Python Geospatial
Development

Build a complete and sophisticated mapping application from
scratch using Python tools for GIS development

PACKT

Python Geospatial Development

Build a complete and sophisticated mapping application
from scratch using Python tools for GIS development

Erik Westra

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Python Geospatial Development

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010
Production Reference: 1071210

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849511-54-4
www . packtpub.com

Cover Image by Asher Wishkerman (a.wishkermanempic.de)

Credits

Author
Erik Westra

Reviewers
Tomi Juhola

Silas Toms

Acquisition Editor
Steven Wilding

Development Editor
Hyacintha D'Souza

Technical Editor
Kartikey Pandey

Indexers
Hemangini Bari

Tejal Daruwale

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Priya Mukheriji

Project Coordinator
Jovita Pinto

Proofreader
Jonathan Todd

Graphics
Nilesh R. Mohite

Production Coordinator
Kruthika Bangera

Cover Work
Kruthika Bangera

About the Author

Erik Westra has been a professional software developer for over 25 years, and

has worked almost exclusively in Python for the past decade. Erik's early interest

in graphical user-interface design led to the development of one of the most
advanced urgent courier dispatch systems used by messenger and courier companies
worldwide. In recent years, Erik has been involved in the design and implementation
of systems matching seekers and providers of goods and services across a range of
geographical areas. This work has included the creation of real-time geocoders and
map-based views of constantly changing data. Erik is based in New Zealand, and
works for companies worldwide.

"For Ruth,

The love of my life."

About the Reviewers

Tomi Juhola is a software development professional from Finland. He has a wide
range of development experience from embedded systems to modern distributed
enterprise systems in various roles, such as tester, developer, consultant, and trainer.

Currently, he works in a company called Lindorff and shares this time between
development lead duties and helping other projects to adopt Scrum and

agile methodologies. He likes to spend his free time with new and interesting
development languages and frameworks.

Silas Toms is a GIS Analyst for ICF International, working at the San Francisco and
San Jose offices. His undergraduate degree is in Geography (from Humboldt State
University), and he is currently finishing a thesis for an MS in GIS at San Francisco
State University. He has been a GIS professional for four years, working with many
local and regional governments before taking his current position. Python experience
was gained through classes at SFSU and professional experience. This is the first
book he has helped review.

I would like to thank everyone at Packt Publishing for allowing

me to help review this book and putting up with my ever-shifting
schedule. I would also like to thank my family for being supportive
in my quest to master this somewhat esoteric field, and for never
asking if I am going to teach with this degree.

www.PacktPub.com

Support files, eBooks, discount offers
and more

You might want to visit www. Packt Pub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

@ PACKT! i1°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read, and search across Packt's entire library of
books.

Why Subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface 1
Chapter 1: Geo-Spatial Development Using Python 7
Python 7
Geo-spatial development 9
Applications of geo-spatial development 11
Analyzing geo-spatial data 12
Visualizing geo-spatial data 13
Creating a geo-spatial mash-up 16
Recent developments 17
Summary 19
Chapter 2: GIS 21
Core GIS concepts 21
Location 22
Distance 25
Units 27
Projections 28
Cylindrical projections 29
Conic projections 31
Azimuthal projections 31

The nature of map projections 32
Coordinate systems 32
Datums 35
Shapes 36
GIS data formats 37
Working with GIS data manually 39

Summary 46

Table of Contents

Chapter 3: Python Libraries for Geo-Spatial Development 47
Reading and writing geo-spatial data 47
GDAL/OGR 48
GDAL design 48
GDAL example code 50
OGR design 51
OGR example code 52
Documentation 53
Availability 53
Dealing with projections 54
pYproj o4
Design 54
Proj 55
Geod 56
Example code o7
Documentation 58
Availability 58
Analyzing and manipulating geo-spatial data 59
Shapely 59
Design 60
Example code 61
Documentation 62
Availability 62
Visualizing geo-spatial data 63
Mapnik 63
Design 64
Example code 66
Documentation 67
Availability 68
Summary 68
Chapter 4: Sources of Geo-Spatial Data 71
Sources of geo-spatial data in vector format 72
OpenStreetMap 72
Data format 73
Obtaining and using OpenStreetMap data 74
TIGER 76
Data format 7
Obtaining and using TIGER data 78
Digital Chart of the World 79
Data format 80
Available layers 80
Obtaining and using DCW data 80

Lii]

Table of Contents

GSHHS 82
Data format 83
Obtaining the GSHHS database 84

World Borders Dataset 84
Data format 85
Obtaining the World Borders Dataset 85

Sources of geo-spatial data in raster format 85

Landsat 86
Data format 86
Obtaining Landsat imagery 87

GLOBE 90
Data format 90
Obtaining and using GLOBE data 91

National Elevation Dataset 92
Data format 92
Obtaining and using NED data 93

Sources of other types of geo-spatial data 94

GEOnet Names Server 94
Data format 95
Obtaining and using GEOnet Names Server data 95

GNIS 96
Data format 97
Obtaining and using GNIS data 97

Summary 98
Chapter 5: Working with Geo-Spatial Data in Python 101
Prerequisites 101
Reading and writing geo-spatial data 102

Task: Calculate the bounding box for each country in the world 102

Task: Save the country bounding boxes into a Shapefile 104

Task: Analyze height data using a digital elevation map 108

Changing datums and projections 115

Task: Change projections to combine Shapefiles using geographic

and UTM coordinates 115

Task: Change datums to allow older and newer TIGER data

to be combined 119

Representing and storing geo-spatial data 122
Task: Calculate the border between Thailand and Myanmar 123
Task: Save geometries into a text file 126

Working with Shapely geometries 127
Task: Identify parks in or near urban areas 128

Converting and standardizing units of geometry and distance 132
Task: Calculate the length of the Thai-Myanmar border 133
Task: Find a point 132.7 kilometers west of Soshone, California 139

[iii]

Table of Contents

Exercises 141
Summary 143
Chapter 6: GIS in the Database 145
Spatially-enabled databases 145
Spatial indexes 146
Open source spatially-enabled databases 149
MySQL 149
PostGIS 152
Installing and configuring PostGIS 152
Using PostGIS 155
Documentation 157
Advanced PostGIS features 157
SpatialLite 158
Installing SpatiaLite 158
Installing pysqlite 159
Accessing SpatiaLite from Python 160
Documentation 160
Using SpatiaLite 161
SpatialLite capabilities 163
Commercial spatially-enabled databases 164
Oracle 164
MS SQL Server 165
Recommended best practices 165
Use the database to keep track of spatial references 166
Use the appropriate spatial reference for your data 168
Option 1: Use a database that supports geographies 169
Option 2: Transform features as required 169
Option 3: Transform features from the outset 169
When to use unprojected coordinates 170
Avoid on-the-fly transformations within a query 170
Don't create geometries within a query 171
Use spatial indexes appropriately 172
Know the limits of your database's query optimizer 173
MySQL 174
PostGIS 175
SpatialLite 177
Working with geo-spatial databases
using Python 178
Prerequisites 179
Working with MySQL 179
Working with PostGIS 182
Working with SpatiaL.ite 184
Speed comparisons 188
Summary 189

[iv]

Table of Contents

Chapter 7: Working with Spatial Data 191
About DISTAL 191
Designing and building the database 195
Downloading the data 199

World Borders Dataset 200
GSHHS 200
Geonames 200
GEOnet Names Server 200
Importing the data 201
World Borders Dataset 201
GSHHS 203
US placename data 205
Worldwide placename data 208
Implementing the DISTAL application 210
The "Select Country" script 212
The "Select Area" script 214
Calculating the bounding box 215
Calculating the map's dimensions 216
Setting up the datasource 218
Rendering the map image 220
The "Show Results" script 223
Identifying the clicked-on point 223
Identifying features by distance 225
Displaying the results 233
Application review and improvements 235
Usability 236
Quality 237
Placename issues 237
Lat/Long coordinate problems 238
Performance 239
Finding the problem 240
Improving performance 242
Calculating the tiled shorelines 244
Using the tiled shorelines 250
Analyzing the performance improvement 252
Further performance improvements 252
Scalability 253
Summary 257

Chapter 8: Using Python and Mapnik to Generate Maps 259
Introducing Mapnik 260
Creating an example map 265
Mapnik in depth 269

Data sources 269

Shapefile 270
[v]

Table of Contents

PostGIS 270
GDAL 272
OGR 273
SQLite 274
OsSM 275
PointDatasource 276
Rules, filters, and styles 277
Filters 277
Scale denominators 279
"Else" rules 280
Symbolizers 281
Drawing lines 281
Drawing polygons 287
Drawing labels 289
Drawing points 208
Drawing raster images 301
Using colors 303
Maps and layers 304
Map attributes and methods 305
Layer attributes and methods 306
Map rendering 307
MapGenerator revisited 309
The MapGenerator's interface 309
Creating the main map layer 310
Displaying points on the map 312
Rendering the map 313
What the map generator teaches us 313
Map definition files 314
Summary 317
Chapter 9: Web Frameworks for Python Geo-Spatial
Development 321
Web application concepts 322
Web application architecture 322
A bare-bones approach 322
Web application stacks 323
Web application frameworks 324
Web services 325
Map rendering 327
Tile caching 327
Web servers 330
User interface libraries 331
The "slippy map" stack 332
The geo-spatial web application stack 334

[vil

Table of Contents

Protocols 334
The Web Map Service (WMS) protocol 334
WMS-C 337
The Web Feature Service (WFS) protocol 337
The TMS (Tile Map Service) protocol 339
Tools 344
Tile caching 344
TileCache 345
mod_tile 346
TileLite 347
User interface libraries 347
OpenLayers 348
Mapiator 351
Web application frameworks 353
GeoDjango 353
MapFish 356
TurboGears 357
Summary 359
Chapter 10: Putting it All Together: A Complete
Mapping Application 363
About the ShapeEditor 363
Designing the application 367
Importing a Shapefile 367
Selecting a feature 369
Editing a feature 370
Exporting a Shapefile 371
Prerequisites 371
The structure of a Django application 372
Models 374
Views 374
Templates 377
Setting up the database 379
Setting up the GeoDjango project 380
Setting up the ShapeEditor application 382
Defining the data models 383
Shapefile 383
Attribute 384
Feature 384
AttributeValue 385
The models.py file 385
Playing with the admin system 388
Summary 395

[vii]

Table of Contents

Chapter 11: ShapeEditor: Implementing List View,

Import, and Export 397
Implementing the "List Shapefiles" view 397
Importing Shapefiles 401

The "import shapefile" form 402
Extracting the uploaded Shapefile 405
Importing the Shapefile's contents 408
Open the Shapefile 408
Add the Shapefile object to the database 409
Define the Shapefile's attributes 410
Store the Shapefile's features 411
Store the Shapefile's attributes 413
Cleaning up 416
Exporting Shapefiles 417
Define the OGR Shapefile 418
Saving the features into the Shapefile 419
Saving the attributes into the Shapefile 420
Compressing the Shapefile 422
Deleting temporary files 422
Returning the ZIP archive to the user 423
Summary 424

Chapter 12: ShapeEditor: Selecting and Editing Features 425

Selecting a feature to edit 426

Implementing the Tile Map Server 426
Setting up the base map 435

Tile rendering 437
Using OpenLayers to display the map 442
Intercepting mouse clicks 447
Implementing the "find feature" view 451
Editing features 457
Adding features 464
Deleting features 467
Deleting Shapefiles 468
Using ShapeEditor 470
Further improvements and enhancements 470
Summary 471
Index 473

[viii]

Preface

Open Source GIS (Geographic Information Systems) is a growing area with

the explosion of Google Maps-based websites and spatially-aware devices and
applications. The GIS market is growing rapidly, and as a Python developer you
can't afford to be left behind. In today's location-aware world, all commercial Python
developers can benefit from an understanding of GIS concepts and development
techniques.

Working with geo-spatial data can get complicated because you are dealing with
mathematical models of the Earth's surface. Since Python is a powerful programming
language with high-level toolkits, it is well-suited to GIS development. This book
will familiarize you with the Python tools required for geo-spatial development. It
introduces GIS at the basic level with a clear, detailed walkthrough of the key GIS
concepts such as location, distance, units, projections, datums, and GIS data formats.
We then examine a number of Python libraries and combine these with geo-spatial
data to accomplish a variety of tasks. The book provides an in-depth look at the
concept of storing spatial data in a database and how you can use spatial databases
as tools to solve a variety of geo-spatial problems.

It goes into the details of generating maps using the Mapnik map-rendering
toolkit, and helps you to build a sophisticated web-based geo-spatial map editing
application using GeoDjango, Mapnik, and PostGIS. By the end of the book, you
will be able to integrate spatial features into your applications and build a complete
mapping application from scratch.

This book is a hands-on tutorial, teaching you how to access, manipulate,
and display geo-spatial data efficiently using a range of Python tools for GIS
development.

Preface

What this book covers

Chapter 1, Geo-Spatial Development Using Python, introduces the Python programming
language and the main concepts behind geo-spatial development

Chapter 2, GIS, discusses many of the core concepts that underlie GIS development.
It examines the common GIS data formats, and gets our hands dirty exploring U.S.
state maps downloaded from the U.S. Census Bureau website

Chapter 3, Python Libraries for Geo-Spatial Development, looks at a number of important
libraries for developing geo-spatial applications using Python

Chapter 4, Sources of Geo-Spatial Data, covers a number of sources of freely-available
geo-spatial data. It helps you to obtain map data, images, elevations, and place
names for use in your geo-spatial applications

Chapter 5, Working with Geo-Spatial Data in Python, deals with various techniques
for using OGR, GDAL, Shapely, and pyproj within Python programs to solve
real-world problems

Chapter 6, GIS in the Database, takes an in-depth look at the concept of storing spatial
data in a database, and examines three of the principal open source spatial databases

Chapter 7, Working with Spatial Data, guides us to implement, test, and make
improvements to a simple web-based application named DISTAL. This application
displays shorelines, towns, and lakes within a given radius of a starting point. We
will use this application as the impetus for exploring a number of important concepts
within geo-spatial application development

Chapter 8, Using Python and Mapnik to Generate Maps, helps us to explore the Mapnik
map-generation toolkit in depth

Chapter 9, Web Frameworks for Python Geo-Spatial Development, discusses the geo-spatial
web development landscape, examining the major concepts behind geo-spatial web
application development, some of the main open protocols used by geo-spatial web
applications, and a number of Python-based tools for implementing geo-spatial
applications that run over the Internet

Chapter 10, Putting it all Together: a Complete Mapping Application, along with the
final two chapters, brings together all the topics discussed in previous chapters to
implement a sophisticated web-based mapping application called ShapeEditor

Chapter 11, ShapeEditor: Implementing List View, Import, and Export, continues with
implementation of the ShapeEditor by adding a "list" view showing the imported
Shapefiles, along with the ability to import and export Shapefiles

[2]

Preface

Chapter 12, ShapeEditor: Selecting and Editing Features, adds map-based editing and
feature selection capabilities, completing the implementation of the ShapeEditor
application

What you need for this book

To follow through the various examples, you will need to download and install the
following software:

Python version 2.x (minimum version 2.5)
GDAL/OGR version 1.7.1 or later
GEOS version 3.2.2 or later
Shapely version 1.2 or later

Proj version 4.7 or later

pyproj version 1.8.6 or later
MySQL version 5.1 or later
MySQLdDb version 1.2 or later
SpatiaLite version 2.3 or later
pysqglite version 2.6 or later
PostgreSQL version 8.4 or later
PostGIS version 1.5.1 or later
psycopg2 version 2.2.1 or later
Mapnik version 0.7.1 or later

Django version 1.2 or later

With the exception of Python itself, the procedure for downloading, installing, and
using all of these tools is covered in the relevant chapters of this book.

Who this book is for

This book is useful for Python developers who want to get up to speed with open
source GIS in order to build GIS applications or integrate geo-spatial features into
their applications.

[31]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can then convert these to Shapely
geometric objects using the shapely.wkt module."

A block of code is set as follows:

import osgeo.ogr

shapefile = osgeo.ogr.Open ("TM_WORLD BORDERS-0.3.shp")
layer = shapefile.GetLayer (0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

from pysglite2 import dbapi as sglite

conn = sqglite.connect ("...")
conn.enable load extension (True)

conn.execute ('SELECT load extension("libspatialite-2.d11")"')
curs = conn.cursor ()

Any command-line input or output is written as follows:

>>> import sqglite3

>>> conn = sglite3.connect (" :memory:")

>>> conn.enable load extension (True)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If you

want, you can change the format of the downloaded data by clicking on the Modify
Data Request hyperlink".

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[4]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub . com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
M You can download the example code files for all Packt books you have
Q purchased from your account at http://www.PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub. com/support.

[51]

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

Geo-Spatial Development
Using Python

This chapter provides an overview of the Python programming language and
geo-spatial development. Please note that this is not a tutorial on how to use the
Python language; Python is easy to learn, but the details are beyond the scope
of this book.

In this chapter, we will cover:
e What the Python programming language is, and how it differs from other
languages

¢ Anintroduction to the Python Standard Library and the Python Package
Index

e What the terms "geo-spatial data" and "geo-spatial development" refer to

e An overview of the process of accessing, manipulating, and displaying
geo-spatial data

e Some of the major applications for geo-spatial development

e Some of the recent trends in the field of geo-spatial development

Python

Python (http://python.org) is a modern, high-level language suitable for a

wide variety of programming tasks. Technically, it is often referred to as a "scripting"
language, though this distinction isn't very important nowadays.

Python has been used for writing web-based systems, desktop applications, games,
scientific programming, and even utilities and other higher-level parts of various
operating systems.

Geo-Spatial Development Using Python

Python supports a wide range of programming idioms, from straightforward
procedural programming to object-oriented programming and functional
programming.

While Python is generally considered to be an "interpreted" language, and is
occasionally criticized for being slow compared to "compiled" languages such as C,
the use of byte-compilation and the fact that much of the heavy lifting is done by
library code means that Python's performance is often surprisingly good.

Open source versions of the Python interpreter are freely available for all major
operating systems. Python is eminently suitable for all sorts of programming,

from quick one-off scripts to building huge and complex systems. It can even be
run in interactive (command-line) mode, allowing you to type in commands and
immediately see the results. This is ideal for doing quick calculations or figuring out
how a particular library works.

One of the first things a developer notices about Python compared with other
languages such as Java or C++ is how expressive the language is —what may take 20
or 30 lines of code in Java can often be written in half a dozen lines of code in Python.
For example, imagine that you have an array of latitude and longitude values you
wish to process one at a time. In Python, this is trivial:

for lat,long in coordinates:

Compare this with how much work a programmer would have to do in Java to
achieve the same result:

for (int i=0; i < coordinates.length; i++) {
float lat = coordinates|[i] [0];
float long = coordinates[i] [1];

While the Python language itself makes programming quick and easy, allowing you
to focus on the task at hand, the Python Standard Libraries make programming
even more efficient. These libraries make it easy to do things such as converting date
and time values, manipulating strings, downloading data from websites, performing
complex maths, working with e-mail messages, encoding and decoding data,

XML parsing, data encryption, file manipulation, compressing and decompressing
files, working with databases — the list goes on. What you can do with the Python
Standard Libraries is truly amazing.

[8]

Chapter 1

As well as the built-in modules in the Python Standard Libraries, it is easy to
download and install custom modules, which can be written in either Python or C. The
Python Package Index (http://pypi.python.org) provides thousands of additional
modules that you can download and install. And, if that isn't enough, many other
systems provide python bindings to allow you to access them directly from within your
programs. We will be making heavy use of Python bindings in this book.

It should be pointed out that there are different versions of Python
available. Python 2.x is the most common version in use today, while
the Python developers have been working for the past several years on
% a completely new, non-backwards-compatible version called Python 3.
’ Eventually, Python 3 will replace Python 2.x, but at this stage most of the
third-party libraries (including all the GIS tools we will be using) only work
with Python 2.x. For this reason, we won't be using Python 3 in this book.

Python is in many ways an ideal programming language. Once you are familiar
with the language itself and have used it a few times, you'll find it incredibly easy
to write programs to solve various tasks. Rather than getting buried in a morass

of type-definitions and low-level string manipulation, you can simply concentrate
on what you want to achieve. You end up almost thinking directly in Python code.
Programming in Python is straightforward, efficient and, dare I say it, fun.

Geo-spatial development

The term Geo-spatial refers to information that is located on the Earth's surface using
coordinates. This can include, for example, the position of a cell phone tower, the
shape of a road, or the outline of a country:

[o]

Geo-Spatial Development Using Python

Geo-spatial data often associates some piece of information with a
particular location. For example, here is a map of Afghanistan from the
http://afghanistanelectiondata.org website showing the number
of votes cast in each location in the 2009 elections:

Geo-spatial development is the process of writing computer programs that can
access, manipulate, and display this type of information.

Internally, geo-spatial data is represented as a series of coordinates, often in the form
of latitude and longitude values. Additional attributes such as temperature, soil
type, height, or the name of a landmark are also often present. There can be many
thousands (or even millions) of data points for a single set of geo-spatial data. For
example, the following outline of New Zealand consists of almost 12,000 individual
data points:

[10]

Chapter 1

Because so much data is involved, it is common to store geo-spatial information
within a database. A large part of this book will be concerned with how to store
your geo-spatial information in a database, and how to access it efficiently.

Geo-spatial data comes in many different forms. Different GIS (Geographical
Information System) vendors have produced their own file formats over the years,
and various organizations have also defined their own standards. It's often necessary
to use a Python library to read files in the correct format when importing geo-spatial
data into your database.

Unfortunately, not all geo-spatial data points are compatible. Just like a distance
value of 2.8 can have a very different meaning depending on whether you are using
kilometers or miles, a given latitude and longitude value can represent any number of
different points on the Earth's surface, depending on which projection has been used.

A projection is a way of representing the Earth's surface in two dimensions. We will
look at projections in more detail in Chapter 2, GIS, but for now just keep in mind
that every piece of geo-spatial data has a projection associated with it. To compare
or combine two sets of geo-spatial data, it is often necessary to convert the data from
one projection to another.

Latitude and longitude values are sometimes referred to as unprojected
e coordinates. We'll learn more about this in the next chapter.

In addition to the prosaic tasks of importing geo-spatial data from various external
file formats and translating data from one projection to another, geo-spatial data

can also be manipulated to solve various interesting problems. Obvious examples
include the task of calculating the distance between two points, calculating the length
of a road, or finding all data points within a given radius of a selected point. We will
be using Python libraries to solve all of these problems, and more.

Finally, geo-spatial data by itself is not very interesting. A long list of coordinates
tells you almost nothing; it isn't until those numbers are used to draw a picture
that you can make sense of it. Drawing maps, placing data points onto a map,
and allowing users to interact with maps are all important aspects of geo-spatial
development. We will be looking at all of these in later chapters.

Applications of geo-spatial development

Let's take a brief look at some of the more common geo-spatial development tasks
you might encounter.

[11]

Geo-Spatial Development Using Python

Analyzing geo-spatial data

Imagine that you have a database containing a range of geo-spatial data for San
Francisco. This database might include geographical features, roads and the location
of prominent buildings and other man-made features such as bridges, airports, and
SO on.

Such a database can be a valuable resource for answering various questions.
For example:

e What's the longest road in Sausalito?
¢ How many bridges are there in Oakland?
e What is the total area of the Golden Gate Park?

e How far is it from Pier 39 to the Moscone Center?

Many of these types of problems can be solved using tools such as the PostGIS
spatially-enabled database. For example, to calculate the total area of the Golden
Gate Park, you might use the following SQL query:

select ST Area(geometry) from features
where name = "Golden Gate Park";

To calculate the distance between two places, you first have to geocode the locations
to obtain their latitude and longitude. There are various ways to do this; one simple
approach is to use a free geocoding web service such as this:

http://tinygeocoder.com/create-api.php?g=Pier 39,San Francisco,CA
This returns a latitude value of 37.809662 and a longitude value of -122.410408.
These latitude and longitude values are in decimal

degrees. If you don't know what these are, don't worry;
we'll talk about decimal degrees in Chapter 2, GIS.

Similarly, we can find the location of the Moscone Center using this query:

http://tinygeocoder.com/create-api.php?g=Moscone Center, San
Francisco, CA

This returns a latitude value of 37.784161 and a longitude value of -122.401489.

Now that we have the coordinates for the two desired locations, we can calculate
the distance between them using the pyproj Python library:

[12]

Chapter 1

import pyproj

latl,longl = (37.809662,-122.410408)
lat2,long2 = (37.784161,-122.401489)

geod = pyproj.Geod(ellps="WGS84")
anglel,angle2,distance = geod.inv(longl, latl, long2, lat2)

)

print "Distance is %0.2f meters" % distance
This prints the distance between the two points:

Distance is 2937.41 meters

Don't worry about the "WGS84" reference at this
— stage; we'll look at what this means in Chapter 2, GIS.

Of course, you wouldn't normally do this sort of analysis on a one-off basis like

this —it's much more common to create a Python program that will answer these
sorts of questions for any desired set of data. You might, for example, create a web
application that displays a menu of available calculations. One of the options in

this menu might be to calculate the distance between two points; when this option

is selected, the web application would prompt the user to enter the two locations,
attempt to geocode them by calling an appropriate web service (and display an error
message if a location couldn't be geocoded), then calculate the distance between the
two points using Proj, and finally display the results to the user.

Alternatively, if you have a database containing useful geo-spatial data, you could
let the user select the two locations from the database rather than typing in arbitrary
location names or street addresses.

However you choose to structure it, performing calculations like this will usually
be a major part of your geo-spatial application.

Visualizing geo-spatial data

Imagine that you wanted to see which areas of a city are typically covered by a taxi
during an average working day. You might place a GPS recorder into a taxi and
leave it to record the taxi's position over several days. The results would be a series
of timestamp, latitude and longitude values like the following:

2010-03-21 9:15:23 -38.16614499 176.2336626
2010-03-21 9:15:27 -38.16608632 176.2335635
2010-03-21 9:15:34 -38.16604198 176.2334771
2010-03-21 9:15:39 -38.16601507 176.2333958

[13]

Geo-Spatial Development Using Python

By themselves, these raw numbers tell you almost nothing. But, when you display
this data visually, the numbers start to make sense:

You can immediately see that the taxi tends to go along the same streets again and
again. And, if you draw this data as an overlay on top of a street map, you can see
exactly where the taxi has been:

[14]

Chapter 1

RS nEEREYM

(aallg MARLLBUIH

nemoa 5t

Pererika Strest

Elizabeth Streed

©
b [Victoria Street
g "]
2 7] L
% i g w
£ g £ s £ T ®
- E [5 =] k)
- Z e] A])
E “ E n < o ®
2 g = o S 2 4
i il & " = 5
.3 £ 1 = =
v £ ! [Ti Street
2
—_— o
Vork Street Kahikatea Street Seddon Stipet
e M
Ll 5 &
L) H a i
= i1 L} Grey Street
=N n kS
42 k-
=

Robertson {Reet

(Street map courtesy of http:

//openstreetmap.org).

While this is a very simple example, visualization is a crucial aspect of working with
geo-spatial data. How data is displayed visually, how different data sets are overlaid,
and how the user can manipulate data directly in a visual format are all going to be

major topics of this book.

[15]

Geo-Spatial Development Using Python

Creating a geo-spatial mash-up
The concept of a "mash-up" has become popular in recent years. Mash-ups are

applications that combine data and functionality from more than one source. For
example, a typical mash-up may combine details of houses for rent in a given city,

and plot the location of each rental on a map, like this:

800

HousingMaps

0

@ @ @ @ http:/ /www.housingmaps.com/

v

Q- craigslist mashup

For Rent ForSale Rooms Sublets

Bpug aIED UIRIOD

::6

&
2
B

South Bay

C

Oute
Richmand

Baiooa St .
Fulton St &

Golden Gate
Heights

i 18RS

Noriega St

Forest Hill

; @
% =)
©)
E;;EEE[E Hhmmemd

Balboa
Terace

R

§

g IS

Crocker,

City: [San Francisco |3) Price: [51500 - 52000 [3] Show Filters™**

Y
Jahn

Refresh Link

[Map | satelite | Hybrid |
Treasure
Island
Yerba Buena A
Island s
Cakand il
& W Haibar

o
Bayview
District

Port Hunters
Bayview ~~point

ﬁﬁ}]ap data €2010 Google - Terms of Use

O sims0
O sims0

O im0
O im0
O s

O s

O s
Q@ s

O s
() ssm
() sse
() stse

[@RL:
(O stse0
() saem

() stse0

Powered by craigslist and Google Maps

About | Feedback

Large 1Bdrm._Unit Avail 5/6/10 4104 4

Spacious 1Bd. Avail 5/6/10 in Twin Peaks

Areal aoe
Graat 1Bdrm. w/Dishwashar Avail 5/6/10 4104
Nice 1Bd. Avail 51610 4104
Lovely 1Bd. in Pac Hts wiFireplaca! 4104
Terrific 1Bdrm. in a Wonderful Neighborhood! 404
Love Where You Live!
Cute 1Bd in Pacific Heights wiCute Features ~ 4/04
Very ciean, 2 Bdrm. 1 Bath apartment 4104
Cute Pacific Heights 1Bd. wiFireplace in

4104
Gorgeous Areal
Amz North Beach Studio wiDeck & Fireplace 4104
Avail 4/20110
Lovely Studio Available 4/20/10 w/ Incredible 404
Features!
Nice North Beach Studio wiDeck & Fireplacs 4104
Coming Scon!

Available 4/20/10: Amz Studio in Great Area for
Terrific Price!
Beautiful view of the city with a baleony

Great Furnished Jr. 1Bd. in New Bidg.!
Immediate Move-In Rate of $1899

Great 18d. in New Blda. Immediate Move In
Rate Of Available!

4104

4/04

404 v

This example comes from http://housingmaps. com.

The Google Maps API has been immensely popular in creating these types of
mash-ups. However, Google Maps has some serious licensing and other limitations. It
is not the only option — tools such as Mapnik, open layers, and MapServer, to name a
few, also allow you to create mash-ups that overlay your own data onto a map.

Most of these mash-ups run as web applications across the Internet, running on a
server that can be accessed by anyone who has a web browser. Sometimes, the
mash-ups are private, requiring password access, but usually they are publically
available and can be used by anyone. Indeed, many businesses (such as the rental
mashup shown above) are based on freely-available geo-spatial mash-ups.

[16]

Chapter 1

Recent developments

A decade ago, geo-spatial development was vastly more limited than it is today.
Professional (and hugely expensive) Geographical Information Systems were the
norm for working with and visualizing geo-spatial data. Open source tools, where
they were available, were obscure and hard to use. What is more, everything ran on
the desktop — the concept of working with geo-spatial data across the Internet was
no more than a distant dream.

In 2005, Google released two products that completely changed the face of
geo-spatial development: Google Maps and Google Earth made it possible

for anyone with a web browser or a desktop computer to view and work with
geo-spatial data. Instead of requiring expert knowledge and years of practice, even
a four year-old could instantly view and manipulate interactive maps of the world.

Google's products are not perfect — the map projections are deliberately simplified,
leading to errors and problems with displaying overlays; these products are only
free for non-commercial use; and they include almost no ability to perform
geo-spatial analysis. Despite these limitations, they have had a huge effect on the
field of geo-spatial development. People became aware of what was possible, and
the use of maps and their underlying geo-spatial data has become so prevalent that
even cell phones now commonly include built-in mapping tools.

The Global Positioning System (GPS) has also had a major influence on geo-spatial
development. Geo-spatial data for streets and other man-made and natural features
used to be an expensive and tightly controlled resource, often created by scanning
aerial photographs and then manually drawing an outline of a street or coastline
over the top to digitize the required features. With the advent of cheap and
readily-available portable GPS units, anyone who wishes to can now capture

their own geo-spatial data. Indeed, many people have made a hobby of recording,
editing, and improving the accuracy of street and topological data, which are then
freely shared across the Internet. All this means that you're not limited to recording
your own data, or purchasing data from a commercial organization; volunteered
information is now often as accurate and useful as commercially-available data,
and may well be suitable for your geo-spatial application.

The open source software movement has also had a major influence on geo-spatial
development. Instead of relying on commercial toolsets, it is now possible to build
complex geo-spatial applications entirely out of freely-available tools and libraries.
Because the source code for these tools is often available, developers can improve
and extend these toolkits, fixing problems and adding new features for the benefit
of everyone. Tools such as PROJ .4, PostGIS, OGR, and Mapnik are all excellent
geo-spatial toolkits that are benefactors of the open source movement. We will

be making use of all these tools throughout this book.

[17]

Geo-Spatial Development Using Python

As well as standalone tools and libraries, a number of geo-spatial-related
Application Programming Interfaces (APIs) have become available. Google has
provided a number of APIs that can be used to include maps and perform limited
geo-spatial analysis within a website. Other services such as tinygeocoder.com and
geoapi.com allow you to perform various geo-spatial tasks that would be difficult to
do if you were limited to using your own data and programming resources.

As more and more geo-spatial data becomes available from an increasing number
of sources, and as the number of tools and systems that can work with this data also
increases, it has become essential to define standards for geo-spatial data. The Open
Geospatial Consortium, often abbreviated to OGC (http://www.opengeospatial.
org), is an international standards organization that aims to do precisely this: to
provide a set of standard formats and protocols for sharing and storing geo-spatial
data. These standards, including GML, KML, GeoRSS, WMS, WES, and WCS,
provide a shared "language" in which geo-spatial data can be expressed. Tools

such as commercial and open source GIS systems, Google Earth, web-based APlIs,
and specialized geo-spatial toolkits such as OGR are all able to work with these
standards. Indeed, an important aspect of a geo-spatial toolkit is

the ability to understand and translate data between these various formats.

