Join the discussion @ p2p.wrox.com Wrox Programmer to Programmer™
—_— e s
A Wiey Beand

Professional

Python

Luke Sneeringer

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL PYTHON®

INTRODUCTION it ettt et taaeee s
» PARTI FUNCTIONS

CHAPTER1 Decorators............o i,
CHAPTER 2 ContextManagers.ottt iiiinnennennenn..
CHAPTER 3 Generators...........ouuiuininiininniiiiinnnn.n.
» PART Il CLASSES

CHAPTER4 MagicMethods
CHAPTER5 Metaclassest e i
CHAPTER 6 ClassFactories.
CHAPTER7 AbstractBaseClasses..........
» PART Il DATA

CHAPTER 8 Stringsand Unicode.
CHAPTER 9 Regular Expressions.,
» PART IV EVERYTHING ELSE

CHAPTER 10 Python2VersusPython3.......
CHAPTER 11 UnitTestingt e i
CHAPTER 12 CLITools. . ..ot e
CHAPTER 13 @SYNCIO ..ottt e e e e e
CHAPTER 14 Style . ..o i e
INDEX .ot e e e e

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

Python®

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

Python®

Luke Sneeringer

AN

WFrox

A Wiley Brand

www.it-ebooks.info

http://www.it-ebooks.info/

Professional Python®

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-07085-6
ISBN: 978-1-119-07083-2 (ebk)
ISBN: 978-1-119-07078-8 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
|748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the pub-
lisher endorses the information the organization or Web site may provide or recommendations it may make. Further, read-
ers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015952564

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Python is a registered trademark of Python Software Foundation. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product
or vendor mentioned in this book.

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.it-ebooks.info/

To Meagan. My loving wife, and forever my best
friend. You make “happily ever after” a reality.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHOR

LUKE SNEERINGER has designed, architected, built, and contributed to numerous Python applica-
tions for companies including FeedMagnet, May Designs, and Ansible, and is a frequent speaker at
Python conferences. He lives in Austin, Texas, with his wife, Meagan, and a non-trivial contingent
of cats and fish.

ABOUT THE TECHNICAL EDITORS

ALAN GAULD is a certified Enterprise Architect for The Open Group Architecture Framework
(TOGAF), working in the telecommunications and customer service industries. He has been
programming since 1974 and using Python since 1998. He is the author of two books on Python.
When not working, he enjoys hiking, photography, travel, and music.

ELIAS BACHAALANY is a computer programmer, software reverse engineer, and a technical writer.
Elias has also co-authored the books Practical Reverse Engineering (Wiley, 2014) and The Antivirus
Hacker’s Handbook (Wiley, 2015). During his employment period at Hex-Rays S.A, he amped up
IDA Pro’s scripting facilities and contributed to the IDAPython project.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CREDITS

PROJECT EDITOR PROFESSIONAL TECHNOLOGY & STRATEGY
Kevin Shafer DIRECTOR

Barry Pruett
TECHNICAL EDITOR

Alan Gauld; Elias Bachaalany BUSINESS MANAGER
Amy Knies
PRODUCTION EDITOR
Joel Jones ASSOCIATE PUBLISHER
Jim Minatel
COPY EDITOR
Kimberly A. Cofer PROJECT COORDINATOR, COVER

Brent Savage
MANAGER OF CONTENT DEVELOPMENT &

ASSEMBLY PROOFREADER

Mary Beth Wakefield Kathryn Duggan
PRODUCTION MANAGER INDEXER

Kathleen Wisor Jack Lewis

MARKETING DIRECTOR COVER DESIGNER

David Mayhew Wiley

MARKETING MANAGER COVER IMAGE

Carrie Sherrill ©Getty Images/Yagi Studio

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

THIS BOOK WOULD NOT be a reality without the indispensible help of its editor, Kevin Shafer, and
technical reviewers, Alan Gould and Elias Bachaalany. Their efforts made this book immeasurably
better (and substantially reduced errata contained therein). The entire team at Wiley did an out-
standing job of taking my rather unattractive starting manuscripts and making something beautiful.

A special thanks goes to Jason Ford, my dear friend and the brilliant entrepreneur who gives me
an endless supply of entertaining work. He gave me my first opportunity to write Python profes-
sionally, and continues to be a daily source of interesting problems, fascinating debate, and endless
excitement (oh, and a paycheck).

I am grateful also to many friends both inside and outside the Python community, who have worked
or played with me over the past many years. While these are sadly too many to list, conscience
would not forgive a failure to note a subset by name: Mickie Betz, Frank Burns, David Cassidy,

Jon Chappell, Diana Clarke, George Dupere, John Ferguson, Alex Gaynor, Jasmin Goedtel, Chris
Harbison, Boyd Hemphill, Rob Johnson, Daniel Lindsley, Jeff McHale, Doug Napleone, Elli Pope,
Tom Smith, and Caleb Sneeringer.

Thanks to my parents, Jim and Cheryl Sneeringer, who taught me more things than I could ever
enumerate. Among these was how to code, but greatest in importance was how to live.

Finally, the acknowledgements could hardly be considered complete without a paragraph citing the
support, dedication, and love of my wife, Meagan. She convinced me that this book was worth writ-
ing, and graciously supported me during every step of the process. I could not be more blessed or
more thankful to have her in my life every day.

—Sor1 DEo GLORIA

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

INTRODUCTION XXV
CHAPTER 1: DECORATORS 3
Understanding Decorators 3
Decorator Syntax 4
Order of Decorator Application 5
Where Decorators Are Used 6
Why You Should Write Decorators 6
When You Should Write Decorators 7
Additional Functionality 7
Data Sanitization or Addition 7
Function Registration 7
Writing Decorators 7
An Initial Example: A Function Registry 7
Execution-Time Wrapping Code 9

A Simple Type Check 9
Preserving the help 10

User Verification 1
Output Formatting 12
Logging 14
Variable Arguments 15
Decorator Arguments 16
How Does This Work? 17

The Call Signature Matters 18
Decorating Classes 20
Type Switching 22
A Pitfall 24
Summary 25
CHAPTER 2: CONTEXT MANAGERS 27
What Is a Context Manager? 27
Context Manager Syntax 28
The with Statement 28
The enter and exit Methods 28
Exception Handling 29

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

When You Should Write Context Managers 30
Resource Cleanliness 30
Avoiding Repetition 31

Propagating Exceptions 31
Suppressing Exceptions 32

A Simpler Syntax 37
Summary 38
CHAPTER 3: GENERATORS 41

Understanding What a Generator Is 41

Understanding Generator Syntax 41
The next Function 43
The Stoplteration Exception 45

Python 2 46
Python 3 47

Communication with Generators 47

lterables Versus Iterators 49

Generators in the Standard Library 50
range 50
dict.items and Family 50
zip 51
map 51
File Objects 52

When to Write Generators 53
Accessing Data in Pieces 53
Computing Data in Pieces 54

Sequences Can Be Infinite 54

When Are Generators Singletons? 54

Generators within Generators 55

Summary 56

CHAPTER 4: MAGIC METHODS 59

Magic Method Syntax 59

Available Methods 60
Creation and Destruction 61

__init__ 61
__new__ 62
_del _ 62

XVi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Type Conversion 63
__str_, __unicode__, and __bytes__ 63
__bool__ 64
_int__, _float__, and __complex__ 65

Comparisons 65
Binary Equality 65
Relative Comparisons 67
Operator Overloading 68
Overloading Common Methods 71
Collections 75

Other Magic Methods 77
Summary 77
CHAPTER 5: METACLASSES 79
Classes and Objects 79

Using type Directly 80
Creating a Class 81
Creating a Subclass 81

The type Chain 82

The Role of type 82

Writing Metaclasses 83

The ___new___ Method 83

—_new___ Versus __init___ 83

A Trivial Metaclass 84

Metaclass Inheritance 84

Using Metaclasses 87

Python 3 87

Python 2 88

What About Code That Might Run on Either Version? 88

When Is Cross-Compatibility Important? 89

When to Use Metaclasses 89

Declarative Class Declaration 89
An Existing Example 89
How This Works 90
Why This Is a Good Use for Metaclasses 91

Class Verification 91

Non-Inheriting Attributes 93

The Question of Explicit Opt-In 94
Meta-Coding 95
Summary 97

www.it-ebooks.info

Xvii

http://www.it-ebooks.info/

CONTENTS

CHAPTER 6: CLASS FACTORIES 99
A Review of type 99
Understanding a Class Factory Function 100
Determining When You Should Write Class Factories 102

Runtime Attributes 102
Understanding Why You Should Do This 103
Attribute Dictionaries 104
Fleshing Out the Credential Class 104
The Form Example 105

Dodging Class Attribute Consistency 106
Class Attributes Versus Instance Attributes 107
The Class Method Limitation 108
Tying This in with Class Factories 109

Answering the Singleton Question 109

Summary 1M

CHAPTER 7: ABSTRACT BASE CLASSES 113
Using Abstract Base Classes 113
Declaring a Virtual Subclass 115

Why Declare Virtual Subclasses? 115

Using register as a Decorator 117

__subclasshook__ 117

Declaring a Protocol 19

Other Existing Approaches 119
Using NotimplementedError 120
Using Metaclasses 120

The Value of Abstract Base Classes 122

Abstract Properties 124

Abstract Class or Static Methods 125

Built-in Abstract Base Classes 126

Single-Method ABCs 126

Alternative-Collection ABCs 127
Using Built-In Abstract Base Classes 128

Additional ABCs 128

Summary 128

CHAPTER 8: STRINGS AND UNICODE 131
Text String Versus Byte String 131

String Data in Python 132
Python 3 Strings 132

xviii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Python 2 Strings 134

six 136
Strings with Non-ASCIl Characters 136
Observing the Difference 136
Unicode Is a Superset of ASCII 137
Other Encodings 137
Encodings Are Not Cross-Compatible 138
Reading Files 139
Python 3 139
Specifying Encoding 139
Reading Bytes 140
Python 2 140
Reading Other Sources 141
Specifying Python File Encodings 141
Strict Codecs 143
Suppressing Errors 143
Registering Error Handlers 144
Summary 145
CHAPTER 9: REGULAR EXPRESSIONS 147
Why Use Regular Expressions? 147
Regular Expressions in Python 148
Raw Strings 148
Match Objects 149
Finding More Than One Match 149
Basic Regular Expressions 150
Character Classes 150
Ranges 151
Negation 151
Shortcuts 152
Beginning and End of String 153

Any Character 154
Optional Characters 154
Repetition 155
Repetition Ranges 155
Open-Ended Ranges 156
Shorthand 156
Grouping 157
The Zero Group 159
Named Groups 159
Referencing Existing Groups 160
Lookahead 161
Flags 163

www.it-ebooks.info

XiX

http://www.it-ebooks.info/

CONTENTS

Case Insensitivity 163
ASCIl and Unicode 163
Dot Matching Newline 163
Multiline Mode 164
Verbose Mode 164
Debug Mode 164
Using Multiple Flags 165
Inline Flags 165
Substitution 165
Compiled Regular Expressions 166
Summary 167
CHAPTER 10: PYTHON 2 VERSUS PYTHON 3 171
Cross-Compeatibility Strategies 171
The __future__ Module 172
2to3 172
Writing Changes 173
Limitations 174

six 174
Changes in Python 3 175
Strings and Unicode 175
The print Function 176
Division 176
Absolute and Relative Imports 177
Removal of “Old-Style” Classes 178
Metaclass Syntax 179
six.with_metaclass 179
six.add_metaclass 180
Exception Syntax 180
Handling Exceptions 181
Exception Chaining 181
Dictionary Methods 182
Function Methods 183
Iterators 183
Standard Library Relocations 184
Merging “Fast” Modules 184
io 184
pickle 184

The URL Modules 185
Renames 185
Other Package Reorganizations 185

XX

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Version Detection 186
Summary 186
CHAPTER 11: UNIT TESTING 187
The Testing Continuum 187
The Copied Ecosystem 188
The Isolated Environment 188
Advantages and Disadvantages 189
Speed 189
Interactivity 189
Testing Code 190
Code Layout 190
Testing the Function 191
The assert Statement 192
Unit Testing Frameworks 192
Running Unit Tests 193
Failures 193
Errors 194
Skipped Tests 195
Loading Tests 196
Mocking 197
Mocking a Function Call 197
Asserting Mocked Calls 199
Inspecting Mocks 201
Call Count and Status 201
Multiple Calls 202
Inspecting Calls 203
Other Testing Tools 203
coverage 203
tox 204
Other Test Runners 205
Summary 205
CHAPTER 12: CLI TOOLS 207
optparse 207
A Simple Argument 207
__name__=='__main__' 208
OptionParser 208
Options 209
Types of Options 209
Adding Options to OptionParser 209

www.it-ebooks.info

XXi

http://www.it-ebooks.info/

CONTENTS

Options with Values 210
Non-String Values 21
Specifying Option Values 212
Positional Arguments 214
Counters 214

List Values 215

Why Use optparse? 216
argparse 216
The Bare Bones 217
Arguments and Options 217
Option Flags 217
Alternate Prefixes 218
Options with Values 219
Positional Arguments 222
Reading Files 223
Why Use argparse? 224
Summary 224
CHAPTER 13: ASYNCIO 225
The Event Loop 225
A Simple Event Loop 226
Running the Loop 226
Registering Tasks and Running the Loop 227
Delaying Calls 227
Partials 228
Running the Loop until a Task Completes 228
Running a Background Loop 229
Coroutines 230
Nested Coroutines 231
Futures and Tasks 232
Futures 232
Tasks 232
Callbacks 234
No Guarantee of Success 235
Under the Hood 235
Callbacks with Arguments 235
Task Aggregation 236
Gathering Tasks 236
Waiting on Tasks 237
Timeouts 238
Waiting on Any Task 239
Waiting on an Exception 239

XXii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Queues 240
Maximum Size 242
Servers 242
Summary 244
CHAPTER 14: STYLE 245
Principles 245
Assume Your Code Will Require Maintenance 245
Be Consistent 246
Think About Ontology, Especially with Data 246
Do Not Repeat Yourself 246
Have Your Comments Explain the Story 247
Occam'’s Razor 247
Standards 248
Trivial Rules 248
Documentation Strings 248
Blank Lines 249
Imports 249
Variables 250
Comments 250
Line Length 251
Summary 251
INDEX 253

xXiii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

THIS BOOK INTRODUCES THE READER to more advanced Python programming by providing an
intermediate course in the Python language.

Recently, Python has become more and more frequently the developer’s language of choice. It is used
all over the world, for myriad purposes. As adoption continues to increase, more and more develop-
ers are spending their days writing Python.

Python has grown so steadily precisely because it is a very powerful language, and even many seasoned
Python developers have only scratched the surface of what the language is capable of doing.

WHO THIS BOOK IS FOR

This book is for developers who have already worked in Python, are already familiar with the
language, and desire to learn more about it. This book assumes that readers have already done
most basic tasks involved with developing in Python (such as having used the Python interactive
terminal).

If you are a reader who seeks a general survey of intermediate to advanced Python language
features, you should read this book from start to finish.

Alternatively, you may be a reader who has used some more-advanced language features in
passing, or potentially needs to maintain code that uses such features. Consider using this

book as a reference guide or index to flesh out your understanding when you are grappling with a
particular implementation.

WHAT THIS BOOK COVERS

This book covers all recent versions of Python (including both Python 2 and Python 3). At the time
of this writing, the most recent version available is Python 3.4, and Python 3.5 is in beta. This book
primarily covers Python 2.6, 2.7, 3.3, and 3.4. Most code is provided in a manner that will run on
both Python 2 and Python 3, with Python 2 code specifically noted as such.

Additionally, this book includes a chapter with a deep dive into distinctions between Python 2 and
Python 3, which provides advice on writing code to run on multiple versions of Python, as well as
porting over to Python 3.

This book primarily focuses on two areas. The first is features of the language itself. For example,
this book includes several chapters about various aspects of how Python’s class and object model
works. The second area is modules provided as part of the standard library. For example, this book
includes a chapter each on modules such as asyncio, unittest, and argparse.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

HOW THIS BOOK IS STRUCTURED

This book is essentially divided into four parts.

The first three chapters in the book are fundamentally about functions in Python. This part includes
a chapter each on decorators and context managers, which are reusable ways to modify or wrap
functions to add functionality. It also includes a chapter on generators, which are a way to design
functions that yield values one at a time, rather than creating an entire list of values in advance and
returning them in one block.

The second part comprises the next four chapters, and they are all related somehow to Python
classes and the language’s object model. There is a chapter on magic methods. Then, there is a
chapter each on metaclasses and class factories, which are two approaches to constructing classes in
powerful ways. Finally, a chapter on abstract base classes explains the abc module and how to make
classes declare patterns that they implement.

The third part comprises two chapters about strings and data. There is a chapter on how to navigate
using Unicode strings (as opposed to byte strings) in Python, which also covers in detail how strings
differ between Python 2 and Python 3. There is also a chapter on regular expressions, which covers
the Python re module as well as how to write regular expressions.

Finally, the fourth part covers everything that does not neatly fit into one of the first three parts.
This part begins with an in-depth look at the distinctions between Python 2 and Python 3, and
how to write code that is interoperable with both. There is a chapter on unit testing, focusing on
the unittest module. A chapter on command-line interface (CLI) tools teaches you about both
optparse and argparse, which are Python’s modules for writing command-line tools. There is a
chapter on asyncio, which is a new asynchronous programming library that was added to the stan-
dard library in Python 3.4. Finally, the book closes with a chapter on style.

WHAT YOU NEED TO USE THIS BOOK

You will, first and foremost, need a machine running Python.

Although it does not make a difference in most chapters, this book is slightly Linux-focused in its
approach (this will be most relevant in the chapter on CLI tools). Examples were run in a Linux
environment, and output may vary slightly on Windows.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

XXVi

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset
and placed in italics like this.

As for styles in the text:
> We highlight new terms and important words when we introduce them.
> We show keyboard strokes like this: Ctrl+A.
> We show filenames, URLs, and code within the text like so: persistence.properties.
>

We present code as follows:

We use a monofont type for most code examples.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books (like a spelling mistake
or faulty piece of code), we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and, at the same time, you will be helping us to provide
even higher quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On
this page, you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list (including links to each book’s errata) is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport .shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies, and to interact
with other readers and technology users. The forums offer a subscription feature to e-mail you

XXVii

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/contact
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://www.it-ebooks.info/

INTRODUCTION

topics of interest of your choosing when new posts are made to the forums. Some Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as
you read most Wrox books, but also as you develop your own applications. To join the forums, just
follow these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P. However, in
order to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXViii

www.it-ebooks.info

http://p2p.wrox.com
http://www.it-ebooks.info/

A A N B B L N N

3:,9.... & =

000 0 ¢

.

v w

S 00 0 »
D 9 8 e e .

_—-;i]@...o

PART |

Functions

@ & 9 =
'O @ 9 e »

) O 0 ® @ & -

') D D o e s .

DD ® e o -

PO D e e o -

I K N B e

YO0 00 e o

18O e e o

. . .

P9©0®0 0 0 ¢ s .« .
POO® 000 0 6 0o «
P9 OO0 0 0 s ¢
PO 9900 0 8 o +
D090 00 0 0 s o« ¢
D0 G0 e o 0 o o =«
® 9 © 00 0 0 & - .

0@ O© 00 0 & « .

e

- w e ® o

. = & @ e @ @
« s ° e @ ® 0 @0
¢« s @ ® @ 9@
s s 88 @ [N N
e o000 L N N |
s 0 00® o0 @
NN N L X N
0000000000000 00000F°
0000000000000 000000
0000000000000000000
0000000002000 000DRR00Y!
:0.......0.0.0...0....1
®

0

;rtl

i

www.it-ebooks.info

'.!j_lﬂ......o .
-'5‘....I.l-
O.......l.a-.

=
_,)

Do e e e s .
I;)‘.... e &
:‘P’ﬂ....l. ® o
"':—)....... ® 0 o o
':‘0....‘.. @ o &

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Decorators

A decorator is a tool for wrapping code around functions or classes. Decorators then explicitly
apply that wrapper to functions or classes to cause them to “opt in” to the decorator’s func-
tionality. Decorators are extremely useful for addressing common prerequisite cases before

a function runs (for example, ensuring authentication), or ensuring cleanup after a function
runs (for example, output sanitization or exception handling). They are also useful for taking
action on the decorated function or class itself. For example, a decorator might register a func-
tion with a signaling system or a URI registry in web applications.

This chapter provides an overview of what decorators are and how they interact with Python
functions and classes. It enumerates certain decorators that appear in the Python standard
library. Finally, it offers instruction in writing decorators and attaching them to functions
and classes.

UNDERSTANDING DECORATORS

At its core, a decorator is a callable that accepts a callable and returns a callable. A decorator
is simply a function (or other callable, such as an object witha call method) that accepts
the decorated function as its positional argument. The decorator takes some action using that
argument, and then either returns the original argument or some other callable (presumably
that interacts with it in some way).

Because functions are first-class objects in Python, they can be passed to another function just
as any other object can be. A decorator is just a function that expects another function, and
does something with it.

This sounds more confusing than it actually is. Consider the following very simple decorator.
It does nothing except append a line to the decorated callable’s docstring.

def decorated by (func) :
func. doc_ += '\nDecorated by decorated by.'
return func

www.it-ebooks.info

http://www.it-ebooks.info/

4 | CHAPTER1 DECORATORS

Now, consider the following trivial function:

def add(x, y):
""rReturn the sum of x and y."""
return x + y

The function’s docstring is the string specified in the first line. It is what you will see if you run help
on that function in the Python shell. Here is the decorator applied to the add function:
def add(x, y):
""rReturn the sum of x and y."""

return x + y
add = decorated by (add)

Here is what you get if you run help:

Help on function add in module _ main :

add (x, y)
Return the sum of x and vy.
Decorated by decorated by.
(END)

What has happened here is that the decorator made the modification to the function’s doc
attribute, and then returned the original function object.

DECORATOR SYNTAX

Most times that developers use decorators to decorate a function, they are only interested in
the final, decorated function. Keeping a reference to the undecorated function is ultimately
superfluous.

Because of this (and also for purposes of clarity), it is undesirable to define a function, assign it to
a particular name, and then immediately reassign the decorated function to the same name.

Therefore, Python 2.5 introduced a special syntax for decorators. Decorators are applied by
prepending an @ character to the name of the decorator and adding the line (without the implied
decorator’s method signature) immediately above the decorated function’s declaration.

Following is the preferred way to apply a decorated by decorator to the add method:

@decorated_by

def add(x, y):
""rReturn the sum of x and y."""
return X + y

Note again that no method signature is being provided to edecorated by. The decorator is
assumed to take a single, positional argument, which is the method being decorated. (You will
see a method signature in some cases, but with other provided arguments. This is discussed later
in this chapter.)

This syntax allows the decorator to be applied where the function is declared, which makes it easier
to read the code and immediately realize that the decorator is in play. Readability counts.

www.it-ebooks.info

http://www.it-ebooks.info/

Decorator Syntax | 5

Order of Decorator Application

When is a decorator applied? When the @ syntax is being used, decorators are applied immediately
after the decorated callable is created. Therefore, the two examples shown of how to apply deco-
rated by to add are exactly equivalent. First, the add function is created, and then, immediately
after that, it is wrapped with decorated by.

One important thing to note about this is that it is possible to use multiple decorators on a single
callable (just as it is possible to wrap function calls multiple times).

However, note that if you use multiple decorators using the @ syntax, they are applied in order, from
bottom to top. This may be counterintuitive at first, but it makes sense given what the Python inter-
preter is actually doing.

Consider the following function with two decorators applied:

@also_decorated by

@decorated by

def add(x, y):
"""Return the sum of x and y."""
return x + y

The first thing that occurs is that the add function is created by the interpreter. Then, the deco-
rated by decorator is applied. This decorator returns a callable (as all decorators do), which is
then sent to also_decorated by, which does the same; the latter result is assigned to add.

Remember that the application of decorated by is syntactically equivalent to the following:

add = decorated by (add)

The previous two-decorator example is syntactically equivalent to the following;:

add = also_decorated by (decorated by (add))

In both cases, the also_decorated by decorator comes first as a human reads the code. However,
the decorators are applied bottom to top for the same reason that the functions are resolved from
innermost to outermost. The same principles are at work.

In the case of a traditional function call, the interpreter must first resolve the inner function call in
order to have the appropriate object or value to send to the outer call.

add = also_decorated by (decorated by(add)) # First, get a return value for
“decorated by (add) ~.
also_decorated by(decorated by(add)) # Send that return value to
“also_decorated by".

add

With a decorator, first the add function is created normally.

@also_decorated by

@decorated by

def add(x, y):
"nnReturn the sum of x and y."""
return x + y

www.it-ebooks.info

http://www.it-ebooks.info/

6 | CHAPTER1 DECORATORS

Then, the edecorated by decorator is called, being sent the add function as its decorated method.

@also_decorated_ by

@decorated by

def add(x, y):
"nnReturn the sum of x and y."""
return x + y

The @decorated_by function returns its own callable (in this case, a modified version of add). That
value is what is then sent to @also_decorated by in the final step.

@also_decorated by

@decorated by

def add(x, y):
"n""Return the sum of x and y."""
return x + y

When applying decorators, it is important for you to remember that they are applied bottom to top.
Many times, order does matter.

WHERE DECORATORS ARE USED

The standard library includes many modules that incorporate decorators, and many common tools
and frameworks make use of them for common functionality.

For example, if you want to make a method on a class not require an instance of the class, you use
the eclassmethod or @staticmethod decorator, which is part of the standard library. The mock
module (which is used for unit testing, and which was added to the standard library in Python 3.3)
allows the use of @mock.patch or @mock.patch.object as a decorator.

Common tools also use decorators. Django (which is a common web framework for Python) uses
@login_required as a decorator to allow developers to specify that a user must be logged in to
view a particular page, and uses @permission required for applying more specific permissions.
Flask (another common web framework) uses @app . route to serve as a registry between specific
URIs and the functions that run when the browser hits those URIs.

Celery (a common Python task runner) uses a complex @task decorator to identify a function as
an asynchronous task. This decorator actually returns an instance of a Task class, which illustrates
how decorators can be used to make a very convenient API.

WHY YOU SHOULD WRITE DECORATORS

Decorators provide an excellent way to say, “I want this specific, reusable piece of functionality in
these specific places.” When written well, they are modular and explicit.

The modularity of decorators (you can apply or remove them from functions or classes easily) makes
them ideal for avoiding the repetition of boilerplate setup and teardown code. Similarly, because
decorators interact with the decorated function itself, they excel at registering functions elsewhere.

Also, decorators are explicit. They are applied, in-place, to all callables where they are needed. This
is valuable for readability, and therefore for debugging. It is obvious exactly what is being applied
and where.

www.it-ebooks.info

mailto:@mock.patch
mailto:@mock.patch.object
mailto:@app.route
http://www.it-ebooks.info/

Writing Decorators | 7

WHEN YOU SHOULD WRITE DECORATORS

Several very good use cases exist for writing decorators in Python applications and modules.

Additional Functionality

Probably the most common reason to write a decorator is if you want to add additional functional-
ity before or after the decorated method is executed. This could include use cases such as checking
authentication or logging the result of a function to a consistent location.

Data Sanitization or Addition

A decorator could also sanitize the values of arguments being passed to the decorated function, to
ensure consistency of argument type, or that a value conforms to a specific pattern. For example, a
decorator could ensure that the values sent to a function conform to a specific type, or meet some other
validation standard. (You will see an example of this shortly, a decorator called @requires ints.)

A decorator can also transform or sanitize data that is returned from a function. A valuable use case
for this is if you want to have functions that return native Python objects (such as lists or dictionar-
ies), but ultimately receive a serialized format (such as JSON or YAML) on the other end.

Some decorators actually provide additional data to a function, usually in the form of additional
arguments. The @mock . patch decorator is an example of this, because it (among other things)
provides the mock object that it creates as an additional positional argument to the function.

Function Registration

Many times, it is useful to register a function elsewhere—for example, registering a task in a task
runner, or a function with a signal handler. Any system in which some external input or routing
mechanism decides what function runs is a candidate for function registration.

WRITING DECORATORS

Decorators are simply functions that (usually) accept the decorated callable as their only argument,
and that return a callable (such as in the previous trivial example).

It is important to note that the decorator code itself runs when the decorator is applied to the deco-
rated function, rather than when the decorated function is called. Understanding this is critical, and
will become very clear over the course of the next several examples.

An Initial Example: A Function Registry

Consider the following simple registry of functions:

registry = []

def register(decorated) :
registry.append (decorated)
return decorated

www.it-ebooks.info

mailto:@mock.patch
http://www.it-ebooks.info/

8 | CHAPTER1 DECORATORS

The register method is a simple decorator. It appends the positional argument, decorated to the
registry variable, and then returns the decorated method unchanged. Any method that receives the
register decorator will have itself appended to registry.

@register
def fool():
return 3

@register
def bar():
return 5

If you have access to the registry, you can easily iterate over it and execute the functions inside.

answers = []
for func in registry:
answers.append (func())

The answers list at this point would now contain [3, 5]. This is because the functions are
executed in order, and their return values are appended to answers.

Several less-trivial uses for function registries exist, such as adding “hooks” into code so that cus-
tom functionality can be run before or after critical events. Here is a Registry class that can handle
just such a case:

class Registry(object) :
def init (self):
self. functions = []

def register(self, decorated):
self. functions.append (decorated)
return decorated

def run_all(self, *args, **kwargs):
return values = []
for func in self. functions:
return_values.append (func (*args, **kwargs))
return return values

One thing worth noting about this class is that the register method—the decorator—still works
the same way as before. It is perfectly fine to have a bound method as a decorator. It receives self
as the first argument (just as any other bound method), and expects one additional positional argu-
ment, which is the decorated method.

By making several different registry instances, you can have entirely separate registries. It is even
possible to take the same function and register it with more than one registry, as shown here:

a
b

Registry ()
Registry ()

@a.register
def foo(x=3):
return x

www.it-ebooks.info

mailto:@a.register
http://www.it-ebooks.info/

Writing Decorators | 9

@b.register
def bar(x=5):
return x

@a.register

@b.register

def baz(x=7) :
return x

Running the code from either registry’s run_all method gives the following results:

a.run_all() # [3, 7]
b.run all() # [5, 7]

Notice that the run all method is able to take arguments, which it then passes to the underlying
functions when they are run.

a.run_all (x=4) # [4, 4]

Execution-Time Wrapping Code

These decorators are very simple because the decorated function is passed through unmodified.
However, sometimes you want additional functionality to run when the decorated method is
executed. You do this by returning a different callable that adds the appropriate functionality
and (usually) calls the decorated method in the course of its execution.

A Simple Type Check

Here is a simple decorator that ensures that every argument the function receives is an integer, and
complains otherwise:

def requires ints(decorated) :
def inner(*args, **kwargs):
Get any values that may have been sent as keyword arguments.
kwarg values = [i for i in kwargs.values()]

Iterate over every value sent to the decorated method, and
ensure that each one is an integer; raise TypeError if not.
for arg in list(args) + kwarg values:
if not isinstance(arg, int):
raise TypeError ('%s only accepts integers as arguments.' %
decorated. name)

Run the decorated method, and return the result.
return decorated(*args, **kwargs)
return inner

What is happening here?

The decorator itself is requires_ints. It accepts one argument, decorated, which is the decorated
callable. The only thing that this decorator does is return a new callable, the local function inner.
This function replaces the decorated method.

www.it-ebooks.info

mailto:@b.register
mailto:@a.register
mailto:@b.register
http://www.it-ebooks.info/

10 | CHAPTER1 DECORATORS

You can see this in action by declaring a function and decorating it with requires ints:

@requires_ints

def fool(x, y):
"n""Return the sum of x and y."""
return x + y

Notice what you get if you run help (foo):

Help on function inner in module main :

inner (*args, **kwargs)
(END)

The inner function has been assigned to the name foo instead of the original, defined function. If
you run foo (3, 5),the inner function runs with those arguments. The inner function performs
the type check, and then it runs the decorated method simply because the inner function calls it
using return decorated(*args, **kwargs), returning 8. Absent this call, the decorated method would
have been ignored.

Preserving the help

It often is not particularly desirable to have a decorator steamroll your function’s docstring or hijack
the output of help. Because decorators are tools for adding generic and reusable functionality, they
are necessarily going to be more vague. And, generally, if someone using a function is trying to run
help on it, he or she wants information about the guts of the function, not the shell.

The solution to this problem is actually ... a decorator. Python implements a decorator called @
functools.wraps that copies the important introspection elements of one function onto another
function.

Here is the same @erequires_ints decorator, but it adds in the use of @functools.wraps:

import functools

def requires ints(decorated) :
@functools.wraps (decorated)
def inner(*args, **kwargs):
Get any values that may have been sent as keyword arguments.
kwarg values = [i for i in kwargs.values()]

Iterate over every value sent to the decorated method, and
ensure that each one is an integer; raise TypeError if not.
for arg in args + kwarg values:
if not isinstance (i, int):
raise TypeError('%s only accepts integers as arguments.' %
decorated. name)

Run the decorated method, and return the result.
return decorated(*args, **kwargs)
return inner

The decorator itself is almost entirely unchanged, except for the addition of the second line, which
applies the @functools.wraps decorator to the inner function. You must also import functools
now (which is in the standard library). You will also notice some additional syntax. This decorator
actually takes an argument (more on that later).

www.it-ebooks.info

mailto:@functools.wraps:
mailto:@functools.wraps
mailto:@functools.wraps
http://www.it-ebooks.info/

Writing Decorators | 11

Now you apply the decorator to the same function, as shown here:

@requires_ints

def foo(x, y):
"""Return the sum of x and y."""
return x + y

Here is what happens when you run help (foo) now:

Help on function foo in module _ main :

foo(x, vy)
Return the sum of x and y.
(END)

You see that the docstring for foo, as well as its method signature, is what is read out when you
look at help. Underneath the hood, however, the erequires_ints decorator is still applied, and
the inner function is still what runs.

Depending on which version of Python you are running, you will get a slightly different result from
running help on foo, specifically regarding the function signature. The previous paste represents
the output from Python 3.4. However, in Python 2, the function signature provided will still be that
Ofinner(so,*argsand**kwargsraﬂwrthanzcandyL

User Verification

A common use case for this pattern (that is, performing some kind of sanity check before running
the decorated method) is user verification. Consider a method that is expected to take a user as its
first argument.

The user should be an instance of this User and AnonymousUser class, as shown here:

class User (object) :
"nnp representation of a user in our application."""

def _ init (self, username, email):
self.username = username
self.email = email

class AnonymousUser (User) :
"""An anonymous user; a stand-in for an actual user that nonetheless

is not an actual user.
mmn

def init_ (self):
self.username = None
self.email = None

def nonzero (self):
return False

A decorator is a powerful tool here for isolating the boilerplate code of user verification. A
@requires_user decorator can easily verify that you got a User object and that it is not an
anonymous user.

www.it-ebooks.info

http://www.it-ebooks.info/

12

CHAPTER 1 DECORATORS

import functools

def requires user (func):
@functools.wraps (func)
def inner(user, *args, **kwargs):
"nyerify that the user is truthy; if so, run the decorated method,
and if not, raise ValueError.
nmnn
Ensure that user is truthy, and of the correct type.
The "truthy" check will fail on anonymous users, since the
AnonymousUser subclass has a = nonzero ~ method that
returns False.
if user and isinstance (user, User):
return func(user, *args, **kwargs)
else:
raise ValueError ('A valid user is required to run this.')
return inner

This decorator applies a common, boilerplate need—the verification that a user is logged in to the
application. When you implement this as a decorator, it is reusable and more easily maintainable,
and its application to functions is clear and explicit.

Note that this decorator will only correctly wrap a function or static method, and will fail if wrap-
ping a bound method to a class. This is because the decorator ignores the expectation to send self
as the first argument to a bound method.

Output Formatting

In addition to sanitizing input to a function, another use for decorators can be sanitizing output
from a function.

When you’re working in Python, it is normally desirable to use native Python objects when pos-
sible. Often, however, you want a serialized output format (for example, JSON). It is cumbersome to
manually convert to JSON at the end of every relevant function, and (and it’s not a good idea, either).
Ideally, you should be using the Python structures right up until serialization is necessary, and there
may be other boilerplate that happens just before serialization (such as or the like).

Decorators provide an excellent, portable solution to this problem. Consider the following decorator
that takes Python output and serializes the result to JSON:

import functools
import json

def json_output (decorated) :
""rRun the decorated function, serialize the result of that function
to JSON, and return the JSON string.
nmnn
@functools.wraps (decorated)
def inner(*args, **kwargs):
result = decorated(*args, **kwargs)
return json.dumps (result)
return inner

www.it-ebooks.info

mailto:@functools.wraps
mailto:@functools.wraps
http://www.it-ebooks.info/

Writing Decorators | 13

Apply the @json_output decorator to a trivial function, as shown here:
@json_output

def do nothing() :
return {'status': 'done'}

Run the function in the Python shell, and you get the following:

>>> do_nothing()
"{"status": "done"}'

Notice that you got back a string that contains valid JSON. You did not get back a dictionary.

The beauty of this decorator is in its simplicity. Apply it to a function, and suddenly a function that
did return a Python dictionary, list, or other object now returns its JSON-serialized version.

You might ask, “Why is this valuable?” After all, you are adding a one-line decorator that essen-
tially removes a single line of code—a call to json.dumps. However, consider the value of having
this decorator as the application’s needs expand.

For example, what if certain exceptions should be trapped and output specifically formatted JSON,
rather than having the exception bubble up and traceback? Because you have a decorator, that func-
tionality is very easy to add.

import functools
import json

class JSONOutputError (Exception) :
def init_ (self, message):
self. message = message

def str (self):

return self. message

def json_output (decorated) :
"mnRun the decorated function, serialize the result of that function
to JSON, and return the JSON string.
mmn
@functools.wraps (decorated)
def inner(*args, **kwargs):
try:
result = decorated(*args, **kwargs)
except JSONOutputError as ex:
result = {
'status': 'error',
'message': str(ex),
}
return json.dumps (result)
return inner

By augmenting the @json output decorator with this error handling, you have added it to any func-
tion where the decorator was already applied. This is part of what makes decorators so valuable.
They are very useful tools for code portability and reusability.

www.it-ebooks.info

mailto:@functools.wraps
http://www.it-ebooks.info/

14

CHAPTER 1 DECORATORS

Now, if a function decorated with @json_output raises a JSONOutputError, you will get this
special error handling. Here is a function that does:
@json_output
def error():
raise JSONOutputError ('This function is erratic.')

Running the error function in the Python interpreter gives you the following:

>>> error ()
"{"status": "error", "message": "This function is erratic."}'

Note that only the JsonoutputError exception class (and any subclasses) receives this special
handling. Any other exception is passed through normally, and generates a traceback. Consider
this function:
@json_output
def other error():
raise ValueError ('The grass is always greener...')

When you run it, you will get the traceback you expect, as shown here:

>>> other error()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 8, in inner
File "<stdin>", line 3, in other error
ValueError: The grass 1s always greener...

This reusability and maintainability is part of what makes decorators valuable. Because a decorator
is being used for a reusable, generally applicable concept throughout the application (in this case,
JSON serialization), the decorator becomes the place for housing that functionality as needs arise
that are applicable whenever that concept is used.

Essentially, decorators are tools to avoid repeating yourself, and part of their value is in providing
hooks for future maintenance.

This can be accomplished without the use of decorators. Consider the example of requiring a
logged-in user. It is not difficult to write a function that does this and simply place it near the top of
functions that require that functionality. The decorator is primarily syntactic sugar. The syntactic
sugar has value, though. Code is read more often than it is written, after all, and it is easy to locate
decorators at a glance.

Logging

One final example of execution-time wrapping of code is a general-use logging function. Consider
the following decorator that causes the function call, timings, and result to be logged:

import functools
import logging
import time

def logged (method) :
"mrCause the decorated method to be run and its results logged, along

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Decorators | 15

with some other diagnostic information.
nmnn

@functools.wraps (method)

def inner(*args, **kwargs):
Record our start time.
start = time.time()

Run the decorated method.
return value = method(*args, **kwargs)

Record our completion time, and calculate the delta.
end = time.time()
delta = end - start

Log the method call and the result.
logger = logging.getLogger ('decorator.logged')
logger.warn('Called method %s at %.02f; execution time %.02f '

o

'seconds; result %$r.' %
(method. name , start, delta, return value))

Return the method's original return value.
return return value
return inner

When applied to a function, this decorator runs that function normally, but uses the Python 1og-
ging module to log out information about the function call after it completes. Now, suddenly, you
have (extremely rudimentary) logging of any function where this decorator is applied.
>>> import time
>>> @logged
def sleep_and return(return value) :

time.sleep(2)
return return value

>>>

>>> sleep and return(42)

Called method sleep_and return at 1424462194.70;
execution time 2.00 seconds; result 42.

42

Unlike the previous examples, this decorator does not alter the function call in an obvious way. No
cases exist where you apply this decorator and get a different result from the decorated function
than you did from the undecorated function. The previous examples raised exceptions or modified
the result if this or that check did not pass. This decorator is more invisible. It does some under-the-
hood work, but in no situation should it change the actual result.

Variable Arguments

It is worth noting that the @json_output and @logged decorators both provide inner functions that
simply take, and pass on with minimal investigation, variable arguments and keyword arguments.

This is an important pattern. One way that it is particularly important is that many decorators
may be used to decorate plain functions as well as methods of classes. Remember that in Python,
methods declared in classes receive an additional positional argument, conventionally known as

www.it-ebooks.info

mailto:@functools.wraps
http://www.it-ebooks.info/

16

CHAPTER 1 DECORATORS

self. This does not change when decorators are in use. (This is why the requires_user decorator
shown earlier does not work on bound methods within classes.)

For example, if @json_result is used to decorate a method of a class, the inner function is called
and it receives the instance of the class as the first argument. In fact, this is fine. In this case, that
argument is simply args [0], and it is passed to the decorated method unmolested.

Decorator Arguments

One thing that has been consistent about all the decorators enumerated thus far is that the decora-
tors themselves appear not to take any arguments. As discussed, there is an implied argument—the
method that is being decorated.

However, sometimes it is useful to have the decorator ifself take some information that it needs to
decorate the method appropriately. The difference between an argument passed to the decorator and
an argument passed to the function at call time is precisely that. An argument to the decorator is
processed once, when the function is declared and decorated. By contrast, arguments to the function
are processed when that function is called.

You have already seen an example of an argument sent to a decorator with the repeated use of
@functools.wraps. It takes an argument—the method being wrapped, whose help and docstring
and the like should be preserved.

However, decorators have implied call signatures. They take one positional argument—the method
being decorated. So, how does this work?

The answer is that it is complicated. Recall the basic decorators that have execution-time wrap-
ping of code. They declare an inner method in local scope that they then return. This is the call-
able returned by the decorator. It is what is assigned to the function name. Decorators that take
arguments add one more wrapping layer to this dance. This is because the decorator that takes the
argument is not actually the decorator. Rather, it is a function that returns the decorator, which is
a function that takes one argument (the decorated method), which then decorates the function and
returns a callable.

That sounds confusing. Consider the following example where a @json_output decorator is aug-
mented to ask about indentation and key sorting:

import functools
import json

class JSONOutputError (Exception) :
def init (self, message):
self. message = message

def str (self):

return self. message

def json output(indent=None, sort keys=False):
""rRun the decorated function, serialize the result of that function
to JSON, and return the JSON string.

www.it-ebooks.info

mailto:@functools.wraps
http://www.it-ebooks.info/

Writing Decorators | 17

def actual decorator (decorated):
@functools.wraps (decorated)
def inner(*args, **kwargs):
try:
result = decorated(*args, **kwargs)
except JSONOutputError as ex:
result = {
'status': 'error',
'message': str(ex),

}

return json.dumps (result, indent=indent, sort keys=sort keys)
return inner
return actual decorator

So, what has happened here, and why does this work?

This is a function, json_output, which accepts two arguments (indent and sort_keys). It returns
another function, called actual decorator, which is (as its name suggests) intended to be used as
a decorator. That is a classic decorator—a callable that accepts a single callable (decorated) as an
argument and returns a callable (inner).

Note that the inner function has changed slightly to accommodate the indent and sort_keys
arguments. These arguments mirror similar arguments accepted by json. dumps, so the call to
json.dumps accepts the values provided to indent and sort_keys in the decorator’s signature and
provides them to json.dumps in the antepenultimate line.

The inner function is what ultimately makes use of the indent and sort_keys arguments. This is

fine, because Python’s block scoping rules allow for this. It also is not a problem that this might be

called with different values for inner and sort_keys, because inner is a local function (a different
copy is returned each time the decorator is used).

Applying the json_output function looks like this:

@json_output (indent=4)
def do nothing() :
return {'status': 'done'}

And if you run the do_nothing function now, you get a JSON block back with indentation and
newlines added, as shown here:

>>> do_nothing()
"{\n "status": "done"\n}'

How Does This Work?

But wait. If json_output is not a decorator, but a function that returns a decorator, why does it
look like it is being applied as a decorator? What is the Python interpreter doing here that makes
this work?

More explanation is in order. The key here is in the order of operations. Specifically, the function
call (json_output (indent=4)) precedes the decorator application syntax (@). Thus, the result of
the function call is used to apply the decorator.

www.it-ebooks.info

mailto:@functools.wraps
http://www.it-ebooks.info/

18

CHAPTER 1 DECORATORS

The first thing that is happening is that the interpreter is seeing the function call for json_output
and resolving that call (note that the boldface does not include the @):
@json_output (indent=4)

def do nothing() :
return {'status': 'done'}

All the json_output function does is define another function, actual decorator, and return it.
As the result of that function, it is then provided to @, as shown here:

@actual decorator
def do nothing() :
return {'status': 'done'}

Now, actual decorator is being run. It declares another local function, inner, and returns it. As

previously discussed, that function is then assigned to the name do nothing, the name of the deco-
rated method. When do_nothing is called, the inner function is called, runs the decorated method,
and JSON dumps the result with the appropriate indentation.

The Call Signature Matters

It is critical to realize that when you introduced your new, altered json_output function, you
actually introduced a backward-incompatible change.

Why? Because now there is this extra function call that is expected. If you want the old json output
behavior, and do not need values for any of the arguments available, you still must call the method.

In other words, you must do the following:

@json_output ()
def do nothing() :
return {'status': 'done'}

Note the parentheses. They matter, because they indicate that the function is being called (even with
no arguments), and then the result is applied to the e.

The previous code is not—repeat, not—equivalent to the following:
@json_output
def do nothing() :
return {'status': 'done'}

This presents two problems. It is inherently confusing, because if you are accustomed to seeing deco-
rators applied without a signature, a requirement to supply an empty signature is counterintuitive.
Secondly, if the old decorator already exists in your application, you must go back and edit all of its
existing calls. You should avoid backward-incompatible changes if possible.

In a perfect world, this decorator would work for three different types of applications:
> @json_output
> @json_output ()

> @json_output (indent=4)

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Decorators | 19

As it turns out, this is possible, by having a decorator that modifies its behavior based on the argu-
ments that it receives. Remember, a decorator is just a function and has all the flexibility of any
other function to do what it needs to do to respond to the inputs it gets.

Consider this more flexible iteration of json_output:

import functools
import json

class JSONOutputError (Exception) :
def init_ (self, message):
self. message = message

def _ str_(self):

return self. message

def json output (decorated =None, indent=None, sort keys=False):
"mrRun the decorated function, serialize the result of that function
to JSON, and return the JSON string.
nnn
Did we get both a decorated method and keyword arguments?
That should not happen.
if decorated and (indent or sort_ keys):
raise RuntimeError ('Unexpected arguments.')

Define the actual decorator function.
def actual decorator (func) :
@functools.wraps (func)
def inner(*args, **kwargs):
try:
result = func(*args, **kwargs)
except JSONOutputError as ex:
result = {
'status': 'error',
'message': str(ex),
}
return json.dumps (result, indent=indent, sort keys=sort keys)
return inner

Return either the actual decorator, or the result of applying
the actual decorator, depending on what arguments we got.
if decorated :
return actual decorator (decorated)
else:
return actual decorator

This function is endeavoring to be intelligent about whether or not it is currently being used as
a decorator.

First, it makes sure it is not being called in an unexpected way. You never expect to receive both a
method to be decorated and the keyword arguments, because a decorator is always called with the
decorated method as the only argument.

www.it-ebooks.info

mailto:@functools.wraps
http://www.it-ebooks.info/

20 | CHAPTER1 DECORATORS

Second, it defines the actual decorator function, which (as its name suggests) is the actual decora-
tor to be either returned or applied. It defines the inner function that is the ultimate function to be
returned from the decorator.

Finally, it returns the appropriate result based on how it was called:

> If decorated is set, it was called as a plain decorator, without a method signature, and
its responsibility is to apply the ultimate decorator and return the inner function. Here
again, observe how decorators that take arguments are actually working. First, actual
decorator (decorated) is called and resolved, then its result (which must be a callable,
because this is a decorator) is called with inner provided as its only argument.

> If decorated_ is not set, then this was called with keyword arguments instead, and the
function must return an actual decorator, which receives the decorated method and returns
inner. Therefore, the function returns actual decorator outright. This is then applied by
the Python interpreter as the actual decorator (which ultimately returns inner).

Why is this technique valuable? It enables you to maintain your decorator’s functionality as previ-
ously used. This means that you do not have to update each case where the decorator has been
applied. But you still get the additional flexibility of being able to add arguments in the cases where
you need them.

DECORATING CLASSES

Remember that a decorator is, fundamentally, a callable that accepts a callable and returns a call-
able. This means that decorators can be used to decorate classes as well as functions (classes are
callable, after all).

Decorating classes can have a variety of uses. They can be particularly valuable because, like func-
tion decorators, class decorators can interact with the attributes of the decorated class. A class
decorator can add or augment attributes, or it can alter the API of a class to provide a distinction
between how a class is declared versus how its instances are used.

You might ask, “Isn’t the appropriate way to add or augment attributes of a class through sub
classing?” Usually, the answer is “yes.” However, in some situations an alternative approach may be
appropriate. Consider, for example, a generally applicable feature that may apply to many classes in
your application that live in distinct places in your class hierarchies.

By way of example, consider a feature of a class such that each instance knows when it was instanti-
ated, and instances are sorted by their creation times. This has general applicability across many
different classes, and requires the addition of three attributes—the instantiation timestamp, and the
__gt__and 1t methods.

You have multiple ways to go about adding this. Here is how you can do it with a class decorator:

import functools
import time

www.it-ebooks.info

http://www.it-ebooks.info/

Decorating Classes | 21

def sortable by creation time(cls):
""1Given a class, augment the class to have its instances be sortable
by the timestamp at which they were instantiated.

Augment the class' original ~_ init__ ~ method to also store a

~ _created” attribute on the instance, which corresponds to when it
was instantiated.

original init = cls. init

@functools.wraps (original init)

def new_init (self, *args, **kwargs):
original init(self, *args, **kwargs)
self. created = time.time()

cls. init = new init

Add °__ 1t " and °_ gt " methods that return True or False based on
the created values in question.
cls. 1t = lambda self, other: self. created < other. created

cls. gt = lambda self, other: self. created > other._ created

Done; return the class object.
return cls

The first thing that is happening in this decorator is that you are saving a copy of the class’s original
__init method. You do not need to worry about whether the class has one. Because object has
an __init__ method, that attribute’s presence is guaranteed. Next, you create a new method that
will be assigned to _init , and this method first calls the original and then does

one piece of extra work, saving the instantiation timestamp to self. created.

It is worth noting that this is a very similar pattern to the execution-time wrapping code from previ-
ous examples—making a function that wraps another function, whose primary responsibility is to
run the wrapped function, but also adds a small piece of other functionality.

It is worth noting that if a class decorated with esortable by creation time defined its own
1t and gt methods, then this decorator would override them.

The created value by itself does little good if the class does not recognize that it is to be used

for sorting. Therefore, the decorator also adds 1t and gt magic methods. These cause the
< and > operators to return True or False based on the result of those methods. This also affects
the behavior of sorted and other similar functions.

This is all that is necessary to make an arbitrary class’s instances sortable by their instantiation
time. This decorator can be applied to any class, including many classes with unrelated ancestry.

Here is an example of a simple class with instances sortable by when they are created:

>>> @sortable by creation time
class Sortable(object) :
def init (self, identifier):
self.identifier = identifier
def repr (self):
return self.identifier

>>> first = Sortable('first!')
>>> second = Sortable('second')

www.it-ebooks.info

mailto:@functools.wraps
http://www.it-ebooks.info/

22 | CHAPTER1 DECORATORS

>>> third = Sortable('third'")

>>>

>>> sortables = [second, first, third]
>>> sorted(sortables)

[first, second, third]

Bear in mind that simply because a decorator can be used to solve a problem, that does not mean
that it is necessarily the appropriate solution.

For instance, when it comes to this example, the same thing could be accomplished by using a
“mixin,” or a small class that simply defines the appropriate _init , 1t ,and gt
methods. A simple approach using a mixin would look like this:

import time

class SortableByCreationTime (object) :
def init (self):
self. created = time.time()

def 1t (self, other):

return self. created < other. created

def _ gt (self, other):
return self. created > other. created

Applying the mixin to a class can be done using Python’s multiple inheritance:

class MyClass (MySuperclass, SortableByCreationTime) :
pass

This approach has different advantages and drawbacks. On the one hand, it will not mercilessly
plowover 1t and gt methods defined by the class or its superclasses (and it may not be
obvious when the code is read later that the decorator was clobbering two methods).

On the other hand, it would be very easy to get into a situation where the init method pro-
vided by SortableByCreationTime does not run. If MyClass or MySuperclass or any class in
MySuperclass’s ancestry defines an _ init method, it will win out. Reversing the class order
does not solve this problemy; it simply reverses it.

By contrast, the decorator handles the _init__ case very well, simply by augmenting the effect
of the decorated class’s __init__ method and otherwise leaving it intact.

So, which approach is the correct approach? It depends.

TYPE SWITCHING

Thus far, the discussion in this chapter has only considered cases in which a decorator is expected to
decorate a function and provide a function, or when a decorator is expected to decorate a class and
provide a class.

There is no reason why this relationship must hold, however. The only requirement for a decorator
is that it is a callable that accepts a callable and returns the callable. There is no requirement that it
return the same kind of callable.

www.it-ebooks.info

http://www.it-ebooks.info/

Type Switching | 23

One more advanced use case for decorators is actually when they do not do this. In particular, it can
be valuable for a decorator to decorate a function, but return a class. This can be a very useful tool
for situations where the amount of boilerplate code grows, or for allowing developers to use a simple
function for simple cases, but subclass a class in an application’s API for more advanced cases.

An example of this in the wild is a decorator used in a popular task runner in the Python ecosystem:
celery. The celery package provides a ecelery.task decorator that is expected to decorate a func-
tion. What the decorator actually does is return a subclass of celery’s internal Task class, with the
decorated function being used within the subclass’s run method.

Consider the following trivial example of a similar approach:

class Task (object) :
"wnp trivial task class. Task classes have a “run” method, which runs
the task.

def run(self, *args, **kwargs):
raise NotImplementedError ('Subclasses must implement “run™.')

def identify(self):
return 'I am a task.'

def task(decorated) :
"m"rReturn a class that runs the given function if its run method is
called.

nmnn
class TaskSubclass (Task) :
def run(self, *args, **kwargs):
return decorated(*args, **kwargs)
return TaskSubclass

What is happening here? The decorator creates a subclass of Task and returns the class. The class is
callable calling a class creates an instance of that class and runs its __init method

The value of doing this is that it provides a hook for lots of augmentation. The base Task class can
define much, much more than just the run method. For example, a start method might run the task
asynchronously. The base class might also provide methods to save information about the task’s sta-
tus. Using a decorator that swaps out a function for a class here enables the developer to only con-
sider the actual body of his or her task, and the decorator does the rest of the work.

You can see this in action by taking an instance of the class and running its identify method, as
shown here:

>>> @task

>>> def fool):

>>> return 2 + 2
>>>

>>> £ = fool()

>>> f.run()

4

>>> f.identify ()

'TI am a task.'

www.it-ebooks.info

mailto:@celery.task
http://www.it-ebooks.info/

24 | CHAPTER1 DECORATORS

A Pitfall

This exact approach carries with it some problems. In particular, once a task function is decorated
with the etask_class decorator, it becomes a class.

Consider the following simple task function decorated in this way:

@task
def fool():
return 2 + 2

Now, attempt to run it directly in the interpreter:

>>> foo()
< main .TaskSubclass object at 0x10c3612d0>

That is a bad thing. This decorator alters the function in such a way that if the developer runs
it, it does not do what anyone expects. It is usually not acceptable to expect the function to be
declared as foo and then run using the convoluted foo () .run () (which is what would be neces-
sary in this case).

Fixing this requires putting a little more thought into how both the decorator and the Task class are
constructed. Consider the following amended version:

class Task(object) :
" trivial task class. Task classes have a “run” method, which runs
the task.

nmnn

def call (self, *args, **kwargs):
return self.run(*args, **kwargs)

def run(self, *args, **kwargs):
raise NotImplementedError ('Subclasses must implement “run™.')

def identify(self):
return 'I am a task.'

def task(decorated) :
"""Return a class that runs the given function if its run method is
called.

class TaskSubclass (Task) :
def run(self, *args, **kwargs):
return decorated(*args, **kwargs)
return TaskSubclass()

A couple of key differences exist here. The first is the addition of the _call method to the base
Task class. The second difference (which complements the first) is that the etask_class decorator
now returns an instance of the TaskSubclass, rather than the class itself.

This is acceptable because the only requirement for the decorator is that it return a callable, and the
addition of the __call method to Task means that its instances are now callable.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 25

Why is this pattern valuable? Again, the Task class is trivial, but it is easy to see how more function-
ality could be added here that is useful for managing and running tasks.

However, this approach maintains the spirit of the original function if it is invoked directly.
Consider the decorated function again:
@task

def fool():
return 2 + 2

And now, what do you get if you run it in the interpreter?

>>> fool()
4

This is what you expect, which makes this a far superior class and decorator design. Under the
hood, the decorator has returned a TaskSubclass instance. When that instance is called in the
interpreter, its __call method is invoked, which calls run, which calls the original function.

You can see that you still got your instance back, though, by using the identify method.

>>> foo.identify ()
'T am a task.'

Now you have an instance that, when called directly, calls exactly like the original function.
However, it can include other methods and attributes to provide for other functionality.

This is powerful. It allows a developer to write a function that is easily and explicitly grafted into a
class that provides for alternate ways for that function to be invoked or other related functionality.
This is a helpful paradigm.

SUMMARY

Decorators are very valuable tools that you can use to write maintainable, readable Python code.
A decorator’s value is in the fact that it is explicit, as well as the fact that decorators are reusable.
They provide an excellent way to use boilerplate code, write it once, and apply it in many different
situations.

This useful paradigm is possible because Python’s data model provides functions and classes as first-
class objects, capable of being passed around and augmented like any other object in the language.

On the other hand, there are also drawbacks to this model. In particular, the decorator syntax,
while clean and easy to read, can obscure the fact that a function is being wrapped within another
function, which can lead to challenges in debugging. Poorly written decorators may create errors by
being careless about the nature of the callables they wrap (for example, by ignoring the distinction
between bound methods and unbound functions).

