

32
Часть I. Основы Python 3

1. Первые шаги
1.1. Установка Python
1.1.1. Установка нескольких интерпретаторов Python
@echo off

start C:\Python27\pythonw.exe C:\Python27\Lib\idlelib\idle.pyw
Листинг 1.1. Проверка установки

import sys

print (tuple(sys.version_info))

try:

 raw_input() # Python 2

except NameError:

 input() # Python 3

1.2. Первая программа на Python
Листинг 1.2. Первая программа на Python
Выводим надпись с помощью функции print()

print("Привет, мир!")
Листинг 1.3. Последовательность выполнения программы в окне Python Shell
>>> # Выводим надпись с помощью функции print()

>>> print("Привет, мир!")

Привет, мир!

>>>
-*- coding: cp1251 -*-
Листинг 1.4. Программа для запуска с помощью двойного щелчка мыши

-*- coding: utf-8 -*-

print("Привет, мир!") # Выводим строку

input() # Ожидаем нажатия клавиши <Enter>

1.3. Структура программы

Листинг 1.5. Ошибка SyntaxError
>>> import sys

SyntaxError: unexpected indent

>>>

#!/usr/bin/python

#!/usr/local/bin/python

#!/usr/bin/env python

-*- coding: cp1251 -*-
Листинг 1.6. Вывод списка поддерживаемых кодировок

-*- coding: utf-8 -*-

import encodings.aliases

arr = encodings.aliases.aliases

keys = list(arr.keys())

keys.sort()

for key in keys:

 print("%s => %s" % (key, arr[key]))
Листинг 1.7. Несколько инструкций на одной строке

>>> x = 5; y = 10; z = x + y # Три инструкции на одной строке

>>> print(z)

15

Листинг 1.8. Выделение инструкций внутри блока

i = 1

while i < 11:

 print(i)

 i += 1

print("Конец программы")
for i in range(1, 11):

 print(i)

print("Конец программы")

for i in range(1, 11): print(i)

print("Конец программы")
x = 15 + 20 \
 + 30
print(x)
x = (15 + 20 # Это комментарий
 + 30)
print(x)
arr = [15, 20, # Это комментарий
 30]
print(arr)
arr = {"x": 15, "y": 20, # Это комментарий
 "z": 30}
print(arr)
1.4. Комментарии

Это комментарий

print("Привет, мир!") # Выводим надпись с помощью функции print()

print("Привет, мир!") Эта инструкция выполнена не будет

print("# Это НЕ комментарий")

"""

Эта инструкция выполнена не будет

print("Привет, мир!")

"""

1.5. Скрытые возможности IDLE
>>> for n in range(1, 3):

 print(n)

1

2

>>>

>>> "Привет, мир!"

'Привет, мир!'

>>>

>>> print("Привет, мир!")

Привет, мир!

>>>

>>> 12 * 32 + 54

438

>>>

>>> 125 * 3 # Умножение

375

>>> _ + 50 # Сложение. Эквивалентно 375 + 50

425

>>> _ / 5 # Деление. Эквивалентно 425 / 5

85.0

>>>

1.6. Вывод результатов работы программы

print("Строка 1")

print("Строка 2")

print("Строка 1", "Строка 2")

print("Строка1", "Строка2", sep="")

print("Строка 1", "Строка 2", end=" ")

print("Строка 3")

Выведет: Строка 1 Строка 2 Строка 3

for n in range(1, 5):

 print(n, end=" ")

print()

print("Это текст на новой строке")

print("""Строка 1

Строка 2

Строка 3""")

import sys # Подключаем модуль sys

sys.stdout.write("Строка") # Выводим строку

import sys

sys.stdout.write("Строка 1\n")

sys.stdout.write("Строка 2")

1.7. Ввод данных

Листинг 1.9. Пример использования функции input()
-*- coding: utf-8 -*-

name = input("Введите ваше имя: ")

print("Привет,", name)

input("Нажмите <Enter> для закрытия окна")

try:

 s = input("Введите данные: ")

 print(s)

except EOFError:

 print("Обработали исключение EOFError")

-*- coding: utf-8 -*-

result = eval(input("Введите инструкцию: ")) # Вводим: 2 + 2

print("Результат:", result) # Выведет: 4

input()
Листинг 1.10. Получение данных из командной строки

-*- coding: utf-8 -*-

import sys

arr = sys.argv[:]

for n in arr:

 print(n)

cd C:\book

C:\Python34\python.exe test3.py -uNik -p123

1.8. Доступ к документации

>>> help(input)

>>> import builtins

>>> help(builtins)

-*- coding: utf-8 -*-

""" Это описание нашего модуля """

def func():

 """ Это описание функции"""

 pass

-*- coding: utf-8 -*-

import test4 # Подключаем файл test4.py

help(test4)

-*- coding: utf-8 -*-

import test4 # Подключаем файл test4.py

print(test4.__doc__)

print(test4.func.__doc__)

>>> print(input.__doc__)

-*- coding: utf-8 -*-

import test4 # Подключаем файл test4.py

print(dir(test4))

>>> import builtins

>>> print(dir(builtins))
-*- coding: utf-8 -*-

import test4 # Подключаем файл test4.py

print(dir())

2. Переменные
2.1. Именование переменных

Листинг 2.1. Список всех ключевых слов

>>> import keyword

>>> keyword.kwlist

['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class', 'continue',

'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if',

'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return',

'try', 'while', 'with', 'yield']
Листинг 2.2. Ошибочное переопределение встроенных идентификаторов

>>> help(abs)

Help on built-in function abs in module builtins:

abs(...)

 abs(number) -> number

 Return the absolute value of the argument.

>>> help = 10

>>> help

10

>>> help(abs)

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 help(abs)

TypeError: 'int' object is not callable
Листинг 2.3. Получение списка встроенных идентификаторов

>>> import builtins

>>> dir(builtins)

>>> ИмяПеременной = 10 # Лучше так не делать!!!

>>> ИмяПеременной

10

>>> x = 10; X = 20

>>> x, X

(10, 20)

2.2. Типы данных

>>> type(True), type(False)
(<class 'bool'>, <class 'bool'>)
>>> int(True), int(False)
(1, 0)
>>> type(None)
<class 'NoneType'>
>>> bool(None)
False
>>> type(2147483647), type(999999999999999999999999)
(<class 'int'>, <class 'int'>)
>>> type(5.1), type(8.5e-3)
(<class 'float'>, <class 'float'>)
>>> type(2+2j)
<class 'complex'>
>>> type("Строка")
<class 'str'>
>>> type(bytes("Строка", "utf-8"))
<class 'bytes'>
>>> type(bytearray("Строка", "utf-8"))
<class 'bytearray'>
>>> type([1, 2, 3])
<class 'list'>
>>> type((1, 2, 3))
<class 'tuple'>
>>> type(range(1, 10))
<class 'range'>
>>> type({"x": 5, "y": 20})
<class 'dict'>
>>> type({"a", "b", "c"})
<class 'set'>
>>> type(frozenset(["a", "b", "c"]))
<class 'frozenset'>
>>> type(...), ..., ... is Ellipsis
(<class 'ellipsis'>, Ellipsis, True)
>>> class C():
 def __getitem__(self, obj): return obj
>>> c = C()
>>> c[..., 1:5, 0:9:1, 0]
(Ellipsis, slice(1, 5, None), slice(0, 9, 1), 0)
>>> def func(): pass
>>> type(func)
<class 'function'>
>>> import sys
>>> type(sys)
<class 'module'>
>>> class C: pass
>>> type(C)
<class 'type'>
>>> type(type(""))
<class 'type'>
>>> arr = [1, 2, 3]

>>> arr[0] = 0 # Изменяем первый элемент списка

>>> arr

[0, 2, 3]

>>> str1 = "авто"

>>> str2 = "транспорт"

>>> str3 = str1 + str2 # Конкатенация

>>> print(str3)

автотранспорт

>>> arr = [1, 2]

>>> i = iter(arr)

>>> i.__next__() # Метод __next__()

1

>>> next(i) # Функция next()

2

>>> d = {"x": 1, "y": 2}

>>> i = iter(d)

>>> i.__next__() # Возвращается ключ

'y'

>>> d[i.__next__()] # Получаем значение по ключу

1

>>> for i in [1, 2]:

 print(i)

>>> for i in "Строка":

 print(i + " -", end=" ")

>>> d = {"x": 1, "y": 2}

>>> for key in d:

 print(d[key])

2.3. Присваивание значения переменным

>>> x = 7 # Тип int

>>> y = 7.8 # Тип float

>>> s1 = "Строка" # Переменной s1 присвоено значение Строка

>>> s2 = 'Строка' # Переменной s2 также присвоено значение Строка

>>> b = True # Переменной b присвоено логическое значение True

>>> x = y = 10

>>> x, y

(10, 10)

>>> x = y = [1, 2] # Якобы создали два объекта

>>> x, y

([1, 2], [1, 2])

>>> y[1] = 100 # Изменяем второй элемент

>>> x, y

([1, 100], [1, 100])

>>> x = [1, 2]

>>> y = [1, 2]

>>> y[1] = 100 # Изменяем второй элемент

>>> x, y

([1, 2], [1, 100])

>>> x = y = [1, 2] # Один объект

>>> x is y

True

>>> x = [1, 2] # Разные объекты

>>> y = [1, 2] # Разные объекты

>>> x is y

False

>>> x = 2; y = 2; z = 2

>>> x is y, y is z

(True, True)

>>> import sys # Подключаем модуль sys

>>> sys.getrefcount(2)

304

>>> x, y, z = 1, 2, 3

>>> x, y, z

(1, 2, 3)

>>> x, y = 1, 2; x, y

(1, 2)

>>> x, y = y, x; x, y

(2, 1)

>>> x, y, z = "123" # Строка

>>> x, y, z

('1', '2', '3')

>>> x, y, z = [1, 2, 3] # Список
>>> x, y, z

(1, 2, 3)

>>> x, y, z = (1, 2, 3) # Кортеж
>>> x, y, z

(1, 2, 3)

>>> [x, y, z] = (1, 2, 3) # Список слева, кортеж справа

>>> x, y, z

(1, 2, 3)

>>> x, y, z = (1, 2, 3, 4)

Traceback (most recent call last):

 File "<pyshell#130>", line 1, in <module>

 x, y, z = (1, 2, 3, 4)

ValueError: too many values to unpack (expected 3)

>>> x, y, *z = (1, 2, 3, 4)

>>> x, y, z

(1, 2, [3, 4])

>>> x, *y, z = (1, 2, 3, 4)

>>> x, y, z

(1, [2, 3], 4)

>>> *x, y, z = (1, 2, 3, 4)

>>> x, y, z

([1, 2], 3, 4)

>>> x, y, *z = (1, 2, 3)

>>> x, y, z

(1, 2, [3])

>>> x, y, *z = (1, 2)

>>> x, y, z

(1, 2, [])

>>> *x, y, *z = (1, 2, 3, 4)

SyntaxError: two starred expressions in assignment

2.4. Проверка типа данных

>>> a = "Строка" # Тип str

>>> a = 7 # Теперь переменная имеет тип int

>>> type(a)

<class 'int'>

>>> x = 10
>>> if type(x) == int:
 print("Это тип int")
>>> s = "Строка"
>>> if isinstance(s, str):
 print("Это тип str")
2.5. Преобразование типов данных

>>> 2 + "25"

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 2 + "25"

TypeError: unsupported operand type(s) for +: 'int' and 'str'

>>> bool(0), bool(1), bool(""), bool("Строка"), bool([1, 2]), bool([])
(False, True, False, True, True, False)
>>> int(7.5), int("71")
(7, 71)
>>> int("71", 10), int("71", 8), int("0o71", 8), int("A", 16)
(71, 57, 57, 10)
>>> int("71s")
Traceback (most recent call last):
 File "<pyshell#9>", line 1, in <module>
 int("71s")
ValueError: invalid literal for int() with base 10: '71s'
>>> float(7), float("7.1")
(7.0, 7.1)
>>> float("Infinity"), float("-inf")
(inf, -inf)
>>> float("Infinity") + float("-inf")
nan
>>> str(125), str([1, 2, 3])
('125', '[1, 2, 3]')
>>> str((1, 2, 3)), str({"x": 5, "y": 10})
('(1, 2, 3)', "{'y': 10, 'x': 5}")
>>> str(bytes("строка", "utf-8"))
"b'\\xd1\\x81\\xd1\\x82\\xd1\\x80\\xd0\\xbe\\xd0\\xba\\xd0
\\xb0'"
>>> str(bytearray("строка", "utf-8"))
"bytearray(b'\\xd1\\x81\\xd1\\x82\\xd1\\x80\\xd0\\xbe\\xd0
\\xba\\xd0\\xb0')"
>>> obj1 = bytes("строка1", "utf-8")
>>> obj2 = bytearray("строка2", "utf-8")
>>> str(obj1, "utf-8"), str(obj2, "utf-8")
('строка1', 'строка2')
>>> str(obj1, "ascii", "strict")
Traceback (most recent call last):
 File "<pyshell#16>", line 1, in <module>
 str(obj1, "ascii", "strict")
UnicodeDecodeError: 'ascii' codec can't decode byte

0xd1 in position 0: ordinal not in range(128)
>>> str(obj1, "ascii", "ignore")
'1'
>>> bytes("строка", "cp1251")
b'\xf1\xf2\xf0\xee\xea\xe0'
>>> bytes("строка123", "ascii", "ignore")
b'123'
>>> b = bytes([225, 226, 224, 174, 170, 160])
>>> b
b'\xe1\xe2\xe0\xae\xaa\xa0'
>>> str(b, "cp866")
'строка'
>>> bytearray("строка", "cp1251")
bytearray(b'\xf1\xf2\xf0\xee\xea\xe0')
>>> b = bytearray([225, 226, 224, 174, 170, 160])
>>> b
bytearray(b'\xe1\xe2\xe0\xae\xaa\xa0')
>>> str(b, "cp866")
'строка'
>>> list("12345") # Преобразование строки
['1', '2', '3', '4', '5']
>>> list((1, 2, 3, 4, 5)) # Преобразование кортежа
[1, 2, 3, 4, 5]
>>> tuple("123456") # Преобразование строки
('1', '2', '3', '4', '5', '6')
>>> tuple([1, 2, 3, 4, 5]) # Преобразование списка
(1, 2, 3, 4, 5)
Листинг 2.4. Получение данных от пользователя

-*- coding: utf-8 -*-

x = input("x = ") # Вводим 5

y = input("y = ") # Вводим 12

print(x + y)

input()
Листинг 2.5. Преобразование строки в число

-*- coding: utf-8 -*-

x = int(input("x = ")) # Вводим 5

y = int(input("y = ")) # Вводим 12

print(x + y)

input()
2.6. Удаление переменной

>>> x = 10; x

10

>>> del x; x

Traceback (most recent call last):

 File "<pyshell#1>", line 1, in <module>

 del x; x

NameError: name 'x' is not defined

>>> x, y = 10, 20

>>> del x, y
3. Операторы
3.1. Математические операторы

>>> 10 + 5 # Целые числа
15
>>> 12.4 + 5.2 # Вещественные числа
17.6
>>> 10 + 12.4 # Целые и вещественные числа
22.4
>>> 10 — 5 # Целые числа
5
>>> 12.4 — 5.2 # Вещественные числа
7.2
>>> 12 — 5.2 # Целые и вещественные числа
6.8
>>> 10 * 5 # Целые числа
50
>>> 12.4 * 5.2 # Вещественные числа
64.48
>>> 10 * 5.2 # Целые и вещественные числа
52.0
>>> 10 / 5 # Деление целых чисел без остатка
2.0
>>> 10 / 3 # Деление целых чисел с остатком
3.3333333333333335
>>> 10.0 / 5.0 # Деление вещественных чисел
2.0
>>> 10.0 / 3.0 # Деление вещественных чисел
3.3333333333333335
>>> 10 / 5.0 # Деление целого числа на вещественное
2.0
>>> 10.0 / 5 # Деление вещественного числа на целое
2.0
>>> 10 // 5 # Деление целых чисел без остатка
2
>>> 10 // 3 # Деление целых чисел с остатком
3
>>> 10.0 // 5.0 # Деление вещественных чисел
2.0
>>> 10.0 // 3.0 # Деление вещественных чисел
3.0
>>> 10 // 5.0 # Деление целого числа на вещественное
2.0
>>> 10 // 3.0 # Деление целого числа на вещественное
3.0
>>> 10.0 // 5 # Деление вещественного числа на целое
2.0
>>> 10.0 // 3 # Деление вещественного числа на целое
3.0
>>> 10 % 5 # Деление целых чисел без остатка
0
>>> 10 % 3 # Деление целых чисел с остатком
1
>>> 10.0 % 5.0 # Операция над вещественными числами
0.0
>>> 10.0 % 3.0 # Операция над вещественными числами
1.0
>>> 10 % 5.0 # Операция над целыми и вещественными числами
0.0
>>> 10 % 3.0 # Операция над целыми и вещественными числами
1.0
>>> 10.0 % 5 # Операция над целыми и вещественными числами
0.0
>>> 10.0 % 3 # Операция над целыми и вещественными числами
1.0
>>> 10 ** 2, 10.0 ** 2
(100, 100.0)
>>> +10, +10.0, -10, -10.0, -(-10), -(-10.0)
(10, 10.0, -10, -10.0, 10, 10.0)
>>> 0.3 — 0.1 — 0.1 — 0.1

-2.7755575615628914e-17

>>> from decimal import Decimal

>>> Decimal("0.3") — Decimal("0.1") — Decimal("0.1") — Decimal("0.1")

Decimal('0.0')

3.2. Двоичные операторы

>>> x = 100 # 01100100
>>> x = ~x # 10011011
>>> x = 100 # 01100100
>>> y = 75 # 01001011
>>> z = x & y # 01000000
>>> "{0:b} & {1:b} = {2:b}".format(x, y, z)
'1100100 & 1001011 = 1000000'
>>> x = 100 # 01100100
>>> y = 75 # 01001011
>>> z = x | y # 01101111
>>> "{0:b} | {1:b} = {2:b}".format(x, y, z)
'1100100 | 1001011 = 1101111'
>>> x = 100 # 01100100
>>> y = 250 # 11111010
>>> z = x ^ y # 10011110
>>> "{0:b} ^ {1:b} = {2:b}".format(x, y, z)
'1100100 ^ 11111010 = 10011110'
>>> x = 100 # 01100100
>>> y = x << 1 # 11001000
>>> z = y << 1 # 10010000
>>> k = z << 2 # 01000000
>>> x = 100 # 01100100
>>> y = x >> 1 # 00110010
>>> z = y >> 1 # 00011001
>>> k = z >> 2 # 00000110
>>> x = -127 # 10000001
>>> y = x >> 1 # 11000000
>>> z = y >> 2 # 11110000
>>> k = z << 1 # 11100000
>>> m = k >> 1 # 11110000
3.3. Операторы для работы с последовательностями

>>> print("Строка1" + "Строка2") # Конкатенация строк
Строка1Строка2
>>> [1, 2, 3] + [4, 5, 6] # Списки
[1, 2, 3, 4, 5, 6]
>>> (1, 2, 3) + (4, 5, 6) # Кортежи
(1, 2, 3, 4, 5, 6)
>>> "s" * 20 # Строки
'ssssssssssssssssssss'
>>> [1, 2] * 3 # Списки
[1, 2, 1, 2, 1, 2]
>>> (1, 2) * 3 # Кортежи
(1, 2, 1, 2, 1, 2)
>>> "Строка" in "Строка для поиска" # Строки
True
>>> "Строка2" in "Строка для поиска" # Строки
False
>>> 2 in [1, 2, 3], 4 in [1, 2, 3] # Списки
(True, False)
>>> 2 in (1, 2, 3), 6 in (1, 2, 3) # Кортежи
(True, False)

>>> "Строка" not in "Строка для поиска" # Строки
False
>>> "Строка2" not in "Строка для поиска" # Строки
True
>>> 2 not in [1, 2, 3], 4 not in [1, 2, 3] # Списки
(False, True)
>>> 2 not in (1, 2, 3), 6 not in (1, 2, 3) # Кортежи
(False, True)
3.4. Операторы присваивания

>>> x = 5; x
5
>>> x = 5; x += 10 # Эквивалентно x = x + 10
>>> x
15
>>> s = "Стр"; s += "ока"
>>> print(s)
Строка
>>> x = 10; x -= 5 # Эквивалентно x = x — 5
>>> x
5
>>> x = 10; x *= 5 # Эквивалентно x = x * 5
>>> x
50
>>> s = "*"; s *= 20
>>> s
'********************'
>>> x = 10; x /= 3 # Эквивалентно x = x / 3
>>> x
3.3333333333333335
>>> y = 10.0; y /= 3.0 # Эквивалентно y = y / 3.0
>>> y
3.3333333333333335
>>> x = 10; x //= 3 # Эквивалентно x = x // 3
>>> x
3
>>> y = 10.0; y //= 3.0 # Эквивалентно y = y // 3.0
>>> y
3.0
>>> x = 10; x %= 2 # Эквивалентно x = x % 2
>>> x
0
>>> y = 10; y %= 3 # Эквивалентно y = y % 3
>>> y
1
>>> x = 10; x **= 2 # Эквивалентно x = x ** 2
>>> x
100
3.5. Приоритет выполнения операторов

>>> x = 5 + 10 * 3 / 2

>>> x

20.0

>>> x = (5 + 10) * 3 / 2

>>> x

22.5
4. Условные операторы и циклы
>>> True + 2 # Эквивалентно 1 + 2

3

>>> False + 2 # Эквивалентно 0 + 2

2

>>> x = True; y = False

>>> x, y

(True, False)

>>> bool(1), bool(20), bool(-20)
(True, True, True)
>>> bool(1.0), bool(0.1), bool(-20.0)
(True, True, True)
>>> bool("0"), bool([0, None]), bool((None,)), bool({"x": 5})
(True, True, True, True)
>>> bool(0), bool(0.0)
(False, False)
>>> bool(""), bool([]), bool(())
(False, False, False)
>>> bool(None)
False
4.1. Операторы сравнения

>>> 1 == 1, 1 == 5
(True, False)
>>> 1 != 5, 1 != 1
(True, False)
>>> 1 < 5, 1 < 0
(True, False)
>>> 1 > 0, 1 > 5
(True, False)
>>> 1 <= 5, 1 <= 0, 1 <= 1
(True, False, True)
>>> 1 >= 0, 1 >= 5, 1 >= 1
(True, False, True)
>>> "Строка" in "Строка для поиска" # Строки
True
>>> 2 in [1, 2, 3], 4 in [1, 2, 3] # Списки
(True, False)
>>> 2 in (1, 2, 3), 4 in (1, 2, 3) # Кортежи
(True, False)
>>> "x" in {"x": 1, "y": 2}, "z" in {"x": 1, "y": 2}
(True, False)
>>> "Строка" not in "Строка для поиска" # Строки
False
>>> 2 not in [1, 2, 3], 4 not in [1, 2, 3] # Списки
(False, True)
>>> 2 not in (1, 2, 3), 4 not in (1, 2, 3) # Кортежи
(False, True)
>>> x = y = [1, 2]
>>> x is y
True
>>> x = [1, 2]; y = [1, 2]
>>> x is y
False
>>> x = 2; y = 2; z = 2
>>> x is y, y is z
(True, True)
>>> x = y = [1, 2]
>>> x is not y
False
>>> x = [1, 2]; y = [1, 2]
>>> x is not y
True
>>> x = 1; y = 1

>>> x == y

True

>>> not (x == y), not x == y

(False, False)

>>> x = 10

>>> 1 < x < 20, 11 < x < 20

(True, False)

>>> 1 < 5 and 2 < 5 # True and True == True
True
>>> 1 < 5 and 2 > 5 # True and False == False
False
>>> 1 > 5 and 2 < 5 # False and True == False
False
>>> 10 and 20, 0 and 20, 10 and 0
(20, 0, 0)
>>> 1 < 5 or 2 < 5 # True or True == True
True
>>> 1 < 5 or 2 > 5 # True or False == True
True
>>> 1 > 5 or 2 < 5 # False or True == True
True
>>> 1 > 5 or 2 > 5 # False or False == False
False
>>> 10 or 20, 0 or 20, 10 or 0
(10, 20, 10)
>>> 0 or "" or None or [] or "s"
's'
4.2. Оператор ветвления if...else
Листинг 4.1. Проверка числа на четность

-*- coding: utf-8 -*-

x = int(input("Введите число: "))

if x % 2 == 0:

 print(x, " - четное число")

else:

 print(x, " - нечетное число")

input()

-*- coding: utf-8 -*-

x = int(input("Введите число: "))

if x % 2 == 0: print(x, " - четное число")

else: print(x, " - нечетное число")

input()

-*- coding: utf-8 -*-

x = int(input("Введите число: "))

if x % 2 == 0: print(x, end=" "); print("- четное число")

else: print(x, end=" "); print("- нечетное число")

input()

-*- coding: utf-8 -*-

x = int(input("Введите число: "))

if x % 2 == 0:

 print(x, end=" ")

 print("- четное число")

else:

 print(x, end=" ")

 print("- нечетное число")

input()
Листинг 4.2. Проверка нескольких условий

-*- coding: utf-8 -*-

print("""Какой операционной системой вы пользуетесь?

1 — Windows 8

2 — Windows 7

3 — Windows Vista
4 — Windows XP
5 — Другая""")

os = input("Введите число, соответствующее ответу: ")

if os == "1":

 print("Вы выбрали: Windows 8")

elif os == "2":

 print("Вы выбрали: Windows 7")

elif os == "3":

 print("Вы выбрали: Windows Vista")

elif os == "4":

 print("Вы выбрали: Windows XP")

elif os == "5":

 print("Вы выбрали: другая")

elif not os:

 print("Вы не ввели число")

else:

 print("Мы не смогли определить вашу операционную систему")

input()
Листинг 4.3. Вложенные инструкции

-*- coding: utf-8 -*-

print("""Какой операционной системой вы пользуетесь?

1 — Windows 8

2 — Windows 7

3 — Windows Vista
4 — Windows XP
5 — Другая""")

os = input("Введите число, соответствующее ответу: ")

if os != "":

 if os == "1":

 print("Вы выбрали: Windows 8")

 elif os == "2":

 print("Вы выбрали: Windows 7")

 elif os == "3":

 print("Вы выбрали: Windows Vista")

 elif os == "4":

 print("Вы выбрали: Windows XP")

 elif os == "5":

 print("Вы выбрали: другая")

 else:

 print("Мы не смогли определить вашу операционную систему")

else:

 print("Вы не ввели число")

input()
>>> print("Yes" if 10 % 2 == 0 else "No")

Yes

>>> s = "Yes" if 10 % 2 == 0 else "No"

>>> s

'Yes'

>>> s = "Yes" if 11 % 2 == 0 else "No"

>>> s

'No'

4.3. Цикл for
for x in range(1, 101): print(x)
Листинг 4.4. Перебор букв в слове

for s in "str":

 print(s, end=" ")

else:

 print("\nЦикл выполнен")
Листинг 4.5. Перебор списка и кортежа

for x in [1, 2, 3]:

 print(x)

for y in (1, 2, 3):

 print(y)
Листинг 4.6. Перебор элементов словаря

>>> arr = {"x": 1, "y": 2, "z": 3}

>>> arr.keys()

dict_keys(['y', 'x', 'z'])

>>> for key in arr.keys(): # Использование метода keys()

 print(key, arr[key])

y 2

x 1

z 3

>>> for key in arr: # Словари также поддерживают итерации

 print(key, arr[key])

y 2

x 1

z 3

>>> arr = {"x": 1, "y": 2, "z": 3}

>>> for key in sorted(arr):

 print(key, arr[key])

x 1

y 2

z 3
Листинг 4.7. Перебор элементов списка кортежей

>>> arr = [(1, 2), (3, 4)] # Список кортежей
>>> for a, b in arr:

 print(a, b)

1 2

3 4

4.4. Функции range() и enumerate()
arr = [1, 2, 3]

for i in arr:

 i = i * 2

print(arr) # Результат выполнения: [1, 2, 3]
Листинг 4.8. Пример использования функции range()
arr = [1, 2, 3]

for i in range(len(arr)):

 arr[i] *= 2

print(arr) # Результат выполнения: [2, 4, 6]

for i in range(1, 101): print(i)

for i in range(100, 0, -1): print(i)

for i in range(2, 101, 2): print(i)
Листинг 4.9. Создание списка чисел на основе диапазона
>>> obj = range(len([1, 2, 3]))

>>> obj

range(0, 3)

>>> obj[0], obj[1], obj[2] # Доступ по индексу

(0, 1, 2)

>>> obj[0:2] # Получение среза

range(0, 2)

>>> i = iter(obj)

>>> next(i), next(i), next(i) # Доступ с помощью итераторов

(0, 1, 2)

>>> list(obj) # Преобразование диапазона в список

[0, 1, 2]

>>> 1 in obj, 7 in obj # Проверка вхождения значения

(True, False)

>>> obj = range(1, 5)
>>> obj.index(1), obj.index(4)
(0, 3)
>>> obj.index(5)
... Фрагмент опущен ...
ValueError: 5 is not in range
>>> obj = range(1, 5)
>>> obj.count(1), obj.count(10)
(1, 0)
Листинг 4.10. Пример использования функции enumerate()
arr = [1, 2, 3, 4, 5, 6]

for i, elem in enumerate(arr):

 if elem % 2 == 0:

 arr[i] *= 2

print(arr) # Результат выполнения: [1, 4, 3, 8, 5, 12]

>>> arr = [1, 2]

>>> obj = enumerate(arr, start=2)

>>> next(obj)

(2, 1)

>>> next(obj)

(3, 2)

>>> next(obj)

Traceback (most recent call last):

 File "<pyshell#10>", line 1, in <module>

 next(obj)

StopIteration

4.5. Цикл while
Листинг 4.11. Вывод чисел от 1 до 100

i = 1 # <Начальное значение>

while i < 101: # <Условие>

 print(i) # <Инструкции>

 i += 1 # <Приращение>

Листинг 4.12. Вывод чисел от 100 до 1

i = 100

while i:

 print(i)

 i -= 1
Листинг 4.13. Перебор элементов списка

arr = [1, 2, 3]

i, count = 0, len(arr)

while i < count:

 arr[i] *= 2

 i += 1

print(arr) # Результат выполнения: [2, 4, 6]

4.6. Оператор continue. Переход на следующую итерацию цикла

Листинг 4.14. Оператор continue
for i in range(1, 101):

 if 4 < i < 11:

 continue # Переходим на следующую итерацию цикла

 print(i)

4.7. Оператор break. Прерывание цикла

Листинг 4.15. Оператор break
i = 1

while True:

 if i > 100: break # Прерываем цикл
 print(i)

 i += 1
Листинг 4.16. Суммирование неопределенного количества чисел

-*- coding: utf-8 -*-

print("Введите слово 'stop' для получения результата")

summa = 0

while True:

 x = input("Введите число: ")

 if x == "stop":

 break # Выход из цикла

 x = int(x) # Преобразуем строку в число

 summa += x

print("Сумма чисел равна:", summa)

input()

5. Числа
>>> x = 0; y = 10; z = -80

>>> x, y, z

(0, 10, -80)

>>> 0b11111111, 0b101101

(255, 45)

>>> 0o7, 0o12, 0o777, 0O7, 0O12, 0O777

(7, 10, 511, 7, 10, 511)

>>> 0X9,0xA, 0x10, 0xFFF, 0xfff

(9, 10, 16, 4095, 4095)

>>> 10., .14, 3.14, 11E20, 2.5e-12

(10.0, 0.14, 3.14, 1.1e+21, 2.5e-12)

>>> 0.3 — 0.1 — 0.1 — 0.1

-2.7755575615628914e-17

>>> from decimal import Decimal

>>> Decimal("0.3") — Decimal("0.1") — Decimal("0.1") — Decimal("0.1")

Decimal('0.0')

>>> from fractions import Fraction
>>> Fraction(4, 5)

Fraction(4, 5)

>>> Fraction(1, 2)

Fraction(1, 2)
>>> Fraction("0.5")

Fraction(1, 2)

>>> Fraction(0.5)

Fraction(1, 2)

>>> Fraction(9, 5) - Fraction(2, 3)
Fraction(17, 15)
>>> Fraction("0.3") — Fraction("0.1") — Fraction("0.1") — Fraction("0.1")

Fraction(0, 1)

>>> float(Fraction(0, 1))

0.0

>>> 2+5J, 8j

((2+5j), 8j)

5.1. Встроенные функции и методы для работы с числами

>>> int(7.5), int("71", 10), int("0o71", 8), int("0xA", 16)
(7, 71, 57, 10)
>>> int(), int("0b11111111", 2)
(0, 255)
>>> float(7), float("7.1"), float("12.")
(7.0, 7.1, 12.0)
>>> float("inf"), float("-Infinity"), float("nan")
(inf, -inf, nan)
>>> float()
0.0
>>> bin(255), bin(1), bin(-45)
('0b11111111', '0b1', '-0b101101')
>>> oct(7), oct(8), oct(64)
('0o7', '0o10', '0o100')
>>> hex(10), hex(16), hex(255)
('0xa', '0x10', '0xff')
>>> round(0.49), round(0.50), round(0.51)
(0, 0, 1)
>>> round(1.49), round(1.50), round(1.51)
(1, 2, 2)
>>> round(2.49), round(2.50), round(2.51)
(2, 2, 3)
>>> round(3.49), round(3.50), round(3.51)
(3, 4, 4)
>>> round(1.524, 2), round(1.525, 2), round(1.5555, 3)
(1.52, 1.52, 1.556)
>>> abs(-10), abs(10), abs(-12.5)
(10, 10, 12.5)
>>> pow(10, 2), 10 ** 2, pow(3, 3), 3 ** 3
(100, 100, 27, 27)
>>> pow(10, 2, 2), (10 ** 2) % 2, pow(3, 3, 2), (3 ** 3) % 2
(0, 0, 1, 1)
>>> max(1, 2, 3), max(3, 2, 3, 1), max(1, 1.0), max(1.0, 1)
(3, 3, 1, 1.0)
>>> min(1, 2, 3), min(3, 2, 3, 1), min(1, 1.0), min(1.0, 1)
(1, 1, 1, 1.0)
>>> sum((10, 20, 30, 40)), sum([10, 20, 30, 40])
(100, 100)
>>> sum([10, 20, 30, 40], 2), sum([], 2)
(102, 2)
>>> divmod(13, 2) # 13 == 6 * 2 + 1
(6, 1)
>>> 13 // 2, 13 % 2
(6, 1)
>>> divmod(13.5, 2.0) # 13.5 == 6.0 * 2.0 + 1.5
(6.0, 1.5)
>>> 13.5 // 2.0, 13.5 % 2.0
(6.0, 1.5)
>>> (2.0).is_integer()

True

>>> (2.3).is_integer()

False

>>> (0.5).as_integer_ratio()

(1, 2)

>>> (2.3).as_integer_ratio()

(2589569785738035, 1125899906842624)

5.2. Модуль math. Математические функции

import math

>>> import math
>>> math.pi
3.141592653589793
>>> math.e
2.718281828459045
>>> math.degrees(math.pi)
180.0
>>> math.radians(180.0)
3.141592653589793
>>> math.sqrt(100), math.sqrt(25)
(10.0, 5.0)
>>> math.ceil(5.49), math.ceil(5.50), math.ceil(5.51)
(6, 6, 6)
>>> math.floor(5.49), math.floor(5.50), math.floor(5.51)
(5, 5, 5)
>>> math.pow(10, 2), 10 ** 2, math.pow(3, 3), 3 ** 3
(100.0, 100, 27.0, 27)
>>> math.fabs(10), math.fabs(-10), math.fabs(-12.5)
(10.0, 10.0, 12.5)
>>> math.fmod(10, 5), 10 % 5, math.fmod(10, 3), 10 % 3
(0.0, 0, 1.0, 1)
>>> math.factorial(5), math.factorial(6)
(120, 720)
>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])

0.9999999999999999

>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])

1.0

5.3. Модуль random.
Генерация случайных чисел

import random

>>> import random
>>> random.random()
0.9753144027290991
>>> random.random()
0.5468390487484339
>>> random.random()
0.13015058054767736
>>> random.seed(10)
>>> random.random()
0.5714025946899135
>>> random.seed(10)
>>> random.random()
0.5714025946899135
>>> random.uniform(0, 10)
9.965569925394552
>>> random.uniform(0, 10)
0.4455638245043303
>>> random.randint(0, 10)
4
>>> random.randint(0, 10)
10
>>> random.randrange(10)
5
>>> random.randrange(0, 10)
2
>>> random.randrange(0, 10, 2)
6
>>> random.choice("string") # Строка
'i'
>>> random.choice(["s", "t", "r"]) # Список
'r'
>>> random.choice(("s", "t", "r")) # Кортеж
't'
>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> random.shuffle(arr)
>>> arr
[8, 6, 9, 5, 3, 7, 2, 4, 10, 1]
>>> random.sample("string", 2)
['i', 'r']
>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> random.sample(arr, 2)
[7, 10]
>>> arr # Сам список не изменяется
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> random.sample((1, 2, 3, 4, 5, 6, 7), 3)
[6, 3, 5]
>>> random.sample(range(300), 5)
[126, 194, 272, 46, 71]
Листинг 5.1. Генератор паролей

-*- coding: utf-8 -*-

import random # Подключаем модуль random

def passw_generator(count_char=8):

 arr = ['a','b','c','d','e','f','g','h','i','j','k','l','m',

 'n','o','p','q','r','s','t','u','v','w','x','y','z',

 'A','B','C','D','E','F','G','H','I','J','K','L',

 'M','N','O','P','Q','R','S','T','U','V', 'W',

 'X','Y','Z','1','2','3','4','5','6','7','8','9','0']

 passw = []

 for i in range(count_char):

 passw.append(random.choice(arr))

 return "".join(passw)

Вызываем функцию
print(passw_generator(10)) # Выведет что-то вроде ngODHE8J8x

print(passw_generator()) # Выведет что-то вроде ZxcpkF5O

input()
6. Строки и двоичные данные
Листинг 6.1. Попытка изменить символ по индексу

>>> s = "Python"

>>> s[0] # Можно получить символ по индексу

'P'

>>> s[0] = "J" # Изменить строку нельзя

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 s[0] = "J" # Изменить строку нельзя
TypeError: 'str' object does not support item assignment

>>> type("строка")
<class 'str'>
>>> "строка".encode(encoding="cp1251")
b'\xf1\xf2\xf0\xee\xea\xe0'
>>> "строка".encode(encoding="utf-8")
b'\xd1\x81\xd1\x82\xd1\x80\xd0\xbe\xd0\xba\xd0\xb0'
>>> s = bytes("стр str", "cp1251")
>>> s[0], s[5], s[0:3], s[4:7]
(241, 116, b'\xf1\xf2\xf0', b'str')
>>> s
b'\xf1\xf2\xf0 str'
>>> len("строка")
6
>>> len(bytes("строка", "cp1251"))
6
>>> len(bytes("строка", "utf-8"))
12
>>> s = bytearray("str", "cp1251")
>>> s[0] = 49; s # Можно изменить символ
bytearray(b'1tr')
>>> s.append(55); s # Можно добавить символ
bytearray(b'1tr7')
6.1. Создание строки

>>> str(), str([1, 2]), str((3, 4)), str({"x": 1})
('', '[1, 2]', '(3, 4)', "{'x': 1}")
>>> str(b"\xf1\xf2\xf0\xee\xea\xe0")
"b'\\xf1\\xf2\\xf0\\xee\\xea\\xe0'"
>>> str(b"\xf1\xf2\xf0\xee\xea\xe0", "cp1251")
'строка'
>>> obj1 = bytes("строка1", "utf-8")
>>> obj2 = bytearray("строка2", "utf-8")
>>> str(obj1, "utf-8"), str(obj2, "utf-8")
('строка1', 'строка2')
>>> str(obj1, "ascii", "strict")
Traceback (most recent call last):
 File "<pyshell#16>", line 1, in <module>
 str(obj1, "ascii", "strict")
UnicodeDecodeError: 'ascii' codec can't decode byte

0xd1 in position 0: ordinal not in range(128)
>>> str(obj1, "ascii", "ignore")
'1'
>>> 'строка', "строка", '"x": 5', "'x': 5"
('строка', 'строка', '"x": 5', "'x': 5")
>>> print('Строка1\nСтрока2')
Строка1
Строка2
>>> print("Строка1\nСтрока2")
Строка1
Строка2
>>> print("Строка1\\nСтрока2")
Строка1\nСтрока2
>>> print('Строка1\\nСтрока2')
Строка1\nСтрока2
>>> "\"x\": 5", '\'x\': 5'
('"x": 5', "'x': 5")
>>> "string
SyntaxError: EOL while scanning string literal
>>> "string1\
string2" # После \ не должно быть никаких символов
'string1string2'
>>> ("string1"
"string2") # Неявная конкатенация строк
'string1string2'
>>> ("string1" +
"string2") # Явная конкатенация строк
'string1string2'
>>> print("string\")
SyntaxError: EOL while scanning string literal
>>> print("string\\")
string\
>>> print('''Строка1
Строка2''')
Строка1
Строка2
>>> print("""Строка1
Строка2""")
Строка1
Строка2
>>> def test():

 """Это описание функции"""

 pass

>>> print(test.__doc__)

Это описание функции

>>> print("Строка1\nСтрока2")

Строка1

Строка2

>>> print(r"Строка1\nСтрока2")

Строка1\nСтрока2

>>> print(r"""Строка1\nСтрока2""")

Строка1\nСтрока2

>>> print(r"C:\Python34\lib\site-packages")

C:\Python34\lib\site-packages

>>> print("C:\\Python34\\lib\\site-packages")

C:\Python34\lib\site-packages

>>> print(r"C:\Python34\lib\site-packages\")

SyntaxError: EOL while scanning string literal

>>> print(r"C:\Python34\lib\site-packages\\")

C:\Python34\lib\site-packages\\

>>> print(r"C:\Python34\lib\site-packages" + "\\") # Конкатенация

C:\Python34\lib\site-packages\

>>> print("C:\\Python34\\lib\\site-packages\\") # Обычная строка

C:\Python34\lib\site-packages\

>>> print(r"C:\Python34\lib\site-packages\\"[:-1]) # Удаление слэша

C:\Python34\lib\site-packages\

6.2. Специальные символы

>>> print("Этот символ \не специальный")

Этот символ \не специальный

>>> print("Этот символ \\не специальный")

Этот символ \не специальный

6.3. Операции над строками

>>> s = "Python"

>>> s[0], s[1], s[2], s[3], s[4], s[5]

('P', 'y', 't', 'h', 'o', 'n')

>>> s = "Python"

>>> s[10]

Traceback (most recent call last):

 File "<pyshell#90>", line 1, in <module>

 s[10]

IndexError: string index out of range

>>> s = "Python"

>>> s[-1], s[len(s)-1]

('n', 'n')

>>> s = "Python"

>>> s[0] = "J" # Изменить строку нельзя

Traceback (most recent call last):

 File "<pyshell#94>", line 1, in <module>

 s[0] = "J" # Изменить строку нельзя
TypeError: 'str' object does not support item assignment

>>> s = "Python"

>>> s[:] # Возвращается фрагмент от позиции 0 до конца строки

'Python'

>>> s[::-1] # Указываем отрицательное значение в параметре <Шаг>

'nohtyP'

>>> "J" + s[1:] # Извлекаем фрагмент от символа 1 до конца строки

'Jython'

>>> s[:-1] # Возвращается фрагмент от 0 до len(s)-1

'Pytho'

>>> s[0:1] # Символ с индексом 1 не входит в диапазон

'P'

>>> s[-1:] # Получаем фрагмент от len(s)-1 до конца строки

'n'

>>> s[2:5] # Возвращаются символы с индексами 2, 3 и 4

'tho'

>>> len("Python"), len("\r\n\t"), len(r"\r\n\t")

(6, 3, 6)

>>> s = "Python"

>>> for i in range(len(s)): print(s[i], end=" ")

>>> s = "Python"

>>> for i in s: print(i, end=" ")

>>> print("Строка1" + "Строка2")

Строка1Строка2

>>> print("Строка1" "Строка2")

Строка1Строка2

>>> s = "Строка1", "Строка2"

>>> type(s) # Получаем кортеж, а не строку

<class 'tuple'>

>>> s = "Строка1"

>>> print(s + "Строка2") # Нормально

Строка1Строка2

>>> print(s "Строка2") # Ошибка

SyntaxError: invalid syntax

>>> "string" + str(10)

'string10'

>>> "-" * 20

'--------------------'

>>> "yt" in "Python" # Найдено
True

>>> "yt" in "Perl" # Не найдено
False

>>> "PHP" not in "Python" # Не найдено
True
6.4. Форматирование строк

>>> "%s" % 10 # Один элемент

'10'