As GPS units have become more ubiquitous, it has become possible to record your
location data as you are performing another task. Geolocation, the act of recording
your location as you are doing something, is becoming increasingly common. The
Twitter social networking service, for example, now allows you to record and
display your current location as you enter a status update. As you approach your
office, sophisticated To-do list software can now automatically hide any tasks that
can't be done at that location. Your phone can also tell you which of your friends are
nearby, and search results can be filtered to only show nearby businesses.

All of this is simply the continuation of a trend that started when GIS systems were
housed on mainframe computers and operated by specialists who spent years
learning about them. Geo-spatial data and applications have been democratized over
the years, making them available in more places, to more people. What was possible
only in a large organization can now be done by anyone using a handheld device. As
technology continues to improve, and the tools become more powerful, this trend is
sure to continue.

[18]

Chapter 1

Summary

In this chapter, we briefly introduced the Python programming language and
the main concepts behind geo-spatial development. We have seen:

That Python is a very high-level language eminently suited to the task of geo-
spatial development.

That there are a number of libraries that can be downloaded to make it easier
to perform geo-spatial development work in Python.

That the term "geo-spatial data" refers to information that is located on the
Earth's surface using coordinates.

That the term "geo-spatial development" refers to the process of writing
computer programs that can access, manipulate, and display geo-spatial
data.

That the process of accessing geo-spatial data is non-trivial, thanks to
differing file formats and data standards.

What types of questions can be answered by analyzing geo-spatial data.
How geo-spatial data can be used for visualization.

How mash-ups can be used to combine data (often geo-spatial data) in useful
and interesting ways.

How Google Maps, Google Earth, and the development of cheap and
portable GPS units have "democratized" geo-spatial development.

The influence the open source software movement has had on the availability
of high quality, freely-available tools for geo-spatial development.

How various standards organizations have defined formats and protocols for
sharing and storing geo-spatial data.

The increasing use of geolocation to capture and work with geo-spatial data
in surprising and useful ways.

In the next chapter, we will look in more detail at traditional Geographic Information
Systems (GIS), including a number of important concepts that you need to
understand in order to work with geo-spatial data. Different geo-spatial formats will
be examined, and we will finish by using Python to perform various calculations
using geo-spatial data.

[19]

GIS

The term GIS generally refers to Geographical Information Systems, which are complex
computer systems for storing, manipulating, and displaying geo-spatial data. GIS
can also be used to refer to the more general Geographic Information Sciences, which is
the science surrounding the use of GIS systems.

In this chapter, we will look at:

e The central GIS concepts you will have to become familiar with: location,
distance, units, projections, coordinate systems, datums and shapes

e Some of the major data formats you are likely to encounter when working
with geo-spatial data

e Some of the processes involved in working directly with geo-spatial data

Core GIS concepts

Working with geo-spatial data is complicated because you are dealing with
mathematical models of the Earth's surface. In many ways, it is easy to think of

the Earth as a sphere on which you can place your data. That might be easy, but

it isn't accurate — the Earth is an oblate spheroid rather than a perfect sphere. This
difference, as well as other mathematical complexities we won't get into here, means
that representing points, lines, and areas on the surface of the Earth is a rather
complicated process.

Let's take a look at some of the key GIS concepts you will become familiar with as
you work with geo-spatial data.

GIS

Location

Locations represent points on the surface of the Earth. One of the most common
ways to measure location is through the use of latitude and longitude coordinates.
For example, my current location (as measured by a GPS receiver) is 38.167446
degrees south and 176 .234436 degrees east. What do these numbers mean and how
are they useful?

Think of the Earth as a hollow sphere with an axis drawn through its middle:

For any given point on the Earth's surface, you can draw a line that connects that
point with the centre of the Earth, as shown in the following image:

The point's latitude is the angle that this line makes in the north-south direction,
relative to the equator:

[22]

Chapter 2

90 degrees north
A

l;ﬂlu_dn = 46 degrees north

90 degrees south

In the same manner, the point's longitude is the angle that this line makes in the
east-west direction, relative to an arbitrary starting point (typically the location of the
Royal Observatory at Greenwich, England):

[23]

GIS

By convention, positive latitude values are in the northern hemisphere, while
negative latitude values are in the southern hemisphere. Similarly, positive longitude
values are east of Greenwich, and negative longitude values are west of Greenwich.
Thus, latitudes and longitudes cover the entire Earth like this:

+90

+60

+30

Latitude
o

-30

-60

-90

-180 -90 0 +90 +180
Longitude

The horizontal lines, representing points of equal latitude, are called parallels, while
the vertical lines, representing points of equal longitude, are called meridians. The
meridian at zero longitude is often called the prime meridian. By definition, the
parallel at zero latitude corresponds with the Earth's equator.

There are two things to remember when working with latitude and longitude values:

1. Western longitudes are generally negative, but you may find situations
(particularly when dealing with US-specific data) where western longitudes
are given as positive values.

2. The longitude values wrap around at the £180 degrees point. That is, as you
travel east, your longitude will go 177, 178, 179, 180, -179, -178, -177, and
so on. This can make basic distance calculations rather confusing if you are
doing them yourself rather than relying on a library to do the work for you.

A latitude and longitude value refers to what is called a geodetic location. A
geodetic location identifies a precise point on the Earth's surface, regardless of

what might be at that location. While much of the data we will be working with
involves geodetic locations, there are other ways of describing a location which you
may encounter. For example, a civic location is simply a street address, which is
another perfectly valid (though less scientifically precise) way of defining a location.
Similarly, jurisdictional locations include information about which governmental
boundary (such as an electoral ward, borough, or city) the location is within. This
information is important in some contexts.

[24]

Chapter 2

Distance

The distance between two points can be thought of in different ways. For example:

¢ Angular Distance: This is the angle between two rays going out from the
centre of the Earth through the two points:

e

Angular distances are commonly used in seismology, and you may
encounter them when working with geo-spatial data.

e Linear Distance: This is what people typically mean when they talk of
distance —how far apart two points on the Earth's surface are:

This is often described as an "as the crow flies" distance. We'll discuss this in
more detail shortly, though be aware that linear distances aren't quite as
simple as they might appear.

[25]

GIS

e Traveling Distance: Linear ("as the crow flies") distances are all very well,
but very few people can fly like crows. Another useful way of measuring
distance is to measure how far you would actually have to travel to get from
one point to another, typically following a road or other obvious route:

s 2
h. 2 Eruera Skreet @
D L ¥
4 : 51304
i SH3C
oy :
%3u Streat -
Pererika Street
Elizabath Sire
. .
i Victoria Street
-
T leal
c o -~
g & s ® ¥
= E i & A &
3 vt i i c ";
3 = i i +3
: g & @& = p
e w - - i
- Ml e
g
York Street |
R 2 Kahlkates Street Seddon Str-et £
o
=
5
e
@ €—Fotsteet
e AR
ae o
T -
o 0 o
5 e v Grey Street
7] 1 =
Fm . Clne i

Most of the time, you will be dealing with linear distances. If the Earth was flat,
linear distances would be trivial to calculate — you simply measure the length of a
line drawn between the two points. Of course, the Earth is not flat, which means that
actual distance calculations are rather more complicated:

Actual Distance = 20.36 miles

"Flat Earth" Distance = 20.32 miles

Because we are working with distances between points on the Earth's surface rather
than points on a flat surface, we are actually using what is called the great circle
distance. The great circle distance is the length of a semicircle going between two
points on the surface of the earth, where the semicircle is centered around the middle
of the earth:

[26]

Chapter 2

It is relatively straightforward to calculate the great circle distance between any two
points if you assume that the Earth is spherical; the Haversine formula is often used
for this. More complicated techniques that more accurately represent the shape of the
Earth are available, though in many cases the Haversine formula is sufficient.

Units

In September 1999, the Mars Climate Orbiter reached the outer edges of the Martian
atmosphere, after having traveled through space for 286 days and costing a total of
$327 million to create. As it approached its final orbit, a miscalculation caused it to
fly too low, and the Orbiter was destroyed. The reason? The craft's thrusters were
calculating force using imperial units, while the spacecraft's computer worked with
metric units. The result was a disaster for NASA, and a pointed reminder of just how
important it is to understand which units your data is in.

Geo-spatial data can come in a variety of different units. Distances can be measured
in metric and imperial, of course, but there are actually a lot of different ways in
which a given distance can be measured. These include:

e Millimeters

¢ Centimeters

e Inches

¢ International feet

e US. survey feet

e Meters

e Yards

o Kilometers

[27]

GIS

¢ International miles
e U.S. survey (statute) miles

e Nautical miles

Whenever you are working with distance data, it's important that you know which
units those distances are in. You will also often find it necessary to convert data from
one unit of measurement to another.

Angular measurements can also be in different units: degrees or radians. Once again,
you will often have to convert from one to the other.

While these are not strictly speaking different units, you will often need to convert
longitude and latitude values because of the various ways these values can be
represented. Traditionally, longitude and latitude values have been written using
"degrees, minutes, and seconds" notation, like this:

176° 14' 4!
Another possible way of writing these numbers is to use "degrees and decimal
minutes" notation:

176° 14.066"

Finally, there is the "decimal degrees" notation:

176.234436°

Decimal degrees are quite common now, mainly because these are simply floating-
point numbers you can put directly into your programs, but you may also need to
convert longitude and latitude values from other formats before you can use them.

Another possible issue with longitude and latitude values is that the quadrant (east,
west, north, south) can sometimes be given as a separate value rather than using
positive or negative values. For example:

176.234436° E

Fortunately, all these conversions are relatively straightforward. But it is important
to know which units, and in which format your data is in — your software may not
crash a spacecraft, but it will produce some very strange and incomprehensible
results if you aren't careful.

Projections

Creating a two-dimensional map from the three-dimensional shape of the Earth is
a process known as projection. A projection is a mathematical transformation that
unwraps the three-dimensional shape of the Earth and places it onto a
two-dimensional plane.

[28]

Chapter 2

Hundreds of different projections have been developed, but none of them are perfect.
Indeed, it is mathematically impossible to represent the three-dimensional Earth's
surface on a two-dimensional plane without introducing some sort of distortion; the
trick is to choose a projection where the distortion doesn't matter for your particular
use. For example, some projections represent certain areas of the Earth's surface
accurately while adding major distortion to other parts of the Earth; these projections
are useful for maps in the accurate portion of the Earth, but not elsewhere. Other
projections distort the shape of a country while maintaining its area, while yet other
projections do the opposite.

There are three main groups of projections: cylindrical, conical, and azimuthal. Let's
look at each of these briefly.

Cylindrical projections
An easy way to understand cylindrical projections is to imagine that the Earth is like
a spherical Chinese lantern, with a candle in the middle:

[29]

GIS

If you placed this lantern-Earth inside a paper cylinder, the candle would "project"
the surface of the Earth onto the inside of the cylinder:

Of course, this is a simplification —in reality, map projections don't actually use

light sources to project the Earth's surface onto a plane, but instead use sophisticated
mathematical transformations that result in less distortion. But the concept is

the same.

[30]

Chapter 2

Some of the main types of cylindrical projections include the Mercator Projection, the
Equal-Area Cylindrical Projection, and the Universal Transverse Mercator Projection.

Conic projections

A conic projection is obtained by projecting the Earth's surface onto a cone:

Some of the more common types of conic projections include the Albers Equal-Area
Projection, the Lambert Conformal Conic Projection, and the Equidistant Projection.

Azimuthal projections

An azimuthal projection involves projecting the Earth's surface directly onto
a flat surface:

[31]

GIS

Azimuthal projections are centered around a single point, and don't generally show
the entire Earth's surface. They do, however, emphasize the spherical nature of the
Earth. In many ways, azimuthal projections depict the Earth as it would be seen
from space.

Some of the main types of azimuthal projections include the Gnomonic Projection,
the Lambert Equal-Area Azimuthal Projection, and the Orthographic Projection.

The nature of map projections

As mentioned earlier, there is no such thing as a perfect projection —every projection
distorts the Earth's surface in some way. Indeed, the mathematician Carl Gausse
proved that it is mathematically impossible to project a three-dimensional shape
such as a sphere onto a flat plane without introducing some sort of distortion. This
is why there are so many different types of projections —some projections are more
suited to a given purpose, but no projection can do everything.

Whenever you create or work with geo-spatial data, it is essential that you know
which projection has been used to create that data. Without knowing the projection,
you won't be able to plot data or perform accurate calculations.

Coordinate systems

Closely related to map projection is the concept of a coordinate system. There
are two types of coordinate systems you will need to be familiar with: projected
coordinate systems and unprojected coordinate systems.

Latitude and longitude values are an example of an unprojected coordinate system.
These are coordinates that directly refer to a point on the Earth's surface:

[32]

Chapter 2

Unprojected coordinates are useful because they can accurately represent a desired
point on the Earth's surface, but they also make it very difficult to perform distance
and other geo-spatial calculations.

Projected coordinates, on the other hand, are coordinates that refer to a point on a
two-dimensional map that represents the surface of the Earth:

A projected coordinate system, as the name implies, makes use of a map projection
to first convert the Earth into a two-dimensional Cartesian plane, and then places
points onto that plane. To work with a projected coordinate system, you need to
know which projection was used to create the underlying map.

For both projected and unprojected coordinates, the coordinate system also implies
a set of reference points that allow you to identify where a given point will be.

For example, the unprojected lat/long coordinate system represents the longitude
value of zero by a line running north-south through the Greenwich observatory in
England. Similarly, a latitude value of zero represents a line running around the
equator of the Earth.

[33]

GIS

For projected coordinate systems, you typically define an origin and the map units.
Some coordinate systems also use false northing and false easting values to adjust
the position of the origin, as shown in the following figure:

Position of Coordinate
on the Map
Y map
units up
False X map units
Northing across
ol
v
False Easting
————— -
Origin

To give a concrete example, the Universal Transverse Mercator (UTM) coordinate
system divides the world up into 60 different "zones", each zone using a different
map projection to minimize projection errors. Within a given zone, the coordinates
are measured as the number of meters away from the zone's origin, which is the
intersection of the equator and the central meridian for that zone. False northing and
false easting values are then added to the distance in meters away from this reference
point to avoid having to deal with negative numbers.

As you can imagine, working with projected coordinate systems such as this can
get quite complicated. However, the big advantage of projected coordinates is that
it is easy to perform geo-spatial calculations using these coordinates. For example,
to calculate the distance between two points, both using the same UTM coordinate
system, you simply calculate the length of the line between them, which is the
distance between the two points, in meters. This is ridiculously easy compared with
the work required to calculate distances using unprojected coordinates.

Of course, this assumes that the two points are both in the same coordinate system.
Since projected coordinate systems are generally only accurate over a relatively small
area, you can get into trouble if the two points aren't both in the same coordinate
system (for example, if they are in two different UTM zones). This is where
unprojected coordinate systems have a big advantage — they cover the entire Earth.

[34]

Chapter 2

Datums

Roughly speaking, a datum is a mathematical model of the Earth used to describe
locations on the Earth's surface. A datum consists of a set of reference points, often
combined with a model of the shape of the Earth. The reference points are used to
describe the location of other points on the Earth's surface, while the model of the
Earth's shape is used when projecting the Earth's surface onto a two-dimensional
plane. Thus, datums are used by both map projections and coordinate systems.

While there are hundreds of different datums in use throughout the world, most
of these only apply to a localized area. There are three main reference datums
that cover larger areas and which you are likely to encounter when working with
geo-spatial data:

e NAD 27: This is the North American datum of 1927. It includes a definition
of the Earth's shape (using a model called the Clarke Spheroid of 1866) and
a set of reference points centered around Meades Ranch in Kansas. NAD 27
can be thought of as a local datum covering North America.

e NAD 83: The North American datum of 1983. This datum makes use of
a more complex model of the Earth's shape (the 1980 Geodetic Reference
System, GRS 80). NAD 83 can be thought of as a local datum covering the
United States, Canada, Mexico, and Central America.

e WGS 84: The World geodetic system of 1984. This is a global datum covering
the entire Earth. It makes use of yet another model of the Earth's shape (the
Earth Gravitational Model of 1996, EGM 96) and uses reference points based
on the IERS International Reference Meridian. WGS 84 is a very popular
datum. When dealing with geo-spatial data covering the United States, WGS
84 is basically identical to NAD 83. WGS 84 also has the distinction of being
used by Global Positioning System satellites, so all data captured by GPS
units will use this datum.

While WGS 84 is the most common datum in use today, a lot of geo-spatial data makes
use of other datums. Whenever you are dealing with a coordinate value, it is important
to know which datum was used to calculate that coordinate. A given point in NAD 27,
for example, may be several hundred feet away from that same coordinate expressed
in WGS 84. Thus, it is vital that you know which datum is being used for a given set of
geo-spatial data, and convert to a different datum where necessary.

[35]

GIS

Shapes

Geo-spatial data often represents shapes in the form of points, paths, and outlines:

A point, of course, is simply a coordinate, described by two or more numbers within
a projected or unprojected coordinate system.

A path is generally described using what is called a linestring:

A linestring represents a path as a connected series of line segments. A linestring is a
deliberate simplification of a path, a way of approximating the curving path without
having to deal with the complex maths required to draw and manipulate curves.
Linestrings are often used in geo-spatial data to represent roads, rivers, contour lines,
and so on.

[36]

Chapter 2

An outline is often represented in geo-spatial data using a polygon:

As with linestrings, polygons are described as a connected series of line segments.
The only difference is that the polygon is closed; that is, the last line segment finishes
where the first line segment starts. Polygons are commonly used in geo-spatial data
to describe the outline of countries, lakes, cities, and more.

GIS data formats

A GIS data format specifies how geo-spatial data is stored in a file (or multiple files)
on disk. The format describes the logical structure used to store geo-spatial data
within the file(s).

While we talk about storing information on disk, data formats

% can also be used to transmit geo-spatial information between
/=" computer systems. For example, a web service might provide map

data on request, transmitting that data in a particular format.

A GIS data format will typically support:

e Geo-spatial data describing geographical features.

e Additional metadata describing this data, including the datum and
projection used, the coordinate system and units that the data is in, the date
this file was last updated, and so on.

e Attributes providing additional information about the geographical features
that are being described. For example, a city feature may have attributes such
non non

as '"name", "population", "average temperature", and others.

¢ Display information such as the color or line style to use when a feature is
displayed.

[37]

GIS

There are two main types of GIS data: raster format data and vector format data.
Raster formats are generally used to store bitmapped images, such as scanned paper
maps or aerial photographs. Vector formats, on the other hand, represent spatial data
using points, lines, and polygons. Vector formats are the most common type used by
GIS applications as the data is smaller and easier to manipulate.

Some of the more common raster formats include:

o Digital Raster Graphic (DRG): This format is used to store digital scans of
paper maps

¢ Digital Elevation Model (DEM): Used by the US Geological Survey to record
elevation data

e Band Interleaved by Line, Band Interleaved by Pixel, Band Sequential
(BIL, BIP, BSQ): These data formats are typically used by remote sensing
systems

Some of the more common vector formats include:

e Shapefile: An open specification, developed by ESR], for storing and
exchanging GIS data. A Shapefile actually consists of a collection of files all
with the same base name, for example hawaii.shp, hawaii.shx, hawaii.
dbf, and so on

e Simple Features: An OpenGIS standard for storing geographical data
(points, lines, polygons) along with associated attributes

e TIGER/Line: A text-based format previously used by the U.S. Census
Bureau to describe geographic features such as roads, buildings, rivers, and
coastlines. More recent data comes in the Shapefile format, so the TIGER/
Line format is only used for earlier Census Bureau datasets

e Coverage: A proprietary data format used by ESRI's ARC/INFO system

In addition to these "major" data formats, there are also so-called micro-formats that
are often used to represent individual pieces of geo-spatial data. These are often
used to represent shapes within a running program, or to transfer shapes from one
program to another, but aren't generally used to store data permanently. As you
work with geo-spatial data, you are likely to encounter the following micro-formats:

e Well-known Text (WKT): This is a simple text-based format for representing
a single geographic feature such as a polygon or linestring

¢ Well-known Binary (WKB): This alternative to WKT uses binary data rather
than text to represent a single geographic feature

¢ GeoJSON: An open format for encoding geographic data structures, based
on the JSON data interchange format

[38]

Chapter 2

¢ Geography Markup Language (GML): An XML-based open standard for
exchanging GIS data

Whenever you work with geo-spatial data, you need to know which format the data
is in so that you can extract the information you need from the file(s), and where
necessary transform the data from one format to another.

Working with GIS data manually
Let's take a brief look at the process of working with GIS data manually. Before we
can begin, there are two things you need to do:

e Obtain some GIS data

e Install the GDAL Python library so that you can read the necessary data files
Let's use the U.S. Census Bureau's website to download a set of vector maps for the

various U.S. states. The main site for obtaining GIS data from the U.S. Census Bureau
can be found at:

http://www.census.gov/geo/www/tiger
To make things simpler, though, let's bypass the website and directly download the
file we need:

http://www2.census.gov/geo/tiger/TIGER2009/tl 2009 us_state.zip
The resulting file, t1_2009_us_state.zip, should be a ZIP-format archive. After
uncompressing the archive, you should have the following files:

tl 2009 _us_state.dbf

tl 2009 us_state.prj

tl 2009 us_state.shp

tl 2009 us_state.shp.xml

tl 2009 us_state.shx

These files make up a Shapefile containing the outlines of all the U.S. states. Place
these files together in a convenient directory.

We next have to download the GDAL Python library. The main website for GDAL
can be found at:

http://gdal.org

[39]

GIS

The easiest way to install GDAL onto a Windows or Unix machine is to use the
FWTools installer, which can be downloaded from the following site:

http://fwtools.maptools.org
If you are running Mac OS X, you can find a complete installer for GDAL at:

http://www.kyngchaos.com/software/frameworks

After installing GDAL, you can check that it works by typing import osgeo into the
Python command prompt; if the Python command prompt reappears with no error
message, GDAL was successfully installed and you are all set to go:

>>> import osgeo

>>>

Now that we have some data to work with, let's take a look at it. You can either type
the following directly into the command prompt, or else save it as a Python script so
you can run it whenever you wish (let's call this analyze.py):

import osgeo.ogr
shapefile = osgeo.ogr.Open("tl 2009 us_ state.shp")

numLayers = shapefile.GetLayerCount ()

°

print "Shapefile contains %d layers" % numLayers
print
for layerNum in range (numLayers) :

layer = shapefile.GetLayer (layerNum)

spatialRef = layer.GetSpatialRef () .ExportToProj4 ()

numFeatures = layer.GetFeatureCount ()

print "Layer %d has spatial reference %s" % (layerNum, spatialRef)
print "Layer %d has %d features:" % (layerNum, numFeatures)

print

for featureNum in range (numFeatures) :
feature = layer.GetFeature (featureNum)
featureName = feature.GetField ("NAME")

°

print "Feature %d has name %$s" % (featureNum, featureName)
This gives us a quick summary of how the Shapefile's data is structured:
Shapefile contains 1 layers

Layer 0 has spatial reference +proj=longlat +ellps=GRS80 +datum=NAD83
+no defs

Layer 0 has 56 features:

Feature 0 has name American Samoa

[40]

Chapter 2

Feature
Feature
Feature
Feature
Feature

Feature

1 has name Nevada
2 has name Arizona

3 has name Wisconsin

53 has name California
54 has name Ohio

55 has name Texas

This shows us that the data we downloaded consists of one layer, with 56 individual
features corresponding to the various states and protectorates in the U.S. It also tells
us the "spatial reference" for this layer, which tells us that the coordinates are stored as
latitude and longitude values, using the GRS80 ellipsoid and the NADS83 datum.

As you can see from the above example, using GDAL to extract data from Shapefiles
is quite straightforward. Let's continue with another example. This time, we'll look at

the detail

s for feature 2, Arizona:

import osgeo.ogr

shapefile = osgeo.ogr.Open("tl 2009 us_ state.shp")
layer = shapefile.GetLayer (0)

feature = layer.GetFeature (2)

print "Feature 2 has the following attributes:"

print

attributes = feature.items()

for key,value in attributes.items() :

o

print " %s = %s" % (key, value)

print

geometry = feature.GetGeometryRef ()
geometryName = geometry.GetGeometryName ()

°

print "Feature's geometry data consists of a %$s" % geometryName

Running this produces the following;:

Feature

DIVISION

2 has the following attributes:

8

INTPTLAT = +34.2099643

NAME =
STUSPS

Arizona

= AZ

FUNCSTAT = A

REGION

= 4

[41]

GIS

LSAD = 00

AWATER = 1026257344.0
STATENS = 01779777
MTFCC = G4000

INTPTLON = -111.6024010
STATEFP = 04

ALAND = 294207737677.0

Feature's geometry data consists of a POLYGON

The meaning of the various attributes is described on the U.S. Census Bureau's
website, but what interests us right now is the feature's geometry. A Geometry
object is a complex structure that holds some geo-spatial data, often using nested
Geometry objects to reflect the way the geo-spatial data is organized. So far, we've
discovered that Arizona's geometry consists of a polygon. Let's now take a closer
look at this polygon:

import osgeo.ogr

def analyzeGeometry (geometry, indent=0):
s = [l
s.append (" " * indent)
s .append (geometry.GetGeometryName ())
if geometry.GetPointCount () > O0:
s.append (" with %d data points" % geometry.GetPointCount ())
if geometry.GetGeometryCount () > 0:

s.append (" containing:")
print "".join(s)

for i in range (geometry.GetGeometryCount ()) :
analyzeGeometry (geometry.GetGeometryRef (i), indent+1)

shapefile = osgeo.ogr.Open("tl 2009 us state.shp")
layer = shapefile.GetLayer (0)

feature = layer.GetFeature(2)

geometry = feature.GetGeometryRef ()

analyzeGeometry (geometry)
The analyzeGeometry () function gives a useful idea of how the geometry
has been structured:
POLYGON containing:
LINEARRING with 10168 data points
In GDAL (or more specifically the OGR Simple Feature library we are using here),

polygons are defined as a single outer "ring" with optional inner rings that define
"holes" in the polygon (for example, to show the outline of a lake).

[42]

Chapter 2

Arizona is a relatively simple feature in that it consists of only one polygon. If we ran
the same program over California (feature 53 in our Shapefile), the output would be
somewhat more complicated:

MULTIPOLYGON containing:

POLYGON containing:

LINEARRING with 93 data points
POLYGON containing:

LINEARRING with 77 data points
POLYGON containing:

LINEARRING with 191 data points
POLYGON containing:

LINEARRING with 152 data points
POLYGON containing:

LINEARRING with 393 data points
POLYGON containing:

LINEARRING with 121 data points
POLYGON containing:

LINEARRING with 10261 data points

As you can see, California is made up of seven distinct polygons, each defined by a
single linear ring. This is because California is on the coast, and includes six outlying
islands as well as the main inland body of the state.

Let's finish this analysis of the U.S. state Shapefile by answering a simple

question: what is the distance from the northernmost point to the southernmost point
in California? There are various ways we could answer this question, but for now
we'll do it by hand. Let's start by identifying the northernmost and southernmost
points in California:

import osgeo.ogr

def findPoints (geometry, results):
for i in range (geometry.GetPointCount ()) :
X,y,Zz = geometry.GetPoint (i)

if results['north'] == None or results['north'][1l] < y:
results['north'l = (x,y)

if results['south'] == None or results['south'][1l] > y:
results['south'] = (x,y)

for i in range (geometry.GetGeometryCount ()) :
findPoints (geometry.GetGeometryRef (1), results)

shapefile = osgeo.ogr.Open("tl 2009 us_ state.shp")

[43]

GIS

layer = shapefile.GetLayer (0)
feature = layer.GetFeature (53)
geometry = feature.GetGeometryRef ()

results = {'north' : None,
'south' : None}

findPoints (geometry, results)

print "Northernmost point is (%0.4f, %0.4f)" results['north']

print "Southernmost point is (%0.4f, %0.4f)" results['south']

The findPoints () function recursively scans through a geometry, extracting the
individual points and identifying the points with the highest and lowest y (latitude)
values, which are then stored in the results dictionary so that the main program
can use it.

As you can see, GDAL makes it easy to work with the complex Geometry data
structure. The code does require recursion, but is still trivial compared with trying to
read the data directly. If you run the above program, the following will be displayed:

Northernmost point is (-122.3782, 42.0095)
Southernmost point is (-117.2049, 32.5288)

Now that we have these two points, we next want to calculate the distance between
them. As described earlier, we have to use a great circle distance calculation here
to allow for the curvature of the Earth's surface. We'll do this manually, using the
Haversine formula:

import math

latl = 42.0095
longl = -122.3782

lat2 = 32.5288
long2 = -117.2049

rLatl = math.radians(latl)
rLongl = math.radians (longl)
rLat2 = math.radians(lat2)
rLong2 = math.radians (long2)

dLat = rLat2 - rLatl

dLong = rLong2 - rLongl

a = math.sin(dLat/2)**2 + math.cos(rLatl) * math.cos(rLat2) \
* math.sin (dLong/2) **2

c = 2 * math.atan2 (math.sqgrt(a), math.sqrt(l-a))

distance = 6371 * c

print "Great circle distance is %0.0f kilometers" % distance

[44]

Chapter 2

Don't worry about the complex maths involved here; basically, we are converting
the latitude and longitude values to radians, calculating the difference in latitude/
longitude values between the two points, and then passing the results through some
trigonometric functions to obtain the great circle distance. The value of 6371 is the
radius of the Earth in kilometers.

More details about the Haversine formula and how it is used in the above example
can be found at http://mathforum.org/library/drmath/view/51879.html.

If you run the above program, your computer will tell you the distance from the
northernmost point to the southernmost point in California:
Great circle distance is 1149 kilometers

There are, of course, other ways of calculating this. You wouldn't normally type

the Haversine formula directly into your program as there are libraries that will do
this for you. But we deliberately did the calculation this way to show just how it can
be done.

If you would like to explore this further, you might like to try writing programs to
calculate the following;:
e The easternmost and westernmost points in California.

e The midpoint in California. Hint: you can calculate the midpoint's longitude
by taking the average of the easternmost and westernmost longitude.

e The midpoint in Arizona.
e The distance between the middle of California and the middle of Arizona.
As you can see, working with GIS data manually isn't too troublesome. While the

data structures and maths involved can be rather complex, using tools such as GDAL
make your data accessible and easy to work with.

[45]

GIS

Summary

In this chapter, we discussed many of the core concepts that underlie GIS
development, looked briefly at the history of GIS, examined some of the more
common GIS data formats, and got our hands dirty exploring U.S. state maps
downloaded from the U.S. Census Bureau website. We have seen that:

Locations are often, but not always, represented using coordinates.

Calculating the distance between two points requires you to take into
account the curvature of the Earth's surface.

You must be aware of the units used in geo-spatial data.

Map projections represent the three-dimensional shape of the Earth's surface
as a two-dimensional map.

There are three main classes of map projections: cylindrical, conic, and
azimuthal.

Datums are mathematical models of the Earth's shape.

The three most common datums in use are called NAD 27, NAD 83, and
WGS 84.

Coordinate systems describe how coordinates relate to a given point on the
Earth's surface.

Unprojected coordinate systems directly represent points on the Earth's
surface.

Projected coordinate systems use a map projection to represent the Earth as a
two-dimensional Cartesian plane, onto which coordinates are then placed.

Geo-spatial data can represent shapes in the form of points, linestrings, and
polygons.

There are a number of standard GIS data formats you might encounter. Some
data formats work with raster data, while others use vector data.

How to download map data from the U.S. Census site.
How to install and run GDAL.

How to analyze downloaded Shapefile data.

How Shapefile data is organized into geometries.

How to use the Haversine formula to manually calculate the great circle
distance between two points.

In the next chapter, we will look in more detail at the various Python libraries that
can be used for working with geo-spatial data.

[46]

Python Libraries for
Geo-Spatial Development

This chapter examines a number of libraries and other tools that can be used for
geo-spatial development in Python.

More specifically, we will cover:

e Python libraries for reading and writing geo-spatial data
e Python libraries for dealing with map projections

e Libraries for analyzing and manipulating geo-spatial data directly within
your Python programs

e Tools for visualizing geo-spatial data

Note that there are two types of geo-spatial tools that are not discussed in this
chapter: geo-spatial databases and geo-spatial web toolkits. Both of these will be
examined in detail later in this book.

Reading and writing geo-spatial data

While you could in theory write your own parser to read a particular geo-spatial data
format, it is much easier to use an existing Python library to do this. We will look at
two popular libraries for reading and writing geo-spatial data: GDAL and OGR.

Python Libraries for Geo-Spatial Development

GDAL/OGR

Unfortunately, the naming of these two libraries is rather confusing. GDAL, which
stands for Geospatial Data Abstraction Library, was originally just a library for
working with raster geo-spatial data, while the separate OGR library was intended to
work with vector data. However, the two libraries are now partially merged, and are
generally downloaded and installed together under the combined name of GDAL.
To avoid confusion, we will call this combined library GDAL/OGR and use GDAL
to refer to just the raster translation library.

A default installation of GDAL supports reading 81 different raster file formats and
writing to 41 different formats. OGR by default supports reading 27 different vector
file formats and writing to 15 formats. This makes GDAL/OGR one of the most
powerful geo-spatial data translators available, and certainly the most useful
freely-available library for reading and writing geo-spatial data.

GDAL design

GDAL uses the following data model for describing raster geo-spatial data:

Dataset

Raster Band | Raster Size |

Band Raster Size |

| Georeferencing Transform |

Band Metadata |

| Coordinate System |

Color Table |

| Metadata |

Raster Data | -

Let's take a look at the various parts of this model:

1. A dataset holds all the raster data, in the form of a collection of raster
"bands", and information that is common to all these bands. A dataset
normally represents the contents of a single file.

2. Araster band represents a band, channel, or layer within the image. For
example, RGB image data would normally have separate bands for the red,
green, and blue components of the image.

[48]

Chapter 3

The raster size specifies the overall width of the image in pixels and the
overall height of the image in lines.