Additionally, bear in mind that, like any function, the interpreter must actually run the code inside the
decorator, which has a performance impact. Decorators are not immune to this; be mindful of what
you are asking your decorators to do, in the same way that you would be for any other code you write.

www.it-ebooks.info

http://www.it-ebooks.info/

26

CHAPTER 1 DECORATORS

Consider using decorators as a way to take leading or trailing functionality and wrap it around
unrelated functions. Similarly, decorators are useful tools for function registries, signaling, certain

cases of class augmentation, as well as many other things.

Chapter 2 “Context Managers,” discusses context managers, which are another way to take bits of
functionality that require reuse across an application, and compartmentalize them in an effective

and portable way.

www.it-ebooks.info

http://www.it-ebooks.info/

Context Managers

Context managers are the first cousins of decorators. Like their kindred, they are tools for
wrapping code around other code. However, whereas decorators wrap defined blocks of code
(such as functions or classes), context managers wrap arbitrary, free-form blocks of code.

In almost every other respect, the purposes of context managers and decorators are equivalent
(and, it is often the case that APIs are written to allow you to use either, as discussed later in
this chapter).

This chapter introduces and explains the concept of context managers, showing how and when
to use them, and enumerating the different ways of handling exceptions that may occur within
context blocks.

WHAT IS A CONTEXT MANAGER?

A context manager is an object that wraps an arbitrary block of code. Context managers ensure
that setup is consistently performed when the context manager is entered, and that teardown is
consistently performed when the context manager is exited.

It is important to note early that the exit is guaranteed. If a context manager is entered, it will,
by definition, be exited. This holds true even if the internal code raises an exception. In fact,
the context manager’s exit code is given an opportunity to handle such exceptions if it sees fit
to do so (although it is not obligated to do so).

Therefore, context managers perform a very similar function to the try, except, and finally
keywords. They are often a useful mechanism to encapsulate boilerplate try-except-finally
constructs that you may otherwise repeat.

This is probably the most common use of context managers—they are a way to ensure cleanup.

www.it-ebooks.info

http://www.it-ebooks.info/

28

CHAPTER 2 CONTEXT MANAGERS

CONTEXT MANAGER SYNTAX

Consider a common use case where a context manager would be useful—opening a file. You open a
file in Python with the built-in open function. When you open a file, it is your responsibility to close
it again, as shown here:
try:
my file = open('/path/to/filename', 'r')
contents = my file.read()
finally:
my file.close()

You use a finally clause to ensure that, no matter what happens, my file will, in fact, be closed.
If an error occurs when reading the file, or something else goes wrong, the finally clause will still
run, and my file will be closed.

The with Statement

So, how you do the same thing—open a file and ensure that it is properly closed—with a context
manager? Context managers were introduced in Python 2.5, which adds a new keyword to the
language: with. You use the with statement to enter a context manager.

As it happens, Python’s built-in open function can also be used as a context manager. This code is
identical to what you saw previously:

with open('/path/to/filename', 'r') as my file:
contents = my file.read()

Essentially, what is happening here is that the with statement evaluates the expression that comes
after it (in this case, the open call). That expression is expected to return an object with two special
methods: enter and exit (more on those shortly). The enter method returns a result
that is assigned to the variable after the as keyword.

It is important to note that the result of the expression after with is zot being assigned to said variable.
In fact, it is not assigned to anything at all. It is what is returned from __enter that is assigned.

Simplicity is a huge reason for doing it this way. More importantly, however, remember that the
exception-handling and cleanup code can sometimes be very complex, and applying it in many dif-
ferent places is cumbersome. As with decorators, a key reason to use context managers is to avoid
repetitive code.

The enter and exit Methods

Remember that the with statement’s expression is responsible for returning an object that follows
a particular protocol. Specifically, the object must define an __enter and an __exit _ method,
and the latter method must take particular arguments.

The enter method takes no arguments except for the traditional self argument. It is run
immediately when the object is returned, and its return value is assigned to the variable used after
as, if any (the as clause is technically optional). Generally, the _enter method is responsible for
performing some kind of setup.

www.it-ebooks.info

http://www.it-ebooks.info/

Context Manager Syntax | 29

The exit method, on the other hand, takes three positional arguments (not including the tradi-
tional self): an exception type, an exception instance, and a traceback. These three arguments are
all set to None if there is no exception, but are populated if an exception occurs within the block.

Consider the following simple class whose instances act as context managers:
class ContextManager (object) :

def init (self):
self.entered = False

def enter (self):
self.entered = True
return self

def exit (self, exc type, exc instance, traceback):
self.entered = False

This context manager does very little. It simply returns itself and sets its entered variable to True
upon entrance, and then False upon exit.

You can observe this by looking at this context manager in the Python shell. If you create a new
ContextManager instance, you find that its entered value is False as expected:
>>> cm = ContextManager ()

>>> cm.entered
False

If you use this same ContextManager instance as a context manager, observe that its entered
attribute becomes True, then False again on exit.

>>> with cm:
cm.entered

True
>>> cm.entered
False

If you do not need the contextManager instance for anything else, you can instantiate it in the with
statement. This works because its __enter method just returns itself.

>>> with ContextManager () as cm:
cm.entered

Exception Handling

A context manager must define an __exit__ method, which may optionally handle exceptions that are
raised in the wrapped code, or handle anything else needed to tear down the context manager state.

As mentioned previously, the exit method must define three positional arguments: the type of
the exception (called exc_type in this chapter), the instance of the exception (called exc_instance
here), and the traceback option (called traceback here). If no exception occurred within the context
manager code, all three of these values will be None.

www.it-ebooks.info

http://www.it-ebooks.info/

30

CHAPTER 2 CONTEXT MANAGERS

If the exit method receives an exception, it has the responsibility to handle that exception.
Fundamentally, it has three options:

> It can propagate the exception (causing it to be re-raised after _exit _ finishes).
> It can suppress the exception.
> It can raise a different exception.

You can propagate exceptions by having an __exit method that returns False, or suppress
exceptions by having an __exit method that returns True. Alternatively, if _exit _ raises a
different exception, it is used in place of the exceptions it was sent.

Each of these options is covered in more detail in examples throughout this chapter.

WHEN YOU SHOULD WRITE CONTEXT MANAGERS

Several common reasons exist to write context managers. Generally, these involve ensuring that
a certain resource is both initialized and de-initialized in an expected manner, or trying to avoid
repetition.

Resource Cleanliness

One of the key reasons to write context managers is for situations in which you are opening and
closing a resource (such as a file or a database connection). It is often important to ensure that the
handle in question is closed properly, to avoid ending up with a situation where many zombie pro-
cesses can build up over time.

Context managers excel here. By opening a resource in the _enter method and returning it, the
exit__ method is guaranteed to be run, and can close the resource before allowing the exception

to bubble.

Consider the following context manager that opens a PostgreSQL database connection:

import psycopg2

class DBConnection (object) :
def init (self, dbname=None, user=None,
password=None, host='localhost'):
self . host = host
self.dbname = dbname
self.user = user
self .password = password

def enter (self):
self.connection = psycopg2.connect (
dbname=self .dbname,
host=self.host,
user=gelf.user,
password=self.password,
)

return self.connection.cursor ()

www.it-ebooks.info

http://www.it-ebooks.info/

When You Should Write Context Managers | 31

def _ exit (self, exc_type, exc_instance, traceback) :
self.connection.close ()

Within the context manager, it is possible to run queries against the database and retrieve results.

>>> with DBConnection (user='luke', dbname='foo') as db:
db.execute ('SELECT 1 + 1')
db.fetchall()

[(2,)]
However, as soon as the context manager exists, the database cursor that you assigned to db
becomes closed, and further queries cannot be made against it.

>>> with DBConnection (user='luke', dbname='foo') as db:

db.execute ('SELECT 1 + 1')
db.fetchall ()

[(2,)]
>>> db.execute ('SELECT 1 + 1'")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
psycopg2.InterfaceError: cursor already closed

What has happened here? This context manager creates a psycopg2 connection object and returns a
cursor, which the developer can use to interact with the database. What is important here, though,
is that the connection is guaranteed to be closed when the context manager exits.

This is important because, as mentioned, lingering database connections not only consume
memory, but they also open files or ports on both the application machine and the database machine.
Additionally, some databases also have maximum connection allowances.

Note also that, unlike the previous example, this context manager does not simply return itself at
the end of the _enter method. Instead, it returns a database cursor. This is fine, and a useful
paradigm. However, it is still the context manager’s _exit__ method that runs.

Most frameworks that work with databases handle opening and closing your database connections
for you, but this principle remains: if you are opening a resource and must ensure that it is being
properly closed, a context manager is an excellent tool.

Avoiding Repetition

When it comes to avoiding repetition, the most common place where this is useful is in exception
handling. Context managers can both propagate and suppress exceptions, which makes them ideal
for taking repetitive except clauses and defining them in one place.

Propagating Exceptions

An __exit__ method that just propagates the exception up the chain can do so by returning False.
It need not interact with the exception instance at all. Consider the following context manager:

class BubbleExceptions (object) :
def _ enter_ (self):
return self

www.it-ebooks.info

http://www.it-ebooks.info/

32 | CHAPTER2 CONTEXT MANAGERS

def exit (self, exc_type, exc instance, traceback):
if exc_instance:
print ('Bubbling up exception: %s.' % exc_instance)
return False

Running a normal block of code (that does not raise an exception) with this context manager will
do nothing particularly interesting.

>>> with BubbleExceptions() :
5+ 5

10
On the other hand, this block of code does actually raise an exception:

>>> with BubbleExceptions() :
5/ 0

Bubbling up exception: integer division or modulo by zero.
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
ZeroDivisionError: integer division or modulo by zero

A couple important things are worth noting here. The first printed line (which begins with Bubbling
up exception: integer...) was generated by the exit method itself. It corresponds to the
print statement on the second line of exit . This meansthat exit did run, and com-
plete. Because it returned False, the exception that was sent to _exit in the first place is simply
re-raised.

Suppressing Exceptions

As mentioned previously, another option that the _exit method has is to suppress the exception
that it receives. The following context manager suppresses any and every exception that might be
senttoits __exit _ method (you should never actually do this, however):

class SuppressExceptions (object) :
def enter (self):
return self

def exit (self, exc type, exc_instance, traceback):
if exc_instance:
print ('Suppressing exception: %s.' % exc_instance)
return True

The bulk of this code is similar to the BubbleExceptions class from earlier, with the primary
difference being that now the _exit _ method returns True instead of False.

The example of showing normal, uninteresting code that does not raise any exception at all remains
unchanged:

>>> with SuppressExceptions() :
5+ 5

10

www.it-ebooks.info

http://www.it-ebooks.info/

When You Should Write Context Managers | 33

However, if you do something that raises an exception, you see a different result:

>>> with SuppressExceptions() :
5/ 0

Suppressing exception: integer division or modulo by zero.

The first and most obvious thing to note is that the traceback is gone. The exception was handled
(suppressed) by the _exit method, so program execution continues with no exception raised.

The second thing to note is that no value was ever returned. Whereas the expression 5 + 5, when
entered into the interpreter, gave a value of 10, the exception-raising 5 / 0 simply never shows a
value. The exception was raised in the process of computing a value, which triggered the running
of _exit . A value is never actually returned. It is also worth noting that if any code was present
after 5 / 0, it would never run.

As you would expect, however, exception handlers that are defined within the context block are
handled before the context block completes. Exceptions handled within a context block are consid-
ered to be dealt with and are not sentto __exit .

Consider the following example:

with SuppressExceptions() :
try:
5/ 0
except ZeroDivisionError:
print ('Exception caught within context block.')

If you run this, the “Exception caught within context block.” message will print, and no exception
will be sent to __exit .

Although propagating exceptions is fairly straightforward, suppressing exceptions is always some-
thing that you should do carefully. Suppressing too many exceptions leads to code that is extremely
difficult to debug. Simply suppressing all exceptions is fundamentally equivalent to a try block that
looks like this:

try:

[do something]
except:

pass

Suffice it to say that this is very rarely wise.

__exit__ methods can, however, conditionally suppress or handle exceptions, because they are
provided the type and instance of the exception, as well as a full traceback. In fact, the exception
handling is extremely customizable.

Handling Certain Exception Classes

A simple exception-handling exit function may simply check to see if the exception is an
instance of a particular exception class, perform whatever exception handling is necessary, and
return True (or return False) if it gets any other exception class.

class HandleValueError (object) :
def enter (self):
return self

www.it-ebooks.info

http://www.it-ebooks.info/

34 | CHAPTER2 CONTEXT MANAGERS

def exit (self, exc_type, exc instance, traceback):
Return True if there is no exception.
if not exc type:
return True

If this is a ValueError, note that it is being handled and
return True.
if issubclass(exc_type, ValueError) :

o

print ('Handling ValueError: %s' % exc_instance)
return True

Propagate anything else.
return False

If you use this context manager and raise ValueError inside the block, you see that it prints and
then suppresses the exception.

>>> with HandleValueError () :
raise ValueError ('Wrong value.')

Handling ValueError: Wrong value.

Similarly, if you use this context manager but raise a different class of exception (such as TypeError,
instead), it will bubble and you will still get your traceback.

>>> with HandleValueError() :
raise TypeError ('Wrong type.')

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
TypeError: Wrong type.

By itself, this does not have a whole lot of value. After all, this is really just a substitute for a much
more straightforward try clause.
try:
[do something]

except ValueError as exc_ instance:
print ('Handling ValueError: %s' % exc_instance)

One way that the context manager can be valuable is when the work that must be done in the except
clause is both non-trivial and must be repeated in multiple places throughout the application. The
context manager encapsulates not only the except clause, but also its body.

Excluding Subclasses

There is also a little more flexibility in how the class or instance check is done. For example, sup-
pose that you want to catch a given class of exception, but explicitly not its subclasses. You cannot
do that in a traditional except block (nor should you be able to), but a context manager is able to
address such an edge case, as shown here:

class ValueErrorSubclass (ValueError) :
pass

www.it-ebooks.info

http://www.it-ebooks.info/

When You Should Write Context Managers | 35

class HandleValueError (object) :
def _ enter_ (self):
return self

def _ exit (self, exc_type, exc_instance, traceback) :
Return True if there is no exception.
if not exc type:
return True

If this is a ValueError (but not a ValueError subclass),
note that it is being handled and return True.
if exc type == ValueError:

print ('Handling ValueError: %s' % exc_instance)

return True

Propagate anything else.
return False

Note that the HandlevalueError context manager has changed slightly now. It checks its type using
== rather than the more traditional issubclass check that the previous example used. This means
that although it will handle valueError as before, it will not handle a valueError subclass such as
the valueErrorsubclass defined previously:

>>> with HandleValueError() :
raise ValueErrorSubclass ('foo bar baz')

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
__main__ .ValueErrorSubclass: foo bar baz

Attribute-Based Exception Handling

Similarly, a context manager might decide whether to handle an exception based on not the type of the
exception (which is what an except clause must do), but rather based on an attribute of the exception.

Consider the following function designed to run shell commands conveniently, and use an exception
class that is designed to be raised in response to shell errors:

import subprocess

class ShellException (Exception) :
def init (self, code, stdout='', stderr='"'):
self.code = code
self.stdout = stdout
self.stderr = stderr

def str (self):

o

return 'exit code %d - %s' % (self.code, self.stderr)

def run command (command) :
Run the command and wait for it to complete.
proc = subprocess.Popen (command.split (' '), stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

www.it-ebooks.info

http://www.it-ebooks.info/

36 | CHAPTER2 CONTEXT MANAGERS

proc.wait ()

Get the stdout and stderr from the shell.
stdout, stderr = proc.communicate ()

Sanity check: If the shell returned a non-zero exit status, raise an
exception.
if proc.returncode > 0:

raise ShellException (proc.returncode, stdout, stderr)

Return stdout.
return stdout

Such a function (and exception class) is very easy to use. The following is an attempt to rm a
bogus file:

run_command ('rm bogusfile')

Running this will generate the shellException traceback as expected.

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 11, in run command
__main_ .ShellException: exit code 1 - rm: bogusfile: No such file or directory

What happens when it comes time to handle these exceptions? Handling any generic
ShellException is easy, but imagine a situation where you receive a ShellException but only
want to handle a particular exit code. A context manager is one possible way to approach this.

For example, say that you want to remove a file, but you are okay with a situation where the file was
already removed. (For the purpose of this example, ignore that os . remove exists.) In this case, you
would be fine with a return code of 0, which indicates successful removal of the file, as well as a return
code of 1, which indicates that the file was already absent. On the other hand, an exit code of 64 is still
problematic, because this would indicate a usage error of some kind. This should still be raised.

Here is a context manager that would allow some ShellException instances based on their code:

class AcceptableErrorCodes (object) :
def init (self, *error codes):
self.error codes = error_ codes

def _ enter (self):
return self

def _ exit (self, exc_type, exc_instance, traceback):
Sanity check: If this is not an exceptional situation, then just
be done.
if not exc type:
return True

Sanity check: If this is anything other than a ShellException,
then we do not actually know what to do with it.
if not issubclass(exc type, ShellException):

return False

www.it-ebooks.info

http://www.it-ebooks.info/

A Simpler Syntax | 37

Return True if and only if the ShellException has a code that
matches one of the codes on our error codes list.
return exc_instance.code in self.error codes

This example code actually introduces a new pattern. The context manager is given the error codes
that it should allow when the context manager is initiated. In this case, AcceptableErrorCodes
takes any number of integers as arguments, and those are used to determine which error codes are
actually acceptable.

If you want to attempt to remove a non-existent file when using the AcceptableErrorCodes context
manager, it will work without incident.

>>> with AcceptableErrorCodes (1) :
run_command ('rm bogusfile')

What this context manager will not do, however, is just blindly swallow up every ShellException
it gets. Consider the following case where you actually use rm incorrectly:

>>> with AcceptableErrorCodes (1) :
-m is not a switch available to rm (at least in Mac 0S X).
run_command ('rm -m bogusfile')

Traceback (most recent call last):
File "<stdin>", line 3, in <module>
File "<stdin>", line 11, in run command
__main__ .ShellException: exit code 64 - rm: illegal option -- m
usage: rm [-f | -i] [-dPRrvW] file
unlink file

So, why did this cause a traceback? Because the exit code was 64 (on Mac OS X; this may vary
based on the exact operating system you are using), and you told the context manager that the only

acceptable erratic exit code was 1. Therefore, exit returned False, and the exception was
bubbled as usual.

SIMPLER SYNTAX

Many of the context managers explored thus far are actually very simple. Although they are fully
constructed classes, their only real purpose is to provide straightforward, linear __enter and
__exit__ functionality.

This structure is extremely powerful. It allows for the creation of very complex and context managers
that can do a great deal of customizable logic. However, many context managers are very simple, and
creating a class and manually defining _enter and exit may seem like overkill.

A simpler approach is designed around handling the simple cases. The Python standard library pro-
vides a decorator that will decorate a simple function and make it into a context manager class.

This decorator is @contextlib.contextmanager, and functions it decorates are expected to yield
a single value somewhere during the function. (The yield statement is discussed in more detail in
Chapter 3, “Generators.”)

www.it-ebooks.info

mailto:@contextlib.contextmanager
http://www.it-ebooks.info/

38 | CHAPTER2 CONTEXT MANAGERS

Consider what the AcceptableErrorcCodes class might look like as a single, more
straightforward function:

import contextlib

@contextlib.contextmanager
def acceptable error codes (*codes) :
try:
yield
except ShellException as exc_instance:
If this error code is not in the list of acceptable error
codes, re-raise the exception.
if exc_instance.code not in codes:
raise

This was an acceptable error; no need to do anything.
pass

This function ultimately does the exact same thing that your class did. (It is worth noting that the
pass line is for instructional purposes—it is obviously not necessary.)

>>> with acceptable error codes(1):
run_command ('rm bogusfile')

Similarly, error codes are still checked, and only the appropriate ones are intercepted.

>>> with acceptable error codes(1):
run_command ('rm -m bogusfile')

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "<stdin>", line 11, in run_command
__main_.ShellException: exit code 64 - rm: illegal option -- M
usage: rm [-f | -i] [-dPRrvW] file
unlink file

This simpler syntax (just declaring a function with a single yield and using the @contextlib
.contextmanager decorator) is more than sufficient to create most simple context managers, and
is easier to read later. Create a context manager class yourself when you need the power that this
provides, and use the decorator with a function otherwise.

SUMMARY

Context managers provide an excellent way to ensure that resources are handled appropriately, as
well as to take exception-handling code that would be repeated in multiple different places through-
out an application and giving that code a single home.

www.it-ebooks.info

mailto:@contextlib.contextmanager
http://www.it-ebooks.info/

Summary | 39

Along with decorators, context managers are tools for employing the simple principle of not repeat-
ing yourself unless you absolutely must. Where decorators encase named functions and classes,
context managers are ideal for encasing arbitrary blocks of code.

Chapter 3 discusses generators, which produce values one by one when iterated, as each value is
needed, rather than having to compute an entire set of values in advance.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Generators

Generators allow sequences of values to be handled while computing each value of the
sequence only as it is needed, rather than as a traditional list (which must compute all of
its values ahead of time).

Using generators where appropriate can result in substantial memory savings, because large
collections of data do not need to be stored in memory in their entirety. Similarly, generators
are uniquely able to handle representation of some sequences that cannot be accurately repre-
sented by lists.

This chapter explains what a generator is, and the syntax for using generators in Python. It
also covers some of the common generators that are provided in the Python standard library.

UNDERSTANDING WHAT A GENERATOR IS

A generator is a function that, instead of executing and returning a single value, sends back
one or more values in a sequence. A generator function executes until it is told to yield a value,
and then it continues execution until told to do so again. This continues until the function is
complete, or until iteration over that generator terminates.

There is no explicit requirement that a generator terminate at all; generators may represent
infinite sequences. There is nothing inherently wrong with this. In cases where this occurs, it
is simply the responsibility of the code iterating over the generator to break out of the sequence
when appropriate (such as with a break statement).

UNDERSTANDING GENERATOR SYNTAX

A generator function is recognizable by the presence of one or more yield statements inside
the function, usually instead of a return statement. In Python 2, a yield statement and a
return statement cannot coexist in the same function. However, in Python 3, it is possible to
have both yield and return (discussed in more detail later).

www.it-ebooks.info

http://www.it-ebooks.info/

42 | CHAPTER3 GENERATORS

Like the return statement, the yield statement commands the function to send back a value to
the caller. Unlike the return statement, however, the yield statement does not actually terminate
the function’s execution. Rather, execution is temporarily halted until the generator is resumed by
the calling code, at which point it picks up where it left off.

Consider the following very simple generator:

def fibonacci():
yield 1
yield
yield
yield
yield
yield

@ Ul W N

This generator represents the beginning of the Fibonacci sequence (that is, the sequence in which
each integer is the sum of the previous two). You can iterate generators, as you can see by using a
simple for..in loop in the Python interactive terminal.

>>> for i in fibonacci() :
print (1)

w Ul W N

Obviously, this particular generator is probably better represented as a plain Python list. However,
consider a generator which, instead of returning six Fibonacci numbers, returns an infinite series of
them, as shown here:

def fibonacci():
numbers = []
while True:
if len(numbers) < 2:
numbers.append (1)
else:
numbers . append (sum (numbers))
numbers.pop (0)
yield numbers[-1]

This generator will yield an infinite sequence of Fibonacci numbers. Using the simple for..in from
the interactive terminal shown previously would simply print numbers, which very quickly become
humorously long (that is, to the screen into perpetuity).

NOTE For the curious, I tried running this for a few minutes in a Python 3.4
terminal to see how long it would take to overflow the maximum integer size.
However, after about five minutes, I got bored and said, “KeyboardInterrupt
to the rescue!” The computations themselves would probably get to sys .max-
size reasonably quickly, but the terminal 1/O is much slower.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Generator Syntax | 43

Unlike the previous fibonacci function, this one is not better represented as a simple Python list. In
fact, not only would it be unwise to try to represent this as a simple Python list, it would be impos-
sible. Python lists cannot store infinite sequences of values.

The next Function

You can ask a generator for a value without using a for..in loop. Sometimes you may want to just
get a single value, or a fixed number of values. Python provides the built-in next function, which
can ask a generator (actually, any object with a __next method, called next in Python 2) for its
next value.

The earlier fibonacci function yields an infinite sequence of Fibonacci numbers. Instead of iterat-
ing over the entire thing, you can ask for values one at a time.

First, you simply create your generator by calling the fibonacci function and saving its returned
value. Because the function has yield statements rather than a return statement, the Python
interpreter knows to just return the generator object.

>>> gen = fibonacci ()
>>> gen
<generator object fibonacci at 0x101555dc8>

At this point, it is worth noting that none of the code within fibonacci has actually run. The only
thing that the interpreter has done is recognize that a generator is present and return a generator
object, which is ready to run the code once a value is requested.

You can use the built-in next function to request your first value, as shown here:

>>> next (gen)
1

Now (and only now) some of the actual code in the fibonacci function has been run. (To make the
explanation as clear as possible, an explicit continue statement has been added at the end of the
loop.)
def fibonaceci():
numbers = []
while True:
if len(numbers) < 2: # True; numbers == []
numbers.append (1)
else:
numbers . append (sum (numbers))
numbers.pop (0)
yield numbers[-1]
continue

The function is entered, and it begins the first iteration of the while loop. Because the numbers
list is empty at this point, the value 1 is appended to the list. Finally, you get to the yield
numbers [-1] statement. At this point, the generator has been given a value to yield, so execution
halts, and the value 1 is yielded. This is where the execution ends; the continue statement does
not yet run.

www.it-ebooks.info

http://www.it-ebooks.info/

44 | CHAPTER3 GENERATORS

Now, issue next (gen) again, as shown here:

>>> next (gen)
1

Execution picks up where it left off, which means the first thing to run is the continue statement.

def fibonacci():
numbers = []
while True:
if len(numbers) < 2:
numbers.append (1)
else:
numbers . append (sum (numbers))
numbers.pop (0)
yield numbers([-1]
continue

This sends you back to the top of the while loop. Your numbers list only has one member (it is [11),
0 len (numbers) is still less than 2, and that path is chosen at the if statement again. Your num-
bers list is now [1, 1], and the final element of the list is yielded, stopping execution.

def fibonacci():
numbers = []
while True:
if len(numbers) < 2: # True,; numbers == [1]
numbers.append (1)
else:
numbers . append (sum (numbers))
numbers.pop (0)
yield numbers[-1]
continue

Now, issue next (gen) yet again, as shown here:

>>> next (gen)
2

Again, execution picks up where it left off, meaning the next thing to run is the continue statement.

def fibonacci():
numbers = []
while True:
if len(numbers) < 2:
numbers.append (1)
else:
numbers . append (sum (numbers))
numbers.pop (0)
yield numbers[-1]
continue

The continue statement sends the interpreter back to the stop of the while loop. However, now it
takes the else pathway when it gets to the if statement, because numbers is now a list with two
elements ({1, 11). The sum of the two elements is then appended to the end of the list, and the first
element is removed. Again, you get to the yield statement, and it yields the final element of the list,
which is 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Generator Syntax | 45

def fibonacci():
numbers = []
while True:
if len(numbers) < 2: # False; numbers == [1, 1]
numbers.append (1)
else:
numbers.append (sum (numbers))
numbers.pop (0)
yield numbers[-1]
continue

If you issue next (gen) again, the interpreter will follow the same path (because the length of the
numbers list is still 2). Of course, now the numbers list itself has changed from [1, 1] to [1, 21,
so the result is different. The value 3 is appended to the list, the 1 is lopped off of the beginning, and
3 is yielded.

>>> next (gen)
3

If you continue to ask for more values, you see this pattern repeat. The same code runs, but against
an updated numbers list, so the yielded values continue along the Fibonacci series.

>>> next (gen)
5
>>> next (gen)
8
>>> next (gen)
13
>>> next (gen)
21

Notice that a few things are not happening. You are not storing a huge list of Fibonacci numbers in
memory. The only numbers that you must store are the most recent two, because they are required
to find the next number in the series. The generator scraps anything that is out of date. This would
matter if the generator were to continue on indefinitely, because if you needlessly held on to every
previous value, eventually the list would fill up free memory.

Similarly, the generator only computes each value in the series when it is specifically requested. At
this point in code execution, the generator has not bothered to determine that the next value that it
will need to yield back (if asked) is 34, precisely because it may not be asked.

The StopIteration Exception

s with other functions, with generators, you may want to have more than one potential exi

As with other funct thg tors, y y ttoh th potential exit
path. For example, the following “plain” function has multiple exit paths using multiple return
statements:

def my function(foo, add extra things=True):
foo += '\nadded things'
if not add_extra_things:
return foo
foo += '\n added extra things'
return foo

www.it-ebooks.info

http://www.it-ebooks.info/

46

CHAPTER 3 GENERATORS

This function normally returns at the end of the block. However, if the keyword argument add_
extra things is provided and set to False, the earlier return statement on the third line of the
function will be hit instead, and function execution will be cut off there.

Plenty of reasons exist to do this, and generators must have a mechanism to serve a similar
purpose.

Python 2

The correct approach for this depends somewhat on which version of Python you are using. In
Python 2, generators are not allowed to have return statements. If you attempt to write a function
with both a yield statement and a return statement, you get a syntax error, as shown here:

>>> def my generator():
yield 1
return

File "<stdin>", line 3
SyntaxError: 'return' with argument inside generator

Instead, Python provides a built-in exception called stopIteration, which serves a similar purpose.
When a generator is being iterated over and StopIteration is raised, this signals that the genera-
tor’s iteration is complete, and it exits. The exception is caught in this case, and there is no trace-
back. On the other hand, if next is being used, the stopIteration exception bubbles.

Consider the following simple generator:

>>> def my generator():
yield 1
yield 2
raise Stoplteration
yield 3

If you iterate over this, you will get the values 1 and 2, and then the generator will exit cleanly. The
yield 3 statement never runs (similar to code that exists after a return statement).

>>> [1 for i in my generator ()]
[1, 2]

If you manually run next on the generator, the first two next calls will yield values, and the third
(and any subsequent) call will raise a StopIteration exception, as shown here:

>>> gen = my generator ()

>>> next (gen)

1

>>> next (gen)

2

>>> next (gen)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in my generator

Stoplteration

www.it-ebooks.info

http://www.it-ebooks.info/

Communication with Generators | 47

Python 3

In Python 3, the situation is similar, but you have one additional syntactic option. Python 3 removes
the restriction that yield and return cannot appear together in a function. In this case, using
return effectively becomes an alias for raise StopIteration.

It is worth noting that if you return a value in your return statement, it does not become a final
yielded value. Rather, the value is sent as the exception message. Consider the following statement:

return 42

This is equivalent to the following:

raise StopIteration(42)

And, very importantly, it is ot equivalent to the following:

yield 42
return

In code that is intended to be cross-compatible with Python 2 and Python 3, it is probably preferable
to use the raise StopIteration form explicitly. In code that only runs on Python 3, it likely does
not matter much.

COMMUNICATION WITH GENERATORS

The generators explored thus far are unidirectional in their communication. They yield values to the
calling code; nothing is ever sent to the generator.

However, the generator protocol also supports an additional send method that allows communi-
cation back to a generator. This works because the yield statement is actually an expression. In
addition to yielding back its value, if a generator is resumed with send rather than next, the value
provided to send can actually be assigned to the result of the yield expression.

Consider the following generator to return the perfect squares in order. This is trivial.

def squares() :
cursor = 1
while True:
yield cursor ** 2
cursor += 1

However, you may want to tell the generator to move to a certain point, forward or backward. You
could implement that capability with a small change to your generator code, as shown here:

def squares (cursor=1) :
while True:
response = yield cursor ** 2
if response:
cursor = int (response)
else:
cursor += 1

www.it-ebooks.info

http://www.it-ebooks.info/

48

CHAPTER 3 GENERATORS

Now you are assigning the result of the yield expression to the response variable (if and only if
there is a result—you do not want to plow over your value with None).

This enables you to jump around within the squares generator, as shown here:

>>> sq = squares()
>>> next (sq)

1

>>> next (sq)

>>> sqg.send(7)
49

>>> next (sq)
64

What has happened here? First, the interpreter entered the generator and was asked to yield two val-
ues (1 and 4). But, the next time, the generator was sent the value 7. The squares generator is coded
such that if a value is sent back, the cursor variable is set to that value. So, instead of cursor being
incremented to 3, it is set to 7.

The generator then continues as before. The interpreter goes back to the top of the while loop.
Because cursor is now 7, the value yielded is 49 (72). This generator is written such that it simply
continues from there, so when next is called against it again, cursor increments as before, to 8,
and the next value to be yielded is 64 (82).

It is entirely up to the generator to determine how (and whether) sent values are handled. The gen-
erators previously explored in this chapter simply ignore them. A generator could, by contrast, use
the sent cursor value as a one-off, and then return to its previous spot, as shown here:

def squares (cursor=1) :
response = None
while True:
if response:
response = yield response ** 2
continue
response = yield cursor ** 2
cursor += 1

This version of the squares generator does exactly that:

>>> sq = squares ()
>>> next (sq)

1

>>> next (sq)

>>> sqg.send(7)
49

>>> next (sq)

9

The difference here is entirely in the behavior of the generator. There is no magic for how send
behaves. The purpose of send is to provide a mechanism for two-way communication with a gen-
erator. It is the responsibility of the generator to determine whether (and how) it handles values
sent to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Iterables Versus lterators | 49

ITERABLES VERSUS ITERATORS

Generators in Python are a kind of iterator. An iterator in Python is any object that hasa _ next
method (and, therefore, is able to respond to the next function).

This is distinct from an iterable, which is any object that defines an __iter method. An iterable
object’s _iter method is responsible for returning an iterator.

For an example of the subtle distinction here, consider the Python 3 range function (known as
xrange in Python 2). It is commonly believed that range objects are, in fact, generators. However,
they are not, as shown here:

>>> r = range(0, 5)
>>> ¥
range (0, 5)
>>> next (r)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'range' object is not an iterator

This is confusing to many, because an idiom such as for i in range(0, 5) is often one of the first
things that you learn in Python. This works because the range function returns an iterable.

The actual iterator that the range object’s _iter method returns, however, is a generator, and
responds as expected to the next method.

>>> r = range(0, 5)

>>> lterator = iter(r)

>>> iterator

<range iterator object at 0x10055ecc0>
>>> next (iterator)

0

>>> next (iterator)

1

Also, as you would expect, calling next after the generator has finished yielding values will raise
StopIteration.

>>> next (iterator)

2

>>> next (iterator)

3

>>> next (iterator)

4

>>> next (iterator)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

When thinking about generators, remember that generators are iterators, but they are not necessar-
ily iterables. Similarly, not all iterables are iterators.

www.it-ebooks.info

http://www.it-ebooks.info/

50 | CHAPTER3 GENERATORS

NOTE Similarly, not all iterators are actually instances of the generator class.
The iterator in this example is an instance of range_iterator, which imple-
ments a similar pattern. However, as an implementation detail, it lacks a send
method.

GENERATORS IN THE STANDARD LIBRARY

The Python standard library includes several generators, which you may already use, possibly with-
out even realizing that they are generators.
range

During the earlier discussion about the distinction between iterables and iterators, you learned
about the range function, which returns an iterable range object.

NOTE As previously mentioned, this function is called xrange in Python 2.

The range object’s iterator is a generator. It returns sequential values, beginning with the range
object’s floor, and continuing through its ceiling. By default, its sequence is simply adding one to
each value to get the next value to yield. But an optional third argument to the range function,
step, enables you to specify a different increment, including a negative one.

dict.items and Family

The built-in dictionary class in Python includes three methods that allow for iterating over the
dictionary, and all three are iterables whose iterators are generators: keys, values, and items.

NOTE These three methods are called iterkeys, itervalues, and iteritems
in Python 2.

The purpose of these methods is to allow for iteration over the keys, values, or two-tuples of keys
and values (items) of a dictionary, as shown here:

>>> dictionary = {'foo': 'bar', 'baz': 'bacon'}
>>> iterator = iter(dictionary.items())
>>> next (iterator)

www.it-ebooks.info

http://www.it-ebooks.info/

Generators in the Standard Library | 51

('foo', 'bar')
>>> next (iterator)
('baz', 'bacon')

One value of using a generator here is that it prevents the need to make an additional copy of the
dictionary (or pieces of the dictionary) in another format. dict.items does not need to reformat the
entire dictionary into a list of two-tuples. It simply returns back one two-tuple at a time, when it is
requested.

You can see a side effect of this if you attempt to alter the dictionary during iteration, as shown here:

>>> dictionary = {'foo': 'bar', 'baz': 'bacon'}
>>> iterator = iter(dictionary.items())
>>> next (iterator)
('foo', 'bar')
>>> dictionary['spam'] = 'eggs'
>>> next (iterator)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

Because the items iterator is a generator that simply reads from the referenced dictionary, it does
not know what it should do if the dictionary changes while it is working. In the face of ambiguity, it
refuses the temptation to guess, and raises Runt imeError instead.

zip
Python includes a built-in function called zip that takes multiple iterable objects and iterates over

them together, yielding the first element from each iterable (in a tuple), then the second, then the
third, and so on, until the end of the shortest iterable is reached. Following is an example:

>>> z = zip(['a', 'b', 'c', 'd'l, ['x', 'y', 'z'])
>>> next (z)

(ra', 'x")

>>> next (z)

(lb|, |y|)

>>> next (z)

('C‘, |zl)

>>> next(z)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Stoplteration

The reasons to use zip are similar to the reasons to use dict.items and family. Its purpose is to
yield back members of its iterables in a different structure, one set at a time. This alleviates the need
to copy over the entire thing in memory if such an operation is not necessary.

map

A cousin to the zip function is the built-in map function. The map function takes a function that
accepts N arguments as well as N iterables, and computes the result of the function against the
sequential members of each iterable, stopping when it reaches the end of the shortest one.

www.it-ebooks.info

http://www.it-ebooks.info/

52 | CHAPTER3 GENERATORS

Similarly to zip, a generator is used for the iterator here, precisely because it is undesirable to com-
pute every value in advance. After all, these values may or may not be needed. Instead, each value is
computed when and only when it is requested.

>>> m = map (lambda x, y: max([x, yl), [4, 1, 71, [3, 4, 5])
>>> next (m)

4

>>> next (m)

4

>>> next (m)

7

>>> next (m)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Stoplteration

As before, this is a trivial operation when dealing with small iterables. However, given a larger data
structure, the use of a generator may entail serious savings in computation time or memory use,
because the entire structure does not need to be computed and transformed at once.

File Objects

One of the most commonly used generators in Python is the open file object. Although you can
interact in many ways with open files in Python, and it is common with smaller files to just call read
to read the entire file into memory, the file object does support the generator pattern, which reads
the file from disk one line at a time. This is very important when operating on larger files. It is not
always reasonable to read the entirety of a file into memory.

For historical reasons, file objects have a special method called readline used for reading a line
at a time. However, the generator protocol is also implemented, and calling next on a file does the
same thing.

Consider the following simple file:

$ cat lines.txt
line
line
line
line
line

Ul w N

You read it in the Python shell by using the built-in open function. The resulting object is, among
other things, a generator.

>>> f = open('lines.txt')

>>> next (f)

'line 1\n'

>>> next (f)

'line 2\n'

Note that the generator reads one line at a time and yields the entire line, including the trailing
newline (\n) character.

www.it-ebooks.info

http://www.it-ebooks.info/

When to Write Generators | 53

If you attempt to call next after the end of the file is reached, StopIteration is raised as expected.

>>> next (f)

'line 5\n'

>>> next (f)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

It is worth noting that next and readline are not exact aliases for one another here. Once
end of file is reached, next raises StopIteration as it would for any other generator, whereas
readline actually catches this exception and returns an empty string:

>>> next (f)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

>>> f.readline ()

WHEN TO WRITE GENERATORS

Essentially, you have two primary reasons to write generators. Both of them spring from the same
fundamental concept, which is determining the value only when it is needed, rather than well ahead
of time.

The basic principle at play here is this: You do yourself no favors by having your code do a bunch
of work or store a bunch of data in advance. Often, you may not need large chunks of data. Even if
you need all of it, you are still doing unnecessary storage if you do not need all of it at once.

The two use cases that branch out from this fundamental principle are the need to access data in
pieces, and the need to compute data in pieces.

Accessing Data in Pieces

The first (and probably most common) reason to write generators is to cover cases where you must
access data in chunks, but where it is undesirable to store copies of the entire thing.

This is essentially what happens in the file object generator explored previously, as well as the
dict.items (and family) methods. When dealing with small files, it is entirely reasonable to read
the entire file into memory and do whatever work needs to be done against that in-memory string.

On the other hand, what if a file is large? What if you need to restructure a dictionary that is large?
Sometimes, making a copy to manipulate data is not a feasible operation. This is where accessing
data in pieces is a valuable capability.

When iterating over a large file with the generator method, it does not matter how large the file is.
Each line will be read and yielded, one at a time. When iterating over a dictionary with dict.items,
it does not matter whatsoever how large the source dictionary is. The iterator will iterate over it one
piece at a time, and yield only that two-tuple.

www.it-ebooks.info

http://www.it-ebooks.info/

54 | CHAPTER3 GENERATORS

The same principle applies to generators that you write. A generator is a useful tool in any situation
where you want to iterate over a substantial amount of data, and it is unnecessary to store or copy
the entirety of that data in memory at once.

Computing Data in Pieces

The second common reason to write generators is to compute data only as it is needed. Consider the
range function or the fibonacci function discussed earlier in this chapter. A program that must
loop over each number between zero and a googleplex need not store a list of every number between
those figures. It is sufficient to simply keep adding one until the maximum is reached.

Similarly, the fibonacci function does not need to compute every Fibonacci number (an impossible
task, because there exists an infinite number of them—more on this shortly). It simply must deter-
mine the single next Fibonacci number and yield it back.

This can be important because sometimes the computation of each item in a sequence can be expen-
sive. It is not useful to compute the entire series unnecessarily.

Sequences Can Be Infinite

One aspect that the earlier discussion about the fibonacci function explored briefly is the fact that
some sequences are actually infinite. In such cases, it is not possible to represent the entire sequence
in a list, but a generator is capable of representing this.

This is because a generator is not concerned with being aware of every value it must generate. It only
needs to generate the next one. It does not matter that the Fibonacci sequence goes on forever. As
long as your generator stores the most recent two numbers in the sequence, it is perfectly reasonable
to compute the next one.

There is nothing wrong with this. It is the responsibility of the code calling the generator in such
cases to deal with the fact that the sequence that the generator represents is an infinite one, and to
break out of the sequence when appropriate.

WHEN ARE GENERATORS SINGLETONS?

One important (and often overlooked) fact about generators is that many generators are singletons.
This is most often the case when an object is both iterable and an iterator. Because the iterable sim-
ply returns self, calling iter on such an object repeatedly will return the same object. This essen-
tially means that the object supports only one active iterator.

A simple generator function is not a singleton. Calling the function multiple times returns distinct
generators, as shown here:

>>> genl = fibonacci ()

>>> next (genl), next(genl), next(genl), next(genl), next (genl)

(1, 1, 2, 3, 5)

>>> gen2 = fibonacci ()

>>> next (gen2)

>>> next (genl)

www.it-ebooks.info

http://www.it-ebooks.info/

Generators within Generators

55

The following iterable class serves a similar purpose, and returns itself in its _iter method:

class Fibonacci (object) :
def init (self):
self.numbers = []

def iter (self):
return self

def next (self):

if len(self.numbers) < 2:
self.numbers.append (1)

else:
self .numbers.append (sum(self.numbers))
self.numbers.pop(0)

return self.numbers([-1]

def send(self, value):

pass

For Python 2 compatibility
next = next

This is a Fibonacci class, which implements the generator protocol. However, note that it is also
iterable, and responds to iter... with itself. This means that each Fibonacci object has only one

iterator: itself.

Fibonacci ()
iter (f)

>>> next (il), next(il),
(1, 1, 2, 3, 5)

>>> 12 = iter(f)

>>> next (12)

8

>>> £ =
>>> 11 =
next (il),

next (11), next (il)

There is nothing inherently wrong with this. It is worth noting, however, because some generators
may be implemented as singletons, whereas others are not. Be aware of what the relationship is

between the iterable and the iterators, and whether or not an iterable allows multiple iterators. Some

do; others do not.

GENERATORS WITHIN GENERATORS

It is often desirable for functions to call other functions. This is a key way that developers structure
code for reusability. Similarly, it is often desirable for generators to call other generators. Python 3.3
introduces the new yield from statement to provide a straightforward way for a generator to call

out to other generators.

Consider the following two trivial, finite generators:

def genl():
yield 'foo'
yield 'bar'

www.it-ebooks.info

http://www.it-ebooks.info/

56 | CHAPTER3 GENERATORS

def gen2():
yield 'spam'
yield 'eggs'

Prior to Python 3.3, the common way to combine these subgenerators into one would be to iterate
over them explicitly in the wrapping generator, as shown here:

def full gen():
for word in genl():
yield word
for word in gen2():
yield word

It is also possible to do this with the itertools.chain method:

def full genf():
for word in itertools.chain(genl(), gen2()):
yield word

The Python 3.3 yield from syntax provides a cleaner way to do the same thing, and looks much
more in line with a function call within another function.

def full genf():
yield from genl ()
yield from gen2 ()

Use of this syntax is referred to as generator delegation. And, in fact, the previous two implementa-
tions of full gen are not actually equivalent. This is because the former implementation discards
any value sent to the generator using send.

The yield from syntax, on the other hand, preserves this, because the generator is simply delegat-
ing to another generator. This means that any values sent to the wrapping generator will also be sent
to the current delegate generator, avoiding the need for the developer to handle this.

SUMMARY

Generators are valuable tools in Python that are used to perform computations or iterate over large
amounts of data while only storing and computing what you actually need at the time. This can
mean substantial cost savings in terms of both memory and performance.

Consider using generators when dealing with substantial amounts of data or computational work,
when not all the work needs to be done in advance. Also consider generators as a way to represent
infinite or branching sequences.

In Chapter 4, “Magic Methods,” you begin your study of classes in Python, starting with an intro-
duction to magic methods.

www.it-ebooks.info

http://www.it-ebooks.info/

A A N B B L N N

3:,9.... & =

000 0 ¢

.

v w

S 00 0 »
D 9 8 e e .

_—-;i]@...o

PART Il

Classes

@ & 9 =
'O @ 9 e »

) O 0 ® @ & -

') D D o e s .

DD ® e o -

PO D e e o -

I K N B e

YO0 00 e o

18O e e o

. . .

P9©0®0 0 0 ¢ s .« .
POO® 000 0 6 0o «
P9 OO0 0 0 s ¢
.......ll-.
D090 00 0 0 s o« ¢
D0 G0 e o 0 o o =«
OO0 e 00 0 0 o » .

0@ O© 00 0 & « .

e

e ® o

. - e o
s = @ ® o @
¢« o @ [BN M]
e o @ [N N]
) [N N)
e o @ [X N]
e90
ol 1
0000000000000 000C006CFS
0000000000000 000000
0000020020000 000DB2808
:0.0.......0.0...0....1
o

0

{i'tl

i

www.it-ebooks.info

'.!j_lﬂ......o .
-'5‘....I.l-
O.......l.a-.

=
_,)

Do e e e s .
I;)‘.... e &
:‘P’ﬂ....l. ® o
"':—)....... ® 0 o o
':‘0....‘.. @ o &

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Magic Methods

Python classes may optionally define a long list of methods that, when defined, are called
when the instances of the class are used in certain situations. For example, a class may define
under what situations its instances should be considered equivalent by defining a method
called eq .Ifthe eq method is defined, it is invoked if the class meets an equality test
using the == operator.

The purpose of these so-called “magic methods” is to overload Python operators or built-in
methods. They are defined using the __ syntax to avoid a case where a programmer acciden-
tally defines a method with the same name without explicitly opting in to the functionality.
Magic methods provide consistency between the contracts that built-in classes (including
primitives such as integers and strings) provide, as well as the contracts that custom classes
provide. If you want to test for equivalence in Python, you should always be able to use ==
to do so, regardless of whether you are testing two integers, two instances of a class that you
wrote for your specific application, or even two instances of unrelated classes.

This chapter explores magic methods, how they work, and what magic methods are available.

MAGIC METHOD SYNTAX

In Python, magic methods follow a consistent pattern—the name of the method is wrapped
on both sides by two underscores. For example, when an instance of a class is instantiated,
the method that runsis __init _ (not init).

This convention exists to provide a certain level of future-proofing. You can name methods
as you please, and not have to worry that your method name will later be used by Python to
assign some special (and unintended) significance, provided that you do not name your meth-
ods such that they both begin and end with two underscores.

When verbally referring to such methods (for example, in talks at conferences), many people
choose to use the coined term “dunder” to describe them. So, _init__ ends up being pro-
nounced as dunder-init.

www.it-ebooks.info

http://www.it-ebooks.info/

60 | CHAPTER4 MAGIC METHODS

Each magic method serves a specific purpose; it is a hook that is run when particular syntax
appears. For example, the _init method is run when a new instance of a class is created.
Consider the following simple class:

class MyClass (object) :

def init (self):
print ('The _ init method is running.')

Of course, this class does nothing, except for print to standard out upon instantiation. That is
enough to establish that the _init_ method runs in this situation, though.
>>> mc = MyClass()

The init method is running.
>>>

What is important to realize here is that you are not actually calling the _init method directly.
Rather, the Python interpreter simply knows to call _init _ upon object instantiation.

Each of the magic methods works this way. There is a particular spelling and method signature that
is taken (sometimes the method signature is variable), and the method is actually invoked in a par-
ticular situation.

The eq method (mentioned earlier) takes both the obligatory se1f argument and a second
positional argument, which is the object being compared against.

class MyClass (object) :
def eq (self, other):
All instances of MyClass are equivalent to one another, and they
are not equivalent to instances of other classes.
return type (self) == type (other)

Notice that this __eq method takes a second argument, other. Because the _eq method runs
when Python is asked to make an equivalence check with the == operator, other will be set to the
object on the other side of ==.

This example eq method simply decides equality based solely on whether it is another instance
of Myclass. Therefore, you get the following results:

>>> MyClass () == MyClass()
True

>>> MyClass () == 42

False

Two different instances of MyClass are equivalent because isinstance (other, type(self)) eval-
uates to True. On the other hand, 42 is an int, and, therefore, not an instance of MyClass. Thus,
__eq__ (and, therefore, the == operator) returns False.

AVAILABLE METHODS

The Python interpreter understands a rich set of magic methods that serve many different purposes,
from comparison checks and sorting, to hooks for various language features. This book has already
explored some of these in Chapter 2, “Context Managers,” and Chapter 3, “Generators.”

www.it-ebooks.info

http://www.it-ebooks.info/

Available Methods | 61

Creation and Destruction

These methods are run when instances of the class are created or destroyed.

__init__
The _init__ method of an object runs immediately after the instance is created. It must take one

positional argument (self) and then can take any number of required or optional positional argu-
ments, and any number of keyword arguments.

This method signature is flexible because the arguments passed to the class instantiation call are
what are sent to __init .

Consider the following class with an __init method that takes an optional keyword argument:

import random

class Dice(object) :
"""A class representing a dice with an arbitrary number
of sides.

def init (self, sides=6):
self. sides = sides

def roll (self):
return random.randint (1, self. sides)

To instantiate a standard, six-sided die, you need only call the class with no arguments: die =
Dice (). This creates the Dice instance (more on that later), and then calls the new instance’s
__init_ method, passing no arguments except self. Because the sides argument is not provided,
the default of 6 is used.

To instead create a d20, however, you simply pass the sides argument to the call to Dice, which
forwards it to the _init _ function.

>>> die = Dice(sides=20)
>>> die. sides

20

>>> die.roll ()

20

>>> die.roll()

18

It is worth noting that the purpose of the _init__ method is not to actually create the new object
(that is performed by __new). Rather, the purpose is to provide initial data to the object after it
has been created.

What this means in practice is that the _init__ method does not (and should not) actually return
anything. All __init methods in Python return None, and returning anything else will raise
TypeError.

www.it-ebooks.info

http://www.it-ebooks.info/

62 | CHAPTER4 MAGIC METHODS

The init method is probably the single most common magic method that custom classes
define. Most classes are instantiated with extra variables that customize their implementation in
some way, and the __init method is the appropriate place for this behavior.

new

The new method actually precedes the init method in the dance of creating an instance of
a class. Whereas the _init _ method is responsible for customizing an instance once it has been
created, the new method is responsible for actually creating and returning that instance.

The new method is always static. It does not need to be explicitly decorated as such. The first
and most important argument is the class of which an instance is being created (by convention,
called c1s).

In most cases, the remaining arguments to __new__ should mirror the arguments to __init . The
arguments sent to the call to the class will be sent first to _new__ (because it is called first), and
thento init .

Realistically, most classes do not actually need to define _new__ at all. The built-in implementa-
tion is adequate. When classes do need to define __new__, they will almost always want to reference
the superclass implementation first, as shown here, before doing whatever work is necessary on the
instance:

class MyClass (object) :
def _new_ (cls, [...]):
instance = super (MyClass, cls)
[do work on instance]

return instance

new (cls, [...])

Normally, you will want the new method to return an instance of the class being instantiated.
However, occasionally this may not be true. Note, however, that the __init__ half of the dance will
only be performed if you return an instance of the class whose new method is being run. If you
return something else, the instance’s __init__ method will not be invoked.

You do this primarily because, in situations where an instance of a different class is returned, the
__init method was likely run by whatever means created that instance within the new
method, and running it twice would be problematic.

__del__

Whereas the new and init methods are invoked when an object is being created, the
__del__method is invoked when an object is being destroyed.

It is relatively rare for developers to destroy their objects in Python directly. (You should do so with
the del keyword if you need to.) Python’s memory management is good enough that it is generally
acceptable simply to allow the garbage collector to do so.

www.it-ebooks.info

http://www.it-ebooks.info/

Available Methods | 63

That said, the _del method is run regardless of how an object comes to be destroyed, whether it
is through a direct deletion, or through memory reclamation by the garbage collector. You can see
this behavior at work by making the following class that deletes noisily:

class Xon(object) :

def del (self):
print (' AUUUUUUGGGGGGHH! ')

If you make Xon objects but do not assign them to variables, they will be marked as collectable by
the garbage collector, which will collect them in short order as other program statements run.

>>> Xon ()

<_main__ .Xon object at 0x1022b8890>
>>> 'foo!

AUUUUUUGGGGGGHH !

'foo!

>>>

What happened here? First, an xon object was created (but not assigned to a variable, so there is no
real reason for the Python interpreter to keep it around). Next, the interpreter was sent an immu-
table string, which it must assign to memory (and then immediately release, because it was not
assigned to a variable either, but that is not important).

In the particular interpreters I was using (CPython 3.4.0 and CPython 2.7.6), that memory opera-
tion causes the garbage collector to take a pass through its table. It finds the xon object and deletes
it. This triggers the xon object’s _del method, which then loudly screams as it is unceremoni-
ously sent to the great bit bucket beyond.

You see similar (but more immediate) behavior if you delete an xon object directly, as shown here:

>>> X = Xon()
>>> del x
AUUUUUUGGGGGGHH !

In both cases, the principle is the same. No matter whether the deletion is directly invoked in code
or automatically triggered by the garbage collector, the del method is invoked identically.

It is worth noting that del methods are generally unable to raise exceptions in any meaningful
way. Because deletions are usually triggered in the background by the garbage collector, there is no
good way for exceptions to bubble. Therefore, raising any kind of exceptionina del method
just prints some nastiness to standard error, and it is generally considered inappropriate to raise
exceptions there.

Type Conversion

Several magic methods are available in Python to take a complex object and make it into a more primi-
tive, or more widely used type. For example, types such as int, str, and bool are used everywhere in
Python, and it is useful for complex objects to know what their representations are in these formats.

__str_, __unicode__, and __bytes__

By far, the most commonly used type conversion magic method is __str . This method takes
one positional argument (self), is invoked when an object is passed to the str constructor, and is
expected to return a string.

www.it-ebooks.info

http://www.it-ebooks.info/

64

CHAPTER 4 MAGIC METHODS

>>> class MyObject (object) :
def str (self):
return 'My Awesome Object!'

>>> str(MyObject ())
'My Awesome Object!'

Because strings are so ubiquitous, it is very often useful for classes to definea __str method.

There is a bit more to this situation, however. In Python 2, strings are ASCII strings, whereas in
Python 3, strings are Unicode strings. This actually causes a great deal of pain, and this book
devotes an entire chapter to the subject (Chapter 8, “Strings and Bytestrings”).

Suffice it to say here, however, that Python 2 does have Unicode strings, and Python 3 introduces a
type called bytes (or bytestrings, as they are sometimes called), which are roughly analogous to the
old Python 2 ASCII strings.

These string brethren have their own magic methods. Python 2 honorsa __unicode_ method

that is invoked when an object is passed to the unicode constructor. Similarly, Python 3 honors a
__bytes__method that is invoked when an object is passed to the bytes constructor. In both cases,
the method is expected to return the proper type.

The str method is invoked in certain other situations, too (essentially, situations where str is
called under the hood). For example, encountering %s in a format string will run the corresponding
argument through str, as shown here:

>>> 'This is %s' % MyObject ()
'This is My Awesome Object!'

In this case, however, the formatting method is a bit smarter. For example, if $s is encountered
when formatting a unicode object in Python 2, it will attempt to use __unicode _ first. Consider
the following code, running in Python 2.7

>>> class Which (object) :
def str (self):
return 'string'
def unicode (self):
return u'unicode'

>>> u'The %s was used.' % Which()
u'The unicode conversion was performed.'
°

>>> 'The %s was used.' % Which()
'The string conversion was performed.'

__bool__

Another common need is for an object to define whether it should be considered True or False,
either if expressly converted to a Boolean, or in a situation where a Boolean representation is
required (such as if the object is the subject of an if statement).

This is handled in Python 3 with the bool magic method, which in Python 2 is instead called
__nonzero . In both cases, the method takes one positional argument (self) and returns either

True Or False.

www.it-ebooks.info

http://www.it-ebooks.info/

Available Methods | 65

It is often unnecessary to define an explicit _bool method. If no __bool method is defined
buta len method (explained further shortly) is defined, the latter will be used, and these often
overlap.

int, _float__, and __complex__

Occasionally, it is valuable for complex objects to be able to convert to primitive numbers. If an
object defines an __int__ method, which should return an int, it will be invoked if the object is
passed to the int constructor.

Similarly, objects that define float and complex will have those methods invoked if they
are passed to float and complex, respectively.

NOTE Python 2 has a separate 1ong type, and, therefore,a long method.
This works exactly as you expect.

Comparisons

Objects are being compared when they are checked for equivalence (with == or 1=), or for relative
value to one another (such as with <, <=, >, and >=).

Each of these operators maps to a magic method in Python.

Binary Equality

The following methods support testing equality using == and ! -=.

—eq__

As already explored, the eq method is called when two objects are compared with the == opera-
tor. The method must take two positional arguments (by convention, self and other), which are
the two objects being compared.

Under most circumstances, the object on the left side has its _eq method checked first. It is used
if it is defined (and returns something other than Not Implemented). Otherwise, the eq method
of the object on the right side is used instead (with the argument order reversed).

