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CHAPTER 1

Introduction

1. Write down the problem.
2. Thinkreal hard.

3. Write down the solution.
— “The Feynman Algorithm”
as described by Murray Gell-Mann

Consider the following problem: You are to visit all the cities, towns, and villages of, say, Sweden and then return

to your starting point. This might take a while (there are 24,978 locations to visit, after all), so you want to minimize
your route. You plan on visiting each location exactly once, following the shortest route possible. As a programmer,
you certainly don’t want to plot the route by hand. Rather, you try to write some code that will plan your trip for you.
For some reason, however, you can’t seem to get it right. A straightforward program works well for a smaller number
of towns and cities but seems to run forever on the actual problem, and improving the program turns out to be
surprisingly hard. How come?

Actually, in 2004, a team of five researchers' found such a tour of Sweden, after a number of other research teams
had tried and failed. The five-man team used cutting-edge software with lots of clever optimizations and tricks of
the trade, running on a cluster of 96 Xeon 2.6GHz workstations. Their software ran from March 2003 until May 2004,
before it finally printed out the optimal solution. Taking various interruptions into account, the team estimated that
the total CPU time spent was about 85 years!

Consider a similar problem: You want to get from Kashgar, in the westernmost region of China, to Ningbo, on the
east coast, following the shortest route possible.? Now, China has 3,583,715 km of roadways and 77,834 km of railways,
with millions of intersections to consider and a virtually unfathomable number of possible routes to follow. It might
seem that this problem is related to the previous one, yet this shortest path problem is one solved routinely, with no
appreciable delay, by GPS software and online map services. If you give those two cities to your favorite map service,
you should get the shortest route in mere moments. What'’s going on here?

You will learn more about both of these problems later in the book; the first one is called the traveling salesman
(or salesrep) problem and is covered in Chapter 11, while so-called shortest path problems are primarily dealt with
in Chapter 9. I also hope you will gain a rather deep insight into why one problem seems like such a hard nut to
crack while the other admits several well-known, efficient solutions. More importantly, you will learn something
about how to deal with algorithmic and computational problems in general, either solving them efficiently, using
one of the several techniques and algorithms you encounter in this book, or showing that they are too hard and that
approximate solutions may be all you can hope for. This chapter briefly describes what the book is about—what you
can expect and what is expected of you. It also outlines the specific contents of the various chapters to come in case
you want to skip around.

'David Applegate, Robert Bixby, Vasek Chvatal, William Cook, and Keld Helsgaun
2Let’s assume that flying isn’t an option.
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CHAPTER 1 © INTRODUCTION

What’s All This, Then?

This is a book about algorithmic problem solving for Python programmers. Just like books on, say, object-oriented
patterns, the problems it deals with are of a general nature—as are the solutions. For an algorist, there is more to
the job than simply implementing or executing an existing algorithm, however. You are expected to come up with
new algorithms—new general solutions to hitherto unseen, general problems. In this book, you are going to learn
principles for constructing such solutions.

This is not your typical algorithm book, though. Most of the authoritative books on the subject (such as Knuth's
classics or the industry-standard textbook by Cormen et al.) have a heavy formal and theoretical slant, even though
some of them (such as the one by Kleinberg and Tardos) lean more in the direction of readability. Instead of trying
to replace any of these excellent books, I'd like to supplement them. Building on my experience from teaching
algorithms, I try to explain as clearly as possible how the algorithms work and what common principles underlie
many of them. For a programmer, these explanations are probably enough. Chances are you'll be able to understand
why the algorithms are correct and how to adapt them to new problems you may come to face. If, however, you need
the full depth of the more formalistic and encyclopedic textbooks, I hope the foundation you get in this book will help
you understand the theorems and proofs you encounter there.

Note One difference between this book and other textbooks on algorithms is that | adopt a rather conversational
tone. While | hope this appeals to at least some of my readers, it may not be your cup of tea. Sorry about that—but now
you have, at least, been warned.

There is another genre of algorithm books as well: the “(Data Structures and) Algorithms in blank” kind, where
the blank is the author’s favorite programming language. There are quite a few of these (especially for blank = Java,
it seems), but many of them focus on relatively basic data structures, to the detriment of the meatier stuff. This is
understandable if the book is designed to be used in a basic course on data structures, for example, but for a Python
programmer, learning about singly and doubly linked lists may not be all that exciting (although you will hear a bit
about those in the next chapter). And even though techniques such as hashing are highly important, you get hash
tables for free in the form of Python dictionaries; there’s no need to implement them from scratch. Instead, I focus on
more high-level algorithms. Many important concepts that are available as black-box implementations either in the
Python language itself or in the standard library (such as sorting, searching, and hashing) are explained more briefly,
in special “Black Box” sidebars throughout the text.

There is, of course, another factor that separates this book from those in the “Algorithms in Java/C/C++/C#”
genre, namely, that the blank is Python. This places the book one step closer to the language-independent books
(such as those by Knuth,®* Cormen et al., and Kleinberg and Tardos, for example), which often use pseudocode,
the kind of fake programming language that is designed to be readable rather than executable. One of Python’s
distinguishing features is its readability; it is, more or less, executable pseudocode. Even if you've never programmed
in Python, you could probably decipher the meaning of most basic Python programs. The code in this book is
designed to be readable exactly in this fashion—you need not be a Python expert to understand the examples
(although you might need to look up some built-in functions and the like). And if you want to pretend the examples
are actually pseudocode, feel free to do so. To sum up ...

*Knuth is also well-known for using assembly code for an abstract computer of his own design.
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CHAPTER 1 © INTRODUCTION

What the book is about:

e  Algorithm analysis, with a focus on asymptotic running time
e  Basic principles of algorithm design
e  How to represent commonly used data structures in Python

e  How to implement well-known algorithms in Python

What the book covers only briefly or partially:

e  Algorithms that are directly available in Python, either as part of the language or via the
standard library

e  Thorough and deep formalism (although the book has its share of proofs and proof-like
explanations)

What the book isn’t about:

e Numerical or number-theoretical algorithms (except for some floating-point hints in Chapter 2)
e  Parallel algorithms and multicore programming

Asyou can see, “implementing things in Python” is just part of the picture. The design principles and theoretical
foundations are included in the hope that they’ll help you design your own algorithms and data structures.

Why Are You Here?

When working with algorithms, you're trying to solve problems efficiently. Your programs should be fast; the wait for
a solution should be short. But what, exactly, do I mean by efficient, fast, and short? And why would you care about
these things in a language such as Python, which isn’t exactly lightning-fast to begin with? Why not rather switch to,
say, C or Java?

First, Python is a lovely language, and you may not want to switch. Or maybe you have no choice in the
matter. But second, and perhaps most importantly, algorists don’t primarily worry about constant differences in
performance.* If one program takes twice, or even ten times, as long as another to finish, it may still be fast enough,
and the slower program (or language) may have other desirable properties, such as being more readable. Tweaking
and optimizing can be costly in many ways and is not a task to be taken on lightly. What does matter, though, no
matter the language, is how your program scales. If you double the size of your input, what happens? Will your
program run for twice as long? Four times? More? Will the running time double even if you add just one measly bit to
the input? These are the kind of differences that will easily trump language or hardware choice, if your problems get
big enough. And in some cases “big enough” needn’t be all that big. Your main weapon in whittling down the growth
of your running time is—you guessed it—a solid understanding of algorithm design.

Let’s try a little experiment. Fire up an interactive Python interpreter, and enter the following:

>>> count = 10**5

>>> nums = []

>>> for i in range(count):
nums . append (1)

>>> nums.reverse()

“I’'m talking about constant multiplicative factors here, such as doubling or halving the execution time.
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CHAPTER 1 © INTRODUCTION

Not the most useful piece of code, perhaps. It simply appends a bunch of numbers to an (initially) empty list and
then reverses that list. In a more realistic situation, the numbers might come from some outside source (they could
be incoming connections to a server, for example), and you want to add them to your list in reverse order, perhaps to
prioritize the most recent ones. Now you get an idea: instead of reversing the list at the end, couldn’t you just insert
the numbers at the beginning, as they appear? Here’s an attempt to streamline the code (continuing in the same
interpreter window):

>>> nums = []
>>> for i in range(count):
nums.insert(o, i)

Unless you've encountered this situation before, the new code might look promising, but try to run it. Chances
are you'll notice a distinct slowdown. On my computer, the second piece of code takes around 200 times as long as
the first to finish.” Not only is it slower, but it also scales worse with the problem size. Try, for example, to increase
count from 10**5 to 10**6. As expected, this increases the running time for the first piece of code by a factor of about
ten ... but the second version is slowed by roughly two orders of magnitude, making it more than two thousand times
slower than the first! As you can probably guess, the discrepancy between the two versions only increases as the
problem gets bigger, making the choice between them ever more crucial.

Note This is an example of linear vs. quadratic growth, a topic dealt with in detail in Chapter 3. The specific issue
underlying the quadratic growth is explained in the discussion of vectors (or dynamic arrays) in the “Black Box” sidebar
on list in Chapter 2.

Some Prerequisites

This book is intended for two groups of people: Python programmers, who want to beef up their algorithmics, and
students taking algorithm courses, who want a supplement to their plain-vanilla algorithms textbook. Even if you
belong to the latter group, I'm assuming you have a familiarity with programming in general and with Python in
particular. If you don’t, perhaps my book Beginning Python can help? The Python web site also has a lot of useful
material, and Python is a really easy language to learn. There is some math in the pages ahead, but you don’t have to
be a math prodigy to follow the text. You'll be dealing with some simple sums and nifty concepts such as polynomials,
exponentials, and logarithms, but I'll explain it all as we go along.

Before heading off into the mysterious and wondrous lands of computer science, you should have your
equipment ready. As a Python programmer, I assume you have your own favorite text/code editor or integrated
development environment—I'm not going to interfere with that. When it comes to Python versions, the book is
written to be reasonably version-independent, meaning that most of the code should work with both the Python 2 and
3 series. Where backward-incompatible Python 3 features are used, there will be explanations on how to implement
the algorithm in Python 2 as well. (And if, for some reason, you're still stuck with, say, the Python 1.5 series, most of
the code should still work, with a tweak here and there.)

See Chapter 2 for more on benchmarking and empirical evaluation of algorithms.

4
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GETTING WHAT YOU NEED

In some operating systems, such as Mac 0S X and several flavors of Linux, Python should already be installed. If it
is not, most Linux distributions will let you install the software you need through some form of package manager.
If you want or need to install Python manually, you can find all you need on the Python web site, http://python.org.

What'’s in This Book

The book is structured as follows:
Chapter 1: Introduction. You've already gotten through most of this. It gives an overview of the book.

Chapter 2: The Basics. This covers the basic concepts and terminology, as well as some fundamental math. Among
other things, you learn how to be sloppier with your formulas than ever before, and still get the right results, using
asymptotic notation.

Chapter 3: Counting 101. More math—but it’s really fun math, I promise! There’s some basic combinatorics for
analyzing the running time of algorithms, as well as a gentle introduction to recursion and recurrence relations.

Chapter 4: Induction and Recursion ... and Reduction. The three terms in the title are crucial, and they are
closely related. Here we work with induction and recursion, which are virtually mirror images of each other, both
for designing new algorithms and for proving correctness. We'll also take a somewhat briefer look at the idea of
reduction, which runs as a common thread through almost all algorithmic work.

Chapter 5: Traversal: A Skeleton Key to Algorithmics. Traversal can be understood using the ideas of induction and
recursion, but it is in many ways a more concrete and specific technique. Several of the algorithms in this book are
simply augmented traversals, so mastering this idea will give you a real jump start.

Chapter 6: Divide, Combine, and Conquer. When problems can be decomposed into independent subproblems,
you can recursively solve these subproblems and usually get efficient, correct algorithms as a result. This principle has
several applications, not all of which are entirely obvious, and it is a mental tool well worth acquiring.

Chapter 7: Greed is Good? Prove It! Greedy algorithms are usually easy to construct. It is even possible to formulate
a general scheme that most, if not all, greedy algorithms follow, yielding a plug-and-play solution. Not only are they
easy to construct, but they are usually very efficient. The problem is, it can be hard to show that they are correct

(and often they aren’t). This chapter deals with some well-known examples and some more general methods for
constructing correctness proofs.

Chapter 8: Tangled Dependencies and Memoization. This chapter is about the design method (or, historically,
the problem) called, somewhat confusingly, dynamic programming. It is an advanced technique that can be hard to
master but that also yields some of the most enduring insights and elegant solutions in the field.

Chapter 9: From A to B with Edsger and Friends. Rather than the design methods of the previous three chapters, the
focus is now on a specific problem, with a host of applications: finding shortest paths in networks, or graphs. There are
many variations of the problem, with corresponding (beautiful) algorithms.

Chapter 10: Matchings, Cuts, and Flows. How do you match, say, students with colleges so you maximize total
satisfaction? In an online community, how do you know whom to trust? And how do you find the total capacity of a
road network? These, and several other problems, can be solved with a small class of closely related algorithms and
are all variations of the maximum flow problem, which is covered in this chapter.
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Chapter 11: Hard Problems and (Limited) Sloppiness. As alluded to in the beginning of the introduction, there are
problems we don’t know how to solve efficiently and that we have reasons to think won’t be solved for a long time—
maybe never. In this chapter, you learn how to apply the trusty tool of reduction in a new way: not to solve problems
but to show that they are hard. Also, we take a look at how a bit of (strictly limited) sloppiness in the optimality criteria
can make problems a lot easier to solve.

Appendix A: Pedal to the Metal: Accelerating Python. The main focus of this book is asymptotic efficiency—making
your programs scale well with problem size. However, in some cases, that may not be enough. This appendix gives you
some pointers to tools that can make your Python programs go faster. Sometimes a /ot (as in hundreds of times) faster.

Appendix B: List of Problems and Algorithms. This appendix gives you an overview of the algorithmic problems and
algorithms discussed in the book, with some extra information to help you select the right algorithm for the problem
at hand.

Appendix C: Graph Terminology and Notation. Graphs are a really useful structure, both in describing real-world
systems and in demonstrating how various algorithms work. This chapter gives you a tour of the basic concepts and
lingo, in case you haven'’t dealt with graphs before.

Appendix D: Hints for Exercises. Just what the title says.

Summary

Programming isn’t just about software architecture and object-oriented design; it’s also about solving algorithmic
problems, some of which are really hard. For the more run-of-the-mill problems (such as finding the shortest path
from A to B), the algorithm you use or design can have a huge impact on the time your code takes to finish, and for
the hard problems (such as finding the shortest route through A-Z), there may not even be an efficient algorithm,
meaning that you need to accept approximate solutions.

This book will teach you several well-known algorithms, along with general principles that will help you create
your own. Ideally, this will let you solve some of the more challenging problems out there, as well as create programs
that scale gracefully with problem size. In the next chapter, we get started with the basic concepts of algorithmics,
dealing with terms that will be used throughout the entire book.

If You’re Curious ...

This is a section you'll see in all the chapters to come. It’s intended to give you some hints about details, wrinkles, or
advanced topics that have been omitted or glossed over in the main text and to point you in the direction of further
information. For now, I'll just refer you to the “References” section, later in this chapter, which gives you details about
the algorithm books mentioned in the main text.

Exercises

As with the previous section, this is one you’ll encounter again and again. Hints for solving the exercises can be found
in Appendix D. The exercises often tie in with the main text, covering points that aren’t explicitly discussed there

but that may be of interest or that deserve some contemplation. If you want to really sharpen your algorithm design
skills, you might also want to check out some of the myriad of sources of programming puzzles out there. There are,
for example, lots of programming contests (a web search should turn up plenty), many of which post problems that
you can play with. Many big software companies also have qualification tests based on problems such as these and
publish some of them online.
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CHAPTER 1 INTRODUCTION
Because the introduction doesn’t cover that much ground, I'll just give you a couple of exercises here—a taste of
what's to come:

1-1. Consider the following statement: “As machines get faster and memory cheaper, algorithms become less
important” What do you think; is this true or false? Why?

1-2. Find a way of checking whether two strings are anagrams of each other (such as "debit card" and "bad credit").
How well do you think your solution scales? Can you think of a naive solution that will scale poorly?
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CHAPTER 2

The Basics

Tracey: I didn’t know you were out there.
Zoe: Sort of the point. Stealth—you may have heard of it.
Tracey: I don'’t think they covered that in basic.
— From “The Message,” episode 14 of Firefly

Before moving on to the mathematical techniques, algorithmic design principles, and classical algorithms that make
up the bulk of this book, we need to go through some basic principles and techniques. When you start reading the
following chapters, you should be clear on the meaning of phrases such as “directed, weighted graph without negative
cycles” and “a running time of ®(n 1g n).” You should also have an idea of how to implement some fundamental
structures in Python.

Luckily, these basic ideas aren’t at all hard to grasp. The main two topics of the chapter are asymptotic notation,
which lets you focus on the essence of running times, and ways of representing trees and graphs in Python. There
is also practical advice on timing your programs and avoiding some basic traps. First, though, let’s take a look at the
abstract machines we algorists tend to use when describing the behavior of our algorithms.

Some Core Ideas in Computing

In the mid-1930s the English mathematician Alan Turing published a paper called “On computable numbers, with an
application to the Entscheidungsproblem” and, in many ways, laid the groundwork for modern computer science.
His abstract Turing machine has become a central concept in the theory of computation, in great part because it is
intuitively easy to grasp. A Turing machine is a simple abstract device that can read from, write to, and move along an
infinitely long strip of paper. The actual behavior of the machines varies. Each is a so-called finite state machine: It has
a finite set of states (some of which indicate that it has finished), and every symbol it reads potentially triggers reading
and/or writing and switching to a different state. You can think of this machinery as a set of rules. (“If I am in state 4
and see an X, [ move one step to the left, write a Y, and switch to state 9.”) Although these machines may seem simple,
they can, surprisingly enough, be used to implement any form of computation anyone has been able to dream up so
far, and most computer scientists believe they encapsulate the very essence of what we think of as computing.

An algorithm is a procedure, consisting of a finite set of steps, possibly including loops and conditionals, that
solves a given problem. A Turing machine is a formal description of exactly what problem an algorithm solves,* and

'The Entscheidungsproblem is a problem posed by David Hilbert, which basically asks whether an algorithm exists that can decide,
in general, whether a mathematical statement is true or false. Turing (and Alonzo Church before him) showed that such an
algorithm cannot exist.

*There are also Turing machines that don’t solve any problems—machines that simply never stop. These still represent what we
might call programs, but we usually don’t call them algorithms.
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the formalism is often used when discussing which problems can be solved (either at all or in reasonable time, as
discussed later in this chapter and in Chapter 11). For more fine-grained analysis of algorithmic efficiency, however,
Turing machines are not usually the first choice. Instead of scrolling along a paper tape, we use a big chunk of
memory that can be accessed directly. The resulting machine is commonly known as the random-access machine.

While the formalities of the random-access machine can get a bit complicated, we just need to know something
about the limits of its capabilities so we don’t cheat in our algorithm analyses. The machine is an abstract, simplified
version of a standard, single-processor computer, with the following properties:

e  We don’t have access to any form of concurrent execution; the machine simply executes one
instruction after the other.

e Standard, basic operations such as arithmetic, comparisons, and memory access all take
constant (although possibly different) amounts of time. There are no more complicated basic
operations such as sorting.

e  One computer word (the size of a value that we can work with in constant time) is not
unlimited but is big enough to address all the memory locations used to represent our
problem, plus an extra percentage for our variables.

In some cases, we may need to be more specific, but this machine sketch should do for the moment.

We now have a bit of an intuition for what algorithms are, as well as the abstract hardware we'll be running them
on. The last piece of the puzzle is the notion of a problem. For our purposes, a problem is a relation between input
and output. This is, in fact, much more precise than it might sound: A relation, in the mathematical sense, is a set
of pairs—in our case, which outputs are acceptable for which inputs—and by specifying this relation, we've got our
problem nailed down. For example, the problem of sorting may be specified as a relation between two sets, A and
B, each consisting of sequences.? Without describing how to perform the sorting (that would be the algorithm), we
can specify which output sequences (elements of B) that would be acceptable, given an input sequence (an element
of A). We would require that the result sequence consisted of the same elements as the input sequence and that the
elements of the result sequence were in increasing order (each bigger than or equal to the previous). The elements of
A here—that is, the inputs—are called problem instances; the relation itself is the actual problem.

To get our machine to work with a problem, we need to encode the input as zeros and ones. We won’t worry too
much about the details here, but the idea is important, because the notion of running time complexity (as described
in the next section) is based on knowing how big a problem instance is, and that size is simply the amount of memory
needed to encode it. As you'll see, the exact nature of this encoding usually won’t matter.

Asymptotic Notation

Remember the append versus insert example in Chapter 1? Somehow, adding items to the end of a list scaled better
with the list size than inserting them at the front; see the nearby “Black Box” sidebar on list for an explanation.
These built-in operations are both written in C, but assume for a minute that you reimplement list.append in pure
Python; let’s say arbitrarily that the new version is 50 times slower than the original. Let’s also say you run your slow,
pure-Python append-based version on a really slow machine, while the fast, optimized, insert-based version is run on
a computer that is 1,000 times faster. Now the speed advantage of the insert version is a factor of 50,000. You compare
the two implementations by inserting 100,000 numbers. What do you think happens?

Intuitively, it might seem obvious that the speedy solution should win, but its “speediness” is just a constant
factor, and its running time grows faster than the “slower” one. For the example at hand, the Python-coded version
running on the slower machine will, actually, finish in half the time of the other one. Let’s increase the problem size
a bit, to 10 million numbers, for example. Now the Python version on the slow machine will be 2,000 times faster than
the C version on the fast machine. That's like the difference between running for about a minute and running almost a
day and a half!

*Because input and output are of the same type, we could actually just specify a relation between A and A.
10
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This distinction between constant factors (related to such things as general programming language performance
and hardware speed, for example) and the growth of the running time, as problem sizes increase, is of vital
importance in the study of algorithms. Our focus is on the big picture—the implementation-independent properties
of a given way of solving a problem. We want to get rid of distracting details and get down to the core differences, but
in order to do so, we need some formalism.

BLACK BOX: LIST

Python lists aren’t really lists in the traditional computer science sense of the word, and that explains the puzzle
of why append is so much more efficient than insert. A classical list—a so-called linked list—is implemented as
a series of nodes, each (except for the last) keeping a reference to the next. A simple implementation might look
something like this:

class Node:
def __init_ (self, value, next=None):
self.value = value
self.next = next

You construct a list by specifying all the nodes:

>>> L = Node("a", Node("b", Node("c", Node("d"))))
>>> L.next.next.value

C

This is a so-called singly linked list; each node in a doubly linked list would also keep a reference to the
previous node.

The underlying implementation of Python’s 1ist type is a bit different. Instead of several separate nodes
referencing each other, a 1ist is basically a single, contiguous slab of memory—uwhat is usually known as an
array. This leads to some important differences from linked lists. For example, while iterating over the contents
of the list is equally efficient for both kinds (except for some overhead in the linked list), directly accessing an
element at a given index is much more efficient in an array. This is because the position of the element can be
calculated, and the right memory location can be accessed directly. In a linked list, however, one would have to
traverse the list from the beginning.

The difference we’ve been bumping up against, though, has to do with insertion. In a linked list, once you know
where you want to insert something, insertion is cheap; it takes roughly the same amount of time, no matter how
many elements the list contains. That’s not the case with arrays: An insertion would have to move all elements
that are to the right of the insertion point, possibly even moving all the elements to a larger array, if needed.

A specific solution for appending is to use what’s often called a dynamic array, or vector.* The idea is to allocate
an array that is too big and then to reallocate it in linear time whenever it overflows. It might seem that this
makes the append just as bad as the insert. In both cases, we risk having to move a large number of elements.
The main difference is that it happens less often with the append. In fact, if we can ensure that we always move
to an array that is bigger than the last by a fixed percentage (say 20 percent or even 100 percent), the average
cost, amortized over many appends, is constant.

“For an “out-of-the-box” solution for inserting objects at the beginning of a sequence, see the black-box sidebar on deque
in Chapter 5.

11
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It's Greek to Me!

Asymptotic notation has been in use (with some variations) since the late 19th century and is an essential tool in
analyzing algorithms and data structures. The core idea is to represent the resource we're analyzing (usually time but
sometimes also memory) as a function, with the input size as its parameter. For example, we could have a program
with a running time of T(n) = 2.4n + 7.

An important question arises immediately: What are the units here? It might seem trivial whether we measure
the running time in seconds or milliseconds or whether we use bits or megabytes to represent problem size. The
somewhat surprising answer, though, is that not only is it trivial, but it actually will not affect our results at all. We
could measure time in Jovian years and problem size in kilograms (presumably the mass of the storage medium
used), and it will not matter. This is because our original intention of ignoring implementation details carries over
to these factors as well: The asymptotic notation ignores them all! (We do normally assume that the problem size is a
positive integer, though.)

What we often end up doing is letting the running time be the number of times a certain basic operation is
performed, while problem size is either the number of items handled (such as the number of integers to be sorted, for
example) or, in some cases, the number of bits needed to encode the problem instance in some reasonable encoding.

prev—znext = toDelete -> next;
delete toDelete; ossert “Its going to be okay.";

/if only forgetting were \L‘b
Jthis easy for me. SNIFF

4 ]

Forgetting. Of course, the assert doesn’t work. (http://xkcd.com/379)

Note Exactly how you encode your problems and solutions as bit patterns usually has little effect on the asymptotic
running time, as long as you are reasonable. For example, avoid representing your numbers in the unary number system
(1=1,2=11,3=111...).

The asymptotic notation consists of a bunch of operators, written as Greek letters. The most important ones,
and the only ones we'll be using, are O (originally an omicron but now usually called “Big Oh”), Q (omega), and
O (theta). The definition for the O operator can be used as a foundation for the other two. The expression O(g), for
some function g(n), represents a set of functions, and a function f(n) is in this set if it satisfies the following condition:
There exists a natural number 7, and a positive constant ¢ such that

f(n)<cg(n)
for all n > n,. In other words, if we're allowed to tweak the constant ¢ (for example, by running the algorithms on

machines of different speeds), the function g will eventually (that is, at r,) grow bigger than f. See Figure 2-1 for an
example.
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e T(n)

\
Y

Figure 2-1. For values of n greater than n, T(n) is less than cn?, so T(n) is O(n?)

This is a fairly straightforward and understandable definition, although it may seem a bit foreign at first. Basically,
O(g) is the set of functions that do not grow faster than g. For example, the function r? is in the set O(n?), or, in set
notation, n? € O(n?). We often simply say that n? is O(n?).

The fact that n* does not grow faster than itself is not particularly interesting. More useful, perhaps, is the fact that
neither 2.4n? + 7 nor the linear function » does. That is, we have both

2.4n%+7 € 0(n?)
and
n€ o(n?).

The first example shows us that we are now able to represent a function without all its bells and whistles; we can
drop the 2.4 and the 7 and simply express the function as O(n?), which gives us just the information we need. The
second shows us that O can be used to express loose limits as well: Any function that is better (that is, doesn’t grow
faster) than g can be found in O(g).

How does this relate to our original example? Well, the thing is, even though we can’t be sure of the details
(after all, they depend on both the Python version and the hardware you're using), we can describe the operations
asymptotically: The running time of appending n numbers to a Python list is O(n), while inserting » numbers at its
beginning is O(n?).

The other two, Q and @, are just variations of O. Q is its complete opposite: A function fis in Q(g) if it satisfies the
following condition: There exists a natural number 7, and a positive constant ¢ such that

fin) = cg(n)

for all > n,. So, where O forms a so-called asymptotic upper bound, Q forms an asymptotic lower bound.

Note Our first two asymptotic operators, 0 and C2, are each other’s inverses: If fis 0(g), then g is Q(f). Exercise 2-3
asks you to show this.

The sets formed by © are simply intersections of the other two, that is, ®(g) = O(g) N Q(g). In other words, a function fis
in ©(g) if it satisfies the following condition: There exists a natural number r, and fwo positive constants ¢, and ¢, such that

c,8(n)<fln) <c,gln)

for all n > n,. This means that fand g have the same asymptotic growth. For example, 3n? + 2 is ©(n?), but we could just
as well write that n? is ®(3n2 + 2). By supplying an upper bound and a lower bound at the same time, the ® operator is
the most informative of the three, and I will use it when possible.

13
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Rules of the Road

While the definitions of the asymptotic operators can be a bit tough to use directly, they actually lead to some of the
simplest math ever. You can drop all multiplicative and additive constants, as well as all other “small parts” of your
function, which simplifies things a lot.

As a first step in juggling these asymptotic expressions, let’s take a look at some typical asymptotic classes, or
orders. Table 2-1 lists some of these, along with their names and some typical algorithms with these asymptotic
running times, also sometimes called running-time complexities. (If your math is a little rusty, you could take a look at
the sidebar “A Quick Math Refresher” later in the chapter.) An important feature of this table is that the complexities
have been ordered so that each row dominates the previous one: If fis found higher in the table than g, then fis O(g).°

Table 2-1. Common Examples of Asymptotic Running Times

Complexity Name Examples, Comments

0(1) Constant Hash table lookup and modification (see “Black Box” sidebar on dict).
O(lg n) Logarithmic Binary search (see Chapter 6). Logarithm base unimportant.”

0(n) Linear Iterating over a list.

O(nlgn) Loglinear Optimal sorting of arbitrary values (see Chapter 6). Same as O(lg n!).
0O(n?) Quadratic Comparing n objects to each other (see Chapter 3).

0(n®) Cubic Floyd and Warshall’s algorithms (see Chapters 8 and 9).

O(nk) Polynomial k nested for loops over n (if k is a positive integer). For any constant k > 0.
Q(kn) Exponential Producing every subset of n items (k = 2; see Chapter 3). Any k> 1.

o(n!) Factorial Producing every ordering of n values.

Note Actually, the relationship is even stricter: fis o(g), where the “Little Oh” is a stricter version if “Big Oh.”
Intuitively, instead of “doesn’t grow faster than,” it means “grows slower than.” Formally, it states that fn)/g(n) converges
to zero as n grows to infinity. You don’t really need to worry about this, though.

Any polynomial (that is, with any power k > 0, even a fractional one) dominates any logarithm (that is, with any
base), and any exponential (with any base k > 1) dominates any polynomial (see Exercises 2-5 and 2-6). Actually, all
logarithms are asymptotically equivalent—they differ only by constant factors (see Exercise 2-4). Polynomials and
exponentials, however, have different asymptotic growth depending on their exponents or bases, respectively. So, n°
grows faster than n*, and 5" grows faster than 4”.

The table primarily uses ® notation, but the terms polynomial and exponential are a bit special, because of
the role they play in separating fractable (“solvable”) problems from intractable (“unsolvable”) ones, as discussed
in Chapter 11. Basically, an algorithm with a polynomial running time is considered feasible, while an exponential
one is generally useless. Although this isn’t entirely true in practice, (@(n') is no more practically useful than
®(2n)); it is, in many cases, a useful distinction.® Because of this division, any running time in O(n), for any k > 0,

SFor the “Cubic” and “Polynomial” row, this holds only when & > 3.

®Interestingly, once a problem is shown to have a polynomial solution, an efficient polynomial solution can quite often be
found as well.

I’'m using lg rather than log here, but either one is fine.
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is called polynomial, even though the limit may not be tight. For example, even though binary search (explained in
the “Black Box” sidebar on bisect in Chapter 6) has a running time of ®(lg n), it is still said to be a polynomial-time
(or just polynomial) algorithm. Conversely, any running time in Q(kn)—even one that is, say, ©(n!)—is said to be
exponential.

Now that we have an overview of some important orders of growth, we can formulate two simple rules:

e Inasum, only the dominating summand matters.
For example, O(n? + n® + 42) = O(n®).

e Inaproduct, constant factors don’t matter.
For example, ©(4.2n1g n) = O(nlg n).

In general, we try to keep the asymptotic expressions as simple as possible, eliminating as many unnecessary
parts as we can. For O and Q, there is a third principle we usually follow:

e  Keep your upper or lower limits tight.

In other words, we try to make the upper limits low and the lower limits high. For example,
although n? might technically be O(n®), we usually prefer the tighter limit, O(7?). In most cases,
though, the best thing is to simply use ®.

A practice that can make asymptotic expressions even more useful is that of using them instead of actual values,
in arithmetic expressions. Although this is technically incorrect (each asymptotic expression yields a set of functions,
after all), it is quite common. For example, ©(n?) + ©(n®) simply means f+ g, for some (unknown) functions fand
g where fis ©(n?) and g is ©(n®). Even though we cannot find the exact sum f+ g, because we don’t know the exact
functions, we can find the asymptotic expression to cover it, as illustrated by the following two “bonus rules:”

e 0(N+06(g=0(f+g)
* 0()-0(g)=0(g

Exercise 2-8 asks you to show that these are correct.

Taking the Asymptotics for a Spin

Let’s take a look at some simple programs and see whether we can determine their asymptotic running times. To
begin with, let’s consider programs where the (asymptotic) running time varies only with the problem size, not the
specifics of the instance in question. (The next section deals with what happens if the actual contents of the instances
matter to the running time.) This means, for example, that if statements are rather irrelevant for now. What's
important is loops, in addition to straightforward code blocks. Function calls don’t really complicate things;

just calculate the complexity for the call and insert it at the right place.

Note There is one situation where function calls can trip us up: when the function is recursive. This case is dealt with
in Chapters 3 and 4.

The loop-free case is simple: we are executing one statement before another, so their complexities are added.
Let’s say, for example, that we know that for a list of size n, a call to append is ®(1), while a call to insert at position 0 is
©(n). Consider the following little two-line program fragment, where nums is a list of size n:

nums . append (1)
nums.insert(0,2)
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We know that the line first takes constant time. At the time we get to the second line, the list size has changed and
is now n + 1. This means that the complexity of the second line is ®(n + 1), which is the same as ®(n). Thus, the total
running time is the sum of the two complexities, (1) + ©(n) = O(n).

Now, let’s consider some simple loops. Here’s a plain for loop over a sequence with n elements (numbers, say;
for example, seq = range(n)):®

s =0
for x in seq:
S += X

This is a straightforward implementation of what the sum function does: It iterates over seq and adds the elements
to the starting value in s. This performs a single constant-time operation (s += x) for each of the n elements of seq,
which means that its running time is linear, or ®(n). Note that the constant-time initialization (s = 0) is dominated by
the loop here.

The same logic applies to the “camouflaged” loops we find in list (or set or dict) comprehensions and generator
expressions, for example. The following list comprehension also has a linear running-time complexity:

squares = [x**¥2 for x in seq]

Several built-in functions and methods also have “hidden” loops in them. This generally applies to any function
or method that deals with every element of a container, such as sum or map, for example.

Things get a little bit (but not a lot) trickier when we start nesting loops. Let’s say we want to sum up all possible
products of the elements in seq; here’s an example:

s =0
for x in seq:
for y in seq:
s += x*y

One thing worth noting about this implementation is that each product will be added twice. If 42 and 333 are
both in seq, for example, we’ll add both 42*333 and 333*42. That doesn’t really affect the running time; it’s just a
constant factor.

What's the running time now? The basic rule is easy: The complexities of code blocks executed one after the
other are just added. The complexities of nested loops are multiplied. The reasoning is simple: For each round of the
outer loop, the inner one is executed in full. In this case, that means “linear times linear,” which is quadratic. In other
words, the running time is @(n-n) = ®(n?). Actually, this multiplication rule means that for further levels of nesting,
we will just increment the power (that is, the exponent). Three nested linear loops give us @(n?), four give us ©(n*),
and so forth.

The sequential and nested cases can be mixed, of course. Consider the following slight extension:

s =0
for x in seq:
for y in seq:
s += x*y
for z in seq:
for w in seq:
S 4= X-W

81f the elements are ints, the running time of each += is constant. However, Python also support big integers, or longs, which
automatically appear when your integers get big enough. This means you can break the constant-time assumption by using really
huge numbers. If you’re using floats, that won’t happen (but see the discussion of float problems near the end of the chapter).
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It may not be entirely clear what we’re computing here (I certainly have no idea), but we should still be able to
find the running time, using our rules. The z-loop is run for a linear number of iterations, and it contains a linear
loop, so the total complexity there is quadratic, or ©(rn?). The y-loop is clearly ©(#). This means that the code block
inside the x-loop is ®(n + n?). This entire block is executed for each round of the x-loop, which is run n times. We
use our multiplication rule and get @(n(n + n?)) = ©(n? + n®) = O(n®), that is, cubic. We could arrive at this conclusion
even more easily by noting that the y-loop is dominated by the z-loop and can be ignored, giving the inner block a
quadratic running time. “Quadratic times linear” gives us cubic.

The loops need not all be repeated ©(n) times, of course. Let’s say we have two sequences, seql and seq2, where
seql contains n elements and seq2 contains m elements. The following code will then have a running time of ®@(nm).

s =0
for x in seql:
for y in seq2:
s += x*y

In fact, the inner loop need not even be executed the same number of times for each iteration of the outer loop.
This is where things can get a bit fiddly. Instead of just multiplying two iteration counts, such as n and m in the
previous example, we now have to sum the iteration counts of the inner loop. What that means should be clear in the
following example:

seql = [[o, 1], [2], [3, 4, 5]]
s =0
for seq2 in seql:
for x in seq2:
S += X

The statement s += x is now performed 2 + 1 + 3 = 6 times. The length of seq2 gives us the running time of the
inner loop, but because it varies, we cannot simply multiply it by the iteration count of the outer loop. A more realistic
example is the following, which revisits our original example—multiplying every combination of elements from a
sequence:

s =0
len(seq)
for i in range(n-1):
for j in range(i+1, n):
s += seq[i] * seq[]]

>
n

To avoid multiplying objects with themselves or adding the same product twice, the outer loop now avoids the
last item, and the inner loop iterates over the items only after the one currently considered by the outer one. This is
actually a lot less confusing than it might seem, but finding the complexity here requires a little bit more care. This is
one of the important cases of counting that is covered in the next chapter.®

Spoiler: The complexity of this example is still @(n?).

17

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 * THE BASICS

Three Important Cases

Until now, we have assumed that the running time is completely deterministic and dependent only on input size, not
on the actual contents of the input. That is not particularly realistic, however. For example, if you were to construct a
sorting algorithm, you might start like this:

def sort w _check(seq):
n = len(seq)
for i in range(n-1):
if seq[i] > seq[i+1]:
break
else:
return

A check is performed before getting into the actual sorting: If the sequence is already sorted, the function
simply returns.

Note The optional else clause on a loop in Python is executed if the loop has not been ended prematurely by a
break statement.

This means that no matter how inefficient our main sorting is, the running time will always be linear if the
sequence is already sorted. No sorting algorithm can achieve linear running time in general, meaning that this
“best-case scenario” is an anomaly—and all of a sudden, we can’t reliably predict the running time anymore.

The solution to this quandary is to be more specific. Instead of talking about a problem in general, we can specify the
input more narrowly, and we often talk about one of three important cases:

e The best case. This is the running time you get when the input is optimally suited to your
algorithm. For example, if the input sequence to sort_w_check were sorted, we would get the
best-case running time, which would be linear.

o The worst case. This is usually the most useful case—the worst possible running time. This
is useful because we normally want to be able to give some guarantees about the efficiency of
our algorithm, and this is the best guarantee we can give in general.

e The average case. This is a tricky one, and I'll avoid it most of the time, but in some cases it
can be useful. Simply put, it's the expected value of the running time, for random input, with a
given probability distribution.

In many of the algorithms we’ll be working with, these three cases have the same complexity. When they don’t,
we'll often be working with the worst case. Unless this is stated explicitly, however, no assumptions can be made
about which case is being studied. In fact, we may not be restricting ourselves to a single kind of input at all. What if,
for example, we wanted to describe the running time of sort_w_check in general? This is still possible, but we can’t be
quite as precise.

Let’s say the main sorting algorithm we’re using after the check is loglinear; that is, it has a running time of
®(nlg n)). This is typical and, in fact, optimal in the general case for sorting algorithms. The best-case running time
of our algorithm is then ®(n), when the check uncovers a sorted sequence, and the worst-case running time is
®(nlg n). If we want to give a description of the running time in general, however—for any kind of input—we cannot
use the © notation at all. There is no single function describing the running time; different types of inputs have
different running time functions, and these have different asymptotic complexity, meaning we can’t sum them up
in a single ® expression.
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The solution? Instead of the “twin bounds” of ®, we supply only an upper or lower limit, using O or Q. We can, for
example, say that sort_w_check has a running time of O(n lg n). This covers both the best and worst cases. Similarly,
we could say it has a running time of Q(n). Note that these limits are as tight as we can make them.

Note It is perfectly acceptable to use either of our asymptotic operators to describe either of the three cases
discussed here. We could very well say that the worst-case running time of sort_w_check is Q(n1g n), for example,
or that the best case is 0(n).

Empirical Evaluation of Algorithms

The main focus of this book is algorithm design and its close relative, algorithm analysis. There is, however, another
important discipline of algorithmics that can be of vital importance when building real-world systems, and that is
algorithm engineering, the art of efficiently implementing algorithms. In a way, algorithm design can be seen as a way
of achieving low asymptotic running time by designing efficient algorithms, while algorithm engineering is focused on
reducing the hidden constants in that asymptotic complexity.

Although I may offer some tips on algorithm engineering in Python here and there, it can be hard to predict
exactly which tweaks and hacks will give you the best performance for the specific problems you're working on—or,
indeed, for your hardware or version of Python. These are exactly the kind of quirks asymptotics are designed to avoid.
And in some cases, such tweaks and hacks may not be needed at all, because your program may be fast enough as it
is. The most useful thing you can do in many cases is simply to try and see. If you have a tweak you think will improve
your program, try it! Implement the tweak, and run some experiments. Is there an improvement? And if the tweak
makes your code less readable and the improvement is small, is it really worth it?

Note This section is about evaluating your programs, not on the engineering itself. For some hints on speeding up
Python programs, see Appendix A.

While there are theoretical aspects of so-called experimental algorithmics—that is, experimentally evaluating
algorithms and their implementations—that are beyond the scope of this book, I'll give you some practical starting
tips that should get you pretty far.

Tip1 |If possible, don’t worry about it.

Worrying about asymptotic complexity can be important. Sometimes, it’s the difference between a solution and
what is, in practice, a nonsolution. Constant factors in the running time, however, are often not all that critical. Try a
straightforward implementation of your algorithm first and see whether that’s good enough. Actually, you might even
try a naive algorithm first; to quote programming guru Ken Thompson, “When in doubt, use brute force.” Brute force,
in algorithmics, generally refers to a straightforward approach that just tries every possible solution, running time be
damned! If it works, it works.

Tip2 For timing things, use timeit.
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The timeit module is designed to perform relatively reliable timings. Although getting truly trustworthy results,
such as those you’d publish in a scientific paper, is a lot of work, timeit can help you get “good enough in practice”
timings easily. Here’s an example:

>>> import timeit

>>> timeit.timeit("x
0.034976959228515625
>>> timeit.timeit("x
0.92387008666992188

2 +2")

sum(range(10))")

The actual timing values you get will quite certainly not be exactly like mine. If you want to time a function
(which could, for example, be a test function wrapping parts of your code), it may be even easier to use timeit from
the shell command line, using the -m switch:

$ python -m timeit -s"import mymodule as m" "m.myfunction()"

There is one thing you should be careful about when using timeit. Avoid side effects that will affect repeated
execution. The timeit function will run your code multiple times for increased precision, and if earlier executions
affect later runs, you are probably in trouble. For example, if you time something like mylist.sort(), the list would
get sorted only the first time. The other thousands of times the statement is run, the list will already be sorted, making
your timings unrealistically low. The same caution would apply to anything involving generators or iterators that
could be exhausted, for example. You can find more details on this module and how it works in the standard library
documentation.'

Tip 3 To find bottlenecks, use a profiler.

Itis a common practice to guess which part of your program needs optimization. Such guesses are quite often
wrong. Instead of guessing wildly, let a profiler find out for you! Python comes with a few profiler variants, but the
recommended one is cProfile. It’s as easy to use as timeit but gives more detailed information about where the
execution time is spent. If your main function is main, you can use the profiler to run your program as follows:

import cProfile
cProfile.run('main()")

This should print out timing results about the various functions in your program. If the cProfile module isn’t
available on your system, use profile instead. Again, more information is available in the library reference. If you're
not so interested in the details of your implementation but just want to empirically examine the behavior of your
algorithm on a given problem instance, the trace module in the standard library can be useful—it can be used to
count the number of times each statement is executed. You could even visualize the calls of your code using a tool
such as Python Call Graph."

Tip4 Plot your results.

Phttps://docs.python.org/library/timeit.html
Uhttp://pycallgraph.slowchop.com
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Visualization can be a great tool when figuring things out. Two common plots for looking at performance are
graphs," for example of problem size versus running time, and box plots, showing the distribution of running times.
See Figure 2-2 for examples of these. A great package for plotting things with Python is matplotlib (available from
http://matplotlib.org).
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Figure 2-2. Visualizing running times for programs A, B, and C and problem sizes 10-50

Tip5 Be careful when drawing conclusions based on timing comparisons.

This tip is a bit vague, but that’s because there are so many pitfalls when drawing conclusions about which way
is better, based on timing experiments. First, any differences you observe may be because of random variations. If
you’re using a tool such as timeit, this is less of a risk, because it repeats the statement to be timed many times (and
even runs the whole experiment multiple times, keeping the best run). Still, there will be random variations, and if
the difference between two implementations isn’t greater than what can be expected from this randomness, you can’t
really conclude that they're different. (You can’t conclude that they aren’, either.)

Note If you need to draw a conclusion when it’s a close call, you can use the statistical technique of hypothesis
testing. However, for practical purposes, if the difference is so small you're not sure, it probably doesn’t matter which
implementation you choose, so go with your favorite.

This problem is compounded if you're comparing more than two implementations. The number of pairs to
compare increases quadratically with the number of versions, as explained in Chapter 3, drastically increasing the
chance that at least two of the versions will appear freakishly different, just by chance. (This is what’s called the
problem of multiple comparisons.) There are statistical solutions to this problem, but the easiest practical way around
itis to repeat the experiment with the two implementations in question. Maybe even a couple of times. Do they still
look different?

12No, not the network kind, which is discussed later in this chapter. The other kind—plots of some measurement for every value of
some parameter.
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Second, there are issues when comparing averages. At least, you should stick to comparing averages of actual
timings. A common practice to get more meaningful numbers when performing timing experiments is to normalize
the running time of each program, dividing it by the running time of some standard, simple algorithm. This can
indeed be useful but can in some cases make your results less than meaningful. See the paper “How not to lie with
statistics: The correct way to summarize benchmark results” by Fleming and Wallace for a few pointers. For some
other perspectives, you could read Bast and Weber’s “Don’t compare averages,” or the more recent paper by Citron
et al., “The harmonic or geometric mean: does it really matter?”

Third, your conclusions may not generalize. Similar experiments run on other problem instances or other
hardware, for example, might yield different results. If others are to interpret or reproduce your experiments, it’s
important that you thoroughly document how you performed them.

Tip6 Be careful when drawing conclusions about asymptotics from experiments.

If you want to say something conclusively about the asymptotic behavior of an algorithm, you need to analyze it,
as described earlier in this chapter. Experiments can give you hints, but they are by their nature finite, and asymptotics
deal with what happens for arbitrarily large data sizes. On the other hand, unless you're working in theoretical
computer science, the purpose of asymptotic analysis is to say something about the behavior of the algorithm when
implemented and run on actual problem instances, meaning that experiments should be relevant.

Suppose you suspect that an algorithm has a quadratic running time complexity, but you're unable to
conclusively prove it. Can you use experiments to support your claim? As explained, experiments (and algorithm
engineering) deal mainly with constant factors, but there is a way. The main problem is that your hypothesis isn’t
really testable through experiments. If you claim that the algorithm is, say, O(rn?), no data can confirm or refute this.
However, if you make your hypothesis more specific, it becomes testable. You might, for example, based on some
preliminary results, believe that the running time will never exceed 0.24n* + 0.1% + 0.03 seconds in your setup.

Perhaps more realistically, your hypothesis might involve the number of times a given operation is performed, which
you can test with the trace module. This is a testable—or, more specifically, refutable—hypothesis. If you run lots of
experiments and you aren’t able to find any counter-examples, that supports your hypothesis to some extent. The neat
thing is that, indirectly, you're also supporting the claim that the algorithm is O(n?).

Implementing Graphs and Trees

The first example in Chapter 1, where we wanted to navigate Sweden and China, was typical of problems that
can expressed in one of the most powerful frameworks in algorithmics—that of graphs. In many cases, if you can
formulate what you're working on as a graph problem, you're at least halfway to a solution. And if your problem
instances are in some form expressible as frees, you stand a good chance of having a really efficient solution.

Graphs can represent all kinds of structures and systems, from transportation networks to communication
networks and from protein interactions in cell nuclei to human interactions online. You can increase their
expressiveness by adding extra data such as weights or distances, making it possible to represent such diverse
problems as playing chess or matching a set of people to as many jobs, with the best possible use of their abilities.
Trees are just a special kind of graphs, so most algorithms and representations for graphs will work for them as well.
However, because of their special properties (they are connected and have no cycles), some specialized and quite
simple versions of both the representations and algorithms are possible. There are plenty of practical structures, such
as XML documents or directory hierarchies, that can be represented as trees,'® so this “special case” is actually quite
general.

3With IDREFs and symlinks, respectively, XML documents and directory hierarchies are actually general graphs.
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If your memory of graph nomenclature is a bit rusty or if this is all new to you, take a look at Appendix C. Here are
the highlights in a nutshell:

e  Agraph G=(V, E) consists of a set of nodes, V, and edges between them, E. If the edges have a
direction, we say the graph is directed.

¢ Nodes with an edge between them are adjacent. The edge is then incident to both. The nodes
that are adjacent to v are the neighbors of v. The degree of a node is the number of edges
incident to it.

e Asubgraph of G = (V, E) consists of a subset of Vand a subset of E. A path in G is a subgraph
where the edges connect the nodes in a sequence, without revisiting any node. A cycle is like a
path, except that the last edge links the last node to the first.

e Ifwe associate a weight with each edge in G, we say that G is a weighted graph. The length of a
path or cycle is the sum of its edge weights, or, for unweighted graphs, simply the number of
edges.

e A forestis a cycle-free graph, and a connected forest is a tree. In other words, a forest consists
of one or more trees.

While phrasing your problem in graph terminology gets you far, if you want to implement a solution, you need to
represent the graphs as data structures somehow. This, in fact, applies even if you just want to design an algorithm,
because you must know what the running times of different operations on your graph representation will be. In some
cases, the graph will already be present in your code or data, and no separate structure will be needed. For example,
if you're writing a web crawler, automatically collecting information about web sites by following links, the graph is
the Web itself. If you have a Person class with a friends attribute, which is a list of other Person instances, then your
object model itself is a graph on which you can run various graph algorithms. There are, however, specialized ways of
implementing graphs.

In abstract terms, what we are generally looking for is a way of implementing the neighborhood function, N(v), so
that N[v] is some form of container (or, in some cases, merely an iterable object) of the neighbors of v. Like so many
other books on the subject, I will focus on the two most well-known representations, adjacency lists and adjacency
matrices, because they are highly useful and general. For a discussion of alternatives, see the section “A Multitude of
Representations” later in this chapter.

BLACK BOX: DICT AND SET

One technique covered in detail in most algorithm books, and usually taken for granted by Python programmers,
is hashing. Hashing involves computing some often seemingly random integer value from an arbitrary object. This
value can then be used, for example, as an index into an array (subject to some adjustments to make it fit the
index range).

The standard hashing mechanism in Python is available through the hash function, which calls the __hash__
method of an object:

>>> hash(42)

42

>>> hash("Hello, world!")
-1886531940

This is the mechanism that is used in dictionaries, which are implemented using so-called hash tables. Sets
are implemented using the same mechanism. The important thing is that the hash value can be constructed in
essentially constant time. It’s constant with respect to the hash table size but linear as a function of the size of the
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object being hashed. If the array that is used behind the scenes is large enough, accessing it using a hash value
is also ©(1) in the average case. The worst-case behavior is ®(), unless we know the values beforehand and can
write a custom hash function. Still, hashing is extremely efficient in practice.

What this means to us is that accessing elements of a dict or set can be assumed to take constant expected
time, which makes them highly useful building blocks for more complex structures and algorithms.

Note that the hash function is specifically used for use in hash tables. For other uses of hashing, such as in
cryptography, there is the standard library module hashlib.

Adjacency Lists and the Like

One of the most intuitive ways of implementing graphs is using adjacency lists. Basically, for each node, we can access
alist (or set or other container or iterable) of its neighbors. Let’s take the simplest way of implementing this, assuming
we have n nodes, numbered 0. . . n-1.

Note Nodes can be any objects, of course, or have arbitrary labels or names. Using integers in the range 0... -1
can make many implementations easier, though, because the node numbers can easily be used as indices.

Each adjacency (or neighbor) list is then just a list of such numbers, and we can place the lists themselves into
a main list of size n, indexable by the node numbers. Usually, the ordering of these lists is arbitrary, so we're really
talking about using lists to implement adjacency sets. The term [list in this context is primarily historical. In Python
we're lucky enough to have a separate set type, which in many cases is a more natural choice.

For an example that will be used to illustrate the various graph representations, see Figure 2-3.

Figure 2-3. A sample graph used to illustrate various graph representations

Tip For tools to help you visualize your own graphs, see the sidebar “Graph Libraries” later in this chapter.

To begin with, assume that we have numbered the nodes, that is, a = 0, b = 1, and so forth. The graph can then
be represented in a straightforward manner, as shown in Listing 2-1. Just as a convenience, I have assigned the node
numbers to variables with the same names as the node labels in the figure. You can, of course, just work with the
numbers directly. Which adjacency set belongs to which node is indicated by the comments. If you want, take a
minute to confirm that the representation does, indeed, correspond to the figure.
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Listing 2-1. A Straightforward Adjacency Set Representation

a, b, c, d, e, f, g, h = range(8)
N=[

{b, c, d, e, f},

{c, e},

{d},

{e},

{f},

{c, g5 h},

{f, h},

{f, g}

H o H H H A R
>SS0k +~ M QN o w

Note In Python versions prior to 2.7 (or 3.0), you would write set literals as set([1, 2, 3]) rather than {1, 2, 3}.
Note that an empty set is still written set() because {} is an empty dict.

The name N has been used here to correspond with the N function discussed earlier. In graph theory, N(v)
represents the set of s neighbors. Similarly, in our code, N[v] is now a set of v's neighbors. Assuming you have
defined N as earlier in an interactive interpreter, you can now play around with the graph:

>>> b in N[a] # Neighborhood membership
True

>>> len(N[f]) # Degree

3

Tip If you have some code in a source file, such as the graph definition in Listing 2-1, and you want to explore it
interactively as in the previous example, you can run python with the -1 switch, like this:

python -i listing 2 1.py

This will run the source file and start an interactive interpreter that continues where the source file left of, with any global
definitions available for your experimentation.

Another possible representation, which can have a bit less overhead in some cases, is to replace the adjacency
sets with actual adjacency lists. For an example of this, see Listing 2-2. The same operations are now available, except
that membership checking is now ®(n). This is a significant slowdown, but that is a problem only if you actually need
it, of course. (If all your algorithm does is iterate over neighbors, using set objects would not only be pointless; the
overhead would actually be detrimental to the constant factors of your implementation.)

Listing 2-2. Adjacency Lists

a, b, c, d, e, f, g, h = range(8)
N =
[bJ C) d) e) -F])
[c, e],
[d],

H = R
Nn o W
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[el, #d
[f], #e
[C) 8; h]) # -F
[f, h], #g
[f, gl #h

It might be argued that this representation is really a collection of adjacency arrays, rather than adjacency lists
in the classical sense, because Python’s list type is really a dynamic array behind the covers; see earlier “Black Box”
sidebar about 1ist. If you wanted, you could implement a linked list type and use that, rather than a Python list. That
would allow you asymptotically cheaper inserts at arbitrary points in each list, but this is an operation you probably
will not need, because you can just as easily append new neighbors at the end. The advantage of using 1ist is that it is
a well-tuned, fast data structure, as opposed to any list structure you could implement in pure Python.

A recurring theme when working with graphs is that the best representation depends on what you need to do
with your graph. For example, using adjacency lists (or arrays) keeps the overhead low and lets you efficiently iterate
over N(v) for any node v. However, checking whether u and v are neighbors is linear in the minimum of their degrees,
which can be problematic if the graph is dense, that is, if it has many edges. In these cases, adjacency sets may be the
way to go.

Tip We've also seen that deleting objects from the middle of a Python 1ist is costly. Deleting from the end of a 1ist
takes constant time, though. If you don’t care about the order of the neighbors, you can delete arbitrary neighbors in
constant time by overwriting them with the one that is currently last in the adjacency list, before calling the pop method.

A slight variation on this would be to represent the neighbor sets as sorted lists. If you aren’t modifying the lists
much, you can keep them sorted and use bisection (see the “Black Box” sidebar on bisect in Chapter 6) to check for
membership, which might lead to slightly less overhead in terms of memory use and iteration time but would lead to a
membership check complexity of ©(lg k), where k is the number of neighbors for the given node. (This is still very low.
In practice, though, using the built-in set type is a lot less hassle.)

Yet another minor tweak on this idea is to use dicts instead of sets or lists. The neighbors would then be keys in
this dict, and you'd be free to associate each neighbor (or out-edge) with some extra value, such as an edge weight.
How this might look is shown in Listing 2-3, with arbitrary edge weights added.

Listing 2-3. Adjacency dicts with Edge Weights

a, b, c, d, e, f, g, h = range(8)
N=[

{b:2, c:1, d:3, e:9, f:4},

{c:4, e:3},

{d:8},

{e:7},

{f:5},

{c:2, g:2, h:2},

{f:1, h:6},

{f:9, g:8}

H HHFHFHH R
>0 M QN o w
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The adjacency dict version can be used just like the others, with the additional edge weight functionality:

>>> b in N[a] # Neighborhood membership

True

>>> len(N[f]) # Degree

3

>>> N[a][b] # Edge weight for (a, b)
2

If you want, you can use adjacency dicts even if you dorn’t have any useful edge weights or the like, of course
(using, perhaps, None, or some other placeholder instead). This would give you the main advantages of the adjacency
sets, but it would also work with very, very old versions of Python, which don’t have the set type.™

Until now, the main collection containing our adjacency structures—be they lists, sets, or dicts—has been a list,
indexed by the node number. A more flexible approach, allowing us to use arbitrary, hashable, node labels, is to use a
dict as this main structure.' Listing 2-4 shows what a dict containing adjacency sets would look like. Note that nodes
are now represented by characters.

Listing 2-4. A dict with Adjacency Sets

N ={
'a': set('bcdef'),
'b': set('ce'),
'c': set('d"),
'd': set('e'),
'e': set('f'),
"f': set('cgh'),
'g': set('fh'),
'h': set('fg')

}

Note If you drop the set constructor in Listing 2-4, you end up with adjacency strings, which would work as well, as
immutable adjacency lists of characters, with slightly lower overhead. It’s a seemingly silly representation, but as I've said
before, it depends on the rest of your program. Where are you getting the graph data from? Is it already in the form of
text, for example? How are you going to use it?

Adjacency Matrices

The other common form of graph representation is the adjacency matrix. The main difference is the following: Instead
of listing all neighbors for each node, we have a row (an array) with one position for each possible neighbor (that is,
one for each node in the graph), and store a value, such as True or False, indicating whether that node is indeed a
neighbor. Again, the simplest implementation is achieved using nested lists, as shown in Listing 2-5. Note that this,
again, requires the nodes to be numbered from 0 to V-1. The truth values used are 1 and 0 (rather than True and
False), simply to make the matrix more readable.

14Sets were introduced in Python 2.3, in the form of the sets module. The built-in set type has been available since Python 2.4.
15This, a dictionary with adjacency lists, is what Guido van Rossum uses in his article “Python Patterns—Implementing Graphs,”
which is found online at https://www.python.org/doc/essays/graphs/.
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Listing 2-5. An Adjacency Matrix, Implemented with Nested Lists

a, b, c, d, e, f, g, h = range(8)
# abcdefgh

N = [[0)1)1)1)1)1)0)0])
(0,0,1,0,1,0,0,0],
(0,0,0,1,0,0,0,0],
[0)0)0)0)1)0)0)0] )
[0)0)0)0)0)1)0)0])
(0,0,1,0,0,0,1,1],
[0,0,0,0,0,1,0,1],

#
#
#
#
#
#
#
[0,0,0,0,0,1,1,0]] #

S0 MDD QN © w

The way we'd use this is slightly different from the adjacency lists/sets. Instead of checking whether b is in N[a],
you would check whether the matrix cell N[a][b] is true. Also, you can no longer use len(N[a]) to find the number of
neighbors, because all rows are of equal length. Instead, use sum:

>>> N[a][b] # Neighborhood membership
1

>>> sum(N[f]) # Degree

3

Adjacency matrices have some useful properties that are worth knowing about. First, as long as we aren’t
allowing self-loops (that is, we're not working with pseudographs), the diagonal is all false. Also, we often implement
undirected graphs by adding edges in both directions to our representation. This means that the adjacency matrix for
an undirected graph will be symmetric.

Extending adjacency matrices to allow for edge weights is trivial: Instead of storing truth values, simply store the
weights. For an edge (i, v), letN[u][v] be the edge weight w(u, v) instead of True. Often, for practical reasons, we let
nonexistent edges get an infinite weight. This is to guarantee that they will not be included in, say, shortest paths, as
long as we can find a path along existent edges. It isn’t necessarily obvious how to represent infinity, but we do have
some options.

One possibility is to use an illegal weight value, such as None, or -1 if all weights are known to be non-negative.
Perhaps more useful in many cases is using a really large value. For integral weights, you could use sys.maxint, even
though it’s not guaranteed to be the greatest possible value (long ints can be greater). There is, however, one value that
is designed to represent infinity among floats: inf. It's not available directly under that name in Python, but you can
get it with the expression float('inf"')."®

Listing 2-6 shows what a weight matrix, implemented with nested lists, might look like. I'm using the same
weights as I did in Listing 2-3, with inf = float('inf"). Note that the diagonal is still all zero, because even though
we have no self-loops, weights are often interpreted as a form of distance, and the distance from a node to itself is
customarily zero.

'®This expression is guaranteed to work from Python 2.6 onward. In earlier versions, special floating-point values were
platform-dependent, although float('inf') or float('Inf") should work on most platforms.
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Listing 2-6. A Weight Matrix with Infinite Weight for Missing Edges

a, b, c, d, e, f, g, h = range(8)
inf = float('inf")

# a b c d e f g h

W=1[[ o 2, 1, 3, 9, 4, inf, inf], # a
[inf, 0, 4, inf, 3, inf, inf, inf], # b
[inf, inf, 0, 8, inf, inf, inf, inf], # c
[inf, inf, inf, 0, 7, inf, inf, inf], # d
[inf, inf, inf, inf, 0, 5, inf, inf], # e
[inf, inf, 2, inf, inf, o0, 2, 2], # f
[inf, inf, inf, inf, inf, 1, o0, 6], # g
[inf, inf, inf, inf, inf, 9, 8, o0]] #h

Weight matrices make it easy to access edge weights, of course, but membership checking and finding the degree
of a node, for example, or even iterating over neighbors must be done a bit differently now. You need to take the
infinity value into account. Here’s an example:

>>> W[a][b] < inf # Neighborhood membership

True

>>> W[c][e] < inf # Neighborhood membership
False

>>> sum(1 for w in W[a] if w < inf) - 1 # Degree
5

Note that 1 is subtracted from the degree sum because we don’t want to count the diagonal. The degree
calculation here is ®(n), whereas both membership and degree could easily be found in constant time with the proper
structure. Again, you should always keep in mind how you are going to use your graph and represent it accordingly.

SPECIAL-PURPOSE ARRAYS WITH NUMPY

The NumPy library has a lot of functionality related to multidimensional arrays. We don’t really need much of that
for graph representation, but the NumPy array type is quite useful, for example, for implementing adjacency or
weight matrices.

Where an empty list-based weight or adjacency matrix for n nodes is created, for example, like this
>>> N = [[0]*10 for i in range(10)]
in NumPy, you can use the zeros function:

>>> import numpy as np
>>> N = np.zeros([10,10])

The individual elements can then be accessed using comma-separated indices, as in A[u, v]. To access the
neighbors of a given node, you use a single index, as in A[u].

If you have a relatively sparse graph, with only a small portion of the matrix filled in, you could save quite a bit of
memory by using an even more specialized form of sparse matrix, available as part of the SciPy distribution, in
the scipy.sparse module.
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The NumPy package is available from http://www.numpy.org. You can get SciPy from http://www.scipy.org.

Note that you need to get a version of NumPy that will work with your Python version. If the most recent release of
NumPy has not yet “caught up” with the Python version you want to use, you can compile and install directly from
the source repository.

You can find more information about how to download, compile, and install NumPy, as well as detailed
documentation on its use, on the web site.

Implementing Trees

Any general graph representation can certainly be used to represent trees because trees are simply a special kind

of graph. However, trees play an important role on their own in algorithmics, and many special-purpose tree
structures have been proposed. Most tree algorithms (even operations on search trees, discussed in Chapter 6) can be
understood in terms of general graph ideas, but the specialized tree structures can make them easier to implement.

It is easiest to specialize the representation of rooted trees, where each edge is pointed downward, away from the
root. Such trees often represent hierarchical partitionings of a data set, where the root represents all the objects (which
are, perhaps, kept in the leaf nodes), while each internal node represents the objects found as leaves in the tree rooted
at that node. You can even use this intuition directly, making each subtree a list containing its child subtrees. Consider
the simple tree shown in Figure 2-4.

Figure 2-4. A sample tree with a highlighted path from the root to a leaf

We could represent that tree with lists of lists, like this:

> T = [["a", "], ["e"], ['d", ["e", "£1]]
>>> T[0][1]

b

>>> T[2][1][0]

e

Each list is, in a way, a neighbor (or child) list of the anonymous internal nodes. In the second example, we access
the third child of the root, the second child of that child, and finally the first child of that (path highlighted in the figure).
In some cases, we may know the maximum number of children allowed in any internal node. For example, a
binary tree is one where each internal node has a maximum of two children. We can then use other representations,

even objects with an attribute for each child, as shown in Listing 2-7.
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Listing 2-7. A Binary Tree Class

class Tree:
def _init (self, left, right):
self.left = left
self.right = right

You can use the Tree class like this:

>>> t = Tree(Tree("a", "b"), Tree("c", "d"))
>>> t.right.left

C

You can, for example, use None to indicate missing children, such as when a node has only one child. You are, of
course, free to combine techniques such as these to your heart’s content (for example, using a child list or child set in
each node instance).