>>> "%s — %s — %s" % (10, 20, 30) # Несколько элементов

'10 — 20 — 30'

>>> "%(name)s — %(year)s" % {"year": 1978, "name": "Nik"}
'Nik — 1978'
>>> print("%#o %#o %#o" % (0o77, 10, 10.5))
0o77 0o12 0o12
>>> print("%#x %#x %#x" % (0xff, 10, 10.5))
0xff 0xa 0xa
>>> print("%#X %#X %#X" % (0xff, 10, 10.5))
0XFF 0XA 0XA
>>> print("%#.0F %.0F" % (300, 300))
300. 300
>>> "'%d' — '%05d'" % (3, 3) # 5 — ширина поля
"'3' — '00003'"
>>> "'%5d' — '%-5d'" % (3, 3) # 5 — ширина поля
"' 3' — '3 '"
>>> "'%05d' — '%-05d'" % (3, 3)
"'00003' — '3 '"
>>> "'% d' — '% d'" % (-3, 3)
"'-3' — ' 3'"
>>> "'%+d' — '%+d'" % (-3, 3)
"'-3' — '+3'"
>>> "'%10d' — '%-10d'" % (3, 3)
"' 3' — '3 '"
>>> "'%3s''%10s'" % ("string", "string")
"'string'' string'"
>>> "'%*s''%10s'" % (10, "string", "str")
"' string'' str'"
>>> import math
>>> "%s %f %.2f" % (math.pi, math.pi, math.pi)
'3.141592653589793 3.141593 3.14'
>>> "'%*.*f'" % (8, 5, math.pi)
"' 3.14159'"
>>> print("%s" % ("Обычная строка"))
Обычная строка
>>> print("%s %s %s" % (10, 10.52, [1, 2, 3]))
10 10.52 [1, 2, 3]
>>> print("%r" % ("Обычная строка"))
'Обычная строка'
>>> print("%a" % ("строка"))
'\u0441\u0442\u0440\u043e\u043a\u0430'
>>> for i in range(33, 127): print("%s => %c" % (i, i))
>>> print("%d %d %d" % (10, 25.6, -80))
10 25 -80
>>> print("%i %i %i" % (10, 25.6, -80))
10 25 -80
>>> print("%o %o %o" % (0o77, 10, 10.5))
77 12 12
>>> print("%#o %#o %#o" % (0o77, 10, 10.5))
0o77 0o12 0o12
>>> print("%x %x %x" % (0xff, 10, 10.5))
ff a a
>>> print("%#x %#x %#x" % (0xff, 10, 10.5))
0xff 0xa 0xa
>>> print("%X %X %X" % (0xff, 10, 10.5))
FF A A
>>> print("%#X %#X %#X" % (0xff, 10, 10.5))
0XFF 0XA 0XA
>>> print("%f %f %f" % (300, 18.65781452, -12.5))
300.000000 18.657815 -12.500000
>>> print("%F %F %F" % (300, 18.65781452, -12.5))
300.000000 18.657815 -12.500000
>>> print("%#.0F %.0F" % (300, 300))
300. 300
print("%e %e" % (3000, 18657.81452))
3.000000e+03 1.865781e+04
>>> print("%E %E" % (3000, 18657.81452))
3.000000E+03 1.865781E+04
>>> print("%g %g %g" % (0.086578, 0.000086578, 1.865E-005))
0.086578 8.6578e-05 1.865e-05
>>> print("%G %G %G" % (0.086578, 0.000086578, 1.865E-005))
0.086578 8.6578E-05 1.865E-05
>>> print("% %s" % ("- это символ процента")) # Ошибка

Traceback (most recent call last):

 File "<pyshell#55>", line 1, in <module>

 print("% %s" % ("- это символ процента")) # Ошибка

TypeError: not all arguments converted during string formatting

>>> print("%% %s" % ("- это символ процента")) # Нормально

% — это символ процента
Листинг 6.2. Пример использования форматирования строк

-*- coding: utf-8 -*-

html = """<html>

<head><title>%(title)s</title>

</head>

<body>

<h1>%(h1)s</h1>

<div>%(content)s</div>

</body>

</html>"""

arr = {"title": "Это название документа",

 "h1": "Это заголовок первого уровня",

 "content": "Это основное содержание страницы"}

print(html % arr) # Подставляем значения и выводим шаблон

input()

>>> s = "1\t12\t123\t"
>>> "'%s'" % s.expandtabs(4)
"'1 12 123 '"
>>> s = "\t"
>>> "'%s' — '%s'" % (s.expandtabs(), s.expandtabs(4))
"' ' — ' '"
>>> s = "1234\t"
>>> "'%s'" % s.expandtabs(4)
"'1234 '"
>>> s = "12345\t123456\t1234567\t1234567890\t"
>>> "'%s'" % s.expandtabs(4)
"'12345 123456 1234567 1234567890 '"
>>> s = "str"
>>> s.center(15), s.center(11, "-")
(' str ', '----str----')
>>> s = "str"
>>> "'%15s' '%-15s' '%s'" % (s, s, s.center(15))
"' str' 'str ' ' str '"
>>> s = "string"
>>> s.center(6), s.center(5)
('string', 'string')
>>> s = "string"
>>> s.ljust(15), s.ljust(15, "-")
('string ', 'string---------')
>>> s.ljust(6), s.ljust(5)
('string', 'string')
>>> s = "string"
>>> s.rjust(15), s.rjust(15, "-")
(' string', '---------string')
>>> s.rjust(6), s.rjust(5)
('string', 'string')
>>> "5".zfill(20), "123456".zfill(5)
('00000000000000000005', '123456')
6.5. Метод format()
>>> print("Символы {{ и }} — {0}".format("специальные"))

Символы { и } — специальные

>>> "{0} — {1} — {2}".format(10, 12.3, "string") # Индексы

'10 — 12.3 — string'

>>> arr = [10, 12.3, "string"]

>>> "{0} — {1} — {2}".format(*arr) # Индексы

'10 — 12.3 — string'

>>> "{model} — {color}".format(color="red", model="BMW") # Ключи
'BMW — red'

>>> d = {"color": "red", "model": "BMW"}

>>> "{model} — {color}".format(**d) # Ключи
'BMW — red'

>>> "{color} — {0}".format(2015, color="red") # Комбинация
'red — 2015'

>>> arr = [10, [12.3, "string"]]

>>> "{0[0]} — {0[1][0]} — {0[1][1]}".format(arr) # Индексы

'10 — 12.3 — string'

>>> "{arr[0]} — {arr[1][1]}".format(arr=arr) # Индексы

'10 — string'

>>> class Car: color, model = "red", "BMW"

>>> car = Car()

>>> "{0.model} — {0.color}".format(car) # Атрибуты

'BMW — red'

>>> "{} — {} — {} — {n}".format(1, 2, 3, n=4) # "{0} — {1} — {2} — {n}"

'1 — 2 — 3 — 4'

>>> "{} — {} — {n} — {}".format(1, 2, 3, n=4) # "{0} — {1} — {n} — {2}"

'1 — 2 — 4 — 3'

>>> print("{0!s}".format("строка")) # str()

строка

>>> print("{0!r}".format("строка")) # repr()

'строка'

>>> print("{0!a}".format("строка")) # ascii()

'\u0441\u0442\u0440\u043e\u043a\u0430'

>>> "'{0:10}' '{1:3}'".format(3, "string")

"' 3' 'string'"

>>> "'{0:{1}}'".format(3, 10) # 10 — это ширина поля

"' 3'"

>>> "'{0:<10}' '{1:>10}' '{2:^10}'".format(3, 3, 3)
"'3 ' ' 3' ' 3 '"
>>> "'{0:=10}' '{1:=10}'".format(-3, 3)
"'- 3' ' 3'"
>>> "'{0:=010}' '{1:=010}'".format(-3, 3)

"'-000000003' '0000000003'"

>>> "'{0:0=10}' '{1:0=10}'".format(-3, 3)

"'-000000003' '0000000003'"

>>> "'{0:*<10}' '{1:+>10}' '{2:.^10}'".format(3, 3, 3)

"'3*********' '+++++++++3' '....3.....'"

>>> "'{0:+}' '{1:+}' '{0:-}' '{1:-}'".format(3, -3)
"'+3' '-3' '3' '-3'"
>>> "'{0: }' '{1: }'".format(3, -3) # Пробел
"' 3' '-3'"
>>> "'{0:b}' '{0:#b}'".format(3)
"'11' '0b11'"
>>> "'{0:c}'".format(100)
"'d'"
>>> import locale
>>> locale.setlocale(locale.LC_NUMERIC, 'Russian_Russia.1251')
'Russian_Russia.1251'
>>> print("{0:n}".format(100000000).replace("\uffa0", " "))
100 000 000
>>> import locale
>>> locale.setlocale(locale.LC_NUMERIC, "Russian_Russia.1251")
'Russian_Russia.1251'
>>> print(locale.format("%d", 100000000, grouping = True))
100 000 000
>>> locale.localeconv()["thousands_sep"]
'\xa0'
>>> print("{0:,d}".format(100000000))
100,000,000
>>> "'{0:d}' '{0:o}' '{0:#o}'".format(511)
"'511' '777' '0o777'"
>>> "'{0:x}' '{0:#x}'".format(255)
"'ff' '0xff'"
>>> "'{0:X}' '{0:#X}'".format(255)
"'FF' '0XFF'"
>>> "'{0:f}' '{1:f}' '{2:f}'".format(30, 18.6578145, -2.5)
"'30.000000' '18.657815' '-2.500000'"
>>> "'{0:.7f}' '{1:.2f}'".format(18.6578145, -2.5)
"'18.6578145' '-2.50'"
>>> "'{0:e}' '{1:e}'".format(3000, 18657.81452)
"'3.000000e+03' '1.865781e+04'"
>>> "'{0:E}' '{1:E}'".format(3000, 18657.81452)
"'3.000000E+03' '1.865781E+04'"
>>> "'{0:.2e}' '{1:.2E}'".format(3000, 18657.81452)
"'3.00e+03' '1.87E+04'"
>>> "'{0:g}' '{1:g}'".format(0.086578, 0.000086578)
"'0.086578' '8.6578e-05'"
>>> "'{0:G}' '{1:G}'".format(0.086578, 0.000086578)
"'0.086578' '8.6578E-05'"
>>> "'{0:%}' '{1:.4%}'".format(0.086578, 0.000086578)
"'8.657800%' '0.0087%'"
6.6. Функции и методы для работы со строками

>>> str(), str([1, 2]), str((3, 4)), str({"x": 1})
('', '[1, 2]', '(3, 4)', "{'x': 1}")
>>> print("строка1\nстрока2")
строка1
строка2
>>> repr("Строка"), repr([1, 2, 3]), repr({"x": 5})
("'Строка'", '[1, 2, 3]', "{'x': 5}")
>>> repr("строка1\nстрока2")
"'строка1\\nстрока2'"
>>> ascii([1, 2, 3]), ascii({"x": 5})
('[1, 2, 3]', "{'x': 5}")
>>> ascii("строка")
"'\\u0441\\u0442\\u0440\\u043e\\u043a\\u0430'"
>>> len("Python"), len("\r\n\t"), len(r"\r\n\t")
(6, 3, 6)
>>> len("строка")
6
>>> s1, s2 = " str\n\r\v\t", "strstrstrokstrstrstr"
>>> "'%s' — '%s'" % (s1.strip(), s2.strip("tsr"))
"'str' — 'ok'"
>>> s1, s2 = " str ", "strstrstrokstrstrstr"
>>> "'%s' — '%s'" % (s1.lstrip(), s2.lstrip("tsr"))
"'str ' — 'okstrstrstr'"
>>> s1, s2 = " str ", "strstrstrokstrstrstr"
>>> "'%s' — '%s'" % (s1.rstrip(), s2.rstrip("tsr"))
"' str' — 'strstrstrok'"
>>> s = "word1 word2 word3"
>>> s.split(), s.split(None, 1)
(['word1', 'word2', 'word3'], ['word1', 'word2 word3'])
>>> s = "word1\nword2\nword3"
>>> s.split("\n")
['word1', 'word2', 'word3']
>>> s = "word1 word2 word3 "
>>> s.split()
['word1', 'word2', 'word3']
>>> s = ",,word1,,word2,,word3,,"
>>> s.split(",")
['', '', 'word1', '', 'word2', '', 'word3', '', '']
>>> "1,,2,,3".split(",")
['1', '', '2', '', '3']
>>> "word1 word2 word3".split("\n")
['word1 word2 word3']
>>> s = "word1 word2 word3"
>>> s.rsplit(), s.rsplit(None, 1)
(['word1', 'word2', 'word3'], ['word1 word2', 'word3'])
>>> "word1\nword2\nword3".rsplit("\n")
['word1', 'word2', 'word3']
>>> "word1\nword2\nword3".splitlines()
['word1', 'word2', 'word3']
>>> "word1\nword2\nword3".splitlines(True)
['word1\n', 'word2\n', 'word3']
>>> "word1\nword2\nword3".splitlines(False)
['word1', 'word2', 'word3']
>>> "word1 word2 word3".splitlines()
['word1 word2 word3']
>>> "word1 word2 word3".partition(" ")
('word1', ' ', 'word2 word3')
>>> "word1 word2 word3".partition("\n")
('word1 word2 word3', '', '')
>>> "word1 word2 word3".rpartition(" ")
('word1 word2', ' ', 'word3')
>>> "word1 word2 word3".rpartition("\n")
('', '', 'word1 word2 word3')
>>> " => ".join(["word1", "word2", "word3"])
'word1 => word2 => word3'
>>> " ".join(("word1", "word2", "word3"))
'word1 word2 word3'
>>> " ".join(("word1", "word2", 5))
Traceback (most recent call last):
 File "<pyshell#48>", line 1, in <module>
 " ".join(("word1", "word2", 5))
TypeError: sequence item 2: expected str instance, int found
>>> s = "Python"
>>> arr = list(s); arr # Преобразуем строку в список
['P', 'y', 't', 'h', 'o', 'n']
>>> arr[0] = "J"; arr # Изменяем элемент по индексу
['J', 'y', 't', 'h', 'o', 'n']
>>> s = "".join(arr); s # Преобразуем список в строку
'Jython'
>>> s = "Python"
>>> b = bytearray(s, "cp1251"); b
bytearray(b'Python')
>>> b[0] = ord("J"); b
bytearray(b'Jython')
>>> s = b.decode("cp1251"); s
'Jython'
6.7. Настройка локали
import locale
Листинг 6.3. Настройка локали

>>> import locale

>>> # Для кодировки windows-1251

>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

'Russian_Russia.1251'

>>> # Устанавливаем локаль по умолчанию

>>> locale.setlocale(locale.LC_ALL, "")

'Russian_Russia.1251'

>>> # Получаем текущее значение локали для всех категорий

>>> locale.getlocale()

('Russian_Russia', '1251')

>>> # Получаем текущее значение категории locale.LC_COLLATE

>>> locale.getlocale(locale.LC_COLLATE)

('Russian_Russia', '1251')

>>> locale.localeconv()

{'mon_decimal_point': ',', 'int_frac_digits': 2, 'p_sep_by_space': 0,

'frac_digits': 2, 'thousands_sep': '\xa0', 'n_sign_posn': 1,

'decimal_point': ',', 'int_curr_symbol': 'RUR', 'n_cs_precedes': 0,

'p_sign_posn': 1, 'mon_thousands_sep': '\xa0', 'negative_sign': '-',

'currency_symbol': 'р.', 'n_sep_by_space': 0, 'mon_grouping': [3, 0],

'p_cs_precedes': 0, 'positive_sign': '', 'grouping': [3, 0]}

6.8. Изменение регистра символов

>>> print("строка".upper())
СТРОКА
>>> print("СТРОКА".lower())
строка
>>> print("СТРОКА строка".swapcase())
строка СТРОКА
>>> print("строка строка".capitalize())
Строка строка
>>> s = "первая буква каждого слова станет прописной"
>>> print(s.title())
Первая Буква Каждого Слова Станет Прописной
>>> "Python".casefold() == "python".casefold()

True

>>> "grosse".casefold() == "große".casefold()

True
6.9. Функции для работы с символами

>>> print(chr(1055))
П
>>> print(ord("П"))
1055
6.10. Поиск и замена в строке

>>> s = "пример пример Пример"
>>> s.find("при"), s.find("При"), s.find("тест")
(0, 14, -1)
>>> s.find("при", 9), s.find("при", 0, 6), s.find("при", 7, 12)
(-1, 0, 7)
>>> s = "пример пример Пример"
>>> s.index("при"), s.index("при", 7, 12), s.index("При", 1)
(0, 7, 14)
>>> s.index("тест")
Traceback (most recent call last):
 File "<pyshell#24>", line 1, in <module>
 s.index("тест")
ValueError: substring not found
>>> s = "пример пример Пример Пример"
>>> s.rfind("при"), s.rfind("При"), s.rfind("тест")
(7, 21, -1)
>>> s.find("при", 0, 6), s.find("При", 10, 20)
(0, 14)
>>> s = "пример пример Пример Пример"
>>> s.rindex("при"), s.rindex("При"), s.rindex("при", 0, 6)
(7, 21, 0)
>>> s.rindex("тест")
Traceback (most recent call last):
 File "<pyshell#30>", line 1, in <module>
 s.rindex("тест")
ValueError: substring not found
>>> s = "пример пример Пример Пример"
>>> s.count("при"), s.count("при", 6), s.count("При")
(2, 1, 2)
>>> s.count("тест")
0
>>> s = "пример пример Пример Пример"
>>> s.startswith("при"), s.startswith("При")
(True, False)
>>> s.startswith("при", 6), s.startswith("При", 14)
(False, True)
>>> s = "пример пример Пример Пример"
>>> s.startswith(("при", "При"))
True
>>> s = "подстрока ПОДСТРОКА"
>>> s.endswith("ока"), s.endswith("ОКА")
(False, True)
>>> s.endswith("ока", 0, 9)
True
>>> s = "подстрока ПОДСТРОКА"
>>> s.endswith(("ока", "ОКА"))
True
>>> s = "Привет, Петя"
>>> print(s.replace("Петя", "Вася"))
Привет, Вася
>>> print(s.replace("петя", "вася")) # Зависит от регистра
Привет, Петя
>>> s = "strstrstrstrstr"
>>> s.replace("str", ""), s.replace("str", "", 3)
('', 'strstr')
>>> s = "Пример"
>>> d = {ord("П"): None, ord("р"): ord("Р")}
>>> d
{1088: 1056, 1055: None}
>>> s.translate(d)
'РимеР'
>>> t = str.maketrans({"а": "А", "о": "О", "с": None})
>>> t
{1072: 'А', 1089: None, 1086: 'О'}
>>> "строка".translate(t)
'трОкА'
>>> t = str.maketrans("абвгдежзи", "АБВГДЕЖЗИ")
>>> t
{1072: 1040, 1073: 1041, 1074: 1042, 1075: 1043, 1076: 1044,
1077: 1045, 1078: 1046, 1079: 1047, 1080: 1048}
>>> "абвгдежзи".translate(t)
'АБВГДЕЖЗИ'
>>> t = str.maketrans("123456789", "0" * 9, "str")
>>> t
{116: None, 115: None, 114: None, 49: 48, 50: 48, 51: 48,

52: 48, 53: 48, 54: 48, 55: 48, 56: 48, 57: 48}
>>> "str123456789str".translate(t)
'000000000'
6.11. Проверка типа содержимого строки

>>> "0123".isalnum(), "123abc".isalnum(), "abc123".isalnum()
(True, True, True)
>>> "строка".isalnum()
True
>>> "".isalnum(), "123 abc".isalnum(), "abc, 123.".isalnum()
(False, False, False)
>>> "string".isalpha(), "строка".isalpha(), "".isalpha()
(True, True, False)
>>> "123abc".isalpha(), "str str".isalpha(), "st,st".isalpha()
(False, False, False)
>>> "0123".isdigit(), "123abc".isdigit(), "abc123".isdigit()
(True, False, False)
>>> "123".isdecimal(), "123стр".isdecimal()
(True, False)
>>> "\u2155".isnumeric(), "\u2155".isdigit()
(True, False)
>>> print("\u2155") # Выведет символ "1/5"

>>> "STRING".isupper(), "СТРОКА".isupper(), "".isupper()
(True, True, False)
>>> "STRING1".isupper(), "СТРОКА, 123".isupper(), "123".isupper()
(True, True, False)
>>> "string".isupper(), "STRing".isupper()
(False, False)
>>> "srting".islower(), "строка".islower(), "".islower()
(True, True, False)
>>> "string1".islower(), "str, 123".islower(), "123".islower()
(True, True, False)
>>> "STRING".islower(), "Строка".islower()
(False, False)
>>> "Str Str".istitle(), "Стр Стр".istitle()
(True, True)
>>> "Str Str 123".istitle(), "Стр Стр 123".istitle()
(True, True)
>>> "Str str".istitle(), "Стр стр".istitle()
(False, False)
>>> "".istitle(), "123".istitle()
(False, False)
>>> "123".isprintable()

True

>>> "PHP Python".isprintable()

True

>>> "\n".isprintable()

False
>>> "".isspace(), " \n\r\t".isspace(), "str str".isspace()
(False, True, False)
>>> "s".isidentifier()

True

>>> "func".isidentifier()

True
>>> "123func".isidentifier()

False
>>> keyword.iskeyword("else")

True

>>> keyword.iskeyword("elsewhere")

False

Листинг 6.4. Суммирование неопределенного количества чисел

-*- coding: utf-8 -*-

print("Введите слово 'stop' для получения результата")

summa = 0

while True:

 x = input("Введите число: ")

 if x == "stop":

 break # Выход из цикла
 if x == "":

 print("Вы не ввели значение!")

 continue

 if x[0] == "-": # Если первым символом является минус

 if not x[1:].isdigit(): # Если фрагмент не состоит из цифр

 print("Необходимо ввести число, а не строку!")

 continue

 else: # Если минуса нет, то проверяем всю строку

 if not x.isdigit(): # Если строка не состоит из цифр

 print("Необходимо ввести число, а не строку!")

 continue

 x = int(x) # Преобразуем строку в число

 summa += x

print("Сумма чисел равна:", summa)

input()

6.12. Тип данных bytes
>>> bytes()
b''
>>> bytes("строка", "cp1251")
b'\xf1\xf2\xf0\xee\xea\xe0'
>>> bytes("строка")
Traceback (most recent call last):
 File "<pyshell#33>", line 1, in <module>
 bytes("строка")
TypeError: string argument without an encoding
>>> bytes("string\uFFFD", "cp1251", "strict")
Traceback (most recent call last):
 File "<pyshell#35>", line 1, in <module>
 bytes("string\uFFFD", "cp1251", "strict")
 File "C:\Python34\lib\encodings\cp1251.py", line 12, in encode
 return codecs.charmap_encode(input,errors,encoding_table)
UnicodeEncodeError: 'charmap' codec can't encode character
'\ufffd' in position 6: character maps to <undefined>
>>> bytes("string\uFFFD", "cp1251", "replace")
b'string?'
>>> bytes("string\uFFFD", "cp1251", "ignore")
b'string'
>>> "строка".encode()
b'\xd1\x81\xd1\x82\xd1\x80\xd0\xbe\xd0\xba\xd0\xb0'
>>> "строка".encode(encoding="cp1251")
b'\xf1\xf2\xf0\xee\xea\xe0'
>>> "строка\uFFFD".encode(encoding="cp1251",
 errors="xmlcharrefreplace")
b'\xf1\xf2\xf0\xee\xea\xe0�'
>>> "строка\uFFFD".encode(encoding="cp1251",
 errors="backslashreplace")
b'\xf1\xf2\xf0\xee\xea\xe0\\ufffd'
>>> b"string", b'string', b"""string""", b'''string'''
(b'string', b'string', b'string', b'string')
>>> b"строка"
SyntaxError: bytes can only contain ASCII literal characters.
>>> b"\xf1\xf2\xf0\xee\xea\xe0"
b'\xf1\xf2\xf0\xee\xea\xe0'
>>> b = bytes([225, 226, 224, 174, 170, 160])
>>> b
b'\xe1\xe2\xe0\xae\xaa\xa0'
>>> str(b, "cp866")
'строка'
>>> bytes(10)
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
>>> b = bytes.fromhex(" e1 e2e0ae aaa0 ")
>>> b
b'\xe1\xe2\xe0\xae\xaa\xa0'
>>> str(b, "cp866")
'строка'
>>> b = bytes("string", "cp1251")

>>> b

b'string'

>>> b[0] # Обращение по индексу

115

>>> b[1:3] # Получение среза

b'tr'

>>> b + b"123" # Конкатенация

b'string123'

>>> b * 3 # Повторение

b'stringstringstring'

>>> 115 in b, b"tr" in b, b"as" in b

(True, True, False)

>>> list(bytes("string", "cp1251"))

[115, 116, 114, 105, 110, 103]

>>> b = bytes("string", "cp1251")

>>> b[0] = 168

Traceback (most recent call last):

 File "<pyshell#76>", line 1, in <module>

 b[0] = 168

TypeError: 'bytes' object does not support item assignment

>>> b = bytes("string", "cp1251")

>>> b.replace(b"s", b"S")

b'String'

>>> b"string" + "string"

Traceback (most recent call last):

 File "<pyshell#79>", line 1, in <module>

 b"string" + "string"

TypeError: can't concat bytes to str

>>> b"string" + "string".encode("ascii")

b'stringstring'

>>> len("строка")

6

>>> len(bytes("строка", "cp1251"))

6

>>> len(bytes("строка", "utf-8"))

12

>>> b = bytes("строка", "cp1251")

>>> b.decode(encoding="cp1251"), b.decode("cp1251")

('строка', 'строка')

>>> b = bytes("строка", "cp1251")

>>> str(b, "cp1251")

'строка'
Листинг 6.5. Преобразование кодировок

>>> w = bytes("Строка", "cp1251") # Данные в кодировке windows-1251

>>> k = w.decode("cp1251").encode("koi8-r")

>>> k, str(k, "koi8-r") # Данные в кодировке KOI8-R

(b'\xf3\xd4\xd2\xcf\xcb\xc1', 'Строка')

>>> w = k.decode("koi8-r").encode("cp1251")

>>> w, str(w, "cp1251") # Данные в кодировке windows-1251

(b'\xd1\xf2\xf0\xee\xea\xe0', 'Строка')

6.13. Тип данных bytearray
>>> bytearray()
bytearray(b'')
>>> bytearray("строка", "cp1251")
bytearray(b'\xf1\xf2\xf0\xee\xea\xe0')
>>> bytearray("строка")
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
 bytearray("строка")
TypeError: string argument without an encoding
>>> bytearray("string\uFFFD", "cp1251", "strict")
Traceback (most recent call last):
 File "<pyshell#5>", line 1, in <module>
 bytearray("string\uFFFD", "cp1251", "strict")
 File "C:\Python34\lib\encodings\cp1251.py", line 12, in encode
 return codecs.charmap_encode(input,errors,encoding_table)
UnicodeEncodeError: 'charmap' codec can't encode character
'\ufffd' in position 6: character maps to <undefined>
>>> bytearray("string\uFFFD", "cp1251", "replace")
bytearray(b'string?')
>>> bytearray("string\uFFFD", "cp1251", "ignore")
bytearray(b'string')
>>> b = bytearray([225, 226, 224, 174, 170, 160])
>>> b
bytearray(b'\xe1\xe2\xe0\xae\xaa\xa0')
>>> bytearray(b'\xe1\xe2\xe0\xae\xaa\xa0')
bytearray(b'\xe1\xe2\xe0\xae\xaa\xa0')
>>> str(b, "cp866")
'строка'
>>> bytearray(5)
bytearray(b'\x00\x00\x00\x00\x00')
>>> b = bytearray.fromhex(" e1 e2e0ae aaa0 ")
>>> b
bytearray(b'\xe1\xe2\xe0\xae\xaa\xa0')
>>> str(b, "cp866")
'строка'
>>> b = bytearray("Python", "ascii")

>>> b[0] # Можем получить значение

80

>>> b[0] = b"J"[0] # Можем изменить значение

>>> b

bytearray(b'Jython')

>>> b = bytearray("string", "ascii")
>>> b.append(b"1"[0]); b
bytearray(b'string1')
>>> b = bytearray("string", "ascii")
>>> b.extend(b"123"); b
bytearray(b'string123')
>>> b = bytearray("string", "ascii")
>>> b + b"123" # Возвращает новый объект
bytearray(b'string123')
>>> b += b"456"; b # Изменяет текущий объект
bytearray(b'string456')
>>> b = bytearray("string", "ascii")
>>> b[len(b):] = b"123" # Добавляем элементы в последовательность
>>> b
bytearray(b'string123')
>>> b = bytearray("string", "ascii")
>>> b.insert(0, b"1"[0]); b
bytearray(b'1string')
>>> b = bytearray("string", "ascii")
>>> b[:0] = b"123"; b
bytearray(b'123string')
>>> b = bytearray("string", "ascii")
>>> b.pop() # Удаляем последний элемент
103
>>> b
bytearray(b'strin')
>>> b.pop(0) # Удаляем первый элемент
115
>>> b
bytearray(b'trin')
>>> b = bytearray("string", "ascii")
>>> del b[5] # Удаляем последний элемент
>>> b
bytearray(b'strin')
>>> del b[:2] # Удаляем первый и второй элементы
>>> b
bytearray(b'rin')
>>> b = bytearray("strstr", "ascii")
>>> b.remove(b"s"[0]) # Удаляет только первый элемент
>>> b
bytearray(b'trstr')
>>> b = bytearray("string", "ascii")
>>> b.reverse(); b
bytearray(b'gnirts')
>>> b = bytearray("строка", "cp1251")

>>> b.decode(encoding="cp1251"), b.decode("cp1251")

('строка', 'строка')

>>> b = bytearray("строка", "cp1251")

>>> str(b, "cp1251")

'строка'

6.14. Преобразование объекта в последовательность байтов

import pickle

>>> import pickle
>>> obj1 = [1, 2, 3, 4, 5] # Список
>>> obj2 = (6, 7, 8, 9, 10) # Кортеж
>>> pickle.dumps(obj1)
b'\x80\x03]q\x00(K\x01K\x02K\x03K\x04K\x05e.'
>>> pickle.dumps(obj2)
b'\x80\x03(K\x06K\x07K\x08K\tK\ntq\x00.'
>>> pickle.loads(b'\x80\x03]q\x00(K\x01K\x02K\x03K\x04K\x05e.')
[1, 2, 3, 4, 5]
>>> pickle.loads(b'\x80\x03(K\x06K\x07K\x08K\tK\ntq\x00.')
(6, 7, 8, 9, 10)
6.15. Шифрование строк

import hashlib

>>> import hashlib

>>> h = hashlib.sha1(b"password")

>>> h = hashlib.sha1()

>>> h.update(b"password")

>>> h = hashlib.sha1(b"password")

>>> h.digest()

b'[\xaaa\xe4\xc9\xb9??\x06\x82%\x0bl\xf83\x1b~\xe6\x8f\xd8'

>>> h.hexdigest()

'5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8'
Листинг 6.6. Проверка правильности ввода пароля

>>> import hashlib

>>> h = hashlib.md5(b"password")

>>> p = h.hexdigest()

>>> p # Пароль, сохраненный в базе

'5f4dcc3b5aa765d61d8327deb882cf99'

>>> h2 = hashlib.md5(b"password") # Пароль, введенный пользователем

>>> if p == h2.hexdigest(): print("Пароль правильный")

>>> h = hashlib.sha512(b"password")

>>> h.digest_size

64
>>> import hashlib
>>> dk = hashlib.pbkdf2_hmac('sha512', b'1234567', b'saltsaltsaltsalt', 100000)

>>> dk
b"Sb\x85tc-\xcb@\xc5\x97\x19\x90\x94@\x9f\xde\x07\xa4p-\x83\x94\xf4\x94\x99\x07\xec\xfa\xf3\xcd\xc3\x88jv\xd1\xe5\x9a\x119\x15/\xa4\xc2\xd3N\xaba\x02\xc0s\xc1\xd1\x0b\x86xj(\x8c>Mr'@\xbb"
7. Регулярные выражения
import re
7.1. Синтаксис регулярных выражений

>>> import re
>>> p = re.compile(r"^[а-яе]+$", re.I | re.U)

>>> print("Найдено" if p.search("АБВГДЕЕ") else "Нет")

Найдено

>>> p = re.compile(r"^[а-яе]+$", re.U)

>>> print("Найдено" if p.search("АБВГДЕЕ") else "Нет")

Нет

>>> p = re.compile(r"^.$")

>>> print("Найдено" if p.search("\n") else "Нет")

Нет

>>> p = re.compile(r"^.$", re.M)

>>> print("Найдено" if p.search("\n") else "Нет")

Нет

>>> p = re.compile(r"^.$", re.S)

>>> print("Найдено" if p.search("\n") else "Нет")

Найдено

>>> p = re.compile(r"""^ # Привязка к началу строки
 [0-9]+ # Строка должна содержать одну цифру (или более)
 $ # Привязка к концу строки
 """, re.X | re.S)
>>> print("Найдено" if p.search("1234567890") else "Нет")
Найдено
>>> print("Найдено" if p.search("abcd123") else "Нет")
Нет
p = re.compile(r"^\w+$")
p = re.compile("^\\w+$")
Листинг 7.1. Проверка правильности ввода даты

-*- coding: utf-8 -*-

import re # Подключаем модуль

d = "29,12.2009" # Вместо точки указана запятая
p = re.compile(r"^[0-3][0-9].[01][0-9].[12][09][0-9][0-9]$")

Символ "\" не указан перед точкой
if p.search(d):

 print("Дата введена правильно")
else:
 print("Дата введена неправильно")
Так как точка означает любой символ,
выведет: Дата введена правильно
p = re.compile(r"^[0-3][0-9]\.[01][0-9]\.[12][09][0-9][0-9]$")

Символ "\" указан перед точкой
if p.search(d):

 print("Дата введена правильно")
else:
 print("Дата введена неправильно")
Так как перед точкой указан символ "\",
выведет: Дата введена неправильно
p = re.compile(r"^[0-3][0-9][.][01][0-9][.][12][09][0-9][0-9]$")

Точка внутри квадратных скобок
if p.search(d):

 print("Дата введена правильно")
else:
 print("Дата введена неправильно")
Выведет: Дата введена неправильно
input()
Листинг 7.2. Пример использования многострочного режима

>>> p = re.compile(r"^.+$") # Точка не соответствует \n
>>> p.findall("str1\nstr2\nstr3") # Ничего не найдено
[]
>>> p = re.compile(r"^.+$", re.S) # Теперь точка соответствует \n
>>> p.findall("str1\nstr2\nstr3") # Строка полностью соответствует
['str1\nstr2\nstr3']

>>> p = re.compile(r"^.+$", re.M) # Многострочный режим
>>> p.findall("str1\nstr2\nstr3") # Получили каждую подстроку
['str1', 'str2', 'str3']
Листинг 7.3. Проверка наличия целого числа в строке

-*- coding: utf-8 -*-

import re # Подключаем модуль

p = re.compile(r"^[0-9]+$", re.S)

if p.search("245"):

 print("Число") # Выведет: Число
else:

 print("Не число")

if p.search("Строка245"):

 print("Число")

else:

 print("Не число") # Выведет: Не число
input()
Листинг 7.4. Отсутствие привязки к началу или концу строки

-*- coding: utf-8 -*-

import re # Подключаем модуль
p = re.compile(r"[0-9]+", re.S)

if p.search("Строка245"):

 print("Число") # Выведет: Число
else:
 print("Не число")
input()
Листинг 7.5. Привязка к началу и концу строки

-*- coding: utf-8 -*-

import re # Подключаем модуль
p = re.compile(r"[0-9]+$", re.S)

if p.search("Строка245"):

 print("Есть число в конце строки")
else:
 print("Нет числа в конце строки")
Выведет: Есть число в конце строки

p = re.compile(r"^[0-9]+", re.S)

if p.search("Строка245"):

 print("Есть число в начале строки")
else:
 print("Нет числа в начале строки")
Выведет: Нет числа в начале строки
input()
>>> p = re.compile(r"\bpython\b")

>>> print("Найдено" if p.search("python") else "Нет")

Найдено
>>> print("Найдено" if p.search("pythonware") else "Нет")

Нет

>>> p = re.compile(r"\Bth\B")

>>> print("Найдено" if p.search("python") else "Нет")

Найдено
>>> print("Найдено" if p.search("this") else "Нет")

Нет

>>> p = re.compile(r"красн((ая)|(ое))")

>>> print("Найдено" if p.search("красная") else "Нет")

Найдено

>>> print("Найдено" if p.search("красное") else "Нет")

Найдено

>>> print("Найдено" if p.search("красный") else "Нет")

Нет

>>> s = "Text1Text2Text3"

>>> p = re.compile(r".*", re.S)

>>> p.findall(s)

['Text1Text2Text3']
Листинг 7.6. Ограничение "жадности" квантификаторов

>>> s = "Text1Text2Text3"

>>> p = re.compile(r".*?", re.S)

>>> p.findall(s)

['Text1', 'Text3']
Листинг 7.7. Получение значения определенного фрагмента

>>> s = "Text1Text2Text3"

>>> p = re.compile(r"(.*?)", re.S)

>>> p.findall(s)

['Text1', 'Text3']
Листинг 7.8. Ограничение захвата фрагмента

>>> s = "test text"

>>> p = re.compile(r"([a-z]+((st)|(xt)))", re.S)

>>> p.findall(s)

[('test', 'st', 'st', ''), ('text', 'xt', '', 'xt')]

>>> p = re.compile(r"([a-z]+(?:(?:st)|(?:xt)))", re.S)

>>> p.findall(s)

['test', 'text']
Листинг 7.9. Обратные ссылки
>>> s = "Text1Text2<I>Text3</I>Text4"

>>> p = re.compile(r"<([a-z]+)>(.*?)</\1>", re.S | re.I)

>>> p.findall(s)

[('b', 'Text1'), ('I', 'Text3'), ('b', 'Text4')]
Листинг 7.10. Именованные фрагменты

>>> email = "test@mail.ru"
>>> p = re.compile(r"""(?P<name>[a-z0-9_.-]+) # Название ящика
 @ # Символ "@"
 (?P<host>(?:[a-z0-9-]+\.)+[a-z]{2,6}) # Домен

 """, re.I | re.VERBOSE)

>>> r = p.search(email)

>>> r.group("name") # Название ящика
'test'

>>> r.group("host") # Домен

'mail.ru'
Листинг 7.11. Обращение к именованным фрагментам внутри шаблона

>>> s = "Text1Text2<I>Text3</I>"

>>> p = re.compile(r"<(?P<tag>[a-z]+)>(.*?)</(?P=tag)>", re.S | re.I)

>>> p.findall(s)

[('b', 'Text1'), ('I', 'Text3')]

>>> s = "text1, text2, text3 text4"
>>> p = re.compile(r"\w+(?=[,])", re.S | re.I)
>>> p.findall(s)
['text1', 'text2']
>>> s = "text1, text2, text3 text4"
>>> p = re.compile(r"[a-z]+[0-9](?![,])", re.S | re.I)
>>> p.findall(s)
['text3', 'text4']
>>> s = "text1, text2, text3 text4"
>>> p = re.compile(r"(?<=[,][])[a-z]+[0-9]", re.S | re.I)
>>> p.findall(s)
['text2', 'text3']
>>> s = "text1, text2, text3 text4"
>>> p = re.compile(r"(?<![,]) ([a-z]+[0-9])", re.S | re.I)
>>> p.findall(s)
['text4']
>>> s = "text1 'text2' 'text3 text4, text5"
>>> p = re.compile(r"(')?([a-z]+[0-9])(?(1)'|,)", re.S | re.I)
>>> p.findall(s)
[("'", 'text2'), ('', 'text4')]
>>> s = "-word1 -word2 -word3 -word4 -word5"

>>> re.findall(r"\s\-([a-z0-9]+)\s", s, re.S | re.I)

['word2', 'word4']
>>> re.findall(r"(?:^|\s)\-([a-z0-9]+)(?:\s|$)", s, re.S | re.I)

['word1', 'word3', 'word5']

>>> re.findall(r"(?:^|\s)\-([a-z0-9]+)(?=\s|$)", s, re.S | re.I)

['word1', 'word2', 'word3', 'word4', 'word5']

7.2. Поиск первого совпадения с шаблоном

>>> import re
>>> p = re.compile(r"[0-9]+")
>>> print("Найдено" if p.match("str123") else "Нет")
Нет
>>> print("Найдено" if p.match("str123", 3) else "Нет")
Найдено
>>> print("Найдено" if p.match("123str") else "Нет")
Найдено
>>> p = r"[0-9]+"
>>> print("Найдено" if re.match(p, "str123") else "Нет")
Нет
>>> print("Найдено" if re.match(p, "123str") else "Нет")
Найдено
>>> p = re.compile(r"[0-9]+")
>>> print("Найдено" if re.match(p, "123str") else "Нет")
Найдено
>>> p = re.compile(r"[0-9]+")
>>> print("Найдено" if p.search("str123") else "Нет")
Найдено
>>> print("Найдено" if p.search("123str") else "Нет")
Найдено
>>> print("Найдено" if p.search("123str", 3) else "Нет")
Нет
>>> p = r"[0-9]+"
>>> print("Найдено" if re.search(p, "str123") else "Нет")
Найдено
>>> p = re.compile(r"[0-9]+")
>>> print("Найдено" if re.search(p, "str123") else "Нет")
Найдено
>>> p = re.compile("[Pp]ython")

>>> print("Найдено" if p.fullmatch("Python") else "Нет")

Найдено
>>> print("Найдено" if p.fullmatch("py") else "Нет")

Нет

>>> print("Найдено" if p.fullmatch("PythonWare") else "Нет")

Нет
>>> print("Найдено" if p.fullmatch("PythonWare", 0, 6) else "Нет")

Найдено

>>> p = "[Pp]ython"

>>> print("Найдено" if re.fullmatch(p, "Python") else "Нет")

Найдено
>>> print("Найдено" if re.fullmatch(p, "py") else "Нет")

Нет
Листинг 7.12. Суммирование неопределенного количества чисел

-*- coding: utf-8 -*-

import re
print("Введите слово 'stop' для получения результата")
summa = 0

p = re.compile(r"^[-]?[0-9]+$", re.S)

while True:

 x = input("Введите число: ")

 if x == "stop":

 break # Выход из цикла
 if not p.search(x):

 print("Необходимо ввести число, а не строку!")
 continue # Переходим на следующую итерацию цикла
 x = int(x) # Преобразуем строку в число
 summa += x
print("Сумма чисел равна:", summa)
input()
>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z]+)")
>>> m = p.search("123456string 67890text")
>>> m
<_sre.SRE_Match object at 0x00FC9DE8>
>>> m.re.groups, m.re.groupindex
(2, {'num': 1, 'str': 2})
>>> p.groups, p.groupindex
(2, {'num': 1, 'str': 2})
>>> m.string
'123456string 67890text'
>>> m.lastindex, m.lastgroup
(2, 'str')
>>> m.pos, m.endpos
(0, 22)
>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z]+)")
>>> m = p.search("123456string 67890text")
>>> m.group(), m.group(0) # Полное соответствие шаблону
('123456string', '123456string')
>>> m.group(1), m.group(2) # Обращение по индексу
('123456', 'string')
>>> m.group("num"), m.group("str") # Обращение по названию
('123456', 'string')
>>> m.group(1, 2), m.group("num", "str") # Несколько параметров
(('123456', 'string'), ('123456', 'string'))
>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z])?")
>>> m = p.search("123456")
>>> m.groupdict()
{'num': '123456', 'str': None}
>>> m.groupdict("")
{'num': '123456', 'str': ''}
>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z])?")
>>> m = p.search("123456")
>>> m.groups()
('123456', None)
>>> m.groups("")
('123456', '')
>>> p = re.compile(r"(?P<num>[0-9]+)(?P<str>[a-z]+)")
>>> s = "str123456str"
>>> m = p.search(s)
>>> m.start(), m.end(), m.span()
(3, 12, (3, 12))
>>> m.start(1), m.end(1), m.start("num"), m.end("num")
(3, 9, 3, 9)
>>> m.start(2), m.end(2), m.start("str"), m.end("str")
(9, 12, 9, 12)
>>> m.span(1), m.span("num"), m.span(2), m.span("str")
((3, 9), (3, 9), (9, 12), (9, 12))
>>> s[m.start(1):m.end(1)], s[m.start(2):m.end(2)]
('123456', 'str')
>>> p = re.compile(r"<(?P<tag1>[a-z]+)><(?P<tag2>[a-z]+)>")
>>> m = p.search("
<hr>")
>>> m.expand(r"<\2><\1>") # \номер
'<hr>
'
>>> m.expand(r"<\g<2>><\g<1>>") # \g<номер>
'<hr>
'
>>> m.expand(r"<\g<tag2>><\g<tag1>>") # \g<название>
'<hr>
'
Листинг 7.13. Проверка e-mail на соответствие шаблону

-*- coding: utf-8 -*-

import re
email = input("Введите e-mail: ")

pe = r"^([a-z0-9_.-]+)@(([a-z0-9-]+\.)+[a-z]{2,6})$"

p = re.compile(pe, re.I | re.S)

m = p.search(email)

if not m:

 print("E-mail не соответствует шаблону")
else:

 print("E-mail", m.group(0), "соответствует шаблону")

 print("ящик:", m.group(1), "домен:", m.group(2))

input()

7.3. Поиск всех совпадений с шаблоном

>>> import re
>>> p = re.compile(r"[0-9]+")

>>> p.findall("2007, 2008, 2009, 2010, 2011")

['2007', '2008', '2009', '2010', '2011']

>>> p = re.compile(r"[a-z]+")

>>> p.findall("2007, 2008, 2009, 2010, 2011")

[]

>>> t = r"(([0-9]{3})-([0-9]{2})-([0-9]{2}))"

>>> p = re.compile(t)

>>> p.findall("322-77-20, 528-22-98")

[('322-77-20', '322', '77', '20'),

 ('528-22-98', '528', '22', '98')]

>>> re.findall(r"[0-9]+", "1 2 3 4 5 6")

['1', '2', '3', '4', '5', '6']

>>> p = re.compile(r"[0-9]+")

>>> re.findall(p, "1 2 3 4 5 6")

['1', '2', '3', '4', '5', '6']

>>> p = re.compile(r"[0-9]+")

>>> for m in p.finditer("2007, 2008, 2009, 2010, 2011"):

 print(m.group(0), "start:", m.start(), "end:", m.end())

2007 start: 0 end: 4

2008 start: 6 end: 10

2009 start: 12 end: 16

2010 start: 18 end: 22

2011 start: 24 end: 28

>>> p = re.compile(r"(.+?)", re.I | re.S)

>>> s = "Text1Text2Text3"

>>> for m in re.finditer(p, s):

 print(m.group(1))

Text1

Text3

7.4. Замена в строке
>>> import re
>>> p = re.compile(r"<(?P<tag1>[a-z]+)><(?P<tag2>[a-z]+)>")

>>> p.sub(r"<\2><\1>", "
<hr>") # \номер

'<hr>
'

>>> p.sub(r"<\g<2>><\g<1>>", "
<hr>") # \g<номер>

'<hr>
'

>>> p.sub(r"<\g<tag2>><\g<tag1>>", "
<hr>") # \g<название>

'<hr>
'

-*- coding: utf-8 -*-

import re

def repl(m):

 """ Функция для замены. m — объект Match """

 x = int(m.group(0))

 x += 10

 return "{0}".format(x)

p = re.compile(r"[0-9]+")

Заменяем все вхождения

print(p.sub(repl, "2008, 2009, 2010, 2011"))

Заменяем только первые два вхождения

print(p.sub(repl, "2008, 2009, 2010, 2011", 2))

input()

-*- coding: utf-8 -*-

import re
def repl(m):

 """ Функция для замены. m — объект Match """

 tag1 = m.group("tag1").upper()

 tag2 = m.group("tag2").upper()

 return "<{0}><{1}>".format(tag2, tag1)

p = r"<(?P<tag1>[a-z]+)><(?P<tag2>[a-z]+)>"

print(re.sub(p, repl, "
<hr>"))

input()

>>> p = re.compile(r"[0-9]+")

>>> p.subn("0", "2008, 2009, 2010, 2011")

('0, 0, 0, 0', 4)

>>> p = r"200[79]"

>>> re.subn(p, "2001", "2007, 2008, 2009, 2010")

('2001, 2008, 2001, 2010', 2)
>>> p = re.compile(r"<(?P<tag1>[a-z]+)><(?P<tag2>[a-z]+)>")
>>> m = p.search("
<hr>")
>>> m.expand(r"<\2><\1>") # \номер
'<hr>
'
>>> m.expand(r"<\g<2>><\g<1>>") # \g<номер>
'<hr>
'
>>> m.expand(r"<\g<tag2>><\g<tag1>>") # \g<название>
'<hr>
'
7.5. Прочие функции и методы

>>> import re

>>> p = re.compile(r"[\s,.]+")

>>> p.split("word1, word2\nword3\r\nword4.word5")

['word1', 'word2', 'word3', 'word4', 'word5']

>>> p.split("word1, word2\nword3\r\nword4.word5", 2)

['word1', 'word2', 'word3\r\nword4.word5']

>>> p = re.compile(r"[0-9]+")

>>> p.split("word, word\nword")

['word, word\nword']

>>> p = re.compile(r"[\s,.]+")

>>> re.split(p, "word1, word2\nword3")

['word1', 'word2', 'word3']

>>> re.split(r"[\s,.]+", "word1, word2\nword3")

['word1', 'word2', 'word3']

>>> print(re.escape(r"[]().*"))

\[\]\(\)\.*
>>> re.purge()

8. Списки, кортежи, множества и диапазоны
>>> arr = [1, 2, 3] # Создаем список

>>> arr[0] # Получаем элемент по индексу

1

>>> arr[0] = 50 # Изменяем элемент по индексу

>>> arr

[50, 2, 3]

>>> t = (1, 2, 3) # Создаем кортеж

>>> t[0] # Получаем элемент по индексу

1

>>> t[0] = 50 # Изменить элемент по индексу нельзя!