Consider the following class that is noisy when given equivalence tests (and then returns False
unless it is the exact same object):

class MyClass (object) :
def eq (self, other):
print ('The following are being tested for equivalence:\n'
'$r\n%r' % (self, other))
return self is other

You can see the order in action based on which side of the operator your objects are on.

www.it-ebooks.info

http://www.it-ebooks.info/

66

CHAPTER 4 MAGIC METHODS

>>> cl = MyClass()

>>> c2 = MyClass()

>>> cl == c2

The following are being tested for equivalence:
<_main_.MyClass object at 0x1066de590>
<_main__ .MyClass object at 0x1066de390>

False

>>> c2 == cl

The following are being tested for equivalence:
<_main__.MyClass object at 0x1066de390>
<_main_ .MyClass object at 0x1066de590>

False

>>> cl == cl

The following are being tested for equivalence:
<_main_.MyClass object at 0x1066de590>
<_main__ .MyClass object at 0x1066de590>

True

Notice how the order in which the objects are dumped to standard out is reversed. This is because
the order in which they were sent to __eq was reversed. This also means that there is no inherent
requirement that your equivalence check be commutative. However, unless you have a really good
reason, you should ensure that equivalence is consistently commutative.

You can observe another facet of this behavior by comparing a Myclass object against something
of a different type. Consider the following type with a plain __eq method that does nothing but
return False:

class Unequal (object) :
def eqg (self, other):
return False

And, when you run equivalence tests against instances of these classes, you see different behavior
based on the order in which they are called. When an instance of MyClass is on the left, its _eq
method is called. When an instance of Unequal is on the left, its quieter brethren is called instead.

>>> MyClass () == Unequal ()

The following are being tested for equivalence:
<_main_ .MyClass object at 0x1066de5d0>
<_main__ .Unequal object at 0x1066de450>

False

>>> Unequal () == MyClass()

False

There is one exception to this rule on order of objects sent to __eq_: direct subclasses. If one of the
two objects being compared is an instance of a direct subclass of the other, this will override the
ordering rules, and the __eq method of the subclass will be used.
class MySubclass (MyClass) :
def eqg (self, other):
print ('MySubclass\' eq method is testing:\n'
'$r\n%r' % (self, other))
return False

Now, the same method with the same argument order will be invoked, regardless of the order in
which arguments are provided to the operator.

www.it-ebooks.info

http://www.it-ebooks.info/

Available Methods | 67

>>> MyClass () == MySubclass()

MySubclass' eq method is testing:
<_main__ .MySubclass object at 0x1066de690>
<_main__.MyClass object at 0x1066de450>
False

>>> MySubclass () == MyClass ()

MySubclass' eq method is testing:
<_main_.MySubclass object at 0x1066de5d0>
<_main__ .MyClass object at 0x1066de450>
False

ne

The ne method is the converse of the eq method. It works the same way, except that it is
invoked when the 1= operator is used.

Normally, it is not necessary to define an __ne method, provided that you always want the result
to be the opposite of the returned value of eq .Ifno ne method is defined, the Python inter-
preter will run the eq method and flip the result.

It is possible to explicitly provide an __ne method for situations where you do not want this
behavior.

Relative Comparisons

These methods also handle comparison, but using comparison operators that test relative value
(such as >).

It ., _le , gt , ge

The 1t , le , gt ,and ge methods map to the <, <=, >, and >= operators, respec-
tively. Like the equivalence methods, each of these methods should take two arguments (by conven-
tion, self and other), and return True if the relative comparison should be considered to hold, and
False otherwise.

Usually, it is unnecessary to define all four of these methods. The Python interpreter will rightly
consider 1t to be the inverse of ge ,and gt to bethe inverse of _1e . Similarly, the
Python interpreter will consider the _1e method to be the disjunction of 1t and eq ,and
the ge method to be the disjunction of gt and eq .

This means that, in practice, it is usually only necessary to define __eq and 1t (or gt),
and all six of the comparison operators will work in the way that you expect.

Another important (but easily overlooked) aspect of defining these methods is that they are what
the built-in sorted function uses for sorting objects. Therefore, if you have a list of objects with
these methods defined, passing that list to sorted automatically returns a sorted list, from least to
greatest, based on the result of the comparison methods.

_cmp__

The cmp method is an older (and less preferred) way of defining relative comparisons for
objects. It is checked if (and only if) the comparison methods described previously are not defined.

www.it-ebooks.info

http://www.it-ebooks.info/

68

CHAPTER 4 MAGIC METHODS

This method takes two positional arguments (by convention, self and other), and should return a
negative integer if self is less than other, or a positive integer if self is greater than other. If self
and other are equivalent, the method should return o.

The cmp method is deprecated in Python 2, and not available in Python 3.

Operator Overloading

These methods provide a mechanism to override the standard Python operators.

Binary Operators

A set of magic methods is also available for overloading the various binary operators available in
Python, such as +, -, and so on. Python actually supplies three magic methods for each operator,
each of which takes two positional arguments (by convention, self and other).

The first of these is a vanilla method, in which an expression x + y mapstox. add_ (y), and the
method simply returns the result.

The second is a reverse method. The reverse methods are called (with the operands swapped) if (and
only if) the first operand does not supply the traditional method (or returns Not Implemented) and
the operands are of different types. These methods are spelled the same way, but the method name
is preceded by an r. Therefore, the expression x + y, where x does not define an __add method,
would call y. radd (x).

The third and final magic method is the in-place method. In-place methods are called when the
operators that modify the former variable in place (such as +=, -=, and so on) are used. These are
spelled the same way, but the method name is preceded by an i. Therefore, the expression x += y
would call x. _iadd (y).

Normally, the in-place methods simply modify self in place and return it. However, this is not a

strict requirement. It is also worth noting that it is only necessary to define an in-place method if the
behavior of the straightforward method does not cleanly map. The straightforward method is called
and its return value assigned to the left operand in the event that the in-place method is not defined.

Table 4-1 shows the full set of operator overloading magic methods.

www.it-ebooks.info

TABLE 4-1 Operator Overloading Magic Methods
OPERATOR METHOD REVERSE IN-PLACE
+ __add __radd __dadd_
= __sub_ __rsub __isub
2 _ mul _rmul _dimul
/ __truediv___ __ rtruediv_ __itruediv_
// _ floordiv_ _ rfloordiv__ _ ifloordiv__
% mod __rmod___ __dimod

http://www.it-ebooks.info/

Available Methods | 69

OPERATOR METHOD REVERSE IN-PLACE

e __pow___ __Trpow___ __ipow__

& __and_ __rand__ __diand

| _or __ror __dor

» __xor _ rxor __ixor

<< __lshift _ rlshift _ilshift
>> _ rshift _ rrshift __dirshift

These methods allow for overloading of all of the binary operators that are available in Python.
Custom classes can (and should) define them when it is sensible to do so.

Division

One binary operator, division (/), requires slightly more discussion. First, you need a bit of back-
ground. Originally, in Python, the division operator between two integers would always return an
int, not a float. Essentially, what happens is that the division is performed and the floor of the

result is taken. Therefore, 5 / 2 would return 2, and -5 / 2 would return -3. If you wanted a
float result, at least one of the operands had to be a f1ocat. Therefore, 5.0 / 2 would return 2.5.

Python 3 changes this behavior, because many developers found it to be counterintuitive. In
Python 3, division between two integers returns a £loat, and does so even if the result is a whole
number. Thus, 5 / 2is2.5,and 4 / 2is 2.0 (not 2). This is one of the backward-incompatible
changes that Python 3 introduced to the language.

Because Python 3 introduced backward-incompatible changes, subsequent releases of the Python 2
series used a mechanism already in place to “opt in” to the new behavior: a special module called
__future__, from which future behavior can be imported. In Python 2.6 and 2.7, developers can
opt-in to the Python 3 behavior by issuing from future import division.

This is important to discuss here because it alters which magic method is used. The truediv

(and siblings) method in Table 5-1 is the Python 3 method. Python 2 originally provided div
and calls _div__ for the / operator unless division is imported from _ future , in which case it
conforms to the Python 3 behavior and calls __truediv__.

In most cases, code that runs on Python 2 probably needs to be agnostic as to which division scheme
is in effect. This means defining both the _div__and _ truediv__ methods. In most cases, it is
probably completely acceptable to just map them to each other, as shown here:

class MyClass (object) :
def truediv__ (self, other):
[...1]

div__ = _ truediv__

It is probably wise to make _ truediv__ be the “proper” method, and _div__ the alias. The
broader principle here is that any code that may even eventually run on Python 3 should be written
to target Python 3 and accommodate Python 2, as opposed to the other way around.

www.it-ebooks.info

http://www.it-ebooks.info/

70

CHAPTER 4 MAGIC METHODS

Unary Operators

Python also provides three unary operators: +, -, and ~. Notice that two of the symbols here are
reused between unary and binary operators. This is fine. The interpreter is able to determine which
is in use based on whether the expression is unary or binary.

The unary operator methods simply take a single positional argument (self), perform the opera-
tion, and return the result. The methods are called _pos (which maps to +), neg (which
maps to -),and __invert__ (which maps to ~).

Unary operators are straightforward. The expression ~x, for example, calls x. _invert ().
Consider the following string-like class that is able to return the string backward:
class ReversibleString(object) :

def _ init_ (self, s):
self.s = s

def _ invert_ (self):
return self.s[::-1]

def _ str_ (self):

return self.s

And, in the Python interpreter, you would see the following;:

>>> rs = ReversibleString('The quick brown fox jumped over the lazy dogs.')
>>> ~I¥S
'.sgod yzal eht revo depmuj xof nworb kciug ehT'

So, what is happening here? The ReversibleString object is created and assigned to rs.

The second statement, ~rs, is a simple unary expression. The result is not being assigned to a
variable, which means that it is simply being discarded. The rs variable is not being modified in
place. The interpreter, however, shows you the result, which is a str object that represents your
string, backward.

Note that the return value is a str, not a ReversibleString. There is no obligation that these meth-
ods return a value of the same type as the operand, and your __invert method does not do so.

There is no reason why it cannot return a ReversibleString, however, and often returning an
object of the same type is desirable.
class ReversibleString(object) :

def _ init_ (self, s):
self.s = s

def _ invert_ (self):
return type (self) (self.s[::-1])

def _ repr (self):
return 'ReversibleString: %s' % self.s

def _ str_ (self):

return self.s

www.it-ebooks.info

http://www.it-ebooks.info/

Available Methods | 71

This iteration of ReversibleString returns a new ReversibleString instance from its invert
method. A custom repr has been added for demonstration purposes, because having the interpreter
provide a memory address in the output is not useful.

NOTE You may note the use of type (self) (), rather than simply calling
Reversiblestring () directly. This ensures that if ReversibleString is sub-
classed, the subclass would be correctly used there.

The Python interpreter now shows slightly different output:

>>> rs = ReversibleString('The quick brown fox jumped over the lazy dogs.')
>>> ~IS
ReversibleString: .sgod yzal eht revo depmuj xof nworb kciug ehT

Instead of getting a str object back, you now have a ReversibleString. This means that your
inverted output is now invertible.

>>> ~~IS
ReversibleString: The quick brown fox jumped over the lazy dogs.

This is straightforward. The rs object is having its __invert method called. Then, the result
of that expression is having itzs _invert method called. This is, therefore, equivalent to
rs. invert (). invert ().

Overloading Common Methods

Python includes many built-in methods (the most common example being 1en) that are widely used
and almost as much of the contract that an object observes as are the operators. Therefore, Python
supplies magic methods that are invoked when an object is passed to those methods.

_len__

The most common method to be overloaded in this way is almost certainly 1en, which is the
Pythonic way to determine the “length” of an item. The length of a string is the number of charac-
ters in the string, the length of a list is the number of elements within the list, and so on.

Objects can describe their length by defininga _1en method. This method takes one positional
argument (self) and should return an integer.

Consider the following class to represent a span of time:

class Timespan (object) :
def init (self, hours=0, minutes=0, seconds=0):
self .hours = hours
self .minutes = minutes
self.seconds = seconds

def len (self):

return (self.hours * 3600) + (self.minutes * 60) + self.seconds

www.it-ebooks.info

http://www.it-ebooks.info/

72

CHAPTER 4 MAGIC METHODS

This class essentially takes a number of hours, minutes, and seconds; it then calculates the seconds
that this represents and uses that as the length.
>>> ts = Timespan (hours=2, minutes=30, seconds=1)

>>> len(ts)
9001

It is worth noting that the len method, if defined, also is used to determine whether an object is
considered True or False if typecast to a bool or is used in an if statement, unless the object also
definesa bool method (or, in Python 2, nonzero).

This will actually do exactly what you expect the bulk of the time, so it often is not necessary to
define a separate _bool .

>>> bool (Timespan (hours=1, minutes=0, seconds=0)
True
>>> bool (Timespan (hours=0, minutes=0, seconds=0))
False

In Python 3.4, an additional method, length hint , has been added. Its purpose is to provide
an estimate of an object’s length, which is allowed to be somewhat greater than or less than an
object’s actual length, and can be used as a performance optimization. It takes one positional argu-
ment (self), and must return an integer greater than o.

__repr__

One of the most important built-in methods in Python is also potentially one of the most overlooked:
repr. Any object can definea __repr _method, which takes one positional argument (self).

Why is repr so important? An object’s repr is how it will represent itself when output on the
Python interactive terminal.

It is not generally useful to return an object in the terminal and have it render as < __main__ .0
object at 0x102cdf950>. In the vast majority of cases, an object’s class and address in memory
are not what you want to know.

Defining __repr_ _ allows you to give objects a more useful representation. Consider the following
Timespan class with a useful _repr method:

class Timespan (object) :
def _ init_ (self, hours=0, minutes=0, seconds=0):
self . hours = hours
self .minutes = minutes
self.seconds = seconds

def repr (self):
return 'Timespan (hours=%d, minutes=%d, seconds=%d)' % \
(self.hours, self.minutes, self.seconds)

What happens when you work with Timespan objects on the terminal now?

>>> Timespan()

Timespan (hours=0, minutes=0, seconds=0)
>>> Timespan (hours=2, minutes=30)
Timespan (hours=2, minutes=30, seconds=0)

www.it-ebooks.info

http://www.it-ebooks.info/

Available Methods | 73

This is much more useful than a memory address!

Notice that in addition to communicating all the key attributes of a Timespan, the repr prints as
a valid expression that instantiates a Timespan. This is incredibly valuable when it is possible. It
intuitively communicates that you are working with an object generally, and a Timespan object
specifically. Just printing out the timing information might leave open the interpretation that you
are looking at a str or a timedelta, for example. Also, the Python interpreter could parse it if it’s
copied and pasted. That is a good thing.

What this really points to is a more general distinction that is important: repr and str have
different purposes. Exactly how you delineate them is a matter of subtle differences of opinion,
depending on what you read. But an all-encompassing understanding should be that an object’s
repr is intended for programmers (and machines, possibly), whereas an object’s str is geared
toward more public consumption. You would not want the Timespan’s str to look like a class
instantiation call. Most likely, it would be something intended for humans instead.

It is often very useful for an object’s repr to return a valid Python expression to reconstruct the
object. Many Python built-ins do this. The repr of an empty list is [1, which is the expression to
make an empty list.

When this is impossible or impractical, a good rule of thumb is to return something that looks like
it is obviously an object, and is noisy about what its key properties are. As an example, an alterna-
tive repr for a Timestamp object might be <Timestamp: X hours, Y minutes, Z seconds>. The
Python interpreter will not be able to parse that (unlike the repr used previously), but it is clear
exactly what it is, and nobody will errantly expect it to be able to be parsed, either.

__hash__

Another often overlooked built-in function is the hash function. The purpose of the hash function is
to uniquely identify objects, and to do so using a numeric representation.

When an object is passed to hash, its _hash method is invoked (if defined). The hash
method takes one positional argument (sel£), and should return an integer. It is acceptable for this
integer to be negative.

The object class providesa _hash _ function, which normally simply returns the id of the object.
An object’s id is implementation-specific, but in CPython, it is its memory address.

However, if an object defines an _eq method, the hash method is implicitly set to None. This
is done because of an ambiguity in the purpose of hashing generally. Depending on how they are
being used, it may be desirable for every object to have a unique hash, or for equivalent objects to
have matching hashes. And, “in the face of ambiguity, avoid the temptation to guess.”

Therefore, if a class should understand equivalence and be hashable, it must explicitly define its own
__hash__method.

Hashes are used in several places in the Python ecosystem. The two most common uses for them
are for dictionary keys and in set objects. Only hashable objects can be used as dictionary keys.
Similarly, only hashable objects can exist in Python set objects. In both cases, the hash is used to
determine equivalence for testing set membership and dictionary key lookup.

www.it-ebooks.info

http://www.it-ebooks.info/

74 | CHAPTER4 MAGIC METHODS

__format__

Another common Python built-in function is the format function, which is capable of formatting
various kinds of objects according to Python’s format specification.

Any object can provide a __ format__ method, which is invoked if an object is passed to format.
This method takes two positional arguments, the first being se1f, and the second being the format
specification string.

In Python 3, the str.format method has replaced the $ operator as the preferred way to handle
templating within strings. If you pass an object with a _ format__ method as an argument to
str.format, this method will be called.

>>> from datetime import datetime
>>>
>>>
>>> class MyDate (datetime) :
def _ format_ (self, spec_str):
if not spec str:
spec_str = '%Y-%m-%d %H:%M:%S'
return self.strftime(spec_str)

>>>

>>> md = MyDate (2012, 4, 21, 11)
>>>

>>> '{0}'.format (md)

'2012-04-21 11:00:00"

Because the string used {0} with no additional formatting information, there was no format specifi-
cation, and the default is used. However, note what happens when you provide one:

>>> '{0:%Y-%m-%d} "' . format (md)
'2012-04-21"

The format _ method is only called in this way when using the format method. It is not called if

o

$-substitution is used within a string.

__instancecheck__and __subclasscheck__

Although most type checking in Python is done using so-called duck typing (if obj . 1look () -s like
a Duck and obj .quack () -s like a Duck, it’s probably a Duck), it is also possible to test whether an
object is an instance of a particular class using the built-in isinstance method. Similarly, a class
can test whether it inherits from another class using issubclass.

It is rarely necessary to customize this behavior. The isinstance method returns True if the object
is an instance of the provided class or any subclass thereof (which is almost always what you want).
Similarly, issubclass (despite its name) returns True if the same class is provided for both argu-
ments (which is also almost always what you want).

Occasionally, though, it is desirable to allow classes to fake their identities. Python 2.6 introduces
this possibility by providing the instancecheck and subclasscheck methods. Each of
these methods takes two arguments, the first being se1f, and the second being the object being
tested against this class (so, the first argument to isinstance). This allows classes to determine
what objects may masquerade as their instances or subclasses.

www.it-ebooks.info

http://www.it-ebooks.info/

Available Methods | 75

_abs__and __round__

Python provides built-in abs and round functions, which return the absolute value of a number and
a rounded value, respectively.

Although it is not usually necessary for custom classes to define this behavior, they can do so by
defining _abs and _round , respectively. Both take one positional argument (self), and
should return a numeric value.

Collections

Many objects are collections of various kinds of other objects. Most complex classes functionally
come down to a collection of attributes (sorted in a meaningful way), as well as actions that the
object can take.

Python has several ways of understanding “membership” of one object within another. For lists and
dictionaries, for example, it is possible to test whether an object is a member of the collection by the
expression needle in haystack (where needle is the variable being searched for, and haystack is
the collection).

Dictionaries are made up of keys, and can perform lookup based on the key by evaluating
haystack [key]. Similarly, most objects have attributes that are set during initialization or by other
methods, which are accessed using dot notation (haystack.attr name).

Python has magic methods that interact with all of these.

__contains__

The contains method is invoked when an expression such as needle in haystack is evalu-
ated. This method takes two positional arguments (self, and then the needle), and should return
True if the needle is considered to be present, and False if it is absent.

There is no strict requirement that this conform to object presence within another object, although
that is the most common use case. Consider the following class that represents a range of dates:

class DateRange (object) :
def init (self, start, end):
self.start = start
self.end = end

def contains_ (self, needle):
return self.start <= needle <= self.end

In this case, the contains _ method determines whether the date is between the boundaries of
the range.

>>> dr = DateRange (date (2015, 1, 1), date(2015, 12, 31))
>>> date (2015, 4, 21) in dr

True

>>> date (2012, 4, 21) in dr

False

www.it-ebooks.info

http://www.it-ebooks.info/

76

CHAPTER 4 MAGIC METHODS

__getitem__, __setitem__, and __delitem__

The getitem method and its siblings are used for key lookups on collections (such as dictionaries),
or index or slice lookups on sequences (such as lists). In both cases, the fundamental expression being
evaluated is haystack [key] .

The getitem method takes two arguments: self and key. It should return the appropriate
value if present, or raise an appropriate exception if absent. What exception is appropriate varies
somewhat based on the situation, but is usually one of IndexError, KeyError, or TypeError.

The setitem method is used in the same situation, except that it is invoked when a value is
being set to the collection, rather than being looked up. It takes three positional arguments rather
than two: self, key, and value.

It is not a requirement that every object that supports item lookup necessarily support item changes.
In other words, it is entirely acceptable to define getitem and not define setitem if thisis
the behavior that you want.

Finally, the delitem method is invoked in the unusual situation where key is deleted with the
del keyword (for example, del haystack [key]).

__getattr__and __setattr__

The other major way that Python classes serve as collections is by being collections of attributes and
objects. When a date object contains year, month, and day, those are attributes (which are set to
integers in that case).

The getattr _method is invoked when attempting to get an attribute from an object, either
with dot notation (such as obj.attr name), or using the getattr method (such as getattr (ob7,
'attr_name')).

However, unlike other magic methods, it is important to realize that __getattr _is only invoked
if the attribute is not found on the object in the usual places. In other words, the Python inter-
preter will first do a standard attribute lookup, return that if there is a match, and if there is not a
match (in other words, AttributeError would be raised), then and only then is the getattr
method called.

In other respects, it works similarly to _getitem _ (discussed previously). It accepts two
positional arguments (self and key), and is expected to return an appropriate value, or raise
AttributeError.

Similarly, the setattr _ method is the writing equivalent of __getattr . It is invoked when
attempting to write to an object, whether by dot notation or using the setattr method. Unlike
__getattr_, it is always invoked (the method would be meaningless otherwise), and, therefore,
should call the superclass method in situations where the traditional implementation is desired.

__getattribute__

The reason why getattr is only invoked if the attribute is not found is because this is
ordinarily the desired behavior (otherwise, it would be very easy to fall into infinite recursion
traps). However, the getattribute method, unlike its more common counterpart, is called
unconditionally.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 77

The logical order here is that getattribute is called first, and is ordinarily responsible for
doing the traditional attribute lookup. If a class defines its own _getattribute , it becomes
responsible for calling the superclass implementation if it needs to do so. If (and only if)
__getattribute raises AttributeError, getattr _is called.

OTHER MAGIC METHODS

A few other magic methods exist in addition to the ones described so far. In particular, Python
implements an iterator protocol, which uses the iter and next methods. These are not
discussed in detail here because they are discussed at length in Chapter 3, “Generators.”

Similarly, Python implements a rich language feature known as context managers, which make use
of the enter and exit_ magic methods. These are also not discussed in detail here because
they are discussed at length in Chapter 2, “Context Managers.”

SUMMARY

The magic methods available to classes provide the Python language with a consistent data model
that can be used across custom classes. This greatly enhances the readability of the language, in addi-
tion to providing hooks for classes of disparate types to interact with each other in predictable ways.

There is no reason to require that every custom class implement all of these methods, or even any
of them. When writing a class, consider what functionality you need. However, if the functionality
needed maps cleanly to an already defined method here, it is preferable to implement these rather
than provide your own custom spelling.

In Chapter 5, you will learn about metaclasses.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Metaclasses

Classes in Python are also objects.

This is a key concept. In Python, almost everything is an object, including both functions and
classes. This means that functions and classes can be provided as arguments, exist as members
of class instances, and do anything that any other object is capable of doing.

What else does it mean to say that classes are objects? Chapter 4, “Magic Methods,” discussed
how object instantiation works. The new and __init _ methods of the class are called, in
that order, to create the new object. Classes are not an exception to this process. Classes them-
selves, being objects, are instances of another class, which is responsible for creating them.

The classes responsible for generating other classes are called metaclasses. “Meta-" is a
Greek prefix that simply means “post-” or “after.” For example, a portion of Aristotle’s
work is called “The Physics,” and the subsequent portion is called “The Metaphysics,” which
simply means “the stuff that comes after the physics.” However, the meaning assigned to this
prefix has since evolved to refer to a level of self-reference—an instantiation of a concept in
order to work on that concept. If you have ever been unfortunate enough to be forced to sit
through a meeting to plan other meetings, that particular atrocity could rightly be called a
meta-meeting.

This chapter covers metaclasses. First, it delves into the philosophy behind Python’s object
model, and how metaclasses, classes, and objects connect to one another. Then, it explores
examples of specific ways metaclasses can be used.

CLASSES AND OBJECTS

The relationship between a class and an instance of that class is straightforward and two-fold.
First, a class defines the properties and available actions of its instances. Second, a class serves
as a factory that creates said instances.

www.it-ebooks.info

http://www.it-ebooks.info/

80

CHAPTER 5 METACLASSES

With this in mind, the only additional understanding necessary to grasp metaclasses is the realiza-
tion that this relationship can be hierarchical. When you instantiate a class that you write, your
class serves as the definition of the instance’s properties and actions, and performs the generation
of the instance. When you defined the class, you were simply using a special, substitute syntax that
stands in for the instantiation of a different class, called type.

Using type Directly

This can best be illustrated by simply creating a class using type directly, rather than using the
Python class keyword. This is syntactically quite ugly, but it offers a clear view into what is
going on under the hood.

Therefore, consider the following simple set of classes:

class Animal (object) :
"wiA class representing an arbitrary animal."""

def init (self, name):
self.name = name

def eat(self):
pass

def go_to_vet (self):
pass

class Cat (Animal) :
def meow(self) :
pass

def purr(self):
pass

The Animal class obviously represents an animal, and defines certain things that the animal is
capable of doing, such as eating and being taken to the vet. The cat subclass additionally knows
how to meow and purr, functions not available to other animals. (The method bodies are stubbed,
and left to the reader’s intuition.)

What happens here is that when the Python interpreter gets to the top statement in the code, class
Animal (object), it invokes the type constructor under the hood. As alluded to earlier, type is a
built-in class in Python, which is the default class for other class objects. It is the default class that
creates other classes—or, the default metaclass.

However, nothing stops you from simply doing this directly. The type constructor takes three
positional arguments: name, bases, and attrs. The name argument (a string) is simply the name
of the class. The bases argument is a tuple of the superclasses for that class. Python supports mul-
tiple inheritance, which is why this is a tuple. If you are only inheriting from a single class, just
send a tuple with a single element. Finally, the attrs argument is a dictionary of all the attributes
on the class.

www.it-ebooks.info

http://www.it-ebooks.info/

Classes and Objects | 81

Creating a Class
The following code is (roughly) equivalent to the previous class Animal block:

def init(self, name):
self.name = name

def eat(self):
pass

def go to vet (self):

pass
Animal = type('Animal', (object,), {
' doc_ ': 'A class representing an arbitrary animal.',
' init_ ': init,

'eat': eat,
'go_to_vet': go_to_vet,

h

This is, obviously, not the preferred way to instantiate a new class. Also, note that it is only roughly
equivalent. It has a couple of differences, most notably that this code leaves functions called init,
eat, and go_to vet, unattached to the class, in that namespace. This is worth noting, but not par-
ticularly important for the purposes of this discussion.

Focus on the call to type. The first argument is just the string 'Animal'. There is some repeti-

tion here. You are sending this string to assign the name of the class, but you are also assigning the
result of the type call to the variable Animal. The class keyword handled this for you. Because this
is a direct call to type, you must manually assign the result to a variable, as you would for a new
instance of any other class.

The second argument is a tuple with a single item: (object,). This means that the Animal class
inherits from object, as it did in the initial class. You need the trailing comma to disambiguate to
the Python interpreter that you want a tuple here. Parentheses have other uses in Python, and so a
trailing comma is required for tuples with only a single element.

The third argument is a dictionary that defines the attributes of the class, equivalent to the indented
portion of the class block. You previously defined functions that map to the functions in your
original class, and pass them into the attrs dictionary. The dictionary keys are used to determine
the name of the attribute within the class. One thing to note here is the docstring. The Python
interpreter automatically takes the docstring in a class call and assigns it to the attribute doc
Because you are instantiating type directly, you must do that manually.

Creating a Subclass
You can create the cat class similarly, as shown here:

def meow (self):
return None

def purr(self):
return None

www.it-ebooks.info

http://www.it-ebooks.info/

82 | CHAPTER5 METACLASSES

Cat = type('Cat', (Animal,), {
'meow': meow,
'purr': purr,

h

This is mostly more of the same. The big change here is that you are now subclassing animal rather
than object. What you are passing here is the animal class itself. Also, note that it is still a tuple
with a single element. You are not passing (Animal, object). The fact that object is Animal’s
superclass is baked into the Animal class already. Sending in a tuple with more than one element is
only necessary for multiple inheritance situations.

The type Chain

Consider the following instance of the cat class:

louisoix = Cat (name='Louisoix'")

Notice the three things that are on deck. louisoix is an object, and an instance of cat. The cat
class is also an object (because classes are objects), and is an instance of type. Finally, type is the
top of the chain.

You can also observe this in another way. Passing a single object to type returns its class, as
shown here:

>>> type(5)
<type 'int's>

So, observe the following chain:

>>> type (louisoix)
<class ' main .Cat's>

>>> type(Cat)

<class 'type's>
>>> type (type)
<class 'type'>

The type class is the base case here. It is the top of the chain, and, therefore, type (type) returns
itself.

NOTE [n a Python 2 terminal, note that the output will show <type 'type's
instead of <class 'type's. This is fine. It is still the same type; it simply repre-
sents itself differently on the terminal.

The Role of type

type is the primary metaclass in Python. Ordinary classes that are created with the class keyword,
by default, have type as their metaclass.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Metaclasses | 83

Colloquially, you can refer to type as the metaclass for both the class (cat) and its instances

(louisoix).

Additionally, type is also the superclass from which other metaclasses inherit. This is analogous to
object being the class from which other classes inherit. Just as object is the top of the class hierar-
chy, type is the top of the metaclass hierarchy.

WRITING METACLASSES

Writing a metaclass is syntactically very straightforward. You simply declare a class (using the
class keyword) that inherits from type. The beauty of this object model shines through here.
Classes are just objects, and metaclasses are just classes. The behaviors that metaclasses take on
are inherited from type. Any class that subclasses type is, therefore, capable of functioning as a
metaclass.

Before going into examples, note as an aside that you should never attempt to declare or use a meta-
class that does not directly subclass type. This will cause havoc with Python’s multiple inheritance.
Python’s inheritance model requires any class to have exactly one metaclass. Inheriting from two
classes with different metaclasses is acceptable if (and only if) one of the metaclasses is a direct
subclass of the other (in which case, the subclass is used). Attempting to implement a metaclass that
does not subclass type will break multiple inheritance with any classes that use that metaclass,
along with any classes that use type (that is, virtually all of them). You do not want to do this.

The __new__ Method

The most important method that custom metaclasses must define is the new method. This
method actually handles the creation of the class, and must return the new class.

The new method is a class method (that does not need to be explicitly decorated as such). The
arguments sent to __new__ in custom metaclasses must mirror the arguments sent to type’s
__new__ method, which takes four positional arguments.

The first argument is the metaclass itself, prepended to arguments in a manner similar to that of
bound methods. By convention, this argument is called c1s.

Beyond this, new _ expects three positional arguments:
> First, the desired name of the class as a string (name)
> Second, a tuple of the class’s superclasses (bases)
> Third, a dictionary of attributes that the class should contain (attrs)

Most custom implementations of __new _ in metaclasses should ensure that they call the superclass
implementation, and perform whatever work is needed in the code around that.

__new__ Versus __init__

Recall at this point the distinction between the new method and the init method. In
a class or a metaclass, the new method is responsible for creating and returning the object.

www.it-ebooks.info

http://www.it-ebooks.info/

84

CHAPTER 5 METACLASSES

Conversely, the init method is responsible for customizing the object after it has been created,
and returns nothing.

In ordinary classes, you generally do not define a custom __new method at all. By contract, defin-
ing acustom _init method is extremely common. This is because the implementation of
__new__ provided by object is essentially always sufficient, but it is also necessary. Overriding it
(even in direct subclasses of object) would require calling the superclass method and being careful to
return the result (the new instance). By contrast, overriding _init__is easy and relatively risk-free.
An object’s implementation of __init__ is a no-op, and the method does not return anything at all.

When you’re writing custom metaclasses, this behavior changes. Custom metaclasses generally should
override the new method, and generally do not implement an __init__ method at all. When
doing this, keep in mind that you almost always must call the superclass implementation. type’s imple-
mentation of _new__ will actually provide you with the object you need to do work on and return.

A Trivial Metaclass

Before diving into a metaclass that customizes behavior, consider a custom metaclass that does
nothing but check all the boxes that have been covered thus far.

class Meta (type) :
"nrA custom metaclass that adds no actual functionality."""

def new (cls, name, bases, attrs):

retur;_super(Meta, cls)._new_ (cls, name, bases, attrs)

This discussion has not yet explored how to assign a metaclass within class creation using the class
keyword (more on that shortly). But you can create a class that uses the Meta metaclass by calling
Meta directly, similar to the direct invocation of type earlier.

>>> C = Meta('C', (object,), {})

This creates a class, ¢, which is an instance of Meta rather than an instance of type. Observe the
following:

>>> type (C)
<class ' main .Meta's>

This is distinct from what you observe from a “normal” class, as shown here:
>>> class N(object) :
pass
>>> type (N)
<class 'type's>

Metaclass Inheritance

It is worth noting that metaclasses are inherited. Therefore, subclasses of ¢ will be instances of
Meta, rather than being direct instances of type as shown in the following code and illustrated in
Figure 5-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Metaclasses | 85

>>> class D(C):

pass
>>> type (D)
<class ' main_ .Meta's>
metaclass
type
metaclass class
Meta - (
subclass of type subclass of object
instance of Meta

!

class

D

subclass of C

FIGURE 5-1: Metaclass inheritance

In this case, D is an instance of Meta not because it has an explicit metaclass declared, or because
you called Meta to create it, but rather because its superclass is an instance of Meta, and, therefore, it
is also.

It is important to note here that classes may only have one metaclass. Under most circumstances,
this is fine, even in scenarios where multiple inheritance is in play. If a class subclasses two or more
distinct classes with distinct metaclasses, the Python interpreter will try to resolve this by checking
the ancestry of the metaclasses. If they are direct ancestors, the subclass will be used.

Consider the following class that subclasses both ¢ (an instance of Meta) and N (an instance of type)

>>> class Z(C, N):
pass

>>> type(Z)
<class '__main__ .Meta'>

www.it-ebooks.info

http://www.it-ebooks.info/

86 | CHAPTER5 METACLASSES

Figure 5-2 shows what is happening in this code.

metaclass class

\/

N

subclass of object
instance of type

type

metaclass class
Meta - C
subclass of type subclass of object
instance of Meta

class

3

subclass of C and N

FIGURE 5-2: Metaclass inheritance with subclasses

What is going on here? The Python interpreter is told to create class z, and that it should subclass
both ¢ and N. This would be the equivalent of type ('z', (c, N), {}).

First, the Python interpreter examines ¢, and realizes that it is an instance of Meta. Then it examines
N, and realizes that it is an instance of type. This is a potential conflict. The two superclasses have
different metaclasses. However, the Python interpreter also realizes that Meta is a direct subclass of
type. Therefore, it knows it can safely use Meta, and does so.

What happens if you have two metaclasses where one is not a direct descendent of the other? Now
there is a conflict, and the Python interpreter does not know how to solve it. And it will cowardly
refuse to try, as shown here:

>>> class OtherMeta (type) :
def new (cls, name, bases, attrs):

return super (OtherMeta, cls). new (cls, name, bases, attrs)
>>> OtherC = OtherMeta ('OtherC', (object,), {})
>>>
>>> class Invalid(C, OtherC):
pass

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in _ new
TypeError: Error when calling the metaclass bases

www.it-ebooks.info

http://www.it-ebooks.info/

Using Metaclasses | 87

metaclass conflict: the metaclass of a derived class must be a (non-
strict) subclass of the metaclasses of all its bases

This happens because Python can only have one metaclass for each class, and will not try to guess
which metaclass to use in an ambiguous case.

USING METACLASSES

Before delving into more complex metaclasses, let’s explore how to use them. Although it is, of
course, possible to instantiate metaclasses directly (as shown with type and Meta earlier), it is not
the desirable method.

The class construct in Python provides a mechanism to declare the metaclass if type is not the
metaclass being used. However, the syntax to define which metaclass is different, depending on
which version of Python you are using.

Python 3

In Python 3, metaclasses are declared alongside the superclasses (if any). The syntax resembles that
of a keyword argument in a function declaration or a function call, and the “keyword argument” is
metaclass.

Earlier, you created the c class by calling Meta directly. Here is the preferred way to do this in Python 3:

class C(metaclass=Meta) :
pass

This class keyword call does the exact same thing as creating the class by directly calling Meta.
This, however, is the preferred style.

One thing to note here is that you did not explicitly specify object as the superclass. In most of the
examples used in this book, you have explicitly specified object as the superclass. This is because
this book intends examples to be run on either Python 2 or Python 3. In Python 2, specifying this
matters, because subclassing object is what makes the class be a “new-style class,” which is a con-
struct introduced a long time ago (Python 2.2) that altered Python’s method-resolution order, as
well as some of the other guts of how Python classes work. The direct subclassing of object was
used as a way to ensure backward-compatibility, forcing developers to “opt-in” to new-style classes,
rather than to opt out of them.

In Python 3, which was a backward-incompatible release, all classes are new-style, and directly
subclassing object is no longer necessary, and thus is not done here. That said, the previous code is
exactly equivalent to the following:

class C(object, metaclass=Meta) :
pass

This style allows you to observe more explicitly the distinction between superclasses, which are
declared here using a syntax akin to positional arguments in a function declaration, as opposed to
the metaclass that is declared with the keyword argument syntax. They must be specified in this
order, with metaclass last, just like function arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

88 | CHAPTER5 METACLASSES

When directly subclassing object in Python 3, either style (explicitly including it or omitting it) is
acceptable.

Python 2

Python 2 has an entirely different syntax for metaclass declaration. The Python 2 syntax is no¢
supported under Python 3, and the Python 3 syntax is not supported under Python 2. (Skip down
a section to see how to declare a metaclass in a way that does the right thing on both.)

The Python 2 syntax for declaring a metaclass is to assign a __metaclass__ attribute to the class.
Consider the earlier creation of class ¢ using a call to Meta. Following is the equivalent code in Python 2:

class C(object):
_ _metaclass__ = Meta

In this case, the metaclass is being assigned in the class body. This is fine. The Python interpreter looks
for this when the class keyword is invoked, and uses Meta rather than type to create the new class.

What About Code That Might Run on Either Version?

Because Python 3 introduced backward-incompatible changes to the Python language, Python
developers have come up with strategies for running the same set of code under either the Python 3
interpreter or the Python 2 interpreter with similar results.

One of the most popular ways to do this involves using a tool called six, which was written by
Benjamin Peterson and is available from PyPI.

six provides two ways to declare a metaclass: by creating a stand-in class and using it as a direct
superclass, or by using a decorator to add the metaclass.

The first method (which is the stand-in class method) looks like this:

import six

class C(six.with metaclass(Meta)) :
pass

What is happening here? six.with metaclass creates a dummy class of sorts that subclasses
object, and has Meta as its metaclass, but which does nothing else. By applying this class as the
superclass to ¢, and based on how metaclasses interact with class inheritance (discussed previously),
C is now an instance of Meta, regardless of which Python version is in use.

Depending on exactly what the metaclass in question does, sometimes this solution will not actually
work. Because six.with metaclass actually instantiates a class, some metaclasses may want to do
work, and it is possible that said work would not be compatible with having an abstract superclass.

six provides one other way to assign a metaclass to a class, which is using a decorator: @six.add
metaclass. The syntax for that looks like this:

import six
@six.add metaclass (Meta)

class C(object) :
pass

www.it-ebooks.info

mailto:@six.add_
mailto:@six.add_metaclass
http://www.it-ebooks.info/

When to Use Metaclasses | 89

The result here becomes the same to the Python 2- or Python 3-specific implementations. Class c is
created, using the class keyword, and the Meta metaclass, rather than using type. The decorator
does this without instantiating an abstract class.

When Is Cross-Compatibility Important?

Because there are two incompatible syntaxes for Python 2 as opposed to Python 3, it’s important to
explore at this point when it is better to use the “pure” language approach, and when it is the right
time to introduce six.

Without delving too deeply into the theory, a good rule of thumb here is that if you are running
Python 2, assume that you may at some point want to migrate to Python 3, and try to write cross-
compatible code. This will entail using six for any number of things (this among them), and so
probably introducing six into your codebase is wise. By contrast, if you are already exclusively in
a Python 3 environment, it is unlikely that you will ever want to shift backward, and just writing
Python 3 code should be fine.

WHEN TO USE METACLASSES

One of the trickiest things when you’re learning about metaclasses is understanding when it is really
appropriate to actually use them. Realistically, most code fits pretty well into the traditional class
and object structure, and does not really require the use of metaclasses.

Similarly, using metaclasses needlessly adds a layer of complexity and challenge to that code. Code
is read more often than it is written, and, therefore, it is usually desirable to solve problems in the
simplest possible way that meets the objectives.

That said, when in situations where metaclasses are appropriate, they are often a very clear solution
that can make code much simpler to understand. Realizing when metaclasses can make code simpler
rather than more complex is a valuable skill.

Declarative Class Declaration

The most common reason to use a custom metaclass is to create a delineation between class declara-
tion and class structure, particularly when you’re creating APIs for other developers to use.

An Existing Example

First, consider an example from the wild. Many Python developers are familiar with Django models,
which is a popular web framework. Django models usually correspond to discrete database tables in
a relational database.

A Django model declaration is quite straightforward. The following sample model might represent
a book:

from django.db import models

class Book (models.Model) :
author = models.CharField(max length=100)

www.it-ebooks.info

http://www.it-ebooks.info/

90

CHAPTER 5 METACLASSES

title = models.CharField(max length=250)
isbn = models.CharField(max length=20)
publication date = models.DateField()
pages = models.PositiveIntegerField()

Given what you know about normal classes in Python, what do you expect to happen here? Clearly,
models.CharField, models.DateField, and the like are instantiations of objects. So, you expect
that when you create a Book instance, you should get back those instances if you access those
attributes.

Those familiar with Django know well that this is not what happens. If you try to get the author

attribute of a Book instance, it will be a string. The same goes for title and isbn. The publica-

tion_date attribute will be a datetime.date object, and pages will be an int. If any of these are
not yet provided to the model, they will be None.

How does this happen? What magic is going on under the hood to differentiate between how this
class was declared (the code provided to generate it) and how it is structured when inspected? When
the class is declared, its attributes are complex field objects. However, when you look at an instance
of the class, those same attributes are set to values for a particular book.

The answer is, of course, that Django models use a special metaclass that ships with Django,
which happens to be called Mode1Base. This is largely invisible when you’re using Django, because
django.db.models.Model uses the Mode1Base metaclass. Therefore, subclasses get it for free.

ModelBase does quite a lot of things. (Django is a mature framework, and its ORM has undergone
a lot of iteration.) But a major thing it does is translate between how the model classes in Django are
declared versus how their objects are structured. It is advantageous to Django to have a model dec-
laration syntax that is extremely simple and straightforward. A model represents a table; the attri-
butes on the model correspond to columns on the table.

Instances in the Django ecosystem represent rows within a table. When you are accessing a field on
the instance, what you really want is the value for that row. So, a specific Book instance might be
The Hobbit, and you would want book.title to be 'The Hobbit’ in this case.

Essentially, using a metaclass here is desirable because it allows both the declaration of your Book
class and accessing data on your Book instances to be very clean, and to use a very intuitive API,
even though those attributes do not match.

How This Works

Going into every detail of the implementation of ModelBase is beyond the scope of this book, but
the implementation of this particular concept is actually extremely straightforward.

First, when the model class is being created, recall that the attributes of that class are passed to the
metaclass’s new method in a dictionary, usually called attrs. In this example model, this dic-
tionary would include author, title, and so on, as keys in that dictionary. The values for those

keys would be the Field objects (all of these classes are subclasses of django.db.models.Field).

The ModelBase metaclass hasa new method that (among other things) iterates over the attrs
dictionary looking for Field subclasses. Any fields that it finds are popped off of the attrs diction-
ary and placed in another location—a separate dictionary called fields (which actually lives in

www.it-ebooks.info

http://www.it-ebooks.info/

When to Use Metaclasses | 91

an object called meta that is written to the class). This implementation detail is not particularly
important except to know that the actual field classes live somewhere else, hidden away where inter-
nal Django code can get at them when needed. But the average person who just wants to write a
Django model does not need to see it.

Then, when an instance is created, the attributes corresponding to the field are instantiated and set
to None unless a default or a specific value for that row is provided, in which case that value takes
precedence. Now, suddenly, when the attribute is accessed on that instance, the value for that row is
returned instead of the Field subclass. Similarly, the value can be written in a straightforward man-
ner, without plowing over the Field.

Essentially, what the metaclass does is take the class declaration, reorganize the structure of the
attributes of the class, and then create the class with the new structure.

Why This Is a Good Use for Metaclasses

This paradigm is exceptionally useful when you’re designing APIs. A primary goal of a good API is
to be as simple as possible, and contain as little boilerplate code as possible. This means both that
declaring a class should be simple and straightforward, and that using the class should be similarly
simple and straightforward.

In the case of a Django model, those two goals are somewhat in conflict. The Mode1Base metaclass
resolves that conflict.

Using metaclasses is an excellent way to bridge this gap. They do this by essentially making the
class declaration into a front, and then transforming the declaration of the class into the actual class
structure in the _new _ method.

Class Verification

Another key use for metaclasses is for class verification. If a class must conform to a particular inter-
face, a metaclass can be a very effective way to enforce this. Usually, it is preferable that this sort of
problem be handled by a sensible default. Occasionally, however, this is not possible.

For example, consider a class that requires either one or another attribute to be set, but not both.
This is difficult to handle with a sensible default if it is important that one attribute be unset (as
opposed to set to None).

This concept can be handled using a metaclass. The following simple metaclass requires classes to
contain either a foo attribute or a bar attribute:

class FooOrBar (type) :
def new (cls, name, bases, attrs):
if 'foo' in attrs and 'bar' in attrs:
raise TypeError ('Class %s cannot contain both
'“bar” attributes.' % name)
if 'foo' not in attrs and 'bar' not in attrs:
raise TypeError('Class %s must provide either a “foo™ '
'attribute or a “bar® attribute.' % name)

return super (FooOrBar, cls). new (cls, name, bases, attrs)

foo™ and !

www.it-ebooks.info

http://www.it-ebooks.info/

92 | CHAPTER5 METACLASSES

The following Python 3 class uses this metaclass and conforms to this interface:

>>> class Valid(metaclass=FooOrBar) :
foo = 42

>>>

Everything here works fine. What happens if you try to set both attributes, or neither?

>>> class Invalid(metaclass=FooOrBar) :
pass

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 9, in _ new
TypeError: Class Invalid must provide either a “foo™ attribute or a “bar”
attribute.
>>>
>>> class Invalid(metaclass=FooOrBar) :
foo = 42
bar = 42

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 6, in new
TypeError: Class Invalid cannot contain both “foo™ and “bar” attributes.

This particular implementation has a problem. It will not work well continuing down the subclass
chain. The reason for this is because the metaclass examines the attrs dictionary directly, but this
only contains attributes set for the class being declared. It does not know anything about attributes
that are inherited from superclasses.

>>> class Valid(metaclass=FooOrBar) :
foo = 42

>>> class Alsovalid(valid) :
pass

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 8, in _ new
TypeError: Class AlsoValid must provide either a “foo™ attribute or a “bar"
attribute.

This is a problem. After all, your Alsovalid class is also valid. It contains a foo attribute. An alter-
nate approach to the FooorBar metaclass is necessary.

class FooOrBar (type) :
def new_ (cls, name, bases, attrs):
answer = super (FooOrBar, cls). mnew (cls, name, bases, attrs)
if hasattr (answer, 'foo') and hasattr (answer, 'bar'):
raise TypeError ('Class %s cannot contain both “foo™ and '
'“bar” attributes.' % name)
if not hasattr(answer, 'foo') and not hasattr(answer, 'bar'):
raise TypeError ('Class %s must provide either a “foo™ '
'attribute or a “bar® attribute.' % name)

return answer

www.it-ebooks.info

http://www.it-ebooks.info/

When to Use Metaclasses | 93

What is the difference here? This time, you are checking for the attributes on the instantiated class
before it is returned, rather than looking at the attrs dictionary.

The new class will get all the attributes from the superclass as part of the call to type’s constructor
on the first line of the new method. Therefore, the hasattr calls work, regardless of whether
the attribute is declared on this class or inherited from a superclass.

Could this be handled without a metaclass? Absolutely. Nothing prevents writing a simple method
that receives the class as an argument and does this same check. In fact, this is an excellent use for

a decorator. However, the class must be manually sent to the verification method. With a metaclass,
this is just handled when the class is created. Sometimes, an explicit opt-in is preferable; other times,
it is not. It simply depends on the use case.

Non-Inheriting Attributes

Metaclasses can also be used as a tool to cause certain attributes of a class to nof automatically
inherit. The most common scenario in which you might want to do this is in conjunction with
other metaclass behavior. For example, suppose that a metaclass provides functionality for its
classes, but some classes will be created as abstract classes, and you do not want said functionality
to run in this case.

An obvious way to go about this would be to allow the class to set an abstract attribute, and only
perform the special functionality of the metaclass if its abstract is either not set or set to False.

class Meta(type) :
def new (cls, name, bases, attrs):

Sanity check: If this is an abstract class, then we do not
want the metaclass functionality here.
if attrs.get('abstract', False):

return super (Meta, cls). new_ (cls, name, bases, attrs)

Perform actual metaclass functionality.
[...]

There is one problem with this approach, however. The abstract attribute, like any other attribute,
will be inherited by subclasses. That means that any subclass would have to explicitly declare itself
not to be abstract, which seems strange.

class AbstractClass (metaclass=Meta) :
abstract = True

class RegularClass (AbstractClass) :
abstract = False

Intuitively, you want abstract to have to be declared on all abstract classes, but for that attribute
not to be inherited. It turns out that this is very easy, because instead of just reading the attrs dic-
tionary like your metaclass is doing, it can modify it, disposing of the abstract attribute once it is
no longer necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

94

CHAPTER 5 METACLASSES

In this case, you can do this by just popping the abstract value off of the attrs dictionary, as
shown here:

class Meta (type) :
def new (cls, name, bases, attrs):
Sanity check: If this is an abstract class, then we do not
want the metaclass functionality here.
if attrs.pop('abstract', False):
return super (Meta, cls). new (cls, name, bases, attrs)

Perform actual metaclass functionality.

[...1

The difference here is subtle, but important. The abstract attribute is being removed entirely from
the actual class being created. In this example, AbstractClass would not get the metaclass func-
tionality, but the actual abstract attribute would be gone. Most importantly, this means that sub-
classes do not inherit the attribute, which is exactly the behavior you want.

THE QUESTION OF EXPLICIT OPT-IN

Both of the examples provided earlier as potential use cases for metaclasses can be solved without
using metaclasses. In fact, essentially any major use case for metaclasses does not explicitly require
their use.

A class decorator can easily handle requiring a class to conform to a particular interface, for
example. It is a trivial matter to decorate each class, and the decorator is easily capable of ensuring
that either foo or bar is set, but not both.

This raises an important question. What is the value of doing this with a metaclass? What value
does a metaclass provide that a class decorator does not?

The answer to this sort of question is largely dependent on how the final classes are being used.
The key difference between an approach that uses a metaclass as opposed to an approach that
uses a class decorator is that the class decorator must be applied explicitly to each subclass. If the
programmer implementing the subclasses forgets to apply it, the check does not happen.

By contrast, metaclasses are automatic and invisible to the programmer declaring the classes that
use them. Few (if any) APIs ask a programmer to directly use a metaclass, but many of them ask a
programmer to subclass a base class that the API package provides. By assigning a metaclass to that
base class, all subclasses receive it, too. This causes that functionality of the metaclass to be applied
without the end programmer having to think about it.

Put more simply, one of the first lines in the Zen of Python states, “Explicit is better than implicit.”
But, like most things in that document, this adage is true ... until it is not. For example, being
implicit is better if you are talking about extraneous information or boilerplate. Similarly, some-
times being more explicit just means more maintenance, which is not usually a win.

www.it-ebooks.info

http://www.it-ebooks.info/

Meta-Coding | 95

META-CODING

Metaclasses really start to stand out as the operation on the metaclass becomes greater. It would not
be reasonable or as maintainable to mark every Django model with an explicit decorator.

Similarly, consider meta-coding situations. In this context, the term meta-coding refers to code that
inspects other code in the application. For example, consider code that should log itself.

A metaclass that causes all method calls from instances of a class to be logged somehow is quite easy
to implement. The following metaclass causes its classes to “log” their function calls (except substi-
tuting actual logging for just printing to sys.stdout):

class Logged (type) :
"""A metaclass that causes classes that it creates to log
their function calls.

def new__ (cls, name, bases, attrs):

for key, value in attrs.items():
if callable(value):

attrslkey] = cls.log call(value)
return super (Logged, cls). new (cls, name, bases, attrs)
@staticmethod

def log call(fxn):
""rGiven a function, wrap it with some logging code and

return the wrapped function.
nnwn

def inner(*args, **kwargs):
print ('The function %s was called with arguments %r and '
'keyword arguments %r.' % (fxn._ name_, args, kwargs))
try:
response = fxn(*args, **kwargs)
print ('The function call to %s was successful.' %
fxn. name_)
return response
except Exception as exc:
print ('The function call to %s raised an exception: %r' %
(fxn. name , exc))
raise
return inner

Let’s first review what is happening here. Logged is being declared as a subclass of type, which
means it is a metaclass. The Logged class hasa __new method, and what that method does is iter-
ate over all the attributes in the attrs dictionary, check to see if they are callables (using the Python
built-in function callable), and wrap them if they are.

The wrapping function itself is very straightforward, especially if you are already familiar with
the concept of decorators. It declares a local function that performs some logic (in this case, call-
ing print), and then calls the function that was passed as an argument to the 1og_call method.
To learn more about this pattern, see Chapter 1, “Decorators,” which makes extensive use of this
paradigm.

www.it-ebooks.info

http://www.it-ebooks.info/

96

CHAPTER5 METACLASSES

What happens when a class uses this metaclass? Consider the following Python 3 class that has
Logged as its metaclass:

class MyClass (metaclass=Logged) :
def foo(self):
pass

def bar(self):
raise TypeError ('oh noes!')

When you create an instance of MyClass, you discover that calling methods on it becomes ...
er, loud.

>>> obj = MyClass()

>>> obj.foo()

The function foo was called with arguments (<_ main .MyClass object at
0x1022a37£0>,) and keyword arguments {}.

The function call to foo was successful.

If you try to call obj .bar (), you get an exception.

>>> obj.bar()
The function bar was called with arguments (< main .MyClass object at
0x1022a37£0>,) and keyword arguments {}.
The function call to bar raised an exception: TypeError ('oh noes!',)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 19, in inner
File "<stdin>", line 5, in bar
TypeError: oh noes!

Astute readers probably noticed something. When MyClass was instantiated, why was there no
logging of the call to _init ? Afterall, init is certainly callable. It seems like it should
have been noisy along with foo and bar.

Recall, however, that your metaclass loops over attributes in the attrs dictionary, and you did not
explicitly define _init in your MyClass class. Rather, it is inherited from object. This is the
behavior you really want as well. Otherwise, subclassing would cause the 1og _call “decorator”
to be applied repeatedly on the same callables, which would result in repeated print statements.

By explicitly defining init , however, you can observe the noisy behavior there.

>>> class MyClass (metaclass=Logged) :
def init (self):
pass

>>>

>>> obj = MyClass ()

The function _ init was called with arguments (< main .MyClass object
at 0x1022a3550>,) and keyword arguments {}.

The function call to init was successful.

Also, note that, even though __init _ was not explicitly called in the Python shell, it is still the
function that is logged, because the Python interpreter calls __init__ under the hood when a new
instance is created.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 97

It is worth noting, however, that this behavior only occurs at class creation time. If a method is
added to the class after it is created (which usually should not be happening anyway), it will not be
wrapped.

>>> MyClass.foo = lambda self: 42
>>> obj.foo()
42

In this case, your call to foo was not noisy, because Myclass had already been created, and so
the metaclass had already done its job. Therefore, you just get a plain function call rather than a
wrapped one.

SUMMARY

Metaclasses are extremely powerful tools in Python. The fact that classes are first-class objects
allows for those classes to be manipulated outside of when they are declared. Metaclasses are a way
to accomplish this.

The presence of metaclasses in the Python language overcomes many of the limitations of other
object-oriented languages, in which classes are statically declared at coding time.

The ultimate result is that Python’s object model ends up being the best of all worlds. It combines
the simplicity of languages with a traditional class structure and the power of languages that follow
other models, such as prototypal inheritance in JavaScript and LUA.

It is a common misconception that metaclasses are difficult to understand. However, some of the
power in Python’s object model is in its simplicity and consistency. Metaclasses are, in fact, a very
straightforward implementation that adds a huge amount of power to the language.

Chapter 6, “Class Factories,” covers another way to make classes, which is by constructing them
on-the-fly.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Class Factories

As described in Chapter 5, “Metaclasses,” Python classes are also objects. The fact that classes
are first-class objects in Python also allows for the possibility to employ other powerful pat-
terns. A class factory is one of these patterns. Essentially, this is a function that creates a class,
and does so at runtime. This concept allows for the creation of a class whose attributes are
determined, for example, as a result of user input.

This chapter covers class factories, first by reviewing generating classes on the fly, and showing
how to do so within functions. Then, it covers a couple of common cases where class factories
are valuable.

A REVIEW OF TYPE

Recall from the discussion in Chapter 5 that, like other objects in Python, classes are instanti-
ated by a class. For example, say that you create a class, Animal, as shown here:

class Animal (object) :
"nnA class representing an arbitrary animal."""

def init (self, name):
self .name = name

def eat(self):
pass

def go_to_vet (self):
pass

The animal class is responsible for creating animal objects when its constructor is called. But,
in the same way that Animal creates its objects, so, too, is Animal an object itself. I#s class is
type, a built-in class in Python that creates all other classes.

type is primary metaclass, and custom metaclasses (as you learned in Chapter 5) subclass type.

www.it-ebooks.info

http://www.it-ebooks.info/

100 | CHAPTER 6 CLASS FACTORIES

It is also possible to invoke type directly to create a class, in lieu of using the class keyword. type
takes three positional arguments: name, bases, and attrs, which correspond to the name of the
class, the superclass or superclasses for the class (specified as a tuple), and, finally, any attributes for
the class, as a dictionary.

UNDERSTANDING A CLASS FACTORY FUNCTION

A class factory function is exactly what the name implies—a function that creates and returns a class.