The georeferencing transform converts from (x,y) raster coordinates into
georeferenced coordinates — that is, coordinates on the surface of the Earth.
There are two types of georeferencing transforms supported by GDAL: affine
transformations and ground control points.

An affine transformation is a mathematical formula allowing the following
operations to be applied to the raster data:

_b
X offset Y offset
_—
X scale Y scale
T
Horizontal shear Vertical shear

More than one of these operations can be applied at once; this allows you
to perform sophisticated transforms such as rotations.

[49]

Python Libraries for Geo-Spatial Development

6.

Ground Control Points (GCPs) relate one or more positions within the raster
to their equivalent georeferenced coordinates, as shown in the following figure:

\'
\

Note that GDAL does not translate coordinates using GCPs —that is left up

to the application, and generally involves complex mathematical functions to
perform the transformation.

The coordinate system describes the georeferenced coordinates produced by
the georeferencing transform. The coordinate system includes the projection
and datum as well as the units and scale used by the raster data.

The metadata contains additional information about the dataset as a whole.

Each raster band contains (among other things):

1.

2.
3.
4.

The band raster size. This is the size (number of pixels across and number of
lines high) for the data within the band. This may be the same as the raster
size for the overall dataset, in which case the dataset is at full resolution, or
the band's data may need to be scaled to match the dataset.

Some band metadata providing extra information specific to this band.

A color table describing how pixel values are translated into colors.

The raster data itself.

GDAL provides a number of drivers that allow you to read (and sometimes write)
various types of raster geo-spatial data. When reading a file, GDAL selects a suitable
driver automatically based on the type of data; when writing, you first select the
driver and then tell the driver to create the new dataset you want to write to.

GDAL example code

A Digital Elevation Model (DEM) file contains height values. In the following
example program, we use GDAL to calculate the average of the height values
contained in a sample DEM file:

[50]

Chapter 3

from osgeo import gdal,gdalconst
import struct

dataset = gdal.Open ("DEM.dat")
band = dataset.GetRasterBand (1)

fmt = "<" + ("h" * band.XSize)
totHeight = 0

for y in range (band.YSize) :

scanline band.ReadRaster (0, y, band.XSize, 1, band.XSize, 1,

band.DataType)
values = struct.unpack (fmt, scanline)

for value in values:
totHeight = totHeight + value

average = totHeight / (band.XSize * band.YSize)
print "Average height =", average

As you can see, this program obtains the single raster band from the DEM file,

and then reads through it one scanline at a time. We then use the struct standard
Python library module to read the individual values out of the scanline. Each value
corresponds to the height of that point, in meters.

OGR design

OGR uses the following model for working with vector-based geo-spatial data:

Datasource

Layer

Spatial Reference

Feature

Geometry

Attribute Geometry

field = value

[51]

Python Libraries for Geo-Spatial Development

Let's take a look at this design in more detail:

1.

The datasource represents the file you are working with —though it doesn't
have to be a file. It could just as easily be a URL or some other source of data.

The datasource has one or more layers, representing sets of related data. For
example, a single datasource representing a country may contain a terrain
layer, a contour lines layer, a roads layer, and a city boundaries layer. Other
datasources may consist of just one layer. Each layer has a spatial reference
and a list of features.

The spatial reference specifies the projection and datum used by the layer's
data.

A feature corresponds to some significant element within the layer. For
example, a feature might represent a state, a city, a road, an island, and so on.
Each feature has a list of attributes and a geometry.

The attributes provide additional meta-information about the feature.

For example, an attribute might provide the name for a city feature, its
population, or the feature's unique ID used to retrieve additional information
about the feature from an external database.

Finally, the geometry describes the physical shape or location of the feature.
Geometries are recursive data structures that can themselves contain sub-
geometries —for example, a country feature might consist of a geometry that
encompasses several islands, each represented by a sub-geometry within the
main "country" geometry.

The Geometry design within OGR is based on the Open Geospatial
Consortium's Simple Features model for representing geo-spatial geometries. For
more information, see http://www.opengeospatial .org/standards/sfa.

Like GDAL, OGR also provides a number of drivers that allow you to read (and
sometimes write) various types of vector-based geo-spatial data. When reading a file,
OGR selects a suitable driver automatically; when writing, you first select the driver
and then tell the driver to create the new datasource to write to.

OGR example code

The following example program uses OGR to read through the contents of a
Shapefile, printing out the value of the NAME attribute for each feature, along
with the geometry type:

from osgeo import ogr

shapefile = ogr.Open ("TM WORLD BORDERS-0.3.shp")
layer = shapefile.GetLayer (0)

[52]

Chapter 3

for i in range(layer.GetFeatureCount ()) :
feature = layer.GetFeature (i)
name = feature.GetField("NAME")
geometry = feature.GetGeometryRef ()
print i, name, geometry.GetGeometryName ()

Documentation

GDAL and OGR are well-documented, but with a catch for Python programmers.
The GDAL/OGR library and associated command-line tools are all written in C

and C++. Bindings are available that allow access from a variety of other languages,
including Python, but the documentation is all written for the C++ version of the
libraries. This can make reading the documentation rather challenging —not only
are all the method signatures written in C++, but the Python bindings have changed
many of the method and class names to make them more "pythonic".

Fortunately, the Python libraries are largely self-documenting, thanks to all the
docstrings embedded in the Python bindings themselves. This means you can
explore the documentation using tools such as Python's built-in pydoc utility, which
can be run from the command line like this:

pydoc -g osgeo

This will open up a GUI window allowing you to read the documentation using a web
browser. Alternatively, if you want to find out about a single method or class, you can
use Python's built-in help () command from the Python command line, like this:

>>> import osgeo.ogr

>>> help(osgeo.ogr.Datasource.CopylLayer)

Not all the methods are documented, so you may need to refer to the C++ docs on

the GDAL website for more information. Some of the docstrings present are copied
directly from the C++ documentation —but, in general, the documentation for GDAL/
OGR is excellent, and should allow you to quickly come up to speed using this library.

Availability
GDAL/OGR runs on modern Unix machines, including Linux and Mac OS X as well
as most versions of Microsoft Windows. The main website for GDAL can be found at:

http://gdal.org

And the main website for OGR is http://gdal.org/ogr

[53]

Python Libraries for Geo-Spatial Development

To download GDAL/OGR, follow the Downloads link on the main GDAL website.
Windows users may find the "FWTools" package useful as it provides a wide range
of geo-spatial software for win32 machines, including GDAL/OGR and its Python
bindings. FWTools can be found at:

http://fwtools.maptools.org
For those running Mac OS X, pre-built binaries for GDAL/OGR can be obtained from:
http://www.kyngchaos.com/software/frameworks

Make sure that you install GDAL version 1.7 or later as you will need this version to
work through the examples in this book.

Being an open source package, the complete source code for GDAL/OGR is available
from the website, so you can compile it yourself. Most people, however, will simply
want to use a pre-built binary version.

Dealing with projections

One of the challenges of working with geo-spatial data is that geodetic locations
(points on the Earth's surface) are mapped into a two-dimensional cartesian plane
using a cartographic projection. We looked at projections in the previous chapter —
whenever you have some geo-spatial data, you need to know which projection that
data uses. You also need to know the datum (model of the Earth's shape) assumed by
the data.

A common challenge when dealing with geo-spatial data is that you have to convert
data from one projection/datum to another. Fortunately, there is a Python library
that makes this task easy: pyproj.

PYproj

pyproj is a Python wrapper around another library called PRO]J.4. PROJ .4 is an
abbreviation for version 4 of the PROJ library. PROJ was originally written by the
U.S. Geological Survey for dealing with map projections, and has been widely used
by geo-spatial software for many years. The pyproj library makes it possible to
access the functionality of PROJ.4 from within your Python programs.

Design

The pyproj library consists of the following pieces:

[54]

Chapter 3

pyproj

Proj Geod

PROJ.4

pyproj consists of just two classes: Proj and Geod. Proj converts from longitude and
latitude values to native map (x,y) coordinates and vice versa. Geod performs various
Great Circle distance and angle calculations. Both are built on top of the PRO]J.4
library. Let's take a closer look at these two classes.

Proj
Proj is a cartographic transformation class, allowing you to convert geographic

coordinates (latitude and longitude values) into cartographic coordinates (x, y
values, by default in meters) and vice versa.

When you create a new proj instance, you specify the projection, datum, and
other values used to describe how the projection is to be done. For example, to
use the "Transverse Mercator" projection and the wGss4 ellipsoid, you would
do the following:

projection = pyproj.Proj (proj='tmerc', ellps='WGS84')

Once you have created a Proj instance, you can use it to convert a latitude and
longitude to an (x,y) coordinate using the given projection. You can also use it to
do an inverse projection —that is, converting from an (x,y) coordinate back into a
latitude and longitude value again.

The helpful transform() function can be used to directly convert coordinates from
one projection to another. You simply provide the starting coordinates, the Proj object
that describes the starting coordinates' projection, and the desired ending projection.
This can be very useful when converting coordinates, either singly or en masse.

[55]

Python Libraries for Geo-Spatial Development

Geod

Geod is a geodetic computation class that allows you to perform various Great Circle
calculations. We looked at Great Circle calculations earlier when considering how to
accurately calculate the distance between two points on the Earth's surface. The Geod
class, however, can do more than this:

1. The £wd () method takes a starting point, an azimuth (angular direction) and
a distance, and returns the ending point and the back azimuth (the angle
from the end point back to the start point again):

Back Azimuth = -150°

End Point = 38.167405°S, 176.234466°E

Start Point = 38.167445°S, 176.234436°E

2. The inv () method takes two coordinates and returns the forward and back
azimuth as well as the distance between them:

Back Azimuth = -150°

End Point = 38.167405°S, 176.234466°E

Start Point = 38.167445°S, 176.234436°E

3. The npts () method calculates the coordinates of a number of points spaced
equidistantly along a geodesic line running from the start to the end point:

[56]

Chapter 3

/. End Point = 38.167405°S, 176.234466°E

/‘ Mumber of points =5

®
.

_,r‘r
‘ Start Point = 38.167445°S, 176.234436°E

When you create a new Geod object, you specify the ellipsoid to use when
performing the geodetic calculations. The ellipsoid can be selected from a number of
predefined ellipsoids, or you can enter the parameters for the ellipsoid (equatorial
radius, polar radius, and so on) directly.

Example code

The following example starts with a location specified using UTM zone 17
coordinates. Using two Proj objects to define the UTM Zone 17 and lat/long
projections, it translates this location's coordinates into latitude and longitude values:

import pyproj

UTM X = 565718.523517
UTM_Y = 3980998.9244
srcProj = pyproj.Proj (proj="utm", zone="11",

ellps="clrk66", units="m")

dstProj = pyproj.Proj (proj='longlat', ellps='WGS84',
datum="'WGS84 ")

long, lat = pyproj.transform(srcProj, dstProj, UTM X, UTM Y)

print "UTM zone 17 coordinate (%0.4f, %0.4f) = %$0.4f, %0.4f" %
(UTM_X, UTM Y, lat, long)

This second example takes the calculated lat/long values and, using a Geod object,
calculates another point 10 km northeast of that location:

angle = 315 # 315 degrees = northeast.
distance = 10000

geod = pyproj.Geod(ellps='clrke66')
long2,lat2,invAngle = geod.fwd(long, lat, angle, distance)

print "%$0.4f, %0.4f is 10km northeast of %0.4f, %0.4f" % (lat2,
long2, lat, long)

[57]

Python Libraries for Geo-Spatial Development

Documentation

The documentation available on the pyproj website and in the README file provided
with the source code is excellent as far as it goes. It describes how to use the various
classes and methods, what they do, and what parameters are required. However, the
documentation is rather sparse when it comes to the parameters used when creating
a new Proj object.

According to the documentation, a Proj class instance is initialized with proj
map projection control parameter key/value pairs. The key/value pairs can either be
passed in a dictionary, or as keyword arguments, or as a proj4 string (compatible
with the proj command).

The documentation does provide a link to a website listing a number of standard
map projections and their associated parameters, but understanding what these
parameters mean generally requires you to delve into the PROJ documentation itself.
The documentation for PrROJ is dense and confusing, even more so because the main
manual is written for PROJ version 3, with addendums for version 4 and version 4.3.
Attempting to make sense of all this can be quite challenging.

Fortunately, in most cases you won't need to refer to the PROJ documentation at all.
When working with geo-spatial data using GDAL or OGR, you can easily extract the
projection as a "proj4 string" that can be passed directly to the Proj initializer. If you
want to hardwire the projection, you can generally choose a projection and ellipsoid
using the proj="..." and ellps="..." parameters respectively. If you want to do
more than this, though, you will need to refer to the PROJ documentation for more
details.

To find out more about PROJ and to read the original documentation, you
K can find everything you need at: http://trac.osgeo.org/proj.

Availability

pyproj is available for MS Windows, Mac OS X, and any POSIX-based operating
system. The main web page for pyproj can be found at:

http://code.google.com/p/pyproj

[58]

Chapter 3

The download link on this page will allow you to download either a Windows
installer for pyproj, or the source code. Note, however, that the source code requires
you to have installed a version of PROJ.4 before you can build pyproj. For Linux
machines, you can generally obtain PROJ.4 as an RPM or source tarball that you

can then compile yourself. For Mac OS X, you will probably find it easier to install

a compiled version of the PROJ framework, either as part of a complete GDAL
installation, or by just installing the PROJ framework itself. Either is available at:

http://www.kyngchaos.com/software/frameworks

Make sure that you install version 1.8.6 or later of the pyproj library. This version is
required to follow the examples in this book.

Analyzing and manipulating
geo-spatial data

Because geo-spatial data works with geometrical features such as points, lines, and
polygons, you often need to perform various calculations using these geometrical
features. Fortunately, there are some very powerful tools for doing exactly this.
The library of choice for performing this type of computational geometry is named
Shapely.

Shapely

Shapely is a Python package for the manipulation and analysis of two-dimensional
geo-spatial geometries. Shapely is based on the GEOS library, which implements

a wide range of geo-spatial data manipulations in C++. GEOS is itself based on a
library called the "Java Topology Suite", which provides the same functionality for
Java programmers. Shapely provides a Pythonic interface to GEOS that makes it easy
to use these manipulations directly from your Python programs.

[59]

Python Libraries for Geo-Spatial Development

Design
The Shapely library is organized as follows:

Shapely
Point MultiPoint
. .
. .
* .
LineString MultiLineString
LinearRing MultiPolygon

5 40

Polygon GeometryCollection o
[]
.

GEOS

All of Shapely's functionality is built on top of GEOS. Indeed, Shapely requires GEOS
to be installed before it can run.

Shapely itself consists of eight major classes, representing different types of
geometrical shapes:

1. The point class represents a single point in space. Points can be two-
dimensional (x,y) or three-dimensional (x,y,z).

2. The LineString class represents a sequence of points joined together to form
a line. LineStrings can be simple (no crossing line segments) or complex (where
two line segments within the LineString cross).

[60]

Chapter 3

3. The LinearRing class represents a line string that finishes at the starting
point. The line segments within a LinearRing cannot cross or touch.

4. The polygon class represents a filled area, optionally with one or more
"holes" inside it.

The MultiPoint class represents a collection of Points.
The MultiLineString class represents a collection of LineStrings.

The MultiPolygon class represents a collection of Polygons.

® N o O

The GeometryCollection class represents a collection of any combination
of Points, Lines, LinearRings, and Polygons.

As well as being able to represent these various types of geometries, Shapely provides
a number of methods and attributes for manipulating and analyzing these geometries.
For example, the LineString class provides a 1length attribute that equals the length
of all the line segments that make up the LineString, and a crosses () method that
returns True if two LineStrings cross. Other methods allow you to calculate the
intersection of two polygons, dilate or erode geometries, simplify a geometry, calculate
the distance between two geometries, and build a polygon that encloses all the points
within a given list of geometries (called the convex_hull attribute).

Note that Shapely is a spatial manipulation library rather than a geo-spatial
manipulation library. It has no concept of geographical coordinates. Instead, it
assumes that the geo-spatial data has been projected onto a two-dimensional
Cartesian plane before it is manipulated, and the results can then be converted back
into geographic coordinates if desired.

Example code

The following program creates two Shapely geometry objects: a circle and a square,
and calculates their intersection:

(1, 1)

(0, 0)

[61]

Python Libraries for Geo-Spatial Development

The intersection will be a polygon in the shape of a semicircle, as shown above.

import shapely.geometry

pt = shapely.geometry.Point (0, 0)
circle = pt.buffer(1.0)

square = shapely.geometry.Polygon([(0, 0), (1, 0),

intersect = circle.intersection (square)
for x,y in intersect.exterior.coords:
print x,y

Notice how the circle is constructed by taking a Point geometry and using the
buffer () method to create a Polygon representing the outline of a circle.

Documentation

Shapely version 1.0 includes a fairly straightforward manual that gives a brief
description of each class, method, and attribute, along with sample code showing
how to use it. However, the manual for Shapely version 1.2 is far more extensive,
with detailed descriptions, extended code samples, and many illustrations that
clearly show how the various classes, methods, and attributes work. The Shapely 1.2
manual is worth reading even if you are using an earlier version.

The Shapely documentation is entirely self-contained; there is no need to refer to
the GEOS documentation, or to the Java Topology Suite it is based on, unless you
particularly want to see how things are done in these libraries. The only exception is
that you may need to refer to the GEOS documentation if you are compiling GEOS
from source, and are having problems getting it to work.

Availability
Shapely will run on all major operating systems, including MS Windows, Mac OS X,
and Linux. Shapely's main website can be found at:

http://trac.gispython.org/lab/wiki/Shapely

The website has everything you need, including the documentation and
downloads for the Shapely library, in both source code form and pre-built
binaries for MS Windows.

If you are installing Shapely on a Windows computer, the pre-built binaries include
the GEOS library built-in. Otherwise, you will be responsible for installing GEOS
before you can use Shapely.

[62]

Chapter 3

Make sure that you install Shapely version 1.2 or later; you will need this version to
work through the examples in this book.

The GEOS library's website is at:
http://trac.osgeo.org/geos

To install GEOS in a Unix-based computer, you can either download the source code
from the GEOS website and compile it yourself, or you can install a suitable RPM

or APT package that includes GEOS. If you are running Mac OS X, you can either
try to download and build GEOS yourself, or you can install the pre-built GEOS
framework, which is available from the following website:

http://www.kyngchaos.com/software/frameworks

Visualizing geo-spatial data

It's very hard, if not impossible, to understand geo-spatial data unless it is turned
into a visual form —that is, until it is rendered as an image of some sort. Converting
geo-spatial data into images requires a suitable toolkit. While there are several such
toolkits available, we will look at one in particular: Mapnik.

Mapnik
Mapnik is a freely-available toolkit for building mapping applications. Mapnik takes

geo-spatial data from a PostGIS database, Shapefile, or any other format supported
by GDAL/OGR, and turns it into clearly-rendered, good-looking images.

There are a lot of complex issues involved in rendering images well, and Mapnik
does a good job of allowing the application developer to control the rendering
process. Rules control which features should appear on the map, while Symbolizers
control the visual appearance of these features.

Mapnik allows developers to create XML stylesheets that control the map-creation
process. Just as with CSS stylesheets, Mapnik's stylesheets give you complete control
over the way geo-spatial data is rendered. Alternatively, you can create your styles
by hand if you prefer.

Mapnik itself is written in C++, though bindings are included that allow access

to almost all of the Mapnik functionality via Python. Because these bindings are
included in the main code base rather than being added by a third-party developer,
support for Python is built right into Mapnik. This makes Python eminently suited to
developing Mapnik-based applications.

[63]

Python Libraries for Geo-Spatial Development

Mapnik is heavily used by Open Street Map (http://openstreetmap.org) and
EveryBlock (http://everyblock.com) among others. Since the output of Mapnik
is simply an image, it is easy to include Mapnik as part of a web-based application,
or you can display the output directly in a window as part of a desktop-based
application. Mapnik works equally well on the desktop and on the web.

Design
When using Mapnik, the main object you are dealing with is called the Map. A Map
object has the following parts:

Map

| Width | | Height |

| Spatial Reference | | Background Color |

Layers

| Name | | Datasource|

=

Styles

IRuIes
| Min. Scale | | Filter

M Symbollzers

When creating a Map object, you tell it:

1. The overall width and height of the map, in pixels.
2. The spatial reference to use for the map.

3. The background color to draw behind the contents of the map.

[64]

Chapter 3

You then define one or more Layers that hold the map's contents. Each Layer has:

A name.

A Datasource object defining where to get the data for this layer from. The
datasource can be a reference to a database, or it can be a Shapefile or other
GDAL/OGR datasource.

3. A spatial reference to use for this layer. This can be different from the spatial
reference used by the map as a whole, if appropriate.

4. Alist of styles to apply to this layer. Each style is referred to by name, since
the styles are actually defined elsewhere (often in an XML stylesheet).

Finally, you define one or more Styles that tell Mapnik how to draw the various
layers. Each Style has a name and a list of Rules that make up the main part of the
style's definition. Each Rule has:

1. A minimum scale and maximum scale value (called the "scale denominator").
The Rule will only apply if the map's scale is within this range.

2. Afilter expression. The Rule will only apply to those features that match this
filter expression.

3. A list of Symbolizers. These define how the matching features will be drawn
onto the map.
There are a number of different types of Symbolizers implemented by Mapnik:
1. LineSymbolizer is used to draw a "stroke" along a line, a linear ring, or
around the outside of a polygon.

2. LinePatternSymbolizer uses the contents of an image file (specified by
name) to draw the "stroke" along a line, a linear ring, or around the outside
of a polygon.

PolygonSymbolizer is used to draw the interior of a polygon.

PolygonPatternSymbolizer uses the contents of an image file (again
specified by name) to draw the interior of a polygon.

5. PointSymbolizer uses the contents of an image file (specified by name) to
draw a symbol at a point.

6. TextSymbolizer draws a feature's text. The text to be drawn is taken from
one of the feature's attributes, and there are numerous options to control how
the text is to be drawn.

7. RasterSymbolizer is used to draw raster data taken from any GDAL
dataset.

[65]

Python Libraries for Geo-Spatial Development

8. shieldsymbolizer draws a textual label and a point together. This is similar
to the use of a PointSymbolizer to draw the image and a TextSymbolizer to
draw the label, except that it ensures that both the text and the image are
drawn together.

9. BuildingSymbolizer uses a pseudo-3D effect to draw a polygon, to make it
appear that the polygon is a three-dimensional building.

10. Finally, MarkersSymbolizer draws blue directional arrows following
the direction of polygon and line geometries. This is experimental, and is
intended to be used to draw one-way streets onto a street map.

When you instantiate a Symbolizer and add it to a style (either directly in code, or
via an XML stylesheet), you provide a number of parameters that define how the
Symbolizer should work. For example, when using the PolygonSymbolizer, you
can specify the fill color, the opacity, and a "gamma" value that helps draw adjacent
polygons of the same color without the boundary being shown:

p = mapnik.PolygonSymbolizer (mapnik.Color (127, 127, 0))
p.fill opacity = 0.8
p.gamma = 0.65

If the Rule that uses this Symbolizer matches one or more polygons, those polygons
will be drawn using the given color, opacity, and gamma value.

Different Rules can, of course, have different Symbolizers, as well as different filter
values. For example, you might set up Rules that draw countries in different colors
depending on their population.

Example code

The following example program displays a simple world map using Mapnik:

import mapnik

symbolizer = mapnik.PolygonSymbolizer (
mapnik.Color ("darkgreen"))

rule = mapnik.Rule ()
rule.symbols.append (symbolizer)
style = mapnik.Style()
style.rules.append(rule)

layer = mapnik.Layer ("mapLayer")
layer.datasource = mapnik.Shapefile (
file="TM WORLD BORDERS-0.3.shp")
layer.styles.append ("mapStyle")

map = mapnik.Map (800, 400)

[66]

Chapter 3

map .background = mapnik.Color ("steelblue")
map.append style("mapStyle", style)
map.layers.append (layer)

map.zoom all ()

mapnik.render to file(map, "map.png", "png")

Notice that this program creates a PolygonSymbolizer to display the country
polygons, and then attaches the symbolizer to a Mapnik Rule object. The Rule
then becomes part of a Mapnik Style object. We then create a Mapnik Layer object,
reading the layer's map data from a Shapefile datasource. Finally, a Mapnik Map
object is created, the layer is attached, and the resulting map is rendered to a PNG-
format image file:

Documentation

Mapnik's documentation is about average for an open source project—good
installation guides and some excellent tutorials, but with rather confusing API
documentation. The Python documentation is derived from the C++ documentation.
It concentrates on describing how the Python bindings are implemented rather

than how an end user would work with Mapnik using Python. There are a lot of
technical details that aren't relevant to the Python programmer and not enough
Python-specific descriptions to be all that useful, unfortunately.

The best way to get started with Mapnik is to follow the installation instructions, and
then to work your way through the two supplied tutorials. You can then check out
the Learning Mapnik page on the Mapnik wiki (http://trac.mapnik.org/wiki/
LearningMapnik). The notes on these pages are rather brief and cryptic, but there is
useful information here if you're willing to dig.

[67]

Python Libraries for Geo-Spatial Development

It is worth looking at the Python API documentation, despite its limitations.

The main page lists the various classes that are available and a number of useful
functions, many of which are documented. The classes themselves list the methods
and properties (attributes) you can access, and even though many of these lack
Python-specific documentation, you can generally guess what they do.

Chapter 8 includes a comprehensive description of Mapnik; you may find this useful
in lieu of any other Python-based documentation.

Availability

Mapnik runs on all major operating systems, including MS Windows, Mac OS X, and
Linux. The main Mapnik website can be found at:

http://mapnik.org

Download links are provided for downloading the Mapnik source code, which

can be readily compiled if you are running on a Unix machine, and you can also
download pre-built binaries for Windows computers. For those running Mac OS X,
pre-built binaries are available at:

http://dbsgeo.com/downloads

Make sure that you install Mapnik version 1.7.1 or later; you will need to use this
version as you work through the examples in this book.

Summary

In this chapter, we looked at a number of important libraries for developing
geo-spatial applications using Python. We learned that:

e GDAL is a C++ library for reading (and sometimes writing) raster-based
geo-spatial data.

e OCGRis a C++ library for reading (and sometimes writing) vector-based
geo-spatial data.

e GDAL and OGR include Python bindings that are easy to use, and support a
large number of data formats.

e The PROJ .4 library and its Pythonic pyproj wrapper allow you to convert
between geographic coordinates (points on the Earth's surface) and
cartographic coordinates (x,y coordinates on a two-dimensional plane) using
any desired map projection and ellipsoid.

[68]

Chapter 3

e The pyproj Geod class allows you to perform various geodetic calculations
based on points on the Earth's surface, a given distance, and a given angle
(azimuth).

e A geo-spatial data manipulation library called the Java Topology Suite was
originally developed for Java. This was then rewritten in C++ under the
name GEQOS, and there is now a Python interface to GEOS called Shapely.

e Shapely makes it easy to represent geo-spatial data in the form of Points,
LineStrings, LinearRings, Polygons, MultiPoints, MultiLineStrings,
MultiPolygons, and GeometryCollections.

e As well as representing geo-spatial data, these classes allow you to perform
a variety of geo-spatial calculations.

e Mapnik is a tool for producing good-looking maps based on geo-spatial data.

e Mapnik can use an XML stylesheet to control which elements appear on the
map, and how they are formatted. Styles can also be created by hand if you
prefer.

e Each Mapnik style has a list of Rules that are used to identify features
to draw onto the map.

e Each Mapnik Rule has a list of Symbolizers that control how the selected
features are drawn.

While these tools are very powerful, you can't do anything with them unless you
have some geo-spatial data to work with. Unless you are lucky enough to have
access to your own source of data, or are willing to pay large sums to purchase
data commercially, your only choice is to make use of the geo-spatial data that is
freely-available on the Internet. These freely-available sources of geo-spatial data
are the topic of the next chapter.

[69]

Sources of Geo-Spatial Data

When creating a geo-spatial application, the data you use will be just as important as
the code you write. Good quality geo-spatial data, and in particular base maps and
imagery, will be the cornerstone of your application. If your maps don't look good
then your application will be treated as the work of an amateur, no matter how well
you write the rest of your program.

Traditionally, geo-spatial data has been treated as a valuable and scarce resource, being
sold commercially for many thousands of dollars and with strict licensing constraints.
Fortunately, as with the trend towards democratizing geo-spatial tools, geo-spatial data
is now becoming increasingly available for free and with little or no restriction on its
use. There are still situations where you may have to pay for data, but often it is now
just a case of downloading the data you need from a suitable web site.

This chapter provides an overview of some of these major sources of freely-available
geo-spatial data. This is not intended to be an exhaustive list, but rather to provide
information on the sources which are likely to be most useful to the Python geo-
spatial developer.

In this chapter, we will cover:

e Some of the major freely-available sources of vector-format geo-spatial data
e Some of the main freely-available sources of raster geo-spatial data

e Sources of other types of freely-available geo-spatial data, concentrating on
databases of city and other placenames

Sources of Geo-Spatial Data

Sources of geo-spatial data in vector
format

Vector-based geo-spatial data represents physical features as collections of points,
lines, and polygons. Often, these features will have metadata associated with them.
In this section, we will look at some of the major sources of free vector-format geo-
spatial data.

OpenStreetMap
OpenStreetMap (http://openstreetmap.org) is a website where people can

collaborate to create and edit geo-spatial data. It describes itself as a free editable
map of the whole world...made by people like you.

The following image shows a portion of a street map for Onchan, Isle of Man, based
on data from OpenStreetMap:

Larel e

g

= Wi
S H\llUES[EﬂJ\’E.E % é‘
& - 2 Third Avenie |
! iy, 47 1
ok
S Aiaiekd Auveciu B
Fate o £
Avrlie gy & i - e A 4,}5‘?
% :
P By # g
R Ol =) &Y
oue % o &
i 2 & z &%fld\ : = ; \ R
R & By : :
: ot e \ g S
) ®) 5
@gﬁ?% < %
=

ke,

[72]

Chapter 4

Data format

OpenStreetMap does not use a standard format such as Shapefiles to store its data.
Instead, it has developed its own XML-based format for representing geo-spatial
data in the form of nodes (single points), ways (sequences of points that define a
line), areas (closed ways that represent polygons), and relations (collections of other
elements). Any element (node, way, or relation) can have a number of tags associated

with it, providing additional information about that element.

Here is an example of what the OpenStreetMap XML data looks like:

<osm>
<node id="603279517"
lon="176.2441646" ..
<node id="603279518"
lon="176.2406726"..
<node id="603279519"
lon="176.2380553"..

<way 1d="47390936"..

lat="-38.1456457"

/>

lat="-38.1456583"

/>

lat="-38.1456540"

/>

. >

<nd ref="603279517"/>
<nd ref="603279518"/>
<nd ref="603279519"/>

<tag k="highway" v="residential"/>

<tag k="name" v="York Street"/>

</way>

<relation id="126207"...>

<member type="way"
<member type="way"
<member type="way"
<member type="way"
<member type="way"

ref="22930719"
ref="23963573"
ref="28562757"
ref="23963609"
ref="47475844"

role=""/>
role=""/>
role=""/>
role=""/>
role=""/>

<tag k="name" v="State Highway 30A"/>
<tag k="ref" v="30A"/>
<tag k="route" v="road"/>

<tag k="type" v="route"/>

</relation>
</osm>

[73]

Sources of Geo-Spatial Data

Obtaining and using OpenStreetMap data
You can obtain geo-spatial data from OpenStreetMap in one of three ways:
* You can use the OpenStreetMap API to download a subset of the data you
are interested in.

¢ You can download the entire OpenStreetMap database, called Planet .osm,
and process it locally. Note that this is a multi-gigabyte download.

¢ You can make use of one of the mirror sites that provides OpenStreetMap
data nicely packaged into smaller chunks and converted into other data
formats. For example, you can download the data for North America on a
state-by-state basis, in one of several available formats, including Shapefiles.

Let's take a closer look at each of these three options.

The OpenStreetMap API

Using the OpenStreetMap API (http://wiki.openstreetmap.org/wiki/API), you
can download selected data from the OpenStreetMap database in one of three ways:

e You can specify a bounding box defining the minimum and maximum
longitude and latitude values, like this:

42°N

40°N

/o 36°N
S

34° N

32°N

Bounding Box = (-114, 32, -124.5, 42)

124°W
122° W
120°W
18°W
16°W

The API will return all of the elements (nodes, ways, and relations) that
are completely or partially inside the specified bounding box.

[74]

Chapter 4

* You can ask for a set of changesets which have been applied to the map. This
returns all the changes made over a given time period, either for the entire
map or just for the elements within a given bounding box.

* You can download a specific element by ID, or all the elements which are
associated with a specified element (for example, all elements belonging to a
given relation).

OpenStreetMap provides a Python module called osmapi which makes it easy to
access the OpenStreetMap APIL. More information about this module can be found
at http://wiki.openstreetmap.org/wiki/PythonOsmApi.

Planet.osm

If you choose to download the entire OpenStreetMap database for processing

on your local computer, you will first need to download the entire Planet .osm
database. This is currently a 9 GB compressed file, which can be downloaded from
http://planet.openstreetmap.org.

The entire dump of the Planet.osm database is updated weekly, but regular diffs are
produced each day which you can use to keep your local copy of the Planet .osm
database up-to-date without having to download the entire database each time.

The daily diffs are approximately 30-50 MB each.

The Planet.osm database is an XML-format file containing all the nodes, ways,
and relations in the OpenStreetMap database.