A common way of implementing trees, especially in languages that don’t have built-in lists, is the “first child,
next sibling” representation. Here, each tree node has two “pointers,” or attributes referencing other nodes, just like
in the binary tree case. However, the first of these refers to the first child of the node, while the second refers to its next
sibling, as the name implies. In other words, each tree node refers to a linked list of siblings (its children), and each
of these siblings refers to a linked list of its own. (See the “Black Box” sidebar on list, earlier in this chapter, for a brief
introduction to linked lists.) Thus, a slight modification of the binary tree in Listing 2-7 gives us a multiway tree, as
shown in Listing 2-8.

Listing 2-8. A Multiway Tree Class

class Tree:
def _init (self, kids, next=None):
self.kids = self.val = kids
self.next = next

The separate val attribute here is just to have a more descriptive name when supplying a value, such as 'c',
instead of a child node. Feel free to adjust this as you want, of course. Here’s an example of how you can access this
structure:

>>> t = Tree(Tree("a", Tree("b", Tree("c", Tree("d")))))
>>> t.kids.next.next.val

C

And here’s what that tree looks like:

The kids and next attributes are drawn as dotted arrows, while the implicit edges of the trees are drawn solid.
Note that I've cheated a bit and not drawn separate nodes for the strings "a", "b", and so on; instead, I've treated
them as labels on their parent nodes. In a more sophisticated tree structure, you might have a separate value field in

addition to kids, instead of using one attribute for both purposes.
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Normally, you'd probably use more elaborate code (involving loops or recursion) to traverse the tree structure
than the hard-coded path in this example. You'll find more on that in Chapter 5. In Chapter 6, you'll also see some
discussion about multiway trees and tree balancing.

THE BUNCH PATTERN

When prototyping or even finalizing data structures such as trees, it can be useful to have a flexible class that
will allow you to specify arbitrary attributes in the constructor. In these cases, the Bunch pattern (named by Alex
Martelli in the Python Cookbook) can come in handy. There are many ways of implementing it, but the gist of it is
the following:

class Bunch(dict):
def _init (self, *args, **kwds):
super(Bunch, self). init (*args, **kwds)
self. dict = self

There are several useful aspects to this pattern. First, it lets you create and set arbitrary attributes by supplying
them as command-line arguments:

>>> x = Bunch(name="Jayne Cobb", position="Public Relations")
>>> X.name
'Jayne Cobb'

Second, by subclassing dict, you get lots of functionality for free, such as iterating over the keys/attributes or
easily checking whether an attribute is present. Here’s an example:

>>> T = Bunch

>>> t = T(left=T(left="a", right="b"), right=T(left="c"))
>>> t.left

{'right': 'b', 'left': 'a'}
>>> t.left.right

b

>>> t['left'][ 'right']

b

>>> "left" in t.right

True

>>> "right" in t.right
False

This pattern isn’t useful only when building trees, of course. You could use it for any situation where you’d want a
flexible object whose attributes you could set in the constructor.
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A Multitude of Representations

Even though there are a host of graph representations in use, most students of algorithms learn only the two types
covered (with variations) so far in this chapter. Jeremy P. Spinrad writes, in his book Efficient Graph Representations,
that most introductory texts are “particularly irritating” to him as a researcher in computer representations of graphs.
Their formal definitions of the most well-known representations (adjacency matrices and adjacency lists) are mostly
adequate, but the more general explanations are often faulty. He presents, based on misstatements from several texts,
the following strawman’s'” comments on graph representations:

There are two methods for representing a graph in a computer: adjacency matrices and adjacency lists. It is faster
to work with adjacency matrices, but they use more space than adjacency lists, so you will choose one or the other
depending on which resource is more important to you.

These statements are problematic in several ways, as Spinrad points out. First, there are many interesting ways of
representing graphs, not just the two listed here. For example, there are edge lists (or edge sets), which are simply lists
containing all edges as node pairs (or even special edge objects); there are incidence matrices, indicating which edges
are incident on which nodes (useful for multigraphs); and there are specialized methods for graph types such as trees
(described earlier) and interval graphs (not discussed here). Take a look at Spinrad’s book for more representations
than you will probably ever need. Second, the idea of space/time trade-off is quite misleading: There are problems
that can be solved faster with adjacency lists than with adjacency arrays, and for random graphs, adjacency lists can
actually use more space than adjacency matrices.

Rather than relying on simple, generalized statements such as the previous strawman’s comments, you should
consider the specifics of your problem. The main criterion would probably be the asymptotic performance for what
you're doing. For example, looking up the edge (¢, v) in an adjacency matrix is ®(1), while iterating over u’s neighbors
is ®(n); in an adjacency list representation, both operations will be ®(d(u)), that is, on the order of the number of
neighbors the node has. If the asymptotic complexity of your algorithm is the same regardless of representation, you
could perform some empirical tests, as discussed earlier in this chapter. Or, in many cases, you should simply choose
the representation that makes your code clear and easily maintainable.

An important type of graph implementation not discussed so far is more of a nonrepresentation: Many problems
have an inherent graphical structure—perhaps even a tree structure—and we can apply graph (or tree) algorithms to
them without explicitly constructing a representation. In some cases, this happens when the representation is external
to our program. For example, when parsing XML documents or traversing directories in the file system, the tree
structures are just there, with existing APIs. In other cases, we are constructing the graph ourselves, but it is implicit.
For example, if you want to find the most efficient solution to a given configuration of Rubik’s Cube, you could define
a cube state, as well as operators for modifying that state. Even though you don’t explicitly instantiate and store all
possible configurations, the possible states form an implicit graph (or node set), with the change operators as edges.
You could then use an algorithm such as A* or Bidirectional Dijkstra (both discussed in Chapter 9) to find the shortest
path to the solved state. In such cases, the neighborhood function N(v) would compute the neighbors on the fly,
possibly returning them as a collection or some other form of iterable object.

The final kind of graph I'll touch upon in this chapter is the subproblem graph. This is a rather deep concept
that I'll revisit several times, when discussing different algorithmic techniques. In short, most problems can be
decomposed into subproblems: smaller problems that often have quite similar structure. These form the nodes of the
subproblem graph, and the dependencies (that is, which subproblems depend on which) form the edges. Although
we rarely apply graph algorithms directly to such subproblem graphs (they are more of a conceptual or mental tool),
they do offer significant insights into such techniques as divide and conquer (Chapter 6) and dynamic programming
(Chapter 8).

"That is, the comments are inadequate and are presented to demonstrate the problem with most explanations.
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GRAPH LIBRARIES

The basic representation techniques described in this chapter will probably be enough for most of your graph
algorithm coding, especially with some customization. However, there are some advanced operations and
manipulations that can be tricky to implement, such as temporarily hiding or combining nodes, for example.
There are third-party libraries out there that take care of some of these things, and several of them are even
implemented as C extensions, potentially leading to a performance increase as a bonus. They can also be quite
convenient to work with, and some of them have several graph algorithms available out of the box. While a quick
web search will probably turn up the most actively supported graph libraries, here are a few to get you started:

o NetworkX: http://networkx.lanl.gov

e python-graph: http://code.google.com/p/python-graph
e Graphine: https://gitorious.org/graphine/pages/Home
e Graph-tool: http://graph-tool. skewed.de

There is also Pygr, a graph database (https://github.com/cjlee112/pygr); Gato, a graph animation
toolbox (http://gato.sourceforge.net); and PADS, a collection of graph algorithms
(http://www.ics.uci.edu/~eppstein/PADS).

Beware of Black Boxes

While algorists generally work at a rather abstract level, actually implementing your algorithms takes some care. When
programming, you're bound to rely on components that you did not write yourself, and relying on such “black boxes”
without any idea of their contents is a risky business. Throughout this book, you'll find sidebars marked “Black Box,”
briefly discussing various algorithms available as part of Python, either built into the language or found in the standard
library. I've included these because I think they're instructive; they tell you something about how Python works, and
they give you glimpses of a few more basic algorithms.

However, these are not the only black boxes you'll encounter. Not by a long shot. Both Python and the machinery
it rests on use many mechanisms that can trip you up if you're not careful. In general, the more important your
program, the more you should mistrust such black boxes and seek to find out what’s going on under the covers.

I'll show you two traps to be aware of in the following sections, but if you take nothing else away from this section,
remember the following:

e When performance is important, rely on actual profiling rather than intuition. You may have
hidden bottlenecks, and they may be nowhere near where you suspect they are.

e  When correctness is critical, the best thing you can do is calculate your answer more than
once, using separate implementations, preferably written by separate programmers.

The latter principle of redundancy is used in many performance-critical systems and is also one of the key pieces of
advice given by Foreman S. Acton in his book Real Computing Made Real, on preventing calculating errors in scientific
and engineering software. Of course, in every scenario, you have to weigh the costs of correctness and performance
against their value. For example, as I said before, if your program is fast enough, there’s no need to optimize it.

The following two sections deal with two rather different topics. The first is about hidden performance traps:
operations that seem innocent enough but that can turn a linear operation into a quadratic one. The second is about
a topic that is not often discussed in algorithm books, but it is important to be aware of, that is, the many traps of
computing with floating-point numbers.
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Hidden Squares

Consider the following two ways of looking for an element in a list:

>>> from random import randrange

>>> L = [randrange(10000) for i in range(1000)]
>>> 42 in L

False

»>> S = set(L)

>>> 42 in S

False

They're both pretty fast, and it might seem pointless to create a set from the list—unnecessary work, right? Well,
it depends. If you're going to do many membership checks, it might pay off, because membership checks are linear
for lists and constant for sets. What if, for example, you were to gradually add values to a collection and for each step
check whether the value was already added? This is a situation you'll encounter repeatedly throughout the book.
Using a list would give you quadratic running time, whereas using a set would be linear. That’s a huge difference.
The lesson is that it’s important to pick the right built-in data structure for the job.

The same holds for the example discussed earlier, about using a deque rather than inserting objects at the
beginning of a list. But there are some examples that are less obvious that can cause just as many problems. Take, for
example, the following “obvious” way of gradually building a string, from a source that provides us with the pieces:
»> s =""
>>> for chunk in string producer():

s += chunk

It works, and because of some really clever optimizations in Python, it actually works pretty well, up to a certain
size—but then the optimizations break down, and you run smack into quadratic growth. The problem is that (without
the optimizations) you need to create a new string for every += operation, copying the contents of the previous one.
You'll see a detailed discussion of why this sort of thing is quadratic in the next chapter, but for now, just be aware that
this is risky business. A better solution would be the following:

>>> chunks = []

>>> for chunk in string_producer():
chunks .append(chunk)

>>> s = ''.join(chunks)

You could even simplify this further like so:
>>> s = "'.join(string producer())

This version is efficient for the same reason that the earlier append examples were. Appending allows you to
overallocate with a percentage so that the available space grows exponentially, and the append cost is constant when
averaged (amortized) over all the operations.

There are, however, quadratic running times that manage to hide even better than this. Consider the following

solution, for example:

>>> s = sum(string producer(), '')
Traceback (most recent call last):

TypeError: sum() can't sum strings [use ''.join(seq) instead]
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Python complains and asks you to use ' ' . join() instead (and rightly so). But what if you're using lists?

>>> lists = [[1, 2], [3, 4, 5], [6]]
>>> sum(lists, [])
[1) 2) 3) 4) 5) 6]

This works, and it even looks rather elegant, but it really isn’t. You see, under the covers, the sum function doesn’t
know all too much about what you're summing, and it has to do one addition after another. That way, you're right
back at the quadratic running time of the += example for strings. Here’s a better way:

>>> res = []
>>> for 1st in lists:
res.extend(1st)

Just try timing both versions. As long as 1ists is pretty short, there won’t be much difference, but it shouldn’t
take long before the sum version is thoroughly beaten.

The Trouble with Floats

Most real numbers have no exact finite representation. The marvelous invention of floating-point numbers makes it
seem like they do, though, and even though they give us a lot of computing power, they can also trip us up. Big time.
In the second volume of The Art of Computer Programming, Knuth says, “Floating point computation is by nature
inexact, and programmers can easily misuse it so that the computed answers consist almost entirely of ‘noise.”'®

Python is pretty good at hiding these issues from you, which can be a good thing if you're seeking reassurance,
but it may not help you figure out what'’s really going on. For example, in current version of Python, you'll get the
following reasonable behavior:

>>> 0.1
0.1

It certainly looks like the number 0.1 is represented exactly. Unless you know better, it would probably surprise
you to learn that it’s not. Try an earlier version of Python (say, 2.6), where the black box was slightly more transparent:

>>> 0.1
0.10000000000000001

Now we're getting somewhere. Let’s go a step further (feel free to use an up-to-date Python here):

>>> sum(0.1 for i in range(10)) == 1.0
False

Ouch! That’s not what you'd expect without previous knowledge of floats.

The thing is, integers can be represented exactly in any number system, be it binary, decimal, or something
else. Real numbers, though, are a bit trickier. The official Python tutorial has an excellent section on this,' and David
Goldberg has written a great and thorough tutorial paper. The basic idea should be easy enough to grasp if you
consider how you'd represent 1/3 as a decimal number. You can’t do it exactly, right? If you were using the ternary
number system, though (base 3), it would be easily represented as 0.1.

'8This kind of trouble has led to disaster more than once (see, for example, waw.ima.umn.edu/~arnold/455.196/disasters.html).
“http://docs.python.org/tutorial/floatingpoint.html.
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The first lesson here is to never compare floats for equality. It generally doesn’t make sense. Still, in many
applications such as computational geometry, you'd very much like to do just that. Instead, you should check whether
they are approximately equal. For example, you could take the approach of assertAlmostEqual from the unittest
module:

>>> def almost_equal(x, y, places=7):
return round(abs(x-y), places) ==

>>> almost_equal(sum(0.1 for i in range(10)), 1.0)
True

There are also tools you can use if you need exact decimal floating-point numbers, for example the decimal
module.

>>> from decimal import *
>>> sum(Decimal("0.1") for i in range(10)) == Decimal("1.0")
True

This module can be essential if you're working with financial data, for example, where you need exact
calculations with a certain number of decimals. In certain mathematical or scientific applications, you might find
tools such as Sage useful:*

sage: 3/5 * 11/7 + sqrt(5239)
13*sqrt(31) + 33/35

Asyou can see, Sage does its math symbolically, so you get exact answers, although you can also get decimal
approximations, if needed. This sort of symbolic math (or the decimal module) is nowhere near as efficient as using
the built-in hardware capabilities for floating-point calculations, though.

If you find yourself doing floating-point calculations where accuracy is key (that is, you're not just sorting them
or the like), a good source of information is Acton’s book, mentioned earlier. Let’s just briefly look at an example of
his: You can easily lose significant digits if you subtract two nearly equal subexpressions. To achieve higher accuracy,
you'll need to rewrite your expressions. Consider, for example, the expression sqrt(x+1)-sqrt(x), where we
assume that x is very big. The thing to do would be to get rid of the risky subtraction. By multiplying and dividing by
sqrt(x+1)+sqrt(x), we end up with an expression that is mathematically equivalent to the original but where we
have eliminated the subtraction: 1.0/ (sqrt(x+1)+sqrt(x)). Let’s compare the two versions:

>>> from math import sqrt

>>> X = 8762348761.13

>>> sqrt(x + 1) - sqrt(x)
5.341455107554793e-06

>>> 1.0/(sqrt(x + 1) + sqrt(x))
5.3414570026237696e-06

As you can see, even though the expressions are equivalent mathematically, they give different answers (with the
latter being more accurate).

»Sage is a tool for mathematical computation in Python and is available from http://sagemath.org.
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A QUICK MATH REFRESHER

If you're not entirely comfortable with the formulas used in Table 2-1, here is a quick rundown of what they mean:
A power, like X (x to the power of }), is basically x times itself y times. More precisely, x occurs as a factor y
times. Here, xis called the base, and y is the exponent (or sometimes the power). So, for example, 3% = 9. Nested
powers simply have their exponents multiplied: (3%* = 32, In Python, you write powers as x**y.

A polynomial is just a sum of several powers, each with its own constant factor. For example, 9x° + 2x2 + x + 3.

You can have fractional powers, t0o, as a kind of inverse: (x¥)"¥ = x. These are sometimes called roots, such as
the square root for the inverse of squaring. In Python you can get square roots either using the sqrt function from
the math module or simply using x**0.5.

Roots are inverses in that they “undo” the effects of powers. Logarithms are another kind of inverse. Each
logarithm has a fixed base; the most common one in algorithmics is the base-2 logarithm, written log, or simply Ig.
(The base-10 logarithm is conventionally written simply log, while the so-called natural logarithm, with base e, is
written In). The logarithm gives us the exponent we need for the given base, so if n= 2 then Ig n = k. In Python,
you can use the 1log function of the math module to get logarithms.

The factorial, or n!, is calculated as n x (n~1) x (n=2) ... 1. It can be used, among other things, to calculate the
number of possible orderings of n elements. There are n possibilities for the first position, and for each of those
there are n—1 remaining for the second, and so forth.

If this is still about as clear as mud, don’t worry. You'll encounter powers and logarithms repeatedly throughout
the book, in rather concrete settings, where their meanings should be understandable.

Summary

This chapter started with some important foundational concepts, defining somewhat loosely the notions of
algorithms, abstract computers, and problems. This was followed by the two main topics, asymptotic notation and
graphs. Asymptotic notation is used to describe the growth of a function; it lets us ignore irrelevant additive and
multiplicative constants and focus on the dominating part. This allows us evaluate the salient features of the running
time of an algorithm in the abstract, without worrying about the specifics of a given implementation. The three Greek
letters O, ), and O give us upper, lower, and combined asymptotic limits, and each can be used on either of the best-
case, worst-case, or average-case behavior of an algorithm. As a supplement to this theoretical analysis, I gave you
some brief guidelines for testing your program.

Graphs are abstract mathematical objects, used to represent all kinds of network structures. They consist of
a set of nodes, connected by edges, and the edges can have properties such as direction and weight. Graph theory
has an extensive vocabulary, and a lot of it is summed up in Appendix C. The second part of the chapter dealt with
representing these structures in actual Python programs, primarily using variations of adjacency lists and adjacency
matrices, implemented with various combinations of 1ist, dict, and set.

Finally, there was a section about the dangers of black boxes. You should look around for potential traps—things
you use without knowing how they work. For example, some rather straightforward uses of built-in Python functions
can give you a quadratic running time rather than a linear one. Profiling your program can, perhaps, uncover
such performance problems. There are traps related to accuracy as well. Careless use of floating-point numbers,
for example, can give you inaccurate answers. If it’s critical to get an accurate answer, the best solution may be to
calculate it with two separately implemented programs, comparing the results.
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If You’re Curious ...

If you want to know more about Turing machines and the basics of computation, you might like The Annotated
Turing by Charles Petzold. It’s structured as an annotated version of Turing’s original paper, but most of the contents
are Petzold’s explanations of the main concepts, with lots of examples. It’s a great introduction to the topic. For an
fundamental textbook on computation, you could take a look at Elements of the Theory of Computation by Lewis
and Papadimitriou. For an easy-to-read, wide-ranging popular introduction to the basic concepts of algorithmics,

I recommend Algorithmic Adventures: From Knowledge to Magic by Juraj Hromkovic¢. For more specifics on asymptotic
analysis, a solid textbook, such as one of those discussed in Chapter 1, would probably be a good idea. The book

by Cormen et al. is considered a good reference work for this sort of thing. You can certainly also find a lot of good
information online, such as in Wikipedia,* but you should double-check the information before relying on it for
anything important, of course. If you want some historical background, you could read Donald Knuth'’s paper

“Big Omicron and big Omega and big Theta,” from 1976.

For some specifics on the perils and practices of algorithmic experiments, there are several good papers, such
as “Towards a discipline of experimental algorithmics,” “On comparing classifiers,” “Don’t compare averages,” “How
not to lie with statistics,” “Presenting data from experiments in algorithmics,” “Visual presentation of data by means of
box plots,” and “Using finite experiments to study asymptotic performance” (details in the “References” section).

For visualizing data, take a look at Beginning Python Visualization by Shai Vaingast.

There are many textbooks on graph theory—some are rather technical and advanced (such as those by
Bang-Jensen and Gutin, Bondy and Murty, or Diestel, for example), and some are quite readable, even for the novice
mathematician (such as the one by West). There are even specialized books on, say, types of graphs (Brandstidt et al.,
1999) or graph representations (Spinrad, 2003). If this is a topic that interests you, you shouldn’t have any trouble
finding lots of material, either in books or online. For more on best practices when using floating-point numbers, take
alook at Foreman S. Acton’s Real Computing Made Real: Preventing Errors in Scientific Engineering Calculations.

Exercises

2-1. When constructing a multidimensional array using Python lists, you need to use for loops
(or something equivalent, such as list comprehension). Why would it be problematic to create a
10x10 array with the expression [ [0]*10]*10?

2-2. Assume perhaps a bit unrealistically that allocating a block of memory takes constant time,

as long as you leave it uninitialized (that is, it contains whatever arbitrary “junk” was left there the last
time it was used). You want an array of n integers, and you want to keep track of whether each entry

is unitialized or whether it contains a number you put there. This is a check you want to be able to do
in constant time for any entry. How would you do this with only constant time for initialization? And
how could you use this to initialize an empty adjacency array in constant time, thereby avoiding an
otherwise obligatory quadratic minimum running time?

2-3. Show that O and Q are inverses of one another; that is, if fis O(g), then gis Q(f), and vice versa.

2-4. Logarithms can have different bases, but algorists don’t usually care. To see why, consider the
equation log, n = (log, n)/(log, b). First, can you see why this is true? Second, why does this mean that
we usually don’t worry about bases?

2-5. Show that any increasing exponential (©(k") for k > 1) asymptotically dominates any polynomial
(©(n)) forj > 0).

Zhttp://wikipedia.org
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2-6. Show that any polynomial (that is, ®(n*), for any constant k > 0) asymptotically dominates any
logarithm (that is, ©(ig n)). (Note that the polynomials here include, for example, the square root,
fork=0.5.)

2-7. Research or conjecture the asymptotic complexity of various operations on Python lists, such as
indexing, item assignment, reversing, appending, and inserting (the latter two discussed in the “Black
Box” sidebar on 1ist). How would these be different in a linked list implementation? What about,

for example, list.extend?

2-8. Show that the expressions O(f) + ©(g) = O(f+ g) and O(f) - ©(g) = O(f- g) are correct. Also, try your
hand at max(0(f), ©(g)) = ©(max(f, g)) = O(f+ g).

2-9. In Appendix C, you'll find a numbered list of statements about trees. Show that they are equivalent.

2-10. Let T be an arbitrary rooted tree with at least three nodes, where each internal node has exactly
two children. If T has n leaves, how many internal nodes does it have?

2-11. Show that a directed acyclic graph (DAG) can have any underlying structure whatsoever. Put
differently, any undirected graph can be the underlying graph for a DAG, or, given a graph, you can
always orient its edges so that the resulting digraph is a DAG.

2-12. Consider the following graph representation: You use a dictionary and let each key be a pair
(tuple) of two nodes, with the corresponding value set to the edge weight. For example W[u, v] = 42.
What would be the advantages and disadvantages of this representation? Could you supplement it to
mitigate the downsides?
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Counting 101

The greatest shortcoming of the human race is our inability to understand the exponential
function.

— Dr. Albert A. Bartlett, World Population Balance
Board of Advisors

At one time, when the famous mathematician Carl Friedrich Gauss was in primary school, his teacher asked the
pupils to add all the integers from 1 to 100 (or, at least, that’s the most common version of the story). No doubt, the
teacher expected this to occupy his students for a while, but Gauss produced the result almost immediately. This
might seem to require lightning-fast mental arithmetic, but the truth is, the actual calculation needed is quite simple;
the trick is really understanding the problem.

After the previous chapter, you may have become a bit jaded about such things. “Obviously, the answer
is ®(1),” you say. Well, yes ... but let’s say we were to sum the integers from 1 to n? The following sections deal with
some important problems like this, which will crop up again and again in the analysis of algorithms. The chapter
may be a bit challenging at times, but the ideas presented are crucial and well worth the effort. They’ll make the
rest of the book that much easier to understand. First, I'll give you a brief explanation of the concept of sums and
some basic ways of manipulating them. Then come the two major sections of the chapter: one on two fundamental
sums (or combinatorial problems, depending on your perspective) and the other on so-called recurrence
relations, which you'll need to analyze recursive algorithms later. Between these two is a little section on subsets,
combinations, and permutations.

Tip There’s quite a bit of math in this chapter. If that’s not your thing, you might want to skim it for now and come
back to it as needed while reading the rest of the book. (Several of the ideas in this chapter will probably make the rest of
the book easier to understand, though.)

The Skinny on Sums

In Chapter 2, I explained that when two loops are nested and the complexity of the inner one varies from iteration to
iteration of the outer one, you need to start summing. In fact, sums crop up all over the place in algorithmics, so you
might as well get used to thinking about them. Let’s start with the basic notation.
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More Greek

In Python, you might write the following:
x*sum(S) == sum(x*y for y in S)

With mathematical notation, you'd write this:

Xy y=) %y

yes yes

Can you see why this equation is true? This capital sigma can seem a bit intimidating if you haven’t worked with
it before. It is, however, no scarier than the sum function in Python; the syntax is just a bit different. The sigma itself
indicates that we're doing a sum, and we place information about what to sum above, below, and to the right of it.
What we place to the right (in the previous example, y and xy) are the values to sum, while we put a description of
which items to iterate over below the sigma.

Instead of just iterating over objects in a set (or other collection), we can supply limits to the sum, like with range
(except that both limits are inclusive). The general expression “sum f(i) for i = m to n” is written like this:

> /)

The Python equivalent would be as follows:
sum(f(i) for i in range(m, n+1))

It might be even easier for many programmers to think of these sums as a mathematical way of writing loops:

s =0
for i in range(m, n+1):
s += f(i)

The more compact mathematical notation has the advantage of giving us a better overview of what’s going on.

Working with Sums

The sample equation in the previous section, where the factor x was moved inside the sum, is just one of several useful
“manipulation rules” you're allowed to use when working with sums. Here’s a summary of two of the most important
ones (for our purposes):

e 3 f)=3 e )

Multiplicative constants can be moved in or out of sums. That’s also what the initial example in the previous
section illustrated. This is the same rule of distributivity that you've seen in simpler sums many times: c(f(m) + ... +

f(n) =cf(m) + ... + ¢f(n).

> f)+ Y 8= 3 (f)+0)
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Instead of adding two sums, you can sum their added contents. This just means that if you're going to sum
up a bunch of stuff, it doesn’t matter how you do it; that is,

sum(f(i) for i in S) + sum(g(i) for i in S)

is exactly the same as sun(f(i) + g(i) for i in S).!This isjust an instance of associativity. If you want to subtract
two sums, you can use the same trick. If you want, you can pretend you're moving the constant factor -1 into the
second sum.

A Tale of Two Tournaments

There are plenty of sums that you might find useful in your work, and a good mathematics reference will probably give
you the solution to most of them. There are, however, two sums, or combinatorial problems, that cover the majority of
the cases you'll meet in this book—or, indeed, most basic algorithm work.

I've been explaining these two ideas repeatedly over the years, using many different examples and metaphors,
but I think one rather memorable (and I hope understandable) way of presenting them is as two forms of
tournaments.

Note There is, actually, a technical meaning of the word fournament in graph theory (a complete graph, where each
edge is assigned a direction). That’s not what I’'m talking about here, although the concepts are related.

There are many types of tournaments, but let’s consider two quite common ones, with rather catchy names.
These are the round-robin tournament and the knockout tournament.

In a round-robin tournament (or, specifically, a single round-robin tournament), each contestant meets each of
the others in turn. The question then becomes, how many matches or fixtures do we need, if we have, for example,
n knights jousting? (Substitute your favorite competitive activity here, if you want.) In a knockout tournament, the
competitors are arranged in pairs, and only the winner from each pair goes on to the next round. Here there are more
questions to ask: For n knights, how many rounds do we need, and how many matches will there be, in total?

Shaking Hands

The round-robin tournament problem is exactly equivalent to another well-known puzzler: If you have n algorists
meeting at a conference and they all shake hands, how many handshakes do you get? Or, equivalently, how many
edges are there in a complete graph with n nodes (see Figure 3-1)? It’s the same count you get in any kind of “all
against all” situations. For example, if you have n locations on a map and want to find the two that are closest to each
other, the simple (brute-force) approach would be to compare all points with all others. To find the running time to
this algorithm, you need to solve the round-robin problem. (A more efficient solution to this closest pair problem is
presented in Chapter 6.)

'As long as the functions don’t have any side effects, that is, but behave like mathematical functions.
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Figure 3-1. A complete graph, illustrating a round-robin tournament, or the handshake problem

You may very well have surmised that there will be a quadratic number of matches. “All against all” sounds
an awful lot like “all times all,” or 72 Although it is true that the result is quadratic, the exact form of n? isn’t entirely
correct. Think about it—for one thing, only a knight with a death wish would ever joust against himself (or herself).
And if Sir Galahad has crossed swords with Sir Lancelot, there is no need for Sir Lancelot to return the favor, because
they surely have both fought each other, so a single match will do. A simple “n times n” solution ignores both of these
factors, assuming that each knight gets a separate match against each of the knights (including themselves). The fix is
simple: Let each knight get a match against all the others, yielding n(n-1), and then, because we now have counted
each match twice (once for each participating knight), we divide by two, getting the final answer, n(n-1)/2, which is
indeed ©(n?).

Now we've counted these matches (or handshakes or map point comparisons) in one relatively straightforward
way—and the answer may have seemed obvious. Well, what lies ahead may not exactly be rocket science either, but rest
assured, there is a point to all of this. . . for now we count them all in a different way, which must yield the same result.

This other way of counting is this: The first knight jousts with n-1 others. Among the remaining, the second
knight jousts with n-2. This continues down to the next to last, who fights the last match, against the last knight (who
then fights zero matches against the zero remaining knights). This gives us the sum n-1 + n-2 +... + 1 + 0, or sum(i for
i in range(n)). We've counted each match only once, so the sum must yield the same count as before:

"z’ll, _n(n-1)
i 2

I could certainly just have given you that equation up front. I hope the extra packaging makes it slightly more
meaningful to you. Feel free to come up with other ways of explaining this equation (or the others throughout this
book), of course. For example, the insight often attributed to Gauss, in the story that opened this chapter, is that the
sum of 1 through 100 can be calculated “from the outside,” pairing 1 with 100, 2 with 99, and so forth, yielding 50 pairs
that all sum to 101. If you generalize this to the case of summing from 0 to n-1, you get the same formula as before.
And can you see how all this relates to the lower-left half, below the diagonal, of an adjacency matrix?

Tip An arithmetic series is a sum where the difference between any two consecutive numbers is a constant.
Assuming this constant is positive, the sum will always be quadratic. In fact, the sum of # where i=1...n, for some
positive constant k, will always be ®(r*"). The handshake sum is just a special case.
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The Hare and the Tortoise

Let’s say our knights are 100 in number and that the tournament staff are still a bit tired from last year’s round
robin. That’s quite understandable, as there would have been 4,950 matches. They decide to introduce the (more
efficient) knockout system and want to know how many matches they’ll need. The solution can be a bit tricky

to find ... or blindingly obvious, depending on how you look at it. Let’s look at it from the slightly tricky angle
first. In the first round, all the knights are paired, so we have n/2 matches. Only half of them go on to the second
round, so there we have n/4 matches. We keep on halving until the last match, giving us the sum n/2 + n/4 + n/8
+...+ 1, o1, equivalently, 1 + 2 + 4 + ... + n/2. As you'll see later, this sum has numerous applications, but what is
the answer?

Now comes the blindingly obvious part: In each match, one knight is knocked out. All except the winner are
knocked out (and they’re knocked out only once), so we need n-1 matches to leave only one man (or woman)
standing. The tournament structure is illustrated as a rooted tree in Figure 3-2, where each leaf is a knight and each
internal node represents a match. In other words:

n-1

Figure 3-2. A perfectly balanced rooted, binary tree with n leaves and n-1 internal nodes (root highlighted). The tree
may be undirected, but the edges can be thought of as implicitly pointing downward, as shown

The upper limit, k-1, is the number of rounds, or & the height of the binary tree, so 2" = n. Couched in this
concrete setting, the result may not seem all that strange, but it sort of is, really. In a way, it forms the basis for the
myth that there are more people alive than all those who have ever died. Even though the myth is wrong, it’s not that
far-fetched! The growth of the human population is roughly exponential and currently doubles about every 50 years.
Let’s say we had a fixed doubling time throughout history; this is not really true,? but play along. Or, to simplify things
even further, assume that each generation is twice as populous as the one before.? Then, if the current generation
consists of 7 individuals, the sum of all generations past will, as we have seen, be only n-1 (and, of course, some of
them would still be alive).

*http://prb.org/Articles/2002/HowManyPeoplehaveEverLivedonEarth.aspx.
3If this were true, the human population would have consisted of one man and one woman about 32 generations ago ... but,
as [ said, play along.
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WHY BINARY WORKS

We've just seen that when summing up the powers of two, you always get one less than the next power of two.
For example,1+2+4=8-1,0r1+2 +4 + 8 =16 -1, and so forth. This is, from one perspective, exactly
why binary counting works. A binary number is a string of zeros and ones, each of which determines whether

a given power of two should be included in a sum (starting with 2° = 1 on the far right). So, for example, 11010
would be 2 + 8 + 16 = 26. Summing the first h of these powers would be equivalent to a number like 1111, with
hones. This is as far as we get with these h digits, but luckily, if these sum to n—1, the next power will be exactly
n. For example, 1111 is 15, and 10000 is 16. (Exercise 3-3 asks you to show that this property lets you represent
any positive integer as a binary number.)

Here’s the first lesson about doubling, then: A perfectly balanced binary tree (that is, a rooted tree where all
internal nodes have two children and all leaves have the same depth) has n-1 internal nodes. There are, however, a
couple more lessons in store for you on this subject. For example, I still haven’t touched upon the hare and tortoise
hinted at in the section heading.

The hare and the tortoise are meant to represent the width and height of the tree, respectively. There are several
problems with this image, so don’t take it too seriously, but the idea is that compared to each other (actually, as a
function of each other), one grows very slowly, while the other grows extremely fast. I have already stated that n = 2",
but we might just as easily use the inverse, which follows from the definition of the binary logarithm: h =1g n;
see Figure 3-3 for an illustration.

ubl=y

n=2"
Figure 3-3. The height and width (number of leaves) of a perfectly balanced binary tree

Exactly how enormous the difference between these two is can be hard to fathom. One strategy would be to
simply accept that they're extremely different—meaning that logarithmic-time algorithms are super-sweet, while
exponential-time algorithms are totally bogus—and then try to pick up examples of these differences wherever you
can. Let me give you a couple of examples to get started. First let’s do a game I like to call “think of a particle” I think of
one of the particles in the visible universe, and you try to guess which one, using only yes/no questions. OK? Shoot!

This game might seem like sheer insanity, but I assure you, that has more to do with the practicalities (such
that keeping track of which particles have been ruled out) than with the number of alternatives. To simplify these
practicalities a bit, let’s do “think of a number” instead. There are many estimates for the number of particles we're
talking about, but 10* (that is, a one followed by 90 zeros) would probably be quite generous. You can even play this
game yourself, with Python:

>>> from random import randrange
>>> n = 10**90
>>> p = randrange(10**90)
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You now have an unknown particle (particle number p) that you can investigate with yes/no questions
(no peeking!). For example, a rather unproductive question might be as follows:

>>> p == 52561927548332435090282755894003484804019842420331
False

If you've ever played “twenty questions,” you've probably spotted the flaw here: I'm not getting enough “bang for
the buck.” The best I can do with a yes/no question is halving the number of remaining options. So, for example:

>>> p < n/2
True

Now we're getting somewhere! In fact, if you play your cards right (sorry for mixing metaphors—or, rather, games)
and keep halving the remaining interval of candidates, you can actually find the answer in just under 300 questions.
You can calculate this for yourself:

>>> from math import log
>>> log(n, 2) # base-two logarithm
298.97352853986263

If that seems mundane, let it sink in for a minute. By asking only yes/no questions, you can pinpoint any particle
in the observable universe in about five minutes! This is a classic example of why logarithmic algorithms are so
super-sweet. (Now try saying “logarithmic algorithm” ten times, fast.)

Note This is an example of bisection, or binary search, one of the most important and well-known logarithmic
algorithms. It is discussed further in the “Black Box” sidebar on the bisect module in Chapter 6.

Let’s now turn to the bogus flip side of logarithms and ponder the equally weird exponentials. Any example
for one is automatically an example for the other—if I asked you to start with a single particle and then double it
repeatedly, you'd quickly fill up the observable universe. (It would take about 299 doublings, as we've seen.) This
is just a slightly more extreme version of the old wheat and chessboard problem. If you place one grain of wheat on
the first square of a chessboard, two on the second, four on the third, and so forth, how much wheat would you get?*
The number of grains in the last square would be 2% (we started at 2° = 1) and according to the sum illustrated in
Figure 3-2, this means the total would be 2%-1 = 18,446,744,073,709,551,615, or, for wheat, about 5 - 10'*kg. That’s a lot
of grain—hundreds of times the world’s total yearly production! Now imagine that instead of grain, we’re dealing with
time. For a problem size n, your program uses 2n milliseconds. For n = 64, the program would then run for 584,542,046
years! To finish today, that program would have had to run since long before there were any vertebrates around to
write the code. Exponential growth can be scary.

By now, I hope you're starting to see how exponentials and logarithms are the inverses of one another. Before
leaving this section, however, I'd like to touch upon another duality that arises when we’re dealing with our hare and
tortoise: The number of doublings from 1 to n is, of course, the same as the number of halvings from #n to 1. This is
painfully obvious, but I'll get back to it when we start working with recurrences in a bit, where this idea will be quite
helpful. Take a look at Figure 3-4. The tree represents the doubling from 1 (the root node) to n (the n leaves), but I
have also added some labels below the nodes, representing the halvings from 7 to 1. When working with recurrences,

“Reportedly, this is the reward that the creator of chess asked for and was granted ... although he was told to count each grain he
received. I’m guessing he changed his mind.
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these magnitudes will represent portions of the problem instance, and the related amount of work performed, for a
set of recursive calls. When we try to figure out the total amount of work, we’ll be using both the height of the tree and
the amount of work performed at each level. We can see these values as a fixed number of tokens being passed down
the tree. As the number of nodes doubles, the number of tokens per node is halved; the number of tokens per level
remains 7. (This is similar to the ice cream cones in the hint for Exercise 2-10.)

N3
N

1 1 “ee 1

Figure 3-4. Passing n tokens down through the levels of a binary tree

Tip A geometric (or exponential) series is a sum of ki, where i = 0...n, for some constant k. If kis greater than 1,
the sum will always be ®(k™"). The doubling sum is just a special case.

Subsets, Permutations, and Combinations

The number of binary strings of length k should be easy to compute, if you've read the previous section. You can, for
example, think of the strings as directions for walking from the root to leaves in a perfectly balanced binary tree. The
string length, k, will be the height of the tree, and the number of possible strings will equal the number of leaves, 2*.
Another, more direct way to see this is to consider the number of possibilities at each step: The first bit can be zero or
one, and for each of these values, the second also has two possibilities, and so forth. It’s like k nested for loops, each
running two iterations; the total count is still 2*.

PSEUDOPOLYNOMIALITY

Nice word, huh? It’s the name for certain algorithms with exponential running time that “look like” they have
polynomial running times and that may even act like it in practice. The issue is that we can describe the running
time as a function of many things, but we reserve the label “polynomial” for algorithms whose running time is

a polynomial in the size of the input—the amount of storage required for a given instance, in some reasonable
encoding. Let’s consider the problem of primality checking or answering the question “Is this number a prime?”
This problem has a polynomial solution, but it’s not entirely obvious ... and the entirely obvious way to attack it
actually yields a nonpolynomial solution.
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Here’s my stab at a relatively direct solution:

def is_prime(n):
for i in range(2,n):
if n % i == 0: return False
return True

The algorithm here is to step through all positive integers smaller than n, starting at 2, checking whether they
divide n. If one of them does, nis not a prime; otherwise, it is. This might seem like a polynomial algorithm, and
indeed its running time is ®(n). The problem is that n is not a legitimate problem size!

It can certainly be useful to describe the running time as linear in n, and we could even say that it is polynomial
... in n. But that does not give us the right to say that it is polynomial ... period. The size of a problem instance
consisting of nis not n, but rather the number of bits needed to encode n, which, if nis a power of 2, is roughly
Ig n+ 1. For an arbitrary positive integer, it’s actually f1oor (log(n,2))+1.

Let’s call this problem size (the number of bits) k. We then have roughly n = 2, Qur precious ®(n) running time,
when rewritten as a function of the actual problem size, becomes ®(2%), which is clearly exponential.® There are
other algorithms like this, whose running times are polynomial only when interpreted as a function of a numeric
value in the input. (One example is a solution to the knapsack problem, discussed in Chapter 8.) These are all
called pseudopolynomial.

The relation to subsets is quite direct: If each bit represents the presence or absence of an object from a size-k set,
each bit string represents one of the 2* possible subsets. Perhaps the most important consequence of this is that any
algorithm that needs to check every subset of the input objects necessarily has an exponential running time complexity.

Although subsets are essential to know about for an algorist, permutations and combinations are perhaps a bit
more marginal. You will probably run into them, though (and it wouldn’t be Counting 101 without them), so here is a
quick rundown of how to count them.

Permutations are orderings. If n people queue up for movie tickets, how many possible lines can we get? Each
of these would be a permutation of the queuers. As mentioned in Chapter 2, the number of permutations of n items
is the factorial of n, or n! (that includes the exclamation mark and is read “n factorial”). You can compute n! by
multiplying n (the number of possible people in the first position) by n-1 (remaining options for the second position)
and n-2 (third ...), and so forth, down to 1:

n'=n-(n-1)-(n-2)-...-2-1

Not many algorithms have running times involving n! (although we’ll revisit this count when discussing limits to
sorting, in Chapter 6). One silly example with an expected running time of ®(7 - n!) is the sorting algorithm bogosort,
which consists of repeatedly shuffling the input sequence into a random order and checking whether the result is sorted.

Combinations are a close relative of both permutations and subsets. A combination of k elements, drawn from a
set of n, is sometimes written C(n, k), or, for those of a mathematical bent:

"

Do you see where the —1 in the exponent went? Remember, 247 = 2¢ - 2.,
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This is also called the binomial coefficient (or sometimes the choose function) and is read “n choose k” While the
intuition behind the factorial formula is rather straightforward, how to compute the binomial coefficient isn’t quite as
obvious.®

Imagine (once again) you have n people lined up to see a movie, but there are only k places left in the theater.
How many possible subsets of size k could possibly get in? That'’s exactly C(n, k), of course, and the metaphor may do
some work for us here. We already know that we have 7! possible orderings of the entire line. What if we just count all
these possibilities and let in the first k? The only problem then is that we've counted the subsets too many times. A
certain group of k friends could stand at the head of the line in a lot of the permutations; in fact, we could allow these
friends to stand in any of their k! possible permutations, and the remainder of the line could stand in any of their
(n-k)! possible permutations without affecting who's getting in. Aaaand this gives us the answer!

ny n!
[kJ_k!(nk)!

This formula just counts all possible permutations of the line (n!) and divides by the number of times we count
each “winning subset,” as explained.

Note A different perspective on calculating the binomial coefficient will be given in Chapter 8, on dynamic
programming.

Note that we're selecting a subset of size k here, which means selection without replacement. If we just draw lots
k times, we might draw the same person more than once, effectively “replacing” them in the pool of candidates. The
number of possible results then would simply be nk. The fact that C(n, k) counts the number of possible subsets of
size k and 2" counts the number of possible subsets in total gives us the following beautiful equation:

2=

And that’s it for these combinatorial objects. It’s time for slightly more mind-bending prospect: solving equations
that refer to themselves!

Tip For most math, the interactive Python interpreter is quite handy as a calculator; the math module contains
many useful mathematical functions. For symbolic manipulation like we’ve been doing in this chapter, though, it’s not
very helpful. There are symbolic math tools for Python, though, such as Sage (available from http://sagemath.org).
If you just need a quick tool for solving a particularly nasty sum or recurrence (see the next section), you might want to
check out Wolfram Alpha (http://wolframalpha.com). You just type in the sum or some other math problem, and out
pops the answer.

®Another thing that’s not immediately obvious is where the name “binomial coefficient” comes from. You might want to look it up.
It’s kind of neat.
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Recursion and Recurrences

I'm going to assume that you have at least some experience with recursion, although I'll give you a brief intro in this
section and even more detail in Chapter 4. Ifit’s a completely foreign concept to you, it might be a good idea to look it
up online or in some fundamental programming textbook.

The thing about recursion is that a function—directly or indirectly—calls itself. Here’s a simple example of how to
recursively sum a sequence:

def S(seq, i=0):
if i == len(seq): return 0
return S(seq, i+1) + seq[i]

Understanding how this function works and figuring out its running time are two closely related tasks. The
functionality is pretty straightforward: The parameter i indicates where the sum is to start. If it’s beyond the end of
the sequence (the base case, which prevents infinite recursion), the function simply returns 0. Otherwise, it adds the
value at position i to the sum of the remaining sequence. We have a constant amount of work in each execution of
S, excluding the recursive call, and it’s executed once for each item in the sequence, so it’s pretty obvious that the
running time is linear. Still, let’s look into it:

def T(seq, i=0):
if i == len(seq): return 1
return T(seq, i+1) + 1

This new T function has virtually the same structure as S, but the values it’s working with are different. Instead
of returning a solution to a subproblem, like S does, it returns the cost of finding that solution. In this case, I've just
counted the number of times the if statement is executed. In a more mathematical setting, you would count any
relevant operations and use ©(1) instead of 1, for example. Let’s take these two functions out for a spin:

>>> seq = range(1,101)
>>> s(seq)
5050

What do you know, Gauss was right! Let’s look at the running time:

>>> T(seq)
101

Looks about right. Here, the size n is 100, so this is n+1. It seems like this should hold in general:
>>> for n in range(100):
.. seq = range(n)

.. assert T(seq) == n+1

There are no errors, so the hypothesis does seem sort of plausible.
What we’re going to work on now is how to find nonrecursive versions of functions such as T, giving us definite
running time complexities for recursive algorithms.

Doing It by Hand

To describe the running time of recursive algorithms mathematically, we use recursive equations, called recurrence
relations. If our recursive algorithm is like S in the previous section, then the recurrence relation is defined somewhat
like T. Because we're working toward an asymptotic answer, we don’t care about the constant parts, and we implicitly
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assume that T(k) = ©(1), for some constant k. That means we can ignore the base cases when setting up our equation
(unless they don't take a constant amount of time), and for S, our T can be defined as follows:

T(n)=T(n-1)+1

This means that the time it takes to compute S(seq, i), which is T(n), is equal to the time required for the
recursive call S(seq, i+1), which is T(n-1), plus the time required for the access seq[1], which is constant, or ©(1).
Put another way, we can reduce the problem to a smaller version of itself, from size n to n-1, in constant time and then
solve the smaller subproblem. The total time is the sum of these two operations.

Note As you can see, | use 1 rather than ©(1) for the extra work (that is, time) outside the recursion. | could use the
theta as well; as long as | describe the result asymptotically, it won’t matter much. In this case, using ®(1) might be risky,
because I'll be building up asum (1 + 1 + 1 ...), and it would be easy to mistakenly simplify this sum to a constant if it
contained asymptotic notation (that is, ®(1) + ®(1) + ©(1) ...).

Now, how do we solve an equation like this? The clue lies in our implementation of T as an executable function.
Instead of having Python run it, we can simulate the recursion ourselves. The key to this whole approach is the
following equation:

T =[]

=T(n-2)+2

The two subformulas I've put in boxes are identical, which is sort of the point. My rationale for claiming that the
two boxes are the same lies in our original recurrence, for if ...

T(n)=T(n-1)+1

... then:

[T(n-1)]|=[T(n-2)+1]

I've simply replaced n with r-1 in the original equation (of course, T((rn-1)-1) = T(n-2)), and voila, we see that
the boxes are equal. What we’ve done here is to use the definition of T with a smaller parameter, which is, essentially,
what happens when a recursive call is evaluated. So, expanding the recursive call from T(n-1), the first box, to T(n-2)
+ 1, the second box, is essentially simulating or “unraveling” one level of recursion. We still have the recursive call
T(n-2) to contend with, but we can deal with that in the same way!

T(n)=T(n-1)+1

=T(n-3)+3
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The fact that T(n-2) = T(n-3) + 1 (the two boxed expressions) again follows from the original recurrence relation.
It’s at this point we should see a pattern: Each time we reduce the parameter by one, the sum of the work (or time)
we've unraveled (outside the recursive call) goes up by one. If we unravel T'(n) recursively i steps, we get the following:

T(n)=T(n—-i)+i

This is exactly the kind of expression we're looking for—one where the level of recursion is expressed as a variable i.
Because all these unraveled expressions are equal (we've had equations every step of the way), we're free to set i
to any value we want, as long as we don’t go past the base case (for example, T(1)), where the original recurrence
relation is no longer valid. What we do is go right up to the base case and try to make T'(n-i) into T(1), because we
know, or implicitly assume, that 7'(1) is ©(1), which would mean we had solved the entire thing. And we can easily do
that by setting i = n-1:

T(n)=T(n-(n-1))+(n-1)
=T()+n-1
=0)+n-1
=0(n)

We have now, with perhaps more effort than was warranted, found that S has a linear running time, as we
suspected. In the next section, I'll show you how to use this method for a couple of recurrences that aren’t quite as
straightforward.

Caution This method, called the method of repeated substitutions (or sometimes the iteration method), is perfectly
valid, if you’re careful. However, it's quite easy to make an unwarranted assumption or two, especially in more complex
recurrences. This means you should probably treat the result as a hypothesis and then check your answer using the
techniques described in the section “Guessing and Checking” later in this chapter.

A Few Important Examples

The general form of the recurrences you'll normally encounter is T'(n) = a-T(g(n)) + f(n), where a represents the
number of recursive calls, g(n) is the size of each subproblem to be solved recursively, and f(n) is any extra work done
in the function, in addition to the recursive calls.

Tip It's certainly possible to formulate recursive algorithms that don’t fit this schema, for example if the subproblem
sizes are different. Such cases won’t be dealt with in this book, but some pointers for more information are given in the
section “If You're Curious ...,” near the end of this chapter.

Table 3-1 summarizes some important recurrences—one or two recursive calls on problems of size n-1 or n/2,
with either constant or linear additional work in each call. You've already seen recurrence number 1 in the previous
section. In the following, I'll show you how to solve the last four using repeated substitutions, leaving the remaining
three (2 to 4) for Exercises 3-7 to 3-9.
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Table 3-1. Some Basic Recurrences with Solutions, as Well as Some Sample Applications

# Recurrence Solution Example Applications

1 T(n)=T(n-1)+1 0(n) Processing a sequence, for example, with reduce

2 T(m)=T(n-1)+n 0O(n?) Handshake problem

3 T(n)=2T(n-1)+1 0(2n) Towers of Hanoi

4 T(n)=2T(n-1)+n 0(2n)

5 T(n)=Tn/2)+1 O(lg n) Binary search (see the “Black Box” sidebar on bisect in Chapter 6)
6 T(n)=Tn/2)+n 0(n) Randomized select, average case (see Chapter 6)

7 T(n)=2T(n/2)+1 0(n) Tree traversal (see Chapter 5)

8 T(n)=2T(n/2)+n O(nlgn) Sorting by divide and conquer (see Chapter 6)

Before we start working with the last four recurrences (which are all examples of divide and conquer recurrences,
explained more in detail later in this chapter and in Chapter 6), you might want to refresh your memory with Figure 3-5.
It summarizes the results I've discussed so far about binary trees; sneakily enough, I've already given you all the tools
you need, as you'll see in the following text.

y

NS
S

ub)

n=2"

Figure 3-5. A summary of some important properties of perfectly balanced binary trees

Note ['ve already mentioned the assumption that the base case has constant time (7(K) = £, k < n,, for some
constants £, and n,). In recurrences where the argument to Tis n/b, for some constant b, we run up against another
technicality: The argument really should be an integer. We could achieve that by rounding (using floor and ceil all over
the place), but it’s common to simply ignore this detail (really assuming that nis a power of b). To remedy the sloppiness,
you should check your answers with the method described in “Guessing and Checking” later in this chapter.

Look at recurrence 5. There’s only one recursive call, on half the problem, and a constant amount of work in
addition. If we see the full recursion as a tree (a recursion tree), this extra work (f(n)) is performed in each node, while
the structure of the recursive calls is represented by the edges. The total amount of work (7'(r)) is the sum of f(n) over
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all the nodes (or those involved). In this case, the work in each node is constant, so we need to count only the number
of nodes. Also, we have only one recursive call, so the full work is equivalent to a path from the root to a leaf. It should
be obvious that T'(n) is logarithmic, but let’s see how this looks if we try to unravel the recurrence, step-by-step:

T(n)=T(n/2)+1
={T(n/4)+1}+1
={T(n/8)+1}+1+1

The curly braces enclose the part that is equivalent to the recursive call (T(...)) in the previous line. This stepwise
unraveling (or repeated substitution) is just the first step of our solution method. The general approach is as follows:

1. Unravel the recurrence until you see a pattern.
2. Express the pattern (usually involving a sum), using a line number variable, i.
3. Choose i so the recursion reaches its base case (and solve the sum).

The first step is what we have done already. Let’s have a go at step 2:
T(n)=T(n/2")+ Zl
k=1

IT'hope you agree that this general form captures the pattern emerging from our unraveling: For each unraveling
(each line further down), we halve the problem size (that is, double the divisor) and add another unit of work (another 1).
The sum at the end is a bit silly. We know we have i ones, so the sum is clearly just i. I've written it as a sum to show the
general pattern of the method here.

To get to the base case of the recursion, we must get T'(n/2/) to become, say, T(1). That just means we have to
halve our way from 7 to 1, which should be familiar by now: The recursion height is logarithmic, or i = Ig n. Insert that
into the pattern, and you get that T(n) is, indeed, O(Ig n).

The unraveling for recurrence 6 is quite similar, but here the sum is slightly more interesting:

T(n)=T(n/2)+n
={T(n/4)+n/2}+n
={T(n/8)+n/4t+n/2+n

=T(n/2")+§(n/2")

If you're having trouble seeing how I got to the general pattern, you might want to ponder it for a minute.
Basically, I've just used the sigma notation to express the sum n + n/2 + ... + n/(2!), which you can see emerging in the
early unraveling steps. Before worrying about solving the sum, we once again set i = 1g n. Assuming that T'(1) = 1, we
get the following:

Ign-1 g

T(n)=1+ Y (n/2")=i(n/2k)
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The last step there is just because n/2'" = 1, so we can include the lonely 1 into the sum.

Now: Does this sum look familiar? Once again, take a look at Figure 3-5: If k is a height, then n/2* is the number of
nodes at that height (we're halving our way from the leaves to the root). That means the sum is equal to the number of
nodes, which is O(n).

Recurrences 7 and 8 introduce a wrinkle: multiple recursive calls. Recurrence 7 is similar to recurrence 5: Instead
of counting the nodes on one path from root to leaves, we now follow both child edges from each node, so the count
is equal to the number of nodes, or ®(n). Can you see how recurrences 6 and 7 are just counting the same nodes in
two different ways? I'll use our solution method on recurrence 8; the procedure for number 7 is very similar but worth
checking:

T(n)=2T(n/2)+n
=2{2T(n/4)+n/2}+n
=22{2T(n/8)+n/4}+n/2)+n

=2'T(n/2)+n-i

Asyou can see, the twos keep piling up in front, resulting in the factor of 2. The situation does seem a bit
messy inside the parentheses, but luckily, the halvings and doublings even out perfectly: The 7/2 is inside the first
parentheses and is multiplied by 2; n/4 is multiplied by 4, and in general, n/2'is multiplied by 2/, meaning that we’re
left with a sum of i repetitions of n, or simply n-i. Once again, to get the base case, we choose i =1g n:

T(n)=2%"T(n/2%")+n-lgn=n+nlgn

In other words, the running time is ®(n 1g n). Can even this result be seen in Figure 3-5? You bet! The work in the
root node of the recursion tree is »; in each of the two recursive calls (the child nodes), this is halved. In other words,
the work in each node is equal to the labels in Figure 3-5. We know that each row then sums to n, and we know there
are Ig n + 1 rows of nodes, giving us a grand sum of nlg n + n, or O(nlg n).

Guessing and Checking

Both recursion and induction will be discussed in depth in Chapter 4. One of my main theses there is that they are
like mirror images of one another; one perspective is that induction shows you why recursion works. In this section,
I restrict the discussion to showing that our solutions to recurrences are correct (rather than discussing the recursive
algorithms themselves), but it should still give you a glimpse of how these things are connected.

As I said earlier in this chapter, the process of unraveling a recurrence and “finding” a pattern is somewhat
subject to unwarranted assumption. For example, we often assume that 7 is an integer power of two so that a
recursion depth of exactly Ig » is attainable. In most common cases, these assumptions work out just fine, but to be
sure that a solution is correct, you should check it. The nice thing about being able to check the solution is that you
can just conjure up a solution by guesswork or intuition and then (ideally) show that it’s right.

Note To keep things simple, I'll stick to the Big Oh in the following and work with upper limits. You can show the
lower limits (and get Q or ®) in a similar manner.
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Let’s take our first recurrence, T'(n) = T(n-1) + 1. We want to check whether it’s correct that T'(n) is O(n). As with
experiments (discussed in Chapter 1), we can’t really get where we want with asymptotic notation; we have to be
more specific and insert some constants, so we try to verify that T'(n) < cn, for some an arbitrary ¢ > 1. Per our standard
assumptions, we set T(1) = 1. So far, so good. But what about larger values for n?

This is where the induction comes in. The idea is quite simple: We start with 7(1), where we know our solution
is correct, and then we try to show that it also applies to T/(2), T(3), and so forth. We do this generically by proving an
induction step, showing that if our solution is correct for T(n-1), it will also be true for T'(n), for n > 1. This step would
let us go from T(1) to T(2), from T(2) to T(3), and so forth, just like we want.

The key to proving an inductive step is the assumption (in this case) that we’ve got it right for T'(n-1). This is
precisely what we use to get to T(n), and it’s called the inductive hypothesis. In our case, the inductive hypothesis is
that T'(n-1) < ¢(n-1) (for some c), and we want to show that this carries over to T(n):

1) =[G
< +1 We assume that T'(n —1)<c(n—-1)

=cn—-c+1
<cn We know thatc>1,s0-c+1<0

I've highlighted the use of the induction hypotheses with boxes here: I replace T(n-1) with ¢(n-1), which (by the
induction hypothesis) I know is a greater (or equally great) value. This makes the replacement safe, as long as I switch
from an equality sign to “less than or equal” between the first and second lines. Some basic algebra later, and I've
shown that the assumption T(n-1) < ¢(n-1) leads to T(n) < cn, which (consequently) leads to T(n+1) < ¢(n+1), and so
forth. Starting at our base case, 7(1), we have now shown that T(n) is, in general, O (n).

The basic divide and conquer recurrences aren’t much harder. Let’s do recurrence 8 (from Table 3-1). This time,
let’s use something called strong induction. In the previous example, I only assumed something about the previous
value (n-1, so-called weak induction); now, my induction hypothesis will be about all smaller numbers. More
specifically, I'll assume that T(k) < ck 1g k for all positive integers k < n and show that this leads to T(n) < cn g n. The
basic idea is still the same—our solution will still “rub off” from T(1) to 7T(2), and so forth—it’s just that we get a little bit
more to work with. In particular, we now hypothesize something about 7(7/2) as well, not just 7(n-1). Let’s have a go:

T(n)=2T(n/2)+n

<c((n/2)lg(n/2))+n Assuming T(k)<c(klgk)fork=n/2<n
=c((n/2)(gn-1g2))+n lg(n/2)=Ign-I1g2
=c((n/2)lgn-n/2)+n lg2=1

=nlgn Justsetc=2

As before, by assuming that we’ve already shown our result for smaller parameters, we show that it also holds
for T(n).

Caution Be wary of asymptotic notation in recurrences, especially for the recursive part. Consider the following
(false) “proof” that T(n) = 2T(n/2) + n means that T(n) is O(n), using the Big Oh directly in our induction hypothesis:
Tm=2-TW2)+n=2-0N2)+n=0(n)

There are many things wrong with this, but the most glaring problem is, perhaps, that the induction hypothesis needs
to be specific to individual values of the parameter (k= 1, 2...), but asymptotic notation necessarily applies to the entire
function.
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DOWN THE RABBIT HOLE (OR CHANGING OUR VARIABLE)

A word of warning: The material in this sidebar may be a bit challenging. If you already have your head full with
recurrence concepts, it might be a good idea to revisit it at a later time.

In some (probably rare) cases, you may come across a recurrence that looks something like the following:
T(n) = aT(n**) + f(n)

In other words, the subproblem sizes are b-roots of the original. Now what do you do? Actually, we can move into
“another world” where the recurrence is easy! This other world must, of course, be some reflection of the real
world, so we can get a solution to the original recurrence when we come back.

Our “rabbit hole” takes the form of what is called a variable change. It's actually a coordinated change, where we
replace both T (to, say, S) and n (to m) so that our recurrence is really the same as before—we’ve just written it
in a different way. What we want is to change T{n") into S(m/b), which is easier to work with. Let’s try a specific
example, using a square root:

T(n) = 2T(n*?) + 1g n

How can we get T{n"?) = S(m/2)? A hunch might tell us that to get from powers to products, we need to involve
logarithms. The trick here is to set m = Ig n, which in turn lets us insert 2m instead of nin the recurrence:

T(2m) = 2T((2")¥?) + m = 2T(2"?) + m

By setting S(m) = T(2™), we can hide that power, and bingo! We're in Wonderland:
S(m) = 2S(m/2) + m

This should be easy to solve by now: T(n) = S(m) is ®(m g m) = ©(lg n- Ig Ig n).

In the first recurrence of this sidebar, the constants a and b may have other values, of course (and fmay certainly
be less cooperative), leaving us with S(m) = aS(m/b) + g(m) (where g(m) = f(2™)). You could hack away at this
using repeated substitution, or you could use the cookie-cutter solutions given in the next section, because they
are specifically suited to this sort of recurrence.

The Master Theorem: A Cookie-Cutter Solution

Recurrences corresponding to many of so-called divide and conquer algorithms (discussed in Chapter 6) have the
following form (where a>1 and b > 1):

T(n)=aT(n/b)+ f(n)

The idea is that you have a recursive calls, each on a given percentage (1/b) of the dataset. In addition to the
recursive calls, the algorithm does f(n) units of work. Take a look at Figure 3-6, which illustrates such an algorithm. In
our earlier trees, the number 2 was all-important, but now we have fwo important constants, a and b. The problem
size allotted to each node is divided by b for each level we descend; this means that in order to reach a problem size of
1 (in the leaves), we need a height of log, 7. Remember, this is the power to which b must be raised in order to get 7.
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fin)

f(n/b)

f(n/b)

— 2199, = pl0g,a

Figure 3-6. A perfectly balanced, regular multiway (a-way) tree illustrating divide and conquer recurrences

However, each internal node has a children, so the increase in the node count from level to level doesn’t
necessarily counteract the decrease in problem size. This means that the number of leaf nodes won’t necessarily be n.
Rather, the number of nodes increases by a factor a for each level, and with a height of log, n, we get a width of a'°s,".
However, because of a rather convenient calculation rule for logarithms, we're allowed to switch a and n, yielding n'°s,“
leaves. Exercise 3-10 asks you to show that this is correct.

The goal in this section is to build three cookie-cutter solutions, which together form the so-called master
theorem. The solutions correspond to three possible scenarios: Either the majority of the work is performed (that is,
most of the time is spent) in the root node, it is primarily performed in the leaves, or it is evenly distributed among the
rows of the recursion tree. Let’s consider the three scenarios one by one.

In the first scenario, most of the work is performed in the root, and by “most” I mean that it dominates the
running time asymptotically, giving us a total running time of ®(f(#n)). But how do we know that the root dominates?
This happens if the work shrinks by (at least) a constant factor from level to level and if the root does more work
(asymptotically) than the leaves. More formally:

af(n/b)<cf(n),
for some c < 1 and large n, and

f(n) c Q(n]ogbaﬂ') ,

for some constant £>0. This just means that f(n) grows strictly faster than the number of leaves (which is why I've
added the ¢in the exponent of the leaf count formula). Take, for example, the following:

T(n)=2T(n/3)+n.

Here, a =2, b=3 and f(n) = n. To find the leaf count, we need to calculate log, 2. We could do this by using the
expression log 2/log 3 on a standard calculator, but in Python we can use the log function from the math module, and
we find that 1og(2,3) is a bit less than 0.631. In other words, we want to know whether f(n) = n is Q(n*%'), which it
clearly is, and this tells us that T(n) is ©(f(n)) = ®(n). A shortcut here would be to see that b was greater than a, which
could have told us immediately that n was the dominating part of the expression. Do you see why?

We can turn the root-leaf relationship on its head as well:

f(m)eon™“*)
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Now the leaves dominate the picture. What total running time do you think that leads to? That’s right:

T(n) e O(n'*s*)

Take, for example, the following recurrence:

T(n)=2T(n/2)+1gn

Here a = b, so we get a leaf count of n, which clearly grows asymptotically faster than f(n) = Ig n. This means that
the final running time is asymptotically equal to the leaf count, or ©(n).

Note To establish dominance for the root, we needed the exira requirement af(n/b) < cf(n), for some ¢ < 1.
To establish leaf dominance, there is no similar requirement.

The last case is where the work in the root and the leaves has the same asymptotic growth:
f(n)eO(n' ")

This then becomes the sum of every level of the tree (it neither increases nor decreases from root to leaves),
which means that we can multiply it by the logarithmic height to get the total sum:

T(n) e O(n'*“Ign)

Take, for example, the following recurrence:
T(n)=2T(n/4)+n

The square root may seem intimidating, but it’s just another power, namely, n®°. We have a = 2 and b = 4, giving
us logb a =log, 2 = 0.5. What do you know—the work is ®(n**) in both the root and the leaves, and therefore in every
row of the tree, yielding the following total running time:

T(n) e O(n ®“1gn)=0(/nlgn).