Traceback (most recent call last):

 File "<pyshell#7>", line 1, in <module>

 t[0] = 50 # Изменить элемент по индексу нельзя!

TypeError: 'tuple' object does not support item assignment

>>> set([0, 1, 1, 2, 3, 3, 4])

{0, 1, 2, 3, 4}

>>> r = range(0, 101, 10)

>>> for i in r: print(i, end = " ")

0 10 20 30 40 50 60 70 80 90 100

8.1. Создание списка

>>> list() # Создаем пустой список
[]
>>> list("String") # Преобразуем строку в список
['S', 't', 'r', 'i', 'n', 'g']
>>> list((1, 2, 3, 4, 5)) # Преобразуем кортеж в список
[1, 2, 3, 4, 5]
>>> arr = [1, "str", 3, "4"]
>>> arr
[1, 'str', 3, '4']
>>> arr = [] # Создаем пустой список
>>> arr.append(1) # Добавляем элемент1 (индекс 0)
>>> arr.append("str") # Добавляем элемент2 (индекс 1)
>>> arr
[1, 'str']
>>> arr = []
>>> arr[] = 10
SyntaxError: invalid syntax
>>> arr[0] = 10
Traceback (most recent call last):
 File "<pyshell#20>", line 1, in <module>
 arr[0] = 10
IndexError: list assignment index out of range
>>> x = y = [1, 2] # Якобы создали два объекта
>>> x, y
([1, 2], [1, 2])
>>> y[1] = 100 # Изменяем второй элемент

>>> x, y # Изменилось значение сразу в двух переменных

([1, 100], [1, 100])

>>> x, y = [1, 2], [1, 2]

>>> y[1] = 100 # Изменяем второй элемент

>>> x, y

([1, 2], [1, 100])

>>> arr = [[]] * 2 # Якобы создали два вложенных списка

>>> arr

[[], []]

>>> arr[0].append(5) # Добавляем элемент

>>> arr # Изменились два элемента

[[5], [5]]

>>> arr = []

>>> for i in range(2): arr.append([])

>>> arr

[[], []]

>>> arr[0].append(5); arr

[[5], []]

>>> arr = [[] for i in range(2)]

>>> arr

[[], []]

>>> arr[0].append(5); arr

[[5], []]

>>> x = y = [1, 2] # Неправильно

>>> x is y # Переменные содержат ссылку на один и тот же список

True

>>> x, y = [1, 2], [1, 2] # Правильно

>>> x is y # Это разные объекты

False
Листинг 8.1. Создание поверхностной копии списка

>>> x = [1, 2, 3, 4, 5] # Создали список

>>> # Создаем копию списка

>>> y = list(x) # или с помощью среза: y = x[:]
>>> # или вызовом метода copy(): y = x.copy()

>>> y

[1, 2, 3, 4, 5]

>>> x is y # Оператор показывает, что это разные объекты

False

>>> y[1] = 100 # Изменяем второй элемент

>>> x, y # Изменился только список в переменной y

([1, 2, 3, 4, 5], [1, 100, 3, 4, 5])

>>> x = [1, [2, 3, 4, 5]] # Создали вложенный список

>>> y = list(x) # Якобы сделали копию списка

>>> x is y # Разные объекты

False

>>> y[1][1] = 100 # Изменяем элемент

>>> x, y # Изменение затронуло переменную x!!!

([1, [2, 100, 4, 5]], [1, [2, 100, 4, 5]])
Листинг 8.2. Создание полной копии списка

>>> import copy # Подключаем модуль copy

>>> x = [1, [2, 3, 4, 5]]

>>> y = copy.deepcopy(x) # Делаем полную копию списка

>>> y[1][1] = 100 # Изменяем второй элемент

>>> x, y # Изменился только список в переменной y

([1, [2, 3, 4, 5]], [1, [2, 100, 4, 5]])

>>> import copy # Подключаем модуль copy

>>> x = [1, 2]

>>> y = [x, x] # Два элемента ссылаются на один объект

>>> y

[[1, 2], [1, 2]]

>>> z = copy.deepcopy(y) # Сделали копию списка

>>> z[0] is x, z[1] is x, z[0] is z[1]

(False, False, True)

>>> z[0][0] = 300 # Изменили один элемент

>>> z # Значение изменилось сразу в двух элементах!

[[300, 2], [300, 2]]

>>> x # Начальный список не изменился

[1, 2]

8.2. Операции над списками
>>> arr = [1, "str", 3.2, "4"]

>>> arr[0], arr[1], arr[2], arr[3]

(1, 'str', 3.2, '4')

>>> x, y, z = [1, 2, 3] # Позиционное присваивание

>>> x, y, z

(1, 2, 3)

>>> x, y = [1, 2, 3] # Количество элементов должно совпадать

Traceback (most recent call last):

 File "<pyshell#86>", line 1, in <module>

 x, y = [1, 2, 3] # Количество элементов должно совпадать

ValueError: too many values to unpack (expected 2)

>>> x, y, *z = [1, 2, 3]; x, y, z

(1, 2, [3])

>>> x, y, *z = [1, 2, 3, 4, 5]; x, y, z

(1, 2, [3, 4, 5])

>>> x, y, *z = [1, 2]; x, y, z

(1, 2, [])

>>> *x, y, z = [1, 2]; x, y, z

([], 1, 2)

>>> x, *y, z = [1, 2, 3, 4, 5]; x, y, z

(1, [2, 3, 4], 5)

>>> *z, = [1, 2, 3, 4, 5]; z

[1, 2, 3, 4, 5]

>>> arr = [1, 2, 3, 4, 5]

>>> len(arr) # Получаем количество элементов

5

>>> arr[len(arr)-1] # Получаем последний элемент

5

>>> arr = [1, 2, 3, 4, 5]

>>> arr[5] # Обращение к несуществующему элементу

Traceback (most recent call last):

 File "<pyshell#99>", line 1, in <module>

 arr[5] # Обращение к несуществующему элементу
IndexError: list index out of range

>>> arr = [1, 2, 3, 4, 5]

>>> arr[-1], arr[len(arr)-1] # Обращение к последнему элементу

(5, 5)

>>> arr = [1, 2, 3, 4, 5]

>>> arr[0] = 600 # Изменение элемента по индексу

>>> arr

[600, 2, 3, 4, 5]

>>> arr = [1, 2, 3, 4, 5]

>>> m = arr[:]; m # Создаем поверхностную копию и выводим значения

[1, 2, 3, 4, 5]

>>> m is arr # Оператор is показывает, что это разные объекты

False

>>> arr = [1, 2, 3, 4, 5]

>>> arr[::-1] # Шаг -1

[5, 4, 3, 2, 1]

>>> arr[1:] # Без первого элемента

[2, 3, 4, 5]

>>> arr[:-1] # Без последнего элемента

[1, 2, 3, 4]

>>> arr[0:2] # Символ с индексом 2 не входит в диапазон

[1, 2]

>>> arr[-1:] # Последний элемент списка

[5]

>>> arr[1:4] # Возвращаются элементы с индексами 1, 2 и 3

[2, 3, 4]

>>> arr = [1, 2, 3, 4, 5]

>>> arr[1:3] = [6, 7] # Изменяем значения элементов с индексами 1 и 2

>>> arr

[1, 6, 7, 4, 5]

>>> arr[1:3] = [] # Удаляем элементы с индексами 1 и 2

>>> arr

[1, 4, 5]

>>> arr1 = [1, 2, 3, 4, 5]

>>> arr2 = [6, 7, 8, 9]

>>> arr3 = arr1 + arr2

>>> arr3

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> arr = [1, 2, 3, 4, 5]

>>> arr += [6, 7, 8, 9]

>>> arr

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> [1, 2, 3] * 3 # Операция повторения

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> 2 in [1, 2, 3, 4, 5], 6 in [1, 2, 3, 4, 5] # Проверка на вхождение

(True, False)

8.3. Многомерные списки

>>> arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> arr = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

>>> arr[1][1]

5

>>> arr = [[1, ["a", "b"], 3], [4, 5, 6], [7, 8, 9]]

>>> arr[0][1][0]

'a'

>>> arr = [[1, { "a": 10, "b": ["s", 5] }]]

>>> arr[0][1]["b"][0]

's'

8.4. Перебор элементов списка

>>> arr = [1, 2, 3, 4, 5]

>>> for i in arr: print(i, end=" ")
1 2 3 4 5

>>> arr = [1, 2, 3, 4] # Элементы имеют неизменяемый тип (число)

>>> for i in arr: i += 10

>>> arr # Список не изменился

[1, 2, 3, 4]

>>> arr = [[1, 2], [3, 4]] # Элементы имеют изменяемый тип (список)

>>> for i in arr: i[0] += 10

>>> arr # Список изменился

[[11, 2], [13, 4]]

arr = [1, 2, 3, 4]

for i in range(len(arr)):

 arr[i] *= 2

print(arr) # Результат выполнения: [2, 4, 6, 8]

arr = [1, 2, 3, 4]

for i, elem in enumerate(arr):

 arr[i] *= 2

print(arr) # Результат выполнения: [2, 4, 6, 8]

arr = [1, 2, 3, 4]

i, c = 0, len(arr)

while i < c:

 arr[i] *= 2

 i += 1

print(arr) # Результат выполнения: [2, 4, 6, 8]

8.5. Генераторы списков и выражения-генераторы

arr = [1, 2, 3, 4]

for i in range(len(arr)):

 arr[i] *= 2

print(arr) # Результат выполнения: [2, 4, 6, 8]

arr = [1, 2, 3, 4]

arr = [i * 2 for i in arr]

print(arr) # Результат выполнения: [2, 4, 6, 8]

arr = [1, 2, 3, 4]

arr = [i * 10 for i in arr if i % 2 == 0]

print(arr) # Результат выполнения: [20, 40]

arr = []

for i in [1, 2, 3, 4]:

 if i % 2 == 0: # Если число четное
 arr.append(i * 10) # Добавляем элемент

print(arr) # Результат выполнения: [20, 40]

arr = [[1, 2], [3, 4], [5, 6]]

arr = [j * 10 for i in arr for j in i if j % 2 == 0]

print(arr) # Результат выполнения: [20, 40, 60]

arr = []

for i in [[1, 2], [3, 4], [5, 6]]:

 for j in i:

 if j % 2 == 0: # Если число четное

 arr.append(j * 10) # Добавляем элемент

print(arr) # Результат выполнения: [20, 40, 60]

>>> arr = [1, 4, 12, 45, 10]

>>> sum((i for i in arr if i % 2 == 0))

26

8.6. Функции map(), zip(), filter() и reduce()
Листинг 8.3. Функция map()
def func(elem):

 """ Увеличение значения каждого элемента списка """

 return elem + 10 # Возвращаем новое значение

arr = [1, 2, 3, 4, 5]

print(list(map(func, arr)))

Результат выполнения: [11, 12, 13, 14, 15]
Листинг 8.4. Суммирование элементов трех списков

def func(e1, e2, e3):

 """ Суммирование элементов трех разных списков """

 return e1 + e2 + e3 # Возвращаем новое значение

arr1 = [1, 2, 3, 4, 5]

arr2 = [10, 20, 30, 40, 50]

arr3 = [100, 200, 300, 400, 500]

print(list(map(func, arr1, arr2, arr3)))

Результат выполнения: [111, 222, 333, 444, 555]

def func(e1, e2, e3):

 """ Суммирование элементов трех разных списков """

 return e1 + e2 + e3

arr1 = [1, 2, 3, 4, 5]

arr2 = [10, 20]

arr3 = [100, 200, 300, 400, 500]

print(list(map(func, arr1, arr2, arr3)))

Результат выполнения: [111, 222]

>>> zip([1, 2, 3], [4, 5, 6], [7, 8, 9])

<zip object at 0x00FCAC88>

>>> list(zip([1, 2, 3], [4, 5, 6], [7, 8, 9]))

[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

>>> list(zip([1, 2, 3], [4, 6], [7, 8, 9, 10]))

[(1, 4, 7), (2, 6, 8)]
Листинг 8.5. Суммирование элементов трех списков с помощью функции zip()
arr1 = [1, 2, 3, 4, 5]

arr2 = [10, 20, 30, 40, 50]

arr3 = [100, 200, 300, 400, 500]

arr = [x + y + z for (x, y, z) in zip(arr1, arr2, arr3)]

print(arr)

Результат выполнения: [111, 222, 333, 444, 555]

>>> filter(None, [1, 0, None, [], 2])

<filter object at 0x00FD58B0>

>>> list(filter(None, [1, 0, None, [], 2]))

[1, 2]

>>> [i for i in [1, 0, None, [], 2] if i]

[1, 2]
Листинг 8.6. Пример использования функции filter()
def func(elem):

 return elem >= 0

arr = [-1, 2, -3, 4, 0, -20, 10]

arr = list(filter(func, arr))

print(arr) # Результат: [2, 4, 0, 10]

Использование генераторов списков

arr = [-1, 2, -3, 4, 0, -20, 10]

arr = [i for i in arr if func(i)]

print(arr) # Результат: [2, 4, 0, 10]
Листинг 8.7. Пример использования функции reduce()
from functools import reduce # Подключаем модуль
def func(x, y):

 print("({0}, {1})".format(x, y), end=" ")

 return x + y

arr = [1, 2, 3, 4, 5]

summa = reduce(func, arr)

Последовательность: (1, 2) (3, 3) (6, 4) (10, 5)

print(summa) # Результат выполнения: 15

summa = reduce(func, arr, 10)

Последовательность: (10, 1) (11, 2) (13, 3) (16, 4) (20, 5)

print(summa) # Результат выполнения: 25

summa = reduce(func, [], 10)

print(summa) # Результат выполнения: 10

8.7. Добавление и удаление элементов списка

>>> arr = [1, 2, 3]
>>> arr.append(4); arr # Добавляем число
[1, 2, 3, 4]
>>> arr.append([5, 6]); arr # Добавляем список
[1, 2, 3, 4, [5, 6]]
>>> arr.append((7, 8)); arr # Добавляем кортеж
[1, 2, 3, 4, [5, 6], (7, 8)]
>>> arr = [1, 2, 3]
>>> arr.extend([4, 5, 6]) # Добавляем список
>>> arr.extend((7, 8, 9)) # Добавляем кортеж
>>> arr.extend("abc") # Добавляем буквы из строки
>>> arr
[1, 2, 3, 4, 5, 6, 7, 8, 9, 'a', 'b', 'c']
>>> arr = [1, 2, 3]
>>> arr + [4, 5, 6] # Возвращает новый список
[1, 2, 3, 4, 5, 6]
>>> arr += [4, 5, 6] # Изменяет текущий список
>>> arr
[1, 2, 3, 4, 5, 6]
>>> arr = [1, 2, 3]
>>> arr[len(arr):] = [4, 5, 6] # Изменяет текущий список
>>> arr
[1, 2, 3, 4, 5, 6]
>>> arr = [1, 2, 3]
>>> arr.insert(0, 0); arr # Вставляем 0 в начало списка
[0, 1, 2, 3]
>>> arr.insert(-1, 20); arr # Можно указать отрицательные числа
[0, 1, 2, 20, 3]
>>> arr.insert(2, 100); arr # Вставляем 100 в позицию 2
[0, 1, 100, 2, 20, 3]
>>> arr.insert(10, [4, 5]); arr # Добавляем список
[0, 1, 100, 2, 20, 3, [4, 5]]
>>> arr = [1, 2, 3]
>>> arr[:0] = [-2, -1, 0]
>>> arr
[-2, -1, 0, 1, 2, 3]
>>> arr = [1, 2, 3, 4, 5]
>>> arr.pop() # Удаляем последний элемент списка
5
>>> arr # Список изменился
[1, 2, 3, 4]
>>> arr.pop(0) # Удаляем первый элемент списка
1
>>> arr # Список изменился
[2, 3, 4]
>>> arr = [1, 2, 3, 4, 5]
>>> del arr[4]; arr # Удаляем последний элемент списка
[1, 2, 3, 4]
>>> del arr[:2]; arr # Удаляем первый и второй элементы
[3, 4]
>>> arr = [1, 2, 3, 1, 1]
>>> arr.remove(1) # Удаляет только первый элемент
>>> arr
[2, 3, 1, 1]
>>> arr.remove(5) # Такого элемента нет
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in <module>
 arr.remove(5) # Такого элемента нет
ValueError: list.remove(x): x not in list

>>> arr = [1, 2, 3, 1, 1]

>>> arr.clear()

>>> arr
[]

>>> arr = [1, 2, 3, 1, 1, 2, 2, 3, 3]

>>> s = set(arr) # Преобразуем список во множество

>>> s

{1, 2, 3}

>>> arr = list(s) # Преобразуем множество в список

>>> arr # Все повторы были удалены

[1, 2, 3]

8.8. Поиск элемента в списке и получение сведений о значениях, входящих в список

>>> 2 in [1, 2, 3, 4, 5], 6 in [1, 2, 3, 4, 5] # Проверка на вхождение

(True, False)

>>> 2 not in [1, 2, 3, 4, 5], 6 not in [1, 2, 3, 4, 5] # Проверка на невхождение

(False, True)

>>> arr = [1, 2, 1, 2, 1]

>>> arr.index(1), arr.index(2)

(0, 1)

>>> arr.index(1, 1), arr.index(1, 3, 5)

(2, 4)

>>> arr.index(3)

Traceback (most recent call last):

 File "<pyshell#16>", line 1, in <module>

 arr.index(3)

ValueError: 3 is not in list

>>> arr = [1, 2, 1, 2, 1]

>>> arr.count(1), arr.count(2)

(3, 2)

>>> arr.count(3) # Элемент не входит в список

0

>>> arr = [1, 2, 3, 4, 5]

>>> max(arr), min(arr)

(5, 1)

>>> any([0, None]), any([0, None, 1]), any([])

(False, True, False)

>>> all([0, None]), all([0, None, 1]), all([]), all(["str", 10])

(False, False, True, True)

8.9. Переворачивание и перемешивание списка

>>> arr = [1, 2, 3, 4, 5]

>>> arr.reverse() # Изменяется текущий список

>>> arr

[5, 4, 3, 2, 1]

>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> reversed(arr)

<list_reverseiterator object at 0x00FD5150>

>>> list(reversed(arr)) # Использование функции list()

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> for i in reversed(arr): print(i, end=" ") # Вывод с помощью цикла
10 9 8 7 6 5 4 3 2 1

>>> [i for i in reversed(arr)] # Использование генератора списков

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> import random # Подключаем модуль random

>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.shuffle(arr) # Перемешиваем список случайным образом

>>> arr

[2, 7, 10, 4, 6, 8, 9, 3, 1, 5]

8.10. Выбор элементов случайным образом

>>> import random # Подключаем модуль random
>>> random.choice(["s", "t", "r"]) # Список
's'
>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> random.sample(arr, 2)
[7, 10]
>>> arr # Сам список не изменяется
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
8.11. Сортировка списка

>>> arr = [2, 7, 10, 4, 6, 8, 9, 3, 1, 5]

>>> arr.sort() # Изменяет текущий список

>>> arr

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> arr = [2, 7, 10, 4, 6, 8, 9, 3, 1, 5]

>>> arr.sort(reverse=True) # Сортировка по убыванию

>>> arr

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
Листинг 8.8. Стандартная сортировка

arr = ["единица1", "Единый", "Единица2"]

arr.sort()

for i in arr:

 print(i, end=" ")

Результат выполнения: Единица2 Единый единица1
Листинг 8.9. Пользовательская сортировка

arr = ["единица1", "Единый", "Единица2"]

arr.sort(key=str.lower) # Указываем метод lower()

for i in arr:

 print(i, end=" ")

Результат выполнения: единица1 Единица2 Единый
Листинг 8.10. Пример использования функции sorted()
>>> arr = [2, 7, 10, 4, 6, 8, 9, 3, 1, 5]

>>> sorted(arr) # Возвращает новый список!

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> sorted(arr, reverse=True) # Возвращает новый список!

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> arr = ["единица1", "Единый", "Единица2"]

>>> sorted(arr, key=str.lower)

['единица1', 'Единица2', 'Единый']

8.12. Заполнение списка числами

>>> list(range(11))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list(range(1, 16))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

>>> list(range(15, 0, -1))

[15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

>>> import random

>>> arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> random.sample(arr, 3)

[1, 9, 5]

>>> random.sample(range(300), 5)

[259, 294, 142, 292, 245]

8.13. Преобразование списка в строку

>>> arr = ["word1", "word2", "word3"]

>>> " — ".join(arr)

'word1 — word2 — word3'

>>> arr = ["word1", "word2", "word3", 2]

>>> " — ".join(arr)

Traceback (most recent call last):

 File "<pyshell#69>", line 1, in <module>

 " — ".join(arr)

TypeError: sequence item 3: expected str instance, int found

>>> arr = ["word1", "word2", "word3", 2]

>>> " — ".join((str(i) for i in arr))

'word1 — word2 — word3 — 2'

>>> arr = ["word1", "word2", "word3", 2]

>>> str(arr)

"['word1', 'word2', 'word3', 2]"

8.14. Кортежи

>>> tuple() # Создаем пустой кортеж

()

>>> tuple("String") # Преобразуем строку в кортеж

('S', 't', 'r', 'i', 'n', 'g')

>>> tuple([1, 2, 3, 4, 5]) # Преобразуем список в кортеж

(1, 2, 3, 4, 5)

>>> t1 = () # Создаем пустой кортеж
>>> t2 = (5,) # Создаем кортеж из одного элемента
>>> t3 = (1, "str", (3, 4)) # Кортеж из трех элементов
>>> t4 = 1, "str", (3, 4) # Кортеж из трех элементов
>>> t1, t2, t3, t4
((), (5,), (1, 'str', (3, 4)), (1, 'str', (3, 4)))
>>> t = (5); type(t) # Получили число, а не кортеж!
<class 'int'>
>>> t = ("str"); type(t) # Получили строку, а не кортеж!
<class 'str'>
>>> t = (1, 2, 3, 4, 5, 6, 7, 8, 9)

>>> t[0] # Получаем значение первого элемента кортежа

1

>>> t[::-1] # Изменяем порядок следования элементов

(9, 8, 7, 6, 5, 4, 3, 2, 1)

>>> t[2:5] # Получаем срез

(3, 4, 5)

>>> 8 in t, 0 in t # Проверка на вхождение

(True, False)

>>> (1, 2, 3) * 3 # Повторение

(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> (1, 2, 3) + (4, 5, 6) # Конкатенация

(1, 2, 3, 4, 5, 6)

>>> t = (1, 2, 3) # Создаем кортеж

>>> t[0] # Получаем элемент по индексу

1

>>> t[0] = 50 # Изменить элемент по индексу нельзя!

Traceback (most recent call last):

 File "<pyshell#95>", line 1, in <module>

 t[0] = 50 # Изменить элемент по индексу нельзя!

TypeError: 'tuple' object does not support item assignment

>>> t = (1, 2, 3) # Создаем кортеж

>>> len(t) # Получаем количество элементов

3

>>> t = (1, 2, 1, 2, 1)

>>> t.index(1), t.index(2) # Ищем элементы в кортеже
(0, 1)

8.15. Множества

>>> s = set()

>>> s
set([])

>>> set("string") # Преобразуем строку

set(['g', 'i', 'n', 's', 'r', 't'])

>>> set([1, 2, 3, 4, 5]) # Преобразуем список

set([1, 2, 3, 4, 5])

>>> set((1, 2, 3, 4, 5)) # Преобразуем кортеж

set([1, 2, 3, 4, 5])

>>> set([1, 2, 3, 1, 2, 3]) # Остаются только уникальные элементы

set([1, 2, 3])

>>> for i in set([1, 2, 3]): print i

1 2 3

>>> len(set([1, 2, 3]))

3

>>> s = set([1, 2, 3])

>>> s.union(set([4, 5, 6])), s | set([4, 5, 6])

(set([1, 2, 3, 4, 5, 6]), set([1, 2, 3, 4, 5, 6]))

>>> set([1, 2, 3]) | set([1, 2, 3])

set([1, 2, 3])

>>> s = set([1, 2, 3])

>>> s.update(set([4, 5, 6]))

>>> s

set([1, 2, 3, 4, 5, 6])

>>> s |= set([7, 8, 9])

>>> s

set([1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> set([1, 2, 3]) - set([1, 2, 4])

set([3])

>>> s = set([1, 2, 3])

>>> s.difference(set([1, 2, 4]))

set([3])

>>> s = set([1, 2, 3])

>>> s.difference_update(set([1, 2, 4]))

>>> s

set([3])

>>> s -= set([3, 4, 5])

>>> s
set([])

>>> set([1, 2, 3]) & set([1, 2, 4])

set([1, 2])

>>> s = set([1, 2, 3])

>>> s.intersection(set([1, 2, 4]))

set([1, 2])

>>> s = set([1, 2, 3])

>>> s.intersection_update(set([1, 2, 4]))

>>> s

set([1, 2])

>>> s &= set([1, 6, 7])

>>> s
set([1])

>>> s = set([1, 2, 3])

>>> s ^ set([1, 2, 4]), s.symmetric_difference(set([1, 2, 4]))

(set([3, 4]), set([3, 4]))

>>> s ^ set([1, 2, 3]), s.symmetric_difference(set([1, 2, 3]))

(set([]), set([]))

>>> s ^ set([4, 5, 6]), s.symmetric_difference(set([4, 5, 6]))

(set([1, 2, 3, 4, 5, 6]), set([1, 2, 3, 4, 5, 6]))

>>> s = set([1, 2, 3])

>>> s.symmetric_difference_update(set([1, 2, 4]))

>>> s

set([3, 4])

>>> s ^= set([3, 5, 6])

>>> s
set([4, 5, 6])

>>> s = set([1, 2, 3, 4, 5])

>>> 1 in s, 12 in s

(True, False)

>>> s = set([1, 2, 3, 4, 5])

>>> 1 in s, 12 in s

(False, True)

>>> set([1, 2, 3]) == set([1, 2, 3])

True

>>> set([1, 2, 3]) == set([3, 2, 1])

True

>>> set([1, 2, 3]) == set([1, 2, 3, 4])

False
>>> s = set([1, 2, 3])

>>> s <= set([1, 2]), s <= set([1, 2, 3, 4])

(False, True)

>>> s.issubset(set([1, 2])), s.issubset(set([1, 2, 3, 4]))

(False, True)

>>> s = set([1, 2, 3])

>>> s < set([1, 2, 3]), s < set([1, 2, 3, 4])

(False, True)

>>> s = set([1, 2, 3])

>>> s >= set([1, 2]), s >= set([1, 2, 3, 4])

(True, False)

>>> s.issuperset(set([1, 2])), s.issuperset(set([1, 2, 3, 4]))

(True, False)

>>> s = set([1, 2, 3])

>>> s > set([1, 2]), s > set([1, 2, 3])

(True, False)

>>> s = set([1, 2, 3])
>>> s.isdisjoint(set([4, 5, 6]))
True
>>> s.isdisjoint(set([1, 3, 5]))
False
>>> s = set([1, 2, 3])

>>> c = s; s is c # С помощью = копию создать нельзя!

True
>>> c = s.copy() # Создаем копию объекта

>>> c
set([1, 2, 3])

>>> s is c # Теперь это разные объекты

False
>>> s = set([1, 2, 3])

>>> s.add(4); s

set([1, 2, 3, 4])

>>> s = set([1, 2, 3])

>>> s.remove(3); s # Элемент существует

set([1, 2])

>>> s.remove(5) # Элемент НЕ существует

Traceback (most recent call last):

 File "<pyshell#78>", line 1, in <module>

 s.remove(5) # Элемент НЕ существует

KeyError: 5

>>> s = set([1, 2, 3])

>>> s.discard(3); s # Элемент существует

set([1, 2])

>>> s.discard(5); s # Элемент НЕ существует

set([1, 2])

>>> s = set([1, 2])

>>> s.pop(), s

(1, set([2]))

>>> s.pop(), s

(2, set([]))

>>> s.pop() # Если нет элементов, то будет ошибка

Traceback (most recent call last):

 File "<pyshell#89>", line 1, in <module>

 s.pop() # Если нет элементов, то будет ошибка

KeyError: 'pop from an empty set'

>>> s = set([1, 2, 3])

>>> s.clear(); s

set([])

>>> {x for x in [1, 2, 1, 2, 1, 2, 3]}

{1, 2, 3}

>>> {x for x in [1, 2, 1, 2, 1, 2, 3] if x % 2 == 0}

{2}
>>> f = frozenset()

>>> f
frozenset([])

>>> frozenset("string") # Преобразуем строку
frozenset(['g', 'i', 'n', 's', 'r', 't'])

>>> frozenset([1, 2, 3, 4, 4]) # Преобразуем список
frozenset([1, 2, 3, 4])

>>> frozenset((1, 2, 3, 4, 4)) # Преобразуем кортеж
frozenset([1, 2, 3, 4])

8.16. Диапазоны

>>> r = range(1, 10)

>>> for i in r: print(i, end = " ")

1 2 3 4 5 6 7 8 9

>>> r = range(10, 110, 10)

>>> for i in r: print(i, end = " ")

10 20 30 40 50 60 70 80 90 100

>>> r = range(10, 1, -1)

>>> for i in r: print(i, end = " ")

10 9 8 7 6 5 4 3 2

>>> list(range(1, 10)) # Преобразуем в список
[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> tuple(range(1, 10)) # Преобразуем в кортеж
(1, 2, 3, 4, 5, 6, 7, 8, 9)

>>> set(range(1, 10)) # Преобразуем в множество
{1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> r = range(1, 10)
>>> r[2], r[-1]
(3, 9)
>>> r[2:4]

range(3, 5)

>>> 2 in r, 12 in r

(True, False)

>>> 3 not in r, 13 not in r

(False, True)

>>> len(r), min(r), max(r)

(9, 1, 9)

>>> r.index(4), r.count(4)

(3, 1)

>>> range(1, 10) == range(1, 10, 1)

True

>>> range(1, 10, 2) == range(1, 11, 2)

True

>>> range(1, 10, 2) == range(1, 12, 2)

False

>>> range(1, 10, 2) != range(1, 12, 2)

True
>>> range(1, 10) != range(1, 10, 1)

False
>>> r = range(1, 10)

>>> r.start, r.stop, r.step

(1, 10, 1)
8.17. Модуль itertools
import itertools

8.17.1. Генерация неопределенного количества значений

>>> import itertools

>>> for i in itertools.count():

 if i > 10: break

 print(i, end=" ")

0 1 2 3 4 5 6 7 8 9 10

>>> list(zip(itertools.count(), "абвгд"))

[(0, 'а'), (1, 'б'), (2, 'в'), (3, 'г'), (4, 'д')]

>>> list(zip(itertools.count(start=2, step=2), "абвгд"))

[(2, 'а'), (4, 'б'), (6, 'в'), (8, 'г'), (10, 'д')]

>>> n = 1

>>> for i in itertools.cycle("абв"):

 if n > 10: break

 print(i, end=" ")

 n += 1

а б в а б в а б в а

>>> list(zip(itertools.cycle([0, 1]), "абвгд"))

[(0, 'а'), (1, 'б'), (0, 'в'), (1, 'г'), (0, 'д')]

>>> list(itertools.repeat(1, 10))

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

>>> list(zip(itertools.repeat(5), "абвгд"))

[(5, 'а'), (5, 'б'), (5, 'в'), (5, 'г'), (5, 'д')]

8.17.2. Генерация комбинаций значений

>>> import itertools

>>> list(itertools.combinations('абвг', 2))

[('а', 'б'), ('а', 'в'), ('а', 'г'), ('б', 'в'), ('б', 'г'),

 ('в', 'г')]

>>> ["".join(i) for i in itertools.combinations('абвг', 2)]

['аб', 'ав', 'аг', 'бв', 'бг', 'вг']

>>> list(itertools.combinations('вгаб', 2))

[('в', 'г'), ('в', 'а'), ('в', 'б'), ('г', 'а'), ('г', 'б'),

 ('а', 'б')]

>>> list(itertools.combinations('абвг', 3))

[('а', 'б', 'в'), ('а', 'б', 'г'), ('а', 'в', 'г'),

 ('б', 'в', 'г')]

>>> list(itertools.combinations_with_replacement('абвг', 2))

[('а', 'а'), ('а', 'б'), ('а', 'в'), ('а', 'г'), ('б', 'б'),

 ('б', 'в'), ('б', 'г'), ('в', 'в'), ('в', 'г'), ('г', 'г')]

>>> list(itertools.combinations_with_replacement('вгаб', 2))

[('в', 'в'), ('в', 'г'), ('в', 'а'), ('в', 'б'), ('г', 'г'),

 ('г', 'а'), ('г', 'б'), ('а', 'а'), ('а', 'б'), ('б', 'б')]

>>> list(itertools.permutations('абвг', 2))

[('а', 'б'), ('а', 'в'), ('а', 'г'), ('б', 'а'), ('б', 'в'),

 ('б', 'г'), ('в', 'а'), ('в', 'б'), ('в', 'г'), ('г', 'а'),

 ('г', 'б'), ('г', 'в')]

>>> ["".join(i) for i in itertools.permutations('абвг')]

['абвг', 'абгв', 'авбг', 'авгб', 'агбв', 'агвб', 'бавг',

 'багв', 'бваг', 'бвга', 'бгав', 'бгва', 'вабг', 'вагб',

 'вбаг', 'вбга', 'вгаб', 'вгба', 'габв', 'гавб', 'гбав',

 'гбва', 'гваб', 'гвба']

>>> from itertools import product

>>> list(product('абвг', repeat=2))

[('а', 'а'), ('а', 'б'), ('а', 'в'), ('а', 'г'), ('б', 'а'),

 ('б', 'б'), ('б', 'в'), ('б', 'г'), ('в', 'а'), ('в', 'б'),

 ('в', 'в'), ('в', 'г'), ('г', 'а'), ('г', 'б'), ('г', 'в'),

 ('г', 'г')]

>>> ["".join(i) for i in product('аб', 'вг', repeat=1)]

['ав', 'аг', 'бв', 'бг']

>>> ["".join(i) for i in product('аб', 'вг', repeat=2)]

['авав', 'аваг', 'авбв', 'авбг', 'агав', 'агаг', 'агбв',

 'агбг', 'бвав', 'бваг', 'бвбв', 'бвбг', 'бгав', 'бгаг',

 'бгбв', 'бгбг']
8.17.3. Фильтрация элементов последовательности

>>> import itertools

>>> def func(x): return x > 3

>>> list(itertools.filterfalse(func, [4, 5, 6, 0, 7, 2, 3]))

[0, 2, 3]

>>> list(filter(func, [4, 5, 6, 0, 7, 2, 3]))

[4, 5, 6, 7]

>>> list(itertools.filterfalse(None, [0, 5, 6, 0, 7, 0, 3]))

[0, 0, 0]

>>> list(filter(None, [0, 5, 6, 0, 7, 0, 3]))

[5, 6, 7, 3]

>>> def func(x): return x > 3

>>> list(itertools.dropwhile(func, [4, 5, 6, 0, 7, 2, 3]))

[0, 7, 2, 3]

>>> list(itertools.dropwhile(func, [4, 5, 6, 7, 8]))

[]

>>> list(itertools.dropwhile(func, [1, 2, 4, 5, 6, 7, 8]))

[1, 2, 4, 5, 6, 7, 8]

>>> def func(x): return x > 3

>>> list(itertools.takewhile(func, [4, 5, 6, 0, 7, 2, 3]))

[4, 5, 6]

>>> list(itertools.takewhile(func, [4, 5, 6, 7, 8]))

[4, 5, 6, 7, 8]

>>> list(itertools.takewhile(func, [1, 2, 4, 5, 6, 7, 8]))

[]

>>> list(itertools.compress('абвгде', [1, 0, 0, 0, 1, 1]))

['а', 'д', 'е']

>>> list(itertools.compress('абвгде', [True, False, True]))

['а', 'в']

8.17.4. Прочие функции

>>> list(itertools.islice("абвгдезж", 3))

['а', 'б', 'в']

>>> list(itertools.islice("абвгдезж", 3, 6))

['г', 'д', 'е']

>>> list(itertools.islice("абвгдезж", 3, 6, 2))

['г', 'е']
>>> import itertools

>>> def func1(x, y): return x + y

>>> list(itertools.starmap(func1, [(1, 2), (4, 5), (6, 7)]))

[3, 9, 13]

>>> def func2(x, y, z): return x + y + z

>>> list(itertools.starmap(func2, [(1, 2, 3), (4, 5, 6)]))

[6, 15]

>>> list(itertools.zip_longest([1, 2, 3], [4, 5, 6]))

[(1, 4), (2, 5), (3, 6)]

>>> list(itertools.zip_longest([1, 2, 3], [4]))

[(1, 4), (2, None), (3, None)]

>>> list(itertools.zip_longest([1, 2, 3], [4], fillvalue=0))

[(1, 4), (2, 0), (3, 0)]

>>> list(zip([1, 2, 3], [4]))

[(1, 4)]

>>> # Выполняем сложение

>>> list(itertools.accumulate([1, 2, 3, 4, 5, 6]))

[1, 3, 6, 10, 15, 21]

>>> # [1, 1+2, 3+3, 6+4, 10+5, 15+6]

>>> # Выполняем умножение

>>> def func(x, y): return x * y
>>> list(itertools.accumulate([1, 2, 3, 4, 5, 6], func))

[1, 2, 6, 24, 120, 720]
>>> # [1, 1*2, 2*3, 6*4, 24*5, 120*6]

>>> arr1, arr2, arr3 = [1, 2, 3], [4, 5], [6, 7, 8, 9]

>>> list(itertools.chain(arr1, arr2, arr3))

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(itertools.chain("abc", "defg", "hij"))

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

>>> list(itertools.chain("abc", ["defg", "hij"]))

['a', 'b', 'c', 'defg', 'hij']

>>> list(itertools.chain.from_iterable(["abc", "defg", "hij"]))

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

>>> arr = [1, 2, 3]

>>> itertools.tee(arr)

(<itertools.tee object at 0x00FD8760>,

<itertools.tee object at 0x00FD8738>)

>>> itertools.tee(arr, 3)

(<itertools.tee object at 0x00FD8710>,

<itertools.tee object at 0x00FD87D8>,

<itertools.tee object at 0x00FD87B0>)
>>> list(itertools.tee(arr)[0])

[1, 2, 3]

>>> list(itertools.tee(arr)[1])

[1, 2, 3]

9. Словари
9.1. Создание словаря

>>> d = dict(); d # Создаем пустой словарь

{}

>>> d = dict(a=1, b=2); d

{'a': 1, 'b': 2}

>>> d = dict({"a": 1, "b": 2}); d # Словарь
{'a': 1, 'b': 2}

>>> d = dict([("a", 1), ("b", 2)]); d # Список кортежей
{'a': 1, 'b': 2}

>>> d = dict([["a", 1], ["b", 2]]); d # Список списков
{'a': 1, 'b': 2}

>>> k = ["a", "b"] # Список с ключами

>>> v = [1, 2] # Список со значениями

>>> list(zip(k, v)) # Создание списка кортежей

[('a', 1), ('b', 2)]

>>> d = dict(zip(k, v)); d # Создание словаря

{'a': 1, 'b': 2}

>>> d = {}; d # Создание пустого словаря

{}

>>> d = { "a": 1, "b": 2 }; d
{'a': 1, 'b': 2}

>>> d = {} # Создаем пустой словарь

>>> d["a"] = 1 # Добавляем элемент1 (ключ "a")

>>> d["b"] = 2 # Добавляем элемент2 (ключ "b")

>>> d

{'a': 1, 'b': 2}

>>> d = dict.fromkeys(["a", "b", "c"])

>>> d

{'a': None, 'c': None, 'b': None}

>>> d = dict.fromkeys(["a", "b", "c"], 0) # Указан список
>>> d

{'a': 0, 'c': 0, 'b': 0}

>>> d = dict.fromkeys(("a", "b", "c"), 0) # Указан кортеж
>>> d

{'a': 0, 'c': 0, 'b': 0}

>>> d1 = d2 = { "a": 1, "b": 2 } # Якобы создали два объекта

>>> d2["b"] = 10

>>> d1, d2 # Изменилось значение в двух переменных !!!