Mirror sites

There are currently two websites which provide useful mirrors of the
OpenStreetMap data:

e CloudMade (http://cloudmade.com) is a website set up by one of the
founders of OpenStreetMap to make it easier to access the OpenStreetMap
data. The CloudMade download site (http://downloads.cloudmade.com)
includes extracts of the OpenStreetMap data organized by continent, country,
and state. You can download the raw XML data or a set of Shapefiles
containing roads, natural features, points of interest, administrative
boundaries, coastlines, and bodies of water.

e The German website Geofabrik (http://geofabrik.de) provides extracts
of freely-available geo-spatial data. Their OpenStreetMap download
page (http://download.geofabrik.de/osm) provides extracts of the
OpenStreetMap data, organized by geographic region, both in raw XML
format and as a set of Shapefiles. Note that the Geofabrik site does not
include all regions of the world, and tends to concentrate on European data.
In particular, it does not currently include extracts for North America.

[75]

Sources of Geo-Spatial Data

Working with OpenStreetMap XML data

When you download Planet.osm, or use the API or a mirror site to download an
extract of the OpenStreetMap data, what you will end up with is a (potentially very
large) file in XML format. While you could write your own Python program to parse
this XML data if you wanted to, there are two alternative ways of getting access to
this data:

® You can import the OpenStreetMap data into a PostgreSQL database using a
tool called osm2pgsql (http://wiki.openstreetmap.org/wiki/Osm2pgsql).
osm2pgsql is written in C/C++, and is intended to process large amounts of
XML data (such as the entire Planet . osm file) as quickly as possible.

e If you are familiar with configuring and running programs written in Ruby,
you can use the Ruby OSM Library (http://osmlib.rubyforge.org) to
parse and work with the OpenStreetMap XML data. The Ruby OSM Library
includes a utility program called osmexport that can export OpenStreetMap
data into Shapefile format, among others.

TIGER

The United States Census Bureau has made available a large amount of geo-spatial
data under the name TIGER (Topologically Integrated Geographic Encoding and
Referencing system). The TIGER data includes information on streets, railways,
rivers, lakes, geographic boundaries, and legal and statistical areas such as school
districts, urban regions, and so on. Separate cartographic boundary files are also
available for download.

The following image shows state and urban area outlines for California, based on
data downloaded from the TIGER website:

[76]

Chapter 4

Because it is produced by the US government, TIGER only includes information for
the United States and its protectorates (Puerto Rico, American Samoa, the Northern
Mariana Islands, Guam, and the US Virgin Islands). Even though it is produced by
the U.S. Census Bureau, the TIGER data files do not include any demographic data.
In spite of these limitations, TIGER is an excellent source of geo-spatial data covering
the US and its protectorates.

Data format

Until 2006, the US Census Bureau provided the TIGER data in a custom text-based
format called TIGER/Line. TIGER/ Line files stored each type of record in a separate
file, and required custom tools to process. Fortunately, OGR supports TIGER/Line
files should you need to read them.

Since 2007, all TIGER data has been produced in the form of Shapefiles, which are
(somewhat confusingly) called TIGER/Line Shapefiles.

[77]

Sources of Geo-Spatial Data

There are a total of 38 different sets of information which you can download,
including street address ranges, landmarks, census blocks, metropolitan statistical
areas, school districts, and so on. For example, the "Core Based Statistical Area"
Shapefile contains the outline of each statistical area:

This particular feature has the following metadata associated with it:

ALAND 2606489666.0
AWATER 578526971.0
CBSAFP 18860

CSAFP None

FUNCSTAT S

INTPTLAT +41.7499033
INTPTLON -123.9809983
LSAD M2

MEMI 2

MTFCC G3110

NAME Crescent City, CA
NAMELSAD Crescent City, CA Micropolitan Statistical Area
PARTFLG N

Information on what these various attributes mean can be found in the extensive
documentation available from the TIGER website.

Obtaining and using TIGER data

The TIGER datafiles themselves can be downloaded from:

http://www.census.gov/geo/www/tiger/index.html

[78]

Chapter 4

Make sure that you download the technical documentation as this describes the
various files you can download, and all the attributes associated with each feature.
For example, if you want to download a set of urban areas for the US, the Shapefile
you are looking for is called t1_2009_us_uac.shp and includes information such as
the city or town name and the size.

Digital Chart of the World

The Digital Chart of the World (DCW) is a comprehensive 1:1,000,000 scale vector
map of the world. Originally created by ESRI for the US Defense Mapping Agency,
the DCW was originally sold as a commercial product. More recently, Pennsylvania
State University has made this data available as a free download from its University
Library's website.

The following illustration shows the DCW state boundaries and populated place
data for Australia:

,,,,,

The DCW data dates back to 1992, and reflects the political boundaries in effect at
that time. Changes to country names and political boundaries since 1992 have not
been included. Despite these limitations, DCW is a popular and useful source of free
geo-spatial data.

[79]

Sources of Geo-Spatial Data

Data format

The Digital Chart of the World is available in ARC/INFO Interchange format, also
known as E0O format. This is an ASCII file format used to export data out of ARC/
Info GIS systems.

While it is possible to process an E00 file manually, it is much easier to use tools such
as OGR to parse the file. We will look at how you can do this shortly.

Available layers
When downloading data from the DCW, you can choose which layers of data to
include. The available layers are:
e Country boundaries
e Populated places (urban areas and points)
e Railway lines
e Roads
o Utilities
e Drainage
e Elevation data (called Hypsography)
e Land cover
e Ocean features
e Aeronautical features
e Cultural landmarks
e Transportation structures
Note that not all of this information is available for every location. Because of the file

format used by the DCW data, there are no attributes or other metadata included; all
you get is the raw geo-spatial data itself.

Obtaining and using DCW data

The EOQO files that make up the DCW data can be downloaded from Pennsylvania
State University's website:

http://maproom.dlt.psu.edu/dcw

Unfortunately, the web interface is rather awkward to use, and you can't just
download all the files at once. Instead, you have to wend your way through the
interface one step at a time:

[80]

Chapter 4

Click on the continent you want to download data for
Select the individual country or state you are looking for and click Continue
Click on the Download Data button

Select the layer(s) you want to download and click on Continue

AN

Choose the type of data compression you want and then click on the
Compute Data button

6. Finally, click on the FTP or HTTP hyperlink to download the generated
datafile

If you want to download data for a number of locations (for example, all the US
states), this can be extremely tedious. Unfortunately, there is no way around this
short of writing a custom download script, which would probably take longer than
just downloading the data by hand.

Once you have the necessary datafiles, you can read them using OGR in the
usual way:

import osgeo.ogr
datasource = osgeo.ogr.Open ("wyoming.e00")

Because you are importing an ARC/Info E00 format file, the resulting OGR datasource
will consist of four separate layers, named ARC, CNT, LAB, and PAL. These correspond to
the individual ARC files that were used to originally construct the data:

e The ARC (arc coordinates and topology) layer contains the actual geo-spatial
data you need, in the form of linestrings and polygons.

e The cNT (polygon centroid coordinates) layer contains the centroid point for
the entire geographical area covered by the file.

e The 2B (label points) layer appears to contain information about the
positioning of labels onto the map. Unfortunately, it does not include the
labels themselves.

e The pAL (polygon topology) layer includes more information about the area
covered by the file, including the bounding box for the entire area.

In most cases, all the information you need will be in the first (ARC) layer. If you
want to find out more about the ARC/Info E00 file format and what information
may be included in these various layers, an unofficial reference for the E00 format
can be found at:

http://avce00.maptools.org/docs/v7_e00 cover.html

[81]

Sources of Geo-Spatial Data

For more information on reading E00 files using OGR, please refer to the OGR
documentation page for the EOO driver:

http://www.gdal.org/ogr/drv_avce00.html

GSHHS

The US National Geophysical Data Center (part of the NOAA) has been working
on a project to produce high-quality vector shoreline data for the entire world. The
resulting database, called the Global Self-Consistent, Hierarchical, High-Resolution
Shoreline database (GSHHS), includes detailed vector data for shoreline, lakes, and
rivers at five different resolutions. The data has been broken out into four different
levels: ocean boundaries, lake boundaries, island-in-lake boundaries, and pond-on-
island-in-lake boundaries.

The following image shows European shorelines, lakes, and islands taken from the
GSHHS database:

The GSHHS has been constructed out of two public-domain geo-spatial

databases: the World Data Bank II includes data on coastlines, lakes, and rivers,
while the World Vector Shoreline only provides coastline data. Because the World
Vector Shoreline database has more accurate data, but lacks information on

rivers and lakes, the two databases were combined to provide the most accurate
information possible. After merging the databases, the author then manually edited
the data to make it consistent and to remove a large number of errors. The result is a
high-quality database of land and water boundaries worldwide.

[82]

Chapter 4

’ More information about the process used to create the GSHHS database
can be found at: http://www.soest .hawaii.edu/pwessel/
papers/1996/JGR_96/jgr 96.html

Data format

The GSHHS database is available in two different formats: a binary data format
specific to the Generic Mapping Tools (http://gmt.soest.hawaii.edu), and as a
series of Shapefiles.

The Generic Mapping Tools (GMT) is a collection of tools for working
% with geo-spatial data. Because they don't have Python bindings, we won't
g be working with GMT in this book.

If you download the data in Shapefile format, you will end up with a total of 20
separate Shapefiles, one for every combination of resolution and level:

e The resolution represents the amount of detail in the map:

Resolution Code Resolution Includes

c Crude Features greater than 500 km?
1 Low Features greater than 100 km?
i Intermediate Features greater than 20 km?
h High Features greater than 1 km?

£ Full Every feature

¢ The level indicates the type of boundaries that are included in the Shapefile:

Level Code Includes

1 Ocean boundaries

2 Lake boundaries

3 Island-in-lake boundaries

4 Pond-on-island-in-lake boundaries

The name of the Shapefile tells you the resolution and level of the included data.
For example, the Shapefile for ocean boundaries at full resolution would be named
GSHHS _f L1l.shp.

Each Shapefile consists of a single layer containing the various polygon features
making up the given type of boundary.

[83]

Sources of Geo-Spatial Data

Obtaining the GSHHS database

The main GSHHS website can be found at:

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

The files are available in both GMT and Shapefile format —unless you particularly
want to use the Generic Mapping Tools, you will most likely want to download the
Shapefile version. Once you have downloaded the data, you can use OGR to read the
files and extract the data from them in the usual way.

World Borders Dataset

Many of the datasources we have examined so far are very complex, suited to a
particular application, or rather dated. If all you're looking for is some simple vector
data covering the entire world, the World Borders Dataset may be all you need. While
some of the country borders are apparently disputed, the simplicity of the World
Borders Dataset makes it an attractive choice for many basic geo-spatial applications.

The following map was generated using the World Borders Dataset:

The World Borders Dataset will be used extensively throughout this book. Indeed,
you have already seen an example program in Chapter 3 where we used Mapnik to
generate a world map using the World Borders Dataset Shapefile.

[84]

Chapter 4

Data format

The World Borders Dataset is available in the form of a Shapefile with a single
layer, and one feature for each country or area. For each country/area, the feature
has one or more polygons that define the country's boundary, along with useful
attributes including the name of the country or area, various ISO, FIPS, and UN
codes identifying the country, a region and sub-region classification, the country's
population, land area, and latitude/longitude.

The various codes make it easy to match the features against your own country-
specific data, and you can also use information such as the population and area to
highlight different countries on the map. For example, the illustration above uses the
"region" field to draw each geographic region using a different color.

Obtaining the World Borders Dataset

The World Borders Dataset can be downloaded from:
http://thematicmapping.org/downloads/world borders.php

This website also provides more details on the contents of the dataset, including links
to the United Nations' website where the region and sub-region codes are listed.

Sources of geo-spatial data in raster
format

One of the most enthralling aspects of programs such as Google Earth is the ability to
see the Earth as you appear to fly above it. This is achieved by displaying satellite and
aerial photographs carefully stitched together to provide the illusion that you are
viewing the Earth's surface from above.

While writing your own version of Google Earth would be an almost impossible
task, it is possible to obtain free satellite imagery in the form of raster format geo-
spatial data, which you can then use in your own geo-spatial applications.

Raster data is not just limited to images of the Earth's surface, however. Other useful
information can be found in raster format — for example, Digital Elevation Map
(DEM) files contain the height of each point on the Earth's surface, which can then
be used to calculate the elevation of any desired point. DEM data can also be used to
generate pseudo-3D images by using different colors to represent different heights.

In this section, we will look at both an extremely comprehensive source of satellite
imagery, and some freely-available sources of digital elevation data.

[85]

Sources of Geo-Spatial Data

Landsat

Landsat is an ongoing effort to collect images of the Earth's surface. A group of
dedicated satellites have been continuously gathering images of the Earth's surface
since 1972. Landsat imagery includes black and white, traditional red/green/blue
(RGB) color images, as well as infrared and thermal imaging. The color images are
typically at a resolution of 30 meters per pixel, while the black and white images
from Landsat 7 are at a resolution of 15 meters per pixel.

The following illustration shows color-corrected Landsat satellite imagery for
Rotorua, New Zealand:

Data format

Landsat images are typically available in the form of GeoTIFF files. GeoTIFF is a
geo-spatially tagged TIFF image file format, allowing images to be georeferenced
onto the Earth's surface. Most GIS software and tools, including GDAL, are able to
read GeoTIFF formatted files.

[86]

Chapter 4

Because the images come directly from a satellite, the files you can download typically
store separate bands of data in separate files. Depending on the satellite the data

came from, there can be up to eight different bands of data—for example, Landsat

7 generates separate Red, Green, and Blue bands, as well as three different infrared
bands, a thermal band, and a high-resolution panchromatic (black-and-white) band.

To understand how this works, let's take a closer look at the process required to
create the image shown above. The raw satellite data consists of eight separate
GeoTIFF files, one for each band. Band 1 contains the blue color data, Band 2 contains
the green color data, and Band 3 contains the red color data. These separate files can
then be combined using GDAL to produce a single color image:

-+.+.=.

Band 1 Band 2 Band 3 AGB Image
(Blue) (Green) (Red)

Another complication with the Landsat data is that the images produced by the
satellites are distorted by various factors, including the ellipsoid shape of the
Earth, the elevation of the terrain being photographed, and the orientation of the
satellite as the image is taken. The raw data is therefore not a completely accurate
representation of the features being photographed. Fortunately, a process known
as orthorectification can be used to correct these distortions. In most cases,
orthorectified versions of the satellite images can be downloaded directly.

Obtaining Landsat imagery

The easiest way to access Landsat imagery is to make use of the University of
Maryland's Global Land Cover Facility website:

http://glcf.umiacs.umd.edu

[87]

Sources of Geo-Spatial Data

Click on the ESDI Download link, and then click on Map Search. Select ETM+ from
the Landsat imagery list, and if you zoom in on the desired part of the Earth you will
see the areas covered by various Landsat images:

GLCF: Earth Science Data Interface)
¥r v Q- Google

A hp:/ fgicfapp.glcf.umd.edu:B0B0/ esdifindex.jsp

Date/Type]r Path/Row]r Lat/Long ” Place]r Draw]f Map Lawrs]
L 1 v
e Ciiliiiiil (sooe0 DO
AL

Other Imagery
] ASTER

El ion Data

(] SRTM, Degree Tiles

(] SRTM, WRS2 Tiles

(] SRTM, GTOPO30

(] SRTM, GTOPO30 Mosaic

MODIS Product:

("1 32-Day Composites

] 16-Day Vegetation Index
("] VCF. Regional

] WCF, UMD Tiles

Neo images in selection

Enter dates as mm/dd/yyyy or yyyy-mm-dd

[ETM+ Mosaics

[TM Mosaics

Start Date: End Date:

BVHRKEmducts New Since: [@ ago
— Global Land Cover,
— Regional
] Global Land Cover, Global Require Exclude
— Continuous Fields Tree GeoCover * | GeoCover <
— Cover, Reqional GLS || GLs I
— Continuous Fields Tree Level 1G || Level 1G
~ cover. Global Orthorectified || Orthorectified

Terrain Corrected Terrain Corrected
Other Products Not Validated Not Validated

BS5Q + | B5Q v

Please send any comments to glcf@umiacs.umd.edu

© 1997 - 2004. University of Maryland. All rights reserved. Version 2.1.17

If you choose the selection tool (), you will be able to click on a desired area, then
select Preview and Download to choose the image to download.

[88]

Chapter 4

Alternatively, if you know the path and row number of the desired area of the Earth,
you can directly access the files via FTP. The path and row number (as well as the
WRS or "world reference system" used by the data) can be found on the Preview &
Download page:

enon GLCF: Earth Science Data Interface =
~

EB @ E] & hup://glcfapp.glcf.umd.edu:8080/esdi/index.jsp wr {Q- Google
: A % &y

Global Land Cover Facility

Earth Science Data Inter

ETM+ ¥ i
WRS-2, Path 091, Row 089
2000-11-23 =
EarthSat —
Ortho, GeoCover -
Australia —
Online: 041-550 -
Compressed Size: 305 MB; Actual Size: 684 MB =

Info Download
Click on an ID below to Preview and Download. Click on the preview above to see a larger browse image.
<< i | <provioue [N o> | tost>> | O Lshes it cotumns 2
.?:;"“h Results [ID] Status [WRS: P/R] [Acqg.Date] Dataset Producer Attr. Type Location
041-550 Online 2: 091/089 2000-11-23 ETM+ EarthSat O, GeoTIFF Australia
GeoCover et

Please send any comments to gicf@umiacs.umd.edu
© 1597 - 2004. University of Maryland. All rights reserved.

SN
[oone S~

World Reference System, Path and Row Number 1

Verslon 2.1.17

If you want to download the image files via FTP, the main FTP site is at:
ftp://ftp.glcf.umd.edu/glcf/Landsat

The directories and files have complex names that include the WRS, the path and
row number, the satellite number, the date at which the image was taken, and the
band number. For example, a file named:

p091r089 7t20001123 z55 nnl0.tif.gz

Refers to path 91 and row 89, which happens to be the portion of Tasmania
highlighted in the above image. The 7 refers to the number of the Landsat satellite
that took the image, and 20001123 is a datestamp indicating when the image was
taken. The final part of the file name, nn10, tells us that the file is for Band 1.

By interpreting the file name in this way, you can download the correct files, and
match the files against the desired bands.

[89]

Sources of Geo-Spatial Data

GLOBE

GLOBE (Global Land One-kilometer Base Elevation) is an international effort to
produce high-quality, medium-resolution digital elevation (DEM) data for the entire
world. The result is a set of freely-available DEM files which can be used for many
types of geo-spatial analysis and development.

The following illustration shows GLOBE DEM data for northern Chile, converted to
a grayscale image:

Data format

Like all DEM data, GLOBE uses raster values to represent the elevation at a given point
on the Earth's surface. In the case of GLOBE, this data consists of 32-bit signed integers
representing the height above (or below) sea level, in meters. Each cell or "pixel" within
the raster data represents the elevation of a square on the Earth's surface which is 30
arc-seconds of longitude wide and 30 arc-seconds of latitude high:

89°12°'00" 89°11°'30" 89°11°00" 89°10'30"

0°03°30”

0°03'00"

0°02'30"

0°02'00"

[90]

Chapter 4

Note that 30 arc-seconds equals approximately 0.00833 degrees of latitude
or longitude, which equates to a square roughly one kilometer wide and one
kilometer high.

The raw GLOBE data is simply a long list of 32-bit integers in big-endian format,
where the cells are read left-to-right and then top-to-bottom, like this:

X=0, Y=0 X=1, Y=0 --- X=10800, Y=0
X=0, Y=1 X=1, Y=1 --- X=10800, Y=1
| X=0, Y=6000 | X=1, Y=6000 I --- | X=10800, Y=6000

A separate header (. hdr) file provides more detailed information about the DEM
data, including the width and height and its georeferenced location. Tools such as
GDAL are able to read the raw data as long as the header file is provided.

Obtaining and using GLOBE data

The main website for the GLOBE project can be found at:
http://www.ngdc.noaa.gov/mgg/topo/globe.html

As well as detailed documentation for the GLOBE data, you can follow the Get
Data Online link to download precalculated sets of data or to choose a given area to
download DEM data for.

If you download one of the premade tiles, you will need to also download the
associated .hdr file so that the data can be georeferenced and processed using
GDAL. If you choose a custom area to download, a suitable . hdr file will be created
for you—just make sure you choose an export type of ESRI ArcView so that the
header is created in the format expected by GDAL.

If you download a premade tile, the header files can be quite hard to find. Suitable
header files in ESRI format can be downloaded from:

http://www.ngdc.noaa.gov/mgg/topo/elev/esri/hdr

Once you have downloaded the data, simply place the raw DEM file into the same
directory as the .hdr file. You can then open the file directly using GDAL, like this:

import osgeo.gdal
dataset = osgeo.gdal.Open("jl0g.bil")

The dataset will consist of a single band of raster data, which you can then translate,
read, or process using the GDAL library and related tools.

[91]

Sources of Geo-Spatial Data

To see an example of using GDAL to process DEM
— data, please refer to the GDAL section in Chapter 3.

National Elevation Dataset

The National Elevation Dataset (NED) is a high-resolution digital elevation dataset
provided by the US Geological Survey. It covers the Continental United States, Alaska,
Hawaii, and other US territories. Most of the United States is covered by elevation
data at 30 meters/pixel or 10 meters/ pixel resolution, with selected areas available at
3 meters/pixel. Alaska is generally only available at 60 meters/pixel resolution.

The following shaded relief image was generated using NED elevation data for the
Marin Headlands, San Francisco:

Data format

NED data is provided in ARC/Info Binary Grid (.adf) format, which is called
ArcGRID on the USGS website. This binary format is used internally by the ARC/
Info GIS system. Fortunately, the ArcGRID format has been reverse-engineered,
and drivers are available for GDAL to read data in this format.

As with other DEM data, each "pixel" in the raster image represents the height of

a given area on the Earth's surface. For NED data, the height is in meters above or
below a reference height known as the North American Vertical Datum of 1988. This
roughly equates to the height above sea level, allowing for tidal and other variations.

[92]

Chapter 4

Obtaining and using NED data

NED data can be downloaded from the main NED website:
http://ned.usgs.gov
There are two options for downloading the elevation data:

e Choosing a prepackaged set of tiles by selecting the desired state
and county or minimum and maximum lat/long values

e Using the National Map Seamless Server applet

Either option will work —the prepackaged tiles have the disadvantage that they are
split into separate tiles, and include a six-pixel overlap at the edges of each tile. Using
the Seamless Server returns all the data in one chunk, though the interface is a bit
awkward to use and is limited in the amount of information that can be downloaded
at any one time.

To download data using the Seamless Server, you first have to do the following:

1. Pan and zoom to display the area you want to download DEM data for.

2. Click on the Download link in the upper-right corner and choose the
resolution for the elevation data you want to download.

3. You then click on the Define Rectangular Download Area tool ([5) and drag
a box around the area you want to download data for.

4. A separate window then appears showing you the area you have selected.
If you want, you can change the format of the downloaded data by clicking
on the Modify Data Request hyperlink. The interface is quite confusing, but
allows you to choose which format the data should be downloaded in, as
well as compression and metadata options.

5. Finally, click on the Download button and your web browser will download
the selected data once it has been extracted.

If you use the default download options, you will receive a ZIP file containing more
than 20 separate files. Many of these files contain metadata and documentation; the
ArcGRID files that contain the actual elevation data all end with the suffix .adf.
Move these files into a separate directory, making sure to place all the . adf files in
the same directory, and you will be able to read the elevation data from these files
using GDAL.

[93]

Sources of Geo-Spatial Data

M On non-Windows machines, you may need to
Q remove the backslashes from the filenames before
GDAL will recognize them

Once you have the ArcGRID datafiles, you can open them in GDAL just like you
would open any other dataset:

import osgeo.gdal

dataset = osgeo.gdal.Open("hdr.adf")
Finally, if you are working with DEM data, you might like to check out the gdaldem
utility which is included as part of the GDAL download. This program makes it easy
to view and manipulate DEM raster data. The shaded relief image shown above was
created using this utility, like this:

gdaldem hillshade hdr.adf hillshade.tiff

Sources of other types of geo-spatial data

The vector and raster geo-spatial data we have looked at so far is generally used

to provide images or information about the Earth itself. However, geo-spatial
applications often have to place data onto the surface of the Earth — that is,
georeference something such as a place or event. In this section, we will look at
two additional sources of geo-spatial data, in this case databases which place cities,
towns, natural features, and points of interest onto the surface of the Earth.

This data can be used in two important ways. First, it can be used to label
features —for example, to place the label London onto a georeferenced image of
southern England. Secondly, this data can be used to locate something by name,
for example by allowing the user to choose a city from a drop-down list and then
draw a map centered around that city.

GEOnet Names Server

The GEOnet Names Server (GNS) provides a large database of placenames. It is
an official repository of non-American placenames, as decided by the US Board on
Geographic Names.

[94]

Chapter 4

The following is an extract from the GNS database:

LAT LONG FC DSG ELEV NT FULL_NAME
-46.333333 168.716667 S RSTN N Kamahi
-46.816667 168.25 T 1SL N North Island
-40.9559722 175.6575 P PPL N Masterton
-52.556111 169.136667 H COVE N Camp Cove
-39.455556 173.858333 P PPL N Opunake
-52.501389 169.120556 T 1SL TE N Gomez Island
-39.591667 174.283333 P PPL N Hawera
-36.641944 175360833 T RKS N Motupotaka Rocks
-41.255833 173.263333 5 TOWR N Boulder Bank Lighthouse
-36.605278 1745175 T RK N Shearer Rock
-36.610556 174.705556 P PPL N Red Beach

-46.5625 169.619444 T ISL N Cosgrove Island
-42.133333 171.616667 T MT N Mount McHardy
-39.266667 174616667 T MT N Turakirai
-37.433333 1747 T HLL N Nihonu
-44.033333 169.25 H 5T™M N Cowan Creek

-44.65 170.35 H STM N Deep Creek
-40.966667 173.916667 H BAY W Waitara Bay
-42.183333 173.466667 H STM N Spray Stream

-35.45 173.833333 H 5T™M N Helmama Stream

-46.1 166.466667 H CHNM W Eastern Entrance
-36.766667 1744 T BCH N Muriwai Beach
-38.983333 17745 T HLL N Ohinemaemae

-41.25 174.116667 H BAY N Kahikatea Bay
-36.583333 1746 P PPL N Parakakau
-41.152222 173.438333 H COVE N Pier Cove
-359.183333 177.85 H 5TM N Mangatea Stream
-41.383333 172.583333 T MT N Mount Gomaorrah

-42.55 171.566667 H STM M Waiheke River

As you can see from this example, this database includes longitude and latitude
values, as well as codes indicating the type of place (populated place, administrative
district, natural feature, and so on), the elevation (where relevant), and a code
indicating the type of name (official, conventional, historical, and others).

The GNS database contains approximately 4 million features, with 5.5 million names.
It includes every country other than the US and Antarctica.

Data format

The GNS data is provided as a simple tab-delimited text file, where the first row in the
file contains the field names and the subsequent rows contain the various features, one
per row. Importing this name data into a spreadsheet or database is trivial.

For more information on the supplied fields and what the various codes mean,
please refer to:

http://earth-info.nga.mil/gns/html/gis countryfiles.htm

Obtaining and using GEOnet Names Server data

The main website for the GEOnet Names Server is:

http://earth-info.nga.mil/gns/html

[95]

Sources of Geo-Spatial Data

The main interface to the GNS data is through various search tools that provide
filtered views onto the data. To download the data directly rather than searching,
go to:

http://earth-info.nga.mil/gns/html/cntry files.html

Each country is listed; simply click on the Reading Order or Reversed Generics
hyperlink beside the country you want data for (whichever you prefer; the web page
describes the difference). Your browser will download a ZIP file containing the tab-
delimited text file containing all the features within that country. There is also an
option to download all the countries in one file, which is a 190 MB download.

Once you have downloaded the file and decompressed it, you can load the file
directly into a spreadsheet or database for further processing. By filtering on the
Feature Classification (rc), Feature Designation Code (DsG), and other fields, you can
select the particular set of placenames you want, and then use this data directly in
your application.

GNIS

The Geographic Names Information System (GNIS) is the US equivalent of the
GEOnet Names Server — it contains name information for the United States.

The following is an extract from the GNIS database:

FEATURE_NAME FEATURE_CLASS STATE_ALPHA PRIM_LAT_DEC PRIM_LONG_DEC ELEVATION
Abbott Ranch Locale CA 36.2305176 -121.4657686 250
Abbott Reservoir Reservoir CA 40,9060035 -120.8613504 1760
Abbott Spring Spring CA 40.909336% -120.8535725 1754
Abbotts Lagoon Lake CA 38.1174233 -122.9533306 0
Abbotis Peak Summit CA 37.9763136 -120.6224262 471
Abbotts Upper Cabin Building CA 41.4295777 -123.1875457 1477
ABC Camp Rustic Campsite Locale CA 36.02325958 -121.4299341 756
ABC-TV Heliport Airport CA 34.1033427 -118.2834088 129
Abel Canyan Valley CA 34.8233155 -119.8643045 524
Abel Canyon Campground Locale CA 34.82276 -119.8626382 524
Abel Canyon Spring Spring CA 348710918 -119.816803 1150
Abel Square Shopping Center Locale CA 37.427717 -121.90801256 5
Abelardo Cabin Locale CA 36.3102401 -120.7585092 1146
Abelian Group Math School Schoal ca 37.B6B5219 -122.2876776 23
Abels Apple Acres Locale ca 38.7465695 -120.748544 797
Aberdeen Populated Place ca 36.9779897 -118.2534321 1193
Aberdeen Bypass Ditch Canal ca 36.9616004 -118.2362091 1173
Aberdeen Canyen Valley ca 34,1155644 -118.2889647 196
Aberdeen Ditch Cana CA 36.9646558 -118.225931 1174
Aberdeen-Inverness Residence Hall Building ca 33.978349 -117.3253209 331
Abernathy Meadow Flat CA 37.8752015 -119.8993467 1252
Abestos Number 1 Prospect Mine ca 36.8940982 -118.069813 2033
Abilene Populated Place ca 36.145507 -119.053714 124
Able Spring Spring CA 39.1473909 -122.6310573 5924
Ables Drain Cana CA 37.4274355 -120.96905959 19
Abney Butte Summit CA 41.97595856 -123.1603266 1269
Abolitos Park Park CA 32.9833782 -117.0600321 175
Abraham Lincoln Centinuation High Schoc School CA 33.9711265 -117.3661556 278
Abraham Lincoln Elementary School Schoal CA 33.6100221 -117.8606119 B9

GNIS includes natural, physical, and cultural features, though it does not include
road or highway names.

[96]

Chapter 4

As with the GEOnames database, the GNIS database contains the official names
used by the US Government, as decided by the US Board on Geographic Names.
GEOnames is run by the US Geological Survey, and currently contains over 2.1
million features.

Data format

GNIS names are available for download as pipe-delimited compressed text files. This
format uses the "pipe" character (|) to separate the various fields:

FEATURE_ID|FEATURE_NAME | FEATURE CLASS]| ...
1397658 |Ester |Populated Place]...
1397926 |Afognak |Populated Place]...

The first line contains the field names, and subsequent lines contain the various
features. The available information includes the name of the feature, its type,
elevation, the county and state the feature is in, the lat/long coordinate of the feature
itself, and the lat/long coordinate for the "source" of the feature (for streams, valleys,
and so on).

Obtaining and using GNIS data

The main GNIS website can be found at:
http://geonames.usgs.gov/domestic

Click on the Download Domestic Names hyperlink and you will be given options
to download all the GNIS data on a state-by-state basis, or all the features in a single
large download. You can also download topical gazetteers that include selected
subsets of the data—all populated places, all historical places, and so on.

If you click on the File Format hyperlinks, a pop up window will appear describing
the structure of the files in more detail.

Once you have downloaded the data you want, you can simply import the file into

a database or spreadsheet. To import into a spreadsheet, use the Delimited format
and enter "|" as the custom delimiter character. You can then sort or filter the data in
whatever way you want so that you can use it in your application.

[97]

Sources of Geo-Spatial Data

Summary

In this chapter, we have surveyed a number of sources of freely-available geo-spatial
data. If you wish to obtain map data, images, elevations, or placenames for use in your
geo-spatial applications, the sources we have covered should give you everything you
need. Of course, this is not an exhaustive list— other sources of data are available, and
can be found using a search engine or sites such as http://freegis.org.

The following table lists the various requirements you may have for geo-spatial data
in your application development, and which datasource(s) may be most appropriate
in each case:

Requirement Suitable Datasources

Simple base map World Borders Dataset

Shaded relief (pseudo-3D) maps GLOBE or NED data processed using gdaldem

Street map OpenStreetMap

City outlines TIGER (US), Digital Chart of the World

Detailed country outlines GSHHS Level 1

Photorealistic images of the earth Landsat

Lists of city and placenames GNIS (US) or Geonet Names Server (elsewhere)
To recap:

OpenStreetMap is a collaborative website where people can create and edit
vector maps worldwide.

TIGER is a service of the US Geological Survey providing geo-spatial data
on streets, railways, rivers, lakes, geographic boundaries, and legal and
statistical entities such as school districts and urban regions.

The Digital Chart of the World is a somewhat dated database providing
country boundaries, urban areas, elevation data, and so on for the entire world.

GSHHS is a high-resolution shoreline database containing detailed vector
data for shorelines, lakes, and rivers worldwide.

The World Borders Dataset is a simple vector datasource containing country
borders and related data for the entire world bundled into one convenient
package.

Landsat provides detailed raster satellite imagery of all land masses on the
Earth.

GLOBE provides medium-resolution digital elevation (DEM) data for the
entire world.

[98]

Chapter 4

e The National Elevation Dataset includes high-resolution digital elevation
(DEM) data for the Continental United States, Alaska, Hawaii, and other US
territories.

e The GEOnet Names Server provides information on official placenames for
every country other than the US and Antarctica.

e GNIS provides official placenames for the United States.