Table 3-2 sums up the three cases of the master theorem, in the order they are customarily given: Case 1 is when
the leaves dominate; case 2 is the “dead race,” where all rows have the same (asymptotic) sum; and in case 3, the root
dominates.
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Example

Case Condition Solution

1 f(m)eom ) T(n) e O(n's*)

2 f(n) e ®(n'"s) T(n) e ®(n"*“Ign)
3 f(n)eQn'® ) T(n)e©(f(n))

T(n)=2T(n/2)+1gn
T(n)=2T(n/4)+n

T(n)=2T(n/3)+n

So What Was All That About?

OK, there is a lot of math here but not a lot of coding so far. What's the point of all these formulas? Consider, for a
moment, the Python programs in Listings 3-1 and 3-2.7 (You can find a fully commented version of the mergesort
function in Listing 6-6.) Let’s say these were new algorithms, so you couldn’t just search for their names on the Web,
and your task was to determine which had the better asymptotic running time complexity.

Listing 3-1. Gnome Sort, An Example Sorting Algorithm

def gnomesort(seq):
i=o0
while i < len(seq):
if 1 == 0 or seq[i-1] <= seq[i]:

i+=1

else:
seq[i], seq[i-1] = seq[i-1], seq[i]
i-=1

Listing 3-2. Merge Sort, Another Example Sorting Algorithm

def mergesort(seq):
mid = len(seq)//2
1ft, rgt = seq[:mid], seq[mid:]
if len(1ft) > 1: 1ft = mergesort(1lft)
if len(rgt) > 1: rgt = mergesort(rgt)
res = []
while 1ft and rgt:
if 1ft[-1] >=rgt[-1]:
res.append(1ft.pop())
else:
res.append(rgt.pop())
res.reverse()
return (1ft or rgt) + res

"Merge sort is a classic, first implemented by computer science legend John von Neumann on the EDVAC in 1945. You’ll learn
more about that and other similar algorithms in Chapter 6. Gnome sort was invented in 2000 by Hamid Sarbazi-Azad, under the

name Stupid sort.
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Gnome sort contains a single while loop and an index variable that goes from 0 to len(seq)-1, which might
tempt us to conclude that it has a linear running time, but the statement i -= 1 in the last line would indicate
otherwise. To figure out how long it runs, you need to understand something about how it works. Initially, it scans
from a from the left (repeatedly incrementing i), looking for a position i where seq[i-1] is greater than seq[1i], that
is, two values that are in the wrong order. At this point, the else part kicks in.

The else clause swaps seq[i] and seq[i-1] and decrements i. This behavior will continue until, once again,
seq[i-1] <=seq[1i] (or we reach position 0) and order is restored. In other words, the algorithm alternately scans
upward in the sequence for an out-of-place (that is, too small) element and moves that element down to a valid
position by repeated swapping. What'’s the cost of all this? Let’s ignore the average case and focus on the best and
worst. The best case occurs when the sequence is sorted: gnomesort will just scan through a without finding anything
out of place and then terminate, yielding a running time of ©(n).

The worst case is a little less straightforward but not much. Note that once we find an element that is out of place, all
elements before that point are already sorted, and moving the new element into a correct position won’t scramble them.
That means the number of sorted elements will increase by one each time we discover a misplaced element, and the
next misplaced element will have to be further to the right. The worst possible cost of finding and moving a misplaced
element into place is proportional to its position, so the worst running time could possibly getis 1 + 2 + ... + n-1, which
is ®(n?). This is a bit hypothetical at the moment—I've shown it can’t get worse than this, but can it ever get this bad?

Indeed it can. Consider the case when the elements are sorted in descending order (that is, reversed with respect
to what we want). Then every element is in the wrong place and will have to be moved all the way to the start, giving
us the quadratic running time. So, in general, the running time of gnome sort is Q(n) and O(rn?), and these are tight
bounds representing the best and worst cases, respectively.

Now, take a look at merge sort (Listing 3-2). It is a bit more complicated than gnome sort, so I'll postpone
explaining how it manages to sort things until Chapter 6. Luckily, we can analyze its running time without
understanding how it works! Just look at the overall structure. The input (seq) has a size of n. There are two recursive
calls, each on a subproblem of /2 (or as close as we can get with integer sizes). In addition, there is some work
performed in awhile loop and in res.reverse(); Exercise 3-11 asks you to show that this work is @(n). (Exercise 3-12
asks you what happens if you use pop(0) instead of pop().) This gives us the well-known recurrence number 8,

T(n) = 21(n/2) + ©(n), which means that the running time of merge sort is ®(n 1g n), regardless of the input. This
means that if we’re expecting the data to be almost sorted, we might prefer gnome sort, but in general we’d probably
be much better off scrapping it in favor of merge sort.

Note Python’s sorting algorithm, timsort, is a naturally adaptive version of merge sort. It manages to achieve the
linear best-case running time while keeping the loglinear worst case. You can find some more details in the “Black Box”
sidebar on timsort in Chapter 6.

Summary

The sum of the n first integers is quadratic, and the sum of the 1g  first powers of two is linear. The first of these
identities can be illustrated as a round-robin tournament, with all possible pairings of n elements; the second is
related to a knockout tournament, with lg n rounds, where all but the winner must be knocked out. The number of
permutations of » is n!, while the number of k-combinations (subsets of size k) from n, written C(n, k), is n!/(k!-(n-k)!).
This is also known as the binomial coefficient.

A function is recursive if it calls itself (directly or via other functions). A recurrence relation is an equation that
relates a function to itself, in a recursive way (such as 7(n) = T(n/2) + 1). These equations are often used to describe
the running times of recursive algorithms, and to be able to solve them, we need to assume something about the
base case of the recursion; normally, we assume that T(k) is ©(1), for some constant k. This chapter presents three
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main ways of solving recurrences: (1) repeatedly apply the original equation to unravel the recursive occurrences of
T until you find a pattern; (2) guess a solution, and try to prove that it’s correct using induction; and (3) for divide and
conquer recurrences that fit one of the cases of the master theorem, simply use the corresponding solution.

If You’re Curious ...

The topics of this chapter (and the previous, for that matter) are commonly classified as part of what’s called discrete
mathematics.® There are plenty of books on this topic, and most of the ones I've seen have been pretty cool. If you like
that sort of thing, knock yourself out at the library or at a local or online bookstore. I'm sure you'll find plenty to keep
you occupied for a long time.

One book I like that deals with counting and proofs (but not discrete math in general) is Proofs That Really
Count, by Benjamin and Quinn. It's worth a look. If you want a solid reference that deals with sums, combinatorics,
recurrences, and lots of other meaty stuff, specifically written for computer scientists, you should check out the classic
Concrete Mathematics, by Graham, Knuth, and Patashnik. (Yeah, it’s that Knuth, so you know it’s good.) If you just
need some place to look up the solution for a sum, you could try Wolfram Alpha (http://wolframalpha.com), as
mentioned earlier, or get one of those pocket references full of formulas (again, probably available from your favorite
bookstore).

If you want more details on recurrences, you could look up the standard methods in one of the algorithm
textbooks I mentioned in Chapter 1, or you could research some of the more advanced methods, which let you deal
with more recurrence types than those I've dealt with here. For example, Concrete Mathematics explains how to use
so-called generating functions. If you look around online, you're also bound to find lots of interesting stuff on solving
recurrences with annihilators or using the Akra-Bazzi theorem.

The sidebar on pseudopolynomiality earlier in this chapter used primality checking as an example. Many (older)
textbooks claim that this is an unsolved problem (that is, that there are no known polynomial algorithms for solving
it). Just so you know—that’s not true anymore: In 2002, Agrawal, Kayal, and Saxena published their groundbreaking
paper “PRIMES is in P” describing how to do polynomial primality checking. (Oddly enough, factoring numbers is still
an unsolved problem.)

Exercises

3-1. Show that the properties described in the section “Working with Sums” are correct.
3-2. Use the rules from Chapter 2 to show that n(n-1)/2 is ©(n?).

3-3. The sum of the first k non-negative integer powers of 2 is 2! - 1. Show how this property lets you
represent any positive integer as a binary number.

3-4. In the section “The Hare and the Tortoise,” two methods of looking for a number are sketched.
Turn these methods into number-guessing algorithms, and implement them as Python programs.

3-5. Show that C(n, k) = C(n, n-k).

3-6. In the recursive function S early in the section “Recursion and Recurrences,” assume that instead
of using a position parameter, i, the function simply returned sec[0] + S(seq[1:]). What would the
asymptotic running time be now?

3-7. Solve recurrence 2 in Table 3-1 using repeated substitution.

8If you’re not sure about the difference between discrete and discreet, you might want to look it up.
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3-8. Solve recurrence 3 in Table 3-1 using repeated substitution.

3-9. Solve recurrence 4 in Table 3-1 using repeated substitution.

3-10. Show that x"¢” = y¢~, no matter the base of the logarithm.

3-11. Show that f(n) is ®(n) for the implementation of merge sort in Listing 3-2.

3-12. In merge sort in Listing 3-2, objects are popped from the end of each half of the sequence (with
pop()). It might be more intuitive to pop from the beginning, with pop(0), to avoid having to reverse
res afterward (I've seen this done in real life), but pop(0), just like insert(0), is a linear operation, as
opposed to pop(), which is constant. What would such a switch mean for the overall running time?
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CHAPTER 4

Induction and Recursion ...
and Reduction

You must never think of the whole street at once, understand? You must only concentrate on the
next step, the next breath, the next stroke of the broom, and the next, and the next. Nothing else.

— Beppo Roadsweeper, in Momo by Michael Ende

In this chapter, I lay the foundations for your algorithm design skills. Algorithm design can be a hard thing to teach
because there are no clear recipes to follow. There are some foundational principles, though, and one that pops up
again and again is the principle of abstraction. I'm betting you're quite familiar with several kinds of abstraction
already—most importantly, procedural (or functional) abstraction and object orientation. Both of these approaches let
you isolate parts of your code and minimize the interactions between them so you can focus on a few concepts at a time.
The main ideas in this chapter—induction, recursion, and reduction—are also principles of abstraction. They're
all about ignoring most of the problem, focusing on taking a single step toward a solution. The great thing is that this
step is all you need; the rest follows automatically! The principles are often taught and used separately, but if you look
a bit deeper, you see that they’re very closely related: Induction and recursion are, in a sense, mirror images of one
another, and both can be seen as examples of reduction. Here’s a quick overview of what these terms actually mean:

e Reduction means transforming one problem to another. We normally reduce an unknown
problem to one we know how to solve. The reduction may involve transforming both the input
(so it works with the new problem) and the output (so it’s valid for the original problem).

e Induction, or mathematical induction, is used to show that a statement is true for a large class
of objects (often the natural numbers). We do this by first showing it to be true for a base case
(such as the number 1) and then showing that it “carries over” from one object to the next;
for example, if it’s true for n-1, then it’s true for n.

e Recursion is what happens when a function calls itself. Here we need to make sure the function
works correctly for a (nonrecursive) base case and that it combines results from the recursive
calls into a valid solution.

Both induction and recursion involve reducing (or decomposing) a problem to smaller subproblems and then taking
one step beyond these, solving the full problem.

Note that although the perspective in this chapter may be a bit different from some current textbooks, it is by
no means unique. In fact, much of the material was inspired by Udi Manber’s wonderful paper “Using induction to
design algorithms” from 1988 and his book from the following year, Introduction to Algorithms: A Creative Approach.
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Oh, That’s Easy!

Simply put, reducing a problem A to another problem B involves some form of transformation, after which a solution
to B gives you (directly or with some massaging) a solution to A. Once you've learned a bunch of standard algorithms
(you'll encounter many in this book), this is what you'll usually do when you come across a new problem. Can you
change it in some way so that it can be solved with one of the methods you know? In many ways, this is the core
process of all problem solving.

Let’s take an example. You have a list of numbers, and you want to find the two (nonidentical) numbers that are
closest to each other (that is, the two with the smallest absolute difference):

>>> from random import randrange
>>> seq = [randrange(10**10) for i in range(100)]
>>> dd = float("inf")
>>> for x in seq:
for y in seq:
if x == y: continue
d = abs(x-y)
if d < dd:
XX, yy, dd = x, y, d
>>> XX, Yy
(15743, 15774)
Two nested loops, both over seg; it should be obvious that this is quadratic, which is generally not a good thing.
Let’s say you've worked with algorithms a bit, and you know that sequences can often be easier to deal with if they're

sorted. You also know that sorting is, in general, loglinear, or ®(n 1g n). See how this can help? The insight here is that
the two closest numbers must be next to each other in the sorted sequence:

>>> seq.sort()
>>> dd = float("inf")
>>> for i in range(len(seq)-1):
X, Yy = SeQ[i]; SGQ[i+1]
if x == y: continue
d = abs(x-y)
if d < dd:
XX, yy, dd = x, y, d
>>> XX, Yy
(15743, 15774)
Faster algorithm, same solution. The new running time is loglinear, dominated by the sorting. Our original
problem was “Find the two closest numbers in a sequence,” and we reduced it to “Find the two closest numbers in

a sorted sequence,’ by sorting seq. In this case, our reduction (the sorting) won't affect which answers we get.
In general, we may need to transform the answer so it fits the original problem.

Note In a way, we just split the problem into two parts, sorting and scanning the sorted sequence. You could also
say that the scanning is a way of reducing the original problem to the problem of sorting a sequence. It’s all a matter of
perspective.
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Reducing A to B is a bit like saying “You want to solve A? Oh, that’s easy, as long as you can solve B.” See Figure 4-1
for an illustration of how reductions work.

Figure 4-1. Using a reduction from A to B to solve A with an algorithm for B. The algorithm for B (the central, inner
circle) can transform the input B? to the output B!, while the reduction consists of the two transformations (the smaller
circles) going from A? to B? and from B! to Al, together forming the main algorithm, which transforms the input A? to the
output A!

One, Two, Many

I've already used induction to solve some problems in Chapter 3, but let’s recap and work through a couple of
examples. When describing induction in the abstract, we say that we have a proposition, or statement, P(n), and we
want to show that it’s true for any natural number n. For example, let’s say we're investigating the sum of the first n
odd numbers; P(n) could then be the following statement:

14+3+5+-+@2n-3)+@2n-1)=n*

This is eerily familiar—it’s almost the same as the handshake sum we worked with in the previous chapter. You
could easily get this new result by tweaking the handshake formula, but let’s see how we’d prove it by induction
instead. The idea in induction is to make our proof “sweep” over all the natural numbers, a bit like a row of dominoes
falling. We start by establishing P(1), which is quite obvious in this case, and then we need to show that each domino,
if it falls, will topple the next. In other words, we must show that if the statement P(rn-1) is true, it follows that P(n) is
also true.

If we can show this implication, that is, P(n-1) = P(n), the result will sweep across all values of r, starting with
P(1), using P(1) = P(2) to establish P(2), then move on to P(3), P(4), and so forth. In other words, the crucial thing is
to establish the implication that lets us move one step further. We call it the inductive step. In our example, this means
that we're assuming the following (P(n-1)):

1+3+5++ 2n-3)=(n- 1)2
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We can take this for granted, and we just splice it into the original formula and see whether we can deduce P(n):

1+3+5++ 2n-3)+(2n-1)= (n—1)2+(2n—1)

=m?-2n+1)+@2n-1)

And there you go. The inductive step is established, and we now know that the formula holds for all natural numbers 7.

The main thing that enables us to perform this inductive step is that we assume we've already established P(n-1).
This means that we can start with what we know (or, rather, assume) about -1 and build on that to show something
about n. Let’s try a slightly less orderly example. Consider a rooted, binary tree where every internal node has two
children (although it need not be balanced, so the leaves may all have different depths). If the tree has n leaves, how
many internal nodes does it have?’

We no longer have a nice sequence of natural numbers, but the choice of induction variable (%) is pretty obvious.
The solution (the number of internal nodes) is n-1, but now we need to show that this holds for all n. To avoid some
boring technicalities, we start with 7 = 3, so we're guaranteed a single internal node and two leaves (so clearly P(3) is
true). Now, assume that for n-1 leaves, we have n-2 internal nodes. How do we take the crucial inductive step to n?

This is closer to how things work when building algorithms. Instead of just shuffling numbers and symbols, we’re
thinking about structures, building them gradually. In this case, we're adding a leaf to our tree. What happens? The
problem is that we can’t just add leaves willy-nilly without violating the restrictions we’ve placed on the trees. Instead,
we can work the step in reverse, from n leaves to n-1. In the tree with n leaves, remove any leaf along with its (internal)
parent, and connect the two remaining pieces so that the now-disconnected node is inserted where the parent was.
This is a legal tree with n-1 leaves and (by our induction assumption) n-2 internal nodes. The original tree had one
more leaf and one more internal node, that is, n leaves and n-1 internals, which is exactly what we wanted to show.

Now, consider the following classic puzzle. How do you cover a checkerboard that has one corner square
missing, using L-shaped tiles, as illustrated in Figure 4-2? Is it even possible? Where would you start? You could try
a brute-force solution, just starting with the first piece, placing it in every possible position (and with every possible
orientation), and, for each of those, trying every possibility for the second, and so forth. That wouldn’t exactly be
efficient. How can we reduce the problem? Where’s the reduction??

Figure 4-2. Anincomplete checkerboard, to be covered by L-shaped tiles. The tiles may be rotated, but they may not overlap

IThis is actually Exercise 2-10, but you can still have a go at that, if you want. Try to solve it without using induction.
2Actually, the solution idea presented in the following will work for a checkerboard where an arbitrary square is missing.
I recommend you verify that for yourself.
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Placing a single tile and assuming that we can solve the rest or assuming that we’ve solved all but one and then
placing the last one—that’s certainly a reduction. We've transformed the problem from one to another, but the catch
is that we have no solution for the new problem either, so it doesn’t really help. To use induction (or recursion), the
reduction must (generally) be between instances of the same problem of different sizes. For the moment, our problem
is defined only for the specific board in Figure 4-2, but generalizing it to other sizes shouldn’t be too problematic.
Given this generalization, do you see any useful reductions?

The question is how we can carve up the board into smaller ones of the same shape. It’s quadratic, so a natural
starting point might be to split it into four smaller squares. The only thing standing between us and a complete
solution at that point is that only one of the four board parts has the same shape as the original, with the missing
corner. The other three are complete (quarter-size) checkerboards. That’s easily remedied, however. Just place a
single tile so that it covers one corner from each of these three subboards, and, as if by magic, we now have four
subproblems, each equivalent to (but smaller than) the full problem!

To clarify the induction here, let’s say you don’t actually place the tile quite yet. You just note which three corners to
leave open. By the inductive hypothesis, you can cover the three subboards (with the base case being four-square boards),
and once you've finished, there will be three squares left to cover, in an L-shape.® The inductive step is then to place this
piece, implicitly combining the four subsolutions. Now, because of induction, we haven’t only solved the problem for the
eight-by-eight case; the solution holds for any board of this kind, as long as its sides are (equal) powers of two.

Note We haven't really used induction over all board sizes or all side lengths here. We have implicitly assumed that
the side lengths are 2k, for some positive integer k, and used induction over k. The result is perfectly valid, but it is
important to note exactly what we’ve proven. The solution does not hold, for example, for odd-sided boards.

This design was really more of a proof than an actual algorithm. Turning it into an algorithm isn’t all that hard,
though. You first need to consider all subproblems consisting of four squares, making sure to have their open corners
properly aligned. Then you combine these into subproblems consisting of 16 squares, still making sure the open
corners are placed so that they can be joined with L-pieces. Although you can certainly set this up as an iterative
program with a loop, it turns out to be quite a bit easier with recursion, as you'll see in the next section.

Mirror, Mirror

In his excellent web video show, Ze Frank once made the following remark: “You know there’s nothing to fear but
fear itself! Yeah, that’s called recursion, and that would lead to infinite fear, so thank you.”* Another common piece of
advice is, “In order to understand recursion, one must first understand recursion.”

Indeed. Recursion can be hard to wrap your head around—although infinite recursion is a rather pathological
case.’ In a way, recursion really makes sense only as a mirror image of induction (see Figure 4-3). In induction, we
(conceptually) start with a base case and show how the inductive step can take us further, up to the full problem
size, n. For weak induction,® we assume (the inductive hypothesis) that our solution works for -1, and from that, we
deduce that it works for n. Recursion usually seems more like breaking things down. You start with a full problem, of
size n. You delegate the subproblem of size n-1 to a recursive call, wait for the result, and extend the subsolution you
get to a full solution. I'm sure you can see how this is really just a matter of perspective. In a way, induction shows us
why recursion works, and recursion gives us an easy way of (directly) implementing our inductive ideas.

w

3An important part of this inductive hypothesis is that we can solve the problem no matter which corner is missing.

the show with zefrank, February 22, 2007.

SEver tried to search for recursion with Google? You might want to try it. And pay attention to the search suggestion.

°As mentioned in Chapter 3, in weak induction the induction hypothesis applies to n—1, while in strong induction it applies to all
positive integers k < n.
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Figure 4-3. Induction (on the left) and recursion (on the right), as mirror images of each other

Assume Delegate

Take the checkerboard problem from the previous section, for example. The easiest way of formulating a solution
to that (at least in my opinion) is recursive. You place an L-piece so that you get four equivalent subproblems, and

then you solve them recursively. By induction, the solution will be correct.

IMPLEMENTING THE CHECKERBOARD COVERING

72

Although the checkerboard covering problem has a very easy recursive solution conceptually, implementing it can
require a bit of thinking. The details of the implementation aren’t crucial to the main point of the example, so feel
free to skip this sidebar, if you want. One way of implementing a solution is shown here:

def cover(board, lab=1, top=0, left=0, side=None):

if side is None: side = len(board)

# Side length of subboard:
s = side // 2

# Offsets for outer/inner squares of subboards:
offsets = (0, -1), (side-1, 0)

for dy outer, dy inner in offsets:
for dx_outer, dx_inner in offsets:
# If the outer corner is not set...
if not board[top+dy outer][left+dx outer]:
# ... label the inner corner:
board[top+s+dy_inner][left+s+dx_inner] = lab

# Next label:
lab += 1
if s > 1:
for dy in [0, s]:
for dx in [0, s]:
# Recursive calls, if s is at least 2:
lab = cover(board, lab, top+dy, left+dx, s)

# Return the next available label:
return lab
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Although the recursive algorithm is simple, there is some bookkeeping to do. Each call needs to know which
subboard it’s working on and the number (or label) of the current L-tile. The main work in the function is checking
which of the four center squares to cover with the L-tile. We cover only the three that don’t correspond to a missing
(outer) corner. Finally, there are four recursive calls, one for each of the four subproblems. (The next available label
is returned, so it can be used in the next recursive call.) Here’s an example of how you might run the code:

>>> board = [[0]*8 for i in range(8)] # Eight by eight checkerboard
>>> board[7][7] = -1 # Missing corner
>>> cover(board)

22

>>> for row in board:

print((" %2i"*8) % tuple(row))

4 4 8 8 9 9

2 4 8 7 7 9

6 610 10 7 11

5 5 6 1 11011 11

13 13 14 1 18 18 19 19

13 12 14 14 18 17 17 19

15 12 12 16 20 17 21 21

15 15 16 16 20 20 21 -1

Ul w oW
NN W

As you can see, all the numerical labels form L-shapes (except for -1, which represents the missing corner). The
code can be a bit hard to understand, but imagine understanding it, not to mention designing it, without a basic
knowledge of induction or recursion!

Induction and recursion go hand in hand in that it is often possible to directly implement an inductive idea
recursively. However, there are several reasons why an iterative implementation may be superior. There is usually less
overhead with using a loop than with recursion (so it can be faster), and in most languages (Python included), there is
a limit to how deep the recursion can go (the maximum stack depth). Take the following example, which just traverses
a sequence:

>>> def trav(seq, i=0):
if i==len(seq): return
trav(seq, i+1)

>>> trav(range(100))
>>>

It works, but try running it on range (1000). You'll get a RuntimeError complaining that you've exceeded the
maximum recursion depth.

Note Many so-called functional programming languages implement something called tail recursion optimization.
Functions like the previous (where the only recursive call is the last statement of a function) are modified so that they
don’t exhaust the stack. Typically, the recursive calls are rewritten to loops internally.

Luckily, any recursive function can be rewritten into an iterative one, and vice versa. In some cases, recursion
is very natural, though, and you may need to fake it in your iterative program, using a stack of your own (as in
nonrecursive depth-first search, explained in Chapter 5).
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Let’s look at a couple of basic algorithms where the algorithmic idea can be easily understood by thinking
recursively but where the implementation lends itself well to iteration.” Consider the problem of sorting (a favorite
in teaching computer science). As before, ask yourself, where’s the reduction? There are many ways of reducing
this problem (in Chapter 6 we'll be reducing it by half), but consider the case where we reduce the problem by one
element. Either we can assume (inductively) that the first n-1 elements are already sorted and insert element z in the
right place, or we can find the largest element, place it at position 7, and then sort the remaining elements recursively.
The former gives us insertion sort, while the latter gives selection sort.

Note These algorithms aren’t all that useful, but they’re commonly taught because they serve as excellent examples.
Also, they’re classics, so any algorist should know how they work.

Take a look at the recursive insertion sort in Listing 4-1. It neatly encapsulates the algorithmic idea. To get the
sequence sorted up to position i, first sort it recursively up to position i-1 (correct by the induction hypothesis) and
then swap element seq[i] down until it reaches its correct position among the already sorted elements. The base
case is when i = 0; a single element is trivially sorted. If you wanted, you could add a default case, where i is set
to len(seq)-1. As explained, even though this implementation lets us encapsulate the induction hypothesis in a
recursive call, it has practical limitations (for example, in the length of the sequence it'll work on).

Listing 4-1. Recursive Insertion Sort

def ins_sort rec(seq, i):

if i==0: return # Base case -- do nothing

ins_sort rec(seq, i-1) # Sort 0..i-1

j=1 # Start "walking" down

while j > 0 and seq[j-1] > seq[j]: # Look for OK spot
seq[j-1], seq[j] = seq[j], seq[j-1] # Keep moving seq[j] down
j-=1 # Decrement j

Listing 4-2 shows the iterative version more commonly known as insertion sort. Instead of recursing backward,
it iterates forward, from the first element. If you think about it, that’s exactly what the recursive version does too.
Although it seems to start at the end, the recursive calls go all the way back to the first element before the while loop
is ever executed. After that recursive call returns, the while loop is executed on the second element, and so on, so the
behaviors of the two versions are identical.

Listing 4-2. Insertion Sort

def ins_sort(seq):

for i in range(1,len(seq)): # 0..i-1 sorted so far
j=1 # Start "walking" down
while j > 0 and seq[j-1] > seq[j]: # Look for OK spot
seq[j-1], seq[j] = seq[j], seq[j-1] # Keep moving seq[j] down
j-=1 # Decrement j

Listings 4-3 and 4-4 contain a recursive and an iterative version of selection sort, respectively.

"These algorithms aren’t all that useful, but they’re commonly taught, because they serve as excellent examples. Also, they’re
classics, so any algorist should know how they work.
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Listing 4-3. Recursive Selection Sort

def sel sort rec(seq, i):

if i==0: return # Base case -- do nothing
max_j = i # Idx. of largest value so far
for j in range(i): # Look for a larger value

if seq[j] > seq[max_j]: max_j = j # Found one? Update max_j
seq[i], seq[max_j] = seq[max_j], seq[i] # Switch largest into place
sel sort rec(seq, i-1) # Sort 0..i-1

Listing 4-4. Selection Sort

def sel sort(seq):

for i in range(len(seq)-1,0,-1): # n..i+1 sorted so far
max_j = i # Idx. of largest value so far
for j in range(i): # Look for a larger value

if seq[j] > seq[max_j]: max_j = j # Found one? Update max_j
seq[i], seq[max_j] = seq[max_j], seq[i] # Switch largest into place

Once again, you can see that the two are quite similar. The recursive implementation explicitly represents the
inductive hypothesis (as a recursive call), while the iterative version explicitly represents repeatedly performing
the inductive step. Both work by finding the largest element (the for loop looking for max_j) and swapping that to the
end of the sequence prefix under consideration. Note that you could just as well run all the four sorting algorithms in
this section from the beginning, rather than from the end (sort all objects fo the right in insertion sort or look for the
smallest element in selection sort).

BUT WHERE IS THE REDUCTION?

Finding a useful reduction is often a crucial step in solving an algorithmic problem. If you don’t know where to b
egin, ask yourself, where is the reduction?

However, it may not be entirely clear how the ideas in this section jibe with the picture of a reduction presented
in Figure 4-1. As explained, a reduction transforms instances from problem A to instances of problem B and then
transforms the output of B to valid output for A. But in induction and reduction, we’ve only reduced the problem
size. Where s the reduction, really?

Oh, it’s there—it’s just that we’re reducing from A to A. There is some transformation going on, though. The reduction
makes sure the instances we’re reducing fo are smaller than the original (which is what makes the induction work),
and when transforming the output, we increase the size again.

These are two major variations of reductions: reducing to a different problem and reducing to a shrunken version
of the same. If you think of the subproblems as vertices and the reductions as edges, you get the subproblem
graph discussed in Chapter 2, a concept I'll revisit several times. (It’s especially important in Chapter 8.)

Designing with Induction (and Recursion)

In this section, I'll walk you through the design of algorithmic solutions to three problems. The problem I'm building
up to, topological sorting, is one that occurs quite a bit in practice and that you may very well need to implement
yourself one day, if your software manages any kind of dependencies. The first two problems are perhaps less useful,
but great fun, and they’re good illustrations of induction (and recursion).
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Finding a Maximum Permutation

Eight persons with very particular tastes have bought tickets to the movies. Some of them are happy with their seats,
but most of them are not, and after standing in line in Chapter 3, they're getting a bit grumpy. Let’s say each of them
has a favorite seat, and you want to find a way to let them switch seats to make as many people as possible happy with
the result (ignoring other audience members, who may eventually get a bit tired by the antics of our moviegoers).
However, because they are all rather grumpy, all of them refuse to move to another seat if they can’t get their favorite.
This is a form of matching problem. You'll encounter a few other of those in Chapter 10. We can model the
problem (instance) as a graph, like the one in Figure 4-4. The edges point from where people are currently sitting to
where they want to sit. (This graph is a bit unusual in that the nodes don’t have unique labels; each person, or seat,
is represented twice.)

Figure 4-4. A mapping from the set {a ... h} to itself

Note This is an example of what’s called a bipartite graph, which means that the nodes can be partitioned into two
sets, where all the edges are between the sets (and none of them inside either). In other words, you could color the nodes
using only two colors so that no neighbors had the same color.

Before we try to design an algorithm, we need to formalize the problem. Truly understanding the problem is
always a crucial first step in solving it. In this case, we want to let as many people as possible get the seat they're
“pointing to.” The others will need to remain seated. Another way of viewing this is that we’re looking for a subset of
the people (or of the pointing fingers) that forms a one-fo-one mapping, or permutation. This means that no one in the
set points outside it, and each seat (in the set) is pointed to exactly once. That way, everyone in the permutation is free
to permute—or switch seats—according to their wishes. We want to find a permutation that is as large as possible
(to reduce the number of people that fall outside it and have their wishes denied).

Once again, our first step is to ask, where is the reduction? How can we reduce the problem to a smaller one?
What subproblem can we delegate (recursively) or assume (inductively) to be solved already? Let’s go with simple
(weak) induction and see whether we can shrink the problem from 7 to n-1. Here, n is the number of people (or
seats), that is, n = 8 for Figure 4-4. The inductive assumption follows from our general approach. We simply assume
that we can solve the problem (that is, find a maximum subset that forms a permutation) for n-1 people. The only
thing that requires any creative problem solving is safely removing a single person so that the remaining subproblem
is one that we can build on (that is, one that is part of a total solution).

If each person points to a different seat, the entire set forms a permutation, which must certainly be as big as
it can be—no need to remove anyone because we're already done. The base case is also trivial. For n = 1, there is
nowhere to move. So, let’s say that n > 1 and that at least two persons are pointing to the same seat (the only way the
permutation can be broken). Take a and b in Figure 4-4, for example. They're both pointing to ¢, and we can safely say
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that one of them must be eliminated. However, which one we choose is crucial. Say, for example, we choose to remove
a (both the person and the seat). We then notice that c is pointing to a, which means that ¢ must also be eliminated.
Finally, b points to c and must be eliminated as well—meaning that we could have simply eliminated b to begin with,
keeping a and c (who just want to trade seats with each other).

When looking for inductive steps like this, it can often be a good idea to look for something that stands out.

What, for example, about a seat that no one wants to sit in (that is, a node in the lower row in Figure 4-4 that has

no in-edges)? In a valid solution (a permutation), at most one person (element) can be placed in (mapped to) any
given seat (position). That means there’s no room for empty seats, because at least two people will then be trying to
sit in the same seat. In other words, it is not only OK to remove an empty seat (and the corresponding person); it’s
actually necessary. For example, in Figure 4-4, the nodes marked b cannot be part of any permutation, certainly not
one of maximum size. Therefore, we can eliminate b, and what remains is a smaller instance (with 7 = 7) of the same
problem , and, by the magic of induction, we’re done!

Or are we? We always need to make certain we’ve covered every eventuality. Can we be sure that there will always
be an empty seat to eliminate, if needed? Indeed we can. Without empty seats, the n persons must collectively point to
all the n seats, meaning that they all point to different seats, so we already have a permutation.

It's time to translate the inductive/recursive algorithm idea into an actual implementation. An early decision
is always how to represent the objects in the problem instances. In this case, we might think in terms of a graph or
perhaps a function that maps between the objects. However, in essence, a mapping like this is just a position (0...n-1)
associated with each element (also 0...n-1), and we can implement this using a simple list. For example, the example
in Figure 4-4 (ifa=0, b =1, ...) can be represented as follows:

>>>M=1[2,2,0,5,3,5,7, 4]
>>> M[2] # c is mapped to a
0

Tip When possible, try to use a representation that is as specific to your problem as possible. More general
representations can lead to more bookkeeping and complicated code; if you use a representation that implicitly embodies
some of the constraints of the problem, both finding and implementing a solution can be much easier.

We can now implement the recursive algorithm idea directly if we want, with some brute-force code for finding
the element to eliminate. It won’t be very efficient, but an inefficient implementation can sometimes be an instructive
place to start. See Listing 4-5 for a relatively direct implementation.

Listing 4-5. A Naive Implementation of the Recursive Algorithm Idea for Finding a Maximum Permutation

def naive_max_perm(M, A=None):

if A is None: # The elt. set not supplied?
A = set(range(len(M))) #A={0,1, ..., n-1}
if len(A) == 1: return A # Base case -- single-elt. A
B = set(M[i] for i in A) # The "pointed to" elements
C=A-8B # "Not pointed to" elements
if C: # Any useless elements?
A.remove(C.pop()) # Remove one of them
return naive _max_perm(M, A) # Solve remaining problem
return A # All useful -- return all
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The function naive_max_perm receives a set of remaining people (A) and creates a set of seats that are pointed
to (B). Ifit finds an element in A that is not in B, it removes the element and solves the remaining problem recursively.
Let’s use the implementation on our example, M.?

>>> naive_max_perm(M)
{0, 2, 5}

So, a, ¢, and fcan take part in the permutation. The others will have to sit in nonfavorite seats.

The implementation isn’t too bad. The handy set type lets us manipulate sets with ready-made high-level operations,
rather than having to implement them ourselves. There are some problems, though. For one thing, we might want an
iterative solution. This is easily remedied—the recursion can quite simply be replaced by a loop (like we did for insertion
sort and selection sort). A worse problem, though, is that the algorithm is quadratic! (Exercise 4-10 asks you to show this.)

The most wasteful operation is the repeated creation of the set B. If we could just keep track of which chairs are
no longer pointed to, we could eliminate this operation entirely. One way of doing this would be to keep a count for
each element. We could decrement the count for chair x when a person pointing to x is eliminated, and if x ever got a
count of zero, both person and chair x would be out of the game.

Tip This idea of reference counting can be useful in general. It is, for example, a basic component in many systems
for garbage collection (a form of memory management that automatically deallocates objects that are no longer useful).
You'll see this technique again in the discussion of topological sorting.

There may be more than one element to be eliminated at any one time, but we can just put any new ones we
come across into a “to-do” list and deal with them later. If we needed to make sure the elements were eliminated in
the order in which we discover that they’re no longer useful, we would need to use a first-in, first-out queue such as
the deque class (discussed in Chapter 5).° We don't really care, so we could use a set, for example, but just appending
to and popping from a list will probably give us quite a bit less overhead. But feel free to experiment, of course. You
can find an implementation of the iterative, linear-time version of the algorithm in Listing 4-6.

Listing 4-6. Finding a Maximum Permutation

def max_perm(M):

Then deal w/it next
Return useful elts.

Q.append(J)
return A

n = len(M) # How many elements?
A = set(range(n)) #A={0,1, ..., n-1}
count = [0]*n # C[i] == 0 for i in A
for i in M: # A1l that are "pointed to"
count[i] += 1 # Increment "point count”
Q = [i for i in A if count[i] == 0] # Useless elements
while Q: # While useless elts. left...
i = Q.pop() # Get one
A.remove (i) # Remove it
j = M[i] # Who's it pointing to?
count[j] -= 1 # Not anymore...
if count[j] == oO: # Is j useless now?
#
#

SIf you’re using Python 2.6 or older, the result would be set([0, 2, 5]).
’Inserting into or removing from the start of a list is a linear-time operation, remember? Generally not a good idea.

78

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © INDUCTION AND RECURSION ... AND REDUCTION

Tip In recent versions of Python, the collections module contains the Counter class, which can count (hashable)
objects for you. With it, the for loop in Listing 4-7 could have been replaced with the assignment count = Counter(M).
This might have some extra overhead, but it would have the same asymptotic running time.

Listing 4-7. A Naive Solution to the Celebrity Problem
def naive celeb(G):

n = len(G)
for u in range(n): # For every candidate...
for v in range(n): # For everyone else...
if u == v: continue # Same person? Skip.
if G[u][v]: break # Candidate knows other
if not G[v][u]: break # Other doesn't know candidate
else:
return u # No breaks? Celebrity!
return None # Couldn't find anyone

Some simple experiments (see Chapter 2 for tips) should convince you that even for rather small problem
instances, max_permis quite a bit faster than naive_max_perm. They're both pretty fast, though, and if all you're
doing is solving a single, moderately sized instance, you might be just as satisfied with the more direct of the two.
The inductive thinking would still have been useful in providing you with a solution that could actually find the
answer. You could, of course, have tried every possibility, but that would have resulted in a totally useless algorithm.
If, however, you had to solve some really large instances of this problem or even if you had to solve many moderate
instances, the extra thinking involved in coming up with a linear-time algorithm would probably pay off.

COUNTING SORT & FAM

If the elements you’re working with in some problem are hashable or, even better, integers that you can use
directly as indices (like in the permutation example), counting should be a tool you keep close at hand. One of

the most well-known (and really, really pretty) examples of what counting can do is counting sort. As you'll see in
Chapter 6, there is a (loglinear) limit to how fast you can sort (in the worst case), if all you know about your values
is whether they’re greater/less than each other.

In many cases, this is a reality you have to accept, for example, if you’re sorting objects with custom comparison
methods. And loglinear is much better than the quadratic sorting algorithms we’ve seen so far. However, if you
can countyour elements, you can do better. You can sort in linear time! And what’s more, the counting sort
algorithm is really simple. (And did | mention how pretty it is?)

from collections import defaultdict

def counting sort(A, key=lambda x: x):

B, C =[], defaultdict(list) # Output and "counts"
for x in A:
Clkey(x)].append(x) # "Count" key(x)
for k in range(min(C), max(C)+1): # For every key in the range
B.extend(C[k]) # Add values in sorted order
return B
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By default, I'm just sorting objects based on their values. By supplying a key function, you can sort by anything
you’'d like. Note that the keys must be integers in a limited range. If this range is 0...k~1, the running time is then
®(n + K. (Although the common implementation simply counts the elements and then figures out where to put
them in B, Python makes it easy to just build value lists for each key and then concatenate them.) If several values
have the same key, they’ll end up in the original order with respect to each other. Sorting algorithms with this
property are called stable.

Counting-sort does need more space than an in-place algorithm like Quicksort, for example, so if your data set and
value range is large, you might get a slowdown from a lack of memory. This can partly be handled by handling
the value range more efficiently. We can do this by sorting numbers on individual digits (or strings on individual
characters or bit vectors on fixed-size chunks). If you first sort on the /east significant digit, because of stability,
sorting on the second least significant digit won't destroy the internal ordering from the first run.

(This is a bit like sorting column by column in a spreadsheet.) This means that for d digits, you can sort n
numbers in ®(dn) time. This algorithm is called radix sort, and Exercise 4-11 asks you to implement it.

Another somewhat similar linear-time sorting algorithm is bucket sort. It assumes that your values are evenly
(uniformly) distributed in an interval, for example, real numbers in the interval [0,1), and uses n buckets, or
subintervals, that you can put your values into directly. In a way, you're hashing each value into its proper slot,
and the average (expected) size of each bucket is ®(1). Because the buckets are in order, you can go through
them and have your sorting in ®(n) time, in the average case, for random data. (Exercise 4-12 asks you to
implement bucket sort.)

The Celebrity Problem

In the celebrity problem, you're looking for a celebrity in a crowd. It’s a bit far-fetched, though it could perhaps be
used in analyses of social networks such as Facebook and Twitter. The idea is as follows: The celebrity knows no one,
but everyone knows the celebrity.'® A more down-to-earth version of the same problem would be examining a set of
dependencies and trying to find a place to start. For example, you might have threads in a multithreaded application
waiting for each other, with even some cyclical dependencies (so-called deadlocks), and you're looking for one thread
that isn’t waiting for any of the others but that all of the others are dependent on. (A much more realistic way of
handling dependencies—topological sorting—is dealt with in the next section.)

No matter how we dress the problem up, its core can be represented in terms of graphs. We're looking for one
node with incoming edges from all other nodes, but with no outgoing edges. Having gotten a handle on the structures
we're dealing with, we can implement a brute-force solution, just to see whether it helps us understand anything
(see Listing 4-7).

The naive_celeb function tackles the problem head on. Go through all the people, checking whether each
person is a celebrity. This check goes through all the others, making sure they all know the candidate person and that
the candidate person does not know any of them. This version is clearly quadratic, but it’s possible to get the running
time down to linear.

The key, as before, lies in finding a reduction—reducing the problem from » persons to n-1 as cheaply as
possible. The naive_celeb implementation does, in fact, reduce the problem step by step. In iteration k of the outer
loop, we know that none of 0...k-1 can be the celebrity, so we need to solve the problem only for the remainder, which
is exactly what the remaining iterations do. This reduction is clearly correct, as is the algorithm. What’s new in this
situation is that we have to try to improve the efficiency of the reduction. To get a linear algorithm, we need to perform
the reduction in constant time. If we can do that, the problem is as good as solved. As you can see, this inductive way
of thinking can really help pinpoint where we need to employ our creative problem-solving skills.

0There are proverbs where this celebrity is replaced with a clown, a fool, or a monkey. Somewhat fitting, perhaps.
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Once we've zeroed in on what we need to do, the problem isn’t all that hard. To reduce the problem from 7 to
n-1, we must find a noncelebrity, someone who either knows someone or is unknown by someone else. And if we
check G[u][v] for any nodes u and v, we can eliminate either u or v! If G[u][v] is true, we eliminate u; otherwise, we
eliminate v. If we're guaranteed that there is a celebrity, this is all we need. Otherwise, we can still eliminate all but
one candidate, but we need to finish by checking whether they are, in fact, a celebrity, like we did in naive_celeb.
You can find an implementation of the algorithm based on this reduction in Listing 4-8. (You could implement the
algorithm idea even more directly using sets; do you see how?)

Listing 4-8. A Solution to the Celebrity Problem

def celeb(G):
n = len(G)

u, v=0,1 # The first two
for ¢ in range(2,n+1): # Others to check

if G[u][v]: u =c # u knows v? Replace u

else: V=cC # Otherwise, replace v
if u == n: c=v # u was replaced last; use v
else: c=u # Otherwise, u is a candidate
for v in range(n): # For everyone else...

if ¢ == v: continue # Same person? Skip.

if G[c][v]: break # Candidate knows other

if not G[v][c]: break # Other doesn't know candidate
else:

return c # No breaks? Celebrity!
return None # Couldn't find anyone

To try these celebrity-finding functions, you can just whip up a random graph." Let’s switch each edge on or off
with equal probability:

>>> from random import randrange
>>> n = 100
>>> G = [[randrange(2) for i in range(n)] for i in range(n)]

Now make sure there is a celebrity in there and run the two functions:

>>> ¢ = randrange(n)

>>> for i in range(n):
G[i][c] = True
G[c][i] = False

>>> naive_celeb(G)
57

>>> celeb(G)

57

Note that though one is quadratic and one is linear, the time to build the graph (whether random or from some
other source) is quadratic here. That could be avoided (for a sparse graph, where the average number of edges is less
than ©(n)), with some other graph representation; see Chapter 2 for suggestions.

"UThere is, in fact, a rich theory about random graphs. A web search should turn up lots of material.
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Topological Sorting

In almost any project, the tasks to be undertaken will have dependencies that partially restrict their ordering.
For example, unless you have a very avant-garde fashion sense, you need to put on your socks before your boots,
but whether you put on your hat before your shorts is of less importance. Such dependencies are (as mentioned
in Chapter 2) easily represented as a directed acyclic graph (DAG), and finding an ordering that respect the
dependencies (so that all the edges point forward in the ordering) is called topological sorting.

Figure 4-5 illustrates the concept. In this case, there is a unique valid ordering, but consider what would happen if
you removed the edge ab, for example—then a could be placed anywhere in the order, as long as it was before f.

z\%[: 0= 0S0=0=00
O

DAG Topologically Sorted DAG

Figure 4-5. A directed acyclic graph (DAG) and its nodes in topologically sorted order

The problem of topological sorting occurs in many circumstances in any moderately complex computer system.
Things need to be done, and they depend on other things ... where to start? A rather obvious example is installing
software. Most modern operating systems have at least one system for automatically installing software components
(such as applications or libraries), and these systems can automatically detect when some dependency is missing and
then download and install it. For this to work, the components must be installed in a topologically sorted order."

There are also algorithms (such as the one for finding shortest paths in DAGs and, in a sense, most algorithms
based on dynamic programming) that are based on a DAG being sorted topologically as an initial step. However,
while standard sorting algorithms are easy to encapsulate in standard libraries and the like, abstracting away graph
algorithms so they work with any kind of dependency structure is a bit harder ... so the odds aren’t too bad that you'll
need to implement it at some point.

Tip If you're using a Unix system of some sort, you can play around with topological sorting of graphs described in
plain-text files, using the tsort command.

We already have a good representation of the structures in our problem (a DAG). The next step is to look for some
useful reduction. As before, our first intuition should probably be to remove a node and solve the problem (or assume
that it is already solved) for the remaining n-1. This reasonably obvious reduction can be implemented in a manner
similar to insertion sort, as shown in Listing 4-9. (I'm assuming adjacency sets or adjacency dicts or the like here; see
Chapter 2 for details.)

2The description “detect when some dependency is missing, download and install it” is, in fact, almost a literal description of
another algorithm topological sorting, which is discussed in Chapter 5.
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Listing 4-9. A Naive Algorithm for Topological Sorting

def naive topsort(G, S=None):

if S is None: S = set(G) # Default: All nodes
if len(S) == 1: return list(S) # Base case, single node
v = S.pop() # Reduction: Remove a node
seq = naive_topsort(G, S) # Recursion (assumption), n-1
min i =0
for i, u in enumerate(seq):

if v in G[u]: min_i = it1 # After all dependencies
seq.insert(min i, v)
return seq

Although I hope it’s clear (by induction) that naive_topsort is correct, it is also clearly quadratic (by recurrence
2 from Table 3-1). The problem is that it chooses an arbitrary node at each step, which means that it has to look
where the node fits after the recursive call (which gives the linear work). We can turn this around and work more like
selection sort. Find the right node to remove before the recursive call. This new idea, however, leaves us with two
questions. First, which node should we remove? And second, how can we find it efficiently?**

We're working with a sequence (or at least we're working foward a sequence), which should perhaps give us an
idea. We can do something similar to what we do in selection sort and pick out the element that should be placed first
(or last ... it doesn’t really matter; see Exercise 4-19). Here, we can’t just place it first—we need to really remove it from
the graph, so the rest is still a DAG (an equivalent but smaller problem). Luckily, we can do this without changing the
graph representation directly, as you'll see in a minute.

How would you find a node that can be put first? There could be more than one valid choice, but it doesn’t matter
which one you take. I hope this reminds you of the maximum permutation problem. Once again, we want to find the
nodes that have no in-edges. A node without in-edges can safely be placed first because it doesn’t depend on any
others. If we (conceptually) remove all its out-edges, the remaining graph, with n-1 nodes, will also be a DAG that can
be sorted in the same way.

Tip If a problem reminds you of a problem or an algorithm you already know, that’s probably a good sign. In fact,
building a mental archive of problems and algorithms is one of the things that can make you a skilled algorist. If you're
faced with a problem and you have no immediate associations, you could systematically consider any relevant
(or semirelevant) techniques you know and look for reduction potential.

Just like in the maximum permutation problem, we can find the nodes without in-edges by counting. By
maintaining our counts from one step to the next, we need not start fresh each time, which reduces the linear step
cost to a constant one (yielding a linear running time in total, as in recurrence 1 in Table 3-1). Listing 4-10 shows an
iterative implementation of this counting-based topological sorting. (Can you see how the iterative structure still
embodies the recursive idea?) The only assumption about the graph representation is that we can iterate over the
nodes and their neighbors.

BWithout effective selection, we’re not gaining anything. For example, the algorithms I’ve compared with, insertion and selection
sort, are both quadratic, because selecting the largest or smallest element among unsorted elements isn’t any easier than inserting
it among sorted ones.
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Listing 4-10. Topological Sorted of a Directed, Acyclic Graph

def topsort(G):
count = dict((u, 0) for u in G) # The in-degree for each node
for u in G:
for v in G[u]:

count[v] += 1 # Count every in-edge
Q = [u for u in G if count[u] == 0] # Valid initial nodes
S =] # The result
while Q: # While we have start nodes...
u = Q.pop() # Pick one
#

S.append(u) Use it as first of the rest

for v in G[u]:

count[v] -=1 # "Uncount" its out-edges
if count[v] == # New valid start nodes?
Q.append(v) # Deal with them next

return S

BLACK BOX: TOPOLOGICAL SORTING AND PYTHON’S MRO

The kind of structural ordering we’ve been working with in this section is actually an integral part of Python
object-oriented inheritance semantics. For single inheritance (each class is derived from a single superclass),
picking the right attribute or method to use is easy. Simply walk upward in the “chain of inheritance,” first
checking the instance, then the class, then the superclass, and so forth. The first class that has what we’re
looking for is used.

However, if you can have more than one superclass, things get a bit tricky. Consider the following example:

>>> class X: pass
>>> class Y: pass
>>> class A(X,Y): pass
>>> class B(Y,X): pass

If you were to derive a new class C from A and B, you’d be in trouble. You wouldn’t know whether to look for
methods in X or V.

In general, the inheritance relationship forms a DAG (you can’t inherit in a cycle), and in order to figure out where
to look for methods, most languages create a /inearization of the classes, which is simply a topological sorting

of the DAG. Recent versions of Python use a method resolution order (or MRO) called C3 (see the references for
more information), which in addition to linearizing the classes in a way that makes as much sense as possible
also prohibits problematic cases such as the one in the earlier example.
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PAGE 3
DEPARTMENT  COURSE DESCRIPTION PREREQS
COMPUTER OPSC Y32 | INTERMEDIATE COMPLER [ CPSC Y32
SCENCE DESIGN, WITH A FOoCUS ON
DEPENDENCY RESOLUTION.

Dependencies. The prereqs for CPSC 357, the class on package management, are CPSC 432, CPSC 357, and glibc2.5 or
later (http://xkcd.com/754)

Stronger Assumptions

The default induction hypothesis when designing algorithm is “We can solve smaller instances with this,” but sometimes
that isn’t enough to actually perform the induction step or to perform it efficiently. Choosing the order of the subproblems
can be important (such as in topological sorting), but sometimes we must actually make a stronger assumption to
piggyback some extra information on our induction. Although a stronger assumption might seem to make the proof
harder," it actually just gives us more to work with when deducing the step from n-1 (or /2, or some other size) to n.

Consider the idea of balance factors. These are used in some types of balanced trees (discussed in Chapter 6) and
are a measure of how balanced (or unbalanced) a tree or subtree is. For simplicity, we assume that each internal node
has two children. (In an actual implementation, some of the leaves might simply be None or the like.) A balance factor
is defined for each internal node and is set to the difference between the heights of the left and right subtrees, where
height is the greatest distance from the node (downward) to a leaf. For example, the left child of the root in Figure 4-6
has a balance factor of -2 because its left subtree is a leaf (with a height of 0), while its right child has a height of 2.

Figure 4-6. Balance factors for a binary tree. The balance factors are defined only for internal nodes (highlighted) but
could trivially be set to zero for leaves

“In general, you should, of course, be careful about making unwarranted assumptions. In the words of Alec Mackenzie (as quoted
by Brian Tracy), “Errant assumptions lie at the root of every failure.” Or, as most people would put it, “Assumption is the mother of
all f@#k-ups.” Assumptions in induction are proven, though, step by step, from the base case.
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Calculating balance factors isn’t a very challenging algorithm design problem, but it does illustrate a point.
Consider the obvious (divide-and-conquer) reduction. To find the balance factor for the root, solve the problem
recursively for each subtree and then extend/combine the partial solutions to a complete solution. Easy peasy.

Except ... it won’t work. The inductive assumption that we can solve smaller subproblems won’t help us here because
the solution (that is, the balance factor) for our subproblems doesn’t contain enough information to make the
inductive step! The balance factor isn’t defined in terms of its children’s balance factors—it’s defined in terms of their
heights. We can easily solve this by just strengthening our assumption. We assume that we can find the balance factors
and the heights of any tree with k < n nodes. We can now use the heights in the inductive step, finding both the balance
factor (left height minus right height) and the height (max of left and right height, plus one) for size 7 in our inductive
step. Problem solved! Exercise 4-20 asks you to work out the details here.

Note Recursive algorithms over trees are intimately linked with depth-first search, discussed in Chapter 5.

Thinking formally about strengthening the inductive hypothesis can sometimes be a bit confusing. Instead, you
can just think about what extra information you need to “piggyback” on your inductive step in order to build a larger
solution. For example, when working with topological sorting earlier, it was clear that piggybacking (and maintaining)
the in-degrees while we were stepping through the partial solutions made it possible to perform the inductive step
more efficiently.

For more examples of strengthening induction hypotheses, see the closest point problem in Chapter 6 and the
interval containment problem in Exercise 4-21.

REVERSE INDUCTION AND POWERS OF TWO

Sometimes it can be useful to restrict the problem sizes we’re working with, such as dealing only with powers of
two. This often occurs for divide-and-conquer algorithms, for example (see Chapters 3 and 6 for recurrences and
examples, respectively). In many cases, whatever algorithms or complexities we find will still work for any value
of n, but sometimes, as for the checkerboard covering problem described earlier in this chapter, this just isn't the
case. To be certain, we might need to prove that any value of nis safe. For recurrences, the induction method

in Chapter 3 can be used. For showing correctness, you can use reverse induction. Assume that the algorithm

is correct for n and show that this implies correctness for n—1.This can often be done by simply introducing a
“dummy” element that doesn’t affect the solution but that increases the size to n. If you know the algorithm is
correct for an infinite set of sizes (such as all powers of two), reverse induction will let you show that it’s true for
all sizes.

Invariants and Correctness

The main focus of this chapter is on designing algorithms, where correctness follows from the design process. Perhaps
a more common perspective on induction in computer science is correctness proofs. It’s basically the same thing that
I've been discussing in this chapter but with a slightly different angle of approach. You're presented with a finished
algorithm, and you need to show that it works. For a recursive algorithm, the ideas I've already shown you can be used
rather directly. For a loop, you can also think recursively, but there is a concept that applies more directly to induction
proofs for iteration: loop invariants. A loop invariant is something that is true after each iteration of a loop, given some
preconditions; it’s called an invariant because it doesn’t vary—it’s true from beginning to end.
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Usually, the final solution is the special case that the invariant attains after the final iteration, so if the invariant
always holds (given the preconditions of the algorithm) and you can show that the loop terminates, you've shown
that the algorithm is correct. Let’s try this approach with insertion sort (Listing 4-2). The invariant for the loop is that
the elements 0...i are sorted (as hinted at by the first comment in the code). If we want to use this invariant to prove
correctness, we need to do the following:

1. Useinduction to show that it is, in fact, true after each iteration.
2. Show that we'll get the correct answer if the algorithm terminates.
3.  Show that the algorithm terminates.

The induction in step 1 involves showing a base case (that is, before the first iteration) and an inductive step
(that a single run of the loop preserves the invariant). The second step involves using the invariant at the point of
termination. The third step is usually easy to prove (perhaps by showing that you eventually “run out” of something).!s
Steps 2 and 3 should be obvious for insertion sort. The for loop will terminate after n iterations, with i = n-1. The
invariant then says that elements 0...n-1 are sorted, which means that the problem is solved. The base case (i = 0)
is trivial, so all that remains is the inductive step—to show that the loop preserves the invariant, which it does, by
inserting the next element in the correct spot among the sorted values (without disrupting the sorting).

Relaxation and Gradual Improvement

The term relaxation is taken from mathematics, where it has several meanings. The term has been picked up by algorists
and is used to describe the crucial step in several algorithms, particularly shortest-path algorithms based on dynamic
programming (discussed in Chapters 8 and 9), where we gradually improve our approximations to the optimum. The idea
of incrementally improving a solution in this way is also central to algorithms finding maximum flow (Chapter 10). Iwon’t
go into how these algorithms work just yet, but let’s look at a simple example of something that might be called relaxation.
You are in an airport, and you can reach several other airports by plane. From each of those airports, you can take
the train to several towns and cities. Let’s say that you have a dict or list of flight times, A, so that A[u] is the time it will
take you to get to airport u. Similarly, B[u][v] will give you the time it takes to get from airport u to town v by train.
(B can be a list of lists or a dict of dicts, for example; see Chapter 2.) Consider the following randomized way of
estimating the time it will take you to get to each town, C[v]:

>>> for v in range(n):
C[v] = float('inf")
>>> for i in range(N):
u, v = randrange(n), randrange(n)
C[v] = min(C[v], A[u] + B[u][v]) # Relax

The idea here is to repeatedly see whether we can improve our estimate for C[v] by choosing another route. First
go to u by plane, and then you take the train to v. If that gives us a better total time, we update C. As long as N is really
large, we will eventually get the right answer for every town.

For relaxation-based algorithms that actually guarantee correct solutions, we need to do better than this. For
the airplane + train problem, this is fairly easy (see Exercise 4-22). For more complex problems, you may need rather
subtle approaches. For example, you can show that the value of your solution increases by an integer in every iteration;
if the algorithm terminates only when you hit the optimal (integer) value, it must be correct. (This is similar to the
case for maximum flow algorithms.) Or perhaps you need to show how correct estimates spread across elements of
the problem instance, such as nodes in a graph. If this seems a bit general at the moment, don’t worry—TI'll get plenty
specific when we encounter algorithms that use the technique.

SEven though showing termination is usually easy, the general problem is, in fact, not (algorithmically) solvable. See the
discussion of the halting problem in Chapter 11 for details.
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Tip Designing algorithms with relaxation can be like a game. Each relaxation is one “move,” and you try to get the
optimal solution with as few moves as possible. You can always get there by just relaxing all over the place, but the key
lies in performing your moves in the right order. This idea will be explored further when we deal with shortest paths in
DAGs (Chapter 8), Bellman-Ford, and Dijkstra’s algorithm (Chapter 9).

Reduction + Contraposition = Hardness Proof

This section is really just a bit of foreshadowing of what you'll encounter in Chapter 11. You see, although reductions
are used to solve problems, the only context in which most textbooks discuss them is problem complexity, where
they're used to show that you (probably) can’t solve a given problem. The idea is really quite simple, yet I've seen it
trip up many (perhaps even most) of my students.

The hardness proofs are based on the fact that we only allow easy (that is, fast) reductions.'® Let’s say you're able
to reduce problem A to B (so a solution to B gives you one for A as well; take a look at Figure 4-1 if you need to refresh
your memory on how this works). We then know that if B is easy, A must be easy as well. That follows directly from the
fact that we can use B, along with an easy reduction, to solve A.

For example, let A be finding the longest path between two nodes in a DAG, and let B be finding the shortest path
between two nodes in a DAG. You can then reduce A to B by simply viewing all edges as negative. Now, if you learn of
some efficient algorithm to find shorfest paths in DAGs that permits negative edge weights (which you will, in Chapter
8), you automatically also have an efficient algorithm for finding for longest paths with positive edge weights.'” The
reason for this is that, with asymptotic notation (which is implicitly used here), you could say that “fast + fast = fast.” In
other words, fast reduction + fast solution to B = fast solution to A.

Now let’s apply our friend contraposition. We've established “If B is easy, then A is easy.” The contrapositive is
“If A is hard, then B is hard.”*® This should still be quite easy to understand, intuitively. If we know that A is hard, no
matter how we approach it, we know B can’t be easy—because if it were easy, it would supply us with an easy solution
to A, and A wouldn’t be hard after all (a contradiction).

I hope the section has made sense so far. Now there’s just one last step to the reasoning. If I come across a new,
unknown problem X, and I already know that the problem Y is hard, how can I use a reduction to show that X is hard?

There are basically two alternatives, so the odds should be about 50-50. Oddly enough, it seems that more than
half the people I ask get this wrong before they think about it a bit. The answer is, reduce Y to X. (Did you get it right?)
If you know Y is hard and you reduce it to X, then X must be hard, because otherwise it could be used to solve Y
easily—a contradiction.

Reducing in the other direction doesn’t really get you anywhere. For example, fixing a smashed computer is hard,
but if you want to know whether fixing your (unsmashed) computer is easy or hard, smashing it isn’t going to prove
anything.

So, to sum up the reasoning here:

e Ifyou can (easily) reduce A to B, then B is at least as hard as A.

e Ifyouwant to show that X is hard and you know that Y is hard, reduce Y to X.

!The most important case in Chapter 11 is be when “easy” means polynomial. The logic applies in other cases too.

Only in DAGs, though. Finding longest paths in general graphs is an unsolved problem, as discussed in Chapter 11.

'8As you may recall, the contrapositive of “If X, then Y is “If not Y, then not X,” and these statements are equivalent. For example,
“I think, therefore I am” is equivalent to “I am not, therefore I think not.” However, it is not equivalent to “I am, therefore I think.”
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One of the reasons this is so confusing for many people is that we normally think of reductions as transforming
a problem to something easier. Even the name “reduction” connotes this. However, if we're solving A by reducing it
to B, it only seems like B is easier, because it’s something we already know how to solve. After the reduction, A is just
as easy—because we can solve it through B (with the addition of an easy, fast reduction). In other words, as long as
your reduction isn’t doing any heavy lifting, you can never reduce to something easier, because the act of reduction
automatically evens things out. Reduce A to B, and B is automatically at least as hard as A.

Let’s leave it at that for now. I'll get into the details in Chapter 11.

Problem Solving Advice

Here is some advice for solving algorithmic problems and designing algorithms, summing up some of the main ideas
of this chapter:

e  Make sure you really understand the problem. What is the input? The output? What'’s the
precise relationship between the two? Try to represent the problem instances as familiar
structures, such as sequences or graphs. A direct, brute-force solution can sometimes help
clarify exactly what the problem is.

¢ Look for areduction. Can you transform the input so it works as input for another problem
that you can solve? Can you transform the resulting output so that you can use it? Can you
reduce an instance of size 7 to an instance of size k < n and extend the recursive solution
(inductive hypothesis) back to n?

Together, these two form a powerful approach to algorithm design. I'm going to add a third
item here, as well. It’s not so much a third step as something to keep in mind while working
through the first two:

e  Are there extra assumptions you can exploit? Integers in a fixed value range can be sorted more
efficiently than arbitrary values. Finding the shortest path in a DAG is easier than in an arbitrary
graph, and using only non-negative edge weights is often easier than arbitrary edge weights.

At the moment, you should be able to start using the first two pieces of advice in constructing your algorithms.
The first (understanding and representing the problem) may seem obvious, but a deep understanding of the structure
of the problem can make it much easier to find a solution. Consider special cases or simplifications to see whether
they give you ideas. Wishful thinking can be useful here, dropping parts of the problem specification, so you can think
of one or a few aspects at a time. (“What if we ignored the edge weights? What if all the numbers were 0 or 1? What if
all the strings were of equal length? What if every node had exactly k neighbors?”)

The second item (looking for a reduction) has been discussed a lot in this chapter, especially reducing to (or
decomposing into) subproblems. This is crucial when designing your own spanking new algorithms, but ordinarily,
it is much more likely that you'll find an algorithm that almost fits. Look for patterns in or aspects of the problem
that you recognize, and scan your mental archives for algorithms that might be relevant. Instead of constructing
an algorithm that will solve the problem, can you construct an algorithm that will transform the instances so an
existing algorithm can solve them? Working systematically with the problems and algorithms you know can be more
productive than waiting for inspiration.

The third item is more of a general observation. Algorithms that are tailored to a specific problem are usually
more efficient than more general algorithms. Even if you know a general solution, perhaps you can tweak it to use the
extra constraints of this particular problem? If you've constructed a brute-force solution in an effort to understand the
problem, perhaps you can develop that into a more efficient solution by using these quirks of the problem? Think of
modifying insertion sort so it becomes bucket sort,' for example, because you know something about the distribution
of the values.

“Discussed in the sidebar “Counting Sort & Fam,” earlier in this chapter.
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Summary

This chapter is about designing algorithms by somehow reducing a problem to something you know how to solve. If
you reduce to a different problem entirely, you can perhaps solve it with an existing algorithm. If you reduce it to one
or more subproblems (smaller instances of the same problem), you can solve it inductively, and the inductive design
gives you a new algorithm. Most examples in this chapter have been based on weak induction or extending solutions
to subproblems of size n-1. In later chapters, especially Chapter 6, you will see more use of strong induction, where
the subproblems can be of any size k < n.

This sort of size reduction and induction is closely related to recursion. Induction is what you use to show that
recursion is correct, and recursion is a very direct way of implementing most inductive algorithm ideas. However,
rewriting the algorithm to be iterative can avoid the overhead and limitations of recursive functions in most
nonfunctional programming languages. If an algorithm is iterative to begin with, you can still think of it recursively,
by viewing the subproblem solved so far as if it were calculated by a recursive call. Another approach would be to
define a loop invariant, which is true after every iteration and which you prove using induction. If you show that the
algorithm terminates, you can use the invariant to show correctness.

