example, look at this assignment statement:

 x = 5 + 4 * 9 / 6

 What operations are done in what order? The teacher explained that the acronym PEMDAS would help
us to figure out the order. PEMDAS described the precedence order as

 1. Parentheses

 2. Exponents

 3. Multiplication

 4. Division

 5. Addition

 6. Subtraction

 However, I thought that it was a terrible idea to have some implied, seemingly arbitrary ordering of
math operators. Let’s look at the assignment statement again:

 x = 5 + 4 * 9 / 6

 You must understand the PEMDAS ordering to figure it out. First, you would multiply 4 by 9, take the
result and divide that by 6, and then add 5, before storing the answer in x .

 Because of my conviction for clarity, I feel that writing an assignment statement like this is an extremely
poor technique. You are writing in a way that forces future readers to have an understanding of PEMDAS in
order to infer what you meant by this statement.

 Instead, it would be much clearer to both yourself and future readers if you were to use parentheses to
group operations. Using parentheses allows you to “force” the order of operations so that the steps happen in
whatever order you want. If you wanted to write the line in a way that reflects what would happen following
PEMDAS, it would look like this:

 x = 5 + ((4 * 9) / 6)

 When you have nested sets of parentheses, the only rule you need to know is that sets of parentheses
are evaluated from the innermost set to the outmost set. In this example, (4 * 9) is evaluated first, that result
is then divided by 6, and then 5 is added that result. If you wanted the operations performed in a different
order, you could use parentheses to create different groupings. For example:

 x = (5 + 4) * (9 / 6)

 These parentheses say that you should add 5 and 4, divide 9 by 6, and then multiply the results. Adding
parentheses as in the preceding statements makes your intent much clearer and does not rely on the reader
to understand the PEMDAS rules. I strongly encourage you to add parentheses like these to force the order of
operations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

27

 First Python Programs
 Let’s take everything we’ve learned in this chapter and write some very small, but useful Python programs.
We’ll start by writing a simple program to add up the value of all the one-dollar bills and five-dollar bills
that are in a wallet. Start by opening a new Python editor window (reminder: Control + N (Windows) or
Command + N (Mac), or File ➤ New). This is what that code could look like:

 numberOfOneDollarBills = 3
 numberOFiveDollarBills = 2
 total = numberOfOneDollarBills + (numberOFiveDollarBills * 5)
 print 'Total amount is:', total

 Again, none of these lines are executing; they have just been entered into a file. In order to see any
results, we have to “run” the program that we have just written. First, save the file (Control + S (Windows) or
Command + S (Mac) or File ➤ Save).

 The first time you save a new file like this, you must give it a name. All Python file names should end in
 .py , so name this file something like MoneyInWallet.py .

 Now that the file is saved, you are ready to run the program (reminder: press the F5 shortcut key or
select Run ➤ Run Module). If there are no errors in your program, you will see the output of your program
show up in the Shell. You should see this:

 Total amount is: 13

 If you had any errors, read the bottom line of the error message, identify what you typed incorrectly, fix
it, save, and run again.

 Let’s build another simple program. In IDLE, open a new file (Command/Control N). This time we’ll
write a program to calculate how much money you should be paid for working at a job. For the first 40 hours,
you should be paid at an hourly rate. Any hours over 40 should be paid at time and a half times the rate:

 rate = 10.00
 totalHours = 45
 regularHours = 40
 overTimeHours = totalHours - regularHours
 pay = (rate * regularHours) + ((rate * 1.5) * overTimeHours)
 print 'For working', totalHours, 'hours, I should be paid', pay

 When you have that working, you should see the following in the Shell window:

 For working 45 hours, I should be paid 475.0

 Here is one more program that involves just a little bit of algebra. Again, open a new file for this
program. You are probably familiar with the Pythagorean theorem for finding the hypotenuse of a triangle:

 hypot 2 = side1 2 + side2 2

 But we could not use the formula that way directly in a Python assignment statement. We cannot have a
square symbol attached to a variable, but we can simplify by taking the square root of both sides:

 hypot = square root of (side1 2 + side2 2)

 Then we can use the Python ** (raise to the power) operator to square both side lengths:

 hypot = square root of ((side1 ** 2) + (side2 ** 2))

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

28

 Finally, we can use the ** operator again. Raising something to the one-half (0.5) power is the
equivalent of taking a square root:

 hypot = ((side1 ** 2) + (side2 ** 2)) ** 0.5

 This is a legal Python statement. Now we can build the full program. Let’s try side lengths of 3 and 4, and
see what our program generates for the hypotenuse:

 side1 = 3
 side2 = 4
 hypot = ((side1 ** 2) + (side2 ** 2)) ** 0.5
 print 'Side 1 is', side1, ' Side 2 is', side2, ' Hypotenuse is:', hypot

 In the Shell window, you should see this:

 Side 1 is 3 Side 2 is 4 Hypotenuse is: 5.0

 Shorthand Naming Convention
 I want to introduce one more minor convention for naming variables. In an addition to the camel case
naming convention, I use shorthand in some of my variable names. It turns out that we often use variables
to keep track of the number of items that we have. In a game, we might use variables to keep track of the
number of bad guys or good guys. In a testing program, we might use a variable to keep track of the number
of right answers, etc.

 Programmers often start the variables with a numberOf prefix. This happens so often that I use
shorthand. Rather than creating this variable name:

 numberOf<Whatever>

 I shorten that to where the n stands for “number of”-like this:

 n<Whatever>

 For example, instead of writing this:

 numberOfJellyBeansInJar
 numberOfGoodGuys
 numberOfCorretAnswers

 I write this:

 nJellyBeansInJar
 nGoodGuys
 nCorrectAnswers

 Let’s revisit the earlier MoneyInWallet.py program and apply this additional naming convention. Here
is the original code:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

29

 numberOfOneDollarBills = 3
 numberOfFiveDollarBills = 2
 total = numberOfOneDollarBills + (numberOfFiveDollarBills * 5)

 print 'Total amount is', total

 Apply this new naming convention to make it look like this:

 nOneDollarBills = 3
 nFiveDollarBills = 2
 total = nOneDollarBills + (nFiveDollarBills * 5)
 print 'Total amount is', total

 If you want, you can do this by making changes on each line. However, you could do it faster by doing
a Find and Replace. You can go to the Edit menu, and choose Replace. Fill out the dialog box, as shown in
Figure 2-8 .

 Then click Replace All. Save and run the program. You should see these identical results:

 Total amount is 13

 Finally, let’s modify the program to allow us to count the ten-dollar bills and the twenty-dollar bills in
the wallet.

 nTwentyDollarBills = 5
 nTenDollarBills = 4
 nFiveDollarBills = 8
 nOneDollarBills = 2
 total = (nTwentyDollarBills * 20) + (nTenDollarBills * 10) + \
 (nFiveDollarBills * 5) + nOneDollarBills
 print 'Total amount is', total

 Figure 2-8. Replace Dialog box.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

30

 Notice that the line got a little long in the assignment statement that does the calculation. If you think a
line is getting too long to read, you can add a backslash character (\) at a logical breaking point to indicate
that the line should continue to the next line.

 Adding Comments
 When you are writing software, you wind up making a lot of decisions about how you approach different
problems. Sometimes, your solutions are not exactly apparent and could use some documentation. You may
want to explain to the reader (who could be a future version of you, or someone else) why you did something
the way you wound up doing it, or how some intricate piece of code works.

 Documentation like this, written directly in your code, is called a comment . Comments are completely
ignored by Python; they are only there for humans. There are three ways to write comments in Python:
provide a full-line comment, add a comment after a line of code, or use a multiline comment.

 Full-Line Comment
 Start a line with the # character, followed by your comment:

 # This whole line is a comment
 # This is another comment line
 # All comment lines are ignored by Python
 # Even though the next line looks like code, it's just a comment
 # x = 1
 # -------------------------------------

 Notice that when you type the # , the symbol and all characters after it turn red. This is IDLE recognizing
that you are typing a comment.

 Add a Comment After a Line of Code
 You can put a comment at the end of a line of code to explain what is going on inside that line. The following
lines are very simple and don’t really need comments, but they should serve as a good example of how to
add this type of comment:

 score = 0 # Initializing the score
 priceWithTax = price * 1.09 # add in 9% tax

 Multiline Comment
 You can create a comment that spans any number of lines. You do this by having one line with three quote
marks (single or double quotes), any number of comment lines, and ending with the same three quote
characters (single or double quotes), as follows:

 '''
 A multiline comment starts with a line of three quote characters (above)
 This is a long comment block
 It can be any length
 You do not need to use the # character here

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

31

 You end it by entering the same three quotes you used to start (below)
 '''

 There are times when you are experimenting with code that you may want to temporarily comment
out a block of code. For example, you try writing something one way, and it is close to what you want but it’s
not exactly right. You don’t want to delete it because you may want to do a little experiment to see if you can
write the code in a better way.

 Let’s say that you have five lines of code that you want to comment out. You certainly could put the
cursor at the beginning of a line and add the # symbol at the beginning of each line. Or you could put a triple
quote before and after the block of code. However, there is an easier way.

 To comment out a block of lines, first select all the lines that you want to comment out. You can click at
a beginning point in your code and drag across the lines you want to comment out, or you can click at the
beginning point and Shift-click at the ending point. Then go to the Format menu and choose Comment Out
Region. (For some reason, IDLE adds two pound-sign characters (##) when doing this, but that works fine.)
Later, if you decide that you want to uncomment a block, select the region the same way, go to the Format
menu, and choose Uncomment Region.

 Finally, comments are often used at the top of a complicated program to build a “revision history.” That
is, every time there is a significant change to a program, programmers often add a comment with a date, a
name, and a message about what changed; for example:

 # 03/27/15 DG Modified to add ability to ...
 # 01/02/14 IK Modified to handle the ..
 # 09/09/13 IK First version

 Whitespace
 Python ignores all invisible characters. You can add spaces and extra blank lines anywhere you want in
Python. When files get long, added blank lines can aid in readability. (I will talk about readability a lot!)
When you press the Return key or Enter key when typing in a Python file, IDLE adds an invisible RETURN
character at the end of the line.

 Just as we talked about a naming convention for variables, as a convention, most programmers put
spaces around math operators. Here is an example of clearly written code with good spacing:

 myVariable = var1 + var2 #space on either side of equals and plus (preferred)

 But it could be written like this:

 myVariable=var1+var2 #no spaces

 Or even like this:

 myVariable = \
 var1 + var2 #lots of spaces

 These lines all do the same thing. The extra spaces are whitespace, which is ignored by the Python
compiler. Adding a single space before and after all operators makes your code more readable by humans.

 Spaces will become important later.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

32

 Errors
 When writing and trying to run computer code, everyone makes mistakes. In order to help you build a
correct program, Python tries to catch errors as early as possible. There are three different types of errors that
you encounter when doing Python programming: a syntax error, an exception error, and a logic error.

 Syntax Error
 The first type of error is a compile error (the generic name in programming), which is known as a syntax
error in Python.

 Consider the following two-line program:

 learningPython = True
 print learningpython

 When this program is run, we see this:

 Traceback (most recent call last):
 File "<test>", line 2, in <module>
 print learningpython
 NameError: name 'learningpython' is not defined

 This is called a traceback , a term that won’t make a lot of sense right now. For now, just recognize that
this is a Python error message. Python is trying to help you by telling you that something has gone wrong. To
understand what Python is trying to say, look at the last line first. In this case, it says the following:

 NameError: name 'learningpython' is not defined

 And this is exactly the problem. The first line created a variable named learningPython , but
 learningpython (with a lowercase p) has never been defined. The wording of the last line of the traceback is
very clear in explaining what went wrong. The middle two lines of the traceback tell you the line where the
error occurred:

 File "<test>", line 2, in <module>
 print learningpython

 Errors in variable names will be the cause of many early errors in your programming. This is why I
strongly recommend using the camel case convention. If you follow the convention consistently, you won’t
have as many of these types of errors.

 Here’s a second example of a compilation error:

 a = 5 5

 A line like this one breaks the rules of Python. Python understands the first part of it as an assignment
statement, but when it sees 5 space 5, it doesn’t know what you mean. When you try to compile a program
with a line like this, you get an error dialog saying that there was a syntax error. IDLE also puts a red highlight
box in your source code that indicates where it thinks your error is. When you get a compile error, Python
cannot run your program, so it does not even try. You need to study the line with the error, figure out what is
wrong, and fix the error.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

33

 Here is a third type of syntax error. In the following, the first line has open parentheses, but no closing
parentheses:

 y = (5 +
 x = 1

 In code like this, Python reads what you wrote, finds the opening parenthesis, and looks for the
matching close parenthesis. Since it did not find one on the first line, it attempted to continue to the
second line. When it finds what it thinks is a second equals sign, it knows that something is wrong because
you cannot have two equals signs in an assignment statement. Therefore, you see the red error box on an
incorrect line. If you run into an error like this, where the line of code looks correct (x = 1 is correct), the
actual error might have occurred on the line above.

 Exception Error
 The second type of error is a runtime error (generic name in programming), which is known as an exception
error in Python.

 x = 5 + 'abc'

 You can’t really add a number and a string. If you try to run this line, Python generates the following error:

 Traceback (most recent call last):
 File "<pyshell#0>", line 1, in <module>
 x = 5 + 'abc'
 TypeError: unsupported operand type(s) for +: 'int' and 'str'

 When you get a traceback, the first thing to do is to read the bottom line first. This one may be a little
difficult to read, but what is it saying is that for the plus operator, Python does not allow you to try to combine
an integer and a string.

 Here is another example. Assume that you have not used a variable named xyz , and you try to use this
variable in a line like this:

 print xyz

 or

 y = xyz + 1

 These are valid Python statements, but since xyz was not defined before running these lines, Python
gives you the following error message:

 Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
 print xyz
 NameError: name 'xyz' is not defined

 The wording of the last line of this error message is very clear. When you see this type of error, you have
most likely misspelled or mis-capitalized a variable name. Remember, all uppercase/lowercase letters in
a variable name must be the same every time the variable is used. Variables ABC and abc are completely
different variables.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ VARIABLES AND ASSIGNMENT STATEMENTS

34

 Logic Error
 The third type of error is a wrong answer, also known as a logic error .

 Let’s say that you are attempting to do simple addition. In trying to write the code, you inadvertently
write the following:

 # Attempt to ADD 2 and 5
 total = 2 * 5
 print total

 These lines of code are valid Python statements. And the program will run without any error messages.
But it produces an incorrect answer. This type of error is often difficult to track down.

 In this small example, it is obvious what’s wrong: the asterisk (multiplication) should have been a plus
(addition). But when you start to write larger programs, it gets more difficult to find such errors. To track
down this type of error, you generally add print statements to write out the values of your variables at
different points in the program. You run your program and compare the output of your print statements
against your expected results. Using this approach helps narrow down the location of the error.

 Summary
 In this chapter, you learned about data, variables, and assignment statements. We discussed the four main
types of data: integers, floats, strings, and Booleans. You got an in-depth understanding of what a variable is
and a convention for how a variable should be named. And you saw how to give a variable a value with an
assignment statement. I introduced the math operators in Python and showed a few sample programs. You
saw how to add comments to code, learned about whitespace, and were introduced to the types of errors you
will see when writing code.

www.it-ebooks.info

http://www.it-ebooks.info/

35© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_3

 CHAPTER 3

 Built-in Functions

 Just as Python has a number of built-in operators (such as the plus for addition, minus for subtraction,
asterisk for multiplication, etc.), Python also has a number of what are called built-in functions .

 This chapter discusses the following topics:

• Built-in functions

• Using a function/function call

• Arguments

• Getting a result back from a function

• The type function

• Getting input from the user using raw_input

• Conversion functions: int , float , and str

• Building our first real programs

• Concatenation, or adding strings together

• Another programming exercise

• Using function calls inside assignment statements

 Overview of Built-in Functions
 I’ll give you an analogy to explain what a built-in function is. My car has a built-in radio. The radio is not
really the car itself; it was developed separately, probably by a different company. But when I bought the car,
it had a radio in it. When I want the radio to do something, I press its buttons or turn its dials, and the radio
responds appropriately. I don’t need to know how the radio works, I just need to know how to use the radio’s
controls. Similarly, in a typical kitchen there are number of built-in appliances. The inner workings of a
home bread maker are a mystery to most people, but the average person can read the manual and figure out
how to use the controls to have it make a delicious loaf of bread.

 Python has a number of things like this that are called built-in functions . They are pieces of code that are
available for you to use in your programs. (The real power of programming comes when we build our own
functions, which we will get to in the next chapter.) When you want to use a built-in function, you specify its
name and typically give it some information. The function does some work with that information, and gives
you back some result.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

36

 Function Call
 Using a function is known as calling a function, or making a function call , or making a call to a function. To
call a function, you supply the name of the function, followed by a set of open/close parentheses. This is the
generic form:

 <functionName>()

 However, most built-in functions expect you to supply one or more pieces of information in addition to
the function name. This is commonly referred to as passing data to a function.

 Arguments

 ■ Definition An argument is a value that is passed when you call a function.

 Inside the function call’s parentheses, you put any data you want to send to that function. Here’s what a
generic call to a function with arguments looks like:

 <functionName>(<argument1>, <argument2>, ...)

 Results
 When you call a built-in function, the function does its work and it hands back a result. When the function
is finished, the result replaces the call and its arguments; that is, the line continues to execute using the
returned value in place of the call. Very often when you make a call to a function, you assign the returned
value to a variable using an assignment statement, as follows:

 <variable> = <functionName>(<argument1>, <argument2>, ...)

 Built-in type Function
 Let’s start with a simple example to demonstrate this in context. Python has a built-in function that can tell
us the data type of any variable or value. Not surprisingly, it is called type . Again, the sequence is that you
call a function and pass in a value or values (argument(s)), the function does some work using the value(s)
you provided, and then it gives back an answer. Let’s find out the data type of the number 10:

 >>> typeOfTen = type(10)
 >>> print typeOfTen
 <type 'int'>

 In the first line, we call the type function passing in 10. The function does its work, and when the
function is done, it gives back a result. We take that returned result and assign it to a variable, typeOfTen .
Finally, we print out typeOfTen . As expected, we see that typeOfTen is an integer.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

37

 Alternatively, when making a call to a function, you can pass in a variable instead of a number (or string
or Boolean). When you do, Python uses the value of the variable at that time. Here we will use a variable
named age and make a similar call:

 >>> age = 18
 >>> typeOfAge = type(age)
 >>> print typeOfAge
 <type 'int'>

 The first line executes and sets the variable age to 18. When the second line runs, Python sees the
variable name, looks up the variable’s value, and passes the value of the variable. Therefore, when that line
executes, your code will run exactly as though it said this:

 >>> typeOfAge = type(18)

 Further, when making a call to a function, we do not necessarily need to use an assignment statement.
We could just use a print statement to see the returned value:

 >>> age = 18
 >>> print type(age)
 <type 'int'>

 We don’t know how the type function does what it does, and frankly, we don’t care. It’s kind of like how
most of us think about a microwave oven, or TV, or phone, etc. Most of us don’t really know how these things
work internally, but we are happy using them as long as they continue to do what we need them to do.

 Now, let’s try using the type function with a different data type:

 >>> print type(123.45)
 <type 'float'>

 To show that the type function works with any data type, we’ll try it with a string and then a Boolean:

 >>> print type('This could be any string')
 <type 'str'>
 >>> print type(True)
 <type 'bool'>

 Now, let’s try to confuse you. Let’s create a new variable, myVar , and give it a value:

 myVar = '1234'

 What do you think the type of myVar is? Let’s ask Python to tell us, again using the type function:

 >>> print type(myVar)
 <type 'str'>

 Even though the characters are all digits, this is a string because there is an opening and closing quote.
Now, let’s execute this line:

 >>> myVar = 1234

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

38

 That line changes the contents of the myVar variable to an integer. Therefore, the same variable is now
considered an integer variable:

 print type(myVar)
 <type 'int'>

 The important thing to notice here is that 1234 and '1234' are very different things. 1234 is an integer
number and '1234' is a string of characters. These are totally different values. We’ll see how to switch
between these types very soon.

 This ability for variables to switch data types at any time is not typical. In most other computer
languages, you must declare the data type of each variable before it is used. Then throughout the program,
variables can only be given values of that type. Python is called a dynamically typed language because the
type of a variable can change over time.

 Getting Input from the User
 This is the typical flow of a simple computer program:

 1. Input data.

 2. Work with data. Do some computation(s).

 3. Output some answer(s).

 In Python, we can get input from the user using a built-in function called raw_input . Here’s how it is
used, most typically in an assignment statement:

 <variable> = raw_input(<prompt string>)

 On the right side of the equals sign is the call to the raw_input built-in function. When you make the
call, you must pass in a prompt string , which is any string that you want the user to see. The prompt is a
question that you want the user to answer. The raw_input function returns all of the characters that the user
types, as a string. Here is an example of how raw_input might be used in a program:

 favoriteColor = raw_input('What is your favorite color? ')
 print 'Your favorite color is', favoriteColor

 When the assignment statement runs, the following steps happen in order:

 1. The prompt string is printed to the Shell.

 2. The program stops and waits for the user to type a response.

 3. The user enters some sequence of characters into the Shell as an answer.

 4. When the user presses the Enter key (Windows) or the Return key (Mac), raw_
input returns the characters that the user typed.

 5. Typically, raw_input is used on the right side of an assignment statement. The
user’s response is stored into the variable on the left-hand side of the equals sign.

 In the preceding example, as a favorite color, let’s say that the user entered purple . The variable
 favoriteColor is given the value of the string 'purple'. favoriteColor is a string variable, because
anything the user types is a string of characters.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

39

 That works great for this example asking for a favorite color. But what if you want the user to enter a
number? Consider what happens when you run the following:

 nDollars = raw_input('How many dollars do you have? ')
 print type(nDollars)

 You would probably want nDollars to be an integer because you may want to use that variable in some
numerical calculation. However, when run, this code would report that nDollars is a string variable. This
happens because raw_input always returns the characters that the user types, even if those characters are
digits. If the user typed the characters 12 , then nDollars is given the value of the string '12' , not the number
12. Realize that these two values are very different.

 Assuming that we want to do some math with the variable nDollars , we need a way to take the string
that the user typed and turn it into a number. Let’s see how Python provides exactly what we need.

 Conversion Functions
 Python has three built-in “conversion” functions that can change a value from one data type to another: the
 int function, the float function, and the str function.

 int Function
 To convert from a string (or a float) to an integer, there is the int function. You call the function, pass in a
string or a float value, and it returns an integer version of what was passed in; for example:

 nDollars = raw_input('How many dollars do you have in your wallet? ')
 nDollars = int(nDollars)

 A call to raw_input returns whatever the user types in as a string. The call to int converts the variable
 nDollars from the string that the user typed, into an integer. The call to the int function is shown here in
an assignment statement, where we take the resulting integer value and put it back into the same variable,
 nDollars . This is a very typical use case. Knowing that nDollars has been converted to an integer, we can
now do some math with it.

 float Function
 To convert from a string (or an integer) to a float, there is the float function; for example:

 thePrice = raw_input('Enter the price: ')
 thePrice = float(thePrice)

 The user is asked to enter a price. Whatever characters the user types are assigned into the thePrice
variable. The second line converts the thePrice variable from a string to a float, and assigns the resulting
float value back into the same variable. Similar to using the int function, now we can do some math with
 thePrice variable, knowing here that it is a floating-point variable.

 str Function
 To convert from an integer or float to a string, there is the str built-in function; for example:

 myAge = 37
 myAge = str(myAge)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

40

 aPrice = 150.75
 aPrice = str(aPrice)

 These lines convert from an integer or float to a string. We will use the str function later when we want
to build long, nicely formatted strings for output.

 Python has many built-in functions, but you will find the five we have discussed to be particularly
useful. Each requires that you send in a single argument, and then each returns a result:

 type(<valueOrVariable>)
 # returns data type of the argument passed in

 raw_input(<promptString>)
 # asks the user a question, and returns the user's response

 int(<valueOrVariable>)
 # returns an integer version of the argument passed in

 float(<valueOrVariable>)
 # returns a float version of the argument passed in

 str(<valueOrVariable>)
 # returns a string version of the argument passed in

 First Real Programs
 We now have discussed all the tools needed to write our first simple programs that incorporate the basic steps
of input, processing, and output. As an exercise, the following is a specification of a program for you to build:

 1. Prompt the user to enter a number.

 2. Prompt the user to enter a second number.

 3. Using a third variable, add the user’s two numbers together.

 4. Print a nicely formatted line that shows the input and the output; for example:

 The sum of 2 and 8 is 10

 Once you understand what is being asked, close the book, open a new Python file in IDLE, and try to
write and run the program. The solution will be presented on the next page.

 # Simple addition program

 value1 = raw_input('Please enter a number: ')
 value1 = int(value1)
 value2 = raw_input('Please enter another number: ')
 value2 = int(value2)
 total = value1 + value2
 print 'The sum of', value1, 'and', value2, 'is', total

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

41

 Input to the program is handled by two calls to raw_input , each asking the user to input a number.
Since the user’s response to raw_input is always a string, we need to use the int function to convert both to
integers. The calculation of the total is a very simple assignment statement. Finally, we output the answer
with a nicely formatted print statement.

 Notice that in both of the calls to raw_input , the prompt string has been set up to have an extra space
at the end. This is purely aesthetic. It is done this way to allow for a blank space between the question that is
asked and the user’s input.

 In order to make this point about calling a function and the resulting value even clearer, consider this
variation of the code:

 value1 = raw_input('Please enter a number: ')
 value2 = raw_input('Please enter another number: ')
 total = int(value1) + int(value2)
 print 'The sum of', value1, 'and', value2, 'is', total

 Notice the line that calculates the total. I’ll go over the sequence of operations. First, int is called to
change value1 to an integer. Then int is called again to change value2 to an integer. Each of these calls
returns a result. Next, the two returned integer values are added together. Finally, the resulting sum is
assigned to the total variable.

 Here is a second challenge-very similar to the first. Write and run a program that simulates a cash register.

 1. Prompt the user to enter the cost of an item.

 2. Prompt the user to enter the cash paid for the item (e.g., 10 for a ten-dollar bill).

 3. Using a third variable, calculate how much change the user should get back.

 4. Print a nicely formatted line that shows the input and the output; for example:

 Your item costs 6.75 and you gave me 10.0 dollars. Your change is 3.25

 Again, once you understand what is being asked, close the book, open a new Python file in IDLE, and
try to write and run the program. The solution is presented on the next page.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

42

 # Simple cash register

 cost = raw_input('Please enter the cost of the item: ')
 cost = float(cost)
 cash = raw_input('Please enter the cash given: ')
 cash = float(cash)
 change = cash - cost
 print 'Your item costs', cost, 'and you gave me', cash, 'dollars. Your change is', change

 This program is almost identical to the first simple addition program. There are only two differences.
First, since we are dealing with money expressed in dollars and cents, the cost of the item and the cash
amount should be expressed as floating-point numbers. Therefore, cost and cash need to be converted to
numbers using the float built-in function. Second, to calculate the change, we need to subtract the cost
of the item from the cash . There are ways to format floating-point numbers to display a given number of
decimal places, but we won’t get into that right now.

 Concatenation
 We know that there are a number of operations that you can do with numbers (+, -, *, /, **, %). But if you try
to add strings, that wouldn’t really make sense. Or would it?

 Well, you can’t really add strings in the way you would add numbers. It doesn’t really make sense to add
a string like 'Joe' and a string like 'Schmoe' .

 'Joe'
 + 'Schmoe'

 ???????

 But what if we applied a slightly different meaning to the plus sign when dealing with strings? That is,
when dealing with strings, we could redefine the plus operator to mean, “Take the first string and add the
second string onto the end of the first one.” That’s exactly what happens in Python.

 ■ Definition Concatenate means take a string and add another string.

 In Python, along with most other languages, when dealing with strings, the + is called the concatenation
operator . Here is an example:

 firstString = 'Hot'
 secondString = 'Coffee'
 concatenatedString = firstString + secondString
 print 'The result of concatenation is: ', concatenatedString

 When run, the preceding code produces this:

 The result of concatenation is: HotCoffee

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

43

 Another Programming Exercise
 Here is another exercise for you; this one involves concatenation:

 1. Ask the user to enter their first name.

 2. Ask the user to enter their last name.

 3. Using concatenation, create a string of the user’s full name, with a space between
the first and last names. Store the full name into a third variable.

 4. Print out a nice greeting using the full name, like this (using Joe as the first name
and Schmoe as the last name):

 Hello Joe Schmoe I hope you are doing well.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

44

 # Greeting creator

 firstName = raw_input('Please enter your first name: ')
 lastName = raw_input('Please enter your last name: ')
 fullName = firstName + ' ' + lastName

 print 'Hello', fullName, 'I hope you are doing well. '

 This program turns out to be simple. The only tricky part is in the concatenation of the first and
last name, because there was a need to put a space between the names. With simple addition, it would
be obvious that you could add three numbers together by doing something like 5 + 2 + 3 to get 10. The
concatenation operator works in a similar way. Just as you can concatenate two strings together, you can
concatenate three strings (or for that matter, any number of strings) by using the concatenation operator
multiple times. To put a space in between the first and last names, we take the first name, concatenate a
single space character (' '), and then concatenate the last name.

 Earlier, we built a simple cash register program. It used this line at the end to print the answers:

 print 'Your item costs', cost, 'and you gave me', cash, 'dollars. Your change is', change

 It generated an output like this:

 Your item costs 6.75 and you gave me 10.0 dollars. Your change is 3.25

 But what if we wanted to write output using the dollar sign, like this:

 Your item costs $6.75 and you gave me $10.0. Your change is $3.25

 If we just tried adding the dollar sign to our text, like this:

 print 'Your item costs $', cost, 'and you gave me $', cash, ' Your change is $', change

 The output would have an annoying extra space after every dollar sign:

 Your item costs $ 6.75 and you gave me $ 10.0. Your change is $ 3.25

 To fix this, we can use concatenation and the str built-in function:

 print 'Your item costs $' + str(cost) + ' and you gave me $' + str(cash) + '. Your change is
$' + str(change)

 Notice that in the preceding line, we are calling the str built-in function three times. Rather than saving
the “stringified” version of cost , cash , and change , we are just calling str function “in-line.” Each call results
in a string version of the numeric variable. We use each resulting string to build up a long string answer
before printing.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

45

 Using Function Calls Inside Assignment Statements
 In the previous chapter, we built a simple program to calculate the number of dollars a person has in his or
her wallet. Let’s revisit that code, but now using built-in functions. In the following program, we will ask the
user to tell us how many of each denomination of bills they have, and the program will calculate the total. In
the following code, we are using three different built-in functions:

 # Calculate the amount of money interactively

 # Use raw_input to get info from the user
 nOnes = raw_input('How many ones do you have? ')
 nFives = raw_input('How many fives do you have? ')
 nTens = raw_input('How many tens do you have? ')
 nTwenties = raw_input('How many twenties do you have? ')

 # Use int to convert the inputted strings to integer values before multiplying
 total = int(nOnes) + (int(nFives) * 5) + (int(nTens) * 10) + (int(nTwenties) * 20)

 # Use str to convert to a string, then concatenate on a decimal point and zeros
 totalAsString = str(total) + '.00'

 # Concatentate strings and print
 print 'You have $' + totalAsString

 Let’s take a closer look at this line:

 total = int(nOnes) + (int(nFives) * 5) + (int(nTens) * 10) + (int(nTwenties) * 20)

 In the line, there are four calls to the int built-in function. Let’s walk through how this statement works.
As an example, let’s assume that the user answered the questions saying that she had 2 ones, 3 fives, 4
tens, and 5 twenties. Therefore, when the preceding line runs, Python substitutes the current values for the
variables nOnes , nFives , nTens , and nTwenties . So, when running, Python effectively sees this:

 total = int('2') + (int('3') * 5) + (int('4') * 10) + (int('5') * 20)

 Each of the calls to the int function runs and converts each string argument into an integer before each
value is multiplied. In our earlier code, we typically took the result of calling the int function and assigned
it to a variable. Instead, we can use a function call directly inside of a longer expression. When this line runs,
you can think of an intermediate step where each call to the int function has been replaced by the returned
integer version of each string:

 total = 2 + (3 * 5) + (4 * 10) + (4 * 20)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ BUILT-IN FUNCTIONS

46

 Then, (because of the proper use of parentheses) the numbers are multiplied:

 total = 2 + 15 + 40 + 80

 Next, the numbers are added:

 total = 157

 Finally, the resulting value is assigned into the variable named total .
 Python has many additional highly useful built-in functions, which are introduced at the appropriate

times throughout this book. Most of them work in a similar way to the type , raw_input , int , float , and str
built-in functions discussed in this chapter.

 Summary
 This chapter was all about some of Python’s built-in functions, which are pieces of code that Python provides
for you. You learned how to call a function and pass arguments. When a function is done, it typically returns
a value that you often store in a variable. I introduced the raw_input function that allows you to get input
from the user. Then we saw the conversion functions of int , float , and str , which are used to change
data from one type to another. Using these built-in functions, we worked through building our first useful
programs. You learned how to add strings using concatenation. Finally, you got some experience in writing
your own small programs.

www.it-ebooks.info

http://www.it-ebooks.info/

47© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_4

 CHAPTER 4

 User-Defined Functions

 Software is a detailed set of instructions that tell the computer what to do. There are numerous examples
where we, as humans, follow a set of such instructions. As a simple example, many pieces of furniture from
IKEA come with a set of high-level instructions in the form of pictures. When creating these instructions,
the people at IKEA assume a certain level of basic knowledge of how to use tools, such as a wrench, a
screwdriver, a hammer, etc. But using each of these tools could be broken down into simpler steps. Using
a hammer could be broken down into grip the hammer by the handle, hold the nail perpendicular to the
surface, tap the nail with the head of the hammer to get it started, then hit the nail harder, etc. Once you
understand the steps involved in using a hammer, you can apply your hammer skills any time a set of
instructions calls for you to use one, without having to worry about the details. Creating detailed “low-level”
descriptions of steps (like how to use a hammer) is very similar to the way that software is built. In this
chapter, you learn how to create these types of software groupings.

 This chapter covers the following topics:

• A recipe as an analogy for building software

• Definition of a function

• Building our first function

• Calling a user-defined function

• Receiving data in a user-defined function: parameters

• Building user-defined functions with parameters

• Building a simple function that does addition

• Building a function to calculate an average

• Returning a value from a function: the return statement

• Returning no value: None

• Returning more than one value

• Specific and general variable names in calls and functions

• Temperature conversion functions

• Placement of functions in a Python file

• Never write multiple copies of the same code

• Constants

• Scope of variables: global and local

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

48

• Global and local variables with the same names

• Find errors inside functions: traceback

 A Recipe as an Analogy for Building Software
 Cooking and baking also have detailed lists of instructions. Let’s take a look at a recipe to see how we can use
it as an analogy for building software. Here is a recipe for baking a (very delicious) chocolate cake:

 Ingredients
 1 box of cake mix (chocolate)

 1 box of Jell-O Instant Pudding (chocolate)

 1/4 pound chocolate chips

 4 eggs

 3/4 cup of water

 1/3 cup of oil

 Directions
 Preheat oven to 350 degrees.

 Crack eggs into a bowl.

 Blend eggs (high, 4 minutes).

 Add the water.

 Add the oil.

 Blend (medium, 1 minute).

 Add the cake mix.

 Add the Jell-O mix.

 Blend (medium, 10 minutes).

 Add the chocolate chips.

 Blend (low, 1 minute).

 Grease the Bundt pan.

 Pour mixture into a pan.

 Bake at 350 degrees for 45 minutes.

 Remove from oven.

 All recipes contain two basic parts: ingredients and directions. The analogy to software works like
this. The ingredients (such as eggs, water, oil) are always nouns. Think of these as data. Then there are the
directions that are always actions. The directions always start with a verb (in this recipe: Preheat, Crack,
Blend, Add, etc.). Think of these as the code that acts on the data.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

49

 Just as the earlier example of using a hammer is made up of a number of smaller steps, the steps in
our recipe can be broken down further and further. This process is called stepwise refinement . For example,
“Crack eggs into bowl” can be broken down as follows.

 For each egg:

 Remove egg from carton.

 Hit egg gently on surface.

 Move egg over a bowl.

 Crack open egg.

 Dump all egg goop into bowl.

 Discard eggshell.

 Once you have developed the detailed steps that you need to take for “Crack eggs into bowl,” and you
have tested the steps to know that they work correctly, you can think of the higher-level concept of “Crack
eggs into bowl” without having to worry about the lower-level details. If our cake recipe had the need for two
different steps where you had to crack eggs into a bowl, you would perform the exact same set of instructions
at both points. Now that we have the detailed procedure for cracking eggs into a bowl, if we found another
recipe that called for cracking eggs into a bowl, we do not need to describe those steps again. Someday, if
someone invents a laser egg splitter that makes it easier and more efficient to get the contents of an egg out
of the shell, then we would modify the steps involved in “Crack eggs into bowl” to use the laser egg splitter,
and these new steps would be applied in any recipe that called for cracking eggs.

 Notice in the chocolate cake recipe that there are many times when we need to blend ingredients in
a mixer. In fact, there are four different places. Also notice that every time we blend, we are also specifying
different details for each blend.

 Preheat oven to 350 degrees.

 Crack eggs into bowl.

 Blend (high, 4 minutes).

 Add the water.

 Add the oil.

 Blend (medium, 1 minute).

 Add the cake mix.

 Add the Jell-O mix

 Blend (medium, 10 minutes).

 Add the chocolate chips.

 Blend (low, 1 minute).

 Grease the Bundt pan.

 Pour the mixture into the pan.

 Bake at 350 for 45 minutes.

 Remove from oven.

 Let’s take a closer look at the word blend in the directions. We could break down-or define- blend into
something like the following.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

50

 Blend with a given electric mixer setting and number of minutes:
 Turn on the electric mixer to the given setting.
 Set a timer for the specified number of minutes.
 Until time is up:

 Stir slowly with spatula.

 Break up any lumps.

 Scrape sides of the bowl.

 When you are following a recipe and it tells you to blend something, then you perform the steps inside
the definition of the word blend. This is the basic idea behind how we write code. Software is typically
built in groups of lines like this. Such a grouping has traditionally been called a routine (also known as
a subroutine or even a subprogram). Every routine like this is given a unique name. Once you test the
instructions and know that they work the right way, you can use or invoke the routine by stating the name
of the routine. When your program runs, any time the program gets to a line that includes the name of a
routine, the statements inside that routine run and do what they do to complete that task.

 Within our blend example, the word stir could be broken down into a more detailed list of operations,
such as “Grab spatula, place under mixture, rotate mixture upward toward the beaters,” etc. Software works
analogously in that a routine can invoke another routine to do another predefined job. In a recipe or in
software, you can go down any number of levels until some basic operations are understood without further
explanation.

 Definition of a Function
 In Python, a routine, like any of the ones that I have described, is known as a user-defined function , or more
simply, a function .

 ■ Definition A function is a series of related steps (statements) that make up a larger task, which is often
called from multiple places in a program.

 Here is the generic form of a function in Python:

 def <functionName>(<optionalParameters>): # notice the parentheses and the ending colon
 <indented statement(s)> # the 'body' of the function

 The word def is short for definition. You are defining a function. def is one of the special reserved
Python keywords. When you type a keyword such as def , IDLE changes its color to show you that
it recognizes it. Next, you supply a name for the function. You can choose any name-although it is
recommended that you continue to follow the camel-case naming convention. It’s worth it to take time to
create a name that makes it very clear what the function does. A set of parentheses follows the name. Let’s
ignore the <optionalParameters> for now; we’ll come back to it shortly. The line ends with a colon (:),
which is very important.

 All the statements that make up the function, called the body of the function, are indented from the def
statement. Python relies on indenting to show a grouping of lines. The convention is to indent four spaces.
(You can change this in the IDLE Preferences, but it defaults to 4, and four spaces is a broadly accepted
convention.) If you have ever seen code written in the C, Java, or JavaScript languages, you might know
that these languages define similar blocks of code with open and close braces { } . However, C, Java, and
JavaScript programmers almost universally use indenting in addition to the braces. Python’s use of indenting
only (with no braces) is unique and helps make Python code much more readable than most other languages.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

51

 Building Our First Function
 Let’s build our first function. Please open a new file and type the following. IDLE helps with the indenting.
When you type a def statement to start the definition of a function, IDLE automatically indents the next line
(and all successive lines) by the default number of spaces. To tell IDLE that you no longer want to indent
code, you must press the Delete key (Mac) or the Backspace key (Windows). Moving the cursor back four
spaces by pressing Backspace or Delete is known as a dedent or an outdent .

 def getGroceries():
 print 'milk'
 print 'flour'
 print 'sugar'
 print 'squash'
 print #blank line

 This is the definition of a function. It is the detailed implementation of something that you want the
computer to be able to do. It’s like the steps of “Crack eggs into bowl” in our earlier recipe. The name of the
function is getGroceries . It contains a series of detailed instructions that make up a larger task. Each of
these instruction lines is indented. The code of the function is made up of five simple print statements. Enter
the code, save the file, and run the program to see it in action.

 When you run it, woo-hoo! Absolutely nothing happens! Why? Because we didn’t ask our program to do
anything. You probably know how to throw a ball, sing a song, open a can, make a peanut butter sandwich,
etc. But if you are reading this book and no one asks you to do any of these things, you will most likely not
perform any of those actions.

 If you want a function to run, you have to tell the computer to run it. In the previous chapter, we
discussed a number of Python’s built-in functions (type , raw_input , int , float , str). Python knows what
code to run for each of these, but none of these built-in functions will do anything until and unless a call to
one of these functions executes in the currently running program.

 Calling a User-Defined Function
 Just as we did with built-in functions, when you want to use a user-defined function, you call a user-defined
function by specifying the name of the function, followed by a set of parentheses, and include any data
(arguments) that you want the function to act on, as follows:

 <functionName>(<argument1>, <argument2>, ...)

 Since our getGroceries function does not operate on any data, to call the getGroceries function, we
only need to specify its name of the function, followed by an empty set of parentheses:

 getGroceries() # calling the function, must have parentheses, even if there are no
arguments

 In our Python file, we’ll add a call to the function after the function definition. The area below any
functions is typically referred to as the main code. Save and run the program.

 def getGroceries():
 print 'milk'
 print 'flour'
 print 'sugar'
 print 'squash'
 print #blank line

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

52

 # Main code starts here
 getGroceries()

 When you save and run this code, you should see the following output in the Shell:

 milk
 flour
 sugar
 squash

 Let’s add a second call to the same function in the main code:

 def getGroceries():
 print 'milk'
 print 'flour'
 print 'sugar'
 print 'squash'
 print #blank line

 # Main code starts here:
 getGroceries()
 getGroceries()

 After this change, you should see the following in the Shell:

 milk
 flour
 sugar
 squash

 milk
 flour
 sugar
 squash

 Until now, you have only seen code that runs strictly from the top down. With the ability to create and
use functions, we can affect the “order of execution” of a program; that is, we can jump around within the
program.

 Let’s modify the code just slightly to show how a function can call another function. Here is another
variation of the program that does just that:

 # This function just prints a line of asterisks followed by a blank line
 def separateRuns():
 print '******************'
 print #blank line

 def getGroceries():
 print 'milk'
 print 'flour'
 print 'sugar'
 print 'squash'
 separateRuns() # call another function

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

53

 # Main code starts here:
 getGroceries()
 getGroceries()

 When we run this version, you should see the following in the Shell:

 milk
 flour
 sugar
 squash

 milk
 flour
 sugar
 squash

 Here is what happens when you run this code. Python sees the first def statement for separateRuns
and recognizes that it is the definition of a function. Python remembers where this function is and skips over
the body of the function (the indented lines). Next, it sees the def statement for the getGroceries function.
Again, it remembers where this is and skips over the body of this function. Eventually, it finds the first real
line of the executable code-the first call to getGroceries() .

 When this line runs, since it has a call to a function, Python remembers where it was and execution
jumps to the def statement for the getGroceries function. Each print statement inside the function
runs and each writes out its appropriate value. At the last statement, Python finds a call to another
function: separateRuns . Python remembers where it came from and transfers control into that function.
The separateRuns function first prints a line of asterisks (to show the end of a run), and then a blank
line (to separate the output from other runs). Since there is no more work for this function to do, control
is transferred back to where it was called from (inside getGroceries). And since this is the last line of
 getGroceries , control is transferred back to where that function was called from (in the main code). On the
next line, Python finds another call to getGroceries . Control is transferred into the function once again,
and the entire sequence is repeated. After the second call to getGroceries completes, Python finds no more
lines of code to run, and the program terminates.

 Receiving Data in a User-Defined Function: Parameters
 Our getGroceries function is a good example of what a user-defined function looks like, but it’s not very
useful. Every time you call getGroceries , it does the exact same thing: this is an example of what is known
as hard-coding . It would be more interesting and useful to have a function that would do something different
depending on the data that is passed in.

 Remember from our earlier discussion of built-in functions, that when you call a function, you can pass
data. Each piece of data that you pass is called an argument . When we pass arguments with a function call,
the function can be written to do different work and/or generate different results, depending on the value(s)
of data. Now we can look at other side of the call: how to receive the data that is passed in to a function.

 ■ Definition A parameter is a variable (defined in the def statement of a function) that is given a value when
a function starts. (It is also known as a parameter variable .)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

54

 Think back to our chocolate cake recipe example. When discussing that recipe, we said that “blend”
is like a function. The definition of blend is a series of steps that made up a larger task; it was used in many
places in our recipe. Further, remember that in our chocolate cake recipe, whenever we were directed
to blend, two pieces of information were always specified: the mixer’s power setting and the number of
minutes the mixer needed to operate. If you think of “blend” as a Python function, then the two pieces of
data that are passed with every call are received and used inside the function. The Python version of a blend
function might look like this:

 def blend(powerSetting, nMinutes):

 <indented block of code>

 In this definition of blend , powerSetting and nMinutes are parameters. They are variables whose values
are assigned when another piece of code calls the function and the function starts to run. Here are examples
of different calls to the blend function.

 blend('high', 10)
 ...
 blend('medium', 1)
 ...
 blend('low', 1)
 ...
 desiredSetting = 'high'
 numberOfMinutes = 8
 blend(desiredSetting, numberOfMinutes)

 In each of these calls to the blend function, we are passing in different values for the power setting and
the number of minutes. When each call happens, the value of the first argument is put into the first parameter
of the function: powerSetting . Then the value of the second argument is put into the second parameter of
the function: nMinutes . When the first call happens, control is transferred to blend , powerSetting is set to
the string 'high' and nMinutes is set to the value 10. You can think of it like there is an assignment statement
assigning a value from each argument to the associated parameter variable.

 Building User-Defined Functions with Parameters
 Let’s try this out for real in Python. Let’s modify the getGroceries function to use one parameter. That
is, instead of always printing milk as the first item in our grocery list, we want to allow the caller to call
 getGroceries and pass in one item to get-but we always want to print the remaining three hard-coded
items. Whatever the caller passes in should be printed as the first item. To do this, in the definition of
 getGroceries , we include one parameter, which we name item1 . (This is just an example name; parameter
variables can have any legal variable name.)

 def getGroceries(item1): # uses one parameter variable
 print item1 # prints the contents of the item1 variable
 print 'flour'
 print 'sugar'
 print 'squash'
 separateRuns()

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

55

 And here are some sample calls to getGroceries using different argument values:

 getGroceries('eggs')
 getGroceries('beer')
 getGroceries('apples')

 When each of these calls runs, the first print statement of getGroceries prints the value that was
passed in with each call. The output looks like this:

 eggs
 flour
 sugar
 squash

 beer
 flour
 sugar
 squash

 apples
 flour
 sugar
 squash

 Notice that the first item of each grouping is different and matches what was passed in. Now, let’s
modify getGroceries again, this time so that it accepts four parameters. We’ll also change each hard-coded
 print statement to print an appropriate parameter.

 def getGroceries(item1, item2, item3, item4):
 print item1
 print item2
 print item3
 print item4
 separateRuns()

 Given this definition, we now have to call our function with four arguments:

 # Now call the function with four arguments
 getGroceries('eggs', 'soap', 'lettuce', 'cat food')
 getGroceries('beer', 'milk', 'soda', 'peas')

 The order of the arguments and the parameters is important. That is, the value of the first argument
is given to the first parameter, the value of the second argument is given to the second parameter, etc., for
however many arguments and parameters there are. Further, the number of arguments in a call must match
the number of parameters in the called function. If these don’t match in number, Python will generate an
error message. The output of the preceding calls looks like this:

 eggs
 soap

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

56

 lettuce
 cat food

 beer
 milk
 soda
 peas

 We are calling the same function, but because we are passing different arguments, the function does
something different; in this case, it prints different results. We can also call a function using variables for any
of the arguments:

 mustGet = 'paper plates'
 mustAlsoGet = 'chocolate candy bars'
 getGroceries(mustGet, mustAlsoGet, 'lettuce', 'cat food')

 These lines generate the following output:

 paper plates
 chocolate candy bars
 lettuce
 cat food

 In the last call, the mustGet and mustAlsoGet variables are evaluated, and the values of ' paper plates '
and ' chocolate candy bars ' are passed as arguments along with 'lettuce' and 'cat food' .