In the next chapter, we will use the Python toolkits described in Chapter 3 to work
with some of this geo-spatial data in interesting and useful ways.

[99]

Working with Geo-Spatial
Data in Python

In this chapter, we combine the Python libraries and geo-spatial data covered earlier
to accomplish a variety of tasks. These tasks have been chosen to demonstrate
various techniques for working with geo-spatial data in your Python programs;
while in some cases there are quicker and easier ways to achieve these results (for
example, using command-line utilities), we will create these solutions in Python so
you can learn how to work with geo-spatial data in your own Python programs.

This chapter will cover:

e Reading and writing geo-spatial data in both vector and raster format

e Changing the datums and projections used by geo-spatial data

e Representing and storing geo-spatial data within your Python programs
e Using Shapely to work with points, lines, and polygons

e Converting and standardizing units of geometry and distance

This chapter is formatted like a cookbook, detailing various real-world tasks you
might want to perform and providing "recipes" for accomplishing them.

Prerequisites
If you want to follow through the examples in this chapter, make sure you have the
following Python libraries installed on your computer:

e GDAL/OGR version 1.7 or later (http://gdal.org)

e pyproj version 1.8.6 or later (http://code.google.com/p/pyproj)

e Shapely version 1.2 or later (http://trac.gispython.org/lab/wiki/
Shapely)

Working with Geo-Spatial Data in Python

For more information about these libraries and how to use them, including
references to the API documentation for each library, please refer to Chapter 3.

Reading and writing geo-spatial data

In this section, we will look at some examples of tasks you might want to perform
that involve reading and writing geo-spatial data in both vector and raster format.

Task: Calculate the bounding box for each
country in the world

In this slightly contrived example, we will make use of a Shapefile to calculate the
minimum and maximum latitude/longitude values for each country in the world.
This "bounding box" can be used, among other things, to generate a map of a
particular country. For example, the bounding box for Turkey would look like this:

ff"irf"""f"""——~~~~—~~~~—~~f~——~~~~f~~f~————f—ir————Maximum latitude:
42.11°N
oo Minimum latitude:
3 35.8175°N
Minimum longitude: Maximum longitude:
25.6639° E 44.8228° E

Start by downloading the World Borders Dataset from:
http://thematicmapping.org/downloads/world borders.php

Decompress the . zip archive and place the various files that make up the Shapefile
(the .dbf, .prj, .shp, and . shx files) together in a suitable directory.

We next need to create a Python program that can read the borders of each country.
Fortunately, using OGR to read through the contents of a Shapefile is trivial:
import osgeo.ogr

shapefile = osgeo.ogr.Open ("TM WORLD BORDERS-0.3.shp")
layer = shapefile.GetLayer (0)

for i in range (layer.GetFeatureCount ()) :
feature = layer.GetFeature (1)

[102]

Chapter 5

The feature consists of a geometry and a set of fields. For this data, the geometry is

a polygon that defines the outline of the country, while the fields contain various
pieces of information about the country. According to the Readme . txt file, the fields
in this Shapefile include the ISO-3166 three-letter code for the country (in a field
named 1503) as well as the name for the country (in a field named NaME). This allows
us to obtain the country code and name like this:

countryCode = feature.GetField("ISO3")
countryName = feature.GetField ("NAME")

We can also obtain the country's border polygon using;:

geometry = feature.GetGeometryRef ()

There are all sorts of things we can do with this geometry, but in this case we want to
obtain the bounding box or envelope for the polygon:

minLong, maxLong,minlLat,maxlLat = geometry.GetEnvelope ()

Let's put all this together into a complete working program:

calcBoundingBoxes.py
import osgeo.ogr
shapefile = osgeo.ogr.Open ("TM_WORLD BORDERS-0.3.shp")
layer = shapefile.GetLayer (0)
countries = [] # List of (code,name,minLat,maxLat,
minLong,maxLong) tuples.

for i in range(layer.GetFeatureCount()) :

feature = layer.GetFeature (1)

countryCode = feature.GetField("ISO3")

countryName = feature.GetField ("NAME")

geometry = feature.GetGeometryRef ()

minLong, maxLong, minLat,maxLat = geometry.GetEnvelope ()

countries.append ((countryName, countryCode,
minLat, maxLat, minLong, maxLong))

countries.sort ()

for name,code,minlLat,maxLat,minLong, maxLong in countries:
print "%s (%s) lat=%0.4f..%0.4f, long=%0.4f..%0.4f" \

% (name, code,minLat, maxLat,minLong, maxLong)

Running this program produces the following output:

% python calcBoundingBoxes.py

Afghanistan (AFG) lat=29.4061..38.4721, long=60.5042..74.9157
Albania (ALB) lat=39.6447..42.6619, long=19.2825..21.0542
Algeria (DZA) lat=18.9764..37.0914, long=-8.6672..11.9865

[103]

Working with Geo-Spatial Data in Python

Task: Save the country bounding boxes into
a Shapefile

While the previous example simply printed out the latitude and longitude values, it
might be more useful to draw the bounding boxes onto a map. To do this, we have to
convert the bounding boxes into polygons, and save these polygons into a Shapefile.

Creating a Shapefile involves the following steps:

1.

Define the spatial reference used by the Shapefile's data. In this case, we'll
use the WGS84 datum and unprojected geographic coordinates (that is,
latitude and longitude values). This is how you would define this spatial
reference using OGR:

import osgeo.osr

spatialReference = osgeo.osr.SpatialReference ()
spatialReference.SetWellKnownGeogCs ('WGS84 ')

We can now create the Shapefile itself using this spatial reference:

import osgeo.ogr

driver = osgeo.ogr.GetDriverByName ("ESRI Shapefile")
dstFile = driver.CreateDataSource ("boundingBoxes.shp"))

dstLayer = dstFile.Createlayer ("layer", spatialReference)

After creating the Shapefile, you next define the various fields that will hold
the metadata for each feature. In this case, let's add two fields to store the
country name and its ISO-3166 code:

fieldDef = osgeo.ogr.FieldDefn ("COUNTRY", osgeo.ogr.OFTString)
fieldDef.SetWidth(50)

dstLayer.CreateField (fieldDef)

fieldDef = osgeo.ogr.FieldDefn ("CODE", osgeo.ogr.OFTString)
fieldDef.SetWidth (3)
dstLayer.CreateField (fieldDef)

We now need to create the geometry for each feature —in this case, a polygon
defining the country's bounding box. A polygon consists of one or more
linear rings; the first linear ring defines the exterior of the polygon, while
additional rings define "holes" inside the polygon. In this case, we want a
simple polygon with a square exterior and no holes:

linearRing = osgeo.ogr.Geometry (osgeo.ogr.wkbLinearRing)
linearRing.AddPoint (minLong, minLat)

linearRing.AddPoint (maxLong, minLat)

linearRing.AddPoint (maxLong, maxLat)

[104]

Chapter 5

linearRing.AddPoint (minLong, maxLat)

linearRing.AddPoint (minLong, minLat)

polygon = osgeo.ogr.Geometry (osgeo.ogr.wkbPolygon)
polygon.AddGeometry (linearRing)

You may have noticed that the coordinate (minLong, minLat)was
added to the linear ring twice. This is because we are defining line
segments rather than just points — the first call to AddPoint () defines the
starting point, and each subsequent call to AddPoint () adds a new line
segment to the linear ring. In this case, we start in the lower-left corner
and move counter-clockwise around the bounding box until we reach the
lower-left corner again:

(minLong, maxLat) (maxLong, maxLat)

Q . .

(minLong, minLat) (maxLong, minLat)

Once we have the polygon, we can use it to create a feature:
feature = osgeo.ogr.Feature (dstLayer.GetLayerDefn ())
feature.SetGeometry (polygon)

feature.SetField ("COUNTRY", countryName)

feature.SetField ("CODE", countryCode)
dstLayer.CreateFeature (feature)

feature.Destroy ()

Notice how we use the setField () method to store the feature's
metadata. We also have to call the bestroy () method to close the
feature once we have finished with it; this ensures that the feature is
saved into the Shapefile.

4. Finally, we call the Destroy () method to close the output Shapefile:
dstFile.Destroy ()

[105]

Working with Geo-Spatial Data in Python

5.

Putting all this together, and combining it with the code from the previous
recipe to calculate the bounding boxes for each country in the World Borders
Dataset Shapefile, we end up with the following complete program:

boundingBoxesToShapefile.py
import os, os.path, shutil

import osgeo.ogr

import osgeo.osr
Open the source shapefile.

srcFile = osgeo.ogr.Open ("TM WORLD BORDERS-0.3.shp")

srclLayer = srcFile.GetLayer(0)
Open the output shapefile.

if os.path.exists ("bounding-boxes") :
shutil.rmtree ("bounding-boxes")

os.mkdir ("bounding-boxes")

spatialReference = osgeo.osr.SpatialReference ()
spatialReference.SetWellKnownGeogCs ('WGS84 ')

driver = osgeo.ogr.GetDriverByName ("ESRI Shapefile")
dstPath = os.path.join ("bounding-boxes", "boundingBoxes.shp")
dstFile = driver.CreateDataSource (dstPath)

dstLayer = dstFile.Createlayer ("layer", spatialReference)

fieldDef = osgeo.ogr.FieldDefn ("COUNTRY", osgeo.ogr.OFTString)
fieldDef.SetWidth(50)
dstLayer.CreateField (fieldDef)

fieldDef = osgeo.ogr.FieldDefn ("CODE", osgeo.ogr.OFTString)
fieldDef.SetWidth(3)
dstLayer.CreateField (fieldDef)

Read the country features from the source shapefile.

for i in range (srclayer.GetFeatureCount ()) :
feature = srclayer.GetFeature (i)
countryCode = feature.GetField("ISO3")
countryName = feature.GetField ("NAME")
geometry = feature.GetGeometryRef ()

minLong, maxLong,minlLat, maxlLat = geometry.GetEnvelope ()

Save the bounding box as a feature in the output

shapefile.

[106]

Chapter 5

linearRing = osgeo.ogr.Geometry (osgeo.ogr.wkbLinearRing)
linearRing.AddPoint (minLong, minLat)

linearRing.AddPoint (maxLong, minLat)
linearRing.AddPoint (maxLong, maxLat)
linearRing.AddPoint (minLong, maxLat)
linearRing.AddPoint (minLong, minLat)

polygon = osgeo.ogr.Geometry (osgeo.ogr.wkbPolygon)
polygon.AddGeometry (linearRing)

feature = osgeo.ogr.Feature (dstLayer.GetLayerDefn ())
feature.SetGeometry (polygon)

feature.SetField ("COUNTRY", countryName)
feature.SetField ("CODE", countryCode)
dstLayer.CreateFeature (feature)

feature.Destroy ()
All done.

srcFile.Destroy ()
dstFile.Destroy ()

The only unexpected twist in this program is the use of a sub-directory called
bounding-boxes to store the output Shapefile. Because a Shapefile is actually made
up of multiple files on disk (a . dbf file, a .prj file, a . shp file, and a . shx file), it

is easier to place these together in a sub-directory. We use the Python Standard
Library module shutil to delete the previous contents of this directory, and then
os.mkdir () to create it again.

If you aren't storing the TM_ WORLD BORDERS-0 . 3. shp Shapefile in the
M same directory as the script itself, you will need to add the directory where
Q the Shapefile is stored to your osgeo.ogr.Open () call. You can also store
the boundingBoxes . shp Shapefile in a different directory if you prefer,
by changing the path where this Shapefile is created.

[107]

Working with Geo-Spatial Data in Python

Running this program creates the bounding box Shapefile, which we can then draw
onto a map. For example, here is the outline of Thailand along with a bounding box
taken from the boundingBoxes . shp Shapefile:

s
I ;
‘“\ N \// M
7
\ \\
(o
¢ {
. P
Vg
| “*’“32\

We will be looking at how to draw maps in Chapter 8.

Task: Analyze height data using a digital

elevation map

A DEM (Digital Elevation Map) is a type of raster format geo-spatial data where each
pixel value represents the height of a point on the Earth's surface. We encountered
DEM files in the previous chapter, where we saw two examples of datasources which
supply this type of information: the National Elevation Dataset covering the United
States, and GLOBE which provides DEM files covering the entire Earth.

Because a DEM file contains height data, it can be interesting to analyze the height
values for a given area. For example, we could draw a histogram showing how
much of a country's area is at a certain elevation. Let's take some DEM data from the
GLOBE dataset, and calculate a height histogram using that data.

To keep things simple, we will choose a small country surrounded by the ocean:
New Zealand.

[108]

Chapter 5

. We're using a small country so that we don't have too much data to work
% with, and we're using a country surrounded by ocean so that we can
= check all the points within a bounding box rather than having to use a
polygon to exclude points outside of the country's boundaries.

To download the DEM data, go to the GLOBE website (http://www.ngdc.noaa.gov/
mgg/topo/globe.html) and click on the Get Data Online hyperlink. We're going to
use the data already calculated for this area of the world, so click on the Any or all 16
"tiles" hyperlink. New Zealand is in tile L, so click on this tile to download it.

The file you download will be called 110g.gz. If you decompress it, you will end up
with a file 110g containing the raw elevation data.

By itself, this file isn't very useful — it needs to be georeferenced onto the Earth's surface
so that you can match up a height value with its position on the Earth. To do this, you
need to download the associated header file. Unfortunately, the GLOBE website makes
this rather difficult; the header files for the premade tiles can be found at:

http://www.ngdc.noaa.gov/mgg/topo/elev/esri/hdr

Download the file named 110g.hdr and place it into the same directory as the 110g
file you downloaded earlier. You can then read the DEM file using GDAL:

import osgeo.gdal

dataset = osgeo.gdal.Open("1l1l0g")

[109]

Working with Geo-Spatial Data in Python

As you no doubt noticed when you downloaded the 1104 tile, this covers much more
than just New Zealand —all of Australia is included, as well as Malaysia, Papua New
Guinea, and several other east-Asian countries. To work with the height data for just

New Zealand, we have to be able to identify the relevant portion of the raster DEM —
that is, the range of x,y coordinates which cover New Zealand. We start by looking at
a map and identifying the minimum and maximum latitude/longitude values which
enclose all of New Zealand, but no other country:

Latitude = -33°

W
N
\%-Q
(Gé i-I
(Al ,?
i 5o
: ~ 1 |B
N /R
: S 41// g
E / H
E % // 3
- s
e
sy /
_J\:ﬁkr‘w’ /
25

Minimum Latitude = -43°

Rounded to the nearest whole degree, we get a long/lat bounding box of (165, -48)...
(179, -33). This is the area we want to scan to cover all of New Zealand.

There is, however, a problem — the raster data consists of pixels or "cells" identified
by (x,y) coordinates, not longitude and latitude values. We have to convert from
longitudes and latitudes into x and y coordinates. To do this, we need to make use of
the raster DEM's affine transformation.

If you can remember back to Chapter 3, an affine transformation is a set of six
numbers that define how geographic coordinates (latitude and longitude values) are
translated into raster (x,y) coordinates. This is done using two formulas:

longitude = t[0] + x*t[1l] + y*t[2]
latitude = t[3] + x*t[4] + y*t[5]

Fortunately, we don't have to deal with these formulas directly as GDAL will do it
for us. We start by obtaining our dataset's affine transformation:

t = dataset.GetGeoTransform()

[110]

Chapter 5

Using this transformation, we could convert an x,y coordinate into its associated
latitude and longitude value. In this case, however, we want to do the opposite —we
want to take a latitude and longitude, and calculate the associated x,y coordinate.

To do this, we have to invert the affine transformation. Once again, GDAL will do
this for us:

success, tInverse = gdal.InvGeoTransform(t)
if not success:

print "Failed!"

sys.exit (1)

. There are some cases where an affine transformation can't be inverted.
This is why gdal . InvGeoTransform () returns a success flag as well
s as the inverted transformation. With this DEM data, however, the affine

transformation should always be invertible.

Now that we have the inverse affine transformation, it is possible to convert from a
latitude and longitude into an x,y coordinate by using;:

X,y = gdal.ApplyGeoTransform(tInverse, longitude, latitude)

Using this, it's easy to identify the minimum and maximum X,y coordinates that
cover the area we are interested in:

x1,yl = gdal.ApplyGeoTransform(tInverse, minLong, minLat)

x2,y2 = gdal.ApplyGeoTransform(tInverse, maxLong, maxLat)
minX = int (min(x1l, x2))
maxX = int (max(xl, x2))
minY = int (min(yl, vy2))
maxY¥ = int (max(yl, vy2))

Now that we know the x,y coordinates for the portion of the DEM that we're
interested in, we can use GDAL to read in the individual height values. We start
by obtaining the raster band that contains the DEM data:

band = dataset.GetRasterBand (1)

GDAL band numbers start at one. There is only
= one raster band in the DEM data we're using.

Now that we have the raster band, we can use the band.ReadRaster () method to
read the raw DEM data. This is what the ReadrRaster () method looks like:

ReadRaster (x, y, width, height, dwWidth, dHeight, pixelType)

[111]

Working with Geo-Spatial Data in Python

Where:

e xis the number of pixels from the left side of the raster band to the left side
of the portion of the band to read from

e yisthe number of pixels from the top of the raster band to the top of the
portion of the band to read from

e width is the number of pixels across to read
e height is the number of pixels down to read
e dwidth is the width of the resulting data

e dHeight is the height of the resulting data

® pixelType is a constant defining how many bytes of data there are for each
pixel value, and how that data is to be interpreted

Normally, you would set dwidth and dHeight to the same value as
width and height; if you don't do this, the raster data will be scaled up or
down when it is read.

The Readraster () method returns a string containing the raster data as a raw
sequence of bytes. You can then read the individual values from this string using the
struct standard library module:

values = struct.unpack("<" + ("h" * width), data)

Putting all this together, we can use GDAL to open the raster datafile and read all the
pixel values within the bounding box surrounding New Zealand:

import sys, struct
from osgeo import gdal
from osgeo import gdalconst

minLat = -48
maxLat = -33
minLong = 165
maxLong = 179

dataset = gdal.Open("110g")
band = dataset.GetRasterBand (1)

t = dataset.GetGeoTransform()
success, tInverse = gdal.InvGeoTransform(t)
if not success:

print "Failed!™"

sys.exit (1)

x1,yl = gdal.ApplyGeoTransform(tInverse, minLong, minLat)

[112]

Chapter 5

xX2,y2 = gdal.ApplyGeoTransform(tInverse, maxLong, maxLat)
minX = int (min(x x2))

maxX = int (max(x1l, x2))

minY = int (min (yl, y2))

maxY = int (max(yl, y2))

width = (maxX - minX) + 1

fmt = Mt 4 (uhu * Wldth)

for y in range (minY, maxY¥Y+1) :
scanline = band.ReadRaster (minX, y,width, 1,
width, 1,
gdalconst.GDT Intlé6)
values = struct.unpack(fmt, scanline)

for value in values:

|
‘Q Don't forget to add a directory path to the gdal . Open () statement if you

placed the 110g file in a different directory.

Let's replace the . .. with some code that does something useful with the pixel
values. We will calculate a histogram:

histogram = {} # Maps height to # pixels with that height.

for value in values:
try:
histogram([value] += 1
except KeyError:
histogram[value] = 1

for height in sorted(histogram.keys()) :
print height,histogram[height]

If you run this, you will see a list of heights (in meters) and how many pixels there
are at that height:

-500 2607581

1 6641

2 909

3 1628

3097 1
3119 2
3173 1

[113]

Working with Geo-Spatial Data in Python

This reveals one final problem — there are a large number of pixels with a value of
-500. What is going on here? Clearly -500 is not a valid height value. The GLOBE
documentation explains:

Every tile contains values of -500 for oceans, with no values between -500 and the
minimum value for land noted here.

So, all those points with a value of -500 represents pixels over the ocean.
Fortunately, it is easy to exclude these; every raster file includes the concept of
a no data value that is used for pixels without valid data. GDAL includes the
GetNoDataValue () method that allows us to exclude these pixels:

for value in values:
if value != band.GetNoDataValue() :
try:
histogram([value] += 1
except KeyError:
histogram[value] = 1

This finally gives us a histogram of the heights across New Zealand. You could
create a graph using this data if you wished. For example, the following chart
shows the total number of pixels at or below a given height:

E42ii)

R500

Ro00

[LO00

Q 50000 100000 150000 200000 S0000 00000 350000 A00000 450000

[114]

Chapter 5

Changing datums and projections

If you can remember from Chapter 2, a datum is a mathematical model of the Earth's
shape, while a projection is a way of translating points on the Earth's surface into
points on a two-dimensional map. There are a large number of available datums

and projections —whenever you are working with geo-spatial data, you must know
which datum and which projection (if any) your data uses. If you are combining data
from multiple sources, you will often have to change your geo-spatial data from one
datum to another, or from one projection to another.

Task: Change projections to combine
Shapefiles using geographic and UTM
coordinates

Here, we will work with two Shapefiles that have different projections. We haven't
yet encountered any geo-spatial data that uses a projection —all the data we've seen
so far uses geographic (unprojected) latitude and longitude values. So, let's start

by downloading some geo-spatial data in UTM (Universal Transverse Mercator)
projection.

The WebGIS website (http://webgis.com) provides Shapefiles describing
land-use and land-cover, called LULC datafiles. For this example, we will
download a Shapefile for southern Florida (Dade County, to be exact) which
uses the Universal Transverse Mercator projection.

You can download this Shapefile from the following URL:
http://webgis.com/MAPS/fl/lulcutm/miami.zip

The uncompressed directory contains the Shapefile, called miami . shp, along with
a datum_reference. txt file describing the Shapefile's coordinate system. This file
tells us the following:

The LULC shape file was generated from the original USGS GIRAS LULC
file by Lakes Environmental Software.

Datum: NADS83

Projection: UTM

Zone: 17

Data collection date by U.S.G.S.: 1972

Reference: http://edcwww.cr.usgs.gov/products/landcover/lulc.html

So, this particular Shapefile uses UTM Zone 17 projection, and a datum of NADS83.

[115]

Working with Geo-Spatial Data in Python

Let's take a second Shapefile, this time in geographic coordinates. We'll use the
GSHHS shoreline database, which uses the WGS84 datum and geographic
(latitude/longitude) coordinates.

. You don't need to download the GSHHS database for this example; while we
will display a map overlaying the LULC data over the top of the GSHHS data,
"~ you only need the LULC Shapefile to complete this recipe. Drawing maps
such as the one shown below will be covered in Chapter 8.

Combining these two Shapefiles as they are would be impossible —the LULC
Shapefile has coordinates measured in UTM (that is, in meters from a given reference
line), while the GSHHS Shapefile has coordinates in latitude and longitude values (in
decimal degrees):

LULC: x=485719.47, y=2783420.62

x=485779.49,y=2783380.63
x=486129.65, y=2783010.66

GSHHS: x=180.0000,y=68.9938
x=180.0000,y=65.0338
x=179.9984, y=65.0337

Before we can combine these two Shapefiles, we first have to convert them to use the
same projection. We'll do this by converting the LULC Shapefile from UTM-17 to
geographic projection. Doing this requires us to define a coordinate transformation
and then apply that transformation to each of the features in the Shapefile.

Here is how you can define a coordinate transformation using OGR:

from osgeo import osr

srcProjection = osr.SpatialReference ()
srcProjection.SetUTM(17)

dstProjection = osr.SpatialReference ()
dstProjection.SetWellKnownGeogCS ('WGS84') # Lat/long.

transform = osr.CoordinateTransformation (srcProjection,
dstProjection)

[116]

Chapter 5

Using this transformation, we can transform each of the features in the Shapefile
from UTM projection back into geographic coordinates:

for i in range(layer.GetFeatureCount ()) :
feature = layer.GetFeature (i)
geometry = feature.GetGeometryRef ()
geometry.Transform(transform)

Putting all this together with the techniques we explored earlier for copying
the features from one Shapefile to another, we end up with the following
complete program:

changeProjection.py

import os, os.path, shutil
from osgeo import ogr
from osgeo import osr
from osgeo import gdal

Define the source and destination projections, and a
transformation object to convert from one to the other.

srcProjection = osr.SpatialReference ()
srcProjection.SetUTM(17)

dstProjection = osr.SpatialReference ()
dstProjection.SetWellKnownGeogCS ('WGS84') # Lat/long.

transform = osr.CoordinateTransformation (srcProjection,
dstProjection)

Open the source shapefile.

srcFile = ogr.Open ("miami/miami.shp")
srclLayer = srcFile.GetLayer(0)

Create the dest shapefile, and give it the new projection.

if os.path.exists("miami-reprojected") :
shutil.rmtree ("miami-reprojected")
os.mkdir ("miami-reprojected")

driver = ogr.GetDriverByName ("ESRI Shapefile")

dstPath = os.path.join("miami-reprojected", "miami.shp")
dstFile = driver.CreateDataSource (dstPath)

dstLayer = dstFile.Createlayer ("layer", dstProjection)

Reproject each feature in turn.

for i in range (srclayer.GetFeatureCount ()) :
feature = srclayer.GetFeature (i)
geometry = feature.GetGeometryRef ()

[117]

Working with Geo-Spatial Data in Python

newGeometry = geometry.Clone ()
newGeometry.Transform(transform)

feature = ogr.Feature (dstLayer.GetLayerDefn())
feature.SetGeometry (newGeometry)
dstLayer.CreateFeature (feature)
feature.Destroy ()

All done.

srcFile.Destroy ()
dstFile.Destroy ()

Note that this example doesn't copy field values into the new Shapefile;
. if your Shapefile has metadata, you will want to copy the fields across
% as you create each new feature. Also, the above code assumes that the
/8 miami . shp Shapefile has been placed into a miami sub-directory; you'll
need to change the ogr . Open () statement to use the appropriate path
name if you've stored this Shapefile in a different place.

After running this program over the miami . shp Shapefile, the coordinates for
all the features in the Shapefile will have been converted from UTM-17 into
geographic coordinates:

Before reprojection: =x=485719.47, y=2783420.62
x=485779.49, y=2783380.63
x=486129.65, y=2783010.66

After reprojection: x=-81.1417, y=25.1668
x=-81.1411, y=25.1664
x=-81.1376, y=25.1631

[118]

Chapter 5

To see that this worked, let's draw a map showing the reprojected LULC data on top
of the GSHHS shoreline database:

Both Shapefiles now use geographic coordinates, and as you can see the coastlines
match exactly.

If you have been watching closely, you may have noticed that the
+ LULC data is using the NAD83 datum, while the GSHHS data and our
reprojected version of the LULC data both use the WGS84 datum. We
L o . . .
can do this without error because the two datums are identical for points
within North America.

Task: Change datums to allow older and
newer TIGER data to be combined

For this example, we will need to obtain some geo-spatial data that uses the NAD27
datum. This datum dates back to 1927, and was commonly used for North American
geo-spatial analysis up until the 1980s when it was replaced by NADS83.

ESRI makes available a set of TIGER/ Line files from the 2000 US census, converted
into Shapefile format. These files can be downloaded from:

http://esri.com/data/download/census2000-tigerline/index.html

For the 2000 census data, the TIGER/Line files were all in NADS83 with the exception
of Alaska, which used the older NAD27 datum. So, we can use this site to download
a Shapefile containing features in NAD27. Go to the above site, click on the Preview
and Download hyperlink, and then choose Alaska from the drop-down menu.
Select the Line Features - Roads layer, then click on the Submit Selection button.

[119]

Working with Geo-Spatial Data in Python

This data is divided up into individual counties. Click on the checkbox beside
Anchorage, then click on the Proceed to Download button to download the
Shapefile containing road details in Anchorage. The resulting Shapefile will be
named tgr020201kA. shp, and will be in a directory called 1k202020.

As described on the website, this data uses the NAD27 datum. If we were to assume
this Shapefile used the WSG83 datum, all the features would be in the wrong place:

The heavy lines indicate where the features would appear if they were plotted using
the incorrect WGS84 datum, while the thin dashed lines show where the features
should really appear.

To make the features appear in the correct place, and to be able to combine these
features with other features that use the WGS84 datum, we need to convert the
Shapefile to use WGS84. Changing a Shapefile from one datum to another requires
the same basic process we used earlier to change a Shapefile from one projection to
another: first, you choose the source and destination datums, and define a coordinate
transformation to convert from one to the other:

srcDatum = osr.SpatialReference ()
srcDatum. SetWellKnownGeogCs ('NAD27"')

dstDatum = osr.SpatialReference ()
dstDatum.SetWellKnownGeogCs ('WGS84 ')

transform = osgsr.CoordinateTransformation (srcDatum, dstDatum)

You then process each feature in the Shapefile, transforming the feature's geometry
using the coordinate transformation:

for i in range (srcLayer.GetFeatureCount ()) :
feature = srcLayer.GetFeature (i)
geometry = feature.GetGeometryRef ()
geometry.Transform(transform)

[120]

Chapter 5

Here is the complete Python program to convert the 1kA02020 Shapefile from the
NAD27 datum to WGS84:

changeDatum.py

import os, os.path, shutil
from osgeo import ogr
from osgeo import osr
from osgeo import gdal

Define the source and destination datums, and a
transformation object to convert from one to the other.

srcDatum = osr.SpatialReference ()
srcDatum. SetWellKnownGeogCs ('NAD27")

dstDatum = osr.SpatialReference ()
dstDatum.SetWellKnownGeogCs ('WGS84 ')

transform = osr.CoordinateTransformation (srcDatum, dstDatum)
Open the source shapefile.

srcFile = ogr.Open ("1kA02020/tgr020201kA.shp")
srcLayer = srcFile.GetLayer (0)

Create the dest shapefile, and give it the new projection.

if os.path.exists("lkA-reprojected") :
shutil.rmtree ("1kA-reprojected")
os.mkdir ("1lkA-reprojected")

driver = ogr.GetDriverByName ("ESRI Shapefile")
dstPath = os.path.join("lkA-reprojected", "1kA02020.shp")
dstFile = driver.CreateDataSource (dstPath)

dstLayer = dstFile.Createlayer ("layer", dstDatum)
Reproject each feature in turn.

for i in range (srclLayer.GetFeatureCount ()) :
feature = srclayer.GetFeature (i)
geometry = feature.GetGeometryRef ()

newGeometry = geometry.Clone ()
newGeometry.Transform(transform)

feature = ogr.Feature (dstLayer.GetLayerDefn())
feature.SetGeometry (newGeometry)
dstLayer.CreateFeature (feature)
feature.Destroy ()

All done.

srcFile.Destroy ()
dstFile.Destroy ()

[121]

Working with Geo-Spatial Data in Python

. The above code assumes that the 1kA02020 folder is in the same directory
as the Python script itself. If you've placed this folder somewhere else,
you'll need to change the ogr.Open () statement to use the appropriate
directory path.

If we now plot the reprojected features using the WGS84 datum, the features will
appear in the correct place:

The thin dashed lines indicate where the original projection would have placed the
features, while the heavy lines show the correct positions using the reprojected data.

Representing and storing geo-spatial data

While geo-spatial data is often supplied in the form of vector-format files such as
Shapefiles, there are situations where Shapefiles are unsuitable or inefficient. One
such situation is where you need to take geo-spatial data from one library and use

it in a different library. For example, imagine that you have read a set of geometries
out of a Shapefile and want to store them in a database, or work with them using the
Shapely library. Because the different Python libraries all use their own private classes
to represent geo-spatial data, you can't just take an OGR Geometry object and pass

it to Shapely, or use a GDAL spatialReference object to define the datum and
projection to use for data stored in a database.

In these situations, you need to have an independent format for representing and
storing geo-spatial data that isn't limited to just one particular Python library. This
format, the lingua franca for vector-format geo-spatial data, is called Well-Known
Text or WKT.

[122]

Chapter 5

WKT is a compact text-based description of a geo-spatial object such as a point, a
line, or a polygon. For example, here is a geometry defining the boundary of the
Vatican City in the World Borders Dataset, converted into a WKT string;:

POLYGON ((12.445090330888604 41.90311752178485,
12.451653339580503 41.907989033391232,
12.456660170953796 41.901426024699163,
12.445090330888604 41.90311752178485))

As you can see, the WKT string contains a straightforward text description of a
geometry —in this case, a polygon consisting of four x,y coordinates. Obviously,
WKT text strings can be far more complex than this, containing many thousands of
points and storing multipolygons and collections of different geometries. No matter
how complex the geometry is, it can still be represented as a simple text string.

There is an equivalent binary format called Well-Known Binary
%@“ (WKB) that stores the same information as binary data. WKB is often
s used to store geo-spatial data into a database.

WKT strings can also be used to represent a spatial reference encompassing a
projection, a datum, and/or a coordinate system. For example, here is an osgeo.
osr.SpatialReference object representing a geographic coordinate system using
the WGS84 datum, converted into a WKT string:

GEOGCS ["WGS 84" ,DATUM["WGS_1984", SPHEROID ["WGS
84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],TOWGS84[0,0,0,0,0,0,
0] ,AUTHORITY ["EPSG","6326"]],PRIMEM["Greenwich", 0, AUTHORITY ["EPSG", "8901
"]1],UNIT["degree",0.0174532925199433,AUTHORITY ["EPSG","9108"]],AUTHORITY
["EPSG","4326"]]

As with geometry representations, spatial references in WKT format can be used to
pass a spatial reference from one Python library to another.

Task: Calculate the border between Thailand
and Myanmar

In this recipe, we will make use of the World Borders Dataset to obtain polygons
defining the borders of Thailand and Myanmar. We will then transfer these polygons
into Shapely, and use Shapely's capabilities to calculate the common border between
these two countries.