Of the examples in this chapter, the most important one is probably topological sorting: ordering the nodes of
a DAG so that all edges point forward (that is, so that all dependencies are respected). This is important for finding
a valid order of performing tasks that depend on each other, for example, or for ordering subproblems in more
complex algorithms. The algorithm presented here repeatedly removes nodes without in-edges, appending them
to the ordering and maintaining in-degrees for all nodes to keep the solution efficient. Chapter 5 describes another
algorithm for this problem.

In some algorithms, the inductive idea isn’t linked only to subproblem sizes. They are based on gradual
improvement of some estimate, using an approach called relaxation. This is used in many algorithms for finding
shortest paths in weighted graphs, for example. To prove that these are correct, you may need to uncover patterns in
how the estimates improve or how correct estimates spread across elements of your problem instances.

While reductions have been used in this chapter to show that a problem is easy, that is, to find a solution for
it, you can also use reductions to show that one problem is at least as hard as another. If you reduce problem A to
problem B, and the reduction itself is easy, then B must be at least as hard as A (or we get a contradiction). This idea is
explored in more detail in Chapter 11.

If You’re Curious ...

As I said in the introduction, this chapter is to a large extent inspired by Udi Manber’s paper “Using induction to
design algorithms.” Information on both that paper and his later book on the same subject can be found in the
“References” section. I highly recommend that you at least take a look at the paper, which you can probably find
online. You will also encounter several examples and applications of these principles throughout the rest of the book.

If you really want to understand how recursion can be used for virtually anything, you might want to play around
with a functional language, such as Haskell (see http://haskell.org) or Clojure (see http://clojure.org). Just
going through some basic tutorials on functional programming could deepen your understanding of recursion, and,
thereby, induction, greatly, especially if you're a bit new to this way of thinking. You could even check out the books by
Rabhi and Lapalme on algorithms in Haskell and by Okasaki on data structures in functional languages in general.

Although I've focused exclusively on the inductive properties of recursion here, there are other ways of showing
how recursion works. For example, there exists a so-called fixpoint theory of recursion that can be used to determine
what a recursive function really does. It’s rather heavy stuff, and I wouldn’t recommend it as a place to start, but if
you want to know more about it, you could check out the book by Zohar Manna or (for a slightly easier but also less
thorough description) the one by Michael Soltys.

If you'd like more problem-solving advice, Pdlya’s How to Solve It is a classic, which keeps being reprinted. Worth
alook. You might also want to get The Algorithm Design Manual by Steven Skiena. It’s a reasonably comprehensive
reference of basic algorithms, along with a discussion of design principles. He even has a quite useful checklist for
solving algorithmic problems.
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Exercises

4-1. A graph that you can draw in the plane without any edges crossing each other is called planar.
Such a drawing will have a number of regions, areas bounded by the edges of the graph, as well as
the (infinitely large) area around the graph. If the graph has V, E, and F nodes, edges, and regions,
respectively, Euler’s formula for connected planar graphs says that V - E + F = 2. Prove that this is
correct using induction.

4-2. Consider a plate of chocolate, consisting of n squares in a rectangular arrangement. You want

to break it into individual squares, and the only operation you'll use is breaking one of the current
rectangles (there will be more, once you start breaking) into two pieces. What is the most efficient way
of doing this?

4-3. Let’s say you're going to invite some people to a party. You're considering n friends, but you know
that they will have a good time only if each of them knows at least k others at the party. (Assume that if
A knows B, then B automatically knows A.) Solve your problem by designing an algorithm for finding
the largest possible subset of your friends where everyone knows at least k of the others, if such a
subset exists.

Bonus question: If your friends know d others in the group on average and at least one person knows at
least one other, show that you can always find a (nonempty) solution for k < d/2.

4-4. Anode is called central if the greatest (unweighted) distance from that node to any other in the
same graph is minimum. That is, if you sort the nodes by their greatest distance to any other node,
the central nodes will be at the beginning. Explain why an unrooted tree has either one or two central
nodes, and describe an algorithm for finding them.

4-5. Remember the knights in Chapter 3? After their first tournament, which was a round-robin
tournament, where each knight jousted one of the other, the staff want to create a ranking. They
realize it might not be possible to create a unique ranking or even a proper topological sorting
(because there may be cycles of knights defeating each other), but they have decided on the following
solution: order the knights in a sequence K, K, ..., Kn, where K| defeated K, K, defeated K, and so
forth (K, defeated K, for i=2...n). Prove that it is always possible to construct such a sequence by
designing an algorithm that builds it.

4-6. George Pdlya (the author of How to Solve It; see the “References” section) came up with the following
entertaining (and intentionally fallacious) “proof” that all horses have the same color. If you have only a
single horse, then there’s clearly only one color (the base case). Now we want to prove that n horses have
the same color, under the inductive hypothesis that all sets of n-1 horses do. Consider the sets {1, 2, ...,
n-1} and {2, 3, ..., n}. These are both of size n-1, so in each set, there is only one color. However, because
the sets overlap, the same must be true for {1, 2, ... n}. Where’s the error in this argument?

4-7. In the example early in the section “One, Two, Many,” where we wanted to show how many
internal nodes a binary tree with n leaves had, instead of “building up” from n-1 to n, we started with n
nodes and deleted one leaf and one internal node. Why was that OK?

4-8. Use the standard rules from Chapter 2 and the recurrences from Chapter 3 and show that the
running times of the four sorting algorithms in Listings 4-1 through 4-4 are all quadratic.

4-9. In finding a maximum permutation recursively (such as in Listing 4-5), how can we be sure that
the permutation we end up with contains at least one person? Shouldn’t it be possible, in theory, to
remove everyone?

4-10. Show that the naive algorithm for finding the maximum permutation (Listing 4-5) is quadratic.

4-11. Implement radix sort.
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4-12. Implement bucket sort.

4-13. For numbers (or strings or sequences) with a fixed number of digits (or characters or elements),
d, radix sort has a running time of ®(dn). Let’s say you are sorting number whose digit counts vary
greatly. A standard radix sort would require you to set d to the maximum of these, padding the rest with
initial zeros. If, for example, a single number had a lot more digits than all the others, this wouldn’t be
very efficient. How could you modify the algorithm to have a running time of ©(3d), where d, is the
digit count of the ith number?

4-14. How could you sort n numbers in the value range 1...n% in ©(n) time?

4-15. When finding in-degrees in the maximum permutation problem, why could the count array
simply be set to [M.count(i) for i in range(n)]?

4-16. The section “Designing with Induction (and Recursion)” describes solutions to three problems.
Compare the naive and final versions of the algorithms experimentally.

4-17. Explain why naive_topsort is correct; why is it correct to insert the last node directly after its
dependencies?

4-18. Write a function for generating random DAGs. Write an automatic test that checks that topsort
gives a valid orderings, using your DAG generator.

4-19. Redesign topsort so it selects the last node in each iteration, rather than the first.
4-20. Implement the algorithm for finding balance factors in a binary tree.

4-21. An interval can be represented, for example, as a pair of numbers, such as (3.2, 4.9). Let’s say you
have a list of such intervals (where no intervals are identical), and you want know which intervals that
fall inside other intervals. An interval (u,v) falls inside (x,y) when x < u and v < y. How would you do
this efficiently?

4-22. How would you improve the relaxation-based algorithm for the airplane + train problem in the
section “Relaxation and Gradual Improvement” so that you are guaranteed an answer in polynomial time?

4-23. Consider three problems, foo, bar, and baz. You know that bar is hard and that baz is easy. How
would you go about showing that foo was hard? How would you show that it was easy?
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CHAPTER 5

Traversal: The Skeleton Key of
Algorithmics

You are in a narrow hallway. This continues for several metres and ends in a doorway. Halfway
along the passage you can see an archway where some steps lead downwards. Will you go forwards
to the door (turn to 5), or creep down the steps (turn to 344)?

— Steve Jackson, Citadel of Chaos

Graphs are a powerful mental (and mathematical) model of structure in general; if you can formulate a problem

as one dealing with graphs, even if it doesn’t look like a graph problem, you are probably one step closer to solving

it. It just so happens that there is a highly useful mental model for graph algorithms as well—a skeleton key, if you
will.! That skeleton key is traversal: discovering, and later visiting, all the nodes in a graph. And it’s not just about
obvious graphs. Consider, for example, how painting applications such as GIMP or Adobe Photoshop can fill a region
with a single color, so-called flood fill. That'’s an application of what you'll learn here (see Exercise 5-4). Or perhaps
you want to serialize some complex data structure and need to make sure you examine all its constituent objects?
That’s traversal. Listing all files and directories in a part of the file system? Manage dependencies between software
packages? More traversal.

But traversal isn’t only useful directly; it’s a crucial component and underlying principle in many other
algorithms, such as those in Chapters 9 and 10. For example, in Chapter 10, we’ll try to match n people with 7 jobs,
where each person has skills that match only some of the jobs. The algorithm works by tentatively assigning people
to jobs but then reassigning them if someone else needs to take over. This reassignment can then trigger another
reassignment, possibly resulting in a cascade. As you'll see, this cascade involves moving back and forth between
people and jobs, in a sort of zig-zag pattern, starting with an idle person and ending with an available job. What's
going on here? You guessed it: traversal.

I'll cover the idea from several angles and, in several versions, trying to tie the various strands together where possible.
This means covering two of the most well-known basic traversal strategies, depth-first search and breadth-first search,
building up to a slightly more complex traversal-based algorithm for finding so-called strongly connected components.

Traversal is useful in that it lets us build a layer abstraction on top of some basic induction. Consider the problem
of finding the connected components of a graph (see Figure 5-1 for an example). As you may recall from Chapter 2,

a graph is connected if there is a path from each node to each of the others and if the connected components are the
maximal subgraphs that are (individually) connected. One way of finding a connected component would be to start
at some place in the graph and gradually grow a larger connected subgraph until we can’t get any further. How can we
be sure that we have then reconstructed an entire component?

'T’ve “stolen” the subtitle for this chapter from Dudley Ernest Littlewood’s The Skeleton Key of Mathematics.
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Figure 5-1. An undirected graph with three connected components

Let’s look at the following related problem. Show that you can order the nodes in a connected graph, v,, v,, ..., Uy,
so that foranyi=1...n, the subgraph over v,, ..., v,is connected. If we can show this and we can figure out how to do
the ordering, we can go through all the nodes in a connected component and know when they’re all used up.

How do we do this? Thinking inductively, we need to get from i-1 to i. We know that the subgraph over the i-1
first nodes is connected. What next? Well, because there are paths between any pair of nodes, consider a node « in the
first i-1 nodes and a node v in the remainder. On the path from u to v, consider the last node that is in the component
we've built so far, as well as the first node outside it. Let’s call them x and y. Clearly there must be an edge between them,
so adding y to the nodes of our growing component keeps it connected, and we've shown what we set out to show.

I hope you can see how easy the resulting procedure actually is. It’s just a matter of adding nodes that are
connected to the component, and we discover such nodes by following an edge. An interesting point is that as long
as we keep connecting new nodes to our component in this way, we’re building a tree. This tree is called a traversal
tree and is a spanning tree of the component we're traversing. (For a directed graph, it would span only the nodes we
could reach, of course.)

To implement this procedure, we need to keep track of these “fringe” or “frontier” nodes that are just one edge
away. If we start with a single node, the frontier will simply be its neighbors. As we start exploring, the neighbors of
newly visited nodes will form the new fringe, while those nodes we visit now fall inside it. In other words, we need
to maintain the fringe as a collection of some sort, where we can remove the nodes we visit and add their neighbors,
unless they're already on the list or we've already visited them. It becomes a sort of to-do list of nodes we want to visit
but haven’t gotten around to yet. You can think of the ones we have visited as being checked off.

For those of you who have played old-school role-playing games such as Dungeons & Dragons (or, indeed, many
of today’s video games), Figure 5-2 might help clarify these ideas. It shows a typical dungeon map.? Think of the rooms
(and corridors) as nodes and the doors between them as edges. There are some multiple edges (doors) here, but that’s
really not a problem. I've also added a “you are here” marker to the map, along with some tracks indicating how you
got there.

If you’re not a gamer, feel free to imagine this as your office building, dream home, or whatever strikes your fancy.
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Figure 5-2. A partial traversal of a typical role-playing dungeon. Think of the rooms as nodes and the doors as edges.
The traversal tree is defined by your tracks; the fringe (the traversal queue) consists of the neighboring rooms, the light
ones without footprints. The remaining (darkened) rooms haven't been discovered yet

Notice that there are three kinds of rooms: the ones you've actually visited (those with tracks through them),
those you know about because you've seen their doors, and those you don’t know about yet (darkened). The unknown
rooms are (of course) separated from the visited rooms by a frontier of known but unvisited rooms, just like in any
kind of traversal. Listing 5-1 gives a simple implementation of this general traversal strategy (with the comments
referring to graphs rather than dungeons).?

Listing 5-1. Walking Through a Connected Component of a Graph Represented Using Adjacency Sets
def walk(G, s, S=set()):

=+

Walk the graph from node s

P, Q = dict(), set() # Predecessors + "to do" queue
P[s] = None # s has no predecessor
Q.add(s) # We plan on starting with s
while Q: # Still nodes to visit
u = Q.pop() # Pick one, arbitrarily
for v in G[u].difference(P, S): # New nodes?
Q.add(v) # We plan to visit them!
P[v] = u # Remember where we came from
return P # The traversal tree

*I’11 be using dicts with adjacency sets as the default representation in the following, although many of the algorithms will work

nicely with other representations from Chapter 2 as well. Usually, rewriting an algorithm to use a different representation isn’t too
hard either.
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Tip Objects of the set type let you perform set operations on other types as well! For example, in Listing 5-1, | use
the dict P as if it were a set (of its keys) in the difference method. This works with other iterables too, such as 1ist or
deque, for example, and with other set methods, such as update.

A couple of things about this new code may not be immediately obvious. For example, what is the S parameter,
and why am I using a dictionary to keep track of which nodes we have visited (rather than, say, a set)? The S parameter
isn’t all that useful right now, but we’ll need it when we try to find strongly connected components (near the end of the
chapter). Basically, it represents a “forbidden zone”—a set of nodes that we may not have visited during our traversal
but that we have been told to avoid. As for the dictionary P, I'm using it to represent predecessors. Each time we add a
new node to the queue, I set its predecessor; that is, I make sure I remember where I came from when I found it. These
predecessors will, when taken together, form the traversal tree. If you don’t care about the tree, you're certainly free to
use a set of visited nodes instead (which I will do in some of my implementations later in this chapter).

Note Whether you add nodes to this sort of “visited” set at the same time as adding them to the queue or later,
when you pop them from the queue, is generally not important. It does have consequences for where you need to add an
“if visited ...” check, though. You'll see several versions of the general traversal strategy in this chapter.

The walk function will traverse a single connected component (assuming the graph is undirected). To find all the
components, you need to wrap it in a loop over the nodes, like in Listing 5-2.

Listing 5-2. Finding Connected Components

def components(G): # The connected components

conp = []

seen = set() # Nodes we've already seen

for u in G: # Try every starting point
if u in seen: continue # Seen? Ignore it
C = walk(G, u) # Traverse component
seen.update(C) # Add keys of C to seen
comp.append(C) # Collect the components

return comp

The walk function returns a predecessor map (traversal tree) for the nodes it has visited, and I collect those in the
comp list (of connected components). [ use the seen set to make sure I don’t traverse from a node in one of the earlier,
already visited components. Note that even though the operation seen.update(C) is linear in the size of C, the call to
walk has already done the same amount of work, so asymptotically, it doesn’t cost us anything. All in all, finding the
components like this is ®(E +V) because every edge and node has to be explored.*

The walk function doesn’t really do all that much. Still, in many ways, this simple piece of code is the backbone of
this chapter and (as the chapter title says) a skeleton key to understanding many of the other algorithms you're going
to learn. It might be worth studying it a bit. Try to perform the algorithm manually on a graph of your choice (such
as the one in Figure 5-1). Do you see how it is guaranteed to explore an entire connected component? It’s important

“This is the running time of all the traversal algorithms in this chapter, except (sometimes) IDDFS.
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to note that the order in which the nodes are returned from Q. pop does not matter. The entire component will be
explored, regardless. That very order, though, is the crucial element that defines the behavior of the walk, and by
tweaking it, we can get several useful algorithms right out of the box.

For a couple of other graphs to traverse, see Figures 5-3 and 5-4. (For more about these examples, see the nearby
sidebar.)

Figure 5-3. The bridges of Konigsberg (today, Kaliningrad) in 1759. The illustration is taken from Récréations
Mathématiques, vol 1 (Lucas, 1891, p. 22)
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Figure 5-4. A dodecahedron, where the objective is to trace the edges so you visit each vertex exactly once. The
illustration is taken from Récréations Mathématiques, vol 2 (Lucas, 1896, p. 205)

ISLAND-HOPPING IN KALININGRAD

Heard of the seven bridges of Konigsberg (now known as Kaliningrad)? In 1736, the Swiss mathematician
Leonhard Euler came across a puzzle dealing with these, which many of the inhabitants had tried to solve for
quite some time. The question was, could you start anywhere in town, cross all seven bridges once, and get back
where you started? (You can find the layout of the bridges in Figure 5-3.) To solve the puzzle, Euler decided to
abstract away the particulars and ... invented graph theory. Seems like a good place to start, no?

As you may notice, the structure of the banks and islands in Figure 5-3 is that of a multigraph; for example, there
are two edges between A and B and between A and C. That doesn’t really affect the problem. (We could easily
invent some imaginary islands in the middle of some of these edges to get an ordinary graph.)

What Euler ended up proving is that it’s possible to visit every edge of a (multi)graph exactly once and end up
where you started if and only if the graph is connected and each node has an even degree. The resulting closed
walk (roughly, a path where you can visit nodes more than once) is called an Euler tour, or Euler circuit, and such
graphs are Eulerian. (You can easily see that the Kénigsberg isn’t Eulerian; all its vertices are of odd degree.)
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It’s not so hard to see that connectedness and even-degree nodes are necessary conditions (disconnectedness
is clearly a barrier, and an odd-degree node will necessarily stop your tour at some point). It’s a little less obvious
that they are sufficient conditions. We can prove this by induction (big surprise, eh?), but we need to be a bit
careful about our induction parameter. If we start removing nodes or edges, the reduced problem may no longer
be Eulerian, and our induction hypothesis won’t apply. Let’s not worry about connectivity. If the reduced graph
isn’t connected, we can apply the hypothesis to each connected component. But what about the even degrees?

We're allowed to visit the nodes as often as we want, so what we’ll be removing (or “using up”) is a set of edges.
If we remove an even number of edges from each node we visit, out hypothesis will apply. One way of doing this
would be to remove the edges of some closed walk (not necessarily visiting all nodes, of course). The question

is whether such a closed walk will always exist in an Eulerian graph. If we just start walking from some node, v,
every node we enter will go from even degree to odd degree, so we can safely leave it again. As long as we never
visit an edge twice, we will eventually get back to v.

Now, let the induction hypothesis be that any connected graph with even-degree nodes and fewer than E edges
has a closed walk containing each edge exactly once. We start with £ edges and remove the edges of an arbitrary
closed walk. We now have one or more Eulerian components, each of which is covered by our hypothesis. The
last step is to combine the Euler tours in these components. Our original graph was connected, so the closed walk
we removed will necessarily connect the components. The final solution consists of this combined walk, with a
“detour” for the Euler tour of each component.

In other words, deciding whether a graph is Eulerian is pretty easy, and finding an Euler tour isn’t that hard either
(see Exercise 5-2). The Eulerian tour does, however, have a more problematic relative: the Hamilton cycle.

The Hamilton cycle is named after Sir William Rowan Hamilton, an Irish mathematician (among other things),
who proposed it as a game (called The Icosian Game), where the objective is to visit each of the vertices of a
dodecahedron (a 12-sided Platonic solid, or d12) exactly once and return to your origin (see Figure 5-4). More
generally, a Hamilton cycle is a subgraph containing all the nodes of the full graph (exactly once, as it is a proper
cycle). As I'm sure you can see, Konigsberg is Hamiltonian (that is, it has a Hamilton cycle). Showing that the
dodecahedron is Hamiltonian is a bit harder. In fact, the problem of finding Hamilton paths in general graphs

is a hard problem—one for which no efficient algorithm is known (more on this in Chapter 11). Sort of odd,
considering how similar the problems are, don’t you think?

A Walk in the Park

It’s late autumn in 1887, and a French telegraphic engineer is wandering through a well-kept garden maze, watching
the leaves beginning to turn. As he walks through the passages and intersections of the maze, he recognizes some
of the greenery and realizes that he has been moving in a circle. Being an inventive sort, he starts to ponder how he
could have avoided this blunder and how he might best find his way out. He remembers being told, as a child, that
if he kept turning left at every intersection, he would eventually find his way out, but he can easily see that such a
simple strategy won’t work. If his left turns take him back where he started before he gets to the exit, he’s trapped in
an infinite cycle. No, he’ll need to find another way. As he finally fumbles his way out of the maze, he has a flash of
insight. He rushes home to his notebooks, ready to start sketching out his solution.

OK, this might not be how it actually happened. I admit it, I made it all up, even the year.® What is true, though, is
that a French telegraphic engineer named Trémaux in the late 1880s invented an algorithm for traversing mazes. I'll
get to that in a second, but first let’s explore the “keep turning left” strategy (also known as the left-hand rule) and see
how it works—and when it doesn’t.

Hey, even the story of Newton and the apple is apocryphal.
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No Cycles Allowed

Consider the maze in Figure 5-5. As you can see, there are no cycles in it; its underlying structure is that of a tree,
as illustrated by the figure on the right. Here the “keep one hand on the wall” strategy will work nicely.® One way of
seeing why it works is to observe that the maze really has only one inner wall (or, to put it another way, if you put
wallpaper inside it, you could use one continuous strip). Look at the outer square. As long as you're not allowed

to create cycles, any obstacles you draw have to be connected to it in exactly one place, and this doesn’t create any
problems for the left-hand rule. Following this traversal strategy, you'll discover all nodes and walk every passage
twice (once in either direction).

Figure 5-5. A tree, drawn as a maze and as a more conventional graph diagram, superimposed on the maze

The left-hand rule is designed to be executed by an individual actually walking a maze, using only local
information. To get a firm grip on what is really going on, we could drop this perspective and formulate the same
strategy recursively.” Once you're familiar with recursive thinking, such formulations can make it easier to see that an
algorithm is correct, and this is one of the easiest recursive algorithms out there. For a basic implementation (which
assumes one of our standard graph representations for the tree), see Listing 5-3.

Listing 5-3. Recursive Tree-Traversal

def tree walk(T, r): # Traverse T from root r
for u in T[r]: # For each child.
tree walk(T, u) # ... traverse its subtree

In terms of the maze metaphor, if you're standing at an intersection and you can go left or right, you first traverse
the part of the maze to the left and then the one to the right. And that’s it. It should be obvious (perhaps with the aid
of a little induction) that this strategy will traverse the entire maze. Note that only the act of walking forward through
each passage is explicitly described here. When you walk the subtree rooted at node u, you walk forward to u and start
working on the new passages out from there. Eventually, you will return to the root, r. Going backward like this, over
your own tracks, is called backtracking and is implicit in the recursive algorithm. Each time a recursive call returns,
you automatically backtrack to the node where the call originated. (Do you see how this backtracking behavior is
consistent with the left-hand rule?)

®Tracing your tour from a, you should end up with the node sequence @, b, ¢, d, e, f, g, h, d, ¢, i, , i, k, i, ¢, b, 1, b, a.
"This recursive version would be harder to use if you were actually faced with a real-life maze, of course.
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Imagine that someone poked a hole through one of the walls in the maze so that the corresponding graph
suddenly had a cycle. Perhaps they busted through the wall just north of the dead end at node e. If you started your
walk at e, walking north, you could keep left all you wanted, but you’d never traverse the entire maze—you’'d keep
walking in circles.? This is a problem we face when traversing general graphs.® The general idea in Listing 5-1 gives us
a way out of this problem, but before I get into that, let’s see what our French telegraphic engineer came up with.

How to Stop Walking in Circles

Edouard Lucas describes Tremaux’s algorithm for traversing mazes in the first volume of his Récréations
Mathématiques in 1891. Lucas writes, in his introduction:'

To completely traverse all the passages of a labyrinth twice, from any initial point, simply follow
the rules posed by Trémaux, marking each entry to or exit from an intersection. These rules may
be summarized as follows: When possible, avoid passing an intersection you have already visited,
and avoid taking passages you have already traversed. Is this not a prudent approach, which also
applies in everyday life?

Later in the book, he goes on to describe the method in much more detail, but it is really quite simple, and the
previous quote covers the main idea nicely. Instead of marking each entry or exit (say, with a piece of chalk), let’s just
say you have muddy boots, so you can see our own tracks (like in Figure 5-2). Trémaux would then tell you to start
walking in any direction, backtracking whenever you came to a dead end or an intersection you had already walked
through (to avoid cycles). You can’t traverse a passage more than twice (once forward and once backward), so if you're
backtracking into an intersection, you walk forward into one of the unexplored passages, if there are any. If there
aren’t any, you keep backtracking (into some other passage with a single set of footprints).!!

And that’s the algorithm. One interesting observation to make is that although you can choose several passages
for forward traversal, there will always be only one available for backtracking. Do you see why that is? The only way
there could be two (or more) would be if you had set off in another direction from an intersection and then come back
to it without backtracking. In this case, though, the rules state that you should rnot enter the intersection but backtrack
immediately. (This is also the reason why you’ll never end up traversing a passage twice in the same direction.)

The reason I've used the “muddy boots” description here is to make the backtracking really clear; it’s exactly
like the one in the recursive tree traversal (which, again, was equivalent to the left-hand rule). In fact, if formulated
recursively, Trémaux’s algorithm is just like the tree walk, with the addition of a bit of memory. We know which
nodes we have already visited and pretend there’s a wall preventing us from entering them, in effect simulating a tree
structure (which becomes our traversal tree).

See Listing 5-4 for a recursive version of Trémaux’s algorithm. In this formulation, it is commonly known as
depth-first search, and it is one of the most fundamental (and fundamentally important) traversal algorithms.!?

8And just like that, a spelunker can turn troglodyte.

People seem to end up walking in circles when wandering in the wild as well. And research by the U.S. Army suggests that people
prefer going south, for some reason (as long as they have their bearings). Neither strategy is particularly helpful if you’re aiming for
a complete traversal, of course.

"My translation.

You can perform the same procedure even if your boots aren’t muddy. Just make sure to clearly mark entries and exits (say,
with a piece of chalk). In this case, it’s important to make two marks when you come to an old intersection and immediately start
backtracking.

In fact, in some contexts, the term backtracking is used as a synonym for recursive traversal, or depth-first search.
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Listing 5-4. Recursive Depth-First Search
def rec_dfs(G, s, S=None):

if S is None: S = set() # Initialize the history
S.add(s) # We've visited s
for u in G[s]: # Explore neighbors
if u in S: continue # Already visited: Skip
rec_dfs(G, u, S) # New: Explore recursively

Note As opposed to the walk function in Listing 5-1, it would be wrong to use the difference method on G[s]
in the loop here because S might change in the recursive call and you could easily end up visiting some nodes
multiple times.

Go Deep!

Depth-first search (DFS) gets some of its most important properties from its recursive structure. Once we start

working with one node, we make sure we traverse all other nodes we can reach from it before moving on. However, as
mentioned in Chapter 4, recursive functions can always be rewritten as iterative ones, possibly simulating the call stack
with a stack of our own. Such an iterative formulation of DFS can be useful, both to avoid filling up the call stack and
because it might make certain of the algorithm’s properties clearer. Luckily, to simulate recursive traversal, all we need
to do is use a stack rather than a set in an algorithm quite like walk in Listing 5-1. Listing 5-5 shows this iterative DFS.

Listing 5-5. Iterative Depth-First Search
def iter dfs(G, s):

S, 0 = set(), [] # Visited-set and queue
Q.append(s) # We plan on visiting s
while Q: # Planned nodes left?
u = Q.pop() # Get one
if u in S: continue # Already visited? Skip it
S.add(u) # We've visited it now
Q.extend(G[u]) # Schedule all neighbors
yield u # Report u as visited

Beyond the use of a stack (a last-in, first-out, or LIFO, queue, in this case implemented by a list, using append and pop),
there are a couple of tweaks here. For example, in my original walk function, the queue was a set, so we’d never risk
having the same node scheduled for more than one visit. Once we start using other queue structures, this is no longer
the case. I've solved this by checking a node for membership in S (that is, whether we've already visited the node)
before adding its neighbors.

To make the traversal a bit more useful, I've also added a yield statement, which will let you iterate over the
graph nodes in DFS order. For example, if you had the graph from Figure 2-3 in the variable G, you could try the
following:

>>> list(iter dfs(G, 0))
[0, 5, 7, 6, 2, 3, 4, 1]
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One thing worth noting is that I just ran DFS on a directed graph, while I've discussed only how it would work
on undirected graphs. Actually, both DFS and the other traversal algorithms work just as well for directed graphs.
However, if you use DFS on a directed graph, you can’t expect it to explore an entire connected component. For
example, for the graph in Figure 2-3, traversing from any other start node than a would mean that a would never be
seen because it has no in-edges.

Tip For finding connected components in a directed graph, you can easily construct the underlying undirected graph
as a first step. Or you could simply go through the graph and add all the reverse edges. This can be useful for other
algorithms as well. Sometimes, you may not even construct the undirected graph; simply considering each edge in both
directions when using the directed graph may be sufficient.

You can think of this in terms of Trémaux’s algorithm as well. You'd still be allowed to traverse each (directed)
passage both ways, but you'd be allowed to go forward only along the edge direction, and you'd have to backtrack
against the edge direction.

In fact, the structure of the iter dfs function is pretty close to how we might implement the general traversal
algorithm hinted at earlier—one where only the queue need be replaced. Let’s beef up walk to the more mature
traverse (Listing 5-6).

Listing 5-6. A General Graph Traversal Function

def traverse(G, s, qtype=set):
S, 0 = set(), qtype()
Q.add(s)
while Q:
u = Q.pop()
if u in S: continue
S.add(u)
for v in G[u]:
Q.add(v)
yield u

The default queue type here is set, making it similar to the original (arbitrary) walk. You could easily define a
stack type (with the proper add and pop methods of our general queue protocol), perhaps like this:

class stack(list):
add = list.append

The previous depth-first test could then be repeated as follows:

>>> list(traverse(G, 0, stack))
[0, 5, 7, 6, 2, 3, 4, 1]

Of course, it’s also quite OK to implement special-purpose versions of the various traversal algorithms, even
though they can be expressed in much the same form.
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Depth-First Timestamps and Topological Sorting (Again)

As mentioned earlier, remembering and avoiding previously visited nodes is what keeps us from going in circles
(or, rather, cycles), and a traversal without cycles naturally forms a tree. Such traversal trees have different names
based on how they were constructed; for DFS, they are aptly named depth-first trees (or DFS trees). As with any
traversal tree, the structure of a DFS tree is determined by the order in which the nodes are visited. The thing that is
particular to DFS trees is that all descendants of a node u are processed in the time interval from when u is discovered
to when we backtrack through it.

To make use of this property, we need to know when the algorithm is backtracking, which can be a bit hard
in the iterative version. Although you could extend the iterative DFS from Listing 5-5 to keep track of backtracking
(see Exercise 5-7), I'll be extending the recursive version (Listing 5-4) here. See Listing 5-7 for a version that adds
timestamps to each node: one for when it is discovered (discover time, or d) and one for when we backtrack through it
(finish time, or f).

Listing 5-7. Depth-First Search with Timestamps

def dfs(G, s, d, f, S=None, t=0):
if S is None: S = set()
d[s] = t; t += 1
S.add(s)
for u in G[s]:
if u in S: continue
t = dfs(G, u, d, f, S, t)
fl[s] =t; t+=1
return t

Initialize the history
Set discover time

We've visited s

Explore neighbors

Already visited. Skip
Recurse; update timestamp
Set finish time

Return timestamp

HoH H H H R H

The parameters d and f should be mappings (dictionaries, for example). The DFS property then states that (1)
every node is discovered before its descendants in the DFS tree, and (2) every node is finished after its descendants
in the DFS. This follows rather directly from the recursive formulation of the algorithm, but you could easily do an
induction proof to convince yourself that it’s true.

One immediate consequence of this property is that we can use DFS for topological sorting, already discussed
in Chapter 4. If we perform DFS on a DAG, we could simply sort the nodes based on their descending finish times,
and they’d be topologically sorted. Each node u would then precede all its descendants in the DFS tree, which would
be any nodes reachable from , that is, nodes that depend on . It is in cases like this that it pays to know how an
algorithm works. Instead of first calling our timestamping DFS and then sorting afterward, we could simply perform
the topological sorting during a custom DFS, by appending nodes when backtracking, as shown in Listing 5-8."

Listing 5-8. Topological Sorting Based on Depth-First Search
def dfs_topsort(G):

S, res = set(), [] # History and result
def recurse(u): # Traversal subroutine
if u in S: return # Ignore visited nodes
S.add(u) # Otherwise: Add to history
for v in G[u]:
recurse(v) # Recurse through neighbors
res.append(u) # Finished with u: Append it

BThe dfs_topsort function can also be used to sort the nodes of a general graph by decreasing finish times, as needed when
looking for strongly connected components, discussed later in this chapter.
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for u in G:

recurse(u) # Cover entire graph
res.reverse() # It's all backward so far
return res

There are a few things that are worth noting in this new topological sorting algorithm. For one thing, I'm explicitly
including a for loop over all the nodes to make sure the entire graph is traversed. (Exercise 5-8 asks you to show
that this will work.) The check for whether a node is already in the history set (S) is now placed right inside recurse,
so we don’t need to put it in both of the for loops. Also, because recurse is an internal function, with access to the
surrounding scope (in particular, S and res), the only parameter needed is the node we're traversing from. Finally,
remember that we want the nodes to be sorted in reverse, based on their finish times. That’s why the res list is
reversed before it’s returned.

This topsort performs some processing on each node as it backtracks over them (it appends them to the result
list). The order in which DFS backtracks over nodes (that is, the order of their finish times) is called postorder, while
the order in which it visits them in the first place is called preorder. Processing at these times is called preorder or
postorder processing. (Exercise 5-9 asks you to add general hooks for this sort of processing in DFS.)

NODE COLORS AND EDGE TYPES

In describing traversal, | have distinguished between three kinds of nodes: those we don’t know about, those

in our queue, and those we've visited (and whose neighbors are now in the queue). Some books (such as
Introduction to Algorithms, by Cormen et al., mentioned in Chapter 1) introduce a form of node coloring, which

is especially important in DFS. Each node is considered white to begin with; they’re gray in the interval between
their discover time and their finish time, and they’re black thereafter. You don’t really need this classification in
order to implement DFS, but it can be useful in understanding it (or, at least, it might be useful to know about it if
you're going to read a text that uses the coloring).

In terms of Trémaux’s algorithm, gray intersections would be ones we’ve seen but have since avoided; black
intersections would be the ones we’ve been forced to enter a second time (while backtracking).

These colors can also be used to classify the edges in the DFS tree. If an edge uv is explored and the node vis
white, the edge is a free edge—that is, it’s part of the traversal tree. If vis gray, it’s a so-called back edge, one
that goes back to an ancestor in the DFS tree. Finally, if vis black, the edge is either what is called a forward edge
or a cross edge. A forward edge is an edge to a descendant in the traversal tree, while a cross edge is any other
edge (that is, not a tree, back or forward edge).

Note that you can classify the edges without actually using any explicit color labeling. Let the time span of a
node be the interval from its discover time to its finish time. A descendant will then have a time span contained
in its ancestor’s, while nodes unrelated by ancestry will have nonoverlapping intervals. Thus, you can use the
timestamps to figure out whether something is, say, a back or forward edge. Even with color labeling, you'd need
to consult the timestamps to differentiate between forward and cross edges.

You probably won’t need this classification much, although it does have one important use. If you find a back
edge, the graph contains a cycle, but if you don’t, it doesn’t. (Exercise 5-10 asks you to show this.) In other words,
you can use DFS to check whether a graph is a DAG (or, for undirected graphs, a tree). Exercise 5-11 asks you to
consider how other traversal algorithms would work for this purpose.
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Infinite Mazes and Shortest (Unweighted) Paths

Until now, the overeager behavior of DFS hasn’t been a problem. We let it loose in a maze (graph), and it veers off in
some direction, as far as it can, before it starts backtracking. This can be problematic, though, if the maze is extremely
large. Maybe what we’re looking for, such as an exit, is close to where we started; if DFS sets off in a different direction,
it may not return for ages. And if the maze is infinite, it will never get back, even though a different traversal might have
found the exit in a matter of minutes. Infinite mazes may sound far-fetched, but they're actually a close analogy to an
important type of traversal problem—that of looking for a solution in a state-space.

But getting lost by being over-eager, like DFS, isn’t only a problem in huge graphs. If we're looking for the shortest
paths (disregarding edge weights, for now) from our start node to all the others, DFS will, most likely, give us the wrong
answer. Take a look at the example in Figure 5-6. What happens is that DFS, in its eagerness, keeps going until it reaches
cvia a detour, as it were. If we want to find the shortest paths to all other nodes (as illustrated in the figure on the right),
we need to be more conservative. To avoid taking a detour and reaching a node “from behind,” we need to advance our
traversal “fringe” one step at a time. First visit all nodes one step away and then all those two steps away, and so forth.

DFS tree from a SP tree from a

Figure 5-6. Two traversals of a size four cycle. The depth-first tree (highlighted, left) will not necessarily contain
minimal paths, as opposed to the shortest path tree (highlighted, right)

In keeping with the maze metaphor, let’s briefly take a look at another maze exploration algorithm, described by
Qystein (aka Oystein) Ore in 1959. Just like Trémaux, Ore asks you to make marks at passage entries and exits. Let’s say
you start at intersection a. First, you visit all intersections one passage away, each time backtracking to your starting
point. If any of the passages you followed were dead ends, you mark them as closed once you return. Any passages
leading you to an intersection where you've already been are also marked as closed (at both ends).

At this point, you'd like to start exploring all intersections two steps (that is, passages) away. Mark and go through
one of the open passages from g; it should now have two marks on it. Let’s say you end up in intersection b. Now,
traverse (and mark) all open passages from b, making sure to close them if they lead to dead ends or intersections
you've already seen. After you're done, backtrack to a. Once you've returned to a, you continue the process with the
other open passages, until they've all received two marks. (These two marks mean that you've traversed intersections
two steps away through the passages.)

Let’s jump to step n."* You've visited all intersections n-1 steps away, so all open passages from a now have n-1
marks on them. Open passages at any intersections next to a, such as the b you visited earlier, will have n-2 marks
on them, and so forth. To visit all intersections at a distance of n from your starting point, you simply move to all
neighbors of a (such as b), adding marks to the passages as you do so, and visit all intersections at a distance n-1 out
from them following the same procedure (which will work, by inductive hypothesis).

Once again, using only local information like this might make the bookkeeping a bit tedious (and the explanation
a bit confusing). However, just like Trémaux’s algorithm had a very close relative in the recursive DFS, Ore’s method
can be formulated in a way that might suit our computer science brains better. The result is something called iterative
deepening depth-first search, or IDDFS,' and it simply consists of running a depth-constrained DFS with an iteratively
incremented depth limit.

"“In other words, let’s think inductively.
SIDDFS isn’t completely equivalent to Ore’s method because it doesn’t mark edges as closed in the same way. Adding that kind of
marking is certainly possible and would be a form of pruning, discussed later in this chapter.
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Listing 5-9 gives a fairly straightforward implementation of IDDFS. It keeps a global set called yielded, consisting
of the nodes that have been discovered for the first time and therefore yielded. The inner function, recurse, is
basically a recursive DFS with a depth limit, d. If the limit is zero, no further edges are explored recursively. Otherwise,
the recursive calls receive a limit of d-1. The main for loop in the iddfs function goes through every depth limit from
0 (just visit, and yield, the start node) to 1en(G) -1 (the maximum possible depth). If all nodes have been discovered
before such a depth is reached, though, the loop is broken.

Listing 5-9. Iterative Deepening Depth-First Search

def iddfs(G, s):
yielded = set() # Visited for the first time
def recurse(G, s, d, S=None): # Depth-limited DFS
if s not in yielded:
yield s
yielded.add(s)
if d == 0: return # Max depth zero: Backtrack
if S is None: S = set()
S.add(s)
for u in G[s]:
if u in S: continue

for v in recurse(G, u, d-1, S): # Recurse with depth-1
yield v
n = len(G)
for d in range(n): # Try all depths 0..V-1
if len(yielded) == n: break # ALl nodes seen?
for u in recurse(G, s, d):
yield u

Note If we were exploring an unbounded graph (such as an infinite state space), looking for a particular node
(or a kind of node), we might just keep trying larger depth limits until we found the node we wanted.

It's not entirely obvious what the running time of IDDFS is. Unlike DFS, it will usually traverse many of the edges
and nodes multiple times, so a linear running time is far from guaranteed. For example, if your graph is a path and
you start IDDFS from one end, the running time will be quadratic. However, this example is rather pathological; if
the traversal tree branches out a bit, most of its nodes will be at the bottom level (as in the knockout tournament in
Chapter 3), so for many graphs the running time will be linear or close to linear.

Try running iddfs on a simple graph, and you'll see that the nodes will be yielded in order from the closest to
the furthest from the start node. All with a distance of k are returned, then all with a distance of k + 1, and so forth.

If we wanted to find the actual distances, we could easily perform some extra bookkeeping in the iddfs function and
yield the distance along with the node. Another way would be to maintain a distance table (similar to the discover
and finish times we worked with earlier, for DFS). In fact, we could have one dictionary for distances and one for the
parents in the traversal tree. That way, we could retrieve the actual shortest paths, as well as the distances. Let’s focus
on the paths for now, and instead of modifying iddfs to include the extra information, we'll build it into another
traversal algorithm: breadth-first search (BFS).
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Traversing with BFS is, in fact, quite a bit easier than with IDDFS. You just use the general traversal framework
(Listing 5-6) with a first-in first-out queue. This is, in fact, the only salient difference from DFS: we've replaced LIFO
with FIFO (see Listing 5-10). The consequence is that nodes discovered early will be visited early, and we'll be
exploring the graph level by level, just like in IDDFS. The advantage, though, is that we needn’t visit any nodes or
edges multiple times, so we’re back to guaranteed linear performance.'

Listing 5-10. Breadth-First Search
def bfs(G, s):

P, Q = {s: None}, deque([s]) # Parents and FIFO queue
while Q:
u = Q.popleft() # Constant-time for deque
for v in G[u]:
if v in P: continue # Already has parent
P[v] = u # Reached from u: u is parent
Q.append(v)
return P

As you can see, the bfs function is similar to iter dfs, from Listing 5-5. I've replaced the list with a deque,
and I keep track of which nodes have already received a parent in the traversal tree (that is, they're in P), rather than
remembering which nodes we have visited (S). To extract a path to a node u, you can simply “walk backward” in P:

>>> path = [u]

>>> while P[u] is not None:
path.append(P[u])
u = P[u]

>>> path.reverse()

You are, of course, free to use this kind of parent dictionary in DFS as well, or to use yield to iterate over the
nodes in BFS, for that matter. Exercise 5-13 asks you to modify the code to find the distances (rather than the paths).

Tip One way of visualizing BFS and DFS is as browsing the Web. DFS is what you get if you keep following links
and then use the Back button once you’re done with a page. The backtracking is a bit like an “undo.” BFS is more like
opening every link in a new window (or tab) behind those you already have and then closing the windows as you finish
with each page.

There is really only one situation where IDDFS would be preferable over BES: when searching a huge tree
(or some state space “shaped” like a tree). Because there are no cycles, we don’t need to remember which nodes
we've visited, which means that IDDFS needs only store the path back to the starting node.” BFS, on the other hand,
must keep the entire fringe in memory (as its queue), and as long as there is some branching, this fringe will grow
exponentially with the distance to the root. In other words, in these cases IDDFS can save a significant amount of
memory, with little or no asymptotic slowdown.

1°0On the other hand, we’ll be jumping from node to node in a manner that could not possibly be implemented in a real-life maze.
"To have any memory savings, you’d have to remove the S set. Because you’d be traversing a tree, that wouldn’t cause any trouble
(that is, traversal cycles).
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BLACK BOX: DEQUE

As mentioned briefly several times already, Python lists make nice stacks (LIFO queues) but poor (FIFO) queues.
Appending to them takes constant time (at least when averaged over many such appends), but popping from

(or inserting at) the front takes linear time. What we want for algorithms such as BFS is a double-ended queue,
or deque. Such queues are often implemented as linked lists (where appending/prepending and popping at either
end are constant-time operations), or so-called circular buffers—arrays where we keep track of the position of
both the first element (the head) and the last element (the tail). If either the head or the tail moves beyond its end
of the array, we just let it “flow around” to the other side, and we use the mod (%) operator to calculate the actual
indices (hence the term circular). If we fill the array completely, we can just reallocate the contents to a bigger
one, like with dynamic arrays (see the “Black Box” sidebar on 1ist in Chapter 2).

Luckily, Python has a deque class in the collections module in the standard library. In addition to methods such
as append, extend, and pop, which are performed on the right side, it has left equivalents, called appendleft,
extendleft, and popleft. Internally, the deque is implemented as a doubly linked list of blocks, each of which

is an array of individual elements. Although asymptotically equivalent to using a linked list of individual elements,
this reduces overhead and makes it more efficient in practice. For example, the expression d[ k] would require
traversing the first k elements of the deque d if it were a plain list. If each block contains b elements, you would
only have to traverse k//b blocks.

Strongly Connected Components

While traversal algorithms such as DFS, IDDFS, and BFS are useful in their own right, earlier I alluded to the role of
traversal as an underlying structure in other algorithms. You'll see this in many coming chapters, but I'll end this one with
a classical example—a rather knotty problem that can be solved elegantly with some understanding of basic traversal.

The problem is that of finding strongly connected components (SCCs), sometimes known simply as strong
components. SCCs are a directed analog for connected components, which I showed you how to find at the beginning
of this chapter. A connected component is a maximal subgraph where all nodes can reach each other if you ignore edge
directions (or if the graph is undirected). To get strongly connected components, though, you need to follow the edge
directions; so, SCCs are the maximal subgraphs where there is a directed path from any node to any other. Finding
SCCs and similar structures is an important part of the data flow analysis in modern optimizing compilers, for example.

Consider the graph in Figure 5-7. It is quite similar to the one we started with (Figure 5-1); although there are
some additional edges, the SCCs of this new graph consist of the same nodes as the connected components of the
undirected original. As you can see, inside the (highlighted) strong components, any node can reach any other, but
this property breaks down if you try to add other nodes to any of them.

Figure 5-7. A directed graph with three SCCs (highlighted): A, B, and C
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Imagine performing a DFS on this graph (possibly traversing from several starting points to ensure you cover
the entire graph). Now consider the finish times of the nodes in, say, the strong components A and B. As you can see,
there is an edge from A to B, but there is no way to get from B to A. This has consequences for the finish times. You can
be certain that A will be finished later than B. That is, the last finish time in A will be later than the last finish time in
B. Take a look at Figure 5-7, and it should be obvious why this is so. If you start in B, you can never get into A, so B will
finish completely before you even start (let alone finish) your traversal of A. If, however, you start in A, you know that
you’ll never get stuck in there (every node can reach every other), so before finishing the traversal, you will eventually
migrate to B, and you’ll have to finish that (and, in this case, C) completely before you backtrack to A.

In fact, in general, if there is an edge from any strong component X to another strong component Y, the last finish
time in X will be later than the latest in Y. The reasoning is the same as for our example (see Exercise 5-16). I based my
conclusion on the fact that you couldn’t get from B to A, though—and this is, in fact, how it works for SCCs in general,
because SCCs form a DAG! Therefore, if there’s an edge from X to Y, there will never be any path from Y to X.

Consider the highlighted components in Figure 5-7. If you contract them to single “supernodes” (keeping edges
where there were edges originally), you end up with a graph—Ilet’s call it the SCC graph—which looks like this:

)
ofe

This is clearly a DAG, but why will such an SCC graph always be acyclic? Just assume that there is a cycle in the
SCC graph. That would mean that you could get from one SCC to another and back again. Do you see a problem with
that? Yeah, exactly: every node in the first SCC could reach every node in the second, and vice versa; in fact, all SCCs
on such a cycle would combine to form a single SCC, which is a contradiction of our initial assumption that they were
separate.

Now, let’s say you flipped all the edges in the graph. This won't affect which nodes belong together in SCCs
(see Exercise 5-15), but it will affect the SCC graph. In our example, you could no longer get out of A. And if you had
traversed A and started a new round in B, you couldn’t escape from that, leaving only C. And ... wait a minute ... I just
found the strong components there, didn’t I? To apply this idea in general, we always need to start in the SCC without
any in-edges in the original graph (that is, with no out-edges after they’re flipped). Basically, we're looking for the first
SCC in a topological sorting of the SCC graph. (And then we’ll move on to the second, and so on.) Looking back at our
initial DFS reasoning, that’s where we’d be if we started our traversal with the node that has the latest finish time. In
fact, if we choose our starting points for the final traversal by decreasing finish times, we’re guaranteed to fully explore
one SCC at the time because we'll be blocked from moving to the next one by the reverse edges.

This line of reasoning can be a bit tough to follow, but the main idea isn’t all that hard. If there’s an edge from
A to B, A will have a later (final) finish time than B. If we choose starting points for our (second) traversal based on
decreasing finish times, this means that we’ll visit A before B. Now, if we reverse all the edges, we can still explore all of
A, but we can’t move on to B, and this lets us explore a single SCC at a time.

What follows is an outline of the algorithm. Note that instead of “manually” using DFS and sorting the nodes in
reverse by finish time, I simply use the dfs_topsort function, which does that job for me.'®

1.  Rundfs_topsort on the graph, resulting in a sequence seq.
2. Reverse all edges.
3. Runa full traversal, selecting starting points (in order) from seq.

For an implementation of this, see Listing 5-11.

!8This might seem like cheating because I’m using topological sorting on a non-DAG. The idea is just to get the nodes sorted by
decreasing finish time, though, and that’s exactly what dfs_topsort does—in linear time.
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Listing 5-11. Kosaraju'’s Algorithm for Finding Strongly Connected Components

def tr(G): # Transpose (rev. edges of) G
Gr = {}
for u in G: GT[u] = set() # Get all the nodes in there
for u in G:
for v in G[u]:
GT[v].add(u) # Add all reverse edges
return GT
def scc(G):
GT = tr(G) # Get the transposed graph
sccs, seen = [], set()
for u in dfs_topsort(G): # DFS starting points
if u in seen: continue # Ignore covered nodes
C = walk(GT, u, seen) # Don't go "backward" (seen)
seen.update(C) # We've now seen C
sccs.append(C) # Another SCC found

return sccs

If you try running scc on the graph in Figure 5-7, you should get the three sets {a, b, ¢, d}; {e, f; g}; and {i, h}."° Note
that when calling walk, I have now supplied the S parameter to make it avoid the previous SCCs. Because all edges are
pointing backward, it would be all too easy to start traversing into these unless that was expressly prohibited.

Note It might seem tempting to drop the call to tr(G), to not reverse all edges and instead reverse the sequence
returned by dfs_topsort (that is, to select starting points sorted by ascending rather than descending finish time).
That would not work, however (as Exercise 5-17 asks you to show).

GOALS AND PRUNING

The traversal algorithms discussed in this chapter will visit every node they can reach. Sometimes, however,
you’re looking for a specific node (or a kind of node), and you’d like to ignore as much of the graph as you can.
This kind of search is called goal-directed, and the act of ignoring potential subtrees of the traversal is called
pruning. For example, if you knew that the node you were looking for was within k steps of the starting node,
running a traversal with a depth limit of K would be a form of pruning. Searching by bisection or in search trees
(discussed in Chapter 6) also involves pruning. Rather than traversing the entire search tree, you only visit the
subtrees that might contain the value you are looking for. The trees are constructed so that you can usually
discard most subtrees at each step, leading to highly efficient algorithms.

Knowledge of where you're going can also let you choose the most promising direction first (so-called best-first
search). An example of this is the A* algorithm, discussed in Chapter 9. If you’re searching a space of possible
solutions, you can also evaluate how promising a given direction is (that is, how good is the best solution we could
find by following this edge?). By ignoring edges that wouldn’t help you improve on the best you’ve found so far, you
can speed things up considerably. This approach is called branch and bound and is discussed in Chapter 11.

1Actually, walk will return a traversal tree for each strong component.
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Summary

In this chapter, I've shown you the basics of moving around in graphs, be they directed or not. This idea of traversal
forms the basis—directly or conceptually—for many of the algorithms you'll learn later in this book and for other
algorithms that you'll probably encounter later. I've used examples of maze traversal algorithms (such as Trémaux’s
and Ore’s), although they were mainly meant as starting points for more computer-friendly approaches. The general
procedure for traversing a graph involves maintaining a conceptual to-do list (a queue) of nodes you've discovered,
where you check off those that you have actually visited. The list initially contains only the start node, and in each step
you visit (and check off) one of the nodes, while adding its neighbors to the list. The ordering (schedule) of items on
the list determines, to a large extent, what kind of traversal you are doing: using a LIFO queue (stack) gives depth-first
search (DFS), while using a FIFO queue gives breadth-first search (BFS), for example. DFS, which is equivalent to a
relatively direct recursive traversal, lets you find discover and finish times for each node, and the interval between
these for a descendant will fall inside that of an ancestor. BES has the useful property that it can be used to find the
shortest (unweighted) paths from one node to another. A variation of DFS, called iterative deepening DFS, also has this
property, but it is more useful for searching in large trees, such as the state spaces discussed in Chapter 11.

If a graph consists of several connected components, you will need to restart your traversal once for each
component. You can do this by iterating over all the nodes, skipping those that have already been visited, and starting
a traversal from the others. In a directed graph, this approach may be necessary even if the graph is connected
because the edge directions may prevent you from reaching all nodes otherwise. To find the strongly connected
components of a directed graph—the parts of the graph where all nodes can reach each other—a slightly more
involved procedure is needed. The algorithm discussed here, Kosaraju’s algorithm, involves first finding the finish
times for all nodes and then running a traversal in the transposed graph (the graph with all edges reversed), using
descending finish times to select starting points.

If You’re Curious ...

If you like traversal, don’t worry. We’ll be doing more of that soon enough. You can also find details on DFS,
BFS, and the SCC algorithm discussed in, for example, the book by Cormen et al. (see “References,” Chapter 1).
If you're interested in finding strong components, there are references for Tarjan’s and Gabow’s (or, rather, the
Cheriyan-Mehlhorn/Gabow) algorithms in the “References” section of this chapter.

Exercises

5-1. In the components function in Listing 5-2, the set of seen nodes is updated with an entire
component at a time. Another option would be to add the nodes one by one inside walk. How would
that be different (or, perhaps, not so different)?

5-2. If you're faced with a graph where each node has an even degree, how would you go about finding
an Euler tour?

5-3. If every node in a directed graph has the same in-degree as out-degree, you could find a directed
Euler tour. Why is that? How would you go about it, and how is this related to Trémaux’s algorithm?

5-4. One basic operation in image processing is the so-called flood fill, where a region in an image is
filled with a single color. In painting applications (such as GIMP or Adobe Photoshop), this is typically
done with a paint bucket tool. How would you implement this sort of filling?

5-5. In Greek mythology, when Ariadne helped Theseus overcome the Minotaur and escape the
labyrinth, she gave him a ball of fleece thread so he could find his way out again. But what if Theseus
forgot to fasten the thread outside on his way in and remembered the ball only once he was thoroughly
lost—what could he use it for then?
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5-6. In recursive DFS, backtracking occurs when you return from one of the recursive calls. But where
has the backtracking gone in the iterative version?

5-7. Write a nonrecursive version of DFS that can deal determine finish times.

5-8.In dfs_topsort (Listing 5-8), a recursive DFS is started from every node (although it terminates
immediately if the node has already been visited). How can we be sure that we will get a valid
topological sorting, even though the order of the start nodes is completely arbitrary?

5-9. Write a version of DFS where you have hooks (overridable functions) that let the user perform
custom processing in pre- and postorder.

5-10. Show that if (and only if) DFS finds no back edges, the graph being traversed is acyclic.

5-11. What challenges would you face if you wanted to use other traversal algorithms than DFS to look
for cycles in directed graphs? Why don’t you face these challenges in undirected graphs?

5-12. If you run DFS in an undirected graph, you won't have any forward or cross edges. Why is that?

5-13. Write a version of BFS that finds the distances from the start node to each of the others, rather
than the actual paths.

5-14. As mentioned in Chapter 4, a graph is called bipartite if you can partition the nodes into two sets
so that no neighbors are in the same set. Another way of thinking about this is that you're coloring each
node either black or white (for example) so that no neighbors get the same color. Show how you'd find
such a bipartition (or two-coloring), if one exists, for any undirected graph.

5-15. If you reverse all the edges of a directed graph, the strongly connected components remain the
same. Why is that?

5-16. Let X and Y be two strongly connected components of the same graph, G. Assume that there is at
least one edge from X to Y. If you run DFS on G (restarting as needed, until all nodes have been visited),
the latest finish time in X will always be later than the latest in Y. Why is that?

5-17. In Kosaraju’s algorithm, we find starting nodes for the final traversal by descending finish times
from an initial DFS, and we perform the traversal in the transposed graph
(that is, with all edges reversed). Why couldn’t we just use ascending finish times in the original graph?

References

Cheriyan, J. and Mehlhorn, K. (1996). Algorithms for dense graphs and networks on the random access computer.
Algorithmica, 15(6):521-549.

Littlewood, D. E. (1949). The Skeleton Key of Mathematics: A Simple Account of Complex Algebraic Theories.
Hutchinson & Company, Limited.

Lucas, E. (1891). Récréations Mathématiques, volume 1, second edition. Gauthier-Villars et fils, Imprimeurs-Libraires.
Available online at http://archive.org.

Lucas, E. (1896). Récréations Mathématiques, volume 2, second edition. Gauthier-Villars et fils, Imprimeurs-Libraires.
Available online at http://archive.org.

Ore, 0. (1959). An excursion into labyrinths. Mathematics Teacher, 52:367-370.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2): 146-160.

113

www.it-ebooks.info


http://archive.org/
http://archive.org/
http://www.it-ebooks.info/

CHAPTER 6

Divide, Combine, and Conquer

Divide and rule, a sound motto;
Unite and lead, a better one.

— Johann Wolfgang von Goethe, Gedichte

This chapter is the first of three dealing with well-known design strategies. The strategy dealt with in this chapter,
divide and conquer (or simply D&C), is based on decomposing your problem in a way that improves performance.
You divide the problem instance, solve subproblems recursively, combine the results, and thereby conquer the
problem—a pattern that is reflected in the chapter title.!

Tree-Shaped Problems: All About the Balance

I have mentioned the idea of a subproblem graph before: We view subproblems as nodes and dependencies (or
reductions) as edges. The simplest structure such a subproblem graph can have is a tree. Each subproblem may
depend on one or more others, but we're free to solve these other subproblems independently of each other. (When
we remove this independence, we end up with the kind of overlap and entanglements dealt with in Chapter 8.) This
straightforward structure means that as long as we can find the proper reduction, we can implement the recursive
formulation of our algorithm directly.

You already have all the puzzle pieces needed to understand the idea of divide-and-conquer algorithms. Three
ideas that I've already discussed cover the essentials:

e Divide-and-conquer recurrences, in Chapter 3
e  Stronginduction, in Chapter 4
e  Recursive traversal, in Chapter 5

The recurrences tell you something about the performance involved, the induction gives you a tool for
understanding how the algorithms work, and the recursive traversal (DFS in trees) is a raw skeleton for the algorithms.

Implementing the recursive formulation of our induction step directly is nothing new. I showed you how some
simple sorting algorithms could be implemented that way in Chapter 4, for example. The one crucial addition in
the design method of divide and conquer is balance. This is where strong induction comes in: Instead of recursively
implementing the step from 7-1 to n, we want to go from 7/2 to n. That is, we take solutions of size n/2 and build a
solution of size n. Instead of (inductively) assuming that we can solve subproblems of size n-1, we assume that we can
deal with all subproblems of sizes smaller than 7.

"Note that some authors use the conquer term for the base case of the recursion, yielding the slightly different ordering: divide,
conquer, and combine.
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What does this have to do with balance, you ask? Think of the weak induction case. We're basically dividing our
problem in two parts: one of size n-1 and one of size 1. Let’s say the cost of the inductive step is linear (a quite common
case). Then this gives us the recurrence T(n) = T(n-1) + T(1) + n. The two recursive calls are wildly unbalanced, and
we end up, basically, with our handshake recurrence, with a resulting quadratic running time. What if we managed to
distribute the work more evenly among our two recursive calls? That is, could we reduce the problem to two subproblems
of similar size? In that case, the recurrence turns into 7(n) = 27(n/2) + n. This should also be quite familiar: It's the
canonical divide-and-conquer recurrence, and it yields a loglinear (®(7 g n)) running time—a huge improvement.

Figures 6-1 and 6-2 illustrate the difference between the two approaches, in the form of recursion trees. Note that
the number of nodes is identical —the main effect comes from the distribution of work over those nodes. This may seem
like a conjuror’s trick; where does the work go? The important realization is that for the simple, unbalanced stepwise
approach (Figure 6-1), many of the nodes are assigned a high workload, while for the balanced divide-and-conquer
approach (Figure 6-2), most nodes have very little work to do. For example, in the unbalanced recursion, there will
always be roughly a quarter of the calls that each has a cost of at least 72/2, while in the balanced recursion, there will be
only three, no matter the value of n. That’s a pretty significant difference.

n n-—1 1

3
>

3 3> 3> 3 3 >0
> > > > > >

Figure 6-1. An unbalanced decomposition, with linear division/combination cost and quadratic running time in total

n

nl/2 nl/2

Figure 6-2. Divide and conquer: a balanced decomposition, with linear division/combination cost and loglinear
running time in total

Let’s try to recognize this pattern in an actual problem. The skyline problem? is a rather simple example. You are
given a sorted sequence of triples (L,H,R), where L is the left x-coordinate of a building, H is its height, and R is its right
x-coordinate. In other words, each triple represents the (rectangular) silhouette of a building, from a given vantage
point. Your task is to construct a skyline from these individual building silhouettes.

*Described by Udi Manber in his Introduction to Algorithms (see “References” in Chapter 4).
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Figures 6-3 and 6-4 illustrate the problem. In Figure 6-4, a building is being added to an existing skyline. If the
skyline is stored as a list of triples indicating the horizontal line segments, adding a new building can be done in linear
time by (1) looking for the left coordinate of the building in the skyline sequence and (2) elevating all that are lower
than this building, until (3) you find the right coordinate of the building. If the left and right coordinates of the new
building are in the middle of some horizontal segments, they’ll need to be split in two. For simplicity, we can assume
that we start with a zero-height segment covering the entire skyline.

-

Y
Y

Buildings Skyline

Figure 6-3. A set of building silhouettes and the resulting skyline

L

\4

0 1 2 3 4

Figure 6-4. Adding a building (dashed) to a skyline (solid)

The details of this merging aren’t all that important here. The point is that we can add a building to the skyline
in linear time. Using simple (weak) induction, we now have our algorithm: We start with a single building and keep
adding new ones until we’re done. And, of course, this algorithm has a quadratic running time. To improve this, we
want to switch to strong induction—divide and conquer. We can do this by noting that merging two skylines is no
harder than merging one building with a skyline: We just traverse the two in “lockstep,” and wherever one has a higher
value than the other, we use the maximum, splitting horizontal line segments where needed. Using this insight, we
have our second, improved algorithm: To create a skyline for all the buildings, first (recursively) create two skylines,
based on half the buildings each, and then merge them. This algorithm, as I'm sure you can see, has a loglinear
running time. Exercise 6-1 asks you to actually implement this algorithm.

The Canonical D&C Algorithm

The recursive skyline algorithm hinted at in the previous section exemplifies the prototypical way a divide-and-conquer
algorithm works. The input is a set (perhaps a sequence) of elements; the elements are partitioned, in at most linear
time, into two sets of roughly equal size, the algorithm is run recursively on each half, and the results are combined,
also in at most linear time. It’s certainly possible to modify this standard form (you’ll see an important variation in the
next section), but this schema encapsulates the core idea.

Listing 6-1 sketches out a general divide-and-conquer function. Chances are you'll be implementing a
custom version for each algorithm, rather than using a general function such as this, but it does illustrate how these
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algorithms work. I'm assuming here that it’s OK to simply return S in the base case; that depends on how the combine
function works, of course.?

Listing 6-1. A General Implementation of the Divide-and-Conquer Scheme

def divide_and_conquer(S, divide, combine):
if len(S) == 1: return S
L, R = divide(S)
A = divide_and _conquer(L, divide, combine)
B = divide and conquer(R, divide, combine)
return combine(A, B)

Figure 6-5 is another illustration of the same pattern. The upper half of the figure represents the recursive calls,
while the lower half represents the way return values are combined. Some algorithms (such as quicksort, described
later in this chapter) do most of their work in the upper half (division), while some are more active in the lower
(combination). The perhaps most well-known example of an algorithm with a focus on combination is merge sort
(described a bit later in this chapter), which is also a prototypical example of a divide-and-conquer algorithm.

Figure 6-5. Dividing, recursing, and combining in a divide-and-conquer algorithm

Searching by Halves

Before working through some more examples that fit the general pattern, let’s look at a related pattern, which discards one
of the recursive calls. You've already seen this in my earlier mentions of binary search (bisection): It divides the problem
into two equal halves and then recurses on only one of those halves. The core principle here is still balance. Consider what
would happen in a totally unbalanced search. If you recall the “think of a particle” game from Chapter 3, the unbalanced
solution would be equivalent to asking “Is this your particle?” for each particle in the universe. The difference is still
encapsulated by Figures 6-1 and 6-2, except the work in each node (for this problem) is constant, and we only actually
perform the work along a path from the root to a leaf.

Binary search may not seem all that interesting. It’s efficient, sure, but searching through a sorted sequence ... isn’t
that sort of a limited area of application? Well, no, not really. First, that operation in itself can be important as a component
in other algorithms. Second, and perhaps as importantly, binary search can be a more general approach to looking for
things. For example, the idea can be used for numerical optimization, such as with Newton’s method, or in debugging
your code. Although “debugging by bisection” can be efficient enough when done manually (“Does the code crash before
it reaches this print statement?”), it is also used in some revision control systems (RCSs), such as Mercurial and Git.