Consider the previous Animal class. You can use code to create an equivalent class using type rather
than using the class keyword, as shown here:

def init(self, name):
self.name = name

def eat(self):
pass

def go_to vet (self):

pass

Animal = type('Animal', (object,), {
' doc_ ': 'A class representing an arbitrary animal.',
' init_ ': init,
'eat': eat,

'go _to_vet': go to_vet,

1

This is not ideal, for several reasons. One of these reasons is that it leaves functions in the
namespace alongside Animal. It is usually not desirable to use type directly instead of the class
keyword unless you really need to do so.

However, sometimes you do, in fact, need to do so. In this kind of case, you can minimize the
clutter by wrapping this code in a function, which can then be passed around and used. This is a
class factory. Consider the following function for the example animal class:

def create animal class():
"""Return an Animal class, built by invoking the type
constructor.

def init(self, name):
self.name = name

def eat(self):
pass

def go_to_vet (self):

pass
return type('Animal', (object,), {
' doc_ ': 'A class representing an arbitrary animal.',

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding a Class Factory Function | 101

' init_ ': init,
'eat': eat,
'go_to_vet': go_to_vet,
h
What has changed here? The init, eat, and go_to_vet functions that were previously cluttering

the namespace (as well as the creation of the Animal class itself) have been moved inside a

create_animal_classfuncﬁon.

Now, you can get a custom-built Animal class by calling said function, as shown here:

Animal = create_animal class()

It is important to note here that multiple calls to create animal class will return distinct classes.
That is, while the classes returned would all have the same name and the same attributes, they will
not actually be the same class. The similarity between those classes is based on the fact that each
run of the function assigns the same dictionary keys and similar functions.

In other words, the similarity between the classes that would be returned is contingent. There is no
reason why the function could not take one or more parameters and return wildly different classes
based on those parameters. In fact, this is the entire purpose of class factory functions.

Consider the following distinct classes returned from distinct calls to create_animal class:

>>> Animall = create animal class|()
>>> Animal2 = create animal class()
>>> Animall

<class '_main__ .Animal'>
>>> Animal2

<class ' main .Animal's>
>>> Animall == Animal2
False

Similarly, consider the following instances:

>>> animall = Animall ('louisoix')
>>> animal2 = Animal2 ('louisoix')
>>> isinstance (animall, Animall)
True
>>> 1sinstance (animall, Animal2)
False

While these classes are both called animal internally, they are not the same class. They are distinct
results from two distinct function runs.

This example creates the Animal class by invoking type, but this is actually not necessary. It is far
more straightforward to create the class using the class keyword. This works, even within the
function, and then you can return the class at the end of the function:

def create animal class():
""r"Return an Animal class, built using the class keyword
and returned afterwards.
nnn
class Animal (object) :
""NA class representing an arbitrary animal."""
def init_ (self, name):

www.it-ebooks.info

http://www.it-ebooks.info/

102 | CHAPTER 6 CLASS FACTORIES

self.name = name

def eat(self):
pass

def go_to_vet (self):
pass

return Animal

It is almost always preferable to create a class using the class keyword rather than by invoking
type directly. However, it is not always feasible to do so.

DETERMINING WHEN YOU SHOULD WRITE CLASS FACTORIES

The primary reason to write a class factory function is when it is necessary to create a class based on
execution-time knowledge, such as user input. The class keyword assumes that you know the attri-
butes you wish to assign to the class (albeit not necessarily the instances) at coding time.

If you do not know the attributes to be assigned to the class at coding time, a class factory function
can be a convenient alternative.

Runtime Attributes

Consider the following function that creates a class, but this time, the attributes of that class can
vary based on parameters sent to the function:

def get credential class(use proxy=False, tfa=False):
"nnReturn a class representing a credential for the given service,
with an attribute repsenting the expected keys.
mmnn
If a proxy, such as Facebook Connect, is being used, we just
need the service name and the e-mail address.
if use proxy:
keys = ['service name', 'email address']
else:
For the purposes of this example, all other services use
username and password.
keys = ['username',6 'password']

If two-factor auth is in play, then we need an authenticator
token also.
if tfa:

keys.append('tfa token')

Return a class with a proper init method which expects
all expected keys.
class Credential (object) :

expected keys = set (keys)

def init (self, **kwargs):
Sanity check: Do our keys match?

www.it-ebooks.info

http://www.it-ebooks.info/

Determining When You Should Write Class Factories | 103

if self.expected keys != set(kwargs.keys()):
raise ValueError ('Keys do not match.')

Write the keys to the credential object.
for k, v in kwargs.items() :
setattr(self, k, v)

return Credential

This get_credential class function is asking for information about the type of login that is
occurring—either a traditional login (with username and password), or using an OpenID service.
If it is a traditional login, it also may use two-factor authentication, which adds the need for an
authentication token.

The function returns a class (not an instance) that represents the appropriate type of credential.
For example, if the use_proxy variable is set to True, then the class will be returned with the
expected_keys attribute set to ['service name', 'email address'], representing the keys nec-
essary to authenticate through the proxy. Alternate inputs to the function will return a class with a
different expected keys attribute.

Then, the _init__ method on the class itself checks the keyword arguments that it gets against the
keys identified in the expected_keys attribute. If they do not match, the constructor raises an error.
If they do, it writes the values to the instance.

You were able to create this class within the function using the class keyword, rather than invok-
ing type. Because the class block was within the def block, the class was created locally to the
function.

Understanding Why You Should Do This

You may be asking why a class factory is even valuable in this case. After all, there are only three
possibilities. These classes could just be hard-coded, rather than dynamically created on the fly. That
said, it is easy to extrapolate a case from this example where a hard-coded class is no longer tenable.

After all, there are lots of websites with a non-trivial number of authentication paradigms. For
example, some use custom usernames, while others use an e-mail address. For development services,
you are likely to have an API key and potentially one or more secret tokens.

There is really no way to programmatically determine what credentials a website requires (at least
not reliably), but consider a service that did try to represent credentials from lots of different, sup-
ported third-party sites. That service would likely store the required keys and types of values in a
database.

Now, suddenly, you have a class with attributes generated based on a database lookup. This is
important because database lookups happen at runtime, not at coding time. Now, suddenly, you
have a functionally infinite number of possibilities for how the expected keys attribute of the
classes might need to be written, and it is no longer feasible to code them all up front.

Storing that kind of data in the database also means that, as the data changes, the code need not do
so. A website may alter or augment what kind of credentials it supports, and this would require add-
ing or removing rows from the database, but the credential class would still be up to the task.

www.it-ebooks.info

http://www.it-ebooks.info/

104

| CHAPTER 6 CLASS FACTORIES

Attribute Dictionaries

Just because some attributes are only known at execution time does not always mean that a class
factory is the correct approach. Often, attributes can be written to the class on the fly, or a class can
simply store a dictionary with an arbitrary set of attributes.

If this is a sufficient solution, it is likely an easier and more straightforward one.

class MyClass (object) :
attrs = {}

The most common case where attribute dictionaries are most likely to fall short is in a situation
where you are subclassing an existing class over which you do not have direct control, and you
require the class’s existing functionality to work against the modified attributes. You will see a sub-
classing example shortly.

Fleshing Out the Credential Class

Consider a credentials database with a single table, and that table has two columns: a service name
(such as Apple or Amazon), and a credential key (such as username).

This mock database is obviously still far too simple to cover all use cases. In this example, support
for alternative modes of login (such as OpenID) has been dropped. Also, the example does not have
any concept for presenting credentials in a specific order (username before password, for example).
All of this is fine; it is sufficient for a proof of concept.

Now, consider a class factory that reads from this database (which will simply be stored as a CSV
flat file) and returns an appropriate class.

import csv

def get_credential_ class(service):
"nrReturn a class representing a credential for the given service,
with an attribute representing the expected keys.
mmnn
Open our "database".
keys = []
with open('creds.csv', 'r') as csvfile:
for row in csv.reader (csvfile):
If this row does not correspond to the service we
are actually asking for (e.g., if it is a row for
Apple and we are asking for an Amazon credential class),

skip it.
if row([0] .lower () != service.lower():
continue

Add the key to the list of expected keys.
keys.append (row[1])

Return a class with a proper init method which expects
all expected keys.
class Credential (object) :

expected keys = keys

www.it-ebooks.info

http://www.it-ebooks.info/

Determining When You Should Write Class Factories | 105

def _ init (self, **kwargs):
Sanity check: Do our keys match?
if set(self.expected keys) != set([i for i in kwargs.keys()]):
raise ValueError ('Keys do not match.')

Write the keys to the credential object.
for k, v in kwargs.items():
setattr(self, k, v)

return Credential

The inputs for the get _credential class function have now been entirely replaced. Instead of
describing the type of credential, you simply specify whom the credential is for.

For example, a sample CSV “database” might look like this:

Amazon, username
Amazon, password
Apple,email address
Apple, password
GitHub, username
GitHub, password
GitHub, auth token

The value that get_credential class takes is a string, and it corresponds to the first column

in the CSV file. Therefore, calling get _credential class ('GitHub') will return a class with
expected keys of username, password, and auth_token. The lines in the CSV file corresponding to
Apple and Amazon will be skipped.

The Form Example

One place where you can see this concept at work is in the forms API of a popular web framework,
Django. This framework includes an abstract class, django. forms.Form, which is used to create
HTML forms.

Django forms have a custom metaclass that takes the attributes declared on the form and erects a
distinction between form fields and form data. Creating a credential form in this API is very easy if
you know what your fields are.

from django import forms

class CredentialForm(forms.Form) :
username = forms.CharField()
password = forms.CharField(widget=forms.PasswordInput)

On the other hand, if you do not know what your fields are (as in the case of the previous example),
this is a more complicated task. A class factory becomes the perfect approach.

import csv

from django import forms

www.it-ebooks.info

http://www.it-ebooks.info/

106 | CHAPTER 6 CLASS FACTORIES

def get credential form class(service):
"""Return a class representing a credential for the given service,
with attributes representing the expected keys.
nmnn
Open our "database".
keys = []
with open('creds.csv', 'r') as csviile:
for row in csv.reader (csvfile) :
If this row does not correspond to the service we
are actually asking for (e.g. if it is a row for
Apple and we are asking for an Amazon credential class),

skip it.
if row[0] .lower() != service.lower():
continue

Add the key to the list of expected keys.
keys.append (row[1])

Put together the appropriate credential fields.
attrs = {}
for key in keys:
field kw = {}
if 'password' in key:
field kw['widget'] = forms.PasswordInput
attrs[key] = forms.CharField(**field kw)

Return a form class with the appropriate credential fields.
metaclass = type (forms.Form)
return metaclass('CredentialForm', (forms.Form,), attrs)

In this case, you have substituted your custom credential class for a Django form subclass. It is
no longer the case that you are just setting an expected_keys attribute. Rather, you are setting
one attribute for each expected key. The previous code puts these together in a dictionary (doing a
blatant hand-wave for passwords and PasswordInput), and then creates a new form subclass and
returns it.

It is worth calling out explicitly that Django’s Form class uses a custom metaclass, which subclasses
type. Therefore, it is important that you call its constructor, rather than type directly. You do

this on the last two lines by asking forms . Form for its metaclass, and then using that constructor
directly.

It is also worth noting that this is a case where it really is necessary to use the metaclass constructor,
rather than creating the class using the class keyword. You are not able to create the class using
the class keyword here because, even within a function, you would have to create the class and
then write the attributes to the class, and the metaclass behavior will not be applied to the attributes
assigned to the class after it is built. (Chapter 5 covers this in more detail.)

Dodging Class Attribute Consistency

Another reason to write class factory functions deals with how attributes differ between classes and
instances.

www.it-ebooks.info

http://www.it-ebooks.info/

Determining When You Should Write Class Factories | 107

Class Attributes Versus Instance Attributes

The following two code blocks do 7ot produce equivalent classes or instances:

R
CLASS ATTRIBUTE H#
R

class C(object) :
foo = 'bar'

R
INSTANCE ATTRIBUTE
FHH R

class I(object):
def _ init (self):
self.foo = 'bar'

The first and most obvious thing that is different about these classes is where the foo attri-
bute can be accessed. It is not particularly surprising that . foo is a string, and I.foo raises
AttributeError.

>>> C.foo
'bar'
>>> I.foo
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: type object 'I' has no attribute 'foo'

After all, foo was instantiated as an attribute on ¢, but not on I. Since I is being accessed directly,
rather than by way of an instance, the __init__ function has not even run yet. Even if an instance
of 1 had been created, the instance would have the foo attribute while the class would not.

>>> 1 = I()
>>> 1.foo
'bar’

>>> I.foo
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: type object 'I' has no attribute 'foo'

There is, however, a lesser-noticed difference between c and 1, which involves what happens if the
foo attribute is modified against one of their instances.

Consider the following two instantiated c instances:

c()
c()

>>> cl

>>> C2
Now, say you modify the foo attribute on one of them, as shown here:
>>> cl.foo = 'baz'

You see that the c2 instance still uses the attribute of the class, while c1 has its own.

www.it-ebooks.info

http://www.it-ebooks.info/

108 | CHAPTER 6 CLASS FACTORIES

>>> cl.foo
'baz'
>>> c2.foo
'bar!

The lookup happening here is not quite the same. c1 has written an instance attribute, called foo,
with the value of 'baz'. However, c2 has no such instance attribute. However, because the class, c,
does, the lookup uses the class attribute.

Consider what happens if you modify the class attribute, as shown here:

>>> C.foo = 'bacon'
>>> cl.foo

'baz!'

>>> c2.foo

'bacon'

Here, c1. foo was unaffected, because c1 has an instance attribute called foo. However, the value
of c2. foo has changed, because it has no such attribute on the instance. Therefore, when the attri-
bute of the class changes, you observe the change on the instance.

You can view this within Python’s internal data model by examining the _dict__ attribute of both
instances.

>>> cl. dict
{"foo': 'baz'}
>>> c2. dict

{}

Under normal circumstances, the special __dict _ attribute is what stores all the attributes

(and their values) for an object. There are exceptions to this rule. A class may define a custom
getattr or getattribute method (as discussed in Chapter 4, “Magic Methods”), or may
define a special attribute __slots_, which also introduces alternative attribute behavior. (This is
rarely needed except in particular situations where memory use is paramount, and is not discussed
in this book.) Notice that c1 has a foo key inits __dict__, and c2 does not.

The Class Method Limitation

This situation gets really interesting when classes define class methods. Remember that class meth-
ods are methods that do not expect or require an instance of the class to execute, but do require the
class itself. They are usually declared by decorating a method with the @classmethod decorator,
and their first argument is traditionally called c1s rather than self.

Consider the following c class with a class method that accesses and returns foo from the class:

class C(object):
foo = 'bar’

@classmethod
def classfoo(cls):
return cls.foo

In the context of the classfoo method, the foo attribute is being accessed explicitly on the class,
rather than on the instance. Re-run the example using the new class definition, and then consider
the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Determining When You Should Write Class Factories | 109

>>> cl.foo

'baz'

>>> cl.classfoo()
'bacon'

>>> c2.classfoo()
'bacon'

There is, in fact, no actual way to access the instance attribute from the class method. That is the
entire point of class methods, after all. They do not require an instance.

Tying This in with Class Factories

One of the biggest reasons to need class factories is when you are subclassing existing classes that
rely on class attributes that must be adjusted.

Essentially, in code that you do not control, if an existing class sets a class attribute that must be
customized, class factories are an attractive approach to generating appropriate subclasses with the
overridden attributes.

Consider a situation where a class has an attribute that must be overridden at runtime (or where
there are too many options for subclassing in static code to be reasonable). In this case, a class fac-
tory can be a very useful approach. Following is a continuation of the use of C as an instructive
example:

def create C subclass(new_foo) :
class SubC(C) :
foo = new_foo
return SubC

What matters here is that it is not necessary to know what the value of foo should be until the class
is created, which is when the function runs. Like most other use of class factories, then, this is about
knowing the attribute value at runtime.

Running your classfoo class method on ¢ subclasses created this way gives you what you expect.

>>> S = create C subclass('spam')
>>> S.classfoo()

'spam’

>>> E = create C subclass('eggs')
>>> E.classfoo()

1 eggs 1

It is worth noting that, in many cases, it is much easier to simply create a subclass that accepts this
value as part of its __init _ method. However, there are some cases where this is an insufficient
solution. If the parent class relies on class methods, for example, then writing a new value to an
instance will not cause the class methods to receive the new value, and this model of subclass cre-
ation becomes a valuable solution.

Answering the Singleton Question

One thing that can make class factory functions somewhat awkward to use is that, as their name
suggests, their responsibility is to return classes, rather than instances of those classes.

www.it-ebooks.info

http://www.it-ebooks.info/

110

CHAPTER 6 CLASS FACTORIES

This means that if you want an instance, you must call the result of the class factory function to get
one. The correct code to instantiate a subclass generated with create C subclass, for example,
would be create C subclass('eggs') ().

There is nothing inherently wrong with this, but it is not always what you really want. Sometimes
classes created through class factories are functionally singletons. A singleton is a class pattern
where only one instance is permitted.

In the case of classes generated in functions, it is possible that the purpose of the function is simply
to act like a class constructor. This is problematic if the end developer must constantly think about
instantiating the class that comes back.

This is not a requirement, though. If there is not a need to deal with reusing the class elsewhere, or
if the class factory is able to handle the reuse itself, it is completely reasonable and useful to simply
have the class factory return an instance of the class it creates, rather than the class itself.

To continue the simple example of ¢, consider this factory:

def CPrime (new foo='bar') :
If “foo™ 1is set to 'bar', then we do not need a
custom subclass at all.
if new foo = 'bar':
return C()

Create a custom subclass and return an instance.
class SubC(C) :

foo = new_foo
return SubC()

Now, calling cPrime will return an instance of the appropriate ¢ subclass with the foo attribute
modified as needed.

One issue with this is that many (probably most) classes do expect arguments to be sent to their
__init__ methods, which this function is not able to handle. The pattern for this is simple enough,
though. Consider an example of a credential form, with the method retooled to return an instance.

import csv

from django import forms

def get credential form(service, *args, **kwargs):

"nnReturn a form instance representing a credential for the

given service.

nmnn

Open our "database".

keys = []

with open('creds.csv', 'r') as csvfile:

for row in csv.reader (csvfile):

If this row does not correspond to the service we
are actually asking for (e.g. if it is a row for
Apple and we are asking for an Amazon credential class),
skip it.
if row[0] .lower() != service.lower():

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 111

continue

Add the key to the list of expected keys.
keys.append (row[1])

Put together the appropriate credential fields.
attrs = {}
for key in keys:
field kw = {}
if 'password' in key:
field kw['widget'] = forms.PasswordInput
attrslkey] = forms.CharField(**field kw)

Return a form class with the appropriate credential fields.
metaclass = type (forms.Form)

cls = metaclass('CredentialForm', (forms.Form,), attrs)
return cls(*args, **kwargs)

This does not actually entail very many changes from the previous class factory. There are really
only two changes:

> First, *args and **kwargs have been added to the function signature.

» Second, the final line now returns an instance of the class that was created, with the *args
and **kwargs passed to the instance.

Now you have an entirely functional class factory, which returns an instance of the form class that it
creates. This raises a final point. Now the function is likely indistinguishable from a class to the end
developer, unless said end developer inspects the inner workings. Therefore, perhaps it should be
presented as one in the naming convention.

def CredentialForm(service, *args, **kwargs):
[...]

In Python, functions are normally named with all lowercased letters, and with underscores for word
separation. However, this is a function that is being used like a class constructor by developers who
actually use it, so by changing the naming convention, you present it as a class name.

Conveniently, the name also matches the name of the class used for the instances, because the first
argument to the metaclass’ constructor, 'CredentialForm', is the internal name of the class.

And, this is Python. If it looks like a duck and quacks like a duck. . .

SUMMARY

The power of class factories shows itself when it is necessary to have class attributes be determined
at runtime, rather than at coding time. The Python language is able to handle this situation pre-
cisely because classes are first-class objects, and can be created similarly to how any other object is
created.

On the other hand, classes containing unknown attributes add some uncertainty. Their methods
must be written to allow for an attribute to be present or absent, where, in other cases, the presence
of the attribute may be able to be assumed.

www.it-ebooks.info

http://www.it-ebooks.info/

112

CHAPTER 6 CLASS FACTORIES

The ability to declare classes at runtime is extremely powerful, but brings with it a tradeoff in sim-
plicity. This is fine. When you encounter a situation where class factories are the right answer, it is
often salient, and there is often no other direct way to solve the issue. Put directly, you can be rea-
sonably sure that a class factory is a good approach if it is the simplest approach.

That rule holds true for programming generally, but it is a particularly useful one here.

Chapter 7, “Abstract Base Classes,” discusses Python strings and bytestrings, and how to manage string
data with minimal pain.

www.it-ebooks.info

http://www.it-ebooks.info/

Abstract Base Classes

How do you know whether an object you are using conforms to a given specification? The
common answer to this in Python is referred to as the “duck typing” model. If it looks like
a duck and quacks like a duck, it is probably a duck.

When dealing with programming and objects, this usually translates to verifying that an
object implements a given method, or has a given property. If the object has a quack method,
then you have decent evidence that it is a Duck. And, furthermore, if all you need is a quack
method, it probably does not matter much whether or not it is actually a buck.

This is often a very useful construct, and it flows naturally from Python’s loose typing system.
It emphasizes questions of composition over questions of identity, hasattr over isinstance.

Sometimes, however, identity is important. For example, perhaps you are using a library that
requires input conforming to a particular identity. Alternatively, sometimes it is too cumber-
some to check for a myriad of different properties and methods.

Python 2.6 and Python 3 introduce the concept of abstract base classes. Abstract base classes
are a mechanism for assigning identity. They are a way of answering, “Is this class funda-
mentally a Duck?” Abstract base classes also provide a mechanism for designating abstract
methods, requiring other implementers to provide key functionality that is purposefully not
provided in a base implementation.

This chapter explores abstract base classes, why they exist, and how to use them.

USING ABSTRACT BASE CLASSES

The fundamental purpose for abstract base classes is to provide a somewhat formalized way to
test whether an object conforms to a given specification.

How do you determine whether you are working with a 1ist? That is quite easy—call
isinstance on the variable against the list class, and it returns either True or False.

www.it-ebooks.info

http://www.it-ebooks.info/

114 | CHAPTER7 ABSTRACT BASE CLASSES

>>> iginstance([], list)

True

>>> iginstance (object (), list)
False

On the other hand, does the code you are writing really require a 1ist? Consider the case where
you are simply reading a list-like object, but never modifying it. In such cases, you could accept a
tuple instead.

The isinstance method does provide a mechanism to test against multiple base classes, as
shown here:

>>> isinstance([], (list, tuple))

True

>>> isinstance((), (list, tuple))

True

>>> iginstance (object (), (list, tuple))
False

However, this is not really what you want, either. After all, a custom sequence class would also be
entirely acceptable, assuming that it uses a __getitem method that accepts ascending integers and
slice objects (such as Queryset methods in Django). So, simply using isinstance against the classes
that you have explicitly identified may generate false negatives, not allowing objects that should be
allowed.

Of course, it is possible to test for the presence of a __getitem method.

>>> hasattr([], ' getitem ')

True

>>> hasattr(object (), ' getitem ')
False

Again, this is not a sufficient solution. Unlike the isinstance checks, it does not generate false
negatives. Instead, it generates false positives, because list-like objects are not the only objects that
implement getitem .

>>> hasattr({}, ' getitem ')
True

Fundamentally, simply testing for the presence of certain attributes or methods is sometimes not a
sufficient way to determine that the object conforms to the parameters you seek.

Abstract base classes provide a mechanism to declare that one class derives identity from another
(whether or not it actually does). This is done without any actual object inheritance or any changes
to method resolution order. Its purpose is declarative; it provides a way for an object to assert that it
conforms to a protocol.

Additionally, abstract base classes provide a way to require that a subclass implements a given pro-
tocol. If an abstract base class requires a given method to be implemented, and a subclass does not
implement that method, then the interpreter will raise an exception when attempting to create the
subclass.

www.it-ebooks.info

http://www.it-ebooks.info/

Declaring a Virtual Subclass | 115

DECLARING A VIRTUAL SUBCLASS

Python 2.6, 2.7, and all versions of Python 3 provide a module, abc (which stands for “abstract
base classes”) that provides the tools for using abstract base classes.

The first thing that the abc module provides is a metaclass, called ABcMeta. Any abstract base
classes, regardless of their purpose, must use the ABCMeta metaclass.

Any abstract base class can arbitrarily declare that it is an ancestor (not a descendent) of any
arbitrary concrete class, including concrete classes in the standard library (even those implemented
in C). It does this using the register method, which aABcMeta provides on its instances. (Remember,
these are the classes themselves, which use ABCMeta as their metaclass.)

Consider an abstract base class that registers itself as an ancestor of dict. (Note that the following
code uses the Python 3 metaclass syntax.)

>>> import abc

>>> class AbstractDict (metaclass=abc.ABCMeta) :

def foo(self):
return None

>>> AbstractDict.register(dict)
<class 'dict'>

This does not cause any changes to the dict class itself. What explicitly does not happen here (and
this is critical to note) is that dict’s method resolution does not change. You do not suddenly find
that dict got a foo method.

>>> {}.foo()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'dict' object has no attribute 'foo'

What this does do is make dict objects also identify as AbstractDict instances, and dict itself
now identifies as an AbstractDict subclass.

>>> isinstance({}, AbstractDict)

True

>>> issubclass (dict, AbstractDict)
True

Note that the converse is not the case. AbstractDict is not a subclass of dict.

>>> igsubclass (AbstractDict, dict)
False

Why Declare Virtual Subclasses?

To understand why you would want to do this, recall the example at the beginning of the chapter
where you wanted to read from a list-like object. It needs to be iterable like 1ist or tuple, and it
needs to have a __getitem method that takes integers. On the other hand, you do not necessarily
want to have a restriction of only accepting 1ist or tuple.

www.it-ebooks.info

http://www.it-ebooks.info/

116 | CHAPTER7 ABSTRACT BASE CLASSES

Abstract base classes provide a very good, extensible mechanism for that. A previous example
showed that you can use isinstance to check against a tuple of classes.

>>> isinstance([], (list, tuple))
True

This is not really extensible, however. If you are checking against 1ist or tuple in your implemen-
tation, and someone using your library wants to send something else that acts list-like but does not
subclass 1ist or tuple, that person is up a creek.

Abstract base classes provide the solution to this problem. First, define an abstract base class and
register 1ist and tuple to it, as shown here:

>>> import abc
>>> class MySequence (metaclass=abc.ABCMeta) :
pass

>>> MySequence.register(list)
<class 'list'>
>>> MySequence.register (tuple)
<class 'tuple'>

Now, alter the isinstance check to check against MySequence instead of against (1ist, tuple).
It will still return True when a 1ist or tuple is checked, and False for other objects.

>>> iginstance([], MySequence)

True

>>> isinstance((), MySequence)

True

>>> isinstance (object (), MySequence)
False

Thus far, you have the same situation as before. But, there is one crucial difference. Consider the
case where another developer is using a library that expects a MySequence object, and, therefore,
expects a 1list or tuple.

When (1ist, tuple) is hard-coded in the library, there is nothing that the developer can do.
However, MySequence is an abstract base class that the library is defining. That means that the
developer can import it.

Once the developer is able to import it, the custom class that is sufficiently list-like can simply be
registered with MySequence:

>>> class CustomListLikeClass (object) :
pass

>>> MySequence.register (CustomListLikeClass)

<class '__main_.CustomListLikeClass'>
>>> issubclass (CustomListLikeClass, MySequence)
True

The developer is able to pass the customListLikeClass instance into the library that expects a
MySequence. Now, when the library does its isinstance checks, the check passes, and the object is
allowed.

www.it-ebooks.info

http://www.it-ebooks.info/

Declaring a Virtual Subclass | 117

Using register as a Decorator

As of Python 3.3, the register method provided by classes using the ABCMeta metaclass can also
be used as a decorator.

If you are creating a new class that should be registered as a subclass of an ABCMeta, you normally
register it like this (using the MySequence abstract base class defined in the previous example):

>>> class CustomListLikeClass (object) :
pass

>>> MySequence.register (CustomListLikeClass)
<class ' main_ .CustomListLikeClass'>

Note, however, that the register method returns the class that is passed to it. It works this way so
that register can also be used as a decorator. It is accepting a callable and returning a callable (in
this case, the exact same callable).

The following code will have an identical effect:

>>> @MySequence.register
class CustomListLikeClass (object) :
pass

>>>

You can confirm this by doing the same issubclass check as you did before.

>>> issubclass (CustomListLikeClass, MySequence)
True

It is worth noting that this decorator behavior was added in Python 3.3. In Python 2, as well as in
Python 3.2 and below, the register method on abstract base classes returned None, rather than
returning the class that was passed to it.

This means that it is unable to be used as a decorator in these versions. If you are writing code that
is intended to be cross-compatible with Python 2 and Python 3, or if you are writing code that may
run on an older version of Python 3, you should avoid using register as a decorator.

__subclasshook

For most purposes, using a class with the ABcMeta metaclass and then using the register method
that ABCMeta provides is an entirely sufficient way to get what you need. However, you may have a
case where manual registration of every intended subclass is not tenable.

Classes created with the ABCMeta metaclass may optionally define a special magic method called
__subclasshook .

The subclasshook method must be defined as a class method (using the @classmethod decora-
tor) and takes a single additional positional argument, which is the class being tested. It can return
three values: True, False, Or NotImplemented.

The case for True and False is salient enough. The _ subclasshook method returns True if the
tested class should be considered a subclass, and False if it should not be considered a subclass.

www.it-ebooks.info

mailto:@MySequence.register
http://www.it-ebooks.info/

118 | CHAPTER7 ABSTRACT BASE CLASSES

Consider the traditional duck typing paradigm. The fundamental concern in the duck-typing para-
digm is whether an object has certain methods or attributes (whether it “quacks like a duck”), rather
than whether it subclasses this or that class. An abstract base class could implement this concept
with subclasshook , as shown here:

import abc

class AbstractDuck (metaclass=abc.ABCMeta) :
@classmethod
def _ subclasshook (cls, other):
quack = getattr(other, 'quack', None)
return callable (quack)

This abstract base class is declaring that any class with a quack method (but not a non-callable
quack attribute) should be considered its subclass, and nothing else should be.

>>> class Duck (object) :
def quack(self):

pass
>>>
>>> class NotDuck (object) :
quack = 'foo'

>>> isgsubclass (Duck, AbstractDuck)
True

>>> igsubclass (NotDuck, AbstractDuck)
False

An important thing to note here is that when the subclasshook method is defined, it takes
precedence over the register method.

>>> AbstractDuck.register (NotDuck)

<class ' main .NotDuck'>
>>> issubclass (NotDuck, AbstractDuck)
False

This is where Not Tmplemented comes in. If the subclasshook method returns Not Implemented,
then (and only then) the traditional route of checking to see if a class has been registered is checked.

Consider the following modified AbstractDuck class:

import abc

class AbstractDuck (metaclass=abc.ABCMeta) :
@classmethod
def subclasshook (cls, other):
quack = getattr(other, 'quack', None)
if callable(quack) :
return True
return NotImplemented

www.it-ebooks.info

http://www.it-ebooks.info/

Declaring a Protocol | 119

The only change made here is that if there is not a quack method, the subclasshook method
returns Not Implemented instead of False. Now, the registry is checked, and a class that has been
previously registered will come back as a subclass.

>>> issubclass (NotDuck, AbstractDuck)
False

>>> AbstractDuck.register (NotDuck)
<class ' main_.NotDuck's>

>>> 1ssubclass (NotDuck, AbstractDuck)
True

Essentially, the first example says, “It is an AbstractDuck if it quacks like a duck,” and the second
example says, “It is an AbstractDuck if it quacks like a duck ... or if it just says flat out that it is an
AbstractDuck.”

Of course, note that if you do this, you must be able to handle anything that you receive. It does you
no good to make the quack method optional if you rely on being able to call it!

So, what is the value of doing this? It would be easy enough simply to do a hasattr or callable
check on the methods you need.

In a relatively straightforward case, it is probably actually a hindrance to use an abstract base class.
For example, it would simply add unnecessary complexity to use one as a stand-in to check for the
presence of a single method.

For non-trivial cases, there is some value. First, there is value in compartmentalization. The abstract
base class defines a single place for the overall test to live. Any code using a subclass of the abstract
base class simply uses the issubclass or isinstance function. This ensures that as needs evolve,
there is a single place for the conformity-checking code to live.

Also, the availability of Not Implemented as a return value for subclasshook adds some power.
It provides a mechanism to say that while there are ways to definitively pass or definitively fail to
match the given protocol, there is also the way for a custom class author to explicitly opt in.

DECLARING A PROTOCOL

Another major value in abstract base classes is in their capability to declare a protocol. In the
previous examples, you learned how an abstract base class can be used to cause a class to be able to
declare that it should be able to pass a type check test.

However, abstract base classes can also be used to define what a subclass must offer. This is similar
to the concept of interfaces in some other object-oriented languages, such as Java.

Other Existing Approaches

You can approach this fundamental problem without using abstract base classes. Because abstract
base classes are a relatively new language feature, several of these approaches are quite common.

www.it-ebooks.info

http://www.it-ebooks.info/

120 | CHAPTER7 ABSTRACT BASE CLASSES

Using NotImplementedError

Consider a class that is built with certain functionality, but which intentionally leaves out a critical
method so that this method may be implemented by subclasses.

from datetime import datetime

class Task(object) :
"""An abstract class representing a task that must run, and
which should track individual runs and results.
def init (self):
self.runs = []

def run(self):

start = datetime.now()

result = self. run()

end = datetime.now()

self.runs.append ({
'start': start,
'end': end,
'result': result,

H

return result

def run(self):
raise NotImplementedError ('Task subclasses must define '
'a run method.')

The purpose of this class would be to run some kind of task and track when those runs happened.
It is easy to intuitively understand how it could also provide logging or similar functionality.

What the base Task class does not provide, however, is a task body. It is up to subclasses to do
this. Instead, the Task class provides a shell method, run, which does nothing except raise
NotImplementedError with a useful error message. Any subclass that fails to override run will
most likely hit this error, which is also what you get if you attempt to call run on Task itself.
>>> t = Task()
>>> t.run()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 10, in run
File "<stdin>", line 20, in _run
NotImplementedError: Task subclasses must define a _run method.

Using Metaclasses
This is not the only way to declare a protocol. Another common way to do this is by using a metaclass.

from datetime import datetime, timezone

class TaskMeta (type) :
"""A metaclass that ensures the presence of a _run method

www.it-ebooks.info

http://www.it-ebooks.info/

Declaring a Protocol | 121

on any non-abstract classes it creates.
nmnn

def new (cls, name, bases, attrs):
If this is an abstract class, do not check for a _run method.
if attrs.pop('abstract', False):

return super (TaskMeta, cls) new (cls, name, bases, attrs)

Create the resulting class.

new_class = super (TaskMeta, cls)._ new_ (cls, name, bases, attrs)

Verify that a _run method is present and raise

TypeError otherwise.

if not hasattr(new class, ' run') or not callable(new class. run):
raise TypeError ('Task subclasses must define a _run method.')

Return the new class object.
return new_class

class Task (metaclass=TaskMeta) :
""'"An abstract class representing a task that must run, and
which should track individual runs and results.

abstract = True

def _ init_ (self):
self.runs = []

def run(self):
start = datetime.now(tz=timezone.utc)
result = self. run()
end = datetime.now(tz=timezone.utc)
self.runs.append ({
'start': start,
'end': end,
'result': result,
3

return result

This is similar to the previous example, but with a couple of subtle differences. The first difference
is that the Task class itself, while it can still be instantiated, no longer declares a _run method at all,
so the public-facing run method would raise AttributeError.

>>> t = Task()
>>> t.run()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 12, in run
AttributeError: 'Task' object has no attribute ' run'
The more important distinction, however, lies with subclasses. Because the metaclass hasa new

method that runs when the subclass is created, the interpreter will no longer allow you to create a
subclass without a _run method.

www.it-ebooks.info

http://www.it-ebooks.info/

122 | CHAPTER7 ABSTRACT BASE CLASSES

>>> class TaskSubclass (Task) :
pass

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 16, in _ new _
NotImplementedError: Task subclasses must define a _run method.

The Value of Abstract Base Classes

Both of these approaches are valuable, but it is also fair to criticize them for being somewhat ad hoc.

Abstract base classes provide a more formal way to present the same pattern. They provide a mecha-
nism to declare a protocol using an abstract class, and subclasses must provide an implementation
that conforms to that protocol.

The abc module provides a decorator called @abstractmethod, which designates that a given
method must be overridden by all subclasses. The method body may be empty (pass), or may
contain an implementation that the subclass methods may choose to call using super.

Consider a Task class that uses the @abstractmethod decorator in lieu of a custom metaclass.

import abc
from datetime import datetime, timezone

class Task(metaclass=abc.ABCMeta) :
"""An abstract class representing a task that must run, and
which should track individual runs and results.
nmonn
def init (self):
self.runs = []

def run(self):
start = datetime.now(tz=timezone.utc)
result = self. run()
end = datetime.now(tz=timezone.utc)
self.runs.append ({
'start': start,
'end': end,
'result': result,
H

return result

@abc.abstractmethod
def run(self):
pass

Again, this is mostly identical to the previous two examples, but ever so slightly different from both.
First, note that the Task class itself is unable to be instantiated.

>>> t = Task()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Task with abstract methods _run

www.it-ebooks.info

mailto:@abc.abstractmethod
http://www.it-ebooks.info/

Declaring a Protocol | 123

This is distinct from the Not ImplementedError approach, which would have allowed the base Task
class to be instantiated.

Similarly, it is distinct from both of the previous approaches in that the error case for a subclass
that does not properly override the run method is slightly different. In the first example, using
NotImplementedError, you end up having Not ImplementedError raised at the point where the
_run method is called. In the second example, using a custom TaskMeta metaclass, TypeError is
raised when the offending subclass is created.

When using an abstract base class, the interpreter is perfectly happy to create a subclass that does
not implement all (or even any) of the abstract methods in the base class.

>>> class Subtask (Task) :
pass

>>>

What the interpreter is not willing to do, however, is instantiate it. In fact, it gives the exact same
error as the Task class gives, which is logically exactly what you expect.

>>> st = Subtask()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Subtask with abstract methods run

However, once you define a subclass that overrides the abstract methods, it works just fine, and you
are able to instantiate your subclass.

>>> class OtherSubtask (Task) :
def run(self):
return 2 + 2

>>>

>>> ost = OtherSubtask()
>>> ost.run/()

4

And, if you inspect the runs attribute, you will see that information about the run has been saved,
as shown here:

>>> ost.runs
[{'result': 4, 'end': datetime.datetime(..), 'start': datetime.datetime(..)}]

This is actually a very useful approach to this problem, for several reasons. First (and probably most
important), this approach is formalized rather than ad hoc. Abstract base classes were specifically
proposed as a solution to fill this particular need, pursuant to the notion that, ideally, there should
be one and only one “correct” way to do it.

Second, the @abstractmethod decorator is very simple, and avoids a lot of potential errors that can
crop up if you’re attempting to write boilerplate code. As an example, what if, in your TaskMeta meta-
class, you accidentally only check for the presence of _run in the attrs dictionary, but do not allow

for the presence of _run in the superclass? This is an easy mistake to make, and it would result in Task
subclasses that are not themselves subclassable unless you manually override run every time. With the
@abstractmethod decorator, you get the right behavior without having to put too much thought into it.

www.it-ebooks.info

http://www.it-ebooks.info/

124 | CHAPTER7 ABSTRACT BASE CLASSES

Finally, this approach makes it very easy to have intermediate implementations. Consider an abstract
base class that has 10 abstract methods instead of one. It is entirely reasonable to have an entire sub-
class tree, where higher subclasses on the chain implement some common methods, but leave other
methods in their abstract state for their subclasses to implement. In fairness, you can do this with
the custom metaclass approach also (by declaring every intermediate class abstract = True in the
TaskMeta example). However, when using eabstractmethod, you basically get exactly the behavior
you want intuitively.

Of course, there is one big reason 70tf to use an abstract base class if you need this type of function-
ality, which is if you need to support versions of Python that do not yet have abc. This is becoming
more rare, though, because abc was added in Python 2.6, and many Python packages do not sup-
port versions of Python older than 2.6.

Abstract Properties

It is also possible for properties (that is, methods that use the eproperty decorator) to be declared
as abstract. However, the correct approach to this depends slightly on what versions of Python you
are supporting.

In Python 2.6 through 3.2 (including any code that must be cross-compatible with these versions),
the correct approach is to use the @abstractproperty decorator, which is provided by the abc
module.

import abc

class AbstractClass (metaclass=abc.ABCMeta) :
@abc.abstractproperty
def foo(self):
pass

In Python 3.3, this approach is deprecated, because @abstractmethod has been updated to be able to
work alongside eproperty. Therefore, having a special decorator to provide both is now redundant.
Thus, the following example is identical to the previous one, but only in Python 3.3 and up:

import abc

class AbstractClass (metaclass=abc.ABCMeta) :
@property
@abc.abstractmethod
def foo(self):
pass

Attempting to instantiate a subclass of Abstractclass that does not override the foo method will
raise an error.

>>> class InvalidChild (AbstractClass) :
pass

>>> ic = InvalidChild()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class InvalidChild with abstract methods foo

www.it-ebooks.info

mailto:@abc.abstractproperty
mailto:@abc.abstractmethod
http://www.it-ebooks.info/

Declaring a Protocol | 125

However, a subclass that overrides the abstract method is able to be instantiated.

>>> class ValidChild (AbstractClass) :
@property
def foo(self):
return 'bar'

>>>

>>> vc = ValidChild()
>>> vc.foo

'bar'

Abstract Class or Static Methods

As with properties, you may want to combine the @abstractmethod decorator with either a class
method or static method (that is, a method decorated with eclassmethod or @staticmethod).

This is a little bit trickier. Python 2.6 through 3.1 simply do not provide a way to do this at all.
Python 3.2 does provide a way, using the @abstractclassmethod or @eabstractstaticmethod
decorators. These work similarly to the previous abstract properties example.

Python 3.3 then alters this by changing eabstractmethod to be compatible with the @classmethod
and estaticmethod decorators, and deprecates the Python 3.2 approach.

In this case, because most code written for Python 3 usually is only written to be compatible with
Python 3.3 and up (you learn more about this in Chapter 10, “Python 2 Versus Python 37), most
likely what you want to do is simply use the two decorators separately. However, if you need com-
patibility with Python 3.2, and do not need compatibility with any previous versions of Python
(including any versions of Python 2), then those decorators are available to you.

Consider the following abstract class using the Python 3.3 syntax:

class AbstractClass (metaclass=abc.ABCMeta) :
@classmethod
@abc.abstractmethod
def foo(cls):
return 42

Subclassing this class without overriding the method will work as usual, but the subclass is unable
to be instantiated.
>>> class InvalidChild (AbstractClass) :

pass

>>> ic = InvalidChild()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class InvalidChild with abstract methods foo

The abstract method itself can actually be called directly without error, though.

>>> InvalidChild.foo ()
42

www.it-ebooks.info

mailto:@abc.abstractmethod
http://www.it-ebooks.info/

126 | CHAPTER7 ABSTRACT BASE CLASSES

Once the abstract method is overridden in a subclass, that subclass is able to be instantiated.

>>> class ValidChild (AbstractClass) :
@classmethod
def foo(cls):
return 'bar'

>>> ValidChild.foo ()
'bar'

>>> vc = ValidChild()
>>> ve.foo()

'bar!

BUILT-IN ABSTRACT BASE CLASSES

In addition to providing the abc module that enables you to build your own abstract base classes,
the Python 3 standard library also provides a small number of abstract base classes built into the
language, particularly for opting in a special class to a common pattern (such as a sequence, mutable
sequence, iterable, and so on). The most commonly used, which are for collections, live in the
collections.abc module.

Most of these built-in abstract base classes provide both abstract and non-abstract methods,
and are often an alternative to subclassing a built-in Python class. For example, subclassing
MutableSequence may be a superior alternative to subclassing 1ist or str.

The provided abstract base classes can be divided into two basic categories: those that require and
check for a single method (such as Tterable and callable), and those that provide a stand-in to a
common built-in Python type.

Single-Method ABCs

Python provides five abstract base classes that contain one abstract method each, and whose
_subclasscheck methods simply check for the presence of that method. They are as follows:

> callable(_ call)
Container (_ contains)
Hashable (__hash)

Iterable (__iter)

Y Y VY VY

Sized (_len)

Any class that contains the appropriate method is automatically considered to be a subclass of the
relevant abstract base class.

>>> from collections.abc import Sized
>>>
>>> class Foo(object) :

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in Abstract Base Classes | 127

def len (self):

return 42

>>> igsubclass (Foo, Sized)
True

Similarly, classes may subclass the abstract base classes directly, and are expected to override the
relevant method.

>>> class Bar (Sized):
pass

>>> b = Bar()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Bar with abstract methods len

In addition to these five classes, there is one more. Tterator is slightly special. It inherits
from Iterable, provides an implementation for _iter_ _ (which just returns itself and can be
overridden), and adds an abstract method called _next .

Alternative-Collection ABCs

Another major type of built-in abstract base classes in Python 3 are those that serve to identify
subclasses that serve a similar role as the major Python collection classes: 1ist, dict, and set.

There are six of these classes, divided into three categories with two in each category (one immu-
table class and one mutable one).

The first category is Sequence and MutableSequence. These abstract base classes are intended for
collections that generally act like Python tuples or lists, respectively. The sequence abstract base
class requires _getitem and len . However, it also provides implementations for a lot of
other common methods you use with list and tuples, such as contains and iter (among
others). The idea here is that you can subclass sequence and define just the things you need, and
Python provides you with the other common functionality of sequences. Of course, 1ist, tuple,
and set are considered to be subclasses of sequence.

MutableSequence is similar, but adds the notion of modifying the sequence in-place. Therefore,
itadds setitem , delitem ,and insert as abstract methods, and provides functionality
for append, pop, and the like. The principle is still the same—you must define just the things you
fundamentally need to have a mutable sequence, and Python provides list-like methods for the rest.
As you probably expect, 1ist and set are already considered to be subclasses of MutableSequence
out of the box.

The other two categories are Mapping and set, which come with MutableMapping and Mutableset,
as you would expect. Mappings are intended for dictionary-like objects (similar to dict, and dict is
considered a subclass), whereas sets are intended for unordered collections (similar to set, and set
is considered a subclass). In both cases, they specify some key methods (with names corresponding
to those of dict and set) as abstract, and provide implementations for the remainder.

www.it-ebooks.info

http://www.it-ebooks.info/

128

| CHAPTER7 ABSTRACT BASE CLASSES

Using Built-In Abstract Base Classes

The key purpose for these abstract base classes is to provide a means to test for common types of
collections. Rather than testing to see if you have a 1ist, test for a MutableSequence (or just a
Sequence if you do not need to modify it). Rather than testing for dict, test for a MutableMapping.

This makes your code more flexible. If someone who is using your library does have a need to make
a list-like object or a dictionary-like object for individual purposes, that person can still pass this to
your code, which can use it without any extra work. This allows your code to test to make sure you
are getting the kind of object you expect to get, and allows others the flexibility to pass in compat-
ible objects, which may not be the exact ones you anticipated.

Additional ABCs

There are other abstract base classes in the standard library not covered in detail here. In particu-
lar, the numbers module contains abstract base classes for implementing many different kinds of
numbers.

SUMMARY

The primary importance of abstract base classes is that they provide a formal and dynamic way to
answer the question, “Are you getting the kind of object you think you are getting?” It addresses
some of the shortcomings of both simply testing for the presence of certain attributes and simply
testing for particular classes. This is valuable.

It is worth remembering, however, that much like the more ad hoc approaches that preceded them,
abstract base classes are still very much a gentlemen’s agreement. The Python interpreter will catch
some obvious violations (such as failing to implement an abstract method in a subclass). However,
it is the responsibility of implementers to ensure that their subclasses do the right thing. There are
many things that abstract base classes do not check. For example, they do not check method signa-
tures or return types.

The lesson here is that just because a class implements an abstract base class does not guarantee that
it does so correctly, or in the way that you expect. This is nothing new. Just because a class has a
particular method does not mean that said method does the right thing. It is easy to inspect whether
an object has a quack method. It is far more difficult to determine whether the quack method actu-
ally makes the object quack like a duck.

This is fine, however. Part of writing software in a dynamic language like Python is that you accept
that these kinds of gentlemen’s agreements exist. There is still tremendous value in having a formal-
ized and streamlined way to declare and to determine whether an object conforms to a type or pro-
tocol. Abstract base classes provide this.

Chapter 8, “Strings and Bytestrings,” explores the world of Unicode and ASCII strings, and how to
handle them effectively in Python programs.

www.it-ebooks.info

http://www.it-ebooks.info/

oooooooo

PART lii

Data

:Q’...... 8 s
g‘....... e s . -
SOT T I X X K BN I I

'090eees .« . . .

s = s ° & & & @
® o ®» o ® 0 0 ®
e o999 9
P00 O0®
(N N N N X X N

..... - = @& @® & & @# 8 s 8 = = & -
..... ® ® & @ @ @ @° @ @ W P 8 © & =
-« &« @ @ @ @ 9 @ ® & ® @ ® ® & 8 ¢ =
..... = # ® @ @ ©® ® ® @ ® ®» ® & & © ° ° =
© s+ = s e e e 0 O O 9 9 OO0 000 O 0 Q0 0
s+ s+ e e e @ © 0 0 O 0 6 O O 0O 0 O 90 0 0 0
-+ s s e 000000000 OOOOSOPOO PO O
= v o 0 0000090000 OPOPOBSNOESROPOOO
* s 0o 00000000000 POP0P0OPRPOPOO®TD O
°* e 2000000000000 000OFPOFO®ROGEEO®O®
©ce0 0000000000000 000O00OK0CMIFNVO
0000000000000 0000000000
0000000000000 0000000000
00 0000000000000 000000000
000000000000000000000000
oe
P
-
®
B4
Y

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Strings and Unicode

One of the more common sources of pain when writing Python applications is the handling of
string data, specifically when strings contain characters outside of common Latin characters.

One of the first standards developed for representing string data is known as ASCII, which
stands for American Standard Code for Information Interchange. ASCII defines a diction-
ary for representing common characters such as “A” through “Z” (in both upper- and
lowercase), the digits “0” through “9,” and a few common symbols (such as period, question
mark, and so on).

However, ASCII relies upon an assumption that each character maps to a single byte, and,
therefore, runs into trouble because there are far too many characters. As a result, a standard
known as Unicode is now used to render text.

In Python, there are two different kinds of string data: text strings and byte strings. It is also
possible to convert one type to the other. It is important to understand which kind of data you
are dealing with, and to consistently keep the kinds of data straight.

In this chapter, you learn about the difference between text strings and byte strings, and how
the types are implemented in both Python 2 and Python 3. You also learn how to deal with
common problems that can pop up when you’re working with string data within Python
programs.

TEXT STRING VERSUS BYTE STRING

Data is consistently stored in bytes. Character sets such as ASCII and Unicode are responsible
for using byte data to render the appropriate text.

ASCII’s approach to this is straightforward. It defines a mapping table, and each character
corresponds to 7 bits. A common superset of ASCII, 1atin-1 (discussed in more detail later),
maintains this system, but uses 8 bits. Ordinarily, you represent bytes as either a decimal or
hexadecimal number. Therefore, whenever the ASCII codec encounters the byte represented
by the decimal number 65 (or hex 0x41), it knows that this corresponds to the character a.

www.it-ebooks.info

http://www.it-ebooks.info/

132 | CHAPTER8 STRINGS AND UNICODE

In fact, Python itself defines two functions for converting between a single integer byte and the
corresponding character: ord and chr. The abbreviation “ord” stands for “ordinal.” The ord func-
tion takes a character and returns the integer corresponding to that character in the ASCII table, as
shown here:

>>> ord('A')
65

The chr method does the opposite. It accepts an integer and returns the corresponding character on
the ASCII table, as shown here:

>>> chr(65)

1 Al

>>> chr(0x41)

1 Al
The fundamental problem with ASCII is its assumption of a 1:1 mapping between characters and
bytes. This is a serious limitation, because 256 characters is not nearly enough to include the various
glyphs in different languages. Unicode solves this problem by using up to 4 bytes to represent each
character.

String Data in Python

The Python language actually has two different kinds of strings: one for storing text, and one for
storing raw bytes. A text string stores data internally as Unicode, whereas a byte string stores raw
bytes and displays ASCII (for example, when sent to print).

Adding to the confusion, Python 2 and Python 3 use different (but overlapping) names for their text
strings and byte strings. The Python 3 terminology makes more sense, so you should learn it and
then translate to Python 2 when working there.

Python 3 Strings

In Python 3, the text string type (which stores Unicode data) is called str, and the byte string type
is called bytes. Instantiating a string normally gives you a str instance, as shown here:
>>> text str = 'The quick brown fox jumped over the lazy dogs.'

>>> type (text str)
<class 'str's>

If you want to get a bytes instance, you prefix the literal with the b character.

>>> byte str = b'The quick brown fox jumped over the lazy dogs.'
>>> type (byte str)
<class 'bytes's>

It is possible to convert between a str and a bytes. The str class includes an encode method,
which converts into a bytes using the specified codec. In most cases, you want to use UTF-8 as
a codec when encoding data. The encode method takes a required argument, which is the string
representing the appropriate codec.

>>> text str.encode('utf-8")
b'The quick brown fox jumped over the lazy dogs.'

www.it-ebooks.info

http://www.it-ebooks.info/

Text String Versus Byte String | 133

Similarly, the bytes class includes a decode method, which also takes the codec as a single, required
argument, and returns a str. Decoding is a more interesting issue, though. It is insufficient to dog-
matically say that you should always decode data as UTF-8, because data from another source may
not have been encoded as UTF-8. You must decode data according to how it was encoded. You
learn more about this later in this chapter.

Python 3 will never attempt to implicitly convert between a str and a bytes. Its approach is to
require you to explicitly convert between text strings and byte strings with the str.encode and
bytes.decode methods (a practice that requires you to specify a codec). For most applications, this
is a preferable behavior, because it helps you avoid getting into situations where programs work
when given common English text, but fail when running into unexpected characters.

This also means that text strings containing only ASCII characters are not considered to be equal to
byte strings containing only ASCII characters.

>>> 'foo' == b'foo'

False

>>>

>>> d = {'foo': 'bar'}

>>> d[b'foo']

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: b'foo!

Attempting to do nearly any operation on a text string and byte string together will raise
TypeError, as shown here:

>>> 'foo' + b'bar'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't convert 'bytes' object to str implicitly

One exception to this behavior is the % operator, which is used for string formatting in Python.
Attempting to interpolate a text string into a byte string will raise TypeError as expected.

o

>>> b'foo %s' % 'bar'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for %: 'bytes' and 'str'

On the other hand, interpolating a byte string into a text string does work, but does not return the
intuitively desired response.

>>> 'foo %s' % b'bar'
"foo b'bar'"

What is occurring here is that the operator takes the b'bar' value, which is a bytes. It first
looks for a __str _ method, which the bytes object actually does have. It returns the text string
"brbar'", with the b prefix and ' suffix. This is the same value returned by _repr .

www.it-ebooks.info

http://www.it-ebooks.info/

134 | CHAPTER8 STRINGS AND UNICODE

Python 2 Strings

Python 2 strings mostly work similarly, but with some subtle but very important distinctions.

The first distinction is the name of the classes. The Python 3 str class is called unicode in

Python 2. In and of itself, this is fine. However, the Python 3 bytes class is called str in Python 2.
This means that a Python 3 str is a text string, whereas a Python 2 str is a byte string. If you are
using Python 2, it is critically important to understand this distinction.

Instantiating a string with no prefix gives you a str (remember, this is a byte string!) instance.

>>> byte str = 'The quick brown fox jumped over the lazy dogs.'
>>> type (byte str)
<type 'str's>

If you want a text string in Python 2, you prefix the string literal with the u character, as shown here:

>>> text str = u'The quick brown fox jumped over the lazy dogs.'
>>> type(text str)
<type 'unicode'>

Unlike Python 3, Python 2 does attempt to implicitly convert between text strings and byte strings.
The way that this works is that if the interpreter encounters a mixed operation, it will first convert
the byte string to a text string, and then perform the operation against the text strings.

It works this way so that an operation against a byte string and a text string will return a text string:

>>> 'foo' + u'bar!
u'foobar!

The interpreter performs this implicit decoding using whatever the default encoding is. On Python 2,
this is almost always ASCII. Python defines a method, sys.getdefaultencoding, which provides
the default codec for implicitly converting between text strings and byte strings.

>>> import sys

>>> sys.getdefaultencoding()
'ascii!'

This means that many of the previous Python 3 examples show distinctly different behavior in
Python 2.

>>> 'foo' == u'foo'

True

>>>

>>> d = {u'foo': u'bar'}
>>> d['foo']

u'bar!'

str.encode and unicode.decode

One somewhat bizarre aspect of Python 2’s string-handling behavior is that text strings actually
have a decode method, and byte strings actually have an encode method.

You never want to use these.

The theoretical purpose of these methods is to ensure that you don’t worry too much about what the
input variable is. Simply call encode to change either kind of string into a byte string, or decode to
change either kind of string into a text string.

www.it-ebooks.info

http://www.it-ebooks.info/

Text String Versus Byte String | 135

In practice, however, this can be both disastrous and very confusing, because if the method receives
the “wrong” kind of input string (that is, a string already of the desired output type), it will attempt
two conversions, and attempt the implicit one using ASCII.

Consider this Python 2 example:

>>> text_str = u'\u03bl is for alpha.'
>>>
>>> text str.encode('utf-8')
"\xce\xbl is for alpha.'
>>>
>>> text str.encode('utf-8').encode('utf-8")
Traceback (most recent call last):
File "<stdin>", line 1, in <modules>
UnicodeDecodeError: 'ascii' codec can't decode byte Oxce in position 0:
ordinal not in range(128)

It seems quite bizarre to be asking to encode something as UTF-8 and to get an error back
complaining that the text is unable to be decoded as ASCII. But this is the implicit conversion
that Python 2 is attempting to do in order to run encode (a method intended for text strings) on a
byte string.

To the interpreter, the final line is equivalent to the following;:

text str.encode('utf-8').decode('ascii').encode('utf-8")
That is never what you want.

It seems simple enough not to do this, but the way you encounter an error like this is not to bluntly
run encode twice (as this example does), but rather to run encode or decode without first checking
to see what kind of data you have. In Python 2, text strings and byte strings intermingle frequently,
and it is very easy to get one when you expected the other.

unicode_literals

If you are using Python 2.6 or greater, you can make part of this behavior track the Python 3
behavior if you choose to do so. Python defines a special module called future , from which
you can preemptively opt-in to future behavior.

In this case, importing unicode literals causes string literals to follow the Python 3 convention,
although the Python 2 class names are still used.

>>> from future import unicode literals

>>> text str = 'The quick brown fox jumped over the lazy dogs.'
>>> type (text str)

<type 'unicode'>

>>> bytes str = b'The quick brown fox jumped over the lazy dogs.'
>>> type (bytes_str)

<type 'str's>

Once from _ future import unicode literals is invoked, a string literal with no prefix in
Python 2.6 or greater becomes a text string (unicode), and a b prefix creates a byte string (Python
2 str).

www.it-ebooks.info

http://www.it-ebooks.info/

136

| CHAPTER8 STRINGS AND UNICODE

Doing this does not forward-port other aspects of Python 2’s string handling to the Python 3 behav-
ior. The interpreter will still attempt to implicitly convert between text strings and byte strings, and
ASClII is still the default encoding.