({'a': 1, 'b': 10}, {'a': 1, 'b': 10})

>>> d1, d2 = { "a": 1, "b": 2 }, { "a": 1, "b": 2 }

>>> d2["b"] = 10

>>> d1, d2

({'a': 1, 'b': 2}, {'a': 1, 'b': 10})
Листинг 9.1. Создание поверхностной копии словаря с помощью функции dict()
>>> d1 = { "a": 1, "b": 2 } # Создаем словарь

>>> d2 = dict(d1) # Создаем поверхностную копию

>>> d1 is d2 # Оператор показывает, что это разные объекты

False

>>> d2["b"] = 10

>>> d1, d2 # Изменилось только значение в переменной d2

({'a': 1, 'b': 2}, {'a': 1, 'b': 10})
Листинг 9.2. Создание поверхностной копии словаря с помощью метода copy()
>>> d1 = { "a": 1, "b": 2 } # Создаем словарь

>>> d2 = d1.copy() # Создаем поверхностную копию

>>> d1 is d2 # Оператор показывает, что это разные объекты

False

>>> d2["b"] = 10

>>> d1, d2 # Изменилось только значение в переменной d2

({'a': 1, 'b': 2}, {'a': 1, 'b': 10})
Листинг 9.3. Создание полной копии словаря

>>> d1 = { "a": 1, "b": [20, 30, 40] }

>>> d2 = dict(d1) # Создаем поверхностную копию

>>> d2["b"][0] = "test"

>>> d1, d2 # Изменились значения в двух переменных!!!

({'a': 1, 'b': ['test', 30, 40]}, {'a': 1, 'b': ['test', 30, 40]})

>>> import copy

>>> d3 = copy.deepcopy(d1) # Создаем полную копию

>>> d3["b"][1] = 800

>>> d1, d3 # Изменилось значение только в переменной d3

({'a': 1, 'b': ['test', 30, 40]}, {'a': 1, 'b': ['test', 800, 40]})

9.2. Операции над словарями

>>> d = { 1: "int", "a": "str", (1, 2): "tuple" }

>>> d[1], d["a"], d[(1, 2)]

('int', 'str', 'tuple')

>>> d = { "a": 1, "b": 2 }

>>> d["c"] # Обращение к несуществующему элементу

Traceback (most recent call last):

 File "<pyshell#49>", line 1, in <module>

 d["c"] # Обращение к несуществующему элементу

KeyError: 'c'

>>> d = { "a": 1, "b": 2 }

>>> "a" in d # Ключ существует

True

>>> "c" in d # Ключ не существует

False

>>> d = { "a": 1, "b": 2 }

>>> "c" not in d # Ключ не существует

True
>>> "a" not in d # Ключ существует
False
>>> d = { "a": 1, "b": 2 }

>>> d.get("a"), d.get("c"), d.get("c", 800)

(1, None, 800)

>>> d = { "a": 1, "b": 2 }

>>> d.setdefault("a"), d.setdefault("c"), d.setdefault("d", 0)

(1, None, 0)

>>> d

{'a': 1, 'c': None, 'b': 2, 'd': 0}

>>> d = { "a": 1, "b": 2 }

>>> d["a"] = 800 # Изменение элемента по ключу

>>> d["c"] = "string" # Будет добавлен новый элемент

>>> d

{'a': 800, 'c': 'string', 'b': 2}

>>> d = { "a": 1, "b": 2 }

>>> len(d) # Получаем количество ключей в словаре

2

>>> d = { "a": 1, "b": 2 }

>>> del d["b"]; d # Удаляем элемент с ключом "b" и выводим словарь

{'a': 1}

9.3. Перебор элементов словаря

Листинг 9.4. Перебор элементов словаря

d = {"x": 1, "y": 2, "z": 3}

for key in d.keys(): # Использование метода keys()

 print("({0} => {1})".format(key, d[key]), end=" ")

Выведет: (y => 2) (x => 1) (z => 3)

print() # Вставляем символ перевода строки

for key in d: # Словари также поддерживают итерации

 print("({0} => {1})".format(key, d[key]), end=" ")

Выведет: (y => 2) (x => 1) (z => 3)
d = {"x": 1, "y": 2, "z": 3}

k = list(d.keys()) # Получаем список ключей

k.sort() # Сортируем список ключей
for key in k:

 print("({0} => {1})".format(key, d[key]), end=" ")

Выведет: (x => 1) (y => 2) (z => 3)

d = {"x": 1, "y": 2, "z": 3}

for key in sorted(d.keys()):

 print("({0} => {1})".format(key, d[key]), end=" ")

Выведет: (x => 1) (y => 2) (z => 3)

d = {"x": 1, "y": 2, "z": 3}

for key in sorted(d):

 print("({0} => {1})".format(key, d[key]), end=" ")

Выведет: (x => 1) (y => 2) (z => 3)

9.4. Методы для работы со словарями

>>> d1, d2 = { "a": 1, "b": 2 }, { "a": 3, "c": 4, "d": 5 }

>>> d1.keys(), d2.keys() # Получаем объект dict_keys

(dict_keys(['a', 'b']), dict_keys(['a', 'c', 'd']))

>>> list(d1.keys()), list(d2.keys()) # Получаем список ключей

(['a', 'b'], ['a', 'c', 'd'])

>>> for k in d1.keys(): print(k, end=" ")

a b

>>> d1.keys() | d2.keys() # Объединение

{'a', 'c', 'b', 'd'}

>>> d1.keys() — d2.keys() # Разница

{'b'}

>>> d2.keys() — d1.keys() # Разница

{'c', 'd'}

>>> d1.keys() & d2.keys() # Одинаковые ключи

{'a'}

>>> d1.keys() ^ d2.keys() # Уникальные ключи

{'c', 'b', 'd'}

>>> d = { "a": 1, "b": 2 }

>>> d.values() # Получаем объект dict_values

dict_values([1, 2])

>>> list(d.values()) # Получаем список значений

[1, 2]

>>> [v for v in d.values()]

[1, 2]

>>> d = { "a": 1, "b": 2 }

>>> d.items() # Получаем объект dict_items

dict_items([('a', 1), ('b', 2)])

>>> list(d.items()) # Получаем список кортежей

[('a', 1), ('b', 2)]

>>> d = { "a": 1, "b": 2 }

>>> "a" in d # Ключ существует

True

>>> "c" in d # Ключ не существует

False

>>> d = { "a": 1, "b": 2 }

>>> "c" not in d # Ключ не существует

True
>>> "a" not in d # Ключ существует
False
>>> d = { "a": 1, "b": 2 }

>>> d.get("a"), d.get("c"), d.get("c", 800)

(1, None, 800)

>>> d = { "a": 1, "b": 2 }

>>> d.setdefault("a"),d.setdefault("c"),d.setdefault("d", 0)

(1, None, 0)

>>> d

{'a': 1, 'c': None, 'b': 2, 'd': 0}

>>> d = { "a": 1, "b": 2, "c": 3 }

>>> d.pop("a"), d.pop("n", 0)

(1, 0)

>>> d.pop("n") # Ключ отсутствует и нет второго параметра

Traceback (most recent call last):

 File "<pyshell#40>", line 1, in <module>

 d.pop("n") # Ключ отсутствует и нет второго параметра

KeyError: 'n'

>>> d

{'c': 3, 'b': 2}

>>> d = { "a": 1, "b": 2 }

>>> d.popitem() # Удаляем произвольный элемент

('a', 1)

>>> d.popitem() # Удаляем произвольный элемент

('b', 2)

>>> d.popitem() # Словарь пустой. Возбуждается исключение

Traceback (most recent call last):

 File "<pyshell#45>", line 1, in <module>

 d.popitem() # Словарь пустой. Возбуждается исключение

KeyError: 'popitem(): dictionary is empty'

>>> d = { "a": 1, "b": 2 }

>>> d.clear() # Удаляем все элементы

>>> d # Словарь теперь пустой

{}

>>> d = { "a": 1, "b": 2 }

>>> d.update(c=3, d=4)

>>> d

{'a': 1, 'c': 3, 'b': 2, 'd': 4}

>>> d.update({"c": 10, "d": 20}) # Словарь

>>> d # Значения элементов перезаписаны

{'a': 1, 'c': 10, 'b': 2, 'd': 20}

>>> d.update([("d", 80), ("e", 6)]) # Список кортежей

>>> d

{'a': 1, 'c': 10, 'b': 2, 'e': 6, 'd': 80}

>>> d.update([["a", "str"], ["i", "t"]]) # Список списков
>>> d

{'a': 'str', 'c': 10, 'b': 2, 'e': 6, 'd': 80, 'i': 't'}

>>> d1 = { "a": 1, "b": [10, 20] }

>>> d2 = d1.copy() # Создаем поверхностную копию

>>> d1 is d2 # Это разные объекты

False

>>> d2["a"] = 800 # Изменяем значение

>>> d1, d2 # Изменилось значение только в d2

({'a': 1, 'b': [10, 20]}, {'a': 800, 'b': [10, 20]})

>>> d2["b"][0] = "new" # Изменяем значение вложенного списка

>>> d1, d2 # Изменились значения и в d1, и в d2!!!

({'a': 1, 'b': ['new', 20]}, {'a': 800, 'b': ['new', 20]})

9.5. Генераторы словарей

>>> keys = ["a", "b"] # Список с ключами

>>> values = [1, 2] # Список со значениями

>>> {k: v for (k, v) in zip(keys, values)}

{'a': 1, 'b': 2}

>>> {k: 0 for k in keys}

{'a': 0, 'b': 0}

>>> d = { "a": 1, "b": 2, "c": 3, "d": 4 }

>>> {k: v for (k, v) in d.items() if v % 2 == 0}

{'b': 2, 'd': 4}

10. Работа с датой и временем
10.1. Получение текущей даты и времени

>>> import time # Подключаем модуль time
>>> time.time() # Получаем количество секунд
1428057929.227704
>>> time.gmtime(0) # Начало эпохи
time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1, tm_hour=0,

tm_min=0, tm_sec=0, tm_wday=3, tm_yday=1, tm_isdst=0)
>>> time.gmtime() # Текущая дата и время
time.struct_time(tm_year=2015, tm_mon=4, tm_mday=3, tm_hour=10, tm_min=48,
tm_sec=10, tm_wday=4, tm_yday=93, tm_isdst=0)
>>> time.gmtime(1428057929.0) # Дата 03-04-2015
time.struct_time(tm_year=2015, tm_mon=4, tm_mday=3, tm_hour=10, tm_min=45,
tm_sec=29, tm_wday=4, tm_yday=93, tm_isdst=0)
>>> d = time.gmtime()
>>> d.tm_year, d[0]
(2015, 2015)
>>> tuple(d) # Преобразование в кортеж
(2015, 4, 3, 10, 50, 34, 4, 93, 0)
>>> time.localtime() # Текущая дата и время
time.struct_time(tm_year=2015, tm_mon=4, tm_mday=3, tm_hour=13, tm_min=51,
tm_sec=22, tm_wday=4, tm_yday=93, tm_isdst=0)
>>> time.localtime(1428057929.0) # Дата 03-04-2015
time.struct_time(tm_year=2015, tm_mon=4, tm_mday=3, tm_hour=13, tm_min=45,
tm_sec=29, tm_wday=4, tm_yday=93, tm_isdst=0)
>>> d = time.localtime(1428057929.0)
>>> time.mktime(d)
1428057929.0
>>> tuple(time.localtime(1428057929.0))
(2015, 4, 3, 13, 45, 29, 4, 93, 0)
>>> time.mktime((2015, 4, 3, 13, 45, 29, 4, 93, 0))
1428057929.0
>>> time.mktime((1940, 0, 31, 5, 23, 43, 5, 31, 0))
... Фрагмент опущен ...
OverflowError: mktime argument out of range
Листинг 10.1. Вывод текущей даты и времени

-*- coding: utf-8 -*-

import time # Подключаем модуль time

d = ["понедельник", "вторник", "среда", "четверг",

 "пятница", "суббота", "воскресенье"]

m = ["", "января", "февраля", "марта", "апреля", "мая",

 "июня", "июля", "августа", "сентября", "октября",

 "ноября", "декабря"]

t = time.localtime() # Получаем текущее время

print("Сегодня:\n%s %s %s %s %02d:%02d:%02d\n%02d.%02d.%02d" %

 (d[t[6]], t[2], m[t[1]], t[0], t[3], t[4], t[5],

 t[2], t[1], t[0]))

input()

10.2. Форматирование даты и времени

>>> import time
>>> time.strftime("%d.%m.%Y") # Форматирование даты
'03.04.2015'
>>> time.strftime("%H:%M:%S") # Форматирование времени
'14:01:34'
>>> time.strftime("%d.%m.%Y", time.localtime(1321954972.0))

'22.11.2011'
>>> time.strptime("Fri Apr 03 14:01:34 2015")
time.struct_time(tm_year=2015, tm_mon=4, tm_mday=3, tm_hour=14, tm_min=1,
tm_sec=34, tm_wday=4, tm_yday=94, tm_isdst=-1)
>>> time.strptime("03.04.2015", "%d.%m.%Y")
time.struct_time(tm_year=2015, tm_mon=4, tm_mday=3, tm_hour=0, tm_min=0,
tm_sec=0, tm_wday=4, tm_yday=93, tm_isdst=-1)
>>> time.strptime("03-04-2015", "%d.%m.%Y")
... Фрагмент опущен ...
ValueError: time data '03-04-2015' does not match format '%d.%m.%Y'
>>> time.asctime() # Текущая дата
'Fri Apr 3 14:06:12 2015'
>>> time.asctime(time.localtime(1321954972.0)) # Дата в прошлом
'Tue Nov 22 12:42:52 2011'
>>> time.ctime() # Текущая дата
'Fri Apr 3 14:06:12 2015'
>>> time.ctime(1321954972.0) # Дата в прошлом
'Tue Nov 22 12:42:52 2011'
>>> import locale
>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")
'Russian_Russia.1251'
>>> print(time.strftime("%x")) # Представление даты
03.04.2015
>>> print(time.strftime("%X")) # Представление времени
14:10:19
>>> print(time.strftime("%c")) # Дата и время
03.04.2015 14:10:19

Листинг 10.2. Форматирование даты и времени

-*- coding: utf-8 -*-

import time

import locale

locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

s = "Сегодня:\n%A %d %b %Y %H:%M:%S\n%d.%m.%Y"

print(time.strftime(s))

input()

10.3. "Засыпание" скрипта

>>> import time # Подключаем модуль time

>>> time.sleep(5) # "Засыпаем" на 5 секунд

10.4. Модуль datetime.
Манипуляции датой и временем

import datetime

10.4.1. Класс timedelta
>>> import datetime
>>> datetime.timedelta(milliseconds=1)
datetime.timedelta(0, 0, 1000)
>>> datetime.timedelta(minutes=1)
datetime.timedelta(0, 60)
>>> datetime.timedelta(hours=1)
datetime.timedelta(0, 3600)
>>> datetime.timedelta(weeks=1)
datetime.timedelta(7)
>>> datetime.timedelta(0, 0, 0, 0, 0, 1)
datetime.timedelta(0, 3600)
>>> datetime.timedelta(hours=1)
datetime.timedelta(0, 3600)
>>> d = datetime.timedelta(hours=1, days=2, milliseconds=1)

>>> d

datetime.timedelta(2, 3600, 1000)

>>> d.days, d.seconds, d.microseconds

(2, 3600, 1000)

>>> repr(d), str(d)

('datetime.timedelta(2, 3600, 1000)', '2 days, 1:00:00.001000')

>>> d = datetime.timedelta(minutes=1)

>>> d.total_seconds()

60.0

>>> d1 = datetime.timedelta(days=2)

>>> d2 = datetime.timedelta(days=7)

>>> d1 + d2, d2 — d1 # Сложение и вычитание

(datetime.timedelta(9), datetime.timedelta(5))

>>> d2 / d1 # Деление
3.5

>>> d1 / 2, d2 / 2.5 # Деление
(datetime.timedelta(1), datetime.timedelta(2, 69120))

>>> d2 // d1 # Деление

3

>>> d1 // 2, d2 // 2 # Деление

(datetime.timedelta(1), datetime.timedelta(3, 43200))

>>> d2 % d1 # Остаток
datetime.timedelta(1)

>>> d1 * 2, d2 * 2 # Умножение
(datetime.timedelta(4), datetime.timedelta(14))

>>> 2 * d1, 2 * d2 # Умножение
(datetime.timedelta(4), datetime.timedelta(14))

>>> d3 = -d1

>>> d3, abs(d3)

(datetime.timedelta(-2), datetime.timedelta(2))

>>> d1 = datetime.timedelta(days=2)

>>> d2 = datetime.timedelta(days=7)

>>> d3 = datetime.timedelta(weeks=1)

>>> d1 == d2, d2 == d3 # Проверка на равенство

(False, True)

>>> d1 != d2, d2 != d3 # Проверка на неравенство

(True, False)

>>> d1 < d2, d2 <= d3 # Меньше, меньше или равно

(True, True)

>>> d1 > d2, d2 >= d3 # Больше, больше или равно

(False, True)
>>> d = datetime.timedelta(hours = 25, minutes = 5, seconds = 27)

>>> str(d)

'1 day, 1:05:27'

>>> repr(d)

'datetime.timedelta(1, 3927)'

>>> datetime.timedelta.min
datetime.timedelta(-999999999)
>>> datetime.timedelta.max

datetime.timedelta(999999999, 86399, 999999)
>>> datetime.timedelta.resolution

datetime.timedelta(0, 0, 1)

10.4.2. Класс date
>>> import datetime
>>> datetime.MINYEAR, datetime.MAXYEAR
(1, 9999)
>>> datetime.date(2015, 4, 3)

datetime.date(2015, 4, 3)

>>> datetime.date(2015, 13, 3) # Неправильное значение для месяца

... Фрагмент опущен ...

ValueError: month must be in 1..12

>>> d = datetime.date(2015, 4, 3)

>>> repr(d), str(d)

('datetime.date(2015, 4, 3)', '2015-04-03')

>>> datetime.date.today() # Получаем текущую дату
datetime.date(2015, 4, 3)
>>> import datetime, time
>>> datetime.date.fromtimestamp(time.time()) # Текущая дата
datetime.date(2015, 4, 3)
>>> datetime.date.fromtimestamp(1321954972.0) # Дата 22-11-2011
datetime.date(2011, 11, 22)
>>> datetime.date.max.toordinal()
3652059
>>> datetime.date.fromordinal(3652059)
datetime.date(9999, 12, 31)
>>> datetime.date.fromordinal(1)
datetime.date(1, 1, 1)
>>> d = datetime.date.today() # Текущая дата (3-04-2015)

>>> d.year, d.month, d.day

(2015, 4, 3)

>>> d1 = datetime.date(2015, 4, 3)

>>> d2 = datetime.date(2015, 1, 1)

>>> t = datetime.timedelta(days=10)

>>> d1 + t, d1 — t # Прибавляем и вычитаем 10 дней
(datetime.date(2015, 4, 13), datetime.date(2015, 3, 24))

>>> d1 — d2 # Разница между датами
datetime.timedelta(92)

>>> d1 < d2, d1 > d2, d1 <= d2, d1 >= d2

(False, True, False, True)

>>> d1 == d2, d1 != d2

(False, True)

>>> d = datetime.date(2015, 4, 3)
>>> d.replace(2014, 12) # Заменяем год и месяц
datetime.date(2014, 12, 3)
>>> d.replace(year=2015, month=1, day=31)
datetime.date(2015, 1, 31)
>>> d.replace(day=30) # Заменяем только день
datetime.date(2015, 1, 30)
>>> d = datetime.date(2015, 4, 3)
>>> d.strftime("%d.%m.%Y")
'03.04.2015'
>>> d = datetime.date(2015, 4, 3)
>>> d.isoformat()
'2015-04-03'
>>> d = datetime.date(2015, 4, 3)
>>> d.ctime()
'Fri Apr 3 00:00:00 2015'
>>> d = datetime.date(2015, 4, 3)
>>> d.timetuple()
time.struct_time(tm_year=2015, tm_mon=4, tm_mday=3, tm_hour=0, tm_min=0,
tm_sec=0, tm_wday=4, tm_yday=93, tm_isdst=-1)
>>> d = datetime.date(2015, 4, 3)
>>> d.toordinal()
735691
>>> datetime.date.fromordinal(735691)
datetime.date(2015, 4, 3)
>>> d = datetime.date(2015, 4, 3)
>>> d.weekday() # 4 — это пятница
4
>>> d = datetime.date(2015, 4, 3)
>>> d.isoweekday() # 5 — это пятница
5
>>> d = datetime.date(2015, 4, 3)
>>> d.isocalendar()
(2015, 14, 5)
>>> datetime.date.min

datetime.date(1, 1, 1)

>>> datetime.date.max

datetime.date(9999, 12, 31)

>>> datetime.date.resolution

datetime.timedelta(1)
10.4.3. Класс time
>>> import datetime

>>> datetime.time(23, 12, 38, 375000)

datetime.time(23, 12, 38, 375000)

>>> t = datetime.time(hour=23, second=38, minute=12)

>>> repr(t), str(t)

('datetime.time(23, 12, 38)', '23:12:38')

>>> datetime.time(25, 12, 38, 375000)

... Фрагмент опущен ...

ValueError: hour must be in 0..23

>>> t = datetime.time(23, 12, 38, 375000)

>>> t.hour, t.minute, t.second, t.microsecond

(23, 12, 38, 375000)

>>> t1 = datetime.time(23, 12, 38, 375000)

>>> t2 = datetime.time(12, 28, 17)

>>> t1 < t2, t1 > t2, t1 <= t2, t1 >= t2

(False, True, False, True)

>>> t1 == t2, t1 != t2

(False, True)

>>> t = datetime.time(23, 12, 38, 375000)
>>> t.replace(10, 52) # Заменяем часы и минуты
datetime.time(10, 52, 38, 375000)
>>> t.replace(second=21) # Заменяем только секунды
datetime.time(23, 12, 21, 375000)
>>> t = datetime.time(23, 12, 38, 375000)
>>> t.isoformat()
'23:12:38.375000'
>>> t = datetime.time(23, 12, 38, 375000)
>>> t.strftime("%H:%M:%S")
'23:12:38'
>>> datetime.time.min

datetime.time(0, 0)

>>> datetime.time.max

datetime.time(23, 59, 59, 999999)

>>> datetime.time.resolution

datetime.timedelta(0, 0, 1)
10.4.4. Класс datetime
>>> import datetime

>>> datetime.datetime(2015, 4, 6)

datetime.datetime(2015, 4, 6, 0, 0)

>>> datetime.datetime(2015, 4, 6, hour=12, minute=55)

datetime.datetime(2015, 4, 6, 12, 55)

>>> datetime.datetime(2015, 32, 20)

... Фрагмент опущен ...

ValueError: month must be in 1..12

>>> d = datetime.datetime(2015, 4, 6, 16, 1, 5)

>>> repr(d), str(d)

('datetime.datetime(2015, 4, 6, 16, 1, 5)', '2015-04-06 16:01:05')

>>> datetime.datetime.today()
datetime.datetime(2015, 4, 6, 16, 2, 23, 944152)
>>> datetime.datetime.now()
datetime.datetime(2015, 4, 6, 16, 2, 45, 144777)
>>> datetime.datetime.utcnow()
datetime.datetime(2015, 4, 6, 13, 3, 9, 862255)
>>> import datetime, time
>>> datetime.datetime.fromtimestamp(time.time())
datetime.datetime(2015, 4, 6, 16, 3, 34, 978523)
>>> datetime.datetime.fromtimestamp(1421579037.0)
datetime.datetime(2015, 1, 18, 14, 3, 57)
>>> datetime.datetime.utcfromtimestamp(time.time())
datetime.datetime(2015, 4, 6, 13, 4, 45, 756479)
>>> datetime.datetime.utcfromtimestamp(1421579037.0)
datetime.datetime(2015, 1, 18, 11, 3, 57)
>>> datetime.datetime.max.toordinal()
3652059
>>> datetime.datetime.fromordinal(3652059)
datetime.datetime(9999, 12, 31, 0, 0)
>>> datetime.datetime.fromordinal(1)
datetime.datetime(1, 1, 1, 0, 0)
>>> d = datetime.date(2015, 4, 6) # Экземпляр класса date
>>> t = datetime.time(16, 7, 22) # Экземпляр класса time
>>> datetime.datetime.combine(d, t)
datetime.datetime(2015, 4, 6, 16, 7, 22)
>>> datetime.datetime.strptime("06.04.2015", "%d.%m.%Y")
datetime.datetime(2015, 4, 6, 0, 0)
>>> datetime.datetime.strptime("06.04.2015", "%d-%m-%Y")
... Фрагмент опущен ...
ValueError: time data '06.04.2015'
does not match format '%d-%m-%Y'
>>> d = datetime.datetime(2015, 4, 6, 16, 7, 22)

>>> d.year, d.month, d.day

(2015, 4, 6)

>>> d.hour, d.minute, d.second, d.microsecond

(16, 7, 22, 0)

>>> d1 = datetime.datetime(2015, 4, 6, 16, 7, 22)

>>> d2 = datetime.datetime(2015, 4, 1, 12, 31, 4)

>>> t = datetime.timedelta(days=10, minutes=10)

>>> d1 + t # Прибавляем 10 дней и 10 минут

datetime.datetime(2015, 4, 16, 16, 17, 22)
>>> d1 — t # Вычитаем 10 дней и 10 минут

datetime.datetime(2015, 3, 27, 15, 57, 22)
>>> d1 — d2 # Разница между датами

datetime.timedelta(5, 12978)

>>> d1 < d2, d1 > d2, d1 <= d2, d1 >= d2

(False, True, False, True)

>>> d1 == d2, d1 != d2

(False, True)

>>> d = datetime.datetime(2015, 4, 6, 16, 10, 54)
>>> d.date()
datetime.date(2015, 4, 6)
>>> d = datetime.datetime(2015, 4, 6, 16, 10, 54)
>>> d.time()
datetime.time(16, 10, 54)
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.timestamp()
1428326052.0
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.replace(2014, 12)
datetime.datetime(2014, 12, 6, 16, 14, 12)
>>> d.replace(hour=12, month=10)
datetime.datetime(2015, 10, 6, 12, 14, 12)
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.timetuple()
time.struct_time(tm_year=2015, tm_mon=4, tm_mday=6, tm_hour=16, tm_min=14,
tm_sec=12, tm_wday=0, tm_yday=96, tm_isdst=-1)
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.utctimetuple()
time.struct_time(tm_year=2015, tm_mon=4, tm_mday=6, tm_hour=16, tm_min=14,
tm_sec=12, tm_wday=0, tm_yday=96, tm_isdst=0)
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.toordinal()
735694
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.weekday() # 0 — это понедельник
0
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.isoweekday() # 1 — это понедельник
1
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.isocalendar()
(2015, 15, 1)
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.isoformat() # Разделитель не указан
'2015-04-06T16:14:12'
>>> d.isoformat(" ") # Пробел в качестве разделителя
'2015-04-06 16:14:12'
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.ctime()
'Mon Apr 6 16:14:12 2015'
>>> d = datetime.datetime(2015, 4, 6, 16, 14, 12)
>>> d.strftime("%d.%m.%Y %H:%M:%S")
'06.04.2015 16:14:12'
>>> datetime.datetime.min

datetime.datetime(1, 1, 1, 0, 0)

>>> datetime.datetime.max

datetime.datetime(9999, 12, 31, 23, 59, 59, 999999)

>>> datetime.datetime.resolution

datetime.timedelta(0, 0, 1)
10.5. Модуль calendar. Вывод календаря

import calendar
>>> import calendar
>>> c = calendar.Calendar(0)
>>> c.monthdayscalendar(2015, 4) # 4 — это апрель
[[0, 0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26], [27, 28, 29, 30, 0, 0, 0]]
>>> c = calendar.TextCalendar(0)
>>> print(c.formatyear(2015)) # Текстовый календарь на 2015 год
>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")
>>> print(c.formatyear(2015))
>>> c = calendar.HTMLCalendar(0)
>>> print(c.formatyear(2011))
>>> c = calendar.LocaleHTMLCalendar(0, "Russian_Russia.1251")
>>> xhtml = c.formatyearpage(2011, encoding="windows-1251")
>>> print(xhtml.decode("cp1251"))
Листинг 10.3. Вывод текстового календаря

>>> c = calendar.TextCalendar() # Первый день понедельник

>>> c.setfirstweekday(calendar.SUNDAY) # Первый день теперь воскресенье

>>> print(c.formatmonth(2015, 1)) # Текстовый календарь на январь 2015 г.

10.5.1. Методы классов TextCalendar и LocaleTextCalendar
>>> import calendar
>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")
>>> print(c.formatmonth(2015, 4))
 Апрель 2015

Пн Вт Ср Чт Пт Сб Вс
 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30
>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")
>>> c.prmonth(2015, 4, 4)
 Апрель 2015

 Пн Вт Ср Чт Пт Сб Вс
 1 2 3 4 5

 6 7 8 9 10 11 12

 13 14 15 16 17 18 19

 20 21 22 23 24 25 26

 27 28 29 30
>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")
>>> print(c.formatyear(2015, m=4, c=2))
>>> c = calendar.LocaleTextCalendar(0, "Russian_Russia.1251")
>>> c.pryear(2015, 2, 1, 4, 2)
10.5.2. Методы классов HTMLCalendar и LocaleHTMLCalendar
>>> import calendar
>>> c = calendar.HTMLCalendar(0)
>>> print(c.cssclasses)
['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun']
>>> c = calendar.LocaleHTMLCalendar(0, "Russian_Russia.1251")
>>> c.cssclasses = ["workday", "workday", "workday", "workday",
 "workday", "week-end", "week-end"]
>>> print(c.formatmonth(2015, 4, False))
>>> c = calendar.LocaleHTMLCalendar(0, "Russian_Russia.1251")
>>> print(c.formatyear(2015, 4))
>>> c = calendar.LocaleHTMLCalendar(0, "Russian_Russia.1251")
>>> xhtml = c.formatyearpage(2015, 4, encoding="windows-1251")
>>> type(xhtml) # Возвращаемая строка имеет тип данных bytes
<class 'bytes'>
>>> print(xhtml.decode("cp1251"))
10.5.3. Другие полезные функции

>>> import calendar
>>> calendar.firstweekday() # По умолчанию 0
0
>>> calendar.setfirstweekday(6) # Изменяем значение
>>> calendar.firstweekday() # Проверяем установку
6
>>> calendar.setfirstweekday(0)
>>> print(calendar.month(2015, 4)) # Апрель 2015 года
 April 2015

Mo Tu We Th Fr Sa Su

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30
>>> calendar.prmonth(2015, 4) # Апрель 2015 года
>>> calendar.monthcalendar(2015, 4)
[[0, 0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26], [27, 28, 29, 30, 0, 0, 0]]
>>> print(calendar.monthrange(2015, 4))
(2, 30)
>>> # Апрель 2015 года начинается со среды (2) и включает 30 дней
>>> print(calendar.calendar(2015, m=4, c=2))
>>> calendar.prcal(2015, 2, 1, 4, 2)
>>> calendar.weekheader(4)

'Mon Tue Wed Thu Fri Sat Sun '

>>> calendar.weekheader(2)

'Mo Tu We Th Fr Sa Su'

>>> import locale # Задаем другую локаль
>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")

'Russian_Russia.1251'

>>> calendar.weekheader(2)

'Пн Вт Ср Чт Пт Сб Вс'

>>> calendar.isleap(2015), calendar.isleap(2012)
(False, True)
>>> calendar.leapdays(2010, 2012) # 2012 не учитывается
0
>>> calendar.leapdays(2010, 2015) # 2012 — високосный год
1
>>> calendar.leapdays(2010, 2017) # 2012 и 2016 — високосные года
2
>>> calendar.weekday(2015, 4, 7)
1
>>> import calendar, time
>>> d = time.gmtime(1321954972.0) # Дата 22-11-2011
>>> d
time.struct_time(tm_year=2011, tm_mon=11, tm_mday=22, tm_hour=9,
 tm_min=42, tm_sec=52, tm_wday=1, tm_yday=326, tm_isdst=0)
>>> tuple(d)
(2011, 11, 22, 9, 42, 52, 1, 326, 0)
>>> calendar.timegm(d)
1321954972
>>> calendar.timegm((2011, 11, 22, 9, 42, 52, 1, 326, 0))
1321954972
>>> [i for i in calendar.day_name]
['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
'Saturday', 'Sunday']
>>> [i for i in calendar.day_abbr]
['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
>>> [i for i in calendar.month_name]
['', 'January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November', 'December']
>>> [i for i in calendar.month_abbr]
['', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug',
'Sep', 'Oct', 'Nov', 'Dec']
>>> import locale # Настройка локали
>>> locale.setlocale(locale.LC_ALL, "Russian_Russia.1251")
'Russian_Russia.1251'
>>> [i for i in calendar.day_abbr]
['Пн', 'Вт', 'Ср', 'Чт', 'Пт', 'Сб', 'Вс']
>>> [i for i in calendar.month_name]
['', 'Январь', 'Февраль', 'Март', 'Апрель', 'Май', 'Июнь', 'Июль',
 'Август', 'Сентябрь', 'Октябрь', 'Ноябрь', 'Декабрь']
>>> [i for i in calendar.month_abbr]
['', 'янв', 'фев', 'мар', 'апр', 'май', 'июн', 'июл', 'авг', 'сен',
 'окт', 'ноя', 'дек']
10.6. Измерение времени выполнения
фрагментов кода

from timeit import Timer
Листинг 10.4. Измерение времени выполнения

-*- coding: utf-8 -*-

from timeit import Timer

code1 = """\

i, j = 1, 0

while i < 10001:

 j += i

 i += 1

"""

t1 = Timer(stmt=code1)

print("while:", t1.timeit(number=10000))

code2 = """\

j = 0

for i in range(1, 10001):

 j += i

"""

t2 = Timer(stmt=code2)

print("for:", t2.timeit(number=10000))

code3 = """\

j = sum(range(1, 10001))

"""

t3 = Timer(stmt=code3)

print("sum:", t3.timeit(number=10000))

input()
Листинг 10.5. Использование метода repeat()
-*- coding: utf-8 -*-

from timeit import Timer

code1 = """\

arr1 = []

for i in range(1, 10001):

 arr1.append(str(i))

"""

t1 = Timer(stmt=code1)

print("append:", t1.repeat(repeat=3, number=2000))

code2 = """\

arr2 = [str(i) for i in range(1, 10001)]

"""

t2 = Timer(stmt=code2)

print("генератор:", t2.repeat(repeat=3, number=2000))

input()
11. Пользовательские функции
11.1. Определение функции и ее вызов

def func():
 pass
def func():

 print("Текст до инструкции return")

 return "Возвращаемое значение"

 print("Эта инструкция никогда не будет выполнена")

print(func()) # Вызываем функцию
Листинг 11.1. Определения функций

def print_ok():

 """ Пример функции без параметров """

 print("Сообщение при удачно выполненной операции")

def echo(m):

 """ Пример функции с параметром """

 print(m)

def summa(x, y):

 """ Пример функции с параметрами,

 возвращающей сумму двух переменных """

 return x + y
Листинг 11.2. Вызов функций

print_ok() # Вызываем функцию без параметров

echo("Сообщение") # Функция выведет сообщение

x = summa(5, 2) # Переменной x будет присвоено значение 7

a, b = 10, 50

y = summa(a, b) # Переменной y будет присвоено значение 60

def summa(x, y):

 return x + y

print(summa("str", "ing")) # Выведет: string

print(summa([1, 2], [3, 4])) # Выведет: [1, 2, 3, 4]
Листинг 11.3. Сохранение ссылки на функцию в переменной

def summa(x, y):

 return x + y

f = summa # Сохраняем ссылку в переменной f

v = f(10, 20) # Вызываем функцию через переменную f
Листинг 11.4. Функции обратного вызова

def summa(x, y):

 return x + y

def func(f, a, b):

 """ Через переменную f будет доступна ссылка на

 функцию summa() """

 return f(a, b) # Вызываем функцию summa()

Передаем ссылку на функцию в качестве параметра

v = func(summa, 10, 20)

>>> def summa(x, y):

 """ Суммирование двух чисел """

 return x + y

>>> dir(summa)

['__annotations__', '__call__', '__class__', '__closure__', '__code__',
'__defaults__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__get__', '__getattribute__', '__globals__', '__gt__',
'__hash__', '__init__', '__kwdefaults__', '__le__', '__lt__', '__module__',
'__name__', '__ne__', '__new__', '__qualname__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']

>>> summa.__name__

'summa'

>>> summa.__code__.co_varnames

('x', 'y')

>>> summa.__doc__

' Суммирование двух чисел '

11.2. Расположение определений функций

def summa(x, y):

 return x + y

v = summa(10, 20) # Вызываем после определения. Все нормально

v = summa(10, 20) # Идентификатор еще не определен. Это ошибка!!!

def summa(x, y):

 return x + y
Листинг 11.5. Определение функции в зависимости от условия

-*- coding: utf-8 -*-

n = input("Введите 1 для вызова первой функции: ")

if n == "1":

 def echo():

 print("Вы ввели число 1")

else:

 def echo():

 print("Альтернативная функция")

echo() # Вызываем функцию

input()

def echo():

 print("Вы ввели число 1")

def echo():

 print("Альтернативная функция")

echo() # Всегда выводит "Альтернативная функция"

11.3. Необязательные параметры и сопоставление по ключам

Листинг 11.6. Необязательные параметры

def summa(x, y=2): # y — необязательный параметр

 return x + y

a = summa(5) # Переменной a будет присвоено значение 7

b = summa(10, 50) # Переменной b будет присвоено значение 60
def summa(x, y):

 return x + y

print(summa(10, 20)) # Выведет: 30
Листинг 11.7. Сопоставление по ключам

def summa(x, y):

 return x + y

print(summa(y=20, x=10)) # Сопоставление по ключам

def summa(a=2, b=3, c=4): # Все параметры являются необязательными

 return a + b + c

print(summa(2, 3, 20)) # Позиционное присваивание

print(summa(c=20)) # Сопоставление по ключам
Листинг 11.8. Пример передачи значений из кортежа и списка

def summa(a, b, c):

 return a + b + c

t1, arr = (1, 2, 3), [1, 2, 3]

print(summa(*t1)) # Распаковываем кортеж
print(summa(*arr)) # Распаковываем список
t2 = (2, 3)

print(summa(1, *t2)) # Можно комбинировать значения
Листинг 11.9. Пример передачи значений из словаря

def summa(a, b, c):

 return a + b + c

d1 = {"a": 1, "b": 2, "c": 3}

print(summa(**d1)) # Распаковываем словарь

t, d2 = (1, 2), {"c": 3}

print(summa(*t, **d2)) # Можно комбинировать значения

def func(a, b):

 a, b = 20, "str"

x, s = 80, "test"

func(x, s) # Значения переменных x и s не изменяются

print(x, s) # Выведет: 80 test

def func(a, b):

 a[0], b["a"] = "str", 800

x = [1, 2, 3] # Список

y = {"a": 1, "b": 2} # Словарь

func(x, y) # Значения будут изменены!!!

print(x, y) # Выведет: ['str', 2, 3] {'a': 800, 'b': 2}
Листинг 11.10. Передача изменяемого объекта в функцию

def func(a, b):

 a = a[:] # Создаем поверхностную копию списка

 b = b.copy() # Создаем поверхностную копию словаря

 a[0], b["a"] = "str", 800

x = [1, 2, 3] # Список
y = {"a": 1, "b": 2} # Словарь

func(x, y) # Значения останутся прежними

print(x, y) # Выведет: [1, 2, 3] {'a': 1, 'b': 2}

func(x[:], y.copy())

def func(a=[]):

 a.append(2)

 return a

print(func()) # Выведет: [2]

print(func()) # Выведет: [2, 2]

print(func()) # Выведет: [2, 2, 2]

def func(a=None):

 # Создаем новый список, если значение равно None

 if a is None:

 a = []

 a.append(2)

 return a

print(func()) # Выведет: [2]

print(func([1])) # Выведет: [1, 2]

print(func()) # Выведет: [2]

11.4. Переменное число параметров в функции

Листинг 11.11. Сохранение переданных данных в кортеже

def summa(*t):

 """ Функция принимает произвольное количество параметров """

 res = 0

 for i in t: # Перебираем кортеж с переданными параметрами

 res += i

 return res

print(summa(10, 20)) # Выведет: 30

print(summa(10, 20, 30, 40, 50, 60)) # Выведет: 210

def summa(x, y=5, *t): # Комбинация параметров

 res = x + y

 for i in t: # Перебираем кортеж с переданными параметрами

 res += i

 return res

print(summa(10)) # Выведет: 15

print(summa(10, 20, 30, 40, 50, 60)) # Выведет: 210
Листинг 11.12. Сохранение переданных данных в словаре

def func(**d):

 for i in d: # Перебираем словарь с переданными параметрами

 print("{0} => {1}".format(i, d[i]), end=" ")

func(a=1, b=2, c=3) # Выведет: a => 1 c => 3 b => 2
Листинг 11.13. Комбинирование параметров

def func(*t, **d):

 """ Функция примет любые параметры """

 for i in t:

 print(i, end=" ")

 for i in d: # Перебираем словарь с переданными параметрами

 print("{0} => {1}".format(i, d[i]), end=" ")

func(35, 10, a=1, b=2, c=3) # Выведет: 35 10 a => 1 c => 3 b => 2

func(10) # Выведет: 10

func(a=1, b=2) # Выведет: a => 1 b => 2

def func(*t, a, b=10, **d):

 print(t, a, b, d)

func(35, 10, a=1, c=3) # Выведет: (35, 10) 1 10 {'c': 3}

func(10, a=5) # Выведет: (10,) 5 10 {}

func(a=1, b=2) # Выведет: () 1 2 {}

func(1, 2, 3) # Ошибка. Параметр a обязателен!

def func(x=1, y=2, *, a, b=10):

 print(x, y, a, b)

func(35, 10, a=1) # Выведет: 35 10 1 10

func(10, a=5) # Выведет: 10 2 5 10

func(a=1, b=2) # Выведет: 1 2 1 2

func(a=1, y=8, x=7) # Выведет: 7 8 1 10

func(1, 2, 3) # Ошибка. Параметр a обязателен!