3For example, in the skyline problem, you would probably want to split the base case element (L,H,R) into two pairs, (L,H) and
(R,H), so the combine function can build a sequence of points.
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It works like this: You use an RCS to keep track of changes in your code. It stores many different versions, and you
can “travel back in time,” as it were, and examine old code at any time. Now, say you encounter a new bug, and you
understandably enough want to find it. How can your RCS help? First, you write a test for your test suite—one that will
detect the bug if it’s there. (That’s always a good first step when debugging.) You make sure to set up the test so that
the RCS can access it. Then you ask the RCS to look for the place in your history where the bug appeared. How does it
do that? Big surprise: by binary search. Let’s say you know the bug appeared between revisions 349 and 574. The RCS
will first revert your code to revision 461 (in the middle between the two) and run your test. Is the bug there? If so, you
know it appeared between 349 and 461. If not, it appeared between 462 and 574. Lather, rinse, repeat.

This isn’t just a neat example of what bisection can be used for; it also illustrates a couple of other points
nicely. First, it shows that you can’t always use stock implementations of known algorithms, even if you're not really
modifying them. In a case such as this, chances are that the implementors behind your RCS had to implement the
binary search themselves. Second, it’s a good example of a case where reducing the number of basic operations can
be crucial —more so than just implementing things efficiently. Compiling your code and running the test suite is likely
to be slow anyway, so you'd like to do this as few times as possible.

BLACK BOX: BISECT

Binary search can be applied in many settings, but the straight “search for a value on a sorted sequence” version is
available in the standard library, in the bisect module. It contains the bisect function, which works as expected:

>>> from bisect import bisect
>>>a-=1[0,2,3,5,6,8,8, 9]
>>> bisect(a, 5)

4

Well, it's sort of what you’d expect ... it doesn’t return the position of the 5 that’s already there. Rather, it reports
the position to insert the new 5, making sure it’s placed after all existing items with the same value. In fact,
bisect is another name for bisect_right, and there’s also a bisect left:

>>> from bisect import bisect left
>>> bisect left(a, 5)
3

The bisect module is implemented in C, for speed, but in earlier versions (prior to Python 2.4) it was actually a
plain Python module, and the code for bisect_right was as follows (with my comments):

def bisect right(a, x, lo=0, hi=None):

if hi is None: # Searching to the end
hi = len(a)
while lo < hi: # More than one possibility
mid = (lo+hi)//2 # Bisect (find midpoint)
if x < a[mid]: hi = mid # Value < middle? Go left
else: lo = mid+1 # Otherwise: go right
return lo

As you can see, the implementation is iterative, but it’s entirely equivalent to the recursive version.

There is also another pair of useful functions in this module: insort (alias for insort_right) and insort_left.
These functions find the right position, like their bisect counterparts, and then actually insert the element. While
the insertion is still a linear operation, at least the search is logarithmic (and the actual insertion code is pretty
efficiently implemented).
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Sadly, the various functions of the bisect library don’t support the key argument, used in 1ist.sort, for
example. You can achieve similar functionality with the so-called decorate, sort, undecorate (or, in this case,
decorate, search, undecorate) pattern, or DSU for short:

>>> seq = "I aim to misbehave".split()
>>> dec = sorted((len(x), x) for x in seq)
>>> keys = [k for (k, v) in dec]

>>> vals = [v for (k, v) in dec]

>>> vals[bisect left(keys, 3)]

alm
Or, you could do it more compactly:

>>> seq = "I aim to misbehave".split()
>>> dec = sorted((len(x), x) for x in seq)
>>> dec[bisect left(dec, (3, ""))][1]

aim

As you can see, this involves creating a new, decorated list, which is a linear operation. Clearly, if we do this
before every search, there’d be no point in using bisect. If, however, we can keep the decorated list between
searches, the pattern can be useful. If the sequence isn’t sorted to begin with, we can perform the DSU as part of
the sorting, as in the previous example.

Traversing Search Trees ... with Pruning

Binary search is the bee’s knees. It’s one of the simplest algorithms out there, but it really packs a punch. There is one
catch, though: To use it, your values must be sorted. Now, if we could keep them in a linked list, that wouldn’t be a
problem. For any object we wanted to insert, we'd just find the position with bisection (logarithmic) and then insert
it (constant). The problem is—that won’t work. Binary search needs to be able to check the middle value in constant
time, which we can’t do with a linked list. And, of course, using an array (such as Python’s lists) won’t help. It'll help
with the bisection, but it ruins the insertion.

If we want a modifiable structure that’s efficient for search, we need some kind of middle ground. We need a
structure that is similar to a linked list (so we can insert elements in constant time) but that still lets us perform a
binary search. You may already have figured the whole thing out, based on the section title, but bear with me. The first
thing we need when searching is to access the middle item in constant time. So, let’s say we keep a direct link to that.
From there, we can go left or right, and we’ll need to access the middle element of either the left half or the right half.
So ... we can just keep direct links from the first item to these two, one “left” reference and one “right” reference.

In other words, we can just represent the structure of the binary search as an explicit tree structure! Such a tree
would be easily modifiable, and we could traverse it from root to leaf in logarithmic time. So, searching is really
our old friend traversal—but with pruning. We wouldn’t want to traverse the entire tree (resulting in a so-called
linear scan). Unless we're building the tree from a sorted sequence of values, the “middle element of the left half”
terminology may not be all that helpful. Instead, we can think of what we need to implement our pruning. When we
look at the root, we need to be able to prune one of the subtrees. (If we found the value we wanted in an internal node
and the tree didn’t contain duplicates, we wouldn’t continue in either subtree, of course.)

The one thing we need is the so-called search tree property: For a subtree rooted at r, all the values in the left
subtree are smaller than (or equal to) the value of 7, while those in the right subtree are greater. In other words, the
value at a subtree root bisects the subtree. An example tree with this property is shown in Figure 6-6, where the node
labels indicate the values we're searching. A tree structure like this could be useful in implementing a set; that is, we
could check whether a given value was present. To implement a mapping, however, each node would contain both a
key, which we searched for, and a value, which was what we wanted.
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Figure 6-6. A (perfectly balanced) binary search tree, with the search path for 11 highlighted

Usually, you don’t build a tree in bulk (although that can be useful at times); the main motivation for using trees
is that they’re dynamic, and you can add nodes one by one. To add a node, you search for where it should have been
and then add it as a new leaf there. For example, the tree in Figure 6-6 might have been built by initially adding 8 and
then 12, 14, 4, and 6, for example. A different ordering might have given a different tree.

Listing 6-2 gives you a simple implementation of a binary search tree, along with a wrapper that makes it look a
bit like a dict. You could use it like this, for example:

>>> tree = Tree()
>>> tree["a"] = 42
>>> tree["a"]

42

>>> "b" in tree
False

As you can see, I've implemented insertion and search as free-standing functions, rather than methods. That’s so
that they’ll work also on None nodes. (You don't have to do it like that, of course.)

Listing 6-2. Insertion into and Search in a Binary Search Tree

class Node:
1ft = None
rgt = None

def _init (self, key, val):
self.key = key
self.val = val

def insert(node, key, val):

if node is None: return Node(key, val) # Empty leaf: add node here

if node.key == key: node.val = val # Found key: replace val

elif key < node.key: # Less than the key?
node.lft = insert(node.lft, key, val) # Go left

else: # Otherwise...

node.rgt = insert(node.rgt, key, val) # Go right
return node
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def search(node, key):

if node is None: raise KeyError # Empty leaf: it's not here
if node.key == key: return node.val # Found key: return val
elif key < node.key: # Less than the key?
return search(node.lft, key) # Go left
else: # Otherwise...
return search(node.rgt, key) # Go right
class Tree: # Simple wrapper

root = None
def _setitem (self, key, val):
self.root = insert(self.root, key, val)
def _getitem (self, key):
return search(self.root, key)
def _ contains_ (self, key):
try: search(self.root, key)
except KeyError: return False
return True

Note The implementation in Listing 6-2 does not permit the tree to contain duplicate keys. If you insert a new value
with an existing key, the old value is simply overwritten. This could easily be changed because the tree structure itself
does not preclude duplicates.

SORTED ARRAYS, TREES, AND DICTS: CHOICES, CHOICES

Bisection (on sorted arrays), binary search trees, and dicts (that is, hash tables) all implement the same basic
functionality: They let you search efficiently. There are some important differences, though. Bisection is fast, with
little overhead, but works only on sorted arrays (such as Python lists). And sorted arrays are hard to maintain;
adding elements takes linear time. Search trees have more overhead but are dynamic and let you insert and
remove elements. In many cases, though, the clear winner will be the hash table, in the form of dict. Its average
asymptotic running time is constant (as opposed to the logarithmic running time of bisection and search trees),
and it is close to that in practice, with little overhead.

Hashing requires you to be able to compute a hash value for your objects. In practice, you can almost always do
this, but in theory, bisection and search trees are a bit more flexible here—they need only to compare objects and
figure out which one is smaller.* This focus on ordering also means that search trees will let you access your values
in sorted order—either all of them or just a portion. Trees can also be extended to work in multiple dimensions

(to search for points inside a hyperrectangular region) or to even stranger forms of search criteria, where hashing
may be hard to achieve. There are more common cases, too, when hashing isn’t immediately applicable. For
example, if you want the entry that is closest to your lookup key, a search tree would be the way to go.

4Actually, more flexible may not be entirely correct. There are many objects (such as complex numbers) that can be hashed but that
cannot be compared for size.
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Selection

I'll round off this section on “searching by half” with an algorithm you may not end up using a lot in practice but that
takes the idea of bisection in an interesting direction. Besides, it sets the stages for quicksort (next section), which is
one of the classics.

The problem is to find the kth largest number in an unsorted sequence, in linear time. The most important case
is, perhaps, to find the median—the element that would have been in the middle position (that is, (n+1)//2), had the
sequence been sorted.’ Interestingly, as a side effect of how the algorithm works, it will also allow us to identify which
objects are smaller than the object we seek. That means we’ll be able to find the k smallest (and, simultaneously, the
n-klargest) elements with a running time of ®(n), meaning that the value of k doesn’t matter!

This may be stranger than it seems at first glance. The running time constraint rules out sorting (unless we can
count occurrences and use counting sort, as discussed in Chapter 4). Any other obvious algorithm for finding the k
smallest objects would use some data structure to keep track of them. For example, you could use an approach similar
to insertion sort: Keep the k smallest objects found so far either at the beginning of the sequence or in a separate
sequence.

If you kept track of which one of them was largest, checking each large object in the main sequence would be fast
(just a constant-time check). If you needed to add an object, though, and you already had k, you’d have to remove one.
You'd remove the largest, of course, but then you'd have to find out which one was now largest. You could keep them
sorted (that is, stay close to insertion sort), but the running time would be ®(nk) anyway.

One step up from this (asymptotically) would be to use a heap, essentially transforming our “partial insertion
sort” into a “partial heap sort,” making sure that there are never more than k elements in the heap. (See the “Black
Box” sidebar about binary heaps, heapq, and heapsort for more information.) This would give you a running time of
®(nlg k), and for a reasonably small k, this is almost identical to ®(n), and it lets you iterate over the main sequence
without jumping around in memory, so in practice it might be the solution of choice.

Tip If you're looking for the k smallest (or largest) objects in an iterable in Python, you would probably use the
nsmallest (or nlargest) function from the heapq module if your k is small, relative to the total number of objects. If the k
is large, you should probably sort the sequence (either using the sort method or using the sorted function) and pick out
the k first objects. Time your results to see what works best—or just choose the version that makes your code as clear as
possible.

So, how can we take the next step, asymptotically, and remove dependence on k altogether? It turns out that
guaranteeing a linear worst case is a bit knotty, so let’s focus on the average case. Now, if I tell you to try applying the
idea of divide and conquer, what would you do? A first clue might be that we’re aiming for a linear running time; what
“divide by half” recurrence does that? It's the one with a single recursive call (which is equivalent to the knockout
tournament sum): T(n) = T(n/2) + n. In other words, we divide the problem in half (or, for now, in half on average) by
performing linear work, just like the more canonical divide-and-conquer approach, but we manage to eliminate one
half, taking us closer to binary search. What we need to figure out, in order to design this algorithm, is how to partition
the data in linear time so that we end up with all our objects in one half.

As always, systematically going through the tools at our disposal, and framing the problem as clearly as we can,
makes it much easier to figure out a solution. We've arrived at a point where what we need is to partition a sequence
into two halves, one consisting of small values and one of large values. And we don’t have to guarantee that the halves
are equal—only that they’ll be equal on average. A simple way of doing this is to choose one of the values as a so-called
pivot and use it to divide the others: All those smaller than (or equal to) the pivot end up in the left half, while those

’In statistics, the median is also defined for sequences of even length. It is then the average of the two middle elements. That’s not
an issue we worry about here.
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larger end up on the right. Listing 6-3 gives you a possible implementation of partition and select. Note that this version
of partition is primarily meant to be readable; Exercise 6-11 asks you to see whether you can remove some overhead.
The way select is written here, it returns the kth smallest element; if you'd rather have all the k smallest elements, you
can simply rewrite it to return lo instead of pi.

Listing 6-3. A Straightforward Implementation of Partition and Select

def partition(seq):

pi, seq = seq[0], seq[1:] # Pick and remove the pivot

lo = [x for x in seq if x <= pi] # All the small elements

hi = [x for x in seq if x > pi] # All the large ones

return lo, pi, hi # pi is "in the right place"

def select(seq, k):

lo, pi, hi = partition(seq) # [<= pil, pi, [>pi]

m = len(lo)

if m == k: return pi # We found the kth smallest

elif m < k: # Too far to the left
return select(hi, k-m-1) # Remember to adjust k

else: # Too far to the right
return select(lo, k) # Just use original k here

SELECTING IN LINEAR TIME, GUARANTEED!

The selection algorithm implemented in this section is known as randomized select (although the randomized
version usually chooses the pivot more randomly than here; see Exercise 6-13). It lets you do selection (for
example, find the median) in linear expected time, but if the pivot choices are poor at each step, you end up with
the handshake recurrence (linear work, but reducing size by only 1) and thereby quadratic running time. While
such an extreme result is unlikely in practice (though, again, see Exercise 6-13), you can in fact avoid it also in
the worst case.

It turns out guaranteeing that the pivot is even a small percentage into the sequence (that is, not at either end, or
a constant number of steps from it) is enough for the running time to be linear. In 1973, a group of algorists (Blum,
Floyd, Pratt, Rivest, and Tarjan) came up with a version of the algorithm that gives exactly this kind of guarantee.

The algorithm is a bit involved, but the core idea is simple enough: First divide the sequence into groups of five,
or some other small constant. Find the median in each, using, for example, a simple sorting algorithm. So far,
we’ve used only linear time. Now, find the median among these medians, using the linear selection algorithm
recursively. This will work, because the number of medians is smaller than the size of the original sequence—still
a bit mind-bending. The resulting value is a pivot that is guaranteed to be good enough to avoid the degenerate
recursion—use it as a pivot in your selection.

In other words, the algorithm is used recursively in two ways: first, on the sequence of medians, to find a good
pivot, and second, on the original sequence, using this pivot.

While the algorithm is important to know about for theoretical reasons because it means selection can be done in
guaranteed linear time, you’ll probably never actually use it in practice.

124

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 * DIVIDE, COMBINE, AND CONQUER

Sorting by Halves

Finally, we've arrived at the topic most commonly associated with the divide-and-conquer strategy: sorting. I'm

not going to delve into this too deeply, because Python already has one of the best sorting algorithms ever devised
(see the “Black Box” sidebar about timsort, later in this section), and its implementation is highly efficient. In fact,
list.sort is so efficient, you'd probably consider it as a first choice in place of other, asymptotically slightly better
algorithms (for example, for selection). Still, the sorting algorithms in this section are among the most well-known
algorithms, so you should understand how they work. Also, they are a great example of the way divide and conquer is
used to design algorithms.

Let’s first consider one of the celebrities of algorithm design: C. A. R. Hoare’s quicksort. It’s closely related to the
selection algorithm from the previous section, which is also due to Hoare (and sometimes called quickselect). The
extension is simple: If quickselect represents traversal with pruning—finding a path in the recursion tree down to the
kth smallest element—then quicksort represents a full traversal, which means finding a solution for every k. Which is
the smallest element? The second smallest? And so forth. By putting them all in their place, the sequence is sorted.
Listing 6-4 shows a version of quicksort.

Listing 6-4. Quicksort

def quicksort(seq):
if len(seq) <= 1: return seq # Base case
lo, pi, hi = partition(seq) # pi is in its place
return quicksort(lo) + [pi] + quicksort(hi) # Sort lo and hi separately

As you can see, the algorithm is simple, as long as you have partition in place. (Exercises 6-11 and 6-12 ask
you to rewrite quicksort and partition to yield an in-place sorting algorithm.) First, it splits the sequence into those
we know must be to the left of pi and those that must be to the right. These two halves are then sorted recursively
(correct by inductive assumption). Concatenating the halves, with the pivot in the middle, is guaranteed to result in a
sorted sequence. Because we’re not guaranteed that partition will balance the recursion properly, we know only that
quicksort is loglinear in the average case—in the worst case it’s quadratic.

Quicksort is an example of a divide-and-conquer algorithm that does its main work before the recursive calls,
in dividing its data (using partition). The combination part is trivial. We can do it the other way around, though:
trivially split our data down the middle, guaranteeing a balanced recursion (and a nice worst-case running time), and
then make an effort at combining, or merging the results. This is exactly what merge sort does. Just like our skyline
algorithm from the beginning of this chapter goes from inserting a single building to merging two skylines, merge sort
goes from inserting a single element in a sorted sequence (insertion sort) to merging two sorted sequences.

You've already seen the code for merge sort in Chapter 3 (Listing 3-2), but I'll repeat it here, with some comments
(Listing 6-5).

Listing 6-5. Merge Sort

def mergesort(seq):

mid = len(seq)//2 # Midpoint for division
1ft, rgt = seq[:mid], seq[mid:]

if len(1ft) > 1: 1ft = mergesort(1lft) # Sort by halves

if len(rgt) > 1: rgt = mergesort(rgt)

res = []

°In theory, we could use the guaranteed linear version of select to find the median and use that as a pivot. That’s not something
likely to happen in practice, though.
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while 1ft and rgt: # Neither half is empty
if 1ft[-1] >=rgt[-1]: # 1ft has greatest last value
res.append(1ft.pop()) # Append it
else: # rgt has greatest last value
res.append(rgt.pop()) # Append it
res.reverse() # Result is backward
return (1ft or rgt) + res # Also add the remainder

Understanding how this works should be a bit easier now than it was in Chapter 3. Note the merging part has
been written to show what’s going on here. If you were to actually use merge sort (or a similar algorithm) in Python,
you would probably use heapq.merge to do the merging.

BLACK BOX: TIMSORT

The algorithm hiding in 1ist.sort is one invented (and implemented) by Tim Peters, one of the big names in the
Python community.” The algorithm, aptly named timsort, replaces an earlier algorithm that had lots of tweaks to
handle special cases such as segments of ascending and descending values, and the like. In timsort, these cases
are handled by the general mechanism, so the performance is still there (and in some cases, it's much improved),
but the algorithm is cleaner and simpler. The algorithm is still a bit too involved to explain in detail here; I'll try to
give you a quick overview. For more details, take a look at the source.®

Timsort is a close relative to merge sort. It’s an in-place algorithm, in that it merges segments and leaves the
result in the original array (although it uses some auxiliary memory during the merging). Instead of simply sorting
the array half-and-half and then merging those, though, it starts at the beginning, looking for segments that are
already sorted (possibly in reverse), called runs. In random arrays, there won’t be many, but in many kinds of real
data, there may be a lot—giving the algorithm a clear edge over a plain merge sort and a /inear running time in
the best case (and that covers a lot of cases beyond simply getting a sequence that’s already sorted).

As timsort iterates over the sequence, identifying runs and pushing their bounds onto a stack, it uses some
heuristics to decide which runs are to be merged when. The idea is to avoid the kind of merge imbalance that
would give you a quadratic running time while still exploiting the structure in the data (that is, the runs). First, any
really short runs are artificially extended and sorted (using a stable insertion sort). Second, the following invariants
are maintained for the three topmost runs on the stack, A, B, and C (with A on top): 1en(A) > len(B) + len(C)
and len(B) > len(C). If the first invariant is violated, the smaller of A and C is merged with B, and the result
replaces the merged runs in the stack. The second invariant may still not hold, and the merging continues until
both invariants hold.

The algorithm uses some other tricks as well, to get as much speed as possible. If you’re interested, | recommend
you check out the source.® If you’d rather not read C code, you could also take a look at the pure Python version
of timsort, available as part of the PyPy project.’® Their implementation has excellent comments and is clearly
written. (The PyPy project is discussed in Appendix A.)

"Timsort is, in fact, also used in Java SE 7, for sorting arrays.

$See, for example, the file 1istsort.txt in the source code (or online, http://svn.python.org/projects/python/trunk/
Objects/listsort.txt).

You can find the actual C code at http://svn.python.org/projects/python/trunk/Objects/listobject.c.

%See https://bitbucket.org/pypy/pypy/src/default/rpython/rlib/listsort.py.

126

www.it-ebooks.info


http://svn.python.org/projects/python/
http://svn.python.org/projects/python/trunk/Objects/listobject.c
https://bitbucket.org/pypy/pypy/src/default/rpython/rlib/listsort.py
http://www.it-ebooks.info/

CHAPTER 6 * DIVIDE, COMBINE, AND CONQUER

How Fast Can We Sort?

One important result about sorting is that divide-and-conquer algorithms such as merge sort are optimal; for arbitrary
values (where we can figure out which is bigger) it’s impossible, in the worst case, to do any better than Q(n 1g ). An
important case where this holds is when we sort arbitrary real numbers.!!

Note Counting sort and its relatives (discussed in Chapter 4) seem to break this rule. Note that there we can’t sort
arbitrary values—we need to be able to count occurrences, which means that the objects must be hashable, and we
need to be able to iterate over the value range in linear time.

How do we know this? The reasoning is actually quite simple. First insight: Because the values are arbitrary and
we're assuming that we can figure out only whether one of them is greater than another, each object comparison boils
down to a yes/no question. Second insight: The number of orderings of n elements is n!, and we’re looking for exactly
one of them. Where does that get us? We're back to “think of a particle,” or, in this case, “think of a permutation.”

This means that the best we can do is to use Q(Ig n!) yes/no questions (the comparisons) to get the right permutation
(that is, to sort the numbers). And it just so happens that Ig n! is asymptotically equivalent to 7 Ig n.*? In other words,
the running time in the worst case is Q(lg n!) = Q(n 1g n).

How, you say, do we arrive at this equivalence? The easiest way is to just use Stirling’s approximation, which
says that n! is @(n"). Take the logarithm and Bob’s your uncle.”® Now, we derived the bound for the worst case; using
information theory (which I won't go into here), it is, in fact, possible to show that this bound holds also in the average
case. In other words, in a very real sense, unless we know something substantial about the value range or distribution
of our data, loglinear is the best we can do.

Three More Examples

Before wrapping up this chapter with a slightly advanced (and optional) section, here are three examples for the
road. The first two deal with computational geometry (where the divide-and-conquer strategy is frequently useful),
while the last one is a relatively simple problem (with some interesting twists) on a sequence of numbers. I have only
sketched the solutions, because the point is mainly to illustrate the design principle.

Closest Pair

The problem: You have a set of points in the plane, and you want to find the two that are closest to each other. The first
idea that springs to mind is, perhaps, to use brute force: For each point, check all the others, or, at least, the ones we
haven’t looked at yet. This is, by the handshake sum, a quadratic algorithm, of course. Using divide and conquer, we
can get that down to loglinear.

This is a rather nifty problem, so if you're into puzzle-solving, you might want to try to solve it for yourself
before reading my explanation. The fact that you should use divide and conquer (and that the resulting algorithm is
loglinear) is a strong hint, but the solution is by no means obvious.

"Real numbers usually aren’t all that arbitrary, of course. As long as your numbers use a fixed number of bits, you can use radix
sort (mentioned in Chapter 4) and sort the values in linear time.

12] think that’s so cool, I wanted to add an exclamation mark after the sentence ... but I guess that might have been a bit confusing,
given the subject matter.

13 Actually, the approximation isn’t asymptotic in nature. If you want the details, you’ll find them in any good mathematics
reference.
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The structure of the algorithm follows almost directly from the (merge sort-like) loglinear divide-and-conquer
schema: We'll divide the points into two subsets, recursively find the closest pair in each, and then—in linear time—merge
the results. By the power of induction/recursion (and the divide-and-conquer schema), we have now reduce the problem
to this merging operation. But we can peel away even a bit more before we engage our creativity: The result of the merge
must be either (1) the closest pair from the left side, (2) the closest pair on the right side, or (3) a pair consisting of one
point from either side. In other words, what we need to do is find the closest pair “straddling” the division line. While doing
this, we also have an upper limit to the distance involved (the minimum of the closest pairs from the left and right sides).

Having drilled down to the essence of the problem, let’s look at how bad things can get. Let’s say, for the moment,
that we have sorted all points in the middle region (of width 2d) by their y-coordinate. We then want to go through
them in order, considering other points to see whether we find any points closer than d (the smallest distance found
so far). For each point, how many other “neighbors” must we consider?

This is where the crucial insight of the solution enters the picture: on either side of the midline, we know that all
points are at least a distance of d apart. Because what we’re looking for is a pair at most a distance apart, straddling the
midline, we need to consider only a vertical slice of height d (and width 2d) at any one time. And how many points can
fit inside this region?

Figure 6-7 illustrates the situation. We have no lower bounds on the distances between left and right, so in the
worst case, we may have coinciding points on the middle line (highlighted). Beyond that, it’s quite easy to show that
at most four points with a minimum distance of d can fit inside a dxd square, which we have on either side; see
Exercise 6-15. This means that we need to consider at most eight points in total in such a slice, which means our
current point at most needs to be compared to its next seven neighbors. (Actually, it’s sufficient to consider the five
next neighbors; see Exercise 6-16.)

I
I
o
I
I
I
I
0
I
I

d

Figure 6-7. Worst case: eight points in a vertical slice of the middle region. The size of the slice is dx2d, and each of the
two middle (highlighted) points represents a pair of coincident points

We're almost done; the only remaining problems are sorting by x- and y-coordinates. We need the x-sorting to
be able to divide the problem in equal halves at each step, and we need the y-sorting to do the linear traversal while
merging. We can keep two arrays, one for each sorting order. We'll be doing the recursive division on the x array, so
that’s pretty straightforward. The handling of y isn’t quite so direct but still quite simple: When dividing the data set by
X, we partition the y array based on x-coordinates. When combining the data, we merge them, just like in merge sort,
thus keeping the sorting while using only linear time.

Note For the algorithm to work, we much return the entire subset of points, sorted, from each recursive calls.
The filtering of points too far from the midline must be done on a copy.
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You can see this as a way of strengthening the induction hypothesis (as discussed in Chapter 4) in order to get the
desired running time: Instead of only assuming we can find the closest points in smaller point sets, we also assume
that we can get the points back sorted.

Convex Hull

Here’s another geometric problem: Imagine pounding 7 nails into a board and strapping a rubber band around
them; the shape of the rubber band is a so-called convex hull for the points represented by the nails. It’s the smallest
convex" region containing the points, that is, a convex polygon with lines between the “outermost” of the points.
See Figure 6-8 for an example.

Figure 6-8. A set of points and their convex hull

By now, I'm sure you're suspecting how we’ll be solving this: Divide the point set into two equal halves along
the x-axis and solve them recursively. The only part remaining is the linear-time combination of the two solutions.
Figure 6-9 hints at what we need: We must find the upper and lower common tangents. (That they're tangents basically
means that the angles they form with the preceding and following line segments should curve inward.)

Figure 6-9. Combining two smaller convex hull by finding upper and lower common tangents (dashed)

14A region is convex if you can draw a line between any two points inside it, and the line stays inside the region.
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Without going into implementation details, assume that you can check whether a line is an upper tangent for
either half. (The lower part works in a similar manner.) You can then start with the rightmost point of the left half and
the leftmost point of the right half. As long as the line between your points is not an upper tangent for the left part, you
move to the next point along the subhull, counterclockwise. Then you do the same for the right half. You may have to
do this more than once. Once the top is fixed, you repeat the procedure for the lower tangent. Finally, you remove the
line segments that now fall between the tangents, and you're done.

HOW FAST CAN WE FIND A CONVEX HULL?

The divide-and-conquer solution has a running time of 0(n Ign). There are lots of algorithms for finding convex
hulls, some asymptotically faster, with running times as low as 0(n Igh), where h is the number of points on the
hull. In the worst case, of course, all objects will fall on the hull, and we’re back to ®(n Ign). In fact, this is the best
time possible, in the worst case—but how can we know that?

We can use the idea from Chapter 4, where we show hardness through reduction. We already know from the
discussion earlier in this chapter that sorting real numbers is Q(n Ign), in the worst case. This is independent of
what algorithm you use; you simply can’t do better. It's impossible.

Now, observe that sorting can be reduced to the convex hull problem. If you want to sort n real numbers, you
simply use the numbers as x-coordinates and add y-coordinates to them that place them on a gentle curve. For
example, you could have y = x2. If you then find a convex hull for this point set, the values will lie in sorted order
on it, and you can find the sorting by traversing its edges. This reduction will in itself take only linear time.

Imagine, for a moment, that you have a convex hull algorithm that is better than loglinear. By using the linear
reduction, you subsequently have a sorting algorithm that is better than loglinear. But that’s impossible! In other
words, because there exists a simple (here, linear) reduction from sorting to finding a convex hull, the latter
problem is at least as hard as the former. So ... loglinear is the best we can do.

Greatest Slice

Here’s the last example: You have a sequence A containing real numbers, and you want to find a slice (or segment)
A[i:j] sothatsum(A[i:j]) is maximized. You can’t just pick the entire sequence, because there may be negative
numbers in there as well.”® This problem is sometimes presented in the context of stock trading—the sequence
contains changes in stock prices, and you want to find the interval that will give you the greatest profit. Of course, this
presentation is a bit flawed, because it requires you to know all the movement of the stock beforehand.

An obvious solution would be something like the following (where n=1en(A)):

result = max((A[i:j] for i in range(n) for j in range(i+1,n+1)), key=sum)

The two for clauses in the generator expression simply step through every legal start and end point, and we then
take the maximum, using the sum of A[i:j] as the criterion (key). This solution might score “cleverness” points for
its concision, but it’s not really that clever. It’s a naive brute-force solution, and its running time is cubic (that is, @(n®))!
In other words, it’s really bad.

BT’m still assuming that we want a nonempty interval. If it turns out to have a negative sum, you could always use an empty
interval instead.
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It might not be immediately apparent how we can avoid the two explicit for loops, but let’s start by trying to avoid
the one hiding in sum. One way to do this would be to consider all intervals of length k in one iteration, then move to
k+1, and so on. This would still give us a quadratic number of intervals to check, but we could use a trick to make the
scan cost linear: We calculate the sum for the first interval as normal, but each time the interval is shifted one position
to the right, we simply subtract the element that now falls outside it, and we add the new element:

best = A[0]
for size in range(1,n+1):
cur = sum(A[:size])
for i in range(n-size):
cur += A[i+size] - A[i]
best = max(best, cur)

That’s not a lot better, but at least now we’re down to a quadratic running time. There’s no reason to quit here,
though.

Let’s see what a little divide and conquer can buy us. When you know what to look for, the algorithm—or at least
a rough outline—almost writes itself: Divide the sequence in two, find the greatest slice in either half (recursively),
and then see whether there’s a greater one straddling the middle (as in the closest point example). In other words,
the only thing that requires creative problem solving is finding the greatest slice straddling the middle. We can reduce
that even further—that slice will necessarily consist of the greatest slice extending from the middle to the left and the
greatest slice extending from the middle to the right. We can find these separately, in linear time, by simply traversing
and summing from the middle in either direction.

Thus, we have our loglinear solution to the problem. Before leaving it entirely, though, I'll point out that there is,
in fact, a linear solution as well; see Exercise 6-18.

REALLY DIVIDING THE WORK: MULTIPROCESSING

The purpose of the divide-and-conquer design method is to balance the workload so that each recursive call
takes as little time as possible. You could go even further, though, and ship the work out to separate processors
(or cores). If you have a huge number of processors to use, you could then, in theory, do nifty things such as
finding the maximum or sum of a sequence in logarithmic time. (Do you see how?)

In a more realistic scenario, you might not have an unlimited supply of processors at your disposal, but if

you'd like to exploit the power of those you have, the multiprocessing module can be your friend. Parallel
programming is commonly done using parallel (operating system) threads. Although Python has a threading
mechanism, it does not support true parallel execution. What you can do, though, is use parallel processes, which
in modern operating systems are really efficient. The multiprocessing module gives you an interface that makes
handling parallel processes look quite a bit like threading.

Tree Balance ... and Balancing’

If we insert random values into a binary search tree, it’s going to end up pretty balanced on average. If we're unlucky,
though, we could end up with a totally unbalanced tree, basically a linked list, like the one in Figure 6-1. Most real-world
uses of search trees include some form of balancing, that is, a set of operations that reorganize the tree, to make sure it is
balanced (but without destroying its search tree property, of course).

“This section is a bit hard and is not essential in order to understand the rest of the book. Feel free to skim it or even skip it entirely.
You might want to read the “Black Box” sidebar on binary heaps, heapq, and heapsort, though, later in the section.
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There’s a ton of different tree structures and balancing methods, but they’re generally based on two fundamental
operations:

¢ Node splitting (and merging). Nodes are allowed to have more than two children (and more
than one key), and under certain circumstances, a node can become overfull. It is then split
into two nodes (potentially making its parent overfull).

e Node rotations. Here we still use binary trees, but we switch edges. If x is the parent of y, we
now make y the parent of x. For this to work, x must take over one of the children of y.

This might seem a bit confusing in the abstract, but I'll go into a bit more detail, and I'm sure you'll see how it all
works. Let’s first consider a structure called the 2-3-tree. In a plain binary tree, each node can have up to two children,
and they each have a single key. In a 2-3-tree, though, we allow a node to have one or tfwo keys and up to three children.
Anything in the left subtree now has to be smaller than the smallest of the keys, and anything in the right subtree is
greater than the greatest of the keys—and anything in the middle subtree must fall between the two. Figure 6-10 shows
an example of the two node types of a 2-3-tree.

2-node 3-node

Figure 6-10. The node types in a 2-3-tree

Note The 2-3-tree is a special case of the B-tree, which forms the basis of almost all database systems, and
disk-based trees used in such diverse areas as geographic information systems and image retrieval. The important
extension is that B-trees can have thousands of keys (and subtrees), and each node is usually stored as a contiguous
block on disk. The main motivation for the large blocks is to minimize the number of disk accesses.

Searching a 2-3-node is pretty straightforward—just a recursive traversal with pruning, like in a plain binary
search tree. Insertion requires a bit of extra attention, though. As in a binary search tree, you first search for the proper
leaf where the new value can be inserted. In a binary search tree, though, that will always be a None reference (that
is, an empty child), where you can “append” the new node as a child of an existing one. In a 2-3-tree, though, you'll
always try to add the new value to an existing leaf. (The first value added to the tree will necessarily need to create a
new node, though; that’s the same for any tree.) If there’s room in the node (that s, it’s a 2-node), you simply add the
value. If not, you have three keys to consider (the two already there and your new one).

The solution is to split the node, moving the middie of the three values up to the parent. (If you're splitting the
root, you'll have to make a new root.) If the parent is now overfull, you'll need to split that, and so forth. The important
result of this splitting behavior is that all leaves end up on the same level, meaning that the tree is fully balanced.

Now, while the idea of node splitting is relatively easy to understand, let’s stick to our even simpler binary trees
for now. You see, it’s possible to use the idea of the 2-3-tree while not really implementing it as a 2-3-tree. We can
simulate the whole thing using only binary nodes! There are two upsides to this: First, the structure is simpler and
more consistent, and second, you get to learn about rotations (an important technique in general) without having to
worry about a whole new balancing scheme!
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The “simulation” I'm going to show you is called the AA-tree, after its creator, Arne Andersson.'®* Among the many
rotation-based balancing schemes, the AA-tree really stands out in its simplicity (though there’s still quite a bit to wrap
your head around, if you're new to this kind of thing). The AA-tree is a binary tree, so we need to have a look at how to
simulate the 3-nodes we’ll be using to get balance. You can see how this works in Figure 6-11.

Reversed 3-node Valid 3-node

Figure 6-11. Two simulated 3-nodes (highlighted) in an AA-tree. Note that the one on the left is reversed and must be
repaired

This figure shows you several things at once. First, you get an idea of how a 3-node is simulated: You simply link
up two nodes to act as a single pseudonode (as highlighted). Second, the figure illustrates the idea of level. Each node
is assigned a level (a number), with the level of all leaves being 1. When we pretend that two nodes form a 3-node, we
simply give them the same level, as shown by the vertical placement in the figure. Third, the edge “inside” a 3-node
(called a horizontal edge) can point only to the right. That means that the leftmost subfigure illustrates an illegal node,
which must be repaired, using a right rotation: Make c the left child of d and d the right child of b, and finally, make d’s
old parent the parent of b instead. Presto! You've got the rightmost subfigure (which is valid). In other words, the edge
to the middle child and the horizontal edge switch places. This operation is called skew.

There is one other form of illegal situation that can occur and that must be fixed with rotations: an overfull
pseudonode (that is, a 4-node). This is shown in Figure 6-12. Here we have three nodes chained on the same level (c,
e, and f). We want to simulate a split, where the middle key (e) would be moved up to the parent (a), as in a 2-3-tree.
In this case, that’s as simple as rotating c and e, using a left rotation. This is basically just the opposite of what we did
in Figure 6-11. In other words, we move the child pointer of c down from e to d, and we move the child pointer of e up
from d to c. Finally, we move the child pointer of a from c to e. To later remember that @ and e now form a new 3-node,
we increment the level of e (see Figure 6-12). This operation is called (naturally enough) split.

Figure 6-12. An overfull pseudonode, and the result of the repairing left rotation (swapping the edges (e,d) and (c,e)),
as well as making e the new child of a

1“The AA-tree is, in a way, a version of the BB-tree, or the binary B-tree, which was introduced by Rudolph Bayer in 1971 as a
binary representation of the 2-3-tree.

133

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 '~ DIVIDE, COMBINE, AND CONQUER

You insert a node into an AA-tree just like you would in a standard, unbalanced binary tree; the only difference
is that you perform some cleanup afterward (using skew and split). The full code can be found in Listing 6-6. As you
can see, the cleanup (one call to skew and one to split) is performed as part of the backtracking in the recursion—so
nodes are repaired on the path back up to the root. How does that work, really?

The operations further down along the path can really do only one thing that will affect us: They can put another
node into “our” current simulated node. At the leaf level, this happens whenever we add a node, because they all have
level 1. If the current node is further up in the tree, we can get another node in our current (simulated) node if one
has been moved up during a split. Either way, this node that is now suddenly on our level can be either a left child or
a right child. If it’s a left child, we skew (do a right rotation), and we've gotten rid of the problem. If it’s a right child,
it’s not a problem to begin with. However, if it’s a right grandchild, we have an overfull node, so we do a split (a left
rotation) and promote the middle node of our simulated 4-node up to the parent’s level.

This is all pretty tricky to describe in words—I hope the code is clear enough that you’ll understand what'’s going
on. (It might take some time and head-scratching, though.)

Listing 6-6. The Binary Search Tree, Now with AA-Tree Balancing

class Node:
1ft = None
rgt = None
vl =1 # We've added a level...

def _init (self, key, val):
self.key = key
self.val = val

def skew(node): # Basically a right rotation
if None in [node, node.lft]: return node # No need for a skew
if node.1lft.1lvl != node.lvl: return node # Still no need
1ft = node.lft # The 3 steps of the rotation
node.lft = 1ft.rgt
1ft.rgt = node
return 1ft # Switch pointer from parent

def split(node): # Left rotation & level incr.
if None in [node, node.rgt, node.rgt.rgt]: return node
if node.rgt.rgt.1vl != node.lvl: return node
rgt = node.rgt
node.rgt = rgt.1ft
rgt.1ft = node
rgt.lvl += 1 # This has moved up
return rgt # This should be pointed to

def insert(node, key, val):
if node is None: return Node(key, val)
if node.key == key: node.val = val
elif key < node.key:
node.1lft = insert(node.lft, key, val)

else:

node.rgt = insert(node.rgt, key, val)
node = skew(node) # In case it's backward
node = split(node) # In case it's overfull

return node

134

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 6 * DIVIDE, COMBINE, AND CONQUER

Can we be sure that the AA-tree will be balanced? Indeed we can, because it faithfully simulates the 2-3-tree
(with the level property representing actual tree levels in the 2-3-tree). The fact that there’s an extra edge inside the
simulated 3-nodes can no more than double any search path, so the asymptotic search time is still logarithmic.

BLACK BOX: BINARY HEAPS, HEAPQ, AND HEAPSORT

A priority queue is a generalization of the LIFO and FIFO queues discussed in Chapter 5. Instead of basing the
order only on when an item is added, each item receives a priority, and you always retrieve the remaining item
with the lowest priority. (You could also use maximum priority, but you normally can’t have both in the same
structure.) This kind of functionality is important as a component of several algorithms, such as Prim’s, for finding
minimum spanning trees (Chapter 7), or Dijkstra’s, for finding shortest paths (Chapter 9). There are many ways of
implementing a priority queue, but probably the most common data structure used for this purpose is the binary
heap. (There are other kinds of heaps, but the unqualified term heap normally refers to binary heaps.)

Binary heaps are complete binary trees. That means they are as balanced as they can get, with each level of the
tree filled up, except (possibly) the lowest level, which is filled as far as possible from the left. Arguably the most
important aspect of their structure, though, is the so-called heap property. The value of every parent is smaller
than those of both children. (This holds for a minimum heap; for a maximum heap, each parent is greater.) As a
consequence, the root has the smallest value in the heap. The property is similar to that of search trees but not
quite the same, and it turns out that the heap property is much easier to maintain without sacrificing the balance
of the tree. You never modify the structure of the tree by splitting or rotating nodes in a heap. You only ever need
to swap parent and child nodes to restore the heap property. For example, to “repair” the root of a subtree
(which is too big), you simply swap it with its smallest child and repair that subtree recursively (as needed).

The heapg module contains an efficient heap implementation that represents its heaps in lists, using a common
“encoding”: If a is a heap, the children of a[i] are found in a[2*i+1] and a[2*i+2]. This means that the root
(the smallest element) is always found in a[o]. You can build a heap from scratch, using the heappush and
heappop functions. You might also start out with a list that contains lots of values, and you'd like to make it into
a heap. In that case, you can use the heapify function." It basically repairs every subtree root, starting at the
bottom right, moving left and up. (In fact, by skipping the leaves, it needs only work on the left half of the array.)
The resulting running time is linear (see Exercise 6-9). If your list is sorted, it’s already a valid heap, so you can
just leave it alone.

Here’s an example of building a heap piece by piece:

>>> from heapq import heappush, heappop
>>> from random import randrange
>»> Q=[]
>>> for i in range(10):

heappush(Q, randrange(100))
>»> 0
[15, 20, 56, 21, 62, 87, 67, 74, 50, 74]
>>> [heappop(Q) for i in range(10)]
[15, 20, 21, 50, 56, 62, 67, 74, 74, 87]

"It is quite common to call this operation build-heap and to reserve the name heapify for the operation that repairs a single node.
Thus, build-heap runs heapify on all nodes but the leaves.
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Just like bisect, the heapq module is implemented in C, but it used to be a plain Python module. For example,
here is the code (from Python 2.3) for the function that moves an object down until it’s smaller than both of its
children (again, with my comments):

def sift up(heap, startpos, pos):

newitem = heap[pos]

while pos > startpos:
parentpos = (pos - 1) >>1
parent = heap[parentpos]
if parent <= newitem: break
heap[pos] = parent
pos = parentpos

heap[pos] = newitem

The item we're sifting up
Don't go beyond the root
The same as (pos - 1) // 2
Who's your daddy?

Valid parent found
Otherwise: copy parent down
Next candidate position
Place the item in its spot

H OoH H B H R R H

Note that the original function was called _siftdown because it’s sifting the value down in the list. | prefer to
think of it as sifting it up in the implicit tree structure of the heap, though. Note also that, just like bisect right,
the implementation uses a loop rather than recursion.

In addition to heappop, there is heapreplace, which will pop the smallest item and insert a new element at the
same time, which is a bit more efficient than a heappop followed by a heappush. The heappop operation returns
the root (the first element). To maintain the shape of the heap, the last item is moved to the root position, and
from there it is swapped downward (in each step, with its smallest child) until it is smaller than both its children.
The heappush operation is just the reverse: The new element is appended to the list and is repeatedly swapped
with its parent until it is greater than its parent. Both of these operations are logarithmic (also in the worst case,
because the heap is guaranteed to be balanced).

Finally, the module has (since version 2.6) the utility functions merge, nlargest, and nsmallest for merging
sorted inputs and finding the n largest and smallest items in an iterable, respectively. The latter two functions,
unlike the others in the module, take the same kind of key argument as list.sort. You can simulate this in the
other functions with the DSU pattern, as mentioned in the sidebar on bisect.

Although you would probably never use them that way in Python, the heap operations can also form a simple,
efficient, and asymptotically optimal sorting algorithm called heapsort. It is normally implemented using a max-heap
and works by first performing heapify on a sequence, then repeatedly popping off the root (as in heappop), and
finally placing it in the now empty last slot. Gradually, as the heap shrinks, the original array is filled from the right
with the largest element, the second largest, and so forth. In other words, heap sort is basically selection sort
where a heap is used to implement the selection. Because the initialization is linear and each of the n selections
is logarithmic, the running time is loglinear, that is, optimal.

Summary

The algorithm design strategy of divide and conquer involves a decomposition of a problem into roughly equal-sized
subproblems, solving the subproblems (often by recursion), and combining the results. The main reason this is useful
it that the workload is balanced, typically taking you from a quadratic to a loglinear running time. Important examples

of this behavior include merge sort and quicksort, as well as algorithms for finding the closest pair or the convex hull

of a point set. In some cases (such as when searching a sorted sequence or selecting the median element), all but one

of the subproblems can be pruned, resulting in a traversal from root to leaf in the subproblem graph, yielding even
more efficient algorithms.
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The subproblem structure can also be represented explicitly, as it is in binary search trees. Each node in a search
tree is greater than the descendants in its left subtree but less than those in its right subtree. This means that a binary
search can be implemented as a traversal from the root. Simply inserting random values haphazardly will, on average,
yield a tree that is balanced enough (resulting in logarithmic search times), but it is also possible to balance the tree,
using node splitting or rotations, to guarantee logarithmic running times in the worst case.

If You’re Curious ...

If you like bisection, you should look up interpolation search, which for uniformly distributed data has an average-case
running time of O(Ig 1g ). For implementing sets (that is, efficient membership checking) other than sorted
sequences, search trees and hash tables, you could have a look at Bloom filters. If you like search trees and related
structures, there are lots of them out there. You could find tons of different balancing mechanisms (red black trees,
AVL-trees, splay trees), some of them randomized (treaps), and some of them only abstractly representing trees (skip
lists). There are also whole families of specialized tree structures for indexing multidimensional coordinates (so-called
spatial access methods) and distances (metric access methods). Other trees structures to check out are interval trees,
quadltrees, and octtrees.

Exercises

6-1. Write a Python program that implements the solution to the skyline problem.

6-2. Binary search divides the sequence into two approximately equal parts in each recursive step.
Consider ternary search, which divides the sequence into three parts. What would its asymptotic
complexity be? What can you say about the number of comparisons in binary and ternary search?

6-3. What is the point of multiway search trees, as opposed to binary search trees?
6-4. How could you extract all keys from a binary search tree in sorted order, in linear time?
6-5. How would you delete a node from a binary search tree?

6-6. Let’s say you insert n random values into an initially empty binary search tree. What would, on
average, be the depth of the leftmost (that is, smallest) node?

6-7. In a min-heap, when moving a large node downward, you always switch places with the smallest
child. Why is that important?

6-8. How (or why) does the heap encoding work?
6-9. Why is the operation of building a heap linear?
6-10. Why wouldn’t you just use a balanced binary search tree instead of a heap?

6-11. Write a version of partition that partitions the elements in place (that is, moving them around in
the original sequence). Can you make it faster than the one in Listing 6-3?

6-12. Rewrite quicksort to sort elements in place, using the in-place partition from Exercise 6-11.

6-13. Let’s say you rewrote select to choose the pivot using, for example, random. choice. What
difference would that make? (Note that the same strategy can be used to create a randomized
quicksort.)

6-14. Implement a version of quicksort that uses a key function, just like 1ist.sort.

6-15. Show that a square of side d can hold at most four points that are all at least a distance of d apart.
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6-16. In the divide-and-conquer solution to the closest pair problem, you can get away with examining
at most the next seven points in the mid-region points, sorted by y-coordinate. Show how you could
quite easily reduce this number to five.

6-17. The element uniqueness problem is to determine whether all elements of a sequence are unique.
This problem has a proven loglinear lower bound in the worst case for real numbers. Show that this
means the closest pair problem also has a loglinear lower bound in the worst case.

6-18. How could you solve the greatest slice problem in linear time?

References

Andersson, A. (1993). Balanced search trees made simple. In Proceedings of the Workshop on Algorithms and Data
Structures (WADS), pages 60-71.

Bayer, R. (1971). Binary B-trees for virtual memory. In Proceedings of the ACM SIGFIDET Workshop on Data Description,
Access and Control, pages 219-235.

Blum, M., Floyd, R. W., Pratt, V,, Rivest, R. L., and Tarjan, R. E. (1973). Time bounds for selection. Journal of Computer
and System Sciences, 7(4):448-461.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computational Geometry: Algorithms and
Applications, third edition. Springer.

138

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7

Greed Is Good? Prove It!

It’s not a question of enough, pal.

— Gordon Gekko, Wall Street

So-called greedy algorithms are short-sighted, in that they make each choice in isolation, doing what looks good right
here, right now. In many ways, eager or impatient might be better names for them because other algorithms also
usually try to find an answer that is as good as possible; it’s just that the greedy ones take what they can get at this
moment, not worrying about the future. Designing and implementing a greedy algorithm is usually easy, and when
they work, they tend to be highly efficient. The main problem is showing that they do work—if, indeed, they do.
That'’s the reason for the “Prove It!” part of the chapter title.

This chapter deals with greedy algorithms that give correct (optimal) answers; I'll revisit the design strategy in
Chapter 11, where I'll relax this requirement to “almost correct (optimal).”

Staying Safe, Step by Step

The common setting for greedy algorithms is a series of choices (just like, as you'll see, for dynamic programming).
The greed involves making each choice with local information, doing what looks most promising without regard for
context or future consequences, and then, once the choice has been made, never looking back. If this is to lead to a
solution, we must make sure that each choice is safe—that it doesn’t destroy our future prospects. You'll see many
examples of how we can ensure this kind of safety (or, rather, how we can prove that an algorithm is safe), but let’s
start out by looking at the “step by step” part.

The kind of problems solved with greedy algorithms typically build a solution gradually. It has a set of “solution
pieces” that can be combined into partial, and eventually complete, solutions. These pieces can fit together in
complex ways; there may be many ways of combining them, and some pieces may no longer fit once we’ve used
certain others. You can think of this as a jigsaw puzzle with many possible solutions (see Figure 7-1). The jigsaw
picture is blank, and the puzzle pieces are rather regular, so they can be used in several locations and combinations.
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Figure 7-1. A partial solution, and some greedily ordered pieces (considered from left to right), with the next greedy
choice highlighted

Now add a value to each puzzle piece. This is an amount you'll be awarded for fitting that particular piece into the
complete solution. The goal is then to find a way to lay the jigsaw that gets you the highest total value—that is, we have an
optimization problem. Solving a combinatorial optimization problem like this is, in general, not at all a simple task. You
might need to consider every possible way of placing the pieces, yielding an exponential (possibly factorial) running time.

Let’s say you're filling in the puzzle row by row, from the top, so you always know where the next piece must go.
The greedy approach in this setting is as easy as it gets, at least for selecting the pieces to use. Just sort the pieces by
decreasing value and consider them one by one. If a piece won't fit, you discard it. If it fits, you use it, without regard
for future pieces.

Even without looking at the issue of correctness (or optimality), it’s clear that this kind of algorithm needs a
couple of things to be able to run at all:

e Asetof candidate elements, or pieces, with some value attached
¢ Away of checking whether a partial solution is valid, or feasible

So, partial solutions are built as collections of solution pieces. We check each piece in turn, starting with the most
valuable one, and add each piece that leads to a larger, still valid solution. There are certainly subtleties that could be
added to this (for example, the total value needn’t be a sum of element values, and we might want to know when we're
done, without having to exhaust the set of elements), but this'll do as a prototypical description.

A simple example of this kind of problem is that of making change—trying to add up to a given sum with as few
coins and bills as possible. For example, let’s say someone owes you $43.68 and gives you a hundred-dollar bill. What
do you do? The reason this problem is a nice example is that we all instinctively know the right thing to do here":

We start with the biggest denominations possible and work our way down. Each bill or coin is a puzzle piece, and
we're trying to cover the number $56.32 exactly. Instead of sorting a set of bills and coins, we can think of sorting
stacks of them, because we have many of each. We sort these stacks in descending order and start handing out the
largest denominations, like in the following code (working with cents, to avoid floating-point issues):

>>> denom = [10000, 5000, 2000, 1000, 500, 200, 100, 50, 25, 10, 5, 1]
>>> owed = 5632

>>> payed = []

>>> for d in denom:

"No, it’s not to run away and buy comic books.
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while owed >=d:
owed -= d
payed.append(d)

>>> sum(payed)

5632

>>> payed

[5000, 500, 100, 25, 5, 1, 1]

Most people probably have little doubt that this works; it seems like the obvious thing to do. And, indeed,
it works, but the solution is in some ways very brittle. Even changing the list of available denominations in minor
ways will destroy it (see Exercise 7-1). Figuring out which currencies the greedy algorithm will work with isn’t
straightforward (although there is an algorithm for it), and the general problem itself is unsolved. In fact, it’s closely
related to the knapsack problem, which is discussed in the next section.

Let’s turn to a different kind of problem, related to the matching we worked with in Chapter 4. The movie is
over (with many arguing that the TV show was clearly superior), and the group decides to go out for some tango,
and once again, they face a matching problem. Each pair of people has a certain compatibility, which they’ve
represented as a number, and they want the sum of these over all the pairs to be as high as possible. Dance pairs of
the same gender are not uncommon in tango, so we needn’t restrict ourselves to the bipartite case—and what we
end up with is the maximum-weight matching problem. In this case (or the bipartite case, for that matter), greed
won’t work in general. However, by some freak coincidence, all the compatibility numbers happen to be distinct
powers of two. Now, what happens?*

Let’s first consider what a greedy algorithm would look like here and then see why it yields an optimal result.
We'll be building a solution piece by piece—let the pieces be all the possible pairs and a partial solution be a set of
pairs. Such a partial solution is valid only if everyone participates in at most one of its pairs. The algorithm will then be
roughly as follows:

1. List potential pairs, sorted by decreasing compatibility.
Pick the first unused pair from the list.

Is anyone in the pair already occupied? If so, discard it; otherwise, use it.

>« N

Are there any more pairs on the list? If so, go to 2.

As you'll see later, this is rather similar to Kruskal’s algorithm for minimum spanning trees (although that works
regardless of the edge weights). It also is a rather prototypical greedy algorithm. Its correctness is another matter.
Using distinct powers of two is sort of cheating because it would make virtually any greedy algorithm work; that is,
you’d get an optimal result as long as you could get a valid solution at all (see Exercise 7-3). Even though it’s cheating,
itillustrates the central idea here: making the greedy choice is safe. Using the most compatible of the remaining
couples will always be at least as good as any other choice.?

In the following sections, I'll show you some well-known problems that can be solved using greedy algorithms.
For each algorithm, you’ll see how it works and why greed is correct. Near the end of the chapter, I'll sum up some
general approaches to proving correctness that you can use for other problems.

The idea for this version of the problem comes from Michael Soltys (see references in Chapter 4).
3To be on the safe side, just let me emphasize that this greedy solution would not work in general, with an arbitrary set of weights.
The distinct powers of two are key here.
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EAGER SUITORS AND STABLE MARRIAGES

There is, in fact, one classical matching problem that can be solved (sort of) greedily: the stable marriage
problem. The idea is that each person in a group has preferences about whom he or she would like to marry.
We’d like to see everyone married, and we’d like the marriages to be stable, meaning that there is no man who
prefers a woman outside his marriage who also prefers him. (To keep things simple, we disregard same-sex
marriages and polygamy here.)

There’s a simple algorithm for solving this problem, designed by David Gale and Lloyd Shapley. The formulation is
quite gender-conservative but will certainly also work if the gender roles are reversed. The algorithm runs for
a number of rounds, until there are no unengaged men left. Each round consists of two steps:

1. Each unengaged man proposes to his favorite of the women he has not yet asked.
2. Each woman is (provisionally) engaged to her favorite suitor and rejects the rest.

This can be viewed as greedy in that we consider only the available favorites (both of the men and women) right
now. You might object that it’s only sort of greedy in that we don’t lock in and go straight for marriage; the women
are allowed to break their engagement if a more interesting suitor comes along. Even so, once a man has been
rejected, he has been rejected for good, which means that we’re guaranteed progress and a quadratic worst-case
running time.

To show that this is an optimal and correct algorithm, we need to know that everyone gets married and that the
marriages are stable. Once a woman is engaged, she stays engaged (although she may replace her fiancé).
There is no way we can get stuck with an unmarried pair, because at some point the man would have proposed
to the woman, and she would have (provisionally) accepted his proposal.

How do we know the marriages are stable? Let’s say Scarlett and Stuart are both married but not to each other.
Is it possible they secretly prefer each other to their current spouses? No. If this were so, Stuart would already
have proposed to her. If she accepted that proposal, she must later have found someone she liked better; if she
rejected it, she would already have a preferable mate.

Although this problem may seem silly and trivial, it is not. For example, it is used for admission to some colleges
and to allocate medical students to hospital jobs. There are, in fact, entire books (such as those by Donald Knuth
and by Dan Gusfield and Robert W. Irwing) devoted to the problem and its variations.

IM SO LLCKY I LOVE YOU MOST
TO HAVE You. | | QUT OF ALTHE GIRLS iy
/ N ALL THE WORLD

\

All the Girls. You know that I'll never leave you. Not as long as she’s with someone. (http://xkcd.com/770)
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The Knapsack Problem

This problem is, in a way, a generalization of the change-making problem, discussed earlier. In that problem, we used
the coin denominations to determine whether a partial/full solution was valid (don’t give too much/give the exact
amount), and the number of coins measured the quality of the eventual solution. The knapsack problem is framed

in different terms: We have a set of items that we want to take with us, each with a certain weight and value; however,
our knapsack has a maximum capacity (an upper bound on the total weight), and we want to maximize the total
value we get.

The knapsack problem covers many applications. Whenever you are to select a valuable set of objects (memory
blocks, text fragments, projects, people), where each object has an individual value (possibly be linked to money,
probability, recency, competence, relevance, or user preferences), but you are constrained by some resource (be it
time, memory, screen real-estate, weight, volume or something else entirely), you may very well be solving a version
of the knapsack problem. There are also special cases and closely related problems, such as the subset sum problem,
discussed in Chapter 11, and the problem of making change, as discussed earlier. This wide applicability is also its
weakness—what makes it such a hard problem to solve. As a rule, the more expressive a problem is, the harder it is to
find an efficient algorithm for it. Luckily, there are special cases that we can solve in various ways, as you'll see in the
following sections.

Fractional Knapsack

This is the simplest of the knapsack problems. Here we’re not required to include or exclude entire objects; we might
be stuffing our backpack with tofu, whiskey, and gold dust, for example (making for a somewhat odd picnic). We
needn'’t allow arbitrary fractions, though. We could, for example, use a resolution of grams or ounces. (We could be
even more flexible; see Exercise 7-6.) How would you approach this problem?

The important thing here is to find the value-to-weight ratio. For example, most people would agree that gold dust
has the most value per gram (though it might depend on what you'd use it for); let’s say the whiskey falls between the
two (although I'm sure there are those who'd dispute that). In that case, to get the most out of our backpack, we'd stuff
it full with gold dust—or at least with the gold dust we have. If we run out, we start adding the whiskey. If there’s still
room left over when we're out of whiskey, we top it all off with tofu (and start dreading the unpacking of this mess).

This is a prime example of a greedy algorithm. We go straight for the good (or, at least, expensive) stuff. If we use
a discrete weight measure, this can, perhaps, be even easier to see; that is, we don’t need to worry about ratios. We
basically have a set of individual grams of gold dust, whiskey, and tofu, and we sort them according to their value.
Then, we (conceptually) pack the grams one by one.

Integer Knapsack

Let’s say we abandon the fractions, and now need to include entire objects—a situation more likely to occur in real
life, whether you're programming or packing your bag. Then the problem is suddenly a /ot harder to solve. For now,
let’s say we're still dealing with categories of objects, so we can add an integer amount (that is, number of objects)
from each category. Each category then has a fixed weight and value that holds for all objects. For example, all gold
bars weigh the same and have the same value; the same holds for bottles of whiskey (we stick to a single brand) and
packages of tofu. Now, what do we do?

There are two important cases of the integer knapsack problem—the bounded and unbounded cases. The
bounded case assumes we have a fixed number of objects in each category,* and the unbounded case lets us use
as many as we want. Sadly, greed won’t work in either case. In fact, these are both unsolved problems, in the sense
that no polynomial algorithms are known to solve them in general. There is hope, however. As you'll see in the next
chapter, we can use dynamic programming to solve the problems in pseudopolynomial time, which may be good

“If we view each object individually, this is often called 0-/ knapsack because we can take 0 or 1 of each object.

143

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 7 © GREED IS GOOD? PROVE IT!

enough in many important cases. Also, for the unbounded case, it turns out that the greedy approach ain’t half bad! Or,
rather, it’s at least half good, meaning we’ll never get less than half the optimum value. And with a slight modification,
you can get as good results for the bounded version, too. This concept of greedy approximation is discussed in more
detail in Chapter 11.

Note This is mainly an initial “taste” of the knapsack problem. I'll deal more thoroughly with a solution to the integer
knapsack problem in Chapter 8.

Huffman’s Algorithm

Huffman’s algorithm is another one of the classics of greed. Let’s say you're working with some emergency central
where people call for help. You're trying to put together some simple yes/no questions that can be posed in order to
help the callers diagnose an acute medical problem and decide on the appropriate course of action. You have a list of
the conditions that should be covered, along with a set of diagnostic criteria, severity, and frequency of occurrence.
Your first thought is to build a balanced binary tree, constructing a question in each node that will split the list (or
sublist) of possible conditions in half. This seems too simplistic, though; the list is long and includes many noncritical
conditions. Somehow, you need to take severity and frequency of occurrence into account.

It's usually a good idea to simplify any problem at first, so you decide to focus on frequency. You realize that the
balanced binary tree is based on the assumption of uniform probability—dividing the list in half won’t do if some
items are more probable. If, for example, there’s an even chance that the patient is unconscious, that’s the thing to ask
about—even if “Does the patient have a rash?” might actually split the list in the middle. In other words, you want a
weighted balancing: You want the expected number of questions to be as low as possible. You want to minimize the
expected depth of your (pruned) traversal from root to leaf.

You find that this idea can be used to account for the severity as well. You'd want to prioritize the most dangerous
conditions so they can be identified quickly (“Is the patient breathing?”), at the cost of making patients with less
critical ailments wait through a couple of extra questions. You do this, with the help of some health professionals, by
giving each condition a cost or weight, combining the frequency (probability) and the health risk involved. Your goal
for the tree structure is still the same. How can you minimize the sum of depth(u) x weight(u) over all leaves u?

This problem certainly has other applications as well. In fact, the original (and most common) application is
compression—representing a text more compactly—through variable-length codes. Each character in your text has a
frequency of occurrence, and you want to exploit this information to give the characters encodings of different lengths
so as to minimize the expected length of any text. Equivalently, for any character, you want to minimize the expected
length of its encoding.

Do you see how this is similar to the previous problem? Consider the version where you focused only on the
probability of a given medical condition. Now, instead of minimizing the number of yes/no questions needed to
identify some medical affliction, we want to minimize the number of bits needed to identify a character. Both the
yes/no answers and the bits uniquely identify paths to leaves in a binary tree (for example, zero = no = left and
one = yes = right).° For example, consider the characters a through f. One way of encoding them is given by Figure 7-2
(just ignore the numbers in the nodes for now). For example, the code for g (given by the highlighted path) would
be 101. Because all characters are in the leaves, there would be no ambiguity when decoding a text that had been
compressed with this scheme (see Exercise 7-7). This property, that no valid code is a prefix of another, gives rise to
the term prefix code.

Not only is it unimportant whether zero means left or right, it is also unimportant which subtrees are on the left and which are on the
right. Shuffling them won’t matter to the optimality of the solution.
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Figure 7-2. A Huffman tree for a-i, with frequencies/weights 4, 5, 6, 9, 11, 12, 15, 16, and 20, and the path represented
by the code 101 (right, left, right) highlighted

The Algorithm

Let’s start by designing a greedy algorithm to solve this problem, before showing that it’s correct (which is, of course,
the crucial step). The most obvious greedy strategy would, perhaps, be to add the characters (leaves) one by one,
starting with the one with the greatest frequency. But where would we add them? Another way to go (which you'll see
again in Kruskal’s algorithm, in a bit) is to let a partial solution consist of several tree fragments and then repeatedly
combine them. When we combine two trees, we add a new, shared root and give it a weight equal to the sum of its
children, that is, the previous roots. This is exactly what the numbers inside the nodes in Figure 7-2 mean.

Listing 7-1 shows one way of implementing Huffman’s algorithm. It maintains a partial solution as a forest, with
each tree represented as nested lists. For as long as there are at least two separate trees in the forest, the two lightest
trees (the ones with lowest weights in their roots) are picked out, combined, and placed back in, with a new root weight.