Nonetheless, most strings specified in code are intended to be text strings rather than byte
strings. Therefore, if you are writing code that does not need to support versions of Python below
Python 2.6, it is very wise to use this.

Six

The fact that Python 2 and Python 3 provide different class names for text strings and byte strings
can be a source of confusion, although the transition to the much clearer Python 3 nomenclature is
an important one.

To help cope with this, the popular Python library six, which is centered around writing

modules that run correctly in both Python 2 and Python 3 (and which is covered in much more
detail in Chapter 10, “Python 2 Versus Python 3”), provides aliases for these types so that they can
be consistently referenced in code that must run on both platforms. The class for text strings (str in
Python 3 and unicode in Python 2) is aliased as six.text type, whereas the class for byte strings
(bytes in Python 3 and str in Python 2) is aliased as six.binary type.

STRINGS WITH NON-ASCII CHARACTERS

Most Python programs, and nearly any program that handles user input (whether it be direct input,
from a file, from a database, and so on) must be able to handle arbitrary characters, including those
not found on the ASCII table. Converting ASCII characters between text strings and byte strings is
trivial (in the ut £-8 codec, it is actually a no-op). The complexity arrives when non-ASCII characters
are in play, especially if text strings and byte strings are being used without sufficient regard to which
is which.

Observing the Difference

Consider a text string that contains non-ASCII characters, such as the text string in the following
code, which says “Hello, world” Google-translated into Greek (note that this is Python 3 code):

>>> text str = 'Tela cag, 1oV xbopO.'
>>> type(text str)
<class 'str's>

The first thing to note about this text string is that it cannot be encoded to a bytes instance using
the ascii codec at all.

>>> text str.encode('ascii')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-3:
ordinal not in range(128)

www.it-ebooks.info

http://www.it-ebooks.info/

Other Encodings | 137

This is because ASCII does not have Greek characters, so the ASCII codec does not have any way to
translate them into raw byte data. This is fine, though, because that is what the ut £-8 codec is for,
as shown here:

>>> text str.encode('utf-8')
b'\xce\x93\xce\xb5\xce\xb9\xce\xbl \xcf\x83\xce\xbl\xcf\x82,
\xcf\x84\xce\xbf\xce\xbd \xce\xba\xcf\x8c\xcf\x83\xce\xbc\xce\xbf."

Several things are worth noting at this point. First and foremost, this is the first string you have
encountered where the text string and the byte string look substantially different. The repr of the
text string looks like human-readable Greek, whereas the repr of the byte string looks like it is
intended to be machine-readable.

Also, notice that the lengths of the strings are actually not the same.

>>> byte str = text str.encode('utf-8')
>>> len(text str)

20

>>> len(byte_ str)

35

Why is this? Remember the problem that Unicode exists to solve: ASCII assumes a 1:1 correlation
between bytes and characters, which puts a substantial limitation on the number of characters
available.

Unicode allows for many more characters to exist by breaking out of this limitation. UTF-8
characters are variable length. A single Unicode character may be as small as a single byte (for
the characters on the ASCII table), or as large as 4 bytes.

In the case of the example Greek text, most characters are 2 bytes, which is why the 1en of the byte
string is almost double the 1en of the text string. However, the spaces, period, and comma (visible
in the byte string as such) are all ASCII characters, and only take 1 byte each.

Unicode Is a Superset of ASCII

Why do the text strings and byte strings that only contain ASCII characters look so similar when
printed, but the Unicode strings look so different?

By convention, you print the bytes in the ASCII range as their ASCII characters. Additionally,
Unicode is structured in such a way as to make it an exact superset of ASCII. This means that the
characters in the Latin alphabet, as well as the common punctuation symbols, are represented the
same way in Unicode strings as well as byte strings.

This has another important meaning. Any valid ASCII text is also valid Unicode text.

OTHER ENCODINGS

Unicode is not the only encoding available to convert between raw byte data and a readable textual
representation. Many others have been put forward, and some are in common use.

www.it-ebooks.info

http://www.it-ebooks.info/

138

CHAPTER 8 STRINGS AND UNICODE

One common encoding is formally known as the ISO-8859 standard, and colloquially called
latin-1. (For clarity, the remainder of this chapter will use “Latin-1” to refer to this rather than
ISO-8859.)

Like Unicode, this encoding is a superset of ASCII, and adds support for glyphs found in many
different languages other than English. However, as its name suggests, it is designed only to support
languages that rely on Latin glyphs for their letters, and is not suitable for rendering languages that
use other alphabets (such as Greek, Chinese, Japanese, Russian, or Korean, among others).

It would not actually be possible to render the previous Greek string using the 1atin-1 codec, as the
following Python 3 example demonstrates:

>>> text str = 'Tela ocag, 1oV KbOPO.'
>>> text str.encode('latin-1"')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'latin-1' codec can't encode characters in position 0-
3: ordinal not in range(256)

Encodings Are Not Cross-Compatible

It is important to recognize that while many encodings are structured as supersets of ASCII, they
are often not compatible with one another. Outside of ASCII, there is little or no overlap between
the latin-1 and ut£-8 codecs.

Consider the difference in byte strings encoded using each codec.

>>> text str = 'El zorro marrdn rapido saltd por encima ' + \

e 'de los perros vagos.'

>>> text str.encode('utf-8')

b'El zorro marr\xc3\xb3n r\xc3\xalpido salt\xc3\xb3 por encima de los
perros vagos.'

>>> text str.encode('latin-1"')

b'El zorro marr\xf3n r\xelpido salt\xf3 por encima de los perros vagos.'

Because of this, a string encoded using one codec is unable to be decoded using the other codec. If
you try to take a byte string representing text encoded using 1atin-1 and decode it as ut£-8, the
Unicode codec will realize that it is encountering an invalid character sequence and fail.

>>> text str.encode('latin-1').decode('utf-8")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xf3 in position 13:
invalid continuation byte

Worse, if you try to take a byte string representing text encoded with ut -8 and decode it as 1atin-
1, the (more permissive) codec will successfully return a text string, but with garbled text.

>>> text str.encode('utf-8').decode('latin-1")
'El zorro marrAin rAipido saltZA? por encima de los perros vagos.'

It is impossible to infer based on the content of a byte string what encoding is in use. However,
many common document formats and data-transfer protocols provide a mechanism to declare what
encoding is in use. On the other hand, it is also possible that a document will incorrectly specify its
character encoding.

www.it-ebooks.info

http://www.it-ebooks.info/

Reading Files | 139

READING FILES

Files always store bytes. Therefore, to use textual data read in from files, you must decode it into a
text string.

Python 3

In Python 3, files are ordinarily decoded automatically for you. Consider the following file with
Unicode text, encoded using UTF-8:

Hello, world.
Tela oog, TOV KOOHO.

Opening and reading this file in Python 3 gives you a text string (not a byte string).

>>> with open('unicode.txt', 'r') as f:
text str = f.read()

>>> type (text str)
<class 'str's>

This code example is making a few critical assumptions that are important to understand.

The biggest assumption being made is how to decode the file. Text files do not declare how they are
encoded. There is no way for the interpreter to know whether it is getting UTF-8 text, Latin-1 text,
or something else entirely.

Python 3 decides which encoding should be used based on what kind of system it is running on. A
function is available to expose this: locale.getpreferredencoding (). On Mac OS X and on most
Linux systems, the preferred encoding is UTF-8.

>>> import locale
>>> locale.getpreferredencoding ()
'UTF-8'

However, most Windows systems use a different encoding called Windows-1252 or CP-1252 to
encode text files, and running the same code in Python 3 on Windows reflects this.
>>> import locale

>>> locale.getpreferredencoding ()
'cpl252!

It is important to note explicitly that the preferred encoding that 1ocale.getpreferredencoding ()
provides is based on how the underlying system operates. It is reflective, not prescriptive. A text

file with special characters saved on almost any system (using that system’s default tools) and then
opened using open in Python 3 will probably be decoded correctly.

However, files are not opened solely on the same type of system on which they are created. This is
where the assumption becomes problematic.

Specifying Encoding

Python 3 enables you to explicitly declare the encoding of a file by providing an optional encoding
keyword argument to open. This argument accepts a codec, specified as a string, similar to encode
and decode.

www.it-ebooks.info

http://www.it-ebooks.info/

140

| CHAPTER8 STRINGS AND UNICODE

Because the example Unicode file is stipulated as being encoded using UTF-8, you can explicitly tell
the interpreter to decode it as such.

>>> with open('unicode.txt', 'r', encoding='utf-8') as f:
text str = f.read()

>>> type(text str)
<class 'str's

Because the file was encoded as UTF-8, and the UTF-8 codec was used to decode it, the text string
contains the expected data.

>>> text str
'Hello, world.\nl'eia cog, tov kb6opo.\n'

Reading Bytes

Another implicit assumption being made (which logically precedes which codec to use to decode the

file) is that the file should be decoded at all.

You may want to read in the file as a byte string instead of as a text string. There are two common
reasons to do this. The most common reason is if you are accepting non-textual data (for example,
if you are reading in an image). However, another potential reason is for reading text files with an
uncertain encoding.

To read in a byte string instead of a text string, add the character b to the second string argument
sent to open. For example, consider reading in the same file containing Unicode as a byte string, as
shown here:

>>> with open('unicode.txt', 'rb') as f:
byte str = f.read()

>>> type (byte str)
<class 'bytes'>

Examining the byte str variable shows the raw bytes in the string for the second line of text.

>>> byte str
b'Hello, world.\n\xce\x93\xce\xb5\xce\xb9\xce\xbl \xcf\x83\xce\xbl\xcf\x82,
\xcf\x84\xce\xbf\xce\xbd \xce\xba\xcf\x8c\xcf\x83\xce\xbc\xce\xbf.\n'

This variable can be decoded just as if it were a byte string provided from any other source.

>>> byte str.decode('utf-8"')
'Hello, world.\nleia ocac, tov xbéoupo.\n'

This can be a useful strategy for dealing with a file whose encoding is uncertain. The data can be
safely read from the file as bytes, and then the program can attempt to determine programmatically
how to decode it.

Python 2

In Python 2, the read method will always return a byte string, regardless of how the file
was opened.

www.it-ebooks.info

http://www.it-ebooks.info/

Specifying Python File Encodings | 141

>>> with open('unicode.txt', 'r') as f:
byte str = f.read()

>>> type (byte str)
<type 'str's>

Note that the b modifier was not used in the second argument to open, but a str instance (which is
a byte string in Python 2) was returned anyway.

You can get a text string by using decode, just like on a byte string that comes from any other
source.

>>> byte str

'Hello, world.\n\xce\x93\xce\xb5\xce\xb9\xce\xbl \xcf\x83\xce\xbl\xcf\x82,
\xcf\x84\xce\xbf\xce\xbd \xce\xba\xcf\x8c\xcf\x83\xce\xbc\xce\xbf.\n'

>>>

>>> byte str.decode('utf-8")

u'Hello, world.\n\u0393\u03b5\u03b9\u03bl \u03c3\u03bl\ud3c2,
\u03c4\u03bf\u03bd \u03ba\ud3cc\u03c3\u03bc\u03bf.\n'

Because Python 2 always provides byte strings, the open function does not have an encoding
keyword argument, and attempting to provide one will raise TypeError.

If you are writing code that is intended to be run on Python 2, the best and safest way to do so is to
always open files in binary mode (using b) and, if you are expecting textual data, decode it yourself.

READING OTHER SOURCES

Textual data is read from many different places, not only from files. Modern programs receive
direct user input, accept input over protocols (such as HTTP), read out of databases, and transfer
data using serialization formats such as Extensible Markup Language (XML) or JavaScript Object
Notation (JSON).

Python provides many libraries and tools for reading data of many types, and from many sources.
For example, the json module available in Python 2.6 and later is able to serialize and deserialize
JSON data. Furthermore, numerous third-party packages are available that read data from other
types or sources. For example, the pyyaml library reads YAML files, and the psycopg2 library reads
and writes data from PostgreSQL databases.

Most (but not all) of these libraries return text strings. However, it is your responsibility to familiarize
yourself with the libraries you use and to know whether you are getting text strings or byte strings.
Also, some libraries may behave differently on different versions of Python, returning byte strings on
Python 2 and text strings on Python 3. It is very important to make sure you keep them straight!

SPECIFYING PYTHON FILE ENCODINGS

Many document formats do provide a means to declare what codec is being used to encode text. For
example, an XML file may begin like this:

<?xml version="1.0" encoding="UTF-8"?>

www.it-ebooks.info

http://www.it-ebooks.info/

142

| CHAPTER8 STRINGS AND UNICODE

This is a common way to begin an XML file. Pay attention to the encoding attribute. This declares
that textual data is encoded using UTF-8. Because the XML file declares that this is the encoding it
uses, programs that read XML will use UTF-8 to decode any text it finds from bytes to text.

Sometimes it is necessary for Python source files to declare an encoding. For example, suppose a
Python source file includes a string literal containing Unicode characters. On Python 2, the inter-
preter assumes that Python source files are encoded using ASCII, and this will actually fail.

Consider the following Python module saved as unicode.py:
text_str = u'Tea coag, 1OV KbOOPO.'

print (text str)

Running this module in Python 3.3 or greater (because Python 3.0-3.2 lack the u prefix) works
without any issues.

$ python3.4 unicode.py
Tela ocag, TOov KOOWO.

However, running the same module in Python 2 will fail with a syntax error on the first line,
because the Python 2 interpreter wants ASCII.
$ python2.7 unicode.py
File "unicode.py", line 1
SyntaxError: Non-ASCII character '\xce' in file unicode.py on line 1, but

no encoding declared; see http://www.python.org/peps/pep-0263.html
for details

As the error message suggests, Python modules actually can declare an encoding, similar to how
an XML file might do so. By default, Python 2 expects files to be encoded as ASCII, and Python 3
expects files to be encoded as UTF-8.

To override this, Python enables you to include a comment at the top of a module, formatted in a
particular way. The interpreter will read this comment and use it as an encoding declaration.

The format for specifying the encoding for a Python file is as follows:
-*- coding: utf-8 -*-

You can use any codec that can be passed to encode and decode here. So, values such as ascii,
latin-1, and cf-1252 are all acceptable (assuming, of course, that the file is encoded that way).

Consider the same module with a coding declaration:

-*- coding: utf-8 -*-
text str = u'Tela coag, 1oV kbOPO.'
print (text str)

If you run this modified file under Python 2, it will now succeed instead of raising a syntax error.

$ python2.7 unicode.py
Tela oag, 1OV KOOHO.

Note that, if you choose to manually specify an encoding for a Python module, it is your responsi-
bility to ensure that the encoding you specify is actually correct. Like any other document format,
Python modules are not exempt from the possibility of declaring one encoding while actually using
another.

www.it-ebooks.info

http://www.python.org/peps/pep-0263.html
http://www.it-ebooks.info/

Strict Codecs | 143

If you accidentally specify the wrong encoding, your strings will come out as garbage. Consider
what happens if the same file is declared to be encoded using 1atin-1 (when it is actually using
utf-8 characters).

-*- coding: latin-1 -*-

text str = u'Tea oag, tov xbé6Opo.'

print (text str)

Running this in either Python 2 or Python 3.3+ will produce the same result, which is complete
garbage.

$ python3.4 unicode.py

Tripisis I7lst,, 1,31y Icia@iriuic.
Because the 1atin-1 codec can accept almost any byte stream, it does not actually recognize that
this is not 1atin-1 encoded text, and cheerfully returns bad data. Some codecs (such as utf-8) are

more strict, in which case you would get an exception instead. The latter situation is preferable, but
neither is what you want. It is critical to declare encodings correctly.

Note also that this is dependent on your terminal’s capability to display these characters. If you have
a terminal that does not support Unicode, this will likely raise an exception.

STRICT CODECS

One key advantage of utf-8 as a codec is that, in addition to supporting the entire range of Unicode
characters, it also is a “strict” codec. This means that it does not just take any byte stream and
decode it. It can usually detect that non-Unicode byte streams are invalid and fail.

This can lead to helpful patterns when you’re dealing with a byte stream where the encoding is not
known (because there is no way to infer the encoding with certainty). For example, if you think that
a byte stream might be ut £-8 and might be 1atin-1, you can try both, as shown here:
try:
text str = byte str.decode('utf-8"')

except UnicodeDecodeError:
text str = byte str.decode('latin-1'

Of course, this is not a panacea. What happens, for example, if you get a byte string encoded as
something entirely different? Because 1atin-1 is a permissive codec, it will decode it incorrectly.

Suppressing Errors

Sometimes when you are decoding or encoding text using strict codecs (such as utf-8 or ascii),

you do not want a strict exception when the codec encounters text that it does not know how to
handle.

The encode and decode methods provide a mechanism to ask a codec to behave differently when
it encounters a set of characters that it cannot handle. Both methods take an optional second
argument, errors, specified as a string. The default value is strict, which is what raises excep-
tion classes such as UnicodeDecodeError. The two other common error handlers are ignore and
replace.

www.it-ebooks.info

http://www.it-ebooks.info/

144 | CHAPTER8 STRINGS AND UNICODE

The ignore error handler simply skips over any bytes that the codec does not know how to decode.
Consider what happens if you attempt to decode your Greek text as ASCII, as shown here:

>>> text str = 'Teia cag, 1OV Kb6OMO.'
>>> byte str = text str.encode('utf-8'")
>>> byte str.decode('ascii', 'ignore')

1 1
' .

The ASCII code does not know how to handle any of the Greek characters, but it does know how
to handle the spaces and punctuation. Therefore, it preserves those, but strips all of the foreign
characters.

The replace error handler is similar, but instead of skipping over unrecognized characters, it
replaces them with a placeholder character. The exact placeholder character varies slightly based on
the situation (whether encoding or decoding, and what codec is in use), but is usually either a ques-
tion mark (2) or a special Unicode question mark diamond character (€).

Here is the result if you try to decode your Greek text using the ascii codec and the replace error

handler:
>>> text str = 'Teta oag, 1OV Kb6OHO.'
>>> byte str = text str.encode('utf-8'")
>>> byte str. decode(ascii', 'replace')

'00000000 000009, 000000 0000000000

And here is the result if you try to encode your Greek text to a byte string using the ascii codec
and the replace error handler:

>>> text str = 'Teia cag, 10V k6OHO. '

>>> text str.encode('ascii', 'replace')
b'?2?2?? 227, 222 2222?.!

You may notice that when using the replace error handler, the number of replacement characters

may not be 1:1 with the number of characters in the actual text string. When decoding a byte string
using the ascii codec, the codec has no way of knowing how many bytes correspond to each char-
acter, so it ends up showing more question marks than there are actual characters in the text string.

Registering Error Handlers

It is possible to register additional error handlers if the built-in ones are insufficient. The codecs
module (where the default error handlers are defined) exposes a function for registering additional
error handlers, named register error. It takes two arguments: the name for the error handler and
the actual function that does the error handling.

That function receives the exception that would otherwise be raised, and is responsible for re-raising
it, raising another exception, or returning an appropriate string value to be substituted into the
resulting string.

The exception instance contains start and end attributes that correspond to the substring that the
codec is unable to encode or decode. It also has a reason attribute with a human-readable explana-
tion of the reason why it is unable to encode or decode the characters in question, and an object
attribute with the original string.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 145

If returning a replacement value, the error function must return a tuple with two elements. The first
element is the replacement character or characters, and the second is the position in the original
string where encoding or decoding should continue. Usually, this corresponds to the end attribute
on the exception instance. If you do this, be careful with the start position you return. It is very
easy to get into an infinite loop scenario.

The following example simply replaces characters with a different substitution character:

import codecs

def replace with underscore (err) :
length = err.end - err.start
return (' ' * length, err.end)
codecs.register error('replace_with underscore', replace with underscore)

This error handler replaces unknown characters, but using underscores rather than question marks.
The following is what happens if you decode a byte string with Unicode Greek text using the ascii
codec and this error handler:

>>> text str = 'Tela oag, 1OV KbOOPO.'
>>> byte str = text str.encode('utf-8'")
>>> byte_str.decode('ascii', 'replace with underscore')

1 1
’ .

SUMMARY

Handling string data can be surprisingly frustrating. It is easier than you might expect to create a
program that works right up until it encounters textual data that is dissimilar to what it expected.

When possible, try to have as much of your program as possible handle text strings. It is a good idea
to decode byte strings as soon as possible after you receive them. Similarly, when writing data out,
endeavor to encode your text strings to byte strings as late as possible.

Sometimes decoding is difficult. You may not know how a byte string is encoded, or you may be
told an encoding, but be told wrong. This is challenging, and there is no easy solution.

Remember, the Python interpreter is your friend here. If you are dealing with problematic data, and
you do not know the encoding, you may be able to interactively decode a sample of it using different
codecs until you find something that looks reasonable. Of course, this manual approach assumes
that the data you are coding for will always be similar to the sample data you are using.

The key thing to remember when handling string data is to ensure that you always know what kind
of string you are dealing with. The worst and most frustrating problems crop up when you expect a
text string and receive a byte string, or vice versa. Be sure to keep them straight.

Chapter 9 explores regular expressions, which are a mechanism for searching strings for data that
matches a given pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Regular Expressions

Regular expressions are a tool for matching text by looking for a pattern (rather than looking
for a text string) in an easy and straightforward manner. For example, you could check for the
presence of an exact text string within another text string simply by using the Python in key-
word, as shown here:

>>> haystack = 'My phone number is 213-867-5309.'
>>> '213-867-5309' in haystack
True

Sometimes, however, you do not have the exact text you want to match. For example, what
if you want to know whether any valid phone number is present in a string? To take that one
step further, what if you want to know whether any valid phone number is present in the
string, and also want to know what that phone number is?

This is where regular expressions are useful. Their purpose is to specify a pattern of text to
identify within a bigger text string. Regular expressions can identify the presence or absence
of text matching the pattern, and also split a pattern into one or more subpatterns, delivering
the specific text within each.

This chapter explores regular expressions (or regexes, for short). First, you learn how to
perform regular expression searches in Python using the re module. You then explore various
regular expressions, beginning with the simple and working toward the more complex. Finally,
you learn about regular expression substitution.

WHY USE REGULAR EXPRESSIONS?

You use regular expressions for two common reasons.

The first reason is data mining—that is, when you want to find a pile of text (matching a given
pattern) in a bigger pile of text. It is very common to need to identify text that looks like a given
type of information (for example, an e-mail address, a URL, a phone number, or the like).

www.it-ebooks.info

http://www.it-ebooks.info/

148

| CHAPTER9 REGULAR EXPRESSIONS

As humans, we identify the type of information being presented based on patterns all the time. A
television commercial that shows alphanumeric characters ending in .com or .org is intuitively
understood to be presenting a web address. Add an @ character, and it is intuitively understood to be
an e-mail address instead.

The second reason is validation. You can use regular expressions to establish that you got the data
that you expected. It is generally wise to consider “outside” data to be untrustworthy, especially
data from users. Regular expressions can help determine whether or not untested data is valid.

The corollary to this is that regular expressions are valuable tools for coercing data into a consistent
format. For example, a phone number can be written in multiple valid ways, and if you are asking
for user input, you likely want to accept all of them. However, you really only want to store the
actual digits of the phone number, which can then be consistently formatted on display. In addition
to being useful for validation, regular expressions are useful for this kind of data coercion.

REGULAR EXPRESSIONS IN PYTHON

The Python standard library provides the re module for using regular expressions.

The primary function that the re module provides is search. Its purpose is to take a regular
expression (the needle) and a string (the haystack), and return the first match found. If no match
is found at all, re.search returns None.

Consider re.search in action with the simplest regular expression possible, which is a simple
alphanumeric string.
>>> import re

>>> re.search(r'fox', 'The quick brown fox jumped...')
< _sre.SRE Match object; span=(16, 19), match='fox'>

The regular expression parser’s job here is quite simple. It finds the word fox within the string, and
returns a match object.

NOTE The re module also provides a function called match that appears to be
very similar to search. It has one important difference: it only searches for a
match that starts at the beginning of the string. It is easy (and common) to use
re.match by mistake when you actually want to find something anywhere in a
string. You are usually best off always using re . search and using the * anchor
(discussed later in this chapter) if you need it.

Raw Strings

Observant readers may note that the regular expression was specified slightly differently: r' fox'.
The r character that precedes the string stands for “raw” (no, it does not stand for “regex”).

The difference between a raw string and a regular string is simply that raw strings do not interpret
the \ character as an escape character. This means that, for example, it is not possible to escape a
quote character to avoid concluding your string.

www.it-ebooks.info

http://www.it-ebooks.info/

Regular Expressions in Python | 149

However, raw strings are particularly useful for regular expressions because the regular expression
engine itself needs the \ character for its own escaping at times. Therefore, using raw strings for
regular expressions is very common and very useful. In fact, it is so common that some syntax-
highlighting engines will actually provide regular-expression syntax highlighting within raw strings.

Match Objects

Match objects have several methods to tell you things about the match. The group method is argu-
ably the most important. It returns a string with the text of the match, as shown here:

>>> match = re.search(r'fox', 'The quick brown fox jumped...'")
>>> match.group ()
'fox!'

You may be curious why this method is named group. This is because regular expressions can be split
into multiple subgroups that call out just a subsection of the match. You learn more about this shortly.

Match objects have several other methods. The start method provides the index in the original
string where the match began, and the end method provides the index in the original string where
the match ended.

The groups and groupdict methods are used to call out subsections of the regular expression.
You learn more about these methods later, during a discussion about regular expressions with
backreferences.

Finally, the re attribute contains the regular expression used in the match, the string attribute
contains the string used as the haystack, and the pos attribute is set to the position in the string
where the search began.

Finding More Than One Match

A limitation of re.search is that it only returns at most one match, in the form of a match object
(discussed in more detail shortly). If multiple matches exist within the string, re.search will only
return the first one. Often, this is exactly what you want. However, sometimes you want multiple
matches if multiple matches exist.

The re module provides two functions for this purpose: findall and finditer. Both of these
methods return all non-overlapping matches, including empty matches. The re.findall method
returns a list, and re. finditer returns a generator.

However, there is a key difference here. These methods do not actually return a match object.
Instead, they return simply the match itself, either as a string or a tuple, depending on the content
of the regular expression.

Consider an example of £indall:

>>> import re
>>> re.findall(r'o', 'The quick brown fox jumped...')
[lo|, |ol]

In this case, it returns a list with two o characters, because the o character appears twice in
the string.

www.it-ebooks.info

http://www.it-ebooks.info/

150

| CHAPTER9 REGULAR EXPRESSIONS

BASIC REGULAR EXPRESSIONS

The simplest regular expression is one that contains plain alphanumeric characters—and nothing
else. This is actually easy to overlook. Many regular expressions use direct text matching.

The string Python is a valid regular expression. It matches that word, and nothing else. Regular
expressions, by default, are also case-sensitive, so it will not match python or PYTHON.

>>> re.search(r'Python', 'python')
>>> re.search(r'Python', 'PYTHON')

It will, however, match the word in a larger block of text. It will match the word in Python 3, or
This is Python code, or the like, as shown here:

>>> re.search(r'Python', 'Python 3'")
<_sre.SRE Match object; span=(0, 6), match='Python'>
>>> re.search(r'Python', 'This is Python code.')

< sre.SRE Match object; span=(8, 14), match='Python'>

Of course, there is essentially no value in using regular expressions just to match plaintext regular
expressions. After all, it would be trivially easy to use the in operator to test for the presence of a
string within another string, and str.index is more than up to the task of telling you where in a

larger string a substring occurs.

The power of regular expressions lies in their capability to specify patterns of text to be matched.

Character Classes

Character classes enable you to specify that a single character should match one of a set of possible
characters, rather than just a single character. You can denote a character class by using square
brackets and listing the possible characters within the brackets.

For example, consider a regular expression that should match either Python or python: [Pp]ython.

What is happening here? The first token in the regular expression is actually a character class with
two options: P and p. Either character will match, but nothing else. The remaining five characters
are just literal characters.

What does the following regular expression match?

>>> re.search(r' [Pp]lython', 'Python 3')
< sre.SRE Match object; span=(0, 6), match='Python'>
>>> re.search(r' [Pp]lython', 'python 3')

<_sre.SRE Match object; span=(0, 6), match='python'>

This regular expression matches the word Python in the string Python 3 and the word python in
the string python 3. It does not make the entire word case-insensitive, though. It does not match the
word in all caps, for example.

>>> re.search(r' [Pp]lython', 'PYTHON 3')
>>>

Another use for this kind of character class is for words with multiple spellings. The regular expression
gr [ae]y will match either gray or grey, allowing you to quickly identify and extract either spelling.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Regular Expressions | 151

>>> re.search(r'grlaely', 'gray')
<_sre.SRE_Match object; span=(0, 4), match='gray's>

It is also worth noting that character classes like this match one and exactly one character.

>>> re.search(r'grlaely', 'graey')
>>>

Here, the regular expression engine successfully matches the literal g, then the literal r. Next, the
engine is given the character class [ae], and matches it against the a. Now, the character class has
been matched, and the engine moves on. The next character in the regular expression is a y, but the
next character in the string is an e. This is not a match, so the regular expression parser moves on,
starting over and looking for a starting g. When it gets to the end of the string and fails to find one,
it returns None.

Ranges

Some quite common character classes are very large. For example, consider trying to match any
digit. It would be quite unwieldy to provide [0123456789] each time. It would be even more
unwieldy to provide every letter, both capitalized and lowercase, each time.

To accommodate for this, the regular expression engine uses the hyphen character (-) within character
classes to denote ranges. A character class to match any digit could be written [0-9] instead. It is also
possible to use more than one range within a character class, simply by providing the ranges next to
one another. The [a-z] character class matches only lowercase letters, and the [A-2] character class
matches only capital letters. These can be combined—[A-za-z] would match both lowercase and
capital letters.

>>> re.search(r'[a-2zA-Z]"', 'x')
<_sre.SRE Match object; span=(0, 1), match='x'>
>>> re.search(r'[a-zA-Z]', 'B')

<_sre.SRE Match object; span=(0, 1), match='B'>

Of course, you may also want to match the literal hyphen character. This is surprisingly common.
Many reasons exist to match (for example) alphanumeric characters, hyphen, and underscore. What
happens when you want to do this?

You can escape the hyphen: [A-za-z0-9\-_1. This will tell the regular expression engine that you
want a literal hyphen. However, escaping generally makes things more difficult to read. You can also
provide the hyphen as either the first or last character in the character class, as in [A-Za-z0-9 -1.
In this case, the engine will interpret the character as a literal hyphen.

Negation

The character classes shown thus far are all defined by what characters may occur. However, you
may want to define a character class by what characters may not occur.

You can invert a character class (meaning that it will match any character other than those specified)
by beginning the character class with a * character.

>>> re.search(r'[*a-z]', '4"')
< _sre.SRE Match object; span=(0, 1), match='4'>
>>> re.search(r'[*a-z]', '#')

www.it-ebooks.info

http://www.it-ebooks.info/

152

| CHAPTER9 REGULAR EXPRESSIONS

<_sre.SRE Match object; span=(0, 1), match='#'>

>>> re.search(r'[*a-z]', 'X'")

<_sre.SRE Match object; span=(0, 1), match='X'>
>>> re.search(r'[*a-z]', 'd'")

>>>

In this scenario, the regular expression parser looks for literally any character other than a through
z. Therefore, it matches against numbers, capital letters, and symbols, but not lowercase letters.

It is important to note specifically what the regular expression is looking for here. It is looking for
the presence of a character that does not match any of the characters in the character class. It is not
looking for (and will not match) the absence of a character.

Consider the regular expression n[*e]. This means the character n followed by any character that is
not an e.

>>> re.search(r'n["e]', 'final')
<_sre.SRE Match object; span=(2, 4), match='na'>

In this case, it matches against the word £inal, and the match is na. The a character is part of the
match, because it is a single character that is not an e.

The regular expression will fail to match if it follows an n followed by an e, as you expect.

>>> re.search(r'n["e]', 'jasmine')
>>>

Here, the regular expression engine gets to the only n in the string but cannot match the next
character, because it is an e, and thus there is no match.

However, the regular expression also will not match against an n at the end of the string.

>>> re.search(r'n["e]', 'Python')
>>>

The regular expression finds the n in the word Python. However, that is as far as it gets. There is no
character remaining in the string to match against [*e], and, therefore, the match fails.

Shortcuts

Several common character classes also have predefined shortcuts within the regular expression
engine. If you want to define “words,” your instinct may be to use [A-za-z]. However, many
words use characters that fall outside of this range.

The regular expression engine provides a shortcut, \w, which matches “any word character.” How
“any word character” is defined varies somewhat based on your environment. In Python 3, it will
essentially match nearly any word character in any language. In Python 2, it will only match the
English word characters. In both cases, it also matches digits, , and -.

The \d shortcut matches digit characters. In Python 3, it matches digit characters in other
languages. In Python 2, it matches only [0-9].

The \s shortcut matches whitespace characters, such as space, tab, newline, and so on. The exact
list of whitespace characters is greater in Python 3 than in Python 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Regular Expressions | 153

Finally, the \b shortcut matches a zero-length substring. However, it only matches it at the begin-
ning or end of a word. This is called the word boundary character shortcut.

>>> re.search(r'\bcorn\b', 'corn')

< _sre.SRE Match object; span=(0, 4), match='corn's>
>>> re.search(r'\bcorn\b', 'corner')

>>>

The regular expression engine matches the word corn here when it is by itself, but fails to match
the word corner, because the trailing \b does not match (because the next character is e, which is
a word character).

It is worth noting that these shortcuts work both within character classes and outside of them. For
example, the regular expression \w will match any word character.

>>> re.search(r'\w', 'Python 3')
<_sre.SRE Match object; span=(0, 1), match='P'>

Because re.search only returns the first match, it matches the p character and then completes.
Consider the result of re.findall using the same regular expression and string.

>>> re.findall (r'\w', 'Python 3')

['P', |yll ‘t', lhl, 'O‘, |n|, |3|]
Note that the regular expression matches every character in the string except the space. The \w
shortcut does include digits in the Python regular expression engine.

The \w, \d, and \s shortcuts also include negation shortcuts: \w, \D, and \s. These shortcuts
match any character other than the characters in the shortcut. Note again that these still require a
character to be present. They do not match an empty string.

There is also a negation shortcut for \b, but it works slightly differently. Whereas \b matches a zero-
length substring at the beginning or end of a word, \B matches a zero-length substring that is not at
the beginning or end of a word. This essentially reverses the corn and corner example from earlier.

>>> re.search(r'corn\B', 'corner')

<_sre.SRE Match object; span=(0, 4), match='corn's>
>>> re.search(r'corn\B', 'corn')

>>>

Beginning and End of String
Two special characters designate the beginning of a string and end of a string.
The * character designates the beginning of a string, as shown here:

>>> re.search(r'*Python', 'This code is in Python.')
>>> re.search(r'*Python', 'Python 3')
<_sre.SRE Match object; span=(0, 6), match='Python'>

Notice that the first command fails to produce a match. This is because the string does not start
with the word Python, and the * character requires that the regular expression match against the
beginning of the string.

www.it-ebooks.info

http://www.it-ebooks.info/

154 | CHAPTER9 REGULAR EXPRESSIONS

Similarly, the $ character designates the end of a string, as shown here:

>>> re.search(r'fox$', 'The quick brown fox jumped over the lazy dogs.')
>>> re.search(r'foxs$', 'The quick brown fox')
<_sre.SRE Match object; span=(16, 19), match='fox'>

Again, notice that the first command fails to produce a match, because although the word fox
appears, it is not at the end of the string, which the $ character requires.

Any Character

The . character is the final shortcut character. It stands in for any single character. However, it only
serves this role outside a bracketed character class.

Consider the following simple regex using the . character:

>>> re.search(r'p.th.n', 'python 3'")
< sre.SRE Match object; span=(0, 6), match='python's>
>>> re.search(r'p..hon', 'python 3')

<_sre.SRE Match object; span=(0, 6), match='python'>

In each of these cases, the period steps in for one single character. In the first example, the
regular expression engine finds the character . in the regular expression. In the string, it sees a y,
and matches and continues to the next character (a t against a t).

In the second case, the same fundamental thing is happening. Each period character matches one
and exactly one character. It matches the y and the t, and then this consumes both of the periods,
and the regular expression engine continues to the next character (this time, an h against an h).

Note that there is one character that the . does not match, which is newline (\n). It is possible to
make the . character match newline, however, which is discussed later in this chapter.

Optional Characters

Thus far, all of the regular expressions you have seen have involved a 1:1 correlation between
characters in the regular expression itself and characters in the string being searched.

Sometimes, however, a character may be optional. Consider again the example of a word with more
than one correct spelling, but this time, the inclusion of a letter is what separates the two spellings,
such as “color” and “colour,” or “honor” and “honour.”

You can specify a character, character class, or other atomic unit within a regular expression as
optional by using the ? character, which means that the regular expression engine will expect the
token to occur either zero times or once.

For example, you can match the word “honor” with its British spelling “honour” by using the regu-
lar expression honou?r.

>>> import re

>>> re.search(r'honou?r', 'He served with honor and distinction.')
< sre.SRE Match object; span=(15, 20), match='honor's>
>>> re.search(r'honou?r', 'He served with honour and distinction.')

<_sre.SRE Match object; span=(15, 21), match='honour'>

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Regular Expressions | 155

In both cases, the regular expression contains four literal characters, hono. These match the hono
in both honor and honour. The next thing that the regular expression hits is an optional u. In the
first case, the u is absent, but this is okay because the regular expression marks it as optional. In the
second case, the u is present, which is also okay. In both cases, the regular expression then seeks a
literal r character, which it finds, therefore completing the match.

Repetition

Thus far, you have learned only about characters (or character classes) that occur once and exactly
once, or that are entirely optional (occurring zero times or once). However, sometimes you need the
same character or character class to repeat.

You may expect a character class to recur a set number of consecutive times, such as in a phone
number. American phone numbers comprise the country code 1 (often omitted), an area code, which
is three digits, then the seven-digit phone number, with the third and fourth digit of the latter sepa-
rated by a hyphen, period, or similar.

You can designate that a token must repeat a given number of times with {N}, where the N character
corresponds to the number of times the token should repeat.

The following uses a regular expression to identify a seven-digit, local phone number (ignore the
country code and area code for the moment): [\d] {3}-[\d]{4}.

>>> re.search(r' [\d]{3}-[\dl{4}', '867-5309 / Jenny')
<_sre.SRE Match object; span=(0, 8), match='867-5309'>

In this case, the regular expression engine starts by looking for three consecutive digits. It finds
them (867), and then moves on to the literal hyphen character. Because this hyphen character is not
within a character class, it carries no special meaning and simply matches the literal hyphen. The
regular expression then finds the final four consecutive digits (5309) and returns the match.

Repetition Ranges

Sometimes, you may not know exactly how many times the token ought to repeat. Phone numbers
may contain a static number of digits, but lots of numeric data is not standardized this way.

For example, consider credit card security codes. Credit cards issued in the United States contain a
special security code on the back, often called a “CVV code.” Most credit card brands use three-
digit security codes, which you can match with [\d] {3}. However, American Express uses four-
digit security codes ([\d] {4}).

What if you want to be able to match both of these cases? Repetition ranges come in handy here.
The syntax here is {M, N}, where M is the lower bound and N is the upper bound.

It is worth noting here that the bounds are inclusive. If you want to match three digits or four digits,
the correct syntax is [\d] {3,4}. You might be tempted (based on using Python slices) to believe
that the upper bound is exclusive (and that you should use {3, 5} instead). However, regular expres-
sions do not work this way.

>>> re.search(r'[\d]{3,4}', '0421")
< _sre.SRE Match object; span=(0, 4), match='0421"'>

www.it-ebooks.info

http://www.it-ebooks.info/

156

| CHAPTER9 REGULAR EXPRESSIONS

>>> re.search(r'[\d]{3,4}', '615")
<_sre.SRE Match object; span=(0, 3), match='615"'>

In both cases, the regular expression engine finds a series of digits that matches what it expects, and
returns a match.

When given the choice to match three characters or four characters, where either is a valid match,
how does the regular expression engine decide? The answer is that, under most circumstances, the
regular expression engine is “greedy,” meaning that it will match as many characters as possible
for as long as it can. In this simple case, that means that if there are four digits, four digits will be
matched.

Occasionally, this behavior is undesirable. By placing a ? character immediately after the repetition
operator, it causes that repetition to be considered “lazy,” meaning that the engine will match as few
characters as possible to return a valid match.

>>> re.search(r' [\d]{3,4}?', '0421")
<_sre.SRE Match object; span=(0, 3), match='042'>

The re-use of the ? character for another purpose does not cause any ambiguity for the parser,
because the character comes after repetition syntax, rather than a token to be matched against.

Note that the 2 in this situation does not serve to make the repeated segment optional. It simply
means that, given the opportunity to match three or four digits, it will elect only to match three.

NOTE Note that the ? character used to make a token optional is essentially an
exact alias for {0,1}.

Open-Ended Ranges

You also may encounter cases where there is no upper bound for the number of times that a token
may repeat. For example, consider a traditional street address. This usually starts with a number
(for the moment, hand-wave the exceptions and assert that they always do), but the number could
be any arbitrary length. There is nothing technically invalid about an eight-digit street number.

In these cases, you can leave off the upper bound, but retain the , character to designate that the
upper bound is . For example, {1, } designates one or more occurrences with no upper bound.

>>> re.search(r'[\d]{1,}', '1600 Pennsylvania Ave.')
<_sre.SRE Match object; span=(0, 4), match='1600"'>

This syntax also works if you do not want to specify a lower bound, in which case, the lower bound
is assumed to be o.

Shorthand

You can use two shorthand characters in designating common repetition situations. You can use the
+ character in lieu of specifying {1, } (one or more). Similarly, you can use the * character in lieu of
specifying {0, } (zero or more).

www.it-ebooks.info

http://www.it-ebooks.info/

Grouping | 157

Therefore, the previous example could be rewritten using +, as shown here:

>>> re.search(r' [\d]+', '1600 Pennsylvania Ave.')
< _sre.SRE Match object; span=(0, 4), match='1600"'>

Using + and * generally makes for a regular expression that is easier to read, and is the preferred
syntax in cases where they are applicable.

GROUPING

Regular expressions provide a mechanism to split the expression into groups. When using groups,
you are able to select each individual group within the match in addition to getting the entire match.
You can specify groups within a regular expression by using parentheses.

The following is an example of a simple, local phone number. However, this time, each set of digits
is a group.
>>> match = re.search(r' ([\d]{3})-([\d]{4})', '867-5309 / Jenny')

>>> match
<_sre.SRE Match object; span=(0, 8), match='867-5309'>

As before, you can use the group method on the match object to return the entire match.

>>> match.group ()
'867-5309"

The re module’s match objects provide a method, groups, which returns a tuple corresponding to
each individual group.

>>> match.groups ()

('867', '5309")
By breaking your regular expression into subgroups like this, you can quickly get not just the entire
match, but specific bits of data within the match.

It is also possible to get just a single group, by passing an argument to the group method corre-
sponding to the group you want back (note that group numbers are 1-indexed).

>>> match.group (2)
'5309'

By using groups, you can take a phone number formatted in a variety of different ways and extract
only the data that matters, which is the actual digits of a phone number.

>>> re.search(

r'(\+?21)?2[.-12\(2(\al {3}))\)2[.-12(\al{3}) [.-12([\al{4})",
.. '(213) 867-5309")
<_sre.SRE Match object; span=(0, 14), match='(213) 867-5309'>

>>> re.search(

rr(\+?21)2[.-12\(2(\dI{3})\)2[.-12(\aI{3}) [.-12(\dl{a})",
.. '213-867-5309")
<_sre.SRE Match object; span=(0, 12), match='213-867-5309'>

>>> re.search(

www.it-ebooks.info

http://www.it-ebooks.info/

158 | CHAPTER9 REGULAR EXPRESSIONS

rt(\+21)?[.-12\(2(\aAl {3)\)2[.-12(\AI{3}) [.-12(0\al{4})",
.. '213.867.5309")
< _sre.SRE Match object; span=(0, 12), match='213.867.5309'>

>>> re.search

r'(\+21)2[.-12\(2(\al {3Ph\)?[.-12(\al{3}) [.-12(\al{4}) ",
.. '2138675309")
<_sre.SRE Match object; span=(0, 10), match='2138675309'>

>>> re.search(

' (\+?21)?2[.-12\(2([\al{3})\)?[.-12([\Aal{3}) [.-12(\dl{4})', '+1
. (213) 867-5309')
<_sre.SRE Match object; span=(0, 17), match='+1 (213) 867-5309'>

>>> re.search(

't (\+?1)?2[-1\ (2 (\al{3})\)2[.-12(\al{3}) [.-12(\al{a})', '1
. (213) 867-5309")
< _sre.SRE Match object; span=(0, 16), match='1l (213) 867-5309'>

>>> re.search

' (\+?1)?[.-12\ (2 (\aI1{3})\)2[.-12(\al{3}) [.-1=2(\al{a})",
'1-213-867-5309")
<_sre.SRE Match object; span=(0, 14), match='1-213-867-5309'>

This regular expression is a bit more complicated than what you have encountered already. Consider
each distinct part by itself, however, and it is easier to parse.

The first segment is (\+?1)? [.-12. This is first looking for the United States country code in
almost any format you may encounter it (+1 or 1, and then possibly a hyphen).

The second segment is \ (? ([\d1{3})\)?[.-12,and it grabs the area code, and the optional
hyphen or whitespace that may follow it. The area code may optionally be provided in parentheses
(as is common with U.S. phone numbers).

The remainder of the regular expression is the final seven digits of the phone number, and is the
same as what you have already seen.

Regardless of how the phone number is formatted, the regular expression is capable of matching it.
And although the full match is still formatted based on the original data provided, the groups are
consistently the same.

>>> match = re.search(
o (\+?21)?2[.-12\ (2 (\d1{3})\)2[.-12(\aI{3}) [.-12(0\al{a})",
. '213-867-5309")
>>> match.groups ()
(None, '213', '867', '5309')

>>> match = re.search(
rt(\+21)?[.-12\(2(\al {3H\)2[.-12(\dAI{3}) [.-12(0\al{4})",
.. '+1 213-867-5309")
>>> match.groups ()
('+1', '213', '867', '5309'")

www.it-ebooks.info

http://www.it-ebooks.info/

Grouping | 159

The only difference between the groups is based on what was provided for the country code. If it is
omitted, then it is not captured either, and None is provided in its place. The second through fourth
groups consistently contain the three (intra-national) segments of the phone number.

The Zero Group

Up until this point, the examples have consistently used the group method to return the entire
match, rather than just a single group. In fact, it may seem like very odd nomenclature indeed to
have to call the group method to get back the entire match in the first place.

Why does it work this way? The purpose of the group is actually to return a single group from the
match. It takes an optional argument, which is the number of the group to return. If the argument is
omitted (as the examples had consistently been doing), it defaults to o.

In regular expressions, the groups are counted based on their position in the regular expression,
starting with 1.

The o group is special, and corresponds to the entire match. This is why groups are 1-indexed. By call-
ing group with no argument, you are asking for group 0 and, therefore, getting the entire match back.

Named Groups

In addition to having positionally numbered groups, the Python regular expression engine also
provides a mechanism for naming groups. This functionality was actually originally introduced by
the Python regular expression implementation, although many other languages have picked it up at
this point.

The syntax for a named group is to add ?P<group_name> immediately after the opening (character.
You could specify the local phone number regular expression to use named groups by rewriting it as
(?P<first_three>[\d] {3})- (?P<last_ four>[\d]{4}.

>>> match = re.search(r' (?P<first three>[\d]{3})- (?P<last_four>[\d]{4})',

1867-5309")

>>> match

<_sre.SRE Match object; span=(0, 8), match='867-5309'>
First of all, note that named groups are also still positional groups. You can (if you choose) still look
up the groups this way:

>>> match.groups ()

('867', '5309'")
>>> match.group (1)
'867"'

Using named groups opens up two more ways to look up a group. First, the name of the group can
be passed as a string to the group method.

>>> match.group ('first three')
'867"'

Additionally, match objects provide a groupdict method. This method is similar in most ways to
the groups method, except that it returns a dictionary instead of a tuple, and the dictionary keys
correspond to the names of the groups.

www.it-ebooks.info

http://www.it-ebooks.info/

160

| CHAPTER9 REGULAR EXPRESSIONS

>>> match.groupdict ()
{'first three': '867', 'last four': '5309'}

It is worth noting that groupdict, like groups, does not return the entire match; it only returns the
subgroups. Also, if you have a mix of named groups and unnamed groups, the unnamed groups are
not part of the dictionary returned by groupdict.

>>> match = re.search(r' (?P<first three>[\d]{3})-([\d]{4})', '867-5309")

>>> match.groups ()

(1867', '5309')

>>> match.groupdict ()

{'first_three': '867'}

In this case, only the first group (named first three) is a named group, and the second group is
a numbered group only. Therefore, when groups is called, both groups are returned in the tuple.
However, when groupdict is called, only the first three group is included in the result.

Named groups are quite valuable for maintenance reasons. You may reference a group in code later.
If you use primarily named groups, adding a new group to the regular expression to account for a
change does not then require updating group numbers later in code, because the existing names stay
the same.

Referencing Existing Groups

The regular expression engine also provides a mechanism to reference a previously matched group.
Sometimes, you may be looking for a subsequent occurrence of the same submatch.

For example, if you are trying to parse a block of XML, you may want to very permissively look
for any valid opening tag, such as < ([\w_-1+) >. However, you want to ensure that the same clos-
ing tag exists.

It is insufficient to simply repeat this pattern a second time. On the one hand, it will correctly match
patterns that you want.

>>> re.search(r'<([\w_-]+)>stuff</([\w_-1+)>"', '<foo>stuff</foo>")
< _sre.SRE Match object; span=(0, 16), match='<foo>stuff</foo>'>

On the other hand, it would also match patterns that should not actually match.

>>> match = re.search(r'<([\w_-]+)>stuff</([\w_-1+)>', '<foo>stuff</bar>")
>>> match

< _sre.SRE Match object; span=(0, 16), match='<foo>stuff</bar>'>

>>> match.group (1)

'foo'

>>> match.group(2)

'bar'

Here, the regular expression engine correctly sees <foo> as an opening XML tag, matches it, and
assigns the text foo to the subgroup. It then matches the literal characters stuff, and then goes to
match the closing XML tag.

At this point, what you intuitively want is for the match to fail, because the closing XML tag is
</bar>, which is not the same as the opening tag of <foo>.

www.it-ebooks.info

http://www.it-ebooks.info/

Lookahead | 161

The regular expression engine does not do that, however. It has simply been told to match the </
and > wrapping characters, and then word characters in between. Because bar fulfills this require-
ment, the engine matches it, assigns it to the second subgroup, and returns a match.

What you really want at this point is for the regular expression engine to require the same submatch
as was used in the first group. This should make a string of <foo>stuff</foo> match, but a string
of <foosstuff</bars> fail to match.

The regular expression engine provides a way to do this using backreferences. Backreferences refer
to a previously matched group within a regular expression, and cause the regular expression parser
to expect the same match text to occur again.

You backreference numbered groups using \N, where N is the group number. Therefore, \1 will
match the first group, \2 the second group, and so on. This syntax is capable of matching up to the
first 99 groups.

Consider the following XML regular expression that uses a backreference:

>>> match = re.search(r'<([\w_-]+)>stuff</\1>', '<foos>stuff</foo>"')

>>> match

< sre.SRE Match object; span=(0, 16), match='<foo>stuff</foo>'>

>>> match.groups ()

('foo',)
Notice that there is only one subgroup now. In the previous example, there were two, both contain-
ing the text foo. In this case, however, a backreference has replaced the second group.

A much more important distinction, however, is what this regular expression does not match.

>>> re.search(r'<([\w_-]+)>stuff</\1>', '<foo>stuff</bar>")
>>>

In this case, the regular expression engine successfully matches up to the closing XML tag.
However, because bar is not the same text as foo, the match fails.

WARNING You should not actually use custom regular expressions to parse
XML. Use 1xml or a similar tool instead. For parsing HTML, use a package like
BeautifulSoup. The purpose of this example is solely to explain how this type
of backreference works.

LOOKAHEAD

Earlier, you learned about negated character classes, which enable you to match any character
other than those in the class. As mentioned before, this method makes the character or characters
matched by the negated character class be part of the match, and it will not match the absence of
any character at all.

www.it-ebooks.info

http://www.it-ebooks.info/

162

| CHAPTER9 REGULAR EXPRESSIONS

There is, however, a mechanism to accept or reject a match based on the presence or absence of con-
tent after it, without making the subsequent content part of the match. This is called lookabead.

The previous example of a negated character class was n[*e]—an n followed by a character that is
not an e. This matched na in £inal, failed to match anything in jasmine, and failed to match any-
thing in Python.

A similar regular expression that instead uses negative lookahead would employ the syntax n(?1e).

>>> re.search(r'n(?!e)', 'final')

< _sre.SRE Match object; span=(2, 3), match='n'>
>>> re.search(r'n(?!e)', 'jasmine')

>>> re.search(r'n(?!e)', 'Python')

< _sre.SRE Match object; span=(5, 6), match='n'>

These results are slightly different than when a negated character class was used. In the first
example, using the word final, the regular expression again matches, but the match is different.
While the negated character class made the a character part of the match, negative lookahead does
not, and the match comes back as just the n character.

The second result is the most similar. The n in jasmine matches the n character in the regular
expression. However, because the n is followed by an e, it is disqualified, and the match fails.

The final result is the most different, because this match actually succeeds, where it did not with a
negated character class. The regular expression engine matches the n in Python. It then reaches the
end of the string. Because that n is not followed by an e, the match succeeds and is returned.

It is worth noting that while this may look like group syntax, in this case, a group is not saved.

>>> match = re.search(r'n(?!e)', 'final')

>>> match

< _sre.SRE Match object; span=(2, 3), match='n'>
>>> match.groups ()

()

The regular expression engine also supports a different kind of lookahead, called a positive
lookahead. This requires that the match be followed by the character or characters in question, but
nonetheless does not make those characters part of the match.

The syntax for positive lookahead simply replaces the ! character with =. Consider this regular
expression:

>>> re.search(r'n(?=e)', 'jasmine')
<_sre.SRE Match object; span=(5, 6), match='n'>

In this case, the regular expression engine matches the n in the word jasmine. After doing so, it
verifies that the subsequent character is an e, as the regular expression requires. Because it is, the
match is complete and returned. As before, no group is created by the lookahead.

Without the e, the match fails, as shown here:

>>> re.search(r'n(?=e)', 'jasmin')
>>>

In this case, the regular expression engine again matches the n, but disqualifies the match because it
is not followed by an e.

www.it-ebooks.info

http://www.it-ebooks.info/

Flags | 163

FLAGS

Sometimes, you need to slightly tweak the behavior of the regular expression engine. The regular
expression engines in most languages, including Python, offer a small number of flags that modify
the behavior of the entire expression.

The Python engine offers several flags that can be sent to a regular expression when using
re.search or similar functions. In the case of re.search, it takes a third argument for flags.

Case Insensitivity

The simplest and most straightforward flag is re . IGNORECASE, which causes the regular expression
to become case-insensitive.

>>> re.search(r'python', 'PYTHON IS AWESOME', re.IGNORECASE)
< _sre.SRE Match object; span=(0, 6), match='PYTHON'>

When using re.IGNORECASE, the match will still be returned using the case of the string in which it
was found, and not the case of the regular expression.

re . IGNORECASE is also aliased to re.I.

ASCIl and Unicode

You may recall that there is a difference between how some character shortcuts work between
Python 2 and Python 3. For example, \w in Python 3 matches word characters in nearly any
language, rather than just the Latin alphabet.

The re module provides flags to make Python 2 follow the Python 3 behavior, and also flags to
make Python 3 follow the Python 2 behavior.

The re.UNICODE (aliased to re.) flag forces the regular expression engine to follow the Python 3
behavior. This flag is defined in both Python 2 and Python 3, so it is safe to use it in code designed
to run on either platform. Note that if you try to use a byte string with re.v in Python 3, the parser
will raise an exception.

The re.asc11 (aliased to re.a) flag forces the regular expression to follow the Python 2 behavior.
Unlike re .UNICODE, the re.ASCII flag is not available in Python 2. If you need re.ASCII in code
that runs under both Python 2 and Python 3, use the appropriate character classes instead, or do a
version check before applying the flag.

Dot Matching Newline

The re.poTALL flag (aliased to re.s to match the terminology used in Perl and elsewhere) causes the
. character to match newline characters in addition to all other characters.

>>> re.search(r'.+', 'foo\nbar')
<_sre.SRE Match object; span=(0, 3), match='foo's>
>>> re.search(r'.+', 'foo\nbar', re.DOTALL)

<_sre.SRE Match object; span=(0, 7), match='foo\nbar's>

www.it-ebooks.info

http://www.it-ebooks.info/

164 | CHAPTER9 REGULAR EXPRESSIONS

In the first command, the regular expression engine must match one or more of any character. It
matches foo, and then it reaches a line break and stops, because . does not normally match line breaks.

However, in the second command, re.DOTALL is passed, and the line break character is included in
what . matches against. Therefore, the regular expression engine (being greedy) keeps going until it
reaches end of string, and the entire string is returned as the match.

Multiline Mode

The re .MULTILINE flag (aliased to re.M) causes the * and $ characters, which normally would only
match against the beginning or end of the string (respectively), to instead match against the begin-
ning or end of any line within the string.

>>> re.search(r'*bar', 'foo\nbar')

>>> re.search(r'”*bar', 'foo\nbar', re.MULTILINE)
<_sre.SRE Match object; span=(4, 7), match='bar's>

In the first command, the * character is only able to match against the beginning of the string.
Therefore, the word bar does not match, because it is not the first thing in the string.

In the second command, however, the re .MULTILINE flag is used. Therefore, the * character merely
requires the beginning of a line. Because a newline character immediately precedes bar, it matches
and the match is returned.

Verbose Mode

The re.VERBOSE flag (aliased to re.x) allows for complicated regular expressions to be expressed in
a more readable way.

This flag does two things. First, it causes all whitespace (other than in character classes) to be
ignored, including line breaks. Second, it treats the # character (again, unless it’s inside a character
class) as a comment character.

This allows for easy annotation of regular expressions, which can be valuable as they become
complicated. The following two commands are equivalent:

>>> re.search(r' (?P<first three>[\d]{3})- (?P<last_four>[\d]{4})', '867-5309'
<_sre.SRE Match object; span=(0, 8), match='867-5309"'>
>>> re.search(r""" (?P<first_three>[\d]{3}) # The first three digits
- # A literal hyphen
(?P<last_four>[\d] {4}) # The last four digits

Ce. nwn o 1867-5309', re.VERBOSE)
< _sre.SRE Match object; span=(0, 8), match='867-5309'>

Debug Mode

The re.DEBUG flag (not aliased) dumps some debugging information out to sys.stderr while com-
piling a regular expression.

>>> re.search(r' (?P<first_three>[\d] {3})- (?P<last four>[\d] {4})',
'867-5309', re.DEBUG)
subpattern 1
max_repeat 3 3

www.it-ebooks.info

http://www.it-ebooks.info/

Substitution | 165

in
category category digit
literal 45
subpattern 2
max_repeat 4 4
in
category category digit
<_sre.SRE Match object; span=(0, 8), match='867-5309'>

Using Multiple Flags

Occasionally, you may need to use more than one of these flags at once. To do this, join them with
the | (bitwise OR) operator. For example, if you need both the re.DpoTALL and re .MULTILINE flags,
the correct syntax is re .DOTALL | re.MULTILINE or re.S | re.M.