 Building a Simple Function that Does Addition
 Let’s build a slightly more useful example. In the following, we’ll build a function whose purpose is to accept
a numeric parameter, add two to it, and print the result.

 def addTwo(startingValue):
 endingValue = startingValue + 2
 print 'The sum of', startingValue, 'and 2 is:', endingValue

 # Call the function twice with different arguments
 addTwo(5)
 addTwo(10)

 Each parameter variable takes on the value of the matching argument that was passed in. In this
example, from the first call, startingValue is assigned 5. In the second call, startingValue is given the
value 10. This is the output of the two calls to addTwo :

 The sum of 5 and 2 is: 7
 The sum of 10 and 2 is: 12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

57

 Building a Function to Calculate an Average
 Let’s build something that is a little more useful and realistic. Here is a function that calculates the average
of four numbers. (Again, we could use any legal variable name for parameter variables; here we are just
showing names like param1 , param2 , etc., for simplicity.)

 def calculateAverage(param1, param2, param3, param4):
 total = param1 + param2 + param3 + param4
 # Divide by a floating point value to ensure we get the proper potentially fractional
answer
 average = total / 4.0
 print 'Average value is:', average

 calculateAverage(2, 3, 4, 5)
 calculateAverage(-3, 5.2, 15, 1000.8)
 calculateAverage(1.4, -2.5, 14.3, 200.5)

 This generates the following output:

 Average value is: 3.5
 Average value is: 254.5
 Average value is: 53.425

 This example demonstrates one of Python’s inherent features. In the three calls to calculateAverage ,
we passed in different mixes of integer and float values. The function calculated and returned the proper
result in all cases. Look again at the second call. The first argument is an integer, –3, and the second
argument is a float with a value of 5.2. However, as the writer of the function, you don’t have to worry about
this possibility or do anything special to allow the calculations to work with different types of data. Each
parameter in the function (param1 , param2 , param3 , and param4) takes on the value and the type of whatever
argument is passed in. This is highly unusual in programming languages and shows off the flexibility of
Python’s dynamic data typing.

 Returning a Value from a Function: The return Statement
 Python recognizes the end of a function by the indenting-or more accurately, by the lack of indenting. As
soon as a line is found that has the same indenting as the def statement that started the definition of the
function, Python knows that it has reached the end of the definition of a function. After the last indented
statement runs, control passes back to a point just past where the function was called.

 In the small functions shown so far, each function ends by executing a print statement to print out
some result. However, in most cases, user-defined functions are typically built to do some calculation(s) to
generate an answer and to give that answer back to the caller. Remember that this is the way that all of the
built-in functions that you have seen operate.

 This concept might be best explained through an analogy. Assume that I am a manager and I have an
employee that is a specialist in analyzing the cost of widgets. I am a proud manager because I hired this
employee and trained him or her in the best ways of doing this analysis. The employee can now do the cost
analysis all on his or her own. I have grown to trust that the employee is doing excellent work and always
gives correct answers. Because of this, as a manager, I can now think of problems at a higher level and I no
longer have to worry about the details of analyzing the cost of widgets myself. I know that any time I need to
get the best price for a widget, I can ask my employee and I will get a correct cost answer.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

58

 This is the way that a typical function works. First, you have to write the function’s code (train your
employee). But once you trust that the function works the right way (the employee is giving you proper
results), you come to trust the function (the employee). You no longer have to worry about how the lower-
level job gets done. You can work at a higher level and assume that the function will respond correctly.

 In Python, when a function wants to give a result to a caller, it uses a return statement and specifies the
value to hand back. The generic form looks like this:

 return <returnValue>

 The caller can use the resulting value for whatever it needs. Often, the caller will take the resulting value
and store it in a variable. For example, here is a modified version of the previous addTwo function that returns
a single number value.

 def addTwo(startingValue):
 endingValue = startingValue + 2
 return endingValue #returns a result to the caller

 sum1 = addTwo(5)
 sum2 = addTwo(10)

 print 'The results of adding 2 to 5 and 2 to 10 are:', sum1, 'and', sum2

 In this example, we first call the addTwo function with an argument of 5. Inside the function, that value
is assigned to the startingValue parameter variable. The function runs and calculates an endingValue of
7. Using a return statement, the function hands back a result to the caller. In the assignment statement in
the main code, the value of the call addTwo(5) becomes 7, the rest of the assignment statement runs, and the
variable sum1 is set to 7. The second call then runs the same way, and the variable sum2 is set to 12. This is the
output of the code:

 The results of adding 2 to 5 and 2 to 10 are: 7 and 12

 Let’s modify the earlier calculateAverage function so that rather than printing a result, it returns its
result to the caller. Here’s how we can do that:

 def calculateAverage(param1, param2, param3, param4):
 total = param1 + param2 + param3 + param4
 average = total / 4.0
 return average # hand the answer back to the caller

 average1 = calculateAverage(2, 3, 4, 5)
 average2 = calculateAverage(-3, 5.2, 15,1000.8)
 average3 = calculateAverage(1.4, -2.5, 14.3, 200.5)
 print 'The three averages are:', average1, average2, average3

 We call the calculateAverage function three times and pass in four values as arguments with each call.
For each call, the function runs and returns a value. The result of each call to calculateAverage is stored
into a separate variable. This is the resulting output:

 The three averages are: 3.5 254.5 53.425

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

59

 Returning No Value: None
 When we first started discussing functions, we saw how a function could simply end without using a return
statement at all. When a function does not have an explicit return statement, Python builds an implied return
statement that returns no value. In fact, you can write a return statement that does not give back a value:

 return # no return value specified

 But when a return statement is executed without any returned value, Python actually returns a special
value of None. None is a Python keyword that means no value . Imagine that you have this function to
multiply a number times itself (square the number):

 def square(number):
 answer = number * number
 return # Note: this is an error, does not return an answer

 userNumber = raw_input('Enter a number: ')
 userNumber = float(userNumber) # convert to a float
 numberSquared = square(userNumber) # call the function and save the result
 print 'The square of your number is', numberSquared

 When we run this code and enter any number, this is the output:

 The square of your number is None

 This is certainly not what you want or expect. But if you understand that None is the value returned by
a function when there is a simple return statement, then you can easily track down this type of error and
correct it. Here is the corrected version:

 def square(number):
 answer = number * number
 return answer # This returns the correct answer

 Returning More Than One Value
 Python has a further extension of the return statement. In most other programming languages, the return
statement can only return either no values or a single value. In Python, just as you can pass as many values
as you want into a function, you can also return any number of values:

 return <value1>, <value2>, <value3>, ...

 For example, you could create a function that returns three values, like this:

 def myFunction(parameter1, parameter2):
 #
 # Body of the function, calculates
 # values for answer1, answer2, and answer3

 return answer1, answer2, answer3 # hand back three answers to the caller

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

60

 Then you would call myFunction with code like this:

 variable1, variable2, variable3 = myFunction(argument1, argument2)

 That is, you call myFunction , passing in two arguments. The function does whatever it needs to do and
returns three values. The call was actually part of an assignment statement. When the function is finished
and executes its return statement, the three returned values are stored into the three variables on the left-
hand side of the assignment operator (equals sign). The order of the variables in the assignment statement
matches the order of the answer variables in the function’s return statement.

 There is one more clarification about return statements. Whenever a function executes any type of
 return statement (returning no value, one value, or multiple values), execution of code exits the function
immediately and returns control just past the point from where it was called. If you have any code below
that return statement, it will not be executed. This is often confusing for new programmers. Here is a simple
example:

 def sayHello(name):
 print 'Hello'
 return
 print name

 When called, this function prints the word Hello , and then returns immediately. The second print
statement would not execute.

 Specific and General Variable Names in Calls and Functions
 New programmers often struggle with creating different names for variables outside of and inside of
functions. Here is a general way to think about such variable names. Part of the definition of a function is
that functions are often called from different parts of a program. The data being passed in from different calls
might have significantly different meanings. Often, however, the code of the function does not know and
does not need to know the underlying meaning of the data that it is working with.

 For example, earlier we had a function to calculate an average. The function is passed a sequence of
numbers, but the function does not need to understand what the numbers represent. Its job is just to do
the calculation of the average. Only the code calling the function needs know the meaning of the values it
is passing in. The following program has the same calculateAverage function. In the main code, we are
calling the function to calculate two different averages of statistics from a football game: the yardage gained
on the first four running plays and the first four passing plays:

 def calculateAverage(param1, param2, param3, param4):
 total = param1 + param2 + param3 + param4
 average = total / 4.0 #floating point divide
 return average

 yardsOnRun1 = 4
 yardsOnRun2 = 6.5
 yardsOnRun3 = 2.5
 yardsOnRun4 = -2

 averageYardsPerRun = calculateAverage(yardsOnRun1, yardsOnRun2, yardsOnRun3, yardsOnRun4)
 print 'Average yards per run is:', averageYardsPerRun

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

61

 yardsOnPass1 = 0
 yardsOnPass2 = 25.5
 yardsOnPass3 = 0
 yardsOnPass4 = 12

 averageYardsPerPass = calculateAverage(yardsOnPass1, yardsOnPass2, yardsOnPass3,
yardsOnPass4)
 print 'Average yards per pass is:', averageYardsPerPass

 In the main code, we have four variables that are set to the yardage gained on each of the first four runs.
These variables are named to express the data they represent (yardsOnRun1, yardsOnRun2 , etc.). Then there
is a call to the calculateAverage function, passing in the value of these variables. In the main code, the
variable names (which are used as arguments in the function call) are extremely specific. However, inside
the calculateAverage function call, the values that are received as parameters are given generic parameter
variable names (param1, param2, param3 , and param4). The function does the appropriate calculation,
and stores its answer in a variable with a generic name of average . When the function returns the result, the
main code stores the result into the specifically named variable averageYardsPerRun .

 The process is repeated, but this time, we are using variable names that imply the yardage gained
on each pass play (yardsOnPass1 , yardsOnPass2 , etc.). Again, these very specifically named variables are
passed in with the call to the function. The function receives the values and puts them into the more generic
parameters variables. When the function returns the result, the main code stores this result into the variable
with the meaningful name averageYardsPerPass .

 This is a good pattern to follow. When creating names of parameter variables, try to use generic names (that
still imply meaning). But when using variables in calls to functions, try to use variable names that are as specific
as possible. This way, you typically avoid using the same variable names in calls and in function definitions.

 Temperature Conversion Functions
 To put all of these pieces together, let’s walk through the process of creating two very useful functions. In
the United States, temperature is measured using the Fahrenheit scale. Most of the rest of the world uses
the Centigrade (or Celsius) scale. The scales are very different but there are two simple formulas that can be
used to easily convert between them. These are the formulas:

 Fahrenheit to Centigrade:

 C = (F – 32) × 0.5556 # decimal equivalent of 5 ÷ 9

 Centigrade to Fahrenheit:

 F = (1.8 × C) + 32

 Here are two Python functions that will do these conversions. For both functions, we pass in a value in
one scale, and each returns the value in the other scale.

 def F2C(nDegreesF):
 nDegreesF = (nDegreesF - 32) * 0.5556
 return nDegreesF

 def C2F(nDegreesC):
 nDegreesF = (1.8 * nDegreesC) + 32
 return nDegreesF

 Given these function definitions, we can now build some main code to use these functions interactively.
We can ask the user for a temperature in each scale, and then convert and print it in the other scale.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

62

 # Code to ask the user to input values for conversion:

 usersTempF = raw_input('Enter a value of degrees Fahrenheit: ')
 usersTempF = float(usersTempF)
 convertedTempC = F2C(usersTempF)
 print usersTempF, 'degrees Fahrenheit is:', convertedTempC, 'degrees Centigrade.'

 usersTempC = raw_input('Enter a value of degrees Celsius: ')
 usersTempC = float(usersTempC)
 convertedTempF = C2F(usersTempC)
 print usersTempC, 'degrees Centigrade is:', convertedTempF, 'degrees Fahrenheit.'

 Here is what we see if we input the Fahrenheit value of 212 (the boiling point of water) and the
Centigrade value of 0 (the freezing point of water):

 Enter a value of degrees Fahrenheit: 212
 212.0 degrees Fahrenheit is: 100.008 degrees Centigrade.
 Enter a value of degrees Celsius: 0
 0.0 degrees Centigrade is: 32.0 degrees Fahrenheit.

 These functions yield results that are inverses of each other. The following is an interesting test of the
functions using an arbitrary value:

 >>> print F2C(C2F(123.45))
 123.459876

 In this code, the innermost function call to C2F runs first, which converts the Centigrade value of 123.45
to its Fahrenheit equivalent. Then that value (whatever it is) is passed into the F2C function, which converts
it back to Fahrenheit. The result is the number that we started with.

 Placement of Functions in a Python File
 Notice that in all the examples of functions and function calls, the code that defines the functions is always
at the top of the Python file. The main code of the program, which typically incorporates calls to those
functions, is written below the function definitions. This is the way that a typical story is written. When a
character is introduced, some details about its personality are given-maybe there is some description of how
the character looks, or maybe a back-story is described-before the character is given any dialog.

 If your main code tries to call a function before it is defined, Python gives an error. Remember that
when you run a program, Python reads through all of your code before execution starts. Python remembers
where functions are defined in your code, but it does not run those functions. Instead, it keeps scanning
until it finds the first statement that is not inside any function; this is where execution actually starts. When
executing code, if Python were to try a call to a function that it had not seen yet, Python wouldn’t know
where the function is, and would give an error message saying that the function is undefined.

 Never Write Multiple Copies of the Same Code
 A key concept in writing software is that you never want to have multiple copies of the same code. In an earlier
chapter, we developed the Python code for calculating the hypotenuse (longest side) of a right triangle. Here is an
example of what that might look like, where we want to ask the user for two different sets of sides of right triangles:

 firstTriangleSide1 = raw_input('Enter side 1: ')
 firstTriangleSide2 = raw_input('Enter side 2: ')

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

63

 firstTriangleSide1 = float(firstTriangleSide1)
 firstTriangleSide2 = float(firstTriangleSide2)
 firstTriangleHypot = ((firstTriangleSide1 ** 2) + (firstTriangleSide2 ** 2)) ** 0.5
 print 'The hypotenuse of the first triangle is: ', firstTriangleHypot

 secondTriangleSide1 = raw_input('Enter the first side: ')
 secondTriangleSide2 = raw_input('Enter second side: ')
 secondTriangleSide1 = float(secondTriangleSide1)
 secondTriangleSide2 = float(secondTriangleSide2)
 secondTriangleHypot = ((secondTriangleSide1 ** 2) + (secondTriangleSide2 ** 2)) ** 0.5
 print 'The hypotenuse of the second triangle is: ', secondTriangleHypot

 Whenever you find that you have written essentially the same code in multiple places, it should be an
immediate trigger for changing such code into a function. The following is a variation of the previous code,
but using a function and passing parameters instead:

 # Assumes that values passed in could be values representing strings
 def calculateHypotenuse(side1, side2):
 side1= float(side1)
 side2 = float(side2)
 hypot = ((side1 ** 2) + (side2 ** 2)) ** 0.5
 return hypot

 firstTriangleSide1 = raw_input('Enter side 1: ')
 firstTriangleSide2 = raw_input('Enter side 2: ')
 hypot1 = calculateHypotenuse(firstTriangleSide1, firstTriangleSide2) # call function to do
calc

 secondTriangeSide1 = raw_input('Enter the first side: ')
 secondTriangeSide2 = raw_input('Enter second side: ')
 hypot2 = calculateHypotenuse(secondTriangeSide1, secondTriangeSide2) # call function to do
calc

 print 'The hypotenuse of the first triangle is: ', hypot1
 print 'The hypotenuse of the second triangle is: ', hypot2

 The thinking behind building and using functions this way is twofold.
 First, creating a function to do lower-level work allows you to give a name to a sequence of instructions.

In this example, using a name like calculateHypotenuse makes it extremely clear what the purpose of
the function is. And as I described earlier, when you have written a function like this once, you can think
of calling the function by using its name, and not have to worry about the details of the internals of the
function.

 Second, and more importantly, code inside a function is centralized. That is, if you ever need to
change the code of a function, you only need to change it in one place. If code like the preceding was not
in a function, and you had multiple copies of it, think about what you would have to do to make a change.
Imagine that you find a bug in your hypotenuse formula. You would have would have to look through all
your code and make the same change in every place where this calculation is done. This may not seem like
a big task in small programs like the ones that we have built so far. However, when you start to write large
programs, having only one copy of code is critical to building and maintaining reliable software. This is
known as the DRY principle: Don’t Repeat Yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

64

 Constants
 In a program, there is often the need for a number or string that doesn’t change. For example, imagine that
you were working on a program that calculated the price of a bill at a restaurant. Let’s say that the cost of a
hamburger is three dollars. While the program is running, that value never changes. So, to calculate the cost
of all the hamburgers in an order, you could write a line of code where you calculate the cost of hamburgers
by multiplying the number of hamburgers by 3.00. Let’s also say that you sell milkshakes at your restaurant
and the cost of a milkshake is also three dollars.

 Now imagine you that as the restaurant owner, you decide that you need to raise the price of your
hamburger from three dollars to three dollars and twenty-five cents. To update your program, you could use
IDLE and select Edit ➤ Replace to replace all occurrences of 3.00 with 3.25. But if you do that, you have not
only raised the price of hamburgers, but also milkshakes and anything else on your menu that had a price of
three dollars. That is clearly the wrong approach. Instead, you would have to find every occurrence of 3.00 in
your program, and decide on a line-by-line basis if the 3.00 represents a hamburger or a something else, and
only change the appropriate one(s). While this may be very simple in a small restaurant program, this type of
change can take a great deal of time and be very error-prone in a large program.

 In Python, we can create a variable for a number like this, just so it can be referred to by name
throughout the program.

 ■ Definition A constant is a variable whose value does not change throughout a program.

 A constant is created using a simple assignment statement, typically placed at the top of the
program-even before any function definitions. Here is an example:

 costPerHamburger = 3.00

 There is nothing special about creating a constant. It really is just another variable. So, how do we
ensure that it that no other piece of code changes this value? Unfortunately, there is no way to prevent a
constant from being changed. However, there is a widely accepted Python naming convention for constants.
When defining a variable to be used as a constant, create a name where all the letters are in uppercase,
and separate words are strung together with underscores. Naming a variable this way serves as a signal to
yourself and other programmers that this variable is a constant and its value should never be reassigned.
Here are some examples that might be used in a program like our restaurant program:

 COST_PER_HAMBURGER = 3.00
 COST_PER_HOT_DOG = 2.00
 COST_PER_MILK_SHAKE = 3.00

 Then, we would use COST_PER_HAMBURGER , COST_PER_HOT_DOG , COST_PER_MILK_SHAKE , etc., in the
calculations instead of the numeric prices. That way, if the cost of an item changes, only one line of code
needs to be changed: the original assignment statement for that constant. No other changes are needed and
your code becomes more readable. This is another example of using the DRY principle.

 Scope
 We’ve talked about how variables have a type (integer, float, Boolean, string). But variables also have a
lifetime. Let’s start with another definition.

 ■ Definition Scope is the amount of code over which a variable is active.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

65

 In Python, there are three levels of scope for variables. In this book, however, we only talk about two
levels of scope: global and local.

 Global variables are created at the top level of a program-in the main code. They have what is called
 global scope . Global variables maintain their values and are available throughout a program. Here is the code
we recently showed about calling functions:

 firstTriangleSide1 = raw_input('Enter side 1: ')
 firstTriangleSide2 = raw_input('Enter side 2: ')
 hypot1 = calculateHypotenuse(firstTriangleSide1, firstTriangleSide2) # call function to do calc

 secondTriangeSide1 = raw_input('Enter the first side: ')
 secondTriangeSide2 = raw_input('Enter second side: ')
 hypot2 = calculateHypotenuse(secondTriangeSide1, secondTriangeSide2) # call function to do calc

 print 'The hypotenuse of the first triangle is:', hypot1
 print 'The hypotenuse of the second triangle is:', hypot2

 The variables firstTriangleSide1 , firstTriangleSide2 , hypot1 , secondTriangleSide1 ,
 secondTriangleSide2 , and hypot2 are all global variables. Notice that the code is written in a way that assumes
that they maintain their values even where there are calls to functions in between lines where they are used.

 Global variables (created in the main program code) can legally be used inside functions. However,
it is strongly recommended to never do this. Using global variables inside functions leads to a poor coding
practice called spaghetti code , where these variables can be used and modified all over a program. This style
of programming makes the code very hard to understand and extremely difficult to maintain and modify,
because any call to any function might change one or more global variables. Instead of using global variables
inside functions, whenever a function needs a value that is held in a global variable, that value should be
passed as an argument into the function when the function is called. If the function wants to effectively
change the value of a global variable, the function should return a value, and the caller can set a new value
for the global variable as the result of the call.

 The previous section talked about constants. I suggested that constants be created at the top level of a
program. When created this way, constants also have global scope. Because constants are global, they are
available and can be used inside any function in the program. Global constants are good things. Constants
help clarify meaning rather than having “magic numbers” interspersed throughout code.

 Consider the following example of a program to calculate the cost of purchasing some number of small
and large widgets. In this program, small widgets cost five dollars each, large widgets cost eight dollars each,
and there is a tax rate of nine percent.

 TAX_RATE = .09 # 9 percent tax
 COST_PER_SMALL_WIDGET = 5.00
 COST_PER_LARGE_WIDGET = 8.00

 def calculateCost(nSmallWidgets, nLargeWidgets):
 subTotal = (nSmallWidgets * COST_PER_SMALL_WIDGET) + (nLargeWidgets * COST_PER_LARGE_WIDGET)
 taxAmount = subTotal * TAX_RATE
 totalCost = subTotal + taxAmount
 return totalCost

 total1 = calculateCost(4, 8) # 4 small and 8 large widgets
 print 'Total for the first order is', total1
 total2 = calculateCost(12, 15)
 print 'Total for the second order is', total2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

66

 Notice the TAX_RATE, COST_PER_SMALL_WIDGETS , and COST_PER_LARGE_WIDGET variables at the
top of the program, outside of any function. The naming convention implies that these are intended
to be constants. Since they have global scope, they can be used (correctly and clearly) inside the
 calculateCost function.

 Local variables are created inside a function. The scope of a local variable ranges from the point where it
is first used in a function to the end of that function. When the function ends, any local variables used inside
the function literally disappear. Here is the same code again, but used to demonstrate the local variables
inside the calculateCost function:

 TAX_RATE = .09 # 9 percent tax
 COST_PER_SMALL_WIDGET = 5.00
 COST_PER_LARGE_WIDGET = 8.00

 def calculateCost(nSmallWidgets, nLargeWidgets):
 subTotal = (nSmallWidgets * COST_PER_SMALL_WIDGET) + (nLargeWidgets * COST_PER_LARGE_WIDGET)
 taxAmount = subTotal * TAX_RATE
 totalCost = subTotal + taxAmount
 return totalCost

 total1 = calculateCost(4, 8) # 4 small and 8 large widgets
 print 'Total for first order is', total1
 total2 = calculateCost(12, 15)
 print 'Total for second order is', total2

 Inside the function, we are creating and using subTotal , taxAmount , and totalCost local variables.
They are local variables because they are only used inside of a function. In addition, all parameter variables,
the ones listed in the def statement, are also local variables. Parameters (or parameter variables) are given
their values when a function is called, and they go away when the function is finished.

 You cannot access local variables outside of a function because those variables are out of scope and no
longer exist. In the following, there is an additional line in the main code that tries to print the amount of tax
that was calculated inside the function. Any attempt to access a local variable in the main code of a program
will result in an error message.

 TAX_RATE = .09 # 9 percent tax
 COST_PER_SMALL_WIDGET = 5.00
 COST_PER_LARGE_WIDGET = 8.00

 def calculateCost(nSmallWidgets, nLargeWidgets):
 subTotal = (nSmallWidgets * COST_PER_SMALL_WIDGET) + (nLargeWidgets * COST_PER_LARGE_WIDGET)
 taxAmount = subTotal * TAX_RATE
 totalCost = subTotal + taxAmount
 return totalCost

 total1 = calculateCost(4, 8) # 4 small and 8 large widgets
 print taxAmount # Trying to access local variable from the above function
 print 'Total for first order is', total1
 total2 = calculateCost(12, 15)
 print 'Total for second order is', total2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

67

 This generates the following error:

 Traceback (most recent call last):
 File "/Learn to Program with Python/Chapter 4 - User-Defined Functions/CostsWithTaxError.py",
line 12, in <module>

 print taxAmount
 NameError: name 'taxAmount' is not defined

 You can think of it this way: when you call a function from the main code, or from another function, the
caller’s code has its set of variables that it remembers and the called function has a set of variables that it uses.
With the exception of global constants, these sets of variables should be considered completely independent.

 ■ Note The third type of scope is called class scope , which deals with how variables are used inside objects
in object-oriented programming. Unfortunately, that is beyond the scope of this book.

 Global Variables and Local Variables with the Same Names
 Take a look at the following code:

 def myFunction():
 someVariable = 5

 someVariable = 10
 myFunction()
 print someVariable

 In this code, we assign 10 to a variable named someVariable . Then we call a function. But inside the
function, there is another assignment statement setting someVariable to 5. If we run this code, perhaps
surprisingly, we see an output of 10. What’s going on here?

 In the main code, the first executable line creates a global variable named someVariable . Then there is
a function call. As I said earlier, any variable created inside a function is a local variable whose scope is only
within the function. Python allows you to create a local variable that has the same name as a global variable.
Within this function, the someVariable local variable is given a value of 5. However, when that function is
finished, the someVariable local variable goes away. When the function returns, the final print statement
executes. The someVariable in that final print statement is the global version and the program outputs its
value: 10.

 While using the same variable name for a global and a local variable is supported by Python, it is best to
never get into this situation in the first place. Using the same name for global and local variables only leads
to confusion later on. Did I mean to set the local variable or the global variable??? To make your intentions
clear, always use different names.

 It is important to point out, however, that it is perfectly fine and to reuse the same variable name inside
different functions. Since local variables are created when they are first seen inside a function, and they are
destroyed when the function finishes, there is no name conflict with local variables of the same name used
in different functions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

68

 Python’s rule for handling global/local name conflicts like this are quite simple. It always assumes that
you are using local variables within a function. If you truly want to use a global variable within a function-and
I strongly urge you not to, you can do so by first giving a global statement to tell Python that you want to use a
global variable. Here is an example of this highly discouraged approach:

 def myFunction():
 global someVariable # tell Python that you are using a global variable
 someVariable = someVariable + 1

 someVariable = 20
 myFunction()
 print someVariable

 Running this code results in printing the value 21. However, if you want to affect a global variable using
a function, it would be better to write that type of code this way:

 def myFunction(aVariable):
 aVariable = aVariable + 1 # change a local (parameter) variable
 return aVariable # and return it

 someVariable = 20
 someVariable = myFunction(someVariable) # pass in global, and re-assign the answer
 print someVariable

 Finding Errors in Functions: Traceback
 In Chapter 2 , I demonstrated that when an error occurs at runtime, Python outputs an error message called
a traceback . If a runtime error happens inside of a function, it is often difficult to find and fix because a
function may be called from many places in a program. Further, different argument values are typically
passed in with different calls.

 Let’s work through a simple example that generates a runtime error in a function. Here is the code of
the getGroceries program from earlier in this chapter. But this version contains an extra line that causes a
runtime error.

 def separateRuns():
 print '*****************'
 print someUndefinedVariable # will cause a run time error
 print #blank line

 def getGroceries():
 print 'milk'
 print 'flour'
 print 'sugar'
 print 'squash'
 separateRuns() # call another function

 # Main code starts here:
 getGroceries()

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2172-3_2
http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

69

 The main code calls the getGroceries function. That function prints a few things, and then calls the
 separateRuns function. Inside that function is a line that tries to print the value of someUndefinedVariable .
Since this variable was never defined, it triggers a runtime error. When a runtime error occurs in a function,
Python presents information about how the program got to the line of code that caused the error. Let’s look
at what Python tells us for this example.

 >>>
 milk
 flour
 sugar
 squash

 Traceback (most recent call last):
 File "/Learn to Program with Python/Chapter 4 - User-Defined Functions/Kalb Code Chapter4/
Traceback.py", line 15, in <module>
 getGroceries()
 File "/Learn to Program with Python/Chapter 4 - User-Defined Functions/Kalb Code Chapter4/
Traceback.py", line 12, in getGroceries
 separateRuns() # call another function
 File "/Learn to Program with Python/Chapter 4 - User-Defined Functions/Kalb Code Chapter4/
Traceback.py", line 4, in separateRuns
 print someUndefinedVariable # will cause a run time error
 NameError: global name 'someUndefinedVariable' is not defined
 >>>

 As you saw earlier, the actual error is printed on the last line of this output. So the first thing to do
is to read that line to see what the error was. In this traceback, we additionally see a trail of “electronic
breadcrumbs” that tells us how we got to the line that caused the error. The term traceback refers to the
sequence of calls that were made to get into the function where the error occurred. (In other programming
languages, this is often referred to as a stack trace .)

 We read the traceback information from the top down. In this example, the top line says that we were
at line 15 in <module> . This means that our source line number 15 of the main code made a call. The next
line in the traceback tells us that line 15 of the code made a call to the getGroceries function. The next
traceback line says that in line 12 of our code, which is inside the getGroceries function, we made a call
to the separateRuns function. The last traceback line says that in line 4 of our code, which is inside the
 separateRuns function, there was an error in the print statement.

 In most development environments, a line number precedes each line of code. With a setup like that,
finding the lines mentioned in a traceback is easy. Unfortunately, IDLE does not work this way. Instead,
IDLE shows the line number of the current line (wherever the cursor is) in the bottom-right corner.
Therefore, to truly understand a traceback in IDLE, you may have to do a lot of clicking in lines and looking
down to the bottom-right corner to find line numbers associated with lines of your code (see Figure 4-1).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ USER-DEFINED FUNCTIONS

70

 The example shown in Figure 4-1 is extremely simple and is only used to illustrate the information that
is available in a traceback. When programs get large, code often involves many different calls to functions
and the path of execution can go through many layers of function calls. The information provided in a
traceback becomes invaluable in tracking down the sequence of code that lead to a runtime error.

 Summary
 In this chapter, you learned about what happens on the other side of a function call: how to create a user-
defined function. You saw how following a recipe presents a good analogy for building software. We defined
and built our first function. Then we learned how to receive the data that is passed into a function. We
built a number of example functions so we could understand how data is passed with a function call using
arguments, and how that data is received in the function using parameters. Then we discussed how a
function can give back an answer or answers using a return statement.

 The chapter went on to discuss an approach for using specific variable names outside of a function,
and general variable names inside of one. You saw some examples of temperature conversion functions. We
talked about how you should always place your functions at the top of a Python file, and how you should
write functions so that you never write multiple copies of the same code. I showed you how using constants
makes your code easier to read and easier to modify. I presented a discussion on scope: local variables that
are available only inside a function and global variables that are available everywhere. We ended the chapter
with an explanation on how to read the information found in a traceback to find out how a program reached
the point of a runtime error.

 Figure 4-1. The current line number is shown in the bottom right of the editor window

www.it-ebooks.info

http://www.it-ebooks.info/

71© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_5

 CHAPTER 5

 if, else, and elif Statements

 All the code that we have looked at so far has essentially been linear. That is, execution of the code starts
from the top and goes straight through to the bottom. The only change to this linear nature of execution is
when we make a function call. This transfers control to the function, but all the code inside a function also
goes straight through from top to bottom. But one of the most powerful things about code is the ability to
make a decision and to take a path based on that decision.

 This chapter discusses the following topics:

• Flowcharting

• The if statement

• Comparison operators

• Examples of if statements

• Nested if statements

• The else statement

• Using if/else inside a function

• The elif statement

• Using many elif statements

• Example grading program

• Sample program: absolute value

• Programming challenges

• Conditional logic

• The logical not operator

• The logical and operator

• The logical or operator

• Booleans in if statements

• A program to calculate shipping

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

72

 In the real world, we ask questions and take actions based on the answers to those questions. Here are
some examples formatted using an if/then style:

• If I am hungry, then I will eat.

• If today is Monday, then I will go to work.

• If I am tired, then I will go to sleep.

• If I want to meet my friend at 8:00 and it takes 30 minutes to get there, then I should
leave by 7:30.

• If I have to go far and I own a working car, then I will use my car.

• If I have a choice between pizza and liverwurst, then I will choose pizza.

 Flowcharting
 To demonstrate questions and answers like these, and the actions that are taken as a result, let’s use a
technique called flowcharting . A flowchart is a representation of all the possible paths through a process.
A typical flowchart has a starting point, one or more ending points, and two main types of components:
actions (which are usually shown as rectangles) and decisions (which are typically shown as diamonds).
Figures 5-1 and 5-2 are two examples of processes that have been diagrammed using flowcharts.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

73

 Figure 5-1. Flowchart for store checkout

 The flowchart shown in Figure 5-1 shows the process of checking out at a store. The main question that
is asked is Cash? . If you are paying in cash, then you follow the path on the left. Otherwise, it’s assumed that
you are paying with a credit card and you take the path on the right. If your credit card scan fails, then you go
back and choose to pay in cash or try another credit card.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

74

 The flowchart shown in Figure 5-2 shows a typical weekday morning routine. In this flowchart, you first
decide if there is time to exercise or not. If so, then you follow one branch or another, depending on if it is
raining or not. Later, there is a decision box to determine if there is time to eat breakfast.

 Figure 5-2. Flowchart for typical weekday morning routine

 The details of these flowcharts are not really important-they are simple examples. What is important
is to see the use of decision diamonds. Each of the questions in these diamonds is a yes/no question. The
process follows a different path based on the answer to each question. We will use flowcharts like these to
demonstrate statements that control the flow of execution within Python programs.

 The if Statement
 A decision box in a flowchart is implemented by an if statement in Python. Using an if statement, a
programmer can essentially ask a yes/no question, and if the answer is yes, then some code will run.
Figure 5-3 shows the flowchart of an if statement.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

75

 And here is the syntax of the if statement in Python:

 if <Boolean expression>: # notice the colon at the end of the line
 <indented block of code> # any number of indented lines

 Inside this specification, you see <Boolean expression> . Think of a Boolean expression as a question
that can only have two possible answers: yes or no, true or false, one or zero, etc. Specifically, a Boolean
expression is one that yields a Boolean value of only True or False ; for example:

 if authorsFirstName == 'Irv':
 teachingPython = True
 print 'Pay attention to his wisdom'
 respectPoints = respectPoints + 10

 Let’s assume that we have a variable named authorsFirstName that (not surprisingly) contains the first
name of the author of this book. In this example, we are comparing that variable to the string ' Irv' . Since
that is my first name, this comparison evaluates to a Python value of True . And since the result is True , then
all the indented lines of code will run. Here is another example:

 if nReadersUnderstandingPython == 0:
 fireIrv()
 getNewAuthor()

 In this example, we are comparing a variable named nReadersUnderstandingPython to 0. If it turns
out that 0 readers understand Python, then the indented code will run, and we call the fireIrv function
followed by a call to the getNewAuthor function.

 Notice that all the code to be executed when the Boolean expression is True is indented. This is identical
to what happens when we use a def statement to create a function. When you type an if statement (that ends
in a colon), IDLE automatically indents any subsequent lines that you type. When you are finished entering
lines that should execute when the Boolean expression evaluates to True , you press the Backspace key
(Windows) or the Delete key (Mac) to move the cursor back to the indent level of the matching if statement.

 Figure 5-3. Flowchart of if statement

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

76

 Comparison Operators
 It is important to note that when comparing for equality, Python requires two equals signs (==), which is often
called the comparison operator . When reading code out loud, this operator is read as “equals equals”-as in,
“if myVariable equals equals 5 ...”. Remember that the single equals sign (=) is called the assignment operator .
If you try to use a single equals sign inside an if statement, Python will generate an error. Here is an example:

 myVariable = 1
 if myVariable = 1: # This is an error, needs to be equals equals
 print 'The value of myVariable is one.'

 If you try to run this code, you will get an error message that says, “There is an error in your program:
invalid syntax”. In the source window, IDLE will highlight the single equals sign in the if statement, showing
that this is where the error occurred.

 In addition to the equals equals operator, there are a number of additional operators that you can use in
 if statements for comparisons. Table 5-1 lists and explains these operators.

 Examples of if Statements
 Here are some examples of these operators used in short snippets of code with if statements.

 In the following example, we might be writing code for a game of blackjack. Here we compare the total value
of the cards in the dealer’s hand against the total value of the cards in the player’s hand to see if the player won.

 if dealersTotal < playersTotal:
 print 'You win'

 In the following, we are checking a to see if a person’s age is greater than or equal to 18. If so, we set two
other variables to True to signify and remember that the person is allowed to vote and is considered an adult.

 if age >= 18:
 allowedToVote = True
 consideredAnAdult = True

 In the following snippet, we are checking to see if the user has enough money to buy a gallon of gas. If
so, we call a function to purchase one gallon of gas, and reduce the amount of money the user has by the cost
of one gallon of gas.

 Table 5-1. Operators to Use in if Statements

 Operator Meaning Example

 == equals if a == b:

 != not equals if a != b:

 < less than if a < b:

 > greater than if a > b:

 <= less than or equal to if a <= b:

 >= great than or equal to if a >= b:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

77

 if cashInWallet > costOfGasPerGallon:
 purchaseGallonOfGas(1)
 cashInWallet = cashInWallet - costOfGasPerGallon

 Anyone who has tried to log in to an account on a web site should understand this snippet. When you
provide a password, a program checks to see if the password that you entered matches the password that you
gave when you set up the account. If not, you are presented with an error message, as follows.

 if userPassword != savedPassword:
 giveErrorMessageAboutPassword()

 In the following snippet, we ask the user a question using a call to raw_input . When the user answers
the question, the response is put into the answer variable. In the if statement, we check if the user entered
the word yes .

 answer = raw_input('Are you ready (yes or no)? ')
 if answer == 'yes':
 print 'OK, here we go.'

 Nested if Statement
 When a Boolean expression in an if statement evaluates to True , then the indented block of code runs. But
the indented block of code can contain another if statement. And if the Boolean expression in an indented
 if statement also evaluates to True , then the indented code block associated with that if statement will run;
for example:

 # Purchases at a gas station
 totalGasPurchase = priceOfGas * nGallons
 amountLeftOver = startingAmountOfMoney – totalGasPurchase

 # See if we have enough money to buy a Powerball lottery ticket
 if amountLeftOver > 2:
 feeling = evaluateEmotions()
 if feeling == 'lucky':
 buyPowerballTicket()
 amountLeftOver = amountLeftOver - 2

 In this example, we calculate how much we are spending on gas at a gas station. After paying for the gas,
the first if statement checks to see if we have more than 2 dollars left over. If so, then the indented block of
code runs. In that block, we call a function to determine our overall emotional state. We then use a nested
 if statement that asks another question: Do we feel lucky? If so, then the indented block of code associated
with that if statement runs. We call a function to buy a Powerball ticket and adjust the amount of money
that we have left. You can nest if statements as many times as you need to. However, too much nesting
makes code difficult to read.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

78

 The else Statement
 When you ask a question that has only two answers (e.g., yes or no, true or false, 1 or 0, etc.) you often want
to do one thing if you get one answer, and do something different if you get the other answer. As we saw in
the earlier flowcharts, taking separate branches like this is very common. In an if statement, we often want
to execute different blocks of code based on whether the answer to a Boolean expression is True or False .
Figure 5-4 shows a flowchart of this.

 As you saw earlier, in a simple if statement, if the Boolean expression evaluates to True , the code block
on the left side will run. The new piece is that if the Boolean expression evaluates to False , the code block
on the right side will run. The additional piece is implemented by the use of an else statement. Here is the
syntax of an if/else :

 if <Boolean expression>:
 <some indented code>
 else: # Notice the colon here too
 <other indented code>

 The else statement and the block of code associated with it are commonly known as an else clause.
The else clause is optional. Similar to the if statement, the else statement must have a trailing colon. The
colon always tells IDLE that the programmer is providing an indented line or block of lines. In this case, the
indented code runs only if the original Boolean expression in the if statement evaluated to False .

 Here is a simple example. Let’s assume that we are building a math game. Further, assume that we are
asking a question like What integer comes after 4? , where the obvious correct answer is 5. The following
shows how we can use an if/else to evaluate the user’s response:

 #assume the correct answer to question is 5
 if answerToQuestion == 5:
 print 'You got it'
 print 'You are a genius'

 Figure 5-4. Flowchart of if/else

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

79

 else:
 print 'Nope'
 print 'Time to go back to kindergarden'

 In this code, if the answer is correct, the block of code associated with the if statement will run. If the
answer is incorrect, the block associated with the else statement will run. Now let’s build an interactive
version:

 usersAnswer = raw_input('What is 6 + 3? ') # Get the user's answer
 usersAnswer = int(usersAnswer) # convert to an integer
 if usersAnswer == 9:
 print 'Yessiree Bob'
 print 'You are a genius'
 else:
 print 'Sorry, that is not correct'
 print 'The correct answer was 9'

 We added code at the top to ask the user a question with a call to raw_input . Then we use the int
function to take the answer that the user types in (that comes in as a string) and converts it into an integer.

 Next is a simple example that will print the cost of purchasing some number of widgets.

 COST_PER_WIDGET = 7.49 # Constant price of one widget
 nWidgets = raw_input('How many widgets do you want to buy? ')
 nWidgets = int(nWidgets) # convert to an integer
 if nWidgets == 1:
 print 'One widget will cost you $', COST_PER_WIDGET
 else:
 cost = nWidgets * COST_PER_WIDGET
 print nWidgets, 'widgets will cost you $', cost

 In this snippet, we take different paths, depending on whether the user wants to purchase one widget
or multiple widgets. For multiple widgets, we do a simple multiplication, and output a message with proper
wording.

 Here is an example that will execute different code, depending on a person’s age.

 if age < 21:
 okToOrderBeer = False
 print 'Sorry, you are too young!'
 else:
 okToOrderBeer = True
 beerOrder = raw_input('What kind of beer you like to drink? ')

 In this example, we check a variable named age to see if the user is allowed to order a beer. If the value
of age is under 21, then we print a message saying that the person is too young. We remember this fact by
setting the Boolean variable okToOrderBeer to False . Otherwise, we set the Boolean variable to True , and
ask the user what kind of beer they want.

 Next, we have another example of deciding what type of company to apply to.

 if gpa >= 3.5:
 applyToWorkAtTopLevelCompany()

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

80

 else:
 if gpa > 3.0:
 applyToWorkAtMediumLevelCompany()
 else:
 applyToWorkAtLowLevelCompany()

 In this snippet, we decide what type of company to apply to, depending on the value of our grade point
average. Notice that if our GPA is less than 3.5, then the code executes the else clause. The else clause
contains a nested if/else .

 Using if/else Inside a Function
 if statements and if / else statements can be used inside functions. Let’s work through an example. In this
example, we’ll write the beginnings of a “Spaminator” program. That is, we want to start writing a program
that will build the header line for a message to be sent to any number of people. In order to make the
message appear personalized, if we believe that the person is male, we want to address the message to Mr.
<name>. If we believe that the person is female, then we will address the letter to Ms. <name>. To implement
this, we’ll build a function that accepts a name and a gender: 'm' for male, 'f' for female, and returns the
header of the greeting as a string:

 def createHeader(fullName, gender):

 if gender == 'm':
 title = 'Mr.'
 else:
 title = 'Ms.'
 header = 'Dear ' + title + ' ' + fullName + ',' # use concatenation
 return header

 # A few test calls to the function
 print createHeader('Joe Smith', 'm')
 print createHeader('Susan Jones', 'f')
 print createHeader('Henry Jones', 'm')

 The following is the resulting output:

 Dear Mr. Joe Smith,
 Dear Ms. Susan Jones,
 Dear Mr. Henry Jones,

 In this program, the calls that pass in a gender of 'm' return a header that contains “Mr.”, and every call
that passes in a gender of 'f' returns a string that contains “Ms.”.

 The elif Statement
 Sometimes, a question has more than two answers and you want to do different things based on each
possible answer. As a simple example, in our Spaminator program, imagine that we have a name where we
are not sure if the gender is male or female. Maybe we want to send a message to someone named Chris
Smith, but we don’t know if Chris Smith is male or female. If we don’t know the gender, we would want to
address our message to “Mr. or Ms. Chris Smith”. In our call to the function with a name like this, we could
pass in the name and a question mark '?' to indicate that we do not know the gender of this person.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

81

 Given the current code, if we passed in a question mark as the gender, the program would check for
male, fail that test, assume female, and print, “Dear Ms. Chris Smith”. The problem is that the function needs
to check for one of three possible values: male, female, or unknown, each with its desired outcome.

 It turns out that you often need to check for three, four, five, or any number of different cases. To handle
this, Python gives us another addition to the if statement called the elif statement. elif is a made up word
that came from taking the words else if and smashing them together-but it really means else if. To understand
how this works, let’s first look at the flowchart shown in Figure 5-5 .

 Figure 5-5. Flowchart of if/elif/else

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

82

 The basic idea is that you can ask multiple Boolean questions, and when there is a match (that is, a
Boolean expression evaluates to True), then the block of code associated with that case is executed. Here is
what the syntax looks like in Python:

 if <Boolean expression>:
 <some code>
 elif <Boolean expression>:
 <some code>
 elif <Boolean expression>:
 <some code>
 # as many elif's as you need ...
 else:
 <some default code>

 Once one of the Boolean expressions evaluates to True , then the indented code below it runs. When
that block is finished, control is passed to the first statement beyond the if/elif/else . Let’s take a look at
what the createHeader function would look like using an if/elif/else :

 def createHeader(fullName, gender):

 if gender == 'm':
 title = 'Mr.'
 elif gender == 'f':
 title = 'Ms.'
 else: #not sure, could be male or female
 title = 'Mr. or Ms.'
 header = 'Dear ' + title + ' ' + fullName + ',' # use concatenation
 return header

 print createHeader('Joe Smith', 'm')
 print createHeader('Susan Jones', 'f')
 print createHeader('Henry Jones', 'm')
 print createHeader('Chris Smith', '?') # Not sure if this is male or female

 Notice that the values passed in for the gender in the first three calls were 'm' or 'f' . But in the last call,
we did not know the gender. In this call, we passed in a question mark. (Actually, anything other than 'm' or
 'f' would work fine.) This is the resulting output:

 Dear Mr. Joe Smith,
 Dear Ms. Susan Jones,
 Dear Mr. Henry Jones,
 Dear Mr. or Ms. Chris Smith,

 Using Many elif Statements
 Imagine what the code would look like if there were six genders to check instead of just two. In that case, we
could have an if statement check for male, an elif to check for female, and four more elif statements to
check for the other genders. If the gender was still unrecognized (that is, it did not match any of the genders
we were checking for) then we would have an else clause to catch that as the default case.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

83

 Here is a good example that uses an if/elif/else construct with a number of different checks. In this
function, we pass in a temperature, and the function returns a string that describes the appropriate clothing
to wear for that temperature:

 def whatToWear(temperature):
 if temperature > 90:
 clothes = 'swim suit'
 elif temperature > 70:
 clothes = 'shorts'
 elif temperature > 50:
 clothes = 'long pants'
 else:
 clothes = 'thermal underwear and long pants'

 return 'Put on ' + clothes

 print whatToWear(100)
 print whatToWear(40)
 print whatToWear(71)

 When we run this code, we get the following output:

 Put on swim suit
 Put on thermal underwear and long pants
 Put on shorts

 The code runs through each test in the if and elif statements, looking for the first one that evaluates
to True . When one test results in a True , then the indented code block beneath that test will run. Then
execution will jump down to the first statement after the if/elif/else statements. If none of the tests result
in an answer of True , then the code block associated with the else will execute. This way, the else block
serves as a “catchall.” In this case, when we passed in a value of 40, all of the if and elif tests resulted in a
 False , so the code of the else block ran.

 Here is a great example of where you might use an if/elif/elif/ ... /else construct. Imagine you
are writing a game program. The program could respond to a number of different keys on the keyboard. For
example, you might print out a menu of single-letter commands and ask the user to type a letter (and then
press Return/Enter) to continue. The program is designed to do a different action for each letter in the menu.
To code something like this, you would use a series of if/elif/... elif/else comparisons to see which
key was pressed, and you would call a different function to do some action based on which key was pressed.
In commercial games, the left, right, up, and down arrows are often used to move a character on the screen
in the matching direction. The coding to implement this is done using a series of if/elif/ ... elif/else
statements.

 ■ Note If you are familiar with other computer languages, like C or Java, you might recognize this as a
switch/case statement. The people who developed Python saw no need to have two different approaches to do
the same thing. Therefore, there is no separate switch/case construct in Python.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

84

 A Grading Program
 Here is a real-world example of using if/elif/else statements. Teachers often grade tests, projects, and
homework assignments using a number scale of 0 to 100. At the end of the term, the final grading number
needs to be converted to a letter grade. Here is a sample function that could be used to do this conversion:

 #Convert a number score to a letter grade:
 def letterGrade(score):
 if score >= 90:
 letter = 'A'
 elif score >= 80:
 letter = 'B'
 elif score >= 70:
 letter = 'C'
 elif score >= 60:
 letter = 'D'
 else:
 letter = 'F' #fall through or default case
 return letter

 grade1 = letterGrade(75)
 print grade1
 grade2 = letterGrade(82)
 print grade2
 print letterGrade(95) #call and print in one statement

 For simplicity, this function only generates full-letter grades. That is, it does not go into plusses and
minuses. Adding grades like A–, B+, B–, etc., is a trivial extension that involves adding more elif lines to
check for more values of the variable score .