Listing 7-1. Huffman’s Algorithm

from heapq import heapify, heappush, heappop
from itertools import count

def huffman(seq, frq):
num = count()

trees = list(zip(frq, num, seq)) # num ensures valid ordering
heapify(trees) # A min-heap based on frq
while len(trees) > 1: # Until all are combined

fa, , a = heappop(trees) # Get the two smallest trees

fb, , b = heappop(trees)

n = next(num)

heappush(trees, (fa+fb, n, [a, b])) # Combine and re-add them
return trees[0][-1]
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Here’s an example of how you might use the code:

>>> seq = "abcdefghi"

>>> frq = [4, 5, 6, 9, 11, 12, 15, 16, 20]

>>> huffman(seq, frq)

(i, [f'a', 'b'], 'e']l, [['f', "g'], [['c’, 'd"], "h"]]]

A few details are worth noting in the implementation. One of its main features is the use of a heap (from
heapq). Repeatedly selecting and combining the two smallest elements of an unsorted list would give us a quadratic
running time (linear selection time, linear number of iterations), while using a heap reduces that to loglinear
(logarithmic selection and re-addition). We can’t just add the trees directly to the heap, though; we need to make
sure they’re sorted by their frequencies. We could simply add a tuple, (freq, tree), and that would work as long as
all frequencies (that is, weights) were different. However, as soon as two trees in the forest have the same frequency,
the heap code would have to compare the trees to see which one is smaller—and then we’d quickly run into
undefined comparisons.

Note In Python 3, comparing incompatible objects like ["a", ["b", "c"]] and "d" is not allowed and will raise
a TypeError. In earlier versions, this was allowed, but the ordering was generally not very meaningful; enforcing more
predictable keys is probably a good thing either way.

A solution is to add a field between the two, one that is guaranteed to differ for all objects. In this case, I simply
use a counter, resulting in (freg, num, tree), where frequency ties are broken using the arbitrary num, avoiding direct
comparison of the (possibly incomparable) trees.®

Asyou can see, the resulting tree structure is equivalent to the one shown in Figure 7-2.

To compress and decompress a text using this technique, you need some pre- and post-processing, of course.
First, you need to count characters to get the frequencies (for example, using the Counter class from the collections
module). Then, once you have your Huffman tree, you must find the codes for all the characters. You could do this
with a simple recursive traversal, as shown in Listing 7-2.

Listing 7-2. Extracting Huffman Codes from a Huffman Tree

def codes(tree, prefix=""):
if len(tree) == 1:

yield (tree, prefix) # A leaf with its code
return
for bit, child in zip("o01", tree): # Left (0) and right (1)
for pair in codes(child, prefix + bit): # Get codes recursively
yield pair

The codes function yields (char, code) pairs suitable for use in the dict constructor, for example. To use such a
dict to compress a code, you'd just iterate over the text and look up each character. To decompress the text, you'd rather
use the Huffman tree directly, traversing it using the bits in the input for directions (that is, determining whether you
should go left or right); I'll leave the details as an exercise for the reader.

SIf a future version of the heapq library lets you use a key function, such as in 1ist.sort, you’d no longer need this tuple wrapping
at all, of course.
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The First Greedy Choice

I'm sure you can see that the Huffman codes will let you faithfully encode a text and then decode it again—but how
can it be that it is optimal (within the class of codes we're considering)? That is, why is the expected depth of any leaf
minimized using this simple, greedy procedure?

As we usually do, we now turn to induction: We need to show that we're safe all the way from start to finish—that
the greedy choice won’t get us in trouble. We can often split this proof into two parts, what is often called (i) the greedy
choice property and (ii) optimal substructure (see, for example, Cormen et al. in the “References” section of Chapter 1).
The greedy choice property means that the greedy choice gives us a new partial solution that is part of an optimal
one. The optimal substructure, which is very closely related to the material of Chapter 8, means that the rest of the
problem, after we’ve made our choice, can also be solved just like the original—if we can find an optimal solution to
the subproblem, we can combine it with our greedy choice to get a solution to the entire problem. In other words, an
optimal solution is built from optimal subsolutions.

To show the greedy choice property for Huffman’s algorithm, we can use an exchange argument (see, for example,
Kleinberg and Tardos in the “References” section of Chapter 1). This is a general technique used to show that our
solution is at least as good as an optimal one (and therefore optimal)—or in this case, that there exists a solution
with our greedy choice that is at least this good. The “at least as good” part is proven by taking a hypothetical (totally
unknown) optimal solution and then gradually changing it into our solution (or, in this case, one containing the bits
we're interested in) without making it worse.

The greedy choice for Huffman’s algorithm involves placing the two lightest elements as sibling leaves on the
lowest level of the tree. (Note that we're worried about only the first greedy choice; the optimal substructure will deal
with the rest of the induction.) We need to show that this is safe—that there exists an optimal solution where the two
lightest elements are, indeed, bottom-level sibling leaves. Start the exchange argument by positing another optimal
tree where these two elements are not lowest-level siblings. Let @ and b be the lowest-frequency elements, and assume
that this hypothetical, optimal tree has c and d as sibling leaves at maximum depth. We assume that a is lighter
(has a lower weight/frequency) than b and that c is lighter than d.” Under the circumstances, we also know that a is
lighter than c and b is lighter than d. For simplicity, let’s assume that the frequences of a and d are different because
otherwise the proof is simple (see Exercise 7-8).

What happens if we swap a and ¢? And then swap b and d? For one thing, we now have a and b as bottom-level
siblings, which we wanted, but what has happened to the expected leaf depth? You could fiddle around with the
full expressions for weighted sums here, but the simple idea is: We've moved some heavy nodes up in the tree and
moved some light nodes down. This means that some short paths are now given a higher weight in the sum, while
some long paths have been given a lower weight. All in all, the total cost cannot have increased. (Indeed, if the depths
and weights are all different, our tree will be better, and we have a proof by contradiction because our hypothetical
alternative optimum cannot exist—the greedy way is the best there is.)

Going the Rest of the Way

Now, that was the first half of the proof. We know that making the first greedy choice was OK (the greedy choice
property), but we need to know that it’s OK to keep using greedy choices (optimal substructure). We need to get a
handle on what the remaining subproblem is first, though. Preferably, we'd like it to have the same structure as the
original, so the machinery of induction can do its job properly. In other words, we’d like to reduce things to a new,
smaller set of elements for which we can build an optimal tree and then show how we can build on that.

The idea is to view the first two combined leaves as a new element, ignoring the fact that it’s a tree. We worry
only about its root. The subproblem then becomes finding an optimal tree for this new set of elements—which we
can assume is all right, by induction. The only remaining question is whether this tree is optimal once we expand this
node back to a three-node subtree, by once again including its leaf children; this is the crucial part that will give us the
induction step.

"They might also have equal weights/frequencies; that doesn’t affect the argument.
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Let’s say our two leaves are, once again, a and b, with frequencies f(a) and f(b). We lump them together as a
single node with a frequency f(a) + f(b) and construct an optimal tree. Let’s assume that this combined node ends
up at depth D. Then its contribution to the total tree cost is D x (f(a) + f(b)). If we now expand the two children, their
parent node no longer contributes to the cost, but the total contribution of the leaves (which are now at depth D + 1)
will be (D + 1) x (fla) + f{b)). In other words, the full solution has a cost that exceeds the optimal subsolution by f(a) +
f(b). Can we be sure that this is optimal?

Yes, we can, and we can prove it by contradiction, assuming that it is not optimal. We conjure up another, better
tree—and assume that it, too, has a and b as bottom-level siblings. (We know, by the arguments in the previous
section, that an optimal tree like this exists.) Once again, we can collapse a and b, and we end up with a solution to
our subproblem that is better than the one we had ... but the one we had was optimal by assumption! In other words,
we cannot find a global solution that is better than one that contains an optimal subsolution.

Optimal Merging

Although Huffman’s algorithm is normally used to construct optimal prefix codes, there are other ways of interpreting
the properties of the Huffman tree. As explained initially, one could view it as a decision tree, where the expected
traversal depth is minimized. We can use the weights of the internal nodes in our interpretation too, though, yielding
arather different application.

We can view the Huffman tree as a sort of fine-tuned divide-and-conquer tree, where we don’t do a flat balancing
like in Chapter 6, but where the balance has been designed to take the leaf weights into account. We can then interpret
the leaf weights as subproblem sizes, and if we assume that the cost of combining (merging) subproblems is linear (as is
often the case in divide and conquer), the sum of all the internal node weights represents the total work performed.

A practical example of this is merging sorted files, for example. Merging two files of sizes n and m takes time
linear in n+m. (This is similar to the problem of joining in relational database or of merging sequences in algorithms
such as timsort.) In other words, if you imagine the leaves in Figure 7-2 to be files and their weights to be file sizes,
the internal nodes represent the cost of the total merging. If we can minimize the sum of the internal nodes (or,
equivalently, the sum of all the nodes), we will have found the optimal merging schedule. (Exercise 7-9 asks you to
show that this really matters.)

We now need to show that a Huffman tree does, indeed, minimize the node weights. Luckily, we can piggyback
this proof on the previous discussion. We know that in a Huffman tree, the sum of depth times weight over all leaves is
minimized. Now, consider how each leaf contributes to the sum over all nodes: The leaf weight occurs as a summand
once in each of its ancestor nodes—which means that the sum is exactly the same! That is, sun(weight(node) for
node in nodes) is the same as sum(depth(leaf)*weight(leaf) for leaf in leaves).In other words, Huffman’s
algorithm is exactly what we need for our optimal merging.

Tip The Python standard library has several modules dealing with compression, including z1ib, gzip, bz2, zipfile,
and tar. The zipfile module deals with ZIP files, which use compression that is based on, among other things,
Huffman codes.®

8By the way, did you know that the ZIP code of Huffman, Texas, is 77336?
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Minimum Spanning Trees

Now let’s take a look at the perhaps most well-known example of a greedy problem: finding minimum spanning trees.
The problem is an old one—it’s been around at least since the early 20th century. It was first solved by the Czech
mathematician Otakar Bortvka in 1926, in an effort to construct a cheap electrical network for Moravia. His algorithm
has been rediscovered many times since then, and it still forms the basis of some of the fastest known algorithms
known today. The algorithms I'll discuss in this section (Prim’s and Kruskal’s) are in some way a bit simpler but have
the same asymptotic running time complexity (O(m Ig n), for n nodes and m edges).® If you're interested in the history
of this problem, including the repeated rediscoveries of the classic algorithms, take a look at the paper “On the History
of the Minimum Spanning Tree Problem,” by Graham and Hell. (For example, you'll see that Prim and Kruskal aren’t
the only ones to lay claim to their eponymous algorithms.)

We're basically looking for the cheapest way of connecting all the nodes of a weighted graph, given that we can
use only a subset of its edges to do the job. The cost of a solution is simply the weight sum for the edges we use.' This
could be useful in building an electrical grid, constructing the core of a road or railroad network, laying out a circuit,
or even performing some forms of clustering (where we’d only almost connect all the nodes). A minimum spanning
tree can also be used as a foundation for an approximate solution to the traveling salesrep problem introduced in
Chapter 1 (see Chapter 11 for a discussion on this).

A spanning tree T of a connected, undirected graph G has the same node set as G and a subset of the edges.

If we associate an edge weight function with G so edge e has weight w(e), then the weight of the spanning tree, w(T), is
the sum of w(e) for every edge e in T. In the minimum spanning tree problem, we want to find a spanning tree over G
that has minimum weight. (Note that there may be more than one.) Note also that if G is disconnected, it will have no
spanning trees, so in the following, it is generally assumed that the graphs we’re working with are connected.

In Chapter 5, you saw how to build spanning trees using traversal; building minimum spanning trees can also
be built in an incremental step like this, and that’s where the greed comes in: We gradually build the tree by adding
one edge at the time. At each step, we choose the cheapest (or lightest) edge among those permitted by our building
procedure. This choice is locally optimal (that is, greedy) and irrevocable. The main task for this problem, or any other
greedy problem, becomes showing that these locally optimal choices lead to a globally optimal solution.

The Shortest Edge

Consider Figure 7-3. Let the edge weights correspond to the Euclidean distances between the nodes as they're drawn
(that is, the actual edge lengths). If you were to construct a spanning tree for this graph, where would you start? Could
you be certain that some edge had to be part of it? Or at least that a certain edge would be safe to include? Certainly
(e,i) looks promising. It’s tiny! In fact, it’s the shortest of all the edges—the one with the lowest weight. But is that
enough?

You can, in fact, combine Bortivka’s algorithm with Prim’s to get a faster algorithm.
"Do you see why the result cannot contain any cycles, as long as we assume positive edge weights?
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Figure 7-3. A Euclidean graph and its minimum spanning tree (highlighted)

As it turns out, it is. Consider any spanning tree without the minimum-weight edge (e,i). The spanning tree
would have to include both e and i (by definition), so it would also include a single path from e to i. If we now were
to add (e,i) to the mix, we'd get a cycle, and in order to get back to a proper spanning tree, we’d have to remove one
of the edges of this cycle—it doesn’t matter which. Because (e,i) is the smallest, removing any other edge would yield
a smaller tree than we started out with. Right? In other words, any tree not including the shortest edge can be made
smaller, so the minimum spanning tree must include the shortest edge. (As you'll see, this is the basic idea behind
Kruskal'’s algorithm.)

What if we consider all the edges incident at a single node—can we draw any conclusions then? Take a look
at b, for example. By the definition of spanning trees, we must connect b to the rest somehow, which means we
must include either (b,d) or (b,a). Again, it seems tempting to choose the shortest of the two. And once again, the
greedy choice turns out to be very sensible. Once again, we prove that the alternative is inferior using a proof by
contradiction: Assume that it was better to use (b,a). We'd build our minimum spanning tree with (b,a) included.
Then, just for fun, we'd add (b,d), creating a cycle. But, hey—if we remove (b,a), we have another spanning tree,
and because we've switched one edge for a shorter one, this new tree must be smaller. In other words, we have a
contradiction, and the one without (b,d) couldn’t have been minimal in the first place. And this is the basic idea
behind Prim’s algorithm, which we’ll look at after Kruskal’s.

In fact, both of these ideas are special cases of a more general principle involving cufs. A cut is simply a
partitioning of the graph nodes into two sets, and in this context we're interested in the edges that pass between these
two node sets. We say that these edges cross the cut. For example, imagine drawing a vertical line in Figure 7-3, right
between d and g; this would give a cut that is crossed by five edges. By now I'm sure you're catching on: We can be
certain that it will be safe to include the shortest edge across the cut, in this case (d,j). The argument is once again
exactly the same: We build an alternative tree, which will necessarily include at least one other edge across the cut
(in order to keep the graph connected). If we then add (d,j), at least one of the other, longer edges across the cut would
be part of the same cycle as (d,j), meaning that it would be safe to remove the other edge, giving a smaller spanning tree.

You can see how the two first ideas are special cases of this “shortest edge across a cut” principle: Choosing the
shortest edge in the graph will be safe because it will be shortest in every cut in which it participates, and choosing the
shortest edge incident to any node will be safe because it’s the shortest edge over the cut that separates that node from
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the rest of the graph. In the following, I expand on these ideas, turning them into two full-fledged greedy algorithms
for finding minimum spanning trees. The first (Kruskal’s) is close to the prototypical greedy algorithm, while the next
(Prim’s) uses the principles of traversal, with the greedy choice added on top.

What About the Rest?

Showing that the first greedy choice is OK isn’t enough. We need to show that the remaining problem is a smaller
instance of the same problem—that our reduction is safe to use inductively. In other words, we need to establish
optimal substructure. This isn’t too hard (Exercise 7-12), but there’s another approach that’s perhaps even simpler
here: We prove the invariant that our solution is part (a subgraph) of a minimum spanning tree. We keep adding edges
as long as the solution isn’t a spanning tree (that is, as long as there are edges left that won't form a cycle), so if this
invariant is true, the algorithm must terminate with a full, minimum spanning tree.

So, is the invariant true? Initially, our partial solution is empty, which is clearly a partial, minimum spanning tree.
Now, assume inductively that we’ve built some partial, minimum spanning tree T and that we add a safe edge (that is,
one that doesn’t create a cycle and that is the shortest one across some cut). Clearly, the new structure is still a forest
(because we meticulously avoid creating cycles). Also, the reasoning in the previous section still applies: Among the
spanning trees containing 7, the one(s) including this safe edge will be smaller than those that don’t. Because
(by assumption), at least one of the trees containing T'is a minimum spanning tree, at least one of those containing
T and the safe edge will also be a minimum spanning tree.

Kruskal’s Algorithm

This algorithm is close to the general greedy approach outlined at the beginning of this chapter: Sort the edges and
start picking. Because we're looking for short edges, we sort them by increasing length (or weight). The only wrinkle
is how to detect edges that would lead to an invalid solution. The only way to invalidate our solution would be to add
a cycle, but how can we check for that? A straightforward solution would be to use traversal; every time we consider
an edge (u,v), we traverse our tree from u to see whether there is a path to v. If there is, we discard it. This seems a bit
wasteful, though; in the worst case, the traversal check would take linear time in the size of our partial solution.

What else could we do? We could maintain a set of the nodes in our tree so far, and then for a prospective
edge (u,v), we'd see whether both were in the solution. This would mean that sorting the edges is what dominates;
checking each edge could be done in constant time. There’s just one crucial flaw in this plan: It won’t work. It would
work if we could guarantee that the partial solution was connected at every step (which is what we’ll be doing in
Prim’s algorithm), but we can’t. So even if two nodes are part of our solution so far, they may be in different trees, and
connecting them would be perfectly valid. What we need to know is that they aren’t in the same tree.

Let’s try to solve this by making each node in the solution know which component (tree) it belongs to. We can let
one of the nodes in a component act as a representative, and then all the nodes in that component could point to that
representative. This leaves the problem of combining components. If all nodes of the merged component had to point
to the same representative, this combination (or union) would be a linear operation. Can we do better? We could try; for
example, we could let each node point to some other node, and we’d follow that chain until we reached the representative
(which would point to itself). Joining would then just be a matter of having one representative point to the other (constant
time). There are no immediate guarantees on how long the chain of references would be, but it’s a first step, at least.

This is what I've done in Listing 7-3, using the map C to implement the “pointing.” As you can see, each node
is initially the representative of its own component, and then I repeatedly connect components with new edges,
in sorted order. Note that the way I've implemented this, I'm expecting an undirected graph where each edge is
represented just once (that is, using one of its directions, chosen arbitrarily).!! As always, I'm assuming that every
node is a key in the graph, though, possibly with an empty weight map (thatis, G[u] = {} if u has no out-edges).

"Going back and forth between this representation and one where you have edges both ways isn’t really hard, but I’ll leave the details
as an exercise for the reader.
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Listing 7-3. A Naive Implementation of Kruskal’s Algorithm

def naive find(C, u): # Find component rep.
while C[u] != u: # Rep. would point to itself
u = Clu]
return u

def naive union(C, u, v):

u = naive find(C, u) # Find both reps
v = naive_find(C, v)
Clu] = v # Make one refer to the other

def naive kruskal(G):

E = [(G[ul[v],u,v) for u in G for v in G[u]]
T = set() # Empty partial solution
C = {u:u for u in G} # Component reps
for _, u, v in sorted(E): # Edges, sorted by weight
if naive find(C, u) != naive find(C, v):
T.add((u, v)) # Different reps? Use it!
naive_union(C, u, v) # Combine components
return T

The naive Kruskal works, but it’s not all that great. (What, the name gave it away?) In the worst case, the chain
of references we need to follow in naive_find could be linear. A rather obvious idea might be to always have the
smaller of the two components in naive_union point to the larger, giving us some balance. Or we could think
even more in terms of a balanced tree and give each node a rank, or height. If we always made the lowest-ranking
representative point to the highest-ranking one, we’d get a total running time of O(rn 1g r) for the calls to naive_find
and naive_union (see Exercise 7-16).

This would actually be fine because the sorting operation to begin with is ©(m lg n) anyway.'? There is one other
trick that is commonly used in this algorithm, though, called path compression. It entails “pulling the pointers along”
when doing a find, making sure all the nodes we examine on our way now point directly to the representative. The
more nodes point directly at the representative, the faster things should go in later finds, right? Sadly, the reasoning
behind exactly how and why this helps is far too knotty for me to go into here (although I'd recommend Sect. 21.4 in
Introduction to Algorithms by Cormen et al., if you're interested). The end result, though, is that the worst-case total
running time of the unions and finds is O(ma(n)), where o(n) is almost a constant. In fact, you can assume that o(n) < 4,
for any even remotely plausible value for n. For an improved implementation of find and union, see Listing 7-4.

Listing 7-4. Kruskal’s Algorithm

def find(C, u):
if C[u] != u:
Clu] = find(C, C[u]) # Path compression
return Cfu]

def union(C, R, u, v):a
u, v = find(C, u), find(C, v)
if R[u] » R[v]: # Union by rank
Clv] = u

12We’re sorting m edges, but we also know that m is O(?), and (because the graph is connected), m is Q(n).
Because O(Ig n?) = ©(2-1g n) = O(Ig n), we get the result.
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v
if R[u] == R[v]: # A tie: Move v up a level

def kruskal(G):
E = [(G[ul[v],u,v) for u in G for v in G[u]]
T = set()
C, R = {u:u for u in G}, {u:0 for u in G} # Comp. reps and ranks
for , u, v in sorted(E):
if find(C, u) !'= find(C, v):

T.add((u, v))

union(C, R, u, v)
return T

Allin all, the running time of Kruskal’s algorithm is ©(m 1g ), which comes from the sorting.
Note that you might want to represent your spanning trees differently (that is, not as sets of edges). The algorithm
should be easy to modify in this respect—or you could just build the structure you want based on the edge set T.

Note The subproblem structure used in Kruskal’s algorithm is an example of a matroid, where the feasible partial
solutions are simply sets—in this case, cycle-free edge sets. For matroids, greed works. Here are the rules: All subsets of
feasible sets must also be feasible, and larger sets must have elements that can extend smaller ones.

Prim’s Algorithm

Kruskal’s algorithm is simple on the conceptual level—it’s a direct translation of the greedy approach to the spanning
tree problem. As you just saw, though, there is some complexity in the validity checking. In this respect, Prim'’s
algorithm is a bit simpler.’®* The main idea in Prim’s algorithm is to traverse the graph from a starting node, always
adding the shortest edge connected to the tree. This is safe because the edge will be the shortest one crossing the cut
around our partial solution, as explained earlier.

This means that Prim’s algorithm is just another traversal algorithm, which should be a familiar concept if you've
read Chapter 5. As discussed in that chapter, the main difference between traversal algorithms is the ordering of
our “to-do” list—among the unvisited nodes we’ve discovered, which one do we grow our traversal tree to next? In
breadth-first search, we used a simple queue (that is, a deque); in Prim’s algorithm, we simply replace this queue with
a priority queue, implemented with a heap, using the heapq library (discussed in a “Black Box” sidebar in Chapter 6).

There is one important issue here, though: Most likely, we will discover new edges pointing to nodes that are
already in our queue. If the new edge we discovered was shorter than the previous one, we should adjust the priority
based on this new edge. This, however, can be quite a hassle. We’d need to find the given node inside the heap, change
the priority, and then restructure the heap so that it would still be correct. You could do that by having a mapping from
each node to its position in the heap, but then you'd have to update that mapping when performing heap operations,
and you could no longer use the heapq library.

B Actually, the difference is deceptive. Prim’s algorithm is based on traversal and heaps—concepts we’ve already dealt with—while
Kruskal’s algorithm introduced a new disjoint set mechanism. In other words, the difference in simplicity is mostly a matter of
perspective and abstraction.
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It turns out there’s another way, though. A really pretty solution, which will also work with other priority-based
traversals (such as Dijkstra’s algorithm and A*, discussed in Chapter 9), is to simply add the nodes multiple times.
Each time you find an edge to a node, you add the node to the heap (or other priority queue) with the appropriate
weight, and you don’t care if it’s already in there. Why could this possibly work?

e  We're using a priority queue, so if a node has been added multiple times, by the time we
remove one of its entries, it will be the one with the lowest weight (at that time), which is the
one we want.

e  We make sure we don’t add the same node to our traversal tree more than once. This can be
ensured by a constant-time membership check. Therefore, all but one of the queue entries for
any given node will be discarded.

e  The multiple additions won't affect asymptotic running time (see Exercise 7-17).

There are important consequences for the actual running time as well. The (much) simpler code isn’t only easier
to understand and maintain; it also has a lot less overhead. And because we can use the super-fast heapq library, the
net consequence is most likely a large performance gain. (If you'd like to try the more complex version, which is used
in many algorithm books, you're welcome, of course.)

Note Re-adding a node with a lower weight is equivalent to a relaxation, as discussed in Chapter 4. As you'll see,
| also add the predecessor node to the queue, making any explicit relaxation unnecessary. When implementing Dijkstra’s
algorithm in Chapter 9, however, | use a separate relax function. These two approaches are interchangeable (so you
could have Prim’s with relax and Dijkstra’s without it).

You can see my version of Prim’s algorithm in Listing 7-5. Because heapq doesn’t (yet) support sorting keys, as
list.sort and friends do, I'm using (weight, node) pairs in the heap, discarding the weights when the nodes are
popped off. Beyond the use of a heap, the code is similar to the implementation of breadth-first search in Listing 5-10.
That means that a lot of the understanding here should come for free.

Listing 7-5. Prim’s Algorithm

from heapq import heappop, heappush

def prim(G, s):

P, Q= {}, [(0) None, S)]
while Q:

_» P, u = heappop(Q)

if u in P: continue

Plul = p

for v, w in G[u].items():

heappush(Q, (w, u, v))

return P

Note that unlike kruskal, in Listing 7-4, the prim function in Listing 7-5 assumes that the graph G is an undirected
graph where both directions are explicitly represented, so we can easily traverse each edge in both directions.'

“As I mentioned when discussing Kruskal’s algorithm, adding and removing such redundant reverse edges is quite easy, if you
need to do so.
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As with Kruskal’s algorithm, you may want to represent the resulting spanning tree differently from what I do
here. Rewriting that part should be pretty easy.

Note The subproblem structure used in Prim’s algorithm is an example of a greedoid, which is a simplification and
generalization of matroids where we no longer require all subsets of feasible sets to be feasible. Sadly, having a greedoid
is not in itself a guarantee that greed will work—though it is a step in the right direction.

A SLIGHTLY DIFFERENT PERSPECTIVE

In their historical overview of minimum spanning tree algorithms, Ronald L. Graham and Pavol Hell outline

three algorithms that they consider especially important and that have played a central role in the history of the
problem. The first two are the algorithms that are commonly attributed to Kruskal and Prim (although the second
one was originally formulated by Vojtéch Jarnik in 1930), while the third is the one initially described by Bortivka.
Graham and Hell succinctly explain the algorithms as follows. A partial solution is a spanning forest, consisting
of a set of fragments (components, trees). Initially, each node is a fragment. In each iteration, edges are added,
joining fragments, until we have a spanning tree.

Algorithm 1: Add a shortest edge that joins two different fragments.
Algorithm 2: Add a shortest edge that joins the fragment containing the root to another fragment.
Algorithm 3: For every fragment, add the shortest edge that joins it to another fragment.

For algorithm 2, the root is chosen arbitrarily at the beginning. For algorithm 3, it is assumed that all edge weights
are different to ensure that no cycles can occur. As you can see, all three algorithms are based on the same
fundamental fact—that the shortest edge over a cut is safe. Also, in order to implement them efficiently, you

need to be able to find shortest edges, detect whether two nodes belong to the same fragment, and so forth

(as explained for algorithms 1 and 2 in the main text). Still, these brief explanations can be useful as a memory
aid or to get the bird’s-eye perspective on what’s going on.

Greed Works. But When?

Although induction is generally used to show that a greedy algorithm is correct, there are some extra “tricks” that
can be employed. I've already used some in this chapter, but here I'll try to give you an overview, using some simple
problems involving time intervals. It turns out there are many problems of this type that can be solved by greedy
algorithms. I'm not including code for these; the implementations are pretty straightforward (although it might be a
useful exercise to actually implement them).

Keeping Up with the Best

This is what Kleinberg and Tardos (in Algorithm Design) call staying ahead. The idea is to show that as you build your
solution, one step at a time, the greedy algorithm will always have gotten at least as far as a hypothetical optimal
algorithm would have. Once you reach the finish line, you've shown that greed is optimal. This technique can be
useful in solving a common example of greed: resource scheduling.
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The problem involves selecting a set of compatible intervals. Normally, we think of these intervals as time
intervals (see Figure 7-4). Compatibility simply means that none of them should overlap, so this could be used to
model requests for using a resource, such as a lecture hall, for certain time periods. Another example would be to
let you be the “resource” and to let the intervals be various activities you'd like to participate in. Either way, our
optimization task is to choose as many mutually compatible (nonoverlapping) intervals as possible. For simplicity,
we can assume that no start or end points are identical. Handling identical values is not significantly harder.

f i P
d i
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— } |
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B } | P
a e h

t

Figure 7-4. A set of random intervals where at most four mutually compatible intervals (for example, a, ¢, e and g) can
be found

There are two obvious candidates for greedy selection here: If we go from left to right on the timeline, we might
want to start with either the interval that starts first or the one that ends first, eliminating any other overlapping
intervals. I hope it is clear that the first alternative can’t work (Exercise 7-18), which leaves us to show that the other
one does work.

The algorithm is (roughly) as follows:

1. Include the interval with the lowest finish time in the solution.
2.  Remove all of the remaining intervals that overlap with the one from step 1.
3. Anyremaining intervals? Go to step 1.

Running this algorithm on the interval set in Figure 7-4 results in the highlighted set of intervals (g, ¢, e and g).
The resulting solution is clearly valid; that is, there aren’t any overlapping intervals in it. This will be the case in
general; we need show only that it’s optimal, that is, that we have as many intervals as possible. Let’s try to apply the
idea of staying ahead.

Let’s say our intervals are, in the order in which they were added, i, ... i, and that the hypothetical, optimal
solution gives the intervalsj, ... j . We want to show that k = m. Assume that the optimal intervals are sorted by
finishing (and starting) times.'* To show that our algorithm stays ahead of the optimal one, we need to show that for
any r <k, the finish time of i is at least as early as that of j, and we can prove this by induction.

For r =1, it is obviously correct: The greedy algorithm chooses i, which is the element with the minimum finish
time. Now, let r > 1 and assume that our hypothesis holds for r - 1. The question then becomes whether it is possible
for the greedy algorithm to “fall behind” at this step. That is, is it possible that the finish time for i could now be
greater than that of j ? The answer is clearly no, because the greedy algorithm could just as well have chosen j (which
is compatible with j_, and therefore also with i , which finishes at least as early).

r-17

"“Because the intervals don’t overlap, sorting by starting and finishing times is equivalent.
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So, the greedy algorithm keeps up with the best, all the way to the end. However, this “keeping up” dealt only with
finishing times, not the number of intervals. We need to show that keeping up will yield an optimal solution, and we
can do so by contradiction: If the greedy algorithm is not optimal, then m > k. For every r, including r = k, we know
that i finishes at least as early as j. Because m > k, there must be an interval j | that we didn’t use. This must start after
J,, and therefore after i, which means that we could have—and, indeed, would have—included it. In other words, we
have a contradiction.

No Worse Than Perfect

This is a technique I used in showing the greedy choice property for Huffman'’s algorithm. It involves showing that you
can transform a hypothetical optimal solution to the greedy one, without reducing the quality. Kleinberg and Tardos
call this an exchange argument. Let’s put a twist on the interval problem. Instead of having fixed starting and ending
times, we now have a duration and a deadline, and you're free to schedule the intervals—let’s call them tasks—as you
want, as long as they don’t overlap. You also have a given starting time, of course.

However, any task that goes past its deadline incurs a penalty equal to its delay, and you want to minimize the
maximum of these delays. On the surface, this might seem like a rather complex scheduling problem (and, indeed,
many scheduling problems are really hard to solve). Surprisingly, though, you can find the optimum schedule through
a super-simple greedy strategy: Always perform the most urgent task. As is often the case for greedy algorithms, the
correctness proof is a bit tougher than the algorithm itself.

The greedy solution has no gaps in it. As soon as we’re done with one task, we start the next. There will also be
at least one optimal solution without gaps—if we have an optimal solution with gaps, we can always close these up,
resulting in earlier finish times for the later tasks. Also, the greedy solution will have no inversions (jobs scheduled
before other jobs with earlier deadlines). We can show that all solutions without gaps or inversions have the same
maximum delay. Two such solutions can differ only in the order of tasks with identical deadlines, and these must be
scheduled consecutively. Among the tasks in such a consecutive block, the maximum delay depends only on the last
task, and this delay doesn’t depend on the order of the tasks.

The only thing that remains to be proven is that there exists an optimal solution without gaps or inversions,
because it would be equivalent to the greedy solution. This proof has three parts:

e Ifthe optimal solution has an inversion, there are two consecutive tasks where the first has a
later deadline than the second.

e  Switching these two removes one inversion.
e  Removing this inversion will not increase the maximum delay.

The first point should be obvious enough. Between two inverted tasks, there must be some point where the
deadlines start decreasing, giving us the two consecutive, inverted tasks. As for the second point, swapping the tasks
clearly removes one inversion, and no new inversions are created. The third point requires a little care. Swapping tasks
iandj (sojnow comes first) can potentially increase the lateness of only i; all other tasks are safe. In the new schedule,
i finishes where j finished before. Because (by assumption) the deadline of i was later than that of j, the delay cannot
possibly have increased. Thus, the third part of the proof is done.

It should be clear that these parts together show that the greedy schedule minimizes the maximum delay.

Staying Safe

This is where we started: To make sure a greedy algorithm is correct, we must make sure each greedy step along the
way is safe. One way of doing this is the two-part approach of showing (1) the greedy choice property, that is, that a
greedy choice is compatible with optimality, and (2) optimal substructure, that is, that the remaining subproblem is a
smaller instance that must also be solved optimally. The greedy choice property, for example, can be shown using an
exchange argument (as was done for the Huffman algorithm).
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Another possibility is to treat safety as an invariant. Or, in the words of Michael Soltys (see the “References”
section of Chapter 4), we need to show that if we have a promising partial solution, a greedy choice will yield a new,
bigger solution that is also promising. A partial solution is promising if it can be extended to an optimal solution. This
is the approach I took in the section “What about the rest?” earlier in this chapter; there, a solution was promising
if it was contained in (and, thus, could be extended to) a minimum spanning tree. Showing that “the current partial
solution is promising” is an invariant of the greedy algorithm, as you keep making greedy choices, is really all you need.

Let’s consider a final problem involving time intervals. The problem is simple enough, and so is the algorithm,
but the correctness proof is rather involved.'® It can serve as an example of the effort that may be required to show that
arelatively simple greedy algorithm is correct.

This time, we once again have a set of tasks with deadlines, as well as a starting time (such as the present). This
time, though, these are hard deadlines—if we can’t get a task done before its deadline, we can’t take it on at all. In
addition, each task has a given profit associated with it. As before, we can perform only one task at a time, and we
can'’t split them into pieces, so we're looking for a set of jobs that we can actually do, and that gives us as large a total
profit as possible. However, to keep things simple, this time all tasks take the same amount of time—one time step.

If d is the latest deadline, as measured in time steps from the starting point, we can start with an empty schedule of d
empty slots and then fill those slots with tasks.

The solution to this problem is, in a way, doubly greedy. First, we consider the tasks by decreasing profit, starting
with the most profitable task; that’s the first greedy part. Then comes the second part: We place each task in the latest
possible free slot that it can occupy, based on its deadline. If there is no free, valid slot, we discard the task.

Once we're done, if we haven't filled all the slots, we're certainly free to perform tasks earlier, so as to remove the
gaps—it won't affect the profit or allow us to perform any more tasks. To get a feel for this solution, you might want to
actually implement it (Exercise 7-20).

The solution sounds intuitively appealing; we give the profitable tasks precedence, and we make sure they use a
minimum of our precious “early time,” by pushing them as far toward their deadline as possible. But, once again, we
won't rely on intuition. We’ll use a bit of induction, showing that as we add tasks in this greedy fashion, our schedule
stays promising.

Caution The following presentation does not involve any deep math or rocket science and is more of an informal
explanation than a full, technical proof. Still, it is a bit involved and might hurt your brain. If you don’t feel up to it, feel free
to skip ahead to the chapter summary.

As is invariably the case, the initial, empty solution is promising. In moving beyond the base case, it’s important
to remember that the schedule is really promising only if it can be extended to an optimal schedule using the
remaining tasks, as this is the only way we're allowed to extend it. Now, assume we have a promising partial schedule
P. Some of its slots are filled in, and some are not. The fact that P is promising means that it can be extended to an
optimal schedule—let’s call it S. Also, let’s say T is the next task under consideration.

We now have four cases to consider:

e Twon'tfitin P, because there is no room before the deadline. In this case, T can’t affect
anything, so P is still promising once T is discarded.

e Twillfitin P, and it ends up in the same position as in S. In this case, we're actually extending
toward S, so P is still promising.

!Versions of this problem can be found in Soltys’ book (see “References” in Chapter 4) and that of Cormen et al. (see “References”
in Chapter 1). My proof closely follows Soltys’s, while Cormen et al. choose to prove that the problem forms a matroid, which means
that a greedy algorithm will work on it.
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e T will fit, but it ends up somewhere else. This might seem somewhat troubling.
e T will fit, but S doesn’t contain it. Even more troubling, perhaps.

Clearly we need to address the last two cases, because they seem to be building away from the optimal schedule
S. The thing is, there may be more than one optimal schedule—we just need to show that we can still reach one of
them after T has been added.

First, let’s consider the case where we greedily add T, and it’s not in the same place as it would have been in S.
Then we can build a schedule that’s almost like S, except that T has swapped places with another task T’ Let’s call
this other schedule S By construction, T is placed as late as possible in S, which means it must be placed earlier in
S. Conversely, T' must be placed later in S and therefore earlier in S’ This means that we cannot have broken the
deadline of T" when constructing S; so it’s a valid solution. Also, because S and S’ consist of the same tasks, the profits
must be identical.

The only case that remains is if T is not scheduled in the optimal schedule S. Again, let S’ be almost like S. The
only difference is that we've scheduled T with our algorithm, effectively “overwriting” some other task T” in S. We
haven'’t broken any deadlines, so S’ is valid. We also know that we can get from P to S’ (by almost following the steps
needed to get to S, just using T instead of T").

The last question then becomes, does S’ have the same profit as S? We can prove that it does, by contradiction.
Assume that T’ has a greater profit than T, which is the only way in which S could have a higher profit. If this were the
case, the greedy algorithm would have considered T’ before T. As there is at least one free slot before the deadline of
T, the greedy algorithm would have scheduled it, necessarily in a different position than T, and therefore in a different
position than in S. But we assumed that we could extend P to S, and if it has a task in a different position, we have a
contradiction.

Note This is an example of a proof technique called proof by cases, where we add some conditions to the situation
and make sure to prove what we want for all cases that these conditions can create.

Summary

Greedy algorithms are characterized by how they make decisions. In building a solution, step-by-step, each added
element is the one that looks best at the moment it’s added, without concern for what went before or what will happen
later. Such algorithms can often be quite simple to design and implement, but showing that they are correct (that is,
optimal) is often challenging. In general, you need to show that making a greedy choice is safe—that if the solution
you had was promising, that is, it could be extended to an optimal one, then the one after the greedy choice is also
promising. The general principles, as always, is that of induction, though there are a couple of more specialized ideas
that can be useful. For example, if you can show that a hypothetical optimal solution can be modified to become

the greedy solution without loss of quality, then the greedy solution is optimal. O, if you can show that during the
solution building process, the greedy partial solutions in some sense keep up with a hypothetical optimal sequence of
solutions, all the way to the final solution, you can (with a little care) use that to show optimality.

Important greedy problems and algorithms discussed in this chapter include the knapsack problem (selecting a
weight-bounded subset of items with maximum value), where the fractional version can be solved greedily; Huffman
trees, which can be used to create optimal prefix codes and are built greedily by combining the smallest trees in the
partial solution; and minimum spanning trees, which can be built using Kruskal’s algorithm (keep adding the smallest
valid edge) or Prim’s algorithm (keep connecting the node that is closest to your tree).
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If You’re Curious ...

There is a deep theory about greedy algorithms that I haven'’t really touched upon in this chapter, dealing with such
beasts as matroids, greedoids, and so-called matroid embeddings. Although the greedoid stuff is a bit hard and the
matroid embedding stuff can get really confusing fast, matroids aren’t really that complicated, and they present an
elegant perspective on some greedy problems. (Greedoids are more general, and matroid embeddings are the most
general of the three, actually covering all greedy problems.) For more information on matroids, you could have a look
at the book by Cormen et al. (see the “References” section of Chapter 1).

If you're interested in why the change-making problem is hard in general, you should have a look at the material
in Chapter 11. As noted earlier, though, for a lot of currency systems, the greedy algorithm works just fine. David
Pearson has designed an algorithm for checking whether this is the case, for any given currency; if you're interested,
you should have a look at his paper (see “References”).

If you find you need to build minimum directed spanning trees, branching out from some starting node, you can’t
use Prim’s algorithm. A discussion of an algorithm that will work for finding these so-called min-cost arborescences
can be found in the book by Kleinberg and Tardos (see the “References” section of Chapter 1).

Exercises

7-1. Give an example of a set of denominations that will break the greedy algorithm for giving change.

7-2. Assume that you have coins whose denominations are powers of some integer k > 1.
Why can you be certain that the greedy algorithm for making change would work in this case?

7-3. If the weights in some selection problem are unique powers of two, a greedy algorithm will
generally maximize the weight sum. Why?

7-4. In the stable marriage problem, we say that a marriage between two people, say, Jack and Jill,
is feasible if there exists a stable pairing where Jack and Jill are married. Show that the Gale-Shapley
algorithm will match each man with his highest-ranking feasible wife.

7-5. Jill is Jack’s best feasible wife. Show that Jack is Jill's worst feasible husband.

7-6. Let’s say the various things you want to pack into your knapsack are partly divisible. That is, you
can divide them at certain evenly spaced points (such as a candy bar divided into squares).

The different items have different spacings between their breaking points. Could a greedy algorithm
still work?

7-7. Show that the codes you get from a Huffman code are free of ambiguity. That is, when decoding a
Huffman-coded text, you can always be certain of where the symbol boundaries go and which symbols
go where.

7-8. In the proof for the greedy choice property of Huffman trees, it was assumed that the frequencies
of a and d were different. What happens if they're not?

7-9. Show that a bad merging schedule can give a worse running time, asymptotically, than a good one
and that this really depends on the frequencies.

7-10. Under what circumstances can a (connected) graph have multiple minimum spanning trees?
7-11. How would you build a maximum spanning tree (that is, one with maximum edge-weight sum)?
7-12. Show that the minimum spanning tree problem has optimal substructure.

7-13. What will Kruskal’s algorithm find if the graph isn’t connected? How could you modify Prim’s
algorithm to do the same?
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7-14. What happens if you run Prim’s algorithm on a directed graph?

7-15. For n points in the plane, no algorithm can find a minimum spanning tree (using Euclidean
distance) faster than loglinear in the worst case. How come?

7-16. Show that m calls to either union or find would have a running time of O(m 1g r) if you used
union by rank.

7-17. Show that when using a binary heap as priority queue during a traversal, adding nodes once for
each time they’re encountered won't affect the asymptotic running time.

7-18. In selecting the largest nonoverlapping subset of a set of intervals, going left to right, why can’t we
use a greedy algorithm based on starting times?

7-19. What would the running time be of the algorithm finding the largest set of nonoverlapping
intervals?

7-20. Implement the greedy solution for the scheduling problem where each task has a cost and a hard
deadline and where all tasks take the same amount of time to perform.
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CHAPTER 8

Tangled Dependencies
and Memoization

Twice, adv. Once too often.

— Ambrose Bierce, The Devil’s Dictionary

Many of you may know the year 1957 as the birth year of programming languages.' For algorists, a possibly even more
significant event took place this year: Richard Bellman published his groundbreaking book Dynamic Programming.
Although Bellman’s book is mostly mathematical in nature, not really aimed at programmers at all (perhaps
understandable, given the timing), the core ideas behind his techniques have laid the foundation for a host of very
powerful algorithms, and they form a solid design method that any algorithm designer needs to master.

The term dynamic programming (or simply DP) can be a bit confusing to newcomers. Both of the words are
used in a different way than most might expect. Programming here refers to making a set of choices (as in “linear
programming”) and thus has more in common with the way the term is used in, say, television, than in writing
computer programs. Dynamic simply means that things change over time—in this case, that each choice depends
on the previous one. In other words, this “dynamicism” has little to do with the program you’ll write and is just a
description of the problem class. In Bellman’s own words, “I thought dynamic programming was a good name. It was
something not even a Congressman could object to. So I used it as an umbrella for my activities.”

The core technique of DP, when applied to algorithm design, is caching. You decompose your problem
recursively/inductively just like before—but you allow overlap between the subproblems. This means that a plain
recursive solution could easily reach each base case an exponential number of times; however, by caching these
results, this exponential waste can be trimmed away, and the result is usually both an impressively efficient algorithm
and a greater insight into the problem.

Commonly, DP algorithms turn the recursive formulation upside down, making it iterative and filling out some
data structure (such as a multidimensional array) step by step. Another option—one I think is particularly suited
to high-level languages such as Python—is to implement the recursive formulation directly but to cache the return
values. If a call is made more than once with the same arguments, the result is simply returned directly from the
cache. This is known as memoization.

!This was the year the first FORTRAN compiler was released by John Backus’s group. Many consider this the first complete
compiler, although the first compiler ever was written in 1942, by Grace Hopper.
2See Richard Bellman on the Birth of Dynamic Programming in the references.
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Note Although I think memoization makes the underlying principles of DP clear, | do consistently rewrite the
memoized versions to iterative programs throughout the chapter. While memoization is a great first step, one that gives
you increased insight as well as a prototype solution, there are factors (such as limited stack depth and function call
overhead) that may make an iterative solution preferable in some cases.

The basic ideas of DP are quite simple, but they can take a bit getting used to. According to Eric V. Denardo, another
authority on the subject, “Most beginners find all of them strange and alien.” I'll be trying my best to stick to the core
ideas and not get lost in formalism. Also, by placing the main emphasis on recursive decomposition and memoization,
rather than iterative DP, I hope the link to all the work we’ve done so far in the book should be pretty clear.

Before diving into the chapter, here’s a little puzzle: Say you have a sequence of numbers, and you want to find its
longest increasing (or, rather nondecreasing) subsequence—or one of them, if there are more. A subsequence consists
of a subset of the elements in their original order. So, for example, in the sequence [3, 1, 0, 2, 4], one solution
would be [1, 2, 4]. In Listing 8-1 you can see a reasonably compact solution to this problem. It uses efficient, built-in
functions such as combinations from itertools and sorted to do its job, so the overhead should be pretty low.

The algorithm, however, is a plain brute-force solution: Generate every subsequence and check them individually to
see whether they’re already sorted. In the worst case, the running time here is clearly exponential.

Writing a brute-force solution can be useful in understanding the problem and perhaps even in getting some
ideas for better algorithms; I wouldn'’t be surprised if you could find several ways of improving naive_lis. However,
a substantial improvement can be a bit challenging. Can you, for example, find a quadratic algorithm (somewhat
challenging)? What about a loglinear one (pretty hard)? I'll show you how in a minute.

Listing 8-1. A Naive Solution to the Longest Increasing Subsequence Problem

from itertools import combinations

def naive lis(seq):

for length in range(len(seq), 0, -1): #n,n-1, ..., 1
for sub in combinations(seq, length): # Subsequences of given length
if list(sub) == sorted(sub): # An increasing subsequence?
return sub # Return it!

Don’t Repeat Yourself

You may have heard of the DRY principle: Don’t repeat yourself. It's mainly used about your code, meaning that you
should avoid writing the same (or almost the same) piece of code more than once, relying instead of various forms of
abstraction to avoid cut-and-paste coding. It is certainly one of the most important basic principles of programming,
but it’s not what I'm talking about here. The basic idea of this chapter is to avoid having your algorithm repeat itself.
The principle is so simple, and even quite easy to implement (at least in Python), but the mojo here is really deep,
as you'll see as we progress.

But let’s start with a couple of classics: Fibonacci numbers and Pascal’s triangle. You may well have run into
these before, but the reason that “everyone” uses them is that they can be pretty instructive. And fear not—I'll put a
Pythonic twist on the solutions here, which I hope will be new to most of you.
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The Fibonacci series of numbers is defined recursively as starting with two ones, with every subsequent number
being the sum of the two previous. This is easily implemented as a Python function®:

>>> def fib(i):
if i < 2: return 1
return fib(i-1) + fib(i-2)

Let’s try it out:

>>> fib(10)
89

Seems correct. Let’s be a bit bolder:
>>> fib(100)

Uh-oh. It seems to hang. Something is clearly wrong. I'm going to give you a solution that is absolutely overkill
for this particular problem but that you can actually use for all the problems in this chapter. It’s the neat little memo

function in Listing 8-2. This implementation uses nested scopes to give the wrapped function memory—if you'd like,
you could easily use a class with cache and func attributes instead.

Note There is actually an equivalent decorator in the functools module of the Python standard library, called
1ru_cache (available since Python 3.2, or in the package functools32 for Python 2.7¢). If you set its maxsize argument
to None, it will work as a full memoizing decorator. It also provides a cache_clear method, which you could call between
uses of your algorithm.

Listing 8-2. A Memoizing Decorator

from functools import wraps

def memo(func):

cache = {} # Stored subproblem solutions
@wraps (func) # Make wrap look like func
def wrap(*args): # The memoized wrapper
if args not in cache: # Not already computed?
cache[args] = func(*args) # Compute & cache the solution
return cache[args] # Return the cached solution
return wrap # Return the wrapper

Before getting into what memo actually does, let’s just try to use it:

>>> fib = memo(fib)
>>> fib(100)
573147844013817084101

3Some definitions start with zero and one. If you want that, just use return i instead of return 1. The only difference is to shift
the sequence indices by one.
*https://pypi.python.org/pypi/functools32/3.2.3
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Hey, it worked! But ... why?

The idea of a memoized function® is that it caches its return values. If you call it a second time with the same
parameters, it will simply return the cached value. You can certainly put this sort of caching logic inside your function,
but the memo function is a more reusable solution. It’s even designed to be used as a decorator®:

>>> @memo
... def fib(i):
if i < 2: return 1
return fib(i-1) + fib(i-2)

>>> fib(100)
573147844013817084101

As you can see, simply tagging fib with @memo can somehow reduce the running time drastically. And I still
haven’t really explained how or why.

The thing is, the recursive formulation of the Fibonacci sequence has two subproblems, and it sort of looks like
a divide-and-conquer thing. The main difference is that the subproblems have tangled dependencies. Or, to put it in
another way, we're faced with overlapping subproblems. This is perhaps even clearer in this rather silly relative of the
Fibonacci numbers: a recursive formulation of the powers of two:

>>> def two_pow(i):
if 1 == 0: return 1
return two pow(i-1) + two_pow(i-1)

>>> two_pow(10)
1024
>>> two_pow(100)

Still horrible. Try adding @memo, and you'll get the answer instantly. Or, you could try to make the following
change, which is actually equivalent:

>>> def two_pow(i):
if i == 0: return 1
return 2*two_pow(i-1)

>>> print(two_pow(10))

1024

>>> print(two_pow(100))
1267650600228229401496703205376

I've reduced the number of recursive calls from two to one, going from an exponential running time to a linear
one (corresponding to recurrences 3 and 1, respectively, from Table 3-1). The magic part is that this is equivalent
to what the memoized version does. The first recursive call would be performed as normal, going all the way to the
bottom (i == 0). Any call after that, though, would go straight to the cache, giving only a constant amount of extra
work. Figure 8-1 illustrates the difference. As you can see, when there are overlapping subproblems (that is, nodes
with the same number) on multiple levels, the redundant computation quickly becomes exponential.

SThat is memo-ized, not memorized.
The use of the wraps decorator from the functools module doesn’t affect the functionality. It just lets the decorated function
(such as fib) retain its properties (such as its name) after wrapping. See the Python docs for details.
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Plain recursion Memoized

Figure 8-1. Recursion trees showing the impact of memoization. Node labels are subproblem parameters

Let’s solve a slightly more useful problem’: calculating binomial coefficients (see Chapter 3). The combinatorial
meaning of C(n,k) is the number of k-sized subsets you can get from a set of size n. The first step, as almost always, is
to look for some form of reduction or recursive decomposition. In this case, we can use an idea that you’ll see several
times when working with dynamic programming®: We decompose the problem by conditioning on whether some
element is included. That is, we get one recursive call if an element is included and another if it isn’t. (Do you see how
two_pow could be interpreted in this way? See Exercise 8-2.)

For this to work, we often think of the elements in order so that a single evaluation of C(#,k) would only worry
about whether element number 7 should be included. If it is included, we have to count the k-1-sized subsets of the
remaining n-1 elements, which is simply C(n-1,k-1). If it is not included, we have to look for subsets of size k, or
C(n-1,k). In other words:

Mty

In addition, we have the following base cases: C(n,0) = 1 for the single empty subset, and C(0,k) =0, k > 0, for
nonempty subsets of an empty set.

This recursive formulation corresponds to what is often called Pascal’s triangle (after one if its discoverers, Blaise
Pascal), although it was first published in 1303 by the great Chinese mathematician Zhu Shijie, who claimed it was
discovered early in the second millennium cE. Figure 8-2 shows how the binomial coefficients can be placed in a
triangular pattern so that each number is the sum of the two above it. This means that the row (counting from zero)
corresponds to n, and the column (the number of the cell, counting from zero at the left in its row) corresponds to k.
For example, the value 6 corresponds to C(4,2) and can be calculated as C(3,1) + C(3,2) =3 + 3 = 6.

"This is still just an example for illustrating the basic principles.
8For example, this “In or not?” approach is used in solving the knapsack problem, later in this chapter.
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Figure 8-2. Pascal’s triangle

Another way of interpreting the pattern (as hinted at by the figure) is path counting. How many paths are there,
if you go only downward, past the dotted lines, from the top cell to each of the others? This leads us to the same
recurrence—we can come either from the cell above to the left or from the one above to the right. The number of
paths is therefore the sum of the two. This means that the numbers are proportional to the probability of passing each
of them if you make each left/right choice randomly on your way down. This is exactly what happens in games like the
Japanese game Pachinko or in Plinko on The Price Is Right. There, a ball is dropped at the top and falls down between
pins placed in some regular grid (such as the intersections of the hexagonal grid in Figure 8-2). I'll get back to this path
counting in the next section—it’s actually more important than it might seem at the moment.

The code for C(n,k) is trivial:

>>> @memo
>>> def C(n,k):
cee if k == 0: return 1
if n == 0: return 0
cee return C(n-1,k-1) + C(n-1,k)
>>> ((4,2)
6
>>> €(10,7)
120
>>> €(100,50)
100891344545564193334812497256

You should try it both with and without the @memo, though, to convince yourself of the enormous difference
between the two versions. Usually, we associate caching with some constant-factor speedup, but this is another
ballpark entirely. For most of the problems we’ll consider, the memoization will mean the difference between
exponential and polynomial running time.
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Note Some of the memoized algorithms in this chapter (notably the one for the knapsack problem, as well as the
ones in this section) are pseudopolynomial because we get a polynomial running time as a function of one of the numbers
in the input, not only its size. Remember, the ranges of these numbers are exponential in their encoding size (that is, the
number of bits used to encode them).

In most presentations of dynamic programming, memoized functions are, in fact, not used. The recursive
decomposition is an important step of the algorithm design, but it is usually treated as just a mathematical tool, whereas
the actual implementation is “upside down”—an iterative version. As you can see, with a simple aid such as the @memo
decorator, memoized solutions can be really straightforward, and I don’t think you should shy away from them. They’ll
help you get rid of nasty exponential explosions, without getting in the way of your pretty, recursive design.

However, as discussed before (in Chapter 4), you may at times want to rewrite your code to make it iterative. This
can make it faster, and you avoid exhausting the stack if the recursion depth gets excessive. There’s another reason, too:
The iterative versions are often based on a specially constructed cache, rather than the generic “dict keyed by parameter
tuples” used in my @memo. This means that you can sometimes use more efficient structures, such as the multidimensional
arrays of NumPy, perhaps combined with Cython (see Appendix A), or even just nested lists. This custom cache design
makes it possible to do use DP in more low-level languages, where general, abstract solutions such as our @memo decorator
are often not feasible. Note that even though these two techniques often go hand in hand, you are certainly free to use an
iterative solution with a more generic cache or a recursive one with a tailored structure for your subproblem solutions.

Let’s reverse our algorithm, filling out Pascal’s triangle directly. To keep things simple, I'll use a defaultdict as
the cache; feel free to use nested lists, for example. (See also Exercise 8-4.)

>>> from collections import defaultdict
>»>n, k =10, 7
>>> C = defaultdict(int)
>>> for row in range(n+1):

C[row,0] =1

for col in range(1,k+1):

C[row,col] = C[row-1,col-1] + C[row-1,col]
>>> C[n,k]
120
Basically the same thing is going on. The main difference is that we need to figure out which cells in the cache

need to be filled out, and we need to find a safe order to do it in so that when we’re about to calculate C[ row, col], the

cells C[row-1,col-1] and C[row-1,col] are already calculated. With the memoized function, we needn’t worry about
either issue: It will calculate whatever it needs recursively.

Tip One useful way to visualize dynamic programming algorithms with one or two subproblem parameters (such
as nand k, here) is to use a (real or imagined) spreadsheet. For example, try calculating binomial coefficients in a
spreadsheet by filling the first column with ones and filling in the rest of the first row with zeros. Put the formula =A1+B1
into cell B2, and copy it to the remaining cells.
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Shortest Paths in Directed Acyclic Graphs

At the core of dynamic programming lies the idea of sequential decision problems. Each choice you make leads to a
new situation, and you need to find the best sequence of choices that gets you to the situation you want. This is similar
to how greedy algorithms work—it’s just that they rely on which choice looks best right now, while in general, you
have to be less myopic and take future effects into consideration.

The prototypical sequential decision problem is finding your way from one node to another in a directed,
acyclic graph. We represent the possible states of our decision process as individual nodes. The out-edges represent
the possible choices we can make in each state. The edges have weights, and finding an optimal set of choices is
equivalent to finding a shortest path. Figure 8-3 gives an example of a DAG where the shortest path from node a to
node fhas been highlighted. How should we go about finding this path?

Figure 8-3. A topologically sorted DAG. Edges are labeled with weights, and the shortest path from a to f has been
highlighted

It should be clear how this is a sequential decision process. You start in node a, and you have a choice between
following the edge to b or the edge to f. On the one hand, the edge to b looks promising because it’s so cheap, while the
one to fis tempting because it goes straight for the goal. We can’t go with simple strategies like this, however. For example,
the graph has been constructed so that following the shortest edge from each node we visit, we'll follow the longest path.

As in previous chapters, we need to think inductively. Let’s assume that we already know the answer for all the
nodes we can move to. Let’s say the distance from a node v to our end node is d(v). Let the edge weight of edge (u,v)
be w(u,v). Then, if we're in node u, we already (by inductive hypothesis) know d(v) for each neighbor v, so we just
have to follow the edge to the neighbor v that minimizes the expression w(u,v) + d(v). In other words, we minimize the
sum of the first step and the shortest path from there.

Of course, we don't really know the value of d(v) for all our neighbors, but as for any inductive design, that'll
take care of itself through the magic of recursion. The only problem is the overlapping subproblems. For example,
in Figure 8-3, finding the distance from b to frequires finding the shortest path from, for example, d to f. But so does
finding the shortest path from c to f. We have exactly the same situation as for the Fibonacci numbers, two_pow, or
Pascal’s triangle. Some subproblems will be solved an exponential number of times if we implement the recursive
solution directly. And just as for those problems, the magic of memoization removes all the redundancy, and we end
up with a linear-time algorithm (that is, for n nodes and m edges, the running time is ©(n + m)).

A direct implementation (using something like a dict of dicts representation of the edge weight function) can be
found in Listing 8-3. If you remove @memo from the code, you end up with an exponential algorithm (which may still
work well for relatively small graphs with few edges).
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Listing 8-3. Recursive, Memoized DAG Shortest Path

def rec_dag_sp(W, s, t): # Shortest path from s to t
@memo # Memoize f
def d(u): # Distance from u to t
if u == t: return 0 # We're there!
return min(W[u][v]+d(v) for v in W[u]) # Best of every first step
return d(s) # Apply f to actual start node

In my opinion, the implementation in Listing 8-3 is quite elegant. It directly expresses the inductive idea of the
algorithm, while abstracting away the memoization. However, this is not the classical way of expressing this algorithm. What
is customarily done here, as in so many other DP algorithms, is to turn the algorithm “upside down” and make it iterative.

The iterative version of the DAG shortest path algorithm works by propagating partial solutions step by step,
using the relaxation idea introduced in Chapter 4.° Because of the way we represent graphs (that is, we usually access
nodes by out-edges, rather than in-edges), it can be useful to reverse the inductive design: Instead of thinking about
where we want to go, we think about where we want to come from. Then we want to make sure that once we reach a
node v, we have already propagated correct answers from all v’s predecessors. That is, we have already relaxed its
in-edges. This raises the question—how can we be sure we’ve done that?

The way to know is to sort the nodes topologically, as they are in Figure 8-3. The neat thing about the recursive
version (in Listing 8-3) is that no separate topological sorting is needed. The recursion implicitly performs a DFS and
does all updates in topologically sorted order automatically. For our iterative solution, though, we need to perform a
separate topological sorting. If you want to get away from the recursion entirely, you can use topsort from Listing 4-10;
ifyou don’t mind, you could use dfs_topsort from Listing 5-7 (although then you're already quite close to the
memoized recursive solution). The function dag_sp in Listing 8-4 shows you this more common, iterative solution.

Listing 8-4. DAG Shortest Path

def dag_sp(W, s, t):

d = {u:float('inf') for u in W}
d[s] =0
for u in topsort(W):

if u == t: break

for v in W[u]:

d[v] = min(d[v], d[u] + W[u][v])

return d[t]

Shortest path from s to t
Distance estimates

Start node: Zero distance
In top-sorted order...
Have we arrived?

For each out-edge ...
Relax the edge

Distance to t (from s)

HoH B HF H R H

The idea of the iterative algorithm is that as long as we have relaxed each edge out from each of your possible
predecessors (that is, those earlier in topologically sorted order), we must necessarily have relaxed all the in-edges to
you. Using this, we can show inductively that each node receives a correct distance estimate at the time we get to it in
the outer for loop. This means that once we get to the target node, we will have found the correct distance.

Finding the actual path corresponding to this distance isn’t all that hard either (see Exercise 8-5). You could even
build the entire shortest path tree from the start node, just like the traversal trees in Chapter 5. (You'd have to remove
the break statement, though, and keep going till the end.) Note that some nodes, including those earlier than the start
node in topologically sorted order, may not be reached at all and will keep their infinite distances.

This approach is also closely related to Prim’s and Dijkstra’s algorithms, as well as the Bellman-Ford algorithm
(see Chapters 7 and 9).
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Note In most of this chapter, | focus on finding the optimal value of a solution, without the extra bookkeeping needed
to reconstruct the solution that gives rise to that value. This approach makes the presentation simpler but may not be
what you want in practice. Some of the exercises ask you to extend algorithms to find the actual solutions; you can find
an example of how to do this at the end of the section about the knapsack problem.

VARIETIES OF DAG SHORTEST PATH

Although the basic algorithm is the same, there are many ways of finding the shortest path in a DAG and, by
extension, solving most DP problems. You could do it recursively, with memoization, or you could do it iteratively,
with relaxation. For the recursion, you could start at the first node, try various “next steps,” and then recurse on
the remainder, or if your graph representation permits, you could look at the last node and try “previous steps”
and recurse on the initial part. The former is usually much more natural, while the latter corresponds more closely
to what happens in the iterative version.

Now, if you use the iterative version, you also have two choices: You can relax the edges out of each node (in
topologically sorted order), or you can relax all edges info each node. The latter more obviously yields a correct
result but requires access to nodes by following edges backward. This isn’t as far-fetched as it seems when you're
working with an implicit DAG in some non-graph problem. (For example, in the longest increasing subsequence
problem, discussed later in this chapter, looking at all backward “edges” can be a useful perspective.)

Outward relaxation, called reaching, is exactly equivalent when you relax all edges. As explained, once you get

to a node, all its in-edges will have been relaxed anyway. However, with reaching, you can do something that’s
hard in the recursive version (or relaxing in-edges): pruning. If, for example, you're interested only in finding all

nodes that are within a distance r, you can skip any node that has distance estimate greater than r. You will still
need to visit every node, but you can potentially ignore lots of edges during the relaxation. This won’t affect the
asymptotic running time, though (Exercise 8-6).

Note that finding the shortest paths in a DAG is surprisingly similar to, for example, finding the longest path, or
even counting the number of paths between two nodes in a DAG. The latter problem is just what we did with Pascal’s
triangle earlier; the same approach would work for an arbitrary DAG. These things aren’t quite as easy for general
graphs, though. Finding shortest paths in a general graph is a bit harder (in fact, Chapter 9 is devoted to this topic),
while finding the longest path is an unsolved problem (see Chapter 11 for more on this).

Longest Increasing Subsequence

Although finding the shortest path in a DAG is the canonical DP problem, a lot—perhaps the majority—of the DP
problems you’ll come across won't have anything to do with (explicit) graphs. In these cases, you'll have to sniff
out the DAG or sequential decision process yourself. Or perhaps it'll be easier to think of it in terms of recursive
decomposition and ignore the whole DAG structure. In this section, I'll follow both approaches with the problem
introduced at the beginning of this chapter: finding the longest nondecreasing subsequence. (The problem is
normally called “longest increasing subsequence,” but I'll allow multiple identical values in the result here.)

Let’s go straight for the induction, and we can think more in graph terms later. To do the induction (or recursive
decomposition), we need to define our subproblems—one of the main challenges of many DP problems. In many
sequence-related problems, it can be useful to think in terms of prefixes—that we've figured out all we need to know
about a prefix and that the inductive step is to figure things out for another element. In this case, that might mean
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that we'd found the longest increasing subsequence for each prefix, but that’s not informative enough. We need to
strengthen our induction hypothesis so we can actually implement the inductive step. Let’s try, instead, to find the
longest increasing subsequence that ends at each given position.

If we've already know how to find this for the first k positions, how can we find it for position k + 1? Once
we've gotten this far, the answer is pretty straightforward: We just look at the previous positions and look at those
whose elements are smaller than the current one. Among those, we choose the one that is at the end of the longest
subsequence. Direct recursive implementation will give us exponential running time, but once again, memoization
gets rid of the exponential redundancy, as shown in Listing 8-5. Once again, I've focused on finding the length of the
solution; extending the code to find the actual subsequence isn’t all that hard (Exercise 8-10).