If you haven't already done so, download the World Borders Dataset from the
Thematic Mapping website:

http://thematicmapping.org/downloads/world borders.php

[123]

Working with Geo-Spatial Data in Python

The World Borders Dataset conveniently includes ISO 3166 two-character country
codes for each feature, so we can identify the features corresponding to Thailand
and Myanmar as we read through the Shapefile:

import osgeo.ogr
shapefile = osgeo.ogr.Open ("TM_WORLD BORDERS-0.3.shp")
layer = shapefile.GetLayer (0)

for i in range(layer.GetFeatureCount ()) :
feature = layer.GetFeature (i)
if feature.GetField ("ISO2") == "TH":

elif feature.GetField ("ISO2") == "MM":

. This code assumes that you have placed the TM WORLD BORDERS -
0.3 . shp Shapefile in the same directory as the Python script. If you've
"~ placed it into a different directory, you'll need to adjust the osgeo.ogr .
Open () statement to match.

Once we have identified the features we want, it is easy to extract the features'
geometries as WKT strings:

geometry = feature.GetGeometryRef ()
wkt = geometry.ExportToWkt ()

We can then convert these to Shapely geometry objects using the shapely.wkt
module:

import shapely.wkt

border = shapely.wkt.loads (wkt)

Now that we have the objects in Shapely, we can use Shapely's computational
geometry capabilities to calculate the common border between these two countries:

commonBorder = thailandBorder.intersection (myanmarBorder)

The result will be a LineString (or a MultiLineString if the border is broken up into
more than one part). If we wanted to, we could then convert this Shapely object back
into an OGR geometry, and save it into a Shapefile again:

wkt = shapely.wkt.dumps (commonBorder)

feature = osgeo.ogr.Feature (dstLayer.GetLayerDefn ())
feature.SetGeometry (osgeo.ogr.CreateGeometryFromWkt (wkt))
dstLayer.CreateFeature (feature)

feature.Destroy ()

[124]

Chapter 5

With the common border saved into a Shapefile, we can display the results as a map:

The contents of the common-border/border. shp Shapefile is represented by the
heavy line along the countries' common borders.

Here is the entire program used to calculate this common border:

calcCommonBorders.py
import os,os.path,shutil

import osgeo.ogr
import shapely.wkt

Load the thai and myanmar polygons from the world borders
dataset.

shapefile = osgeo.ogr.Open ("TM_WORLD BORDERS-0.3.shp")
layer = shapefile.GetLayer (0)

thailand = None
myanmar = None

for i in range(layer.GetFeatureCount()) :
feature = layer.GetFeature (i)
if feature.GetField("ISO2") == "TH":
geometry = feature.GetGeometryRef ()
thailand = shapely.wkt.loads (geometry.ExportToWkt ())

[125]

Working with Geo-Spatial Data in Python

elif feature.GetField("ISO2") == "MM":
geometry = feature.GetGeometryRef ()
myanmar = shapely.wkt.loads (geometry.ExportToWkt ())

Calculate the common border.
commonBorder = thailand.intersection (myanmar)
Save the common border into a new shapefile.

if os.path.exists ("common-border") :
shutil.rmtree ("common-border")
os.mkdir ("common-border")

spatialReference = osgeo.osr.SpatialReference ()
spatialReference.SetWellKnownGeogCs ('WGS84 ")

driver = osgeo.ogr.GetDriverByName ("ESRI Shapefile")
dstPath = os.path.join("common-border", "border.shp")
dstFile = driver.CreateDataSource (dstPath)

dstLayer = dstFile.Createlayer ("layer", spatialReference)

wkt = shapely.wkt.dumps (commonBorder)

feature = osgeo.ogr.Feature (dstLayer.GetLayerDefn ())
feature.SetGeometry (osgeo.ogr.CreateGeometryFromWkt (wkt))
dstLayer.CreateFeature (feature)

feature.Destroy ()

dstFile.Destroy ()

If you've placed your TM_WORLD_BORDERS-0. 3. shp Shapefile into a
different directory, change the osgeo.ogr.Open () statement to include a
suitable directory path.

We will use this Shapefile later in this chapter to calculate the length of the Thai-
Myanmar border, so make sure you generate and keep a copy of the common-
borders/border. shp Shapefile.

Task: Save geometries into a text file

WKT is not only useful for transferring geometries from one Python library to
another. It can also be a useful way of storing geo-spatial data without having to deal
with the complexity and constraints imposed by using Shapefiles.

[126]

Chapter 5

In this example, we will read a set of polygons from the World Borders Dataset,
convert them to WKT format, and save them as text files:

saveAsText.py
import os,os.path,shutil
import osgeo.ogr

if os.path.exists ("country-wkt-files"):
shutil.rmtree ("country-wkt-files")
os.mkdir ("country-wkt-files")

shapefile = osgeo.ogr.Open ("TM_WORLD BORDERS-0.3.shp")
layer = shapefile.GetLayer (0)

for i in range(layer.GetFeatureCount()) :
feature = layer.GetFeature (1)
name = feature.GetField("NAME")
geometry = feature.GetGeometryRef ()

f = file(os.path.join("country-wkt-files",
name + ".txt"), "w")

f.write (geometry.ExportToWkt ())

f.close()

M As usual, you'll need to change the osgec.ogr.
Q Open () statement to include a directory path if
you've stored the Shapefile in a different directory.

You might be wondering why you want to do this, rather than creating a Shapefile
to store your geo-spatial data. Well, Shapefiles are limited in that all the features
in a single Shapefile must have the same geometry type. Also, the complexity of
setting up metadata and saving geometries can be overkill for some applications.
Sometimes, dealing with plain text is just easier.

Working with Shapely geometries

Shapely is a very capable library for performing various calculations on geo-spatial
data. Let's put it through its paces with a complex, real-world problem.

[127]

Working with Geo-Spatial Data in Python

Task: Identify parks in or near urban areas

The U.S. Census Bureau makes available a Shapefile containing something called
Core Based Statistical Areas (CBSAs), which are polygons defining urban areas with
a population of 10,000 or more. At the same time, the GNIS website provides lists

of placenames and other details. Using these two datasources, we will identify any
parks within or close to an urban area.

Because of the volume of data we are potentially dealing with, we will
* limit our search to California. Feel free to download the larger data sets
if you want, though you will have to optimize the code or your program

will take a very long time to check all the CBSA polygon/placename
combinations.

1. Let's start by downloading the necessary data. Go to the TIGER website at
http://census.gov/geo/www/tiger

2. Click on the 2009 TIGER/Line Shapefiles Main Page link, then follow the
Download the 2009 TIGER/Line Shapefiles now link.

3. Choose California from the pop-up menu on the right, and click on Submit.
A list of the California Shapefiles will be displayed; the Shapefile you want
is labelled Metropolitan/Micropolitan Statistical Area. Click on this link,
and you will download a file named t1_2009_06_cbsa. zip. Once the file
has downloaded, uncompress it and place the resulting Shapefile into a
convenient location so that you can work with it.

4. You now need to download the GNIS placename data for California. Go to
the GNIS website:

http://geonames.usgs.gov/domestic

5. Click on the Download Domestic Names hyperlink, and then choose
California from the pop-up menu. You will be prompted to save the ca_
Features_XXX.zip file. Do so, then decompress it and place the resulting
CA_Features_XXX.txt file into a convenient place.

The XXX in the above file name is a date stamp, and will vary
depending on when you download the data. Just remember the
name of the file as you'll need to refer to it in your source code.

6. We're now ready to write the code. Let's start by reading through the CBSA
urban area Shapefile and extracting the polygons that define the boundary of
each urban area:
shapefile = osgeo.ogr.Open("tl 2009 06 cbsa.shp")
layer = shapefile.GetLayer (0)

[128]

Chapter 5

for i in range(layer.GetFeatureCount()) :
feature = layer.GetFeature (1)

geometry = feature.GetGeometryRef ()

Make sure you add directory paths to your osgeo. ogr.Open ()
statement (and to the file () statement below) to match where
you've placed these files.

Using what we learned in the previous section, we can convert this geometry
into a Shapely object so that we can work with it:

wkt = geometry.ExportToWkt ()

shape = shapely.wkt.loads (wkt)

Next, we need to scan through the cA_Features_xxX.txt file to identify the
features marked as a park. For each of these features, we want to extract the
name of the feature and its associated latitude and longitude. Here's how we
might do this:
f = file("CA Features XXX.txt", "xr")
for line in f.readlines():
chunks = line.rstrip().split("|")
if chunks[2] == "Park":
name = chunks/[1]
latitude = float (chunks[9])
longitude = float (chunks[10])

Remember that the GNIS placename database is a pipe-
delimited text file. That's why we have to split the line
up using line.rstrip () .split ("|").

[129]

Working with Geo-Spatial Data in Python

9. Now comes the fun part—we need to figure out which parks are within

or close to each urban area. There are two ways we could do this, either of
which will work:

o

We could use the shape.distance () method to calculate the
distance between the shape and a Point object representing

the park's location:

o

We could dilate the polygon using the shape.buffer ()
method, and then see if the resulting polygon contained the
desired point:

The second option is faster when dealing with a large number of
points as we can pre-calculate the dilated polygons and then use
them to compare against each point in turn. Let's take this option:
findNearbyParks.py

import osgeo.ogr

import shapely.geometry

[130]

Chapter 5

import shapely.wkt

MAX DISTANCE = 0.1 # Angular distance; approx 10 km.
print "Loading urban areas..."

urbanAreas = {} # Maps area name to Shapely polygon.

shapefile = osgeo.ogr.Open("tl 2009 06 cbsa.shp")
layer = shapefile.GetLayer (0)

for i in range(layer.GetFeatureCount()) :
feature = layer.GetFeature (1)
name = feature.GetField ("NAME")
geometry = feature.GetGeometryRef ()
shape = shapely.wkt.loads (geometry.ExportToWkt ())
dilatedShape = shape.buffer (MAX DISTANCE)
urbanAreas [name] = dilatedShape

print "Checking parks..."

f = file("CA Features XXX.txt", "xr")
for line in f.readlines():
chunks = line.rstrip().split("|")
if chunks[2] == "Park":
parkName = chunks[1]
latitude = float (chunks[9])
longitude = float (chunks[10])

pt = shapely.geometry.Point (longitude, latitude)

for urbanName,urbanArea in urbanAreas.items () :
if urbanArea.contains (pt) :
print parkName + " is in or near " + urbanName

f.close()

. Don't forget to change the name of the CA_Features XXX.txt file to
match the actual name of the file you downloaded. You may also need
' to change the path names to the t1 2009 06_CBSA. shp file and the
CA_Features file if you placed them in a different directory.

If you run this program, you will get a master list of all the parks that are in or close
to an urban area:

% python findNearbyParks.py
Loading urban areas...

Checking parks...

[131]

Working with Geo-Spatial Data in Python

Imperial National Wildlife Refuge is in or near El Centro, CA
TwinLakesStateBeach is in or near Santa Cruz-Watsonville, CA
AdmiralWilliamStandleyState Recreation Area is in or near Ukiah, CA

Agate Beach County Park is in or near San Francisco-Oakland-Fremont, CA

Note that our program uses angular distances to decide if a park is in or near a given
urban area. We looked at angular distances in Chapter 2. An angular distance is the
angle (in decimal degrees) between two rays going out from the center of the Earth
to the Earth's surface. Because a degree of angular measurement (at least for the
latitudes we are dealing with here) roughly equals 100 km on the Earth's surface, an
angular measurement of 0.1 roughly equals a real distance of 10 km.

Using angular measurements makes the distance calculation easy and quick to
calculate, though it doesn't give an exact distance on the Earth's surface. If your
application requires exact distances, you could start by using an angular distance

to filter out the features obviously too far away, and then obtain an exact result for
the remaining features by calculating the point on the polygon's boundary that is
closest to the desired point, and then calculating the linear distance between the
two points. You would then discard the points that exceed your desired exact linear
distance. Implementing this would be an interesting challenge, though not one we
will examine in this book.

Converting and standardizing units
of geometry and distance

Imagine that you have two points on the Earth's surface with a straight line drawn
between them:

Point 1

Point 2

Each point can be described as a coordinate using some arbitrary coordinate system
(for example, using latitude and longitude values), while the length of the straight
line could be described as the distance between the two points.

Given any two coordinates, it is possible to calculate the distance between them.
Conversely, you can start with one coordinate, a desired distance and a direction,
and then calculate the coordinates for the other point.

[132]

Chapter 5

+ Of course, because the Earth's surface is not flat, we aren't really
dealing with straight lines at all. Rather, we are calculating

geodetic or Great Circle distances across the surface of the Earth.

The pyproj Python library allows you to perform these types of calculations for any
given datum. You can also use pyproj to convert from projected coordinates back
to geographic coordinates, and vice versa, allowing you to perform these sorts of
calculations for any desired datum, coordinate system, and projection.

Ultimately, a geometry such as a line or a polygon consists of nothing more than a
list of connected points. This means that, using the above process, you can calculate
the geodetic distance between each of the points in any polygon and total the results
to get the actual length for any geometry. Let's use this knowledge to solve a real-
world problem.

Task: Calculate the length of the
Thai-Myanmar border

To solve this problem, we will make use of the common-borders/border. shp
Shapefile we created earlier. This Shapefile contains a single feature, which is a
LineString defining the border between the two countries. Let's start by taking a look
at the individual line segments that make up this feature's geometry:

import os.path
import osgeo.ogr
def getLineSegmentsFromGeometry (geometry) :
segments = []
if geometry.GetPointCount () > O0:
segment = []
for i in range (geometry.GetPointCount ()) :
segment . append (geometry.GetPoint 2D (1))
segments.append (segment)
for i in range (geometry.GetGeometryCount ()) :
subGeometry = geometry.GetGeometryRef (i)
segments.extend (
getLineSegmentsFromGeometry (subGeometry))
return segments

filename = os.path.join("common-border", "border.shp")
shapefile = osgeo.ogr.Open (filename)

layer = shapefile.GetLayer (0)

feature = layer.GetFeature (0)

geometry = feature.GetGeometryRef ()

segments = getLineSegmentsFromGeometry (geometry)

print segments

[133]

Working with Geo-Spatial Data in Python

Don't forget to change the os.path.join () statement
' to match the location of your border . shp Shapefile.

Note that we use a recursive function, getLineSegmentsFromGeometry (), to pull
the individual coordinates for each line segment out of the geometry. Because
geometries are recursive data structures, we have to pull out the individual line
segments before we can work with them.

Running this program produces a long list of points that make up the various line
segments defining the border between these two countries:

% python calcBorderLength.py
[[(100.08132200000006, 20.348840999999936),
(100.08943199999999, 20.347217999999941)1]1,
[(100.08943199999999, 20.347217999999941),
(100.0913700000001, 20.348606000000075)1, ...]

Each line segment consists of a list of points —in this case, you'll notice that each
segment has only two points —and if you look closely you will notice that each
segment starts at the same point as the previous segment ended. There are a total
of 459 segments defining the border between Thailand and Myanmar — that is, 459
point pairs that we can calculate the geodetic distance for.

A geodetic distance is a distance
s measured on the surface of the Earth.

Let's see how we can use pyproj to calculate the geodetic distance between any two
points. We first create a Geod instance:

geod = pyproj.Geod(ellps='WGS84"')

Geod is the pyproj class that performs geodetic calculations. Note that we have to
provide it with details of the datum used to describe the shape of the Earth. Once our
Geod instance has been set up, we can calculate the geodetic distance between any
two points by calling geod. inv (), the inverse geodetic transformation method:

anglel,angle2,distance = geod.inv(longl, latl, long2, lat2)

anglel will be the angle from the first point to the second, measured in decimal
degrees; angle2 will be the angle from the second point back to the first (again in
degrees); and distance will be the Great Circle distance between the two points, in
meters.

[134]

Chapter 5

Using this, we can iterate over the line segments, calculate the distance from one
point to another, and total up all the distances to obtain the total length of the border:

geod = pyproj.Geod(ellps='WGS84"')

totLength = 0.0
for segment in segments:
for i in range(len(segment)-1) :
ptl = segment [i]
pt2 = segment [i+1]

longl, latl ptl
long2,lat2 = pt2

anglel,angle2,distance = geod.inv(longl, latl,
long2, lat2)
totLength += distance

Upon completion, totLength will be the total length of the border, in meters.

Putting all this together, we end up with a complete Python program to read the
border . shp Shapefile, and calculate and then display the total length of the common
border:

calcBorderLength.py

import os.path
import osgeo.ogr
import pyproj
def getLineSegmentsFromGeometry (geometry) :
segments = []
if geometry.GetPointCount () > O:
segment = []
for i in range (geometry.GetPointCount ()) :
segment . append (geometry.GetPoint 2D (1))
segments.append (segment)
for i in range (geometry.GetGeometryCount ()) :
subGeometry = geometry.GetGeometryRef (i)
segments.extend (
getLineSegmentsFromGeometry (subGeometry))
return segments

filename = os.path.join("common-border", "border.shp")
shapefile = osgeo.ogr.Open (filename)

layer = shapefile.GetLayer (0)

feature = layer.GetFeature (0)

geometry = feature.GetGeometryRef ()

segments = getLineSegmentsFromGeometry (geometry)

[135]

Working with Geo-Spatial Data in Python

geod = pyproj.Geod(ellps='WGS84"')

totLength = 0.0
for segment in segments:
for i in range(len(segment)-1):
ptl = segment [i]
pt2 = segment [i+1]

longl, latl
long2,lat2

ptl
pt2

anglel,angle2,distance = geod.inv(longl, latl,
long2, lat2)
totLength += distance

print "Total border length = %$0.2f km" % (totLength/1000)

Running this tells us the total calculated length of the Thai-Myanmar border:

% python calcBorderLength.py
Total border length = 1730.55 km

In this program, we have assumed that the Shapefile is in geographic coordinates
using the WGS84 ellipsoid, and only contains a single feature. Let's extend our
program to deal with any supplied projection and datum, and at the same time
process all the features in the Shapefile rather than just the first. This will make our
program more flexible, and allow it to work with any arbitrary Shapefile rather than
just the common-border Shapefile we created earlier.

Let's deal with the projection and datum first. We could change the projection and
datum for our Shapefile before we process it, just as we did with the LuLc and
1kA02020 Shapefiles earlier in this chapter. That would work, but it would require us
to create a temporary Shapefile just to calculate the length, which isn't very efficient.
Instead, let's make use of pyproj directly to reproject the Shapefile's contents back
into geographic coordinates if necessary. We can do this by querying the Shapefile's
spatial reference:

shapefile = ogr.Open (filename)

layer = shapefile.GetLayer (0)

spatialRef = layer.GetSpatialRef ()

if spatialRef == None:
print "Shapefile has no spatial reference, using WGS84."
spatialRef = osr.SpatialReference ()
spatialRef.SetWellKnownGeogCs ('WGS84 ")

Once we have the spatial reference, we can see if the spatial reference is projected,
and if so use pyproj to turn the projected coordinates back into lat/long values
again, like this:

[136]

Chapter 5

if spatialRef.IsProjected() :

Convert projected coordinates back to lat/long values.
srcProj = pyproj.Proj (spatialRef.ExportToProj4())
dstProj = pyproj.Proj (proj='longlat', ellps='WGS84',
datum='WGS84"')

long, lat = pyproj.transform(srcProj, dstProj, x, V)

Using this, we can rewrite our program to accept data using any projection and
datum. At the same time, we'll change it to calculate the overall length of every
feature in the file, rather than just the first, and also to accept the name of the
Shapefile from the command line. Finally, we'll add some error-checking. Let's call
the results calcFeatureLengths.py.

We'll start by copying the getLineSegmentsFromGeometry () function we used earlier:

import sys
from osgeo import ogr, osr
import pyproj

def getLineSegmentsFromGeometry (geometry) :
segments = []
if geometry.GetPointCount () > O0:
segment = []
for i in range (geometry.GetPointCount ()) :
segment . append (geometry.GetPoint 2D (1))
segments . append (segment)
for i in range (geometry.GetGeometryCount ()) :
subGeometry = geometry.GetGeometryRef (i)
segments.extend (
getLineSegmentsFromGeometry (subGeometry))
return segments

Next, we'll get the name of the Shapefile to open from the command line:

if len(sys.argv) != 2:
print "Usage: calcFeaturelLengths.py <shapefile>"
sys.exit (1)

filename = sys.argv[1l]

We'll then open the Shapefile and obtain its spatial reference, using the code we
wrote earlier:

shapefile = ogr.Open(filename)
layer = shapefile.GetLayer (0)
spatialRef = layer.GetSpatialRef ()
if spatialRef == None:

[137]

Working with Geo-Spatial Data in Python

print "Shapefile lacks a spatial reference, using WGS84."
spatialRef = osr.SpatialReference()
spatialRef.SetWellKnownGeogCS ('WGS84 ')

We'll then get the source and destination projections, again using the code we wrote
earlier. Note that we only need to do this if we're using projected coordinates:

if spatialRef.IsProjected() :
srcProj = pyproj.Proj(spatialRef.ExportToProj4())
dstProj = pyproj.Proj (proj='longlat', ellps='WGS84',
datum='WGS84 ')
We are now ready to start processing the Shapefile's features:

for i in range(layer.GetFeatureCount()) :
feature = layer.GetFeature (1)

Now that we have the feature, we can borrow the code we used earlier to calculate
the total length of that feature's line segments:

geometry = feature.GetGeometryRef ()
segments = getLineSegmentsFromGeometry (geometry)

geod = pyproj.Geod(ellps='WGS84"')

totLength = 0.0
for segment in segments:
for j in range(len(segment)-1) :
ptl = segment []]
pt2 = segment [j+1]

longl, latl
long2, lat2

ptl
pt2

The only difference is that we need to transform the coordinates back to WGS84 if we
are using a projected coordinate system:

if spatialRef.IsProjected():
longl,latl = pyproj.transform(srcProj,
dstProj,
longl, latl)
long2,lat2 = pyproj.transform(srcProj,
dstProj,
long2, lat2)

We can then use pyproj to calculate the distance between the two points, as we did
in our earlier example. This time, though, we'll wrap itina try. . .except statement
so that any failure to calculate the distance won't crash the program:

try:
anglel,angle2,distance = geod.inv(longl, latl,

[138]

Chapter 5

long2, lat2)
except ValueError:
print "Unable to calculate distance from " \
+ "%0.4f,%0.4f to %0.4f,%0.4f" \
% (longl, latl, long2, lat2)
distance = 0.0
totLength += distance

M The geod. inv () call can raise a ValueError if the
Q two coordinates are in a place where an angle can't be
calculated —for example, if the two points are at the poles.

And finally, we can print out the feature's total length, in kilometers:

print "Total length of feature %d is %0.2f km" \
% (i, totLength/1000)

This program can be run over any Shapefile. For example, you could use it to
calculate the border length for every country in the world by running it over the
World Borders Dataset:

% python calcFeaturelLengths.py TM WORLD BORDERS-0.3.shp
Total length of feature 0 is 127.28 km
is 7264.69 km
is 2514.76 km
is 968.86 km

Total length of feature 1

Total length of feature 2

Total length of feature 3

Total length of feature 4 is 1158.92 km
5 is 6549.53 km
6 is 119.27 km

Total length of feature
Total length of feature

This program is an example of converting geometry coordinates into distances. Let's
take a look at the inverse calculation: using distances to calculate new geometry
coordinates.

Task: Find a point 132.7 kilometers west of
Soshone, California

Using the cA_Features_xxX.txt file we downloaded earlier, it is possible to find the
latitude and longitude of Shoshone, a small town in California east of Las Vegas:

[139]

Working with Geo-Spatial Data in Python

f = file("CA Features 20100607.txt", "r")
for line in f.readlines():

chunks = line.rstrip().split("|")
if chunks[1] == "Shoshone" and \
chunks [2] == "Populated Place":

latitude = float (chunks[9])
longitude = float (chunks[10])

Given this coordinate, we can use pyproj to calculate the coordinate of a point a
given distance away, at a given ang]le:

geod = pyproj.Geod(ellps="WGS84")
newlLong, newlLat, invAngle = geod.fwd(latitude, longitude,
angle, distance)

For this task, we are given the desired distance and we know that the angle we want
is "due west". pyproj uses azimuth angles, which are measured clockwise from
North. Thus, due west would correspond to an angle of 270 degrees.

Putting all this together, we can calculate the coordinates of the desired point:
findShoshone.py
import pyproj

distance = 132.7 * 1000

angle = 270.0
f = file("CA Features 20100607.txt", "r")
for line in f.readlines():
chunks = line.rstrip().split("|")
if chunks[1] == "Shoshone" and \
chunks [2] == "Populated Place":

latitude = float (chunks[9])
longitude = float (chunks[10])

geod = pyproj.Geod(ellps='WGS84"')
newlLong, newlLat, invAngle = geod.fwd(longitude,
latitude,
angle, distance)
print "Shoshone is at %0.4f,%0.4f" % (latitude,
longitude)
print "The point %0.2f km west of Shoshone " \
% (distance/1000.0) \
+ "is at %0.4f, %0.4f" % (newLat, newLong)

f.close()

[140]

Chapter 5

Running this program gives us the answer we want:

% python findShoshone.py

Shoshone is at 35.9730,-116.2711

The point 132.70 km west of Shoshone is at 35.9640,
-117.7423

Exercises

If you are interested in exploring the techniques used in this chapter further, you
might like to challenge yourself with the following tasks:

e Change the "Calculate Bounding Box" calculation to exclude outlying islands.

Hint
a1
"Q You can split each country's MultiPolygon into individual

Polygon objects, and then check the area of each polygon to
exclude those that are smaller than a given total value.

o Use the World Borders Dataset to create a new Shapefile, where each country is
represented by a single "Point" geometry containing the geographical middle of each
country.

Hint
You can start with the country bounding boxes we calculated earlier, and

~ then simply calculate the midpoint using:
midLat = (minLat + maxLat) / 2

midLong = (minLong + maxLong) / 2

This won't be exact, but it gives a reasonable mid-point value for you to use.

o Extend the histogram example given above to only include height values that fall
inside a selected country's outline.

Hint

Implementing this in an efficient way can be difficult. A good approach
M would be to identify the bounding box for each of the polygons

that make up the country's outline, and then iterate over the DEM

Q coordinates within that bounding box. You could then check to see

if a given coordinate is actually inside the country's outline using

polygon.contains (point), and only add the height to the

histogram if the point is indeed within the country's outline.

[141]

Working with Geo-Spatial Data in Python

a1

Optimize the "identify nearby parks" example given earlier so that it can work
quickly with larger data sets.

Hint

One possibility might be to calculate the rectangular bounding box around

‘Q each park, and then expand that bounding box north, south, east, and west

Al

by the desired angular distance. You could then quickly exclude all the
points that aren't in that bounding box before making the time-consuming
call to polygon.contains (point).

Calculate the total length of the coastline of the United Kingdom.

Hint
Remember that a country outline is a MultiPolygon, where each Polygon

exterior ring from each of these individual island polygons, and calculate
the total length of the line segments within that exterior ring. You can then
total the length of each individual island to get the length of the entire
country's coastline.

~Q in the MultiPolygon represents a single island. You will need to extract the

Design your own reusable library of geo-spatial functions that build on OGR,
GDAL, Shapely, and pyproj to perform common operations such as those discussed
in this chapter.

Hint

Writing your own reusable library modules is a common programming
tactic. Think about the various tasks we have solved in this chapter,
and how they can be turned into generic library functions. For example,

that takes a LineString and returns the total length of the LineString's
segments, optionally transforming the LineString's coordinates

into lat/long values before calling geod. inv (). You could then
write a calcPolygonOutlineLength () function that uses
calcLineStringLength () to calculate the length of a polygon's
outer ring.

NQ you might like to write a function named calcLineStringLength ()

You could then write a calcPolygonOutlineLength () function that uses
calcLineStringLength () to calculate the length of a polygon's outer ring.

[142]

Chapter 5

Summary

In this chapter, we have looked at various techniques for using OGR, GDAL,
Shapely, and pyproj within Python programs to solve real-world problems. We
have learned:

How to read from and write to vector-format geo-spatial data in Shapefiles.
How to read and analyze raster-format geo-spatial data.
How to change the datum and projection used by a Shapefile.

That the Well-Known Text (WKT) format can be used to represent geo-spatial
features and spatial references in plain text.

That WKT can be used to transfer geo-spatial data from one Python library
to another.

That WKT can be used to store geo-spatial data in plain text format.

That you can use the Shapely library to perform various geo-spatial
calculations on geometries, including distance calculations, dilation,
and intersections.

That you can use the pyproj . Proj class to convert coordinates from one
projection and datum to another.

That you can use the pyproj . Geod class to convert from geometry
coordinates to distances, and vice versa.

Up to now, we have written programs that work directly with Shapefiles and other
datasources to load and then process geo-spatial data. In the next chapter, we will
look at ways that databases can be used to store and work with geo-spatial data.
This is much faster and more scalable than storing geo-spatial data in files that have
to be imported each time.

[143]

GIS in the Database

This chapter examines the various open source options for storing geo-spatial data in
a database. More specifically, we will cover:

e The concept of a spatially-enabled database
e Spatial indexes and how they work
e A summary of the major open source spatial databases
e Recommended best practices for storing spatial data in a database
e How to work with geo-spatial databases using Python
This chapter is intended to be an introduction to using databases in a geo-spatial

application; Chapter 7 will build on this to perform powerful spatial queries not
possible using Shapefiles and other geo-spatial datafiles.

Spatially-enabled databases

In a sense, almost any database can be used to store geo-spatial data—simply convert
a geometry to WKT format and store the results in a text column. But, while this
would allow you to store geo-spatial data in a database, it wouldn't let you query it
in any useful way. All you could do is retrieve the raw WKT text and convert it back
to a geometry object one record at a time.

A spatially-enabled database, on the other hand, is aware of the notion of space,
and allows you to work with spatial objects and concepts directly. In particular, a
spatially-enabled database allows you to:

e Store spatial data types (points, lines, polygons, and so on) directly in the
database, in the form of a geometry column.

e Perform spatial queries on your data. For example: select all landmarks
within 10 km of the city named "San Francisco".

GIS in the Database

e Perform spatial joins on your data. For example: select all cities and
their associated countries by joining cities and countries on
(city inside country).

e Create new spatial objects using various spatial functions. For example: set
"danger zone" to the intersection of the "flooded area" and
"urban area" polygons.

As you can imagine, a spatially-enabled database is an extremely powerful tool
for working with your geo-spatial data. By using spatial indexes and other
optimizations, spatial databases can quickly perform these types of operations,
and can scale to support vast amounts of data simply not feasible using other
data-storage schemes.

Spatial indexes

One of the defining characteristics of a spatial database is the ability to create special
spatial indexes to speed up geometry-based searches. These indexes are used to
perform spatial operations such as identifying all the features that lie within a given
bounding box, identifying all the features within a certain distance of a given point,
or identifying all the features that intersect with a given polygon.

A spatial index is defined in the same way as you define an ordinary database index,
except that you add the keyword spATIAL to identify the index as a spatial index.
For example:

CREATE TABLE cities (
id INTEGER AUTO_INCREMENT PRIMARY KEY,
name CHAR (255),
geom POLYGON NOT NULL,

INDEX (name),
SPATIAL INDEX (geom))

All three open source spatial databases we will examine in this chapter implement
spatial indexes using R-Tree data structures.

. PostGIS implements R-Trees using PostgreSQL's GiST
% (Generalized Search Tree) index type. Even though you
< define your spatial indexes in PostGIS using the GIST

type, they are still implemented as R-Trees internally.

[146]

Chapter 6

R-Tree indexes are one of the most powerful features of spatial databases, and it is

worth spending a moment becoming familiar with how they work. R-Trees use the
minimum bounding rectangle for each geometry to allow the database to quickly

search through the geometries using their position in space:

Polygon 1

These bounding boxes are grouped into a nested hierarchy based on how close
together they are:

Polygon 1

[147]

GIS in the Database

The hierarchy of nested bounding boxes is then represented using a tree-like
data structure:

i Polygon 1| | Polygon 2 i Polygon 5| | Polygon 6

S
<
oo
[=)
5
w
v
=
<
(113
[=)
5
S

The computer can quickly scan through this tree to find a particular geometry, or to
compare the positions or sizes of the various geometries. For example, the geometry
containing the point represented by the X in the picture preceding the last one can
be quickly found by traversing the tree and comparing the bounding boxes at each
level. The R-Tree will be searched in the following manner:

Is the desired point within bounding
box B1 or bounding box B4?

Is the desired point within bounding
] box B2 or bounding box B3?

Is the desired point within the

3‘ Polygon 1‘ ‘ Polygon 2 ‘i 3‘ Polygon 3‘ ‘POIygon 4 ‘i i| Polygon 5| ‘ Polygon 6 ‘3 bounds of Polygon 5 or Polygon 6?

Using the R-Tree index, it only took three comparisons to find the desired polygon.

Because of the hierarchical nature of the tree structure, R-Tree indexes scale extremely
well, and can search through many tens of thousands of features using only a handful
of bounding box comparisons. And, because very geometry is reduced to a simple
bounding box, R-Trees can support any type of geometry, not just polygons.

R-Tree indexes are not limited to only searching for enclosed coordinates; they can
be used for all sorts of spatial comparisons, and for spatial joins. We will be working
with spatial indexes extensively in the next chapter.

[148]

Chapter 6

Open source spatially-enabled databases

If you wish to use an open source database for your geo-spatial development work,
you currently have three options: MySQL, PostGIS, and SpatiaLite. Each has its
own advantages and disadvantages, and no one database is the ideal choice in every
situation. Let's take a closer look at each of these spatially-enabled databases.

MySQL

MySQL is the world's most popular open source database, and is generally
an extremely capable database. It is also spatially-enabled, though with some limitations that
we will get to in a moment.

The MySQL database server can be downloaded from http://mysgl.com/
downloads for a variety of operating systems, including MS Windows, Mac OS X,
and Linux. Once downloaded, running the installer will set up everything you need,
and you can access MySQL directly from the command line:

% mysqgl
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 460

Server version: 5.1.43 MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

To access MySQL from your Python programs, you need the MySQL-Python driver,
which is available from http://sourceforge.net/projects/mysql-python. You
can download the driver in source-code format for Mac OS X and Linux, as well as
MS Windows installers for Python versions 2.4 and 2.5. If you need MS Windows
installers for Python 2.6, these are available from http://www.codegood. com.