 A Small Sample Program: Absolute Value
 Now I will provide a number of small programming challenges whose solutions involve the use of if/else
or if/elif/else constructs. I’ll work through the first one with you, and then give you a number of other
problems, each building in complexity.

 Before attempting to build or fix something, it is always a good idea to think through the approach
before actually starting to do any work. This is especially true in computer programming, and there is a
special word associated with it: algorithm .

 ■ Definition An algorithm is a series of steps to solve a problem.

 In programming, it is best to think through your approach and describe it in English before writing any
code. In each of the following programming challenges, it should be common practice to think through the
problem and develop an appropriate algorithm before turning the algorithm into Python code.

 The first program is one that includes a function to calculate the absolute value of a given number.
Although absolute value may not be an everyday term, it is simply defined as the distance away from zero.
That is, the absolute value of 3 is 3. But the absolute value of –3 is also 3. The absolute value function should
not print anything; it should just return the absolute value of the starting number.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

85

 We’ll first come up with an appropriate algorithm. Here is one that will work:

• If the value is positive, then the result is just the starting value.

• If the number is negative, then the result is the starting number multiplied by –1.

 That’s it. This is a very simple algorithm. Now, let’s turn that into code. The approach to writing these small
programs is generally to build a function to do the core work, and then build a number of calls to the function,
passing in test data to test all paths through the function. Here is the code to implement absolute value:

 # Absolute Value Program

 # Function to generate the absolute value of a number
 def absoluteValue(valueIn):
 if valueIn >= 0 :
 valueOut = valueIn
 else: #must be negative, multiply by minus one to get a positive value
 valueOut = -1 * valueIn
 return valueOut

 #Test cases
 result = absoluteValue(10.5)
 print 'The absolute value of 10.5 is', result

 result = absoluteValue(-8)
 print 'The absolute value of -8 is', result

 The following is the output from running this program:

 The absolute value of 10.5 is 10.5
 The absolute value of -8 is 8

 This absoluteValue function demonstrates a powerful Python feature. In the first call, we passed in a
floating-point number. In the second call, we passed in an integer. The function only has a single parameter
variable, valueIn , which is set to the value of whatever argument is passed in. This is a good demonstration
of how a variable can have any type, depending on the type of data that is assigned to it.

 To extend the main code, we can add an interactive component. That is, we could ask the user to enter
a number, use that number in a call to our function, and print the result. Here is a modified version that adds
this capability at the end of the main code:

 # Absolute Value Program

 # Function to generate the absolute value of a number
 def absoluteValue(valueIn):
 if valueIn >= 0 :
 valueOut = valueIn
 else:
 valueOut = -1 * valueIn
 return valueOut

 #Test cases
 result = absoluteValue(10.5)
 print 'The absolute value of 10.5 is', result

 result = absoluteValue(-8)
 print 'The absolute value of -8 is', result

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

86

 # Get user input and convert to a floating point number
 userNumber = raw_input('Enter a number: ')
 userNumber = float(userNumber)

 # Call the function with the user's number and print the answer
 result = absoluteValue(userNumber)
 print 'The absolute value of', userNumber, 'is', result

 The following is the output from running this program:

 The absolute value of 10.5 is 10.5
 The absolute value of -8 is 8
 Enter a number: -123.456
 The absolute value of -123.456 is 123.456

 ■ Note Python actually has a full suite of specialized math functions-including absolute value-available
for Python programmers to use. But building your own functions like this is good practice and furthers your
understanding. We’ll talk about “packages” like this later.

 Programming Challenges
 Now it’s your turn. I will present a number of detailed challenges for you to implement. Once you
understand the specification, think the problem through and develop an algorithm to solve it. Then write
the code yourself, using the same style as the absolute value program: build a function and a small number
of test cases to demonstrate that your function works correctly. The solution to each problem is provided on
the page(s) following each problem.

 Negative, Positive, Zero
 Create a program that contains a function called negativePositiveZero . It is passed one numeric (integer
or float) parameter. The function should return one of the following string values:

• 'negative' if the number is negative

• 'positive' if the number is positive

• 'zero' if the number is zero

 The function should not print anything. Write some main program code to call the function with test
values and then print the returned results. For each test, the program should output this:

 xxx is negative

 or this:

 xxx is positive

 or this:

 xxx is zero

 For extra practice, allow the user to enter a value. Use that value in your function call, and then print
the results.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

87

 The algorithm for the negativePositiveZero function is straightforward. Compare to see if the number
is less than zero; if not, then compare to see if it is greater than zero; if not, then by default it must be zero.
Here is the implementation:

 # Determine if a number is negative, positive, or zero

 # Function to determine negative, positive, or zero
 # Returns an appropriate string
 def negativePositiveZero(value):

 if value < 0.0:
 answer = 'negative'
 elif value > 0.0:
 answer = 'positive'
 else: # not negative, not positive, must be zero
 answer = 'zero'
 return answer

 #Test cases
 result = negativePositiveZero(-25.7)
 print '-25.7 is', result

 result = negativePositiveZero(0.0)
 print '0.0 is', result

 result = negativePositiveZero(123.45)
 print '123.45 is', result

 # Get user input and call the function.
 userValue = raw_input('Enter a number: ')
 userValue = float(userValue)
 userResult = negativePositiveZero(userValue)
 print userValue, 'is', userResult

 To code the algorithm, we use if/elif/else , where the if and the elif compare for negative and
positive, leaving a default of zero. After each test, set a variable appropriately, and at the end of the function,
return the value of the variable.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

88

 isSquare
 Create a program that contains a function called isSquare . The function is passed two parameters that
represent the length and the width of a shape. For simplicity, assume that we are talking about a rectangle,
where the top and bottom sides are the same width, the left and right sides are the same length, and all
angles are 90-degree. isSquare should return one of the following:

• True, if the sides represent a square

• False, if the sides do not represent a square

 The function should not print anything.
 Write some main program code to call the function with test values for the length and the width of the

sides, and print the following based on the returned result:

 xxx and yyy represent a square

 or

 xxx and yyy do not represent a square

 For extra practice, allow the user to enter values. Use them in your function call and then print based on
the results.

 Be sure to use different variable names for the user’s input and the parameters used in your function.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

89

 The algorithm for this function is trivial. Two numbers (length and width) represent a square if they are
equal. If not, then the numbers do not represent a square.

 # Determine if two numbers represent a square

 # Function to determine if length and width represent a square
 def isSquare(length, width):

 if length == width:
 itsASquare = True
 else:
 itsASquare = False
 return itsASquare

 #Test cases
 result = isSquare(5, 5)
 if result:
 print '5 and 5 represent a square'
 else:
 print '5 and 5 do not represent a square'

 if isSquare(7.5, 8.5):
 print '7.5 and 8.5 represent a square'
 else:
 print '7.5 and 8.5 do not represent a square'

 # Get user input, convert to floats and call the function.
 userLength = raw_input('Enter a length: ')
 userLength = float(userLength)
 userWidth = raw_input('Enter a width: ')
 userWidth = float(userWidth)
 if isSquare(userLength, userWidth):
 print userLength, 'and', userWidth, 'represent a square'
 else:
 print userLength, 'and', userWidth, 'do not represent a square'

 The body of the function is a simple if/else statement; then it returns the result.
 In the main code, notice that in our first call, we set a result variable to the value that is returned from

the call. In the second call, we’ve built the code slightly differently. Since the returned value is a Boolean,
we wrote the function call directly in the if statement. Both approaches are fine. If we need to remember
the result of the call for use in some future statement, then we need to assign the answer to a variable. In
this small program, we are not using the answer anywhere else, so putting the call inside the if statement is
perfectly fine.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

90

 However, notice that the code that reports the results of each call to the function has a lot of repetition.
Whenever you see this kind of repetition, you can generally build another function. Here is a slight rewrite of
the previous code to remove redundancy:

 # Determine if two numbers represent a square

 # Function to determine if length and width represent a square
 def isSquare(length, width):

 if length == width:
 itsASquare = True
 else:
 itsASquare = False
 return itsASquare

 # Intermediate function that checks for a square and prints the result
 def printSquare(aLength, aWidth):
 theResult = isSquare(aLength, aWidth)
 if theResult:
 print aLength, 'and', aWidth, 'represent a square'
 else:
 print aLength, 'and', aWidth, 'do not represent a square'

 #Test cases
 printSquare(5, 5)

 printSquare(7.5, 8.5)

 # Get user inputconvert to floats and call the function.
 userLength = raw_input('Enter a length: ')
 userLength = float(userLength)
 userWidth = raw_input('Enter a width: ')
 userWidth = float(userWidth)
 printSquare(userLength, userWidth)

 In this listing, notice that the isSquare function has not changed at all. But we’ve introduced a
new intermediate function called printSquare . That function calls the isSquare function, and does the
appropriate printing based on the result. This is a good example of how a function can call another function.
Rather than duplicating code as we did in the earlier version, the reporting logic has been moved into the
intermediate function. Using this intermediate function allows the main code to become much smaller.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

91

 isEven
 Write a program that contains a function called isEven . The function is passed one numeric (integer)
parameter. isEven should return as follows:

• True, if the number is even (..., –6, –4, –2, 0, 2, 4, 6, 8, ...)

• False, if the number is odd (..., –5, –3, –1, 1, 3, 5, 7, 9, ...)

 Notice that negative integers can be considered even or odd, just like positive integers. Further, 0 is
considered even. The function should not print anything. Instead, build an intermediate function, as you did
for the solution to the isSquare problem.

 For each value, the program should output this:

 xxx is even

 or this:

 xxx is odd

 Write your main code with two calls to your function; testing first with an even number and then an odd
number. Then, allow the user to enter a value, and use that value in a call to your intermediate function so
that it prints the results.

 Be sure to use different variable names for the user’s input and the parameters used in your function(s).
 The algorithm here is a little tricky. When we look at an integer, it is probably obvious to us whether the

number is even or odd, but we need a way to allow the computer to figure this out for a given number. If you
have trouble trying to come up with an algorithm, think about how you would explain to a 5-year-old child
how you know if a number is even or odd. You have to break down the problem into very simple steps.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

92

 The algorithm here works like this. A number is even if it is evenly divisible by 2.
 The question then becomes: How can “evenly divisible by 2” be implemented in Python? Remember

the modulo operator-the percent sign (%)? The modulo operator gives us the remainder of a division. If we
take a number and use modulo 2 on it, we can get the remainder after dividing by 2. If the remainder is 0,
then the original number was evenly divisible by 2-therefore it was even. Otherwise, the remainder must
have been 1 and the original number was odd.

 # Determine if a given integer is even or odd:

 # Function to determine if a number is even or odd
 def isEven(valueIn):
 remainder = valueIn % 2
 if remainder == 0:
 return True
 else:
 return False

 def printEvenOrOdd(someValue):
 if isEven(someValue):
 print someValue, 'is even'
 else:
 print someValue, 'is odd'

 #Test cases
 printEvenOrOdd(10)

 printEvenOrOdd(11)

 # Get user input and convert to an integer
 userNumber = raw_input('Enter an integer: ')
 userNumber = int(userNumber)

 # Pass in the users number
 printEvenOrOdd(userNumber)

 The modulo operator allows us to construct code that is quite small. We’re using an intermediate
function to call the isEven function and print the results.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

93

 isRectangle
 Write a program that contains a function called isRectangle . The function is passed four parameters
representing the length of each of the four sides of a shape in the order of left, top, right, and bottom. You
should assume that all angles are 90-degree. isRectangle should return this:

• True, if the sides represent a rectangle

• False, if the sides do not represent a rectangle

 The function should not print anything.
 For each set of four numbers, the program should output this:

 <side1>, <side2>, <side3>, and <side4> represents a rectangle

 or this:

 <side1>, <side2>, <side3>, and <side4> do not represent a rectangle

 Write some main program code to call the function with test values for the four sides. Use test values
like 5, 6, 5, 6, which do represent a rectangle, and some other values like 5, 6, 7, 8, which do not represent a
rectangle. Then, allow the user to enter four values. Use those values in a call to your intermediate function
that prints the results.

 Be sure to use different variable names for the user’s input and the parameters used in your function(s).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

94

 The algorithm for this function goes like this: if the left side is equal to the right side, and if the top is
equal to the bottom, then it is a rectangle; otherwise, the numbers do not represent a rectangle.

 # Determine if the four side lengths represent a Rectangle or not:

 # Function to determine if four sides represent a Rectangle
 # Is a rectangle if left is the same as the right
 # and top is the same as the bottom
 def isRectangle(left, top, right, bottom):
 if left == right:
 if top == bottom:
 return True
 return False

 def printRectangle(someLeft, someTop, someRight, someBottom):
 if isRectangle(someLeft, someTop, someRight, someBottom):
 print someLeft, someTop, someRight, someBottom, 'represents a rectangle'
 else:
 print someLeft, someTop, someRight, someBottom, 'does not represent a rectangle'

 #Test cases
 printRectangle(5, 6, 5, 6)

 printRectangle(5, 6, 7, 8)

 # Get user input and call the function.
 userLeft = raw_input('Enter the left: ')
 userLeft = int(userLeft)
 userTop = raw_input('Enter the top: ')
 userTop = int(userTop)
 userRight = raw_input('Enter the right: ')
 userRight = int(userRight)
 userBottom = raw_input('Enter the bottom: ')
 userBottom = int(userBottom)

 printRectangle(userLeft, userTop, userRight, userBottom)

 The implementation is done with a nested if statement. First, check if the left is equal to the right. If it
passes that test, then another if statement checks if the top is equal to the bottom. If it passes that test, then
 True is returned. Placing a return statement in the middle of a function is fine, and if/when it executes, no
lines in the function after the return statement will run. The function is finished at that point, and control
passes back to the caller.

 If we get all the way to the last return statement, we’ll return a value of False to say that the numbers do
not represent a rectangle.

 Conditional Logic
 So far, all of the comparisons we have shown in if statements have used a single operator (== , != , > , < ,
etc.) However, sometimes it is convenient to have Boolean expressions where we can perform multiple
comparisons within a single if statement. To create expressions that can contain multiple comparisons,
there are three logical operator keywords: not , and , and or .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

95

 The Logical not Operator
 We’ll start with the simplest one, the not operator. Remember that a Boolean can only have a value of True
or False. The not operator takes a Boolean value and reverses it. If a Boolean value is False, applying the not
operator changes the value to True. If the value is True, not changes the value to False. The not operator is
often used in if statements to make things clear.

 The not operator is entered directly in front of any Boolean variable or expression. If it is used with
a simple variable, no parentheses are needed. If you want to apply a not operator to a more complicated
expression, you should put parentheses around the expression to create a grouping, and place the not
operator in front of the parentheses. The following are examples:

 if not open:
 # closed

 if not broken:
 # working

 # Here is a typical use in an if statement
 if not(width == length):
 # not a square

 # can use it in an assignment statement:
 alive = not dead

 # using not to reverse the output of a function:
 isOdd = not isEven(value)

 Table 5-2 is what is called the “truth table” for the not operator. It shows what happens when you apply
the not operator to an input Boolean value. The truth table for not is extremely simple.

 Table 5-2. The “Truth Table” for the not Operator

 Input Result

 not True False

 not False True

 The Logical and Operator
 The and operator allows you to do multiple comparisons within a single if statement. The indented block of
code following the if statement will only execute if the expressions on both sides of an and operator evaluate
to True . Here are some examples:

 if (age >= 12) and (height >= 48):
 # OK to get on roller coaster at amusement park

 if (location == 'Hamburger Restaurant') and (nDollars > 4):
 # can buy a hamburger and fries

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

96

 if (x >= 5) and (x =< 10):
 # x is between 5 and 10

 # assume three Boolean variables, each set appropriately
 if learningPython and studyingHard and workingThroughExamples:
 # can become a professional Python programmer

 Table 5-3 is the truth table for the and operator. It shows what happens when two Boolean expressions
are “ and ’ed” together.

 Table 5-3. The Truth Table for the and Operator

 Input1 Input2 Result

 False and False False

 False and True False

 True and False False

 True and True True

 Notice that you get a result of False in every case except when both inputs are True. Another way to
think about it is this: the result is True only when all input values are True.

 To work through the application of this table, think about the first coding example:

 if (age >= 12) and (height >= 48):
 # OK to get on roller coaster at amusement park

 The if statement evaluates the comparisons on either side of the and operator. The only way that the
person can get on the roller coaster is if it is true that they are 12 or older and it is true that they are at least 48
inches tall. If either comparison evaluates to False , or if both evaluate to False , then the result of the and is
 False ; the person is not allowed to get on the ride.

 Earlier in this chapter, there was a programming challenge to write code to see if the four sides of a
shape represented a rectangle. Using the and operator, the check for a rectangle can be written in a more
natural and clear way:

 def isRect(left, top, right, bottom):
 if (left == right) and (top == bottom):
 return True
 else:
 return False

 The Logical or Operator
 The or operator also allows you to do multiple comparisons in a single if statement. The indented block of
code following the if statement will execute if either side of an or operator evaluates to True . Here are some
examples:

 if (nDollars > 4) or dateIsPaying:
 # can get ice cream sundae

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

97

 if (studyingHoursPerDay > 4) or payOffTeacherForGoodGrade:
 # you will do well in class (JOKE!)

 if (userCommand == 'q') or (userCommand == 'quit'):
 # quit the program

 if (age > 65) or disabled:
 # can get government benefits

 Table 5-4 is the truth table for the or operator. It shows what happens when two Boolean expressions
are “ or ’ed” together.

 Notice that the result is True in every case except when both inputs are False . Another way to think
about it is this: the result is True when any input value is True .

 Table 5-4. The Truth Table for the or Operator

 Input1 Input2 Result

 False or False False

 False or True True

 True or False True

 True or True True

 ■ Note Where Python uses the English words for the logical operators and , or , and not , other computer
languages, like C and Java, use symbols: && means and, || means or, and ! means not. The use of simple
English words for these operators makes Python code more readable for novices.

 Precedence of Comparison and Logical Operators
 In Chapter 2 , I talked about the order of operations with the standard math operations of addition,
multiplication, subtraction, etc. With the introduction of a number of comparison operators and three
logical operators, the rules of precedence get even more complicated. Consider the following if statement
that contains many logical operators and comparison operators. This if statement is intended to determine
if you are eligible to buy a house in California’s Silicon Valley:

 if not inJail and cash >= 1000000 or haveHighPayingJob and downPayment >= 90000:
 # Can buy a house in Silicon Valley

 But this is rather confusing. Does or have priority over and ? When is the not operator applied? Does
the code compare downPayment >= 90000 ? Or does the logical and operation of haveHighPayingJob and
downPayment happen first?

 Similar to our discussion about the order of operations for math operators, we can eliminate all these
questions by also using parentheses to force the order of comparison and logical operators. Adding a set or
sets of parentheses makes your intentions clear by creating groupings.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2172-3_2
http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

98

 if not(inJail) and ((cash >= 1000000) or (haveHighPayingJob and (downPayment >= 90000)):
 # Can buy a house in Silicon Valley

 In an if statement, the extra parentheses affect the order of evaluation. With the addition of
parentheses, the meaning of the preceding complicated if statement becomes clear. As long as you are not
in jail, and either you have a million dollars in cash or you have a high-paying job and a down payment of
ninety thousand dollars, then congratulations-you can buy a house in Silicon Valley!

 Booleans in if Statements
 There is one additional note on using Booleans in if statements. Very often, programmers use a Boolean
variable to remember the result of an early calculation or setting. Then later, the code tests the Boolean to
see which piece of code should run. For example, consider a program where we need to know if the user is
an adult female. We might ask the user at the start of the program about their age and gender. Once we have
the user’s responses, we might set a Boolean this way:

 if (age > 21) and (gender == 'f'):
 adultFemale = True
 else:
 adultFemale = False

 Then, later in the program, we might want to make some comment or recommendation if the user is
an adult female. Now that we have this information captured in a single Boolean variable, we can use that
variable in our next if statement. Many beginning programmers write something like this:

 if adultFemale == True:
 # Make some special comment/recommendation

 And that works fine. However, comparing a Boolean to True is not necessary. The following is exactly
equivalent:

 if adultFemale:
 # Make some special comment/recommendation

 There is nothing wrong with the first form-comparing a Boolean to True . If it is clearer to you, then feel
free to write it that way. However, as you get more comfortable working with Booleans, you will come to
recognize that the second approach, of just using the Boolean alone, is even simpler.

 Program to Calculate Shipping
 Let’s take many of the concepts that we have learned in this chapter and put them all together to build a
program. The idea is that we have a company that sells widgets. A user fills out a form or answers a set of
questions, supplying the number of widgets to purchase and an address to ship to. The program should
generate the cost to ship that particular number of widgets. The cost is dependent on both the country to
ship to and the number of widgets. The company is set up to ship to either the United States or Canada only.
If the user is requesting a shipment to any other country, the company has to decline the order. The costs are
outlined in Table 5-5 .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

99

 The key to this program is to build a function that calculates the shipping costs. When it is called, it
expects to be passed two pieces of data: the country to ship to and the number of widgets purchased. The
function will return a resulting shipping cost. Essentially, we need a way to take the data in Table 5-5 and
turn it into code. We’ll start with an outline of the code:

 # Function to determine shipping cost, based on country and quantity
 def calculateShipping(country, nWidgets):

 if (country == 'USA') or (country == 'US') or (country == 'United States'):
 # Calculate costs for US

 elif country == 'Canada':
 # Calculate costs for Canada

 else:
 # We do not ship anywhere else
 shippingCost = -1 # special value to say that we don't ship to this country

 return shippingCost

 In this first pass at the code, we made a decision to look at the table by considering the country first.
(Alternatively, we could have broken up the problem by looking at the number of widgets first and then at
the country, but the former approach seems more logical.) Since the user types in their address, our code
allows for any of three acceptable spellings or shortened names for the United States. Next, we check if the
user’s country is Canada. If the country is not the United States or Canada, execution will go into the else
clause. There we assign a special value of –1 to indicate that we do not ship to the given country. The caller
has to check for and deal with this special value. If the function returns a –1, then the calling code must tell
the user that we cannot ship to that country.

 Now, let’s build up the rest of the calculateShipping function:

 # Function to determine shipping cost, based on country and quantity
 def calculateShipping(country, nWidgets):

 if (country == 'USA') or (country == 'US') or (country == 'United States'):
 if nWidgets < 50:
 shippingCost = 6.25
 elif nWidgets < 100:
 shippingCost = 9.50

 Table 5-5. Shipping costs based on country and quantity

 Shipping Costs

 United States: Canada:

 Quantity Cost Quantity Cost

 <= 50 6.25 <= 50 8.25

 <= 100 9.50 <= 100 12.50

 <= 150 12.75 <= 150 18.00

 otherwise 15.00 otherwise 25.00

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

100

 elif nWidgets < 150:
 shippingCost =12.75
 else:
 shippingCost = 15.00

 elif country == 'Canada':
 if nWidgets < 50:
 shippingCost = 8.25
 elif nWidgets < 100:
 shippingCost = 12.50
 elif nWidgets < 150:
 shippingCost = 18.00
 else:
 shippingCost = 25.00

 else:
 # We do not ship anywhere else
 shippingCost = -1 # special value to say that we don't ship to this country

 return shippingCost

 The additional code is implemented for the United States and Canada as a nested if/elif/else
statement. For the United States and Canada, we check the number of widgets ordered and assign the
appropriate value to the shippingCost variable. At the end of the function, we return the calculated cost.
Finally, we write the main code that asks a number of questions to the user, as follows:

 # Get user input then call the above function

 userWidgets = raw_input('How many widgets are you buying? ')
 userWidgets = int(userWidgets) # convert to integer

 userCountry = raw_input('What country are you shipping to? ')
 # Other questions about the shipment here

 #call the function to see how much it will cost to ship
 amountForShipping = calculateShipping(userCountry, userWidgets)
 if amountForShipping >= 0:
 print 'It will cost $', amountForShipping, 'to ship your package'
 # more code here to process the shipment
 else:
 print 'Sorry, we do not ship to', userCountry

 The main code gets information from the user and uses that information in a call to the function,
and then gets back the amount that it costs to ship. Notice that the main code contains a check (using an
if statement) to see if we get a valid value for shipping. If so, we tell the user the cost of shipping and the
program can proceed. If we get a negative number, the main code interprets it as a signal that we cannot ship
to the given country, and then prints an appropriate message. By having all the shipping calculations inside
a function, we could later modify the function to add more countries to ship to, without making any changes
to the calling code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ IF, ELSE, AND ELIF STATEMENTS

101

 Summary
 We started the chapter with flowcharting to introduce the concept of branching. Then I showed you
how decision boxes in flowcharts are implemented by if statements, if/else statements, and if/elif/
else statements. I gave many examples of how you can use nested if statements, if statements inside of
functions, and if statements with multiple elif branches. If you took the challenges, you got some good
practice by writing relatively simple functions with if statements in them.

 Next, I introduced the three logical operators: and , or , and not . I showed you the truth table for each of
these operators and I demonstrated how we can use these operators to create more complex, but often more
natural if statements.

 We ended the chapter with a good example of using nested if/elif/else statements in a program to
calculate shipping.

www.it-ebooks.info

http://www.it-ebooks.info/

103© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_6

 CHAPTER 6

 Loops

 In this chapter, we’ll build a “Guess the Number” program. The computer will pick a random number
between 1 and 20, and the user will have five attempts to guess the number. For every incorrect guess, the
computer will let the user know if the correct answer is higher or lower than the user’s guess. If the user
doesn’t guess the answer in five attempts, the program will tell the user what the number was.

 To learn how to build a game like this, we cover the following topics in this chapter:

• User’s view of the game

• Loops

• while statement

• First loop in a real program

• Increment and decrement

• Running a program multiple times

• Python built-in packages

• Generating a random number

• Simulation of flipping a coin

• Other examples of using random numbers

• Creating an infinite loop

• A new style of building a loop: while True and break

• continue statement

• Asking if the user wants to repeat: the empty string

• Pseudocode

• Building our Guess the Number program

• Playing a game multiple times

• Error checking with try/except

• Building error-checking utility functions

• Coding challenge

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

104

 User’s View of the Game
 Rather than start with the code, let’s start by showing what the program looks like from the user’s point of
view:

 >>>
 Welcome to my Guess the Number program.
 Guess my number between 1 and 20
 You have 5 guesses.

 Take a guess: 5
 Your guess is too low
 Take a guess: 7
 Your guess is too high
 Take a guess: 6
 You got it in 3 guesses

 Play again? Press y to continue or press ENTER to quit: y
 Take a guess: 12
 Your guess is too low
 Take a guess: 18
 Your guess is too high
 Take a guess: 15
 Your guess is too low
 Take a guess: 16
 Your guess is too low
 Take a guess: 17
 You got it in 5 guesses

 Play again? Press y to continue or press ENTER to quit: y
 Take a guess: 10
 Your guess is too low
 Take a guess: 11
 Your guess is too low
 Take a guess: 12
 Your guess is too low
 Take a guess: 13
 You got it in 4 guesses

 Play again? Press y to continue or press ENTER to quit: y
 Take a guess: 1
 Your guess is too low
 Take a guess: 2
 Your guess is too low
 Take a guess: 3
 Your guess is too low
 Take a guess: 4
 Your guess is too low
 Take a guess: 5
 Your guess is too low
 You didn't get it in 5 guesses.
 The correct answer was: 11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

105

 Play again? Press y to continue or press ENTER to quit:

 From the output, you can probably figure out how some of the code works. You already know how to get
the user’s guesses using a call to raw_input . You also know how to compare the user’s guess to the randomly
chosen target number using an if/elif/else statement. And you know how to keep track of the number
of guesses by setting a variable to 0, and adding 1 to it every time the user makes a guess. But in order to
build the full program, we need to learn a few more things about programming and how to implement these
things in Python.

 Loops
 In the output of the program, you can see how the user was allowed to make multiple guesses. Also, the user
is allowed to play the game multiple times. In order to build code with these types of repetitions, we need to
introduce a new concept called a loop .

 ■ Definition A loop is a block of code that is repeated until a certain condition is met.

 Figure 6-1 shows the flowchart of a loop.

 To understand how this works, let’s start with a silly real-life example.

 I am hungry

 while hungry

 Figure 6-1. The flowchart of a loop

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

106

 take a bite of food

 chew

 swallow

 if thirsty:

 take a drink

 go back to the point of checking if I am still hungry

 eat dessert!

 In this example, we repeatedly take a bite of food, chew, swallow, and if we are thirsty, take a drink.
This process keeps going as long as we are still hungry. When we eventually reach the point where we are no
longer hungry, the loop finishes and we eat dessert.

 Here is a second silly real-life example of a loop:

 ask son to take out garbage
 anger is non-existent, perfectly calm
 while son has not taken out the garbage
 increase anger level by a bit
 tell son to take out the garbage
 wait 2 minutes
 go back to checking if garbage has been taken out

 In this example, as long as my son has not taken out the garbage, my anger level continues to go up.

 The while Statement
 In Python (as with many languages), a loop is implemented with a while statement. This is the generic form
of the while statement:

 while <Boolean expression>: # as long as the expression evaluates to True
 <indented block of code>

 Notice that this syntax is very similar to an if statement. The while statement contains a Boolean
expression followed by a colon. After the while statement is an indented block of code. Again, similar to an
 if statement, the block of code can be as short or as long as needed. The block of code is often referred to as
the body of the loop. The while statement and the indented block together are called a while loop. As long as
the Boolean expression in the while statement evaluates to True , the statements in the body of the loop are
repeated. When executing the while statement, if the Boolean expression evaluates to False , the body of the
loop is skipped and execution continues with the first statement after the body of the loop.

 Again similar to what happens when you type an if statement, when you type a while statement with
a trailing colon, IDLE automatically indents for you to allow you to build the body of the loop. When you are
finished entering the statement(s) that make up the body of the loop, you can press Backspace (Windows) or
the Delete (Mac) key to move the indenting level back four spaces.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

107

 Let’s start with a silly Python example. In the following code, we’ll ask the user to type the letter a , and
we’ll keep asking until the user types an a .

 looping = True
 while looping == True:
 answer = raw_input("Please type the letter 'a': ")
 if answer == 'a':
 looping = False # we're done
 else:
 print "Come on, type an 'a'! "

 print "Thanks for typing an 'a'"

 Before the loop starts, we set a Boolean variable named looping to True . The Boolean expression in this
 while statement compares the Boolean to the value True . We could also have written it as follows:

 looping = True
 while looping:

 This would work the same way, because comparing a Boolean to True is the same as just the value of
the Boolean itself.

 At the end of the loop, execution automatically goes back to the while statement at the top of the loop.
As long as the looping variable has a value of True , the lines of code in the indented block will be repeated.
Therefore, when we want the loop to end, something inside the loop must affect the value of that expression.
In this loop, when the user types the letter a , we set looping to False . When control goes back to the
 while statement, since the Boolean expression is now False , we exit the loop. For this reason, the Boolean
expression in the while statement is often called the exit condition -the condition under which you can exit
the loop.

 But it is interesting to consider what would happen if we never set looping to False . If we never have
any code that changes the exit condition, then we would create what is called an infinite loop . That is, a loop
that will run forever (or until you quit IDLE or shut down your computer).

 Did you know that when Apple built its corporate headquarters, they paid homage to software
developers? The current headquarters is a series of six buildings. When the buildings were built, an oval road
was built to allow cars to navigate around the buildings.

 The official address of Apple is One Infinite Loop Drive in Cupertino, California.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

108

 First Loop in a Real Program
 Let’s build a simple program using a loop. The program asks the user for a target number. The goal of the
program is calculate the sum of the numbers from 1 through the target number. For example, if the user
enters 4, then we want to calculate 1 + 2 + 3 + 4, and report the answer of 10.

 #Add up numbers from 1 to a target number

 target = raw_input('Enter a target number: ')
 target = int(target)
 total = 0
 nextNumberToAddIn = 1
 while nextNumberToAddIn <= target:
 # add in the next value
 total = total + nextNumberToAddIn #add in the next number
 print 'Added in:', nextNumberToAddIn, 'Total so far is:', total
 nextNumberToAddIn = nextNumberToAddIn + 1

 print 'The sum of the numbers from 1 to', target, 'is:', total

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

109

 Notice the setup before the while loop starts. First, we get the target number from the user and convert
it to an integer. We then set total to 0; this variable will eventually hold the total of all the numbers. We also
set the nextNumberToAddIn variable to 1. This variable will be used to walk through the numbers from 1 to
the target number that the user entered.

 Next, we build our while statement. We will keep going through the loop until the nextNumberToAddIn
is greater than the target number. When this happens, the value of the Boolean expression in the while
statement becomes False and we exit the loop.

 Every time through the loop, we add the value of nextNumberToAddIn to total . Then, just to see what’s
going on, we added a print statement to print out the number that was just added in, and the total so far.

 Finally, we add one to the nextNumberToAddIn to get to the next number. This is the key to exiting the
loop. Remember, we continue in the loop as long as the nextNumberToAddIn is less than or equal to the
 target number. Here is a sample run of the program with an input of 4:

 Enter a target number: 4
 Added in: 1 Total so far is: 1
 Added in: 2 Total so far is: 3
 Added in: 3 Total so far is: 6
 Added in: 4 Total so far is: 10
 The sum of the numbers from 1 to 4 is: 10
 >>>

 Increment and Decrement
 The previous code contained the following statement:

 nextNumberToAddIn = nextNumberToAddIn + 1

 This line takes the current value of nextNumberToAddIn , adds one to it, and puts the resulting value back
into the same variable. The operation of increasing the value of a variable this way is extremely common. In
fact, it has a special name.

 ■ Definition An increment is when a variable adds to itself.

 By default, when we say increment , we mean add 1 to the variable, but you can increment by any
amount. Counting by 2 is done by incrementing a variable by 2 in a loop.

 In many cases, you use this type of statement to count the number of times through a loop, or to count
the number of attempts to do something until there is a success or failure.

 This example statement is the standard way of incrementing a variable:

 counter = counter + 1

 However, there is also an alternative syntax that you can use:

 counter += 1

 This line uses a new operator: the “plus equals” operator. These two lines do exactly the same thing and
give the exact same result. The “plus equals” operator is commonly used by C programmers. However, in this
book, we will use the first syntax because it uses the simple assignment operator.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

110

 Imagine if you worked for NASA and you were asked to write the code to count down for a rocket
launch. For that code, you would want to start with a large number and count down by ones. There is a
similar word to describe this action.

 ■ Definition A decrement is when a variable subtracts from itself.

 Again, by default, when we use the word decrement by itself, it is implied that we want to count down
by 1. But just like incrementing, you can decrement by any amount. Here is an example using the standard
assignment statement syntax:

 counter = counter - 1

 But decrementing also has an alternative syntax using the “minus equals” operator:

 counter -= 1

 And again, in this book, we use the first syntax.
 In building our guessing game, to keep track of how many guesses the user has made, we’ll use a

counter and increment it with each guess.

 Running a Program Multiple Times
 Let’s say we want to be able to run a program over and over again. For example, in the earlier program where
we asked the user for a target number and we added up all the numbers up to that target, we may want to
allow the user to be able to do this multiple times. From the user’s point of view, the whole program would
run, and then the user is asked if they want to try again. If the answer to that question is yes, then the user
would see the program start again, ask for another target number, and calculate the new total. This loop
would continue until the user’s answer to the question asking if they want to go again, was no.

 There are a few ways to do this, but one simple approach is to place the core of the program inside a
function. Then we build a loop. In the body of the loop, we call the function, and at the end of the loop, we
ask the user if they want to go again. Here’s the code:

 # Calculate total - repeated

 def calculateSum(target):
 total = 0
 nextNumberToAddIn = 1
 while nextNumberToAddIn <= target:
 # add in the next value
 total = total + nextNumberToAddIn
 #increment
 nextNumberToAddIn = nextNumberToAddIn + 1
 return total

 answer = 'y' # start off with the value 'y' to go through the first time
 while answer == 'y':
 usersTarget = raw_input('Enter a target number: ')
 usersTarget = int(usersTarget)
 thisTotal = calculateSum(usersTarget) # call our function and get back the answer

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

111

 print 'The sum of the numbers 1 to', usersTarget, 'is:', thisTotal

 answer = raw_input('Do you want to try again (y or n): ')

 print 'OK Bye'

 Notice that with this structure, all the core calculations (in this case, generating the sum) are done
inside of a function, and the function returns the answer. The main code concerns itself mostly with
interacting with the user and calling the function.

 Alternatively, if you want to run the whole program a certain number of times, you could modify the
looping condition to count the number of times through a loop:

 nTimes = 0 # initialize a counter
 while nTimes < 3:
 usersTarget = raw_input('Enter a target number: ')
 usersTarget = int(usersTarget)
 thisTotal = calculateSum(usersTarget)
 print 'The sum of the numbers 1 to', usersTarget, 'is:', thisTotal
 nTimes = nTimes + 1 # increment the counter

 print 'OK Bye'

 This version allows the user loop to run exactly three times, without the need to ask the user if they want
to go again. Notice that with this change, there is no modification needed in the function.

 Python Built-in Packages
 Let’s get back to our Guess the Number program. The next thing we need to do is to generate a random
number. The question that arises is: How can a computer, which does everything exactly the same way every
time a program runs, generate a random number? To answer this question, we have to learn a little more
about how the Python language is put together; specifically, we need to understand Python packages .

 In order to keep programs small, the base Python language only has a small number of keywords (e.g.,
 if , elif , else , while , def , etc.) and built-in functions (int , str , raw_input , etc.).

 However, Python has some built-in prewritten packages of code that are available to programmers. (In
other computer languages, each of these packages might be called a library.) The packages are installed on
the hard disk of your computer when you download Python. All together, they comprise what is called the
Python Standard Library.

 There are also external packages written by programmers all over the world, who make their code
available to other programmers. To get an external package, you need to download it from the internet. For
example, one of these packages is called PyGame. PyGame contains code that allows Python programmers
to build games that use graphics in a window, use a mouse as a pointing device, play sounds, etc. There are
thousands of these packages available.

 Figure 6-2 shows a diagram that should help explain these three categories.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

112

 Generating a Random Number
 One built-in package is called the random package. It contains a large number of functions that allow
programmers to generate and use random numbers. Since this is one of Python’s built-in packages, you
already have it on your computer; there is no need to download anything. But because the developers of
Python want to keep Python programs as small as possible, you don’t get access to this package in the same
way that you have immediate access to the built-in functions that we discussed earlier.

 When you want to use a built-in package, you need to tell Python that you want to use it. You have
to explicitly ask Python to include a package in your program. The way you do this is to use the import
statement, which looks like this:

 import <packageName>

 In this case, to import the random package, we would use the following statement:

 import random

 Let’s take a quick look at the random package using the Shell. Bring up IDLE and enter the preceding
line. When you press Enter or Return, nothing should happen. The fact that nothing happens is a good thing.
It implies that IDLE was able to find the random package and its contents are now available to you. If you had
typed it wrong or attempted to import a package that IDLE could not find, you would have seen an error
message. Here’s an example of what you would see if you tried to import a package that does not exist:

 >>> import NonExistentPackage

 Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
 import NonExistentPackage
 ImportError: No module named NonExistentPackage
 >>>

 Figure 6-2. Base Python language, Python Standard Library, and External downloadable packages

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

113

 When you write a program that uses an import statement, you typically place any import statement(s)
at the top of your code. If you want to see the documentation of all the functions that are available in this
package, you can call the built-in help function, and pass in the name of the package, like this:

 help(random)

 If you do this, you will get screens and screens worth of documentation. In you are truly interested in the
details of all the functions, feel free to read through this documentation. There are a large number of functions
that you can call in the random package. For now, we are interested in one specific function named randrange .

 The purpose of randrange is to generate a random integer number within a given range. randrange
is interesting because the range itself can be specified in a number of different ways; that is, with different
numbers of arguments. Using the most straightforward form, we’ll call the randrange function specifying the
range as two integers. Here is the way we call it:

 random.randrange(<lowValue>, <upToButNotIncludingHighValue>)

 You start by specifying the name of the package; in this case, the word random . After the package name
you type a period (generally read as “dot”). After the dot, you specify the function you want to call; in this
case, randrange to say that you want to use that specific function. In the preceding line, randrange expects
to be called with two arguments: a low-end value and a high-end value. The low-end value is included in the
range. However, the high-end value is not included in the range. The way that we say this is, “up to but not
including” the high-end value. (We’ll see this “up to but not including” concept many times in Python.)

 The function returns an integer within the specified range. The most typical way to use randrange is in
an assignment statement, where you save the returned value in a variable, like this:

 <resultVariable> = random.randrange(<lowValue>, <upToButNotIncludingHighValue>)

 Here are some examples:

 #random between 1 and 10
 aRandomNumber = random.randrange(1, 11)

 #random between 1 and 52, to pick a card number from a deck
 anotherRandomNumber = random.randrange(1, 53)

 The important thing that you need to remember (which may seem very odd) is that the second
argument needs to be one more than the top end of your intended range. That’s because the number you
specify here is not included in the range.

 As an alternative syntax, you can call randrange with only a single argument-the “up to but not
including” high end. If you make this call with only the one argument, randrange assumes that the low end
of your range is zero:

 #random between 0 and 8
 myRandomNumber = random.randrange(9) # same as random.randrange(0, 8)

 Simulation of Flipping a Coin
 Now it’s time for a good example program that uses random numbers. We will simulate flipping a coin some
number of times. The program will run in a loop. Each time through the loop, we randomly generate a 0 or
1. Then we’ll do a mapping. That is, we’ll say that if we randomly get a 0, that means tails. If we get a 1, that
means heads. When the loop finishes, we report the results.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

114

 # Coin flip program
 import random

 nFlips = 0 # to count the number of flips
 nTails = 0 # to count the number of flips that came up as tails
 nHeads = 0 # to count the number of flips that came up as heads

 maxFlips = raw_input('How many flips do you want to do? ')
 maxFlips = int(maxFlips)

 while nFlips < maxFlips:
 # Randomly choose 0 or 1, because a coin flip can only result in one of two answers
 # (heads or tails)
 zeroOrOne = random.randrange(0, 2)

 # If we get a zero, say that was a heads
 # If we get a one, we say that was a tails
 if zeroOrOne == 0:
 nTails = nTails + 1
 else:
 nHeads = nHeads + 1

 nFlips = nFlips + 1

 print
 print 'Out of', nFlips, 'coin tosses, we had:', nHeads, 'heads, and', nTails, 'tails.'

 Notice that we didn’t randomly pick heads or tails directly. We randomly picked from a range that
encompasses all possible outcomes, and then mapped the numeric answer to the outcomes we were looking
for. In this case, there are only two possible outcomes, so we ask for random numbers between 0 and 1, and
map 0 to tails, and 1 to heads.

 Other Examples of Using Random Numbers
 Another example of this approach is if we were writing a program to play the game of rock-paper-scissors. In
this case, there are three possible choices. To make a random choice, we would generate a random number
between 0 to 2 (or 1 to 3, or in fact, any range of three consecutive numbers), and use the resulting number
to make our choice:

 import random

 choiceNumber = random.randrange(0, 3) # to get a 0, 1, or 2
 if choiceNumber == 0:
 randomChoice = 'rock'
 elif choiceNumber == 1:
 randomChoice == 'paper':
 else: # not zero and not one, must be 2
 randomChoice == 'scissors'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

115

 Here we use an if/elif/else statement to account for all possible numbers generated by calling
 random.randrange , and we set another variable to a string representing the actual choice.

 At the beginning of the Chapter 2 , just to get your feet wet with Python, I showed a sample program.
It was a simulation of the Magic 8 Ball children’s toy. Let’s revisit the portion of that code that selected a
random answer:

 randomAnswer = random.randrange(8) # pick a random number between 0 and 7

 if randomAnswer == 0:
 print 'It is certain.'
 elif randomAnswer == 1:
 print 'Absolutely!'
 elif randomAnswer == 2:
 print 'You may rely on it.'
 elif randomAnswer == 3:
 print 'Answer is foggy, ask again later.'
 elif randomAnswer == 4:
 print 'Concentrate and ask again.'
 elif randomAnswer == 5:
 print 'Unsure at this point, try again.'
 elif randomAnswer == 6:
 print 'No way, dude!'
 else: # must be 7
 print 'No, no, no, no, no.'

 Now it should be obvious how this works. We generate a random number between 0 and 7 using
 random.randrange , and then we use an if/elif … elif/else to pick a message to print, based on the
random number that was chosen.

 Creating an Infinite Loop
 When we introduced the while statement, we said that as long as the Boolean expression evaluates to
 True , then the while statement would continue to loop. The loop only stops when the Boolean expression
evaluates to False . Any loop can be built using this structure.

 Earlier, we said that that the Boolean expression in the while statement is referred to as the exit
condition ; that is, the test for exiting the loop is done in the while statement. So far, we’ve shown that way to
handle this is to write some test, typically in an if statement, where you determine if you are ready to exit
the loop. If you are ready to exit, then you set some variable to a known value that will later be checked in the
Boolean expression of the while statement. Here is an example:

 looping = True
 while looping:
 <statement(s)>
 if <found exit condition?>:
 looping = False # found the exit condition at this point
 else:
 <continuing statement(s) inside the loop>

 In effect, you have found the exit condition, but you can’t exit the loop until execution goes back to the
 while statement. Unfortunately, this style often makes it more difficult to write the continuing part of the
loop that follows. The code that you run if the exit condition has not been reached must get indented.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2172-3_2
http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

116

 If you need to detect and handle multiple exit conditions, each if statement would set the same
variable (that is later checked in the while statement) and the code that continues the normal execution gets
indented further. This excessive indenting makes it difficult to write and even more difficult to read through
the normal path through the loop.

 Fortunately, there is another way to build a while loop.

 A New Style of Building a Loop: while True, and break
 Earlier we talked about how you might accidentally create an infinite loop. We said that as long as nothing
changed the value of the Boolean expression in the while statement, the loop would run forever. Therefore,
the simplest way to create an infinite loop is like this:

 while True:
 <statement(s)>

 This loop would run forever. However, Python provides another statement called the break statement,
which is made up of just the word break . If your code is running in a while loop, and a break statement
is reached, control is immediately transferred to the first statement past the last line of the loop. With the
addition of the break statement, we can now think differently about writing loops. Rather than checking for
the exit condition in the while statement, we can check for an exit condition anywhere in the body of the
loop. If we find an exit condition, we use a break statement to exit out of the loop right at that point. The
flowchart in Figure 6-3 shows how this works.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

117

 Figure 6-3. Flowchart of a loop using a break statement

 Here is a simple example:

 while True: # loop forever
 line = raw_input("Type anything, type 'done' to exit: ")
 if line == 'done':
 break # transfers control out of the loop

 print 'You entered:', line

 print 'Finished'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

118

 This code allows the user to type anything they wish. The program keeps asking the user to type
something until the user types the word done . When the user types done , the program detects it and
exits the loop immediately using a break statement. If the user types anything else, the program skips
over the indented block containing the break statement and prints out a copy of whatever the user
entered. Therefore, there is no need to code an else statement for the continuing statement(s) in
the loop.

 ■ Note If you are familiar with the C language, the break statement is effectively a goto statement, but
instead of going to a label, it goes directly to the first statement past the end of the loop.

 In our Guess the Number game we will have two exit conditions. First, we’ll check to see if the user
entered the correct answer. If so, we’ll give some feedback and exit the loop. Second, we’ll check to see if the
user ran out of guesses. In this case, we’ll tell the user that they ran out of guesses and what the randomly
chosen number was, and then exit the loop. Using a break statement at the appropriate point for each of
these two exit conditions makes this code easier to write and clearer to read.

 This general technique of writing an infinite loop using a while True statement and using break to exit
the loop when an exit condition is found, is extremely effective and clear. Almost all the loops that I write
work this way.

 The continue Statement
 Next, if we are in a loop and we find some condition where we want to go back to the while statement at
the top of the loop, without executing the rest of the code inside of the loop, we can execute a continue
statement, as shown in Figure 6-4 .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

119

 Figure 6-4. Flowchart of a loop using a break and a continue statement

 This is an example:

 while True: # loop forever
 line = raw_input("Type anything, type 'done' to exit: ")
 if line == 'done':
 break # transfers control out of the loop

 if line == 'skip':
 continue # transfers control back to the while statement

 print 'You entered:', line

 print 'Finished'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

120

 In this version, if the user enters the word skip , the second if statement will find a match, and the
 continue statement will transfer control immediately back to the top of the loop; that is, the print statement
at the bottom of the loop will not execute. (We will use this shortly to help detect and handle user errors.)

 Asking If the User Wants to Repeat: the Empty String
 We are almost ready to build our Guess the Number game. In the demonstration version of the game, you
may have noticed that once a round of the game was over (because the user either got the right answer or
ran out of guesses), the program asked if the user wanted to play again. Now we have learned all statements
needed to build a game with repetition like this. For example, we can build our game loop this way:

 while True:
 # do whatever, e.g., play a round of a game

 # now ask the user if they want to go again
 goAgain = raw_input('Press Return/Enter to quit, or anything else to continue: ')
 if goAgain == '': # check for no entry
 break # user said they want to quit

 print 'Finished'

 This code may seem a little odd, so I’ll explain how this works. When the user types any response to the
question posed by the call to raw_input , whatever characters the user types are assigned into the goAgain
variable. If the user enters the string as yes , then goAgain is assigned the string 'yes' . If the user just enters
the letter y , then goAgain is set to the string 'y' .