Listing 8-5. A Memoized Recursive Solution to the Longest Increasing Subsequence Problem

def rec_lis(seq): # Longest increasing subseq.
@memo
def L(cur): # Longest ending at seq[cur]
res = 1 # Length is at least 1
for pre in range(cur): # Potential predecessors
if seq[pre] <= seq[cur]: # A valid (smaller) predec.
res = max(res, 1 + L(pre)) # Can we improve the solution?
return res

return max(L(i) for i in range(len(seq))) # The longest of them all

Let’s make an iterative version as well. In this case, the difference is really rather slight—quite reminiscent of the
mirror illustration in Figure 4-3. Because of how recursion works, rec_1is will solve the problem for each position in
order (0, 1, 2...). All we need to do in the iterative version is to switch out the recursive call with a lookup and wrap the
whole thing in a loop. See Listing 8-6 for an implementation.

Listing 8-6. A Basic Iterative Solution to the Longest Increasing Subsequence Problem

def basic lis(seq):
L = [1] * len(seq)
for cur, val in enumerate(seq):
for pre in range(cur):
if seq[pre] <= val:
L[cur] = max(L[cur], 1 + L[pre])
return max(L)

I hope you see the resemblance to the recursive version. In this case, the iterative version might be just as easy to
understand as the recursive one.

Now, think of this as a DAG: Each sequence element is a node, and there is an implicit edge from each element
to each following element that is larger—that is, to any element that is a permissible successor in an increasing
subsequence (see Figure 8-4). Voila! We're now solving the DAG longest path problem. That’s actually pretty clear
in the basic_lis function. We don’t have the edges explicitly represented, so it has to look at each previous element
to see whether it’s a valid predecessor, but if it is, it simply relaxes the in-edge (that’s what the line with the max
expression does, really). Can we improve the solution at the current position by using this “previous step” in the
decision process (that is, this in-edge or this valid predecessor)?*

Actually, for the longest increasing subsequence problem, we’re looking for the longest of all the paths, rather just the longest
between any two given points.

173

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 8 © TANGLED DEPENDENCIES AND MEMOIZATION

Figure 8-4. A number sequence and the implicit DAG where each path is an increasing subsequence. One of the longest
increasing subsequences has been highlighted

Asyou can see, there is more than one way to view most DP problems. Sometimes you want to focus on the
recursive decomposition and induction; sometimes you'd rather try to sniff out some DAG structure; sometimes, yet
again, it can pay to look at what's right there in front of you. In this case, that would be the sequence. The algorithm is
still quadratic, and as you may have noticed, I called it basic_lis ... that’s because I have another trick up my sleeve.

The main time sink in the algorithm is looking over the previous elements to find the best among those that are valid
predecessors. You'll find that this is the case in some DP algorithms—that the inner loop is devoted to a linear search. If
this is the case, it might be worth trying to replace it with a binary search. It’s not at all obvious how that would be possible
in this case, but simply knowing what we're looking for—what we’re trying to do—can sometimes be of help. We're trying
to do some form of bookkeeping that will let us perform a bisection when looking for the optimal predecessor.

A crucial insight is that if more than one predecessor terminate subsequences of length m, it doesn’t matter which
one of them we use—they’ll all give us an optimal answer. Say, we want to keep only one of them around; which one
should we keep? The only safe choice would be to keep the smallest of them, because that wouldn’t wrongly preclude
any later elements from building on it. So let’s say, inductively, that at a certain point we have a sequence end of
endpoints, where end[ idx] is the smallest among the endpoints we’ve seen for increasing subsequences of length idx+1
(we're indexing from 0). Because we're iterating over the sequence, these will all have occurred earlier than our current
value, val. All we need now is an inductive step for extending end, finding out how to add val to it. If we can do that, at
the end of the algorithm len(end) will give us the final answer—the length of the longest increasing subsequence.

The end sequence will necessarily be nondecreasing (Exercise 8-8). We want to find the largest idx such that
end[idx-1] <= val. This would give us the longest sequence that val could contribute to, so adding val at end[idx]
will either improve the current result (if we need to append it) or reduce the current end-point value at that position.
After this addition, the end sequence still has the properties it had before, so the induction is safe. And the good thing
is—we can find idx using the (super-fast) bisect function!" You can find the final code in Listing 8-7. If you wanted,
you could get rid of some of the calls to bisect (Exercise 8-9). If you want to extract the actual sequence, and not just
the length, you'll need to add some extra bookkeeping (Exercise 8-10).

Listing 8-7. Longest Increasing Subsequence

from bisect import bisect

def lis(seq): # Longest increasing subseq.
end = [] # End-values for all lengths
for val in seq: # Try every value, in order
idx = bisect(end, val) # Can we build on an end val?
if idx == len(end): end.append(val) # Longest seq. extended
else: end[idx] = val # Prev. endpoint reduced
return len(end) # The longest we found

This devilishly clever little algorithm was first was first described by Michael L. Fredman in 1975.
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That'’s it for the longest increasing subsequence problem. Before we dive into some well-known examples
of dynamic programming, here’s a recap of what we've seen so far. When solving problems using DP, you still use
recursive decomposition or inductive thinking. You still need to show that an optimal or correct global solution
depends on optimal or correct solutions to your subproblems (optimal substructure, or the principle of optimality).
The main difference from, say, divide and conquer is just that you're allowed to have overlapping subproblems.
In fact, that overlap is the raison d’étre of DP. You might even say that you should look for a decomposition with
overlap, because eliminating that overlap (with memoization) is what will give you an efficient solution. In addition
to the perspective of “recursive decomposition with overlap,” you can often see DP problems as sequential decision
problems or as looking for special (for example, shortest or longest) paths in a DAG. These perspectives are all
equivalent, but they can fit various problems differently.

Sequence Comparison

Comparing sequences for similarity is a crucial problem in much of molecular biology and bioinformatics, where
the sequences involved are generally DNA, RNA, or protein sequences. It is used, among other things, to construct
phylogenetic (that is, evolutionary) trees—which species have descended from which? It can also be used to find
genes that are shared by people who have a given illness or who are receptive to a specific drug. Different kinds of
sequence or string comparison is also relevant for many kinds of information retrieval. For example, you may search
for “The Color Out of Space” and expect to find “The Colour Out of Space”—and for that to happen, the search
technology you're using needs to somehow know that the two sequences are sufficiently similar.

There are several ways of comparing sequences, many of which are more similar than one might think. For
example, consider the problem of finding the longest common subsequence (LCS) between two sequences and finding
the edit distance between them. The LCS problem is similar to the longest increasing subsequence problem—except
that we’re no longer looking for increasing subsequence. We're looking for subsequences that also occur in a second
sequence. (For example, the LCS of Starwalker'? and Starbuck is Stark.) The edit distance (also known as Levenshtein
distance) is the minimum number of editing operations (insertions, deletions, or replacements) needed to turn one
sequence into another. (For example, the edit distance between enterprise and deuteroprism is 4.) If we disallow
replacements, the two are actually equivalent. The longest common subsequence is the part that stays the same
when editing one sequence into the other with as few edits as possible. Every other character in either sequence
must be inserted or deleted. Thus, if the length of the sequences are m and n and the length of the longest common
subsequence is k, the edit distance without replacements is m+n-2k.

I'll focus on LCS here, leaving edit distance for an exercise (Exercise 8-11). Also, as before, I'll restrict myself to
the cost of the solution (that is, the length of the LCS). Adding some extra bookkeeping to let you find the underlying
structure follows the standard pattern (Exercise 8-12). For some related sequence comparison problems, see the “If
You're Curious ...” section near the end of this chapter.

Although dreaming up a polynomial algorithm to find the longest common subsequence can be really tough
if you haven’t been exposed to any of the techniques in this book, it’s surprisingly simple using the tools I've been
discussing in this chapter. As for all DP problems, the key is to design a set of subproblems that we can relate to
each other (that is, a recursive decomposition with tangled dependencies). It can often help to think of the set of
subproblems as being parametrized by a set of indexes or the like. These will then be our induction variables." In this
case, we can work with prefixes of the sequences (just like we worked with prefixes of a single sequence in the longest
increasing subsequence problem). Any pair of prefixes (identified by their lengths) gives rise to a subproblem, and we
want to relate them in a subproblem graph (that is, a dependency DAG).

12Using Skywalker here gives the slightly less interesting LCS Sar.
3Normally, of course, induction works on only one integer variable, such as problem size. The technique can easily be extended to
multiple variables, though, where the induction hypothesis applies wherever at least one of the variables is smaller.
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Let’s say our sequences are a and b. As with inductive thinking in general, we start with two arbitrary prefixes,
identified by their lengths i and j. What we need to do is relate the solution to this problem to some other problems,
where at least one of the prefixes is smaller. Intuitively, we'd like to temporarily chop off some elements from the end
of either sequence, solve the resulting problem by our inductive hypothesis, and stick the elements back on. If we stick
with weak induction (reduction by one) along either sequence, we get three cases: Chop the last element from g, from
b, or from both. If we remove an element from just one sequence, it’s excluded from the LCS. If we drop the last from
both, however, what happens depends on whether the two elements are equal or not. If they are, we can use them to
extend the LCS by one! (If not, they’re of no use to us.)

This, in fact, gives us the entire algorithm (except for a couple of details). We can express the length of the LCS of
a and b as a function of prefix lengths i and j as follows:

0 ifi=0or j=0
LG, ))=41+L(i-1,j-1) ifa,=b,

max{L(i—1,j),L(i,j—1)} otherwise

In other words, if either prefix is empty, the LCS is empty. If the last elements are equal, that element is the last
element of the LCS, and we find the length of the rest (that is, the earlier part) recursively. If the last elements aren’t
equal, we have only two options: Chop on element off either a or b. Because we can choose freely, we take the best of
the two results. Listing 8-8 gives a simple memoized implementation of this recursive solution.

Listing 8-8. A Memoized Recursive Solution to the LCS Problem

def rec_lcs(a,b): # Longest common subsequence
@memo # L is memoized
def L(i,7): # Prefixes a[:i] and b[:j]
if min(i,j) < 0: return o # One prefix is empty
if a[i] == b[j]: return 1 + L(i-1,j-1) # Match! Move diagonally
return max(L(i-1,3j), L(i,j-1)) # Chop off either a[i] or b[j]
return L(len(a)-1,len(b)-1) # Run L on entire sequences

This recursive decomposition can easily be seen as a dynamic decision process (do we chop off an element from
the first sequence, from the second, or from both?), which can be represented as a DAG (see Figure 8-5). We start in
the node represented by the full sequences, and we try to find the longest path back to the node representing two
empty prefixes. It’s important to be clear about what the “longest path” is here, though—that is, what the edge weights
are. The only time we can extend the LCS (which is our goal) is when we chop off two identical elements, represented
by the DAG edges that are diagonal when the nodes are placed in a grid, as in Figure 8-5. These edges, then, have a
weight of one, while the other edges have a weight of zero.
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Figure 8-5. The underlying DAG of the LCS problem, where horizontal and vertical edges have zero cost. The longest
path (that is, the one with the most diagonals) from corner to corner, where the diagonals represent the LCS, is
highlighted

For the usual reasons, you may want to reverse the solution and make it iterative. Listing 8-9 gives you a version
that saves memory by keeping only the current and the previous row of the DP matrix. (You could save a bit more,
though; see Exercise 8-13.) Note that cur[i-1] corresponds to L(i-1, j) in the recursive version, while pre[i] and
pre[i-1] correspond to L(i,j-1) and L(i-1,]-1), respectively.

Listing 8-9. An Iterative Solution to the Longest Common Subsequence (LCS)

def lcs(a,b):

n, m = len(a), len(b)
pre, cur = [0]*(n+1), [0]*(n+1)
for j in range(1,m+1):

pre, cur = cur, pre

for i in range(1,n+1):

if a[i-1] == b[j-1]:
cur[i] = pre[i-1] + 1

Previous/current row
Iterate over b

Keep prev., overwrite cur.
Iterate over a

Last elts. of pref. equal?
L(i,j) = L(i-1,j-1) + 1

HOoH B HF HF H R H

else: Otherwise...
cur[i] = max(pre[i], cur[i-1]) max(L(i,j-1),L(i-1,7))
return cur[n] L(n,m)
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The Knapsack Strikes Back

In Chapter 7, I promised to give you a solution to the integer knapsack problem, both in bounded and unbounded
versions. It's time to make good on that promise.

Recall that the knapsack problem involves a set of objects, each of which has a weight and a value. Our knapsack
also has a capacity. We want to stuff the knapsack with objects such that (1) the total weight is less than or equal to
the capacity, and (2) the total value is maximized. Let’s say that object i has weight w[i] and value v[i]. Let’s do the
unbounded one first—it’s a bit easier. This means that each object can be used as many times as you want.

I hope you're starting to see a pattern emerging from the examples in this chapter. This problem fits the pattern
just fine: We need to somehow define the subproblems, relate them to each other recursively, and then make sure we
compute each subproblem only once (by using memoization, implicitly or explicitly). The “unboundedness” of the
problem means that it’s a bit hard to restrict the objects we can use, using the common “in or out” idea (although we’ll
use that in the bounded version). Instead, we can simply parametrize our subproblems using—that is, use induction
over—the knapsack capacity.

If we say that m(r) is the maximum value we can get with a (remaining) capacity r, each value of r gives us a
subproblem. The recursive decomposition is based on either using or not using the last unit of the capacity. If we don’t
use it, we have m(r) = m(r-1). If we do use it, we have to choose the right object to use. If we choose object i (provided
it will fit in the remaining capacity), we would have m(r) = v[i] + m(r-w[i]), because we’d add the value of i, but we'd
also have used up a portion of the remaining capacity equal to its weight.

We can (once again) think of this as a decision process: We can choose whether to use the last capacity unit,
and if we do use it, we can choose which object to add. Because we can choose any way we want, we simply take
the maximum over all possibilities. The memoization takes care of the exponential redundancy in this recursive
definition, as shown in Listing 8-10.

Listing 8-10. A Memoized Recursive Solution to the Unbounded Integer Knapsack Problem

def rec_unbounded knapsack(w, v, c): Weights, values and capacity
@memo m is memoized
def m(x): Max val. w/remaining cap. r
if r == 0: return 0 No capacity? No value
val = m(r-1) Ignore the last cap. unit?

for i, wi in enumerate(w):
if wi > r: continue
val = max(val, v[i] + m(r-wi))
return val
return m(c)

Try every object

Too heavy? Ignore it

Add value, remove weight
Max over all last objects
Full capacity available

H oH o H H R H R

The running time here depends on the capacity and the number of objects. Each memoized call m(r) is
computed only once, which means that for a capacity ¢, we have ©(c) calls. Each call goes through all the » objects,
so the resulting running time is ©(cn). (This will, perhaps, be easier to see in the equivalent iterative version, coming
up next. See also Exercise 8-14 for a way of improving the constant factor in the running time.) Note that this is nota
polynomial running time because c can grow exponentially with the actual problem size (the number of bits).

As mentioned earlier, this sort of running time is called pseudopolynomial, and for reasonably sized capacities, the
solution is actually quite efficient.

Listing 8-11 shows an iterative version of the algorithm. As you can see, the two implementations are virtually
identical, except that the recursion is replaced with a for loop, and the cache is now a list.'*

“You could preallocate the list, withm = [0]*(c+1), if you prefer, and then use m[r] = val instead of the append.
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Listing 8-11. An Iterative Solution to the Unbounded Integer Knapsack Problem

def unbounded knapsack(w, v, c):

m = [0]
for r in range(1,c+1):
val = m[r-1]

for i, wi in enumerate(w):
if wi > r: continue
val = max(val, v[i] + m[r-wi])
m.append(val)
return m[c]

Now let’s get to the perhaps more well-known knapsack version—the 0-1 knapsack problem. Here, each object
can be used at most once. (You could easily extend this to more than once, either by adjusting the algorithm a bit or by
just including the same object more than once in the problem instance.) This is a problem that occurs a lot in practical
situations, as discussed in Chapter 7. If you've ever played a computer game with an inventory system, I'm sure you
know how frustrating it can be. You've just slain some mighty monster and find a bunch of loot. You try to pick it up
but see that you're overencumbered. What now? Which objects should you keep, and which should you leave behind?

This version of the problem is quite similar to the unbounded one. The main difference is that we now add
another parameter to the subproblems: In addition to restricting the capacity, we add the “in or out” idea and restrict
how many of the objects we’re allowed to use. Or, rather, we specify which object (in order) is “currently under
consideration,” and we use strong induction, assuming that all subproblems where we either consider an earlier
object, have a lower capacity, or both, can be solved recursively.

Now we need to relate these subproblems to each other and build a solution from subsolutions. Let m(k,r) be the
maximum value we can have with the first k objects and a remaining capacity r. Then, clearly, if k = 0 or r = 0, we will
have m(k,r) = 0. For other cases, we once again have to look at what our decision is. For this problem, the decision is
simpler than in the unbounded one; we need consider only whether we want to include the last object, i = k-1. If we
don’t, we will have m(k,r) = m(k-1,r). In effect, we're just “inheriting” the optimum from the case where we hadn’t
considered i yet. Note that if w[i] > r, we have no choice but to drop the object.

If the object is small enough, though, we can include it, meaning that m(k,r) = v[i] + m(k-1,r-w[i]), which is
quite similar to the unbounded case, except for the extra parameter (k).'° Because we can choose freely whether to
include the object, we try both alternatives and use the maximum of the two resulting values. Again, the memoization
removes the exponential redundancy, and we end up with code like the one in Listing 8-12.

Listing 8-12. A Memoized Recursive Solution to the 0-1 Knapsack Problem

def rec_knapsack(w, v, c): # Weights, values and capacity

@memo # m is memoized

def m(k, 1): # Max val., k objs and cap r
if k == 0 or r == 0: return 0 # No objects/no capacity
i=k-1 # Object under consideration
drop = m(k-1, 1) # What if we drop the object?
if w[i] > r: return drop # Too heavy: Must drop it
return max(drop, v[i] + m(k-1, r-w[i])) # Include it? Max of in/out

return m(len(w), c) # All objects, all capacity

In a problem such as LCS, simply finding the value of a solution can be useful. For LCS, the length of the longest
common subsequence gives us an idea of how similar two sequences are. In many cases, though, you'd like to find
the actual solution giving rise to the optimal cost. The iterative knapsack version in Listing 8-13 constructs an extra
table, called P because it works a bit like the predecessor tables used in traversal (Chapter 5) and shortest path

5The object index i = k-1 is just a convenience. We might just as well write m(k,r) = v[k-1] + m(k-1,r-w[k-1]).
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algorithms (Chapter 9). Both versions of the 0-1 knapsack solutions have the same (pseudopolynomial) running time
as the unbounded ones, that is, ©(cn).

Listing 8-13. An Iterative Solution to the 0-1 Knapsack Problem

def knapsack(w, v, c): # Returns solution matrices
n = len(w) # Number of available items
m = [[0]*(c+1) for i in range(n+1)] # Empty max-value matrix
P = [[False]*(c+1) for i in range(n+1)] # Empty keep/drop matrix
for k in range(1,n+1): # We can use k first objects
i=k-1 # Object under consideration
for r in range(1,c+1): # Every positive capacity
m[k][r] = drop = m[k-1][r] # By default: drop the object
if w[i] > r: continue # Too heavy? Ignore it
keep = v[i] + m[k-1][r-w[i]] # Value of keeping it
m{k][r] = max(drop, keep) # Best of dropping and keeping
P[k][r] = keep > drop # Did we keep it?
return m, P # Return full results

Now that the knapsack function returns more information, we can use it to extract the set of objects actually
included in the optimal solution. For example, you could do something like this:

>>> m, P = knapsack(w, v, c)
>>> k, r, items = len(w), c, set()
>>> while k > 0 and r > 0:

i=k-1

if P[k][r]:
items.add(i)
r -= w[i]

k -=1

In other words, by simply keeping some information about the choices made (in this case, keeping or dropping
the element under consideration), we can gradually trace ourselves back from the final state to the initial conditions.
In this case, I start with the last object and check P[k][r] to see whether it was included. If it was, I subtract its weight
from 1; if it wasn't, [ leave 1 alone (as we still have the full capacity available). In either case, I decrement k because
we're done looking at the last element and now want to have a look at the next-to-last element (with the updated
capacity). You might want to convince yourself that this backtracking operation has a linear running time.

The same basic idea can be used in all the examples in this chapter. In addition to the core algorithms presented
(which generally compute only the optimal value), you can keep track of what choice was made at each step and then
backtrack once the optimum has been found.

Binary Sequence Partitioning

Before concluding this chapter, let’s take a look at another typical kind of DP problem, where some sequence is
recursively partitioned in some manner. You could think of this as adding parentheses to the sequence, so that we go
from, for example, ABCDE to ((AB)((CD)E)). This has several applications, such as the following:

e Matrix chain multiplication: We have a sequence of matrices, and we want to multiply them
all together into a single matrix. We can’t swap them around (matrix multiplication isn’t
commutative), but we can place the parentheses where we want, and this can affect the
number of operations needed. Our goal is to find the parenthesization (phew!) that gives the
lowest number of operations.
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e Parsing arbitrary context-free languages:'® The grammar for any context-free language can be
rewritten to Chomsky normal form, where each production rule produces either a terminal,
the empty string, or a pair AB of nonterminals A and B. Parsing a string then is basically
equivalent to setting the parentheses just like in the matrix example. Each parenthesized
group then represents a nonterminal.

e Optimal search trees: This is a tougher version of the Huffman problem. The goal is the
same—minimize expected traversal depth—but because it’s a search tree, we can’t change
the order of the leaves, and the greedy algorithm no longer works. Again, what we need is a
parenthesization, corresponding to the tree structure."”

These three applications are quite different, but the problem is essentially the same: We want to segment the
sequence hierarchically so that each segment contains two others, and we want to find such a partitioning that
optimizes some cost or value (in the parsing case, the value is simply “valid”/“invalid”). The recursive decomposition
works just like with a divide-and-conquer algorithm, as illustrated in Figure 8-6. A split point is chosen within the
current interval, giving rise to two subintervals, which are partitioned recursively. If we were to create a balanced
binary search tree based on a sorted sequence, that would be all there was to it. Use the middle element (or one of
the two middle ones, for even-length intervals) as the split point (that is, root) and create the balanced left and right
subtrees recursively.

Figure 8-6. Recursive sequence partitioning as it applies to optimal search trees. Each root in the interval gives rise to
two subtrees corresponding to the optimal partitioning of the left and right subintervals

Now we're going to have to step our game up, though, because the split point isn’t given, like for the balanced
divide-and-conquer example. No, now we need to try multiple split points, choosing the best one. In fact, in the
general case, we need to try every possible split point. This is a typical DP problem—in some ways just as prototypical
as finding shortest paths in DAGs. The DAG shortest path problem encapsulates the sequential decision perspective
of DP; this sequence decomposition problem embodies the “recursive decomposition with overlap” perspective.

1If parsing is completely foreign to you, feel free to skip this bullet point. Or perhaps look into it?

7You can find more information about optimal search trees both in Section 15.5 in Introduction to Algorithms by Cormen et al.,
and in Section 6.2.2 of The Art of Computer Programming, volume 3, “Sorting and Searching,” by Donald E. Knuth (see the
“References” section of Chapter 1).
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The subproblems are the various intervals, and unless we memoize our recursion, they will be solved an exponential
number of times. Also note that we've got optimal substructure: If we split the sequence at the optimal (or correct)
point initially, the two new segments must be partitioned optimally for us to get an optimal (correct) solution.'®

As a concrete example, let’s go with optimal search trees.'® As when we were building Huffman trees in Chapter 7, each
element has a frequency, and we want to minimize the expected traversal depth (or search time) for a binary search tree.

In this case, though, the input is sorted, and we cannot change its ordering. For simplicity, let’s assume that every query is
for an element that is actually in the tree. (See Exercise 8-19 for a way around this.) Thinking inductively, we only need to
find the right root node, and the two subtrees (over the smaller intervals) will take care of themselves (see Figure 8-6). Once
again, to keep things simple, let’s just worry about computing the optimal cost. If you want to extract the actual tree, you
need to remember which subtree roots gave rise to the optimal subtree costs (for example, storingitin root[1i,]]).

Now we need to figure out the recursive relationships; how do we calculate the cost for a given root, assuming that
we know the costs for the subtrees? The contribution of a single node is similar to that in Huffman trees. There, however,
we dealt only with leaves, and the cost was the expected depth. For optimal search trees, we can end up with any node.
Also, so as not to give the root a cost of zero, let’s count the expected number of nodes visited (that is, expected depth + 1).
The contribution of node v is then p(v) x (d(v) + 1), where p(v) is its relative frequency and d(v) its depth, and we sum
over all the nodes to get the total cost. (This is just 1 + sum of p(v) x d(v), because the p(v) sums to 1.)

Lete(i,j) be the expected search cost for the interval [i:j]. If we choose 1 as our root, we can decompose the
costintoe(i,j) = e(i,r) + e(r+1,j) + something. The two recursive calls to e represent the expected costs of
continuing the search in each subtree. What's the missing something, though? We'll have to add p[r], the probability
of looking for the root, because that would be its expected cost. But how do we account for the extra edges down to our
two subtrees? These edges will increase the depth of each node in the subtrees, meaning that each probability p[v] for
every node v except the root must be added to the result. But, hey—as discussed, we’ll be adding p[r] as well! In other
words, we will need to add the probabilities for all the nodes in the interval. A relatively straightforward recursive
expression for a given root r might then be as follows:

e(i,j) = e(i,r) + e(r+1,j) + sum(p[v] for v in range(i, j))

Of course, in the final solution, we'd try all T in range(i, j) and choose the maximum. There’s a still more room
for improvement, though: The sum part of the expression will be summing a quadratic number of overlapping intervals
(one for every possible i and j), and each sum has linear running time. In the spirit of DP, we seek out the overlap:

We introduce the memoized function s (i, j) representing the sum, as shown in Listing 8-14. As you can seg, s is
calculated in constant time, assuming the recursive call has already been cached (which means that a constant amount
of time is spent calculating each sum s(1i, j)). The rest of the code follows directly from the previous discussion.

Listing 8-14. Memoized Recursive Function for Expected Optimal Search Cost

def rec_opt tree(p):
@memo
def s(i,j):
if i == j: return 0
return s(i,j-1) + p[j-1]
@memo
def e(i,]j):
if i == j: return o
sub = min(e(i,r) + e(r+1,j) for r in range(i,j))
return sub + s(i,j)
return e(0,len(p))

8You could certainly design some sort of cost function so this wasn 't the case, but then we couldn’t use dynamic programming
(or, indeed, recursive decomposition) anymore. The induction wouldn’t work.
“You should have a whack at the matrix chains yourself (Exercise 8-18), and perhaps even the parsing, if you’re so inclined.
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All in all, the running time of this algorithm is cubic. The asymptotic upper bound is straightforward: There is a
quadratic number of subproblems (that is, intervals), and we have a linear scan for the best root inside each of them.
In fact, the lower bound is also cubic (this is a bit trickier to show), so the running time is ©(n?).

As for the previous DP algorithms, the iterative version (Listing 8-15) is similar in many ways to the memoized
one. To solve the problems in a safe (that is, topologically sorted) order, it solves all intervals of a certain length k
before going on to the larger ones. To keep things simple, I'm using a dict (or, more specifically, a defaultdict, which
automatically supplies the zeros). You could easily rewrite the implementation to use, say, a list of lists instead.

(Note, though, that only a triangular half-matrix is needed—not the full n by n.)

Listing 8-15. An Iterative Solution to the Optimal Search Tree Problem

from collections import defaultdict

def opt_tree(p):

n = len(p)

s, e = defaultdict(int), defaultdict(int)

for k in range(1,n+1):

for i in range(n-k+1):

j=i+k
s[4,3] = s[i,5-1] + p[j-1]
e[i,j] = min(e[i,r] + e[r+1,]j] for r in range(i,j))
e[1,3] += s[i,3]

return e[o,n]

Summary

This chapter deals with a technique known as dynamic programming, or DP, which is used when the subproblem
dependencies get tangled (that is, we have overlapping subproblems) and a straight divide-and-conquer solution
would give an exponential running time. The term dynamic programming was originally applied to a class of
sequential decision problems but is now used primarily about the solution technique, where some form of caching
is performed, so that each subproblem need be computed only once. One way of implementing this is to add
caching directly to a recursive function that embodies the recursive decomposition (that is, the induction step) of the
algorithm design; this is called memoization. It can often be useful to invert the memoized recursive implementations,
though, turning them into iterative ones. Problems solved using DP in this chapter include calculating binomial
coefficients, finding shortest paths in DAGs, finding the longest increasing subsequence of a given sequence, finding
the longest common subsequence of two given sequences, getting the most out of your knapsack with limited and
unlimited supplies of indivisible items, and building binary search trees that minimize the expected lookup time.

If You’re Curious ...

Curious? About dynamic programming? You're in luck—there’s a lot of rad stuff available about DP. A web search
should turn up loads of coolness, including competition problems, for example. If you're into speech processing, or
hidden Markov models in general, you could look for the Viterbi algorithm, which is a nice mental model for many
kinds of DP. In the area of image processing, deformable contours (also known as snakes) are a nifty example.

If you think sequence comparison sounds cool, you could check out the books by Gusfield and Smyth (see the
references). For a brief introduction to dynamic time warping and weighted edit distance—two important variations
not discussed in this chapter—as well as the concept of alignment, you could have a look at the excellent tutorial
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“Sequence comparison,” by Christian Charras and Thierry Lecroq.? For some sequence comparison goodness in
the Python standard library, check out the difflib module. If you have Sage installed, you could have a look at its
knapsack module (http://sage.numerical.knapsack).

For more about how the ideas of dynamic programming appeared initially, take a look at Stuart Dreyfus’s paper
“Richard Bellman on the Birth of Dynamic Programming.” For examples of DP problems, you can’t really beat Lew and
Mauch; their book on the subject discusses about 50. (Most of their book is rather heavy on the theory side, though.)

Exercises

8-1. Rewrite @memo so that you reduce the number of dict lookups by one.
8-2. How can two_pow be seen as using the “in or out” idea? What would the “in or out” correspond to?

8-3. Write iterative versions of fib and two_pow. This should allow you to use a constant amount of
memory, while retaining the pseudolinear time (that is, time linear in the parameter n).

8-4. The code for computing Pascal’s triangle in this chapter actually fills out an rectangle, where the
irrelevant parts are simply zeros. Rewrite the code to avoid this redundancy.

8-5. Extend either the recursive or iterative code for finding the length of the shortest path in a DAG so
that it returns an actual optimal path.

8-6. Why won't the pruning discussed in the sidebar “Varieties of DAG Shortest Path” have any effect
on the asymptotic running time, even in the best case?

8-7. In the object-oriented observer pattern, several observers may register with an observable object.
These observers are then notified when the observable changes. How could this idea be used to
implement the DP solution to the DAG shortest path problem? How would it be similar to or different
from the approaches discussed in this chapter?

8-8. In the lis function, how do we know that end is nondecreasing?
8-9. How would you reduce the number of calls to bisect in lis?

8-10. Extend either the recursive or one of the iterative solutions to the longest increasing subsequence
problem so that it returns the actual subsequence.

8-11. Implement a function that computes the edit distance between two sequences, either using
memoization or using iterative DP.

8-12. How would you find the underlying structure for LCS (that is, the actual shared subsequence) or
edit distance (the sequence of edit operations)?

8-13. If the two sequences compared in 1cs have different lengths, how could you exploit that to
reduce the function’s memory use?

8-14. How could you modify w and c to (potentially) reduce the running time of the unbounded
knapsack problem?

8-15. The knapsack solution in Listing 8-13 lets you find the actual elements included in the optimal
solution. Extend one of the other knapsack solutions in a similar way.

8-16. How can it be that we have developed efficient solutions to the integer knapsack problems, when
they are regarded as hard, unsolved problems (see Chapter 11)?

Z%www-igm.univ-mlv.fr/~lecroq/seqcomp
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8-17. The subset sum problem is one you'll also see in Chapter 11. Briefly, it asks you to pick a subset
of a set of integers so that the sum of the subset is equal to a given constant, k. Implement a solution to
this problem based on dynamic programming.

8-18. A problem closely related to finding optimal binary search trees is the matrix chain
multiplication problem, briefly mentioned in the text. If matrices A and B have dimensions nxm and
mxp, respectively, their product AB will have dimensions nxp, and we approximate the cost of this
multiplication by the product nmp (the number of element multiplications). Design and implement
an algorithm that finds a parenthetization of a sequence of matrices so that performing all the matrix
multiplications has as low total cost as possible.

8-19. The optimal search trees we construct are based only on the frequencies of the elements. We
might also want to take into account the frequencies of various queries that are not in the search tree.
For example, we could have the frequencies for all words in a language available but store only some of
the words in the tree. How could you take this information into consideration?
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CHAPTER 9

From A to B with Edsger and Friends/

The shortest distance between two points is under construction.

— Noelie Altito

It's time to return to the second problem from the introduction:! How do you find the shortest route from Kashgar to
Ningbo? If you pose this problem to any map software, you'd probably get the answer in less than a second. By now,
this probably seems less mysterious than it (maybe) did initially, and you even have tools that could help you write
such a program. You know that BFS would find the shortest path if all stretches of road had the same length, and you
could use the DAG shortest path algorithm as long as you didn’t have any cycles in your graph. Sadly, the road map
of China contains both cycles and roads of unequal length. Luckily, however, this chapter will give you the algorithms
you need to solve this problem efficiently!

And lest you think all this chapter is good for is writing map software, consider in what other contexts the
abstraction of shortest paths might be useful. For example, you could use it in any situation where you'd like to
efficiently navigate a network, which would include all kinds of routing of packets over the Internet. In fact, the net
is stuffed with such routing algorithms, all working behind the scenes. But such algorithms are also used in less
obviously graph-like navigation, such as having characters move about intelligently in computer games. Or perhaps
you're trying to find the lowest number of moves to solve some form of puzzle? That would be equivalent to finding
the shortest path in its state space—the abstract graph representing the puzzle states (nodes) and moves (edges).

Or are you looking for ways to make money by exploiting discrepancies in currency exchange rates? One of the
algorithms in this chapter will at least take you part of the way (see Exercise 9-1).

Finding shortest paths is also an important subroutine in other algorithms that need not be very graph-like. For
example, one common algorithm for finding the best possible match between n people and 7 jobs® needs to solve this
problem repeatedly. At one time, I worked on a program that tried to repair XML files, inserting start and end tags as
needed to satisfy some simple XML schema (with rules such as “list items need to be wrapped in list tags”). It turned
out that this could be solved easily by using one of the algorithms in this chapter. There are applications in operations
research, integrated circuit manufacture, robotics—you name it. It’s definitely a problem you want to learn about.
Luckily, although some of the algorithm can be a bit challenging, you’ve already worked through many, if not most, of
their challenging bits in the previous chapters.

The shortest path problem comes in several varieties. For example, you can find shortest paths (just like any
other kinds of paths) in both directed and undirected graphs. The most important distinctions, though, stem from
your starting points and destinations. Do you want to find the shortest from one node to all others (single source)?
From one node to another (single pair, one to one, point to point)? From all nodes to one (single destination)? From
all nodes to all others (all pairs)? Two of these—single source and all pairs—are perhaps the most important. Although
we have some tricks for the single pair problem (see “Meeting in the Middle” and “Knowing Where You're Going,” later),

"Don’t worry, "1l revisit the “Sweden tour” problem in Chapter 11.
>The min-cost bipartite matching problem, discussed in Chapter 10.
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there are no guarantees that will let us solve that problem any faster than the general single-source problem. The
single destination problem is, of course, equivalent to the single-source version (just flip the edges for the directed case).
The all-pairs problem can be tackled by using each node as a single source (and we'll look into that), but there are
special-purpose algorithms for that problem as well.

Propagating Knowledge

In Chapter 4, I introduced the idea of relaxation and gradual improvement. In Chapter 8, you saw the idea applied
to finding shortest paths in DAGs. In fact, the iterative shortest path algorithm for DAGs (Listing 8-4) is not just a
prototypical example of dynamic programming; it also illustrates the fundamental structure of the algorithms in this
chapter: we use relaxation over the edges of a graph to propagate knowledge about shortest paths.

Let’s review what this looks like. I'll use a dict of dicts representation of the graph and use a dict D to maintain
distance estimates (upper bounds), like in Chapter 8. In addition, I'll add a predecessor dict, P, as for many of the
traversal algorithms in Chapter 5. These predecessor pointers will form a so-called shortest path tree and will allow us
to reconstruct the actual paths that correspond to the distances in D. Relaxation can then be factored out in the relax
function in Listing 9-1. Note that I'm treating nonexistent entries in D as if they were infinite. (I could also just initialize
them all to be infinite in the main algorithms, of course.)

Listing 9-1. The Relaxation Operation

inf = float('inf")
def relax(W, u, v, D, P):

d = D.get(u,inf) + W[u][v] # Possible shortcut estimate

if d < D.get(v,inf): # Is it really a shortcut?
D[v], P[v] =d, u # Update estimate and parent
return True # There was a change!

The idea is that we look for an improvement to the currently known distance to v by trying to take a shortcut
through u. If it turns out not to be a shortcut, fine. We just ignore it. If it is a shortcut, we register the new distance and
remember where we came from (by setting P[v] to u). I've also added a small extra piece of functionality: the return
value indicates whether any change actually took place; that'll come in handy later (though you won't need it for all
your algorithms).

Here’s a look at how it works:

>>> D[u]

7

>>> D[v]

13

>>> Wu][v]

3

>>> relax(W, u, v, D, P)
True

>>> D[v]

10

>>> D[v] = 8

>>> relax(W, u, v, D, P)
>>> D[v]

8
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As you can seg, the first call to relax improves D[ v] from 13 to 10 because I found a shortcut through u, which I
had (presumably) already reached using a distance of 7 and which was just 3 away from v. Now I somehow discover
that I can reach v by a path of length 8. I run relax again, but this time, no shortcut is found, so nothing happens.

As you can probably surmise, if I now set D[u] to 4 and ran the same relax again, D[ v] would improve, this time
to 7, propagating the improved estimate from u to v. This propagation is what relax is all about. If you randomly relax
edges, any improvements to the distances (and their corresponding paths) will eventually propagate throughout the
entire graph—so if you keep randomly relaxing forever, you know that you’ll have the right answer. Forever, however,
is a verylong time ...

This is where the relax game (briefly mentioned in Chapter 4) comes in: we want to achieve correctness with as
few calls to relax as possible. Exactly how few we can get away with depends on the exact nature of our problem. For
example, for DAGs, we can get away with one call per edge—which is clearly the best we can hope for. As you'll see a
bit later, we can actually get that low for more general graphs as well (although with a higher total running time and
with no negative weights allowed). Before getting into that, however, let’s take a look at some important facts that can
be useful along the way. In the following, assume that we start in node s and that we initialize D[ s ] to zero, while all
other distance estimates are set to infinity. Let d(u, v) be the length of the shortest path from u to v.

e d(s,v) <= d(s,u) + W[u,v]. This is an example of the triangle inequality.

e d(s,v) <= D[v].Forv other than s, D[v] is initially infinite, and we reduce it only when we
find actual shortcuts. We never “cheat,” so it remains an upper bound.

e Ifthere is no path to node v, then relaxing will never get D[ v] below infinity. That’s because
we'll never find any shortcuts to improve D[ v].

e  Assume a shortest path to v is formed by a path from s to u and an edge from u to v. Now, if
D[u] is correct (that is, D[u] == d(s,u)) at any time before relaxing the edge from u to v, then
D[v] is correct at all times afterward. The path defined by P[v] will also be correct.

e Let[s, a, b, ..., z, v]beashortest path from s to v. Assume all the edges (s,a), (a,b),
..., (z,V) in the path have been relaxed in order. Then D[v] and P[v] will be correct. It doesn’t
matter if other relax operations have been performed in between.

You should make sure you understand why these statements are true before proceeding. It will probably make
the rest of the chapter quite a bit easier to follow.

Relaxing like Crazy

Relaxing at random is a bit crazy. Relaxing like crazy, though, might not be. Let’s say that you relax all the edges.
You can do it in a random order, if you like—it doesn’t matter. Just make sure you get through all of them. Then you
do it again—perhaps in another order—but you get through all the edges, once again. And again, and again. Until
nothing changes.

Tip Imagine each node continuously shouting out bids for supplying short paths to its out-neighbors, based on the
shortest path it has gotten itself, so far. If any node gets a better offer than what it already has, it switches its path
supplier and lowers its bids accordingly.

It doesn’t seem like such an unreasonable approach, at least for a first attempt. Two questions present
themselves, though: How long will it take until nothing changes (if we ever get there), and can you be sure you've got
the answer right when that happens?
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Let’s consider a simple case first. Assume that all edge weights are identical and nonnegative. This means that the
relax operation can find a shortcut only if it finds a path consisting of fewer edges. What, then, will have happened
after we relax all edges once? At the very least, all neighbors of s will have the correct answer and will have s set as
their parent in the shortest path tree. Depending on the order in which we relaxed the edges, the tree may have spread
further, but we have no guarantees of that. How about if we relax all edges once more? Well, if nothing else, the tree
will at least have extended one more level. In fact, the shortest path tree will—in the worst case—spread level by level,
as if we were performing some horribly inefficient BFS. For a graph with n nodes, the largest number of edges in any
path is n-1, so we know that n-1 is the largest number of iterations we need.

In general, though, we can’t assume this much about our edges (or if we could, we should rather just use BFS,
which would do an excellent job). Because the edges can have different (possibly even negative) weights, the relax
operations of later rounds may modify the predecessor pointers set in earlier rounds. For example, after one round, a
neighbor v of s will have had P[v] set to s, but we cannot be sure that this is correct! Perhaps we’ll find a shorter path
to v via some other nodes, and then P[v] will be overwritten. What can we know, then, after one round of relaxing all
the edges?

Think back to the last one of the principles listed in the previous section: if we relax all the edges—in order—
along a shortest path from s to a node v, then our answer (consisting of D and P) will be correct for the path. In this
case, specifically, we will have relaxed all edges along all shortest paths ... consisting of a single edge. We don’t know
where these paths are, mind you, because we don’t (yet) know how many edges go into the various optimal paths.
Still, although some of the P-edges linking s to its neighbors may very well not be final, we know that the ones that are
correct must be there already.

And so the story goes. After k rounds of relaxing every edge in the graph, we know that all shortest paths of
consisting of k edges have been completed. Following our earlier reasoning, for a graph with n nodes and m edges,
it will require at most n-1 rounds until we're done, giving us a running time of ®(nm). Of course, this need only be
the worst-case running time, if we add a check: Has anything changed in the last round? If nothing changed, there’s
no point in continuing. We might even be tempted to drop the whole 7-1 count and only rely on this check. After all,
we've just reasoned that we’ll never need more than n-1 rounds, so the check will eventually halt the algorithm. Right?
No? No. There’s one wrinkle: negative cycles.

You see, negative cycles are the enemy of shortest path algorithms. If we have no negative cycles, the “no change”
condition will work just fine, but throw in a negative cycle, and our estimates can keep improving forever. So ... as
long as we allow negative edges (and why wouldn’t we?), we need the iteration count as a safeguard. The good news
about this is that we can use the count to defect negative cycles: Instead of running n-1 rounds, we run n rounds and
see whether anything changed in the last iteration. If we did get an improvement (which we shouldn’t have), we
immediately conclude “A negative cycle did it!” and we declare our answers invalid and give up.

Note Don’t get me wrong. It’s perfectly possible to find the shortest path even if there’s a negative cycle. The answer
isn’t allowed to contain cycles anyway, so the negative cycles won’t affect the answer. It’s just that finding the shortest
path while allowing negative cycles is an unsolved problem (see Chapter 11).

We have now arrived at the first proper algorithm of the chapter: Bellman-Ford (see Listing 9-2). It’s a single-source
shortest path algorithm allowing arbitrary directed or undirected graphs. If the graph contains a negative cycle, the
algorithm will report that fact and give up.

Listing 9-2. The Bellman-Ford Algorithm
def bellman ford(G, s):

D, P = {s:0}, {} # Zero-dist to s; no parents
for rnd in G: # n = len(G) rounds
changed = False # No changes in round so far
for u in G: # For every from-node...
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for v in G[u]: # ... and its to-nodes...
if relax(G, u, v, D, P): # Shortcut to v from u?
changed = True # Yes! So something changed
if not changed: break # No change in round: Done
else: # Not done before round n?
raise ValueError('negative cycle') # Negative cycle detected
return D, P # Otherwise: D and P correct

Note that this implementation of the Bellman-Ford algorithm differs from many presentations precisely in that
itincludes the changed check. That check gives us two advantages. First, it lets us terminate early, if we don’t need all
the iterations; second, it lets us detect whether any change occurred during the last “superfluous” iteration, indicating
a negative cycle. (The more common approach, without this check, is to add a separate piece of code implementing
this last iteration, with its own change check.)

Because this algorithm is the foundation for several others, let’s make sure it’s clear how it works. Consider the
weighted graph example from Chapter 2. We can specify it as a dict of dicts, as follows:

a, b, c, d, e, f, g, h = range(8)
G={

{b:2, c:1, d:3, e:9, f:4},
{c:4, e:3},

{d:8},

{e:7},

{f:5},

{c:2, g:2, h:2},

{f:1, h:6},

{f:9, g:8}

>0 M QAN o w

See Figure 9-1 for a visual presentation of the graph. Let’s say we call bellman_ford(G, a). What happens? If we
want to find out in more detail, we can use a debugger, or perhaps the trace or logging packages. For simplicity, let’s
say we add a couple of print statements that show us the edges that are relaxed, as well as the assignments to D, if any.
Let’s say we also iterate over the nodes and neighbors in sorted order (using sorted), for deterministic results.

Figure 9-1. An example weighted graph
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We then get a printout that starts something like the following:

(a,b)  D[b] =2
(a,c) D[] =1
(a,d) D[d] =3
(a:e) D[e] =9
(a,f) D[f] =4
(b,c)
(b,e)  D[e] =5
(c,d)
(d,e)
(e,f)
(f:C)
(f,g) D[g] =6
(f,h)  D[h] =6
(g,f)
(g,h)
(h,f)
(h,g)

This is the first round of Bellman-Ford; as you can see, it has gone through all the edges once. The printout
will continue for another round, but no assignments will be made to D, and so the function returns. There is some
sloppiness here: The distance estimate D[ e] is first set to 9, which is the distance along the path directly from a to e.
Only after relaxing (a,b) and then (b, e) will we discover a better option, namely, the path a, b, e, of length 5. However,
we have gotten rather lucky, in that we needed only one pass through the edges. Let’s see if we can make things more
interesting and force the algorithm to do another round before settling down. See any ways of doing that? One way
would be:

3
7
-4

— e —
n

Now we have a good route to d via f, but we won't find that in the first round:

(a,b)  D[b] =3
(axc) D[c] =7
(a,d) D[d] =3
(a,e) D[e] =9
(a,f) D[f] =4
(b,c)

(b,e) D[e] =6
(c,d)

(d,e)

(e,f)

(f,c) D[c] =6
(f,g) D[g] =6
(f,h)  D[h] =6
(g,1)

(g,h)

(h,f)

(h,g)
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We've gotten D[ c] down to 6 in the first round, but when we get to that point, we have already relaxed (c,d),
at a time when that edge couldn’t give us any improvement, because D[ c] was 7 and D[ d] was already 3. In the second
round, however, you'd see

(c,d) D[d] = 2

and in the third round, things would have settled down.
Before leaving the example, let’s try to introduce a negative cycle. Let’s use the original weights, with the following
single modification:

Glgllh] = -9

Let’s get rid of the relaxations that don’t change D, and let’s add some round numbers to the printout. We then
get the following:

# Round 1:

(a)b) D[b] =2
(a,c) D[c] =1
(a,d) D[d] =3
(a:e) D[e] =9
(a,f)  D[f] = 4
(b,e) D[e] =5
(f,g) D[g]l =6
(f,h)  D[h] =6
(g,h)  D[h] = -3
(h,g) D[g] =5
# Round 2:

(g,h)  D[h] = -4
(h,g)  Dlg] =4
# Round 3:

(g,h)  D[h] = -5
(h,g) D[g]l =3
# Round 4:

(g)h) D[h] = -6
(h,f)  D[f] =3
(h,g) D[g] =2
# Round 8:

(g,h)  D[h] = -10
(h,f) D[f] = -1

(h,g)  D[g] = -2
Traceback (most recent call last):

ValueError: negative cycle
I've removed some of the rounds, but I'm sure you can see the pattern: After round 3, the distance estimates of
g, h, and f repeatedly decrease by one. The fact that they did so even in round 8, given that there are only 8 nodes,

alerts us to the presence of a negative cycle. This doesn’t mean that there’s no solution—it just means that continued
relaxation won't find it for us, so we raise an exception.
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Of course, a negative cycle is only a problem if we can actually reach it. Let’s try to eliminate the edge (f,g), for
example by using del G[f][g]. Now at least f won't participate in the cycle, but we still have g and h improving each
others’ estimates beyond what’s correct. If, however, we also remove (f,h), our problem disappears!

(a,b) D[b] = 2
(a,c) Dlc] =1
(a,d) D[d] =3
(a,e) Dle] =9
(a,f) D[f] = 4
(b,e)  Dle] =5

The graph is still connected, and the negative cycle is still there, but our traversal never reaches it. If this makes
you uncomfortable, rest assured: The distances to g and h are correct. They are both infinite, as they should be. If,
however, you try to call either bellman_ford(G, g) or bellman_ford(G, h), though, the cycle is once again
reachable, so you'll get a flurry of action, with several updates in each round, followed by the negative cycle exception
at the end.

Sfarfna at the ceffcha} T shovld ha ve The Bellman- Ford
et | L | e i
z inking chout terrible pillow talk,

J !

Pillow Talk. Maybe I should've tried Wexler? (http://xkcd. com/69)

Finding the Hidden DAG

The Bellman-Ford algorithm is great. In many ways it’s the easiest to understand of the algorithms in this chapter:
Just relax all the edges until we know everything must be correct. For arbitrary graphs, it’s a good algorithm, but if we
can make some assumptions, we can (as is usually the case) do better. As you'll recall, the single-source shortest path
problem can be solved in linear time for DAGs. In this section, I'll deal with a different constraint, though. We can still
have cycles, but no negative edge weights. (In fact, this is a situation that occurs in a great deal of practical applications,
such as those discussed in the introduction.) Not only does this mean that we can forget about the negative cycle
blues; it'll let us draw certain conclusions about when various distances are correct, leading to a substantial
improvement in running time.

The algorithm I'm building up to here, designed by algorithm super-guru Edsger W. Dijkstra in 1959, can be
explained in several ways, and understanding why it’s correct can be a bit tricky. I think it can be useful to see it as a
close relative to the DAG shortest path algorithm, with the important difference that it has to uncover a hidden DAG.

You see, even though the graph we’re working with can have any structure it wants, we can think of some of
the edges as irrelevant. To get things started, we can imagine that we already know the distances from the start node
to each of the others. We don't, of course, but this imaginary situation can help our reasoning. Imagine ordering
the nodes, left to right, based on their distance. What happens? For the general case—not much. However,
we're assuming that we have no negative edge weights, and that makes all the difference.

Because all edges are positive, the only nodes that can contribute to a node’s solution will lie to its left in our
hypothetical ordering. It will be impossible to locate a node to the right that will help us find a shortcut because
this node is further away and could give us a shortcut only if it had a negative back edge. The positive back edges are
completely useless to us and aren’t part of the problem structure. What remains, then, is a DAG, and the topological
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ordering we'd like to use is exactly the hypothetical ordering we started with: nodes sorted by their actual distance.
See Figure 9-2 for an illustration of this structure. (I'll get back to the question marks in a minute.)

Figure 9-2. Gradually uncovering the hidden DAG. Nodes are labeled with their final distances. Because weights are
positive, the backward edges (dashed) cannot influence the result and are therefore irrelevant

Predictably enough, we now hit the major gap in the solution: It’s totally circular. In uncovering the basic problem
structure (decomposing into subproblems or finding the hidden DAG), we've assumed that we’ve already solved the
problem. The reasoning has still been useful, though, because we now have something specific to look for. We want to
find the ordering—and we can find it with our trusty workhorse, induction!

Consider, again, Figure 9-2. Assume that the highlighted node is the one we’re trying to identify in our inductive
step (meaning that the earlier ones have been identified and already have correct distance estimates). Just like in the
ordinary DAG shortest path problem, we’ll be relaxing all out-edges for each node, as soon as we've identified it and
determined its correct distance. That means that we've relaxed the edges out of all earlier nodes. We haven’t relaxed
the out-edges of later nodes, but as discussed, they can’t matter: the distance estimates of these later nodes are upper
bounds, and the back-edges have positive weights, so there’s no way they can contribute to a shortcut.

This means (by the earlier relaxation properties or the discussion of the DAG shortest path algorithm in
Chapter 8) that the next node must have a correct distance estimate. That is, the highlighted node in Figure 9-2 must
by now have received its correct distance estimate, because we’ve relaxed all edges out of the first three nodes. This
is very good news, and all that remains is to figure out which node it is. We still don’t really know what the ordering is,
remember? We're figuring out the topological sorting as we go along, step by step.

There is only one node that could possibly be the next one, of course:* the one with the lowest distance estimate.
We know it’s next in the sorted order, and we know it has a correct estimate; because these estimates are upper
bounds, none of the later nodes could possibly have lower estimates. Cool, no? And now, by induction, we’ve solved
the problem. We just relax all out-edges of each node in distance order—which means always taking the one with the
lowest estimate next.

This structure is quite similar to that of Prim’s algorithm: traversal with a priority queue. Just as in Prim’s, we
know that nodes we haven’t discovered in our traversal will not have been relaxed, so we're not (yet) interested in
them. And of the ones we have discovered (and relaxed), we always want the one with the lowest priority. In Prim'’s
algorithm, the priority was the weight of the edge linking back to the traversal tree; in Dijkstra’s, the priority is the
distance estimate. Of course, the priority can change as we find shortcuts (just like new possible spanning tree edges
could reduce the priority in Prim’s), but just like in Listing 7-5, we can simply add the same node to our heap multiple
times (rather than trying to modify the priorities of the heap entries), without compromising correctness or running
time. The result can be found in Listing 9-3. Its running time is loglinear, or, more specifically, ®((m+n) Ig n),
where m is the number of edges and n the number of nodes. The reasoning here is that you need a (logarithmic)
heap operation for (1) each node to be extracted from the queue and (2) each edge to be relaxed.* As long as you have
Q(n) edges, which you will for graphs where you can reach ®(n) nodes from the start node, the running time can be
simplified to ®(m 1g n).

3Well, I’m assuming distinct distances here. If more than one node has the same distance, you could have more than one candidate.
Exercise 9-2 asks you to show what happens then.

*You may notice that edges that go back into S are also relaxed here in order to keep the code simple. That has no effect on
correctness or asymptotic running time, but you’re free to rewrite the code to skip these nodes if you want.
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Listing 9-3. Dijkstra’s Algorithm
from heapq import heappush, heappop

def dijkstra(G, s):

D, P, Q S= {510}) {}) [(O)S)]) Set()
while Q:

# Est., tree, queue, visited
# Still unprocessed nodes?
_, u = heappop(Q) # Node with lowest estimate
if u in S: continue # Already visited? Skip it
S.add(u) # We've visited it now
for v in G[u]: # Go through all its neighbors
relax(G, u, v, D, P) # Relax the out-edge
heappush(Q, (D[v], v)) # Add to queue, w/est. as pri
return D, P # Final D and P returned

Dijkstra’s algorithm may be similar to Prim'’s (with another set of priorities for the queue), but it is also closely
related to another old favorite: BFS. Consider the case where the edge weights are positive integers. Now, replace an
edge that has weight w with w-1 unweighted edges, connecting a path of dummy nodes (see Figure 9-3). We're ruining
what chances we had for an efficient solution (see Exercise 9-3), but we know that BFS will find a correct solution. In
fact, it will do so in a way very similar to Dijkstra’s algorithm: It will spend an amount of time on each (original) edge
proportional to its weight, so it will reach each (original) node in order of distance from the start node.

@) @D
Length =3 Three edges

Figure 9-3. An edge weight, or length, simulated by dummy nodes

It’s a bit like if you had set up a series of dominoes along each edge (the number of dominoes proportional to the
weight), and you then tip the first domino in the start node. A node may be reached from multiple directions, but we
can see which direction won, by looking at which dominoes lie below the others.

If we started with this approach, we could see Dijkstra’s algorithm as a way of gaining performance by
“simulating” BFS, or the dominoes (or flowing water or a spreading sound wave, or ...), without bothering to deal
with each dummy node (or domino) individually. Instead, we can think of our priority queue as a timeline, where
we mark various times at which we will reach nodes by following various paths. We look down the length of a newly
discovered edge and think, “When could the dominoes reach that node by following this edge?” We add the time the
edge would take (the edge weight) to the current time (the distance to the current node) and place the result on the
timeline (our heap). We do this for each node that is reached for the first time (we're interested only in the shortest
paths, after all), and we keep moving along the timeline to reach other nodes. As we reach the same node again, later
in the timeline, we simply ignore it.?

I've been clear about how Dijkstra’s algorithm is similar to the DAG shortest path algorithm. It is very much an
application of dynamic programming, although the recursive decomposition wasn’t quite as obvious as in the DAG
case. To get a solution, it also uses greed, in that it always moves to the node that currently has the lowest distance
estimate. With the binary heap as a priority queue, there’s even a bit of divide and conquer going on in there; all in
all, it’s a beautiful algorithm that uses much of what you've learned so far. It’s well worth spending some time on fully
understanding it.

’In a more conventional version of Dijkstra’s algorithm, where each node is just added once but its estimate is modified inside the
heap, you could say this path is ignored if some better estimate comes along and overwrites it.
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All Against All

In the next section, you'll see a really cool algorithm for finding the shortest distances between all pairs of nodes. It’s
a special-purpose algorithm that is effective even if the graph has a lot of edges. In this section, though, I'll have a
quick look at a way to combine the two previous algorithms—Bellman-Ford and Dijkstra’s algorithm—into one that
really shines in sparse graphs (that is, ones with relatively few edges). This is Johnson’s algorithm, one that seems to
be neglected in many courses and books on algorithm design, but which is really clever and which you get almost for
free, given what you already know.

The motivation for Johnson’s algorithm is the following: When solving the all-pairs shortest paths problem for
sparse graphs, simply using Dijkstra’s algorithm from every node is, in fact, a really good solution. That in itself doesn’t
exactly motivate a new algorithm ... but the trouble is that Dijkstra’s algorithm doesn’t permit negative edges. For the
single-source shortest path problem, there isn’t much we can do about that, except use Bellman-Ford instead. For the
all-pairs problem, though, we can permit ourselves some initial preprocessing to make all the weights positive.

The idea is to add a new node s, with zero-weight edges to all existing nodes, and then to run Bellman-Ford from
s. This will give us a distance—let’s call it i (v)—from s to each node v in our graph. We can then use & to adjust the
weight of every edge: We define the new weight as follows: w’(u,v) = w(u,v) + h(u) - h(v). This definition has two very
useful properties. First, it guarantees us that every new weight w’(u,v) is nonnegative (this follows from the triangle
inequality, as discussed earlier in this chapter; see also Exercise 9-5). Second, we're not messing up our problem! That
is, if we find the shortest paths with these new weights, those paths will also be shortest paths (with other lengths,
though) with the original weights. Now, why is that?

This is explained by a sweet idea called telescoping sums: A sum like (a - b) + (b - ¢) + ... + (y - z) will collapse like
a telescope, giving us a - z. The reason is that every other summand is included once with a plus before it and once
with a minus, so they all sum to zero. The same thing happens to every path with the modified edges in Johnson’s
algorithm. For any edge (¢,v) in such a path, except for the first or last, the weight will be modified by adding /(u) and
subtracting h(v). The next edge will have v as its first node and will add h(v), removing it from the sum. Similarly, the
previous edge will have subtracted k(u), removing that.

The only two edges that are a bit different (in any path) are the first and the last. The first one isn’t a problem,
because h(s) will be zero, and w(s,v) was set to zero for all nodes v. But what about the last one? Not a problem. Yes,
we'll end up with h(v) subtracted for the last node v, but that will be true of all paths ending at that node—the shortest
path will still be shortest.

The transformation doesn’t discard any information either, so once we’ve found the shortest paths using
Dijkstra’s algorithm, we can inversely transform all the path lengths. Using a similar telescoping argument, we can see
that we can get the real length of the shortest path from u to v by adding h(v) and subtracting h(u) from our answer
based on the transformed weights. This gives us the algorithm implemented in Listing 9-4.°

Listing 9-4. Johnson’s Algorithm

from copy import deepcopy

def johnson(G): # All pairs shortest paths
G = deepcopy(G) # Don't want to break original
s = object() # Guaranteed unused node
G[s] = {v:0 for v in G} # Edges from s have zero wgt
h, _ = bellman_ford(G, s) # h[v]: Shortest dist from s
del G[s] # No more need for s
for u in G: # The weight from u ...

As you can see, I just instantiate object to create the node s. Each such instance is unique (that is, they aren’t equal under ==),
which makes them useful for added dummy nodes, as well as other forms of sentinel objects, which need to be different from
all legal values.
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for v in G[u]:
Glu][v] += h[u] - h{v]

D) P = {}) {}

for u in G:
D[u], P[u] = dijkstra(G, u)
for v in G:

D[u][v] += h[v] - h[u]
return D, P

..o tov ...

... is adjusted (nonneg.)
D[u][v] and P[u][v]

From every u ...

... find the shortest paths
For each destination ...
... readjust the distance

#
#
#
#
#
#
#
# These are two-dimensional

Note There is no need to check whether the call to bellman_ford succeeded or whether it found a negative cycle
(in which case Johnson’s algorithm won’t work), because if there is a negative cycle in the graph, bellman_ford would
raise an exception.

Assuming the ®(m Ig n) running time for Dijkstra’s algorithm, Johnson’s is simply a factor of n slower, giving us
©(mn g n), which is faster than the cubic running time of Floyd-Warshall (discussed in a bit), for sparse graphs
(that is, for graphs with relatively few edges).”

The transform used in Johnson’s algorithm closely related to the potential function of the A* algorithm
(see “Knowing Where You're Going,” later in this chapter), and it is similar to the transform used in the min-cost
bipartite matching problem in Chapter 10. There, too, the goal is to ensure positive edge weights but in a slightly
different situation (edge weights changing from iteration to iteration).

Far-Fetched Subproblems

While Dijkstra’s algorithm is certainly based on the principles of dynamic programming, the fact is partly obscured
by the need to discover the ordering of (or dependencies between) subproblems on the go. The algorithm I discuss
in this section, discovered independently by Roy, Floyd, and Warshall, is a prototypical example of DP. It is based on
a memoized recursive decomposition and is iterative in its common implementation. It is deceptively simple in form
but devilishly clever in design. It is, in some ways, based on the “in or out” principle discussed in Chapter 8, but the
resulting subproblems may, at least at first glance, seem highly artificial and far-fetched.

In many DP problems, we might need to hunt a bit for a set of recursively related subproblems, but once we
find them, they often seem quite natural. Just think of the nodes in DAG shortest path, for example, or the prefix
pairs of the longest common subsequence problem. The latter illustrates a useful principle that can be extended to
less obvious structures, though: restricting which elements we're allowed to work with. In the LCS problem, we're
restricting the lengths of prefixes, for example. In the knapsack problem, this is slightly more artificial: We invent
an ordering for the objects and restrict ourselves to the k first ones. The subproblem is then parametrized by this
“permitted set” and a portion of the knapsack capacity.

In the all-pairs shortest path problem, we can use this form of restriction, along with the “in or out” principle, to design
a set of nonobvious subproblems: We arbitrarily order the nodes and restrict how many—that is, the k first—we're allowed
to use as intermediate nodes in forming our paths. We have now parametrized our subproblems using three parameters:

e Thestarting node
e Theending node

e  The highest node number we’re allowed to pass through

’A common criterion for calling a graph sparse is that m is O(n), for example. In this case, though, Johnson’s will (asymptotically)
match Floyd-Warshall as long as m is O(n*/1g n), which allows for quite a lot of edges. On the other hand, Floyd-Warshall has very
low constant overhead.
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Unless you had some idea where we were going with this, adding the third item might seem totally
unproductive—how could it help us to restrict what we’re allowed to do? As I'm sure you can see, the idea is to
partition the solution space, decomposing the problem into subproblems and then linking these into a subproblem
graph. The linking is achieved by creating a recursive dependency based on the “in or out” idea: node k, in or out?

Let d(u, v, k) be the length of the shortest path that exists from node u to node v if you're only allowed to use the k
first nodes as intermediate nodes. We can decompose the problem as follows:

d(u, v, k) =min(d(u, v, k-1), d(u, k, k-1) + d(k, v, k-1))

Like in the knapsack problem, we’re considering whether to include k. If we don’t include it, we simply use the
existing solution, the shortest path we could find without using k, which is d(u, v, k-1). If we do include it, we must use
the shortest path to k (which is d(u, k, k-1)) as well as the shortest path from k (which is d(k, v, k-1)). Note that in all
these three subproblems, we're working with the k-1 first nodes, because either we're excluding k or we're explicitly
using it as an endpoint and not an intermediate node. This guarantees us a size-ordering (that is, a topological
sorting) of the subproblems—no cycles.

You can see the resulting algorithm in Listing 9-5. (The implementation uses the memo decorator from Chapter 8.)
Note that I'm assuming the nodes are integers in the range 1...n here. If you're using other node objects, you could have
alist V containing the nodes in some arbitrary order and then use V[k-1] and V[k-2] instead of k and k-1 in the min
part. Also note that the returned D map has the form D[ u, v] rather than D[u][v]. I'm also assuming that this is a full
weight matrix, so D[u][v] is inf if there is no edge from u to v. You could easily modify all of this, if you want.

Listing 9-5. A Memoized Recursive Implementation of the Floyd-Warshall Algorithm

def rec_floyd warshall(G): # A1l shortest paths

@memo # Store subsolutions
def d(u,v,k): # u to v via 1..k

if k==0: return G[u][v] # Assumes v in G[u]

return min(d(u,v,k-1), d(u,k,k-1) + d(k,v,k-1)) # Use k or not?
return {(u,v): d(u,v,len(G)) for u in G for v in G}  # D[u,v] = d(u,v,n)

Let’s have a go at an iterative version. Given that we have three subproblem parameters (i, v, and k), we'll need
three for loops to get through all the subproblems iteratively. It might seem reasonable to think that we need to store
all subsolutions, leading to cubic memory use, but just like for the LCS problem, we can reduce this.? Our recursive
decomposition only relates problems in stage k with those in stage k-1. This means that we need only two distance
maps—one for the current iteration and one for the previous. But we can do better ...