11.5. Анонимные функции

Листинг 11.14. Пример использования анонимных функций

f1 = lambda: 10 + 20 # Функция без параметров

f2 = lambda x, y: x + y # Функция с двумя параметрами

f3 = lambda x, y, z: x + y + z # Функция с тремя параметрами

print(f1()) # Выведет: 30

print(f2(5, 10)) # Выведет: 15

print(f3(5, 10, 30)) # Выведет: 45
Листинг 11.15. Необязательные параметры в анонимных функциях

f = lambda x, y=2: x + y

print(f(5)) # Выведет: 7

print(f(5, 6)) # Выведет: 11
Листинг 11.16. Сортировка без учета регистра символов

arr = ["единица1", "Единый", "Единица2"]

arr.sort(key=lambda s: s.lower())

for i in arr:

 print(i, end=" ")

Результат выполнения: единица1 Единица2 Единый

11.6. Функции-генераторы

Листинг 11.17. Пример использования функций-генераторов

def func(x, y):

 for i in range(1, x+1):

 yield i ** y

for n in func(10, 2):

 print(n, end=" ") # Выведет: 1 4 9 16 25 36 49 64 81 100

print() # Вставляем пустую строку

for n in func(10, 3):

 print(n, end=" ") # Выведет: 1 8 27 64 125 216 343 512 729 1000
Листинг 11.18. Использование метода __next__()
def func(x, y):

 for i in range(1, x+1):

 yield i ** y

i = func(3, 3)

print(i.__next__()) # Выведет: 1 (1 ** 3)

print(i.__next__()) # Выведет: 8 (2 ** 3)

print(i.__next__()) # Выведет: 27 (3 ** 3)

print(i.__next__()) # Исключение StopIteration
Листинг 11.19. Вызов одной функции-генератора из другой (простой случай)

def gen(l):

 for e in l:

 yield from range(1, e + 1)

l = [5, 10]

for i in gen([5, 10]): print(i, end = " ")
Листинг 11.20. Вызов одной функции-генератора из другой (сложный случай)

def gen2(n):

 for e in range(1, n + 1):

 yield e * 2

def gen(l):

 for e in l:

 yield from gen2(e)

l = [5, 10]

for i in gen([5, 10]): print(i, end = " ")
11.7. Декораторы функций

Листинг 11.21. Декораторы функций

def deco(f): # Функция-декоратор

 print("Вызвана функция func()")

 return f # Возвращаем ссылку на функцию

@deco

def func(x):

 return "x = {0}".format(x)

print(func(10))

@deco

def deco(f):

 print("Вызвана функция func()")

 return f

def func(x):

 return "x = {0}".format(x)

Вызываем функцию func() через функцию deco()

print(deco(func)(10))
Листинг 11.22. Указание нескольких декораторов

def deco1(f):

 print("Вызвана функция deco1()")

 return f

def deco2(f):

 print("Вызвана функция deco2()")

 return f

@deco1

@deco2

def func(x):

 return "x = {0}".format(x)

print(func(10))
Листинг 11.23. Ограничение доступа с помощью декоратора

passw = input("Введите пароль: ")

def test_passw(p):

 def deco(f):

 if p == "10": # Сравниваем пароли

 return f

 else:

 return lambda: "Доступ закрыт"

 return deco # Возвращаем функцию-декоратор
@test_passw(passw)

def func():

 return "Доступ открыт"

print(func()) # Вызываем функцию
11.8. Рекурсия. Вычисление факториала

Листинг 11.24. Вычисление факториала

def factorial(n):

 if n == 0 or n == 1: return 1

 else:

 return n * factorial(n — 1)

while True:

 x = input("Введите число: ")

 if x.isdigit(): # Если строка содержит только цифры

 x = int(x) # Преобразуем строку в число

 break # Выходим из цикла

 else:

 print("Вы ввели не число!")

print("Факториал числа {0} = {1}".format(x, factorial(x)))

>>> import math

>>> math.factorial(5), math.factorial(6)

(120, 720)

11.9. Глобальные и локальные переменные

Листинг 11.25. Глобальные переменные

def func(glob2):

 print("Значение глобальной переменной glob1 =", glob1)

 glob2 += 10

 print("Значение локальной переменной glob2 =", glob2)

glob1, glob2 = 10, 5

func(77) # Вызываем функцию

print("Значение глобальной переменной glob2 =", glob2)
Листинг 11.26. Локальные переменные

def func():

 local1 = 77 # Локальная переменная

 glob1 = 25 # Локальная переменная

 print("Значение glob1 внутри функции =", glob1)

glob1 = 10 # Глобальная переменная

func() # Вызываем функцию

print("Значение glob1 вне функции =", glob1)

try:

 print(local1) # Вызовет исключение NameError

except NameError: # Обрабатываем исключение

 print("Переменная local1 не видна вне функции")
Листинг 11.27. Ошибка при обращении к переменной до присваивания значения

def func():

 # Локальная переменная еще не определена

 print(glob1) # Эта строка вызовет ошибку!!!

 glob1 = 25 # Локальная переменная

glob1 = 10 # Глобальная переменная

func() # Вызываем функцию

Результат выполнения:

UnboundLocalError: local variable 'glob1' referenced before assignment
Листинг 11.28. Использование ключевого слова global
def func():

 # Объявляем переменную glob1 глобальной

 global glob1

 glob1 = 25 # Изменяем значение глобальной переменной

 print("Значение glob1 внутри функции =", glob1)

glob1 = 10 # Глобальная переменная

print("Значение glob1 вне функции =", glob1)

func() # Вызываем функцию

print("Значение glob1 после функции =", glob1)

x = 5

Сохраняется ссылка, а не значение переменной x!!!

func = lambda: x

x = 80 # Изменили значение

print(func()) # Выведет: 80, а не 5
Листинг 11.29. Сохранение значения переменной

x = 5

Сохраняется значение переменной x

func = (lambda y: lambda: y)(x)

x = 80 # Изменили значение

print(func()) # Выведет: 5
Листинг 11.30. Сохранение значения с помощью параметра по умолчанию

x = 5

Сохраняется значение переменной x

func = lambda x=x: x

x = 80 # Изменили значение

print(func()) # Выведет: 5
def func():
 local1 = 54
 glob2 = 25
 print("Глобальные идентификаторы внутри функции")
 print(sorted(globals().keys()))
 print("Локальные идентификаторы внутри функции")
 print(sorted(locals().keys()))
glob1, glob2 = 10, 88
func()
print("Глобальные идентификаторы вне функции")
print(sorted(globals().keys()))
def func():
 local1 = 54
 glob2 = 25
 print("Локальные идентификаторы внутри функции")
 print(sorted(vars().keys()))
glob1, glob2 = 10, 88
func()
print("Глобальные идентификаторы вне функции")
print(sorted(vars().keys()))
print("Указание объекта в качестве параметра")
print(sorted(vars(dict).keys()))
print("Альтернативный вызов")
print(sorted(dict.__dict__.keys()))
11.10. Вложенные функции

Листинг 11.31. Вложенные функции

def func1(x):

 def func2():

 print(x)

 return func2

f1 = func1(10)

f2 = func1(99)

f1() # Выведет: 10

f2() # Выведет: 99

def func1(x):

 def func2():

 print(x)

 x = 30

 return func2

f1 = func1(10)

f2 = func1(99)

f1() # Выведет: 30

f2() # Выведет: 30

def func1(x):

 def func2(x=x): # Сохраняем текущее значение, а не ссылку

 print(x)

 x = 30

 return func2

f1 = func1(10)

f2 = func1(99)

f1() # Выведет: 10

f2() # Выведет: 99
Листинг 11.32. Ключевое слово nonlocal
def func1(a):

 x = a

 def func2(b):

 nonlocal x # Объявляем переменную как nonlocal

 print(x)

 x = b # Можем изменить значение x в func1()

 return func2

f = func1(10)

f(5) # Выведет: 10

f(12) # Выведет: 5

f(3) # Выведет: 12
11.11. Аннотации функций

def func(a: "Параметр1", b: 10 + 5 = 3) -> None:

 print(a, b)

>>> def func(a: "Параметр1", b: 10 + 5 = 3) -> None: pass

>>> func.__annotations__

{'a': 'Параметр1', 'b': 15, 'return': None}

12. Модули и пакеты
print(__name__) # Выведет: __main__
Листинг 12.1. Проверка способа запуска модуля

if __name__ == "__main__":

 print("Это главная программа")

else:

 print("Импортированный модуль")

12.1. Инструкция import
import time # Импортируем модуль time

print(time.strftime("%d.%m.%Y")) # Выводим текущую дату
Листинг 12.2. Подключение нескольких модулей сразу

import time, math # Импортируем несколько модулей сразу

print(time.strftime("%d.%m.%Y")) # Текущая дата
print(math.pi) # Число pi

math.pi
Листинг 12.3. Пример использования функции getattr()
import math

print(getattr(math, "pi")) # Число pi

print(getattr(math, "x", 50)) # Число 50, т. к. x не существует
Листинг 12.4. Проверка существования атрибута

import math

def hasattr_math(attr):

 if hasattr(math, attr):

 return "Атрибут существует"

 else:

 return "Атрибут не существует"

print(hasattr_math("pi")) # Атрибут существует

print(hasattr_math("x")) # Атрибут не существует
Листинг 12.5. Использование псевдонимов

import math as m # Создание псевдонима

print(m.pi) # Число pi
Листинг 12.6. Содержимое модуля tests.py

-*- coding: utf-8 -*-

x = 50
Листинг 12.7. Содержимое основной программы

-*- coding: utf-8 -*-

import tests # Подключаем файл tests.py

x = 22

print(tests.x) # Значение переменной x внутри модуля

print(x) # Значение переменной x в основной программе

input()
Листинг 12.8. Вывод ключей словаря modules
-*- coding: utf-8 -*-

import tests, sys # Подключаем модули tests и sys

print(sorted(sys.modules.keys()))

input()
Листинг 12.9. Использование функции __import__()
-*- coding: utf-8 -*-

s = "test" + "s" # Динамическое создание названия модуля

m = __import__(s) # Подключение модуля tests

print(m.x) # Вывод значения атрибута x

input()
Листинг 12.10. Вывод списка всех идентификаторов

-*- coding: utf-8 -*-

import tests

print(dir(tests))

print(sorted(tests.__dict__.keys()))

input()

12.2. Инструкция from
Листинг 12.11. Инструкция from
-*- coding: utf-8 -*-

from math import pi, floor as f

print(pi) # Вывод числа pi

Вызываем функцию floor() через идентификатор f

print(f(5.49)) # Выведет: 5

input()

from math import (pi, floor,

 sin, cos)
Листинг 12.12. Импорт всех идентификаторов из модуля

-*- coding: utf-8 -*-

from math import * # Импортируем все идентификаторы из модуля math

print(pi) # Вывод числа pi

print(floor(5.49)) # Вызываем функцию floor()

input()
Листинг 12.13. Содержимое файла module1.py

-*- coding: utf-8 -*-

s = "Значение из модуля module1"
Листинг 12.14. Содержимое файла module2.py

-*- coding: utf-8 -*-

s = "Значение из модуля module2"
Листинг 12.15. Содержимое основной программы

-*- coding: utf-8 -*-

from module1 import *

from module2 import *

import module1, module2

print(s) # Выведет: "Значение из модуля module2"

print(module1.s) # Выведет: "Значение из модуля module1"

print(module2.s) # Выведет: "Значение из модуля module2"

input()
Листинг 12.16. Использование атрибута __all__
-*- coding: utf-8 -*-

x, y, z, _s = 10, 80, 22, "Строка"

__all__ = ["x", "_s"]
Листинг 12.17. Содержимое основной программы

-*- coding: utf-8 -*-

from module3 import *

print(sorted(vars().keys())) # Получаем список всех идентификаторов

input()
12.3. Пути поиска модулей

>>> import sys # Подключаем модуль sys

>>> sys.path # path содержит список путей поиска модулей
Это комментарий
C:\folder1
C:\folder2
Листинг 12.18. Изменение списка путей поиска модулей

-*- coding: utf-8 -*-

import sys

sys.path.append(r"C:\folder1") # Добавляем в конец списка

sys.path.insert(0, r"C:\folder2") # Добавляем в начало списка

print(sys.path)

input()
sys.path.append("C:\\folder1\\folder2\\folder3")
12.4. Повторная загрузка модулей

from imp import reload

reload(<Объект модуля>)
-*- coding: utf-8 -*-

x = 150

>>> import sys

>>> sys.path.append(r"C:\book") # Добавляем путь к папке с модулем

>>> import tests2 # Подключаем модуль tests2.py

>>> print(tests2.x) # Выводим текущее значение

150

>>> # Изменяем значение в модуле на 800

>>> import tests2
>>> print(tests2.x) # Значение не изменилось

150
Листинг 12.19. Повторная загрузка модуля

>>> from imp import reload

>>> reload(tests2) # Перезагружаем модуль
<module 'tests2' from 'C:\book\tests2.py'>

>>> print(tests2.x) # Значение изменилось

800
12.5. Пакеты

Листинг 12.20. Содержимое файлов __init__.py

-*- coding: utf-8 -*-

print("__init__ из", __name__)
Листинг 12.21. Содержимое модулей module1.py, module2.py и module3.py

-*- coding: utf-8 -*-

msg = "Модуль {0}".format(__name__)
Листинг 12.22. Содержимое файла main.py

-*- coding: utf-8 -*-

Доступ к модулю folder1\module1.py

import folder1.module1 as m1

 # Выведет: __init__ из folder1

print(m1.msg) # Выведет: Модуль folder1.module1

from folder1 import module1 as m2

print(m2.msg) # Выведет: Модуль folder1.module1

from folder1.module1 import msg

print(msg) # Выведет: Модуль folder1.module1

Доступ к модулю folder1\folder2\module2.py

import folder1.folder2.module2 as m3

 # Выведет: __init__ из folder1.folder2

print(m3.msg) # Выведет: Модуль folder1.folder2.module2

from folder1.folder2 import module2 as m4

print(m4.msg) # Выведет: Модуль folder1.folder2.module2

from folder1.folder2.module2 import msg

print(msg) # Выведет: Модуль folder1.folder2.module2

input()

import folder1.folder2.module2

print(folder1.folder2.module2.msg)

import folder1.folder2.module2 as m

print(m.msg)

from folder1.folder2 import module2

print(module2.msg)

from folder1.folder2.module2 import msg

print(msg)

from folder1.folder2.module2 import *

print(msg)

-*- coding: utf-8 -*-

__all__ = ["module2", "module3"]
Листинг 12.23. Содержимое файла main.py

-*- coding: utf-8 -*-

from folder1.folder2 import *

print(module2.msg) # Выведет: Модуль folder1.folder2.module2

print(module3.msg) # Выведет: Модуль folder1.folder2.module3

input()
from .module import *

from ..module import *

from ...module import *

from .. import module
Листинг 12.24. Содержимое модуля module3.py

-*- coding: utf-8 -*-

Импорт модуля module2.py из текущего каталога

from . import module2 as m1

var1 = "Значение из: {0}".format(m1.msg)

from .module2 import msg as m2

var2 = "Значение из: {0}".format(m2)

Импорт модуля module1.py из родительского каталога

from .. import module1 as m3

var3 = "Значение из: {0}".format(m3.msg)

from ..module1 import msg as m4

var4 = "Значение из: {0}".format(m4)
Листинг 12.25. Содержимое файла main.py

-*- coding: utf-8 -*-

from folder1.folder2 import module3 as m

print(m.var1) # Значение из: Модуль folder1.folder2.module2

print(m.var2) # Значение из: Модуль folder1.folder2.module2

print(m.var3) # Значение из: Модуль folder1.module1

print(m.var4) # Значение из: Модуль folder1.module1

input()

-*- coding: utf-8 -*-

import module2 # Ошибка! Поиск модуля по абсолютному пути

var1 = "Значение из: {0}".format(module2.msg)

var2 = var3 = var4 = 0

from . import module2

import folder1.folder2.module2 as module2

13. Объектно-ориентированное программирование
13.1. Определение класса и создание экземпляра класса

Листинг 13.1. Создание определения класса

-*- coding: utf-8 -*-

class MyClass:

 """ Это строка документирования """

 print("Инструкции выполняются сразу")

input()
Листинг 13.2. Создание атрибута и метода

class MyClass:

 def __init__(self): # Конструктор

 self.x = 10 # Атрибут экземпляра класса

 def print_x(self): # self — это ссылка на экземпляр класса

 print(self.x) # Выводим значение атрибута

c = MyClass() # Создание экземпляра класса

 # Вызываем метод print_x()

c.print_x() # self не указывается при вызове метода

print(c.x) # К атрибуту можно обратиться непосредственно
Листинг 13.3. Функции getattr(), setattr() и hasattr()
class MyClass:

 def __init__(self):

 self.x = 10

 def get_x(self):

 return self.x

c = MyClass() # Создаем экземпляр класса
print(getattr(c, "x")) # Выведет: 10

print(getattr(c, "get_x")()) # Выведет: 10

print(getattr(c, "y", 0)) # Выведет: 0, т. к. атрибут не найден

setattr(c, "y", 20) # Создаем атрибут y

print(getattr(c, "y", 0)) # Выведет: 20

delattr(c, "y") # Удаляем атрибут y

print(getattr(c, "y", 0)) # Выведет: 0, т. к. атрибут не найден

print(hasattr(c, "x")) # Выведет: True

print(hasattr(c, "y")) # Выведет: False
Листинг 13.4. Атрибуты объекта класса и экземпляра класса

class MyClass: # Определяем пустой класс

 pass

MyClass.x = 50 # Создаем атрибут объекта класса

c1, c2 = MyClass(), MyClass() # Создаем два экземпляра класса

c1.y = 10 # Создаем атрибут экземпляра класса

c2.y = 20 # Создаем атрибут экземпляра класса

print(c1.x, c1.y) # Выведет: 50 10

print(c2.x, c2.y) # Выведет: 50 20

class MyClass:

 x = 10 # Атрибут объекта класса

 def __init__(self):

 self.y = 20 # Атрибут экземпляра класса

c1 = MyClass() # Создаем экземпляр класса

c2 = MyClass() # Создаем экземпляр класса

print(c1.x, c2.x) # 10 10

MyClass.x = 88 # Изменяем атрибут объекта класса

print(c1.x, c2.x) # 88 88

print(c1.y, c2.y) # 20 20

c1.y = 88 # Изменяем атрибут экземпляра класса

print(c1.y, c2.y) # 88 20

MyClass.x = 88 # Изменяем атрибут объекта класса

c1.x = 200 # Создаем атрибут экземпляра

print(c1.x, MyClass.x) # 200 88

13.2. Методы __init__() и __del__()
Листинг 13.5. Метод __init__()
class MyClass:

 def __init__(self, value1, value2): # Конструктор
 self.x = value1

 self.y = value2

c = MyClass(100, 300) # Создаем экземпляр класса
print(c.x, c.y) # Выведет: 100 300
Листинг 13.6. Метод __del__()
class MyClass:

 def __init__(self): # Конструктор класса

 print("Вызван метод __init__()")

 def __del__(self): # Деструктор класса

 print("Вызван метод __del__()")

c1 = MyClass() # Выведет: Вызван метод __init__()

del c1 # Выведет: Вызван метод __del__()

c2 = MyClass() # Выведет: Вызван метод __init__()

c3 = c2 # Создаем ссылку на экземпляр класса

del c2 # Ничего не выведет, т. к. существует ссылка

del c3 # Выведет: Вызван метод __del__()

13.3. Наследование

Листинг 13.7. Наследование

class Class1: # Базовый класс

 def func1(self):

 print("Метод func1() класса Class1")

 def func2(self):

 print("Метод func2() класса Class1")

class Class2(Class1): # Класс Class2 наследует класс Class1

 def func3(self):

 print("Метод func3() класса Class2")

c = Class2() # Создаем экземпляр класса Class2

c.func1() # Выведет: Метод func1() класса Class1

c.func2() # Выведет: Метод func2() класса Class1

c.func3() # Выведет: Метод func3() класса Class2
Листинг 13.8. Переопределение методов

class Class1: # Базовый класс

 def __init__(self):

 print("Конструктор базового класса")

 def func1(self):

 print("Метод func1() класса Class1")

class Class2(Class1): # Класс Class2 наследует класс Class1

 def __init__(self):

 print("Конструктор производного класса")

 Class1.__init__(self) # Вызываем конструктор базового класса

 def func1(self):

 print("Метод func1() класса Class2")

 Class1.func1(self) # Вызываем метод базового класса

c = Class2() # Создаем экземпляр класса Class2

c.func1() # Вызываем метод func1()

Class1.__init__(self) # Вызываем конструктор базового класса

super().__init__() # Вызываем конструктор базового класса

super(Class2, self).__init__() # Вызываем конструктор базового класса

13.4. Множественное наследование

Листинг 13.9. Множественное наследование

class Class1: # Базовый класс для класса Class2

 def func1(self):

 print("Метод func1() класса Class1")

class Class2(Class1): # Класс Class2 наследует класс Class1

 def func2(self):

 print("Метод func2() класса Class2")

class Class3(Class1): # Класс Class3 наследует класс Class1

 def func1(self):

 print("Метод func1() класса Class3")

 def func2(self):

 print("Метод func2() класса Class3")

 def func3(self):

 print("Метод func3() класса Class3")

 def func4(self):

 print("Метод func4() класса Class3")

class Class4(Class2, Class3): # Множественное наследование

 def func4(self):

 print("Метод func4() класса Class4")

c = Class4() # Создаем экземпляр класса Class4

c.func1() # Выведет: Метод func1() класса Class3

c.func2() # Выведет: Метод func2() класса Class2

c.func3() # Выведет: Метод func3() класса Class3

c.func4() # Выведет: Метод func4() класса Class4
Листинг 13.10. Указание класса при наследовании метода

class Class4(Class2, Class3): # Множественное наследование

 # Наследуем func2() из класса Class3, а не из класса Class2

 func2 = Class3.func2

 def func4(self):

 print("Метод func4() класса Class4")

print(Class1.__bases__)

print(Class2.__bases__)

print(Class3.__bases__)

print(Class4.__bases__)
Листинг 13.11. Поиск идентификаторов при множественном наследовании

class Class1: x = 10

class Class2(Class1): pass

class Class3(Class2): pass

class Class4(Class3): pass

class Class5(Class2): pass

class Class6(Class5): pass

class Class7(Class4, Class6): pass

c = Class7()

print(c.x)

print(Class7.__mro__)

13.4.1. Примеси и их использование
Листинг 13.12. Класс-примесь

class Mixin: # Определяем сам класс-примесь
 attr = 0 # Определяем атрибут примеси
 def mixin_method(self): # Определяем метод примеси
 print("Метод примеси")
Листинг 13.13. Расширение функциональности классов посредством примеси

class Class1 (Mixin):

 def method1(self):

 print("Метод класса Class1")

class Class2 (Class1, Mixin):

 def method2(self):

 print("Метод класса Class2")

c1 = Class1()

c1.method1()

c1.mixin_method() # Class1 поддерживает метод примеси
c2 = Class2()

c2.method1()

c2.method2()

c2.mixin_method() # Class2 также поддерживает метод примеси
13.5. Специальные методы

class MyClass:
 def __init__(self, m):
 self.msg = m
 def __call__(self):
 print(self.msg)
c1 = MyClass("Значение1") # Создание экземпляра класса
c2 = MyClass("Значение2") # Создание экземпляра класса
c1() # Выведет: Значение1
c2() # Выведет: Значение2
class MyClass:
 def __init__(self):
 self.i = 20
 def __getattr__(self, attr):
 print("Вызван метод __getattr__()")
 return 0
c = MyClass()
Атрибут i существует
print(c.i) # Выведет: 20. Метод __getattr__() не вызывается
Атрибут s не существует
print(c.s) # Выведет: Вызван метод __getattr__() 0
class MyClass:
 def __init__(self):
 self.i = 20
 def __getattribute__(self, attr):
 print("Вызван метод __getattribute__()")
 return object.__getattribute__(self, attr) # Только так!!!
c = MyClass()
print(c.i) # Выведет: Вызван метод __getattribute__() 20
class MyClass:
 def __setattr__(self, attr, value):
 print("Вызван метод __setattr__()")
 self.__dict__[attr] = value # Только так!!!
c = MyClass()
c.i = 10 # Выведет: Вызван метод __setattr__()
print(c.i) # Выведет: 10
class MyClass:
 def __len__(self):
 return 50
c = MyClass()
print(len(c)) # Выведет: 50
class MyClass:
 def __init__(self, m):
 self.msg = m
 def __repr__(self):
 return "Вызван метод __repr__() {0}".format(self.msg)
 def __str__(self):
 return "Вызван метод __str__() {0}".format(self.msg)
c = MyClass("Значение")
print(repr(c)) # Выведет: Вызван метод __repr__() Значение
print(str(c)) # Выведет: Вызван метод __str__() Значение
print(c) # Выведет: Вызван метод __str__() Значение
class MyClass:
 def __init__(self, y):
 self.x = y
 def __hash__(self):
 return hash(self.x)
c = MyClass(10)
d = {}
d[c] = "Значение"
print(d[c]) # Выведет: Значение
13.6. Перегрузка операторов

Листинг 13.14. Пример перегрузки математических операторов

class MyClass:

 def __init__(self, y):

 self.x = y

 def __add__(self, y): # Перегрузка оператора +

 print("Экземпляр слева")

 return self.x + y

 def __radd__(self, y): # Перегрузка оператора +

 print("Экземпляр справа")

 return self.x + y

 def __iadd__(self, y): # Перегрузка оператора +=

 print("Сложение с присваиванием")

 self.x += y

 return self

c = MyClass(50)

print(c + 10) # Выведет: Экземпляр слева 60

print(20 + c) # Выведет: Экземпляр справа 70

c += 30 # Выведет: Сложение с присваиванием

print(c.x) # Выведет: 80
Листинг 13.15. Пример перегрузки операторов сравнения

class MyClass:

 def __init__(self):

 self.x = 50

 self.arr = [1, 2, 3, 4, 5]

 def __eq__(self, y): # Перегрузка оператора ==

 return self.x == y

 def __contains__(self, y): # Перегрузка оператора in

 return y in self.arr

c = MyClass()

print("Равно" if c == 50 else "Не равно") # Выведет: Равно

print("Равно" if c == 51 else "Не равно") # Выведет: Не равно

print("Есть" if 5 in c else "Нет") # Выведет: Есть

13.7. Статические методы и методы класса

Листинг 13.16. Статические методы

class MyClass:

 @staticmethod

 def func1(x, y): # Статический метод

 return x + y

 def func2(self, x, y): # Обычный метод в классе

 return x + y

 def func3(self, x, y):

 return MyClass.func1(x, y) # Вызов из метода класса

print(MyClass.func1(10, 20)) # Вызываем статический метод

c = MyClass()

print(c.func2(15, 6)) # Вызываем метод класса

print(c.func1(50, 12)) # Вызываем статический метод

 # через экземпляр класса

print(c.func3(23, 5)) # Вызываем статический метод

 # внутри класса
Листинг 13.17. Методы класса

class MyClass:

 @classmethod

 def func(cls, x): # Метод класса

 print(cls, x)

MyClass.func(10) # Вызываем метод через название класса

c = MyClass()

c.func(50) # Вызываем метод класса через экземпляр

13.8. Абстрактные методы

Листинг 13.18. Абстрактные методы

class Class1:

 def func(self, x): # Абстрактный метод

 # Возбуждаем исключение с помощью raise

 raise NotImplementedError("Необходимо переопределить метод")

class Class2(Class1): # Наследуем абстрактный метод

 def func(self, x): # Переопределяем метод

 print(x)

class Class3(Class1): # Класс не переопределяет метод

 pass

c2 = Class2()

c2.func(50) # Выведет: 50

c3 = Class3()

try: # Перехватываем исключения

 c3.func(50) # Ошибка. Метод func() не переопределен
except NotImplementedError as msg:

 print(msg) # Выведет: Необходимо переопределить метод
Листинг 13.19. Использование декоратора @abstractmethod
from abc import ABCMeta, abstractmethod

class Class1(metaclass=ABCMeta):

 @abstractmethod

 def func(self, x): # Абстрактный метод

 pass

class Class2(Class1): # Наследуем абстрактный метод

 def func(self, x): # Переопределяем метод

 print(x)

class Class3(Class1): # Класс не переопределяет метод

 pass

c2 = Class2()

c2.func(50) # Выведет: 50

try:

 c3 = Class3() # Ошибка. Метод func() не переопределен

 c3.func(50)

except TypeError as msg:

 print(msg) # Can't instantiate abstract class Class3

 # with abstract methods func
Листинг 13.20. Абстрактный статический метод и абстрактный метод класса
from abc import ABCMeta, abstractmethod

class MyClass(metaclass=ABCMeta):

 @staticmethod
 @abstractmethod
 def static_func(self, x): # Абстрактный статический метод

 pass
 @classmethod
 @abstractmethod
 def class_func(self, x): # Абстрактный метод класса

 pass
13.9. Ограничение доступа
к идентификаторам внутри класса

Листинг 13.21. Псевдочастные идентификаторы

class MyClass:

 def __init__(self, x):

 self.__privateVar = x

 def set_var(self, x): # Изменение значения

 self.__privateVar = x

 def get_var(self): # Получение значения
 return self.__privateVar

c = MyClass(10) # Создаем экземпляр класса
print(c.get_var()) # Выведет: 10

c.set_var(20) # Изменяем значение
print(c.get_var()) # Выведет: 20

try: # Перехватываем ошибки
 print(c.__privateVar) # Ошибка!!!

except AttributeError as msg:

 print(msg) # Выведет: 'MyClass' object has

 # no attribute '__privateVar'

c._MyClass__privateVar = 50 # Значение псевдочастных атрибутов
 # все равно можно изменить

print(c.get_var()) # Выведет: 50
Листинг 13.22. Атрибут __slots__
class MyClass:

 __slots__ = ["x", "y"]

 def __init__(self, a, b):

 self.x, self.y = a, b

c = MyClass(1, 2)

print(c.x, c.y) # Выведет: 1 2

c.x, c.y = 10, 20 # Изменяем значения атрибутов
print(c.x, c.y) # Выведет: 10 20

try: # Перехватываем исключения

 c.z = 50 # Атрибут z не указан в __slots__,

 # поэтому возбуждается исключение

except AttributeError as msg:

 print(msg) # 'MyClass' object has no attribute 'z'

13.10. Свойства класса

Листинг 13.23. Свойства класса

class MyClass:

 def __init__(self, value):

 self.__var = value

 def get_var(self): # Чтение
 return self.__var

 def set_var(self, value): # Запись
 self.__var = value

 def del_var(self): # Удаление
 del self.__var

 v = property(get_var, set_var, del_var, "Строка документирования")

c = MyClass(5)

c.v = 35 # Вызывается метод set_var()

print(c.v) # Вызывается метод get_var()

del c.v # Вызывается метод del_var()
Листинг 13.24. Методы getter(), setter() и deleter()
class MyClass:

 def __init__(self, value):

 self.__var = value

 @property

 def v(self): # Чтение
 return self.__var

 @v.setter

 def v(self, value): # Запись
 self.__var = value

 @v.deleter

 def v(self): # Удаление
 del self.__var

c = MyClass(5)

c.v = 35 # Запись

print(c.v) # Чтение

del c.v # Удаление
Листинг 13.25. Определение абстрактного свойства
from abc import ABCMeta, abstractmethod
class MyClass1(metaclass=ABCMeta):

 def __init__(self, value):

 self.__var = value

 @property
 @abctractmethod
 def v(self): # Чтение
 return self.__var

 @v.setter

 @abctractmethod
 def v(self, value): # Запись
 self.__var = value

 @v.deleter

 @abctractmethod
 def v(self): # Удаление
 del self.__var

13.11. Декораторы классов

Листинг 13.26. Декораторы классов

def deco(C): # Принимает объект класса

 print("Внутри декоратора") # Производит какие-то действия

 return C # Возвращает объект класса

@deco

class MyClass:

 def __init__(self, value):

 self.v = value

c = MyClass(5)

print(c.v)
14. Обработка исключений
>>> print("Нет завершающей кавычки!)
SyntaxError: EOL while scanning string literal
>>> def test(x, y): return x / y
>>> test(4, 2) # Нормально
2.0
>>> test(4, 0) # Ошибка
Traceback (most recent call last):
 File "<pyshell#4>", line 1, in <module>
 test(4, 0) # Ошибка
 File "<pyshell#2>", line 1, in test
 def test(x, y): return x / y
ZeroDivisionError: division by zero
>>> "Строка".index("текст")

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 "Строка".index("текст")

ValueError: substring not found

14.1. Инструкция try...except...else...finally
Листинг 14.1. Обработка деления на ноль

try: # Перехватываем исключения

 x = 1 / 0 # Ошибка: деление на 0

except ZeroDivisionError: # Указываем класс исключения

 print("Обработали деление на 0")

 x = 0

print(x) # Выведет: 0
Листинг 14.2. Вложенные обработчики

try: # Обрабатываем исключения

 try: # Вложенный обработчик

 x = 1 / 0 # Ошибка: деление на 0

 except NameError:

 print("Неопределенный идентификатор")

 except IndexError:

 print("Несуществующий индекс")

 print("Выражение после вложенного обработчика")

except ZeroDivisionError:

 print("Обработка деления на 0")

 x = 0

print(x) # Выведет: 0
Листинг 14.3. Обработка нескольких исключений

try:

 x = 1 / 0

except (NameError, IndexError, ZeroDivisionError):

 # Обработка сразу нескольких исключений

 x = 0

print(x) # Выведет: 0
Листинг 14.4. Получение информации об исключении

try:

 x = 1 / 0 # Ошибка деления на 0

except (NameError, IndexError, ZeroDivisionError) as err:

 print(err.__class__.__name__) # Название класса исключения

 print(err) # Текст сообщения об ошибке
Листинг 14.5. Пример использования функции exc_info()
import sys, traceback

try:

 x = 1 / 0

except ZeroDivisionError:

 Type, Value, Trace = sys.exc_info()

 print("Type: ", Type)

 print("Value:", Value)

 print("Trace:", Trace)

 print("\n", "print_exception()".center(40, "-"))

 traceback.print_exception(Type, Value, Trace, limit=5,

 file=sys.stdout)

 print("\n", "print_tb()".center(40, "-"))

 traceback.print_tb(Trace, limit=1, file=sys.stdout)

 print("\n", "format_exception()".center(40, "-"))

 print(traceback.format_exception(Type, Value, Trace, limit=5))

 print("\n", "format_exception_only()".center(40, "-"))

 print(traceback.format_exception_only(Type, Value))
Листинг 14.7. Пример перехвата всех исключений

try:

 x = 1 / 0 # Ошибка деления на 0

except: # Обработка всех исключений

 x = 0

print(x) # Выведет: 0
Листинг 14.8. Блоки else и finally
try:

 x = 10 / 2 # Нет ошибки

 #x = 10 / 0 # Ошибка деления на 0

except ZeroDivisionError:

 print("Деление на 0")

else:

 print("Блок else")

finally:

 print("Блок finally")

>>> try:

 x = 10 / 0

finally: print("Блок finally")

Блок finally

Traceback (most recent call last):

 File "<pyshell#17>", line 2, in <module>

 x = 10 / 0

ZeroDivisionError: division by zero
Листинг 14.9. Суммирование неопределенного количества чисел

-*- coding: utf-8 -*-

print("Введите слово 'stop' для получения результата")

summa = 0

while True:

 x = input("Введите число: ")

 if x == "stop":

 break # Выход из цикла
 try:

 x = int(x) # Преобразуем строку в число

 except ValueError:

 print("Необходимо ввести целое число!")

 else:

 summa += x

print("Сумма чисел равна:", summa)

input()

14.2. Инструкция with...as
Листинг 14.10. Протокол менеджеров контекста

class MyClass:

 def __enter__(self):

 print("Вызван метод __enter__()")

 return self

 def __exit__(self, Type, Value, Trace):

 print("Вызван метод __exit__()")

 if Type is None: # Если исключение не возникло

 print("Исключение не возникло")

 else: # Если возникло исключение

 print("Value =", Value)

 return False # False — исключение не обработано

 # True — исключение обработано

print("Последовательность при отсутствии исключения:")

with MyClass():

 print("Блок внутри with")

print("\nПоследовательность при наличии исключения:")

with MyClass() as obj:

 print("Блок внутри with")

 raise TypeError("Исключение TypeError")
Листинг 14.11. Инструкция with...as
with open("test.txt", "a", encoding="utf-8") as f:

 f.write("Строка\n") # Записываем строку в конец файла
14.3. Классы встроенных исключений

try:

 x = 1 / 0 # Ошибка: деление на 0

except ArithmeticError: # Указываем базовый класс

 print("Обработали деление на 0")

14.4. Пользовательские исключения

>>> raise ValueError("Описание исключения")

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 raise ValueError("Описание исключения")

ValueError: Описание исключения

try:

 raise ValueError("Описание исключения")

except ValueError as msg:

 print(msg) # Выведет: Описание исключения
class MyError(Exception):

 def __init__(self, value):

 self.msg = value

 def __str__(self):

 return self.msg

Обработка пользовательского исключения

try:

 raise MyError("Описание исключения")

except MyError as err:

 print(err) # Вызывается метод __str__()

 print(err.msg) # Обращение к атрибуту класса

Повторно возбуждаем исключение

raise MyError("Описание исключения")

class MyError(Exception): pass

try:

 raise MyError("Описание исключения")

except MyError as err:

 print(err) # Выведет: Описание исключения

try:

 raise ValueError # Эквивалентно: raise ValueError()

except ValueError:

 print("Сообщение об ошибке")

try:

 x = 1 / 0

except Exception as err:

 raise ValueError() from err

class MyError(Exception): pass

try:

 raise MyError("Сообщение об ошибке")

except MyError as err:

 print(err)

 raise # Повторно возбуждаем исключение

try:

 x = -3

 assert x >= 0, "Сообщение об ошибке"

except AssertionError as err:

 print(err) # Выведет: Сообщение об ошибке
15. Итераторы, контейнеры и перечисления

class MyIterator: # Определяем класс-итератор
 . . .

it = MyIterator() # Создаем его экземпляр
for v in it: # и используем в цикле for
 . . .

class MyList: # Определяем класс-список
 . . .

class MyDict: # Определяем класс-словарь
 . . .

lst, dct = MyList(), MyDict() # Используем их
lst[0] = 1

dct["first"] = 578

print(lst[1]), print(dct["second"])

from enum import Enum # Импортируем базовый класс Enum

class Versions(Enum): # Определяем класс-перечисление
 Python2.7 = "2.7"

 Python3.4 = "3.4"

 # Используем его
if python_version == Versions.Python3.4:

 . . .

15.1. Итераторы
Листинг 15.1. Класс-итератор
class ReverseString:

 def __init__(self, s):

 self.__s = s

 def __iter__(self):

 self.__i = 0

 return self

 def __next__(self):

 if self.__i > len(self.__s) - 1:

 raise StopIteration

 else:

 a = self.__s[-self.__i - 1]

 self.__i = self.__i + 1

 return a
>>> s = ReverseString("Python")

>>> for a in s: print(a, end="")
nohtyP
Листинг 15.2. Расширенный класс-итератор
class ReverseString:

 . . .

 def __len__(self):

 return len(self.__s)

 def __str__(self):

 return self.__s[::-1]

>>> s = ReverseString("Python")

>>> print(len(s))

6

>>> print(str(s))
nohtyP
15.2. Контейнеры

15.2.1. Контейнеры-последовательности

Листинг 15.3. Класс MutableString

class MutableString:

 def __init__(self, s):

 self.__s = list(s)

 # Реализуем функциональность итератора
 def __iter__(self):

 self.__i = 0

 return self

 def __next__(self):

 if self.__i > len(self.__s) - 1:

 raise StopIteration

 else:

 a = self.__s[self.__i]

 self.__i = self.__i + 1

 return a

 def __len__(self):

 return len(self.__s)

 def __str__(self):

 return "".join(self.__s)

 # Определяем вспомогательный метод, который будет проверять

 # корректность индекса
 def __iscorrectindex(self, i):

 if type(i) == int or type(i) == slice:

 if type(i) == int and i > self.__len__() - 1:

 raise IndexError

 else:

 raise TypeError

 # Реализуем функциональность контейнера-списка
 def __getitem__(self, i):

 self.__iscorrectindex(i)

 return self.__s[i]

 def __setitem__(self, i, v):

 self.__iscorrectindex(i)

 self.__s[i] = v

 def __delitem__(self, i):

 self.__iscorrectindex(i)

 del self.__s[i]
 def __contains__(self, v):

 return v in self.__s
>>> s = MutableString("Python")

>>> print(s[-1])
n
>>> s[0] = "J"

>>> del s[2:4]

>>> print(s)
Juon
>>> s[9] = "u"

15.2.2. Контейнеры-словари
Листинг 15.3. Класс Version
class Version:

 def __init__(self, major, minor, sub):

 self.__major = major # Старшая цифра
 self.__minor = minor # Младшая цифра
 self.__sub = sub # Подверсия
 def __str__(self):

 return str(self.__major) + "." + str(self.__minor) + "." +
 str(self.__sub)
 # Реализуем функциональность словаря
 def __getitem__(self, k):

 if k == "major":

 return self.__major

 elif k == "minor":

 return self.__minor

 elif k == "sub":

 return self.__sub

 else:

 raise IndexError

 def __setitem__(self, k, v):

 if k == "major":

 self.__major = v

 elif k == "minor":

 self.__minor = v

 elif k == "sub":

 self.__sub = v

 else:

 raise IndexError

 def __delitem__(self, k):

 raise TypeError

 def __contains__(self, v):

 return v == "major" or v == "minor" or v == "sub"
>>> v = Version(3, 4, 3)

>>> print(v["major"])
3
>>> v["sub"] = 4

>>> print(str(v))

3.4.4

15.3. Перечисления

from enum import Enum
class Versions(Enum):

 V2_7 = "2.7"

 V3_4 = "3.4"

from enum import IntEnum

class Colors(IntEnum):

 Red = 1

 Green = 2

 Blue = 3

from enum import Enum
class Versions(Enum):

 V2_7 = "2.7"

 V3_4 = "3.4"

 MostFresh = "3.4"

from enum import Enum, unique
@unique
class Versions(Enum):

 V2_7 = "2.7"

 V3_4 = "3.4"
>>> e = Versions.V3_4

>>> e

<Versions.V3_4: '3.4'>

>>> e.value

'3.4'

>>> e == Versions.V2_7

False
>>> type(Colors)

<class 'enum.EnumMeta'>

>>> from enum import EnumMeta

>>> type(Colors) == EnumMeta

True
>>> type(Colors.Red)
<enum 'Colors'>

>>> type(Colors.Red) == Colors

True

>>> Versions.V3_4

<Versions.V3_4: '3.4'>

>>> e = Versions.V3_4

>>> e

<Versions.V3_4: '3.4'>

>>> Versions["V3_4"]

<Versions.V3_4: '3.4'>

>>> Versions("3.4")

<Versions.V3_4: '3.4'>

>>> Versions.V2_7.name, Versions.V2_7.value

('V2_7', '2.7')

>>> list(Colors)

[<Colors.Red: 1>, <Colors.Green: 2>, <Colors.Blue: 3>]
>>> for c in Colors: print(c.value, end = " ")

1 2 3
>>> e = Versions.V3_4

>>> e == Versions.V3_4

True

>>> e != Versions.V2_7

True

>>> e in Versions

True
>>> e in Colors
False
>>> Colors.Red + 1 # Значение Colors.Red - 1

2

>>> Colors.Green != 3 # Значение Colors.Green - 2

True

>>> ["a", "b", "c"][Colors.Red]

'b'
Листинг 15.4. Перечисление, включающее атрибуты и методы

from enum import Enum

class VersionExtended(Enum):

 V2_7 = "2.7"

 V3_4 = "3.4"

 # Методы экземпляра класса.

 # Вызываются у элемента перечисления
 def describe(self):

 return self.name, self.value
 def __str__(self):

 return str(__class__.__name__) + "." + self.name + ": " +
 self.value
 # Метод объекта класса.

 # Вызывается у самого класса перечисления
 @classmethod
 def getmostfresh(cls):

 return cls.V3_4

>>> d = VersionExtended.V2_7.describe()

>>> print(d[0] + ", " + d[1])
V2_7, 2.7

>>> print(VersionExtended.V2_7)

VersionExtended.V2_7: 2.7

>>> print(VersionExtended.getmostfresh())

VersionExtended.V3_4: 3.4

class ExtendedColors(Colors):

 pass
16. Работа с файлами и каталогами
16.1. Открытие файла

>>> "C:\\temp\\new\\file.txt" # Правильно
'C:\\temp\\new\\file.txt'

>>> r"C:\temp\new\file.txt" # Правильно
'C:\\temp\\new\\file.txt'

>>> "C:\temp\new\file.txt" # Неправильно!!!