Inline Flags

It is also possible to use flags within a regular expression itself by beginning the regular expression
with special syntax. This uses the short-form flag, and looks like this:

>>> re.search('(?1)FO0', 'foo') .group/()
'foo!

Note the (?1i) at the beginning. This is the equivalent of using the re.IGNORECASE flag. However,
this syntax is usually less preferable to sending flags explicitly. Also, the long form of the flags will
not work. (?ignorecase) is not valid and will raise an exception.

SUBSTITUTION

The regular expression engine is not limited to simply identifying whether a pattern exists within
a string. It is also capable of performing string replacement, returning a new string based on the
groups in the original one.

The substitution method in Python is re. sub. It takes three arguments: the regular expression, the
replacement string, and the source string being searched. Only the actual match is replaced, so if
there is no match, re.sub ends up being a no-op.

re.sub enables you to use the same backreferences from regular expression patterns within the
replacement string. Consider the task of stripping irrelevant formatting data from a phone number:

>>> re.sub(r' (\+?1)?2[.-12\ (2 ([\d1 {3PH\)?2[.-12(I\AI{3}) [.-12(\dl{a})",
. r'\2\3\4',

c. '213-867-5309")

12138675309

Because this regular expression matches nearly any phone number and groups only the actual digits
of the phone number, you will get back the same data regardless of how the original number was
formatted.

>>> re.sub(r' (\+21)2[.-12\(?(\dI{3})\)2[.-12(\alI{3D) [.-12(0\dl{4})",

e r'\2\3\4",

e '213.867.5309")
'2138675309"

www.it-ebooks.info

http://www.it-ebooks.info/

166 | CHAPTER9 REGULAR EXPRESSIONS

>>> re.sub(r' (\+21)2[.-1?2\ (2 ([\dl{3})\)2[.-12([\AI{3}) [.-12([\dl{4})",
. r'\2\3\4',

.. '2138675309"')

12138675309

>>> re.sub(r' (\+?21)2[.-12\(2(\Al{3})\)2[.-12(\dI{3}) [.-12(1\al{4})",
- r'\2\3\4',

e '(213) 867-5309"'")

12138675309

>>> re.sub(r' (\+?1)?2[.-12\(2((\al {3})\)2[.-12(\al{3}) [.-12((\dl{4}) ",
) r'\2\3\4',

A 'l (213) 867-5309')

12138675309

>>> re.sub(r' (\+21)2[.-12\ (2 ([\A] {3 \)?[.-12(I\dI {3} [.-12([\dl{4})",
- r'\2\3\4',

'+1 213-867-5309")

12138675309

The replacement string is not limited to just using the backreferences from the string; other charac-
ters are interpreted literally. Therefore, re.sub can also be used for formatting. For example, what
if you want to display a phone number rather than store it, but you want to display it in a consistent
format? re.sub can handle that, as shown here:

>>> re.sub(r' (\+?21)?2[.-12\(2([\dI{3})\)2[.-12(\al{3}) [.-12(0\dl{4})",
.. r'(\2) \3-\4r,

e '+1 213-867-5309")

'(213) 867-5309"

Everything here is the same as in the previous examples, except for the replacement string, which
has gained the parentheses, space, and hyphen. Therefore, so has the result.

COMPILED REGULAR EXPRESSIONS

One final feature of Python’s regular expression implementation is compiled regular expressions.
The re module contains a function, compile, which returns a compiled regular expression object,
which can then be reused.

The re module caches regular expressions that it compiles on the fly, so in most situations, there is
no substantial performance advantage to using compile. It can be extremely useful for passing regu-
lar expression objects around, however.

The re.compile function returns a regular expression object, with the compiled regular expression
as data. These objects have their own search and sub methods, which omit the first argument (the
regular expression itself).

>>> regex = re.compile(

. r'(\+21)2[=12\ (2(\Al{3})\) 2 .-12(\AI {3 [.-12(\d){4})"
ce)
>>> regex.search('213-867-5309")

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 167

<_sre.SRE Match object; span=(0, 12), match='213-867-5309"'>
>>> regex.sub(r' (\2) \3-\4', '+1 213.867.5309')
' (213) 867-5309'

Also, there is one other advantage to using re.compile. The search method of regular expression
objects actually allows for two additional arguments not available on re.search. These are the
starting and ending positions of the string to be searched against, enabling you to exempt some of
the string from consideration.

>>> regex = re.compile('[\d]+")

>>> regex.search('l mile is equal to 5280 feet.')

<_sre.SRE Match object; span=(0, 1), match='1"'>

>>> regex.search('l mile is equal to 5280 feet.', pos=2)

<_sre.SRE Match object; span=(19, 23), match='5280"'>

The values sent are available as the pos and endpos attributes on the match objects returned.

SUMMARY

Regular expressions are extremely useful tools for finding, parsing, and validating data. They often
look intimidating to those who have not used them before, but they are manageable if taken piece by
piece.

In addition, mastering regular expressions will enable you to perform parsing and formatting tasks
that are much more difficult without a pattern-matching algorithm.

However, be wary of using regular expressions when they are unnecessary. Sometimes, using a few
lines of code with direct string comparison is much more straightforward. Like any tool, regular
expressions should be used when they are the appropriate solution, but not when simpler approaches
are available to you.

Similarly, bear in mind that regular expressions are often unsuitable for parsing extremely complex
structures. If you are parsing a non-trivial document format, you should probably be looking for
another library that handles that for you.

Chapter 10 examines testing applications in Python.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART IV
Everything Else

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

Python 2 Versus Python 3

In several chapters of this book (particularly Chapter 5, “Metaclasses,” and Chapter 8,
“Strings and Unicode”), you have learned about the differences that exist in the way that
Python 2 and Python 3 handle some things.

In fact, Python 3 is a very substantial update to the Python programming language. Throughout
its history, Python has stressed strong backward compatibility, eschewing changes that are likely
to break large amounts of existing code. That does not mean that the language never deprecates
anything, of course, but backward compatibility is a strong focus.

Python 3.0 is an exception to this. Like developers of any complex language or system, the
developers of Python made certain decisions that they later viewed as mistakes. Therefore,
Python 3.0 can properly be seen as an endeavor to fix mistakes at the expense of backward
compatibility.

Because existing Python programs are so pervasive, both Python 2 and Python 3 have been
supported for some time—to allow the ecosystem time to migrate from the old to the new.
Python 2.6 was released roughly concurrently with Python 3.0, and Python 2.7 roughly a
year and a half later (a full year after the release of Python 3.1).

Currently, Python 2.7 and even Python 2.6 are still in common use. Therefore, it is important
to understand the differences between Python 2 and Python 3, and how to navigate both.

This chapter explores what distinguishes Python 2 and Python 3, and discusses strategies for
navigating the dual ecosystem.

CROSS-COMPATIBILITY STRATEGIES

Python 3 introduces a series of backward-incompatible changes (as well as many backward-
compatible ones, but this chapter will not focus much on those). Most of these backward-
incompatible changes either focus on removing ambiguity, ensuring that there is a single and
coherent approach to solving problems, simply updating the language to address quirks, or
making Python’s behavior more modern.

www.it-ebooks.info

http://www.it-ebooks.info/

172 | CHAPTER 10 PYTHON 2 VERSUS PYTHON 3

Because Python 3 was not intended to be a backward-compatible release, there is no expectation
that Python 2 code should be able to run unmodified on Python 3. In fact, many valid Python 2

modules will not run in Python 3, or may produce different results, and some may even contain

syntax errors.

That said, you can use several strategies to write code for both ecosystems.

The future Module

In some cases, useful Python 3 behavior is able to be “back-ported” into Python 2.6 and Python 2.7.
You do this using the _ future module, which has been in the Python language for some time.

The future module provides a mechanism to introduce a feature into the Python language
slowly, allowing the feature to be opted into at first, and then eventually becoming the language’s
default behavior.

For example, this module was used when yield and later with were being added as keywords to
Python. Because adding a new keyword to the language will break existing code that may use either
term as a variable name, these keywords were introduced slowly. For one Python release, it was
possible to opt-in to the new keyword by using a statement such as the following;:

from _ future import with statement

In the case of with, this statement became available in Python 2.5. Using it made both with and as
become keywords. If you ran code that used either word as an identifier, you would get a warning.
Then, in Python 2.6, with and as were always keywords. However, even then, importing

with statement from future is still valid (it is simply a no-op). This allows code that uses
with to run in both Python 2.5 and in later versions.

This same principle applies to many features introduced in Python 3. It is possible to opt-in to
some or all of their functionality in Python 2.6 and Python 2.7, which makes writing code for
both ecosystems more manageable.

As this chapter iterates over specific behaviors that are distinct in Python 2 and Python 3, you will
learn about those that can be opted into in Python 2 using this method.

2to3

When Python 3 was first released, the recommended mechanism to handle sharing source code
between Python 2 and Python 3 was by using a tool called 2to3.

2to3 is a command-line application that ships with current versions of Python. Its purpose is to
attempt to take a module written for Python 2 and provide a patch to convert it into a Python 3
module, or even convert the module automatically. A similar tool, 3to2, is also available (on PyPI)
to do the converse.

Consider the following conversion of foo.py, which is a very simple, one-line Python 2 module:

$ cat foo.py
print 'foo'

www.it-ebooks.info

http://www.it-ebooks.info/

Cross-Compatibility Strategies | 173

This particular module is valid in Python 2 and breaks in Python 3, because print in Python 3 is a
function rather than a statement (more on that later). Therefore, what works in Python 2 is a syntax
error in Python 3.

$ python2.7 foo.py
foo
$ python3.4 foo.py
File "foo.py", line 1
print 'foo'

A

SyntaxError: invalid syntax

This is a very straightforward (albeit backward-incompatible) change, and while it may be arduous
to try to change this manually throughout an entire codebase, it is something that 2to3 can handle.
By running 2to3 on this file, you get some information about what 2to3 thinks must be done.

$ 2to3 foo.py

RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored foo.py

--- foo.py (original)

+++ foo.py (refactored)

@@ -1 +1 @@

-print 'foo'

+print ('foo')

RefactoringTool: Files that need to be modified:
RefactoringTool: foo.py

By default, 2to3 does not actually do anything. It just tells you what must be done and offers
patches. Here, it has found the print statement on line 1 and changed it to a function, told you
about it, but it didn't actually modify the file and change code (as discussed in the next section).

$ cat foo.py
print 'foo'

Writing Changes

However, 2to3 is able to write changes that it is certain of. The simplest way to do this is to add a
-w flag, which will overwrite the files in-place. (Note again that it will overwrite the files in-place,
so you should understand what you are doing.)

$ 2to3 -w foo.py

RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored foo.py

--- foo.py (original)

+++ foo.py (refactored)

@@ -1 +1 @@

-print 'foo'

+print ('foo')

RefactoringTool: Files that were modified:
RefactoringTool: foo.py

www.it-ebooks.info

http://www.it-ebooks.info/

174 | CHAPTER 10 PYTHON 2 VERSUS PYTHON 3

Sure enough, the actual foo.py file has been modified on-disk, and now it runs without error in
Python 3.

$ cat foo.py

print ('foo!')

$ python3.4 foo.py
foo

Limitations

Unfortunately, the 2to3 tool cannot handle every conceivable situation, so simply running 2to3 on
a module is not a guarantee that any valid Python 2 module will magically become a valid Python 3
module.

The way that 2to3 works under the hood is that it contains a number of fixers, which is its term for
a translation layer between certain Python 2 code and its equivalent Python 3 code. For example,
there is a fixer called print that handles the conversion from print statements to print functions.
It is even possible to enable or disable specific fixers (with --fix and --nofix, respectively).

Another more fundamental limitation to 2to3 is that using it fundamentally requires the maintenance
of two separate codebases, one for Python 2 and one for Python 3. The official recommendation when
using 2to3 is that you simply write Python 2 code and constantly convert it to Python 3 for deploy-
ment. In practice though, this gets frustrating and is not really viable for most large projects.

There is a better way.

six
six is a Python module written by Benjamin Peterson that is intended to provide single-source com-
patibility between Python 2 and Python 3. In 2to3, code is written for Python 2, and then a pro-
gram runs and generates similar Python 3 code. However, six follows a different philosophy. Using

six, you write a single module in Python 3 syntax that also happens to run correctly on Python 2.6
and Python 2.7.

This approach offers several advantages over 2to3, but the most important distinction is that only
one copy of the code must be maintained. The same code runs in both environments. Additionally,
six is distributed as a single module, making it very easy to include without relying on a dependency
manager if needed.

What six fundamentally does is provide a unified interface to elements that have changed between
Python 2 and Python 3. For example, you learned in Chapter 8 that Python 2’s unicode class is the
same as Python 3’s str class. The six module provides six.text type, which maps to the correct
class in either environment.

For example, the following two lines of code are identical in Python 3:

>>> str('foo')
>>> six.text type('foo')

Additionally, the following two lines of code are identical in Python 2:

>>> unicode('foo')
>>> six.text type('foo')

www.it-ebooks.info

http://www.it-ebooks.info/

Changes in Python 3 | 175

They key limitation to six is that it is often only a viable approach if you do not have to support any
version of Python before Python 2.6. Although six itself will run previous versions of Python, the
inability to backport some Python 3 features from future in Python 2.5 and older means that
it is very difficult to ensure consistency of behavior. That said, if you are certain that the features
you are using work on older versions of Python, six will usually work also.

The good news is that, if you are reading this, it is fairly unlikely that you really need to support
versions of Python before Python 2.6, which was released in 2008 and now has near universal adop-
tion. Every modern Linux distribution is on at least Python 2.6, and has been for many years. If you
are on Windows, you are probably installing Python yourself, and are unlikely to have any need to
be on an older version.

six is now the mechanism that most people recommend to handle writing code designed to operate
within a Python 2 or Python 3 environment. As this chapter explores differences between Python 2
and Python 3, you will learn what six’s syntax is to get the same approach on both environments
with a unified interface. If you are writing code that must run in Python 2 and Python 3, this is
probably what you will want to use.

CHANGES IN PYTHON 3

Many changes exist between Python 2 and Python 3. Some of them are extremely substantial,
whereas others just involve something as simple as renaming a module.

Strings and Unicode

Possibly the most sweeping change to Python 3 is that string literals are Unicode instead of ASCII,
and that most of the strings you will receive throughout your programs are generally Unicode.

This change is such a big deal that this book actually devoted considerable space to this topic in
Chapter 8, in which you learned about Python’s handling of text data in detail. Here is quick review.

In Python 2, string literals are byte strings by default. They are Unicode strings in Python 3.
The Python 3 behavior can be backported to Python 2 with from _ future import
unicode literals, and you absolutely should do this if you are writing single-source code
for both environments.

Also, the byte string and text string classes have different names. In Python 2, the str class is for
byte strings, and the unicode class is for text strings. In Python 3, these are bytes and str. This
means that a class named str exists in both, but it is not the same thing. The six module aliases
these as six.binary type and six. text type.

NOTE For more information, see Chapter 8.

www.it-ebooks.info

http://www.it-ebooks.info/

176 | CHAPTER10 PYTHON 2 VERSUS PYTHON 3

The print Function

As shown in the earlier example, Python 3 alters the way that print works. In Python 2, print is a
special statement, as shown here:

print 'The quick brown fox jumped over the lazy dogs.'

By default, print would write to sys.stdout and append \n to the end of the string. However,
print could be used to print elsewhere with a special syntax, >>.

import sys
print >> sys.stderr, 'The quick brown fox jumped over the lazy dogs.'

In Python 3, print has been made a bit more normal. First and foremost, it is now a function,
which means it is called like a function, with parentheses.

print ('The quick brown fox jumped over the lazy dogs.')

It is still possible to print to somewhere that is not sys.stdout. The Python 3 print function takes
a keyword argument called £ile (defaulting to sys.stdout), which handles this case.

import sys
print ('The quick brown fox jumped over the lazy dogs.', file=sys.stderr)

In addition, the new print function is more flexible, because you can change the default behavior of
appending \n to the string using the end keyword argument.

print ('The quick brown fox jumped over the lazy dogs.',6 end='")
This would still print to sys.stdout, but not append \n to the end of the string before doing so.
The Python 3 print function is available in Python 2.6 and Python 2.7 in the _ future _ module.

from _ future import print function

NOTE If you are using an even older version of Python, six provides the same
functionality as six.print . (Note the trailing underscore so as not to inter-
fere with the Python keyword.) The arguments exactly match the arguments of
the print function. As a reminder, you generally do not want to attempt to do
single-source codebases that support Python 2.5 and below.

Division
In Python 2, a division (/) operation between two integers will return an int. This is a constant

source of confusion in Python 2, where most people intuitively expect division of two integers to
return a float if appropriate. Consider the following Python 2 code:

>>> 4/ 2

2

>>> 5 / 2
2

www.it-ebooks.info

http://www.it-ebooks.info/

Changes in Python 3 | 177

It is counterintuitive that 5 divided by 2 would return 2. The reason why it does is because it is
integer division. The interpreter is doing the division, getting the correct result of 2.5, and then
flooring it to get an integer to maintain type consistency. However, that is usually not what you
actually want in a dynamic language.

You get around this by ensuring that either the dividend or the divisor is a float.

>>> 5.0 / 2
2.5

Python 3 fixes this behavior by having integer division always return a float, which is generally
what you want in a dynamic language.

>>> 4/ 2

2.0

>>> 5 / 2
2.5

If you want to get an integer back from a division operation, use the “floor division” operator, //,
which always returns an integer regardless of the type of the arguments provided.

>>> 4 /) 2

2

>>> 5 /) 2
2

The Python 3 behavior is preferable, but backward incompatible. If you are writing code that must
run in both environments, the _ future module is once again your friend. You can opt into the
Python 3 behavior in Python 2.6 and Python 2.7 by using the following:

from _ future import division

This is the recommended mechanism for a single-source approach.

Absolute and Relative Imports

The primary way that packages are referenced for use in your Python modules is through importing.
However, what actually happens when you issue import foo? It depends.

In Python 2, the first thing that the interpreter will try (after the standard library) is a relative
import. This means that it will look for a module called foo.py (or foo/ _init .py) in the same
directory as the module that is attempting the import. If it finds one, it is done; it runs this module
and makes its attributes available, namespaced under foo.

If the interpreter does not find such a file (by far the most common case), then it begins looking in
every directory on sys.path to find a matching module. Under normal circumstances, this will
include any installed Python packages. This kind of import is called an absolute import.

This behavior can be problematic. For example, simply adding a duplicatively named module in a
directory can cause other modules in that directory to break, because suddenly they are performing
relative imports rather than absolute ones.

www.it-ebooks.info

http://www.it-ebooks.info/

178

CHAPTER 10 PYTHON 2 VERSUS PYTHON 3

Python 3 alters this behavior by simply removing relative imports as a possibility. All imports are
absolute imports. If you want a relative import (which is occasionally desirable), you must explicitly
ask for one using a special syntax, which is a leading period.

import .foo

This tells the interpreter to import a module named foo that is a sibling of the current module. In
this case, only a relative import is attempted at all. (An import from the standard library is not, nor
is an import from modules on sys.path.) The interpreter also provides a . . syntax for reaching up
in the directory tree.

The Python 3 behavior here is a safer and more explicit approach, but breaks backward compatibil-
ity. If you are maintaining an application or distribution that runs under either Python 2 or Python
3, you can opt into the Python 3 behavior using the future module, as shown here:

from _ future_ import absolute_ import
This will cause your module to use the Python 3 import behavior. Only the standard library or

installed modules are considered as places from which to import a module, unless the explicit
relative import syntax is used (in which case, only it is considered).

Removal of “Old-Style” Classes

Python 2.2 introduced what were at the time referred to as new-style classes. Essentially, these were
an attempt to fix certain issues with class hierarchies in Python (in particular, method-resolution
order in multiple inheritance cases was broken), unify the data model, and introduce some new
features (such as super).

In order to preserve backward compatibility with older versions of Python, the interpreter required
opting in. Classes in Python 2 were old-style by default.

>>> class Foo:
pass

>>> type (Foo)
<type 'classobj's>

You could create a new-style class by explicitly inheriting a class from any new-style class, most
notably object, which was the top of the new-style class tree.

>>> class Foo(object) :
pass

>>> type (Foo)
<type 'type'>

In Python 3, old-style classes have been entirely removed. The few old-style classes that remain in
the Python 2 standard library have all been converted to new-style classes. Explicitly inheriting
classes from object is still allowed, but no longer necessary.

You may notice that the examples in this book (including those that are explicitly Python 3 code)
all explicitly inherit from object. If you are writing code specifically for Python 3, you do not
need to do this. However, if you are writing code that should run in either a Python 2 or Python 3

www.it-ebooks.info

http://www.it-ebooks.info/

Changes in Python 3 | 179

environment, you should simply continue to explicitly subclass object as you did in Python 2 code.
This still continues to work in Python 3, and means that these classes are always new-style, regard-
less of which environment they run under.

If you are performing tests to determine whether a variable is a class, six makes available six
.class_types. On Python 2, six.class_types is a tuple with type and classobj, whereas on
Python 3 it is a tuple containing only type.

Metaclass Syntax

Python 3 also alters the syntax for assigning a custom metaclass to a class. In Python 2, a custom
metaclass was assigned to a class using the metaclass attribute.

class Foo(object) :
__metaclass__ = FooMeta

In Python 3, the metaclass has become part of the class declaration itself.

class Foo(object, metaclass=FooMeta) :
pass

These two syntaxes are incompatible. You are unable to use metaclass as a keyword in a class
declaration in Python 2, and using a _metaclass _ attribute will do nothing in Python 3.

The six library provides a solution to this problem. It makes available two separate mechanisms
(six.with_metaclass and six.add metaclass) for assigning a metaclass to a class as you create it.

six.with_metaclass

The six.with metaclass function simply takes the desired metaclass and all of the base classes,
and returns a stub class from which the new class inherits. Syntactically, it is used like this:

class Foo(six.with metaclass(FooMeta, object)):
pass

What six is doing under the hood here is creating an empty class that subclasses object and

has the FooMeta metaclass. It is returning that class, which is then the sole class from which Foo
inherits. This causes Foo to have the FooMeta metaclass (on both Python 2 and Python 3) and the
appropriate parent classes, but adds a trivial additional base class (the stub class) under the hood.

You can observe this in action by looking at the method resolution order for the new class.

>>> import six

>>>

>>> class FooMeta (type) :
pass

>>> class Foo(six.with metaclass (FooMeta, object)):
pass

>>> Foo. mro

(<class '__maIE__.Foo'>, <class 'six.NewBase's>, <type 'object's)

www.it-ebooks.info

http://www.it-ebooks.info/

180 | CHAPTER 10 PYTHON 2 VERSUS PYTHON 3

Pay particular attention to that center class in the method resolution order: six.NewBase. That
is the stub class that six created. It subclasses object (as you told it to in your call to six.with
metaclass). If you inspect it, you will see it is where the FooMeta metaclass is being picked up.

>>> NewBase = Foo._ mro_ [1]

>>> NewBase

<class 'six.NewBase'>

>>> type (NewBase)
<class '_main__.FooMeta's>

Indeed, inspecting the Foo class reveals that it, too, is a FooMeta, because it inherits from NewBase,
which is also a FooMeta.

>>> type (Foo)
<class ' main_.FooMeta's>

six.add_metaclass

The six module also provides add_metaclass, which achieves the same goal somewhat differently.
The first difference is in the APL. add metaclass is used as a class decorator.

@six.add metaclass (FooMeta)
class Foo(object) :
pass

The result here is essentially the same. You can observe this by checking the type of Foo and see that
it is a FooMeta.

>>> type (Foo)
<class ' main_ .FooMeta'>

However, the way in which this gets done under the hood is different. While with metaclass per-
forms its magic by creating a stub class and placing it in the class hierarchy, add metaclass avoids
this. There is no stub class in the method resolution order when you use this method.

>>> Foo. mro

(<class ‘_maE_.Foo‘>, <type 'object's)

The way that add_metaclass works under the hood is that the class is ultimately constructed twice.
First, a “normal” class is created, and then the decorator receives that class and replaces it with a
class constructed with the appropriate metaclass, which it then returns. This is slightly less efficient,
but ends with a slightly cleaner result.

Exception Syntax

Much like it did with print, Python 3 changes the syntax for exceptions in order to remove an
unusual (and somewhat arbitrary) syntax.

Under Python 2, the syntax to raise an exception originally looked like this:
raise ValueError, 'Invalid value.'

What happens when you issue this statement in Python 2? The interpreter creates a new valueError
object and sends the string as its only argument. Once the object is created, the interpreter raises the
exception.

www.it-ebooks.info

mailto:@six.add_metaclass
http://www.it-ebooks.info/

Changes in Python 3 | 181

In other words, what is really happening is that it is simply a call to create a new instance of a class
(in this case, valueError). Therefore, it should look like the following, and in Python 3, it does.
The unusual syntax with the comma has been removed in favor of a direct object instantiation.

raise ValueError ('Invalid value.')

Because exceptions are just objects (that happen to subclass Exception), and because it was already
valid in Python 2 to raise exception objects, the Python 3 syntax shown here works without any
modification in Python 2.

You should simply use this syntax all the time, even for code exclusive to Python 2. This means you
no longer need to worry about this distinction.

Handling Exceptions

In addition to changing the syntax for how exceptions are raised, Python 3 also introduces a new
syntax for how exceptions are handled. In Python 2, the except statement looked something like
this (again, note the comma):
try:
raise ValueError ('Invalid value.')

except ValueError, ex:
print ('%s' % ex)

Python 3 alters this syntax to make it slightly clearer. The comma in Python 2 is replaced with the
as keyword (which was introduced for other, unrelated purposes in Python 2.5).
try:
raise ValueError ('Invalid value.')
except ValueError as ex:

°

print ('%s' % ex)

The Python 3 syntax shown here is also valid in Python 2.6 and Python 2.7. If you are writing
code that only needs to run on Python 2.6 or later, you should use the as keyword in lieu of the
old syntax.

Exception Chaining

Python 3 also adds an important new feature to its exception handling, which is exception chaining.
Essentially, it is sometimes the case that, while the interpreter is handling one exception (in an except
clause), another exception is raised. In Python 2, all information about the original exception is lost.

In Python 3, this is no longer the case. When the second exception is raised, it is given a
_ context__ attribute with the original exception.

Additionally, Python 3 provides a mechanism to explicitly specify another exception as a “cause”
foranexcepﬁon,uﬂngzane“rgnnax:raise...from.

raise DatabaseError ('Could not write') from IOError ('Could not open file.')
This code would create the DatabaseError exception and the I0Error exception. The latter would be
assigned as the cause of the former. How this works is that exceptions in Python 3 now have a

__cause__ attribute, normally set to None, and that is set to the appropriate exception when this syntax
is invoked. The cause _ attribute is considered to take precedence over the context attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

182

| CHAPTER10 PYTHON 2 VERSUS PYTHON 3

When is an appropriate time to use this? The most common case for a situation like this is in frame-
works that implement multiple backends for data storage, task execution, or the like, but want to
expose a common error class so that the programmer using the framework only has to deal with one
type of exception. In Python 2, such a model required that you simply lose the exception data under-
neath, but in Python 3, it is retained.

Unfortunately, Python 2 does not support such exception chaining at all, and raise. . .fromis not
valid syntax in Python 2. The six library, however, provides six.raise from. It takes two argu-
ments (the two exceptions), and will attach the exception context in Python 3 while simply ignoring
the second argument in Python 2. If you are writing code that should run in both environments and
want to take advantage of exception chaining in Python 3, you should use six.raise from.

Dictionary Methods

The dict class in Python 2 includes three methods that change in Python 3: keys, values, and
items. In Python 2, each of these methods returns a 1ist object containing the appropriate
contents.

>>> d = {'foo': 'bar'}

>>> d.keys ()
["foo']

This is completely fine on small dictionaries, but can present a problem on larger ones (especially
with values and items), because you are making an in-memory copy of what can potentially be a
large amount of data.

In most cases, a copy is not what you need. You simply want to iterate over the requested data. A
generator (see Chapter 3, “Generators”) is a much better solution for this task. In fact, Python 2
provides such generators, which are called iterkeys, itervalues, and iteritems.

>>> d = {'foo': 'bar'}

>>> gen = d.iterkeys()

>>> gen

<dictionary-keyiterator object at 0x10732d7e0>

>>> next (gen)

'foo!

>>> next (gen)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
Stoplteration

Additionally, Python 2 also provides views for each of these, called viewkeys, viewvalues, and
viewitems. These view objects simply refer to the original dictionary. The result is that if the
original dictionary changes, the views also change.

In Python 3, only the views remain, and the methods that return a 1ist as well as the methods
that return only a generator have been removed (the views serve as generators also). In Python 3,
however, the view methods now use the original method names of keys, values, and items.

If you are writing code that is intended to run under both Python 2 and Python 3, the six module
provides six.viewkeys, six.viewvalues, and six.viewitems, which map to the appropriate
methods on both Python 2 and Python 3.

www.it-ebooks.info

http://www.it-ebooks.info/

Changes in Python 3 | 183

Function Methods

Python 2 and Python 3 both provide ways to inspect the properties of functions, such as their
names, the code within them, and the arguments that they take. The recommended way to do this is
by using the inspect module, but code that interacts with function objects directly is quite
common, and, therefore, the six module provides an interface to it.

Functions in Python have several attributes that were renamed in Python 2.6 (not Python 3.0).
Before this point, these attributes were considered to be a private API, so the Python developers
decided that allowing the attributes to be renamed in Python 2.6 was acceptable.

The Python 2.5 attribute names were func_closure, func_code, func_defaults, and func_
globals. In Python 2.6, these are renamed to remove the func_ prefix, and instead use double
underscores (for example, closure).

Consider the following defaults tuple for a simple function:

>>> def foo(x=5):
return x + 3

>>> foo. defaults
(5,)

This tells you that the first optional argument has a default of 5. Because there is only one optional
argument, there is only one element in the tuple.

The six module provides aliases that will return the correct attribute regardless of what version of
Python you are running. These are six.get function closure, six.get function code,
six.get function defaults, and six.get function globals. Each takes the function as its
argument, as shown here:

>>> import six
>>> six.get_function defaults(foo)
(5,)

Iterators

Python 3 changes the structure of iterators slightly. Under Python 2, iterators were expected to have
a next method that takes no arguments. In Python 3, this becomes _next .

If you need an iterator that runs correctly under Python 2 and Python 3, the correct solution is to
have a next method that does nothing but call _next__, such as this one:
class CompatibleIterator (object) :

def next (self):
return self. next ()

Any class that subclasses compatibleIterator will now receive a next method that does nothing
but call _next , which will work properly in both Python 2 and Python 3.

However, the six module actually provides such a class, six.Iterator. In fact, it works even
better than the previous example by providing this implementation on Python 2, but simply aliasing
to object on Python 3.

www.it-ebooks.info

http://www.it-ebooks.info/

184

| CHAPTER10 PYTHON 2 VERSUS PYTHON 3

Therefore, if you are building iterators that must run under both Python 2 and Python 3, have them
subclass six.Iterator, and simply definea next method and 7ot a next method.

STANDARD LIBRARY RELOCATIONS

In addition to providing several new features and changes in syntax, Python 3 also moves several
modules around within the standard library.

Generally, six provides a unified interface to get at the correct module if you are maintaining code
that should run under both Python 2 and Python 3. These live in six.moves.

Merging “Fast” Modules

io

Two modules, pickle and stringIo in Python 2, have two functionally identical copies within the
Python 2 standard library. The first is a Python implementation, and the second is a faster imple-
mentation written in C.

Python 3 merges both of these together so that there is only a single module, and so developers do
not have to think about whether they are using the C implementation or the Python implementation
of a particular library. (Such details usually should not be important when using a library.)

The stringT0 and cStringIo modules in Python 2 are merged into a single module, io.

To facilitate running a single module in both Python2 and Python 3, six provides
six.moves.cStringIo, which aliases the class (not the module). Therefore, six.moves.cStringIo
is equivalent to cStringI0.StringIo on Python 2, and io.StringIo on Python 3.

For example, the following two imports are equivalent in Python 3:

>>> from io import StringIO
>>> from six.moves.cStringIO import StringIO

pickle

The pickle module is handled similarly. Python 2 provides both the pickle and the cPickle mod-
ules, with the latter generally being substantially faster. Python 3 merges the two together under the
name pickle. Importing from cPickle is no longer valid.

Again, six provides an alias to the correct thing, regardless of which version of Python you are
running. However, in this case, six.moves.cPickle aliases the module rather than the class. This
allows you to import particular methods from the pickle module.

The following two lines of code are equivalent in Python 3:

>>> import pickle
>>> from six.moves import cPickle as pickle

www.it-ebooks.info

http://www.it-ebooks.info/

Standard Library Relocations | 185

The URL Modules

Python 2 has three modules for working with URLs: urllib, urllib2, and urlparse. What
belonged in each is one of the great mysteries of life.

In actual practice, these are commonly needed together, so Python 3 has completely re-organized
these modules under a single module: ur11ib. The bulk of the methods from the uriparse module
(which primarily concerned itself with reading URLs and breaking them up into their individual
component pieces) now live in urllib.parse.

Additionally, several methods that were really about parsing (such as quote and unquote) have been
moved from urllib into urllib.parse.

The reorganized ur11ib module in Python 3 contains four submodules: error, parse, request,
and response. The six module provides six.moves.url1lib with the same four submodules, which
collect the appropriate methods as they are organized in Python 3.

If you are writing code that should run under either Python 2 or Python 3, and you are using any-
thing under ur11ib or its Python 2 cousins, you should use six.moves.urllib.

Renames

Python 3 also renames certain modules, as well as certain built-in functions. Table 10-1 shows a list
of common renamed or moved functions, as well as the six.moves function that is an alias to both.

TABLE 10-1 Common Renamed or Moved Functions

PYTHON 3 PYTHON 2 six.moves
configparser ConfigParser Configparser
filter itertools.ifilter filter

input raw_input input

map itertools.imap map

range Xrange range
functools.reduce reduce reduce
socketserver SocketServer socketserver
zip itertools.izip zip

Other Package Reorganizations

Additionally, many other packages have been reorganized between Python 2 and Python 3, but the
less common ones do not have aliases within six. These include packages such as xml and tkinter.

www.it-ebooks.info

http://www.it-ebooks.info/

186

| CHAPTER 10 PYTHON 2 VERSUS PYTHON 3

If you are writing a single-source implementation using these, consult the package documentation
for information on what items have been moved around.

If you encounter a module or attribute that has been moved, you can tell six.moves about it by
using the six.add move function. If a module has been moved, send a six.MovedModule object
to add_move.

The six.MovedModule constructor takes three arguments: the name of the move (and how it will be
referenced when importing from six.moves), and then the old module name and new module name,
both as strings.

For example, this will cause six.moves.ttk to be an alias of ttk in Python 2 and tkinter.ttk in
Python 3:

>>> import six
>>> six.add move (MovedModule ('ttk', 'ttk', ‘'tkinter.ttk'))

If an attribute within a module is moved, send a six.Movedattribute object to six.add move
instead. The MovedAttribute constructor takes two additional arguments, which are the old and
new attribute names, as strings.

VERSION DETECTION

Occasionally, you will end up in situations where you encounter something that works differently
on Python 2 and Python 3, and there is no easy interface to make your code be the same on both
versions.

In such cases, the six module provides two constants, six.Py2 and six.Py3. These are set to True
or False, depending on which version of Python is currently running.

SUMMARY

Python 3 is a substantial step forward over Python 2. It makes the language cleaner and faster. On
the other hand, because of the backward-incompatibility issues, the Python community has been
slow to adopt Python 3.

If you are writing Python 2 code, consider writing it in such a way that it will run unaltered in both
Python 2 and Python 3. This will be of huge benefit to you in the future when, eventually, it comes
time to port to Python 3.

Additionally, this is a good place to emphasize the importance of automated testing. You are writing
code that runs under very different conditions, and you must be as sure as possible that it works the
same way under each environment. The way to do this is by having a robust unit test suite, which
can automatically run in all supported environments. A functional test suite is probably a prerequi-
site for attempting to port from Python 2 to Python 3, and it is also a requirement to have a man-
ageable single-source repository of code that runs in both environments.

Chapter 11 examines testing in more detail, including how to test in multiple environments.

www.it-ebooks.info

http://www.it-ebooks.info/

11

Unit Testing

When you think about testing the code that you write, the first thing that probably comes to
mind is simply running your program directly. If your program executes, you at least know
that you do not have any syntax errors (provided every module was imported).

Similarly, if you provide appropriate inputs, and do not get a traceback, you know that your
program completes successfully with those inputs. And, if the result matches the result you
expect, that is additional inductive evidence that your program works.

This has a couple of key limitations, though. The first is that for a non-trivial program, it
is not possible to test every scenario. It is impossible to avoid this limitation, although it is
important to be as complete as possible when thinking through potential scenarios to test.

The second limitation (and the one that the bulk of this chapter covers) is time. For most
applications, it is not practical to manually test every scenario you imagine for every change
that you ever make to your program, because iterating over these scenarios is time-consuming.

It is possible, however, to ameliorate this limitation somewhat by automating your tests. An
automated test suite can run while you are absent or working on something else, providing a
significant time savings and making it much easier to test your work early and often.

This chapter explores some of the world of testing. Specifically, it focuses on unit testing using
the built-in tools provided by the Python standard library (such as unittest and mock), and
some common packages available for testing.

THE TESTING CONTINUUM

So, what is a unit test exactly? Furthermore, how does it differ between a functional test or an
integration test or some other kind of test? To answer this, this chapter discusses two different
testing scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

188

| CHAPTER 11 UNIT TESTING

The Copied Ecosystem

First, consider a very complete testing environment. If you are writing an application that primar-
ily runs on servers, this might entail a “staging” server that has a copy of relevant data, and where
potentially breaking actions can be performed safely. For a script or desktop application, the
principle is the same. It runs in an area with a copy of anything it must touch or alter.

In this scenario, everything your program must do mimics what it does in its actual live environment.
If you connect to a particular type of database, that database is still present in your test environment
(just at a different location). If you get data from a web service, you still make that same request.

Essentially, in the copied ecosystem, any external dependencies your program relies on must still be
present and set up in an identical way.

This type of testing scenario is designed not only to test specific code being worked on, but also
to test that the entire ecosystem structure that is put in place is viable. Any data that is passed
back and forth between different components of your application is actually passed in exactly
the same way.

Automated tests that are run against a copied ecosystem such as this are generally called system
tests. This term signifies the complete duplicated ecosystem under which these tests run. This kind
of test is designed not only to test your specific code, but also to detect breaking changes in the
external environment.

The Isolated Environment

Another very distinct type of test is one that is intended to test a very specific block of code, and to
do so in an isolated environment.

In a copied ecosystem, any external requirements and dependencies (such as a database, external
service, or the like) are all duplicated. On the other hand, tests intended to be run in an isolated
environment do so generally by hand-waving the interactions between the tested code and the
external dependencies, focusing only on what the actual code does.

This sort of hand wave is done by stipulating that an external service or dependency received a given
input and returned a given output. The purpose of this kind of test is explicitly not to test the interac-
tion between your application and the other service. Rather, it is to test what your application does
with the data it receives from that service.

For example, consider a function that determines a person’s age at the time of his or her wedding. It
first gets information about the person (birthday and anniversary) from an external database, and
then computes the delta between the two dates to determine the person’s age at the time.

Such a function might look like this:

def calculate age at wedding(person_id) :
"nnCalculate the age of a person at his or her wedding, given the
ID of the person in the database.
nmnn
Get the person from the database, and pull out the birthday
and anniversary datetime.date objects.
person = get person from db(person id)

www.it-ebooks.info

http://www.it-ebooks.info/

The Testing Continuum | 189

anniversary = person['anniversary']
birthday = person['birthday']

Calculate the age of the person on his or her wedding day.
age = anniversary.year - birthday.year

If the birthday occurs later in the year than the anniversary, then
subtract one from the age.
if birthday.replace(year=anniversary.year) > anniversary:

age -= 1

Done; return the age.
return age

Of course, if you try to actually run this function, it will fail. This function depends on another
function, get_person_from_db, which is not defined in this example. You intuitively understand
from reading the comments and code around it that it gets a specific type of record from a database
and returns a dictionary-like object.

When testing a function like this, a copied ecosystem would simply reproduce the database, pull a
person record with a particular ID, and test that the function returns the expected age. In contrast,
a test in an isolated environment wants to avoid dealing with the database at all. An isolated envi-
ronment test would declare that you got a particular record, and test the remainder of the function
against that record.

This kind of test, which seeks to isolate the code being tested from the rest of the world (and even
sometimes the rest of the application itself) is called a unit test.

Advantages and Disadvantages

Both of these fundamental types of tests have advantages and disadvantages, and most applications
must have some of both types of tests as part of a robust testing framework.

Speed

One of the most important advantages to unit tests that run in an isolated environment is speed. Tests
that run against a copied ecosystem often have long setup and teardown processes. Furthermore, the
I/0 required to pass data between the various components is often one of the slowest aspects of your
application.

By contrast, tests that run in an isolated environment are usually extremely fast. In the previous
example, the time it takes to do the arithmetic to determine this person’s age is far less (by several
orders of magnitude) than the time it takes to ask the database for the row corresponding to the
person’s ID and to pass the data over the pipe.

Having a set of isolated tests that run very fast is valuable, because you are able to run them

extremely often and get feedback from running those tests very quickly.

Interactivity

The primary reason why isolated tests are so fast is precisely because they are isolated. Isolated tests
stipulate the interactions between various services involved in powering your application.

www.it-ebooks.info

http://www.it-ebooks.info/

190 | CHAPTER 11 UNIT TESTING

However, these interactions require testing, too. This is why you also need tests in a copied ecosys-
tem. This enables you to ensure that these services continue to interact the way that you expect.

TESTING CODE

The focus of this chapter is specifically on unit testing. Therefore, how can you write a test that runs
the calculate age at wedding function in the previous example ? Your goal is to not actually talk
to a database to get a record of a person, so you must test the function and provide that information.

Code Layout

In many cases, the best and by far the most straightforward way to handle testing such a function is
simply to organize your code in a way that makes it easily testable.

In the example of the calculate age at wedding function, you may not need to retrieve a record
from the database at all. Depending on your application, it might be fine (and even preferable) to
have the function simply accept the full record, rather than the person_id variable. In other words,
the baton handoff to this function would not happen until the database call already occurred, and
the only thing this function would do would be to perform the arithmetic.

Reorganizing in this way would also make the function less opinionated about what kind of data it
gets. Any dictionary-like object with the appropriate keys would do.

The following trimmed-down function only does the calculation of the age, and is expected to
receive a full person record (where it gets it from is not relevant).

def calculate age at wedding(person) :
""rCalculate the age of a person at his or her wedding, given the
record of the person as a dictionary-like object.
Pull out the birthday and anniversary datetime.date objects.
anniversary = person/['anniversary']
birthday = person['birthday']

Calculate the age of the person on his or her wedding day.
age = anniversary.year - birthday.year

If the birthday occurs later in the year than the anniversary, then
subtract one from the age.
if birthday.replace(year=anniversary.year) > anniversary:

age -=1

Done; return the age.
return age

In most ways, this function is almost exactly the same as the previous version. The only thing that
has changed is that the call to get_person_from_db has been removed (and the comments and doc-
string updated to match).

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Code | 191

Testing the Function

When it comes to testing this function, the problem is now very simple. Just pass a dictionary and
make sure you get the correct result.

>>> from datetime import date

>>>

>>> person = {'anniversary': date (2012, 4, 21),
. 'birthday': date(1986, 6, 15)}

>>> age = calculate age at wedding(person)

>>> age

25

Of course, a couple limitations exist here. First, this is still something that was run manually in the
interactive terminal. The value of a unit testing suite is that you run it in an automated fashion.

A second (and even more important) limitation to recognize is that this tests only one input against
only one output. Suppose you gutted the function the next day and replaced it with the following:

def calculate _age at wedding(*args, **kwargs):
return 25

The test would still pass, even though the function would be extremely broken.

Indeed, the test does not even cover some sections of this function. After all, there is an if block in
the function based on whether or not the birthday falls before or after the anniversary in a calendar
year. At a minimum, you would want to ensure that your test takes both pathways.

The following test function handles this:

from datetime import date

def test calculate age at wedding() :
"""Establish that the “calculate age_at wedding™ function seems to
calculate a person's age at his wedding correctly, given a
dictionary-like object representing a person.
nmnn
Assert that if the anniversary falls before the birthday in a
calendar year, that the calculation is done properly.
person = {'anniversary': date(2012, 4, 21),
'birthday': date(1986, 6, 15)}
age = calculate age at wedding(person)
assert age == 25, 'Expected age 25, got %d.' % age

Assert that if the anniversary falls after the birthday in a calendar
year, that the calculation is done properly.
person = {'anniversary': date (1969, 8, 11),
'birthday': date (1945, 2, 15)}
age = calculate age at wedding(person)
assert age == 24, 'Expected age 24, got %d.' % age

Now you have a function that can be run by an automated process. Python includes a test runner,
which is explored shortly. Also, this test covers a couple of different permutations of the function.

www.it-ebooks.info

http://www.it-ebooks.info/

192

| CHAPTER 11 UNIT TESTING

It certainly does not cover every possible input (it would be impossible to do that), but it provides a
slightly more complete sanity check.

However, always remember that the tests are not an exhaustive check. They only test the inputs
and outputs that you provide. For example, this test function says nothing about what would
happen if the calculate age at wedding function were sent something other than a dictionary,
or if it were sent a dictionary with the wrong keys, or if datetime objects were used instead of
date objects, or if you were to send an anniversary date that is earlier than the birth date, or any
number of other permutations. This is fine. It is simply important to understand what the limits of
your tests are.

The assert Statement

What about the assert statement that the test function is using? Consider what a unit test funda-
mentally is. A unit test is an assertion or a set of assertions. In this case, you assert that if you send a
properly formatted dictionary with specific dates, you get a specific integer result.

In Python, assert is a keyword, and assert statements are used almost exclusively for testing
(although they need not appear exclusively in test code). The assert statement expects the expres-
sion sent to it to evaluate to True. If it does, the assert statement does nothing; if it does not,
AssertionError is raised. You can optionally provide a custom error message to be raised with the
AssertionError, as the previous example does.

When writing tests, you want to use AssertionError as the exception to be raised when a test fails,
either by raising it directly, or (usually) by using the assert statement to assert the test’s pass con-
ditions, because all of the unit testing frameworks will catch the error and handle it appropriately
when compiling test failures.

UNIT TESTING FRAMEWORKS

Now that you have your test as a function, the next step is to set up a process to run that test (as
well as any others you may write to test the remainder of the application).

Several unit testing frameworks, such as py.test and nose, are available as third-party packages.
However, the Python standard library also ships with a quite robust unit testing framework, avail-
able under the unittest module in the standard library.

Consider the testing function from the previous example, but structured to be run by the unittest
module.

import unittest
from datetime import date

class Tests(unittest.TestCase):
def test calculate age at wedding(self) :
"""Establish that the “calculate_age_ at_wedding~ function seems
to calculate a person's age at his wedding correctly, given
a dictionary-like object representing a person.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing Frameworks | 193

nnn

Assert that if the anniversary falls before the birthday
in a calendar year, that the calculation is done properly.
person = {'anniversary': date(2012, 4, 21),

'birthday': date (1986, 6, 15)}
age = calculate age at wedding(person)
self.assertEqual (age, 25)

Assert that if the anniversary falls after the birthday
in a calendar year, that the calculation is done properly.
person = {'anniversary': date (1969, 8, 11),
'birthday': date (1945, 2, 15)}
age = calculate age at wedding(person)
self.assertEqual (age, 24)

In most ways, this looks the same as what you saw before. However, it has a couple of key differ-
ences. The first difference is that you now have a class, which subclasses unittest.Testcase. The
unittest module expects to find tests grouped using unittest.TestCase subclasses. Each test
must be a function whose name begins with test. As a corollary, because the test itself is now a
method of the class rather than an unbound function, it now has self as an argument.

The other change is that the raw assert statements have been replaced with calls to self.assert
Equal. The unittest.TestCase class provides a number of wrappers around assert that standard-
ize error messages and provide some other boilerplate.

Running Unit Tests

Now it is time to actually run this test within the unittest framework. To do this, save both the
function and the test class in a single module, such as wedding.py.

The Python interpreter provides a flag, -m, which takes a module in the standard library or on
sys.path, and runs it as a script. The unittest module supports being run in this way, and accepts
the Python module to be tested. (If you named your module wedding. py, this would be wedding.)

$ python -m unittest wedding

Ran 1 test in 0.000s

OK

What is happening here? The wedding module was loaded, and the unittest module found a
unittest.TestCase subclass. It instantiated the class and then ran every method beginning with
the word test, which the test calculate age at wedding method does.

The unittest output prints a period character (.) for a successful test, or a letter for failures (),
errors (E), and a few other cases, such as tests that are intentionally skipped (s). Because there was
only one test, and it was successful, you see a single . character followed by the concluding output.

Failures

You can observe what happens when a test fails by simply changing the test’s condition so that it
will intentionally fail.

www.it-ebooks.info

http://www.it-ebooks.info/

194 | CHAPTER 11 UNIT TESTING

To illustrate this, add the following method to your Tests class:

def test failure case(self):
"""Assert a wrong age, and fail.m""
person = {'anniversary': date(2012, 4, 21),
'birthday': date (1986, 6, 15)}
age = calculate age at wedding(person)
self.assertEqual (age, 99)

This is a similar test, except that it asserts that the age is 99, which is wrong. Observe what happens
if you run tests on the module now:

$ python -m unittest wedding

FAIL: test failure case (wedding.Tests)
Assert a wrong age, and fail.

Traceback (most recent call last):
File "wedding.py", line 50, in test failure case
self.assertEqual (age, 99)
AssertionError: 25 != 99

Ran 2 tests in 0.000s

FAILED (failures=1)

Now you have two tests. You have the main test from before, which still passes, and a second test
with a bogus age, which fails.

If you ran the function directly, you would just get a standard traceback when aAssertionError is
raised. However, the unittest module actually catches this error and tracks the failure, and prints
the output nicely at the end of the test run.

This may seem like an unimportant distinction at this point, but if you have hundreds of tests, this
difference matters. A Python module will terminate when it comes across the first uncaught excep-
tion, so your test run would stop on the first failure. When you’re using unittest, the tests continue
to run, and you get all the failures at once at the end.

The unittest output also includes the test function and the beginning of the docstring, so it is easy
to go find the failing test and investigate, as well as the full traceback, so you still have the same
insight into the offending code.

Errors

Only a small difference distinguishes an error from a failure. A test that raises AssertionError is
considered to have failed, whereas a test that raises any exception other than AssertionError is
considered to be in error.

Consider what would happen if the person variable being tested is an empty dictionary. Add the
following function to your Tests class in the wedding module:

def test_error case(self):
"nrAttempt to send an empty dict to the function.m"""
person = {}

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing Frameworks | 195

age = calculate age at wedding(person)
self.assertEqual (age, 25)

Now what happens when you run tests?

$ python -m unittest wedding
EF

ERROR: test error case (wedding.Tests)
Attempt to send an empty dict to the function.

Traceback (most recent call last):
File "wedding.py", line 55, in test error case
age = calculate age at wedding(person)
File "wedding.py", line 10, in calculate age at wedding
anniversary = person|['anniversary']
KeyError: 'anniversary'

FAIL: test failure case (wedding.Tests)
Assert a wrong age, and fail.

Traceback (most recent call last):
File "wedding.py", line 50, in test failure case
self.assertEqual (age, 99)
AssertionError: 25 != 99

Ran 3 tests in 0.000s
FAILED (failures=1, errors=1)

Now you have three tests. You have the passing and failing test from earlier, and a test that is in error.
Instead of raising AssertionError, the error case raised KeyError, because the calculate age at
wedding function expected an anniversary key in the dictionary (and the key was not there).

For most practical purposes, you probably will not actually put much stock in the difference
between a failure and an error. They are simply failing tests that fail in slightly different ways.

Skipped Tests

It is also possible to mark that a test should be skipped under certain situations. For example, say
that an application is designed to run under Python 2 or Python 3, but a particular test only makes
sense in one of the two environments. Rather than have the test fail when it should not, it is possible
to declare that a test should run only under certain conditions.

The unittest module provides skipIf and skipUnless decorators that take an expression. The
skipIf decorator causes the test to be skipped if the expression it receives evaluates to True, and the
skipUnless decorator causes the test to be skipped if the expression it receives evaluates to False.
In addition, both decorators take a second, required argument, which is a string that describes why
the test was skipped.

To see skipped tests in action, add the following function to your Tests class. (To keep the output
shown here down to a reasonable size, the failure and error tests have been removed.)

www.it-ebooks.info

http://www.it-ebooks.info/

196 | CHAPTER 11 UNIT TESTING

@unittest.skipIf (True, 'This test was skipped.')
def test skipped case(self):

"wrSkip this test."""

pass

This function is decorated with unittest.skipIf. True is a valid expression in Python, and obvi-
ously evaluates to True. Now see what happens when you run the tests:

$ python -m unittest wedding

Ran 2 tests in 0.000s

OK (skipped=1)

The output for a skipped test is an s, rather than the traditional period character that denotes a test
that passed. The use of a lowercase letter rather than an uppercase one (as in F and E) signifies that
this is not an error condition, and indeed, the complete test run is considered to be a success.

Loading Tests

So far, you have run tests out of a single module, and the tests have lived in the same module where
the code that it is testing also lives. This is fine for a trivial example but entirely unfeasible for a
large application.

The unittest module understands this, and provides an extensible mechanism for programmati-
cally loading tests from a complete project tree. The default class, which is suitable for most needs,
IS unittest.TestLoader.

If you are just using the default test loading class, which is what you want most of the time, you can
trigger it by using the word discover instead of the module name to be tested.

$ python -m unittest discover

Ran 0 tests in 0.000s

OK

Where did your tests go? The test discovery follows certain rules for determining where it goes to
actually look for tests. By default, it expects all files containing tests to be named according to the
pattern test*.py.

This is what you really want to do anyway. The value of test discovery is that you can separate your
tests from the rest of your code. So, if you move the passing test itself from the wedding.py file to a
new file matching that pattern (for example, test wedding.py), the test discovery system will find
it. (Note that you must import the calculate age_at wedding function explicitly, because it is not
in the same module anymore!)

Sure enough, now the test discovery finds the tests:

$ python -m unittest discover

www.it-ebooks.info

mailto:@unittest.skipIf
http://www.it-ebooks.info/

Mocking | 197

Ran 1 test in 0.000s

OK

MOCKING

To make the calculate age at wedding function something that was capable of being easily unit
tested, recall how you had to remove part of the function. The idea was that you organize your code
to make that function easily testable by doing a database call elsewhere.

Often, organizing your code in a way that makes it easily testable is the ideal approach to this problem,
but sometimes it is not possible or wise. Instead of implicitly hand-waving certain functionality by orga-
nizing your code around atomic testing, how do you explicitly hand-wave a segment of tested code?

The answer is mocking. Mocking is the process of declaring within a test that a certain function call
should be stipulated to give a particular output, and the function call itself should be suppressed.
Additionally, you can assert that the mocked call that you expect was made in a particular way.

Beginning in Python 3.3, the unittest module ships with unittest.mock, which contains tools
for mocking. If you are using Python 3.2 or earlier, you can use the mock package, which you can
download from www.pypi.python.org.

The API between these is identical, but how you import it obviously changes. If you are using
Python 3.3, you want from unittest import mock; if you are using the installed package, you
want import mock.

Mocking a Function Call

Consider again the original function for calculate age at wedding, which included a call to
retrieve a record from an unspecified database. (If you are following along, you should create a
new file.)

def calculate age at wedding(person_ id) :
"mnCalculate the age of a person at his or her wedding, given the
ID of the person in the database.
Get the person from the database, and pull out the birthday
and anniversary datetime.date objects.
person = get person from db(person id)
anniversary = person|['anniversary']
birthday = person['birthday']

Calculate the age of the person on his or her wedding day.
age = anniversary.year - birthday.year

If the birthday occurs later in the year than the anniversary, then
subtract one from the age.
if birthday.replace(year=anniversary.year) > anniversary:

age -= 1

Done; return the age.
return age

www.it-ebooks.info

http://www.pypi.python.org
http://www.it-ebooks.info/

198

CHAPTER 11 UNIT TESTING

Before, you tested most of this function by actually changing the function itself. You reorganized the
code around ease of testability. However, you also want to be able to test code where this is either
impossible or undesirable.

First things first. You still do not actually have a get_person_from_db function, so you want to
suppress that function call. Therefore, add a function that raises an exception.

def get person from db(person_id) :
raise RuntimeError ('The real “get_person from db~ function '
'was called.')

At this point, if you actually try to run the calculate age at wedding function, you will get
a RuntimeError. This is convenient for this example because it will make it very obvious if your
mocking does not work. Your test will loudly fail.

Next comes the test. If you just try to run the same test from before, it will fail (with
RuntimeError). You need a way of getting around the get person from db call. This is where
mock comes in.

The mock module is essentially a monkey-patching library. It temporarily replaces a variable in a
given namespace with a special object called a MagicMock, and then returns the variable to its previ-
ous value after the scope of the mock is concluded. The MagicMock object itself is extremely permis-
sive. It accepts (and tracks) basically any call made to it, and returns whatever you tell it.

In this case, you want the get person from db function to be replaced with a MagicMock object
for the duration of your test.

import unittest
import sys

from datetime import date

Import mock regardless of whether it is from the standard library
or from the PyPI package.
try:
from unittest import mock
except ImportError:
import mock

class Tests(unittest.TestCase) :
def test calculate age at wedding(self) :

""wEstablish that the “calculate age at wedding™ function seems
to calculate a person's age at his wedding correctly, given
a person ID.
nmnn
Since we are mocking a name in the current module, rather than
an imported module (the common case), we need a reference to
this module to send to “mock.patch.object™.
module = sys.modules[name]

with mock.patch.object (module, 'get person from db') as m:
Ensure that the get person from db function returns
a valid dictionary.
m.return value = {'anniversary': date(2012, 4, 21),
'birthday': date (1986, 6, 15)}

www.it-ebooks.info

http://www.it-ebooks.info/

Mocking | 199

Assert that that the calculation is done properly.
age = calculate age at wedding(person id=42)
self.assertEqual (age, 25)

The big new thing going on here is the call to mock.patch.object. This is a function that can

be used either as a context manager or a decorator, and it takes two required arguments: a module
that contains the callable being mocked, and then the name of the callable as a string. In this

case, because the function and the test are all contained in a single file (which is not what you
would normally do), you must get a reference to the current module, which is always
sys.modules[_name_].

The context manager returns a MagicMock object, which is m in the previous example. Before you
can call the function being tested, however, you must specify what you expect the MagicMock to do.
In this case, you want it to return a dictionary that approximates a valid record of a person. The
return value property of the MagicMock object is what handles this. Setting it means that every
time the MagicMock is called, it will return that value. If you do not set return_value, another
MagicMock object is returned.

If you run tests on this module, you will see that the test passes. (Here, the new module is named
mock wedding.py.)