Just like when using relax, we're looking for shortcuts here. The question at stage k is “Will going via node k provide
a shortcut, compared to what we have?” If D is our current distance map and C is the previous one, we've got this:

D[u]{v] = min(D[u][v], Clu](k] + C[k][v])

Now consider what would happen if we just used a single distance map throughout:

D[u]v] = min(D[u]{v], D[u][k] + D[k][v])

The meaning is now slightly less clear and seemingly a bit circular, but there’s no problem, really. We're looking
for shortcuts, right? The values D[u][k] and D[ k][v] will be the lengths of real paths (and therefore upper bounds
to the shortest distances), so we're not cheating. Also, they’ll be no greater than C[u][k] and C[k][v], because we
never increase the values in our map. Therefore, the only thing that can happen is that D[u][v] moves faster toward
the correct answer—which is certainly no problem. The result is that we need only a single, two-dimensional distance

8You could do the same memory saving in the memoized version, too. See Exercise 9-7.
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map (that is, quadratic as opposed to cubic memory), which we’ll keep updating by looking for shortcuts. In many
ways, the result is very much (though not exactly) like a two-dimensional version of the Bellman-Ford algorithm
(see Listing 9-6).

Listing 9-6. The Floyd-Warshall Algorithm, Distances Only

def floyd warshall(G):

D = deepcopy(G) # No intermediates yet
for k in G: # Look for shortcuts with k
for u in G:
for v in G:

D[u][v] = min(D[u][v], D[u]k] + D[k][v])

return D

You'll notice that I start out using a copy of the graph itself as a candidate distance map. That’s because we
haven’t tried to go via any intermediate nodes yet, so the only possibilities are direct edges, given by the original
weights. Also notice that the assumption about the vertices being numbers is completely gone because we no
longer need to explicitly parametrize which stage we're in. As long as we try creating shortcuts with each possible
intermediate node, building on our previous results, the solution will be the same. I hope you’ll agree that the
resulting algorithm is super-simple, although the reasoning behind it may not be.

It would be nice to have a P matrix too, though, as in Johnson'’s algorithm. As in so many DP algorithms,
constructing the actual solution piggybacks nicely on calculating the optimal value—you just need to record which
choices are made. In this case, if we find a shortcut via k, the predecessor recorded in P[u][v] must be replaced with
P[k][v], which is the predecessor belonging to the last “half” of the shortcut. The final algorithm can be found in
Listing 9-7. The original P gets a predecessor for any distinct pair of nodes linked by an edge. After that, P is updated
whenever D is updated.

Listing 9-7. The Floyd-Warshall Algorithm

def floyd_warshall(G):
D, P = deepcopy(G), {}

for u in G:
for v in G:
if u == v or G[u][v] == inf:
P[u,v] = None
else:
Plu,v] = u
for k in G:
for u in G:
for v in G:

shortcut = D[u][k] + D[k][v]
if shortcut < D[u][v]:
D[u][v] = shortcut
Plu,v] = P[k,v]
return D, P

Note that it's important to use shortcut < D[u][v] here, and not shortcut <= D[u][v]. Although the latter would
still give the correct distances, you could get cases where the last step was D[ v] [v], which would lead to P[u,v] = None.

The Floyd-Warshall algorithm can quite easily be modified to calculate the transitive closure of a graph
(Warshall’s algorithm). See Exercise 9-9.
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Meeting in the Middle

The subproblems solutions of Dijkstra’s algorithm—and of BFS, its unweighted special case—spread outward on a graph
like ripples on a pond. If all you want is getting from A to B, or, using the customary node names, from s to ¢, this means
that the “ripple” has to pass many nodes that you're not really interested, as in the left image in Figure 9-4. If, on the other
hand, you start traversing from both your starting point and your end point (assuming you can traverse edges in reverse),
the two ripples can, in some cases, meet up in the middle, saving you a lot of work, as illustrated in the right image.

“ O
~
(75
~

Traversing from s Traversing both ways

Figure 9-4. Unidirectional and bidirectional “ripples,” indicating the work needed to find a path from s to t by traversal

Note that while the “graphical evidence” of Figure 9-4 may be convincing, it is, of course, not a formal
argument, and it gives no guarantees. In fact, although the algorithms of this section and the next provide practical
improvements for the single-source, single-destination shortest path, no such a point-to-point algorithm is known
to have a better asymptotic worst-case behavior than you could get for the ordinary single-source problem. Sure, two
circles of half the original radius will have half the total area, but graphs don’t necessarily behave like the Euclidean
plane. We would certainly expect to get improvements in running time, but this is what’s called a heuristic algorithm.
Such algorithms are based on educated guesswork and are typically evaluated empirically. We can be sure it won’t be
worse than Dijkstra’s algorithm, asymptotically—it’s all about improving the practical running time.

To implement this bidirectional version of Dijkstra’s algorithm, let’s first adapt the original slightly, making it a
generator, so we can extract only as many subsolutions as we need for the “meetup.” This is similar to some of the
traversal functions in Chapter 5, such as iter_dfs (Listing 5-5). This iterative behavior means that we can drop the
distance table entirely and rely only on the distances kept in the priority queue. To keep things simple, I won’t include
the predecessor information here, but you could easily extend the solution by adding predecessors to the tuples in
the heap. To get the distance table (like in the original dijkstra), you can simply call dict(idijkstra(G, s)).

See Listing 9-8 for the code.

Listing 9-8. Dijkstra’s Algorithm Implemented as a Generator

from heapq import heappush, heappop

def idijkstra(G, s):

Q, S =[(0,s)], set() # Queue w/dists, visited

while Q: # Still unprocessed nodes?
d, u = heappop(Q) # Node with lowest estimate
if u in S: continue # Already visited? Skip it
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S.add(u) # We've visited it now

yield u, d # Yield a subsolution/node

for v in G[u]: # Go through all its neighbors
heappush(Q, (d+G[u][v], v)) # Add to queue, w/est. as pri

Note that I've dropped the use of relax completely—it is now implicit in the heap. Or, rather, heappush is the new
relax. Re-adding a node with a better estimate means it will take precedence over the old entry, which is equivalent to
overwriting the old one with a relax operation. This is analogous to the implementation of Prim’s algorithm in Chapter 7.

Now that we have access to Dijkstra’s algorithm step by step, building a bidirectional version isn’t too hard.

We alternate between the to and from instances of the original algorithm, extending each ripple, one node at a time.
If we just kept going, this would give us two complete answers—the distance from s to ¢ and the distance from ¢ to s
if we follow the edges backward. And, of course, those two answers would be the same, making the whole exercise
pointless. The idea is to stop once the ripples meet. It seems like a good idea to break out of the loop once the two
instances of idijkstra have yielded the same node.

This is where the only real wrinkle in the algorithm appears: You're traversing from both s and ¢, consistently
moving to the next closest node, so once the two algorithms have both moved to (that is, yielded) the same node, it
would seem reasonable that the two had met along the shortest path, right? After all, if you were traversing only from s,
you could terminate as soon as you reached (that is, idijkstra yielded) t. Sadly, as can so easily happen, our intuition
(or, at least, mine) fails us here. The simple example in Figure 9-5 should clear up this possible misconception; but
where is the shortest path, then? And how can we know it’s safe to stop?

Figure 9-5. The first meeting point (highlighted node) is not necessarily along the shortest path (highlighted edge)

In fact, ending the traversal once the two instances meet is fine. To find the shortest path, however, we need
to keep our eyes peeled, metaphorically speaking, while the algorithm is executing. We need to maintain the best
distance found so far, and whenever an edge (u,v) is relaxed and we already have the distance to u from s (by forward
traversal) and the distance from v to ¢ (by backward traversal), we need to check whether linking up the paths with
(u,v) will improve on our best solution.

In fact, we can tighten our stopping criterion a bit (see Exercise 9-10). Rather than waiting for the two instances
to both visit the same node, we need to look only at how far they've come—that is, the latest distances they’ve yielded.
These can’t decrease, so if their sum is at least as great as the best path we’ve found so far, we can’t find anything
better, and we’re done.

There’s still a nagging doubt, though. The preceding argument might convince you that we can’t possibly find any
better paths by continuing, but how can we be sure that we haven’t missed any? Let’s say the best path we’ve found has
length m. The two distances that caused the termination were / and r, so we know that [ + r > m (the stopping criterion).
Now, let’s say there is a path from s to ¢ that is shorter than m. For this to happen, the path must contain an edge (,v) such
that d(s,u) < land d(v,f) < r (see Exercise 9-11). This means that u and v are closer to s and ¢, respectively, than the current
nodes, so both must have been visited (yielded) already. At the point when both had been yielded, our maintenance of the
best solution so far should have found this path—a contradiction. In other words, the algorithm is correct.

This whole keeping track of the best path so far business requires us to have access to the innards of Dijkstra’s
algorithm. I prefer the abstraction that idijkstra gives me, so I'm going to stick with the simplest version of this
algorithm: Stop once I've received the same node from both traversals and then scan for the best path afterward,
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examining all the edges that link the two halves. If your data set is of the kind that would profit from the bidirectional
search, this scan is unlikely to be too much of a bottleneck, but feel free to break out the profiler and make your
adjustments, of course. The finished code can be found in Listing 9-9. The cycle function from itertools gives us
an iterator that will repeatedly give us the values from some other iterator, repeatedly yielding its values from start to
finish. In this case, this means we're cycling between the forward and backward directions.

Listing 9-9. The Bidirectional Version of Dijkstra’s Algorithm

from itertools import cycle

def bidir dijkstra(G, s, t):

for v in G[u]:
if not v in Dt: continue
m = min(m, Ds[u] + G[u][v] + Dt[v])
return m

... go through its neighbors
Is it also back-visited?

Is this path better?

Return the best path

Ds, Dt = {}, {} # D from s and t, respectively
forw, back = idijkstra(G,s), idijkstra(G,t) # The "two Dijkstras"
dirs = (Ds, Dt, forw), (Dt, Ds, back) # Alternating situations
try: # Until one of forw/back ends
for D, other, step in cycle(dirs): # Switch between the two
v, d = next(step) # Next node/distance for one
D[v] = d # Remember the distance
if v in other: break # Also visited by the other?
except StopIteration: return inf # One ran out before they met
m = inf # They met; now find the path
for u in Ds: # For every visited forw-node
#
#
#
#

Note that this code assumes that G is undirected (that is, all edges are available in both directions) and that
G[u][u] = ofor all nodes u. You could easily extend the algorithm so those assumptions aren’t needed (Exercise 9-12).

Knowing Where You’re Going

By now you've seen that the basic idea of traversal is pretty versatile, and by simply using different queues, you get
several useful algorithms. For example, for FIFO and LIFO queues, you get BFS and DFS, and with the appropriate
priorities, you get the core of Prim’s and Dijkstra’s algorithms. The algorithm described in this section, called A*,
extends Dijkstra’s, by tweaking the priority once again.

As mentioned earlier, the A* algorithm uses an idea similar to Johnson’s algorithm, although for a different
purpose. Johnson’s algorithm transforms all edge weights to ensure they're positive, while ensuring that the shortest
paths are still shortest. In A*, we want to modify the edges in a similar fashion, but this time the goal isn’t to make the
edges positive—we're assuming they already are (as we're building on Dijkstra’s algorithm). No, what we want is to
guide the traversal in the right direction, by using information of where we’re going: We want to make edges moving
away from our target node more expensive than those that take us closer to it.

Note This is similar to the best-first search used in the branch and bound strategy discussed in Chapter 11.

Of course, if we really knew which edges would take us closer, we could solve the whole problem by being greedy.
We'd just move along the shortest path, taking no side routes whatsoever. The nice thing about the A* algorithm is
that it fills the gap between Dijkstra’s, where we have no knowledge of where we’re going, and this hypothetical, ideal
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situation where we know exactly where we're going. It introduces a potential function, or heuristic h(v), which is our
best guess for the remaining distance, d(v,7). As you'll see in a minute, Dijkstra’s algorithm “falls out” of A* as a special
case, when h(v) = 0. Also, if by magic we could set h(v) = d(v,t), the algorithm would march directly from s to ¢.

So, how does it work? We define the modified edge weights to get a telescoping sum, like we did in Johnson’s
algorithm (although you should note that the signs are switched here): w'(u,v) = w(u,v) - h(u) + h(v). The telescoping
sum ensures that the shortest path will still be shortest (like in Johnson'’s) because all path lengths are changed by
the same amount, k() - h(s). As you can see, if we set the heuristic to zero (or, really, any constant), the weights are
unchanged.

It should be easy to see how this adjustment reflects our intention to reward edges that go in the right direction
and penalize those that don't. To each edge weight, we add the drop in potential (the heuristic), which is similar to
how gravity works. If you let a marble loose on a bumpy table, it will start moving in a direction that will decrease its
potential (that is, its potential energy). In our case, the algorithm will be steered in directions that cause a drop in the
remaining distance—exactly what we want.

The A* algorithm is equivalent to Dijkstra’s on the modified graph, so it’s correct if & is feasible, meaning that
w'(u,v) is nonnegative for all nodes u and v. Nodes are scanned in increasing order of D[v] - h(s) + h(v), rather than
simply D[v]. Because h(s) is a common constant, we can ignore it and simply add h(v) to our existing priority. This
sum is our best estimate for the shortest path from s to ¢t via v. If w’(u,v) is feasible, h(v) will also be a lower bound on
d(v,t) (see Exercise 9-14).

One (very common) way of implementing all of this would be to use something like the original dijkstra and
simply add h(v) to the priority when pushing a node onto the heap. The original distance estimate would still be
available in D. If we want to simplify things, however, only using the heap (as in idijkstra), we need to actually use
the weight adjustment so that for an edge (u,v), we subtract h(u) as well. This is the approach I've taken in Listing 9-10.
As you can see, I've made sure to remove the superfluous h(f) before returning the distance. (Considering the
algorithmic punch that the a_star function is packing, it’s pretty short and sweet, wouldn’t you say?)

Listing 9-10. The A* Algorithm

from heapq import heappush, heappop
inf = float('inf")

def a_star(G, s, t, h):
P, Q= {}; [(h(S), None, S)]
while 0Q:
d, p, u = heappop(Q)
if u in P: continue
Plu] = p
if u == t: return d - h(t), P
for v in G[u]:
w = G[ul[v] - h(u) + h(v)
heappush(Q, (d + w, u, v))
return inf, None

Preds and queue w/heuristic
Still unprocessed nodes?
Node with lowest heuristic
Already visited? Skip it

Set path predecessor
Arrived! Ret. dist and preds
Go through all neighbors
Modify weight wrt heuristic
Add to queue, w/heur as pri
Didn't get to t

HoH B HF H HE R R

Asyou can see, except from the added check for u == t, the only difference from Dijkstra’s algorithm is really the
adjustment of the weights. In other words, if you wanted, you could use a straight point-to-point version of Dijkstra’s
algorithm (that is, one that included the u == t check) on a graph where you had modified the weights, rather than
having a separate algorithm for A*.

Of course, in order to get any benefit from the A* algorithm, you need a good heuristic. What this function should
be will depend heavily on the exact problem you're trying to solve, of course. For example, if you're navigating a
road map, you'd know that the Euclidean distance, as the crow flies, from a given node to your destination must be
avalid heuristic (lower bound). This would, in fact, be a usable heuristic for any movement on a flat surface, such as
monsters walking around in a computer game world. If there are lots of blind alleys and twists and turns, though, this
lower bound may not be very accurate. (See the “If You're Curious .. section for an alternative.)
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The A* algorithm is also used for searching solution spaces, which we can see as abstract (or implicit) graphs.
For example, we might want to solve Rubik’s Cube® or Lewis Carroll’s so-called word ladder puzzle. In fact, let’s have a
whack at the latter puzzle (no pun intended).

Word ladders are built from a starting word, such as lead, and you want to end up with another word, say, gold.
You build the ladder gradually, using actual words at every step. To get from one word to another, you can replace a
single letter. (There are also other versions, which let you add or remove letters, or where you are allowed to swap the
letters around.) So, for example, you could get from lead to gold via the words load and goad. If we interpret every
word of some dictionary as a node in our graph, we could add edges between all words that differ by a single letter.
We probably wouldn’t want to explicitly build such a structure, but we could “fake” it, as shown in Listing 9-11.

Listing 9-11. An Implicit Graph with Word Ladder Paths

from string import ascii lowercase as chars

def variants(wd, words): # Yield all word variants
wasl = list(wd) # The word as a list
for i, c in enumerate(wasl): # Each position and character
for oc in chars: # Every possible character
if ¢ == oc: continue # Don't replace with the same
wasl[i] = oc # Replace the character
ow = ''.join(wasl) # Make a string of the word
if ow in words: # Is it a valid word?
yield ow # Then we yield it
wasl[i] = c # Reset the character
class WordSpace: # An implicit graph w/utils
def _init_ (self, words): # Create graph over the words
self.words = words
self.M = dict() # Reachable words
def _getitem (self, wd): # The adjacency map interface
if wd not in self.M: # Cache the neighbors

self.M[wd] = dict.fromkeys(self.variants(wd, self.words), 1)
return self.M[wd]

def heuristic(self, u, v): # The default heuristic
return sum(al=b for a, b in zip(u, v)) # How many characters differ?
def ladder(self, s, t, h=None): # Utility wrapper for a_star
if h is None: # Allows other heuristics
def h(v):
return self.heuristic(v, t)
_, P = a star(self, s, t, h) # Get the predecessor map
if P is None:
return [s, None, t] # When no path exists

°Actually, as I was writing this chapter for the first edition, it was proven (using 35 years of CPU-time) that the most difficult
positions of Rubik’s Cube require 20 moves (see www.cube20.0rg).
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u, p=1t, []

while u is not None: # Walk backward from t
p.append(u) # Append every predecessor
u = P[u] # Take another step

p.reverse() # The path is backward

return p

The main idea of the WordSpace class is that it works as a weighted graph so that it can be used with oura_star
implementation. If G is a WordSpace, G[ ' lead"' ] would be a dict with other words (such as 'load' and 'mead") as keys
and 1 as weight for every edge. The default heuristic I've used simply counts the number of positions at which the
words differ.

Using the WordSpace class is easy enough, as long as you have a word list of some sort. Many UNIX systems have a
file called /usr/share/dict/words or /usr/dict/words, with a single word per line. If you don’t have such a file, you
could get one from http://ftp.gnu.org/gnu/aspell/dict/en. If you don’t have this file, you could probably find it
(or something similar) online. You could then construct a WordSpace like this, for example (removing whitespace and
normalizing everything to lowercase):

>>> words = set(line.strip().lower() for line in open("/usr/share/dict/words"))
>>> G = WordSpace(words)

If you're getting word ladders that you don’t like, feel free to remove some words from the set, of course.'” Once
you have your WordSpace, it’s time to roll:

>>> G.ladder('lead', 'gold')
['lead', 'load', 'goad', 'gold']

Pretty neat, but not that impressive, perhaps. Now try the following:
>>> G.ladder('lead', 'gold', h=lambda v: 0)

I've simply replaced the heuristic with a completely uninformative one, basically turning our A* into BFS (or, rather,
Dijkstra’s algorithm running on an unweighted graph). On my computer (and with my word list), the difference in
running time is pretty noticeable. In fact, the speedup factor when using the first (default) heuristic is close to 100!"!

Summary

A bit more narrowly focused than the previous ones, this chapter dealt with finding optimal routes in network-like
structures and spaces—in other words, shortest paths in graphs. Several of the basic ideas and mechanisms used in
the algorithms in this chapter have been covered earlier in the book, and so we could build our solutions gradually.
One fundamental tactic common to all the shortest path algorithms is that of looking for shortcuts, either through
anew possible next-to-last node along a path, using the relax function or something equivalent (most of the
algorithms do this), or by considering a shortcut consisting of two subpaths, to and from some intermediate node
(the strategy of Floyd-Warshall). The relaxation-based algorithms approach things differently, based on their
assumptions about the graph. The Bellman-Ford algorithm simply tries to construct shortcuts with every edge in
turn and repeats this procedure for at most n-1 iterations (reporting a negative cycle if there is still potential for
improvement).

%For example, when working with my alchemical example, I removed words such as algedo and dola.
"UThat number is 100, not the factorial of 100. (And most certainly not the 11th power of the factorial of 100.)

206

www.it-ebooks.info


http://ftp.gnu.org/gnu/aspell/dict/en
http://www.it-ebooks.info/

CHAPTER 9 FROM A TO B WITH EDSGER AND FRIENDS

You saw in Chapter 8 that it’s possible to be more efficient than this; for DAGs, it’s possible to relax each edge only
once, as long as we visit the nodes in topologically sorted order. A topsort isn’t possible for a general graph, but if we
disallow negative edges, we can find a topological sorting that respects the edges that matter—namely, sorting the
nodes by their distance from the starting node. Of course, we don’t know this sorting to begin with, but we can build it
gradually, by always picking the remaining node with the lowest distance estimate, as in Dijkstra’s algorithm. We know
this is the thing to do, because we've already relaxed the out-edges of all its possible predecessors, so the next one in
sorted order must now have a correct estimate—and the only one this could be is the one with the lowest upper bound.

When finding distances between all pairs of nodes, we have a couple of options. For example, we could run
Dijkstra’s algorithm from every possible start node. This is quite good for rather sparse graphs, and, in fact, we can use
this approach even if the edges aren’t all positive! We do this by first running Bellman-Ford and then adjusting all the
edges so that we (1) maintain the length-ranks of the paths (the shortest is still the shortest) and (2) make the edge
weights positive. Another option is to use dynamic programming, as in the Floyd-Warshall algorithm, where each
subproblem is defined by its start node, its end node, and the number of the other nodes (in some predetermined
order) we're allowed to pass through.

There’s no known method of finding the shortest path from one node to another that is better, asymptotically,
than finding the shortest paths from the starting node to all the others. Still, there are some heuristic approaches that
can give improvements in practice. One of these is to search bidirectionally, performing a traversal from both the
start node and the end node “simultaneously,” and then terminate when the two meet, thereby reducing the number
of nodes that need be visited (or so we hope). Another approach is using a heuristic “best-first” approach, with a
heuristic function to guide us toward more promising nodes before less promising ones, as in the A* algorithm.

If You’re Curious ...

Most algorithm books will give you explanations and descriptions of the basic algorithms for finding shortest paths.
Some of the more advanced heuristic ones though, such as A*, are more usually discussed in books on artificial
intelligence. There you can also find thorough explanations on how to use such algorithms (and other, related ones) to
search through complex solution spaces that look nothing like the explicit graph structures we’ve been working with.
For a solid foundation in these aspects of artificial intelligence, I heartily recommend the wonderful book by Russell
and Norvig. For ideas on heuristics for the A* algorithm, you could try to do a web search for “shortest path” along
with “landmarks” or “ALT”

If you want to push Dijkstra’s algorithm on the asymptotic front, you could look into Fibonacci heaps. If you swap
out the binary heap for a Fibonacci heap, Dijkstra’s algorithm gets an improved asymptotic running time, but chances
are that your performance will still take a hit, unless you're working with really large instances, as Python’s heap
implementation is really fast, and a Fibonacci heap (a rather complicated affair) implemented in Python probably
won'’t be. But still—worth a look.

Finally, you might want to combine the bidirectional version of Dijkstra’s algorithm with the heuristic mechanism
of A*. Before you do, though, you should research the issue a bit—there are pitfalls here that could invalidate your
algorithm. One (slightly advanced) source of information on this and the use of landmark-based heuristics (as well as
the challenges of a graph that changes over time) is the paper by Nannicini et al. (see “References”).

Exercises

9-1. In some cases, discrepancies in exchange rates between currencies make it possible to exchange
from one currency to another, continuing until one gets back to the original, having made a profit. How
would you use the Bellman-Ford algorithm to detect the presence of such a situation?

9-2. What happens in Dijkstra’s algorithm if more than one node has the same distance from the start
node? Is it still correct?

9-3. Why is it a really bad idea to represent edge length using dummy nodes, like in Figure 9-3?
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9-4. What would the running time of Dijkstra’s algorithm be if you implemented it with an unsorted list
instead of a binary heap?

9-5. Why can we be certain that the adjusted weights in Johnson’s algorithm are nonnegative? Are
there cases where things can go wrong?

9-6. In Johnson'’s algorithm, the & function is based on the Bellman-Ford algorithm. Why can’t we just
use an arbitrary function here? It would disappear in the telescoping sum anyway?

9-7. Implement the memoized version of Floyd-Warshall so it saves memory in the same way as the
iterative one.

9-8. Extend the memoized version of Floyd-Warshall to compute a P table, just like the iterative one.

9-9. How would you modify the Floyd-Warshall algorithm so it detects the presence of paths, rather
than finding the shortest paths (Warshall’s algorithm)?

9-10. Why does correctness for the tighter stopping criterion for the bidirectional version of Dijkstra’s
algorithm imply correctness for the original?

9-11. In the correctness proof for the bidirectional version of Dijkstra’s algorithm, I posited a
hypothetical path that would be shorter than the best one we’d found so far and stated that it had to
contain an edge (u,v) such that d(s,u) < [ and d(v,t) < r. Why is this the case?

9-12. Rewrite bidir_dijkstra so it doesn’t require the input graph to be symmetric, with zero-weight
self-edges.

9-13. Implement a bidirectional version of BFS.

9-14. Why is h(v) a lower bound on d(v,f) when v’ is feasible?
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CHAPTER 10

Matchings, Cuts, and Flows

A joyful life is an individual creation that cannot be copied from a recipe.

— Mihaly Csikszentmihalyi, Flow: The Psychology of Optimal Experience

While the previous chapter gave you several algorithms for a single problem, this chapter describes a single algorithm
with many variations and applications. The core problem is that of finding maximum flow in a network, and the main
solution strategy I'll be using is the augmenting path method of Ford and Fulkerson. Before tackling the full problem,
I'll guide you through two simpler problems, which are basically special cases (they’'re easily reduced to maximum
flow). These problems, bipartite matching and disjoint paths, have many applications themselves and can be solved
by more specialized algorithms. You'll also see that the max-flow problem has a dual, the min-cut problem, which
means that you'll automatically solve both problems at the same time. The min-cut problem has several interesting
applications that seem very different from those of max-flow, even if they are really closely related. Finally, I'll give you
some pointers on one way of extending the max-flow problem, by adding costs, and looking for the cheapest of the
maximum flows, paving the way for applications such as min-cost bipartite matching.

The max-flow problem and its variations have almost endless applications. Douglas B. West, in his book
Introduction to Graph Theory (see “References” in Chapter 2), gives some rather obvious ones, such as determining the
total capacities of road and communication networks, or even working with currents in electrical circuits. Kleinberg
and Tardos (see “References” in Chapter 1) explain how to apply the formalism to survey design, airline scheduling,
image segmentation, project selection, baseball elimination, and assigning doctors to holidays. Ahuja, Magnanti, and
Orlin have written one of the most thorough books on the subject and cover well over 100 applications in such diverse
areas as engineering, manufacturing, scheduling, management, medicine, defense, communication, public policy,
mathematics, and transportation. Although the algorithms apply to graphs, these application need not be all that
graphlike at all. For example, who'd think of image segmentation as a graph problem? I'll walk you through some of
these applications in the unsurprisingly named section “Some Applications” later in the chapter. If you're curious about
how the techniques can be used, you might want to take a quick glance at that section before reading on.

The general idea that runs through this chapter is that we're trying to get the most out of a network, moving
from one side to the other, pushing through as much of we can of some kind of substance—be it edges of a bipartite
matching, edge-disjoint paths, or units of flow. This is a bit different from the cautious graph exploration in the
previous chapter. The basic approach of incremental improvement is still here, though. We repeatedly find ways of
improving our solutions slightly, until it can’t get any better. You'll see that the idea of canceling is key—that we may
need to remove parts of a previous solution in order to make it better overall.

Note I’'m using the labeling approach due to Ford and Fulkerson for the implementations in this chapter. Another
perspective on the search for augmenting paths is that we're traversing a residual network. This idea is explained in the
sidebar “Residual Networks” later in the chapter.
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Bipartite Matching

I've already exposed you to the idea of bipartite matching, both in the form of the grumpy moviegoers in Chapter 4 and
in the stable marriage problem in Chapter 7. In general, a matching for a graph is a node-disjoint subset of the edges.
That is, we select some of the edges in such a way that no two edges share a node. This means that each edge matches
two pairs—hence the name. A special kind of matching applies to bipartite graphs, graphs that can be partitioned into
two independent node sets (subgraphs without edges), such as the graph in Figure 10-1. This is exactly the kind of
matching we’ve been working with in the moviegoer and marriage problems, and it’s much easier to deal with than
the general kind. When we talk about bipartite matching, we usually want a maximum matching, one that consists of

a maximum number of edges. This means, if possible, we’d like a perfect matching, one where all nodes are matched.
This is a simple problem but one that can easily occur in real life. Let’s say, for example, you're assigning people to
projects, and the graph represents who'd like to work on what. A perfect matching would please everyone.!

Figure 10-1. A bipartite graph with a (non-maximal) matching (heavy edges) and an augmenting path from b to f
(highlighted)

We can continue to use the metaphor from the stable marriage problem—we’ll just drop the stability and try
to get everyone matched with someone they can accept. To visualize what’s going on, let’s say each man has an
engagement ring. What we want is then to have each man give his ring to one of the women so that no woman has
more than one ring. Or, if that’s not possible, we want to move as many rings as possible from the men to the women,
still prohibiting any woman from keeping more than one. As always, to solve this, we start looking for some form of
reduction or inductive step. An obvious idea would be to somehow identify a pair of lovers destined to be together,
thereby reducing the number of pairs we need to worry about. However, it’s not so easy to guarantee that any single
pair is part of a maximum matching, unless, for example, it’s totally isolated, like d and # in Figure 10-1.

An approach that fits better in this case is iterative improvement, as discussed in Chapter 4. This is closely related
to the use of relaxation in Chapter 9, in that we'll improve our solution step by step, until we can’t improve it anymore.
We also have to make sure that the only reason the improvement stops is that the solution is optimal—but I'll get back
to that. Let’s start by finding some step by step improvement scheme. Let’s say that in each round we try to move one
additional ring from the men to the women. If we’re lucky, this would give us the solution straightaway—that is, if
each man gives the ring to the woman he’d be matched to in the best solution. We can’t let any romantic tendencies
cloud our vision here, though. Chances are this approach won’t work quite that smoothly. Consider, once again, the

'Tf you allow them to specify a degree of preference, this turns into the more general min-cost bipartite matching, or the assignment
problem. Although a highly useful problem, it’s a bit harder to solve—I’ll get to that later.
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graph in Figure 10-1. Let’s say that in our first two iterations, a gives a ring to e, and c gives one to g. This gives us a
tentative matching consisting of two pairs (indicated by the heavy black edges). Now we turn to b. What is he to do?

Let’s follow a strategy somewhat similar to the Gale-Shapley algorithm mentioned in Chapter 7, where the
women can change their minds when approached by a new suitor. In fact, let’s mandate that they always do. So when
b asks g, she returns her current ring to ¢, accepting the one from b. In other words, she cancels her engagement to
c. (This idea of canceling is crucial to all the algorithms in this chapter.) But now c is single, and if we are to ensure that
the iteration does indeed lead to improvement, we can’t accept this new situation. We immediately look around for
a new mate for ¢, in this case e. But if ¢ passes his returned ring to e, she has to cancel her engagement to g, returning
his ring. He in turn passes this on to f, and we're done. After this single zigzag swapping session, rings have been
passed back and forth along the highlighted edges. Also, we now have increased the number of couples from two to
three (a+f, b+ g and c +e).

We can, in fact, extract a general method from this ad hoc procedure. First, we need to find one unmatched man.
(If we can’t, we're done.) We then need to find some alternating sequence of engagements and cancellations so that
we end with an engagement. If we can find that, we know that there must have been one more engagement than there
were cancellations, increasing the number of pairs by one. We just keep finding such zigzags for as long as we can.

The zigzags we’'re looking for are paths that go from an unmatched node on the left side to an unmatched node
on the right side. Following the logic of the engagement rings, we see that the path can only move to the right across an
edge that is not already in the matching (a proposal), and it can only move left across one that is in the matching
(a cancellation). Such a path (like the one highlighted in Figure 10-1) is called an augmenting path, because it augments
our solution (that is, it increments the engagement count), and we can find augmenting paths by traversal. We just need
to be sure we follow the rules—we can'’t follow matched edges to the right or unmatched edges to the left.

What's left is ensuring that we can indeed find such augmenting paths as long as there is room for improvement.
Although this seems plausible enough, it’s not immediately obvious why it must be so. What we want to show is that
if there is room for improvement, we can find an augmenting path. That means that we have a current match M and
that there is some greater matching M’ that we haven’t found yet. Now consider the edges in the symmetric difference
between these two—that is, the edges that are in either one but not in both. Let’s call the edges in M red and the ones
in M’ green.

This jumble of red and green edges would actually have some useful structure. For example, we know that each
node would be incident to at most two edges, one of each color (because it couldn’t have two edges from the same
matching). This means that we’'d have one or more connected components, each of which was a zigzagging path or
cycle of alternating color. Because M’ is bigger than M, we must have at least one component with more green than
red edges, and the only way that could happen would be in a path—an odd-length one that started and ended with
a green edge.

Do you see it yet? Exactly! This green-red-...-green path would be an augmenting path. It has odd length, so one
end would be on the male side and one on the female. And the first and last edges were green, meaning they were not
part of our original matching, so we're free to start augmenting. (This is essentially my take on what’s known as Berge’s
lemma.)

When it comes to implementing this strategy, there is a lot of room for creativity. One possible implementation
is shown in Listing 10-1. The code for the tr function can be found in Listing 5-10. The parameters X and Y are
collections (iterable objects) of nodes, representing the bipartition of the graph G. The running time might not be
obvious, because edges are switched on and off during execution, but we do know that one pair is added to the
matching in each iteration, so the number of iterations is O(n), for n nodes. Assuming m edges, the search for an
augmenting path is basically a traversal of a connected component, which is O(m). In total, then, the running time
is O(nm).
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Listing 10-1. Finding a Maximum Bipartite Matching Using Augmenting Paths

from itertools import chain

def match(G, X, Y): # Maximum bipartite matching
H = tr(G) # The transposed graph
S, T, M = set(X), set(Y), set() # Unmatched left/right + match
while S: # Still unmatched on the left?
s = S.pop() # Get one
Q, P ={s}, {} # Start a traversal from it
while Q: # Discovered, unvisited
u = Q.pop() # Visit one
if u in T: # Finished augmenting path?
T.remove(u) # u is now matched
break # and our traversal is done
forw = (v for v in G[u] if (u,v) not in M) # Possible new edges
back = (v for v in H[u] if (v,u) in M) # Cancellations
for v in chain(forw, back): # Along out- and in-edges

if v in P: continue # Already visited? Ignore
P[v] = u # Traversal predecessor
Q.add(v) # New node discovered
while u != s: # Augment: Backtrack to s
u, v =P[u], u # Shift one step
if v in G[u]: # Forward edge?
M.add((u,v)) # New edge
else: # Backward edge?
M.remove((v,u)) # Cancellation
#

return M Matching -- a set of edges

Note Konig’s theorem states that for bipartite graph, the dual of the maximum matching problem is the minimum
vertex cover problem. In other words, the problems are equivalent.

Disjoint Paths

The augmenting path method for finding matchings can also be used for more general problems. The simplest
generalization may be to count edge-disjoint paths instead of edges.> Edge-disjoint paths can share nodes but not
edges. In this more general setting, we no longer need to restrict ourselves to bipartite graphs. When we allow general
directed graphs, however, we can freely specify where the paths are to start and end. The easiest (and most common)
solution is to specify two special nodes, s and ¢, called the source and the sink. (Such a graph is often called an s-¢
graph, or an s-¢-network.) We then require all paths to start in s and end in ¢ (implicitly allowing the paths to share
these two nodes). An important application of this problem is determining the edge connectivity of a network—how
many edges can be removed (or “fail”) before the graph is disconnected (or, in this case, before s cannot reach £)?
Another application is finding communication paths on a multicore CPU. You may have lots of cores laid out in
two dimensions, and because of the way communication works, it can be impossible to route two communication

’In some ways, this problem is similar to the path counting in Chapter 8. The main difference, however, is that in that case we
counted all possible paths (such as in Pascal’s Triangle), which would usually entail lots of overlap—otherwise the memoization
would be pointless. That overlap is not permitted here.
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channels through the same switching points. In these cases, finding a set of disjoint paths is critical. Note that these
paths would probably be more naturally modeled as vertex-disjoint, rather than edge-disjoint. See Exercise 10-2 for

more. Also, as long as you need to pair each source core with a specific sink core, you have a version of what'’s called
the multicommodity flow problem, which isn’t dealt with here. (See “If You're Curious ...” for some pointers.)

You could deal with multiple sources and sinks directly in the algorithm, just like in Listing 10-1. If each of these
sources and sinks can be involved only in a single path and you don’t care which source is paired with which sink, it
can be easier to reduce the problem to the single-source, single-sink case. You do this by adding s and ¢ as new nodes
and introduce edges from s to all of your sources and from all your sinks to ¢£. The number of paths will be the same,
and reconstructing the paths you were looking for requires only snipping off s and ¢ again. This reduction, in fact,
makes the maximum matching problem a special case of the disjoint paths problem. As you'll see, the algorithms for
solving the problems are also very similar.

Instead of thinking about complete paths, it would be useful to be able to look at smaller parts of the problem in
isolation. We can do that by introducing two rules:

e  The number of paths going into any node except s or t must equal the number of paths going
out of that node.

e Atmost one path can go through any given edge.

Given these restrictions, we can use traversal to find paths from s to £. At some point, we can’t find any more paths
without overlapping with some of those we already have. Once again, though, we can use the augmenting path idea
from the previous section. See, for example, Figure 10-2. A first round of traversal has established one path from s to ¢
via c and b. Now, any further progress seems blocked by this path—but the augmenting path idea lets us improve the

solution by canceling the edge from cto b.

Figure 10-2. An s-t network with one path found (heavy edges) and one augmenting path (highlighted)

The principle of canceling works just like in bipartite matching. As we search for an augmenting path, we move
from s to a and then to b. There, we're blocked by the edge bt. The problem at this point is that b has two incoming
paths from a and ¢ but only one outgoing path. By canceling the edge cb, we've solved the problem for b, but now
there’s a problem at c. This is the same kind of cascade effect we saw for the bipartite matching. In this case, ¢ has an
incoming path from s, but no outgoing path—we need to find somewhere for the path to go. We do that by continuing
our path via d to ¢, as shown by the highlights in Figure 10-2.

If you either add an incoming edge or cancel an outgoing one at some node u, that node will be overcrowded.

It will have more paths entering than leaving, which isn’t allowed. You can fix this either by adding an outgoing edge
or by canceling an incoming one. All in all, this works out to finding a path from s, following unused edges in their
direction and used ones against their direction. Any time you can find such an augmenting path, you will also have
discovered an additional disjoint path.

Listing 10-2 shows code for implementing this algorithm. As before, the code for the tr function can be found in
Listing 5-10.
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Listing 10-2. Counting Edge-Disjoint Paths Using Labeling Traversal to Find Augmenting Paths

from itertools import chain

def paths(G, s, t): # Edge-disjoint path count
H, M, count = tr(G), set(), o # Transpose, matching, result
while True: # Until the function returns
Q, P ={s}, {} # Traversal queue + tree
while Q: # Discovered, unvisited
u = Q.pop() # Get one
if u == t: # Augmenting path!
count += 1 # That means one more path
break # End the traversal
forw = (v for v in G[u] if (u,v) not in M) # Possible new edges
back = (v for v in H[u] if (v,u) in M) # Cancellations
for v in chain(forw, back): # Along out- and in-edges

if v in P: continue # Already visited? Ignore
P[v] = u # Traversal predecessor
Q.add(v) # New node discovered
else: # Didn't reach t?
return count # We're done
while u !=s: # Augment: Backtrack to s
u, v = Pful, u # Shift one step
if v in G[u]: # Forward edge?
M.add((u,v)) # New edge
else: # Backward edge?
M.remove((v,u)) # Cancellation

To make sure we’ve solved the problem, we still need to prove the converse, though—that there always will be
an augmenting path as long as there is room for improvement. The easiest way of showing this is by using the idea
of connectivity: how many edges must we remove to separate s from ¢ (so that no path goes from s to #)? Any such set
represents an s-t cut, a partitioning into two sets S and T, where S contains s and T contains . We call the edges going
from S to T a directed edge separator. We can then show that the following three statements are equivalent:

e  We have found k disjoint paths and there is an edge separator of size k.
e  We have found the maximum number of disjoint paths.
e  There are no augmenting paths.

What we primarily want to show is that the last two statements are equivalent, but sometimes it’s easier to go via
a third statement, such as the first one in this case.

It's pretty easy to see that the first implies the second. Let’s call the separator F. Any s-f path must have at least
one edge in F, which means that the size of Fis at least as great as the number of disjoint s-f paths. If the size of the
separator is the same as the number of disjoint paths we’ve found, clearly we've reached the maximum.

Showing that the second statement implies the third is easily done by contradiction. Assume there is no room for
improvement but that we still have an augmenting path. As discussed, this augmenting path could be used to improve
the solution, so we have a contradiction.

The only thing left to prove is that the last statement implies the first, and this is where the whole connectivity
idea pays off as a stepping stone. Imagine you've executed the algorithm until you've run out of augmenting paths.
Let S be the set of nodes you reached in your last traversal, and let T be the remaining nodes. Clearly, this is an s- cut.
Consider the edges across this cut. Any forward edge from S to T must be part of one of your discovered disjoint paths.
If it wasn’t, you would have followed it during your traversal. For the same reason, no edge from T'to S can be part of
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one of the paths, because you could have canceled it, thereby reaching T. In other words, all edges across from S to
T belong to your disjoint paths, and because none of the edges in the other direction do, the forward edges must all
belong to a path of their own, meaning that you have k disjoint paths and a separator of size k.

This may be a bit involved, but the intuition is that if we can’t find an augmenting path, there must be a
bottleneck somewhere, and we must have filled it. No matter what we do, we can’t get more paths through this
bottleneck, so the algorithm must have found the answer. (This result is a version of Menger’s theorem, and it is
a special case of the max-flow min-cut theorem, which you'll see in a bit.)

What's the running time of all this, then? Each iteration consists of a relatively straightforward traversal from s,
which has a running time of O(m), for m edges. Each round gives us another disjoint path, and there are clearly at most
O(m), meaning that the running time is O(m?). Exercise 10-3 asks you to show that this is a tight bound in the worst case.

Note Menger’s theorem is another example of duality: The maximum number of edge-disjoint paths from sto tis
equal to the minimum cut between s and . This is a special case of the max-flow min-cut theorem, discussed later.

Maximum Flow

This is the central problem of the chapter. It forms a generalization of both the bipartite matching and the disjoint
paths, and it is the mirror image of the minimum cut problem (next section). The only difference from the disjoint
path case is that instead of setting the capacity for each edge to one, we let it be an arbitrary positive number. If the
capacity is a positive integer, you could think of it as the number of paths that can pass through it. More generally, the
metaphor here is some form of substance flowing through the network, from the source to the sink, and the capacity
represents the limit for how many units can flow through a given edge. (You can think of this as a generalization of
the engagement rings that were passed back and forth in the matching.) In general, the flow itself is an assignment
of a number of flow units to each unit (that is, a function or mapping from edges to numbers), while the size or
magnitude of the flow is the total amount pushed through the network. (This can be found by finding the net flow out
of the source, for example.) Note that although flow networks are commonly defined as directed, you could find the
maximum flow in an undirected network as well (Exercise 10-4).

Let’s see how we can solve this more general case. A naive approach would be to simply split edges, just like
the naive extension of BFS in Chapter 9 (Figure 9-3). Now, though, we want to split them lengthwise, as shown in
Figure 10-3. Just like BFS with serial dummy nodes gives you a good idea of how Dijkstra’s algorithm works, our
augmenting path algorithm with parallel dummy nodes is very close to how the full Ford-Fulkerson algorithm for
finding maximum flow works. As in the Dijkstra case, though, the actual algorithm can take care of greater chunks of
flow in one go, meaning that the dummy node approach (which lets us saturate only one unit of capacity at a time) is

hopelessly inefficient.
O
(B——(®) (==
O

Capacity = 2 Two edges

Figure 10-3. An edge capacity simulated by dummy nodes
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Let’s walk through the technicalities. Just like in the zero-one case, we have two rules for how our flow interacts
with edges and nodes. As you can see, they parallel the disjoint path rules closely:

e  The amount of flow going info any node except s or  must equal the amount of flow going out
of that node.

e  Atmost c(e) units of flow can go through any given edge.

Here, c(e) is the capacity of edge e. Just like for the disjoint paths, we are required to follow the edge direction,
so the flow back along an edge is always zero. A flow that respects our two rules is said to be feasible.

This is where you may need to take a breath and focus, though. What I'm about to say isn’t really complicated, but
it can get a bit confusing. I am allowed to push flow against the direction of an edge, as long as there’s already some
flow going in the right direction. Do you see how that would work? I hope the previous two sections have prepared you
for this—it’s all a matter of canceling flow. If I have one unit of flow going from a to b, I can cancel that unit, in effect
pushing one unit in the other direction. The net result is zero, so there is no actual flow in the wrong direction
(which is totally forbidden).

This idea lets us create augmenting paths, just like before: If you add k units of flow along an incoming edge or
cancel k units on an outgoing one at some node u, that node will be overflowing. It will have more flow entering than
leaving, which isn’t allowed. You can fix this either by adding k units of flow along an outgoing edge or by canceling k
units on an incoming one. This is exactly what you did in the zero-one case, except there k was always 1.

In Figure 10-4 two states of the same flow network are shown. In the first state, flow has been pushed along the
path s-c-b-t, giving a total flow value of 2. This flow is blocking any further improvements along the forward edges. As
you can see, though, the augmenting path includes a backward edge. By canceling one of the units of flow going from
cto b, we can send one additional unit from c via d to t, reaching the maximum.

Before After

Figure 10-4. A flow network before and after augmenting via an augmenting path (highlighted)

The general Ford-Fulkerson approach, as explained in this section, does not give any running time guarantees.
In fact, if irrational capacities (containing square roots or the like) are allowed, the iterative augmentation may never
terminate. For actual applications, the use of irrationals may not be very realistic, but even if we restrict ourselves to
limited-precision floating-point numbers, or even infegers, we can still run into trouble. Consider a really simple network
with source, sink, and two other nodes, u and v. Both nodes have edges from the source and to the sink, all with a
capacity of k. We also have a unit-capacity edge from u to v. If we keep choosing augmenting paths that go through the
edge uv, adding and canceling one unit of flow in every iteration, that would give us 2k iterations before termination.

What's the problem with this running time? It’s pseudopolynomial—exponential in the actual problem size. We
can easily crank up the capacity, and hence the running time, without using much more space. And the annoying
thing is that if we had chosen the augmenting paths more cleverly (for example, just avoiding the edge uv altogether),
we would have finished in fwo rounds, regardless of the capacity k.

Luckily, there is a solution to this problem, one that gives us a polynomial running time, no matter the capacities
(even irrational ones!). The thing is, Ford-Fulkerson isn’t really a fully specified algorithm, because its traversal is
completely arbitrary. If we settle on BFS as the traversal order (thereby always choosing the shortest augmenting
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path), we end up with what'’s called the Edmonds-Karp algorithm, which is exactly the solution we’re looking for. For
nnodes and m edges, Edmonds-Karp runs in O(nm?) time. That this is the case isn’t entirely obvious, though. For a
thorough proof, I recommend looking up the algorithm in the book by Cormen et al. (see “References” in Chapter 1).
The general idea is as follows: Each shortest augmenting path is found in O(m) time, and when we augment the flow
along it, at least one edge is saturated (the flow reaches the capacity). Each time an edge is saturated, the distance
from the source (along the augmenting path) must increase, and this distance is at most O(n). Because each edge can
be saturated at most O(n) times, we get at O(nm) iterations and a total running time of O(nm?).

For a correctness proof for the general Ford-Fulkerson method (and therefore also the Edmonds-Karp
algorithm), see the next section, on minimum cuts. That correctness proof does assume termination, though,
which is guaranteed if you avoid irrational capacities or if you simply use the Edmonds-Karp algorithm (which has
a deterministic running time).

One augmentation traversal, based on BFS, is given in Listing 10-3. An implementation of the full Ford-
Fulkerson method is shown in Listing 10-4. For simplicity, it is assumed that s and ¢ are different nodes. By default, the
implementation uses the BFS-based augmentation traversal, which gives us the Edmonds-Karp algorithm. The main
function (ford_fulkerson) is pretty straightforward and really quite similar to the previous two algorithms in this
chapter. The main while loop keeps going until it’s impossible to find an augmenting path and then returns the flow.
Whenever an augmenting path is found, it is traced backward to s, adding the capacity of the path to every forward
edge and subtracting (canceling) it from every reverse edge.

The bfs_aug function in Listing 10-3 is similar to the traversal in the previous algorithms. It uses a deque, to get
BFS, and builds the traversal tree using the P map. It only traverses forward edges if there is some remaining capacity
(G[u][v]-f[u,v] > 0), and backward edges if there is some flow to cancel (f[v,u] > 0). The labeling consists both
of setting traversal predecessors (in P) and in remembering how much flow could be transported to this node
(stored in F). This flow value is the minimum of (1) the flow we managed to transport to the predecessor and (2) the
remaining capacity (or reverse flow) on the connecting edge. This means that once we reach t, the total slack of the
path (the extra flow we can push through it) is F[t].

Note If your capacities are integers, the augmentations will always be integral as well, leading to an integral flow.
This is one of the properties that give the max-flow problem (and most algorithms that solve it) such a wide range of
application.

Listing 10-3. Finding Augmenting Paths with BFS and Labeling

from collections import deque
inf = float('inf')

def bfs aug(G, H, s, t, f):
P, Q, F = {s: None}, deque([s]), {s: inf}
def label(inc):
if v in P or inc <= 0: return
F[v], P[v] = min(F[u], inc), u Max flow here? From where?
Q.append(v) Discovered -- visit later

# Tree, queue, flow label
#
#
#
#
while Q: # Discovered, unvisited
#
#
#
#
#

Flow increase at v from u?
Seen? Unreachable? Ignore

u = Q.popleft() Get one (FIFO)

if u == t: return P, F[t] Reached t? Augmenting path!

for v in G[u]: label(G[u][v]-f[u,v]) Label along out-edges

for v in H[u]: label(f[v,u]) Label along in-edges
return None, 0 No augmenting path found
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Listing 10-4. The Ford-Fulkerson Method (by Default, the Edmonds-Karp Algorithm)

from collections import defaultdict

Max flow from s to t
Transpose and flow

While we can improve things
Aug. path and capacity/slack
No augm. path found? Done!
Start augmentation

Backtrack to s

Shift one step

Forward edge? Add slack
Backward edge? Cancel slack

def ford fulkerson(G, s, t, aug=bfs aug):
H, f = tr(G), defaultdict(int)
while True:
P, ¢ = aug(G, H, s, t, f)
if ¢ == 0: return f
u=t
while u != s:
u, v = Plul, u
if v in G[u]: f[u,v] +=
else: f[v,u] -=

H oH H H HF R H O H R

N N

RESIDUAL NETWORKS

One abstraction that is often used to explain the Ford-Fulkerson method and its relatives is residual networks.

A residual network G is defined with respect to an original flow network G, as well as a flow £, and is a way of
representing the traversal rules used when looking for augmenting paths. In G, there is an edge from v to vif (and
only if) either (1) there is an unsaturated edge (that is, one with residual capacity) from uto vin Gor (2) there is a
positive flow in G from vto u (which we are allowed to cancel).

In other words, our special augmenting traversal in G now becomes a completely normal traversal in G,. The
algorithm terminates when there is no longer a path from the source to the sink in the residual network. While the
idea is primarily a formal one, making it possible to use ordinary graph theory to reason about the augmentation,
you could also implement it explicitly, if you wanted (Exercise 10-5), as a dynamic view of the actual graph.

That would allow you to use existing implementations of BFS, and (as you’ll see later) Bellman-Ford and Dijkstra
directly on the residual network.

Minimum Cut

Just like the zero-one flow gave rise to Menger’s theorem, the more general flow problem gives us the max-flow min-
cut theorem of Ford and Fulkerson, and we can prove it in a similar fashion.? If we assume that the only cuts we’re
talking about are s-t cuts and we let the capacity of a cut be the amount of flow that can be moved across it (that is, the
sum of the forward-edge capacities), we can show that the following three statements are equivalent:

e  We have found a flow of size k, and there is a cut with capacity k.
¢  We have found the maximum flow.
e  There are no augmenting paths.

Proving this will give us two things: It will show that the Ford-Fulkerson method is correct, and it means that we
can use it to also find a minimum cut, which is a useful problem in itself. (I'll get back to that.)

3Actually, the proof I used in the zero-one case was just a simplified version of the proof I use here. There are proofs for Menger’s
theorem that don’t rely on the idea of flow as well.
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As in the zero-one case, the first clearly implies the second. Every unit of flow must pass through any s-f cut, so
if we have a cut of capacity k, that is an upper limit to the flow. If we have a flow that equals the capacity of a cut, that
flow must be maximum, while the cut must be minimum. This is a case of what is called duality.

The implication from the second statement (we've reached the max) to the third (there are no augmenting paths)
is once again provable by contradiction. Assume we have reached the maximum, but there is still an augmenting path.
Then we could use that path to increase our flow, which is a contradiction.

The last step (no augmenting paths means we have a cut equaling the flow) is again shown using the traversal
to construct a cut. That is, we let S be the set of nodes we can reach in the last iteration, and T is the remainder. Any
forward edge across the cut must be saturated because otherwise we would have traversed across it. Similarly, any
backward edge must be empty. This means that the flow going across the cut is exactly equal to its capacity, which is
what we wanted to show.

Minimum cuts have several applications that don’t really look like max-flow problems. Consider, for example,
the problem of allocating processes to two processors in a manner that minimizes the communication between them.
Let’s say one of the processors is a GPU and that the processes have different running times on the two processors.
Some fit the CPU better, while some should be run on the GPU. However, there might be cases where one fits on the
CPU and one on the GPU, but where the two communicate extensively with each other. In that case, we might want to
put them on the same processor, just to reduce the communication costs.

How would we solve this? We could set up an undirected flow network with the CPU as the source and the GPU
as the sink, for example. Each process would have an edge to both source and sink, with a capacity equal to the time
it would take to run on that processor. We also add edges between processes that communicate, with capacities
representing the communication overhead (in extra computation time) of having them on separate processors. The
minimum cut would then distribute the processes on the two processors in such a way that the total cost is as small as
possible—a nontrivial task if we couldn’t reduce to the min-cut problem.

In general, you can think of the whole flow network formalism as a special kind of algorithmic machine, and you
can use it to solve other problems by reduction. The task becomes constructing some form of flow network where a
maximum flow or minimum cut represents a solution to your original problem.

DUALITY

There are a couple of examples of duality in this chapter: Maximum bipartite matchings are the dual of minimum
bipartite vertex covers, and maximum flows are the dual of minimum cuts. There are several similar cases as well,
such as the maximum tension problem, which is the dual of the shortest path problem. In general, duality involves
two optimization problems, the primal and the dual, where both have the same optimization cost, and solving one
will solve the other. More specifically, for a maximization problem A and a minimization problem B, we have weak
duality if the optimal solution for A is less than or equal to the optimal solution for B. If they are equal (as for the
max-flow min-cut case), we have strong duality. If you want to know more about duality (including some rather
advanced material), take a look at Duality in Optimization and Variational Inequalities, by Go and Yang.

Cheapest Flow and the Assignment Problem’

Before leaving the topic of flow, let’s take a look at an important and rather obvious extension; let’s find the cheapest
maximum flow. That is, we still want to find the maximum flow, but if there is more than one way to achieve the same
flow magnitude, we want the cheapest one. We formalize this by adding costs to the edges and define the total cost as
the sum of w(e)-fle) over all edges e, where w and fare the cost and flow functions, respectively. That is, the cost is per
unit of flow over a given edge.

“This section is a bit hard and is not essential in order to understand the rest of the book. Feel free to skim it or even skip it entirely.
You might want to read the first couple of paragraphs, though, to get a feel for the problem.
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An immediate application of this is an extension of the bipartite matching problem. We can keep using the zero-
one flow formulation but add costs to each of the edges. We then have a solution to the min-cost bipartite matching
(or assignment) problem, hinted at in the introduction: By finding a maximum flow, we know we have a maximum
matching, and by minimizing the cost, we get the matching we’re looking for.

This problem is often referred to simply as min-cost flow. That means that rather than looking for the cheapest
maximum flow, we're simply looking for the cheapest flow of a given magnitude. For example, the problem might be
“give me a flow of size k, if such a flow exists, and make sure you construct it as cheaply as possible.” You could, for
example, construct a flow that is as great as possible, up to the value k. That way, finding the max-flow (or the min-cost
max-flow) would simply involve setting k to a sufficiently large value. It turns out that simply focusing on maximum
flow is sufficient, though; we can optimize to a specified flow value by a simple reduction, without modifying the
algorithm (see Exercise 10-6).

The idea introduced by Busacker and Gowen for solving the min-cost flow problem was this: Look for the
cheapest augmenting path. That is, use a shortest path algorithm for weighted graphs, rather than just BFS, during the
traversal step. The only wrinkle is that edges traversed backward have their cost negated for the purpose of finding the
shortest path. (They’re used for canceling flow, after all.)

If we could assume that the cost function was positive, we could use Dijkstra’s algorithm to find our augmenting
paths. The problem is that once you push some flow from u to v, we can suddenly traverse the (fictitious) reverse
edge vu, which has a negative cost. In other words, Dijkstra’s algorithm would work just fine in the first iteration, but
after that, we'd be doomed. Luckily, Edmonds and Karp thought of a neat trick to get around this problem—one that
is quite similar to the one used in Johnson'’s algorithm (see Chapter 9). We can adjust all the weights in a way that (1)
makes them all positive, and (2) forms telescoping sums along all traversal paths, ensuring that the shortest paths are
still shortest.

Let’s say we are in the process of performing the algorithm, and we have established some feasible flow. Let w(u, v)
be the edge weight, adjusted according to the rules of augmenting path traversal (that is, it's unmodified along edges
with residual capacity, and it’s negated along backward edges with positive flow). Let us once again (that is, just like
in Johnson’s algorithm) set h(v) = d(s, v), where the distance is computed with respect to w. We can then define an
adjusted weight, which we can use for finding our next augmenting path: w'(u, v) = w(y, v) + h(u) - h(v). Using the same
reasoning as in Chapter 9, we see that this adjustment will preserve all the shortest paths and, in particular, the shortest
augmenting paths from sto t.

Implementing the basic Busacker-Gowen algorithm is basically a question of replacing BES with, for example,
Bellman-Ford (see Listing 9-2) in the code for bfs_aug (Listing 10-3). If you want to use Dijkstra’s algorithm, you
simply have to use the modified weights, as described earlier (Exercise 10-7). For an implementation based on
Bellman-Ford, see Listing 10-5. (The implementation assumes that edge weights are given by a separate map, so
W[u,v] is the weight, or cost, of the edge from u to v.) Note that the flow labeling from the Ford-Fulkerson labeling
approach has been merged with the relax operation of Bellman-Ford—both are performed in the label function. To
do anything, you must both have found a better path and have some free capacity along the new edge. If that is the
case, both the distance estimate and the flow label are updated.

The running time of the Busacker-Gowen method depends on which shortest path algorithm you choose.
We’'re no longer using the Edmonds-Karp-approach, so we're losing its running-time guarantees, but if we’re using
integral capacities and are looking for a flow of value k, we're guaranteed at most k iterations.* Assuming Dijkstra’s
algorithm, the total running time becomes O(kmlgn). For the min-cost bipartite matching, k would be O(n), so
we'd get O(nm 1g n).

In a sense, this is a greedy algorithm, where we gradually build the flow but add as little cost as possible in each
step. Intuitively, this seems like it should work, and indeed it does, but proving as much can be a bit challenging—so
much so, in fact, that I'm not going into details here. If you want to read the proof (as well as more details on the
running time), have a look at the chapter on circulations in Graphs, Networks and Algorithms, by Dieter Jungnickel.®
You can find a simpler proof for the special case of min-cost bipartite matching in Algorithm Design, by Kleinberg and
Tardos (see “References” in Chapter 1).

“This is, of course, pseudopolynomial, so choose your capacities wisely.
*Also available online: http://books.google.com/books?id=NvuFAglxaJkC&pg=PA299
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Listing 10-5. The Busacker-Gowen Algorithm, Using Bellman-Ford for Augmentation

+H

def busacker gowen(G, W, s, t): Min-cost max-flow

def sp aug(G, H, s, t, f): # Shortest path (Bellman-Ford)
D, P, F = {s:0}, {s:None}, {s:inf,t:0} # Dist, preds and flow
def label(inc, cst): # Label + relax, really
if inc <= 0: return False # No flow increase? Skip it
d = D.get(u,inf) + cst # New possible aug. distance
if d >= D.get(v,inf): return False # No improvement? Skip it
D[v], P[v] =d, u # Update dist and pred
F[v] = min(F[u], inc) # Update flow label
return True # We changed things!
for in G: # n = len(G) rounds
changed = False # No changes in round so far
for u in G: # Every from-node
for v in G[u]: # Every forward to-node
changed |= label(G[u][v]-f[u,v], W[u,v])
for v in H[u]: # Every backward to-node
changed |= label(f[v,u], -W[v,u])
if not changed: break # No change in round: Done
else: # Not done before round n?
raise ValueError('negative cycle') # Negative cycle detected
return P, F[t] # Preds and flow reaching t
return ford fulkerson(G, s, t, sp_aug) # Max-flow with Bellman-Ford

Some Applications

As promised initially, I'll now sketch out a few applications of some of the techniques in this chapter. I won'’t be giving
you all the details or actual code—you could try your hand at implementing the solutions if you'd like some more
experience with the material.

Baseball elimination. The solution to this problem was first published by Benjamin L. Schwartz in 1966. If you're
like me, you could forgo the baseball context and imagine this being about a round-robin tournament of jousting
knights instead (as discussed in Chapter 4). Anyway, the idea is as follows: You have a partially completed tournament
(baseball-related or otherwise), and you want to know if a certain team, say, the Mars Greenskins, can possibly win
the tournament. That is, if they can at most win W games in total (if they win every remaining game), is it possible to
reach a situation where no other team has more than Wwins?

It's not obvious how this problem can be solved by reduction to maximum flow, but let’s have a go. We’ll build a
network with integral flow, where each unit of flow represents one of the remaining games. We create nodes x,, ..., x,
to represent the other teams, as well as nodes p, to represent each pair of nodes x, and x.In addition, of course, we
have the source s and the sink t. Add an edge from s to every team node, and one from every pair node to ¢. For a pair
node Py add edges from x, and x with infinite capacity. The edge from pair node p, to t gets a capacity equal to the
number of games left between x, and X, If team x, has won w, games already, the edge from s to x, gets a capacity of
W - w, (the number it can win without overtaking the Greenskins).

As1said, each unit of flow represents one game. Imagine tracking a single unit from s to ¢. First, we come to a
team node, representing the team that won this game. Then we come to a pair node, representing which team we
were up against. Finally, moving along an edge to ¢, we gobble up a unit of capacity representing one match between
the two teams in question. The only way we can saturate all the edges into ¢ is if all the remaining games can be played
under these conditions—that is, with no team winning more than W games in total. Thus, finding the maximum flow
gives us our answer. For a more detailed correctness proof, either see Section 4.3 of Introduction to Graph Theory by
Douglas B. West (see the references for Chapter 2) or take a look at the original source, Possible winners in partially
completed tournaments, by B. L. Schwartz.
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Choosing representatives. Ahuja et al. describe this amusing little problem. In a small town, there are 7 residents,
X, ..., X . There are also m clubs, c,, ..., ¢, and k political parties, p,, ..., p,. Each resident is a member of at least one
club and can belong to exactly one political party. Each club must nominate one of its members to represent it on the
town council. There is one catch, though: The number of representatives belonging to party p, can be at most u,. It is
possible to find such a set of representatives? Again, we reduce to maximum flow. As is often the case, we represent
the objects of the problem as nodes, and the constraints between them as edges and capacities. In this case, we have
one node per resident, club, and party, as well as the source s and the sink ¢.

The units of flow represent the representatives. Thus, we give each club an edge from s, with a capacity of 1,
representing the single person they can nominate. From each club, we add an edge to each of the people belonging to
that club, as they form the candidates. (The capacities on these edges doesn’t really matter, as long as it’s at least 1.) Note
that each person can have multiple in-edges (that is, belong to multiple clubs). Now add an edge from the residents to
their political parties (one each). These edges, once again, have a capacity of 1 (the person is allowed to represent only
a single club). Finally, add edges from the parties to ¢ so that the edge from party p, has a capacity of u,, limiting the
number of representatives on the council. Finding a maximum flow will now get us a valid set of nominations.

Of course, this max-flow solution gives only a valid set of nominations, not necessarily the one we want. We can
assume that the party capacities u, are based on democratic principles (some form of vote); shouldn’t the choice of a
representative similarly be based on the preferences of the club? Maybe they could hold votes to indicate how much
they’d like each member to represent them, so the members get scores, say, equal to their percentages of the votes. We
could then try to maximize the sum of these scores, while still ensuring that the nominations are valid, when viewed
globally. See where I'm going with this? Exactly: We can extend the problem of Ahuja et al. by adding a cost to the
edges from clubs to residents (equal to 100 - score, for example), and we solve the min-cost max-flow problem. The
fact that we're getting a maximum flow will take care of the validity of the nominations, while the cost minimization
will give us the best compromise, based on club preferences.

Doctors on vacation. Kleinberg and Tardos (see “References” in Chapter 1) describe a somewhat similar problem.
Different objects and constraints, but the idea is somewhat similar still. The problem is assigning doctors to holiday
days. At least one doctor must be assigned to each holiday day, but there are restrictions on how this can be done.
First, each doctor is available on only some of the vacation days. Second, each doctor should be assigned to work on
at most ¢ vacation days in total. Third, each doctor should be assigned to work on only one day during each vacation
period. Do you see how this can be reduced to maximum flow?

Once again, we have a set of objects with constraints between them. We need at least one node 