'C:\temp\new\x0cile.txt'

>>> open("C:\temp\new\file.txt")

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 open("C:\temp\new\file.txt")

OSError: [Errno 22] Invalid argument: 'C:\temp\new\x0cile.txt'

>>> import os.path # Подключаем модуль
>>> # Файл в текущем рабочем каталоге (C:\book\)
>>> os.path.abspath(r"file.txt")
'C:\\book\\file.txt'
>>> # Открываемый файл в C:\book\folder1\
>>> os.path.abspath(r"folder1/file.txt")
'C:\\book\\folder1\\file.txt'
>>> # Открываемый файл в C:\book\folder1\folder2\
>>> os.path.abspath(r"folder1/folder2/file.txt")
'C:\\book\\folder1\\folder2\\file.txt'
>>> # Открываемый файл в C:\
>>> os.path.abspath(r"../file.txt")
'C:\\file.txt'
>>> # Открываемый файл в C:\book\folder1\
>>> os.path.abspath(r"/book/folder1/file.txt")
'C:\\book\\folder1\\file.txt'
>>> # Открываемый файл в C:\book\folder1\folder2\
>>> os.path.abspath(r"/book/folder1/folder2/file.txt")
'C:\\book\\folder1\\folder2\\file.txt'
>>> os.path.sep

'\\'

>>> os.path.abspath(r"C:/book/folder1/file.txt")

'C:\\book\\folder1\\file.txt'
Листинг 16.1. Содержимое файла C:\book\test.py

-*- coding: utf-8 -*-

import os, sys

print("%-25s%s" % ("Файл:", os.path.abspath(__file__)))

print("%-25s%s" % ("Текущий рабочий каталог:", os.getcwd()))

print("%-25s%s" % ("Каталог для импорта:", sys.path[0]))

print("%-25s%s" % ("Путь к файлу:", os.path.abspath("file.txt")))

print("-" * 40)

import folder1.module1 as m

m.get_cwd()
Листинг 16.2. Содержимое файла C:\book\folder1\module1.py

-*- coding: utf-8 -*-

import os, sys

def get_cwd():

 print("%-25s%s" % ("Файл:", os.path.abspath(__file__)))

 print("%-25s%s" % ("Текущий рабочий каталог:", os.getcwd()))

 print("%-25s%s" % ("Каталог для импорта:", sys.path[0]))

 print("%-25s%s" % ("Путь к файлу:", os.path.abspath("file.txt")))

C:\>cd C:\book

C:\book>test.py

Файл: C:\book\test.py

Текущий рабочий каталог: C:\book

Каталог для импорта: C:\book

Путь к файлу: C:\book\file.txt

--

Файл: C:\book\folder1\module1.py

Текущий рабочий каталог: C:\book

Каталог для импорта: C:\book

Путь к файлу: C:\book\file.txt
C:\book>cd C:\

C:\>C:\book\test.py

Файл: C:\book\test.py

Текущий рабочий каталог: C:\

Каталог для импорта: C:\book

Путь к файлу: C:\file.txt

--

Файл: C:\book\folder1\module1.py

Текущий рабочий каталог: C:\

Каталог для импорта: C:\book

Путь к файлу: C:\file.txt
Листинг 16.3. Пример использования функции chdir()
-*- coding: utf-8 -*-

import os, sys

Делаем каталог с исполняемым файлом текущим

os.chdir(os.path.dirname(os.path.abspath(__file__)))

print("%-25s%s" % ("Файл:", __file__))

print("%-25s%s" % ("Текущий рабочий каталог:", os.getcwd()))

print("%-25s%s" % ("Каталог для импорта:", sys.path[0]))

print("%-25s%s" % ("Путь к файлу:", os.path.abspath("file.txt")))
C:\book>C:\Python34\python test.py

C:\>C:\book\test.py

Файл: C:\book\test.py

Текущий рабочий каталог: C:\book

Каталог для импорта: C:\book

Путь к файлу: C:\book\file.txt

>>> f = open(r"file.txt", "w") # Открываем файл на запись
>>> f.write("String1\nString2") # Записываем две строки в файл
15
>>> f.close() # Закрываем файл
>>> # Бинарный режим (символ \r остается)
>>> with open(r"file.txt", "rb") as f:
 for line in f:
 print(repr(line))
b'String1\r\n'
b'String2'
>>> # Текстовый режим (символ \r удаляется)
>>> with open(r"file.txt", "r") as f:
 for line in f:
 print(repr(line))
'String1\n'
'String2'
>>> f = open(r"file.txt", "w", encoding="utf-8")

>>> f.write("Строка") # Записываем строку в файл

6

>>> f.close() # Закрываем файл

>>> with open(r"file.txt", "r", encoding="utf-8") as f:

 for line in f:

 print(line)

Строка

>>> f = open(r"file.txt", "w", encoding="utf-8-sig")

>>> f.write("Строка") # Записываем строку в файл

6

>>> f.close() # Закрываем файл

>>> with open(r"file.txt", "r", encoding="utf-8") as f:

 for line in f:

 print(repr(line))

'\ufeffСтрока'

>>> with open(r"file.txt", "r", encoding="utf-8-sig") as f:

 for line in f:

 print(repr(line))

'Строка'

>>> with open(r"file.txt", "w", encoding="utf-16") as f:

 f.write("Строка")

6

>>> with open(r"file.txt", "r", encoding="utf-16") as f:

 for line in f:

 print(repr(line))

'Строка'

16.2. Методы для работы с файлами

with open(r"file.txt", "w", encoding="cp1251") as f:
 f.write("Строка") # Записываем строку в файл
Здесь файл уже закрыт автоматически
>>> # Текстовый режим
>>> f = open(r"file.txt", "w", encoding="cp1251")
>>> f.write("Строка1\nСтрока2") # Записываем строку в файл
15
>>> f.close() # Закрываем файл
>>> # Бинарный режим
>>> f = open(r"file.txt", "wb")
>>> f.write(bytes("Строка1\nСтрока2", "cp1251"))
15
>>> f.write(bytearray("\nСтрока3", "cp1251"))
8
>>> f.close()
>>> # Текстовый режим
>>> f = open(r"file.txt", "w", encoding="cp1251")
>>> f.writelines(["Строка1\n", "Строка2"])
>>> f.close()
>>> # Бинарный режим
>>> f = open(r"file.txt", "wb")
>>> arr = [bytes("Строка1\n", "cp1251"), bytes("Строка2", "cp1251")]
>>> f.writelines(arr)
>>> f.close()
>>> f = open(r"file.txt", "r") # Открываем файл для чтения
>>> f.writable()
False
>>> f = open(r"file.txt", "w") # Открываем файл для записи
>>> f.writable()
True
>>> # Текстовый режим
>>> with open(r"file.txt", "r", encoding="cp1251") as f:
 f.read()
'Строка1\nСтрока2'
>>> # Бинарный режим
>>> with open(r"file.txt", "rb") as f:
 f.read()
b'\xd1\xf2\xf0\xee\xea\xe01\n\xd1\xf2\xf0\xee\xea\xe02'
>>> # Текстовый режим
>>> f = open(r"file.txt", "r", encoding="cp1251")
>>> f.read(8) # Считываем 8 символов
'Строка1\n'
>>> f.read(8) # Считываем 8 символов
'Строка2'
>>> f.read(8) # Достигнут конец файла
''
>>> f.close()
>>> # Текстовый режим
>>> f = open(r"file.txt", "r", encoding="cp1251")
>>> f.readline(), f.readline()
('Строка1\n', 'Строка2')
>>> f.readline() # Достигнут конец файла
''
>>> f.close()
>>> # Бинарный режим
>>> f = open(r"file.txt", "rb")
>>> f.readline(), f.readline()
(b'\xd1\xf2\xf0\xee\xea\xe01\n', b'\xd1\xf2\xf0\xee\xea\xe02')
>>> f.readline() # Достигнут конец файла
b''
>>> f.close()
>>> f = open(r"file.txt", "r", encoding="cp1251")
>>> f.readline(2), f.readline(2)
('Ст', 'ро')
>>> f.readline(100) # Возвращается одна строка, а не 100 символов
'ка1\n'
>>> f.close()
>>> # Текстовый режим
>>> with open(r"file.txt", "r", encoding="cp1251") as f:
 f.readlines()
['Строка1\n', 'Строка2']
>>> # Бинарный режим
>>> with open(r"file.txt", "rb") as f:
 f.readlines()
[b'\xd1\xf2\xf0\xee\xea\xe01\n', b'\xd1\xf2\xf0\xee\xea\xe02']
>>> # Текстовый режим
>>> f = open(r"file.txt", "r", encoding="cp1251")
>>> f.__next__(), f.__next__()
('Строка1\n', 'Строка2')
>>> f.__next__() # Достигнут конец файла
Traceback (most recent call last):
 File "<pyshell#26>", line 1, in <module>
 f.__next__() # Достигнут конец файла
StopIteration
>>> f.close()
>>> f = open(r"file.txt", "r", encoding="cp1251")
>>> for line in f: print(line.rstrip("\n"), end=" ")
Строка1 Строка2

>>> f.close()
>>> f = open(r"file.txt", "r", encoding="cp1251")
>>> f.fileno() # Дескриптор файла
3
>>> f.close()

>>> f = open(r"file.txt", "r+", encoding="cp1251")
>>> f.read()
'Строка1\nСтрока2'
>>> f.truncate(5)
5
>>> f.close()
>>> with open(r"file.txt", "r", encoding="cp1251") as f:
 f.read()
'Строк'
>>> with open(r"file.txt", "w", encoding="cp1251") as f:
 f.write("String1\nString2")
15
>>> f = open(r"file.txt", "r", encoding="cp1251")
>>> f.tell() # Указатель расположен в начале файла
0
>>> f.readline() # Перемещаем указатель
'String1\n'
>>> f.tell() # Возвращает 9 (8 + '\r'), а не 8 !!!
9
>>> f.close()
>>> f = open(r"file.txt", "rb")
>>> f.readline() # Перемещаем указатель
b'String1\r\n'
>>> f.tell() # Теперь значение соответствует
9
>>> f.close()
>>> import io
>>> io.SEEK_SET, io.SEEK_CUR, io.SEEK_END
(0, 1, 2)
>>> import io
>>> f = open(r"file.txt", "rb")
>>> f.seek(9, io.SEEK_CUR) # 9 байтов от указателя
9
>>> f.tell()
9
>>> f.seek(0, io.SEEK_SET) # Перемещаем указатель в начало
0
>>> f.tell()
0
>>> f.seek(-9, io.SEEK_END) # -9 байтов от конца файла
7
>>> f.tell()
7
>>> f.close()
>>> f = open(r"C:\temp\new\file.txt", "r")

>>> f.seekable()

True
>>> f = open(r"file.txt", "r+b")
>>> f.name, f.mode, f.closed
('file.txt', 'rb+', False)
>>> f.close()
>>> f.closed
True
>>> f = open(r"file.txt", "a", encoding="cp1251")
>>> f.encoding
'cp1251'
>>> f.close()
>>> import sys
>>> sys.stdout.encoding
'cp1251'
>>> f = open(r"file.txt", "w", encoding="cp1251")
>>> f.buffer.write(bytes("Строка", "cp1251"))
6
>>> f.close()
16.3. Доступ к файлам с помощью модуля os
>>> import os

>>> os.name # Значение в ОС Windows 8

'nt'

>>> import os # Подключаем модуль
>>> mode = os.O_WRONLY | os.O_CREAT | os.O_TRUNC
>>> f = os.open(r"file.txt", mode)
>>> os.write(f, b"String1\n") # Записываем данные
8
>>> os.close(f) # Закрываем файл
>>> mode = os.O_WRONLY | os.O_CREAT | os.O_APPEND
>>> f = os.open(r"file.txt", mode)
>>> os.write(f, b"String2\n") # Записываем данные
8
>>> os.close(f) # Закрываем файл
>>> f = os.open(r"file.txt", os.O_RDONLY)
>>> os.read(f, 50) # Читаем 50 байт
b'String1\nString2\n'
>>> os.close(f) # Закрываем файл
>>> f = os.open(r"file.txt", os.O_RDONLY | os.O_BINARY)
>>> os.read(f, 50) # Читаем 50 байт
b'String1\r\nString2\r\n'
>>> os.close(f) # Закрываем файл
>>> f = os.open(r"file.txt", os.O_RDONLY)
>>> os.read(f, 5), os.read(f, 5), os.read(f, 5), os.read(f, 5)
(b'Strin', b'g1\nS', b'tring', b'2\n')
>>> os.read(f, 5) # Достигнут конец файла
b''
>>> os.close(f) # Закрываем файл
>>> f = os.open(r"file.txt", os.O_RDONLY | os.O_BINARY)
>>> os.lseek(f, 0, os.SEEK_END) # Перемещение в конец файла
18
>>> os.lseek(f, 0, os.SEEK_SET) # Перемещение в начало файла
0
>>> os.lseek(f, 9, os.SEEK_CUR) # Относительно указателя
9
>>> os.lseek(f, 0, os.SEEK_CUR) # Текущее положение указателя
9
>>> os.close(f) # Закрываем файл
>>> fd = os.open(r"file.txt", os.O_RDONLY)
>>> fd
3
>>> f = os.fdopen(fd, "r")
>>> f.fileno() # Объект имеет тот же дескриптор
3
>>> f.read()
'String1\nString2\n'
>>> f.close()
16.4. Классы StringIO и BytesIO
>>> import io # Подключаем модуль
>>> f = io.StringIO("String1\n")
>>> f.getvalue() # Получаем содержимое файла
'String1\n'
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\n")
>>> f.tell() # Позиция указателя
0
>>> f.seek(0, 2) # Перемещаем указатель в конец файла
8
>>> f.tell() # Позиция указателя
8
>>> f.seek(0) # Перемещаем указатель в начало файла
0
>>> f.tell() # Позиция указателя
0
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\n")
>>> f.seek(0, 2) # Перемещаем указатель в конец файла
8
>>> f.write("String2\n") # Записываем строку в файл
8
>>> f.getvalue() # Получаем содержимое файла
'String1\nString2\n'
>>> f.close() # Закрываем файл
>>> f = io.StringIO()
>>> f.writelines(["String1\n", "String2\n"])
>>> f.getvalue() # Получаем содержимое файла
'String1\nString2\n'
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\nString2\n")
>>> f.read()
'String1\nString2\n'
>>> f.seek(0) # Перемещаем указатель в начало файла
0
>>> f.read(5), f.read(5), f.read(5), f.read(5), f.read(5)
('Strin', 'g1\nSt', 'ring2', '\n', '')
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\nString2")
>>> f.readline(), f.readline(), f.readline()
('String1\n', 'String2', '')
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\nString2\nString3\n")
>>> f.readline(5), f.readline(5)
('Strin', 'g1\n')
>>> f.readline(100) # Возвращается одна строка, а не 100 символов
'String2\n'
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\nString2\nString3")
>>> f.readlines()
['String1\n', 'String2\n', 'String3']
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\nString2\nString3")
>>> f.readlines(14)
['String1\n', 'String2\n']
>>> f.seek(0) # Перемещаем указатель в начало файла
0
>>> f.readlines(17)
['String1\n', 'String2\n', 'String3']
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\nString2")
>>> f.__next__(), f.__next__()
('String1\n', 'String2')
>>> f.__next__()
... Фрагмент опущен ...
StopIteration
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\nString2")
>>> for line in f: print(line.rstrip())
String1
String2
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\nString2\nString3")
>>> f.truncate(15) # Обрезаем файл
15
>>> f.getvalue() # Получаем содержимое файла
'String1\nString2'
>>> f.close() # Закрываем файл
>>> f = io.StringIO("String1\nString2\nString3")
>>> f.seek(15) # Перемещаем указатель
15
>>> f.truncate() # Обрезаем файл до указателя
15
>>> f.getvalue() # Получаем содержимое файла
'String1\nString2'
>>> f.close() # Закрываем файл
>>> import io # Подключаем модуль

>>> f = io.BytesIO(b"String1\n")

>>> f.seek(0, 2) # Перемещаем указатель в конец файла

8

>>> f.write(b"String2\n") # Пишем в файл
8

>>> f.getvalue() # Получаем содержимое файла
b'String1\nString2\n'

>>> f.seek(0) # Перемещаем указатель в начало файла

0

>>> f.read() # Считываем данные

b'String1\nString2\n'

>>> f.close() # Закрываем файл

>>> f = io.BytesIO(b"Python")

>>> buf = f.getbuffer()

>>> buf[0] # Получаем значение по индексу

b'P'

>>> buf[0] = b"J" # Изменяем значение по индексу

>>> f.getvalue() # Получаем содержимое

b'Jython'

>>> buf.tolist() # Преобразуем в список чисел

[74, 121, 116, 104, 111, 110]

>>> buf.tobytes() # Преобразуем в тип bytes

b'Jython'

>>> f.close() # Закрываем файл

16.5. Права доступа к файлам и каталогам

>>> import os # Подключаем модуль os
>>> os.access(r"file.txt", os.F_OK) # Файл существует
True
>>> os.access(r"C:\book", os.F_OK) # Каталог существует
True
>>> os.access(r"C:\book2", os.F_OK) # Каталог не существует
False
>>> os.chmod(r"file.txt", 0o777) # Полный доступ к файлу

16.6. Функции
для манипулирования файлами

>>> import shutil # Подключаем модуль
>>> shutil.copyfile(r"file.txt", r"file2.txt")
>>> # Путь не существует:
>>> shutil.copyfile(r"file.txt", r"C:\book2\file2.txt")
... Фрагмент опущен ...
FileNotFoundError: [Errno 2] No such file or directory:
'C:\\book2\\file2.txt'
>>> shutil.copy(r"file.txt", r"file3.txt")
>>> shutil.copy2(r"file.txt", r"file4.txt")
>>> shutil.move(r"file4.txt", r"C:\book\test")
import os # Подключаем модуль
try:
 os.rename(r"file3.txt", "file4.txt")
except OSError:
 print("Файл не удалось переименовать")
else:
 print("Файл успешно переименован")
>>> os.remove(r"file2.txt")
>>> os.unlink(r"file4.txt")
>>> import os.path
>>> os.path.exists(r"file.txt"), os.path.exists(r"file2.txt")
(True, False)
>>> os.path.exists(r"C:\book"), os.path.exists(r"C:\book2")
(True, False)
>>> os.path.getsize(r"file.txt") # Файл существует
18
>>> os.path.getsize(r"file2.txt") # Файл не существует
... Фрагмент опущен ...
OSError: [Error 2] Не удается найти указанный файл: 'file2.txt'
>>> import time # Подключаем модуль time
>>> t = os.path.getatime(r"file.txt")
>>> t
1304111982.96875
>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))
'30.04.2011 01:19:42'
>>> t = os.path.getctime(r"file.txt")
>>> t
1304028509.015625
>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))
'29.04.2011 02:08:29'
>>> t = os.path.getmtime(r"file.txt")
>>> t
1304044731.265625
>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))
'29.04.2011 06:38:51'
Листинг 16.4. Пример использования функции stat()
>>> import os, time

>>> s = os.stat(r"file.txt")

>>> s

nt.stat_result(st_mode=33060, st_ino=2251799813878096, st_dev=0,

st_nlink=1, st_uid=0, st_gid=0, st_size=18, st_atime=1304111982,

st_mtime=1304044731, st_ctime=1304028509)

>>> s.st_size # Размер файла
18

>>> t = s.st_atime # Время последнего доступа к файлу
>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))

'30.04.2011 01:19:42'

>>> t = s.st_ctime # Время создания файла
>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))

'29.04.2011 02:08:29'

>>> t = s.st_mtime # Время последнего изменения файла

>>> time.strftime("%d.%m.%Y %H:%M:%S", time.localtime(t))

'29.04.2011 06:38:51'
Листинг 16.5. Пример использования функции utime()
>>> import os, time

>>> os.stat(r"file.txt") # Первоначальные значения

nt.stat_result(st_mode=33060, st_ino=2251799813878096, st_dev=0,

st_nlink=1, st_uid=0, st_gid=0, st_size=18, st_atime=1304111982,

st_mtime=1304044731, st_ctime=1304028509)

>>> t = time.time() — 600

>>> os.utime(r"file.txt", (t, t)) # Текущее время минус 600 сек
>>> os.stat(r"file.txt")

nt.stat_result(st_mode=33060, st_ino=2251799813878096, st_dev=0,

st_nlink=1, st_uid=0, st_gid=0, st_size=18, st_atime=1304112906,

st_mtime=1304112906, st_ctime=1304028509)

>>> os.utime(r"file.txt", None) # Текущее время
>>> os.stat(r"file.txt")

nt.stat_result(st_mode=33060, st_ino=2251799813878096, st_dev=0,

st_nlink=1, st_uid=0, st_gid=0, st_size=18, st_atime=1304113557,

st_mtime=1304113557, st_ctime=1304028509)

16.7. Преобразование пути к файлу или каталогу

>>> import os.path
>>> os.path.abspath(r"file.txt")
'C:\\book\\file.txt'
>>> os.path.abspath(r"folder1/file.txt")
'C:\\book\\folder1\\file.txt'
>>> os.path.abspath(r"../file.txt")
'C:\\file.txt'
>>> os.path.sep
'\\'
>>> "C:\\temp\\new\\file.txt" # Правильно
'C:\\temp\\new\\file.txt'
>>> r"C:\temp\new\file.txt" # Правильно
'C:\\temp\\new\\file.txt'
>>> "C:\temp\new\file.txt" # Неправильно!!!
'C:\temp\new\x0cile.txt'
>>> r"C:\temp\new\" # Неправильно!!!
SyntaxError: EOL while scanning string literal
>>> r"C:\temp\new\\"
'C:\\temp\\new\\\\'
>>> "C:\\temp\\new\\" # Правильно
'C:\\temp\\new\\'
>>> r"C:\temp\new\\"[:-1] # Можно и удалить слэш
'C:\\temp\\new\\'
>>> os.path.isabs(r"C:\book\file.txt")
True
>>> os.path.isabs("file.txt")
False
>>> os.path.basename(r"C:\book\folder1\file.txt")
'file.txt'
>>> os.path.basename(r"C:\book\folder")
'folder'
>>> os.path.basename("C:\\book\\folder\\")
''
>>> os.path.dirname(r"C:\book\folder\file.txt")
'C:\\book\\folder'
>>> os.path.dirname(r"C:\book\folder")
'C:\\book'
>>> os.path.dirname("C:\\book\\folder\\")
'C:\\book\\folder'
>>> os.path.split(r"C:\book\folder\file.txt")
('C:\\book\\folder', 'file.txt')
>>> os.path.split(r"C:\book\folder")
('C:\\book', 'folder')
>>> os.path.split("C:\\book\\folder\\")
('C:\\book\\folder', '')
>>> os.path.splitdrive(r"C:\book\folder\file.txt")
('C:', '\\book\\folder\\file.txt')
>>> os.path.splitext(r"C:\book\folder\file.tar.gz")
('C:\\book\\folder\\file.tar', '.gz')
>>> os.path.join("C:\\", "book\\folder", "file.txt")
'C:\\book\\folder\\file.txt'
>>> os.path.join(r"C:\\", "book/folder/", "file.txt")
'C:\\\\book/folder/file.txt'
>>> p = os.path.join(r"C:\\", "book/folder/", "file.txt")
>>> os.path.normpath(p)
'C:\\book\\folder\\file.txt'
16.8. Перенаправление ввода/вывода

Листинг 16.6. Перенаправление вывода в файл

>>> import sys # Подключаем модуль sys

>>> tmp_out = sys.stdout # Сохраняем ссылку на sys.stdout

>>> f = open(r"file.txt", "a") # Открываем файл на дозапись

>>> sys.stdout = f # Перенаправляем вывод в файл

>>> print("Пишем строку в файл")

>>> sys.stdout = tmp_out # Восстанавливаем стандартный вывод

>>> print("Пишем строку в стандартный вывод")

Пишем строку в стандартный вывод

>>> f.close() # Закрываем файл

>>> f = open(r"file.txt", "a")

>>> print("Пишем строку в файл", file=f)

>>> f.close()

>>> f = open(r"file.txt", "a")

>>> print("Пишем строку в файл", file = f, flush = True)

>>> print("Пишем другую строку в файл", file = f, flush = True)

>>> f.close()
Листинг 16.7. Перенаправление потока ввода

-*- coding: utf-8 -*-

import sys

tmp_in = sys.stdin # Сохраняем ссылку на sys.stdin

f = open(r"file.txt", "r") # Открываем файл на чтение

sys.stdin = f # Перенаправляем ввод

while True:

 try:

 line = input() # Считываем строку из файла

 print(line) # Выводим строку

 except EOFError: # Если достигнут конец файла,

 break # выходим из цикла

sys.stdin = tmp_in # Восстанавливаем стандартный ввод

f.close() # Закрываем файл

input()

>>> tmp_in = sys.stdin # Сохраняем ссылку на sys.stdin

>>> f = open(r"file.txt", "r")

>>> sys.stdin = f # Перенаправляем ввод

>>> sys.stdin.isatty() # Не ссылается на терминал

False

>>> sys.stdin = tmp_in # Восстанавливаем стандартный ввод

>>> sys.stdin.isatty() # Ссылается на терминал

True

>>> f.close() # Закрываем файл
Листинг 16.8. Содержимое файла tests.py

-*- coding: utf-8 -*-

while True:

 try:

 line = input()

 print(line)

 except EOFError:

 break

C:\Python34\python.exe tests.py < file.txt

-*- coding: utf-8 -*-

print("String") # Эта строка будет записана в файл

C:\Python34\python.exe tests.py > file.txt

C:\Python34\python.exe tests.py >> file.txt
Листинг 16.9. Индикатор выполнения процесса

-*- coding: utf-8 -*-

import sys, time

for i in range(5, 101, 5):

 sys.stdout.write("\r ... %s%%" % i) # Обновляем индикатор
 sys.stdout.flush() # Сбрасываем содержимое буфера

 time.sleep(1) # Засыпаем на 1 секунду

sys.stdout.write("\rПроцесс завершен\n")

input()

16.9. Сохранение объектов в файл

>>> import pickle
>>> f = open(r"file.txt", "wb")
>>> obj = ["Строка", (2, 3)]
>>> pickle.dump(obj, f)
>>> f.close()
>>> f = open(r"file.txt", "rb")
>>> obj = pickle.load(f)
>>> obj
['Строка', (2, 3)]
>>> f.close()
Листинг 16.10. Сохранение нескольких объектов

>>> obj1 = ["Строка", (2, 3)]

>>> obj2 = (1, 2)

>>> f = open(r"file.txt", "wb")

>>> pickle.dump(obj1, f) # Сохраняем первый объект

>>> pickle.dump(obj2, f) # Сохраняем второй объект

>>> f.close()
Листинг 16.11. Восстановление нескольких объектов

>>> f = open(r"file.txt", "rb")

>>> obj1 = pickle.load(f) # Восстанавливаем первый объект

>>> obj2 = pickle.load(f) # Восстанавливаем второй объект

>>> obj1, obj2

(['Строка', (2, 3)], (1, 2))

>>> f.close()

>>> f = open(r"file.txt", "wb")

>>> obj = ["Строка", (2, 3)]

>>> pkl = pickle.Pickler(f)

>>> pkl.dump(obj)

>>> f.close()

>>> f = open(r"file.txt", "rb")

>>> obj = pickle.Unpickler(f).load()

>>> obj

['Строка', (2, 3)]

>>> f.close()

>>> obj1 = [1, 2, 3, 4, 5] # Список
>>> obj2 = (6, 7, 8, 9, 10) # Кортеж
>>> pickle.dumps(obj1)
b'\x80\x03]q\x00(K\x01K\x02K\x03K\x04K\x05e.'
>>> pickle.dumps(obj2)
b'\x80\x03(K\x06K\x07K\x08K\tK\ntq\x00.'
>>> pickle.loads(b'\x80\x03]q\x00(K\x01K\x02K\x03K\x04K\x05e.')
[1, 2, 3, 4, 5]
>>> pickle.loads(b'\x80\x03(K\x06K\x07K\x08K\tK\ntq\x00.')
(6, 7, 8, 9, 10)
>>> import shelve # Подключаем модуль
>>> db = shelve.open("db1") # Открываем файл
>>> db["obj1"] = [1, 2, 3, 4, 5] # Сохраняем список
>>> db["obj2"] = (6, 7, 8, 9, 10) # Сохраняем кортеж
>>> db["obj1"], db["obj2"] # Вывод значений
([1, 2, 3, 4, 5], (6, 7, 8, 9, 10))
>>> db.close() # Закрываем файл
>>> db = shelve.open("db1")
>>> db.keys(), db.values()
(KeysView(<shelve.DbfilenameShelf object at 0x00FE81B0>),
 ValuesView(<shelve.DbfilenameShelf object at 0x00FE81B0>))
>>> list(db.keys()), list(db.values())
(['obj1', 'obj2'], [[1, 2, 3, 4, 5], (6, 7, 8, 9, 10)])
>>> db.items()
ItemsView(<shelve.DbfilenameShelf object at 0x00FE81B0>)
>>> list(db.items())
[('obj1', [1, 2, 3, 4, 5]), ('obj2', (6, 7, 8, 9, 10))]
>>> db.close()
>>> db = shelve.open("db1")

>>> len(db) # Количество элементов

2

>>> "obj1" in db

True

>>> del db["obj1"] # Удаление элемента

>>> "obj1" in db

False

>>> "obj1" not in db

True
>>> db.close()

16.10. Функции для работы с каталогами

>>> import os
>>> os.getcwd() # Текущий рабочий каталог
'C:\\book'
>>> os.chdir("C:\\book\\folder1\\")
>>> os.getcwd() # Текущий рабочий каталог
'C:\\book\\folder1'
>>> os.mkdir("newfolder") # Создание каталога
>>> os.rmdir("newfolder") # Удаление каталога
>>> os.listdir("C:\\book\\folder1\\")
['file1.txt', 'file2.txt', 'file3.txt', 'folder1', 'folder2']
>>> for (p, d, f) in os.walk("C:\\book\\folder1\\"): print(p)
C:\book\folder1\
C:\book\folder1\folder1_1
C:\book\folder1\folder1_1\folder1_1_1
C:\book\folder1\folder1_1\folder1_1_2
C:\book\folder1\folder1_2
>>> for (p, d, f) in os.walk("C:\\book\\folder1\\", False):
 print(p)
C:\book\folder1\folder1_1\folder1_1_1
C:\book\folder1\folder1_1\folder1_1_2
C:\book\folder1\folder1_1
C:\book\folder1\folder1_2
C:\book\folder1\
import os
for (p, d, f) in os.walk("C:\\book\\folder1\\", False):
 for file_name in f: # Удаляем все файлы
 os.remove(os.path.join(p, file_name))
 for dir_name in d: # Удаляем все каталоги
 os.rmdir(os.path.join(p, dir_name))
import shutil
shutil.rmtree("C:\\book\\folder1\\")

>>> from os.path import normcase
>>> normcase(r"c:/BoOk/fIlE.TxT")

'c:\\book\\file.txt'

>>> import os.path
>>> os.path.isdir(r"C:\book\file.txt")
False
>>> os.path.isdir("C:\\book\\")
True
>>> os.path.isfile(r"C:\book\file.txt")
True
>>> os.path.isfile("C:\\book\\")
False
Листинг 16.12. Пример использования функции glob()
>>> import os, glob

>>> os.listdir("C:\\book\\folder1\\")

['file.txt', 'file1.txt', 'file2.txt', 'folder1_1', 'folder1_2',

'index.html']

>>> glob.glob("C:\\book\\folder1*.txt")

['C:\\book\\folder1\\file.txt', 'C:\\book\\folder1\\file1.txt',

'C:\\book\\folder1\\file2.txt']

>>> glob.glob("C:\\book\\folder1*.html") # Абсолютный путь
['C:\\book\\folder1\\index.html']

>>> glob.glob("folder1/*.html") # Относительный путь

['folder1\\index.html']

>>> glob.glob("C:\\book\\folder1*[0-9].txt")

['C:\\book\\folder1\\file1.txt', 'C:\\book\\folder1\\file2.txt']

>>> glob.glob("C:\\book\\folder1**.html")

['C:\\book\\folder1\\folder1_1\\index.html',

'C:\\book\\folder1\\folder1_2\\test.html']

16.11. Исключения, возбуждаемые файловыми операциями

Листинг 16.13. Обработка исключений, возбуждаемых при файловых операциях

. . .

try

 open("C:\temp\new\file.txt")

except FileNotFoundError:
 print("Файл отсутствует")
except IsADirectoryError:
 print("Это не файл, а папка")
except PermissionError:
 print("Отсутствуют права на доступ к файлу")
except OSError:
 print("Неустановленная ошибка открытия файла")
. . .
17. Основы SQLite
17.1. Создание базы данных

cd C:\book

chcp 1251

C:\book>chcp

Текущая кодовая страница: 1251

C:\book>sqlite3.exe testdb.db

sqlite> SELECT sqlite_version();

3.8.9
sqlite> SELECT sqlite_version()

 ...> ;

3.8.9
sqlite> -- Это однострочный комментарий

sqlite> /* Это многострочный комментарий */

sqlite> SELECT sqlite_version(); -- Комментарий после SQL-команды
3.8.9

sqlite> SELECT sqlite_version(); /* Комментарий после SQL-команды */

3.8.9
17.2. Создание таблицы

sqlite> CREATE TEMP TABLE tmp1 (pole1);

sqlite> CREATE TEMPORARY TABLE tmp2 (pole1);

sqlite> .tables

tmp1 tmp2

sqlite> SELECT name FROM sqlite_master

 ...> WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%'

 ...> UNION ALL

 ...> SELECT name FROM sqlite_temp_master

 ...> WHERE type IN ('table','view')

 ...> ORDER BY 1;

tmp1

tmp2

sqlite> CREATE TEMP TABLE tmp1 (pole3);

Error: table tmp1 already exists

sqlite> CREATE TEMP TABLE IF NOT EXISTS tmp1 (pole3);

sqlite> PRAGMA table_info(tmp1);

0|pole1||0||0

sqlite> CREATE TEMP TABLE table (pole1);

Error: near "table": syntax error

sqlite> CREATE TEMP TABLE "table" (pole1);

sqlite> .tables

table tmp1 tmp2

sqlite> DROP TABLE "table";

sqlite> CREATE TEMP TABLE [table] (pole1);

sqlite> .tables

table tmp1 tmp2

sqlite> CREATE TEMP TABLE tmp3 (p1 INTEGER, p2 INTEGER,

 ...> p3 INTEGER, p4 INTEGER, p5 INTEGER);

sqlite> INSERT INTO tmp3 VALUES (10, "00547", 5.45, "Строка", NULL);

sqlite> SELECT * FROM tmp3;

10|547|5.45|Строка|

sqlite> SELECT typeof(p1), typeof(p2), typeof(p3), typeof(p4),

 ...> typeof(p5) FROM tmp3;

integer|integer|real|text|null

sqlite> DROP TABLE tmp3;

sqlite> CREATE TEMP TABLE tmp3 (p1 INTEGER PRIMARY KEY);

sqlite> INSERT INTO tmp3 VALUES (10); -- Нормально
sqlite> INSERT INTO tmp3 VALUES (5.78); -- Ошибка
Error: datatype mismatch

sqlite> INSERT INTO tmp3 VALUES ("Строка"); -- Ошибка
Error: datatype mismatch

sqlite> INSERT INTO tmp3 VALUES (NULL);

sqlite> SELECT * FROM tmp3;

10

11

sqlite> DROP TABLE tmp3;

sqlite> CREATE TEMP TABLE tmp3 (p1 TEXT);

sqlite> INSERT INTO tmp3 VALUES ("00012.86");

sqlite> INSERT INTO tmp3 VALUES ("52.0");

sqlite> SELECT p1, typeof(p1) FROM tmp3;

00012.86|text

52.0|text

sqlite> SELECT CAST (p1 AS INTEGER) FROM tmp3;

12

52

sqlite> SELECT CAST (p1 AS NUMERIC) FROM tmp3;

12.86

52

sqlite> DROP TABLE tmp3;

sqlite> CREATE TEMP TABLE tmp3 (p1, p2 INTEGER DEFAULT 0);
sqlite> INSERT INTO tmp3 (p1) VALUES (800);
sqlite> INSERT INTO tmp3 VALUES (5, 1204);
sqlite> SELECT * FROM tmp3;
800|0
5|1204
sqlite> DROP TABLE tmp3;
sqlite> CREATE TEMP TABLE tmp3 (id INTEGER,
 ...> t TEXT DEFAULT CURRENT_TIME,
 ...> d TEXT DEFAULT CURRENT_DATE,
 ...> dt TEXT DEFAULT CURRENT_TIMESTAMP);
sqlite> INSERT INTO tmp3 (id) VALUES (1);
sqlite> SELECT * FROM tmp3;
1|13:21:01|2015-04-14|2015-04-14 13:21:01
sqlite> /* Текущая дата на компьютере: 2015-04-14 16:21:01 */
sqlite> DROP TABLE tmp3;
sqlite> CREATE TEMP TABLE tmp3 (p1, p2 TEXT COLLATE NOCASE);
sqlite> INSERT INTO tmp3 VALUES ("abcd", "abcd");
sqlite> SELECT p1 = "ABCD" FROM tmp3; -- Не найдено
0
sqlite> SELECT p2 = "ABCD" FROM tmp3; -- Найдено
1
sqlite> DROP TABLE tmp3;
sqlite> CREATE TEMP TABLE tmp3 (
 ...> p1 INTEGER CHECK(p1 IN (10, 20)));
sqlite> INSERT INTO tmp3 VALUES (10); -- OK
sqlite> INSERT INTO tmp3 VALUES (30); -- Ошибка
Error: constraint failed
sqlite> DROP TABLE tmp3;
sqlite> CREATE TEMP TABLE tmp3 (id INTEGER PRIMARY KEY, t TEXT);
sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка1");
sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка2");
sqlite> SELECT * FROM tmp3;
1|Строка1
2|Строка2
sqlite> DELETE FROM tmp3 WHERE id=2;
sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка3");
sqlite> SELECT * FROM tmp3;
1|Строка1
2|Строка3
sqlite> DROP TABLE tmp3;
sqlite> CREATE TEMP TABLE tmp3 (
 ...> id INTEGER PRIMARY KEY AUTOINCREMENT,
 ...> t TEXT);
sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка1");
sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка2");
sqlite> SELECT * FROM tmp3;
1|Строка1
2|Строка2
sqlite> DELETE FROM tmp3 WHERE id=2;
sqlite> INSERT INTO tmp3 VALUES (NULL, "Строка3");
sqlite> SELECT * FROM tmp3;
1|Строка1
3|Строка3
sqlite> DROP TABLE tmp3;
sqlite> CREATE TEMP TABLE tmp3 (t TEXT);
sqlite> INSERT INTO tmp3 VALUES ("Строка1");
sqlite> INSERT INTO tmp3 VALUES ("Строка2");
sqlite> SELECT ROWID, OID, _ROWID_, t FROM tmp3;
1|1|1|Строка1
2|2|2|Строка2
sqlite> DELETE FROM tmp3 WHERE OID=2;
sqlite> INSERT INTO tmp3 VALUES ("Строка3");
sqlite> SELECT ROWID, OID, _ROWID_, t FROM tmp3;
1|1|1|Строка1
2|2|2|Строка3
sqlite> DROP TABLE tmp3;
sqlite> CREATE TEMP TABLE tmp3 (
 ...> id UNIQUE ON CONFLICT REPLACE, t TEXT);
sqlite> INSERT INTO tmp3 VALUES (10, "s1");
sqlite> INSERT INTO tmp3 VALUES (10, "s2");
sqlite> SELECT * FROM tmp3;
10|s2
sqlite> DROP TABLE tmp3;
17.3. Вставка записей

sqlite> CREATE TABLE user (

 ...> id_user INTEGER PRIMARY KEY AUTOINCREMENT,

 ...> email TEXT,

 ...> passw TEXT);

sqlite> CREATE TABLE rubr (

 ...> id_rubr INTEGER PRIMARY KEY AUTOINCREMENT,

 ...> name_rubr TEXT);

sqlite> CREATE TABLE site (

 ...> id_site INTEGER PRIMARY KEY AUTOINCREMENT,

 ...> id_user INTEGER,

 ...> id_rubr INTEGER,

 ...> url TEXT,

 ...> title TEXT,

 ...> msg TEXT);

sqlite> INSERT INTO user (email, passw)

 ...> VALUES ('unicross@mail.ru', 'password1');

sqlite> INSERT INTO rubr VALUES (NULL, 'Программирование');

sqlite> SELECT * FROM user;

1|unicross@mail.ru|password1

sqlite> SELECT * FROM rubr;

1|Программирование
sqlite> INSERT INTO site (id_user, id_rubr, url, title, msg)

 ...> VALUES (1, 1, 'http://wwwadmin.ru', 'Название', 'Описание');

sqlite> INSERT INTO rubr VALUES (NULL, 'Название 'в кавычках'');

Error: near "в": syntax error

sqlite> INSERT INTO rubr VALUES (NULL, "Название 'в кавычках'");

sqlite> INSERT INTO rubr VALUES (NULL, 'Название ''в кавычках''');

sqlite> SELECT * FROM rubr;

1|Программирование
2|Название 'в кавычках'

3|Название 'в кавычках'

sqlite> INSERT OR REPLACE INTO rubr

 ...> VALUES (2, 'Музыка');

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Название 'в кавычках'

sqlite> REPLACE INTO rubr VALUES (3, 'Игры');

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Игры

17.4. Обновление и удаление записей

sqlite> UPDATE rubr SET name_rubr='Кино' WHERE id_rubr=3;

sqlite> SELECT * FROM rubr;

1|Программирование
2|Музыка
3|Кино
sqlite> DELETE FROM rubr WHERE id_rubr=3;

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

17.5. Изменение структуры таблицы

sqlite> .tables
rubr sqlite_sequence tmp1 user
site table tmp2
sqlite> ALTER TABLE user RENAME TO users;
sqlite> .tables
rubr sqlite_sequence tmp1 users
site table tmp2
sqlite> ALTER TABLE site ADD COLUMN iq INTEGER DEFAULT 0;
sqlite> PRAGMA table_info(site);
0|id_site|INTEGER|0||1
1|id_user|INTEGER|0||0
2|id_rubr|INTEGER|0||0
3|url|TEXT|0||0
4|title|TEXT|0||0
5|msg|TEXT|0||0
6|iq|INTEGER|0|0|0
sqlite> SELECT * FROM site;
1|1|1|http://wwwadmin.ru|Название|Описание|0

17.6. Выбор записей

sqlite> SELECT id_rubr, name_rubr FROM rubr;

1|Программирование

2|Музыка

sqlite> SELECT id_rubr, name_rubr FROM rubr WHERE id_rubr=1;

1|Программирование

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

sqlite> SELECT 10 + 5;

15

sqlite> SELECT (10 + 5) AS expr1, (70 * 2) AS expr2;

15|140

sqlite> SELECT s.url, r.name_rubr FROM site AS s, rubr AS r

 ...> WHERE s.id_rubr = r.id_rubr;

http://wwwadmin.ru|Программирование

sqlite> INSERT INTO rubr VALUES (3, 'Поисковые порталы');

sqlite> INSERT INTO site (id_user, id_rubr, url, title, msg, iq)

 ...> VALUES (1, 1, 'http://python.org', 'Python', '', 1000);

sqlite> INSERT INTO site (id_user, id_rubr, url, title, msg, iq)

 ...> VALUES (1, 3, 'http://google.ru', 'Гугль', '', 3000);

sqlite> SELECT id_rubr, COUNT(id_rubr) FROM site

 ...> GROUP BY id_rubr;

1|2

3|1

sqlite> SELECT id_rubr FROM site

 ...> GROUP BY id_rubr HAVING COUNT(id_rubr)>1;

1

sqlite> SELECT COUNT(*) FROM site;
3
sqlite> SELECT MIN(iq) FROM site;
0
sqlite> SELECT MAX(iq) FROM site;
3000
sqlite> SELECT AVG(iq) FROM site;
1333.33333333333
sqlite> SELECT SUM(iq) FROM site;
4000
sqlite> SELECT TOTAL(iq) FROM site;
4000.0

sqlite> SELECT GROUP_CONCAT(name_rubr) FROM rubr;
Программирование,Музыка,Поисковые порталы
sqlite> SELECT GROUP_CONCAT(name_rubr, ' | ') FROM rubr;
Программирование | Музыка | Поисковые порталы

sqlite> SELECT * FROM rubr ORDER BY name_rubr;

2|Музыка

3|Поисковые порталы

1|Программирование

sqlite> SELECT * FROM rubr ORDER BY name_rubr DESC;

1|Программирование

3|Поисковые порталы

2|Музыка

sqlite> CREATE TEMP TABLE tmp3 (id INTEGER);

sqlite> INSERT INTO tmp3 VALUES(1);

sqlite> INSERT INTO tmp3 VALUES(2);

sqlite> INSERT INTO tmp3 VALUES(3);

sqlite> INSERT INTO tmp3 VALUES(4);

sqlite> INSERT INTO tmp3 VALUES(5);

sqlite> SELECT * FROM tmp3 LIMIT 3; -- Эквивалентно LIMIT 0, 3

1

2

3

sqlite> SELECT * FROM tmp3 LIMIT 2, 3;

3

4

5

sqlite> SELECT * FROM tmp3 LIMIT 3 OFFSET 2;

3

4

5

sqlite> DROP TABLE tmp3;

17.7. Выбор записей из нескольких таблиц

sqlite> SELECT site.url, rubr.name_rubr, users.email

 ...> FROM rubr, users, site

 ...> WHERE site.id_rubr=rubr.id_rubr AND

 ...> site.id_user=users.id_user;

http://wwwadmin.ru|Программирование|unicross@mail.ru

http://python.org|Программирование|unicross@mail.ru

http://google.ru|Поисковые порталы|unicross@mail.ru

sqlite> SELECT url, name_rubr, email

 ...> FROM rubr AS r, users AS u, site AS s

 ...> WHERE s.id_rubr=r.id_rubr AND

 ...> s.id_user=u.id_user;

sqlite> SELECT url, name_rubr, email

 ...> FROM rubr JOIN users JOIN site

 ...> WHERE site.id_rubr=rubr.id_rubr AND

 ...> site.id_user=users.id_user;

sqlite> SELECT url, name_rubr, email

 ...> FROM rubr JOIN users JOIN site

 ...> ON site.id_rubr=rubr.id_rubr AND

 ...> site.id_user=users.id_user

 ...> WHERE site.id_rubr=1;

sqlite> SELECT url, name_rubr, email

 ...> FROM rubr JOIN site USING (id_rubr) JOIN users USING (id_user);

sqlite> SELECT name_rubr, COUNT(id_site)

 ...> FROM rubr JOIN site USING (id_rubr)

 ...> GROUP BY rubr.id_rubr;

Программирование|2

Поисковые порталы|1

sqlite> SELECT name_rubr, COUNT(id_site)

 ...> FROM rubr LEFT JOIN site USING (id_rubr)

 ...> GROUP BY rubr.id_rubr

 ...> ORDER BY rubr.name_rubr;

Музыка|0

Поисковые порталы|1

Программирование|2

17.8. Условия в инструкциях WHERE и HAVING
sqlite> SELECT * FROM rubr WHERE id_rubr=1;
1|Программирование
sqlite> SELECT 10 = 10, 5 = 10, 10 == 10, 5 == 10;
1|0|1|0
sqlite> CREATE TEMP TABLE tmp3 (p1, p2 TEXT COLLATE NOCASE);
sqlite> INSERT INTO tmp3 VALUES ("abcd", "abcd");
sqlite> SELECT p1 = "ABCD" FROM tmp3; -- Не найдено
0
sqlite> SELECT p2 = "ABCD" FROM tmp3; -- Найдено
1
sqlite> DROP TABLE tmp3;
sqlite> SELECT 's' = 'S', 's' = 'S' COLLATE NOCASE;
0|1
sqlite> SELECT 'ы' = 'Ы', 'ы' = 'Ы' COLLATE NOCASE;
0|0
sqlite> SELECT 10 != 10, 5 != 10, 10 <> 10, 5 <> 10;
0|1|0|1
sqlite> SELECT 100 BETWEEN 1 AND 100;
1
sqlite> SELECT 101 BETWEEN 1 AND 100;
0
sqlite> SELECT 'один' IN ('один', 'два', 'три');
1
sqlite> SELECT 'Один' IN ('один', 'два', 'три');
0
sqlite> SELECT 'test word test' LIKE '%word%';
1
sqlite> SELECT 'test word test' LIKE 'test%';
1
sqlite> SELECT 'test word test' LIKE 'word%';
0
sqlite> SELECT 'test word test' LIKE '%es_%wo_d%';
1
sqlite> SELECT 'test word test' LIKE '%wor%d%';
1
sqlite> SELECT '10$' LIKE '10%';
1
sqlite> SELECT '10$' LIKE '10\%' ESCAPE '\';
0
sqlite> SELECT '10%' LIKE '10\%' ESCAPE '\';
1
sqlite> PRAGMA case_sensitive_like = true;
sqlite> SELECT 's' LIKE 'S';
0
sqlite> PRAGMA case_sensitive_like = false;
sqlite> SELECT 's' LIKE 'S';
1
sqlite> SELECT 'ы' LIKE 'Ы', 'ы' LIKE 'ы';
1|1
sqlite> SELECT 'г' LIKE 'Ы', 'слово' LIKE 'текст';
1|1
C:\book>chcp 866
Текущая кодовая страница: 866
C:\book>sqlite3.exe testdb.db
SQLite version 3.8.9
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> SELECT 'г' LIKE 'Ы', 'слово' LIKE 'текст';
0|0
sqlite> SELECT 'ы' LIKE 'Ы', 'ы' LIKE 'ы';
0|1
sqlite> SELECT 's' = 'S', NOT ('s' = 'S');

0|1

sqlite> SELECT NOT 'один' IN ('один', 'два', 'три');

0

17.9. Индексы

sqlite> EXPLAIN QUERY PLAN SELECT * FROM site WHERE id_site=1;

0|0|0|SEARCH TABLE site USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)

sqlite> EXPLAIN QUERY PLAN SELECT * FROM site WHERE id_rubr=1;

0|0|0|SCAN TABLE site (~100000 rows)

sqlite> EXPLAIN QUERY PLAN SELECT * FROM site WHERE id_rubr=1;

0|0|0|SCAN TABLE site (~100000 rows)

sqlite> CREATE INDEX index_rubr ON site (id_rubr);

sqlite> EXPLAIN QUERY PLAN SELECT * FROM site WHERE id_rubr=1;

0|0|0|SEARCH TABLE site USING INDEX index_rubr (id_rubr=?) (~10 rows)

sqlite> SELECT * FROM site WHERE id_rubr=1;

1|1|1|http://wwwadmin.ru|Название|Описание|0

2|1|1|http://python.org|Python||1000

sqlite> SELECT * FROM sqlite_stat1; -- Нет записей
Error: no such table: sqlite_stat1

sqlite> ANALYZE;

sqlite> SELECT * FROM sqlite_stat1;

site|index_rubr|3 2

rubr||3

users||1

17.10. Вложенные запросы

sqlite> CREATE TEMP TABLE tmp_rubr AS SELECT * FROM rubr;

sqlite> SELECT * FROM tmp_rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

sqlite> DELETE FROM tmp_rubr;

sqlite> INSERT INTO tmp_rubr SELECT * FROM rubr WHERE id_rubr<3;

sqlite> SELECT * FROM tmp_rubr;

1|Программирование

2|Музыка

sqlite> SELECT * FROM site WHERE id_rubr IN (

 ...> SELECT id_rubr FROM rubr

 ...> WHERE name_rubr='Программирование');

1|1|1|http://wwwadmin.ru|Название|Описание|0

2|1|1|http://python.org|Python||1000

17.11. Транзакции

sqlite> BEGIN TRANSACTION;

sqlite> INSERT INTO rubr VALUES (NULL, 'Кино');

sqlite> INSERT INTO rubr VALUES (NULL, 'Разное');

sqlite> ROLLBACK TRANSACTION; -- Отменяем вставку
sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

sqlite> BEGIN TRANSACTION;

sqlite> INSERT INTO rubr VALUES (NULL, 'Кино');

sqlite> INSERT INTO rubr VALUES (3, 'Разное'); -- Ошибка
Error: PRIMARY KEY must be unique

sqlite> COMMIT TRANSACTION;

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

4|Кино

sqlite> BEGIN TRANSACTION;

sqlite> INSERT OR ROLLBACK INTO rubr VALUES (NULL, 'Мода');

sqlite> INSERT OR ROLLBACK INTO rubr VALUES (3, 'Разное');

Error: PRIMARY KEY must be unique

sqlite> COMMIT TRANSACTION; -- Транзакция уже завершена!