 However, if the user just presses the Return key (Mac) or the Enter key (PC), then raw_input still returns
the characters that the user typed. However, in this case, the user did not type any characters. Therefore,
the result of the call is a special string called the empty string . That is, a string with no characters in it. It is
represented as two single quotes ('') or two double quotes(""), which we read as “quote quote.” The empty
string is essentially the equivalent of zero as a number-a number with no value. Therefore, if the user types
no characters, the goAgain variable is set to the empty string. We use an if statement to check for this case,
and if we find that the user did not type any characters, then we exit the loop using a break statement.

 Pseudocode
 Now we have enough information to write our game. But rather than jumping right into the code, let’s talk about
how the program is going to work. We’ll come up with an overall approach before writing the actual code.

 ■ Definition Pseudocode is an English-like description of an algorithm in a made up computer language.

 Very often, programmers develop an algorithm and write the algorithm in pseudocode before writing it
in a real computer language. This allows programmers to think through the approach to the overall structure
of a solution without having to worry about the detailed syntax of a computer language.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

121

 As a demonstration, here is the pseudocode for one round of our Guess the Number program:

 Show introduction
 Choose random target
 Initialize a guess counter

 Loop forever
 Ask the user to for a guess
 Increment guess counter
 If user's guess is correct, congratulate user, we're done
 If user's guess is too low, tell user
 If user's guess is too high, tell user
 If reached max guesses, tell answer correct answer, we're done.

 We can take this pseudocode and turn each statement into a comment inside IDLE. We can use the
comments essentially as an outline inside the code of the program.

 Building the “Guess the Number” Program
 We are finally ready to build our full game. This is our first significant program. It requires quite a few lines
of code. Rather than write all the code from top to bottom and test the entire program, we’ll write small
portions at a time and test as we go. This is a standard technique for writing larger programs. Writing or
changing too many things at once makes the development process difficult because if an error shows up, it
may not be clear which line of code is the culprit, or if there are logic errors that need to be addressed.

 For this program, we’ll start by writing only the user’s guess and comparison logic code. It can be
difficult to build and test a program that has randomization in it, because the code typically takes different
branches on each run. So, to start building our program, let’s start by hard-coding a target number of 10.
Later, we’ll modify the code to pick the target number randomly.

 # Guess the Number (version 1)

 #Show introduction
 #Choose random target
 target = 10 # start with a known value

 #Initialize a guess counter

 #Loop forever
 #Ask the user to for a guess
 userGuess = raw_input('Take a guess: ')
 userGuess = int(userGuess)

 #Increment guess counter
 #If user's guess is correct, congratulate user, we're done
 if userGuess == target:
 print 'You got it!'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

122

 #If user's guess is too low, tell user
 elif userGuess < target:
 print 'Your guess was too low.'

 #If user's guess is too high, tell user
 else:
 print 'Your guess was too high.'

 #If reached max guesses, tell answer correct answer, we're done.

 Checking the user’s response is essentially a three-way branch: the answer is correct, the answer is too
low, or the answer is too high. We implement this using an if/elif/else . Then we test this code to ensure
that all branches work correctly:

 >>> ================================ RESTART ================================
 >>>
 Take a guess: 5
 Your guess was too low.
 >>> ================================ RESTART ================================
 >>>
 Take a guess: 15
 Your guess was too high.
 >>> ================================ RESTART ================================
 >>>
 Take a guess: 10
 You got it!
 >>>

 Next, we’ll add code to keep track of the number of guesses and allow the user to make multiple guesses:

 # Guess the Number (version 2)

 #Show introduction
 #Choose random target
 target = 10 # start with a known value
 #Initialize a guess counter
 guessCounter = 0

 #Loop forever
 while True:
 #Ask the user to for a guess
 userGuess = raw_input('Take a guess: ')
 userGuess = int(userGuess)

 #Increment guess counter
 guessCounter = guessCounter + 1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

123

 #If user's guess is correct, congratulate user, we're done
 if userGuess == target:
 print 'You got it!'
 print 'It only took you', guessCounter, 'guess(es).'
 break

 #If user's guess is too low, tell user
 elif userGuess < target:
 print 'Your guess was too low.'

 #If user's guess is too high, tell user
 else:
 print 'Your guess was too high.'

 #If reached max guesses, tell answer correct answer, we're done.
 if guessCounter == 5:
 print 'Sorry, you did not get it in 5 guesses'
 print 'The number was:', target

 print 'Thanks for playing.'

 In this version, we keep track of the number of guesses by introducing a new variable, guessCounter .
We initialize it to zero at the top. Next, we add a while True so that the user can take multiple guesses.
We then indent all the lines below that to turn these lines into the body of the loop. IDLE provides a quick
way to do this all in one shot. You start by selecting a number of lines of code (using click and drag or click
and Shift-click). With a selection highlighted, click the Format menu. The first item is Indent Region with
a shortcut key of Control +] (Windows) or Command +] (Mac). Selecting this option from the menu or
pressing the appropriate shortcut key will move all the selected lines in one level of indenting. Notice that
the next option, Format ➤ Dedent Region moves all selected code in the opposite direction.

 With the while True in place, we have an infinite loop. Every time through the loop, we increment our
guess counter. The loop needs to handle two exit conditions. First, if the user guesses the correct answer, we
tell the user, and we execute a break statement to leave the loop. Second, if the user reaches the maximum
number of guesses, we give the user feedback, and exit the loop with another break statement.

 We’ll run two tests on this code. First, we’ll test to make sure that the code still works when you get the
correct answer. We’ll check to ensure that the guess counter works correctly, and that this exit condition gets
you out of the loop:

 >>>
 Take a guess: 5
 Your guess was too low.
 Take a guess: 15
 Your guess was too high.
 Take a guess: 10
 You got it!
 It only took you 3 guess(es).
 Thanks for playing.
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

124

 Now we’ll run it again. In this run, since we know the correct answer is 10, we’ll give five incorrect
answers to ensure that the code testing for the number of guesses and that the second exit condition works
correctly:

 >>>
 Take a guess: 1
 Your guess was too low.
 Take a guess: 1
 Your guess was too low.
 Take a guess: 1
 Your guess was too low.
 Take a guess: 1
 Your guess was too low.
 Take a guess: 1
 Your guess was too low.
 Sorry, you did not get it in 5 guesses
 The number was: 10
 Thanks for playing.
 >>>

 Now that the core code seems to be working well, we’ll finally add in the randomization code. We’ll also
finish the program by building the introduction, and add some constants to make it more flexible:

 # Guess the Number (version 3)

 import random

 MAX_GUESSES = 5 # maximum number of guesses allowed
 MAX_RANGE = 20 # highest possible number

 #Show introduction
 print 'Welcome to my Guess the Number program.'
 print 'Guess my number between 1 and', MAX_RANGE
 print 'You will have', MAX_GUESSES, 'guesses.'

 #Choose random target
 target = random.randrange(1, MAX_RANGE + 1)

 #Initialize a guess counter
 guessCounter = 0

 #Loop forever
 while True:
 #Ask the user to for a guess
 userGuess = raw_input('Take a guess: ')
 userGuess = int(userGuess)

 #Increment guess counter
 guessCounter = guessCounter + 1

 #If user's guess is correct, congratulate user, we're done
 if userGuess == target:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

125

 print 'You got it!'
 print 'It only took you', guessCounter, 'guess(es).'
 break

 #If user's guess is too low, tell user
 elif userGuess < target:
 print 'Your guess was too low.'

 #If user's guess is too high, tell user
 else:
 print 'Your guess was too high.'

 #If reached max guesses, tell answer correct answer, we're done.
 if guessCounter == MAX_GUESSES:
 print 'Sorry, you did not get it in', MAX_GUESSES, 'guesses.'
 print 'The number was:', target
 break

 print 'Thanks for playing.'

 Since we wanted to choose a random number, we started by importing the random package. After that,
we created two constants: MAX_GUESSES and MAX_RANGE . Using constants like these make the code more
readable than having “magic numbers” (in this case 5 and 20) in the code. The meanings of these constants
are much clearer, and their values are now changeable in a single place. We added a simple introduction
that uses those constants. When calling random.randrange to generate the random number, we added 1 to
the MAX_ GUESSES value. We did this because this argument needs to be an “up to but not including” value.
In this case, since we want to get a number in the range of 1 to 20, we need to pass in values of 1 and 21. The
program now implements one round of playing the game:

 >>>
 Welcome to my Guess the Number program.
 Guess my number between 1 and 20
 You will have 5 guesses.
 Take a guess: 15
 Your guess was too low.
 Take a guess: 18
 Your guess was too low.
 Take a guess: 20
 Your guess was too high.
 Take a guess: 19
 You got it!
 It only took you 4 guess(es).
 Thanks for playing.
 >>>

 Playing a Game Multiple Times
 In most computer games, when one round of the game is over, you get the option to play again. In the output
at the beginning of this chapter, I showed this option for our Guess the Number game. On a conceptual level,
playing a game multiple times can be thought of as each round of the game in a loop. That is, we can build
an outer loop to play multiple games, and an inner loop that plays a round within each game.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

126

 There are two possible implementations. If the game is simple enough, then you can build a loop within
a loop. Here is the pseudocode.

 #
 Playing multiple games loop
 Play multiple rounds of the current game
 Play a round or move within a game
 Ask if the user wants to play again, if not, exit

 The implementation would consist of an outer while loop, and another inner while loop that plays a
single round. After the end of the inner loop, we ask the user if they want to play again. If they do, the outer
loops runs again, and the game restarts.

 The other approach is to take the code that implements one round, and put that inside a function.
Then the main code can be a simple loop that calls the function to play a round of the game. Let’s build that
version. We’ll move all the code dealing with one round into a function called playOneRound .

 # Guess the Number (version 4)

 import random

 MAX_GUESSES = 5 # maximum number of guesses allowed
 MAX_RANGE = 20 # highest possible number

 #Show introduction
 print 'Welcome to my Guess the Number program.'
 print 'Guess my number between 1 and', MAX_RANGE
 print 'You will have', MAX_GUESSES, 'guesses.'

 def playOneRound():
 #Choose random target
 target = random.randrange(1, MAX_RANGE + 1)

 #Initialize a guess counter
 guessCounter = 0

 #Loop forever
 while True:
 #Ask the user to for a guess
 userGuess = raw_input('Take a guess: ')
 userGuess = int(userGuess)

 #Increment guess counter
 guessCounter = guessCounter + 1

 #If user's guess is correct, congratulate user, we're done
 if userGuess == target:
 print 'You got it!'
 print 'It only took you', guessCounter, 'guess(es).'
 break

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

127

 #If user's guess is too low, tell user
 elif userGuess < target:
 print 'Your guess was too low.'

 #If user's guess is too high, tell user
 else:
 print 'Your guess was too high.'

 #If reached max guesses, tell answer correct answer, we're done.
 if guessCounter == MAX_GUESSES:
 print 'Sorry, you did not get it in', MAX_GUESSES, 'guesses.'
 print 'The number was:', target
 break

 #main code
 while True:
 playOneRound() # call a function to play one round of the game
 goAgain = raw_input('Play again? (Press ENTER to continue, or q to quit): ')
 if goAgain == 'q':
 break

 print 'Thanks for playing.'

 We’ve taken all the code to play a single round of the game and moved it inside a function. (We used the
Format ➤ Indent Region to indent all of this code.) Then we built the main code, which consists of a loop
that calls the function to play one round and asks the user if they want to play again. This approach yields
code that is very simple and clear.

 Error Checking with try/except
 In any program that asks the user to enter a number, there is a possibility that the user might make a mistake.
For example, when asked for a number (integer or float), the user might type one or more letters. If the
user enters a letter and your program then attempts to use either the int or float built-in function to try to
convert the user’s input to a number, Python generates an error. Here is a simple example done in the Shell:

 >>> userInput = raw_input('Please enter an integer: ')
 Please enter an integer: x
 >>> userInput = int(userInput) # convert user's input to an integer

 Traceback (most recent call last):
 File "<pyshell#4>", line 1, in <module>
 userInput = int(userInput)
 ValueError: invalid literal for int() with base 10: 'x'

 When this type of error happens, the program crashes. It is much better to detect an error like this and
inform the user of the error rather than having Python generate an error message and have the program exit.

 Python provides a mechanism for doing this type of error checking, but it takes a little getting used to.
Here’s the theory. Before we run some code that might cause an error (in this case, trying to convert a number
to an integer), we ask Python to watch what’s going on. If an error occurs while Python is in this watching
mode, you can tell Python to run an additional block of code. In that block, you can print out a message of
your choosing, which tells the user more information about what went wrong and maybe how to fix it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

128

 The error checking is implemented in Python with a try/except block. Here’s what it looks like:

 try:
 <statement(s) that may cause an error>

 except:
 <statement(s) to execute IF an error occurs>

 else: #optional, often not needed
 <statement(s) to execute if NO error occurs>

 For example, if we wanted to ensure that the user entered a valid number, we could do it with a try/
except block like this:

 userInput = raw_input('Please enter an integer: ')
 try:
 userInput = int(userInput)
 except:
 print 'The number you entered was not an integer’
 # Code here to alter execution because we do not want to keep going with this input

 To ensure a fully functional game, we’ll add in a try/except block to catch potential user errors:

 # Guess the Number (version 5 - final)

 import random

 MAX_GUESSES = 5 # maximum number of guesses allowed
 MAX_RANGE = 20 # highest possible number

 #Show introduction
 print 'Welcome to my Guess the Number program.'
 print 'Guess my number between 1 and', MAX_RANGE
 print 'You will have', MAX_GUESSES, 'guesses.'

 def playOneRound():
 #Choose random target
 target = random.randrange(1, MAX_RANGE + 1)

 #Initialize a guess counter
 guessCounter = 0

 #Loop forever
 while True:
 #Ask the user to for a guess
 userGuess = raw_input('Take a guess: ')

 # Check for potential error
 try:
 userGuess = int(userGuess)
 except:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

129

 print 'Hey, that was NOT an integer!'
 continue

 #Increment guess counter
 guessCounter = guessCounter + 1

 #If user's guess is correct, congratulate user, we're done
 if userGuess == target:
 print 'You got it!'
 print 'It only took you', guessCounter, 'guess(es).'
 break

 #If user's guess is too low, tell user
 elif userGuess < target:
 print 'Your guess was too low.'

 #If user's guess is too high, tell user
 else:
 print 'Your guess was too high.'

 #If reached max guesses, tell answer correct answer, we're done.
 if guessCounter == MAX_GUESSES:
 print 'Sorry, you did not get it in', MAX_GUESSES, 'guesses.'
 print 'The number was:', target
 break

 #main code
 while True:
 playOneRound() # call a function to play one round of the game
 goAgain = raw_input('Play again? (Press ENTER to continue, or q to quit): ')
 if goAgain == 'q':
 break

 print 'Thanks for playing.'

 The only change here is that we added a try/expect block make sure that the user enters a valid integer.

 Building Error-Checking Utility Functions
 Using try/except , we can build a set of reusable utility functions to get a number from the user. The idea
is to have two functions (one for integers, one for floats) that ask the user to enter a number, ensure that
the user has entered a valid number, and return the number to the caller. If the user types something that is
not a number, then we show an error and ask the user to enter a number again. When the user types a valid
number, the function returns the number that the user entered.

 def getIntegerFromUser(prompt):
 while True:
 number = raw_input(prompt)
 try:
 number = int(number)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

130

 except:
 print 'That is not an integer, please try again.'
 continue
 # everything OK
 return number

 def getFloatFromUser(prompt):
 while True:
 number = raw_input(prompt)
 try:
 number = float(number)
 except:
 print 'That is not a float, please try again.'
 continue
 # everything OK
 return number

 myInteger = getIntegerFromUser('Please enter an integer: ')
 print myInteger

 myFloat = getFloatFromUser('Please enter a float: ')
 print myFloat

 These two functions are almost identical. The only difference is that the first one is used when you want the
user to enter an integer, whereas the second one expects a float. You call either function and pass in a prompt
string containing any wording you want to ask the user to enter a number. The function starts a loop and keeps
going through the loop as long as the user does not enter a valid number. Inside the loop, we pose the prompt
string that the caller passes in. Then, we have a try block where we attempt to convert the user’s string to a
number. If that fails, control is sent to the except block. There we print out the error message, and then execute a
 continue statement. This passes control back to the while statement and that starts the loop over.

 Coding Challenge
 It’s time for you to write some code. In this challenge, we’ll ask you to make a more powerful version of the
 getIntegerFromUser function. In addition to ensuring that the user has entered a valid number, add code to
test and ensure that the user has entered a number within a range of two integers.

 Let’s name this function getIntegerInRange . It should be built to expect the following parameters:
 prompt , lowEnd , upToButNotIncludingHighEnd . The code should be modified to add a second check to make
sure that the number is within the given range. If the user enters an invalid response (not an integer, or the
number is not in the range), the user should be given an appropriate error message and be prompted to
enter a number again. This process should continue until they enter a valid integer.

 Same as the previous challenges, once you understand what is being asked, close the book, and write
and test the code using a sample call to the function. The answer will appear on the next page.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

131

 # Ask the user to enter an integer within a given range

 def getIntegerInRange(prompt, lowEnd, upToButNotIncludingHighEnd):
 includedHighEnd = upToButNotIncludingHighEnd - 1
 while True:
 number = raw_input(prompt)
 try:
 number = int(number)
 except:
 print 'That is not an integer, please try again.'
 continue

 if (number < lowEnd) or (number > includedHighEnd):
 print 'The number you entered is not in the range of', lowEnd, \
 'to', includedHighEnd
 else:
 #Everything OK
 return number

 # Ask user to give a number between -5 and 20
 myInteger = getIntegerInRange('Please enter an integer: ', -5, 21)
 print 'The number you entered was: ', myInteger

 There are many different ways to write this function. The approach shown here is to first calculate
the largest integer that is included in the range, and save that in a variable. (This will make the rest of the
code clearer.) Then we have the same code as the earlier version, where we ask the user to enter a number
and attempt to convert their response to an integer. After that test, we added a new test. We check to see if
the value of the number entered is outside the given range. If so, we print an error message and execute a
 continue statement to transfer control back to the while statement, and we go around the loop again. When
we pass both tests, the function returns the value of the number entered by the user. Here is a test run with
four invalid entries before entering a valid integer in the range:

 >>>
 Please enter an integer: abcd
 That is not an integer, please try again.
 Please enter an integer: 123.45
 That is not an integer, please try again.
 Please enter an integer: -123
 The number you entered is not in the range of -5 to 20
 Please enter an integer: 21
 The number you entered is not in the range of -5 to 20
 Please enter an integer: 7
 The number you entered was: 7
 >>>

 Incorporating error detection as in the preceding functions makes your code more robust by reducing
the frustration that users may experience if they enter an invalid response. The general approach is to build
a function that contains a while loop. Inside the loop, you check for invalid responses, and only return once
the user has supplied a valid answer.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ LOOPS

132

 Summary
 In this chapter, we worked our way through building a Guess the Number program. To implement the game,
you learned about the concept known as a loop , which is implemented in Python using a while statement. I
discussed the concepts of incrementing and decrementing variables to do simple counting. You learned how
to use loops to construct programs that are run multiple times.

 I discussed the concept of a built-in package, which is brought into your program with an import
statement. As a useful example of a built-in package, I talked about the random package, and specifically
made calls the randrange function inside that package to generate random numbers. I showed you how to
use a random number to choose from a selection, building an example of a simulation of flipping a coin.

 Then I showed you a different way to build and exit from a loop. Using while True builds an infinite
loop, but you can check for an exit condition and leave a loop using a break statement. I also introduced the
 continue statement that can be helpful in recovering from user errors.

 We built loops where we asked the user if they wanted to run through the program multiple times. In
doing so, you saw how to check for no user input using the empty string.

 We eventually went through the process of building our game. We started with a pseudocode
description of the algorithm, and then built up and tested various pieces of the game.

 Finally, I discussed how we could catch user errors using a try/except block. We then generalized this
concept by building some reusable functions to ensure that the user enters a valid number.

www.it-ebooks.info

http://www.it-ebooks.info/

133© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_7

 CHAPTER 7

 Lists

 Prior to this chapter, we talked about four types of data: integer, float, string, and Boolean. But imagine that
you want to represent a lot of data-for example, the names of all the students in a class, or better yet, the
names of all students in a school, or a city, or a state. So far, our definition of a variable allows us to only
represent a single piece of data. Therefore, if we wanted to represent a group of students’ names, we would
do something like this:

 student1 = 'Joe Schmoe'
 student2 = 'Sally Smith'
 student3 = 'Henry Jones'
 student4 = 'Betty Johnson'
 student5 = 'Chris Smith'

 Every time we get a new student, we need to create a new variable to represent that student’s name. But
more importantly, every time we add a new variable, we have to modify every piece of our code that operates
on all students. As you might guess, this becomes unmanageable very quickly. In this chapter, I introduce a
new data type that allows us to store, access, retrieve, and manipulate collections of data.

 This chapter discusses the following topics:

• Collections of data

• Lists

• Elements

• Python syntax for a list

• Empty list

• Position of an element in a list: index

• Accessing an element in a list

• Using a variable or expression as an index in a list

• Changing a value in a list

• Using negative indices

• Building a simple Mad Libs game

• Adding a list to our Mad Libs game

• Determining the number of elements in a list: the len function

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

134

• Programming challenge 1

• Using a list argument with a function

• Accessing all elements of a list: iteration

• for statements and for loops

• Programming challenge 2

• Generating a range of numbers

• Programming challenge 3

• Scientific simulations

• List manipulation

• List manipulation: an inventory example

• Pizza toppings example

 Collections of Data
 Representing a group of students is just one of many examples in the real world where groups of data are
stored. Here are some more examples of collections of related data:

• Computer games that keep a high-scores leader board

• Browser programs that maintain all of your bookmarked sites

• Credit card companies that remember all the purchases you made
with your credit card

• All the contacts and phone numbers in your phone

• The members of a team

• The teams in a tournament

• Books in a library

• Names of clubs at a school

 Lists
 Rather than using individually named variables to represent a group of related data, most programming
languages allow you to represent this type of data using a single name. In Python, it is called a list . A list is a
new data type.

 ■ Definition A list is an ordered collection of data that is referred to by a single variable name. (In most other
computer languages, the same concept is called an array .)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

135

 This is a shopping list, which is simple list of strings:

 'cereal'
 'milk'
 'orange juice'
 'hot dogs'
 'gum'

 This is a list of test scores:

 99
 72
 88
 82
 54

 Elements
 There is a special name for each thing in a list.

 ■ Definition An element is a single member of a list. (It is also known as an item in the list.)

 Let’s look at our shopping list again:

 'cereal'
 'milk'
 'orange juice'
 'hot dogs'
 'gum'

 Each string in the list is an element of the list: 'cereal' is an element, 'orange juice ' is an element, etc.

 Python Syntax for a List
 Let’s see how this looks in Python. When we make a list, like a shopping list on paper, we typically write the
elements vertically, one per line. In a computer language, we need some special syntax to indicate that we
are talking about a list. In Python, we use the square bracket characters, [and] . A list is represented by an
open square bracket, the elements separated by commas, and a closing square bracket, as follows:

 [<element>, <element>, ... <element>]

 Just like any other type of data, a list is created using an assignment statement. That is, you write single
variable name followed by an equals sign, and then you define your list.

 <myListVariable> = [<element>, <element>, ... <element>]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

136

 A list can essentially have any number of elements. The actual number of elements is limited only by the
amount of memory in the computer. Here are some examples:

 shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']

 scoresList = [24, 33, 22, 45, 56, 33, 45]

 A list can also be created using a mix of data types:

 mixedList = [True, 5, 'some string', 123.45]

 Note that we are showing variable names that represent a list in the form of <name>List . This is not
required, but a name in this form clearly indicates that the variable represents a list rather than an individual
piece of data. We will use this naming convention throughout the rest of this book.

 A list is a new data type. To show that a list is a standard data type in Python, let’s create a list, print it,
and use the type function to find out which data type it is:

 >>> mixedList = [True, 5, 'some string', 123.45]
 >>> print mixedList
 [True, 5, 'some string', 123.45]
 >>> print type(mixedList)
 <type 'list'>
 >>>

 So, a list is of type list , independent of the type of data of its contents. A list is unusual, however,
because it is made up of multiple pieces of data, where each one can be of any data type.

 Empty List
 While a list can have any number of elements, there is also a special list that is made up of no elements. This
is known as the empty list :

 >>> someList = [] # set a list variable to the empty list – no elements
 >>> print someList
 []
 >>>

 You can think of the empty list relative to other lists, like zero in comparison to other numbers. We will
use this later by creating an empty list, and then adding elements to it on the fly.

 Position of an Element in a List: Index
 You’ve seen that we can create a list with the square bracket syntax, and we can print a list using the print
statement, but the power of a list comes from the ability to use the individual elements in the list. Therefore,
we need a way to reference (a way to get at) any individual element of a list. Let’s look at our example
shopping list again:

 >>> shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 >>> print shoppingList
 ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

137

 You can think of any physical list, like a shopping list, as a numbered list. That is, we could assign a
consecutive integer to each element, and reference any element in our shopping list using that number. In
fact, that identifying number has a clear definition.

 ■ Definition An index is the position (or number) of an element in a list. (It is sometimes referred to as a
 subscript .)

 An index is always an integer value. Since each element has an index (number), we can reference any
element in the list by using its associated number or position in the list.

 To us humans, in our shopping list, cereal is element number 1, milk is element number 2, and orange
juice is element number 3. This is the way that we typically think of numbering things:

 Sample shoppingList:

 Human
 Number Element

 1 'cereal'
 2 'milk'
 3 'orange juice'
 4 'hot dogs'
 5 'gum'

 But in Python (and most other computer languages), the elements in a list are numbered consecutively,
starting at zero. That is, all lists start at an index of zero. The indices for the preceding list are 0, 1, 2, 3, and 4.
 'cereal' is element number 0, 'milk' is element number 1, and up to 'gum' , which is element 4. This is very
important-and until you wrap your head around it, it will cause you much grief!

 Python
 Index Element

 0 'cereal'
 1 'milk'
 2 'orange juice'
 3 'hot dogs'
 4 'gum'

 This list has five elements, but they are numbered 0 to 4.

 Accessing an Element in a List
 Now we have a way to represent a list of data in a single variable (enclosing the list in brackets, separating
elements by commas). But we need some way to get at the individual elements in the list. The way that we do
this is to use the following syntax:

 <listVariable>[<index>]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

138

 This syntax results in the value of the element in the list at the given index. Let’s assume a list of
numbers defined with this assignment statement:

 numbersList = [20, -34, 486, 3129]

 We can access each element in the numbersList as follows:

 numbersList[0] # would evaluate to 20
 numbersList[1] # would evaluate to -34
 numbersList[2] # would evaluate to 486
 numbersList[3] # would evaluate to 3129

 I’ll demonstrate this in the Shell using our shopping list with some simple print statements:

 >>> shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 >>> print shoppingList
 ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 >>> print shoppingList[2]
 orange juice
 >>> print shoppingList[4]
 gum
 >>> print shoppingList[0]
 cereal
 >>>

 Here are some suggestions of how to read a list variable with an index value. When you see something
like this:

 myList[2]

 Rather than reading it as “ myList bracket 2 bracket,” it is probably clearer if you read it as any of the
following:

• myList element 2

• the element in position 2 of myList

• element 2 of myList

• the third element of myList

• myList sub 2 (“old school” reference to subscripts)

 The first one-“ myList element 2”-is probably the most straightforward.

 Using a Variable or Expression as an Index in a List
 An index can also be written as a variable or an expression. In fact, most of the time, we access elements in
a list this way. The following is a simple code snippet that demonstrates this approach. We’ll ask the user to
enter an integer and we will use that value as an index to our shopping list:

 >>> shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 >>> myIndex = raw_input('Enter an index: ')

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

139

 Enter an index: 3
 >>> myIndex = int(myIndex) # convert to integer
 >>> myElement = shoppingList[myIndex] # use as an index into the list
 >>> print 'The element at index', myIndex, 'is', myElement
 The element at index 3 is hot dogs

 Let’s show this as a simple program with a loop. We’ll use concepts from Chapter 6 to allow the user to
run the program multiple times:

 shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']

 while True:
 myIndex = raw_input('Enter a number to use as an index: ')
 if myIndex == '':
 break
 myIndex = int(myIndex)
 myElement = shoppingList[myIndex]

 print 'The element at index, myIndex, 'is', myElement

 print 'Bye'

 Entering any value between 0 and 4 gives us the appropriate answer:

 Enter a number to use as an index: 0
 The element at index 0 is cereal
 Enter a number to use as an index: 1
 The element at index 1 is milk
 Enter a number to use as an index: 2
 The element at index 2 is orange juice
 Enter a number to use as an index: 3
 The element at index 3 is hot dogs
 Enter a number to use as an index: 4
 The element at index 4 is gum

 Now run it again, but this time, let’s see what happens if we enter 100 as the index:

 Enter a number to use as an index: 100

 Traceback (most recent call last):
 File "/Learn to Program with Python/Chapter 7 Lists/Kalb Chapter 7 Code/IndexAsVariable.
py", line 10, in <module>
 myElement = shoppingList[myIndex]
 IndexError: list index out of range

 Again, when you get a runtime error, or a traceback, you should read the last line first. It tells you which
type of error occurred. This error message says, “Index Error: list index out of range”. It is extremely clear. You
tried to access an element that is outside the valid range of the list indices. There is no element 100, so when
you try to use that as an index, you get an error. Python has built-in “range checking” to ensure that you are
using a valid number when you attempt to index into a list.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2172-3_6
http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

140

 ■ Note Many other languages do not do range checking. If you use an out-of-range index in one of those
languages, the code accesses a part of the memory of the computer that is not part of the list, and retrieves
some arbitrary value found there. Sometime later, when you attempt to use the value, the program may crash
mysteriously. Tracking down errors like this can be extremely difficult.

 Changing a Value in a List
 So far, I’ve shown list index references on the right-hand side of an assignment statement. This is how you
 get (or retrieve) a value from a list. You can also set a value in a list; that is, replace the current contents of an
element in a list by putting the list variable with its index on the left-hand side of an assignment, like this:

 >>> shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 >>> shoppingList[3] = 'apples'
 >>> print shoppingList
 ['cereal', 'milk', 'orange juice', 'apples', 'gum']
 >>>

 This changes the value of an element at the given index to a new value. Notice that element 3 was 'hot
dogs' , but has been changed to 'apples' .

 Now you know how to change the value of a given element. Shortly, I’ll show you how to change the
number of elements in a list. Python people talk about lists as being mutable , which means changeable.

 Using Negative Indices
 In addition to indices (starting at 0 and going up to the number of elements minus 1), there is another way
to index elements in a list. Python allows you to use negative integers as indices to a list. A negative index
means to count backwards from the end; that is, the number of elements in the list. Here are the positive and
equivalent negative indices for a list of five elements:

 0 -5 <element>
 1 -4 <element>
 2 -3 <element>
 3 -2 <element>
 4 -1 <element>

 Let’s demonstrate with our shopping list:

 >>> shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 >>> print shoppingList[-1]
 gum
 >>> print shoppingList[-2]
 hot dogs
 >>> print shoppingList[-3]
 orange juice

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

141

 When using a negative number as an index, Python takes the number of elements in the list, and then
adds the negative amount to get the actual positive index. Using our shopping list as an example, element
–2 is 5 (the number of elements in the list) minus 2, which equals 3, for a value of 'hot dogs' . Negative
indexing is rarely used. However, the main way to use it is to use –1 as an index as a quick way of getting to
the last element in a list.

 Building a Simple Mad Libs Game
 Let’s build an old, popular game: Mad Libs. We’ll start by getting input from the user, just like in a real Mad
Libs game, and use the user’s responses in our story. The starting version of this game has nothing to do with
lists, but once we build the base game, we’ll modify it to use lists.

 The starting version of this program is all about strings. Remember that when we want to add strings
together, it is called concatenation . And the concatenation operator is the plus sign between strings. Just as
we can add a long group of numbers, we can also concatenate multiple strings. In this version of Mad Libs,
our story is just one sentence that is built using concatenation. Our one-sentence story will be as follows:

 <name> <verb> through the forest, hoping to escape the <adjective> <noun> .

 # MadLib (version 1)

 while True:
 name = raw_input('Enter a name: ')
 verb = raw_input('Enter a verb: ')
 adjective = raw_input('Enter an adjective: ')
 noun = raw_input('Enter a noun: ')

 sentence = name + ' ' + verb + ' through the forest, hoping to escape the ' + \
 adjective + ' ' + noun + '.'
 print
 print sentence
 print

 # See if the user wants to quit or continue
 answer = raw_input('Type "q" to quit, or anything else (even Return/Enter) to continue:
')
 if answer == 'q':
 break

 print 'Bye'

 The program asks the user to enter the four parts of speech, and then concatenates the sentence and
prints it. Here’s what our program looks like when it runs:

 >>>
 Enter a name: Weird Al Yankovic
 Enter a verb: screams
 Enter an adjective: orange
 Enter a noun: dinosaur

 Weird Al Yankovic screams through the forest, hoping to escape the orange dinosaur.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

142

 Return/Enter to continue, "q" to quit:
 Enter a name: The Teenage Mutant Ninja Turtles
 Enter a verb: burped
 Enter an adjective: frilly
 Enter a noun: Frisbee

 The Teenage Mutant Ninja Turtles burped through the forest, hoping to escape the frilly
Frisbee.

 Return/Enter to continue, "q" to quit: q
 Bye
 >>>

 Adding a List to Our Mad Libs Game
 Now, we’ll change the program. Rather than having the user enter a name, we’ll build a pool of names and
select one randomly for the user. The pool of predetermined names will be built as a list. We could use any
names for our list, but to make our Mad Libs game fun, our list will look like this:

 namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles', 'Supergirl', \
 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \
 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy']

 Next, we want to choose a random name from this list. This particular list has nine elements in it.
In order to select a random element from the list, we need to generate a random index between 0 and 8
(remember, list indices start at zero). From the previous chapter, we learned that to generate a random
number, we use the randrange function in the random package:

 import random

 randomIndex = random.randrange (<lowerLimit>, <upToButNotIncluding>)

 Again, our goal is to select a random number to use as an index of an element in the list. With our list of
nine names, we would call random.randrange , passing in a 0 and a 9. It would return a random integer of 0
to 8 (up to but not including 9). The resulting program would look like this:

 # MadLib (version 2)

 import random

 namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles', 'Supergirl', \
 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \
 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy']

 while True:
 nameIndex = random.randrange(0, 9) # Choose a random index into the namesList
 name = namesList[nameIndex] # Use the index to choose a random name
 verb = raw_input('Enter a verb: ')
 adjective = raw_input('Enter an adjective: ')
 noun = raw_input('Enter a noun: ')

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

143

 sentence = name + ' ' + verb + ' through the forest, hoping to escape the ' + \
 adjective + ' ' + noun + '.'
 print
 print sentence
 print

 # See if the user wants to quit or continue
 answer = raw_input('Type "q" to quit, or anything else (even Return/Enter) to continue: ')
 if answer == 'q':
 break

 print 'Bye'

 In this version, we added the list of names and we replaced the code that asked the user for a name with
code that randomly picks a name from the list provided.

 Determining the Number of Elements in a List: The len
Function
 However, the list of names could contain any number of names. Rather than hard-coding an integer for the
number of names in our list, we would ideally want to write code that would be able to work for any number
of elements in the list. Therefore, we need a way to find how many elements are in a list. Python has a built-
in function for this called len .

 len(<listVariable>)

 To find the length of a list-that is, the number of elements in a list, you call the len function and pass in
the variable name that holds the list:

 >>> shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 >>> nElements = len(shoppingList)
 >>> print 'There are', nElements, 'in our shopping list.'
 There are 5 in our shopping list.
 >>>

 There are five elements in our shopping list, but again, the elements are numbered 0 to 4. If we want to
use random.randrange to choose a random element, we certainly want to use 0 as the low-end value because
indices always start at 0. But random.randrange also requires an <upToButNotIncludingHighEnd> value. The
 len of a list is perfect for use as the high end with this call because it gives you one more than the last index
to the list. Let’s incorporate the len function into our Mad Libs program:

 # MadLib (version 3)

 import random

 namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles', 'Supergirl', \
 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \
 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy', 'Sam-I-Am']
 nNames = len(namesList) # find out how many names are in the list of names

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

144

 while True:
 nameIndex = random.randrange(0, nNames) # Choose a random index into the namesList
 name = namesList[nameIndex] # Use the index to choose a random name
 verb = raw_input('Enter a verb: ')
 adjective = raw_input('Enter an adjective: ')
 noun = raw_input('Enter a noun: ')

 sentence = name + ' ' + verb + ' through the forest, hoping to escape the ' + \
 adjective + ' ' + noun + '.'
 print
 print sentence
 print

 # See if the user wants to quit or continue
 answer = raw_input('Type "q" to quit, or anything else (even Return/Enter) to continue:
')
 if answer == 'q':
 break

 print 'Bye'

 Notice that in this version, we’ve added another name to our list of names. But we also used the len
function to set a variable, nNames , to the number of elements in our list of names. Finally, we used that
variable in our call to randrange . Using this approach, we can put as many names in our list as we wish, and
the code will adjust at runtime for us.

 Programming Challenge 1
 Similar to the modification to use a list of names, let’s modify the program to include a list of verbs, a list of
adjectives, and a list of nouns. The program should randomly choose a name, a verb, an adjective, and a
noun. You can put as many elements as you want into each list, and the program should create and print a
fully randomized Mad Lib.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

145

 Here is our Mad Libs program using lists for names, verbs, adjectives, and nouns. I have tried to choose
silly words to generate humorous sentences:

 # MadLib (version 4)

 import random

 namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles', 'Supergirl', \
 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \
 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy', 'Sam-I-Am']
 nNames = len(namesList) # find out how many names are in the list of names
 verbsList = ['screamed', 'burped', 'ran', 'galumphed', 'rolled', 'ate', 'laughed', \
 'complained', 'whistled']
 nVerbs = len(verbsList)
 adjectivesList = ['purple', 'giant', 'lazy', 'curly-haired', 'wireless electric', \
 'ten foot tall']
 nAdjectives = len(adjectivesList)
 nounsList = ['ogre', 'dinosaur', 'Frisbee', 'robot', 'staple gun', 'hot dog vendor', \
 'tortoise', 'rodeo clown', 'unicorn', 'Santa hat', 'garbage can']
 nNouns = len(nounsList)

 while True:
 nameIndex = random.randrange(0, nNames) # Choose a random index into the namesList
 name = namesList[nameIndex] # Use the index to choose a random name
 verbIndex = random.randrange(0, nVerbs)
 verb = verbsList[verbIndex]
 adjectiveIndex = random.randrange(0, nAdjectives)
 adjective = adjectivesList[adjectiveIndex]
 nounIndex = random.randrange(0, nNouns)
 noun = nounsList[nounIndex]

 sentence = name + ' ' + verb + ' through the forest, hoping to escape the ' + \
 adjective + ' ' + noun + '.'
 print
 print sentence
 print

 # See if the user wants to quit or continue
 answer = raw_input('Type "q" to quit, or anything else (even Return/Enter) to continue:
')
 if answer == 'q':
 break

 print 'Bye'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

146

 This code generated the following sample output-without any suggestions from the user:

 The Pillsbury Doughboy burped through the forest, hoping to escape the giant Frisbee.

 Type "q" to quit, or anything else (even Return/Enter) to continue:

 Sam-I-Am complained through the forest, hoping to escape the wireless electric ogre.

 Type "q" to quit, or anything else (even Return/Enter) to continue:

 The Beatles ate through the forest, hoping to escape the lazy staple gun.

 Type "q" to quit, or anything else (even Return/Enter) to continue:

 The Beatles laughed through the forest, hoping to escape the ten foot tall unicorn.

 Type "q" to quit, or anything else (even Return/Enter) to continue:

 The Stay Puft Marshmallow Man galumphed through the forest, hoping to escape the giant unicorn.

 Type "q" to quit, or anything else (even Return/Enter) to continue: q
 Bye

 Using a List Argument with a Function
 In the prior code, you may have noticed a pattern. For each of the four lists (nounsList , verbsList ,
 adjectivesList , and nounsList), we have built essentially the same code. Whenever we wanted to select
a random element, we chose a random index, and then found the element at that index. While this clearly
works, whenever we see essentially the same code repeated, that is a signal that it is probably a good
candidate to turn into a function. In this case, rather than repeating the same set of operations four times,
we’ll build a single function to select a random element from a list and call it four times.

 # MadLib (version 5)

 import random

 def chooseRandomFromList(aList):
 nItems = len(aList)
 randomIndex = random.randrange(0, nItems)
 randomElement = aList[randomIndex]
 return randomElement

 namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles', 'Supergirl', \
 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \
 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy', 'Sam-I-Am']
 verbsList = ['screamed', 'burped', 'ran', 'galumphed', 'rolled', 'ate', 'laughed', \
 'complained', 'whistled']

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

147

 adjectivesList = ['purple', 'giant', 'lazy', 'curly-haired', 'wireless electric', \
 'ten foot tall']
 nounsList = ['ogre', 'dinosaur', 'Frisbee', 'robot', 'staple gun', 'hot dog vendor', \
 'tortoise', 'rodeo clown', 'unicorn', 'Santa hat', 'garbage can']

 while True:
 name = chooseRandomFromList(namesList)
 verb = chooseRandomFromList(verbsList)
 adjective = chooseRandomFromList(adjectivesList)
 noun = chooseRandomFromList(nounsList)

 sentence = name + ' ' + verb + ' through the forest, hoping to escape the ' + \
 adjective + ' ' + noun + '.'
 print
 print sentence
 print

 # See if the user wants to quit or continue
 answer = raw_input('Type "q" to quit, or anything else (even Return/Enter) to continue:
')
 if answer == 'q':
 break

 print 'Bye'

 In this version, we’ve built a small function called chooseRandomFromList . It is designed to expect to
have one parameter passed in when it is called. It is expected to be passed in a list. The aList parameter
variable takes on the value of the list passed in. We used a very generic name here because we do not know
what the contents of the list are, and inside the function, we do not care. The function uses the len function
to see how many items are in the list, chooses a random index, finds the element at that index, and returns
that element. From the main code, we now call the function four times, passing in four different lists. This
version of the code generates the same type of Mad Libs sentences as the earlier version, but it is easier to
read and is less prone to errors.

 Accessing All Elements of a List: Iteration
 Using bracketing syntax such as someList[someIndex] , we now have a way to access any element in a list.
But we need a way to access all elements in a list. As a simple example, let’s say that we just wanted to print
out the value of all the elements of a list. We can write this:

 print myList

 And that works fine. However, it prints the list in the Python list syntax (including the square brackets
and commas), and prints all elements horizontally. But what if we wanted to print one element per line? Or
what if the list contains numbers and we want to add them up? We need some way to get at all the elements
of a list, but one at a time.

 ■ Definition Iterate means to traverse through, or visit all elements of a list.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

148

 Using code that we already know, we can build a loop using a while statement to get the job done. The
following is some code to print our shopping list, one item per line. (This is for demonstration purposes
only-it is not the best way.)

 shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 nItems = len(shoppingList)
 myIndex = 0 # start with an index for the zero'th element
 while myIndex < nItems:
 print shoppingList[myIndex]
 myIndex = myIndex + 1 # increment the index

 The idea here is to create a myIndex variable that starts at zero. Each time through the loop, we use that
variable as an index, get the element at that position, and print it. Then we increment the variable, preparing
for the next time through the loop. The code produces the correct result, but the code seems a little “clunky.”
You have to remember a lot of details and get them all right to make this loop work correctly.

 for Statements and for Loops
 The people who designed Python came up with a better way to handle iterating through a list. As long-time
programmers, they noticed that this pattern of looping and doing something with each element of a list
happens very often. So, they came up with an additional statement and loop, which gives you an extremely
simple way to iterate through a list. It is called the for statement. Here is the generic form:

 for <elementVariable> in <list>:
 <indented statement(s)>

 The for statement is made up of new keyword, for ; a variable name; another new keyword, in ; and
then the list that you want to iterate through. The statement ends with a colon. After the colon is an indented
block of statement(s) that is always executed through the loop-again, called the body of the loop. Together,
the for statement and the indented block are called a for loop.

 The key to the for loop is the <elementVariable> . Here’s how it works. The for statement causes the
body of the loop to execute once for every element in the <list> . Each time through the loop, the variable
that you specify as <elementVariable> is set to the value of the next element in the list.

 When you see a for statement, think of it as saying “for each element in the list.” Notice the new in
keyword, which makes the for statement very English-like and readable. For example, let’s say that you saw
a for statement like this:

 for name in namesList:

 You could read it as, “for each name in the list namesList ”; that is, it would iterate through namesList ,
and in each iteration, it would set the variable name to the next name in the namesList .

 The flowchart of a for loop is shown in Figure 7-1 .

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

149

 Notice that you do not need to use any index to get the value of each element in your list. The for
loop does this for you automatically. It takes care of the tedious bookkeeping. This syntax is extremely
elegant and simple.

 Let’s build a simple example. Suppose that you want to print out your shopping list with one item per line:

 shoppingList = ['cereal', 'milk', 'orange juice', 'hot dogs', 'gum']
 for anItem in shoppingList:
 print anItem

 In this example, every time through the loop, the anItem variable is given the value of the next element
in shoppingList , and each item is printed on a separate line.

 Figure 7-1. The flowchart of a for loop

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

150

 Here is another simple example. In this code, we have a list of teammates, and we want to say “Good
luck” to each of them:

 teammatesList = ['Joe', 'Sue', 'Marcia', 'Sally']
 for teammate in teammatesList:
 print 'Good Luck ' + teammate

 This code iterates through teammatesList. Each time through the list, the next element of
 teammatesList is put into the teammate variable. In the body of the loop, a separate greeting message is
printed for each person:

 Good Luck Joe
 Good Luck Sue
 Good Luck Marcia
 Good Luck Sally
 >>>

 Programming Challenge 2
 In this challenge, you have an opportunity to use a for loop to iterate through a list. Write a program that
starts with a list of numbers; for example, a list like this:

 numbersList = [23, -10, 37, 4.5, 0, 123.4]

 Then use a for loop to add all the numbers in the list. Print the total.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

151

 Here is the solution:

 # Calculate the total of numbers in a list

 numbersList = [23, -10, 37, 4.5, 0, 123.4]

 total = 0
 for number in numbersList:
 total = total + number

 print 'The total of all numbers is:', total

 The key to writing this code is to create a variable with a name like total , and initialize it to zero. Then
build a for loop to iterate through the list of numbers. Every time through the loop, the number variable is
given the value of the next number in the list. In the body of the loop, add each value to the previous total.
At the end, print the total:

 >>>
 The total of all numbers is: 177.9

 Generating a Range of Numbers
 There are many situations where you would like to have a consecutive ordered sequence of numbers. For
example, imagine you are doing some math, like adding up the numbers from 1 to n. To help with problems
like this, there is a built-in function in Python called range that creates a list of numbers. The typical way of
calling the range function is like this:

 range(<lowEnd>, <upToButNotIncludingHighEnd>)

 The range function returns a list of integers. The list consists of numbers that includes the <lowEnd>
value, and goes consecutively up to but does not include the value of <upToButNotIncludingHighEnd> . Let’s
look at some simple examples in the Shell:

 >>> print range(1, 11)
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 >>> print range(1, 20)
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
 >>> print range(-5, 5)
 [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
 >>>

 The resulting list can be saved into a variable if you wish:

 >>> myRangeList = range(10, 21)
 >>> print myRangeList
 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

152

 ■ Note Since range is very often used with lists, you can call the range function with a single argument
instead of two arguments. When called this way, the single argument represents only the high end of the
range. The low end of the range defaults to be zero. For example, specifying range(25) is identical to specifying
range(0, 25). To make things explicitly clear, we always use the range function with two arguments.

 The interesting use case for the range function is in a for statement. Remember that a for statement is
designed to let you easily iterate through a list. Since the range function returns a list, it works seamlessly in
a for statement. Here is a good example:

 for number in range(0, 10):
 print number

 The call to range returns the list [0, 1, 2, … 9]. You could then think of the following substitution occurring:

 for number in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
 print number

 The for statement then iterates through that list, and every time through the loop, it assigns the next
value in the list to the number variable. This code would print the numbers 0 to 9, each on a separate line.