$ python -m unittest mock wedding

Ran 1 test in 0.000s

OK

Asserting Mocked Calls

This test passes, but it is still fundamentally incomplete in one important way. It mocks the function
call to get_person from db, and tests that the function does the right thing with the output.

What the test does nof do is actually verify that the baton handoff to the get person from db
function actually occurred. In some ways, this is redundant. You know the call happened, because
otherwise you would not have received the return value from the mock object. However, sometimes
you will mock function calls that do not have a return value.

Fortunately, MagicMock objects track calls made to them. Rather than just spitting out the return
value and being done, the object stores information about how many times it was called, and the sig-
nature of each call. Finally, MagicMock provides methods to assert that calls occurred in a particular
fashion.

Probably the most common method you will use for this purpose is MagicMock.assert called
once_with. This asserts two things: that the MagicMock was called once and exactly once, and that
the specified argument signature was used. Consider an augmented test function that ensures that
the get_person_from db method was called with the expected person ID:
class Tests(unittest.TestCase):
def test calculate age at wedding(self) :

""r"Establish that the “calculate age at wedding™ function seems
to calculate a person's age at his wedding correctly, given

www.it-ebooks.info

http://www.it-ebooks.info/

200 | CHAPTER 11 UNIT TESTING

a person ID.
nmnn

Since we are mocking a name in the current module, rather than
an imported module (the common case), we need a reference to

this module to send to “mock.patch.object™.

module = sys.modules[name]

with mock.patch.object (module, 'get person from db') as m:
Ensure that the get person from db function returns
a valid dictionary.
m.return value = {‘anniversary‘: date (2012, 4, 21),
'birthday': date (1986, 6, 15)}

Assert that that the calculation is done properly.
age = calculate age at wedding(person id=42)
self.assertEqual (age, 25)

Assert that the “get person from db”~ method was called
the way we expect.
m.assert called once with(42)

The thing that has changed here is that the MagicMock object is now being checked at the end to
ensure that you got the call to it that you expected. The call signature is simply a single positional
argument: 42. This is the person ID used in the test (just a few lines earlier). It is sent as a positional
argument because that is the way the argument is provided in the original function.

person = get person from db(person id)

Notice that person_id is provided as a single positional argument, so that is what the MagicMock
will record.

If you run the test, you will see that it still passes:

$ python -m unittest mock wedding

Ran 1 test in 0.000s

OK

What happens if the MagicMock’s assertions are incorrect? The tests fail with a useful failure mes-
sage, as you can see by changing the assert_called once with argument signature:

$ python -m unittest mock wedding

FAIL: test_calculate_age_at_wedding (wedding.Tests)
Establish that the “calculate age at wedding~ function seems
Traceback (most recent call last):
File "/Users/luke/Desktop/wiley/wedding.py", line 58, in
test calculate age at wedding
m.assert called once with(84)
File "/Library/Frameworks/Python.framework/Versions/3.4/1ib/python3.4/unittest
/mock.py", line 771, in assert called once with

www.it-ebooks.info

http://www.it-ebooks.info/

Mocking | 201

return self.assert called with(*args, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/3.4/1ib/python3.4/unittest
/mock.py", line 760, in assert called with
raise AssertionError(_error message()) from cause
AssertionError: Expected call: get person from db(84)
Actual call: get_person from db(42)

Ran 1 test in 0.001s

Here you are told which call the MagicMock expected to get, as well as the call it actually received.
You would get similar errors if there were no call, or more than one call.

The assert _called once with method has a close cousin, which is assert_called with. This
is identical except for the fact that it does not fail if the MagicMock has been called more than once,
and it checks the call signature against only the most recent call.

Inspecting Mocks

You can inspect MagicMock objects in several other ways to determine what occurred. You may just
want to know that it was called, or how many times it was called. You also may want to assert a
sequence of calls, or only look at part of the call’s signature.

Call Count and Status

A couple of the easiest and most straightforward questions are whether a MagicMock has been
called, and how many times it has been called.

If you just want to know whether a MagicMock has been called at all, you can check the called
property, which is set to True the first time that the MagicMock is called.

>>> from unittest import mock

>>> m = mock.MagicMock ()

>>> m.called

False

>>> m(foo="'bar")

<MagicMock name='mock()' id='4315583152"'>
>>> m.called

True

On the other hand, you may also want to know exactly how many times the MagicMock has been
called. This is available, too, as call count.

>>> from unittest import mock

>>> m = mock.MagicMock ()

>>> m.call count

0

>>> m(foo="'bar')

<MagicMock name='mock ()' 1d='4315615752"'>
>>> m.call count

1

>>> m(spam='eggs')

<MagicMock name='mock()' i1d='4315615752"'>
>>> m.call count

2

www.it-ebooks.info

http://www.it-ebooks.info/

202

| CHAPTER 11 UNIT TESTING

The MagicMock class does not have built-in methods for asserting the presence of a call or a given
Callcount,butthc assertEqual and.assertTrueInethodsthatarepartofunittest.TestCase are
more than sufficient for that task.

Multiple Calls

You may also want to assert the composition of multiple calls to a MagicMock in one fell swoop.
MagicMock objects provide the assert has calls method for this purpose.

To use assert has calls, you must understand call objects, which are provided as part of the
mock library. Whenever you make a call to a MagicMock object, it internally creates a call object
that stores the call signature (and appends it to the mock _calls list on the object). These call
objects are considered to be equivalent if the signatures match.

>>> from unittest.mock import call
>>> a = call(42)

>>> b = call(42)
>>> ¢ = call('foo')
>>> a is b

False

>>> a == Db

True

>>> a == C

False

This is actually how assert called once with and similar methods work under the hood. They
make a new call object, and then ensure that it is equivalent to the one in the mock calls list.

The assert_has_calls method takes a list (or other similar object, such as a tuple) of call objects.
It also accepts an optional keyword argument, any order, which defaults to False. If this remains
False, this means that it expects the calls to have occurred in the same sequence that they do in the
list. If it is set to True, only the presence of each call to the MagicMock is relevant, not the order of
the calls.

Here is what assert_has_calls looks like in action:

>>> from unittest.mock import MagicMock, call
>>>

>>> m = MagicMock ()

>>> m.call('a')

<MagicMock name='mock.call()' id='4370551920'>

>>> m.call('b")

<MagicMock name='mock.call()' id='4370551920'>

>>> m.call('c')

<MagicMock name='mock.call()' 1d='4370551920"'>

>>> m.call('d")

<MagicMock name='mock.call()' id='4370551920'>

>>> m.assert_has calls([call.call('b'), call.call('c')])

It is worth noting that although assert has calls does expect the calls to occur in order, it does
not require that you send it the entire list of calls. Having other calls on either end of the list is fine.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Testing Tools | 203

Inspecting Calls

Sometimes, you may not want to test the entirety of a call signature. Perhaps it is only important
that a certain argument be included. This is a little bit more difficult to do. There is no ready-made
method for a call to declare that it matches anything other than a complete call signature.

However, it is possible to inspect the call object itself and look at the arguments sent to it. The way
this works is that the call class is actually a subclass of tuple, and call objects are tuples with three
elements, the second and third of which are the call signature.

>>> from unittest.mock import call

>>> ¢ = call('foo', 'bar', spam='eggs')

>>> ¢ [1]

('foo', 'bar')

>>> c[2]

{'spam': 'eggs'}
By inspecting the call object directly, you can get a tuple of the positional arguments and a diction-
ary of the keyword arguments.

This gives you the capability to test only part of a call signature. For example, what if you want to
ensure that the string bar was one of the arguments given to the call, but you do not care about the
rest of the arguments?

>>> assert 'bar' in c[1]

>>> assert 'baz' in c[1]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AssertionError
>>> assert c[2] ['spam'] == 'eggs'

Once you have access to the positional arguments as a tuple and the keyword arguments as a dic-
tionary, testing for the presence or absence of a single argument is no different than testing for the
presence of an element in a list or dictionary.

OTHER TESTING TOOLS

Several other testing tools are available that you may want to consider using as you build out a unit
test suite in your applications.

coverage

How do you actually know what code is being tested? Ideally, you want to test as much of your code
as possible in each test run, while still maintaining a test suite that runs quickly.

If you want to know just how much of your code your test suite is exercising, you will want to use
the coverage application, which is available from www.pypi .python.org. Originally written by
Ned Batchelder, coverage is a tool that keeps track of all of the lines of code in each module that
run as your tests are running, and provides a report detailing what code did not run. Of course,
coverage runs on both Python 2 and Python 3.

www.it-ebooks.info

http://www.pypi.python.org
http://www.it-ebooks.info/

204 | CHAPTER 11 UNIT TESTING

The application works by installing a coverage script, and you use coverage run as a substitute
for python when invoking a Python script of any kind, including your unit test script. The output
will look fundamentally similar.

$ coverage run -m unittest mock wedding

Ran 1 test in 0.000s

OK

However, if you look at the directory, you will see that a .coverage file was created in the process.
This file contains information about what code in the file actually ran.

You can view this information with coverage report.

$ coverage report

Name Stmts Miss Cover
mock wedding 22 1 95%

This report shows how many statements ran and how many statements are in the file that did not
run. So, you know that one statement was omitted, but not which one. Adding -m to the command
adds output showing which lines were skipped:

$ coverage report -m

Name Stmts Miss Cover Missing
mock wedding 22 1 95% 24

Now you know that line 24 was the test that did not run. (In the example mock wedding.py file,
line 24 corresponds to the RuntimeError that is raised if the “real” get person from db function
was called.)

The coverage application can also write attractive HTML output using the coverage html com-
mand. This highlights in red the lines that did not run. Additionally, if you have a statement with
multiple branches (such as an if statement), it highlights those in yellow if only one path was taken.

tox

Many Python applications need to run on multiple versions of Python, including both Python 2 and
Python 3. If you are writing an application that runs in multiple environments (even just multiple
minor revisions), you want to run your tests against all of those environments.

Attempting to run tests manually across every environment you support is likely to be cumbersome.
If you need to do this, consider tox. Written by Holger Krekel, tox is a tool that automatically
creates virtual environments (using virtualenv) with the appropriate versions of Python (provided
you have them installed) and runs the tests within those environments.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 205

Other Test Runners

This chapter has focused primarily on the test runner provided by Python itself, but other alterna-
tives are available. Some, such as nose and py . test, are quite popular, and add numerous features
and hooks for extensibility.

These libraries are easy to adopt even if you already have a robust unit test suite, because both
support using unittest tests out of the box. However, both libraries support other ways of adding
tests to the pool.

Both of these libraries are available on www.pypi.python.org, and run on Python 2.6 and up.

SUMMARY

Unit testing is a powerful way to ensure that your code remains consistent over time. It is a useful
way to discover when your code changes, and how to make adjustments accordingly.

This is an important facet of any application. Having a robust testing suite makes it easier to detect
some bugs and makes you aware when a function’s behavior changes, thus simplifying application
maintenance.

Chapter 12 examines the optparse and argparse tools for using Python on the command-line
interface (CLI).

www.it-ebooks.info

http://www.pypi.python.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

12

CLI Tools

Python applications come in all sorts of flavors, including desktop applications, server-side
applications, scripts, scientific computing applications, and much more.

Some Python applications must function with the command-line interface (CLI). They may
need to ask for input, and receive arguments that are provided when the script is invoked.

This chapter examines optparse and argparse, the two tools that the Python standard
library provides for writing applications that are run from the CLI.

OPTPARSE

optparse is the older of the two modules provided by Python, and is nominally considered to
be deprecated as of Python 2.7 (when argparse was introduced). However, optparse is still
very widely used, and is necessary for any code intended to support Python 2.6, which is still
quite common in the Python ecosystem.

Essentially, optparse exists to provide a clear and consistent way to read arguments off of the
command line, including positional arguments, as well as options and switches.

A Simple Argument

optparse is actually quite easy to understand once you look at an example. Consider the
following simple Python script that takes an option from the CLI:

import optparse

if name == ' main_ ':
parser = optparse.OptionParser ()
options, args = parser.parse_args()

print (' '.join(args) .upper())

This script takes any number of arguments it receives, converts them to all capital letters, and
prints them back out to the CLI.

$ python echo upper.py

www.it-ebooks.info

http://www.it-ebooks.info/

208

| CHAPTER12 CLITOOLS

$ python echo upper.py foo bar baz
FOO BAR BAZ

$ python echo upper.py spam

SPAM

The next two sections break down this example.

name__ == "'__main__"

The line if name == ' main ' may be an unfamiliar idiom if you have not done much
command-line scripting (or come across it in other use cases). In Python, each module has a
__name__ attribute, which is always automatically set to the name of the module that is currently
being executed.

The value main is special. When a module is invoked directly (such as by running it on the
command line), the name__ attribute is set to this value.

Why test for this? Nearly every .py file in Python is importable as a module, and, therefore,
could be imported. In CLI scripts, you probably do not want the code to directly run in this case.
CLI scripts sometimes contain code such as calls to sys.exit () that would terminate the entire
program. This module’s option and argument-parsing behavior really only makes sense if it is
invoked directly. Therefore, this type of code should be placed beneath the if name ==

' main_ ' test.

Note that there is nothing magic about the if block; it is simply a top-level if statement. Other
top-level code will still be executed even if the if test fails. Additionally, note that it is traditional
that such tests be placed at the bottom of the file.

OptionParser

Next, consider the creation of an optionParser instance, followed by the call to its parse_args
method. The optionParser class is the primary class in the optparse module used for taking the
arguments and options sent to a CLI command, and making sense of them.

The fundamental way that this works is that you tell the optionParser instance what options you
expect and know how to address. Options are strings that start with - or --, such as -v or
--verbose. (You learn more about these shortly.) The call to parse_args iterates over all of the
options that the parser recognizes, and places them in the first variable that parse_args returns
(which is named options in the previous example). Any arguments left over are considered to be posi-
tional arguments, and are placed in the second variable (args in the previous example), which is a list.

The previous example uses no options, so everything that the parser receives is considered to be a
positional argument. The script then takes that list, joins it into a string, converts it to uppercase,
and prints it.

One thing to note is that any argument that begins with hyphens is expected to be an option,
and optparse raises an exception if you try to send an option that the parser does not recognize.
Furthermore, the exception is internally handled within optparse and calls sys.exit, so there is
no real way to catch these errors yourself.

$ python echo upper.py --foo
Usage: echo_ upper.py [options]

echo _upper.py: error: no such option: --foo

www.it-ebooks.info

http://www.it-ebooks.info/

optparse | 209

Options

Positional arguments are usually not the most intuitive way to get information to a script. They are
reasonable when you have one or two, and the script’s purpose is straightforward. However, as your
script becomes more customizable, you will generally want to use options.

Options provide the following advantages over positional arguments for many use cases:

» They can be made (and usually should be made) to be optional. Options can have sensible
default values that are used when the option is not provided.

> Options that also accept values associate a key (the name of the option) with the option
value, which enhances readability.

> Multiple options can be provided in any order.

Types of Options

A CLI script can accept two common types of options.

One type is sometimes called a flag or a switch, and is an option that does not require or accept a
value along with the option. Essentially, in these cases, it is the presence or absence of the option
that determines the script behavior.

Two common examples of such switches are --verbose and --quiet (often also provided as -v
and -q, respectively). The script executes normally if these options are absent, but does something
different (provides more or less output) if they are present. Note that you generally specify this as
--quiet, as opposed to --quiet=true or something similar. The value is implied by the presence
of the switch.

Another type of option is one that does expect a value. Most database clients accept options such
as --host, --port, and the like. These do not make sense as switches. You do not simply provide
--host and expect the database client to infer what the actual host is. You must provide the host-
name or IP address that you are connecting to.

Adding Options to OptionParser

Once you have an optionParser instance, you can add an option to it using the add_option
method. This comes after the optionParser instance is instantiated, but before parse _args,
which is the final step in the chain.

Consider first the addition of a simple switch, which does not actually expect an argument.

import optparse

if name == ' main_ ':
parser = optparse.OptionParser ()
parser.add option('-q', '--quiet',

action='store true',
dest="'quiet',
help='Suppress output.',

www.it-ebooks.info

http://www.it-ebooks.info/

210

CHAPTER 12 CLITOOLS

This would add support for a -q and --quiet switch. Note that, in CLI scripts, it is extremely
common to have a long-form and short-form version of options, and so optparse supports this
easily. By providing two different strings as positional arguments to add_option, the add_option
method understands that they are supposed to be accepted, and that they are aliases of one another.

The action keyword argument is what specifies that the --quiet flag is a flag, and does not expect
a variable. If you leave off the action keyword argument, the option is assumed to expect a value
(more on that in a moment). Setting action to store true or store false means that no value is
expected, and, if the flag is provided at all, the value is True or False, respectively.

The dest keyword argument is what decides the name of the option in Python. The name of this
particular option within the options variable is quiet. In many cases, you do not have to set this.
OptionParser infers an appropriate name based on the name of the option itself. However, it is a
good idea to always set it explicitly for readability and maintainability.

Finally, the help keyword argument sets the help text for this option. It is what a user will see if he
or she invokes your script with --help. It is wise to always provide this.

It is worth noting that optparse automatically adds a - -help option, and handles it automatically.
If you call a script with only the example option and provide --help, you get useful output.

$ python cli_script.py --help
Usage: cli_script.py [options]

Options:
-h, --help show this help message and exit
-g, --quiet Suppress output.

Options with Values

In addition to switches, sometimes you need options that actually expect values to be provided along
with the option. This does add some complexity. The biggest reason for this is that values have types
in Python, and the CLI does not have a robust concept of types. Essentially, everything is a string.

First, consider an option that accepts a string, such as a --host flag that might be sent to a database
client. This option should probably be optional. The biggest use case for database clients is connect-
ing to databases on the same machine, so localhost makes for an entirely sensible default.

Here is a complete script that does nothing but reprint the host to standard out:

import optparse

if name == ' main ':
parser = optparse.OptionParser ()
parser.add option('-H', '--host',
default='localhost',
dest='host',
help='The host to connect to. Defaults to localhost.',
type=str,

)

options, args = parser.parse_args|()

www.it-ebooks.info

http://www.it-ebooks.info/

optparse | 211

If you call this script with no arguments, you will see that the default of 1ocalhost is applicable.

$ python optparse host.py
The host is localhost.

By adding a - -host option, you override this default.

$ python optparse host.py --host 0.0.0.0
The host is 0.0.0.0.

If you fail to provide an option, optparse will complain.

$ python optparse host.py --host
Usage: optparse_host.py [options]

optparse host.py: error: --host option requires an argument

Focus on the call to add_option. Several things are different from your --quiet flag. First, you
omitted the action keyword argument. The default for this (store) simply stores the value pro-
vided. You can specify this manually if you choose to do so.

Second, you provided a type. The OptionParser instance actually infers this from the type of the
default value in most cases (although this does not work if your default value is None), so providing
it is often optional. Explicitly providing it often makes the code easier to read later. The default for
type is also str.

Finally, you provided a default. Most options should be optional, which means they must have a
sensible default. In many cases, this default may be None. In the case of the host value, you chose
localhost as a sensible default because having your client and server on the same machine is a
common use case.

One other thing is worth pointing out explicitly. The way you read the value off of the options vari-
able is not what you might expect—the host value is read as options.host. You may have expected
the options value to be provided as a dictionary, in which case options ['host '] would have

been correct. However, the options variable is provided using its own special class (called values),
and the individual options exist on this object as attributes. Note that, if you want a dictionary,
options. dict__ will provide you with the corresponding dictionary.

Non-String Values

What about values that are not strings? For example, continuing the example of a database client
of some sort, what if the script should accept a port number? Most databases run on a default port
(PostgreSQL uses 5432, MySQL uses 3306, and so on), but sometimes such services run on alter-
nate ports.

An option for a port looks similar to an option for a host.

parser.add option('-p', '--port',
default=5432,
dest="'port"',
help='The port to connect to. Defaults to 5432.',
type=int,

www.it-ebooks.info

http://www.it-ebooks.info/

212

| CHAPTER 12 CLITOOLS

The crucial difference here is that the type is now specified as int. Again, optionParser would

infer this from the fact that the default value is the integer 5432.

In this case, optionParser performs the type conversion for you, and raises an appropriate error if

it is not able to. Consider a script that takes a host and port, as shown here:

import optparse

if name == "' main ':

parser = optparse.OptionParser ()

parser.add option('-H', '--host',
default='localhost',
dest='host',
help='The host to connect to. Defaults to localhost.',
type=str,

)

parser.add option('-p', '--port',
default=5432,
dest="'port"',
help='The port to connect to. Defaults to 5432.',
type=int,

)
options, args = parser.parse_args()

print ('The host is %s, and the port is %d.' %
(options.host, options.port))

Again, invoking the script without arguments provides both default values. Because the format

string uses %d rather than %s, you know that options.port is an integer under the hood.

$ python optparse host and port.py
The host is localhost, and the port is 5432.

If you try to specify a port value that is not an integer, you get an error.

$ python optparse host and port.py --port=foo
Usage: optparse host and port.py [options]

optparse_host and port.py: error: option --port: invalid integer value: 'foo'

$ echo $?
2

And, of course, if you specify a valid integer, it overrides the default.

$ python3 optparse host and port.py --port=8000
The host is localhost, and the port is 8000.

Specifying Option Values

Several different idioms exist for how to specify option values on the command line. The optparse

module attempts to support all of them.

www.it-ebooks.info

http://www.it-ebooks.info/

optparse | 213

Short-Form Syntax

Short-form options are options that have one hyphen and a single letter, such as -q, -H, or -p. If the
option accepts a value (such as -H and -p in the previous example), it must be written immediately
after the option. There can optionally be a space between the option and the value (-Hlocalhost
and -H localhost are equivalent), and the value can optionally be enclosed by quotes (-u
localhost and -H "localhost" are equivalent). However, you cannot use an equal sign

between the short-form option and the value.

Here are four valid ways to specify an option value using the short-form syntax:

$ python optparse host and port.py -H localhost
The host is localhost, and the port is 5432.

$ python optparse host and port.py -H "localhost"
The host is localhost, and the port is 5432.

$ python optparse host and port.py -Hlocalhost
The host is localhost, and the port is 5432.

$ python optparse host and port.py -H"localhost"
The host is localhost, and the port is 5432.

The use of the equal sign in the short-form syntax causes it to be prepended to the value itself, which
is not what you want. (Note the = in the output.) For non-string options, you will usually get an
error when the parser tries and fails to convert the string to the desired type.

$ python optparse host and port.py -H=localhost
The host is =localhost, and the port is 5432.

And, in the world of the flat-out bizarre, you could have the following:

$ python optparse host and port.py -H="localhost"
The host is =localhost, and the port is 5432.

Long-Form Syntax

For the long-form format (that is, - -host instead of -H), the supported permutations are slightly
different.

There now must be some separator between the option and the option value (unlike -Hlocalhost).
This makes intuitive sense. If you provided --hostlocalhost, the parser would never be able to
figure out conclusively where the option ended and the value began. The separator can either be a
space or an equal sign (so, --host=localhost and --host localhost are equivalent).

Quotes are allowed, but optional (but you will certainly want to use them if the value has spaces).

Here are four valid ways to specify an option value using the long-form syntax:

$ python cli script.py --host localhost

The host is localhost, and the port is 5432.
$ python cli script.py --host "localhost™"
The host is localhost, and the port is 5432.
$ python cli script.py --host=localhost

The host is localhost, and the port is 5432.
$ python cli script.py --host="localhost"
The host is localhost, and the port is 5432.

www.it-ebooks.info

http://www.it-ebooks.info/

214 | CHAPTER 12 CLITOOLS

Which Syntax Should You Use?

The basic tradeoff between short-form and long-form syntax is that the former is quicker to type on
the CLI, whereas the latter is more explicit.

When you are writing CLI scripts, consider supporting both a short-form and a long-form syntax,
especially for options that are going to be used frequently. (For infrequently used options, providing
only a long-form alias is probably sufficient.)

When you are invoking CLI scripts, if you are doing so in code that is being committed to version
control and must be read and maintained over time, consider using only long-form syntax wherever
it is available. This makes the CLI command easier to intuit for the person reading the code later.

On the other hand, for one-time commands that you are typing out on a prompt, it likely does
not matter.

Positional Arguments

It is also possible to send positional arguments to optparse. Actually, any argument that is no#
attached to an option will be considered by the parser to be a positional argument, and is sent to the
args variable that is returned from parser.parse args().

import optparse

if _name_ == '_main_ ':
parser = optparse.OptionParser ()
options, args = parser.parse_args ()

print ('The sum of the numbers sent is: %d' %
sum([int (i) for i in args]))

Any arguments sent to this script are part of the args variable, and the script tries to convert them
to integers and add them together.

$ python optparse sum.py 1 2 5
The sum of the numbers sent is: 8

Of course, if you sent an argument that cannot be converted to an integer, you will get an exception.

$ python optparse sum.py 1 2 foo
Traceback (most recent call last):
File "optparse sum.py", line 8, in <module>
print ('The sum of the numbers sent is: %d' % sum([int (i) for i in argsl))
ValueError: invalid literal for int() with base 10: 'foo'

Counters

You can use a small number of other types of options besides simple flags and direct value storage.
One type that is infrequently used but is sometimes useful is a counter flag.

Most flags simply set a Boolean value to True or False, based on the presence or absence of the flag.
A related idiom, however, is to allow specifying a flag multiple times to intensify the effect.

www.it-ebooks.info

http://www.it-ebooks.info/

optparse | 215

Consider a -v flag that causes a script to be more verbose. Some programs allow -v to be speci-
fied repeatedly in order to make the script become even more verbose. For example, a popular
configuration tool called Ansible allows you to specify-v up to four times to provide increasingly
verbose output.

You do this through a different action value that you can provide to add_option. Consider
this script:

import optparse

if name == "'_ main_ ':
parser = optparse.OptionParser ()
parser.add option('-v',
action='count',
default=0,
dest="'verbosity"',
help='Be more verbose. This flag may be repeated.',

)

options, args = parser.parse_args ()

o

print ('The verbosity level is %d, ah ah ah.' % options.verbosity)

Notice that the call to add_option now specifies action="'count'. This means that the value will
be incremented by one every time the flag is sent.

You can invoke the script to easily see this in action.

$ python count script.py

The verbosity level is 0, ah ah ah.

$ python count script.py -v

The verbosity level is 1, ah ah ah.

$ python count script.py -v -v

The verbosity level is 2, ah ah ah.

$ python count script.py -vvvvvvvvvvv
The verbosity level is 11, ah ah ah.

Notice that you have two valid ways to specify the short-form option in this case: -v -v and -vv
are equivalent. This is actually true for distinct short-form options as well, provided they do not
expect a value.

It is also worth noting that explicitly specifying the default value of o is important. If you do

not specify it explicitly, OptionParser uses a default value of None, which is usually not what you
want. (In this case, the script would raise TypeError when it tries to do the string interpolation on
the last line.)

Finally, note that if you choose a default value other than o, the flag functions as an increment, not a
flat count. So, if your default value is 1, and you provide two -v flags, the value would be 3 (not 2).

List Values

Sometimes, you may want to accept multiple values for the same option, and provide them to your
script as a list. This is fundamentally similar to a count option, except that it takes a value each
time, rather than simply incrementing an integer variable.

www.it-ebooks.info

http://www.it-ebooks.info/

216 | CHAPTER 12 CLITOOLS

The following script prints usernames, one at a time:

import optparse

if name == "' main ':
parser = optparse.OptionParser ()
parser.add option('-u', '--user',
action="'append',
default=[],

dest="'users',
help='The username to be printed. Provide this multiple times to '
'print the username for multiple users.',

)

options, args = parser.parse_args()

for user in options.users:
print ('Username: %s.' % user)

Running this with no -u or --user options provided generates no output.

$ python echo usernames.py

$

However, you can provide one or more -u or --user options to the script, and regardless of how
many, the OptionParser makes them available as a list:

$ python echo usernames.py -u me

Username: me.

$ python echo usernames.py -u me -u myself
Username: me.

Username: myself.

Why Use optparse?

Even though it has been deprecated for years, the optparse module is still the most commonly used
module for parsing options. Any code that must run on Python 2.6 or earlier, or Python 3.0 through
Python 3.2, must use optparse, because its successor, argparse, is only available in Python 2.7 and
Python 3.3.

If you are writing code with CLI tools that must work across multiple versions of Python, most
likely optparse is still going to be the module you should use for several years to come. Similarly,
because many tools you will be using still rely on optparse, it is important that you be able to read
code that was designed using it.

On the other hand, be aware that optparse is not receiving future development work, because it is
still deprecated. Over time, as the window of Python versions you want to support moves, you may
decide to move work done in optparse over to argparse.

ARGPARSE

The second library that Python provides for parsing CLI arguments and options is called argparse.
The argparse module is considered to be the successor to optparse (and optparse is officially
deprecated). However, the argparse module is still quite new. It was introduced in Python 3.3 and

www.it-ebooks.info

http://www.it-ebooks.info/

argparse | 217

backported to Python 2.7. Therefore, any code that needs to run on earlier versions still must use

optparse.

In many ways, argparse is conceptually similar to optparse. The fundamental principles are the
same. You create a parser specify and options you expect along with types and sensible defaults;
then a parser parses the things it received from the CLI and groups them accordingly.

The class you instantiate to do parsing in the argparse module is ArgumentParser. Although it
uses some different syntax than optparse.OptionParser, the principles are quite similar.

The Bare Bones
A basic CLI script that does not support any actual arguments or options now looks like this:

import argparse

if name == "'_main_ ':
parser = argparse.ArgumentParser ()
args = parser.parse_args|()

print ('The script ran successfully and did nothing.')

One key difference to note, other than the renamed module and class, is that this parse_args
method does not return a two-tuple like the optparse equivalent did. Instead, it returns a single
object that contains both the positional arguments and options read by the parser.

Another difference lies in the way positional arguments are handled. In optparse, you did not
declare positional arguments. The second variable simply contained whatever was “left over” after
optparse had parsed the options you told it about. By contrast, argparse is stricter. It expects to
be told about positional arguments individually, which makes for a more useful help screen, and
also causes it to raise an error if it receives data it does not expect.

Therefore, unlike the initial optparse example, this code actually raises an error if it receives any
arguments, rather than throwing them into the “left over” bucket.

$ python argparse basic.py

The script ran successfully and did nothing.

$ python argparse basic.py foo

usage: argparse basic.py [-h]

cli script.py: error: unrecognized arguments: foo

Arguments and Options

In argparse, you add both positional arguments and options through the add argument method of
ArgumentParser objects. The interface for this is now unified, which means that positional argu-
ments in argparse have support for being a type other than str, and for having specified defaults.

Option Flags
The first kind of option is a flag, such as -v or --verbose for a verbose mode, or -q or --quiet

for a mode that suppresses most or all output. These options do not expect a value. The presence
or absence of the option determines the appropriate Boolean in the parser.

www.it-ebooks.info

http://www.it-ebooks.info/

218

| CHAPTER 12 CLITOOLS

The syntax for specifying a flag looks like this:

parser.add _argument ('-q', '--quiet',
action='store true',
dest='quiet"',
help='Suppress output.',

)

If you are familiar with optparse (or read the section on optparse earlier in this chapter), this will
look very familiar to you. Other than the method name, not much has changed so far.

First, note the action variable. This is set to store true, which is the reason why the parser will
not expect a value. Most options do not need an action to be specified (the default is store, which
stores the value it receives). The specification of store_true or store_false is the most common
way to indicate that an option is a flag and should not accept a value.

The dest keyword argument determines how to look up the parsed value (in this case, True or
False) on the object you get back when you call parse_args. The string used here will be the
attribute name on the object. (So, you would look up this one using args.quiet.) In many cases,
the dest keyword argument is optional. Argument Parser determines an intuitive name based on
the name of the option itself. However, it is useful to explicitly provide this for readability and
maintainability.

The help keyword argument determines what users get if they call your script with -h or --help.
The ArgumentParser implicitly provides a help screen attached to these switches, so you should
always specify a help on your arguments.

Alternate Prefixes

Most CLI scripts use the hyphen (-) character as the prefix for options, and this is what Argumentparser
expects by default. However, some scripts may use different characters. For example, a script that is only
intended to be run in Windows environments may prefer to use the / character, which is consistent with
many Windows command-line programs.

You can change which characters are used for prefixes by providing the prefix chars keyword
argument to the ArgumentpParser constructor, as shown here:

import argparse

if name == ' main_ ':

parser = argparse.ArgumentParser (prefix chars='/")

parser.add argument ('/q', '//quiet',
action='store_ true',
dest='quiet"',
help='Suppress output.',

)

args = parser.parse_args ()

o

print ('Quiet mode is %r.' % args.quiet)

In this example, you changed the prefix character to /. Note that this also means that the argument
itself (the one passed to add_argument) must change accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

argparse | 219

Calling this script is still straightforward. You simply must use /q or //quiet (rather than -q or
--quiet).

$ python argparse quiet.py

Quiet mode is False.

$ python argparse quiet.py /g
Quiet mode is True.

Viewing the help reflects this:

$ python argparse quiet.py /h
usage: argparse quiet.py [/h]l [/q]

optional arguments:
/h, //help show this help message and exit
/q Suppress output.

Note that, because you changed the prefix character to /, the automatically registered help com-
mand is changed along with it.

Options with Values

Options that accept values are fundamentally similar. Consider the following example of a script
that accepts a host value (such as a database client), translated into argparse:

import argparse

if name == "'_main_ ':

parser = argparse.ArgumentParser ()

parser.add argument ('-H', '--host',
default="'localhost',
dest="'host"',
help='The host to connect to. Defaults to localhost.',
type=str,

)

args = parser.parse_args|()

print ('The host is %s.' % args.host)

Again, if you are already familiar with optparse, you will likely notice just how similar this is.
The keyword arguments are the same, and they do the same thing.

The important argument to focus on here is type, which controls what Python type the value is
ultimately expected to be. It is common for this to be int or float, and a small number of other
types may also make sense.

Parsing arguments when you use argparse is slightly different from when you use optparse.
Regardless of whether you use the short-form or the long-form syntax, you can separate the option
from the value using a space or an equal sign. The short-form syntax (and only the short-form syn-
tax) also supports not separating the value from the option at all. Both the short-form and the long-
form syntax allow quotes around the value.

www.it-ebooks.info

http://www.it-ebooks.info/

220 | CHAPTER12 CLITOOLS

Therefore, all of these are equivalent:

$ python argparse args.py -Hlocalhost

The host is localhost.

$ python argparse args.py -H"localhost"

The host is localhost.

$ python argparse args.py -H=localhost

The host is localhost.

$ python argparse _args.py -H="localhost"

The host is localhost.

$ python argparse args.py -H localhost

The host is localhost.

$ python argparse args.py -H "localhost"

The host is localhost.

$ python argparse args.py --host=localhost
The host is localhost.

$ python argparse args.py --host="localhost"
The host is localhost.

$ python argparse args.py --host localhost
The host is localhost.

$ python argparse args.py --host "localhost"
The host is localhost.

Choices

ArgumentParser adds the capability to specify that an option may only be one of an enumerated set
of choices.

import argparse

if name == ' main_ ':

parser = argparse.ArgumentParser ()

parser.add argument ('--cheese',
choices=('american', 'cheddar', 'provolone',6 'swiss'),
default="'swiss',
dest="'cheese',
help='The kind of cheese to use',

)

args = parser.parse_args ()

o

print ('You have chosen %s cheese.' % args.cheese)

If you run this script with no arguments, you get the default value as you expect.

$ python argparse choices.py
You have chosen swiss cheese.

You can also override the default to any of the available choices in the choices tuple.

$ python argparse choices.py --cheese provolone
You have chosen provolone cheese.

However, if you attempt to provide a value that is not in the list of available choices, you get
an error.

www.it-ebooks.info

http://www.it-ebooks.info/

argparse | 221

$ python argparse choices.py --cheese pepperjack

usage: argparse choices.py [-h] [--cheese {american,cheddar,provolone,swiss}]
argparse_choices.py: error: argument --cheese: invalid choice: 'pepperjack'
(choose from 'american', 'cheddar', 'provolone', 'swiss')

Accepting Multiple Values

One additional feature in argparse is the capability to specify that an option accepts more than one
argument. You can set an option to accept an unbound number of arguments, or an exact number.
You handle this using the nargs keyword argument to add_argument.

The most straightforward use of nargs is to specify that an option takes an exact number of argu-
ments. Consider the following simple script that takes an option that expects exactly two arguments
rather than one:

import argparse

if name_ == '_main_ ':
parser = argparse.ArgumentParser ()
parser.add argument ('--madlib',

default=['fox', 'dogs'],
dest='madlib',
help='Two words to place in the madlib.',
nargs=2,
)

args = parser.parse_args()

print ('The quick brown {0} jumped over the '
'lazy {1}.'.format (*args.madlib))

Sending an integer to nargs means that the option expects exactly that number of arguments, and
will return them as a list. (Note that if you specify a nargs value of 1, you still get a list.)

If you omit the --madlib argument, you get the default list specified in the add_argument call.

$ python argparse multiargs.py
The quick brown fox jumped over the lazy dogs.

Similarly, providing two arguments causes them to be substituted in place of the defaults.

$ python argparse multiargs.py --madlib pirate ninjas
The quick brown pirate jumped over the lazy ninjas.

However, if you try to provide any number of arguments other than two, the command fails.

$ python argparse multiargs.py --madlib pirate

usage: argparse multiargs.py [-h] [--madlib MADLIB MADLIB]
argparse_multiargs.py: error: argument --madlib: expected 2 arguments
$ python argparse multiargs.py --madlib pirate ninjas cowboy

usage: argparse multiargs.py [-h] [--madlib MADLIB MADLIB]

argparse multiargs.py: error: unrecognized arguments: cowboy

In the first case, the --madlib option was only able to consume one argument, and because it
expected two, it fails. In the second case, the --madlib argument successfully consumes both of the
arguments it expects, but there is a positional argument left over. The parser does not know what to
do with that, so it fails out instead.

www.it-ebooks.info

http://www.it-ebooks.info/

222 | CHAPTER 12 CLITOOLS

You also may want to allow any number of arguments, which you can indicate by providing + or *
to nargs. The + value indicates that the option expects one or more values to be provided, and
* indicates that the option expects zero or more values to be provided.

Consider the following simple addition script:

import argparse

if name == "' main ':
parser = argparse.ArgumentParser ()
parser.add _argument ('--addends',

dest="'addends',
help='Integers to provide a sum of',
nargs='+",
required=True,
type=int,
)

args = parser.parse_args ()

print ('%s = %d' % (
'+ '.join([str(i) for i in args.addends]),
sum(args.addends) ,

))

If you run this, you can see it provides the following equation:

$ python argparse sum.py --addends 1 2 5
l1+2+5=28

$ python argparse sum.py --addends 1 2

1 +2=23

Note that the + value provided to nargs actually means one or more values, not two or more.
This script would gladly accept only a single argument.

$ python argparse sum.py --addends 1
1 =1
Positional Arguments

With argparse (unlike with optparse), you must declare your positional arguments explicitly. If
you do not, the parser expects to have no arguments left over after it completes parsing, and it raises
an error if arguments still remain.

The declaration for positional arguments is equivalent to the declaration for options, except that
the leading hyphen is omitted. As an example, it seems bad form for the --addends option in the
previous example to be an option at all. Options should be optional.

It is easy to provide the same thing as a positional argument.

import argparse

if name == "' main ':
parser = argparse.ArgumentParser ()

www.it-ebooks.info

http://www.it-ebooks.info/

argparse | 223

parser.add argument ('addends',
help='Integers to provide a sum of',
nargs="'+"',
type=int,

)

args = parser.parse_args()

print ('%$s = %d' % (
'+ '.join([str(i) for i in args.addends]),
sum(args.addends) ,

))

This is mostly the same, except that the --addends argument has been replaced with addends,
without the double-hyphen prefix. This causes the parser to expect a positional argument instead.

Why provide a name for positional arguments? (After all, optparse does not need positional
argument names,) The answer is that the name you provide is used in the program’s --help output.

$ python cli script.py --help
usage: cli script.py [-h] addends [addends ...]

positional arguments:
addends Integers to provide a sum of

optional arguments:
-h, --help show this help message and exit

Notice that the word addends is used in the usage line near the top of the help. This provides
slightly more insight into what is being expected. Additionally, unlike in help provided by optparse,
the positional arguments are documented as part of the help screen.

You can invoke this script the same way, except without the --addends option.

$ python cli script.py 1 2 5
1+2+5=28

Reading Files

A common need when writing CLI applications is to read files. The argparse module provides a
special class that can be sent to the type keyword argument of add_argument, which is argparse
.FileType.

The argparse.FileType class expects the arguments that would be sent to Python’s open function,
excluding the filename (which is what is being provided by the user invoking the program). If you
are opening the file for reading, this may be nothing. open defaults to opening files only for reading.
However, any arguments after the initial positional argument to open can be provided to FileType,
and they will be passed on to open.

Consider the following program that may read a configuration file from a non-default location:

import argparse

if name == "' main ':
parser = argparse.ArgumentParser ()

www.it-ebooks.info

http://www.it-ebooks.info/

224

| CHAPTER12 CLITOOLS

parser.add argument ('-c', '--config-file',
default="'/etc/cli_script',
dest="'config',
help='The configuration file to use.',
type=argparse.FileType('r')

)

args = parser.parse_args ()
print (args.config.read())

This would read from /etc/cli_script by default, but allow you to specify a different file to read
from using the -c or --config-file options. Rather than providing these options as text and forc-
ing you to open the file yourself, you will simply be provided with an open file object:

$ echo "This is my config file." > foo.txt
$ python cli_script.py --config-file foo.txt
This is my config file.

Note that the file is expected to exist. If it does not, you get an error.

$ python cli script.py --config-file bar.txt

usage: cli_script.py [-h] [-c CONFIG]

cli script.py: error: argument -c/--config-file: can't open 'bar.txt':
[Errno 2] No such file or directory: 'bar.txt'

Why Use argparse?

If you are exclusively using Python 2.7 or Python 3.3 and up, several good reasons exist to use
argparse rather than optparse. The argparse module supports essentially all of optparse’s fea-
tures, and adds several additional ones, such as multiple arguments, better support for files, and more.

Additionally, argparse’s handling of positional arguments is more consistent with its handling of
options, and results in more robust handling as well as a more useful help output.

The only major drawback of argparse is its absence from older versions of Python. If you still need
to support Python 2.6 or Python 3.2, you need to stick with optparse for now.

SUMMARY

The optparse and argparse modules provide very good support for reading data from the
command line for Python programs that need to do this.

The current transition from optparse to argparse poses a challenge because you may find yourself
needing to write code around a deprecated module to support versions of Python that are still in
wide use today. If you do work in this area, you will probably need to remain familiar with both
modules for some time.

In Chapter 13, you learn about asyncio, a new module in Python 3.4 to support asynchronous work.

www.it-ebooks.info

http://www.it-ebooks.info/

13

asyncio

In general, most Python applications are sequential applications. That is, they usually run
from a defined entry point to a defined exit point, with each execution being a single process
from beginning to end.

This stands in contrast to many more asynchronous languages, such as JavaScript and Go. For
example, JavaScript relies heavily on asynchronous work, with any web requests happening in
the background being called in a separate thread, and relying on callbacks to run correct func-
tions once data has loaded.

There is no right or wrong answer to whether a language should approach most problems
sequentially or asynchronously, but cases certainly exist where one model is more useful than
the other for particular problems. This is where the asyncio module comes in. It makes it easy
to do asynchronous work in Python when the problem warrants it.

Right now, asyncio is a provisional module. While sweeping, backward-incompatible changes
are unlikely (because Python shies away from such things once items have been placed in the
standard library), it is likely that asyncio may undergo significant revision in the next couple
of Python versions.

The asyncio module was introduced in Python 3.4, and is not available in Python 2. If you
are on Python 3.3, you can get it from PyPI; it is not yet in the standard library. Therefore, if
you want to use the features provided by asyncio, you will be limiting yourself to newer
versions of Python. Similarly, the asyncio module has been under active development over the
lifetime of Python 3.4, so you will want to be on the newest incremental revision if possible.

Because most Python applications are sequential applications, several concepts may be foreign
to you if you have not done a reasonable amount of work outside of sequential languages. This
chapter covers these concepts in detail.

THE EVENT LOOP

The fundamental way that most asynchronous applications work is via an event loop that runs
in the background. When something needs to run, it is registered to the event loop.

www.it-ebooks.info

http://www.it-ebooks.info/

226 | CHAPTER 13 ASYNCIO

Registering a function to an event loop causes it to be made into a task. The event loop is then
responsible for running the task as soon as it can get to it. Alternatively, sometimes the event loop is
told to wait a certain amount of time, and then run the task.

Although you may not be familiar with writing code that uses event loops, you use programs that
depend on them frequently. Almost any server is an event loop. A database server, for example, sits
around and waits for connections and queries, and then executes queries as fast as possible. If two
different connections provide two different queries, it prioritizes and runs both of them. Desktop
applications are also event-driven, displaying a screen that allows input in various places and
responding to said inputs. Most video games are also event loops. The game waits for control input
and takes action based on it.

A Simple Event Loop

In most cases, you do not need to create an event loop object yourself. You can get a BaseEventLoop
object by using the asyncio.get _event loop() function. What you will actually get will be a
subclass; which subclass you get is platform-dependent. You do not need to worry about this imple-
mentation detail too much. The API between all of them is the same. However, a few platform-
dependent limitations exist.

When you first get the loop object, it will not be running.

>>> loop = asyncio.get event loop()
>>> loop.is_running()
False

Running the Loop

The following event loop does not have anything registered to it yet, but you can run it anyway:

>>> loop.run_forever ()

There is one minor hitch, however. If you ran this, you just lost control of your Python interpreter,
because the loop is running in it forever. Press Ctrl+C to get your interpreter back. (Of course, this
will stop the loop.)

Unfortunately, asyncio does not have a “fire and forget” method to run a loop in a separate thread.
For most application code, this is actually not a huge hindrance, because you are probably writing

a server or daemon where the purpose of the program is to run the loop in the foreground and have
other processes issue commands.

For testing or experimenting, however, this presents a serious challenge, because the majority of
asyncio methods are not actually thread-safe. For most examples in this chapter, you will get
around this by simply not running the loop forever.

www.it-ebooks.info

http://www.it-ebooks.info/

The Event Loop | 227

Registering Tasks and Running the Loop

Tasks are primarily registered to the loop using call soon, which operates as a FIFO (“first in, first
out”) queue. Therefore, most examples in this chapter will simply include a final task that stops the
loop, as shown here:

>>> import functools
>>> def hello world() :
print ('Hello world!'")

>>> def stop_loop (loop) :
print ('Stopping loop.')
loop.stop ()

>>> loop.call soon(hello world)

Handle (<function hello world at 0x1003c0b70>, ())

>>> loop.call soon (functools.partial (stop_loop, loop))

Handle (functools.partial (<function stop loop at 0x10lccf268>,
<asyncio.unix events. UnixSelectorEventLoop
object at 0x1007399e8>), ())

>>> loop.run_ forever ()

Hello world!

Stopping loop.

>>>

In this example, the hello world function was registered to the loop. Then, the stop 1oop func-
tion was also registered. When the loop was started (with 1oop.run_forever ()), it ran both tasks,
in order. Because the second task stopped the loop, it exited the loop once the task completed.

Delaying Calls

It is also possible to register a task, but indicate that it should not be called until later. You can do
this using the call later method, which takes a delay (in number of seconds) as well as the func-
tion to be called.

>>> loop.call later (10, hello world)

TimerHandle (60172.411042585, <function hello world at 0x1003c0b70>, ())

>>> loop.call later (20, functools.partial(stop loop, loop))

TimerHandle (60194.829461844, functools.partial (

<function stop loop at 0x10lccf268>,
<asyncio.unix events. UnixSelectorEventLoop object at 0x1007399e8>),

0)

>>> loop.run_ forever ()

Note that it is possible to have two or more delayed calls come up at the same time. If this happens,
they may occur in either order.

www.it-ebooks.info

http://www.it-ebooks.info/

228

| CHAPTER 13 ASYNCIO

Partials

You may have also noticed the use of functools.partial in the previous example. Most

asyncio methods that take functions only take function objects (or other callables), but not
arguments to be sent to those functions once they are called. The functools.partial method is a
solution to that problem. The partial method itself takes the arguments and keyword arguments
that must be passed to the underlying function when it is called.

For instance, the hello world function in the previous example is actually entirely unnecessary. It
is an analogue to functools.partial (print, 'Hello world!'). Therefore, the previous example
could be written as follows:

>>> import functools

>>> def stop loop (loop) :
print ('Stopping loop.')
loop.stop ()

>>> loop.call soon(functools.partial (print, 'Hello world! ')

Handle (functools.partial (<built-in function print>, 'Hello world'), ())

>>> loop.call soon(functools.partial (stop loop, loop))

Handle (functools.partial (<function stop loop at 0x10lccf268>,
<asyncio.unix events. UnixSelectorEventLoop object
at 0x1007399e8>), ())

>>> loop.run_ forever /()

Hello world!

Stopping loop.

>>>

Why have partials at all? After all, it is usually easy enough to wrap such calls in functions that do
not require arguments. The answer is in debugging. The partial object knows what it is calling
and with what arguments. This is represented as data to the partial, and the partial uses that
data when called to perform the proper function call. By contrast, the hello world function is
just that: a function. The function call within it is code. There is no way to easily inspect the
hello_world function and pull out the underlying call.

You can see this difference by creating a partial and then inspecting its underlying function and
arguments.

>>> partial = functools.partial(stop loop, loop)

>>> partial.func

<function stop loop at 0x10223e488>

>>> partial.args

(<asyncio.unix events. UnixSelectorEventLoop object at 0x102238b70>,)

Running the Loop until a Task Completes

It is also possible to run the loop until a task completes, as shown here:

>>> @asyncio.coroutine
def trivial():
return 'Hello world!'

www.it-ebooks.info

mailto:@asyncio.coroutine
http://www.it-ebooks.info/

The Event Loop | 229

>>> loop.run_until complete(trivial())
'Hello world!'

In this example, the @asyncio.coroutine decorator transforms this normal Python function into
a coroutine, which is covered in more detail later. When you call run_until complete, it regis-
ters the task and then runs the loop only until the task completes. Because it is the only task in the
queue, it completes and exits the loop, returning the result of that task.

Running a Background Loop

It is possible to run an event loop in the background, using the threading module that is available
in the Python standard library.

>>> import asyncio
>>> import threading
>>>
>>> def run loop forever in background (loop) :
def thread func(l):
asyncio.set event loop (1)
1.run_forever()
thread = threading.Thread (target=thread func, args=(loop,))
thread.start ()
return thread

>>>

>>> loop = asyncio.get event loop ()

>>> run loop forever in background (loop)
<Thread (Thread-1, started 4344254464) >
>>>

>>> loop.is_running()

True

Note that this is a useful idiom for getting started, but is almost certainly not what you will want in
your final application. (For example, you will have a hard time stopping the loop; 1oop.stop does
not work anymore.) It is fine for learning, though.

This loop is still relatively uninteresting. After all, while it is running, it has nothing to do. You have
not registered any tasks to it yet. Consider what happens when you register a trivial task to run as
soon as possible.

>>> loop.call soon_threadsafe (functools.partial (print, 'Hello world'))
Handle (functools.partial (<built-in function prints>, 'Hello world'), ())
>>> Hello world

This output might be a bit confusing. First, you called call soon threadsafe. This tells the loop
to run the given function asynchronously as soon as possible. Note that, in most cases, you will
simply use the call soon function, because you will not be running the event loop in a thread.

The call soon threadsafe function returns a Handle object. This is an object with one method:
cancel. It is able to cancel the task entirely if appropriate.

www.it-ebooks.info

mailto:@asyncio.coroutine
http://www.it-ebooks.info/

230 | CHAPTER 13 ASYNCIO

Next, you have the >>> prompt (suggesting that the interpreter expects input), followed by Hello
world. That was printed from the previous function call, after the prompt was written to the screen.

Because event loops are not thread safe, the remainder of the examples in this chapter use other
models to explain the concepts.

COROUTINES

Most functions that are used within asyncio should be coroutines. A coroutine is a special kind
of function designed to run within an event loop. Additionally, if a coroutine is created but is never
run, an error will be issued to the logs.

NOTE This discussion documents Python 3.4 specifically. Changes are possible
in Python 3.5.

You can make a function into a coroutine by decorating it with @easyncio.coroutine. Consider this
example of running a simple coroutine with the event handler’s run until complete:

>>> import asyncio
>>> @asyncio.coroutine
def coro_sum(*args) :
answer = 0
for i in args:
answer += 1
return answer

>>> loop = asyncio.get event loop()
>>> loop.run_until complete(coro sum(l, 2, 3, 4, 5))
15

The coro_sum function created here is no longer a regular function; it is a coroutine, and it is called
by the event loop. It is worth noting that you can no longer call it the regular way and get what you
may expect.

>>> coro_sum(l, 2, 3, 4, 5)
<generator object coro at 0x104056el0>

Coroutines are, in fact, special generators that are consumed by the event loop. That is why the
run_until complete method is able to take what appears to be a standard function call. The func-
tion is not actually run at that point. The event loop is what consumes the generator and ultimately
extracts the result.

What actually happens under the hood essentially looks like this:

>>> try:
next (coro sum(l, 2, 3, 4, 5))
except Stoplteration as ex:

www.it-ebooks.info

mailto:@asyncio.coroutine
mailto:@asyncio.coroutine
http://www.it-ebooks.info/

Coroutines | 231

ex.value
15
The generator does not yield any values. It immediately raises StopIteration. The StopIteration

exception is given a value, which is the return value of the function. The event loop is then able to
extract this and handle it appropriately.

Nested Coroutines

Coroutines provide a special mechanism to call other coroutines (or Future instances, as discussed
shortly) in a fashion that mimics that of sequential programming. By using the yield from state-
ment, a coroutine can run another coroutine, and the statement returns the result. This is one mech-
anism available to write asynchronous code in a sequential manner.

The following simple coroutine calls another coroutine using yield from:

>>> import asyncio
>>> @asyncio.coroutine
def nested(*args) :
print ('The “nested”™ function ran with args: %r' % (args,))
return [1 + 1 for i in args]

>>> @asyncio.coroutine
def outer(*args) :
print ('The “outer™ function ran with args: %r' % (args,))
answer = yield from nested(*[i * 2 for i in args])
return answer

>>> loop = asyncio.get event loop ()

>>> loop.run_until complete (outer(2, 3, 5, 8))

The “outer™ function ran with args: (2, 3, 5, 8)
The “nested”™ function ran with args: (4, 6, 10, 16)
[5, 7, 11, 17]

Here you have two coroutines, with the outer coroutine calling the nested coroutine using the yield
from syntax. You can see from the output to standard out that both coroutines run, and the final
result is returned at the end of outer.

Incidentally, what is happening here under the hood is that the outer coroutine is actually sus-
pended when it encounters the yield from statement. The nested coroutine is then placed on the
event loop and the event loop runs it. The outer coroutine does not continue until nested com-
pletes and a result is available.

A couple things are worth noting. First, the yield from statement returns the result of the corou-
tine it runs. That is why you see an assignment to a variable in the example.

Second, why would you not simply call the function directly? This would be fine if it were a proce-
dural function, but this is a coroutine. Calling it directly would return a generator rather than the
value. You could write nested as a standard function, but consider the following situation where
you would also want to be able to assign it to the event loop directly.

www.it-ebooks.info

mailto:@asyncio.coroutine
mailto:@asyncio.coroutine
http://www.it-ebooks.info/

232

| CHAPTER 13 ASYNCIO

>>> loop.run until complete(nested(5, 10, 15))
The “nested”™ function ran with args: (5, 10, 15)
[6, 11, 16]

The capability to have a coroutine call another coroutine using yield from addresses this. It
increases the capability to reuse coroutines.

FUTURES AND TASKS

Because most work using asyncio is done asynchronously, you must contend with how to deal with
the results of functions that are run in this manner. The yield from statement provides one way to
do this, but sometimes, for example, you want to run asynchronous functions in parallel.

In sequential programming, return values are straightforward. You run a function, and it returns its
result. However, in asynchronous programming, while the function returns its result as before, what
happens to the result then? There is no clear caller to return the result zo.

Futures

A mechanism for dealing with this particular challenge is the Future object. Essentially, a Future
is an object that is told about the status of an asynchronous function. This includes the status of the
function—whether that function is running, has completed, or was canceled. This also includes the
result of the function, or, if the function ended by raising an exception, the exception and traceback.

The Future is a standalone object. It is independent of the actual function that is running. It does
nothing but store the state and result information.

Tasks

A Task is a subclass of Future, as well as what you will generally be using when programming with
asyncio. Whenever a coroutine is scheduled on the event loop, that coroutine is wrapped in a Task.
So, in the previous example, when you called run_until complete and passed a coroutine, that
coroutine was wrapped in a Task class and then executed. It was the Task that stored the result and
handled providing it in the yield from statement.

The run_until complete method is not the only way (or even the primary way) for a coroutine to
be wrapped in a class, however. After all, in many applications, your event loop runs forever. How
do tasks get placed on the event loop in such a system?

The primary way you do this is by using the asyncio.async method. This method will place a
coroutine on the event loop, and return the associated Task.

NOTE If you are running Python 3.4.4+, use ensure future rather than
asyncio.async. However, if you are running Python 3.4.3, continue to use
asyncio.

www.it-ebooks.info

http://www.it-ebooks.info/

Futures and Tasks | 233

To demonstrate this, first get the event loop and write a garden-variety coroutine, as shown here:

>>> import asyncio
>>>
>>> @asyncio.coroutine
def make tea(variety):
print ('Now making %s tea.' % variety)
asyncio.get _event loop () .stop()
return '$s tea' % variety

>>>

This is still a trivial task, but one new thing here that you have not seen yet is that the task actually
stops the event loop. This is simply a nice workaround to dodge the fact that when you start the
loop (with run_forever), it will run forever.

Next, register the task with the event loop.

>>> task = asyncio.async(make tea('chamomile'))

This is all you actually need to do to register the task with the loop, but because the loop is not run-
ning, the task is not going to execute for now. Indeed, you can inspect the task object using the done
and result methods and see this.

>>> task.done ()
False
>>> task.result ()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/Library/Frameworks/Python.framework/Versions/3.4/1lib/python3.4/asyncio/

futures.py", line 237, in result
raise InvalidStateError ('Result is not ready.')

asyncio.futures.InvalidStateError: Result is not ready.

Next, you must start the loop. It is okay to start the loop with run_forever now; the actual task
will stop it as soon as the task completes because of the call to 1oop.stop ().

>>> loop = asyncio.get event loop()
>>> loop.run_forever ()

Now making chamomile tea.

>>>

Sure enough, the loop starts, runs the task, and then immediately stops. Now if you inspect the
task variable, you will get different results.

>>> task.done ()
True

>>> task.result ()
'chamomile tea'

Whenever you create a Task object with asyncio.async, you will get a Task object back. You can
inspect that object at any time to get the status or result of the task.

www.it-ebooks.info

mailto:@asyncio.coroutine
http://www.it-ebooks.info/

234 | CHAPTER 13 ASYNCIO

CALLBACKS

Another feature of Future objects (and therefore Task objects, because Task subclasses Future) is
the capability to register callbacks to the Future. A callback is simply a function (or coroutine) that
should execute once the Future is done, and which receives the Future as an argument.