Error: cannot commit — no transaction is active

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

4|Кино

sqlite> BEGIN EXCLUSIVE TRANSACTION;
sqlite> -- База данных заблокирована
sqlite> -- Выполняем какие-либо операции с базой
sqlite> COMMIT TRANSACTION;

sqlite> -- Транзакция завершена, и база разблокирована
sqlite> SAVEPOINT metka1;

sqlite> INSERT INTO rubr VALUES (NULL, 'Мода');

sqlite> INSERT INTO rubr VALUES (NULL, 'Разное');

sqlite> ROLLBACK TO SAVEPOINT metka1;

sqlite> SELECT * FROM rubr;

1|Программирование

2|Музыка

3|Поисковые порталы

4|Кино
18. Доступ к базе данных SQLite
из Python
>>> import sqlite3 # Подключаем модуль

>>> sqlite3.apilevel # Получаем номер спецификации

'2.0'

>>> sqlite3.sqlite_version

'3.8.3.1'

>>> sqlite3.sqlite_version_info

(3, 8, 3, 1)
18.1. Создание и открытие базы данных

>>> import sqlite3 # Подключаем модуль sqlite3

>>> con = sqlite3.connect("testdb.db") # Открываем базу данных

>>> # Работаем с базой данных

>>> con.close() # Закрываем базу данных

>>> import sqlite3

>>> # Доступ к базе, хранящейся в файле c:\book\testdb.db
>>> con = sqlite3.connect(r"file:///c:/book/testdb.db", uri = True)

>>> con.close()
>>> # Доступ только для чтения
>>> con = sqlite3.connect(r"file:///c:/book/testdb.db?mode=ro", uri = True)

>>> con.close()

>>> # Доступ к неизменяемой базе данных

>>> con = sqlite3.connect(r"file:///f:/data.db?immutable=1", uri = True)

>>> con.close()

18.2. Выполнение запросов

-*- coding: utf-8 -*-
import sqlite3
con = sqlite3.connect("catalog.db")
cur = con.cursor() # Создаем объект-курсор
sql = """\
CREATE TABLE user (
 id_user INTEGER PRIMARY KEY AUTOINCREMENT,
 email TEXT,
 passw TEXT
);
CREATE TABLE rubr (
 id_rubr INTEGER PRIMARY KEY AUTOINCREMENT,
 name_rubr TEXT
);
CREATE TABLE site (
 id_site INTEGER PRIMARY KEY AUTOINCREMENT,
 id_user INTEGER,
 id_rubr INTEGER,
 url TEXT,
 title TEXT,
 msg TEXT,
 iq INTEGER
);
"""
try: # Обрабатываем исключения
 cur.executescript(sql) # Выполняем SQL-запросы
except sqlite3.DatabaseError as err:
 print("Ошибка:", err)
else:
 print("Запрос успешно выполнен")
cur.close() # Закрываем объект-курсор
con.close() # Закрываем соединение
input()
-*- coding: utf-8 -*-
import sqlite3
con = sqlite3.connect("catalog.db")
cur = con.cursor() # Создаем объект-курсор
sql = """\
INSERT INTO user (email, passw)
VALUES ('unicross@mail.ru', 'password1')
"""
try:
 cur.execute(sql) # Выполняем SQL-запрос
except sqlite3.DatabaseError as err:
 print("Ошибка:", err)
else:
 print("Запрос успешно выполнен")
 con.commit() # Завершаем транзакцию
cur.close() # Закрываем объект-курсор
con.close() # Закрываем соединение
input()
-*- coding: utf-8 -*-
import sqlite3
con = sqlite3.connect("catalog.db")
cur = con.cursor() # Создаем объект-курсор
t1 = ("Программирование",)
t2 = (2, "Музыка")
d = {"id": 3, "name": """Поисковые ' " порталы"""}
sql_t1 = "INSERT INTO rubr (name_rubr) VALUES (?)"
sql_t2 = "INSERT INTO rubr VALUES (?, ?)"
sql_d = "INSERT INTO rubr VALUES (:id, :name)"
try:
 cur.execute(sql_t1, t1) # Кортеж из 1-го элемента
 cur.execute(sql_t2, t2) # Кортеж из 2-х элементов
 cur.execute(sql_d, d) # Словарь
except sqlite3.DatabaseError as err:
 print("Ошибка:", err)
else:
 print("Запрос успешно выполнен")
 con.commit() # Завершаем транзакцию
cur.close() # Закрываем объект-курсор
con.close() # Закрываем соединение
input()
-*- coding: utf-8 -*-
import sqlite3
con = sqlite3.connect("catalog.db")
cur = con.cursor() # Создаем объект-курсор
arr = [
 (1, 1, "http://wwwadmin.ru", "Название", "", 100),
 (1, 1, "http://python.org", "Python", "", 1000),
 (1, 3, "http://google.ru", "Гугль", "", 3000)
]
sql = """\
INSERT INTO site (id_user, id_rubr, url, title, msg, iq)
VALUES (?, ?, ?, ?, ?, ?)
"""
try:
 cur.executemany(sql, arr)
except sqlite3.DatabaseError as err:
 print("Ошибка:", err)
else:
 print("Запрос успешно выполнен")
 con.commit() # Завершаем транзакцию
cur.close() # Закрываем объект-курсор
con.close() # Закрываем соединение
input()
Листинг 18.1. Использование метода execute()
-*- coding: utf-8 -*-

import sqlite3

con = sqlite3.connect("catalog.db")

try:

 con.execute("""UPDATE rubr SET name_rubr='Поисковые порталы'

 WHERE id_rubr=3""")

except sqlite3.DatabaseError as err:

 print("Ошибка:", err)

else:

 con.commit() # Завершаем транзакцию
 print("Запрос успешно выполнен")

con.close() # Закрываем соединение

input()

-*- coding: utf-8 -*-
import sqlite3
con = sqlite3.connect("catalog.db")
cur = con.cursor() # Создаем объект-курсор
try:
 cur.execute("""INSERT INTO rubr (name_rubr)
 VALUES ('Кино')""")
except sqlite3.DatabaseError as err:
 print("Ошибка:", err)
else:
 con.commit() # Завершаем транзакцию
 print("Запрос успешно выполнен")
 print("Индекс:", cur.lastrowid)
cur.close() # Закрываем объект-курсор
con.close() # Закрываем соединение
input()
con = sqlite3.connect("catalog.db")
. . .
print(con.total_changes)
18.3. Обработка результата запроса

>>> import sqlite3
>>> con = sqlite3.connect("catalog.db")
>>> cur = con.cursor()
>>> cur.execute("SELECT * FROM user")
<sqlite3.Cursor object at 0x0150E3B0>
>>> cur.fetchone()
(1, 'unicross@mail.ru', 'password1')
>>> print(cur.fetchone())
None
>>> cur.execute("SELECT * FROM user")
<sqlite3.Cursor object at 0x0150E3B0>
>>> cur.__next__()
(1, 'unicross@mail.ru', 'password1')
>>> cur.__next__()
... Фрагмент опущен ...
StopIteration
>>> cur.execute("SELECT * FROM rubr")
<sqlite3.Cursor object at 0x0150E2F0>
>>> for id_rubr, name in cur: print("{0}|{1}".format(id_rubr, name))
1|Программирование
2|Музыка
3|Поисковые порталы
4|Кино
>>> cur.execute("SELECT * FROM rubr")
<sqlite3.Cursor object at 0x0150E3B0>
>>> cur.arraysize
1
>>> cur.fetchmany()
[(1, 'Программирование')]
>>> cur.fetchmany(2)
[(2, 'Музыка'), (3, 'Поисковые порталы')]
>>> cur.fetchmany(3)
[(4, 'Кино')]
>>> cur.fetchmany()
[]
>>> cur.execute("SELECT * FROM rubr")
<sqlite3.Cursor object at 0x0150E3B0>
>>> cur.fetchall()
[(1, 'Программирование'), (2, 'Музыка'), (3, 'Поисковые порталы'),
 (4, 'Кино')]
>>> cur.fetchall()
[]
>>> con.close()
Листинг 18.2. Использование атрибута row_factory
-*- coding: utf-8 -*-

import sqlite3

def my_factory(c, r):

 d = {}

 for i, name in enumerate(c.description):

 d[name[0]] = r[i] # Ключи в виде названий полей

 d[i] = r[i] # Ключи в виде индексов полей

 return d

con = sqlite3.connect("catalog.db")

con.row_factory = my_factory

cur = con.cursor() # Создаем объект-курсор
cur.execute("SELECT * FROM user")

arr = cur.fetchall()

print(arr) # Результат:

"""[{0: 1, 1: 'unicross@mail.ru', 2: 'password1', 'id_user': 1,

'passw': 'password1', 'email': 'unicross@mail.ru'}]"""

print(arr[0][1]) # Доступ по индексу
print(arr[0]["email"]) # Доступ но названию поля

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

input()
Листинг 18.3. Использование объекта Row
-*- coding: utf-8 -*-

import sqlite3

con = sqlite3.connect("catalog.db")

con.row_factory = sqlite3.Row

cur = con.cursor()

cur.execute("SELECT * FROM user")

arr = cur.fetchall()

print(type(arr[0])) # <class 'sqlite3.Row'>

print(len(arr[0])) # 3

print(arr[0][1]) # Доступ по индексу
print(arr[0]["email"]) # Доступ по названию поля
print(arr[0]["EMAIL"]) # Не зависит от регистра символов

for elem in arr[0]:

 print(elem)

print(arr[0].keys()) # ['id_user', 'email', 'passw']

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

input()

>>> con = sqlite3.connect("testdb.db")

>>> cur = con.cursor()

>>> cur.execute("SELECT * FROM rubr")

... Фрагмент опущен ...

sqlite3.OperationalError: Could not decode to UTF-8 column 'name_rubr'

>>> con.close()
Листинг 18.4. Использование атрибута text_factory
>>> con = sqlite3.connect("testdb.db")

>>> con.text_factory = bytes # Название функции без круглых скобок!

>>> cur = con.cursor()

>>> cur.execute("SELECT * FROM rubr")

<sqlite3.Cursor object at 0x014FE380>

>>> cur.fetchone()

(1, b'\xcf\xf0\xee\xe3\xf0\xe0\xec\xec\xe8\xf0\xee\xe2\xe0\xed\xe8\xe5')
Листинг 18.5. Указание пользовательской функции преобразования

>>> con.text_factory = lambda s: str(s, "cp1251")

>>> cur.execute("SELECT * FROM rubr")

<sqlite3.Cursor object at 0x014FE380>

>>> cur.fetchone()

(1, 'Программирование')

>>> con.close()

18.4. Управление транзакциями

Листинг 18.6. Отмена изменений с помощью метода rollback()
>>> con = sqlite3.connect("catalog.db")

>>> cur = con.cursor()

>>> cur.execute("INSERT INTO user VALUES (NULL, 'user@mail.ru', '')")

<sqlite3.Cursor object at 0x01508CB0>

>>> con.rollback() # Отмена изменений
>>> cur.execute("SELECT * FROM user")

<sqlite3.Cursor object at 0x01508CB0>

>>> cur.fetchall()

[(1, 'unicross@mail.ru', 'password1')]

>>> con.close()
Листинг 18.7. Управление транзакциями

>>> con = sqlite3.connect("catalog.db", isolation_level=None)

>>> cur = con.cursor()

>>> cur.execute("INSERT INTO user VALUES (NULL, 'user@mail.ru', '')")

<sqlite3.Cursor object at 0x01508CE0>

>>> con.close()

>>> con = sqlite3.connect("catalog.db")

>>> con.isolation_level = None # Отключение запуска транзакции
>>> cur = con.cursor()

>>> cur.execute("SELECT * FROM user")

<sqlite3.Cursor object at 0x01508530>

>>> cur.fetchall()

[(1, 'unicross@mail.ru', 'password1'), (2, 'user@mail.ru', '')]

>>> con.close()
Листинг 18.8. Получение состояния транзакции
>>> con = sqlite3.connect("catalog.db")

>>> cur = con.cursor()

>>> cur.execute("INSERT INTO user VALUES (NULL, 'user2@mail.ru', '')")

<sqlite3.Cursor object at 0x03C33460> # Запущена транзакция
>>> con.in_transaction

True # Есть активная транзакция
>>> con.commit() # Завершаем транзакцию
>>> con.in_transaction

False # Нет активной транзакций
>>> cur.close()

>>> con.close()

18.5. Создание пользовательской сортировки

Листинг 18.9. Сортировка записей

-*- coding: utf-8 -*-

import sqlite3

def myfunc(s1, s2): # Пользовательская функция сортировки

 s1 = s1.lower()

 s2 = s2.lower()

 if s1 == s2:

 return 0

 elif s1 > s2:

 return 1

 else:

 return -1

con = sqlite3.connect(":memory:", isolation_level=None)

Связываем имя "myfunc" с функцией myfunc()

con.create_collation("myfunc", myfunc)

cur = con.cursor()

cur.execute("CREATE TABLE words (word TEXT)")

cur.execute("INSERT INTO words VALUES('единица1')")

cur.execute("INSERT INTO words VALUES('Единый')")

cur.execute("INSERT INTO words VALUES('Единица2')")

Стандартная сортировка
cur.execute("SELECT * FROM words ORDER BY word")

for line in cur:

 print(line[0], end=" ") # Результат: Единица2 Единый единица1

print()

Пользовательская сортировка
cur.execute("""SELECT * FROM words

 ORDER BY word COLLATE myfunc""")

for line in cur:

 print(line[0], end=" ") # Результат: единица1 Единица2 Единый
cur.close()

con.close()

input()

18.6. Поиск без учета регистра символов

cur.execute("SELECT 'строка' = 'Строка'")

print(cur.fetchone()[0]) # Результат: 0 (не равно)

cur.execute("SELECT 'строка' LIKE 'Строка'")

print(cur.fetchone()[0]) # Результат: 0 (не найдено)
Листинг 18.10. Поиск без учета регистра символов

-*- coding: utf-8 -*-

import sqlite3

Пользовательская функция изменения регистра

def myfunc(s):

 return s.lower()

con = sqlite3.connect("catalog.db")

Связываем имя "mylower" с функцией myfunc()

con.create_function("mylower", 1, myfunc)

cur = con.cursor()

string = "%МуЗЫка%" # Строка для поиска

Поиск без учета регистра символов

sql = """SELECT * FROM rubr

 WHERE mylower(name_rubr) LIKE ?"""

cur.execute(sql, (string.lower(),))

print(cur.fetchone()[1]) # Результат: Музыка
cur.close()

con.close()

input()
Листинг 18.11. Преобразование даты и времени

-*- coding: utf-8 -*-

import sqlite3

import time

def myfunc(d):

 return time.strftime("%d.%m.%Y", time.localtime(d))

con = sqlite3.connect(":memory:")

Связываем имя "mytime" с функцией myfunc()

con.create_function("mytime", 1, myfunc)

cur = con.cursor()

cur.execute("SELECT mytime(1429100920)")

print(cur.fetchone()[0]) # Результат: 15.04.2015

cur.close()

con.close()

input()

18.7. Создание агрегатных функций

Листинг 18.12. Создание агрегатной функции

-*- coding: utf-8 -*-

import sqlite3

class MyClass:

 def __init__(self):

 self.result = []

 def step(self, value):

 self.result.append(value)

 def finalize(self):

 self.result.sort()

 return " | ".join(self.result)

con = sqlite3.connect("catalog.db")

Связываем имя "myfunc" с классом MyClass

con.create_aggregate("myfunc", 1, MyClass)

cur = con.cursor()

cur.execute("SELECT myfunc(name_rubr) FROM rubr")

print(cur.fetchone()[0])

Результат: Кино | Музыка | Поисковые порталы | Программирование

cur.close()

con.close()

input()

18.8. Преобразование типов данных

Листинг 18.13. Сохранение в базе атрибутов класса

-*- coding: utf-8 -*-

import sqlite3

class Car:

 def __init__(self, model, color):

 self.model, self.color = model, color

def my_adapter(car):

 return "{0}|{1}".format(car.model, car.color)

Регистрируем функцию для преобразования типа
sqlite3.register_adapter(Car, my_adapter)

Создаем экземпляр класса Car

car = Car("ВАЗ-2109", "красный")

con = sqlite3.connect("catalog.db")

cur = con.cursor()

try:

 cur.execute("CREATE TABLE cars1 (model TEXT)")

 cur.execute("INSERT INTO cars1 VALUES (?)", (car,))

except sqlite3.DatabaseError as err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

 con.commit()

cur.close()

con.close()

input()
Листинг 18.14. Использование метода __conform__()
-*- coding: utf-8 -*-

import sqlite3

class Car:

 def __init__(self, model, color):

 self.model, self.color = model, color

 def __conform__(self, protocol):

 if protocol is sqlite3.PrepareProtocol:

 return "{0}|{1}".format(car.model, car.color)

Создаем экземпляр класса Car

car = Car("Москвич-412", "синий")

con = sqlite3.connect("catalog.db")

cur = con.cursor()

try:

 cur.execute("CREATE TABLE cars2 (model mycar)")

 cur.execute("INSERT INTO cars2 VALUES (?)", (car,))

except sqlite3.DatabaseError as err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

 con.commit()

cur.close()

con.close()

input()
Листинг 18.15. Использование значения sqlite3.PARSE_COLNAMES
-*- coding: utf-8 -*-

import sqlite3, sys

class Car:

 def __init__(self, model, color):

 self.model, self.color = model, color

 def __repr__(self):

 s = "Модель: {0}, цвет: {1}".format(self.model, self.color)

 return s

def my_converter(value):

 value = str(value, "utf-8")

 model, color = value.split("|")

 return Car(model, color)

Регистрируем функцию для преобразования типа

sqlite3.register_converter("mycar", my_converter)

con = sqlite3.connect("catalog.db",

 detect_types=sqlite3.PARSE_COLNAMES)

cur = con.cursor()

cur.execute("""SELECT model as "c [mycar]" FROM cars1""")

print(cur.fetchone()[0])

Результат: Модель: ВАЗ-2109, цвет: красный

con.close()

input()
Листинг 18.16. Использование значения sqlite3.PARSE_DECLTYPES
-*- coding: utf-8 -*-

import sqlite3, sys

class Car:

 def __init__(self, model, color):

 self.model, self.color = model, color

 def __repr__(self):

 s = "Модель: {0}, цвет: {1}".format(self.model, self.color)

 return s

def my_converter(value):

 value = str(value, "utf-8")

 model, color = value.split("|")

 return Car(model, color)

Регистрируем функцию для преобразования типа

sqlite3.register_converter("mycar", my_converter)

con = sqlite3.connect("catalog.db",

 detect_types=sqlite3.PARSE_DECLTYPES)

cur = con.cursor()

cur.execute("SELECT model FROM cars2")

print(cur.fetchone()[0])

Результат: Модель: Москвич-412, цвет: синий

con.close()

input()

18.9. Сохранение в таблице даты и времени

Листинг 18.17. Сохранение в таблице даты и времени

-*- coding: utf-8 -*-

import sqlite3, datetime, time

Преобразование даты в число

def my_adapter(t):

 return time.mktime(t.timetuple())

Преобразование числа в дату

def my_converter(t):

 return datetime.datetime.fromtimestamp(float(t))

Регистрируем обработчики
sqlite3.register_adapter(datetime.datetime, my_adapter)

sqlite3.register_converter("mytime", my_converter)

Получаем текущую дату и время
dt = datetime.datetime.today()

con = sqlite3.connect(":memory:", isolation_level=None,

 detect_types=sqlite3.PARSE_COLNAMES)

cur = con.cursor()

cur.execute("CREATE TABLE times (time)")

cur.execute("INSERT INTO times VALUES (?)", (dt,))

cur.execute("""SELECT time as "t [mytime]" FROM times""")

print(cur.fetchone()[0]) # 2015-04-15 15:41:47

con.close()

input()
Листинг 18.18. Встроенные функции для преобразования типов

-*- coding: utf-8 -*-

import sqlite3, datetime

Получаем текущую дату и время

d = datetime.date.today()

dt = datetime.datetime.today()

con = sqlite3.connect(":memory:", isolation_level=None,

 detect_types=sqlite3.PARSE_DECLTYPES)

cur = con.cursor()

cur.execute("CREATE TABLE times (d date, dt timestamp)")

cur.execute("INSERT INTO times VALUES (?, ?)", (d, dt))

cur.execute("SELECT d, dt FROM times")

res = cur.fetchone()

print(res[0]) # 2015-04-15

print(res[1]) # 2015-04-15 15:41:47.190000

con.close()

input()

18.10. Обработка исключений

Листинг 18.19. Выполнение SQL-команд, введенных в консоли

-*- coding: utf-8 -*-

import sqlite3, sys, re

def db_connect(db_name):

 try:

 db = sqlite3.connect(db_name, isolation_level=None)

 except (sqlite3.Error, sqlite3.Warning) as err:

 print("Не удалось подключиться к БД")

 input()

 sys.exit(0)

 return db

print("Введите название базы данных:", end=" ")

db_name = input()

con = db_connect(db_name) # Подключаемся к базе

cur = con.cursor()

sql = ""

print("Чтобы закончить выполнение программы, введите <Q>+<Enter>")

while True:

 tmp = input()

 if tmp in ["q", "Q"]:

 break

 if tmp.strip() == "":

 continue

 sql = "{0} {1}".format(sql, tmp)

 if sqlite3.complete_statement(sql):

 try:

 sql = sql.strip()

 cur.execute(sql)

 if re.match("SELECT ", sql, re.I):

 print(cur.fetchall())

 except (sqlite3.Error, sqlite3.Warning) as err:

 print("Ошибка:", err)

 else:

 print("Запрос успешно выполнен")

 sql = ""

cur.close()

con.close()

>>> sql = "SELECT 10 > 5;"

>>> sqlite3.complete_statement(sql)

True

>>> sql = "SELECT 10 > 5"

>>> sqlite3.complete_statement(sql)

False

>>> sql = "SELECT 10 > 5; SELECT 20 + 2;"

>>> sqlite3.complete_statement(sql)

True
Листинг 18.20. Инструкция with...as
-*- coding: utf-8 -*-

import sqlite3

con = sqlite3.connect(r"C:\book\catalog.db")

try:

 with con:

 # Добавление новой рубрики
 con.execute("""INSERT INTO rubr VALUES (NULL, 'Мода')""")

except sqlite3.DatabaseError as err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

try:

 with con:

 # Добавление новой рубрики

 con.execute("""INSERT INTO rubr VALUES (NULL, 'Спорт')""")

 # Рубрика с идентификатором 1 уже существует!

 con.execute("""INSERT INTO rubr VALUES (1, 'Казино')""")

except sqlite3.DatabaseError as err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

con.close()

input()

18.11. Трассировка выполняемых запросов

Листинг 18.21. Вывод выполняемых SQL-команд на экран

import sqlite3

Объявляем функцию, которая станет выводить команды на экран

def tracer(command):

 print(command)

con = sqlite3.connect(r"C:\book\catalog.db")

con.set_trace_callback(tracer) # Регистрируем функцию tracer()

con.execute("SELECT * FROM user;")
con.execute("SELECT * FROM rubr;")

con.close()

con.set_trace_callback(None)

19. Доступ к базе данных MySQL
19.1. Библиотека MySQLClient
cd <Полный путь к папке, где хранится загруженный WHL-файл>

c:\python34\scripts\pip install <Имя WHL-файла с дистрибутивом>

>>> import MySQLdb
>>> MySQLdb.__version__

'1.3.6'

>>> MySQLdb.apilevel
'2.0'

19.1.1. Подключение к базе данных

Листинг 19.1. Получение настроек кодировки

>>> import MySQLdb # Подключаем модуль MySQLdb

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456")

>>> con.get_character_set_info()

{'mbmaxlen': 1, 'collation': 'latin1_swedish_ci', 'mbminlen': 1,
'name': 'latin1', 'comment': ''}
>>> con.close()

Листинг 19.2. Указание кодировки соединения при подключении к базе

>>> import MySQLdb
>>> # Задаем кодировку 1251

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="cp1251")

>>> con.get_character_set_info()

{'mbmaxlen': 1, 'collation': 'cp1251_general_ci', 'mbminlen': 1,
'name': 'cp1251', 'comment': ''}
>>> con.close()

>>> # Задаем кодировку UTF-8
>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="utf8")

>>> con.get_character_set_info()

{'mbmaxlen': 3, 'collation': 'utf8_general_ci', 'mbminlen': 1, 'name': 'utf8',
'comment': ''}

>>> con.close()
Листинг 19.3. Указание кодировки соединения методом set_character_set()
>>> import MySQLdb
>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456")

>>> con.set_character_set("utf8")

>>> con.get_character_set_info()

{'mbmaxlen': 3, 'collation': 'utf8_general_ci', 'mbminlen': 1, 'name': 'utf8',
'comment': ''}
>>> con.close()

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="cp1251")

Traceback (most recent call last):

... Фрагмент опущен ...

OperationalError: (2019, "Can't initialize character set cp1251

(path: C:\\mysql\\\\share\\charsets\\)")

character-sets-dir="C:\\Program Files\\MySQL\\MySQL Server

5.5\\share\\charsets\\"
Листинг 19.4. Указание пути к конфигурационному файлу

>>> import MySQLdb # Подключаем модуль MySQLdb
>>> ini = r"C:\Program Files\MySQL\MySQL Server 5.5\my.ini"

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", read_default_file=ini, charset="cp1251")

>>> con.get_character_set_info()

{'mbmaxlen': 1, 'collation': 'cp1251_general_ci', 'mbminlen': 1,
'name': 'cp1251', 'comment': '', 'dir':

'C:\\Program Files\\MySQL\\MySQL Server 5.5\\share\\charsets\\'}
>>> con.close()

19.1.2. Выполнение запросов

import MySQLdb

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="utf8")

cur = con.cursor() # Создаем объект-курсор
sql = """CREATE DATABASE `python`

DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci"""

try: # Обрабатываем исключения

 cur.execute(sql) # Выполняем SQL-запрос

except MySQLdb.DatabaseError, err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

cur.close() # Закрываем объект-курсор

con.close() # Закрываем соединение

input()

import MySQLdb

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="utf8", db="python")

cur = con.cursor()

sql_1 = """\

CREATE TABLE `city` (

 `id_city` INT NOT NULL AUTO_INCREMENT,

 `name_city` CHAR(255) NOT NULL,

 PRIMARY KEY (`id_city`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8"""

sql_2 = "INSERT INTO `city` VALUES (NULL, 'Санкт-Петербург')"

try:

 cur.execute("SET NAMES utf8") # Кодировка соединения
 cur.execute(sql_1)

 cur.execute(sql_2)

except MySQLdb.DatabaseError, err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

 con.commit()

cur.close()

con.close()

input()

import MySQLdb

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="utf8", db="python")

con.autocommit(True) # Автоматическое завершение транзакции

cur = con.cursor()

t1 = ("Москва",) # Запятая в конце обязательна!

t2 = (3, "Новгород")

d = {"id": 4, "name": """Новый ' " город"""}

sql_t1 = "INSERT INTO `city` (`name_city`) VALUES (%s)"

sql_t2 = "INSERT INTO `city` VALUES (%s, %s)"

sql_d = "INSERT INTO `city` VALUES (%(id)s, %(name)s)"

try:

 cur.execute("SET NAMES utf8") # Кодировка соединения
 cur.execute(sql_t1, t1) # Кортеж из 1-го элемента
 cur.execute(sql_t2, t2) # Кортеж из 2-х элементов

 cur.execute(sql_d, d) # Словарь
except MySQLdb.DatabaseError, err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

cur.close()

con.close()

input()

import MySQLdb

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="utf8", db="python")

con.autocommit(True) # Автоматическое завершение транзакции

cur = con.cursor()

arr = [("Пермь",), ("Самара",)]

sql = "INSERT INTO `city` (`name_city`) VALUES (%s)"

try:

 cur.execute("SET NAMES utf8") # Кодировка соединения
 cur.executemany(sql, arr) # Выполняем запрос
except MySQLdb.DatabaseError, err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

cur.close()

con.close()

input()

import MySQLdb

con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="utf8", db="python")

con.autocommit(True) # Автоматическое завершение транзакции

cur = con.cursor()

sql = "INSERT INTO `city` (`name_city`) VALUES ('Омск')"

try:

 cur.execute("SET NAMES utf8") # Кодировка соединения
 cur.execute(sql)

except MySQLdb.DatabaseError, err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

 print("Индекс:", cur.lastrowid)
 print("Индекс:", con.insert_id())

cur.close()

con.close()

input()

19.1.3. Обработка результата запроса

>>> import MySQLdb

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="utf8", db="python")

>>> cur = con.cursor()

>>> cur.execute("SET NAMES utf8")

0

>>> sql = "SELECT `name_city` FROM `city` WHERE `id_city`<3"

>>> cur.execute(sql)

2

>>> cur.rowcount # Количество записей
2

>>> con.field_count() # Количество полей

1

>>> cur.fetchone()

('Санкт-Петербург',)
>>> cur.fetchone()

('Москва',)

>>> print(cur.fetchone())

None
>>> sql = "SELECT `name_city` FROM `city` WHERE `id_city`>2"

>>> cur.execute(sql)

4

>>> cur.arraysize

1

>>> cur.fetchmany()

(('Новгород',),)
>>> cur.fetchmany(2)

(('Новый \' " город',), ('Пермь',))
>>> cur.fetchmany(3)

(('Самара',),)
>>> cur.fetchmany()

()

>>> sql = "SELECT `name_city` FROM `city` WHERE `id_city`>4"

>>> cur.execute(sql)

2

>>> cur.fetchall()

(('Пермь',), ('Самара',))

>>> cur.fetchall()

()

>>> sql = "SELECT `name_city` FROM `city` WHERE `id_city`>4"

>>> cur.execute(sql)

2

>>> for row in cur: print(row[0])

Пермь

Самара
Листинг 19.5. Перемещение указателя текущей позиции

>>> cur.scroll(0, "absolute")

>>> res = cur.fetchall()

>>> for name in res: print(name[0])

Пермь
Самара
>>> cur.scroll(-1, "relative")

>>> res = cur.fetchall()

>>> for name in res: print(name[0])

Самара
Листинг 19.6. Получение записей в виде словаря

>>> con = MySQLdb.connect(host="localhost", user="root",

 passwd="123456", charset="utf8", db="python")

>>> cur = con.cursor(MySQLdb.cursors.DictCursor)

>>> sql = "SELECT * FROM `city` WHERE `id_city`=5"

>>> cur.execute(sql)

1

>>> cur.fetchone()

{'id_city': 5, 'name_city': 'Пермь'}
>>> con.close()

19.2. Библиотека PyODBC
>>> import pyodbc
>>> pyodbc.version
'3.0.7'

>>> pyodbc.apilevel
'2.0'

19.2.1. Подключение к базе данных

>>> import pyodbc

>>> s = "DRIVER={MySQL ODBC 5.3 Unicode Driver};SERVER=localhost;"

>>> s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

>>> con = pyodbc.connect(s, autocommit=True, unicode_results=True)

>>> con.close()

19.2.2. Выполнение запросов
import pyodbc

s = "DRIVER={MySQL ODBC 5.3 Unicode Driver};SERVER=localhost;"

s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

con = pyodbc.connect(s, autocommit=True, unicode_results=True)

cur = con.cursor()

sql_1 = """\

CREATE TABLE `user` (

 `id_user` INT AUTO_INCREMENT PRIMARY KEY,

 `email` VARCHAR(255),

 `passw` VARCHAR(255)

) ENGINE = MYISAM CHARACTER SET utf8 COLLATE utf8_general_ci

"""

sql_2 = """\

CREATE TABLE `rubr` (

 `id_rubr` INT AUTO_INCREMENT PRIMARY KEY,

 `name_rubr` VARCHAR(255)

) ENGINE = MYISAM CHARACTER SET utf8 COLLATE utf8_general_ci

"""

sql_3 = """\

CREATE TABLE `site` (

 `id_site` INT AUTO_INCREMENT PRIMARY KEY,

 `id_user` INT,

 `id_rubr` INT,

 `url` VARCHAR(255),

 `title` VARCHAR(255),

 `msg` TEXT,

 `iq` INT

) ENGINE = MYISAM CHARACTER SET utf8 COLLATE utf8_general_ci

"""

try:

 cur.execute(sql_1)

 cur.execute(sql_2)

 cur.execute(sql_3)

except pyodbc.Error, err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

cur.close()

con.close()

input()

import pyodbc

s = "DRIVER={MySQL ODBC 5.3 Unicode Driver};SERVER=localhost;"

s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

con = pyodbc.connect(s, autocommit=True, unicode_results=True)

cur = con.cursor()

sql_1 = "INSERT INTO `user` (`email`, `passw`) VALUES (?, ?)"

sql_2 = "INSERT INTO `rubr` (`name_rubr`) VALUES (?)"

sql_3 = "INSERT INTO `rubr` VALUES (NULL, ?)"

try:

 cur.execute(sql_1, ('unicross@mail.ru', 'password1'))

 cur.execute(sql_2, ("Программирование",))

 cur.execute(sql_3, """Поисковые ' " порталы""")

except pyodbc.Error, err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

cur.close()

con.close()

input()

import pyodbc

s = "DRIVER={MySQL ODBC 5.3 Unicode Driver};SERVER=localhost;"

s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

con = pyodbc.connect(s, autocommit=True, unicode_results=True)

cur = con.cursor()

arr = [

 (1, 1, "http://wwwadmin.ru", "Название", "", 100),

 (1, 1, "http://python.org", "Python", "", 1000),

 (1, 2, "http://google.ru", "Гугль", "", 3000)

]

sql = """INSERT INTO `site` \

(`id_user`, `id_rubr`, `url`, `title`, `msg`, `iq`) \

VALUES (?, ?, ?, ?, ?, ?)"""

try:

 cur.executemany(sql, arr)

except pyodbc.Error, err:

 print("Ошибка:", err)

else:

 print("Запрос успешно выполнен")

cur.close()

con.close()

input()

19.2.3. Обработка результата запроса

>>> import pyodbc

>>> s = "DRIVER={MySQL ODBC 5.3 Unicode Driver};SERVER=localhost;"

>>> s += "UID=root;PWD=123456;DATABASE=python;CHARSET=utf8"

>>> con = pyodbc.connect(s,autocommit=True,unicode_results=True)

>>> cur = con.cursor()

>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> row = cur.fetchone()

>>> row.id_rubr # Доступ по названию поля

1

>>> print(row.name_rubr) # Доступ по названию поля

Программирование

>>> print(row[1]) # Доступ по индексу поля

Программирование

>>> cur.fetchone()

(2, 'Поисковые \' " порталы')

>>> print(cur.fetchone())

None
>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> cur.arraysize

1

>>> row = cur.fetchmany()[0]

>>> print(row.name_rubr)

Программирование
>>> cur.fetchmany(2)

[(2, 'Поисковые \' " порталы')]

>>> cur.fetchmany()

[]

>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> rows = cur.fetchall()

>>> rows
[(1, 'Программирование'), (2, 'Поисковые \' " порталы')]

>>> print(rows[0].name_rubr)

Программирование
>>> cur.fetchall()

[]

>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> for row in cur: print(row.name_rubr)

Программирование

Поисковые ' " порталы

>>> cur.execute("""UPDATE `rubr`

 SET `name_rubr`='Поисковые порталы'

 WHERE `id_rubr`=2""")

<pyodbc.Cursor object at 0x011C8CD0>

>>> cur.rowcount

1

>>> cur.execute("SELECT * FROM `rubr` WHERE `id_rubr`=2")

<pyodbc.Cursor object at 0x011C8CD0>

>>> print(cur.fetchone().name_rubr)

Поисковые порталы

>>> cur.execute("SELECT * FROM `rubr`")

<pyodbc.Cursor object at 0x011C8CD0>

>>> cur.description

(('id_rubr', <type 'int'>, None, 10, 10, 0, True),

('name_rubr', <type 'unicode'>, None, 255, 255, 0, True))

Листинг 19.7. Видоизменение SQL-запроса извне

>>> user = "unicross@mail.ru'/*"

>>> passw = "*/ '"

>>> sql = """SELECT * FROM `user`

 WHERE `email`='%s' AND `passw`='%s'""" % (user, passw)

>>> cur.execute(sql)

<pyodbc.Cursor object at 0x011C8CD0>

>>> cur.fetchone()

(1, u'unicross@mail.ru', u'password1')

Листинг 19.8. Правильная передача данных в SQL-запрос

>>> user = "unicross@mail.ru'/*"

>>> passw = "*/ '"

>>> sql = "SELECT * FROM `user` WHERE `email`=? AND `passw`=?"