 Programming Challenge 3
 This challenge gives you practice in using the range function in a for loop. The challenge is to write a
program that allows the user to enter an integer. The program should calculate and print the total of all
integers from 1 up to and including the user’s number. For example, if the user enters 3, then the program
should add up 1 + 2 + 3 and print the total of 6. If the user enters 10, then the program should calculate the
total of 1 + 2 + 3 + …. + 10, and output a total of 55, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

153

 This is a solution to the challenge:

 # Calculate the total of numbers up to a number entered by the user

 usersNumber = raw_input('Please enter an integer: ')
 usersNumber = int(usersNumber)
 highEndOfRange = usersNumber + 1

 total = 0
 for number in range(1, highEndOfRange):
 total = total + number

 print 'The total numbers from 1 to', usersNumber, 'is', total

 In the following program, you use a similar approach to adding up a list of numbers as used in the
previous coding challenge (by starting a total at zero, then adding each number). However, in this challenge,
the numbers to be added are not pre-defined. Instead, you must generate the numbers using a call to the
 range function. In order to get the proper upper bound for the call to range , you have to add one to the user’s
number, because the value of highEndOfRange is not included in the range itself. Here is the output of a few
runs of this program:

 >>>
 Please enter an integer: 3
 The total numbers from 1 to 3 is 6
 >>> ================================ RESTART ================================
 >>>
 Please enter an integer: 10
 The total numbers from 1 to 10 is 55
 >>> ================================ RESTART ================================
 >>>
 Please enter an integer: 100
 The total numbers from 1 to 100 is 5050
 >>> ================================ RESTART ================================
 >>>
 Please enter an integer: 1000
 The total numbers from 1 to 1000 is 500500
 >>>

 ■ Note In Python 3, the range function works differently. In Python 2, the range function creates and returns
a list. If the range is large, the list might take up a considerable amount of memory. In Python 3, the range
function does not return a list. Instead, the range has become a new type called a generator . A generator
creates the next number in the sequence every time a new number is needed. When using range in Python 3 in
a for statement, there is no need to change any code. And there is a good chance that your loop may run faster.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

154

 Scientific Simulations
 In the scientific community, computers are often used to simulate the outcome of a large numbers of trials.
In each trial, one or more pieces of data are given randomized values from all possible values. The scientists
then look at the result of many trials to see if they can identify patterns.

 Consider a simulation of rolling dice. In our simulation, we will perform many rounds of rolling two
six-sided dice, and then we will count the number of times that the dice generate a doubles (that is, when
both dice show the same value or face). First, let’s do a little math to see what we would expect for an answer.
In each round, the first die can have any value from 1 to 6, and so can the second die. Figure 7-2 is a chart
showing all possible rolls of two dice.

 Figure 7-2. Possible rolls of two dice

 In this chart, the left side shows the possible faces for the first die. The top shows the possible faces
for the second die. Out of the 36 possible combinations, 6 of them result in a doubles. That means that we
should expect 6/36ths or 1/6th or 16.6666666 percent of rolls to be doubles.

 Here’s the code for doing this simulation. We’ll ask the user to enter the number of rounds, and for each
round, we’ll simulate rolling two dice:

 # Dice: count doubles in user-defined number of rounds

 import random

 # simulate rolling a six-sided die and return its value
 def rollOneDie():
 # generate a random numbers between 1 and 6
 thisFace = random.randrange(1, 7)
 return thisFace

 nDoubles = 0

 maxRounds = raw_input('How many rounds do you want to do? ')
 maxRounds = int(maxRounds)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

155

 for roundNumber in range(maxRounds):
 die1 = rollOneDie()
 die2 = rollOneDie()

 if die1 == die2:
 nDoubles = nDoubles + 1

 percent = (nDoubles * 100.0) / maxRounds
 print 'Out of', maxRounds, 'you rolled', nDoubles, 'doubles, or', percent, '%'

 In this program, the user specifies a number of rounds to roll two dice. As an example, let’s say that the
user wishes to run 10 rounds of dice rolls. We take the 10 the user gave us and use it in a call to the range
function. The range function returns the following list: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] . Although the
list contains the numbers from 0 to 9, there are 10 numbers in the list, so the code will run through the loop
10 times. The roundNumber variable is given the value of the next element in the list, but we never use that
variable anywhere in this loop. (If we wanted to report the result of every round, we could print that value
each time through the loop.) The key concept here is that we are using the range function to create a list that
contains the correct number of elements. In essence, the for loop is acting as a counter for us.

 In each round (every time through the loop), we call the rollOneDie function twice. rollOneDie does
what its name implies and simulates the rolling of a single die. We assign the answers to two different
variables: die1 and die2 . If these two variables have the same value, then we had a doubles, and we
increment the count of doubles. When the loop is finished, we do a calculation of percentage (multiplying by
100.0 ensures that this will be a floating point calculation), and we print the answer.

 Here is the output of a sample run:

 >>>
 How many rounds do you want to do? 1000
 Out of 1000 you rolled 158 doubles, or 15.8 %
 >>>

 If we want to run our simulation again, we would have to run the program again. Instead, let’s make a
modification to the code to allow the user to continue to enter different values for the number of rounds:

 # Dice - count doubles in user-defined number of rounds … repeated

 import random

 # simulate rolling a six-sided die and return its value
 def rollOneDie():
 # generate a random numbers between 1 and 6
 thisFace = random.randrange(1, 7)
 return thisFace

 while True:
 nDoubles = 0

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

156

 maxRounds = raw_input('How many rounds do you want to do? (Or ENTER to quit): ')
 if maxRounds == '':
 break
 maxRounds = int(maxRounds)

 for roundNumber in range(maxRounds):
 die1 = rollOneDie()
 die2 = rollOneDie()

 if die1 == die2:
 nDoubles = nDoubles + 1

 percent = (nDoubles * 100.0) / maxRounds
 print 'Out of', maxRounds, 'you rolled', nDoubles, 'doubles, or', percent, '%'

 print 'OK Bye'

 In this version, the code has been modified so that the main portion is now inside a larger while loop.
Each time through the outer while loop, we ask the user how many rounds they want to do. The program
keeps running simulations until the user presses Enter (Windows) or Return (Mac) to exit. Here is the output
of a run where we entered increasingly larger values:

 >>>
 How many rounds do you want to do? (Or ENTER to quit): 1000
 Out of 1000 you rolled 164 doubles, or 16.4 %
 How many rounds do you want to do? (Or ENTER to quit): 10000
 Out of 10000 you rolled 1690 doubles, or 16.9 %
 How many rounds do you want to do? (Or ENTER to quit): 100000
 Out of 100000 you rolled 16638 doubles, or 16.638 %
 How many rounds do you want to do? (Or ENTER to quit): 1000000
 Out of 1000000 you rolled 166751 doubles, or 16.6751 %
 How many rounds do you want to do? (Or ENTER to quit): 10000000
 Out of 10000000 you rolled 1666941 doubles, or 16.66941 %
 How many rounds do you want to do? (Or ENTER to quit):
 OK Bye
 >>>

 There are two interesting things to note here. First, these simulations run quite quickly. Even with
the last one, where we did ten-million rounds, the program took only a matter of seconds. Second,
notice that the more rounds we ran, the more accurate the answer was-the closer it got to the predicted
value of 16 .6666666.

 Python is becoming more and more popular in the scientific community because of these two reasons.
Very often, scientists set up random simulations like this and then run them a large number of times to test
out theories. Further, the random distribution of results is extremely even. The fact that we get a result very
close to 16.666666 demonstrates this.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

157

 List Manipulation
 Let’s go back to our example of a shopping list one more time. But this time, consider what happens to a
shopping list in a typical house. Right after a shopping trip, you might put up a new, empty shopping list
on the refrigerator. As you notice that you are running low on groceries, you add items to the list. So maybe
you add three items to your list one day, add two more the next day, and another the following day. Later,
you move a box of cereal in your pantry and discover a hidden box of crackers that was on your list. You go
back to the list and cross off crackers. If your list becomes long, you probably want to see if an item already
appears in the list before adding it. You may also want to count the number of occurrences of an item to see
if it appears more than once.

 Python provides many built-in operations that allow you to manipulate and search through lists. The
syntax of these operations is a little different from what we have seen before. This is the general syntax:

 <listVariable>.<operation>(<any argument(s)>)

 THE “OBJECT” IN COMPUTER SCIENCE

 In the world of computer science, there is an important concept called an object . My definition of an
object is data-and code that acts on that data-over time. While objects are beyond the scope of this book,
I can tell you that, internally in Python, all lists are implemented as objects. The data (from my definition)
is the content of the list-the collection of elements. The code (from my definition) is the operations that
act on any list; that is, these list operations are available on any list just because they are lists. In this
sense, each list object “knows” how to do each of these operations. Generically, the code of every object
is built up in functions, but these functions go by another name. When functions are applied to an object,
they are called methods of an object . This is the syntax used to call a method of an object:

 <object>.<method>(<any argument(s)>)

 That is why the syntax of the list operations in Table 7-1 look the way they do.

 Table 7-1. The Built-In List Operations

 Operation Description

 <list>.append(<thing>) Add <thing> to the end of a list

 <list>.count(<thing>) Returns the number of times <thing> was found in the <list>

 <list>.extend(<otherList>) Appends all elements in <otherList> to <list>

 <list>.index(<thing>) Returns the first index in the <list> where <thing> is found

 <list>.insert(<thing>, <index>) Inserts <thing> into the <list> at position <index>

 <list>.pop() Remove and return the last element from a <list>

 <list>.pop(<index>) Remove and return the element from a <list> at the given <index>

 <list>.remove(<thing>) Find first occurrence of <thing> in a <list> and remove it

 <list>.reverse() Reverse the position of all the elements in a <list>

 <list>.sort() Sort elements in a <list> from low to high

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

158

 The full documentation on all list operations can be found in the official Python documentation at
 https://docs.python.org/2/tutorial/datastructures.html in section 5.1.

 The keyword in can also be used as an operator with a list.

 <value> in <listVariable>

 This syntax, defines a Boolean expression that will generate a True if the value is found in the list, and a
 False if the value is not found. This type of expression can be used in an if statement or a while loop. The
keywords not in can be used to reverse the result.

 List Manipulation Example: An Inventory Example
 As an example, consider an adventure game where you wander around a landscape. Games like this often
allow you to maintain an inventory. At the start of the game, you have nothing, or an empty inventory. As
you move about the environment, you find different items and can add them to your inventory. Later in the
game, you may find yourself in a situation where you need to use something in your inventory to get out of
a tricky situation. Here is an example of some code that can simulate these actions. First, let’s build up an
inventory from scratch:

 >>> inventoryList = [] # start as an empty list.
 >>>
 >>> inventoryList.append('treasure')
 >>> print inventoryList
 ['treasure']
 >>>
 >>> inventoryList.append('magic stones')
 >>> print inventoryList
 ['treasure', 'magic stones']
 >>>
 >>> inventoryList.append('potion')
 >>> print inventoryList
 ['treasure', 'magic stones', 'potion']
 >>>

 We started with an empty list, and as we found items, we appended them to the list. Our list now has
three elements. Later in the game, we learn that in order to kill a dragon, we need to throw some magic
stones at it.

 >>> print 'magic stones' in inventoryList
 True
 >>>
 >>> print inventoryList.index('magic stones')
 1
 >>> itemToThrow = inventoryList.pop(1)
 >>> print inventoryList
 ['treasure', 'potion']
 >>>

 First, we check to ensure that we have the magic stones in our inventory by using the in operator. Seeing
that we have the stones, we check to see where the magic stones live in our inventory by using the index
operation. Once we have the index of where they are found, we use the pop operation to remove the stones
from our inventory list and put them in a variable so that we can then throw the stones at the dragon.

www.it-ebooks.info

https://docs.python.org/2/tutorial/datastructures.html
http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

159

 Pizza Toppings Example
 Let’s wrap up this chapter by building a program that creates and modifies a list, and uses many built-in list
operations, while loops, and for loops.

 In this sample program, you own a pizzeria. Customers are allowed to get any toppings on their
pizza that they wish. Your program needs to cater to their wishes. The program will handle the following
operations:

• a or add Adds a topping

• c or change Changes a topping

• o or order Orders the current pizza

• q or quit Quits the program

• r or remove Removes a topping

• s or startover Starts the current pizza over

 Here is the pseudocode of our program:

 Function To Show Pizza Toppings
 If there are no toppings, say there are none
 Else
 print each topping on a separate line

 Print Welcome message, instructions, and large form of menu
 Loop forever
 Show short form of menu
 Ask the user what they want to do:
 If "add"
 ask user what topping to add, add it
 Else if "change"
 find topping to change
 ask user what topping to change to, change it
 Else if "order"
 Show pizza being ordered
 Thank user
 Ask if they want to order another
 If yes, start over
 Else quit
 Else if "remove"
 Ask user what topping to remove
 Remove that topping if found
 Else if "startover"
 Reset to starting state
 Else
 Tell user we did not understand

 Show the current pizza

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

160

 Based on that approach, we can write the code in Python. A key concept driving this program is that
we will maintain the user’s topping choices as a Python list. Each section of the code uses some different list
operation to manipulate that list. This is the longest program we have seen so far. If you read through the
code slowly to see how it matches the pseudocode, it should not be too hard to follow.

 # Pizza toppings program

 # Function to show the list of toppings
 def showPizzaToppings(theList):
 print
 if len(theList) == 0:
 print 'Your pizza has no toppings.'
 else:
 print 'The toppings on your pizza are:'
 print
 for thisItem in theList: # iterate through the list, print each item
 print ' ' + thisItem
 print #blank line

 #main code
 print 'Welcome to my Pizzeria, where you get to choose your toppings.'
 print 'When prompted, enter the first letter or the full word what you want to do.'
 print
 print '---- Operations ----'
 print 'a/add Add a topping'
 print 'c/change Change a topping'
 print 'o/order Order the pizza'
 print 'q/quit Quit'
 print 'r/remove Remove a topping'
 print 's/startover Start over'
 print

 toppingsList = [] #begin as an empty list
 while True:

 print 'What would you like to do?'
 menuChoice = raw_input(' add, change, order, quit, remove, startover: ')

 if (menuChoice == 'a') or (menuChoice == 'add'): #add a topping
 newTopping = raw_input('Type in a topping to add: ')
 toppingsList.append(newTopping) #append adds to the end of a list

 elif (menuChoice == 'c') or (menuChoice == 'change'): #change a topping
 oldTopping = raw_input('What topping would you like to change: ')
 if oldTopping in toppingsList: # is it in the list
 index = toppingsList.index(oldTopping) #find out where it is in the list
 newTopping = raw_input('What is the new topping: ')
 toppingsList[index] = newTopping # set a new value at that index
 else:
 print oldTopping, 'was not found.'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

161

 elif (menuChoice == 'o') or (menuChoice == 'order'): #order the pizza
 showPizzaToppings(toppingsList)
 print
 print 'Thanks for your order!'
 print
 another = raw_input('Would you like to order another pizza (y/n) ? ')
 if another == 'y':
 toppingsList = [] #reset to the empty list
 else:
 break

 elif (menuChoice == 'q') or (menuChoice == 'quit'): #quit
 break

 elif (menuChoice == 'r') or (menuChoice == 'remove'): #remove a topping
 delTopping = raw_input('What topping would you like to remove: ')
 if delTopping in toppingsList: #check to see if the topping is in our list
 index = toppingsList.index(delTopping) # find out where it is
 toppingsList.pop(index) # remove it
 # The code above only removes the first occurrence of the topping.
 else:
 print delTopping, 'was not found'

 elif (menuChoice == 's') or (menuChoice == 'startover'): #reset to no toppings
 print "OK, let's start over."
 toppingsList = [] #reset to the empty list

 else:
 print "Uh … sorry, I'm not sure what you said, please try again."

 showPizzaToppings(toppingsList) # show the list of toppings on the pizza

 print
 print 'Goodbye'

 The key to this program is the toppingsList list variable in the main section of the code. It starts off as
the empty list to represent a pizza with no toppings on it. The user can then add toppings to the pizza, and
in response, the program uses the append operation to add to the end of the list. For a change operation,
we first use the in operator to ensure that the topping to be changed exists in the list of toppings. If so,
we replace the old topping with the new topping by using the index of where the old topping was found.
Ordering winds up resetting the toppingsList back to the empty list. Should the user ask to remove a
topping, the program checks to see if that topping is in the list, and if so, finds the index of the topping and
uses the pop operation to remove that topping. Starting over simply resets to the empty list.

 At the top of the program is a small function that prints the list of toppings. If there are none, the
function prints that. Otherwise, it uses a for loop to iterate through the list of the pizza toppings and prints
each one on a separate line. The output of a typical run could look like this:

 Welcome to my Pizzeria, where you get to choose your toppings.
 When prompted, enter the first letter or the full word what you want to do.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

162

 ---- Operations ----
 a/add Add a topping
 c/change Change a topping
 o/order Order the pizza
 q/quit Quit
 r/remove Remove a topping
 s/startover Start over

 What would you like to do?
 add, change, order, quit, remove, startover: add
 Type in a topping to add: mushrooms

 The toppings on your pizza are:

 mushrooms

 What would you like to do?
 add, change, order, quit, remove, startover: a
 Type in a topping to add: pineapples

 The toppings on your pizza are:

 mushrooms
 pineapples

 What would you like to do?
 add, change, order, quit, remove, startover: uvwxyz
 Uh … sorry, I'm not sure what you said, please try again.

 The toppings on your pizza are:

 mushrooms
 pineapples

 What would you like to do?
 add, change, order, quit, remove, startover: add
 Type in a topping to add: bacon

 The toppings on your pizza are:

 mushrooms
 pineapples
 bacon

 What would you like to do?
 add, change, order, quit, remove, startover: change
 What topping would you like to change: bacon
 What is the new topping: pepperoni

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ LISTS

163

 The toppings on your pizza are:

 mushrooms
 pineapples
 pepperoni

 What would you like to do?
 add, change, order, quit, remove, startover: r
 What topping would you like to remove: pineapples

 The toppings on your pizza are:

 mushrooms
 pepperoni

 What would you like to do?
 add, change, order, quit, remove, startover: o

 The toppings on your pizza are:

 mushrooms
 pepperoni

 Thanks for your order!

 Would you like to order another pizza (y/n) ? n

 Goodbye
 >>>

 Summary
 In this chapter, you learned how to store, access, retrieve, and manipulate ordered collections of data called
 lists . You learned that lists are made up of elements, and each element has a position known as its index .
Lists are defined in Python using the square brackets with elements separated by commas. We can refer to
an individual element in a list by using the bracket syntax and specifying the index of the element we want.
An index can be a constant, a variable, or an expression.

 We built a fun Mad Libs game, and then modified it to use lists. The program chose random words from
a number of lists. We used the len function to find out how many elements are in a list. You saw how to use a
list as an argument in a function call.

 Then we explored the area of iteration-the ability to visit all elements of a list. To do this, we used a
 for statement and built a for loop. We used iteration to sum up the numbers in a list. We found that the
 range function can be used to generate a list of consecutive integers, and is often used in for loops. We
demonstrated how the range function can be used to run a loop through a set number of iterations.

 Finally, we introduced a number of list manipulation operations that can be used modify and search
through the contents of a list. We ended with a demonstration program that maintains a list of pizza toppings
as a list and uses these list manipulation operations to do so.

www.it-ebooks.info

http://www.it-ebooks.info/

165© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_8

 CHAPTER 8

 Strings

 We started using strings in Chapter 1 with this statement:

 print 'Hello World'

 Later, we talked about how you get input from the user as a string, and how to convert that input into a
number:

 >>>
 >>> age = raw_input('Please enter your age: ')
 Please enter your age: 24
 >>> age = int(age)
 >>>

 Then I showed you how to concatenate strings, like this:

 >>>
 >>> string1 = 'Hello'
 >>> string2 = 'there'
 >>> greeting = string1 + ' ' + string2
 >>> print greeting
 Hello there
 >>>

 Other than being used to nicely format output, we haven’t talked that much about strings. In this
chapter, and in the next two chapters, we get heavily into strings. I show you how to manipulate them and
find smaller strings within larger strings.

 This chapter covers the following topics:

• Len function applied to strings

• Indexing characters in a string

• Accessing characters in a string

• Iterating through characters in a string

• Creating a substring: a slice

• Programming challenge 1: creating a slice

• Additional slicing syntax

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2172-3_1
http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

166

• Slicing as applied to a list

• Strings are not changeable

• Programming challenge 2: searching a string

• Built-in string operations

• Examples of string operations

• Programming challenge 3: directory style

 len Function Applied to Strings
 While it may not seem obvious, strings are very similar to lists. Think of a string as a list of characters. That
is worth repeating: think of a string as a list of characters. If you think of a string this way, then many of the
operations that you can do with lists, you can also do with strings.

 For example, like a list, a string can be any length. To find out how many elements are in a list, you use
the len built-in function. But len can also be used on a string.

 >>> state = 'Mississippi'
 >>> theLength = len(state)
 >>> print theLength
 11
 >>>

 Indexing Characters in a String
 Again, if you think of a string as a list of characters, then you can think of each character as an element.
Further, we can use an index to refer to a character in a string the same way we index an element in an array.
Remember from the definition, the index is the position of an element. With respect to a string, an index
is the position of a character in a string. Given the earlier assignment statement, where we set the variable
 state to the string 'Mississippi' , Figure 8-1 shows the indices of the characters in the string.

 This string has 11 characters. Notice that the characters in a string are numbered (or indexed) identically
to the elements in a list. What we humans would think of as the first character (uppercase M), in Python is
considered the character at index 0. The last character is always found at an index equal to the length of the
string minus one. Since there are 11 characters in this string, the last character is found at index 10.

 Similar to the indices of a list, you can also use negative indices to access the characters in a string, as
shown in Figure 8-2 .

 Figure 8-1. The indices of the characters in the string

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

167

 You can think of the negative index as the positive index minus the length of the string. For example,
the first “p” in Mississippi is at index 8. But it can also be addressed by using –3, since 8 – 11 = –3. In practice,
negative indexing is not used very often. Perhaps its most useful purpose is when you want to get the last
character in a string, its index is always –1.

 Accessing Characters in a String
 Just like a list, we can also use the bracket syntax to identify a character at a specific index in a string:

 >>> print state[0]
 M
 >>> print state[1]
 i
 >>> print state[2]
 s
 >>>

 If you try to access a character that is beyond the end of a string, Python will generate an appropriate
error message:

 >>> print state[1000] # only has 11 characters

 Traceback (most recent call last):
 File "<pyshell#12>", line 1, in <module>
 print state[1000]
 IndexError: string index out of range
 >>>

 Remember that there is the special case of the empty string -a string with no characters in it. Its length is
zero, and indices do not apply.

 >>> myString = ''
 >>> print len(myString)
 0
 >>>

 Figure 8-2. Negative indices of the characters in a string

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

168

 Iterating Through Characters in a String
 Similar to the way we iterate through all elements of a list, we often want to iterate through all characters in
a string. And similar to the while loop that I first showed to iterate through a list, we could build an identical
 while loop to iterate through a string:

 # Iterate through a string
 # This is the WRONG approach, just showing a concept!

 state = 'Mississippi'
 myIndex = 0
 while myIndex < len(state):
 print state[myIndex]
 myIndex = myIndex + 1

 This code would correctly print all characters in the string, one per line. However, just like when visiting
all elements in a list, the for statement allows you to easily loop through (or iterate through) all characters in
a string. Figure 8-3 is the same flowchart of a for loop that we saw earlier, but this time applied to iterating
through the characters in a string.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

169

 This syntax and the operation are identical to the for loop used to iterate through a list:

 for <characterVariable> in <string>:
 <indented statement(s)>

 The only difference is that since we are iterating through a string, the <characterVariable> is given the
next character in the string (rather than the next element in a list). As an example, this:

 myString = 'abcdefg'
 for letter in myString:
 print letter

 Figure 8-3. The flowchart of a for loop iterating through a string

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

170

 Prints this:

 a
 b
 c
 d
 e
 f
 g

 Creating a Substring: A Slice
 Very often when you are dealing with strings, you want to extract a shorter string from a longer string; for
example, when you want to find a particular piece of information within a string. In programming, this is
generally called “creating a substring.” In Python, we do this by taking a “slice” of a string. In the Python
world, this is commonly referred to as slicing . Figure 8-4 illustrates this.

 To make a slice of a string, we have to specify the start index and the end index of the slice that we want
to create. If you think of a string as a loaf of bread, then the analogy of cutting a slice makes this concept very
clear. However, when you make a slice in a string, Python makes a copy of the characters in the slice. It does
not remove those characters from the string. To specify a slice, Python provides the following syntax:

 <string>[<startIndex> : <upToButNotIncludingEndingIndex>]

 Once again, we see this standard Python concept of a start value that is included, and an ending
value that is not included. The character at <startIndex> is included as the first character of the substring.
However, the ending index, <upToButNotIncludingEndingIndex> , is the index of the first character that is
 not included in our slice. For example, if we have a string like this:

 myName = 'Joe Schmoe'

 Figure 8-4. Think of a string as a loaf of bread and taking a slice of it

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

171

 To get just the first name, then we want to take a slice starting at index 0 (the J), through index 2 (the e).
Therefore, to create a substring that includes just the first name, we would ask for this:

 >>> print myName[0:3]
 Joe
 >>>

 To get the last name, we would use this:

 >>> nChars = len(myName)
 >>> print nChars
 10
 >>> print myName[4 : nChars]
 Schmoe
 >>>

 Notice that you can use constants, variables, or expressions in defining the starting or ending value
of a slice.

 Programming Challenge 1: Creating a Slice
 To see if the concept of a slice is making sense, it’s time for a programming challenge. In this challenge, we
start with the following string:

 months = 'JanFebMarAprMayJunJulAugSepOctNovDec'

 Your job is to write a program that allows the user to enter a month number, and print the three-letter
abbreviation for that month. For example, if the user enters 1, the program should print Jan. If the user
enters 12, the program should print Dec.

 To get you going in the right direction, we’ll even give you the “scaffolding” of this assignment, and leave
the tricky part for you.

 # Given a month number, find the three letter abbreviation for that month

 months = 'JanFebMarAprMayJunJulAugSepOctNovDec'

 monthNumber = raw_input('Enter a month number (1-12): ')
 monthNumber = int(monthNumber)

 # Some code that generates the appropriate start and end indices.

 # Generate the appropriate slice
 monthAbbrev = months[startIndex : endIndex]
 print monthAbbrev

 This code can be done in two or three lines of code. (Do not cheat by using 12 if statements!)

 ■ Hint Think about the slice indices that have to be created for Jan, and the slice that has to be created for Feb,
for Mar, and for Apr. Is there a pattern? Can you write some simple code that generates a solution to this pattern?

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

172

 To work through a solution, let’s start with a chart (see Table 8-1) that shows the mapping between the
month number and the start index in our months string.

 The idea is to look for a pattern. If you look at these numbers long enough, you start to recognize that
the start index can be calculated by taking the month number, subtracting one from it, and then multiplying
the result by three. Writing this in Python looks like this:

 startIndex = (monthNumber – 1) * 3

 We can calculate the end index two different ways. We could look in our string and see which character
is the end character for each month. (Remember, when making a slice, the end index is the index of the first
character that is not included.) We could extend the chart as shown in Table 8-2 .

 The values in the last column also make logical sense. Since each abbreviation is three letters long, it may
now seem obvious that the end index is three more than each start index. Let’s write the Python code for that:

 endIndex = startIndex + 3

 Now we plug those two lines into our program, and the full solution becomes:

 # Given a month number, find the three letter abbreviation for that month

 months = 'JanFebMarAprMayJunJulAugSepOctNovDec'

 monthNumber = raw_input('Enter a month number (1-12): ')
 monthNumber = int(monthNumber)

 Table 8-2. Mapping month number to the related start and end index

 monthNumber startIndex endIndex

 1 Jan 0 3

 2 Feb 3 6

 3 Mar 6 9

 4 Apr 9 12

 …

 12 Dec 33 36

 Table 8-1. Mapping month number to the related start index

 monthNumber startIndex

 1 Jan 0

 2 Feb 3

 3 Mar 6

 4 Apr 9

 …

 12 Dec 33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

173

 startIndex = (monthNumber - 1) * 3
 endIndex = startIndex + 3

 # Generate the appropriate slice
 monthAbbrev = months[startIndex : endIndex]
 print monthAbbrev

 Here are a few runs to test our code:

 >>>
 Enter a month number (1-12): 1
 Jan
 >>> ================================ RESTART ================================
 >>>
 Enter a month number (1-12): 2
 Feb
 >>> ================================ RESTART ================================
 >>>
 Enter a month number (1-12): 12
 Dec
 >>>

 Additional Slicing Syntax
 Python also allows additional syntax if you want the slice to start at the first character or end at the last
character of a string. You can leave off the starting index of a string like this:

 <someString>[: <upToButNotIncludingIndex>]

 This means to create a slice starting at the first character of a given string, and go up to but not including
the character at index <upToButNotIncludingIndex> . Similarly, you can also use this syntax:

 <someString>[<startIndex> :]

 This means start at the given index and include all characters through the end of the string. Finally, you
can use this syntax:

 <someString>[:]

 This means to make a copy of the whole string. Here are some examples:

 >>> sample = 'This is a sample string'
 >>> print sample[10:]
 sample string
 >>> print sample[:16]
 This is a sample
 >>> print sample[:]
 This is a sample string
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

174

 Slicing As Applied to a List
 While I didn’t mention this in the last chapter, the slicing syntax that I have just shown for creating a
substring can also be used with a list to create a sublist. The exact same syntax is used.

 <someList>[<startingIndex> : <upToButNotIncludingIndex>]

 For example:

 >>> startingList = [22, 104, 55, 37, -100, 12, 25]
 >>> mySubList = startingList[3 : 6]
 >>> print mySubList
 [37, -100, 12]
 >>>

 Strings Are Not Changeable
 There is, however, one big difference between lists and strings. Strings are not changeable. Remember that
I said that lists are changeable, or mutable . In Python terms, strings are immutable ; that is, you cannot set
or change an individual character in a string. For example, let’s say that you wanted to change a specific
character of a string to some other character. Let’s try to change the second character of a given string to a
different letter:

 >>> someString= 'abcdefghijkl'
 >>> someString[2] = 'x'

 Traceback (most recent call last):
 File "<pyshell#18>", line 1, in <module>
 someString[2] = 'x'
 TypeError: 'str' object does not support item assignment
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

175

 This error message happens because strings are not changeable. However, you can always create a new
string, or reassign a different value to an existing string variable. To change the second character of a string
to another value, you have to reassign a string or create a new string. To accomplish our task, we can take
this approach:

 >>> someString= 'abcdefghijkl'
 >>> someString = someString[:2] + 'x' + someString[3:]
 >>> print someString
 abxdefghijkl
 >>>

 We’ve taken our original string, created a slice before the character we want, concatenated the letter we
want, and then concatenated another slice starting right after the character we wanted to eliminate. Finally,
we reassigned the resulting string back into our string variable.

 Programming Challenge 2: Searching a String
 In this challenge, I ask you to write a small function called countCharInString . It is passed the following two
parameters:

 findChar : a character to find

 targetString : a string to be searched

 It should return the number of times findChar is found in targetString .
 You can test your function with the following calls:

 print countCharInString ('s', 'Mississippi') # expect 4

 print countCharInString ('p', 'Mississippi') # expect 2

 print countCharInString ('q', 'Mississippi') # expect 0

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

176

 Here is a solution:

 # Count a single char in another string

 def countCharInString(findChar, targetString):
 count = 0
 for letter in targetString: # for each letter in the target string
 if findChar == letter: # if there is a match
 count = count + 1 # increment the count

 return count

 print countCharInString ('s', 'Mississippi') # expect 4

 print countCharInString ('p', 'Mississippi') # expect 2

 print countCharInString ('q', 'Mississippi') # expect 0

 And the following output is what we expect:

 >>>
 4
 2
 0
 >>>

 Built-in String Operations
 While it is fun to build these types of functions, it turns out that we don’t have to. The people who built
Python have done all this work for us. In fact, there is a whole set of string manipulation routines built in.

 Similar to our discussion of lists in the previous chapter, strings are also internally implemented as
objects in Python. Because of that, you use the same syntax that we used for list operations to invoke a string
operation:

 <string>.<operationName>(<optionalArguments>)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

177

 Table 8-3. The Most Commonly Used Built-In String Operations

 Operation Description

 <string>.count(<substring>) Returns the number of times <subString>
was found in <string>

 <string>.find(<subString>) Returns the index of the first occurrence
of <substring> in <string> Returns –1 if
 <substring> is not found

 <string>.index(<subString>) Returns the index of the first occurrence of
 <substring> in <string>

 <string>.lower() Returns a lowercase version of <string>

 <string>.lstrip() Returns the string with leading (left)
whitespace removed

 <string>.replace(<old>, <new>) Returns a version of <string> where all
 <old> are replaced by <new>

 <string>.rstrip() Returns the string with trailing (right)
whitespace removed

 <string>.startswith(<prefix>) Returns True if <string> starts with
 <prefix> , otherwise returns False

 <string>.strip() Returns the string with leading and
trailing whitespace removed

 <string>.title() Returns a version of <string> where the
first letter of every word is uppercased, all
other letters are lowercased

 <string>.upper() Returns an uppercase version of <string>

 Table 8-3 describes the most commonly used built-in string operations.

 If you want to see the list of all string operations, you can enter this in the Shell:

 dir('abc')

 This prints out a list of the names of all string operations. You can ignore the ones that start with one
or two underscores. The ones that seem human readable (at the end of the list) are the interesting ones.
The full documentation on all string operations can be found in the official Python documentation at
 https://docs.python.org/2/library/stdtypes.html in section 5.6.1.

www.it-ebooks.info

https://docs.python.org/2/library/stdtypes.html
http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

178

 Examples of String Operations
 In one of our earlier programming challenges, we asked you to write a function to count the number of
times a character appears in a target string. While it’s good practice to write functions like this, built-in string
operations are available to do much of the work like this for you. For example, the count operation does
everything that our function does and more. The count operation finds not only a single character within
another string, but it finds a substring of any length in a string.

 >>> myString = 'Ask not what your country can do for you, ask what you can do for your
country.'
 >>> print myString.count('o') # how many of the letter o
 11
 >>> print myString.count('can do')
 2
 >>>

 Whenever you ask the user for a text-based answer to a question, you can never know if the user will
enter the answer in all lowercase, all uppercase, or some mix of cases. This is a problem because Python string
comparisons are case sensitive. An answer of “OK” is not the same as “ok” and is not the same as “Ok”. Therefore,
whenever you want to check for a user’s text response, it is a good idea to convert the user’s answer using either
the lower operation (generally preferred) or the upper operation, before comparing their input. For example:

 >>> userAnswer = raw_input('Type OK if you want to continue: ')
 Type OK if you want to continue: OK
 >>> if userAnswer.lower() == 'ok':
 # user answered OK, do whatever you need to do to continue

 Another example is where you ask the user a yes-or-no question. Again, you cannot know in advance if
the user will type Yes, or yes, or yES, or even just the letter y. You can use two string operations to handle all
of these cases easily:

 >>> userInput = raw_input('Type yes to continue, no to quit: ')
 Type yes to continue, no to quit: yes
 >>> userInput = userInput.lower()
 >>> if userInput.startwith('y'):
 # user said yes, continue on with the program.

 In this example, we take whatever the user types and convert it to lowercase. Then, we only look at the
first character to see if the user’s answer starts with the letter y.

 Programming Challenge 3: Directory Style
 It’s time for the final programming challenge in this chapter. In this challenge, you ask the user to enter their name
in the normal first name/last name style. Your job is to convert the name to directory style. Here are the details:

 1. Ask the user to enter their name in the form <firstName><space><lastName>.

 2. Take the name that the user enters, and then find the index of the space.

 3. Given that index, break up the user’s string into a first name and a last name.

 4. Create a new string by reassembling the name to be shown in directory style:

 <lastName>,<space><lastName> and print it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

179

 Here is the solution:

 # First name last name, produce directory style:

 fullName = raw_input('Please enter your full name: ')
 indexOfSpace = fullName.index(' ')
 firstName = fullName[:indexOfSpace]
 lastName = fullName[indexOfSpace + 1:]
 print lastName + ', ' + firstName

 This one is fairly straightforward. The key is to find the index of the space. Once you find where the
space character is in the string, then you can use the slicing syntax to create a slice for the first name (starting
at the first character), and a slice for the last name (that goes through the last character).

 Often in programming, in order to eliminate potential errors where the program might crash, we use
“defensive coding” techniques to ensure that the user provided valid input. In this programming challenge,
our original solution assumed that the user entered a single space character in between the names. But what if
the user forgot to enter a space, or entered multiple spaces, or entered spaces at the beginning and/or ending
of the name? We can check for all of these cases without crashing. Here is another version of the code that has
some additional defensive coding to ensure that the program would not crash from these types of errors:

 # Read in first name last name, produce directory style with error detection

 while True:
 fullName = raw_input('Please enter your full name: ')
 fullName = fullName.strip() # remove any spaces before or after
 nSpaces = fullName.count(' ')
 if nSpaces == 1: # OK if there is a single space
 break
 print 'Please try again. Enter your name as first name, space, last name'
 print

 indexOfSpace = fullName.index(' ')

 firstName = fullName[:indexOfSpace]
 firstName = firstName[0].upper() + firstName[1:] # Force first letter to uppercase

 lastName = fullName[indexOfSpace + 1:]
 lastName = lastName[0].upper() + lastName[1:] # Force first letter to uppercase

 print lastName + ', ' + firstName

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ STRINGS

180

 In addition to checking for incorrect spacing, the code also makes sure that the first letter of the first and
last names are uppercased. The following is a sample run, first with an error, and then with the user entering
the name in all lowercase:

 >>>
 Please enter your full name: joeschmoe
 Please try again. Enter your name as first name, space, last name

 Please enter your full name: joe schmoe
 Schmoe, Joe
 >>>

 Summary
 In this chapter, you learned to think of a string as a list of characters. You saw how the len function, indexing,
and accessing characters in a string are identical to the way we use them in lists. You also learned that a for
loop can be used to iterate through all the characters of a string. A new concept of a substring, known as a
 slice in Python, can be created using a new bracketing syntax.

 You saw that the main difference between a string and a list is that a string is immutable (not
changeable) whereas lists are mutable (easily changeable). I introduced a number of built-in string
operations that can be used to manipulate string data.

 In the next two chapters, we continue our discussion of strings, and I give more examples of how strings
are used in real-world programs.

www.it-ebooks.info

http://www.it-ebooks.info/

181© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_9

 CHAPTER 9

 File Input/Output

 In every program that we have talked about so far, when the program ends, the computer forgets everything
that happened in the program. Every variable you created, every string you used, every Boolean, every
list-it’s all gone. But what if you want to keep some of the data that you generate in a program, and save
it for when you run the program later? Or, maybe you want to save some data so that a different program
could use the data that you generated.

 If you want to keep some information around between runs of a program, you need a way of having
what is called persistent data-you want the data to remain available on the computer. To do this, you need to
have the ability to write to and read from a file on the computer.

 This chapter discusses file input/output, often shortened to file I/O. The chapter covers the
following topics:

• Saving files on a computer

• Defining a path to a file

• Reading from and writing to a file

• File handle

• The Python os package

• Building reusable file I/O functions

• Example using our file I/O functions

• Importing our own modules

• Saving data to a file and reading it back

• Building an adding game

• Programming challenge 1

• Programming challenge 2

• Writing/reading one piece of data to and from a file

• Writing/reading multiple pieces of data to and from a file

• The join function

• The split function

• Final version of the adding game

• Writing and reading a line at a time with a file

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

182

• Example: multiple-choice test

• A compiled version of a module

 Saving Files on a Computer
 There are many examples of storing data in a file that you are already familiar with. Think about a word
processor or spreadsheet program. You create a document in your word processor or spreadsheet application,
you save it as a file on your computer, and then you quit the program. Later, you reopen the word processor or
spreadsheet program, reopen the saved file, and all the information you entered is brought back.

 In fact, the Python source files that you write work the same way. You open the Python IDLE editor and
create a Python source file (a document). As you edit your source code in IDLE, the content is kept in the
memory of the computer. When you save it, the content (which is really just a string of text) is written to a
file on the computer. You can then quit IDLE. Later, when you come back into IDLE and open the file, the
text of your program is read in and displayed. IDLE displays the text, character by character, across each line.
Whenever it finds an end-of-line character, it moves down to the first character of the next line. The content
is displayed for you and you can edit again. Whenever you save, the current version of your program is
written out to the file-again, as a long string of text.

 However, as I said at the start of this chapter, when we run a Python program, and then stop it or quit
IDLE, any data that we have manipulated in the program goes away. In order to save data, we need a way to
write data from a running program to a text file, and when we run the program again, be able to read that
data back into our program. Python allows programmers to easily write and read files of text. When dealing
with files that contain only text, the convention is to name such a file with a .txt extension.

 Defining a Path to a File
 When you want to read or write a text file, you must first identify which file you want to write to or read from.

 ■ Definition A path is a string that uniquely identifies a file on a computer. (It is sometimes called a filespec ,
which is short for file specification.)

 A path is a string. There are two different ways to specify a path: absolute and relative. An absolute path
is one that starts at the top of the file system on your computer and ends in the name of the file. For example,
an absolute path might look like this in Windows:

 C:/MyFolder/MySubFolder/MySubSubFolder/MyFile.txt

 Or it might look like this on a Mac:

 Macintosh HD:MyFolder:MySubFolder:MySubSubFolderMyFile:MyFile.txt

 However, one of the great things about Python is that it is designed to allow programmers to write
portable code, which can be used on different computers and on different operating systems. Because a path
on one computer may not match a path on another one, most code that uses absolute paths is not portable.

 Therefore, in this discussion, we will use relative paths. Instead of starting at the top of the file system on
your computer, a relative path starts in the folder that contains your Python source file. We say that the path
is relative to the location of the source file . That means that any file that we want to use or create resides either
in the same folder as your Python source file, or in a folder somewhere below that folder.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

183

 To see how this works, let’s assume a folder structure like the one shown in Figure 9-1 .

 In this example, we have an enclosing folder. In that folder, there is a Python source file named
 PythonSource.py and a text a file called MyDataFile.txt . In addition to these two files, there is also a folder
named MyFolder .

 Within MyFolder , there is another data file called SomeDataFile.txt and a folder called MySubFolder .
 Within MySubFolder , there is a data file called OtherDataFile.txt and a sub-subfolder.
 From the point of view of the PythonSource.py file, Figure 9-2 shows the relative paths to the three

different data files.

 Figure 9-1. Example contents of a folder

 Figure 9-2. Example contents of a folder with relative paths to text files

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

184

 In the simplest case, if you are running a Python program and you want to use a file in the same folder,
then the path for the data file is simply the name of the file as a string. In our example, if we were running
 PythonSource.py and we wanted to use the file MyDataFile.txt , we would specify the path as this string:

 'MyDataFile.txt'

 However, if you want to use a file that is inside a folder where the Python program lives, then you
specify the folder name, a slash (/), and then the file name-all as a string. From PythonSource.py , we get to
 SomeDataFile.txt by using this path:

 'MyFolder/SomeDataFile.txt'

 To go down two levels of folders and then find a file, specify the name of the first folder, followed by a
slash, and then the next subfolder, followed by a slash, and then the name of the file. The following is the
path to get to the OtherDataFile.txt file from PythonSource.py :

 'MyFolder/MySubFolder/OtherDataFile.txt'

 This can go on for any number of levels of subfolders. Just add a slash after every folder name,
eventually placing the name of the file at the end.

 ■ Tip The three most popular operating systems each use different characters as the folder separator
character. Windows uses the backslash character (\). Macintosh OS uses the colon character (:). Unix uses
the forward slash character (/). Whenever you need to specify a folder separator character in a path, as a
Python programmer you only use the forward slash character. Python changes this character to the appropriate
separator character for the operating system on which the program is running. Python does this for you “behind
your back.” In this way, relative paths specified in Python are platform independent. For example, this approach
allows you to build programs on a Mac, and have it run on Windows, and vice versa.

 Reading from and Writing to a File
 When you want to write to or read from a file, you first need tell the operating system that you want to open
the file for reading or writing. To read, you read the contents of the file into a string variable. To write, you
take the contents of a string variable and write that out to a file. When you are done reading or writing, you
close the file.

 Reading text from a file requires three steps:

 1. Open the file for reading.

 2. Read from the file (usually into a string variable).

 3. Close the file.

 Writing text to a file requires three similar steps:

 1. Open the file for writing.

 2. Write a string (usually from a string variable) to the file.

 3. Close the file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

185

 File Handle
 Notice that whenever you deal with a file, you first need to open the file. In all operating systems, when a
program opens a file, the operating system gives back a file handle . Rather than give you a formal definition
of what a file handle is, you should think of it like the illustration shown in Figure 9-3 .

 The bag in Figure 9-3 represents a file. Any time that you want to put something into the bag or take
something out of the bag, you have to grab the handle. Similarly, any time that you want to read from or write
to a file on your computer, you have to use the file handle that the operating system gives you when you open
the file. When you are done using the file, you have to close the file using the file handle; this is like releasing
the handle of the bag.

 The following is the core code needed to read from and write to a file. We will wind up “wrapping” this
code into functions for you to use. For now, just pay attention to the basic steps involved. Here is the code to
read from a file:

 fileHandle = open(filePath, 'r') # r for reading
 data = fileHandle.read() # read into a variable
 fileHandle.close()
 # text read in is now in the variable called data

 And here is the code needed to write text to a file:

 # text to be written is contained in the variable textToWrite
 fileHandle = open(filePath, 'w') # w for writing
 fileHandle.write(textToWrite) # write out text from a variable
 fileHandle.close()

 Notice filePath (which is a string) and fileHandle (which is returned by the call to open). We use that
file handle in the calls to read , write , and close .

 Figure 9-3. Think of a file on the computer as a bag with a handle

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

186

 Before attempting to read from a file, there is one more thing that you need to do. Obviously, you cannot
read from a file that doesn’t exist. Therefore, you need to check that the file that you want to read from
actually exists before you attempt to read from it.

 The Python os Package
 In the same way that the random module provides a great deal of code for dealing with random numbers,
there is a module that provides information about the operating system. It is called the os module. To use it,
you first import it:

 import os

 For now, we’re only interested in one operation; one that can tell us if a file exists. Here’s how to use it:

 exists = os.path.exists(filePath) #returns a boolean

 The call to os.path.exists returns True if the file exists, or False if the file does not exist.

 OS MODULE

 For anyone who is into Unix, or who wants to write the equivalent of shell scripts (for automation), the
 os module is extremely important. The os module allows you to do many Unix commands as Python
statements. Here are just a few of the things that the os module allows you to do:

• os.listdir : Generate a list containing the names of the entries in a directory (folder).

• os.mkdir : Make a directory (folder).

• os.rename : Rename a file.

• os.walk : Generate the names of files in a directory (folder).

• os.getcwd : Get the current working directory (folder).

• os.chmod : Change the mode of a path.

 For a complete listing and detailed information, check the official Python documentation at
 https://docs.python.org/2/library/os.html .

 Building Reusable File I/O Functions
 We now have enough information to build three very useful, highly reusable functions. We’ll build the
following:

• fileExists : Returns a Boolean to say if a file with a given path exists or not.

• writeFile : Takes a string of data and writes it to a file with a given path.

• readFile : Reads contents of a file and returns the contents to the caller.

www.it-ebooks.info

https://docs.python.org/2/library/os.html
http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

187

 Let’s start by creating a new Python source file named FileReadWrite.py . We’ll put the following code
into it:

 # FileReadWrite.py
 # Functions for checking if a file exists, read from a file, write to a file

 import os

 def fileExists(filePath):
 exists = os.path.exists(filePath)
 return exists

 def writeFile(filePath, textToWrite):
 fileHandle = open(filePath, 'w')
 fileHandle.write(textToWrite)
 fileHandle.close()

 def readFile(filePath):
 if not fileExists(filePath):
 print 'The file, ' + filePath + ' does not exist - cannot read it.'
 return ''

 fileHandle = open(filePath, 'r')
 data = fileHandle.read()
 fileHandle.close()
 return data

 These functions provide very nice “wrappers” for the functionality. For example, now that we have
written fileExists , we don’t need to remember the details of the os module, (i.e., that you have to
remember that you need to use os.path.exists). Instead, we have built a simple function with a nice clean
name of fileExists . We can reuse this function in any of our projects.

 writeFile is very easy to use. You pass it a file path to write to and a string, and it writes the string to the
file. If the file already exists, the older version of the file is completely overwritten by the new text.

 The readFile function is also very straightforward. You pass in a path to a file, it checks to ensure that
the file exists, and if so, does all the work to read all the text from the file, and then returns that text to the
caller. If the file does not exist, it prints an appropriate error message and returns the empty string to signify
that there was no text to read.

 Example Using Our File I/O Functions
 Let’s work through an example of writing to and reading from a file. We’ll start by selecting all the code that
we just built in FileReadWrite.py by using Command + A (Mac) or Control + A (Windows). Once all of it is
selected, copy the code. Now, open a new Python file. Paste the code into this new window. Save it with any
name that you wish (be sure that the name ends in .py). Let’s call this file TestFileIO.py .

 Now we’ll write some code to use these functions. The program we want to write will take a sample
string, write it out to a file, and read it back in. Add the following after the three functions that you pasted
into this file:

 # Previous code from FileReadWrite pasted here

 DATA_FILE_PATH = 'TestData.txt' # path to the file as a constant

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

188

 stringToWriteOutToFile = 'abcdefghijkl' # contents could be anything, this is just a test
 writeFile(DATA_FILE_PATH, stringToWriteOutToFile)

 stringReadInFromFile = readFile(DATA_FILE_PATH)
 print 'Read in: ', stringReadInFromFile

 When we save and run this program, we see this output in the Shell:

 >>>
 Read in: abcdefghijkl
 >>>

 What has happened here is that this code called our writeFile function to write out some text to a file.
Then we used the readFile function to read from the same file back in, and saved the text in a different variable.
Since we are using the same file path for reading and for writing, we specified the path to the file as a constant.