The MySQL-Python driver acts as an interface between MySQL and your Python
programs:

Your Python

MySQL P
h program

Database

\ 4
A

MySQL-Python

[149]

GIS in the Database

Once you have installed the MySQL-Python driver, it will be available as a module
named MysSQLdb. Here is an example of how you might use this module from within
your Python programs:

import MySQLdb

connection = MySQLdb.connect (user="...", passwd="...")
cursor = connection.cursor ()
cursor.execute ("USE myDatabase")

The cursor.execute () method lets you execute any MySQL command, just as

if you were using the MySQL command-line client. MySQLdb is also completely
compatible with the Python Database API specification (http://www.python.org/
dev/peps/pep-0249), allowing you to access all of MySQL's features from within
your Python programs.

Learning how to use databases within Python is beyond the scope of
this book. If you haven't used a DB-API compatible database from
Python before, you may want to check out one of the many available
* tutorials on the subject, for example http://tutorialspoint.
% com/python/python database access.htm. Also, the Python
g Database Programming wiki page (http://wiki.python.
org/moin/DatabaseProgramming) has useful information, as
does the user's guide for MySQLdb (http://mysgl-python.
sourceforge.net/MySQLdb.html).

MySQL comes with spatial capabilities built-in. For example, the following MySQL
command creates a new database table that contains a polygon:

CREATE TABLE cities (
id INTEGER AUTO_INCREMENT PRIMARY KEY,
name CHAR (255) ,
outline POLYGON NOT NULL,

INDEX (name),
SPATIAL INDEX (outline))

Notice that POLYGON is a valid column type, and that you can directly create a spatial
index on a geometry. This allows you to issue queries such as:

SELECT name FROM cities WHERE MBRContains (outline, myLocation)

This will return all the cities where the MBRContains () function determines that the
given location is within the city's outline.

[150]

Chapter 6

This brings us one of the major limitations of MySQL's capabilities: the "MBR" at the
start of the MBRContains () function stands for Minimum Bounding Rectangle. The
MBRContains () function doesn't actually determine if the point is inside the polygon;
rather, it determines if the point is inside the polygon's minimum bounding rectangle:

~¥~Minimum Bounding Rectangle

As you can see, the dark points are inside the minimum bounding rectangle, while
the lighter points are outside this rectangle. This means that the MBRContains ()
function returns false positives; that is, points that are inside the bounding rectangle,
but outside the polygon itself.

Now, before you give up on MySQL completely, consider what this bounding-
rectangle calculation gives you. If you have a million points and need to quickly
determine which points are within a given polygon, the MBRContains () function
will reduce that down to the small number of points that might be inside the polygon,
by virtue of being in the polygon's bounding rectangle. You can then extract the
polygon from the database and use another function such as Shapely's polygon.
contains (point) method to do the final calculation on these few remaining points,
like this:

cursor.execute ("SELECT AsText (outline) FROM cities WHERE...")
wkt = cursor.fetchone () [0]

polygon = shapely.wkt.loads (wkt)

pointsInPolygon = []

cursor.execute ("SELECT X (coord), Y (coord) FROM coordinates " +
"WHERE MBRContains (GEOMFromText (%$s), coord)",
(wkt,))

for x,y in cursor:
point = shapely.geometry.Point (x, Vy)
if polygon.contains (point) :
pointsInPolygon.append (point)

[151]

GIS in the Database

As you can see, we first ask the database to find all points within the minimum
bounding rectangle, and then check each returned point to see if it's actually inside
the polygon. This approach is a bit more work, but it gets the job done and (for
typical polygon shapes) will be extremely efficient and scalable.

MySQL has other disadvantages as well — the range of spatial functions is more
limited, and performance can sometimes be a problem. But, it does have two major
advantages that make it a serious contender for geo-spatial development:

e MySQL is extremely popular, so if you are using a hosted server or have a
computer set up for you, chances are that MySQL will already be installed.
Hosting providers in particular may be very reluctant to install a different
database server for you to use.

e MySQL is the easiest database to install, set up, and administer. Other
databases (in particular PostgreSQL) are notorious for being hard to set up
and use correctly.

PostGIS

PostGIS is an extension to the PostgreSQL database, allowing geo-spatial data to
be stored in a PostgreSQL database. To use PostGIS from a Python application, you
first have to install PostgreSQL, followed by the PostGIS extension, and finally the
Psycopg database adapter so you can access PostgreSQL from Python. All this can
get rather confusing:

il PostGls ||

| ! P Your Python
i + i Psycopg program

|| PostgresSQL |

Installing and configuring PostGIS

Let's take a look at what is required to use PostGIS on your computer:

1. Install PostgreSQL.

You first have to download and install the PostgreSQL database server.
For MS Windows and Linux, installers can be found at:
http://postgresql.org/download

For Mac OS X, you can download an installer from:
http://kyngchaos.com/software/postgres

[152]

Chapter 6

Be warned that installing PostgreSQL can be complicated, and you

may well need to configure or debug the server before it will work. The
PostgreSQL documentation (http://postgresql.org/docs) can help, and
remember that Google is your friend if you encounter any problems.

M Take note of where PostgreSQL has been installed on your
Q computer. You will need to refer to files in the pgsgl directory
when you set up your spatially-enabled database.

2. Install the PostGIS Extension
The PostGIS spatial extension to PostgreSQL, along with full
documentation, can be downloaded from:
http://postgis.refractions.net
Make sure you install the correct version of PostGIS to match the version
of PostgreSQL you are using,.

3. [Install Psycopg
Psycopg allows you to access PostgreSQL (and PostGIS) databases from
Python. The Psycopg database adapter can be found at:
http://initd.org/psycopg
Make sure you use version 2 and not the outdated version 1 of Psycopg.
For Windows, you can download a pre-built version of Psycopg; for
Linux and Mac OS X, you need to download the source code and build it
yourself in the usual way:
% cd psycopg2
% python setup.py build
% python setup.py install

Mac OS X users: if you are building Psycopg to run with the Kyngchaos
R version of PostgreSQL, type the following into the terminal window before

‘Q you attempt to build Psycopg:

% export PATH="/usr/local/pgsql/bin:$PATH"

Q

% export ARCHFLAGS="-arch i386"

[153]

GIS in the Database

4.

Set up a new PostgreSQL User and database

Before you can use PostgreSQL, you need to have a user (sometimes
called a "role" in the PostgreSQL manuals) that owns the database you
create. While you might have a user account on your computer that you
use for logging in and out, the PostgreSQL user is completely separate
from this account, and is used only within PostgreSQL. You can set up a
PostgreSQL user with the same name as your computer username, or you
can give it a different name if you prefer.

To create a new PostgreSQL user, type the following command:

% pgsql/bin/createuser -s <username>

Al

‘Q Obviously, replace <username> with whatever

name you want to use for your new user.

Once you have set up a new PostgreSQL user, you can create a new
database to work with:

% pgsql/bin/createdb -U <username> <dbname>

M . .
‘Q Once again, replace <username> and <dbname> with the

appropriate names for the user and database you wish to set up.

Note that we are keeping this as simple as possible. Setting up and
administering a properly-configured PostgreSQL database is a major
undertaking, and is way beyond the scope of this book. The above
commands, however, should be enough to get you up and running.

Spatially enable your new database

So far, you have created a plain-vanilla PostgreSQL database. To turn this
into a spatially-enabled database, you will need to configure the database
to use PostGIS. Doing this is a two-step process; first, type the following:

[)

% pgsgl/bin/createlang plpgsqgl <dbname>

This enables the pL/pgsqL language used by PostGIS. You then load the
PostGIS functions and data types into your database by typing (all on
one line):
% pgsql/bin/psql -d <dbname>

-f pgsql/share/contrib/postgis-1.5/postgis.sql

[154]

Chapter 6

6. Import the spatial reference table into your database

PostGIS comes with a complete list of more than 3,000 spatial references
(projections, datums, coordinate systems) that you can import into your
spatial database. With this table installed, you can tell PostGIS which
spatial reference each piece of spatial data uses, and perform on-the-fly

reprojections from one spatial reference to another.

To import the spatial_ref_sys table into your database, use the
following command (again, all on one line):
% pgsql/bin/psgl -d <dbname>

-f pgsqgl/share/contrib/postgis-1.5/spatial ref sys.sql

We will talk more about the use of spatial reference systems
" in the section on Recommended best practices later.

Using PostGIS

]

Once you have installed the various pieces of software, and have set up a spatially-
enabled database, you can use the Psycopg database adapter in much the same way

as you would use MySQLdDb to access a MySQL database:

import psycopg?2
connection = psycopg?2.connect ("dbname=... user=...")
cursor = connection.cursor ()
cursor.execute ("SELECT id,name FROM cities WHERE pop>100000")
for row in cursor:
print row[0],row[1]

Because Psycopg conforms to Python's DB-API specification, using PostgreSQL from
Python is relatively straightforward, especially if you have used databases from

Python before.
Here is how you might create a new spatially-enabled table using PostGIS:

import psycopg?2

connection = psycopg?2.connect ("dbname=... user=...")
cursor = connection.cursor ()

cursor.execute ("DROP TABLE IF EXISTS cities")

cursor.execute ("CREATE TABLE cities (id INTEGER," +
"name VARCHAR (255), PRIMARY KEY (id))")

cursor.execute ("SELECT AddGeometryColumn('cities', 'geom',6 " +

"-1, 'POLYGON', 2)")
cursor.execute ("CREATE INDEX cityIndex ON cities " +

[155]

GIS in the Database

"USING GIST (geom)")
connection.commit ()

Let's take a look at each of these steps in more detail. We first get a cursor object to
access the database, and then create the non-spatial parts of our table using standard
SQL statements:

connection = psycopg2.connect ("dbname=... user=...")
cursor = connection.cursor ()

cursor.execute ("DROP TABLE IF EXISTS cities")

cursor.execute ("CREATE TABLE cities (id INTEGER," +
"name VARCHAR (255), PRIMARY KEY (id))")

Once the table itself has been created, we have to use a separate PostGIS function
called AddGeometryColumn () to define the spatial columns within our table:

cursor.execute ("SELECT AddGeometryColumn('cities', 'geom',6 " +
"-1, 'POLYGON', 2)")

Recent versions of PostGIS support two distinct types of geo-spatial data,
called geometries and geographies. The geometry type (that we are
using here) uses cartesian coordinates to place features onto a plane, and
all calculations are done using cartesian (x,y) coordinates. The geography
type, on the other hand, identifies geo-spatial features using angular
- coordinates (latitudes and longitudes), positioning the features onto a
% spheroid model of the Earth.

The geography type is relatively new, much slower to use, and doesn't yet
support all the functions that are available for the geometry type. Despite
having the advantages of being able to accurately calculate distances

that cover a large portion of the Earth and not requiring knowledge of
projections and spatial references, we will not be using the geography
type in this book.

Finally, we create a spatial index so that we can efficiently search using the new
geometry column:

cursor.execute ("CREATE INDEX cityIndex ON cities " +
"USING GIST (geom)")

Once you have created your database, you can insert geometry features into it using
the ST GeomFromText () function, like this:

cursor.execute ("INSERT INTO cities (name,geom) VALUES " +
"(%s, ST GeomFromText (%s)", (cityName, wkt))

[156]

Chapter 6

Conversely, you can retrieve a geometry from the database in WKT format using the
ST AsText () function:

cursor.execute ("select name, ST AsText (geom) FROM cities")

for name,wkt in cursor:

Documentation

Because PostGIS is an extension to PostgreSQL, and you use Psycopg to access it,
there are three separate sets of documentation you will need to refer to:

e The PostgreSQL manual: http://postgresqgl.org/docs
e The PostGIS manual: http://postgis.refractions.net/docs
e The Psycopg documentation: http://initd.org/psycopg/docs

Of these, the PostGIS manual is probably going to be the most useful, and you will
also need to refer to the Psycopg documentation to find out the details of using
PostGIS from Python. You will probably also need to refer to the PostgreSQL manual
to learn the non-spatial aspects of using PostGIS, though be aware that this manual is
huge and extremely complex, reflecting the complexity of PostgreSQL itself.

Advanced PostGIS features

PostGIS supports the following features not available with MySQL:

e On-the-fly transformations of geometries from one spatial reference to
another.

¢ The ability to edit geometries by adding, changing, and removing points, and
by rotating, scaling, and shifting entire geometries.

e The ability to read and write geometries in GeoJSON, GML, KML, and SVG
formats, in addition to WKT and WKB.

e A complete range of bounding-box comparisons, including A overlaps B,

A contains B,A is to the left of B, and so on. These comparison
operators make use of spatial indexes to identify matching features extremely
quickly.

e Proper spatial comparisons between geometries, including intersection,
containment, crossing, equality, overlap, touching, and so on. These
comparisons are done using the true geometry rather than just their
bounding boxes.

e Spatial functions to calculate information such as the area, centroid, closest
point, distance, length, perimeter, shortest connecting line, and more. These
functions take into account the geometry's spatial reference, if known.

[157]

GIS in the Database

PostGIS has a reputation for being a geo-spatial powerhouse. While it is not the
only option for storing geo-spatial data (and is certainly the most complex database
discussed in this book), it is worth considering if you are looking for a powerful
spatially-enabled database to use from within your Python geo-spatial programs.

SpatialL.ite

As the name suggests, SpatiaLite is a lightweight spatial database, though the
performance is surprisingly good and it doesn't skimp on features. Just like PostGIS
is a spatial extension to PostgreSQL, SpatiaLite is a spatial extension to the serverless
SQLite database engine. To access SQLite (and SpatiaLite) from Python, you need to
use the pysglite database adapter:

Your Python

-4—p-| pysqlite [E—p program

Installing SpatiaL.ite

Before you can use SpatiaLite in your Python programs, you need to install SQLite,
SpatiaLite, and pysglite. How you do this depends on which operating system
your computer is running;:

Mac OS X

If you're using a Mac OS X-based system, you're in luck — the framework build of
sqlite3 that can be downloaded from:

http://www.kyngchaos.com/software/frameworks

will install everything you need, and you won't have to deal with any configuration
issues at all.

MS Windows

For MS Windows-based systems, go to the SpatiaLite website's download page:
http://gaia-gis.it/spatialite/binaries.html
and download the following precompiled libraries:
e libspatialite
® proj
® geos

e libiconv

[158]

Chapter 6

Once you have decompressed them, you will end up with a series of DLLs. Because
the DLLs are dependent on each other, make sure you place these on the system path
so they can be found when SpatiaLite is loaded.

Linux

For Linux, you can download a prebuilt version of 1ibspatialite from the
SpatiaLite website:

http://gaia-gis.it/spatialite/binaries.html

You will, however, have to install PROJ, GEOS, and 1ibiconv before
libspatialite will work. These libraries can be found at:

e http://trac.osgeo.org/proj
e http://trac.osgeo.org/geos
e http://gnu.org/software/libiconv

Either install a suitable binary distribution, or compile the libraries yourself from source.

Installing pysqlite

After installing the 1ibspatialite library and its dependencies, you now need to
make sure you have a workable version of pysqlite, the Python database adapter
for SQLite.

M Mac users are once again in luck: the sglite3
Q framework you downloaded already includes a suitable
version of pysqlite, so you can ignore this section.

A version of pysqlite comes bundled with Python version 2.5 and later, in the
form of a standard library module named sqlite3. This standard library module,
however, may not work with SpatiaLite. Because SpatiaLite is an extension to SQLite,
the pysqglite library must be able to load extensions —a feature that was only
introduced in pysqglite version 2.5, and is often disabled by default. To see if your
version of Python includes a usable version of sqlite3, type the following into the
Python command line:

>>> import sqglite3
>>> conn = sglite3.connect (" :memory:")
>>> conn.enable load extension(True)

If you get an AttributeError, your built-in version of sqlite3 does not support
loading extensions, and you will have to download and install a different version.

[159]

GIS in the Database

The main website for pysqglite is:
http://code.google.com/p/pysglite

You can download binary versions for MS Windows, and source code packages that
you can compile yourself for Linux.

Accessing SpatialLite from Python

Now that you have all the libraries installed, you are ready to start using pysqlite
to access and work with SpatiaLite databases. There is, however, one final thing to be
aware of: because pysqlite is a database adapter for SQLite rather than SpatiaLite,
you will need to load the 1ibspatialite extension before you can use any of the
SpatiaLite functionality in your Python program.

~ Mac users don't need to do this because the version of sqlite3 you
downloaded comes with the 1ibspatialite extension built-in.

To load the 1ibspatialite extension, add the following highlighted statements to
your Python program:

from pysglite2 import dbapi as sglite

conn = sqglite.connect("...")

conn.enable load extension (True)

conn.execute ('SELECT load extension("libspatialite-2.d11")"')
curs = conn.cursor ()

For Linux users, make sure you use the correct name for the 1ibspatialite
extension. You may also need to change the name of the pysqlite2 module
you're importing depending on which version you downloaded.

Documentation

With all these different packages, it can be quite confusing knowing where to look
for more information. First off, you can learn more about the SQL syntax supported
by SQLite (and SpatiaLite) by looking at the SQL as Understood by SQLite page:

http://sglite.org/lang.html

Then, to learn more about SpatiaLite itself, check out the SpatiaLite Manual, which
can be found at:

http://gaia-gis.it/spatialite/docs.html

[160]

Chapter 6

There are also tutorials available from the above link, but they aren't that useful if
you are using SpatiaLite from Python.

Finally, to learn more about using pysglite to access SQLite and SpatiaLite from
Python, see:

http://pysglite.googlecode.com/svn/doc/sglite3.html

Using SpatialLite

In many ways, SpatiaLite has been modeled after PostGIS. Before using SpatiaLite
for your database, you need to load an "initialization file" into the database,

and you also need to explicitly define your spatial columns by calling the
AddGeometryColumn () function, just like you do in PostGIS. Let's see how all this
works by creating a SpatiaLite database and creating an example database table.

As described above, the first step in using SpatiaLite is to connect to the database and
load the SpatiaLite extension, like this:

from pysqglite2 import dbapi2 as sqglite

db = sglite.connect ("myDatabase.db")
db.enable load extension (True)

db.execute ('SELECT load extension("libspatialite.dll™)')

R Note that because SQLite is a serverless database, the myDatabase .db
~ database is simply a file on your hard disk. Also, if you are running on Mac
Q OS X, you can skip the enable load extension / load extension
dance and remove or comment out the last two lines.

You next need to load the SpatiaLite tables into your database. This can be done by
downloading the initialization file from:

http://gaia-gis.it/spatialite/resources.html

For the current version of SpatiaLite at the time this book was written, the file you
need is named init_spatialite-2.3.sqgl. The version number may have changed,
so download the appropriate initialization file for your version of SpatiaLite.

This file contains a series of SQL commands that prepare your database to use with
SpatiaLite. If you have the SQLite command-line client installed on your computer,
you can load the initialization file directly into your database, like this:

% sqglite3 myDatabase.db < init spatialite-2.3.sql

[161]

GIS in the Database

Alternatively, if you don't have the SQLite command-line client installed, you can
use the following Python code to read the initialization file into memory and execute
it using pysqlite:

from pysglite2 import dbapi2 as sqglite

db = sglite.connect ("test.db")
db.enable load extension (True)

db.execute ('SELECT load extension("libspatialite.dll")')
cursor = db.cursor ()

f = file("init spatialite-2.3.sqgl", "r")
lines = []
for line in f.readlines():

line = line.rstrip()

if len(line) == 0: continue

if line.startswith("--"): continue

if line.startswith ("BEGIN"): continue
if line.startswith ("COMMIT") : continue

lines.append(line)
f.close()
cmds = ("".join(lines)) .split(";")
for cmd in cmds:
cursor.execute (cmd)
db.commit ()

1
~ Mac users can skip the db.enable load extension(...) and

db.execute ('SELECT load extension(...)') statements.

Note that this code removes comments (lines starting with - -), and also strips out
the BEGIN and COMMIT instructions as these can't be executed using pysqglite.

Running the initialization script will create the internal database tables needed by
SpatiaLite, and will also load the master list of spatial references into the database so
you can use SRID values to assign a spatial reference to your features.

After running the initialization script, you can create a new database table to hold
your geo-spatial data. As with PostGIS, this is a two-step process; you first create the
non-spatial parts of your table using standard SQL statements:

cursor.execute ("DROP TABLE IF EXISTS cities")
cursor.execute ("CREATE TABLE cities (" +
"id INTEGER PRIMARY KEY AUTOINCREMENT, " +
"name CHAR(255))")

[162]

Chapter 6

You then use the SpatiaLite function AddGeometryColumn () to define the spatial
column(s) in your table:

cursor.execute ("SELECT AddGeometryColumn('cities', 'geom',6 " +
"4326, 'POLYGON', 2)")

The number 4326 is the spatial reference ID (SRID) used to

identify the spatial reference this column's features will use. The

SRID number 4326 refers to a spatial reference using latitude and
’ longitude values and the WGS84 datum; we will look at SRID values
in more detail in the Recommended best practices section, later.

You can then create a spatial index on your geometries using the
CreateSpatialIndex () function, like this:

cursor.execute ("SELECT CreateSpatialIndex('cities', 'geom')")

Now that you have set up your database table, you can insert geometry features into
it using the GeomFromText () function:

cursor.execute ("INSERT INTO cities (name, geom)" +
" VALUES (?, GeomFromText (?, 4326))",
(city, wkt))

And, you can retrieve geometries from the database in WKT format using the
AsText () function:

cursor.execute ("select name,AsText (geom) FROM cities")
for name,wkt in cursor:

SpatiaLite capabilities

Some highlights of SpatiaLite include:

e The ability to handle all the major geometry types, including Point,
LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection.

e Every geometry feature has a spatial reference identifier (SRID) which tells
you the spatial reference used by this feature.

e Geometry columns are constrained to a particular type of geometry and a
particular SRID. This prevents you from accidentally storing the wrong type
of geometry, or a geometry with the wrong spatial reference, into a database
table.

[163]

GIS in the Database

e Support for translating geometries to and from WKT and WKB format.

e Support for Geometry functions to do things like calculate the area of a
polygon, to simplify polygons and linestrings, to calculate the distance between
two geometries, and to calculate intersections, differences, and buffers.

e Functions to transform geometries from one spatial reference to another, and
to shift, scale, and rotate geometries.

e Support for fast spatial relationship calculations using minimum bounding
rectangles.

e Support for complete spatial relationship calculations (equals, touches,
intersects, and so on) using the geometry itself rather than just the bounding
rectangle.

e The use of R-Tree indexes that can (if you use them correctly) produce
impressive results when performing spatial queries. Calculating the
intersection of 500,000 linestrings with 380,000 polygons took just nine
seconds, according to one researcher.

e An alternative way of implementing spatial indexes, using in-memory
MBR caching. This can be an extremely fast way of indexing features
using minimum bounding rectangles, though it is limited by the amount of
available RAM and so isn't suitable for extremely large datasets.

While SpatiaLite is considered to be a lightweight database, it is indeed surprisingly
capable. Depending on your application, SpatiaLite may well be an excellent choice
for your Python geo-spatial programming needs.

Commercial spatially-enabled databases

While we will be concentrating on the use of open source databases in this book,
it's worth spending a moment exploring the commercial alternatives. There are two
major commercial databases that support spatial operations: Oracle and Microsoft's
SQL Server.

Oracle

Oracle provides one of the world's most powerful and popular commercial database
systems. Spatial extensions to the Oracle database are available in two flavors: Oracle
Spatial provides a large range of geo-spatial database features, including spatial data
types, spatial indexes, the ability to perform spatial queries and joins, and a range

of spatial functions. Oracle Spatial also supports linear referencing systems, spatial
analysis and data-mining functions, geocoding, and support for raster-format data.

[164]

Chapter 6

While Oracle Spatial is only available for the Enterprise edition of the Oracle
database, it is one of the most powerful spatially-enabled databases available
anywhere.

A subset of the Oracle Spatial functionality, called Oracle Locator, is available

for the Standard edition of the Oracle database. Oracle Locator does not support
common operations such as unions and buffers, intersections, and area and length
calculations. It also excludes support for more advanced features such as linear
referencing systems, spatial analysis functions, geocoding, and raster-format data.

While being extremely capable, Oracle does have the disadvantage of using a
somewhat non-standard syntax compared with other SQL databases. It also uses
non-standard function names for its spatial extensions, making it difficult to switch
database engines or use examples written for other databases.

MS SQL Server

Microsoft's SQL Server is another widely-used and powerful commercial database
system. SQL Server supports a full range of geo-spatial operations, including support
for both geometry and geography data types, and all of the standard geo-spatial
functions and operators.

Because Microsoft has followed the Open Geospatial Consortium's standards,
the data types and function names used by SQL Server match those used by

the open source databases we have already examined. The only difference stems
from SQL Server's own internal object-oriented nature; for example, rather than
ST Intersects(geom, pt),SQL Server uses geom.STIntersects (pt).

Unlike Oracle, all of Microsoft's spatial extensions are included in every edition of
the SQL Server; there is no need to obtain the Enterprise Edition to get the full range
of spatial capabilities.

There are two limitations with MS SQL Server that may limit its usefulness as a
spatially-enabled database. Firstly, SQL Server only runs on Microsoft Windows-based
computers. This limits the range of servers it can be installed on. Also, SQL Server does
not support transforming data from one spatial reference system to another.

Recommended best practices

In this section, we will look at a number of practical things you can do to ensure your
geo-spatial databases work as efficiently and effectively as possible.

[165]

GIS in the Database

Use the database to keep track of spatial
references

As we've seen in earlier chapters, different sets of geo-spatial data use different
coordinate systems, datums, and projections. Consider, for example, the following
two geometry objects:

POLYGON with coordinates LINESTRING with coordinates
(13.1425,-113.52386), (13.9220,-114.3740), (197443,1420617), (226414,1454264),
(15.1976,-114.3740), (15.9063,-113.0984), (266249,1252373), (331434,1252373),
(15.1268,-112.6024), (14.2764,-113.2402) (367647,1555211), (327812,1672979),

(345918,1740279)

The geometries are represented as a series of coordinates, which are nothing more
than numbers. By themselves, these numbers aren't particularly useful —you need to
position these coordinates onto the Earth's surface by identifying the spatial reference
(coordinate system, datum, and projection) used by the geometry. In this case, the
POLYGON is using unprojected lat/long coordinates in the WGS84 datum, while

the LINESTRING is using coordinates defined in meters using the UTM Zone 12N
projection. Once you know the spatial reference, you can place the two geometries
onto the Earth's surface. This reveals that the two geometries actually overlap:

In all but the most trivial databases, it is recommended that you store the spatial
reference for each feature directly in the database itself. This makes it easy to keep
track of which spatial reference is used by each feature. It also allows the queries and
database commands you write to be aware of the spatial reference, and enables you
to transform geometries from one spatial reference to another as necessary in your
spatial queries.

[166]

Chapter 6

Spatial references are generally referred to using a simple integer value called a
Spatial Reference Identifier or SRID. While you could choose arbitrary SRID values
to represent various spatial references, it is strongly recommended that you use the
European Petroleum Survey Group (EPSG) numbers as standard SRID values. Using
this internationally-recognized standard makes your data interchangeable with other
databases, and allows tools such as OGR and Mapnik to identify the spatial reference
used by your data.

To learn more about EPSG numbers, and SRID values in general, please refer to:

http://epsg-registry.org

You have seen SRID values before. For example, in the Using SpatiaLite section of this
chapter, we encountered the following SQL statement:

SELECT AddGeometryColumn('cities', 'geom', 4326, 'POLYGON',2)

The value 4326 is the SRID used to identify a particular spatial reference, in this
case the WGS84 Long Lat reference (unprojected lat/long coordinates using the
WGS84 datum).

Both PostGIS and SpatiaLite add a special table to your spatially-enabled database
called spatial_ref_sys. This table comes pre-loaded with a list of over 3,000
commonly-used spatial references, all identified by EPSG number. Because the SRID
value is the primary key into this table, tools that access the database can refer to this
table to perform on-the-fly coordinate transformations using the PROJ.4 library. Even
if you are using MySQL, which doesn't provide a spatial_ref_sys table or other
direct support for coordinate transformations, you should be using standard EPSG
numbers for your spatial references.

Note that all three open source spatial databases allow you to associate an SRID
value with a geometry when importing from WKT:

e MySQL: GeometryFromText (wkt, [sridl)

e PostGIS: ST GeometryFromText (wkt, [srid])

e Spatialite: GeometryFromText (wkt, [srid])
While the SRID value is optional, you should use this wherever possible to tell the
database which spatial reference your geometry is using. In fact, both PostGIS and
SpatiaLite require you to use the correct SRID value if a column has been set up to

use a particular SRID. This prevents you from mixing the spatial references within
a table.

[167]

GIS in the Database

Use the appropriate spatial reference for your
data

When you import spatial data into your database, it will be in a particular spatial
reference. This doesn't mean, though, that it has to stay in that spatial reference. In
many cases, it will be more efficient and accurate to transform your data into the
most appropriate spatial reference for your particular needs. Of course, "appropriate
depends on what you want to achieve.

With the exception of PostGIS and its new Geography type, all three spatial
databases assume that coordinates exist on a cartesian plane — that is, that you

are using projected coordinates. If you store unprojected coordinates (latitude and
longitude values) in the database, you will be limited in what you can do. Certainly,
you can use unprojected geographic coordinates in a database to compare two
features (for example, to see if one feature intersects with another), and you will be
able to store and retrieve geo-spatial data quickly. However, any calculation that
involves area or distance will be all but meaningless.

Consider, for example, what would happen if you asked MySQL to calculate the
length of a LINESTRING geometry:

mysqgl> SELECT GLength(geom) FROM roads WHERE id=9513;

o mmmmm e m e e e - m - +
| GLength (geom) |
o mmmmm e m e e e - m - +
| 192.3644911426572 |
o mmmmm e m e e e - m - +

If your data was in unprojected lat/long coordinates, the resulting "length" would be
a number in decimal degrees. Unfortunately, this number is not particularly useful.
You can't assume a simple relationship between the decimal degree length and the
actual length on the Earth's surface, for example multiplying by some constant to
yield the true length in meters. The only thing this so-called "length" value would be
useful for would be to give a very rough estimate of the true length, as we did in the
previous chapter to filter out features obviously too far away.

If you do need to perform length and area calculations on your geo-spatial data (and
it is likely that you will need to do this at some stage), you have three options:

e Use a database that supports unprojected coordinates

e Transform the features into projected coordinates before performing the
length or distance calculation

e Store your geometries in projected coordinates from the outset

Let's consider each of these options in more detail.

[168]

Chapter 6

Option 1: Use a database that supports geographies

Of the open source databases we are considering, only PostGIS has the ability to
work directly with unprojected coordinates, through the use of the relatively-new
Geography type. Unfortunately, the Geography type has some major limitations that
make this a less than ideal solution:

e Performing calculations on unprojected coordinates takes approximately
an order of magnitude longer than performing the same calculations using
projected (cartesian) coordinates

¢ The Geography type only supports lat/long values on the WGS84 datum
(SRID 4326)

e Many of the functions available for projected coordinates are not yet
supported by the Geography type

For these reasons, as well as the fact that the they are only supported by PostGIS, we
will not be using Geography columns in this book.

Option 2: Transform features as required

Another possibility is to store your data in unprojected lat/long coordinates, and
transform the coordinates into a projected coordinate system before you calculate the
distance or area. While this will work, and will give you accurate results, you should
beware of doing this because you may well forget to transform into a projected
coordinate system before making the calculation. Also, performing on-the-fly
transformations of large numbers of geometries is very time-consuming.

Despite these problems, there are situations where storing unprojected coordinates
makes sense. We will look at this shortly.

Option 3: Transform features from the outset

Because transforming features from one spatial reference to another is rather time-
consuming, it often makes sense to do this once, at the time you import your data,
and store it in the database already converted to a projected coordinate system.

Doing this, you will be able to perform your desired spatial calculations quickly and
accurately. However, there are situations where this is not the best option, as we will
see in the next section.

[169]

GIS in the Database

When to use unprojected coordinates

As we saw in Chapter 2, projecting features from the three-dimensional surface of
the Earth onto a two-dimensional cartesian plane can never be done perfectly. It is a
mathematical truism that there will always be errors in any projection.

Different map projections are generally chosen to preserve values such as distance
or area for a particular portion of the Earth's surface. For example, the Mercator
projection is accurate at the tropics, but distorts features closer to the Poles.

Because of this inevitable distortion, projected coordinates work best when your geo-
spatial data only covers a part of the Earth's surface. If you are only dealing with data
for Austria, then a projected coordinate system will work very well indeed. But, if your
data includes features in both Austria and Australia, then using the same projected
coordinates for both sets of features will once again produce inaccurate results.

For this reason, it is generally best to use a projected coordinate system for data that
covers only part of the Earth's surface, but unprojected coordinates will work best if
you need to store data covering large parts of the Earth.

Of course, using unprojected coordinates leads to problems of its own, as discussed
above. This is why it's recommended that you use the appropriate spatial reference for
your particular needs; what is appropriate for you depends on what data you need
to store and how you intend to use it.

The best way to find out what is appropriate would be to
M experiment; try importing your data in both spatial references,
Q and write some test programs to work with the imported
data. That will tell you which is the fastest and easiest spatial
reference to work with, rather than having to guess.

Avoid on-the-fly transformations within a
query

Imagine that you have a cities table with a geom column containing POLYGON
geometries in UTM 12N projection (EPSG number 32612). Being a competent geo-

spatial developer, you have set up a spatial index on this column.