In some ways, callbacks represent a reversal of the yield from model. When a coroutine uses yield
from, that coroutine ensures that the nested coroutine runs before or during its execution. When
you register a callback, you are working in the opposite direction. The callback is being attached to
the original task, to run after the execution of the task.

You can add a callback to any Future object by using that object’s add_done callback method.
Callbacks are expected to take a single argument, which is the Future object itself (which will
contain the status and result, if applicable, of the underlying task).

Consider the following example of a callback in action:

>>> import asyncio
>>> loop = asyncio.get event loop ()
>>>
>>> @asyncio.coroutine
def make tea(variety):
print ('Now making %s tea.' % variety)

o

return '%s tea' % variety

>>> def confirm tea(future):
print ('The %s is made.' % future.result())

>>> task = asyncio.async(make tea('green'))
>>> task.add done callback(confirm tea)

>>>

>>> loop.run until complete (task)

Now making green tea.

The green tea is made.

'green tea'

The first thing that is happening is that you again made a make tea coroutine, identical to the one
in the previous example, except that this one does not stop the loop.

Next, notice the confirm_tea function. This is a plain function; it is 7ot a coroutine. In fact, you
cannot send a coroutine as a callback here. It will raise an exception when you run the loop if you
try. This function receives the Future object (which is the task variable in this case) that it is reg-
istered to once the callback runs. The Future object contains the result of the coroutine—which is
that is the 'green tea' string in this case.

Finally, notice the call to add_done callback. This is where the confirm tea method is assigned
as a callback to the task. Also, notice that it is assigned to the task (a particular invocation of a
coroutine), not the coroutine itself. If another task was registered to the loop with asyncio.async
that called the same coroutine, it would #zot have this callback.

The output shows that both functions ran, in the order you expected. The return value is the return
value from make_tea, provided to you because that is how run_until complete works.

www.it-ebooks.info

mailto:@asyncio.coroutine
http://www.it-ebooks.info/

Callbacks | 235

No Guarantee of Success

There is one important thing to note. Simply because a Future is done does nof guarantee that it
ran successfully. This example simply assumes that future.result () will be populated, but that
may not be the case. The Task could have ended in an exception, in which case, attempting to access
future.result () will raise that exception.

Similarly, it is possible to cancel a task (using the Future.cancel () method or by other means). If
this occurs, the task will be marked cancelled, and the callbacks will be scheduled. In this case,
attempting to access future.result () will raise CancelledError.

Under the Hood

Internally, asyncio informs the Future object that it is done. The Future object then takes each of
the callbacks registered against it and calls call soon threadsafe on each of them.

Be aware that there is no guarantee of order when it comes to callbacks. It is entirely possible (and
fine) to register multiple callbacks to the same task. However, you do not have any way of control-
ling which callbacks will be run in which order.

Callbacks with Arguments

One limitation of the callback system is that, as noted, the callback receives the Future as a posi-
tional argument, and accepts no other arguments.

It is possible to send other arguments to a callback through the use of functools.partial. If you
do this, however, the callback must still accept the Future as a positional argument. In practice, the
Future is appended to the end of the positional arguments list before the callback is called.

Consider the following case of a callback that expects another argument:

>>> import asyncio
>>> import functools
>>>
>>> loop = asyncio.get event loop ()
>>>
>>> @asyncio.coroutine

def make tea(variety):

print ('Now making %s tea.' % variety)

°

return '%s tea' % variety

>>> def add ingredient (ingredient, future):
print ('Now adding %s to the %s.' % (ingredient, future.result()))

>>>

>>> task = asyncio.async(make tea('herbal'))

>>> task.add done callback (functools.partial (add ingredient, 'honey'))
>>>

>>> loop.run_until complete (task)

Now making herbal tea.

Now adding honey to the herbal tea.

'herbal tea'

www.it-ebooks.info

mailto:@asyncio.coroutine
http://www.it-ebooks.info/

236 | CHAPTER 13 ASYNCIO

This is mostly similar to the previous example. The only significant difference is in how the callback
is registered. Instead of passing the function object directly (as you did in the previous example), you
instantiate a functools.partial object with the positional argument you are sending (*honey').

Again, notice that the add_ingredient function is written to accept two positional arguments, but
the partial only specifies one argument. The Future object is sent as the last positional argument
in cases where a partial is used. The function signature for add_ingredient reflects this.

TASK AGGREGATION

The asyncio module provides a convenient way to aggregate tasks. You have two major reasons
to do something like this. The first reason is to take some sort of action once any task in a set of
tasks has completed. The second reason is to take some sort of action once all tasks in the set have
completed.

Gathering Tasks

The first mechanism that asyncio provides for this purpose is the gather function. The gather
function takes a sequence of coroutines or tasks and returns a single task that aggregates all of them
(wrapping any coroutines it receives in tasks as appropriate).

>>>
>>>
>>>
>>>

>>>

import asyncio
loop = asyncio.get event loop()

@asyncio.coroutine
def make tea(variety):
print ('Now making %s tea.' % variety)

o

return '%s tea' % variety

meta_task = asyncio.gather(
make tea('chamomile'),
make tea('green'),
make tea('herbal')

)

meta task.done ()

False

>>>
>>>
Now
Now
Now

loop.run until complete (meta_ task)
making chamomile tea.

making herbal tea.

making green tea.

['chamomile tea', 'green tea', 'herbal tea']

>>>

meta_task.done ()

True

In this case, the asyncio.gather function received three coroutine objects. It wrapped them all in
tasks under the hood, and returned a single task that serves as an aggregation of all three.

www.it-ebooks.info

mailto:@asyncio.coroutine
http://www.it-ebooks.info/

Task Aggregation | 237

Notice that scheduling the meta_task object effectively schedules the three tasks gathered under-
neath it. Once you run the loop, the three subtasks all run.

In the case of a task created with asyncio.gather, the result is always a list, and that list contains
the results of the individual tasks that were gathered. The order of the list of results is guaranteed
to be the same order in which the tasks were gathered (but the tasks are not guaranteed to be run in
that order). Therefore, the list of strings you got back are in the same order as the registered corou-
tines in the asyncio.gather call.

The asyncio.gather paradigm also provides the opportunity to add a callback to the set of tasks
as a whole, rather than the individual tasks. What if you only want a callback to run once all of the
tasks are completed, but it does not matter to you in which order they complete?

>>> import asyncio
>>> loop = asyncio.get event loop ()
>>>
>>> @asyncio.coroutine
def make tea(variety):
print ('Now making %s tea.' % variety)
return '$s tea' % variety
>>> def mix(future):
print ('Mixing the %s together.' % ' and '.join(future.result()))

>>> meta task = asyncio.gather (make tea('herbal'), make tea('green'))
>>> meta_task.add done callback (mix)

>>>

>>> loop.run_until complete (meta task)

Now making green tea.

Now making herbal tea.

Mixing the green tea and herbal tea together.

['green tea', 'herbal tea'l

The first thing that happened when you called run until complete was that both of the individual
tasks gathered into meta task ran, individually. Finally, the mix function ran, only after both of
the individual tasks had run. This is because the meta_task is not considered to be done until after
all of its individual tasks are done, so only once both individual tasks complete does it trigger the

callback.

You can also see that the Future object that the mix function received was meta_task, not the indi-
vidual tasks, and, therefore, its result method returned a list of both of the individual results.

Waiting on Tasks

Another tool that the asyncio module provides is the built-in wait coroutine. The asyncio.wait
coroutine takes a sequence of coroutines or tasks (wrapping any coroutines in tasks) and returns
once they are done. Note that the signature here is distinct from asyncio.gather. gather takes
each coroutine or task as a single positional argument, whereas wait expects a list.

www.it-ebooks.info

mailto:@asyncio.coroutine
http://www.it-ebooks.info/

238

| CHAPTER 13 ASYNCIO

Additionally, wait accepts a parameter to return when any of its tasks complete, rather than only
returning when all of them do. Regardless of whether this flag is set, the wait method always
returns a two-tuple, with the first element being the Future objects that have completed, and the
second element being those that are still pending.

Consider the following example that is similar to how you previously used asyncio.gather:

>>> import asyncio
>>> loop = asyncio.get event loop()
>>>
>>> @asyncio.coroutine
def make tea(variety):
print ('Now making %s tea.' % variety)
return '%s tea' % variety
>>> coro = asyncio.wait ([make tea('chamomile'), make tea('herbal')])
>>>
>>> loop.run_until complete (coro)
Now making chamomile tea.
Now making herbal tea.
({Task(<coro>)<result:‘herbal tea's>, Task(<coros)<result='chamomile tea'>}, set())

Note a couple of subtle differences here. First, unlike the gather method, the wait method returns
a coroutine. This has its value; you can use it in a yield from statement, for example.

On the other hand, you are unable to attach callbacks directly to a coroutine returned from wait. If
you want to do this, you must wrap it in a task using asyncio.async.

Also, the result is different. The asyncio.gather function aggregated the results in a list, and
returned that. The result for asyncio.wait is a two-tuple containing the actual Future objects
(which themselves contain their results). Additionally, the Future objects are reorganized. The
asyncio.wait routine places them into two sets—one set for those that are done, and another set
for those that are not. Because sets are themselves an unordered structure, that means you must rely
on the Future objects to piece together which result corresponds to which task.

Timeouts

It is possible to have the asyncio.wait coroutine return when a specific amount of time has passed,
regardless of whether all of the tasks have completed. To do this, you pass the timeout keyword
argument to asyncio.wait.

>>> import asyncio

>>> loop = asyncio.get event loop()

>>>

>>> coro = asyncio.wait ([asyncio.sleep(5), asyncio.sleep(l)], timeout=3)
>>> loop.run until complete (coro)

({Task (<sleep>) <result=None>}, {Task(<sleep>)<PENDING>})

In this case, you are just using a coroutine provided by the asyncio module: asyncio.sleep. This
simply waits for a given number of seconds, and then returns None. The timing in this example is set
up so that one of the tasks (the second one) will complete before the wait function times out, but
the other will not.

www.it-ebooks.info

mailto:@asyncio.coroutine
http://www.it-ebooks.info/

Task Aggregation | 239

The first difference to note is that the second element of the two-tuple now has a task in it; the
sleep coroutine that failed to complete in time is still pending. The other, however, did complete,
and has a result (None).

The use of timeout does not necessitate that the entire time period designated by timeout must
elapse. If all of the tasks complete before time expires, the coroutine will complete immediately.

Waiting on Any Task

One of the biggest features of asyncio.wait is the capability to have the coroutine return

when any of the Future objects under its care completes. The asyncio.wait function also accepts a
return when keyword argument. By sending it a special constant (asyncio.FIRST COMPLETED), the
coroutine will complete once any task has finished, rather than waiting for every task.

>>> import asyncio
>>> loop = asyncio.get event loop ()
>>>
>>> coro = asyncio.wait ([
asyncio.sleep(3),
asyncio.sleep(2),
asyncio.sleep(1),
], return when=asyncio.FIRST COMPLETED)
>>>
>>> loop.run_until complete (coro)
({Task (<sleep>) <result=None>},
{Task (<sleep>) <PENDING>, Task (<sleep>)<PENDING>})

In this case, the asyncio.wait call is given a list of three asyncio.sleep coroutines, which will
sleep for 3, 2, and 1 seconds. Once the coroutine is called, it runs all the tasks underneath it. The
asyncio.sleep coroutine that is only asked to wait for 1 second completes first, which completes
the wait. Therefore, you get a two-tuple back with one item in the first set (tasks that are complete),
and two items in the second set (tasks that are still pending).

Waiting on an Exception

is also possible to have a call to asyncio.wait complete whenever it encounters a task that com-
It is also possible to h Il to asy plete wh t t task that
pleted with an exception, rather than exiting normally. This is a valuable tool in situations where
you want to trap the exceptional cases as early as possible and deal with them.

You can trigger this behavior using the return from keyword argument as before, but by sending
the asyncio.FIRST EXCEPTION constant instead.

>>> import asyncio
>>> loop = asyncio.get event loop()
>>>
>>> @asyncio.coroutine
def raise ex after(seconds) :
yield from asyncio.sleep (seconds)
raise RuntimeError ('Raising an exception.')

>>> coro = asyncio.wait ([
asyncio.sleep (1),

www.it-ebooks.info

mailto:@asyncio.coroutine
http://www.it-ebooks.info/

240

| CHAPTER 13 ASYNCIO

raise ex after(2),
asyncio.sleep(3),
], return when=asyncio.FIRST EXCEPTION)

>>>
>>> loop.run until complete (coro)
({Task (<raise ex_after>)<exception=RuntimeError ('Raising an exception.',)>,

Task (<sleep>) <result=None>},
{Task (<sleep>) <PENDING>})

In this case, the asyncio.wait coroutine stopped as soon as a task completed with an exception.
This means that the 1-second asyncio.sleep completed successfully, and it is in the first set in the
return value. The raise ex_after coroutine also completed, so it is in the first set also. However,
the fact that it raised an exception caused wait to trigger its completion before the 3-second sleep
could complete, so it is returned in the second (pending) set.

Sometimes, there may not be any task that actually raises an exception (which is usually a conve-
nient case). In this case, the wait completes once all of the tasks have completed as normal.

>>> import asyncio
>>> loop = asyncio.get event loop ()
>>>
>>> coro = asyncio.wait ([
asyncio.sleep (1),
asyncio.sleep(2),
], return when=asyncio.FIRST EXCEPTION)
>>>
>>> loop.run until complete (coro)
({Task (<sleep>) <result=None>, Task(<sleep>)<result=None>}, set())

QUEUES

The asyncio module provides several common patterns that are built upon the fundamental build-
ing blocks of the event loop and Future objects. One of these is a basic queuing system.

A queue is a collection of tasks to be processed by a task runner. The Python ecosystem includes
several third-party task queue utilities, with the most popular of these probably being celery. This
is not a fully featured queuing application. Rather, the asyncio module provides simply the funda-
mental queue itself, which application developers can build on top of.

Why is gueue part of asyncio? This Queue class provides methods to be used in a sequential or an
asynchronous context.

Consider first a very simple example of a Queue in action:

>>> import asyncio

>>> queue = asyncio.Queue()
>>> queue.put nowait ('foo')
>>> queue.gsize()

1

>>> queue.get nowait ()

www.it-ebooks.info

http://www.it-ebooks.info/

Queues | 241

'foo!
>>> queue.gsize()
0

In addition to being trivially simple, there is nothing particularly asynchronous going on here. You
did not even bother to get or run the event loop. This is a very direct FIFO queue.

Note the use of the put_nowait and get nowait methods. These methods are designed to perform
the addition or removal of the item to or from the queue immediately. If, for example, you try to call
get_nowait on an empty queue, you get a QueueEmpty exception.

>>> queue.get nowait ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Library/Frameworks/Python.framework/Versions/3.4/1ib/python3.4/asyncio/
queues.py", line 206, in get nowait
raise QueueEmpty
asyncio.queues.QueueEmpty

The Queue class also provides a method called get. Instead of returning an exception on an empty

queue, the get method will patiently wait for an item to be added to the queue, and then retrieve it

from the queue and return it immediately. Unlike get _nowait, this method is a coroutine, and runs
in an asynchronous context.

>>> import asyncio

>>> loop = asyncio.get event loop ()

>>> queue = asyncio.Queue ()

>>>

>>> queue.put nowait ('foo')

>>> loop.run until complete (queue.get ())
'foo!

In this case, an item was already on the queue, so the get method still returns immediately. If there
was not an item on the queue yet, a simple call to 1oop.run_until_ complete would never com-
plete, and block your interpreter.

You can use the timeout parameter in asyncio.wait to see this concept in action, though.

>>> import asyncio

>>> loop = asyncio.get event loop ()

>>> queue = asyncio.Queue()

>>>

>>> task = asyncio.async(queue.get())

>>> coro = asyncio.wait ([task], timeout=1)
>>>

>>> loop.run until complete (coro)

(set (), {Task(<get>)<PENDING>})

At this point, there is still nothing on the queue, so the task to get the item off the queue is just con-
tinuing indefinitely. You also have the task variable, and can inspect its status.

>>> task.done ()
False

www.it-ebooks.info

http://www.it-ebooks.info/

242

| CHAPTER 13 ASYNCIO

Next, place an item on the queue, as shown here:

>>> queue.put nowait ('bar')

You will notice that the task still is not done yet, because the event loop is no longer running. The
task is still registered, though, so register a callback to stop the loop once it completes, and it is
possible to start it again.

>>> import functools
>>> def stop(l, future):
1.stop()

>>> task.add done callback (functools.partial (stop, loop))
>>>

>>> loop.run_forever ()

Now, because there was an item on the queue, the task is done, and the task’s result is the item on
the queue ('bar').

>>> task.done ()
True

>>> task.result ()
'bar'

Maximum Size

It is also possible to give a Queue object a maximum size, by setting the maxsize keyword argument
when creating the queue.

>>> import asyncio
>>> queue = asyncio.Queue (maxsize=5)

If you do this, the Queue will not allow any more than the maximum number of items onto the
queue. A call to the put method will simply wait until a previous item is removed, and then (and
only then) will it place the item on the queue. If you call put_nowait and the queue is full, it will
raise QueueFull.

SERVERS

One of the most common uses of the asyncio module is to create services that can run as a daemon
and accept commands. The asyncio module defines a Protocol class that is able to fire appropriate
events on receiving or losing a connection, and when it receives data.

Additionally, the event loop defines a create server method that opens a socket, allowing data to
be sent to the event loop and on to the protocol.

Consider a simple server that can do nothing but add numbers and shut itself down.

import asyncio

class Shutdown (Exception) :
pass

www.it-ebooks.info

http://www.it-ebooks.info/

Servers

243

class ServerProtocol (asyncio.Protocol) :
def connection made (self, transport):
self.transport = transport
self.write('Welcome.')

def data_ received(self, data):
Sanity check: Do nothing on empty commands.
if not data:
return

Commands to this server shall be a single word, with
space separated arguments.

message = data.decode('ascii')

command = message.strip().split(' ') [0].lower ()

args = message.strip().split(' ') [1:]

Sanity check: Verify the presence of the appropriate command.

o

if not hasattr(self, 'command %s' % command) :

self.write('Invalid command: %s' % command)
return

Run the appropriate command.
try:

return getattr(self, 'command %s' % command) (*args)
except Exception as ex:

self.write('Error: %s\n' % str(ex))

def write(self, msg string):
string += '\n'
self.transport.write (msg string.encode('ascii', 'ignore'))

def command_add(
args = [int(
self.write ('

self, *args):

i) for i in args]

$d' % sum(args))

def command shutdown (self) :
self.write('Okay. Shutting down.')
raise KeyboardInterrupt

if name == "' main ':
loop = asyncio.get event loop ()
coro = loop.create server (ServerProtocol, '127.0.0.1', 8000)
asyncio.async (coro)
try:
loop.run forever ()
except KeyboardInterrupt:
pass

This is a somewhat long module, but a few details are worth noting. First, the ServerProtocol

class subclasses asyncio.Protocol. The connection made and data_received methods are

defined in the superclass, but do nothing. The other three methods are custom.

www.it-ebooks.info

http://www.it-ebooks.info/

244 | CHAPTER 13 ASYNCIO

Remember that when you make a socket connection between machines, you are essentially always
sending bytes, not text strings. The write method here does that conversion in one place, rather
than forcing you to convert to a byte string every time you want to write to the transport.

The guts of this are in the data received method. It takes a line of data and tries to figure out
what to do with it. It only understands two basic commands, and anything else is an error.

Finally, the block at the end of the file actually starts up the server, and runs it against the local
machine on a particular port. This is all the code you need to start up a server and have it listen for
commands.

You can verify that the server receives commands by starting it up and then, in another shell win-
dow, using telnet to connect to it.

S telnet 127.0.0.1 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '*]'.
Welcome.

add 3 5

8

make tea

Invalid command: make tea
shutdown

Okay. Shutting down.
Connection closed by foreign host.

You have a very simple server. It can accept two commands: add and shutdown. It can provide
errors if you try to issue a command it does not understand. And, the server is, in fact, able to shut
itself down.

SUMMARY

Python is, at its core, a sequential language. It is a sequential language that, with asyncio, is getting
budding asynchronous features built in to the standard library.

One thing that makes asyncio valuable is that it enables you to write code that follows sequen-
tial patterns, but is actually asynchronous under the hood, by using the yield from statement.
However, if you intend to write an asynchronous application, you still must understand the advan-
tages and disadvantages of this paradigm.

As you have seen, many things are different. You may not always know in what order tasks will run.
It is possible for tasks to be intentionally canceled. Finally, code may be registered to run using a
callback system, rather than through direct sequential function calls. All of these things represent a
break from “normal” Python programming.

Still, if you have a robust Python 3 application and need certain asynchronous elements, asyncio
may be the right tool for you.

In Chapter 14, you learn about style norms and recommendations in Python.

www.it-ebooks.info

http://www.it-ebooks.info/

14

Style

Code is read more often than it is written.

Despite this fact, programmers often write code as if they do not expect to have to maintain it
or even read it in the future. This leads to code that is incomprehensible when it is read months
or years later.

Therefore, one of the most important things you can do as a programmer (in any language) is
to write readable code.

This chapter explores principles for writing readable code, as well as some of the standards
adopted by the Python community at large for writing code in a consistent manner.

PRINCIPLES

Before discussing specific standards that the Python community has adopted, or additional
recommendations that have been proposed by others, it is important to consider a few over-
arching principles.

Remember that the purpose of readability standards is to improve readability. The rules exist
to serve the people reading and writing code, not the other way around.

This section discusses a few principles to keep in mind.

Assume Your Code Will Require Maintenance

It is very easy to believe that the work you are doing at the moment will not require additions
or maintenance in the future. This is because it is difficult to anticipate future needs, and it is
easy to underestimate your own propensity to introduce bugs. However, very little of the code
that you write will simply exist untouched into perpetuity.

If you assume that code that you are writing is going to be “a one-off” and something that you
will not have to read, debug, or amend later, it is frighteningly easy to ignore other principles
of readable code simply because you believe that “it does not matter this time.”

www.it-ebooks.info

http://www.it-ebooks.info/

246 | CHAPTER 14 STYLE

Therefore, preserve a healthy distrust of any instinct you may have that code you write will not need
to be maintained. The safe bet is always that you will see that code again. Furthermore, if you do
not, someone else will.

Be Consistent
The two aspects of consistency are internal consistency and external consistency.

Your code should be as internally consistent as possible. This is true both of style and structure. The
style should be consistent in that any formatting rules should be followed throughout the project.
The structure should be consistent in that the same types of code should be organized into the same
places, so that projects are navigable.

You code should also be externally consistent. Structure your projects and your code similarly to
how other people do. If a new developer opens up your project, he or she should not react by saying,
“I have never seen anything like this before.” Community guidelines matter, because they are what
developers will expect to see when they come to your project. Similarly, and for the same reasons,
take seriously the standards surrounding how to accomplish common tasks and how to organize
code when using certain frameworks.

Think About Ontology, Especially with Data

Omntology basically means “the study of being.” In philosophy (where the word is most commonly
used), ontology is the study of the nature of reality and existence, and is a subset of metaphysics.

When it comes to writing software applications, ontology refers to a focus on what the various
“things” in your application are. How do you represent your concepts in your database? What about
your class structure?

What this sort of question ultimately affects is the way you write and structure your code. Do you
use inheritance or composition to structure the relationship between two classes? In what database
table does this or that column belong?

This advice effectively boils down to, “Think before you write.” Specifically, think about what the
objects in your application are, and how they interact with one another. Your application is a world
where objects and data interact. So, what are the rules by which they work together?

Do Not Repeat Yourself

When writing code, consider situations in which you are reusing a value that could change over
time. Is that value being used in multiple modules and functions? How much work would it be to
change it if it became necessary to do so?

The same principle applies to functions. Do you have a common boilerplate that you find yourself
constantly repeating throughout your application? If the boilerplate is longer than a couple of lines,
you may want to consider abstracting it out into a function, so that if the need to change it arises, it
is manageable to do so.

www.it-ebooks.info

http://www.it-ebooks.info/

Principles | 247

On the other hand, it is possible to take this principle too far. Not every value needs to be defined
as a constant in a module (and doing so can impair readability and maintainability). Use wise judg-
ment. Consistently be asking the question, “If this changes, how much work would it be to update it
everywhere?”

Have Your Comments Explain the Story

Your code is a story. It is an explanation of what occurs, from beginning to end, as users inter-
act with your program. The program starts in one location (potentially with some input), moves
through a series of “choose your own adventure” steps to reach an end point, and then concludes
(probably with some output).

Consider adopting a commenting style where every few lines of code is preceded by a comment
block explaining what that code is doing. If your code is a story, your comments are an illumination
and explanation of that story.

When narrative commenting is done well, a reader can parse the code (for example, when trying to
troubleshoot a problem or maintain the code) by reading the comments to get the story, then quickly
zero in on the code that requires maintenance, and only then focus on the vocabulary of the code
itself.

Narrative commenting also helps explain intent. It helps answer the question, “What did the person
who wrote this code aim to accomplish?” Occasionally, it will help answer the question, “Why was
this done this way?” These are questions you naturally ask when you read code, and providing the
answers to those questions aids in understanding.

Therefore, comments should explain the rationale for anything in the code that is not simple and
salient. If a somewhat complex algorithm is being used, consider including a link to an article
explaining the pattern and providing other examples of its use.

Occam’s Razor

The most important principle for writing maintainable code is colloquially known as Occam’s
Razor: the simplest solution is usually the best one. In his “The Zen of Python” web posting
(https://www.python.org/dev/peps/pep-0020/), which is a collection of proverbs for program-
ming (for example, type import this in a Python console to read it), Tim Peters includes a similar
line: “If the implementation is hard to explain, it’s a bad idea.”

This principle is true in both how your code works and how it looks. When it comes to how your
code works, simple systems are more maintainable. Simplicity of implementation means that you
are less likely to write esoteric bugs, and that those who come after you to maintain your work
(including yourself) are more likely to intuitively understand what is happening and be able to add
to the application without hitting unexpected snags.

As far as how your code looks, remember that, as much as is possible, reading code should be
about learning the story of what the code is doing, not about parsing the vocabulary. The vocabu-
lary is the means, while the story is the end. It is easy to write rules such as, “Do not use ternary

www.it-ebooks.info

https://www.python.org/dev/peps/pep-0020
http://www.it-ebooks.info/

248 | CHAPTER 14 STYLE

operators.” However, following rules you can run through a linter (while valuable) is not a sufficient
condition for clarity. Focus on writing and organizing code so that it is as simple as possible.

STANDARDS

The Python community largely follows a style guide known as PEP 8 (https://www.python.org/
dev/peps/pep-0008/), which is written by Guido van Rossum (the creator of Python) and is
adopted by most major Python projects, including the Python standard library.

The universality of the PEP 8 standard is one of its greatest strengths. It has been adopted by so
much of the community that you can reasonably expect that most Python code you encounter will
conform to it. As you write code this way, it will become easier to read code written similarly.

Trivial Rules
Many of the guidelines in PEP 8 are quite straightforward. Highlights include the following;:
> Use four spaces for indentation. Do not use literal tabs (\t).

> Variables should be spelled with underscores, not camel case (my_var, not myvar). Class
names start with a capital letter and are in camel case (for example, MyClass).

> If a variable is intended to be “internal use only,” prefix it with an underscore.

> Use a single space around operators (for example, x + y, not x+y), including assignment (z
= 3, not z=3), except in keyword arguments, in which case, the spaces are omitted.

> Omit unnecessary whitespace in lists and dictionaries (for example, [1, 1, 2, 3, 5],

not[1, 1, 2, 3, 5 1).

Read the Python style guide for additional examples and further discussion on these rules.

Documentation Strings

Remember that, in Python, if the first statement in a function or class is a string, that string is auto-
matically assigned to the special doc_ variable, and is then used if you call help (and in a few
other cases).

PEP 8 designates that docstrings (as they are colloquially called) should be written as an imperative
sentence.

"""Do X, Y, and Z, then return the result."""

This is contrasted with writing the docstring as a description, which is frowned upon.

"""Does X, Y, and Z, then returns the result."""

www.it-ebooks.info

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
http://www.it-ebooks.info/

Standards | 249

If the docstring is a single line, follow it with an empty line before the body of the class or function
begins. If the docstring spans multiple lines, place the closing quotes on their own line in lieu of the
empty line.

"""Do X, Y, and Z, then call the a() method to transform all the things,
then return the result.

Blank Lines

Blank lines are used for logical segmentation.

PEP 8 designates that two blank lines should separate “top level” classes and function definitions in
a module.

class A(object) :
pass

class B(object) :
pass

PEP 8 also designates that after the top level, class and function definitions should be separated by
one blank line each.
class C(object) :

def foo(self):
pass

def bar(self):
pass

It is acceptable to use single blank lines within functions or other blocks of code to delineate logical
segments. Consider preceding all such segments with comments explaining the block.

Imports

Python allows both absolute and relative imports. In Python 2, the interpreter will attempt a relative
import, and then attempt an absolute import if no relative import matches.

In Python 3, relative imports are given a special syntax—a leading period (.) character—and
“normal” imports only attempt absolute imports. The Python 3 syntax is available starting in
Python 2.6. Additionally, you can turn off implicit relative imports using from __ future import

absolute import.

You should always stick to absolute imports whenever possible. If you must use a relative import,
you should use the explicit style. If you are writing code for Python 2.6 and 2.7, consider explicitly
opting in to the Python 3 behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

250 | CHAPTER 14 STYLE

When you are importing modules, each module should be given its own line.

import os
import sys

However, if you are importing multiple names from the same module, it is perfectly acceptable to
group them on the same line.

from datetime import date, datetime, timedelta

Additionally, although PEP 8 does not mandate this, consider keeping imports grouped by the pack-
ages that they come from. Within each group, sort imports by alphabetical order.

Also, when doing imports, do not forget about the ability to alias names that are imported using the
as keyword.

from foo.bar import really long name as name

This often allows you to shorten long or unwieldy names that are going to be repeated often.
Aliasing is a valuable tool when an import is used frequently, and when the original name is difficult
for whatever reason.

On the other hand, remember that when you do this, you are effectively masking the original name
within your module, which can reduce clarity if you do it when it is not really necessary. Like any
tool, use this with discretion.

Variables

As mentioned earlier, variable names are spelled with underscores, not camel case (for example,
my var, not myVar). Additionally, it is important that variable names be descriptive.

It is generally not appropriate to use extremely short variable names, although there are situations where
this is acceptable, such as the iterator variables in loops (for example, for k, v in mydict.items()).

Avoid naming variables after common names already in the Python language, even when the inter-
preter would allow it. You should never name a variable or a function something like sum or print.
Similarly, avoid type names such as 1ist or dict.

If you must name a variable after a Python type or keyword, the convention is to include a trailing
underscore; this is explicitly preferable over altering the spelling. For example, if you are passing a
class to a function, the function argument should be named class_, not klass. (The exception to
this is class methods, which by convention take c1s as their initial argument.)

Comments

Comments should be written in English, using complete sentences, and written in a block above the
relevant code. You should use correct capitalization, spelling, and grammar.

Also, ensure that comments are kept up to date. If the code changes, the comments may need to
change along with it. You do not want to end up with a series of comments that actually contradict
the code, which can easily cause confusion.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 251

Modules may include a comment header, usually generated by your version-control system, detailing
the version of that file. This can make it easier to see if the file has been changed, and is particularly
useful if you are distributing a module for use by others.

Line Length

The single most controversial (and most often rejected) aspect of the Python style guide is its limita-
tions on line length. PEP 8 requires that lines be no longer than 79 characters, and that docstring
lines be no longer than 72 characters.

This rule frustrates many developers, who point out that we live in an age of 27-inch monitors and
widescreen displays. GitHub, a popular website for sharing code, uses a window with a width of
120 characters.

Proponents point out that many people still use narrower displays or 80-character terminals, or
simply do not set their code window up to maximize the screen.

There will likely never be harmony on this issue. You should code to the standards of the projects
you are working on. Regardless of whether you conform to a 79-character standard or some greater
width, you should know how to wrap code when the situation arises.

The best way to wrap a long single line is by using parentheses, as shown here:

if (really long identifier that maybe should be shorter and
other really long identifier that maybe should be shorter):
do_something ()

Whenever it is feasible, use this method instead of using a \ character before the line break. Note
that in cases where an operator such as and is being used, it should appear before the line break if
possible.

It is also possible to wrap function calls. PEP 8 lists many acceptable ways to do this. The general
rule to follow is that indentation of the trailing lines should be consistent.

really long_function_name (
categories=][
X.y.COMMON_PHRASES,
X.y.FONT_PREVIEW PHRASES,
1,

phrase='The quick brown fox jumped over the lazy dogs.',

When using line continuation within a function call, list, or dictionary, include a trailing comma on
the final line.

SUMMARY

Many times, the person coming along a year later and reading your code will be you. Memories are
never as good as they intuitively seem to be, and code written without a constant eye to readability
and maintainability will be naturally difficult to read and maintain.

www.it-ebooks.info

http://www.it-ebooks.info/

252 | CHAPTER 14 STYLE

Throughout this book, you have learned how to use various modules, classes, and structures in the
Python language. When deciding how to solve a problem, remember that it often takes more skill to
debug code than it does to write it.

Therefore, aim to have your code be as simple as possible, and as readable as possible. You will
thank yourself a year from now. Your coworkers and fellow contributors will, too.

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

2to3 tool
limitations of, 174
for sharing source code between Python versions, 172-173
writing changes with, 173-174

. (any) character, regular expressions, 154

/ (division operator)
comparing Python 2 and Python 3, 176-177
overview of, 69

== (equals), testing binary equality, 65

!=, testing binary equality, 65

@ (at) character, use in decorator syntax, 4

< (less than), comparison operator, 67

<= (less than or equal to), comparison operator, 67

> (greater than), comparison operator, 67

>= (greater than or equal to), comparison operator, 67

ABCMeta metaclass
declaring virtual subclasses, 115-116
register method, 117
_subclasshook method, 117-119
_abs method, for numeric values, 75
absolute imports, 177-178, 249-250
abstract base classes (ABCs)
abstract properties, 124-125
additional types, 128
alternative approaches to, 119
built-in, 126, 128
class and static methods, 125-126
for collections, 127
declaring virtual subclasses, 115-116
metaclasses for declaring protocols, 120-122
NotImplementedError method for declaring protocols,
120
overview of, 113
register method used as a decorator, 117
with single abstract method, 126-127
_subclasshook method of ABCMeta metaclass, 117-119
summary, 128
using, 113-114
value for declaring protocols, 122-124
abstract methods, abstract base classes, 126
abstract properties, abstract base classes, 124-125
@abstractmethod, decorators, 122-124
APIs, metaclasses in designing, 91
argparse module
accepting multiple values, 221-222

basic script, 217
changing prefix characters, 218-219
choices of options from enumerated sets, 220-221
option flags in, 217-218
options that accept values, 219-220
overview of, 216-217
positional arguments, 222-223
reading files, 223-224
reasons for using, 224
arguments
callbacks with, 235-236
decorators, 16-18
_new method, 83
type, 80, 100
ASCII (American Standard Cod for Information Interchange)
character standards, 131
comparing Python 2 and Python 3, 175
compatibility of encoding options, 138
latin-1 as superset of, 138
non-ASCII characters, 136-137
rendering bytes as text, 131-132
specifying file encoding, 142-143
suppressing errors when encoding text, 143-144
text strings vs. bytestrings and, 133
Unicode as superset of, 137
assert statements
asserting mocked calls, 199-201
errors vs. failures, 194-195
in unit testing, 192
asynchronous elements. See asyncio module (provisional)
asyncio module (provisional)
aggregating tasks, 236-237
callbacks, 234-236
coroutines, 230-231
delaying function calls, 227
futures, 232
nested coroutines, 231-232
overview of, 225
partials use, 228
queues, 240-242
registering tasks and running event loops, 226-227
running background loops, 229-230
running loops until task completion, 228-229
servers, 242-244
simple event loop example, 226
summary, 244
tasks, 232-233
waiting on tasks, 237-240
attributes
class attributes vs. instance attributes, 107-108

253

www.it-ebooks.info

http://www.it-ebooks.info/

background loops — comparison

collections, 7677

consistency as benefit of class factories, 106
dictionaries, 104

exception handling based on, 35-37

match object, 149

preventing automatic inheritance, 93-94
runtime attributes of classes, 102-103
subclassing and, 109

background loops, running, 229-230
binary equality, 65-67
blank lines, Python coding standards, 249
_bool method, 64-65
Booleans, type conversion, 63-65
break statements, in generator syntax, 41-42
bytes (bytestrings)
comparing Python 2 and Python 3, 175
converting non-ASCII characters, 136-137
decoding into text strings, 139-140
reading, 140
string data types in Python, 132-133
type conversion, 63-64
vs. text string, 131-132

callables
decorators accepting and returning, 3
type switching and, 22-25
callbacks
with arguments, 235-236
Future object, 234-235
call_later method, delaying function calls, 227
characters/character classes
. (any) character, 154
ASCII and Unicode standards, 131
beginning/ending strings, 153-154
changing prefix characters, 218-219
negation of character classes, 151-152
optional characters, 154-155
overview of, 150-151
ranges of, 151
re.DOTALL flag for matching newline characters, 163-164
shortcuts for, 152-153
chr function, converting bytes to text, 132
class factories
attribute consistency and, 106
attribute dictionaries, 104
class attributes vs. instance attributes, 107-108
credentials database example, 104-105
HTML form example, 105-106
limitations of class methods, 108-109
overview of, 99
singletons and, 109-111
summary, 111-112
type and, 99-100
understanding class factory functions, 100-102
when to write, 102-103
class keyword
creating classes, 101-102
using metaclasses, 87
writing metaclasses, 83

254

class methods
abstract base classes (ABCs), 125-126
limitations of, 108—-109
classes. See also objects
abstract base classes. See abstract base classes (ABCs)
class attributes vs. instance attributes, 107-108
creating, 80-81
creating instances, 61-62
creating subclasses, 81-82
creating with class keyword, 101-102
decorating, 20-22
delineation between class declaration and class structure,
89-91
destroying instances, 62-63
exception handling excluding subclasses, 34-35
exception handling for particular classes, 33-34
factories. See class factories
instances of, 79-80
metaclasses. See metaclasses
methods. See methods (magic)
position of type in chain, 82
removing “old-style” classes, 178-179
role of type in chain, 82-83
_subclasscheck method, 74
subclasses. See subclasses
superclasses, 87
type switching and, 22-25
verification of, 91-93
@classmethod, decorators, 125-126
CLI (command-line interface)
argparse module. See argparse module
optparse module. See optparse module
overview of, 207
summary, 224
_cmp method, for relative comparison, 67-68
code
portability/reuse as decorator benefit, 13
testing function of, 191-192
testing layout of, 190
wrapping with context managers. See context managers
wrapping with decorators. See decorators
code style
blank lines, 249
comments, 250-251
documentation strings, 248-249
import options, 249-250
line length, 251
overview of, 245
principles, 245-248
standards, 248
summary, 251-252
trivial rules, 248
variables, 250
codecs, strict. See also encoding, 143-144
collections
abstract base classes (ABCs) for, 127
methods, 75-77
command-line interface. See CLI (command-line interface)
comments
code style and, 250-251
explaining story of code with, 247
comparison
methods, 67-68
operators, 65-67

www.it-ebooks.info

http://www.it-ebooks.info/

compatibility — exception handling

compatibility type switching, 22-25
cross compatibility strategies for Python 2/Python 3, 171-172 understanding, 3-4
of encoding options, 138 user verification with, 11-12
of metaclasses, 89 uses of, 6
compile function, re module, 166-167 variable arguments, 15-16
compiled regular expressions, 166-167 writing, 7-9
_complex method, type conversion, 65 _del method, removing class instances, 62-63
consistency principle, in coding, 246 _delitem method, working with collections, 76
_contains method, collections, 75 dic.items, generators in standard library, 50
context managers dict class methods, 182
attribute-based exception handling, 35-37 dictionaries
avoiding repetition in exception handling, 31 attribute dictionaries, 104
enter and exit methods and, 28-29 comparing Python 2 and Python 3, 182
exception handling, 29-30 generators in standard library, 50
exception handling for particular classes, 33-34 division operator (/)
excluding subclasses, 34-35 comparing Python 2 and Python 3, 176-177
propagating exceptions, 31-32 overview of, 69
for resource cleanliness, 30-31 Django
with statement and, 28 class declaration, 89-91
summary, 38-39 HTML form example, 105-106
suppressing exceptions, 32-33 do not repeat yourself, coding principles, 246
syntax of, 28, 37-38 documentation strings (docstrings), coding standards, 248-249
understanding, 27 duck typing
uses of, 30 subclasses and, 118-119
continue statements, generator syntax and, 43-44 in type checking, 74

copied ecosystem environment
comparing test environments, 189-190
unit testing in, 188

coroutines encoding
futures and, 232 common options, 137-138
nested, 231-232 compatibility of encoding options, 138
overview of, 230-231 non-ASCII characters, 136-137
timeouts, 238-239 specifying file encoding, 139-140, 142-143
wait coroutine, 237-238 strict codecs, 143-144
counter flags, optparse module, 214-215 string data in Python, 132-135
coverage tool, in unit testing, 203-204 Unicode as superset of ASCII, 137
create_server method, 242 encoding keyword, 139-140
Credential class enter method, context managers and, 28-29
HTML form example, 105-106 _eq method
managing credentials, 103 determining equality, 60
reading data from credentials database, 104-105 testing equality, 65-67

errors, unit testing, 194-195
event loops
coroutines and, 230-231

data delaying function calls, 227
generators for accessing in pieces, 53-54 overview of, 225-226
generators for computing n pieces, 54 partials, 228
regular expressions. See regular expressions registering tasks and running event loops, 226-227
strings. See strings/string data running background loops, 229-230
data mining, uses of regular expressions, 147 running loops until task completion, 228-229
decorators simple example, 226
@abstractmethod, 122-124 except keyword, context managers compared with,
arguments, 16-18 27
call signature is significant, 18-20 exception handling
@classmethod and @staticmethod, 125-126 attribute-based, 35-37
decorating classes, 20-22 avoiding repetition in, 31
getting help via @functools.wraps, 10-11 comparing syntax between Python versions, 180-182
logging, 14-15 context managers in, 29-30
order of application, 5-6 excluding subclasses, 34-35
output formatting, 12-14 for particular classes, 33-34
@propertymethod, 124-125 propagating exceptions, 31-32
register method as, 117 registering handlers, 144-145
summary, 25-26 StopIteration exception, 45-47
syntax of, 4 suppressing exceptions, 32-33, 143-144
type checking, 9-10 waiting on exceptions, 239-240

255

www.it-ebooks.info

mailto:@functools.wraps
http://www.it-ebooks.info/

execution-time wrapping code — _init method

execution-time wrapping code, with decorators @functools.wraps, decorator for preserving help information,
logging, 14-15 10-11
output formatting, 12-14 _future module, cross compatibility between Python versions,
overview of, 9 172
preserving help information, 10-11 Future object
type checking example, 9-10 callbacks, 234
user verification, 11-12 running asynchronous functions in parallel, 232

exit method Task subclass of, 232-233

context managers, 28-29
exception handling and, 29-30
exception handling for particular classes, 33-34

propagating exceptions and, 31-32 garbage collection, 62-63
suppressing exceptions and, 32-33 gather function, in aggregating tasks, 236-237
explicit opt-in, metaclasses and, 94 _ge method, for relative comparison, 67
Extensible Markup Language. See XML (Extensible Markup generators
Language) for accessing data in pieces, 53-54

communicating with, 47-48
for computing data in pieces, 54
coroutines and, 230-231

failure, unit testing, 193-194 delegating, 56
Fibonacci numbers generators within generators, 55-56
generator syntax and, 42-45 iterators vs., 49-50
infinite generators and, 54 next function, 43-45
next function and, 43-45 as singletons, 54-55
file objects, generators in standard library, 52-53 in standard library, 50-53
files StopIteration exception, 45-47
reading text files in Python 2, 140-141 summary, 56
reading text files in Python 3, 139-140 syntax of, 41-43
reading textual data from non-file sources, 141 understanding, 41
reading with argparse module, 223-224 uses of, 53
specifying file encoding, 142-143 _getattr method, working with collections, 76
finally keyword, context managers compared with, 27 _getattribute method, working with collections, 76-77
findall function, re module, 149 get_credential_class, 103-105
finditer function, re module, 149 get_credential form, 105-106
flags _getitem method, working with collections, 76
ASCII and Unicode standards and, 163 group method, match object, 149
counter flags in optparse module, 214-215 grouping
multiple and inline, 165 0 group, 159
option flags in argparse module, 217-218 named groups, 159-160
overview of, 163 overview of, 157-159
types of, 164-165 referencing existing groups, 160-161
float, division operator (/) and, 176-177 _gt method, for relative comparison, 67

_float method, type conversion, 65
for.in loops, generators as alternative to, 42-43
_format method, overloading, 74

formatting, format function, 74 hashes, overloading _hash method, 73

frameworks, for unit testing, 192-193 help, via @functools.wraps, 10-11

function methods, comparing Python 2 and Python 3, 183 HTML

functions class factory example of HTML form, 105-106
class factory function, 100-102 parsing, 161
for compiled regular expressions, 166-167 HTTP, reading textual data from non-file sources,
context managers. See context managers 141

for converting byte to text, 132
creating coroutines, 230-231
creating tasks from, 225-226

decorators. See decorators imports

delaying function calls in event loops, 227 absolute and relative in Python versions, 177-178

generators. See generators code style and, 249-250

get credential class, 103-105 indentation, Python standards, 248

mocking function calls, 197-199 inheritance

moved or renamed in Python 3, 185 decorator use and, 22

naming conventions, 111 metaclasses, 84-87

as objects, 79 preventing automatic, 93-94
functools.partial method, 228 _init method
256

www.it-ebooks.info

mailto:@functools.wraps
mailto:@functools.wraps
http://www.it-ebooks.info/

in-place method — MutableSet

compared with _new method, 83
for object instantiation, 60-62
in-place method, binary operators, 68
_instancecheck method, in type checking, 74
instances/instantiation
class attributes vs. instance attributes, 107-108
creating OptionParser instance, 208
of new class or object, 60, 79-81
type and, 99
integers
division operator (/) and, 176-177
_int method, 65
type conversion, 63
isinstance method, testing against base class, 113-114,
116
ISO-8859. See latin-1
isolated environment
comparing test environments, 189-190
unit testing in, 188-189
items, generators in standard library, 50
iterators
comparing Python 2 and Python 3, 183-184
generators compared with, 49-50

JSON (JavaScript Object Notation)

reading textual data from non-file sources, 141

serializing Python output to, 12-14
@json_output decorator

call signature matters, 18-19

decorator arguments, 15-17

how it works, 17-18

serializing Python output to JSON, 12-14

keys, generators in standard library, 50
keyword arguments, decorators, 14-15

latin-1
as ASCII superset, 131
compatibility of encoding options, 138
1SO-8859 standard, 138
reading text files in Python 3, 139-140
_le method, for relative comparison, 67
_len method, overloading, 71-72
line length, code style and, 251
lists
generators and, 41
isinstance for checking variable against, 113-114
@logged decorator, 14-15
logging, decorators, 14-15
lookahead, use in matching, 161-162
_1t method, for relative comparison, 67

magic methods. See methods (magic)

maintenance, coding principles, 246

map function, generators in standard library, 51-52
match function, of re module, 148

match objects

lookahead and, 161-162
methods, 149
matching text. See regular expressions
metaclasses
benefits of, 94
for class verification, 91-93
comparing syntax between Python versions, 179-180
compatibility across Python versions, 89
for declaring protocols, 120-122
for delineation between class declaration and class structure,
89-91
inheritance, 84-87
meta-coding and, 95-97
_new method, 83-84
preventing automatic inheritance of class attributes, 93-94
summary, 97
trivial metaclass example, 84
type and, 99
using in Python 2 and Python 3, 87-89
when to use, 89
writing, 83
meta-coding, 95-97
methods (magic)
availability of, 60
binary equality, 65-67
collections, 75-77
comparing Python 2 and Python 3, 182-183
comparison operators, 65
_del method, 62-63
_init method, 61-62
limitations of class methods, 108-109
match objects, 149
_new method, 62
operator overloading, 68-71
overloading, 71-75
overview of, 59
relative comparisons, 67-68
resources for, 77
summary, 77
syntax of, 59-60
type conversion, 63—-65
methods, abstract base classes
NotImplementedError method,
120
register method, 117
single abstract method, 126-127
_subclasshook method of, 117-119
mocking
asserting mocked calls, 199-201
function calls, 197-199
inspecting mocks, 201-203
overview of, 197
modules (standard library)
comparing Python 2 and Python 3, 184-186
decorator module, 6
_future module for compatibility, 172
generator module, 49-53
re module for regular expressions, 148-149, 166-167
six module for compatibility between Python 2 and Python
3,136
threading module, 229-230
unittest module, 192-193
MutableMapping, alternatives to collections, 127-128
MutableSequence, alternatives to collections, 127-128
MutableSet, alternatives to collections, 127-128

257

www.it-ebooks.info

http://www.it-ebooks.info/

narrative commenting - regular expressions

argparse module, 222-223
option advantages over, 209-212

narrative commenting, explaining story of code with, 247 sending to optparse module, 214
_ne method, testing lack of equality, 67 PostgreSQL databases, reading textual data from non-file
nested coroutines, 231-232 sources, 141
_new method prefixes, changing prefix characters, 218-219
creating class instances, 62 principles, code style and, 245-248
creating metaclasses, 83 print function, comparing Python 2 and Python 3, 176
init method compared with, 61, 83-84 @propertymethod, decorators, 124-125
next function, generators, 43-45 Protocol class, 242-244
nose, unit testing frameworks, 192, 205 protocols
NotImplementedError method, for declaring protocols, 120 metaclasses for declaring, 120-122

NotImplementedError method for declaring, 120
value of ABCs in declaring, 122-124
py.test, unit testing frameworks, 192,205

objects. See also classes Python, comparing versions 2 and 3
collections, 75-77 2to3 tool for sharing source code, 172-174
creating class instances, 60-62 absolute and relative imports, 177-178
destroying class instances, 62-63 cross compatibility strategies, 171-172
_instancecheck method, 74 dictionary methods, 182

Occam’s Razor, applying to writing maintainable code, 247 division operator (/), 176177

ontology (“think before you write”), coding principles, 246 exception syntax, 180-182

open function, as context manager, 28 function methods, 183

operators _future module and, 172
binary operators, 68-69 iterators, 183-184
division operator, 69 metaclass syntax, 179-180
overloading, 68-69 metaclasses, 87-89
unary operators, 70-71 print function, 176

option flags, in argparse module, 217-218 reading text files, 139-141

OptionParser instance, creating, 208 removing “old-style” classes, 178-179

options six tool for single source compatibility, 136, 174-175
advantages over positional arguments, 209-212 standard library relocations, 184-186
choosing from enumerated sets, 220-221 strings and Unicode, 175
specifying option values, 212 strings/string data, 132-136
syntax of, 213-214 summary, 186
that accept values, 219-220 version detection, 186

optparse module
advantages of options over positional arguments, 209-212
counter flags, 214-215

creating OptionParser instance, 208 queries, running with context managers, 31
listing values, 215-216 queues

overview of, 207-208 maximum size of, 242

reasons for using, 216 of tasks, 240-242

sending positional arguments to, 214
specifying option values, 212
syntax of options, 213-214

ord, 132 range objects, generators in standard library, 49-50
order of application, decorators, 5-6 ranges, of character classes
output formatting, decorator use in, 12-14 open-ended, 156
overloading overview of, 151
methods, 71-75 repetition of, 155-157
operator overloading, 68-71 raw strings, 148-149

re module, for regular expressions, 148
read method, Python 2, 140
re .DEBUG flag, for debug mode, 164-165

packages, reorganization in Python 3, 185-186 re.DOTALL flag, for matching newline characters, 163-164
partials, functools.partial method, 228 register method, decorators, 7-9, 117
patterns regular expressions
class factories, 99 . (any) character, 154
matching text. See regular expressions basic, 150
singletons, 110 beginning/ending strings, 153-154
PEP 8 style guide, for Python standards, 248 character classes, 150-151
pickle module, merging fast modules in Python 3, 184 compiled, 166-167
positional arguments flags, 163-165
258

www.it-ebooks.info

http://www.it-ebooks.info/

relative comparisons — text/text strings

grouping and, 157-160
lookahead use in matching, 161-162
match objects, 149
negation of character classes, 151-152
optional characters, 154-155
overview of, 147
ranges of character classes, 151
raw strings, 148-149
re module for, 148
referencing existing groups, 160-161
repetition of ranges of characters/character classes, 155-157
shortcuts for character classes, 152-153
substitution, 165-166
summary, 167
uses of, 147-148
relative comparisons, 67-68
relative imports, 177-178, 249-250
re .MULTILINE flag, for multiline mode, 164
repetition
avoiding in exception handling, 31
of ranges of characters/character classes, 155-157
_repr method, overloading, 72-73
@requires user decorator, in user verification, 11-12
re.sub, substitution method for string replacement, 165-166
return statements
generator and, 41-42
iterators and, 45-47
re . VERBOSE flag, for verbose mode, 164
reverse method, binary operators, 68
_round method, for numeric values, 75
runtime attributes, of classes, 102-103

sanitization of data, decorator use and, 7
search function, of re module, 148
Sequence, alternatives to collections, 127-128
sequences
asynchronous elements. See asyncio module (provisional)
generator syntax and, 42
generators and, 41-42
infinite, 54
servers, use by asyncio module, 242-244
_setattr method, working with collections, 76
_setitem method, working with collections, 76
singletons
class factories, 109-111
generators as, 54-55
six tool
for compatibility between Python 2 and Python 3, 136,
174-175
converting metaclass syntax between Python versions, 179-180
version detection, 186
spaces, Python coding standards, 248
standard library. See modules (standard library)
standards, code style, 248
start method, match object, 149
static methods, abstract base classes (ABCs), 125-126
@staticmethod, decorators, 125-126
StopIteration exception, generators, 45-47
str class
comparing Python 2 and Python 3, 175
string data, 132-134
unicode class and, 134-135

strings/string data
characters for beginning/ending strings, 153-154
common encoding options, 137-138
comparing Python 2 and Python 3, 132-136, 175
compatibility of encoding options, 138
with non-ASCII characters, 136-137
overview of, 131
raw strings, 148-149
reading text files in Python 2/Python 3, 139-141
reading textual data from non-file sources, 141
registering error handlers, 144-145
specifying file encoding, 142-143
strict codecs, 143-144
substitution, 165-166
summary, 145
text string vs. byte string, 131-132
type conversion, 63
Unicode as superset of ASCII, 137
style. See code style
_subclasscheck method, in type checking, 74
subclasses
abstract class or static methods, 125-126
adjusting attributes in, 109
creating, 81-82
declaring virtual, 115-116
duck typing, 118-119
exception handling excluding, 34-35
metaclass inheritance and, 86-87
NotImplementedError method for including specific
functionality in, 120
_subclasscheck method, 74
Task subclass of Future, 232-233
_subclasshook method, of ABCMeta metaclass, 117-119
substitution, string replacement via, 165-166
superclasses, declaring, 87
syntax
comparing exception handling between Python versions,
180-182
comparing metaclasses between Python versions, 179-180
of context managers, 28, 37-38
of decorators, 4
of generators, 41-43
of magic methods, 59-60
of options, 213-214
testing for errors, 187

Task class, subclass of Future, 232-233

tasks
aggregating, 236-237
creating, 225-226
queues, 240-242
registering, 226-227
running loops until task completion, 228-229
subclass of Future, 232-233
waiting on, 237-240

testing. See unit testing

text/text strings
character standards, 131
comparing Python 2 and Python 3, 175
converting non-ASCII characters, 136-137
matching text. See regular expressions
reading text files in Python 2/Python 3, 139-141

259

www.it-ebooks.info

http://www.it-ebooks.info/

threading module - zip function

reading textual data from non-file sources, 141 unit testing frameworks, 192-193
regular expressions for direct matching, 149 urllib module, 185
string data types in Python, 132-133 user verification, decorator use in, 11-12
vs. byte string, 131-132 UTF-8. See also Unicode
threading module, running background loops, 229-230 benefits of strict codecs, 143
tox tool, in unit testing, 203-204 compatibility of encoding options, 138
try keyword, context managers compared with, 27 encoding/decoding, 133
type specifying file encoding, 142-143
built-in class for creating other classes, 99-100 suppressing errors when encoding text, 143-144

checking, 74
conversion methods, 63-65
decorator use in type checking, 9-10

directly creating classes, 80 validation, uses of regular expressions, 148
position of type in chain, 82 values

role of type in chain, 82-83 accepting multiple, 221-222

switching, 22-25 generators in standard library, 50

listing, 215-216
numeric methods, 75
options that accept, 219-220

unary operators, 70-71 specifying option values, 212
Unicode vanilla method, binary operators, 68
benefits of strict codecs, 143 variables
character standards, 131 code style and, 250
comparing Python 2 and Python 3, 175 decorator arguments, 15-16
compatibility of encoding options, 138 Python standards, 248
reading text files, 139-140 verification
rendering bytes as text, 131-132 class verification, 91-93
specifying file encoding, 142-143 user verification, 11-12
string data in Python 2, 134 version detection, Python 2 and Python 3, 186
as superset of ASCII, 137 virtual environments, tox tool for creating, 204
suppressing errors when encoding text, 143-144 virtual subclasses, declaring, 115-116

type conversion, 63
unicode class, 175
unit testing

alternative approaches to, 205 wait coroutine, 237-238
assert statement in, 192 whitespace, Python coding standards, 248
asserting mocked calls, 199-201 with statement, context managers and, 28
code function, 191-192 wrapping code
code layout, 190 with context managers. See context managers
comparing advantages/disadvantages of test environments, with decorators. See decorators

189-190

in copied ecosystem, 188
coverage tools, 203-204

errors vs. failures, 194-195 XML (Extensible Markup Language)

failure of tests, 193-194 caution regarding parsing with regular expressions, 161
frameworks for, 192-193 reading textual data from non-file sources, 141
inspecting mocks, 201-203 specifying file encoding, 142-143

in isolated environment, 188-189 Xon objects, destruction of class instances and, 63

loading tests, 196-197
mocking function calls, 197-199
overview of, 187

running tests, 193 yield statements
skipped tests, 195-196 communicating with generators and, 47-48
summary, 205 creating nested coroutines with yield from statement,
tox tool in, 203-204 231-232
unittest module generator syntax and, 41-42

errors vs. failures, 194-195
loading tests, 196-197
mocking function calls, 197-199

running tests, 193-194 “The Zen of Python” (Peters), 247
skipped tests, 195-196 zip function, generators in standard library, 51
260

www.it-ebooks.info

http://www.it-ebooks.info/

	ABOUT THE AUTHOR
	CREDITS
	ACKNOWLEDGMENTS
	CONTENTS
	INTRODUCTION
	PART I Functions
	1 Decorators
	2 Context Managers
	3 Generators

	PART II Classes
	4 Magic Methods
	5 Metaclasses
	6 Class Factories
	7 Abstract Base Classes

	PART III Data
	8 Strings and Unicode
	9 Regular Expressions

	PART IV Everything Else
	10 Python 2 Versus Python 3
	11 Unit Testing
	12 CLI Tools
	13 asyncio
	14 Style

	INDEX