 After running the program, if we look in the folder where this Python source file resides, we now see that
a file named TestData.txt is present. Opening that text file in any text editor shows that the contents consist
of the string that we wrote out.

 Importing Our Own Modules
 We could certainly use this approach of copying and pasting these three functions into any program that
wants to perform any file I/O. However, consider what happens if we find a bug in our FileReadWrite.py
file, or if we want to add more functions to help read files in different ways. In either of these cases, we would
have to go back into every Python source file that incorporated these three functions, and modify the code
there to fix the bug and/or add functionality. There is a better way.

 You have seen how to use the import statement to make a built-in Python package available to our
program. For example, importing the random package is done with this statement:

 import random

 When we import a package this way, we have to explicitly specify the name of the package when we
make a call to a function in that package. For example, when we want to get a random number, we write this:

 value = random.randrange(0, 10)

 This is very clear. It says that inside the random package, we want to call the randrange function.
 In addition to being able to import built-in modules like the random and the os modules, we can use

the import statement to import our own Python files. If we are building a program where we need to
read from or write to a file, we can import our own FileReadWrite.py file. We can use the same import
statement like this:

 import FileReadWrite

 ■ Note An important thing to notice is that when you specify a <moduleName> to import, you do not specify
the .py extension. I explain why it is done this way at the end of this chapter. For now, remember to remove the
 .py extension when specifying a file to import.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

189

 After importing this way, you construct a line like this to write to a file:

 FileReadWrite.writeFile('SomeFilePathToWriteTo', 'some test string')

 However, there is another syntax available for the import statement. This alternative syntax allows you
to specifically name which function(s) and/or variable(s) to import. This is what it looks like:

 from <moduleName> import <functionOrVariableName>, <optionalFunctionOrVariableName>, ...

 If you use the from syntax, then when you make a call to a function, you do not specify the package
name, only the function name(s). The advantage is simplicity. For example, if you wanted to make a call to
 readFile , you would write this:

 from FileReadWrite import readFile

 data = readFile('SomePathToAFileToRead')

 The downside is twofold. First, if you import many source files this way, there is a chance of a name
conflict. That is, it is possible that your main program file and one or more of your imported modules have
a function or a variable that has the same name. (In that case, whichever one was used last overrides the
earlier one(s)). Second, if you import many modules, it may be confusing as to where a function name or a
variable name came from, since it could come from one of many different files.

 For the sizes of programs used in this book, neither of these should be considered a serious drawback.
Most Python programmers use the from syntax when importing their own modules.

 As an even simpler approach, you can tell Python to import an entire file of code using a line like this:

 from <moduleName> import *

 The asterisk (*) means bring in the entire contents of that file. For example, to import the
 FileReadWrite module and read a file, we would write this:

 from FileReadWrite import *

 data = readFile('SomePathToAFileToRead')

 Using this syntax essentially says to Python, “Bring in the full code of the FileReadWrite file as though
I had written that code right here,” (see Figure 9-4).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

190

 If you plan to use most of or all of the code from an external Python file, then you should simply use the
asterisk to bring in the entire file. The case where you should name the functions individually is when the
Python file you are importing is extremely large and you are only using a small number of functions.

 For our purposes, using the asterisk syntax is fine and ensures that all functions in the external Python
file are available to our code.

 Building and using external Python files this way allows programmers to split up large programs into a
number of files. Having the ability to import these types of Python source files allows you to build up files of
reusable code and incorporate this code into multiple programs. Further, finding and fixing a bug in a file
like this fixes the bug in every program that imports the file.

 Saving Data to a File and Reading It Back
 Now that we have built our three reusable functions in an external file, we can now build a sample main
program. Our goal is to write a program that counts the number of times it has run. To implement this,
the program reads a data file that contains the number of times the program has been run. Every time the
program runs, it should read the file, add 1 to the number, and then rewrite the file.

 Immediately, we run into a problem: the first time that we run the program, there is no file. So, we need
to check for the existence of the file right from the outset. Let’s first write the approach as pseudocode:

 If the file does not exist
 Write a file with a 1 in it
 Otherwise
 Read the content of the file into a variable
 Add 1 to the variable
 Write out the value of the variable to a file

 When we feel that our approach solves the problem, we turn the pseudocode into a real Python
program. We’ll take advantage of the three reusable functions that we already built: fileExists , readFile ,
and writeFile . To make things clear, let’s use a constant for the file path.

 Figure 9-4. Using the from statement to import contents of another file

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

191

 # Increment test

 from FileReadWrite import *

 # Here is a constant - the name of the data file that we will use throughout
 DATA_FILE_PATH = 'CountData.txt'

 # Main program - reads from file, increments a counter, writes to file

 if not fileExists(DATA_FILE_PATH):
 # The file was not found, this is the first time we are running the program
 print 'First time - creating the data file.' # for testing
 writeFile(DATA_FILE_PATH, '1')

 else:
 # The file was found. We have run this program before
 count = readFile(DATA_FILE_PATH)
 print 'Found the file, data read was: ', count # for testing
 count = int(count)
 count = count + 1
 textToWrite = str(count)
 writeFile(DATA_FILE_PATH, textToWrite)

 print 'This was run number:', count

 Since we already have our reusable functions in FileReadWrite.py , we first use an import statement to
bring in the code of the three functions that are found in that file.

 Now let’s walk through the logic of the program. The first time the program runs, the data file does not
exist. So, we explicitly write out the string '1' to our external data file.

 Every subsequent time we run the program, the file does exist, and the else clause will run. In the
code of the else block, we read in the contents of the file (which is just a number, as text), we convert what
we read into an integer, and then increment it to add one to the number of times we have run the program.
Finally, we convert the number back to a string and we write out the new value to the file.

 Here is the output of several runs of the program:

 >>>
 First time - creating the data file.
 This was run number: 1
 >>> ================================ RESTART ================================
 >>>
 Found the file, data read was: 1
 This was run number: 2
 >>> ================================ RESTART ================================
 >>>
 Found the file, data read was: 2
 This was run number: 3
 >>> ================================ RESTART ================================
 >>>
 Found the file, data read was: 3
 This was run number: 4
 >>> ================================ RESTART ================================

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

192

 >>>
 Found the file, data read was: 4
 This was run number: 5

 As you can see from the output, the code following the if ran the first time that the program ran. In
every subsequent run, the code following the else ran because the program found the data file.

 Building an Adding Game
 Next, we’ll take these concepts and use them in a real program. To make the core program clear, we’ll build
a simple adding game for kids. Rather than building a large game in one shot, we’ll split it up into four
versions, adding complexity as we go.

 Let’s start by building the core part of the game, where we ask the user to add two integers and then see
if the user answers correctly. Then we’ll expand the program to allow for any number of questions and we’ll
keep score. Next, we’ll expand it further to write out the score when we exit the program, and then read the
score back in when we start up the program again. Finally, we’ll modify the program yet again to write out
and read back in several pieces of information about the game.

 You write the first version of the game as a programming challenge.

 Programming Challenge 1
 Build a simple adding game. These are the details:

 1. Allow the program to choose two random integers, each between 0 and 10.

 2. Build and pose an addition question for the user, using the form:

 What is <num1> + <num2>?

 3. Compare the user’s answer to the correct answer.

 4. Give feedback: correct or incorrect (if incorrect, show the correct answer).

 Here is the output of two sample runs of the program:

 >>>
 What is: 10 + 3? 13
 Yes, you got it!
 >>>

 >>>
 What is: 10 + 5? 14
 No, sorry, the correct answer was: 15
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

193

 Your code should look something like this:

 # Adding game version 1

 import random

 firstNumber = random.randrange(0, 11)
 secondNumber = random.randrange(0, 11)
 correctAnswer = firstNumber + secondNumber

 question = 'What is: ' + str(firstNumber) + ' + ' + str(secondNumber) + '? '
 userAnswer = raw_input(question)
 userAnswer = int(userAnswer)

 if userAnswer == correctAnswer:
 print 'Yes, you got it!'

 else:
 print 'No, sorry, the correct answer was: ', correctAnswer

 The key to this program is generating two random numbers within the appropriate range, and adding
them together so that you know what the correct answer should be. Then you ask the user for their answer.
Finally, you compare the correct answer to the user’s answer and give appropriate feedback.

 Programming Challenge 2
 Once you have the first challenge code running correctly, the next steps are to modify the code to allow the
program to run in a loop and to keep score. The details are as follows:

 1. Add a score counter (start at zero).

 2. Add a loop (to ask multiple questions).

 3. If the user presses Return/Enter, then exit loop.

 4. If the user answers correctly, add 2 points to score.

 5. Otherwise, for an incorrect answer, subtract 1 point from score.

 6. Print the score.

 7. When the user chooses to leave the program, say goodbye.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

194

 Here is the output of a sample run of this version of the program:

 What is: 7 + 6? 13
 Yes, you got it!
 Your current score is: 2

 What is: 1 + 4? 5
 Yes, you got it!
 Your current score is: 4

 What is: 4 + 1? 5
 Yes, you got it!
 Your current score is: 6

 What is: 10 + 1? 11
 Yes, you got it!
 Your current score is: 8

 What is: 3 + 8? 9
 No, sorry, the correct answer was: 11
 Your current score is: 7

 What is: 5 + 0?
 Thanks for playing
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

195

 This is the solution to the challenge:

 # Adding game version 2

 import random

 score = 0

 # Main loop
 while True:
 firstNumber = random.randrange(0, 11)
 secondNumber = random.randrange(0, 11)
 correctAnswer = firstNumber + secondNumber

 question = 'What is: ' + str(firstNumber) + ' + ' + str(secondNumber) + '? '
 userAnswer = raw_input(question)
 if userAnswer == '':
 break # user wants to quit

 userAnswer = int(userAnswer)

 if userAnswer == correctAnswer:
 print 'Yes, you got it!'
 score = score + 2

 else:
 print 'No, sorry, the correct answer was: ', correctAnswer
 score = score - 1

 print 'Your current score is: ', score
 print

 print 'Thanks for playing'

 In this version, the changes are relatively small. We kept score (using a variable called score) by adding
two points for each correct answer and subtracting one if an answer was incorrect. The important change
was to put the main portion of the code in a while loop so that the user had as many addition questions as
they wanted. We also checked for no answer (the empty string), which is the indication that the user wanted
to quit the game.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

196

 Writing/Reading One Piece of Data to and from a File
 In the next version of the game, let’s add the ability to have persistent data by modifying the program so that
when the user quits the program, the code writes out the score to a file. When the user chooses to start the
program again, the score is read in from the file, and the program starts up using the previous score.

 I’ll present the code of this version, as follows, and then I’ll explain the changes.

 # Adding game version 3
 # Save only the score

 import random
 from FileReadWrite import * # means import everything as though it were typed here

 DATA_FILE_PATH = 'GameData.txt'

 # Start up code
 if not fileExists(DATA_FILE_PATH):
 score = 0
 print 'Hi, and welcome to the adding game.'
 else:
 score = readFile(DATA_FILE_PATH)
 score = int(score)
 print 'Welcome back. Your saved score is:', score

 # Main loop

 while True:
 firstNumber = random.randrange(0, 11)
 secondNumber = random.randrange(0, 11)
 correctAnswer = firstNumber + secondNumber

 question = 'What is: ' + str(firstNumber) + ' + ' + str(secondNumber) + '? '
 userAnswer = raw_input(question)
 if userAnswer == '':
 break

 userAnswer = int(userAnswer)

 if userAnswer == correctAnswer:
 print 'Yes, you got it!'
 score = score + 2

 else:
 print 'No, sorry, the correct answer was: ', correctAnswer
 score = score - 1

 print 'Your current score is: ', score
 print

 writeFile(DATA_FILE_PATH, str(score))
 print 'Thanks for playing'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

197

 In this version, the key changes are at the beginning and at the end of the program. The first thing we do
in this program is bring in the code that we developed earlier, which allows us to do file I/O. We import the
code using this line:

 from FileReadWrite import *

 This gives us access to the previously written fileExists , readFile , and writeFile functions. In order
for this import to work correctly, the source file that we are developing and the FileReadWrite.py file must
be in the same folder.

 Next, we define a constant for our file path. Any file name will work, so let’s choose the very clear name
of GameData.txt . Since the content is string data, we choose to use an .txt extension, meaning that it is
filled with only text.

 When the program starts, similar to our earlier IncrementTest program, we check for the existence
(actually, the non-existence) of our data file. If the data file does not exist, then we know that this is the first
time that we are running the program. In that case, we welcome the user to our game, and we set our score
variable to 0. However, if we find that the file does exist, we read the contents of the file into our score variable.
Data read from a text file comes in as text in the same way that raw_input produces text. Therefore, we have to
convert the score to an integer. Then we welcome the user back to the game and tell them their previous score.

 The central part of the code is identical. The user plays as many rounds as they wish. When the user is
ready to quit the program, we take the current score and write it out to the data file. Finally, we thank the
user for playing.

 The data file is created (or updated) in the same folder as the source file and the FileReadWrite.py file.
You can easily open it and view the contents with any text editor. When we look at the content of the file after
playing any number of rounds, all we see is a text version of the most recent score. If you write to a file that
already exists (any run after the first run), the previous contents of the file are overwritten.

 Writing/Reading Multiple Pieces of Data to and from a File
 In the final version of the game, we’ll want to keep track of, write out, and read back four pieces of
information:

• user name

• score

• number of problems tried

• number of problems answered correctly

 To write out and read back multiple pieces of information, we need two more built-in functions:
 split and join .

 The join Function
 Let’s start with the join function. The data that we want to write to a file must be one long text string. If we
want to write out multiple pieces of data, we need to build a string that incorporates of all of them. We’ll do
this in two steps:

 1. Take all data that we want to save (converting any numbers to string versions)
and then create a list containing the data.

 2. Combine the list into a string.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

198

 The purpose of the join function is to take a list (of strings) and concatenate all elements to create
a single long string. In the resulting string, each piece of original data is separated by a character of your
choice. The comma is the most typical character used to separate this type of data. join is a string operation,
but it has an odd syntax. It is most often used in an assignment statement, like this:

 <string> = <separatorCharacter>.join(<list>)

 join takes the list (of strings) and creates a new string by concatenating all the elements of the list,
separated by the given separator character. Here is an example:

 >>> myList = ['abc', 'de', '123', 'fghi', '-3.21']
 >>>
 >>> # Use a comma as a separator character
 >>> myString = ','.join(myList)
 >>>
 >>> print myString
 abc,de,123,fghi,-3.21
 >>>

 Here you can see that the join function has taken a list of string data and created a single
comma-separated string.

 The split Function
 The other built-in function is the split function, which takes a string and splits it at every point where
it finds a given separator character, into multiple pieces of data in a list. split is typically used in an
assignment statement, like this:

 <list> = <string>.split(<separatorChar>)

 Here is an example:

 >>>
 >>> myString = 'abc,de,123,fghi,-3.21'
 >>>
 >>> myList = myString.split(',')
 >>>
 >>> print myList
 ['abc', 'de', '123', 'fghi', '-3.21']
 >>>

 Since split is an operation on a string, we can use it after we read in data from a file, and separate out
the individual pieces of data that were used to make up the string when the file was written.

 Because of the syntax, split and join are both considered string operations. join operates on a
separator character, whereas split operates on a string to be broken apart. However, these operations
perform complimentary or opposite actions. Think of it like this: join is passed a list and produces a string,
but split takes a string and produces a list. join is often used for writing out to a file, whereas split is often
used for reading data in from a file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

199

 Final Version of the Adding Game
 Now, in addition to remembering the score, let’s modify the game further by keeping track of three more
pieces of data. The first time we play the game, we’ll ask for and remember the user’s name. We’ll also
remember the number of problems that the user has seen and the number of problems that the user has
answered correctly.

 To keep track of this additional information, we’ll add three more variables: userName , nProblems , and
 nCorrect . When the user chooses to quit the program (by just pressing Return or Enter), we’ll add some
code to write the information we want to remember out to a file. As a format for the content of the file, we’ll
use the following:

 <name>,<score>,<nProblems>,<nCorrect>

 For example, after playing the game once and answering 14 out of 15 questions correctly, the file for our
user, whose name is Joe Schmoe, looks like this:

 Joe Schmoe,27,15,14

 Here is the code of the final version that implements these changes. The modifications are significant,
but everything should be understandable:

 # Adding Game version 4
 # Saving lots of data

 import random
 from FileReadWrite import * # means import everything as though it were typed here

 DATA_FILE_PATH = 'AddingGameData.txt'

 # Main program starts here

 if not fileExists(DATA_FILE_PATH):
 userName = raw_input('You must be new here, please enter your name: ')
 score = 0
 nProblems = 0
 nCorrect = 0

 print 'To quit the game, press RETURN/ENTER and your info will be saved'
 print 'OK', userName, "let's get started ..."
 print

 else:
 savedDataString = readFile(DATA_FILE_PATH) #read the whole file into a variable
 savedDataList = savedDataString.split(',') # turn that into a list
 userName = savedDataList[0]
 score = savedDataList[1]
 score = int(score)
 nProblems = savedDataList[2]
 nProblems = int(nProblems)
 nCorrect = int(savedDataList[3]) # can do both in a combined step

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

200

 print 'Welcome back', userName, 'nice to see you again! '
 print 'Your current score is: ', score
 print

 # Main loop

 while True:
 firstNumber = random.randrange(0, 11)
 secondNumber = random.randrange(0, 11)
 correctAnswer = firstNumber + secondNumber

 question = 'What is: ' + str(firstNumber) + ' + ' + str(secondNumber) + '? '
 userAnswer = raw_input(question)
 if userAnswer == '':
 break

 userAnswer = int(userAnswer)
 nProblems = nProblems + 1

 if userAnswer == correctAnswer:
 print 'Yes, you got it!'
 score = score + 2
 nCorrect = nCorrect + 1

 else:
 print 'No, sorry, the correct answer was: ', correctAnswer
 score = score - 1

 print 'Your current score is: ', score
 print

 print 'Thanks for playing'
 print
 print 'You have tried', nProblems, 'problems and you have correctly answered', nCorrect

 # Make a list of the useruserName, userScore, nProblems, nCorrect then
 # create a string from that using join
 dataList = [userName, str(score), str(nProblems), str(nCorrect)]
 outputText = ','.join(dataList)

 writeFile(DATA_FILE_PATH, outputText)

 We chose to use a different file path from the previous version since this version writes out different data.
 Just like the previous version, we start by checking to see if our data file exists. If it does not exist, we

conclude that this is the first time that the user is playing the game. If the file does exist, we assume that the
user has played the game before and we need to read in the data from the file.

 If this is the first time playing the game, we give a greeting to the user, ask them their name, and
initialize the variables score , nProblems , and nCorrect , all to zero.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

201

 However, if the user has played the game before, we read the contents of the file using the readFile
function that we developed earlier, and use the split function on the data that we read in. This generates a
list. In the list that is created, we know that element 0 contains the user’s name, element 1 contains the score,
element 2 contains the number of problems, and element 3 contains the number of problems answered
correctly. We extract these pieces of information from the list and store them into the same three variables.
Finally, we print out some messages to welcome the user back and tell them their current score.

 The central part of the game is nearly identical, except that we have added code to increment the
number of problems asked and to increment the number of problems answered correctly.

 When the user chooses to quit the program, we tell them the number of problems that they have seen
and the number that they answered correctly. Then we take the data that we want to save, build a list out of
it (while ensuring that each piece of information is converted to a string), and then use the join function
to turn that list into one comma-separated string. Finally, we write that string out to the data file using the
 writeFile function that we developed earlier.

 While this program was set up to write out and read in four pieces of data, you can use these same
techniques to write out, and later read back in, any number of pieces of data.

 Writing and Reading a Line at a Time with a File
 In the code that we have developed so far, you have seen how to write a text file from a single variable, or read
a text file into a single variable. However, there are times where we want to write data to a file a line at a time,
or read data from a file a line at a time. Here are five more small functions that should be added to the bottom
of the earlier file, FileReadWrite.py . These additional functions allow us to write and read files this way.

 # (Earlier code for fileExists, writeFile, readFile)
 #
 # Functions for opening a file, writing & reading a line at a time, and closing the file

 def openFileForWriting(filePath):
 fileHandle = open(filePath, 'w')
 return fileHandle

 def writeALine(fileHandle, lineToWrite):
 # Add a newline character '\n' at the end and write the line
 lineToWrite = lineToWrite + '\n'
 fileHandle.write(lineToWrite)

 def openFileForReading(filePath):
 if not fileExists(filePath):
 print 'The file, ' + filePath + ' does not exist - cannot read it.'
 return ''

 fileHandle = open(filePath, 'r')
 return fileHandle

 def readALine(fileHandle):
 theLine = fileHandle.readline()

 # This is a special check for attempting to read past the end of the file.
 # If this occurs, let's return something unusual: False (which is not a string)
 # If the caller wishes to check, their code can easily detect the end of the file this way

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

202

 if not theLine:
 return False

 # If the line ends with a newline character '\n', then strip that off the end
 if theLine.endswith('\n'):
 theLine = theLine.rstrip('\n')

 return theLine

 def closeFile(fileHandle):
 fileHandle.close()

 Here is the basic idea of how to use these functions. If you have a case where you want to write data one
line at a time, you have to follow the same three steps outlined earlier: open the file, write to the file, and
close the file. Rather than doing the three steps in a single call (as we did with writeFile), here we use three
separate functions to implement the three steps:

• openFileForWriting : Opens the file for writing.

• writeALine : Call this as many times as you want to; each call writes a line of text.

• closeFile : Closes the file.

 Feel free to read the code of these three functions, but once you know that they work correctly, you
do not need to remember the details of the implementation. By adding these functions to the earlier
 FileReadWrite.py file, these functions become part of your reusable library. As discussed earlier in the
chapter, to make these functions available in your Python source file, you import the FileReadWrite package
using this line:

 from FileReadWrite import *

 Let’s look at an example of how you might use these new functions. In the following code, we will write
three lines of text to a file named MultiLineData.txt . The FileReadWrite.py file must be in the same folder
as our source file since it is imported into the source file.

 # Write multiple lines of text to a file

 from FileReadWrite import *

 DATA_FILE_PATH = 'MultiLineData.txt'

 myFileHandle = openFileForWriting(DATA_FILE_PATH)

 data1 = 'Here is some data as a string'
 writeALine(myFileHandle, data1)
 data2 = 'Here is a second line of string data'
 writeALine(myFileHandle, data2)

 # Could have some code join several pieces of data into a single string
 data3 = '123,Joe Schmoe,123.45,0'
 writeALine(myFileHandle, data3)

 closeFile(myFileHandle)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

203

 The code should be very clear. We open the file for writing, write three lines of text, and then close the
file. The key to using these functions is that the call to open the file returns a file handle. You then use this
file handle in every call to writeALine . When you are done writing, you close the file with a call to closeFile
passing in the file handle. Running this program creates a text file (in the same folder as the program) called
 MultiLineData.txt , whose contents are as follows:

 Here is some data as a string
 Here is a second line of string data
 123,Joe Schmoe,123.45,0

 If we have a file such as this MultiLineData.txt and we want to read it into our program, we perform
very similar steps: open the file for reading, read the data, close the file. We use calls to the following
functions to read in the data:

• openFileForReading : Opens the file for reading.

• readALine : Call this as many times as you need to; each call reads in a line of text.

• closeFile : Closes the file.

 To read in the data that was previously written out to our MultiLineData.txt file, we could have a
program like this:

 # Read in multiple lines of text

 DATA_FILE_PATH = 'MultiLineData.txt'

 myFileHandle = openFile(DATA_FILE_PATH)

 data1 = readALine(myFileHandle)
 print data1
 data2 = readALine(myFileHandle)
 print data2
 data3 = readALine(myFileHandle)
 print data3
 # Could add code to split data3 into several different pieces of data

 closeFile(myFileHandle)

 Again, the key concept is the file handle that is generated by a call to openFileForReading . We use this file
handle in every call to readALine . When we are finished reading, we call closeFile , passing in the file handle.

 Having all of these functions bundled into a separate file (FileReadWrite.py) makes for a nice reusable
package. We only need to know the names of the functions and what data each one needs to be passed.

 Example: Multiple Choice Test
 Let’s put many of these concepts together and build a useful example program. We’ll create a program that
allows the user to take a multiple-choice test. The interesting thing about the program is that we’ll write it in
a way that it can be used to pose any number of questions on any topic.

 ■ Definition Content independence is a program’s ability to use data that is not built into the program.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

204

 We will build our multiple-choice test program in a content-independent way by having the questions
and answers in an external text file. If we define and use a clear layout for this text file, the program can be
used as a generic “engine” that runs through any number of questions on any topic.

 We’ll first make the decision that each multiple-choice question has four possible answers. We’ll define
a layout for our questions file, like this:

 <Test title line>
 <Number of questions>
 <Question 1>
 <Correct answer for question 1>
 <Incorrect answer 1 for question 1>
 <incorrect answer 2 for question 1>
 <Incorrect answer 3 for question 1>
 <Question 2>
 <Correct answer for question 2>
 <Incorrect answer 1 for question 2>
 <incorrect answer 2 for question 2>
 <Incorrect answer 3 for question 2>
 ...
 <Question n>
 <Correct answer for question n>
 <Incorrect answer 1 for question n>
 <incorrect answer 2 for question n>
 <Incorrect answer 3 for question n>

 In this layout, the first line of the file is a title line that will be presented to the user. The second line
contains a text version of an integer that will tell us how many questions there are in the test.

 After that, each question is made up of a grouping of five lines. The first line of each group is the question
itself. After that is the correct answer to the question. Then there are three incorrect or “distracter” answers.

 Here is a sample test file with four questions:

 Stupid answers quiz
 4
 What color was Washington's white horse?
 White
 Blue
 Red
 Beige
 How many green Chinese pots are there in a dozen?
 12
 1
 10
 -6
 What is the state song of Alabama?
 Alabama
 New Jersey is the place for me
 My home is in Australia
 I like monkeys
 What is the first verb in the Pledge of Allegiance?
 pledge
 I
 allegiance
 snorkel

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

205

 For each question, the program reads in five lines, poses the question, randomizes the answers, and
presents the randomized answers. It waits for a user response, checks to see if the user got the question
correct or not, and gives appropriate correct or incorrect feedback.

 During the test, the program keeps and presents a running score. At the end of the test, the program
calculates the percentage correct.

 Here is the code for the multiple-choice test program:

 # Multiple choice test

 import random
 from FileReadWrite import *

 FILE_PATH = 'MultipleChoiceQuestions.txt'
 LETTERS_LIST = ['a', 'b', 'c', 'd']

 # Open the file for reading, read in the title line
 fileHandle = openFileForReading(FILE_PATH)
 titleText = readALine(fileHandle)

 # Find out how many questions there will be
 nQuestions = readALine(fileHandle)
 nQuestions = int(nQuestions)

 print 'Welcome! This test is:'
 print
 print titleText # print whatever title we got from the file
 print
 print 'There will be', nQuestions, 'questions.'
 print
 print "Let's go ..."
 print

 score = 0
 # Each time through the loop, handle a single question
 for questionNumber in range(0, nQuestions):
 questionText = readALine(fileHandle) # read a line of a question

 answers =[]
 for i in range(0, 4):
 thisAnswer = readALine(fileHandle) # read each answer
 answers.append(thisAnswer)

 correctAnswer = answers[0] # save away the correct answer
 random.shuffle(answers) # randomize the 4 answers
 indexOfCorrectAnswer = answers.index(correctAnswer) # see where the correct answer is

 # present the question and the four randomized answers
 print
 print str(questionNumber + 1) +'. ' + questionText #ask question
 for index in range(0, 4):
 thisLetter = LETTERS_LIST [index]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

206

 thisAnswer = answers[index]
 thisAnswerLine = '' + thisLetter + ') ' + thisAnswer
 print thisAnswerLine

 print

 # Ensure that the user enters a valid letter answer
 while True:
 userAnswer = raw_input('Your answer (a, b, c, or d): ')
 userAnswer = userAnswer.lower() # convert usersAnswer to lowercase
 if userAnswer in LETTERS_LIST: # valid answer
 break
 else: # invalid answer
 print 'Please enter a, b, c, or d'

 # Find the index associated with the user's answer
 # The following maps a to 0, b to 1, c to 2, d to 3
 indexOfUsersAnswer = LETTERS_LIST.index(userAnswer)

 # Give feedback
 if indexOfCorrectAnswer == indexOfUsersAnswer:
 score = score + 1
 print 'Correct!'
 else:
 print "Sorry, that's not it."
 correctLetter = LETTERS_LIST[indexOfCorrectAnswer]
 print 'The correct answer was: ', correctLetter + ') ' + correctAnswer

 print
 print 'Your score is:', score

 # Done, show the percent correct and close the file
 pctCorrect = (score * 100.)/ nQuestions
 print
 print 'All done! You got:', str(pctCorrect) + '% correct'

 closeFile(fileHandle)

 I won’t go into all the details of this program since it is well commented. The only tricky part is finding
the index of the correct answer and matching it up to the index of the answer that the user chose. We use the
built-in list index operation to find the index of where the correct answer wound up in our randomized list.
We also use the index operation to map the user’s letter answer (a, b, c, or d) into an index (0, 1, 2, 3). We
compare the user’s choice index to the correct index to see if the user answered the question correctly. When
we run the program, the output looks like this:

 >>>
 Welcome! This test is:

 Stupid answers quiz

 There will be 4 questions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

207

 Let's go ...

 1. What color was Washington's white horse?
 a) Red
 b) White
 c) Blue
 d) Beige

 Your answer (a, b, c, or d): b
 Correct!

 Your score is: 1

 2. How many green Chinese pots are there in a dozen?
 a) 10
 b) -6
 c) 1
 d) 12

 Your answer (a, b, c, or d): d
 Correct!

 Your score is: 2

 3. What is the state song of Alabama?
 a) New Jersey is the place for me
 b) I like monkeys
 c) Alabama
 d) My home is in Australia

 Your answer (a, b, c, or d): c
 Correct!

 Your score is: 3

 4. What is the first verb in the Pledge of Allegiance?
 a) snorkel
 b) allegiance
 c) pledge
 d) I

 Your answer (a, b, c, or d): a
 Sorry, that's not it.
 The correct answer was: c) pledge

 Your score is: 3

 All done! You got: 75.0% correct
 >>>

 The ability to put data (such as the question data for this program) in an external file is a very powerful
technique. Content-independent programs like this can have very wide applicability.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ FILE INPUT/OUTPUT

208

 A Compiled Version of a Module
 If you have run a program that imports the FileReadWrite module that we built in this chapter, you might
notice that in the same folder, there is now a file named FileReadWrite.pyc . I’ll explain what this is.

 Earlier I said that when you run a Python program, the Python compiler reads your code and “compiles”
it into a simpler form called bytecode . The bytecode version is what actually runs on the computer.
Whenever a program imports another Python file, the imported file must also be compiled. To simplify, let’s
say that we have a program called A.py that imports B (from the Python source file B.py). In this case, both
 A.py and B.py must be compiled. Python does this in a very smart way. Since you are typically editing A.py
before your run, it makes sense to recompile that file every time you run. But most of the time, B.py does
not change. Therefore, when Python sees a statement to import B, it checks to see if B.pyc exists. If that file
does not exist, it compiles B.py and produces a compiled bytecode version named B.pyc . The . pyc extension
stands for “Python compiled.” The next time you go to run your A.py program, Python sees the B.pyc file
and uses that version of B since it has already been compiled. This results in faster compile times (the time
between when you say “Run,” and when the program actually starts to run).

 If you make a change to B.py , then Python must recompile that file and produce a new B.pyc . The way
it knows when to do this is simple and clever. Whenever Python finds an import statement asking to import
a module, it checks to see if there is a related .pyc file. If there is, then it compares the last edited date/time
of the .py file against the last edited date/time of the .pyc file. If the date/time of the .py file is after the date/
time of the related .pyc file, it knows that the source file has been changed and it must recompile the .py file
to produce a new .pyc file.

 When you write a program that imports FileReadWrite.py , Python generates FileReadWrite.pyc . This
is a compiled bytecode of the FileReadWrite.py source file. Now it should be clearer that when you write
an import statement, you only specify a module name (e.g., FileReadWrite) and leave off the file extension.
Python takes the module name that you specify and generates file names with a .py or a .pyc extension, and
determines what it needs to do.

 Summary
 In this chapter, you learned how to write to and read from a file. To use a file, you must first identify the file
that you wish to use by specifying its path as a string. Reading from or writing to a file involves three steps:
open the file, read from or write to it, and close the file. Whenever you programmatically open a file, the
operating system gives you back a file handle that you use in subsequent calls to write or read data. When
you are finished, you must close the file, again using the file handle. You saw that Python’s built-in os
package contains many useful operating systems functions.

 We then built a set of three reusable functions: fileExists , writeFile , and readFile . Given these
functions, we built a small example that used those functions to write a string of text to a file and read it back
in. However, to make the functions truly reusable, we learned how to keep the functions in a separate Python
source file and use the import statement to bring an external file into our code.

 We then built four versions of a simple children’s adding program. The final version was able to save its state
by writing out and reading back multiple pieces of data used by the program. This allowed the program to pick up
right where the user left off. Internally, we used two new functions: join (to combine the data into a single string
before writing to a file) and split (to read back the data from the file and break it up into the original data).

 Our final topic on file I/O was the ability to read and write a line of data at a time with a file. While we still
must use the same three steps of opening a file, reading or writing, and closing the file, we built a set of functions
for these three steps. You saw how to use the file handle provided when you open the file in subsequent calls to
read a single line of data or write a single line of data, and then to close the file. This technique allows us to read
and write large quantities of data using text files. I provided an example of building a generic multiple-choice
testing program that is completely content independent by moving the data into a text file.

 Lastly, we discussed how Python creates a compiled version of a Python module that is imported into
other Python source files.

www.it-ebooks.info

http://www.it-ebooks.info/

209© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_10

 CHAPTER 10

 Internet Data

 In the previous two chapters, we discussed different ways to get and manipulate strings. This is our third
chapter on strings. Earlier, I talked about how a program can get text input from the user by using a call to
 raw_input . In the previous chapter, I showed how a program could get data from and save data to a file. But
there is another place where programs can get text data from: the Internet!

 This chapter discusses the following topics:

• Request/response model

• Requests with values

• Example URL: getting a stock price

• Pretending to be a browser

• API

• Example program to get stock price information using an API

• Example program to get exchange rate information

• Example program to get Powerball information

• API key

• URL encoding

 Request/Response Model
 When you use a browser to go to a web site, you enter a URL (which stands for Universal Resource Locator),
you press Enter or Return, and soon you see a nicely formatted web page. I’ll explain what happens behind
the scenes when you use a browser this way (see Figure 10-1).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

210

 When you use any browser on any device (computer, tablet, phone, etc.) to go to a site, the system that
you are using is called the client and the computer that hosts the site is called the server . After typing a URL,
when you press Enter or Return, the browser on the client makes a query called a request across the Internet.
Assuming that the URL is well formatted, the request is sent to the appropriate server of the site given in the
URL. The browser running on the client then waits for an answer to the query.

 Having received the request, the server does whatever it needs to do to answer the request. In the case
of a typical request to display a web page, it prepares and formats its answer. The answer is known as a
 response (see Figure 10-2).

 Figure 10-1. Client computer making a request to a server

 Figure 10-2. Server sending back a response to a client computer

 The response is made up of text, formatted in a language called HTML (HyperText Markup Language).
Additionally, the response can contain other data, such as pictures, sounds, videos, etc. For this discussion,
we’ll concentrate only on the HTML portion of the response. When the response is ready, it is sent back from
the server to the client’s browser.

 The browser reads through the returned HTML, formats the resulting page, and shows the page in the
browser window.

 This sequence is commonly known as the request/response model . The key thing to realize here is that
the browser sends a string (the request URL) to the server and then receives a string (the response HTML)
from the server.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

211

 If you think about what the browser is doing, the steps are very similar to the way we make a function
call. The main difference is that instead of calling a function in its own program, or a built-in function in
its own language, the action of the browser making a request is like making a function call, but across the
Internet. Similar to what happens when you make a call to a function in Python where the caller waits until
the function is finished, the browser waits until the server returns a response.

 Request with Values
 Expanding on this idea of request/response being like a function call, it would make the model more
complete if we could pass data with a request, just as we pass values when we make a call to a Python
function. It turns out that you can do exactly that. However, passing data with a URL has a different
syntax than the way we do it in Python. The reason for this difference is that requests over the Internet are
independent of the programming language. When passing data with a URL, there has to be a very general
syntax. That syntax looks like this:

 http://<URL>?<parameterName1>=<value1>&<parameterName2>=<value2> etc.

 At the end of the URL, you add a question mark to indicate that more information is coming. Following
the question mark, you build any number of sequences of the form parameterName=value (with no spaces).
Each grouping is commonly known as a name/value pair . After the first name/value pair, additional
 parameterName=value pairs must be separated by an ampersand character (&). This syntax is different
from how we make a call in Python where we pass an argument simply as a variable or a value. With a
URL request, you must supply the exact name of each parameter that the site expects. The names of these
parameters are typically given in the documentation of the URL. Each value to be passed must be a string
but without quotes, since the entire URL is specified as one long string. Some typical name/value pairs in a
URL could look like this:

 ?firstname=Joe&lastname=Schmoe&age=36

 These name/value pairs say that for the firstname parameter, use a value of Joe ; for the lastname
parameter, use a value of Schmoe ; and for the age parameter, use a value of 36.

 Example URL: Getting a Stock Price
 I’ll give an example of a request where we pass in a value as a parameter to a real site. Suppose you want to
find out the current stock price of a company. First, you have to know the stock symbol. (If you don’t know
a company’s stock symbol, you can find it by using a search engine and entering “stock symbol for xxx”,
where xxx is the name of the company.) Let’s say you wanted to find the price of Apple stock, whose symbol
is AAPL. Then you have to know a web site that gives you stock prices for any given symbol. Google has a
financial site that does just this. Try this address in a browser:

 www.google.com/finance?q=aapl

 Following the name of the site is a question mark indicating that there will be one or more parameters.
This Google URL expects a stock symbol as an argument. Google chose to use the letter q for the parameter
representing the stock symbol. Therefore, when building this full URL request, we added q=appl to say that
the stock symbol that we want information about is AAPL. Since there is only one parameter here, there is no
need for any ampersand character(s).

www.it-ebooks.info

http://www.google.com/finance?q=aapl
http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

212

 When you press Enter or Return, the browser sends the request. The Google server receives the request
and looks up current information about Apple stock. It then builds the appropriate HTML to send back to
the browser. The browser receives all of the returned HTML as a single string, formats the information, and
displays it on the screen. Near the top of the page, we see the current stock price for Apple.

 The underlying code that makes up any web page is available in the browser. In Google Chrome, you
can see it right-click any web page, and from the context menu, choose View Source. In Safari, you can see it
using Develop ➤ Show Page Source.

 In the HTML source of the page, you can see that a huge amount of text has been returned from
this request. You see over a thousand lines of text. Somewhere in there is the price of Apple stock. Let’s
remember what we just did, and relate it back to the world of Python.

 Pretending to Be a Browser
 In Python, we can write a program that pretends to be a browser. That is, instead of the browser making
the request to get information from the Google Finance site (or other similar site), we can write a Python
program that can make the same request. The response-all the HTML text-will come back to our program
and we can save all that text into a variable. However, instead of painting the entire page like the browser
does, we’ll just look for the specific information that we want to find-the price of a stock.

 Python has a module called urllib that provides the code needed to allow programs to make requests
across the Internet. As with other packages that we have discussed, you bring this package into your code
with the line:

 import urllib

 Once you have done that, the following line can be used to make the request across the Internet:

 <variable> = urllib.urlopen(<fullURL>).read()

 This line is actually made up of two operations. First, we call urllib.urlopen specifying the full URL
(including any parameters). This portion returns a value similar to the file handle we used when dealing
with File I/O. Assuming that works, the returned value is then used in a call to the read function to get the
data from the given URL.

 In order to get stock-quote information for Apple, we can use a line like this:

 content = urllib.urlopen('http://finance.google.com/finance?q=aapl').read()

 When this line runs, it sets the variable content to the exact same underlying HTML information
that the browser gets for that page when it makes the request. We know that the stock price is included
somewhere in the returned text because when the browser makes the request and gets the response, we
see the stock price on the screen. If we were to spend a lot of time analyzing the HTML that we got back as
a response, would could find an identifying tag that precedes the actual price string. In this case, there is
an HTML tag for “ price ” that precedes the stock price. Knowing that this exists in the HTML, we can write
some code that reaches into the long HTML string, and using a slice, we can grab just the characters that
make up the price.

 This technique is called screen scraping . That is, we are taking data that is intended for drawing on the
screen of the computer, and read through it to find the particular piece or pieces of information we want.

 This approach does work, but it can fail. The problem is that the code to find our specific piece of
information is based on knowledge of how the page looks on the screen. The company who owns the base
URL (Google in our stock example) could decide at any time, to change the way the page is laid out. Further,
we were able to find the piece of information because we noticed that the word “ price ” was built into the
HTML of the page. At any point, the company responding to a request could also decide to change the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

213

internal label to “ pricePerShare ” for example. In either of these cases, the program would break because
the page is no longer formatted the way that the program expects.

 The bottom line is that although this technique works (temporarily), it is not a good way to get
information from the Internet into your programs. Let’s look at a much better way.

 API
 Instead, companies who want to share their data make it available to computer programmers by publishing
a set of guidelines for how to retrieve this type of data. This is called an API.

 ■ Definition An API (Applications Programming Interface) is a set of URLs and parameters that is designed to
be called by programs across the Internet.

 For example, Yahoo! has an API for getting financial data. It is fully documented at www.jarloo.com/
yahoo_finance/ .

 Essentially, it is a single URL with a number of different parameters that you use to get numerous pieces
of detailed financial information. The base URL is http://finance.yahoo.com/d/quotes.csv .

 After this URL, you can add one or more name/value parameter pairs. The Yahoo! API documentation
says that that there is a parameter named 's' , which means the stock symbol. For example, to get
information on Apple, you would add '?s=appl' onto the base URL.

 http://finance.yahoo.com/d/quotes.csv?s=aapl

 Next, you need to supply a name/value pair detailing what information you want to get. The parameter
name is 'f' (short for format). The value is a string made up choices from a long list of options. Here are just
a few examples from that documentation:

• a : Ask (price)

• b : Bid (price)

• p : Previous close

• o : Open

• c1 : Change (in price)

• g : Day’s low

• h : Day’s high

• n : Company name

 (And many more.)

 The documentation says that if you want more than one piece of information, you just run these options
together into a single string value. For example, if you want to get the company name, current stock price
(the ask price), and the low and high stock price for the day, the string to get all four pieces of information is
‘ nagh ’. We would add that piece onto the end of the request, like this:

 http://finance.yahoo.com/d/quotes.csv?s=aapl&f=nagh

www.it-ebooks.info

http://www.jarloo.com/yahoo_finance/
http://www.jarloo.com/yahoo_finance/
http://finance.yahoo.com/d/quotes.csv
http://finance.yahoo.com/d/quotes.csv?s=aapl
http://finance.yahoo.com/d/quotes.csv?s=aapl&f=nagh
http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

214

 Now, we are ready to try this out in Python. For demonstration purposes, I’ll show how this works
using the Shell:

 >>> import urllib
 >>> fullURLWithParameters = 'http://finance.yahoo.com/d/quotes.csv?s=aapl&f=nagh'
 >>> response = urllib.urlopen(fullURLWithParameters).read()

 When this request is made across the Internet, the result is a string. However, the resulting response
string is not formatted in HTML, the language that browsers expect to see to display a web page. Instead,
the result is a comma-delimited string. The csv in the Yahoo! base URL stands for comma-separated value .
The response looks like this:

 >>> print response
 "Apple Inc.",90.02,89.47,92.78

 Example Program to Get Stock Price Information Using
an API
 From the previous chapter, we already have a way to extract the separate pieces of information from a string
formatted in comma-separated value form. We can use the split function to turn the csv string into a list.
Now we can build a full program that allows the user to enter any stock symbol and the program will get
stock pricing information about that company.

 # Get company stock information
 # API documentation from: http://www.jarloo.com/yahoo_finance/

 import urllib

 def getQuote(symbol):
 # set the Yahoo finance base url
 baseURL = 'http://finance.yahoo.com/d/quotes.csv'

 # concatenate the stock symbol
 stockSpecificURL = baseURL + '?s=' + symbol

 # add in the formatting info: n is name, a is ask price, g is day's low, h is day's high
 fullURLWithParameters = stockSpecificURL + '&f=nagh'

 #print 'Full URL of request:', stockSpecificURL

 # read all the data
 response = urllib.urlopen(fullURLWithParameters).read()

 #print 'Response is: ', response

 # use split to convert the returned comma separated answer information into a list
 responseList = response.split(',')

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

215

 # return the list of values from the response
 return responseList

 while True:
 symbol = raw_input('Enter a stock symbol or return/enter to quit: ')
 if symbol == '':
 break

 listOfValues = getQuote(symbol)

 # element 0 is name, element 1 is ask price, element 2 is low, element 3 is high
 print 'Price of: ' + listOfValues[0] + ' is: ' + listOfValues[1]
 print ' Low for the day: ' + listOfValues[2] + ' High for the day: ', listOfValues[3]

 print 'Bye'

 A few runs of this program generate the following:

 >>>
 Enter a stock symbol or return/enter to quit: aapl
 Price of: "Apple Inc." is: 90.02
 Low for the day: 89.47 High for the day: 92.78

 Enter a stock symbol or return/enter to quit: goog
 Price of: "Alphabet Inc." is: 713.99
 Low for the day: 709.00 High for the day: 719.25

 Enter a stock symbol or return/enter to quit: f
 Price of: "Ford Motor Company Common Stock" is: 13.38
 Low for the day: 13.17 High for the day: 13.47

 Enter a stock symbol or return/enter to quit:
 Bye
 >>>

 This program’s code is very straightforward. At the bottom, the main code is made up of an infinite
loop where we ask the user for a stock symbol. That symbol is passed to the getQuote function. The function
builds a full URL including the stock symbol and the formatting information parameters. The function
makes a request across the Internet using that URL. The server hands back a comma-delimited string as a
response. (If you want to see the actual URL that was built and/or the response that was returned, you can
uncomment the appropriate print statement(s) in the code.) The function then uses the split function to
break up the returned string into a list of values, and returns the list to the caller. Knowing what each piece
of information in the list represents, the main code then reaches into that list and prints a nicely formatted
block of information for that company’s stock.

 An important point here is that companies build APIs like this so that programs running on computers
and devices can quickly get the data they are asking for. Some APIs are intended only for the use of the
company’s employees. Others, like the Yahoo! stock API, are available to the general public. Unlike using the
screen scraping technique where the screen layout may change at any time, API’s are specifically designed
not to change. As a company learns how its users are using its data, it may choose to amend some API
details, and/or add new API calls.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

216

 ■ Warning APIs have the potential for abuse. If you wind up making too many calls to an API per hour, or if
you make calls too quickly, you may be locked out from making such calls. Owners of sites that have APIs often
“throttle” the number of calls allowable within a certain time period. Please do not abuse APIs with your code.

 Example Program to Get Exchange Rate Information
 The exchange rates for major currencies fluctuate every day. There is an API available that allows us to find
out the current exchange rates among major currencies. The API looks like this:

 http://api.fixer.io/latest?base=<currencyFrom>

 Major currencies each have a unique three-letter abbreviation. For example, the United States dollar is
USD, the Canadian dollar is CAD, the euro is EUR, the Japanese yen is JPY, the New Zealand dollar is NZD,
etc. This is the full list of the currencies available with this API:

 AUD, BGN, BRL, CAD, CHF, CNY, CZK, DKK, EUR, GBP, HKD, HRK, HUF, IDR, ILS, INR, JPY, KRW,
MXN, MYR, NOK, NZD, PHP, PLN, RON, RUB, SEK, SGD, THB, TRY, USD, ZAR

 The API works like this. You send it a three-letter currency abbreviation, and it returns to you a string
that contains the currency exchange rates from that currency into all other listed currencies. You can then
write code that extracts the currency exchange rate for any particular country. For example, to find the
exchange rates for United States dollars (USD) we would use this API:

 http://api.fixer.io/latest?base=USD

 Let’s use that in a request in the Shell and see what it returns:

 >>> import urllib
 >>> response = urllib.urlopen('http://api.fixer.io/latest?base=USD').read()
 >>> print response
 {"base":"USD","date":"2016-05-13","rates":{"AUD":1.3728,"BGN":1.7235,"BRL":3.486,"CAD":1.288
2,"CHF":0.97145,"CNY":6.5211,"CZK":23.811,"DKK":6.556,"GBP":0.69403,"HKD":7.7632,"HRK":6.610
9,"HUF":277.73,"IDR":13318.0,"ILS":3.7737,"INR":66.78,"JPY":108.88,"KRW":1172.8,"MXN":18.05,
"MYR":4.0299,"NOK":8.1669,"NZD":1.4709,"PHP":46.645,"PLN":3.8711,"RON":3.9633,"RUB":65.271,"
SEK":8.2204,"SGD":1.3705,"THB":35.43,"TRY":2.9643,"ZAR":15.168,"EUR":0.88121}}
 >>>

 The response string is formatted in a special way. All those curly braces and colons have important
meanings. However, for now, we will just use this as a simple string and attempt to find the currency that
we wish to convert to. In Chapter 11 , we will revisit this string and I’ll show a different way to retrieve the
information in a more direct way.