>>> cur.execute(sql, (user, passw))

<pyodbc.Cursor object at 0x011C8CD0>

>>> print(cur.fetchone())
None

20. Библиотека Pillow. Работа с изображениями

>>> from PIL import Image
>>> Image.VERSION
'1.1.7'

20.1. Загрузка готового изображения

>>> img = Image.open("foto.gif")

>>> f = open("foto.gif", "rb") # Открываем файл в бинарном режиме

>>> img = Image.open(f) # Передаем объект файла

>>> img.size # Получаем размер изображения

(800, 600)

>>> img.format # Выводим формат изображения

'GIF'

>>> f.close() # Закрываем файл

Листинг 20.1. Получение и изменение цвета пиксела

>>> img = Image.open("foto.jpg")

>>> obj = img.load()

>>> obj[25, 45] # Получаем цвет пиксела

(122, 86, 62)

>>> obj[25, 45] = (255, 0, 0) # Задаем цвет пиксела (красный)

Листинг 20.2. Использование методов getpixel() и putpixel()
>>> img = Image.open("foto.jpg")

>>> img.getpixel((25, 45)) # Получаем цвет пиксела

(122, 86, 62)

>>> img.putpixel((25, 45), (255, 0, 0)) # Изменяем цвет пиксела

>>> img.getpixel((25, 45)) # Получаем цвет пиксела

(255, 0, 0)

>>> img.show() # Просматриваем изображение

Листинг 20.3. Сохранение изображения

>>> img.save("tmp.jpg") # В формате JPEG
>>> img.save("tmp.bmp", "BMP") # В формате BMP
>>> f = open("tmp2.bmp", "wb")

>>> img.save(f, "BMP") # Передаем файловый объект

>>> f.close()

>>> img.save("tmp3.jpg", "JPEG", quality=100) # Указание качества

20.2. Создание нового изображения

Листинг 20.4. Способы указания цвета

>>> img = Image.new("RGB", (100, 100))

>>> img.show() # Черный квадрат

>>> img = Image.new("RGB", (100, 100), (255, 0, 0))

>>> img.show() # Красный квадрат

>>> img = Image.new("RGB", (100, 100), "green")

>>> img.show() # Зеленый квадрат
>>> img = Image.new("RGB", (100, 100), "#f00")

>>> img.show() # Красный квадрат
>>> img = Image.new("RGB", (100, 100), "#ff0000")

>>> img.show() # Красный квадрат

20.3. Получение информации об изображении

Листинг 20.5. Получение информации об изображении

>>> img = Image.open("foto.jpg")

>>> img.size, img.format, img.mode
((800, 600), 'JPEG', 'RGB')

>>> img.info

{'jfif': 258, 'jfif_unit': 0, 'adobe': 100, 'progression': 1,

'jfif_version': (1, 2), 'adobe_transform': 100,

'jfif_density': (100, 100)}

>>> img = Image.open("foto.gif")

>>> img.size, img.format, img.mode

((800, 600), 'GIF', 'P')

>>> img.info

{'version': 'GIF89a', 'background': 254}

>>> img = Image.open("foto.bmp")

>>> img.size, img.format, img.mode

((800, 600), 'BMP', 'RGB')

>>> img.info

{'compression': 0}

>>> img = Image.open("foto.tif")

>>> img.size, img.format, img.mode

((800, 600), 'TIFF', 'RGB')

>>> img.info

{'compression': 'raw'}

>>> img = Image.open("foto.png")

>>> img.size, img.format, img.mode

((800, 600), 'PNG', 'RGB')

>>> img.info
{'dpi': (72, 72)}

20.4. Манипулирование изображением

>>> from PIL import Image

>>> img = Image.open("foto.jpg") # Открываем файл
>>> img2 = img.copy() # Создаем копию
>>> img2.show() # Просматриваем копию

>>> img = Image.open("foto.jpg")

>>> img.size # Исходные размеры изображения

(800, 600)

>>> img.thumbnail((400, 300), Image.LANCZOS)

>>> img.size # Изменяется само изображение

(400, 300)

>>> img = Image.open("foto.jpg")

>>> img.thumbnail((400, 100), Image.LANCZOS)

>>> img.size # Размер изменяется пропорционально
(133, 100)

>>> img = Image.open("foto.jpg")

>>> img.size # Исходные размеры изображения

(800, 600)

>>> img2 = img.resize((400, 300), Image.LANCZOS)

>>> img2.size # Пропорциональное уменьшение
(400, 300)

>>> img3 = img.resize((400, 100), Image.LANCZOS)

>>> img3.size # Изображение будет искажено

(400, 100)

>>> img = Image.open("foto.jpg")

>>> img.size # Исходные размеры изображения

(800, 600)

>>> img2 = img.rotate(90) # Поворот на 90 градусов

>>> img2.size

(600, 800)

>>> img3 = img.rotate(45, Image.NEAREST)

>>> img3.size # Размеры сохранены, изображение обрезано

(800, 600)

>>> img4 = img.rotate(45, expand=True)

>>> img4.size # Размеры увеличены, изображение полное

(991, 990)

>>> img = Image.open("foto.jpg")

>>> img2 = img.transpose(Image.FLIP_LEFT_RIGHT)

>>> img2.show() # Горизонтальный зеркальный образ
>>> img3 = img.transpose(Image.FLIP_TOP_BOTTOM)

>>> img3.show() # Вертикальный зеркальный образ
>>> img4 = img.transpose(Image.ROTATE_90)

>>> img4.show() # Поворот на 90° против часовой стрелки

>>> img5 = img.transpose(Image.ROTATE_180)

>>> img5.show() # Поворот на 180°
>>> img6 = img.transpose(Image.ROTATE_270)

>>> img6.show() # Поворот на 270°
>>> img7 = img.transpose(Image.TRANSPOSE)

>>> img7.show() # Поворот на 90° по часовой стрелке
>>> img = Image.open("foto.jpg")

>>> img2 = img.crop([0, 0, 100, 100]) # Помечаем фрагмент

>>> img2.load() # Считываем фрагмент, создавая новое изображение

>>> img2.size
(100, 100)

>>> img = Image.open("foto.jpg")

>>> img.paste((255, 0, 0), (0, 0, 100, 100))

>>> img.show()

>>> img = Image.open("foto.jpg")

>>> img.paste((0, 128, 0), img.getbbox())

>>> img.show()

>>> img.getbbox()

(0, 0, 800, 600)

>>> img = Image.open("foto.jpg")

>>> img2 = img.resize((200, 150)) # Создаем миниатюру
>>> img2.size

(200, 150)

>>> img.paste((255, 0, 0), (9, 9, 211, 161)) # Рамка
>>> img.paste(img2, (10, 10)) # Вставляем миниатюру
>>> img.show()

>>> img = Image.open("foto.jpg")

>>> white = Image.new("RGB", (img.size[0],100), (255,255,255))

>>> mask = Image.new("L", (img.size[0], 100), 64) # Маска
>>> img.paste(white, (0, 0), mask)

>>> img.show()

>>> img = Image.open("foto.jpg")

>>> img.mode

'RGB'

>>> R, G, B = img.split()

>>> mask = Image.new("L", img.size, 128)

>>> img2 = Image.merge("RGBA", (R, G, B, mask))

>>> img2.mode

'RGBA'

>>> img2.show()

>>> img = Image.open("foto.jpg")

>>> img.mode

'RGB'

>>> img2 = img.convert("RGBA")

>>> img2.mode

'RGBA'

>>> img2.show()

>>> img = Image.open("foto.jpg")

>>> img.mode

'RGB'

>>> img2 = img.convert("P", None, Image.FLOYDSTEINBERG, Image.ADAPTIVE, 128)

>>> img2.mode

'P'

>>> from PIL import ImageFilter

>>> img = Image.open("foto.jpg")

>>> img2 = img.filter(ImageFilter.EMBOSS)

>>> img2.show()

20.5. Рисование линий и фигур

>>> from PIL import Image, ImageDraw

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img) # Создаем экземпляр класса
>>> from PIL import Image, ImageDraw

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> for n in range(5, 31):

 draw.point((n, 5), fill=(255, 0, 0))

>>> img.show()

>>> draw.line((0, 0, 0, 300), fill=(0, 128, 0))

>>> draw.line((297, 0, 297, 300), fill=(0, 128, 0), width=3)

>>> img.show()

>>> draw.rectangle((10, 10, 30, 30), fill=(0, 0, 255),

 outline=(0, 0, 0))

>>> draw.rectangle((40, 10, 60, 30), fill=(0, 0, 128))

>>> draw.rectangle((0, 0, 299, 299), outline=(0, 0, 0))

>>> img.show()

>>> draw.polygon((50, 50, 150, 150, 50, 150), outline=(0,0,0),

 fill=(255, 0, 0)) # Треугольник
>>> draw.polygon((200, 200, 250, 200, 275, 250, 250, 300,

 200, 300, 175, 250), fill=(255, 255, 0))

>>> img.show()

>>> draw.ellipse((100, 100, 200, 200), fill=(255, 255, 0))

>>> draw.ellipse((50, 170, 150, 300), outline=(0, 255, 255))

>>> img.show()

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> draw.arc((10, 10, 290, 290), 180, 0, fill=(255, 0, 0))

>>> img.show()

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> draw.chord((10, 10, 290, 290), 180, 0, fill=(255, 0, 0))

>>> draw.chord((10, 10, 290, 290), -90, 0, fill=(255, 255, 0))

>>> img.show()

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> draw.pieslice((10, 10, 290, 290), -90, 0, fill="red")

>>> img.show()

20.6. Библиотека Wand
c:\python34\scripts\pip install Wand

>>> import wand

Листинг 20.6. Сравнение класса ImageDraw и модуля wand
>>> # Рисуем эллипс средствами Pillow
>>> from PIL import Image, ImageDraw

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> draw.ellipse((0, 0, 150, 150), fill="white", outline="red")

>>> img.show()

>>> input()

>>> # Рисуем эллипс средствами ImageMagick и Wand

>>> # Импортируем класс Image из модуля wand.image под именем

>>> # WandImage, чтобы избежать конфликта имен с одноименным классом

>>> # из модуля PIL
>>> from wand.image import Image as WandImage

>>> from wand.color import Color

>>> from wand.drawing import Drawing

>>> from wand.display import display
>>> img = WandImage(width = 300, height = 300, background = Color("white"))

>>> draw = Drawing()

>>> draw.stroke_color = Color("red")

>>> draw.fill_color = Color("white")

>>> draw.ellipse((150, 150), (150, 150))

>>> draw.draw(img)

>>> display(img)

>>> from wand.image import Image as WandImage

>>> from wand.color import Color

>>> img = WandImage(width = 400, height = 300, background = Color("black"))

>>> img

<wand.image.Image: e1038a4 '' (400x300)>

>>> from wand.color import Color

>>> Color("white") # Белый цвет
wand.color.Color('srgb(255,255,255)')
>>> Color("#FF0000") # Красный цвет
wand.color.Color('srgb(255,0,0)')
>>> Color("rgb(0, 255, 0)") # Зеленый цвет
wand.color.Color('srgb(0,255,0)')
>>> Color("rgba(0, 255, 0, 0.5)") # Полупрозрачный зеленый цвет
wand.color.Color('srgba(0,255,0,0.499992)')
>>> from wand.drawing import Drawing
>>> draw = wand.drawing.Drawing()

>>> draw

<wand.drawing.Drawing object at 0x028C9570>

>>> draw.stroke_color = Color("black")

>>> draw.stroke_opacity = 0.5
>>> draw.stroke_width = 2
>>> draw.fill_color = Color("blue")

>>> draw.fill_opacity = 0.2

>>> from wand.image import Image as WandImage

>>> from wand.drawing import Drawing

>>> from wand.color import Color

>>> from wand.display import display
>>> img = WandImage(width = 400, height = 300, background = Color("white"))

>>> draw = Drawing()

>>> draw.stroke_color = Color("black")

>>> draw.point(100, 200)

>>> draw.draw(img)
>>> display(img)
>>> draw.stroke_color = Color("blue")

>>> draw.line((0, 0), (400, 300))
>>> draw.draw(img)

>>> display(img)
>>> draw.stroke_color = Color("rgba(67, 82, 11, 0.7)")

>>> draw.fill_color = draw.stroke_color

>>> draw.rectangle(left = 100, top = 0, right = 150, bottom = 50)

>>> draw.rectangle(left = 200, top = 0, width = 50, height = 50, radius = 5)

>>> draw.rectangle(left = 300, top = 0, width = 50, height = 100, xradius = 5, yradius = 15)

>>> draw.draw(img)

>>> display(img)

>>> draw.stroke_color = Color("rgb(0, 127, 127)")

>>> draw.fill_color = Color("rgb(127, 127, 0)")

>>> draw.polygon([(50, 50), (350, 50), (350, 250), (50, 250)])

>>> draw.draw(img)

>>> display(img)

>>> draw.stroke_color = Color("black")

>>> draw.fill_color = Color("white")

>>> # Рисуем окружность радиусом 100 пикселов
>>> draw.circle((200, 150), (100, 150))

>>> draw.stroke_color = Color("white")

>>> draw.fill_color = Color("black")
>>> # Рисуем окружность радиусом 200 пикселов
>>> draw.circle((200, 150), (0, 150))

>>> draw.draw(img)

>>> display(img)

>>> draw.stroke_color = Color("black")

>>> draw.fill_color = Color("white")

>>> draw.ellipse((200, 150), (100, 150))

>>> draw.stroke_color = Color("white")

>>> draw.fill_color = Color("black")
>>> draw.ellipse((200, 150), (200, 50), rotation = (20, 110))

>>> draw.draw(img)

>>> display(img)

>>> draw.stroke_color = Color("green")

>>> draw.fill_color = Color("red")

>>> draw.arc((10, 10), (290, 290), (20, 110))

>>> draw.draw(img)

>>> display(img)

>>> draw.stroke_color = Color("red")

>>> draw.fill_color = Color("green")

>>> draw.bezier([(70, 167), (220, 109), (53, 390), (122, 14)])

>>> draw.draw(img)

>>> display(img)

>>> draw.draw(img)

>>> from wand.display import display
>>> display(img)
Листинг 20.7. Совместное использование библиотек Wand и Pillow
from wand.image import Image as WandImage

from wand.color import Color

from wand.drawing import Drawing

from PIL import Image, ImageDraw

img = WandImage(width = 400, height = 300, background = Color("white"))

draw = Drawing()

draw.stroke_color = Color("red")

draw.fill_color = Color("white")

draw.circle((100, 100), (100, 0))

draw.draw(img)
img.save(filename = "tmp.bmp")

img = Image.open("tmp.bmp")

draw = ImageDraw.Draw(img)

draw.ellipse((200, 0, 400, 200), fill = "white", outline = "red")

img.show()

20.7. Вывод текста

>>> from PIL import Image, ImageDraw, ImageFont

>>> img = Image.new("RGB", (300, 300), (255, 255, 255))

>>> draw = ImageDraw.Draw(img)

>>> font = ImageFont.load_default()

>>> draw.text((10, 10), "Hello", font=font, fill="red")

>>> img.show()

>>> font = ImageFont.load("pilfonts/helvO12.pil")

>>> draw.text((10, 40), "Hello", font=font, fill="blue")

>>> img.show()

>>> txt = "Привет, мир!"

>>> font_file = r"C:\WINDOWS\Fonts\arial.ttf"

>>> font = ImageFont.truetype(font_file, size=24)

>>> draw.text((10, 80), txt, font=font, fill=(0, 0, 0))

>>> img.show()

>>> txt = "Привет, мир!"

>>> font_file = r"C:\WINDOWS\Fonts\arial.ttf"

>>> font = ImageFont.truetype(font_file, size=24)

>>> draw.textsize(txt, font=font)

(143, 27)

>>> font.getsize(txt)

(143, 27)

from wand.drawing import Drawing, STYLE_TYPES

draw = Drawing()

draw.font = r"c:\Windows\Fonts\arial.ttf"

draw.font_size = 24

draw.font_weight = 700

draw.font_style = STYLE_TYPES[2]

from wand.drawing import TEXT_ALIGN_TYPES, TEXT_DECORATION_TYPES

draw.text_alignment = TEXT_ALIGN_TYPES[3]

draw.text_decoration = TEXT_DECORATION_TYPES[2]

Листинг 20.8. Вывод текста на русском языке с помощью библиотеки Wand
from wand.image import Image as WandImage

from wand.color import Color

from wand.drawing import Drawing, STYLE_TYPES, TEXT_ALIGN_TYPES, TEXT_DECORATION_TYPES

from wand.display import display

img = WandImage(width = 400, height = 300, background = Color("white"))

draw = Drawing()

draw.stroke_color = Color("blue")

draw.fill_color = Color("yellow")

draw.font = r"c:\Windows\Fonts\verdana.ttf"

draw.font_size = 32

draw.font_weight = 700

draw.font_style = STYLE_TYPES[2]

draw.text_alignment = TEXT_ALIGN_TYPES[2]

draw.text_decoration = TEXT_DECORATION_TYPES[2]
draw.text(200, 150, "Привет, мир!")

draw.draw(img)
display(img)

>>> fm = draw.get_font_metrics(img, "Привет, мир!")

>>> print(fm.text_width, fm.text_height)
216.0 39.0

20.8. Создание скриншотов

Листинг 20.9. Создание скриншотов
>>> from PIL import Image, ImageGrab
>>> img = ImageGrab.grab()

>>> img.save("screen.bmp", "BMP")

>>> img.mode

'RGB'

>>> img2 = ImageGrab.grab((100, 100, 300, 300))

>>> img2.save("screen2.bmp", "BMP")

>>> img2.size
(200, 200)

21. Взаимодействие с Интернетом
21.1. Разбор URL-адреса

Листинг 21.1. Разбор URL-адреса с помощью функции urlparse()
>>> from urllib.parse import urlparse

>>> url = urlparse("http://wwwadmin.ru:80/test.php;st?var=5#metka")

>>> url

ParseResult(scheme='http', netloc='wwwadmin.ru:80', path='/test.php',

params='st', query='var=5', fragment='metka')

>>> tuple(url) # Преобразование в кортеж
('http', 'wwwadmin.ru:80', '/test.php', 'st', 'var=5', 'metka')

>>> urlparse("//wwwadmin.ru/test.php")

ParseResult(scheme='', netloc='wwwadmin.ru', path='/test.php',

params='', query='', fragment='')

>>> urlparse("//wwwadmin.ru/test.php", "http")

ParseResult(scheme='http', netloc='wwwadmin.ru', path='/test.php',

params='', query='', fragment='')

>>> url.scheme, url[0]
('http', 'http')
>>> url.netloc, url[1]
('wwwadmin.ru:80', 'wwwadmin.ru:80')
>>> url.hostname, url.port
('wwwadmin.ru', 80)
>>> url.path, url[2]
('/test.php', '/test.php')
>>> url.params, url[3]
('st', 'st')
>>> url.query, url[4]
('var=5', 'var=5')
>>> url.fragment, url[5]
('metka', 'metka')
>>> u = urlparse("http://site.ru/add.php?v=5#metka")
>>> u.query, u.fragment
('v=5', 'metka')
>>> u = urlparse("http://site.ru/add.php?v=5#metka","",False)
>>> u.query, u.fragment
('v=5#metka', '')
>>> ftp = urlparse("ftp://user:123456@mysite.ru")
>>> ftp.scheme, ftp.hostname, ftp.username, ftp.password
('ftp', 'mysite.ru', 'user', '123456')
>>> url.geturl()
'http://wwwadmin.ru:80/test.php;st?var=5#metka'
Листинг 21.2. Использование функции urlunparse()
>>> from urllib.parse import urlunparse

>>> t = ('http', 'wwwadmin.ru:80', '/test.php', '', 'var=5', 'metka')

>>> urlunparse(t)

'http://wwwadmin.ru:80/test.php?var=5#metka'

>>> l = ['http', 'wwwadmin.ru:80', '/test.php', '', 'var=5', 'metka']

>>> urlunparse(l)

'http://wwwadmin.ru:80/test.php?var=5#metka'
Листинг 21.3. Разбор URL-адреса с помощью функции urlsplit()
>>> from urllib.parse import urlsplit

>>> url = urlsplit("http://wwwadmin.ru:80/test.php;st?var=5#metka")

>>> url

SplitResult(scheme='http', netloc='wwwadmin.ru:80',

path='/test.php;st', query='var=5', fragment='metka')

>>> url[0], url[1], url[2], url[3], url[4]

('http', 'wwwadmin.ru:80', '/test.php;st', 'var=5', 'metka')

>>> url.scheme, url.netloc, url.hostname, url.port

('http', 'wwwadmin.ru:80', 'wwwadmin.ru', 80)

>>> url.path, url.query, url.fragment

('/test.php;st', 'var=5', 'metka')

>>> ftp = urlsplit("ftp://user:123456@mysite.ru")

>>> ftp.scheme, ftp.hostname, ftp.username, ftp.password

('ftp', 'mysite.ru', 'user', '123456')
Листинг 21.4. Использование функции urlunsplit()
>>> from urllib.parse import urlunsplit

>>> t = ('http', 'wwwadmin.ru:80', '/test.php;st', 'var=5', 'metka')

>>> urlunsplit(t)

'http://wwwadmin.ru:80/test.php;st?var=5#metka'

21.2. Кодирование и декодирование строки запроса

>>> from urllib.parse import parse_qs
>>> s = "str=%D1%F2%F0%EE%EA%E0&v=10&v=20&t="
>>> parse_qs(s, encoding="cp1251")
{'str': ['Строка'], 'v': ['10', '20']}
>>> parse_qs(s, keep_blank_values=True, encoding="cp1251")
{'str': ['Строка'], 't': [''], 'v': ['10', '20']}
>>> from urllib.parse import parse_qsl
>>> s = "str=%D1%F2%F0%EE%EA%E0&v=10&v=20&t="
>>> parse_qsl(s, encoding="cp1251")
[('str', 'Строка'), ('v', '10'), ('v', '20')]
>>> parse_qsl(s, keep_blank_values=True, encoding="cp1251")
[('str', 'Строка'), ('v', '10'), ('v', '20'), ('t', '')]
Листинг 21.5. Использование функции urlencode()
>>> from urllib.parse import urlencode

>>> params = {"str": "Строка 2", "var": 20} # Словарь

>>> urlencode(params, encoding="cp1251")

'str=%D1%F2%F0%EE%EA%E0+2&var=20'

>>> params = [("str", "Строка 2"), ("var", 20)] # Список
>>> urlencode(params, encoding="cp1251")

'str=%D1%F2%F0%EE%EA%E0+2&var=20'
Листинг 21.6. Составление строки запроса из элементов последовательности

>>> params = [("var", [10, 20])]

>>> urlencode(params, doseq=False, encoding="cp1251")

'var=%5B10%2C+20%5D'

>>> urlencode(params, doseq=True, encoding="cp1251")

'var=10&var=20'

>>> params = { "var": [10, 20] }

>>> urlencode(params, doseq=True, encoding="cp1251")

'var=10&var=20'

>>> from urllib.parse import quote
>>> quote("Строка", encoding="cp1251") # Кодировка Windows-1251
'%D1%F2%F0%EE%EA%E0'
>>> quote("Строка", encoding="utf-8") # Кодировка UTF-8
'%D0%A1%D1%82%D1%80%D0%BE%D0%BA%D0%B0'
>>> quote("/~nik/"), quote("/~nik/", safe="")
('/%7Enik/', '%2F%7Enik%2F')
>>> quote("/~nik/", safe="/~")
'/~nik/'
>>> from urllib.parse import quote, quote_plus
>>> quote("Строка 2", encoding="cp1251")
'%D1%F2%F0%EE%EA%E0%202'
>>> quote_plus("Строка 2", encoding="cp1251")
'%D1%F2%F0%EE%EA%E0+2'
>>> quote_plus("/~nik/")
'%2F%7Enik%2F'
>>> quote_plus("/~nik/", safe="/~")
'/~nik/'
>>> from urllib.parse import quote_from_bytes
>>> quote_from_bytes(bytes("Строка 2", encoding="cp1251"))
'%D1%F2%F0%EE%EA%E0%202'
>>> from urllib.parse import unquote
>>> unquote("%D1%F2%F0%EE%EA%E0", encoding="cp1251")
'Строка'
>>> s = "%D0%A1%D1%82%D1%80%D0%BE%D0%BA%D0%B0"
>>> unquote(s, encoding="utf-8")
'Строка'
>>> unquote('%D1%F2%F0%EE%EA%E0+2', encoding="cp1251")
'Строка+2'
>>> from urllib.parse import unquote_plus
>>> unquote_plus("%D1%F2%F0%EE%EA%E0+2", encoding="cp1251")
'Строка 2'
>>> unquote_plus("%D1%F2%F0%EE%EA%E0%202", encoding="cp1251")
'Строка 2'
>>> from urllib.parse import unquote_to_bytes

>>> unquote_to_bytes("%D1%F2%F0%EE%EA%E0%202")

b'\xd1\xf2\xf0\xee\xea\xe0 2'

>>> unquote_to_bytes(b"%D1%F2%F0%EE%EA%E0%202")

b'\xd1\xf2\xf0\xee\xea\xe0 2'

>>> unquote_to_bytes("%D0%A1%D1%82%D1%80%D0%BE%D0%BA%D0%B0")

b'\xd0\xa1\xd1\x82\xd1\x80\xd0\xbe\xd0\xba\xd0\xb0'

>>> str(_, "utf-8")

'Строка'

21.3. Преобразование относительного URL-адреса в абсолютный

Листинг 21.7. Варианты преобразования относительных интернет-адресов
>>> from urllib.parse import urljoin

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', 'file.html')

'http://wwwadmin.ru/f1/f2/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', 'f3/file.html')

'http://wwwadmin.ru/f1/f2/f3/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', '/file.html')

'http://wwwadmin.ru/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', './file.html')

'http://wwwadmin.ru/f1/f2/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', '../file.html')

'http://wwwadmin.ru/f1/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', '../../file.html')

'http://wwwadmin.ru/file.html'

>>> urljoin('http://wwwadmin.ru/f1/f2/test.html', '../../../file.html')

'http://wwwadmin.ru/../file.html'

21.4. Разбор HTML-эквивалентов

>>> from xml.sax.saxutils import escape
>>> s = """&<>" """
>>> escape(s)
'&<>" '
>>> escape(s, { '"': """, " ": " " })
'&<>" '
>>> from xml.sax.saxutils import quoteattr
>>> print(quoteattr("""&<>" """))
'&<>" '
>>> print(quoteattr("""&<>"'"""))
"&<>"'"
>>> print(quoteattr("""&<>" """, { '"': """ }))
"&<>" "
>>> from xml.sax.saxutils import unescape
>>> s = '&<>" '
>>> unescape(s)
'&<>" '
>>> unescape(s, { """: '"', " ": " " })
'&<>" '
Листинг 21.8. Замена спецсимволов HTML-эквивалентами

>>> import html
>>> html.escape("""&<>"' """)

'&<>"' '

>>> html.escape("""&<>"' """, False)

'&<>"\' '
>>> html.unescape('&<>"' ')

'&<>"\' '

>>> html.unescape('&<>"\' ')

'&<>"\' '

21.5. Обмен данными по протоколу HTTP
>>> from http.client import HTTPConnection

>>> con = HTTPConnection("test1.ru")

>>> con2 = HTTPConnection("test1.ru", 80)

>>> con3 = HTTPConnection("test1.ru:80")
Листинг 21.9. Отправка данных методом GET
>>> from http.client import HTTPConnection

>>> from urllib.parse import urlencode

>>> data = urlencode({"color": "Красный", "var": 15}, encoding="cp1251")

>>> headers = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Referer": "/index.php" }

>>> con = HTTPConnection("test1.ru")

>>> con.request("GET", "/testrobots.php?%s" % data, headers=headers)

>>> result = con.getresponse() # Создаем объект результата

>>> print(result.read().decode("cp1251")) # Читаем данные
... Фрагмент опущен ...

>>> con.close() # Закрываем объект соединения
Листинг 21.10. Отправка данных методом POST
>>> from http.client import HTTPConnection

>>> from urllib.parse import urlencode

>>> data = urlencode({"color": "Красный", "var": 15}, encoding="cp1251")

>>> headers = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Content-Type": "application/x-www-form-urlencoded",

 "Referer": "/index.php" }

>>> con = HTTPConnection("test1.ru")

>>> con.request("POST", "/testrobots.php", data, headers=headers)

>>> result = con.getresponse() # Создаем объект результата

>>> print(result.read().decode("cp1251"))

... Фрагмент опущен ...

>>> con.close()

>>> result.getheader("Content-Type")
'text/plain; charset=windows-1251'
>>> print(result.getheader("Content-Types"))
None
>>> result.getheader("Content-Types", 10)
10
>>> result.getheaders()
[('Date', 'Mon, 27 Apr 2015 13:33:21 GMT'), ('Server', 'Apache/2.2.4

 (Win32) mod_ssl/2.2.4 OpenSSL/0.9.8d PHP/5.2.4'), ('X-Powered-By',
 'PHP/5.2.4'), ('Content-Length', '422'), ('Content-Type',
 'text/plain; charset=windows-1251')]
>>> dict(result.getheaders())
{'Date': 'Mon, 27 Apr 2015 13:33:21 GMT', 'Content-Length': '422',
 'X-Powered-By': 'PHP/5.2.4', 'Content-Type': 'text/plain;

 charset=windows-1251', 'Server': 'Apache/2.2.4 (Win32)

 mod_ssl/2.2.4 OpenSSL/0.9.8d PHP/5.2.4'}
>>> result.status
200
>>> result.reason # При коде 200
'OK'
>>> result.reason # При коде 302
'Moved Temporarily'
>>> result.version # Протокол HTTP/1.1
11
>>> print(result.msg)
Date: Mon, 27 Apr 2015 13:33:21 GMT
Server: Apache/2.2.4 (Win32) mod_ssl/2.2.4 OpenSSL/0.9.8d PHP/5.2.4
X-Powered-By: PHP/5.2.4
Content-Length: 422
Content-Type: text/plain; charset=windows-1251
>>> result.msg.as_string()
'Date: Mon, 27 Apr 2015 13:33:21 GMT\nServer: Apache/2.2.4 (Win32)
 mod_ssl/2.2.4 OpenSSL/0.9.8d PHP/5.2.4\nX-Powered-By:
 PHP/5.2.4\nContent-Length: 422\nContent-Type: text/plain;
 charset=windows-1251\n\n'
>>> result.msg.items()
[('Date', 'Mon, 27 Apr 2015 13:33:21 GMT'), ('Server', 'Apache/2.2.4
 (Win32) mod_ssl/2.2.4 OpenSSL/0.9.8d PHP/5.2.4'), ('X-Powered-By',
 'PHP/5.2.4'), ('Content-Length', '422'), ('Content-Type',
 'text/plain; charset=windows-1251')]
>>> result.msg.keys()
['Date', 'Server', 'X-Powered-By', 'Content-Length', 'Content-Type']
>>> result.msg.values()
['Mon, 27 Apr 2015 13:33:21 GMT', 'Apache/2.2.4 (Win32) mod_ssl/2.2.4
 OpenSSL/0.9.8d PHP/5.2.4', 'PHP/5.2.4', '422', 'text/plain;
 charset=windows-1251']
>>> result.msg.get("X-Powered-By")
'PHP/5.2.4'
>>> print(result.msg.get("X-Powered-By2"))
None
>>> result.msg.get("X-Powered-By2", failobj=10)
10
>>> result.msg.get_all("X-Powered-By")
['PHP/5.2.4']
>>> result.msg.get_content_type()
'text/plain'
>>> result.msg.get_content_maintype()
'text'
>>> result.msg.get_content_subtype()
'plain'
>>> result.msg.get_content_charset()
'windows-1251'
Листинг 21.11. Отправка запроса методом HEAD
>>> from http.client import HTTPConnection

>>> headers = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Referer": "/index.php" }

>>> con = HTTPConnection("test1.ru")

>>> con.request("HEAD", "/testrobots.php", headers=headers)

>>> result = con.getresponse() # Создаем объект результата

>>> print(result.msg)

Date: Mon, 27 Apr 2015 13:39:54 GMT

Server: Apache/2.2.4 (Win32) mod_ssl/2.2.4 OpenSSL/0.9.8d PHP/5.2.4

X-Powered-By: PHP/5.2.4

Content-Type: text/plain; charset=windows-1251

>>> result.read() # Данные не передаются, только заголовки!

b''

>>> con.close()

21.6. Обмен данными с помощью модуля urllib.request
>>> from urllib.request import urlopen
>>> res = urlopen("http://test1.ru/testrobots.php")
>>> print(res.read(34).decode("cp1251"))
Название робота: Python-urllib/3.4
>>> print(res.read().decode("cp1251"))

... Фрагмент опущен ...
>>> res.read()
b''
>>> res = urlopen("http://test1.ru/testrobots.php")
>>> print(res.readline().decode("cp1251"))

Название робота: Python-urllib/3.4
>>> res = urlopen("http://test1.ru/testrobots.php")
>>> res.readlines(3)
[b'\xcd\xe0\xe7\xe2\xe0\xed\xe8\xe5 \xf0\xee\xe1\xee\xf2\xe0:
 Python-urllib/3.4\n']
>>> res.readlines()
... Фрагмент опущен ...
>>> res.readlines()
[]
>>> res = urlopen("http://test1.ru/testrobots.php")
>>> for line in res: print(line)
>>> res = urlopen("http://test1.ru/testrobots.php")
>>> info = res.info()
>>> info.items()
[('Date', 'Mon, 27 Apr 2015 13:55:25 GMT'), ('Server', 'Apache/2.2.4
 (Win32) mod_ssl/2.2.4 OpenSSL/0.9.8d PHP/5.2.4'), ('X-Powered-By',
 'PHP/5.2.4'), ('Content-Length', '288'), ('Connection', 'close'),
 ('Content-Type', 'text/plain; charset=windows-1251')]
>>> info.get("Content-Type")
'text/plain; charset=windows-1251'
>>> info.get_content_type(), info.get_content_charset()
('text/plain', 'windows-1251')
>>> info.get_content_maintype(), info.get_content_subtype()
('text', 'plain')
>>> res.code, res.msg
(200, 'OK')
Листинг 21.12. Отправка данных методами GET и POST
>>> from urllib.request import urlopen

>>> from urllib.parse import urlencode

>>> data = urlencode({"color": "Красный", "var": 15}, encoding="cp1251")

>>> # Отправка данных методом GET

>>> url = "http://test1.ru/testrobots.php?" + data

>>> res = urlopen(url)

>>> print(res.read(34).decode("cp1251"))

Название робота: Python-urllib/3.4
>>> res.close()

>>> # Отправка данных методом POST

>>> url = " http://test1.ru/testrobots.php"

>>> res = urlopen(url, data.encode("cp1251"))

>>> print(res.read().decode("cp1251"))

... Фрагмент опущен ...

>>> res.close()

Листинг 21.13. Использование класса Request
>>> from urllib.request import urlopen, Request

>>> from urllib.parse import urlencode

>>> headers = { "User-Agent": "MySpider/1.0",

 "Accept": "text/html, text/plain, application/xml",

 "Accept-Language": "ru, ru-RU",

 "Accept-Charset": "windows-1251",

 "Referer": "/index.php" }

>>> data = urlencode({"color": "Красный", "var": 15}, encoding="cp1251")

>>> # Отправка данных методом GET

>>> url = "http://test1.ru/testrobots.php?" + data

>>> request = Request(url, headers=headers)

>>> res = urlopen(request)

>>> print(res.read(29).decode("cp1251"))

Название робота: MySpider/1.0

>>> res.close()

>>> # Отправка данных методом POST

>>> url = "http://test1.ru/testrobots.php"

>>> request = Request(url, data.encode("cp1251"), headers=headers)

>>> res = urlopen(request)

>>> print(res.read().decode("cp1251"))

... Фрагмент опущен ...

>>> res.close()
21.7. Определение кодировки

<meta http-equiv="Content-Type"

 content="text/html; charset=windows-1251">

c:\python34\scripts\pip install chardet
>>> import chardet

>>> chardet.__version__

'2.3.0'
Листинг 21.14. Пример определения кодировки

>>> import chardet

>>> chardet.detect(bytes("Строка", "cp1251"))

{'confidence': 0.99, 'encoding': 'windows-1251'}

>>> chardet.detect(bytes("Строка", "koi8-r"))

{'confidence': 0.99, 'encoding': 'KOI8-R'}

>>> chardet.detect(bytes("Строка", "utf-8"))

{'confidence': 0.99, 'encoding': 'utf-8'}
Листинг 21.15. Пример использования класса UniversalDetector
from chardet.universaldetector import UniversalDetector

ud = UniversalDetector() # Создаем объект
for line in open("file.txt", "rb"):

 ud.feed(line) # Передаем текущую строку

 if ud.done: break # Прерываем цикл, если done == True

ud.close() # Закрываем объект

print(ud.result) # Выводим результат

input()

22. Сжатие данных

22.1. Сжатие и распаковка по алгоритму GZIP
Листинг 22.1. Сохранение в архивном файле GZIP произвольных данных

>>> import gzip
>>> fn = "test.gz"
>>> s = "Это очень, очень, очень, очень большая строка"
>>> f = gzip.open(fn, mode = "wt", encoding = "utf-8")

>>> f.write(s)

>>> f.close()

>>> f = gzip.open(fn, mode = "rt", encoding = "utf-8")

>>> print(f.read())

Это очень, очень, очень, очень большая строка
>>> f.close()
Листинг 22.2. Сжатие и распаковка двоичного файла по алгоритму GZIP
>>> import gzip

>>> fn = "image.gz"

>>> f1 = open("image.jpg", "rb")

>>> f2 = gzip.open(fn, "wb")

>>> f2.write(f1.read())

>>> f2.close()

>>> f1.close()

>>> f1 = open("image_new.jpg", "wb")

>>> f2 = gzip.GzipFile(filename = fn)

>>> f1.write(f2.read())

>>> f1.close()

>>> f2.close()

>>> import gzip
>>> s = b"This is a very, very, very, very big string"

>>> gzip.compress(s)

b'\x1f\x8b\x08\x00\x0f4>U\x02\xff\x0b\xc9\xc8,V\x00\xa2D\x85\xb2\xd4\xa2J\x1d\x0cR!)3]\xa1\xb8\xa4(3/\x1d\x00\xbaZ)I+\x00\x00\x00'
>>> b = b'\x1f\x8b\x08\x00\x0f4>U\x02\xff\x0b\xc9\xc8,V\x00\xa2D\x85\xb2\xd4\xa2J\x1d\x0cR!)3]\xa1\xb8\xa4(3/\x1d\x00\xbaZ)I+\x00\x00\x00'

>>> gzip.decompress(b)

b'This is a very, very, very, very big string'
22.2. Сжатие и распаковка по алгоритму BZIP2

Листинг 22.3. Сохранение в архивном файле BZIP2 произвольных данных

>>> import bz2

>>> fn = "test.bz2"

>>> s = "Это очень, очень, очень, очень большая строка"
>>> f = bz2.open(fn, mode = "wt", encoding = "utf-8")

>>> f.write(s)

>>> f.close()

>>> f = bz2.open(fn, mode = "rt", encoding = "utf-8")

>>> print(f.read())

Это очень, очень, очень, очень большая строка
>>> f.close()
Листинг 22.4. Сжатие и распаковка двоичного файла по алгоритму BZIP2

>>> import bz2

>>> fn = "doc.bz2"

>>> f1 = open("doc.doc", "rb")

>>> f2 = bz2.open(fn, "wb")

>>> f2.write(f1.read())

>>> f2.close()

>>> f1.close()

>>> f1 = open("doc_new.doc", "wb")

>>> f2 = bz2.BZ2File(filename = fn)

>>> f1.write(f2.read())

>>> f1.close()

>>> f2.close()
Листинг 22.5. Сжатие и распаковка двоичного файла по алгоритму BZIP2 по частям
import bz2

fn = "doc.bz2"

f1 = open("doc.doc", "rb")

f2 = open(fn, "wb")

comp = bz2.BZ2Compressor()

data = f1.read(1024)

while data:

 f2.write(comp.compress(data))

 data = f1.read(1024)

f2.write(comp.flush())

f2.close()

f1.close()

f1 = open("doc_new.doc", "wb")

f2 = open(fn, "rb")

decomp = bz2.BZ2Decompressor()

data = f2.read(1024)

while data:

 f1.write(decomp.decompress(data))

 data = f2.read(1024)

f1.close()

f2.close()

22.3. Сжатие и распаковка по алгоритму LZMA
Листинг 22.6. Сохранение строки в архиве LZMA
>>> import lzma

>>> fn = "test.xz"

>>> s = "Это очень, очень, очень, очень большая строка"
>>> f = lzma.open(fn, mode = "wt", encoding = "utf-8")

>>> f.write(s)

>>> f.close()

>>> f = lzma.LZMAFile(filename = fn)

>>> str(f.read(), encoding = "utf-8")

'Это очень, очень, очень, очень большая строка'

>>> f.close()
Листинг 22.7. Сжатие и распаковка двоичного файла по алгоритму LZMA по частям
import lzma
fn = "doc.lzma"

f1 = open("doc.doc", "rb")

f2 = open(fn, "wb")

comp = lzma.LZMACompressor(format = lzma.FORMAT_ALONE, preset = 9)

data = f1.read(1024)

while data:

 f2.write(comp.compress(data))

 data = f1.read(1024)

f2.write(comp.flush())

f2.close()

f1.close()

f1 = open("doc_new.doc", "wb")

f2 = open(fn, "rb")

decomp = lzma.LZMADecompressor()

data = f2.read(1024)

while data:

 f1.write(decomp.decompress(data))

 data = f2.read(1024)

f1.close()

f2.close()

import lzma
try:
 f = lzma.open("test.xz")
except lzma.LZMAError:

 print("Что-то пошло не так…")

22.4. Работа с архивами ZIP
>>> import zipfile

>>> f = zipfile.ZipFile("test.zip", mode = "a", compression = zipfile.ZIP_DEFLATED)

>>> # Добавляем в архив файл doc.doc
>>> f.write("doc.doc")

>>> # Добавляем в архив файл doc2.doc под именем newdoc.doc
>>> f.write("doc2.doc", arcname = "newdoc.doc")

>>> # Считываем содержимое файла text.txt
>>> f2 = open("text.txt", mode = "r")

>>> s = f2.read()

>>> # Добавляем прочитанные данные в архив под именем textual.txt
>>> f.writestr("textual.txt", s)

>>> f2.close()

>>> f.close()

>>> f = zipfile.ZipFile("test.zip", mode = "r", compression = zipfile.ZIP_DEFLATED)
>>> gf = f.getinfo("doc.doc")

>>> gf.filename, gf.file_size, gf.compress_size

('doc.doc', 242688, 63242)
>>> gf.date_time

(2015, 4, 27, 14, 51, 4)
>>> for i in f.infolist(): print(i.filename, end = " ")
doc.doc newdoc.doc textual.txt
>>> f.namelist()

['doc.doc', 'newdoc.doc', 'textual.txt']

>>> # Распаковываем файл doc.doc, сведения о котором хранятся

>>> # в переменной gf
>>> f.extract(gf)

'C:\\Python34\\doc.doc'

>>> # Распаковываем файл newdoc.doc в папку c:\work
>>> f.extract("newdoc.doc", path = r'c:\work')

'c:\\work\\newdoc.doc'
>>> # Распаковываем все файлы

>>> f.extractall()

>>> # Распаковываем лишь файлы doc.doc и newdoc.doc в папку c:\work
>>> f.extractall(path = r'c:\work', members = ['doc.doc', 'newdoc.doc'])

>>> d = f.open("textual.txt")

>>> f2 = open("newtext.txt", mode = "wb")

>>> f2.write(d.read())

>>> f2.close()

>>> d = f.read("textual.txt")

>>> f2 = open("newtext.txt", mode = "wb")

>>> f2.write(d)

>>> f2.close()

>>> zipfile.is_zipfile("test.zip")

True
>>> zipfile.is_zipfile("doc.doc")

False
22.5. Работа с архивами TAR
>>> import tarfile
>>> # Поскольку мы не можем создать сжатый файл TAR,
>>> # сначала создадим несжатый…
>>> f = tarfile.TarFile(name = "test.tar.gz", mode = "a")

>>> # …сразу же закроем его…
>>> f.close()

>>> # …а потом откроем снова, указав алгоритм сжатия GZIP
>>> f = tarfile.open(name = "test.tar.gz", mode = "w:gz")

>>> # Добавляем в архив файл doc.doc
>>> f.add("doc.doc")

>>> # Добавляем в архив файл doc2.doc под именем newdoc.doc
>>> f.add("doc2.doc", arcname = "newdoc.doc")

>>> # Добавляем в архив папку test с содержимым

>>> f.add("test")

>>> # Добавляем в архив папку test2 без содержимого

>>> f.add("test2", recursive = False)

>>> # Добавляем в архив папку test3, исключив все временные файлы,

>>> # что могут в ней находиться

>>> def except_tmp(filename):

 return filename.find(".tmp") != -1

>>> f.add("test3", exclude = except_tmp)
>>> f.close()

>>> f = tarfile.open(name = "test.tar.gz")
>>> # Получаем сведения о файле doc.doc
>>> ti = f.getmember("doc.doc")

>>> ti.name, ti.size, ti.mtime, ti.isfile(), ti.isdir()

('doc.doc', 242688, 1430135464, True, False)

>>> # Получаем сведения о папке test
>>> ti = f.getmember("test")

>>> ti.name, ti.size, ti.mtime, ti.isfile(), ti.isdir()

('test', 0, 1430223812, False, True)
>>> for i in f.getmembers(): print(i.name, end = " ")
doc.doc newdoc.doc test test/test2 test/test2/text.txt test/text.txt
>>> f.getnames()

['doc.doc', 'newdoc.doc', 'test', 'test/test2', 'test/test2/text.txt',
'test/text.txt']
>>> # Распаковываем папку test, сведения о которой хранятся

>>> # в переменной ti
>>> f.extract(ti)

>>> # Распаковываем файл doc.doc в папку c:\work
>>> f.extract("doc.doc", path = r'c:\work')

>>> # Распаковываем все файлы

>>> f.extractall()

>>> # Распаковываем лишь файлы doc.doc и newdoc.doc в папку c:\work
>>> l = [f.getmember("doc.doc"), f.getmember("newdoc.doc")]
>>> f.extractall(path = r'c:\work', members = l)

>>> d = f.extractfile("doc.doc")

>>> f2 = open("doc2.doc", mode = "wb")

>>> f2.write(d.read())

>>> f2.close()

>>> tarfile.is_tarfile("test.tar.gz")

True
>>> tarfile.is_tarfile("doc2.doc")

False