 The approach here is to find the proper conversion rate in the string and copy it by making a slice of
the string (using the slicing syntax with an appropriate start and end character index). At the beginning of
the string, we see that we are dealing with a base currency of what we were looking for: USD. Following that
is the current date. After that, we see a collection of rates, each of which is in the form <quoted three-letter
currency abbreviation:exchange rate>. Since there is a clear pattern here, we can take advantage of the
pattern to extract the exchange rate of any particular currency that we wish.

 For demonstration purposes, let’s say that we want to find the conversation rate in Canadian dollars
(CAD). If we look in the response string, we can see the portion that tells us that the answer for Canadian
dollars is this:

 CAD":1.2882,

www.it-ebooks.info

http://api.fixer.io/latest?base=<currencyFrom>
http://api.fixer.io/latest?base=USD
http://dx.doi.org/10.1007/978-1-4842-2172-3_11
http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

217

 Now we have to write some generalized code to find a segment like this, and then extract the number
that is found after the colon. We can find the starting point by using a built-in string index operation. Using
this operation, we can find (in this case), the index of the substring 'CAD' . Once we find the index of the
first character of the substring, we can see that the first character of the related conversion rate starts five
characters past that point (three for the abbreviation itself, one for the closing quote, and one for the colon).
Once we find the index of the first character of the conversion rate, we can find the last character of the rate
by looking for the first character that is not a digit or a period. Finally, given the start and end characters of
the conversion rate, we can take a slice of the string to get the exact information we want.

 The following full program allows a user to enter a “from currency” and a “to currency.” It then makes
an API call to get all the conversion factors associated with the “from currency,” and extracts the matching
“to currency” rate and presents that to the user.

 # Get conversion factors from one currency to another
 # API documentation from: fixer.io

 import urllib
 import sys

 currencyList = ["AUD","BGN","BRL","CAD","CHF","CNY","CZK","DKK","EUR","GBP","HKD","HRK",\
 "HUF","IDR","ILS","INR","JPY","KRW","MXN","MYR","NOK","NZD","PHP","PLN",\
 "RON","RUB","SEK","SGD","THB","TRY","USD","ZAR"]

 DIGITS_AND_DECIMAL_POINT = '0123456789.'

 ###### Approach: view returned data as a string ######
 def getInfo(currencyFrom, currencyTo):
 URL = 'http://api.fixer.io/latest?base=' + currencyFrom

 # Make the request and save the response as a string.
 response = urllib.urlopen(URL).read()
 # print "Response from server is:", response

 # Do some simple math to figure out the start index of the substringToFind:
 substringPos = response.index(currencyTo)
 start = substringPos + 5 # 3 for the abbrev, 1 for the quote, 1 for the colon

 # Value ends at first non-digit or decimal point - find that index
 nChars = len(response)
 for charIndex in range(start, nChars):
 if response[charIndex] not in DIGITS_AND_DECIMAL_POINT:
 end = charIndex
 break

 # Use slice to get the value
 conversionFactor = response[start : end]
 conversionFactor = float(conversionFactor)

 return conversionFactor

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

218

 print 'Welcome to my currency conversion factor program.'
 print "It will show today's conversion factor between any of the following currencies:"
 print

 abbrevString = ' '.join(currencyList) # use join to make one string from all our
abbreviations
 print abbrevString

 while True:
 print
 while True:
 currencyFrom = raw_input('Convert currency from? ')
 currencyFrom = currencyFrom.upper() # Force to upper case
 if currencyFrom == '':
 sys.exit()
 if currencyFrom in currencyList:
 break
 else:
 print 'Sorry', currencyFrom, 'is not in the list of currencies.'

 print
 while True:
 currencyTo = raw_input('Convert currency to? ')
 currencyTo = currencyTo.upper() # Force to upper case
 if currencyTo == '':
 sys.exit()
 if currencyTo in currencyList:
 break
 else:
 print 'Sorry', currencyTo, 'is not in the list of currencies.'

 conversion = getInfo(currencyFrom, currencyTo)
 print
 print 'Conversion factor from:', currencyFrom, 'to:', currencyTo, 'is:', conversion
 print

 print 'Bye'

 The main code contains an outer loop that is built to allow the user to enter a “currency from” and a
“currency to.” It ensures that both currency abbreviations are valid; that is, both appear within the known list
of currency abbreviations. It also allows the user to press Enter or Return to quit the program. Once the user
has given two valid currencies, it calls a function named getInfo to get the conversion rate.

 The getInfo function builds the URL string using the “currency from,” and then makes the API call. The
resulting string contains the conversion rates to all other currencies. Using the steps outlined, the function
extracts the conversion factor that is associated with the “currency to” and returns it to the main code. The
main code then prints the details of the conversion rate. A typical run of the program looks like this:

 Welcome to my currency conversion factor program.
 It will show today's conversion factor between any of the following currencies:

 AUD BGN BRL CAD CHF CNY CZK DKK EUR GBP HKD HRK HUF IDR ILS INR JPY KRW MXN MYR NOK NZD PHP
PLN RON RUB SEK SGD THB TRY USD ZAR

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

219

 Convert currency from? USD

 Convert currency to? CAD

 Conversion factor from: USD to: CAD is: 1.2882

 Example Program to Get Powerball Information
 There is a nearly United States–wide lottery known as Powerball. To play, you purchase a ticket where you
select five numbers ranging from 1 to 69, plus a Powerball number, which ranges from 1 to 26. The more
numbers you match, the more money you win. Drawings are done twice a week. The Multi-State Lottery
Association that runs Powerball publishes the results online. You can get a plain-text listing of the winning
numbers at www.powerball.com/powerball/winnums-text.txt .

 This site reports winning Powerball numbers from the most recent draw, back to 1997. Here are a few
sample lines of what the text looks like:

 Draw Date WB1 WB2 WB3 WB4 WB5 PB PP
 05/14/2016 64 27 65 13 47 09 3
 05/11/2016 69 32 52 66 20 23 3
 05/07/2016 25 66 44 05 26 09 2
 05/04/2016 47 69 30 66 57 03 3
 04/30/2016 32 16 03 34 12 14 3
 04/27/2016 25 39 64 02 33 17 2
 04/23/2016 46 62 59 35 19 13 5
 04/20/2016 62 30 12 25 52 08 3

 Let’s build a program that first gets this information, extracts the most recent draw, and then allows the
user to enter the numbers on any amount of Powerball tickets. The program then calculates the amount of
winnings for each ticket. Although the data returned from the server contains years of information, we really
only care about the second line, which represents the most recent draw. Each data line contains a date, five
regular numbers, one Powerball number, and a multiplier (which we will ignore to simplify the payouts).

 # Powerball Checker - how much did we win?

 import urllib
 import sys

 POWERBALL_URL = 'http://www.powerball.com/powerball/winnums-text.txt'
 MAX_REGULAR_NUMBER = 69
 MAX_POWERBALL_NUMBER = 26

 def getIntegerInRange(prompt, theMin, theMax):
 while True:
 number = raw_input(prompt)
 if number == '':
 print 'OK, bye'
 sys.exit()
 try:
 number = int(number)
 except:

www.it-ebooks.info

http://www.powerball.com/powerball/winnums-text.txt
http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

220

 print 'That is not an integer, please try again.'
 if (number < theMin) or (number > theMax):
 print 'That is not in the range of', theMin, 'to', theMax
 else:
 return number

 print "Welcome to my Powerball checker. Getting the latest draw …"
 print

 allDrawnData = urllib.urlopen(POWERBALL_URL).read()
 allDrawnData = allDrawnData.split("\n") # then split it into lines

 # drawnData[0] is a header line of the text: Draw Date WB1 WB2 WB3 WB4 WB5 PB PP

 mostCurrentDrawLine = allDrawnData[1] # this is the line we care about
 drawnList = mostCurrentDrawLine.split(' ') # split into a list

 mostRecentDrawDate = drawnList[0] # element zero is the date
 numbersDrawnList = []
 for i in range(1, 6): # elements 1 through 5 are the data we want
 numbersDrawnList.append(int(drawnList[i]))
 numbersDrawnList.sort()
 powerBallDrawn = int(drawnList[6]) # element 6 is the powerball

 print 'The latest draw on ' + mostRecentDrawDate + ' was:'
 print
 for value in numbersDrawnList:
 print ' ' + str(value), # comma here means stay on the same line
 print ' Powerball: ', powerBallDrawn

 # Allow the user to enter sets of Powerball numbers from one ticket

 while True:
 print
 print "OK, let's see how much you've won from your ticket(s)."
 userList = []
 while True:
 thisNumber = getIntegerInRange('Enter a number: ', 1, MAX_REGULAR_NUMBER)
 if thisNumber in userList:
 print 'Hey, you already entered that number.'
 else:
 userList.append(thisNumber)
 if len(userList) == 5: # When we have 5 numbers, we're done
 break

 userPowerball = getIntegerInRange('Enter your powerball number: ', 1, MAX_POWERBALL_NUMBER)
 print

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

221

 matchList = []
 for userNumber in userList:
 if userNumber in numbersDrawnList:
 matchList.append(userNumber)

 nMatches = len(matchList) # See how many matches there were
 if powerBallDrawn == userPowerball:
 powerBallMatch = True
 else:
 powerBallMatch = False

 if nMatches == 1:
 print 'You matched 1 number:', matchList[0]
 else:
 print 'You matched', nMatches, 'numbers:',
 for number in matchList:
 print ' ', number,
 print
 if powerBallMatch:
 print '... and you matched the power ball!'

 if nMatches == 5:
 if powerBallMatch:
 print 'You won the WHOLE ENCHILADA! Time to quit your job!'
 else:
 print 'You won a million dollars!'
 elif nMatches == 4:
 if powerBallMatch:
 print 'You won $50,000'
 else:
 print 'You won $100'
 elif nMatches == 3:
 if powerBallMatch:
 print 'You won $100'
 else:
 print 'You won $7'
 elif nMatches == 2:
 if powerBallMatch:
 print 'You won $7'
 else:
 print 'You won $4'
 elif powerBallMatch:
 print 'You won $4'
 else:
 print 'Sorry Charlie, you lost it all'

 print

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

222

 The program makes a request to get the data from the Powerball site. We split the data into a list of lines
(at every new line character). It reads line one of the data (which contains the current draw), extracts the
numbers, saves them in a list and prints them out.

 The main program is a good example of many of the things we have learned in all previous chapters.
In a loop, it asks the user to enter their five numbers and a Powerball number. Each number is validated
by a call to a utility function named getIntegerInRange . This function ensures that the user enters an
integer within a given allowable range. Once the user has entered the numbers, we iterate through the
user’s numbers looking to see if each number is in the drawn numbers. Then we check for a match with the
Powerball. The rest of the code implements the payouts of the lottery.

 Here is what the program looks like when it runs:

 >>>
 Welcome to my Powerball checker. Getting the latest draw ...

 The latest draw on 05/21/2016 was:

 5 7 9 23 32 Powerball: 26

 OK, let's see how much you've won from your ticket(s).
 Enter a number: 5
 Enter a number: 7
 Enter a number: 9
 Enter a number: 11
 Enter a number: 13
 Enter your powerball number: 6

 You matched 3 numbers: 5 7 9
 You won $7

 OK, let's see how much you've won from your ticket(s).
 Enter a number: 1
 Enter a number: 2
 Enter a number: 5
 Enter a number: 23
 Enter a number: 32
 Enter your powerball number: 26

 You matched 3 numbers: 5 23 32
 ... and you matched the power ball!
 You won $100

 OK, let's see how much you've won from your ticket(s).
 Enter a number:
 OK, bye
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

223

 API Key
 The United States Census Bureau collects a huge amount of information about the citizens of the United
States. After collecting this information, they make much of this data available (to programmers). The
information they provide is free to users via their extensive APIs. However, in order to prevent overuse and/or
potential malicious intent, the Census Bureau requires that you obtain an API key from them. An API key is
a unique identifier that identifies you as the person whose code is making the request. Once you get an API
key, you use it in all of your API queries.

 The process of obtaining an API key from the Census Bureau is extremely simple. Using any browser, go
to this site: api.census.gov/data/key_signup.html .

 When you get there, you will see a form that looks like Figure 10-3 .

 Figure 10-3. Requesting an API Key from the United States Census Bureau

 If you fill out the form and press the Submit Key Request button, you should soon get an e-mail from
the Census Data API Service that includes a string of about 40 characters, which is your API key. Once you
confirm that you received the e-mail containing your API key, you can use that key to make API requests
to the Census Bureau. The list of available Census Data APIs can be found at www.census.gov/data/
developers/data-sets.html .

 To make a request to any API that you find there, you need to supply your API key as a parameter.
For example, if you wanted to get a summary of 2014 data for all states, you would make a request to the
following API:

 http://api.census.gov/data/2014/acs1?get=NAME,B01001_001E&for=state:*&key=<insert your
API key here>

 URL Encoding
 When we use parameter values in conjunction with API calls, the values that are passed in are always strings.
For most strings made up of standard characters, everything works fine. However, certain characters are
considered “unsafe” when used in parameter values. Most importantly, the space character is considered
not to be safe. The original reason has to do with people reading values from one place and typing them
into fields or forms that wind up in URLs. Since the space character is essentially an invisible character, the
number of spaces that were in the original text may not be clear.

 In order to include a space in a parameter value, the space character must be translated to either the
plus character (+), or the numeric value of the space character. Every character is assigned a unique number.
All characters can be represented by a special string that gives the number associated with that character
as a hexadecimal (base 16) number. The space character as a hexadecimal number is %20 . The process of
replacing a character with another character or sequence of characters is called encoding .

www.it-ebooks.info

http://www.census.gov/data/developers/data-sets.html
http://www.census.gov/data/developers/data-sets.html
http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

224

 If we wanted to only encode the space character, we could take any string that we might use as a
parameter value in a URL, and apply a string replace operation to it; for example, this:

 >>> originalString = 'New Jersey'
 >>> encodedString = originalString.replace(' ', '+')
 >>> print encodedString
 New+Jersey
 >>>

 or this:

 >>> encodedString = originalString.replace(' ', '%20')
 >>> print encodedString
 New%20Jersey
 >>>

 Either of these versions of the encoded string could then be used within a URL in an API call. When a
parameter value is received by a server, any plus character or %20 sequence is decoded back to the space
character. However, there are a number of other characters that are also considered unsafe for use in a URL.
These characters include the following:

• " (the quote mark)

• < and > (less than and greater than)

• # (the pound sign)

• % (the percent sign)

• and the following: { , } , | , \ , ̂ , ~ , [,] , ̀

 That is a lot of characters to remember and to find replacement hexadecimal representations for.
Fortunately, there is a built-in Python function that can do this work for us. If we ever believe that a value of a
parameter to be passed in a URL might contain any of these characters, then before building the value into a
URL, we should use the following function from the urllib package:

 urllib.quote_plus()

 To use it, you pass in the original string, and it returns an encoded version of the string that works
within a URL. For example, if we want to make an API call where we want to specify a value of the string
 'New Jersey' , we would encode it this way:

 >>> originalString = 'New Jersey'
 >>> encodedString = urllib.quote_plus(originalString)
 >>> print encodedString
 New+Jersey
 >>>

 This call encodes the space as a plus character in the same way you saw earlier with the string replace
operation. However, the call to urllib.quote_plus takes care of encoding all potentially unsafe characters
for us. Here is an example:

 >>> originalString = 'The sales tax of "New Jersey" is > 1%'
 >>> encodedString = urllib.quote_plus(originalString)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ INTERNET DATA

225

 >>> print encodedString
 The+sales+tax+of+%22New+Jersey%22+is+%3E+1%25
 >>>

 As a result of this call, in addition to encoding the spaces into plus signs, the double-quote characters
have been converted to their hexadecimal form (%22), the greater-than character has been changed to a %3E ,
and the percent sign has been replaced with %25 . After doing this type of encoding using urllib.quote_
plus , you can be assured that your parameter values are safe for transmission to a server within a full URL.

 Summary
 This chapter was all about getting text data over the Internet. I explained the request/response model, which
is used to exchange information between a computer and a server. I then showed you how to take a request
and add parameter values by adding them in as name/value pairs to the end of a URL string. The response
comes back as a string and is typically saved in a Python variable. I demonstrated this technique by showing
you how to get a stock price from a financial site. We built a Python program that made the same request that
we made in a browser, and got back the same HTML that the browser got back. Then, we extracted the stock
price that we were looking for. Although this was an interesting demonstration, it is not the proper way to get
information because the HTML is designed for display on the screen.

 Instead, the proper way to get data over the Internet is to use an API (Applications Programming
Interface). Using an API allows us to get the data that we are looking for in a much more direct way. Using an
API, I showed you how to directly get information about a given stock. I also showed a program that uses an
API to get currency exchange rate information. Finally, I showed you another example where we obtained
the numbers drawn in the Powerball lottery.

 I showed you how some companies attempt to ensure that their APIs are not overused or used
maliciously by issuing and then requiring the use of an API key. We wrapped up the chapter by discussing
a technique used to ensure that potentially unsafe characters can be encoded, so that they are correctly
transmitted in requests.

www.it-ebooks.info

http://www.it-ebooks.info/

227© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_11

 CHAPTER 11

 Data Structures

 Let’s start this chapter with the following definition.

 ■ Definition A data structure is a collection of multiple pieces of data, arranged in a way that the data can be
accessed efficiently.

 The only data structure that we have discussed so far is a list. A list allows us to refer to any one of
multiple pieces of data using an index. Python has a few more built-in data structures, which is the topic of
this chapter.

 We will cover the following topics:

• Tuple

• Lists of lists

• Representing a grid or a spreadsheet

• Representing the world of an adventure game

• Reading a comma-separated value (.csv) file

• Dictionary

• Using the in operator on a dictionary

• Programming challenge

• A Python dictionary to represent a programming dictionary

• Iterating through a dictionary

• Combining lists and dictionaries

• JSON: JavaScript Object Notation

• Example program to get weather data

• XML data

• Accessing repeating groupings in JSON and XML

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

228

 Tuple
 Python has a built-in data structure called a tuple . (There is an ongoing debate about if this should be
pronounced “toople” or “tuhpple.” The latter, pronounced as in “quintuple,” seems more popular, but both
are acceptable.) A tuple is essentially a list that cannot be changed. First, we’ll review some basic operations
of a list. Then we’ll show how a tuple differs. Let’s start by creating a list:

 >>> friendsList = ['Joe', 'Martha', 'John', 'Susan']
 >>> print friendsList
 ['Joe', 'Martha', 'John', 'Susan']
 >>>

 We can find the length of the list using the len function and access any element in this list using an index:

 >>> print len(friendsList)
 4
 >>> print friendsList[0]
 Joe
 >>> print friendsList[3]
 Susan
 >>>

 We can also change the value of a given element in the list and we can add (append) an element to the list:

 >>> friendsList[2] = 'Greg'
 >>> print friendsList
 ['Joe', 'Martha', 'Greg', 'Susan']
 >>> friendsList.append('Diane')
 >>> print friendsList
 ['Joe', 'Martha', 'Greg', 'Susan', 'Diane']
 >>>

 We can set a new value and perform the append operation because lists are mutable (changeable).
By contrast, a tuple is immutable (not changeable). A tuple is defined using a similar, but slightly different
syntax from a list. Instead of the left and right square brackets that are used to define a list, a tuple is defined
using left and right parentheses:

 (<element1>, <element2>, ... <elementN>)

 Like a list, a tuple is typically created in an assignment statement:

 <tupleVariable> = (<element1>, <element2>, ... <elementN>)

 Let’s assume that we want to create a list of friends. If we know that the list of friends will not change during a
run of the program, we would create a tuple of friends and initialize it at the start of the program, as follows:

 >>> friendsTuple = ('Joe', 'Martha', 'John', 'Susan')
 >>> print friendsTuple
 ('Joe', 'Martha', 'John', 'Susan')
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

229

 So far, it looks the same as our earlier friendsList , except for the use of parentheses instead of square
brackets. We can use the len function to see how many elements are in a tuple and we can use the bracket
syntax to get at an individual element of a tuple:

 >>> print len(friendsTuple)
 4
 >>> print friendsTuple[0]
 Joe
 >>> print friendsTuple[3]
 Susan
 >>>

 However, if we try to modify an individual element of the friendsTuple , we get an error message:

 >>> friendsTuple[2] = 'George'

 Traceback (most recent call last):
 File "<pyshell#19>", line 1, in <module>
 friendsTuple[2] = 'George'
 TypeError: 'tuple' object does not support item assignment
 >>>

 If we try to append a new name onto the tuple, we also get an error message:

 >>> friendsTuple.append('Diane')

 Traceback (most recent call last):
 File "<pyshell#21>", line 1, in <module>
 friendsTuple.append('Diane')
 AttributeError: 'tuple' object has no attribute 'append'
 >>>

 Both of these error messages show that the contents of a tuple cannot be changed.
 You might be asking, “What good is this? Why would I ever want to use a tuple over a list?” The answer

is speed. When a list is represented as a tuple, Python internally organizes the data in a way that it can access
each individual element faster than in a list. Therefore, if you want to write code that runs as fast as possible,
then look for any case where you have a list that never changes in your program. You can redefine it from
a list to a tuple by changing the square brackets to parentheses. Eventually, this concept becomes second
nature, and you start thinking of unchanging lists as tuples, and define them this way right from the start.

 There is one additional small benefit to using a tuple. If you have a list of data and you want to ensure
that there is no code that makes any changes to it, use a tuple. Any code that attempts to append to, delete
from, or modify an element of a tuple will generate an error message. The offending code can quickly be
identified and corrected.

 ■ Note If you ever write any code using PyGame (an extension to Python that allows you to put graphics
on the screen), you will notice that screen coordinates are almost always written as x, y tuples; that is, as
(<xValue>, <yValue>). Further, rectangles in PyGame are typically written as four element tuples (<xValue>,
<yValue>, <width>, <height>).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

230

 Lists of Lists
 In our earlier discussion of lists, I said that one interesting thing about a list is that the content, the data
inside a list, can be of any data type. It turns out that not only can the data be of type integer, float, string, or
Boolean, but any element of a list can also be a list. For example, consider the following list:

 >>> myList = [5, -1, [23, 45, 14], 62]
 >>> print myList
 [5, -1, [23, 45, 14], 62]

 To find out how many elements are in this list, we’ll use the len function:

 >>> print len(myList)
 4

 The list has four elements, but element 2 is also a list:

 >>> print myList[2]
 [23, 45, 14]
 >>>

 If we wanted to get to a value in this list within a list, there are two approaches. First, we could assign the
inner list to a new list variable, and then reference the particular element that we want from that list:

 >>>
 >>> innerList = myList[2]
 >>> print innerList
 [23, 45, 14]
 >>> print innerList[1]
 45
 >>>

 Or, we could use a different syntax. To get to an element of a list within a list, we can do this:

 <outerList>[<outerListIndex>][<innerListIndex>]

 Here is an example:

 >>> myList = [5, -1, [23, 45, 14], 62]
 >>> print myList[2][1]
 45
 >>>

 This syntax reaches into myList and gets element 2 (which is the inner list of [23, 45, 14]). Since this is a
list, we then get element 1 of that list (which is the value 45) and print it. (As you will soon see, this concept
can extend to lists of lists of lists, etc.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

231

 Representing a Grid or a Spreadsheet
 Lists within lists are a great way to represent data in a grid or a spreadsheet, or any application where you
have a need for rows and columns. Grids can be used to represent the playing boards of many games. For
example, we could represent a tic-tac-toe board as a grid of three rows and three columns, like this:

 EMPTY = ''
 X = 'x'
 O = 'o'

 # Build a 3 by 3 grid
 grid = [\
 [EMPTY, EMPTY, EMPTY],\
 [EMPTY, EMPTY, EMPTY],\
 [EMPTY, EMPTY, EMPTY]\
]

 As each player makes a move in the game, we would write code to put an X or an O into the appropriate
spot in the grid. For example, if a player decided to place an X in the upper-right square, we would use this
code to modify that cell:

 # Typically set the row and col based on user input, this is just for demonstration:
 row = 0
 col = 2
 grid[row][col] = X

 Any game board that is made up of any number of rows and columns can be represented this way. For
example, you could build an eight-by-eight grid to represent the board for a game of checkers or chess.

 Representing the World of an Adventure Game
 Adventure games are also a very popular form of text-based games. In an adventure game, the user is placed
in a world that can also be represented as a grid. Here is an example of a start to a program that builds a six-
by-six grid:

 # Adventure game demo
 import random

 EMPTY = 'e'
 TREASURE = 't'
 MONSTER = 'm'

 # Build 6 by 6 grid
 NROWS_IN_GRID = 6
 NCOLS_IN_GRID = 6
 grid = [\
 [EMPTY, TREASURE, EMPTY, EMPTY, EMPTY, MONSTER],\
 [EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY],\
 [EMPTY, EMPTY, EMPTY, EMPTY, MONSTER, EMPTY],\
 [EMPTY, MONSTER, EMPTY, EMPTY, EMPTY, EMPTY],\

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

232

 [EMPTY, EMPTY, EMPTY, EMPTY, TREASURE, EMPTY],\
 [EMPTY, TREASURE, EMPTY, EMPTY, EMPTY, EMPTY],\
]

 # Find a random starting cell that is empty
 while True:
 locRow = random.randrange(NROWS_IN_GRID)
 locCol = random.randrange(NCOLS_IN_GRID)
 if grid[locRow][locCol] == EMPTY:
 break # found an empty cell, we will place the player here

 print 'Starting at row:', locRow, ' col:', locCol
 print

 while True: # move around the grid
 direction = raw_input('Press L, U, R, or D to move: ')
 direction = direction.lower()
 print

 if direction == 'l':
 locCol = locCol - 1

 elif direction == 'u':
 locRow = locRow - 1

 elif direction == 'r':
 locCol = locCol + 1

 elif direction == 'd':
 locRow = locRow + 1

 else:
 print 'Oops - staying where we are ... '

 foundInCell = grid[locRow][locCol]
 print 'Now at row:', locRow, ' col:', locCol, ' cell contains:', foundInCell

 # Add code here to do whatever you want with the contents of the current cell
 # (e.g., fight, run, pick up, etc.)

 This code is a good start for creating and populating the world represented by the grid, and for handling
the navigation within it. To make it fun, you would want to add code to handle the interactions between the
player and whatever they find as they navigate around in the world. Additionally, it would be important to
add code to check and handle the cases of potentially moving off all edges. For example, the user might be
in the first column (column 0) and press the l key to say that they want to go left. In a case like this, you could
either have some code that gives the user a message saying that they cannot go there, or allow an action like
this to wrap around the grid. That is, if the user tries to go off the left edge of the world, they reappear on the
right edge in the same row. A similar thing could be done for an attempt to move off any edge.

 The preceding code works fine, but every time the game is played, the grid is laid out the same way. The
following is some code that generates a random grid every time the game is played:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

233

 # Adventure game demo dynamic
 import random

 # Define some constants for items that will be found in the grid
 EMPTY = 'e'
 TREASURE = 't'
 MONSTER = 'm'
 SWORD = 's'
 POTION = 'p'
 addInToGrid = (TREASURE, TREASURE, TREASURE, MONSTER, MONSTER, MONSTER,\
 SWORD, SWORD, POTION, POTION)

 NROWS_IN_GRID = 6
 NCOLS_IN_GRID = 8

 # Find a random cell that is empty
 def findEmptyCell(aGrid, nRows, nCols):
 while True:
 aRow = random.randrange(nRows)
 aCol = random.randrange(nCols)
 if aGrid[aRow][aCol] == EMPTY:
 return aRow, aCol

 # Build grid, start it off all empty
 grid = []
 for r in range(0, NROWS_IN_GRID):
 aRow = []
 for c in range(0, NCOLS_IN_GRID):
 aRow.append(EMPTY)
 grid.append(aRow)

 # Add in items randomly
 for item in addInToGrid:
 locRow, locCol = findEmptyCell(grid, NROWS_IN_GRID, NCOLS_IN_GRID)
 grid[locRow][locCol] = item

 # For testing, print the grid, row by row
 for thisRow in grid:
 print thisRow

 print
 locRow, locCol = findEmptyCell(grid, NROWS_IN_GRID, NCOLS_IN_GRID)
 # For testing, print out the starting location so we know where we are in the grid
 print 'Starting at row:', locRow, ' col:', locCol

 < ... same navigation code as before>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

234

 The important difference in this code is that the grid is built dynamically. To do that, we start our grid
variable as an empty list. Then we use a for loop to iterate through all the potential rows in the grid. Notice
that we are using constants to define the number of rows and columns in the grid, and that we use these
constants in our for loops. Each time through our outer loop, we initialize an aRow variable to the empty list.
Then we have a nested for loop that appends a value of EMPTY to aRow . At the end of the inner loop, we have
built a single row of our grid, represented as a list of all EMPTY s. Each time through the outer loop (for each
row), we then append this list to our grid. This ends up building the grid as a list of lists.

 Next, we iterate over a tuple of items to be added to the grid that were stored in a variable named
 addInToGrid . For each item in that tuple, we call findEmptyCell . This function returns both a row and a
column of an empty cell in the grid. We use the syntax of two indices in brackets to identify the outer index
(the row) and an inner index (the column) of the cell into which we will store a value. The code calls the
same function to find a random starting point for the user in the grid. Just for demonstration purposes,
let’s print the resulting grid, a row at a time, so that you can see what was built. Here is the output from a
typical run:

 ['e', 'p', 'e', 'e', 't', 'm', 'e', 'e']
 ['e', 'e', 'e', 'e', 'e', 'p', 'e', 'e']
 ['e', 'e', 'e', 'e', 'e', 't', 'e', 'e']
 ['e', 'e', 'e', 'e', 'm', 'm', 's', 'e']
 ['e', 'e', 'e', 'e', 'e', 'e', 'e', 'e']
 ['t', 's', 'e', 'e', 'e', 'e', 'e', 'e']

 Starting at row: 5 col: 5
 Press L, U, R, or D to move:

 Reading a Comma-Separated Value (.csv) File
 Another example of data that can be represented as a list of lists is data that comes from a spreadsheet
program. We’ll work through an example of how we can take data from a spreadsheet created in Microsoft
Excel (and probably other spreadsheet programs), and bring it into a Python program.

 Figure 11-1 shows a spreadsheet that a teacher might construct for keeping track of grades on
homework assignments, a midterm exam, and a final exam.

 Figure 11-1. Grades spreadsheet

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

235

 In this course, the homework assignments have a maximum of 20 points each, the midterm has a
maximum of 40 points, and the final has a maximum of 60 points. Therefore, the maximum total possible
points for the class is 200 points. If a student does not turn in an assignment, the cell representing that
assignment is left blank.

 Spreadsheet files like this are typically saved with the default format and the . xls or .xlsx extension.
These are standard file formats for Microsoft Excel. However, as an option, you can click Save As… and
choose to save the file using a different format-a .csv file, which stands for comma-separated value . If you
choose to save a spreadsheet into a .csv file, the data is written out line by line in plain text, where the
data of each cell is separated from the adjacent one by inserting a comma character. We have saved the
spreadsheet shown in Figure 11-1 in .csv format; the resulting file looks like what’s shown in Figure 11-2 .

 Figure 11-2. Grades spreadsheet data saved as a comma-separated value file

 The first line contains the titles of the columns. Following that is one line for each student. As you can
see, the data values in each of these lines are separated by commas. Notice also that any cell that was empty
is represented as zero characters in the text line; that is, a missing entry is represented by two commas. Now
we need a way to read data that is formatted this way into a Python program.

 ■ Definition Parse means to take information and separate it into more easily processed components. (For
example, the Python compiler parses the code that you write and breaks it down into the individual words and
symbols in each line, so that it can turn your code into the byte code form that can run on the computer.)

 To help read in and parse the data, let’s use another of Python’s many built-in packages. There is a
package (not surprisingly called the csv package) that is designed to read in CSV-formatted files.

 In the following code, we read in the data from this .csv file, calculate a score for each student, and then
translate that score into a letter grade. (The translation to a letter grade comes from code that we developed
earlier with the if / elif / else statements.)

 # Read grades from csv file, compute grade letter for course

 import csv # Comma separated value package

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

236

 DATA_FILE_NAME = 'GradesExample.csv'

 #Convert a number score to a letter grade:
 def letterGrade(score):
 if score >= 90:
 letter = 'A'
 elif score >= 80:
 letter = 'B'
 elif score >= 70:
 letter = 'C'
 elif score >= 60:
 letter = 'D'
 else:
 letter = 'F' #fall through or default case
 return letter

 # Open the file in 'read Universal' (return char) mode)
 # This allows for dealing with files created by spreadsheet programs like Excel
 fileHandle = open(DATA_FILE_NAME, 'rU')

 # Let the csv reader parse the file into rows
 csvParsed = csv.reader(fileHandle)

 # Treat each row (which represents data for a single student) as a list
 readingHeaderLine = True
 for row in csvParsed: # iterate through each line

 if readingHeaderLine: # first line?
 readingHeaderLine = False
 continue # skip the header line

 # This is what the data looks like coming in to the program
 #print 'Original: ', row

 name = row[0] # save the student's name
 total = 0 # prepare to add 'em up
 for index in range(1, 8): # elements 1 through 7 are the scores
 thisGrade = row[index]
 if thisGrade == '':
 thisGrade = 0.0 # change a nothing to a zero
 else:
 thisGrade = float(thisGrade) # convert score from string to float
 total = total + thisGrade

 percent = (total * 100.)/ 200. # out of a possible 200 points

 gradeToReport = letterGrade(percent)

 print name, ' Percent:', percent, ' Letter Grade:', gradeToReport

 fileHandle.close() #close the file

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

237

 This code starts by importing the csv package. In the main code, we open the file in a new way,
specifying the open mode as 'rU' , which stands for read universal . This mode allows programs to read text
files that were created on any operating system, since these files may have a variety of different end-of-line
and/or new-line characters. Once the file is opened, we call csv.reader . This is an operation in the csv
package that reads through the entire file and modifies the data so that each line of the file is represented as
a Python list. (Internally, it most likely calls the Python split function to separate the individual pieces of
data). When that completes, our codes goes through a loop, iterating for each row in the original file.

 We set a readingHeaderLine Boolean variable to True before the loop started. Inside of the
loop, we treat each row as a list. The first row is a list containing the header information (Name,
Homework1, Homework2, etc.). We don’t want to do anything with this line, therefore all we do is set the
 readingHeaderLine Boolean to False to indicate that we are no longer looking at the header line. Then we
use a continue statement to send control back to the top of the loop. For each subsequent row, we now can
deal with the data representing a single student. That data is made up of a list of eight elements: element 0 is
the student’s name, and elements 1 through 7 are the score values, where each is a string. We build another
loop to add up the scores of all homework values and the two test scores. If we find that a value is missing
(which would come into the program as an empty string), then we give the student a zero for that score.
When we are finished with that loop, we have the total score for that student. We then call our letterGrade
function to convert the score into a letter grade. As the last thing in our loop, we write out this student’s
name, percentage, and letter grade. When we are done, we close the file.

 Running the program generates the following output:

 Joe Percent: 89.0 Letter Grade: B
 Mariah Percent: 91.5 Letter Grade: A
 John Percent: 83.5 Letter Grade: B
 Mary Percent: 85.5 Letter Grade: B
 Fred Percent: 69.0 Letter Grade: D
 Martha Percent: 98.0 Letter Grade: A
 Craig Percent: 98.0 Letter Grade: A
 Kathy Percent: 75.5 Letter Grade: C
 Miles Percent: 92.0 Letter Grade: A
 Stacey Percent: 83.0 Letter Grade: B
 George Percent: 59.5 Letter Grade: F
 Sue Percent: 80.0 Letter Grade: B
 Tom Percent: 96.5 Letter Grade: A

 If we want to, we could easily modify the code to write a new .csv file where each student line could
contain the existing information and the additional percent and/or letter grade information (separated by
commas). The resulting .csv file could then be opened in a spreadsheet program, such as Microsoft Excel.

 Also, if we had wanted to do more analysis of the scores data-for example, ranking students or scores
per assignment or test, we could have saved all the information in a larger list of lists data structure; that is,
we could have created an empty list, like this:

 allScores = []

 Then every time we iterated through the loop, we could have appended the current row of data into that
list, like this:

 allScores.append(row)

 With this approach, we could have all the data from the original .csv file in a single Python list of lists,
and we could do any analysis we wish.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

238

 Dictionary
 Another extremely important data structure available in Python is called a dictionary . A dictionary is similar
to a list in that it allows you to refer to a collection of data by a single variable name. However, it differs from a
list in one fundamental way. In a list, order is important and the order of the elements in a list never changes
(unless you explicitly do so). Because the order of elements in a list is important, you refer to each element in
a list using its index (its position within the list).

 In a dictionary, the data is represented in what are called key/value pairs. The syntax of a dictionary
looks like this:

 {<key>:<value>, <key>:<value>, ..., <key>:<value>}

 Note that this is the only place in Python where the curly braces { and } are used.
 I’ll use an example to show you how this works. Imagine that we wanted to represent several attributes

or properties of a physical object using Python. We could create a single variable for each item. For example,
let’s try to describe a house using several variables:

 color = 'blue'
 style = 'colonial'
 numberOfBedrooms = 4
 garage = True
 burglarAlarm = False
 streetNumber = 123
 streetName = 'Any Street'
 city = 'Anytown’
 state = 'CA'
 price = 625000

 Variables like these work fine. However, the data in these variables are related; each is a property of a
single house. Instead, we could build a dictionary to represent the related data about the house. The same
information built as a dictionary would look like this:

 houseDict = {'color' : 'blue', 'style' : 'colonial', 'numberOfBedrooms' : 4,\
 'garage' : True, 'burglarAlarm' : False, 'streetNumber' : 123,\
 'streetName' : 'Any Street', 'city' : 'Anytown', 'state' : 'CA',\
 'price' : 625000}

 We are naming this dictionary houseDict to make it clear that this is a dictionary. Again, this is not a
requirement; we are using a name like this as an extension to our naming convention. In this example, all
the keys of this dictionary are strings, which is a very common practice. However, the keys in a dictionary
can be of any immutable data; that is, integers, floats, Booleans, and tuples can also be used as keys.
Whatever data type you use for keys, each key in a dictionary must be unique. The values in a dictionary
can be of any type.

 Let’s print out houseDict to show that Python understands the dictionary data structure:

 print houseDict
 {'color': 'blue', 'price': 625000, 'burglarAlarm': False, 'numberOfBedrooms': 4,
'streetName': 'Any Street', 'city': 'Anytown', 'style': 'colonial', 'garage': True, 'state':
'CA', 'streetNumber': 123}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

239

 In the output, notice that the key/value pairs are not necessarily in the same order in which they
were entered. Python optimizes the arrangement of the keys so that it can access the data as quickly
as possible.

 Dictionaries rely on the key/value pair relationships rather than on positioning. Therefore, when we
want to access any piece of data in a dictionary, we do it by using a key as an index (rather than the position
index that we use with a list). Here are some examples:

 >>> print houseDict['color']
 blue
 >>> print houseDict['state']
 CA
 >>> print houseDict['numberOfBedrooms']
 4
 >>>

 To assign a new value for an existing key in a dictionary, we use an assignment statement, like this:

 >>> houseDict['price'] = 575000 #change value of an existing key
 >>> print houseDict
 {'color': 'blue', 'price': 575000, 'burglarAlarm': False, 'numberOfBedrooms': 4,
'streetName': 'Any Street', 'city': 'Anytown', 'style': 'colonial', 'garage': True, 'state':
'CA', 'streetNumber': 123}
 >>>

 To add a new key/value pair into a dictionary, we use an assignment statement the same way. If the key
that we are specifying does not exist in the dictionary, then the key/value pair is added to the dictionary:

 >>> houseDict['numberOfBathrooms'] = 2.5 # numberOfBathrooms is not in the dictionary yet.
 >>> print houseDict
 {'color': 'blue', 'price': 575000, 'burglarAlarm': False, 'numberOfBathrooms': 2.5,
'numberOfBedrooms': 4, 'streetName': 'Any Street', 'city': 'Anytown', 'style': 'colonial',
'garage': True, 'state': 'CA', 'streetNumber': 123}>>>

 Notice that the numberOfBathrooms key has been added to the dictionary. Again, the order of the keys in
the dictionary is unimportant since we only access an element of a dictionary by using a key.

 There are two additional operations (functions) that you can use on a dictionary. If you want, you can
find all the keys defined in a dictionary with a call to <dictionary>.keys() . You can find all the values with
a call to <dictionary>.values() . Both calls return a list. Here is an example using our previously defined
dictionary:

 >>> print houseDict.keys()
 ['color', 'price', 'burglarAlarm', 'numberOfBathrooms', 'numberOfBedrooms', 'streetName',
'city', 'style', 'garage', 'state', 'streetNumber']
 >>> print houseDict.values()
 ['blue', 575500, False, 2.5, 4, 'Any Street', 'Anytown', 'colonial', True, 'CA', 123]
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

240

 Using the in Operator on a Dictionary
 When we try to access an element in a list, we need to ensure that any index that we use is a valid number.
That is, the index has to have a value between 0 and the length of the list minus 1. (Remember that if a list
has N elements, then the valid indices are 0 to N – 1.)

 When accessing items in a dictionary, we have to ensure that we are using a valid key; that is, we have to
use a key that exists in the dictionary. If the key that we use is in the dictionary, we get the value associated
with that key. But if we try to use a key that is not in the dictionary, we get an error:

 >>> print houseDict
 {'color': 'blue', 'burglarAlarm': False, 'numberOfBathrooms': 2.5, 'numberOfBedrooms':
4, 'streetName': 'Any Street', 'city': 'Anytown', 'style': 'colonial', 'value': 575000,
'garage': True, 'state': 'CA', 'streetNumber': 123}
 >>>
 >>> print houseDict['streetName']
 Any Street
 >>>
 >>> print houseDict['roofType']

 Traceback (most recent call last):
 File "<pyshell#65>", line 1, in <module>
 print houseDict['roofType']
 KeyError: 'roofType'
 >>>

 This is similar to what happens if we try to use an index that is too large or too small for a list. In that
case, we get an “index out of range” error. With a dictionary, we get a KeyError , meaning that the key does
not exist in the dictionary.

 To ensure that we are using a valid key, we can use the in operator before attempting to use a key in a
dictionary. The in operator is used like this:

 <key> in <dictionary>

 It returns True if the key is found in the dictionary, or False if the key is not found.

 >>> print 'city' in houseDict
 True
 >>> print 'roofType' in houseDict
 False
 >>>

 In any code where we think that a key might not be found, it’s a good idea to add some defensive coding
to check and ensure that the key is in the dictionary before we attempt to use it on the dictionary. Typically,
we build this type of check using an if statement:

 if myKey in myDict:
 # OK, we can now successfully use myDict[myKey]
 else:
 # The key was not found, print some error message or take some other action

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

241

 Sometimes, it may make more logical sense to code the reverse test. We can use not in to test for the
key not being in the dictionary:

 if myKey not in myDict:
 # The key was not found, do whatever you need to do

 Programming Challenge
 This challenge asks you to build a dictionary and use keys into that dictionary to extract information. The
information is given as a table of state names (keys) and the population of each state (values). The program
should allow the user to enter the name of a state. If the state is found in the dictionary, then the program
should report the population of that state. If the state is not found, then the program should output a
message like, “Sorry, but we do not have information for that state.” The program should run in a loop and
allow the user to enter any number of states, and then exit when the user presses Return (Mac) or Enter
(Windows). As of 2015, the data for the ten states with the highest populations is shown in Table 11-1 .

 Table 11-1. States with Highest Population (2015)

 State Population

 California 38802000

 Texas 26956000

 Florida 19893000

 New York 19746000

 Illinois 12880000

 Pennsylvania 12787000

 Ohio 11594000

 Georgia 10097000

 North Carolina 9943964

 Michigan 9909000

 New Jersey 8938000

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

242

 This is the solution using a dictionary:

 # Get the population of a given state

 statesDict = {
 'California':38802000, 'Texas':26956000, 'Florida':19893000, 'New York':19746000,\
 'Illinois': 12880000, 'Pennsylvania': 12787000, 'Ohio':11594000, 'Georgia': 10097000,\
 'North Carolina': 9943964, 'Michigan':9909000, 'New Jersey': 8938000}

 while True:
 usersState = raw_input('Enter a state: ')
 if usersState == '':
 break
 if usersState in statesDict:
 population = statesDict[usersState]
 print 'The population of', usersState, 'is', population

 else:
 print 'Sorry, but we do not have any information about', usersState
 print

 The code for this program is based on a dictionary of state/population key/value pairs. The main loop
allows the user to enter a state name. The program tests to see if the given state is in the dictionary by using
the in operator. If the state is found, then the program finds the population of that state and reports it.
Otherwise, the program says that it does not have any information about that state.

 A Python Dictionary to Represent a Programming Dictionary
 Another example of using a dictionary is a program that works as a real dictionary; in this example,
a dictionary of a few of the programming terms introduced in this book. In the following program,
programming terms are used as keys and their matching definitions are specified as values.

 # Using a dictionary to represent a dictionary of programming terms

 programmingDict = {
 'variable': 'A named memory location that holds a value',
 'loop' : 'A block of code that is repeated until a certain condition is met.',
 'function' : 'A series of related steps that form a larger task, often called from
multiple places in a program',
 'constant' : 'A variable whose value does not change',
 'Boolean' : 'A data type that can only have values of True or False'}

 while True:
 print
 usersWord = raw_input('Enter a word to look up (or Return to quit): ')
 if usersWord == '':
 break

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

243

 if usersWord in programmingDict:
 definition = programmingDict[usersWord]
 print 'The definition of', usersWord, 'is:'
 print definition

 else:
 print
 print 'The word', usersWord, 'is not in our dictionary.'
 yesOrNo = raw_input('Would you like to add a definition for ' + usersWord + ' (y/n) ')
 if yesOrNo.lower() == 'y':
 usersDefinition = raw_input('Please give a definition for ' + usersWord + ': ')
 programmingDict[usersWord] = usersDefinition
 print 'Thanks, got it!'

 print 'Done.'

 This example is very similar to the previous challenge. It starts with a dictionary of programming terms
where the words are the keys and the values are the definitions. However, this program has an additional
twist. If the user enters a word that is not in the dictionary, it asks the user if they want to add a definition
for the word they entered. If the user chooses to add a definition, the program allows the user to enter the
definition and the key/value pair is added to the dictionary.

 Iterating Through a Dictionary
 If you need to iterate through all the elements in a dictionary, similar to a list, you can use a for loop. In the
case of a dictionary, however, the variable that you specify in the for statement is given the value of a key in
the dictionary every time through the loop. Since you are iterating through a dictionary, you cannot rely on
the order of the keys. Here is an example using the earlier dictionary of state populations.

 >>> statesDict = {\
 'California':38802000, 'Texas':26956000, 'Florida':19893000, 'New York':19746000,\
 'Illinois': 12880000, 'Pennsylvania': 12787000, 'Ohio':11594000, 'Georgia': 10097000,\
 'North Carolina': 9943964, 'Michigan':9909000, 'New Jersey': 8938000}

 >>> for state in statesDict:
 print state

 Georgia
 Pennsylvania
 Florida
 Illinois
 Ohio
 Texas
 New Jersey
 Michigan
 North Carolina
 New York
 California
 >>>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

244

 While the keys are not displayed in any particular order, you can be assured that using a for loop this
way will iterate through every key in the dictionary. If you need each matching value while iterating through
a dictionary, you can reach into the dictionary using the current key in the body of the loop; for example:

 >>> statesDict = {\
 'California':38802000, 'Texas':26956000, 'Florida':19893000, 'New York':19746000,\
 'Illinois': 12880000, 'Pennsylvania': 12787000, 'Ohio':11594000, 'Georgia': 10097000,\
 'North Carolina': 9943964, 'Michigan':9909000, 'New Jersey': 8938000}

 >>> for state in statesDict:
 population = statesDict[state]
 print state, population

 Georgia 10097000
 Pennsylvania 12787000
 Florida 19893000
 Illinois 12880000
 Ohio 11594000
 Texas 26956000
 New Jersey 8938000
 Michigan 9909000
 North Carolina 9943964
 New York 19746000
 California 38802000
 >>>

 Combining Lists and Dictionaries
 Now you have seen examples of lists of lists and you can build dictionaries of dictionaries. However, highly
complex data structures can be built by mixing and matching lists and dictionaries; that is, you can have
a list of dictionaries or a dictionary where all values are lists. Beyond that, every sublist or subdictionary
can also be a dictionary or a list. While this may seem very complicated, data structures like this can be
extremely useful in representing hierarchical data.

 In this first example, we want to represent a number of cars. This data could refer to cars that we own, or
cars that we are interested in purchasing, or even cars that are at a used car dealership waiting to be sold.

 carsList = [\
 { 'make':'Toyota', 'model':'Prius', 'year': 2006, 'color':'gold', 'doors':4,

'leather':False, 'license': 'ABC123', 'mileage': 777777},\
 { 'make':'Honda', 'model':'Civic', 'year': 2010, 'color':'red', 'doors':2,

'leather':False, 'license': 'DEF444', 'mileage': 54321},\
 { 'make':'Ford', 'model':'Fusion', 'year': 2012, 'color':'blue', 'doors':4,

'leather':True, 'license': 'GHI999', 'mileage': 24680},\
 { 'make':'Chevy', 'model':'Volt', 'year': 2015, 'color':'black', 'doors':4,

'leather':False, 'license': 'JKL444', 'mileage': 7890}\
]

 In this example, each element in the list is a dictionary. Each dictionary has an identical set of keys.
Given this structure, it would be easy to iterate through all the cars, searching for all cars that match a given
set of criteria. For example, if we wanted to search through our list of cars and find all cars that have four
doors and have mileage less than 50,000 miles, we could use the following code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

245

 for carDict in carsList:
 if (carDict['doors'] == 4) and (carDict['mileage'] < 50000):
 print carDict['make'], carDict['model'], carDict['license']

 This would produce the following results:

 Ford Fusion GHI999
 Chevy Volt JKL444

 The following example is slightly more complicated.

 personalDataDict = {
 'Joe': {'height':73, 'weight': 200, 'sex':'M', 'age':35, 'allergies':['tree pollen',

'carrots', 'onions']},\
 'Sally':{'height':58, 'weight': 100, 'sex':'F', 'age':32, 'allergies':['bee stings']},\
 'John': {'height':36, 'weight': 75, 'sex':'M', 'age':8, 'allergies':['peanuts']},\
 'Mary': {'height':35, 'weight': 60, 'sex':'F', 'age':7, 'allergies':[]}\
 }

 In this example, we have a dictionary of people. We use their names as keys. Each person is represented
as a dictionary of key/value pairs. However, if you look at allergies key, you can see the value for each
person is a list of all things that person is allergic to. The list can have any number of elements, including
zero elements. We can find the list of allergies for a specific person in this way:

 joesData = personalDataDict['Joe']
 joesAllergies = joesData['allergies']
 print joesAllergies

 marysData = personalDataDict['Mary']
 marysAllergies = marysData['allergies']
 print marysAllergies

 The code produces this output:

 ['tree pollen', 'carrots', 'onions']
 []

 Using a person’s name as a key provides a dictionary of information about them. Within that dictionary,
if you use a key of allergies , you get back the list of things that person is allergic to. In the case of Joe, we
see that he is allergic to tree pollen, carrots, and onions. However, Mary’s list of things that she is allergic to is
empty, meaning that she is not allergic to anything.

 If we wanted to generate a printout of all people and their allergies, we could use the following:

 for personName in personalDataDict:
 onePersonDict = personalDataDict[personName]
 allergyList = onePersonDict['allergies']
 if allergyList == []:
 print personName, 'is not allergic to anything'
 else:
 print personName, 'is allergic to the following:'
 for allergy in allergyList:
 print ' ', allergy

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

246

 That would produce this output:

 John is allergic to the following:
 peanuts
 Sally is allergic to the following:
 bee stings
 Joe is allergic to the following:
 tree pollen
 carrots
 onions
 Mary is not allergic to anything

 Using lists and dictionaries together allows us to build up highly complex data structures. As long as you
understand the layers that make up the data structure, Python code can be written in a very straightforward
way to get the specific information that you want. As shown, extracting the data that is important to you is
done using an appropriate sequence of indices and/or keys.

 JSON: JavaScript Object Notation
 In the previous chapter, there is an example of a program that displays currency conversion rates. The
program asks for a “currency from” and a “currency to.” The program’s code uses the “currency from” to get
a string of conversion factors for many different potential “currency to’s,” and then extracted the appropriate
answer for the user’s specific choice of “currency to.” The program used an API call to get the current
information. As an example, when we ran a request for USD (United States dollar). The returned string
looked like this:

 {"base":"USD","date":"2016-05-13","rates":{"AUD":1.3728,"BGN":1.7235,"BRL":3.486,"CAD":1.288
2,"CHF":0.97145,"CNY":6.5211,"CZK":23.811,"DKK":6.556,"GBP":0.69403,"HKD":7.7632,"HRK":6.610
9,"HUF":277.73,"IDR":13318.0,"ILS":3.7737,"INR":66.78,"JPY":108.88,"KRW":1172.8,"MXN":18.05,
"MYR":4.0299,"NOK":8.1669,"NZD":1.4709,"PHP":46.645,"PLN":3.8711,"RON":3.9633,"RUB":65.271,"
SEK":8.2204,"SGD":1.3705,"THB":35.43,"TRY":2.9643,"ZAR":15.168,"EUR":0.88121}}

 Now that we have discussed Python’s dictionaries, this string should look more familiar. In actuality, the
documentation of the API on the Fixer.io site says that the information is returned in JSON format. JSON is
an acronym for JavaScript Object Notation. JSON format is a generalized text-based format for structuring
data. JSON-formatted data is often used as a mechanism for transmitting hierarchical data in response to
requests sent to servers.

 The JSON format is almost identical to Python’s data structures. In fact, it is so close that there is a
Python package (not surprisingly named json) that allows us to translate something that is formatted in
JSON into Python lists and dictionaries. If we make the same API call that we did earlier, we can translate
the returned string into a Python dictionary using a single call in the json package. We can then pick out the
specific information that we are looking for more easily, in a clearer way, and with far less code.

 If you look at the preceding response, you will see that the returned string is the equivalent of a Python
dictionary. At the top level, there are three key/value pairs. The three keys are base , date , and rates .
Interestingly, the value associated with the rates key is another dictionary. This is a dictionary within a
dictionary; similar to how you saw earlier that you can have a list within a list. Now that you know how to
access elements in a dictionary, we can rewrite the currency conversion program to access the exchange rate
using the dictionary syntax.

 # Get conversion factors from one currency to another
 # API documentation from: fixer.io

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

247

 import urllib
 import sys
 import json

 currencyList = ["AUD","BGN","BRL","CAD","CHF","CNY","CZK","DKK","EUR","GBP","HKD","HRK",\
 "HUF","IDR","ILS","INR","JPY","KRW","MXN","MYR","NOK","NZD","PHP","PLN",\
 "RON","RUB","SEK","SGD","THB","TRY","USD","ZAR"]

 ##### Approach: convert the returned string from JSON to a dict #######
 def getInfo(currencyFrom, currencyTo):
 URL = 'http://api.fixer.io/latest?base=' + currencyFrom

 # Make the request and save the response as a string.
 response = urllib.urlopen(URL).read()

 # Use json package to convert response to a dict
 responseAsDict = json.loads(response)
 #print responseAsDict
 ratesDict = responseAsDict['rates'] # get the rates as a dict
 conversionFactor = ratesDict[currencyTo] # find the appropriate conversion

 return conversionFactor

 print 'Welcome to my currency conversion factor program.'
 print "It will show today's conversion factor between any of the following currencies:"
 print

 abbrevString = ' '.join(currencyList) # use join to make one string from all our
abbreviations
 print abbrevString

 while True:
 print
 while True:
 currencyFrom = raw_input('Convert currency from? ')
 currencyFrom = currencyFrom.upper() # Force to upper case
 if currencyFrom == '':
 sys.exit()
 if currencyFrom in currencyList:
 break
 else:
 print 'Sorry', currencyFrom, 'is not in the list of currencies.'

 print
 while True:
 currencyTo = raw_input('Convert currency to? ')
 currencyTo = currencyTo.upper() # Force to upper case
 if currencyTo == '':
 sys.exit()
 if currencyTo in currencyList:
 break
 else:
 print 'Sorry', currencyTo, 'is not in the list of currencies.'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

248

 conversion = getInfo(currencyFrom, currencyTo)
 print
 print 'Conversion factor from:', currencyFrom, 'to: ', currencyTo, 'is:', conversion
 print

 print 'Bye'

 The main code of this program is identical to the one introduced in Chapter 10 . All the changes have
been made in the getInfo function. In that function, the call to json.loads (the “s” means that the input
comes from a string) converts the returned JSON data into its Python form, which in this case is a dictionary.
Then, understanding the structure of the dictionary, we get the value associated with the rates key. That
gives us another dictionary. We then use currencyTo as a key into this dictionary to get the conversion rate
that we want. This approach is much clearer than our earlier approach of finding and creating a slice of the
response string.

 The responses to many different APIs are returned in JSON format. Often the response string is made up
of combinations of lists and dictionaries. Applying the techniques demonstrated here allows us to reach into
these complex data structures to get the desired information.

 Example Program to Get Weather Data
 There is a wonderful site at OpenWeatherMap.org that allows programmers to retrieve a wide variety of
weather data from around the world. Its APIs are well documented at http://openweathermap.org/API .

 There are many choices for the types and quantities of weather information that you can retrieve. As a
good demonstration, I’ll show you how to get the current weather information for any city. Once we get the
weather information, our goal is to retrieve the current temperature in that city.

 By default, OpenWeatherMap returns data in JSON format. Here is an example of the result of
requesting current weather information for Mountain View, California:

 {u'clouds': {u'all': 0}, u'name': u'Mountain View', u'coord': {u'lat': 37.39, u'lon':
-122.08}, u'sys': {u'country': u'US', u'message': 0.0038, u'sunset': 1463627618, u'sunrise':
1463576185}, u'weather': [{u'main': u'Clear', u'id': 800, u'icon': u'01n', u'description':
u'clear sky'}], u'cod': 200, u'base': u'cmc stations', u'dt': 1463544292, u'main': {u'temp':
289.731, u'grnd_level': 1015.18, u'temp_max': 289.731, u'sea_level': 1026.43, u'humidity':
76, u'pressure': 1015.18, u'temp_min': 289.731}, u'id': 5375480, u'wind': {u'speed': 4.36,
u'deg': 313.001}}

 This probably seems intimidating at first. With just a quick glance, you can tell there are a number of
nested dictionaries. Let’s make this more human readable by adding a return character after every top-level
key/value pair. This should make it clear that many of the values associated with these keys are actually
dictionaries.

 {
 u'clouds': {u'all': 0},
 u'name': u'Mountain View',
 u'coord': {u'lat': 37.39, u'lon': -122.08},
 u'sys': {u'country': u'US', u'message': 0.0038, u'sunset': 1463627618, u'sunrise':
1463576185},
 u'weather': [{u'main': u'Clear', u'id': 800, u'icon': u'01n', u'description': u'clear
sky'}], u'cod': 200,

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2172-3_10
http://openweathermap.org/API
http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

249

 u'base': u'cmc stations',
 u'dt': 1463544292,
 u'main': {u'temp': 289.731, u'grnd_level': 1015.18, u'temp_max': 289.731, u'sea_level':
1026.43,
 u'humidity': 76, u'pressure': 1015.18, u'temp_min': 289.731},
 u'id': 5375480,
 u'wind': {u'speed': 4.36, u'deg': 313.001}
 }

 Now it is easier to understand the information that was returned. You will notice that the letter u
precedes each of the keys. It stands for Unicode, which is a style of encoding text. For this discussion,
all of these Unicode designators can safely be ignored. You can see that there is a great deal of weather
information available here. The specific temperature information we are looking for is found within the
value associated with the main key. In that dictionary, you can see the temp key (you also see information
about the minimum and maximum temperatures, the humidity, pressure, etc.).

 The following code is used to get the temperature for any cities that the user specifies. All
OpenWeatherMap API calls require an API key to complete the API call. If you wish to try this code yourself,
you have to obtain your own API key from OpenWeatherMap. The process is simple and documented at
 http://openweathermap.org/appid .

 Once you have your own API key, you need to assign it to the API_KEY constant in the following code:

 # Get temperature for a given city

 import urllib
 import json

 # API documentation from: http://openweathermap.org/API

 # Go to openweathermap.org, get an API Key, and paste it between the quotes below'
 API_KEY = ''

 def getTemperature(city):

 urlAndParams = 'http://api.openweathermap.org/data/2.5/weather?q=' + city +
'&mode=json'+ '&APPID=' + API_KEY

 # Make the request and save the response as a string.
 response = urllib.urlopen(urlAndParams).read()

 responseDict = json.loads(response) # convert from JSON to a Python dictionary

 mainDict = responseDict['main'] # get the information associated with the main key

 degrees = mainDict['temp'] # get the temperature from that dictionary

 return float(degrees)

 # Convert from Kelvin degrees to Fahrenheit
 def convertKToF(degreesK):
 degreesF = (1.8 * (degreesK - 273.)) + 32
 return degreesF

www.it-ebooks.info

http://openweathermap.org/appid
http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

250

 while True:
 city = raw_input('What city would you like the temperature of? ')
 if city == '':
 break
 tempK = getTemperature(city)
 tempF = convertKToF(tempK)
 print tempF
 print

 The main code deals with getting the user’s choice of city (in a loop). It then calls a function called
 getTemperature passing in the city. getTemperature builds the URL and makes the request. Once we get
the returned data back, we convert the response from a JSON-formatted string into a Python dictionary.
From there, it is a matter of using the appropriate dictionary keys. First, we use the main key to get the main
dictionary. Then within that dictionary, we get the temperature using the temp key. We convert that string to
a float and return it to the main code.

 If you look back at the data that this program generated for the temperature for Mountain View, the data
shows a value of 289.731, which seems quite hot! In the United States, we use the Fahrenheit scale. Most of
the rest of the world uses the Centigrade scale. When reporting temperatures, OpenWeatherMap decided to
represent temperatures in yet a third scale: Kelvin. The Kelvin scale is based on the concept of absolute zero.
To make the answers more clear for readers in the United States, we wrote and used a very small function to
convert a temperature from degrees Kelvin into degrees Fahrenheit.

 XML Data
 The OpenWeatherMap API that we just used has a parameter named mode that allows the data to be returned
in several formats. One of the other options is XML, which is an acronym for eXtensible Markup Language.
In many ways, XML is similar it is to HTML, the HyperText Markup Language used to define web pages. XML
is designed as a self-documenting format that allows computers to exchange data. Similar to HTML, the
information to be exchanged is formatted using tags (opening and closing tags). While HTML has a well-
defined set of these tags that can be used, XML allows you to create your own tags to describe your data.

 There are entire books written to explain the intricacies of XML, so I will certainly not try to cover the
details here. Instead, I’ll show an example of XML-formatted data and explain how to access that data in
Python.

 If we make the same request to get the temperature of Mountain View, but we specify the mode as XML
(as a change from the earlier JSON), the XML formatted response looks like this:

 <current><city id="5375480" name="Mountain View"><coord lon="-122.08" lat="37.39">
</coord><country>US</country><sunrise="2016-05-18T12:56:24" set="2016-05-19T03:13:39">
</sun></city><temperature value="289.731" min="289.731" max="289.731" unit="kelvin">
</temperature><humidity value="76" unit="%"></humidity><pressure value="1015.18" unit="hPa">
</pressure><wind><speed value="4.36" name="Gentle Breeze"></speed><gusts></gusts><direction
value="313.001" code="NW" name="Northwest"></direction></wind><clouds value="0" name="clear
sky"></clouds><visibility></visibility><precipitation mode="no"></precipitation><weather
number="800" value="clear sky" icon="01n"></weather><lastupdate value="2016-05-
18T04:24:59"></lastupdate></current>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

251

 Let’s take that XML data and reformat it a little to make it more human readable by adding return
characters and indenting:

 <current>
 <city id="5375480" name="Mountain View">
 <coord lon="-122.08" lat="37.39"></coord>
 <country>US</country>
 <sunrise="2016-05-18T12:56:24" set="2016-05-19T03:13:39"></sun>
 </city>
 <temperature value="289.731" min="289.731" max="289.731" unit="kelvin"></temperature>
 <humidity value="76" unit="%"></humidity>
 <pressure value="1015.18" unit="hPa"></pressure>
 <wind>
 <speed value="4.36" name="Gentle Breeze"></speed>
 <gusts></gusts>
 <direction value="313.001" code="NW" name="Northwest"></direction>
 </wind>
 <clouds value="0" name="clear sky"></clouds>
 <visibility></visibility>
 <precipitation mode="no"></precipitation>
 <weather number="800" value="clear sky" icon="01n"></weather>
 <lastupdate value="2016-05-18T04:24:59"></lastupdate>
 </current>

 The formatting of the XML data looks very similar to HTML data. Every grouping has start and end tags
(e.g., <current> and </current> , <city> and </city> , etc.). Each grouping like this is called an element or
a node . We’ll use the term node here so as not to confuse you with elements in a list. Then there are nodes
within nodes, each with their own start and end tags. When a node only has text inside it, it is called the text
of the node . For example, within the city node, there is a country node that looks like this:

 <country>US</country>

 Additionally, nodes can have individual name/value pairs; for example, the coord node has values for
 lon (longitude) and lat (latitude):

 <coord lon="-122.08" lat="37.39"></coord>

 In XML, items like these are called attributes .
 Fortunately, Python provides a package (not surprisingly named xml) that allows programmers to

extract the information from XML-formatted data. To use the package, we first have to bring the xml package
into our programs with an import statement. Rather than importing the entire xml package (which includes
the ability to write and modify XML documents), we only need the part that allows us to turn XML strings
into XML documents and retrieve information. That portion is called xml.etree.ElementTree . This is a
rather long name and Python provides a way to import a package but give it a shorthand name. This is done
using the following variation of the import statement:

 import <full imported package name> as <shorthand version of package name>

 In the following code, we use this variation of the import statement and use a shortened name of etree .
This is not required, but is often done as a convenience by programmers so that they won’t have to type long
names when specifying a function in a package.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

252

 XML data is often thought of as a tree. Using our example data, try to think of the data in the form of a
tree lying on its side. The “root” of the tree is the node named current . From that node, we see the following
nodes: city , temperature , humidity , pressure , wind , clouds , visibility , precipitation , weather , and
 lastupdate . Coming off of the city node are the coord , country , and sunrise nodes. The coord and sunrise
nodes each have two attributes. What we need is a way of taking the data that we have as a string, and turn it
into a tree-structured document. That is done with a call to a function in the xml package, like this:

 tree = etree.fromstring(XMLAsAString)

 After that call, we have the data in a form that allows us to get any information that we want to from
the XML in its tree form. The xml package has a number of functions that can be used to easily find any
individual piece of information that we want.

 Here is the code of the XML-based version of the program:

 # Get weather data from openweathermap.org - as XML

 import urllib
 import xml.etree.ElementTree as etree

 # API documentation from: http://openweathermap.org/API

 # Go to openweathermap.org, get an API Key, and paste it between the quotes below'
 API_KEY = ''

 def getInfo(city):

 urlWithParams = 'http://api.openweathermap.org/data/2.5/weather?q='\
 + city + '&mode=xml' + '&APPID=' + API_KEY

 # Make the request and save the response as an XML-formatted string.
 responseAsXML = urllib.urlopen(urlWithParams).read()

 # Turn the string into an XML document
 tree = etree.fromstring(responseAsXML)

 # Find the temperature node, then get the value attribute inside it
 temperatureInfo = tree.find('temperature')
 degrees = temperatureInfo.attrib['value']

 return float(degrees)

 # Convert from Kelvin degrees to Fahrenheit
 def convertKToF(degreesK):
 degreesF = (1.8 * (degreesK - 273.)) + 32
 return degreesF

 while True:
 city = raw_input('What city would you like the temperature of? ')
 if city == '':
 break
 tempK = getInfo(city)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

253

 tempF = convertKToF(tempK)
 print tempF
 print

 The main code and the function to convert from Kelvin are identical to those of the previous example.
The changes are in the getInfo function. As mentioned earlier, the URL in this version specifies that the
 mode of the response should be XML. Once we receive the response, we use the following lines to get the
specific information we want:

 # Turn the string into an XML tree
 tree = etree.fromstring(responseAsXML)

 # Find the temperature tag, then the value attribute inside that
 temperatureInfo = tree.find('temperature')
 degrees = temperatureInfo.attrib['value']

 The first line converts the response string from the server into an XML tree. The next line reaches into
the resulting XML tree structure and finds the temperature group. Within that group, the last line finds the
 value attribute. If we wanted to, we now could get to any piece of data in the XML tree.

 There are many more functions available within the etree package. More information on all the
functions available to parse XML documents are in the official Python documentation at
 https://docs.python.org/2/library/xml.etree.elementtree.html .

 JSON and XML are two solutions to the same problem of representing arbitrary hierarchical data. Most
often, these two formats are used to transmit data between two computers. JSON is much more succinct
and Python-like, or “Pythonic.” JSON is easily accessible in pure Python since JSON-formatted data can be
parsed using Python lists and dictionaries. XML is more descriptive since it has tags that identify the data
built into the data structure itself. Because of that, equivalent XML-formatted data tends to be considerably
longer. Further, when attempting to read XML-formatted data, code must be written using a set of calls
defined in the xml package.

 Accessing Repeating Groupings in JSON and XML
 Sometimes, the data returned by an API has repeating groupings. For example, imagine you made a request
to a site to get information about all the members of a band. In response, you get back a set of blocks where
each block contains information about one member of the band; for example, the member’s name, age, and
the instrument they play. I’ll show what this data structure might look like in JSON format and then in XML
format. I’ll also show how we use Python to access the data about each band member.

 # Demonstration of repeating blocks in JSON and XML

 import json
 import xml.etree.ElementTree as etree

 # Build a JSON structure as a triple quoted string
 myJSON = '''{
 "bandMembers": [
 {
 "name": "Nan Ometer",
 "age": 32,
 "instrument": "keyboards"
 },

www.it-ebooks.info

https://docs.python.org/2/library/xml.etree.elementtree.html
http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

254

 {
 "name": "Al Jeebra",
 "age": 42,
 "instrument": "guitar"
 },
 {
 "name": "Paige Turner",
 "age": 35,
 "instrument": "drums"
 }
]
 }'''

 bandMembersDict = json.loads(myJSON)
 memberList = bandMembersDict['bandMembers']
 for member in memberList:
 print member['name'], member['age'], member['instrument']

 As you might expect, the repeating blocks are handled as a list.
 In the JSON code, the entire structure is converted into a dictionary with only one name/value pair.

Using a bandMembers key, we get a list of band members. We then iterate through the list and each member
is represented as a dictionary. For each member, we print out their name, age, and instrument using an
appropriate key.

 # Build an XML structure as a triple quoted string
 myXML = '''
 <bandMembers>
 <member>
 <name>Nan Ometer</name>
 <age>32</age>
 <instrument>keyboards</instrument>
 </member>
 <member>
 <name>Al Jeebra</name>
 <age>42</age>
 <instrument>guitar</instrument>
 </member>
 <member>
 <name>Paige Turner</name>
 <age>35</age>
 <instrument>drums</instrument>
 </member>
 </bandMembers>'''

 tree = etree.fromstring(myXML)
 bandMembersList = tree.findall('member')
 for member in bandMembersList:
 print member.find('name').text, member.find('age').text, member.find('instrument').text

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DATA STRUCTURES

255

 The XML code is similar. We first convert the structure into an XML tree. We then use a call in the xml
package to find all of the band members (each is a node). This returns a list of all band members. Like the
JSON code, we iterate through all band members. Within each band member, we use the find operation in
the xml package to find each member’s name, age, and instrument, and print out the text associated with
each of these nodes.

 The output of both of these sections of code is exactly the same:

 >>>
 Nan Ometer 32 keyboards
 Al Jeebra 42 guitar
 Paige Turner 35 drums
 Nan Ometer 32 keyboards
 Al Jeebra 42 guitar
 Paige Turner 35 drums
 >>>

 Summary
 This chapter introduced a number of data structures that can be used in Python. It started by showing a
tuple-a list that cannot change. Then I gave examples of the uses of a list of lists, a construct that can be
used to represent grids, spreadsheets, the world of an adventure game, and anything that you can think of
that is arranged as a number of rows and columns. We went through the process of taking data that was
exported as a comma-separated value file (.csv) and bringing that data into a Python program as a list
of lists.

 I then introduced the Python dictionary. In a dictionary, the data is structured as key/value pairs. You
can never rely on the ordering of information in a dictionary, but this is never a problem because you only
access the data using keys. Using the in operator is an easy way to determine if a key is in a dictionary. I then
gave you a challenge to build a dictionary and write some code to access data found in it.

 As another example, we built a dictionary of programming terms, where the keys were programming
terms and each related value was the definition of the term. This demonstrated the ability to add keys
and values to a dictionary. I then showed you how to iterate through a dictionary using a for loop. Next, I
explained how lists and dictionaries could be combined to build highly complex data structures.

 Finally, we went through examples of how APIs often return data using either JavaScript Object
Notation (JSON) or eXtensible Markup Language (XML). There were examples of how to convert API
responses into these two data structures and how to retrieve data from each.

www.it-ebooks.info

http://www.it-ebooks.info/

257© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3_12

 CHAPTER 12

 Where to Go from Here

 As I said in Chapter 1 , this book is not intended to be comprehensive. Instead, the goal is to provide you with
a general understanding of programming using the Python language. The good news is that if you have made
it this far, you should have a solid understanding of most of the syntax and constructs of Python. However,
the more exciting news (if you want to look at it that way) is that there is much more to explore.

 This chapter discusses the following topics:

• Python language documentation

• Python Standard Library

• Python external packages

• Python development environments

• Places to find answers to questions

• Projects and practice, practice, practice

 Python Language Documentation
 The Python Software Foundation is the owner/developer of the Python language. In addition to the language
itself, they provide a number of pages of documentation about the language, libraries, and other information
useful to Python developers. The official top-level documentation for the Python language can be found at
 https://docs.python.org/2.7/ .

 Python Standard Library
 The Python Standard Library (which is installed when you download and install Python) contains a
large number of built-in packages, each with many built-in functions just waiting for you to find and take
advantage of. We have only had space to scratch the surface of a few of these packages. We only talked about
one or two functions of a handful of packages. Each of these packages provides functionality that is much
more extensive.

 There are many other built-in packages that we didn’t even get to. In Table 12-1 , I present the ones
mentioned, along with a few more of the more well-known packages available in the Python Standard
Library that you might be interested in learning more about.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2172-3_1
https://docs.python.org/2.7/
http://www.it-ebooks.info/

CHAPTER 12 ■ WHERE TO GO FROM HERE

258

 Table 12-1. Built-in Python Packages

 Package Name General Functionality

 csv Reading and writing comma-separated values

 datetime Basic date and time types

 itertools Functions for creating iterators for efficient looping

 time Time access and conversions

 json Creating and processing JSON-formatted data

 logging Logging facility

 json Creating and processing JSON-formatted data

 os Many operating systems functions

 math Trig functions (sin, cos, tan, etc.) and constants (pi, etc.)

 random Generate random numbers

 re Regular expression operations

 TKInter Graphical user interface package

 turtle Turtle graphics

 urllib Open arbitrary resources by URL

 xml Creating and processing XML-formatted data

 A description of the entire Python Standard Library is at https://docs.python.org/2.7/library/ .
 An alphabetical module index is at https://docs.python.org/2.7/py-modindex.html .

 Python External Packages
 The Python “ecosystem” is extremely large and healthy and continues to grow. A huge number of external
packages are available to Python programmers. Table 12-2 contains some of the most well-known external
packages.

 Table 12-2. External Python Packages

 Package Name General Functionality

 beautifulsoup Library for parsing HTML and XML files.

 django High-level framework for building Python-based web applications

 flask Microframework for building Python-based web applications

 Matplotlib 2D plotting library, produces publication quality figures

 MySQL-Python Python connector to a MySQL database

 NumPy Adds support for large, multidimensional array and high-level math functions

 SciPy Library used by scientists, analysts, and engineers doing scientific computing

 Pandas Data structures and data analysis tools

 PyGame Designed for writing games, adds support for windows, mice, etc.

 Requests Make HTTP requests in a syntax easier for humans

 Scikit-learn Software machine learning library

www.it-ebooks.info

https://docs.python.org/2.7/library/
https://docs.python.org/2.7/py-modindex.html
http://www.it-ebooks.info/

CHAPTER 12 ■ WHERE TO GO FROM HERE

259

 The official Python wiki (https://wiki.python.org/moin/UsefulModules) has a listing of what it
thinks are the most useful external modules.

 There is a site called PyPI (the Python Package Index) that calls itself “a repository of software for the
Python programming language.” It may be a little difficult and intimidating to find what you are looking for
there because there are over 80,000 packages cataloged. Before considering writing a package of your own, it
may be worth your time checking to see if someone has already built and published a similar module. PyPI
is at https://pypi.python.org/pypi .

 Python Development Environments
 This book has demonstrated the use of the IDLE development environment that comes free with Python.
It is a very good place to start. However, if you want to do “real” software development, you soon find that
IDLE has a number of deficiencies. As mentioned earlier, the lack of line numbers is truly annoying. Perhaps
most importantly, IDLE does not have a usable debugger. A debugger is a tool that allows a program to set
places in a program (called breakpoints) where the program will stop and allow the user to see the value
of variables, and allow the program to be executed a line at a time. IDLE claims to have a debugger, but its
debugger is impossible for the average human to use. If you decide to get into serious Python development,
you will probably want to graduate from using IDLE. There are a number of alternatives. I’ll tell you about
some of the most popular.

 Surprisingly (to me), many people develop Python code by using any basic text editor (for example,
Notepad++, TextEdit, etc.). Many programmers use a text editor like Sublime Text that (using settings file)
can be configured to have some Python-specific settings. Files are edited in the text editor, and then run from
the command line.

 There is a well-known language-independent software development environment called Eclipse. There
is a plug-in called PyDev that enables Eclipse to be used as a Python development environment. If you have
experience setting up an Eclipse environment, this might be a good choice for you.

 The IPython Notebook is now known as the Jupyter Notebook. It is an interactive computational
environment in which you can combine code execution, rich text, mathematics, plots, and rich media. A key
thing about Jupyter Notebook files is that they can contain any number of small to medium-sized pieces of
Python code in a single file, and you can run any of them separately. This is an excellent environment for
demonstrations and classroom use and for sharing code. It allows a wide variety of documentation types,
including text with special fonts, images, YouTube videos, etc.

 PyCharm (by JetBrains) is a serious, full-featured Python IDE (integrated development environment).
It comes in two flavors: free Community Edition and paid Professional Edition. Beginning programmers
should find the free Community Edition to have everything you need. The Professional Edition has
additional features that make it worthwhile to someone who is developing Python code for a living.

 Yet another option is Visual Studio from Microsoft. Visual Studio is a generic development
environment that markets itself as “any language, any OS”. It has full support for Python with a
downloadable source plug-in.

 Places to Find Answers to Questions
 The official Python documentation is a great place to go for detailed information on any Python syntax or
documentation on any Python Standard library call.

 Programmers often go to a site called stackoverflow.com to ask and answer programming questions. If
you are stuck trying to figure out how to code something in Python, try going there and search through the
questions and answers. Often, you find that someone else has had the same question before you and other
programmers have chimed in with answers. (When you start to feel comfortable with the language, try to
answer some questions posed there.)

www.it-ebooks.info

https://wiki.python.org/moin/UsefulModules
https://pypi.python.org/pypi
http://www.it-ebooks.info/

CHAPTER 12 ■ WHERE TO GO FROM HERE

260

 Many major cities have a local “user group” where programmers get together for talks and/or
socialization. Python user groups are sometimes called PIGgies for Python Interest Groups. A listing of many
of these groups is at https://wiki.python.org/moin/LocalUserGroups .

 While there are many local conferences about Python, PyCon (Python Conference) calls itself “the
largest annual gathering for the community using and developing the open-source Python programming
language.” Go to www.pycon.org for details.

 Projects and Practice, Practice, Practice
 The only way to truly learn programming is through practice. As with a foreign language, it takes time to feel
comfortable using a computer programming language. With experience, you start to recognize useful patterns in
programming problems and in your solutions. To that end, I suggest that you take the time to work on developing
projects on your own to gain experience. The following are some suggestions for projects that you should be able
to build, using just the information presented in this book. These are all text-based projects.

• Rock, Paper, Scissors . The user chooses rock, paper, or scissors by entering the first
letter, and the computer randomly chooses one. Rock crushes scissors, paper covers
rock, scissors cuts paper.

• Hangman . Challenge the user to discover a randomly chosen word within a given
number of guesses of individual letters.

• Blackjack . Build a game of “21,” where the player plays against the dealer. Add in a
betting system and keep track of how much the player wins or loses.

• Craps . The rules are a little complicated, but this is a good programming challenge. A
betting system for wins and loses makes this fun.

• Flash cards . Build a generic flash card testing program. Build a program that reads a
file of questions and answers. Read in the file, randomize the questions, pose them
to the user, and compare their answers to correct answers. For an extra challenge,
allow the program to handle multiple forms of correct answers.

• Adventure game . Take the program that we built that demonstrated the concept
of a list of lists to represent a grid, and turn it into a real game. Add battles against
monsters, finding treasures, etc.

• Use an API . Like our Powerball, stock information, weather, and exchange rate
conversion examples, find a publicly available API that gives you data about some
topic that you care about. Build a user interface that allows the user to get the
information that they are interested in.

 Summary
 This chapter was more of a reference chapter, suggesting places to go to get more information about Python.
I provided links to the official documentation, where to find more information about the Standard Python
Library, and external packages. I gave a listing of what I consider some of the important packages within the
Standard Python Library and some of the most important external packages.

 I discussed a number of alternative development environments that you can use when you outgrow
IDLE. Then I listed a number of sites, groups, and conferences that you can contact for more information
about what’s going on with the language. I wrapped up with suggestions for projects that you might consider
building to give you experience.

 Most importantly, becoming a good Python programmer requires practice, practice, practice!

www.it-ebooks.info

https://wiki.python.org/moin/LocalUserGroups
http://www.pycon.org/
http://www.it-ebooks.info/

261© Irv Kalb 2016
I. Kalb, Learn to Program with Python, DOI 10.1007/978-1-4842-2172-3

 A
 Algorithm , 84–89, 91–92, 94, 120, 132
 And (logical operator) , 97, 101
 API key , 223, 225, 249
 Applications Programming Interface (API) , 209,

213–218, 225, 246, 249
 Argument , 35–36, 45, 53, 55, 57, 68, 146–147, 201
 Assignment

 operator , 17, 21–22, 60, 76, 109
 statement , 7–34, 45–46, 58, 60, 64, 67, 95, 110,

113, 135, 138, 140, 166, 198, 228, 239

 B
 Body

 of a function , 50, 53, 89
 of a loop , 106, 110, 117, 123, 148–151, 243

 Boolean , 10–12, 37, 95, 98, 230, 237–238
 expression , 75, 77–78, 82, 94, 96–97, 106–107,

109, 115–116, 158
 Break , 20, 103, 116–118, 120, 123
 Built-in functions , 35–46, 51, 53, 57, 111–112, 127,

143, 151, 166, 197, 198, 211, 257

 C
 Call (calling a function) , 35–37, 39, 41, 47, 51, 55–56,

60–62, 65, 67, 71, 76–77, 80, 86, 88–89, 92,
100, 120, 130, 147–148, 188–189, 211, 252

 Camel case , 19–21, 28, 32, 50
 Client , 210
 Comma separated value (CSV) , 214, 227,

235–237, 255, 259
 Comment

 after a line of code , 30
 full line , 30
 multiline comment , 30–31

 Comparison operator , 71, 76, 97
 Compile error (syntax error) , 32
 Concatenate, 42–44, 141, 165, 214
 Concatenation operator , 42, 44, 141

 Constant , 47, 64–67, 124–125, 171, 188, 190, 197, 249
 Content independence , 203
 Continue , 103, 118–120
 Convention , 7, 19–21, 28–33, 50, 64, 66, 136, 182, 238
 Conversion function , 35, 39–40, 47, 61–62

 D
 Data

 structure , 227–255
 type , 11–12, 36–40, 133–134, 136, 230, 238, 242

 Decrement , 103, 109–110, 132
 Def (used to defi ne a function) , 20, 50–61, 63, 65–68,

75, 80, 82–85, 87–94, 96, 99, 110–111, 126,
128–131, 146, 154–155, 160, 176, 187, 201,
202, 214, 219, 233, 236, 247, 249, 252

 Dictionary , 227, 238–246, 248–250, 254–255
 Don’t Repeat Yourself (DRY) , 63
 Dynamically types (language) , 38

 E
 Element , 1, 133, 135–140, 143, 144, 147, 157, 220,

228–230, 237–238, 240, 244, 246, 251
 Elif (statement) , 77–101, 105, 115, 235
 Else (statement) , 1, 71, 78–80, 83–84, 89, 100–101,

105, 115, 118, 235
 Empty

 list , 133, 136, 158, 160–161, 234, 237
 string , 103, 120, 167, 187, 195, 237

 Except (statement) , 127
 Execute (run a program) , 5, 17, 20, 62
 Exit condition , 107, 115–116, 118, 123–124, 132
 EXtensible Markup

Language (XML) , 250–255, 258

 F, G
 File handle , 181, 185–187, 201–203,

205–206, 208, 213, 236
 File I/O , 181–208, 212
 Float (built-in function) , 35, 39

 Index

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

262

 Float (fl oating point) , 10–12, 24–25,
39, 42, 57, 60, 85–86, 155

 Flowcharting , 71–74, 101
 For (statement) , 134, 147–152, 163, 168, 243–244
 From (import statement) , 112–113, 132,

188–189, 191, 208, 251
 Function (user-defi ned function) , 47–70

 H
 Hard-coding (or hard-coded) , 53, 121, 143
 Hello World program , 1, 3, 4, 6, 12, 20, 22
 HyperText Markup Language (HTML) , 1, 210,

212, 214, 225, 250–251, 258

 I
 IDLE , 1–3, 5–6, 17, 20, 27, 30–32, 40–41,

50–51, 64, 69, 75–76, 78, 106–107,
112, 121, 123, 182, 259–260

 If (statement) , 71–101, 106, 116, 120, 158, 240
 Immutable , 174, 180, 228, 238
 Import (statement) , 111–112, 132,

188–189, 191, 208, 251
 Increment , 103, 109–111, 123, 131,

148, 155, 191, 197, 201
 Index , 133, 136–149, 157–158, 161, 163, 166–167,

170–174, 177–179, 205–206, 216–217,
227–228, 234, 236, 238–240, 258–259

 Infi nite loop , 103, 107, 115–116, 123, 132, 215
 Int (built-in function) , 39, 42, 46, 79
 Integer , 10–12, 25, 36, 38–39, 45, 64, 79, 85–86,

91, 109, 113, 127, 131, 133, 138,
142–143, 197, 204, 222, 230

 arithmetic , 24
 Iterate , 148–152, 160–161, 168–169, 180,

222, 234, 236, 243–244, 255

 J
 JavaScript Object Notation

(JSON) , 227, 246–248, 255
 Join (built-in function) , 181, 197–198, 201

 K
 Key/value pair , 238–239, 242–243, 245–246, 248, 255
 Keyword (Python keyword) , 7, 20, 50, 59, 148

 L
 Len (built-in function) , 133, 143–144, 147, 163,

165–166, 180, 228–230
 List , 1, 13, 48, 133–163, 166, 181, 214, 227, 260

 List operations
 in (operation) , 157
 append , 157
 count , 157
 extend , 157
 index , 157
 insert , 157
 pop , 157
 remove , 157
 reverse , 157
 sort , 157

 Logic error , 32, 34
 Loop , 9, 103–132, 139, 148–156, 158–159, 161, 163,

168–169, 180, 193–196, 200, 205, 215, 218,
222, 234, 237, 241–243, 250, 255

 M
 Modulo , 24–25, 92
 Mutable , 140, 174, 180, 228

 N
 Naming convention , 19–21, 28–31,

50, 64, 66, 136, 238
 Negative indexing , 141, 167
 Nested (if statement) , 71, 77, 80, 94, 101, 234, 248
 Node , 251, 252, 255
 None , 27, 47, 51, 59, 83, 161
 Not (logical operator) , 94, 97–98, 101

 O
 Object , 157, 177, 238
 Or (logical operator) , 94, 97–98, 101
 Order of operations , 7, 26, 97
 Os (package) , 181, 186, 208

 P, Q
 Parameter (or parameter variable) ,

53–54, 56, 58, 61, 68, 85, 147
 Parse , 235–236, 253
 Passing (passing data to a function) , 36, 85
 Path , 70–74, 79, 85, 116, 181–184,

186–187, 190, 197, 200, 208
 Persistent data , 181, 196
 Print , 3, 7, 36, 51, 76, 109, 136, 187, 214, 228
 Prompt (chevron prompt) , 3, 6, 38, 40–41, 130
 Pseudo-code , 103, 120–121,

126, 132, 159–160, 190
 PyGame , 111, 258
 Python Standard

 Library , 111, 257–260

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

263

 R
 Random package , 112–113, 125, 132, 142, 188
 Random.randrange , 113–115, 125, 132, 143, 188
 Range (built-in function) , 151–152
 Range checking , 139
 Raw_input (built-in function) , 35, 38–41, 45–46, 51,

77, 79, 105, 110, 120, 197, 209
 Reading (from a fi le) , 184, 187, 208
 Request , 209–216, 222–223, 225, 246, 250, 252, 253
 Response , 38, 41, 77–78, 120, 122, 130–131,

161, 178, 205, 209–212, 214–216, 225,
246, 248, 250, 253

 Return (statement) , 47, 57–60, 70, 94
 Run time error (exception error) , 31, 32, 68–70, 139

 S
 Scope

 global , 65–66
 local , 70

 Screen scraping , 212, 215
 Server , 210–212, 215, 219, 224–225, 246, 253
 Shell (Python Shell) , 1–6, 17, 22, 24, 27, 28, 38, 49,

52–53, 112, 127, 138, 151, 177, 186, 188,
214, 216

 Slice (or slicing) , 165, 170–175, 179, 180, 212,
216–217, 248

 Split (built-in function) , 181, 198, 201, 214–215, 237
 Stepwise refi nement , 49
 Str (built-in function) , 35, 39, 44–46, 51, 111
 String , 1, 10–11, 35, 54, 75, 103, 133,

165–181, 209, 230
 String operations

 count , 177
 fi nd , 177
 index , 177
 lower , 177

 lstrip , 177
 replace , 177
 rstrip , 177
 startswith , 177
 strip , 177
 title , 177
 upper , 177

 T
 Traceback , 32–33, 48, 68–70, 139
 Truth table , 95–97
 Try (statement) , 128
 Tuple , 227–229, 234, 238, 255
 Type (built-in function) , 2–3, 36–38

 U
 Universal Resource Locator (URL) , 209
 URL encoding , 209, 223–225
 Urllib , 212, 214, 216–217, 219–220, 224–225, 258

 V
 Variable , 1, 7–34, 36, 47, 75, 105, 133,

166, 171, 211, 230, 259
 name , 17–20, 28, 33, 37, 54, 57, 67,

134–135, 143, 148, 189, 238

 W, X, Y, Z
 While (statement) , 103, 106–109, 115–116,

118–119, 130–131, 148
 While loop , 106–107, 116, 126, 131,

156, 158–159, 168, 195
 White space , 7, 31, 34, 177
 Writing (to a fi le) , 184, 187, 208

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started
	Welcome
	What Is Python?
	Installing Python
	IDLE and the Python Shell
	Hello World
	Creating, Saving, and Running a Python File
	IDLE on Multiple Platforms
	Summary

	Chapter 2: Variables and Assignment Statements
	A Sample Python Program
	The Building Blocks of Programming
	Four Types of Data
	Integers
	Floats
	Strings
	Booleans
	Examples of Data
	Form with Underlying Data

	Variables
	Assignment Statements
	Variable Names
	Naming Convention
	Keywords
	Case Sensitivity
	More Complicated Assignment Statements

	Print Statements
	Simple Math
	Order of Operations
	First Python Programs
	Shorthand Naming Convention
	Adding Comments
	Full-Line Comment
	Add a Comment After a Line of Code
	Multiline Comment

	Whitespace
	Errors
	Syntax Error
	Exception Error
	Logic Error

	Summary

	Chapter 3: Built-in Functions
	Overview of Built-in Functions
	Function Call
	Arguments
	Results
	Built-in type Function
	Getting Input from the User
	Conversion Functions
	int Function
	float Function
	str Function

	First Real Programs
	Concatenation
	Another Programming Exercise
	Using Function Calls Inside Assignment Statements
	Summary

	Chapter 4: User-Defined Functions
	A Recipe as an Analogy for Building Software
	Ingredients
	Directions

	Definition of a Function
	Building Our First Function
	Calling a User-Defined Function
	Receiving Data in a User-Defined Function: Parameters
	Building User-Defined Functions with Parameters
	Building a Simple Function that Does Addition
	Building a Function to Calculate an Average
	Returning a Value from a Function: The return Statement
	Returning No Value: None
	Returning More Than One Value
	Specific and General Variable Names in Calls and Functions
	Temperature Conversion Functions
	Placement of Functions in a Python File
	Never Write Multiple Copies of the Same Code
	Constants
	Scope
	Global Variables and Local Variables with the Same Names
	Finding Errors in Functions: Traceback
	Summary

	Chapter 5: if, else, and elif Statements
	Flowcharting
	The if Statement
	Comparison Operators
	Examples of if Statements
	Nested if Statement
	The else Statement
	Using if/else Inside a Function
	The elif Statement
	Using Many elif Statements
	A Grading Program
	A Small Sample Program: Absolute Value
	Programming Challenges
	Negative, Positive, Zero
	isSquare
	isEven
	isRectangle

	Conditional Logic
	The Logical not Operator
	The Logical and Operator
	The Logical or Operator
	Precedence of Comparison and Logical Operators
	Booleans in if Statements
	Program to Calculate Shipping
	Summary

	Chapter 6: Loops
	User’s View of the Game
	Loops
	The while Statement
	First Loop in a Real Program
	Increment and Decrement
	Running a Program Multiple Times
	Python Built-in Packages
	Generating a Random Number
	Simulation of Flipping a Coin
	Other Examples of Using Random Numbers
	Creating an Infinite Loop
	A New Style of Building a Loop: while True, and break
	The continue Statement
	Asking If the User Wants to Repeat: the Empty String
	Pseudocode
	Building the “Guess the Number” Program
	Playing a Game Multiple Times
	Error Checking with try/except
	Building Error-Checking Utility Functions
	Coding Challenge
	Summary

	Chapter 7: Lists
	Collections of Data
	Lists
	Elements
	Python Syntax for a List
	Empty List
	Position of an Element in a List: Index
	Accessing an Element in a List
	Using a Variable or Expression as an Index in a List
	Changing a Value in a List
	Using Negative Indices
	Building a Simple Mad Libs Game
	Adding a List to Our Mad Libs Game
	Determining the Number of Elements in a List: The len Function
	Programming Challenge 1
	Using a List Argument with a Function
	Accessing All Elements of a List: Iteration
	for Statements and for Loops
	Programming Challenge 2
	Generating a Range of Numbers
	Programming Challenge 3
	Scientific Simulations
	List Manipulation
	List Manipulation Example: An Inventory Example
	Pizza Toppings Example
	Summary

	Chapter 8: Strings
	len Function Applied to Strings
	Indexing Characters in a String
	Accessing Characters in a String
	Iterating Through Characters in a String
	Creating a Substring: A Slice
	Programming Challenge 1: Creating a Slice
	Additional Slicing Syntax
	Slicing As Applied to a List
	Strings Are Not Changeable
	Programming Challenge 2: Searching a String
	Built-in String Operations
	Examples of String Operations
	Programming Challenge 3: Directory Style
	Summary

	Chapter 9: File Input/Output
	Saving Files on a Computer
	Defining a Path to a File
	Reading from and Writing to a File
	File Handle
	The Python os Package
	Building Reusable File I/O Functions
	Example Using Our File I/O Functions
	Importing Our Own Modules
	Saving Data to a File and Reading It Back
	Building an Adding Game
	Programming Challenge 1
	Programming Challenge 2
	Writing/Reading One Piece of Data to and from a File
	Writing/Reading Multiple Pieces of Data to and from a File
	The join Function
	The split Function
	Final Version of the Adding Game
	Writing and Reading a Line at a Time with a File
	Example: Multiple Choice Test
	A Compiled Version of a Module
	Summary

	Chapter 10: Internet Data
	Request/Response Model
	Request with Values
	Example URL: Getting a Stock Price
	Pretending to Be a Browser
	API
	Example Program to Get Stock Price Information Using an API
	Example Program to Get Exchange Rate Information
	Example Program to Get Powerball Information
	API Key
	URL Encoding
	Summary

	Chapter 11: Data Structures
	Tuple
	Lists of Lists
	Representing a Grid or a Spreadsheet
	Representing the World of an Adventure Game
	Reading a Comma-Separated Value (.csv) File
	Dictionary
	Using the in Operator on a Dictionary
	Programming Challenge
	A Python Dictionary to Represent a Programming Dictionary
	Iterating Through a Dictionary
	Combining Lists and Dictionaries
	JSON: JavaScript Object Notation
	Example Program to Get Weather Data
	XML Data
	Accessing Repeating Groupings in JSON and XML
	Summary

	Chapter 12: Where to Go from Here
	Python Language Documentation
	Python Standard Library
	Python External Packages
	Python Development Environments
	Places to Find Answers to Questions
	Projects and Practice, Practice, Practice
	Summary

	Index