Now, imagine that you have a variable named pt that holds a POINT geometry in
unprojected WGS84 coordinates (EPSG number 4326). You might want to find the
city that contains this point, so you issue the following reasonable-looking query:

SELECT * FROM cities WHERE Contains (Transform(geom, 4326), pt):;

[170]

Chapter 6

This will give you the right answer, but it will take an extremely long time. Why?
Because the Transform(geom, 4326) expression is converting every geometry in the
table from UTM 12N to long-lat WGS84 coordinates before the database can check to
see if the point is inside the geometry. The spatial index is completely ignored as it is
in the wrong coordinate system.

Compare this with the following query:
SELECT * FROM cities WHERE Contains(geom, Transform(pt, 32612));

A very minor change, but a dramatically different result. Instead of taking

hours, the answer should come back almost immediately. Can you see why? The
transformation is being done on a variable that does not change from one record to
the next, so the Transform(pt, 32612) expression is being called just once, and the
Contains () call can make use of your spatial index to quickly find the matching city.

The lesson here is simple —be aware of what you are asking the database to do, and
make sure you structure your queries to avoid on-the-fly transformations of large
numbers of geometries.

Don't create geometries within a query

While we are discussing database queries that can cause the database to perform a
huge amount of work, consider the following (where poly is a polygon):

SELECT * FROM cities WHERE

NOT ST IsEmpty (ST Intersection(outline, poly));

In a sense, this is perfectly reasonable: identify all cities that have a non-empty
intersection between the city's outline and the given polygon. And, the database
will indeed be able to answer this query —it will just take an extremely long time

to do so. Hopefully, you can see why: the ST Intersection() function creates a
new geometry out of two existing geometries. This means that for every row in the
database table, a new geometry is created, and is then passed to ST_IsEmpty ().
As you can imagine, these types of operations are extremely inefficient. To avoid
creating a new geometry each time, you can rephrase your query like this:

SELECT * FROM cities WHERE ST Intersects(outline, poly):;

While this example may seem obvious, there are many cases where spatial
developers have forgotten this rule, and have wondered why their queries were
taking so long to complete. A common example is to use the ST Buffer () function
to see if a point is within a given distance of a polygon, like this:

SELECT * FROM cities WHERE

ST Contains (ST Buffer(outline, 100), pt):;

[171]

GIS in the Database

Once again, this query will work, but will be painfully slow. A much better approach
would be to use the ST Dwithin () function:

SELECT * FROM cities WHERE ST DWithin(outline, pt, 100);

As a general rule, remember that you never want to call any function that returns
a Geometry object (or one of its subclasses) within the WHERE portion of a SELECT
statement.

Use spatial indexes appropriately

Just like ordinary database indexes can make an immense difference to the speed
and efficiency of your database, spatial indexes are also an extremely powerful tool
for speeding up your database queries. Like all powerful tools, though, they have
their limits:

e If you don't explicitly define a spatial index, the database can't use it.
Conversely, if you have too many spatial indexes, the database will slow
down because each index needs to be updated every time a record is added,
updated, or deleted. Thus, it is crucial that you define the right set of spatial
indexes: index the information you are going to search on, and nothing more.

e Because spatial indexes work on the geometries' bounding boxes, the index
itself can only tell you which bounding boxes actually overlap or intersect;
they can't tell you if the underlying points, lines, or polygons have this
relationship. Thus, they are really only the first step in searching for the
information you want. With PostGIS and SpatiaLite, the database itself can
further refine the search by comparing the individual geometries for you;
with MySQL, you have to do this yourself, as we saw earlier.

e Spatial indexes are most efficient when dealing with lots of relatively small
geometries. If you have large polygons consisting of many thousands of
vertices, the polygon's bounding box is going to be so large that it will
intersect with lots of other geometries, and the database will have to revert
to doing full polygon calculations rather than just the bounding box. If your
geometries are huge, these calculations can be very slow indeed — the entire
polygon will have to be loaded into memory and processed one vertex
at a time. If possible, it is generally better to split large polygons (and in
particular large multipolygons) into smaller pieces so that the spatial index
can work with them more efficiently.

[172]

Chapter 6

Know the limits of your database's query
optimizer

When you send a query to the database, it automatically attempts to optimize the
query to avoid unnecessary calculations and to make use of any available indexes.
For example, if you issued the following (non-spatial) query:

SELECT * FROM people WHERE name=Concat ("John ", "Doe");

The database would know that concat ("John ", "Doe") yields a constant, and
so would only calculate it once before issuing the query. It would also look for a
database index on the name column, and use it to speed up the operation.

This type of query optimization is very powerful, and the logic behind it is extremely
complex. In a similar way, spatial databases have a spatial query optimizer that
looks for ways to pre-calculate values and make use of spatial indexes to speed up
the query. For example, consider this spatial query from the previous section:

select * from cities where ST DWithin(outline, pt, 12.5);

In this case, the PostGIS function ST Dwithin () is given one geometry taken from a
table (outline), and a second geometry that is specified as a fixed value (pt), along
with a desired distance (12.5 "units", whatever that means in the geometry's spatial
reference). The query optimizer knows how to handle this efficiently, by first pre-
calculating the bounding box for the fixed geometry plus the desired distance (pt
+12.5), and then using a spatial index to quickly identify the records that may have
their outline geometry within that extended bounding box.

While there are times when the database's query optimizer seems to be capable of
magic, there are many other times when it is incredibly stupid. Part of the art of
being a good database developer is to have a keen sense of how your database's
query optimizer works, when it doesn't—and what to do about it.

Let's see how you can find out more about the query optimization process in each of
our three spatial databases.

[173]

GIS in the Database

MySQL

MySQL provides a command, EXPLAIN SELECT, that tells you how the query
optimizer has tried to process your query. For example:

mysql> EXPLAIN SELECT * FROM cities
WHERE MBRContains (geom,
GeomFromText (pt)) \G

LA E R E R E SRR R R R LR 1. TOW **kkkkkkkkhkhkhkhkhkhkhkkhkhkkkdx
id: 1
select type: SIMPLE
table: cities
type: range
possible keys: geom
key: geom
key len: 34
ref: NULL
rows: 1
Extra: Using where

1l row in set (0.00 sec)

& Don't worry about the \G at the end of the command; this
= just formats the output in a way that makes it easier to read.

This command tells you that this query involves a simple search against the cities
table, searching for a range of records using the geom spatial index to speed up the
results. The rows: 1 tells you that the query optimizer thinks it only needs to read a
single row from the table to find the results.

This is good. Compare it with:

mysqgl> EXPLAIN SELECT * FROM cities
WHERE MBRContains (Envelope (geom),
GeomFromText (pt)) \G

khkhhkkhhkhkhhkkhhkhhhkkhhkdk] row **khkkkhkhkhkhhkhhkhkhhkkhhkk
id: 1
select type: SIMPLE

table: cities

[174]

Chapter 6

type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 34916
Extra: Using where

1l row in set (0.00 sec)

This query uses the Envelope () function to create a new geometry, which is then
checked to see if it contains the given point. As explained in the Don't Create Geometries
Within a Query section, previously, the database has to create a new geometry for every
row in the table. In this case, the query optimizer cannot use an index, as shown by

the NULL value for possible_keys and key. It also tells you that it would have to scan
through 34,916 records to find the matching points —not exactly an efficient query.
Indeed, running this query could take several minutes to complete.

PostGIS

MySQL uses a theoretical approach to query optimization, looking only at the query
itself to see how it could be optimized. PostGIS, on the other hand, takes into account
the amount of information in the database and how it is distributed. In order to

work well, the PostGIS query optimizer needs to have up-to-date statistics on the
database's contents. It then uses a sophisticated genetic algorithm to determine the
most effective way to run a particular query.

Because of this approach, you need to regularly run the vAcuuM ANALYZE command,
which gathers statistics on the database so that the query optimizer can work as
effectively as possible. If you don't run VACUUM ANALYZE, the optimizer simply won't
be able to work.

Here is how you can run the vACUUM ANALYZE command from Python:

import psycopg?2

connection = psycopg2.connect ("dbname=... user=...")
cursor = connection.cursor ()

old level = connection.isolation level
connection.set isolation level (0)
cursor.execute ("VACUUM ANALYZE")
connection.set isolation level (old level)

[175]

GIS in the Database

Don't worry about the isolation_level logic here; that just allows you to run
the vacuuM ANALYZE command from Python using the transaction-based
psycopg2 adapter.

u It is possible to set up an autovacuum daemon that runs
~ automatically after a given period of time, or after a table's
Q contents has changed enough to warrant another vacuum. Setting
up an autovacuum daemon is beyond the scope of this book.

Once you have run the VACUUM ANALYZE command, the query optimizer will be
able to start optimizing your queries. As with MySQL, you can see how the query
optimizer works using the EXPLAIN SELECT command:

psql> EXPLAIN SELECT * FROM cities
WHERE ST Contains (geom,pt);

QUERY PLAN

Seq Scan on cities (cost=0.00..7.51 rows=1l width=2619)

Filter: ((geom &&
'010100000000000000000000000000000000000000°"' : :geometry) AND
st contains (geom,
'010100000000000000000000000000000000000000°"' : :geometry))

(2 rows)

Don't worry about the Seq Scan part; there are only a few records in this table, so
PostGIS knows that it can do a sequential scan of the entire table faster than it can
read through an index. When the database gets bigger, it will automatically start
using the index to quickly identify the desired records.

The cost= part is an indication of how much this query will "cost", measured in
arbitrary units that by default are relative to how long it takes to read a page of data
from disk. The two numbers represent the "start up cost" (how long it takes before
the first row can be processed), and the estimated total cost (how long it would take
to process every record in the table). Since reading a page of data from disk is quite
fast, a total cost of 7.51 is very quick indeed.

The most interesting part of this explanation is the Filter. Let's take a closer look
at what the EXPLAIN SELECT command tells us about how PostGIS will filter this
query. The first part:

(geom && '010100000000000000000000000000000000000000"': :geometry)

makes use of the && operator, which searches for matching records using the
bounding box defined in the spatial index. The second part of the filter condition:

[176]

Chapter 6

st contains(geom,
'010100000000000000000000000000000000000000°"' : :geometry)

uses the ST _Contains () function to identify the exact geometries that actually
contain the desired point. This two-step process (first filtering by bounding box, then
by the geometry itself) is exactly what we had to implement manually when using
MySQL. As you can see, PostGIS does this for us automatically, resulting in a quick
but also accurate search for geometries that contain a given point.

SpatiaLite

One of the disadvantages of using a lightweight database such as SpatiaLite is that
the query optimizer is rather naive. In particular, the SpatiaLite query optimizer will
only make use of B*Tree indexes; you can create a spatial R-Tree index, but it won't
be used unless you explicitly include it in your query.

For example, consider the following SQL statements:

CREATE TABLE cities (id INTEGER PRIMARY KEY AUTOINCREMENT,
name CHAR(255));

SELECT AddGeometryColumn('cities', 'geom',4326, 'POLYGON',2) ;
INSERT INTO cities (name,geom)

VALUES ('London', GeomFromText (wkt, 4326);
This creates a cities table, defines a spatial index, and inserts a record into the table.
Because SpatiaLite uses triggers to automatically update the spatial index as records
are added, updated, or deleted, the above statements would correctly create the

spatial index and update it as the new record is inserted. However, if we then issue
the following query:

SELECT * FROM cities WHERE Contains(geom, pt);

The SpatiaLite query optimizer won't know about the spatial index, and so will
ignore it. We can confirm this using the EXPLAIN QUERY PLAN command, which
shows the indexes used by the query:

sqlite> EXPLAIN QUERY PLAN SELECT * FROM cities
WHERE id < 100;

0|0|TABLE cities USING PRIMARY KEY

sqlite> EXPLAIN QUERY PLAN SELECT * FROM cities

WHERE Contains (geom, pt):;

0|0 |TABLE cities

[177]

GIS in the Database

The first query (WHERE id < 100) makes use of a B¥Tree index, and so the query
optimizer knows to use the primary key to index the query. The second query (WHERE
Contains (geom, pt)) uses the spatial index that the query optimizer doesn't know
about. In this case, the cities table will be scanned sequentially, without any index
at all. This will be acceptable for small numbers of records, but for large databases
this will be very slow indeed.

To use the spatial index, we have to include it directly in the query:

SELECT * FROM cities WHERE id IN
(SELECT pkid FROM idx cities geom WHERE xmin <= X(pt)
AND X(pt) <= xmax AND ymin <= Y(pt) AND Y (pt) <= ymax);

The EXPLAIN QUERY PLAN command tells us that this query would indeed use the
database indexes to speed up the query:

sqglite> EXPLAIN QUERY PLAN SELECT * FROM cities
WHERE id IN (SELECT pkid FROM idx cities_geom
WHERE xmin <= X(pt) AND X(pt) <= xmax
AND ymin <= Y(pt) AND Y(pt) <= ymax);

0|0 |TABLE cities USING PRIMARY KEY
0|0|TABLE idx cities geom VIRTUAL TABLE INDEX 2:BaDbBcDd

This is an unfortunate consequence of using SpatiaLite —you have to include the
indexes explicitly in every spatial query you make, or they won't be used at all. This
can make creating your spatial queries more complicated, though the performance of
the end result will be excellent.

Working with geo-spatial databases
using Python

In this section, we will build on what we've learned so far by writing a short
program to:

1. Create a geo-spatial database.

2. Import data from a Shapefile.

3. Query that data.

4. Save the results in WKT format.
We will write the same program using each of the three databases we have explored

in this chapter so that you can see the differences and issues involved with using
each particular database.

[178]

Chapter 6

Prerequisites

Before you can run these examples, you will need to do the following:

1. If you haven't already done so, follow the instructions earlier in this chapter
to install MySQL, PostGIS, and SpatiaLite onto your computer.

2. We will be working with the GSHHS shoreline dataset from Chapter 4. If you
haven't already downloaded this dataset, you can download the Shapefiles
from:

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

3. Take a copy of the 1 (low-resolution) Shapefiles from the GSHHS shoreline
dataset and place them in a convenient directory (we will call this directory
GSHHS_1 in the code samples shown here).

We will use the low-resolution Shapefiles to keep the amount of data
M manageable, and to avoid problems with large polygons triggering a
Q max_allowed_packet error in MySQL. Large polygons are certainly
supported by MySQL (by increasing the max allowed packet
setting), but doing this is beyond the scope of this chapter.

4. Finally, make sure you have a copy of the init_spatialite-2.3.sql file
as we will need it to set up the SpatiaLite database.

Working with MySQL

We have already seen how to connect to MySQL and create a database table:

import MySQLdb

connection = MySQLdb.connect (user="..." passwd="...")
cursor = connection.cursor ()

cursor.execute ("USE myDatabase")

cursor.execute ("""CREATE TABLE gshhs (
id INTEGER AUTO_INCREMENT,
level INTEGER,
geom POLYGON NOT NULL,

PRIMARY KEY (id)
INDEX (level),
SPATIAL INDEX (geom))

nn n)

connection.commit ()

[179]

GIS in the Database

We next need to read the features from the GSHHS Shapefiles and insert them into
the database:

import os.path
from osgeo import ogr

for level in [1, 2, 3, 4]:
fName = os.path.join("GSHHS 1",
"GSHHS 1 L"+str(level)+".shp")

shapefile = ogr.Open (fName)
layer = shapefile.GetLayer (0)
for i in range(layer.GetFeatureCount()) :

feature = layer.GetFeature (i)

geometry = feature.GetGeometryRef ()

wkt = geometry.ExportToWkt ()

cursor.execute ("INSERT INTO gshhs (level, geom) " +
"WALUES (%s, GeomFromText (%$s, 4326))",
(level, wkt))

connection.commit ()

. Note that we are assigning an SRID value (4326) to the features
% as we import them into the database. Even though we don't have
= aspatial_ ref sys tablein MySQL, we are following the best
practices by storing SRID values in the database.

We now want to query the database to find the shoreline information we want.
In this case, we'll take the coordinate for London and search for a level 1 (ocean
boundary) polygon that contains this point. This will give us the shoreline for the
United Kingdom:

import shapely.wkt
LONDON = 'POINT(-0.1263 51.4980)"'

cursor.execute ("SELECT id,AsText (geom) FROM gshhs " +
"WHERE (level=%s) AND " +
" (MBRContains (geom, GeomFromText (%$s, 4326)))",
(1, LONDON))

shoreline = None
for id,wkt in cursor:
polygon = shapely.wkt.loads (wkt)
point = shapely.wkt.loads (LONDON)
if polygon.contains (point) :
shoreline = wkt

[180]

Chapter 6

Remember that MySQL only supports bounding-rectangle queries, so we
have to use Shapely to identify if the point is actually within the polygon,
rather than just within its minimum bounding rectangle.

To check that this query can be run efficiently, we will follow the recommended best
practice of asking the MySQL Query Optimizer what it will do with the query:

% /usr/local/mysql/bin/mysql

mysql> use myDatabase;

mysql> EXPLAIN SELECT id,AsText (geom) FROM gshhs
WHERE (level=1) AND (MBRContains (geom,
GeomFromText ('POINT (-0.1263 51.4980) "',
4326)))\G

AR E R E R E SRR R R EEEEEE 1. TOW **kkkkkkkkhkhkhkhkhkhkhkhkhkhkhkkdx
id: 1
select type: SIMPLE
table: gshhs
type: range
possible keys: level,geom
key: geom
key len: 34
ref: NULL
rows: 1
Extra: Using where
1 row in set (0.00 sec)
As you can see, we simply retyped the query, adding the word EXPLAIN to the front
and filling in the parameters to make a valid SQL statement. The result tells us that

the SELECT query is indeed using the indexed geom column, allowing it to quickly
find the desired feature.

Now that we have a working program that can quickly retrieve the desired
geometry, let's save the UK shoreline polygon to a text file:

f = file("uk-shoreline.wkt", "w")
f.write(shoreline)
f.close()

[181]

GIS in the Database

Running this program saves a low-resolution outline of the United Kingdom's
shoreline into the uk-shoreline.wkt file:

Working with PostGIS

Let's rewrite this program to use PostGIS. The first part, where we open the database
and define our gshhs table, is almost identical:

import psycopg?2

connection = psycopg?2.connect ("dbname=... user=...")
cursor = connection.cursor ()
cursor.execute ("DROP TABLE IF EXISTS gshhs")
cursor.execute ("""CREATE TABLE gshhs (

id SERIAL,

level INTEGER,

PRIMARY KEY (id))

nmnn)

cursor.execute ("CREATE INDEX levelIndex ON gshhs (level)")

cursor.

cursor.

execute ("SELECT AddGeometryColumn ('gshhs', " +
"'geom', 4326, 'POLYGON', 2)")
execute ("CREATE INDEX geomIndex ON gshhs " +
"USING GIST (geom)")

connection.commit ()

The only difference is that we have to use the psycopg2 database adapter, and the
fact that we have to create the geometry column (and spatial index) separately from
the CREATE TABLE statement itself.

[182]

Chapter 6

The second part of this program where we import the data from the Shapefile into
the database is once again almost identical to the MySQL version:

import os.path
from osgeo import ogr

for level in [1, 2, 3, 4]:
fName = os.path.join("GSHHS 1",
"GSHHS 1 L"+str(level)+".shp")

shapefile = ogr.Open (fName)
layer = shapefile.GetLayer (0)
for i in range(layer.GetFeatureCount()) :

feature = layer.GetFeature (i)

geometry = feature.GetGeometryRef ()

wkt = geometry.ExportToWkt ()

cursor.execute ("INSERT INTO gshhs (level, geom) " +
"VALUES (%s, ST GeomFromText (%s, " +
"4326))", (level, wkt))

connection.commit ()

Now that we have brought the Shapefile's contents into the database, we need to do
something in PostGIS that isn't necessary with MySQL or SpatiaLite. We need to run
a VACUUM ANALYZE command so that PostGIS can gather statistics to help it optimize
our database queries:

old_level = connection.isolation_level
connection.set isolation level (0)
cursor.execute ("VACUUM ANALYZE")
connection.set isolation level (old level)

We next want to search for the UK shoreline based upon the coordinate for London.
This code is simpler than the MySQL version thanks to the fact that PostGIS
automatically does the bounding box check followed by the full polygon check, so
we don't have to do this by hand:

LONDON = 'POINT(-0.1263 51.4980)"'

cursor.execute ("SELECT id,AsText (geom) FROM gshhs " +
"WHERE (level=%s) AND " +
" (ST_Contains (geom, GeomFromText (%s, 4326)))",
(1, LONDON))

shoreline = None
for id,wkt in cursor:

shoreline = wkt

[183]

GIS in the Database

Following the recommended best practices, we will ask PostGIS to tell us how it
thinks this query will be performed:

[}

% usr/local/pgsql/bin/psql -U userName -D dbName

psqgl> EXPLAIN SELECT id,AsText (geom) FROM gshhs

WHERE (level=2) AND (ST Contains(geom,
GeomFromText ('POINT (-0.1263 51.4980)"', 4326)));

QUERY PLAN

Index Scan using geomindex on gshhs (cost=0.00..8.53 rows=1
width=673)

Index Cond: (geom &&
'0101000020E6100000EDODBE30992AC0BF39B4C876BEBF4940"' : :geometry)

Filter: ((level = 2) AND st contains(geom,
'0101000020E6100000EDODBE30992AC0BF39B4C876BEBF4940' : :geometry))

(3 rows)

This tells us that PostGIS will answer this query by scanning through the geomindex
spatial index, first filtering by bounding box (using the && operator), and then calling
ST_Contains () to see if the polygon actually contains the desired point.

This is exactly what we were hoping to see; the database is processing this query as
quickly as possible while still giving us completely accurate results.

Now that we have the desired shoreline polygon, let's finish our program by saving
the polygon's WKT representation to disk:

f = file("uk-shoreline.wkt", "w")
f.write (shoreline)
f.close()

As with the MySQL version, running this program will create the uk-shoreline.wkt
file containing the same low-resolution outline of the United Kingdom's shoreline.

Working with SpatialL.ite

Let's rewrite this program once more, this time to use SpatiaLite. As discussed
earlier, we will create a database file and then load the contents of the init-
spatialite-2.3.sql initialization file into it. This will create and initialize our
spatial database (deleting the old version if there is one), and populate the spatial_
ref_sys table with a large number of commonly-used spatial references.

[184]

Chapter 6

import os, os.path
from pysqglite2 import dbapi2 as sqglite

if os.path.exists("gshhs-spatialite.db"):
os.remove ("gshhs-spatialite.db")

db = sglite.connect ("gshhs-spatialite.db")
db.enable load extension (True)

db.execute ('SELECT load extension("libspatialite.dll")"')
cursor = db.cursor ()

Load the spatialite initialization file into the database.

f = file("init spatialite-2.3.sqgl", "r")
lines = []
for line in f.readlines():

line = line.rstrip()
if len(line) == 0: continue
if line.startswith("--"): continue

if line.startswith ("BEGIN"): continue

if line.startswith("COMMIT"): continue
lines.append(line)

f.close()

cmds = ("".join(lines)) .split(";")

for cmd in cmds:
cursor.execute (cmd)
db.commit ()

M If you are running on Mac OS X, you can skip the db . enable_
Q load_extension(...) and db.execute (' SELECT load_
extension(...) ') statements.

We next need to create our database table. This is done in almost exactly the same
way as our PostGIS version:

cursor.execute ("DROP TABLE IF EXISTS gshhs")
cursor.execute ("CREATE TABLE gshhs (" +
"id INTEGER PRIMARY KEY AUTOINCREMENT, " +
"level INTEGER)")
cursor.execute ("CREATE INDEX gshhs level on gshhs(level)")

cursor.execute ("SELECT AddGeometryColumn ('gshhs', 'geom', " +
"4326, 'POLYGON', 2)")
cursor.execute ("SELECT CreateSpatialIndex('gshhs', 'geom')")

db.commit ()

[185]

GIS in the Database

Loading the contents of the Shapefile into the database is almost the same as the
other versions of our program:

import os.path
from osgeo import ogr

for level in [1, 2, 3, 4]:
fName = os.path.join("GSHHS 1",
"GSHHS 1 L"+str(level)+".shp")

shapefile = ogr.Open (fName)
layer = shapefile.GetLayer (0)
for i in range(layer.GetFeatureCount()) :

feature = layer.GetFeature (i)

geometry = feature.GetGeometryRef ()

wkt = geometry.ExportToWkt ()

cursor.execute ("INSERT INTO gshhs (level, geom) " +
"WALUES (?, GeomFromText (?, 4326))",
(level, wkt))

db.commit ()

We've now reached the point where we want to search through the database for the
desired polygon. Here is how we can do this in SpatiaLite:

import shapely.wkt

LONDON = 'POINT(-0.1263 51.4980)"'
pt = shapely.wkt.loads (LONDON)

cursor.execute ("SELECT id, level,AsText (geom) " +
"FROM gshhs WHERE id IN " +
" (SELECT pkid FROM idx gshhs geom" +
" WHERE xmin <= ? AND ? <= xmax" +
" AND ymin <= ? and ? <= ymax) " +
"AND Contains (geom, GeomFromText (?, 4326))",
(pt.x, pt.x, pt.y, pt.y, LONDON))

shoreline = None
for id,level,wkt in cursor:
if level ==
shoreline = wkt

Because SpatiaLite's query optimizer doesn't use spatial indexes by default, we have
to explicitly include the idx_gshhs_geom index in our query. Notice, however, that
this time we aren't using Shapely to extract the polygon to see if the point is within
it. Instead, we are using SpatiaLite's Contains () function directly to do the full
polygon check directly within the query itself, after doing the bounding-box check
using the spatial index.

[186]

Chapter 6

This query is complex, but in theory should produce a fast and accurate result.
Following the recommended best practice, we want to check our query by asking
SpatiaLite's query optimizer how the query will be processed. This will tell us if we
have written the query correctly.

Unfortunately, depending on how your copy of SpatiaLite was installed, you may
not have access to the SQLite command line. So, instead, let's call the EXPLAIN QUERY
PLAN command from Python:

cursor.execute ("EXPLAIN QUERY PLAN " +
"SELECT id, level, AsText (geom) " +
"FROM gshhs WHERE id IN " +
" (SELECT pkid FROM idx gshhs geom" +
" WHERE xmin <= ? AND ? <= xmax" +
" AND ymin <= ? and ? <= ymax) " +
"AND Contains (geom, GeomFromText (?, 4326))",
(pt.x, pt.x, pt.y, pt.y, LONDON))

for row in cursor:

print row

Running this tells us that the SpatiaLite query optimizer will use the spatial index
(along with the table's primary key) to quickly identify the features that match by
bounding box:

(0, 0, 'TABLE gshhs USING PRIMARY KEY')
(0, 0, 'TABLE idx gshhs geom VIRTUAL TABLE INDEX 2:BaDbBcDd')

Note that there is a bug in SpatiaLite that prevents it from using both a
M spatial index and an ordinary B*Tree index in the same query. This is why
Q our Python program asks SpatiaLite to refurn the level value, and then
checks for the level explicitly before identifying the shoreline, rather than
simply embedding AND (level=1) in the query itself.

Now that we have the shoreline, saving it to a text file is again trivial:

f = file("uk-shoreline.wkt", "w")
f.write (shoreline)
f.close()

[187]

GIS in the Database

Speed comparisons

Now that we have three separate programs, all of which perform the same non-trivial
operation, let's see how they compare. All three versions successfully insert all 10,719
features from the GSHHS dataset into their respective databases, search that database
for the shoreline polygon that surrounds the LONDON point, and save the result in WKT
format to a text file.

While the results are the same in each case, it is interesting to compare the time taken
by each of the three versions of this program:

10

Time Taken
(seconds)

MySQL.py PostGIS.py Spatialite.py

As you can see, MySQL was the slowest of the three databases, PostGIS performs
better, and SpatiaLite is surprisingly fast. Of course, we are only measuring one
value for each program (the total running time), which includes the time taken to set
up the database, the time taken to import all the data, and the time taken to perform
the search. We also are not taking into account how well the databases would scale
to handle larger volumes of data.

Despite these caveats, the numbers do tell us something meaningful. Combined with
what we have learned by using these three databases, we can surmise that:

e MySQL is easy to use, widely deployed, and can be used as a capable spatial
database, though it tends to be relatively slow and has limited capabilities.

e PostGIS is the workhorse of open source geo-spatial databases. It is relatively
fast and scales well, and has more capabilities than any of the other databases
we have examined. At the same time, PostGIS has a reputation for being hard
to set up and administer, and may be overkill for some applications.

e SpatiaLite is surprisingly fast and capable, though it is tricky to use well and
has its fair share of quirks and bugs.

[188]

Chapter 6

Which database you choose to use, of course, depends on what you are trying to
achieve, as well as factors such as which tools you have access to on your particular
server, and your personal preference for which of these databases you want to work
with. Whichever database you choose, you can be confident that it is more than
capable of meeting your spatial database needs.

Summary

In this chapter, we have taken an in-depth look at the concept of storing spatial data
in a database, and examined three of the principal open source spatial databases. We
have seen:

That spatial databases differ from ordinary relational databases in that they
directly support spatial data types, spatial queries, and spatial joins.

That spatial indexes generally make use of R-Tree data structures to
represent nested hierarchies of bounding boxes.

That spatial indexes can be used to quickly find geometries based on their
position in space, as well as for performing spatial comparisons between
geometries based on their bounding boxes.

That MySQL, the world's most popular open source database, has spatial
capabilities built-in, though with some limitations.

That PostGIS is considered to be the powerhouse of spatial databases, built
on top of the PostgreSQL open source database engine.

That SpatiaLite is an extension to the SQLite serverless database, with a large
number of spatial capabilities built-in.

That it is important to store the spatial reference for a feature, in the form of
an SRID value, directly in the database.

That you need to choose the appropriate spatial reference for your data,
depending on how much the Earth's surface your data will cover, and what
you intend to do with it.

That you should avoid creating geometries and performing transformations
on-the-fly as these kill the performance of your database queries.

That you need to be clever in the way you use spatial indexes to speed up
your queries.

That you need to have an intimate understanding of your database's query
optimizer, as well as any quirks or bugs in your database that may affect the
way queries are executed.

[189]

GIS in the Database

That you can use the EXPLAIN command to see how your database will
actually go about performing a given query, and to ensure that your query is
structured correctly to make use of the available indexes.

That PostGIS needs to have the vAcUUM ANALYZE command run periodically
on the database so that the query optimizer can choose the best approach to
take for a given query.

That SpatiaLite does not automatically use a spatial index, though it can be
used explicitly in your queries to great effect.

That MySQL tends to be the slowest but easiest-to-use of the spatial
databases, PostGIS is a workhorse that scales well, and SpatiaLite can be
surprisingly fast, but is quirky and suffers from bugs.

That all three spatial databases are powerful enough to use in complex, real-
world geo-spatial applications, and that the choice of which database to use
often comes down to personal preference and availability.

In the next chapter, we will look at how we can use spatial databases to solve a variety
of geo-spatial problems while building a sophisticated geo-spatial application.

[190]

Working with Spatial Data

In this chapter, we will apply and build on the knowledge we have gained in
previous chapters to create a hypothetical web application called DISTAL (Distance-
based Identification of Shorelines, Towns And Lakes). In the process of building this
application, we will learn how to:

e Work with substantial amounts of geo-spatial data stored in a database

e Perform complex spatial database queries

¢ Deal with accurate distance-based calculations and limiting queries by
distance

e Review and improve an application's design and implementation

e Handle usability, quality, performance, and scalability issues

About DISTAL

The DISTAL application will have the following basic workflow:

e The user starts by selecting the country they wish to work with:

Afghanistan &
Algeria

American Samoa

Andorra

Angola

Anguilla

Antarctica

Antigua and Barbuda

Argentina v

Working with Spatial Data

e A simple map of the country is displayed:

e The user selects a desired radius in miles, and clicks on a point within the
country:

Albania

Select all features within 10 miles of a point.

Click on the map to identify your starting point:

[192]

Chapter 7

The system identifies all the cities and towns within the given radius

of that point:
Cities/Towns: Cities/Towns
in Search Radius:
!
Ballabag
Ballaban
Ballabarrisi |
! |
Bashah Khel
Bashakul' !
i > Ballaban
Bilabri llaje > Bashaj
Bilac > Bilac
Bilachi > Bramush
i > Brataj
Bramu i
Bramush
Bramwell
i .
Brata '
Brataj
Bratan

Zyzdrojowy Piecek

[193]

Working with Spatial Data

o Finally, the resulting features are displayed at a higher resolution for the user
to view or print:

Albania

While we haven't yet looked at the map-rendering and user-interface aspects

of geo-spatial applications, we do know enough to proceed with a very simple
implementation of the DISTAL system. In this implementation, we will make use of
basic CGI scripts and a "black box" map-generator module, while focussing on the
data storage and manipulation aspects of the DISTAL application.

Note that Chapter 8, Using Python and Mapnik to Generate Maps will look at the details
of generating maps using the Mapnik map-rendering toolkit, while Chapter 9, Web
Frameworks for Python Geo-Spatial Development will look at the user-interface aspects
of building a sophisticated web-based geo-spatial application. If you wanted to,

you could rewrite the DISTAL implementation using the information in the next
two chapters to produce a more robust and fully-functioning version of the DISTAL
application that can be deployed on the Internet.

[194]

Chapter 7

Designing and building the database

Let's start our design of the DISTAL application by thinking about the various pieces
of data it will require:

e Alist of every country. Each country needs to include a simple boundary
map that can be displayed to the user.

e Detailed shoreline and lake boundaries worldwide.

e Alist of all major cities and towns worldwide. For each city /town, we need
to have the name of the city/town and a point representing the location of
that city or town.

Fortunately, this data is readily available:

e Country lists and outlines are included in the World Borders Dataset.

e Shoreline and lake boundaries (as well as other land-water boundaries such
as islands within lakes) are readily available using the GSHHS shoreline
database.

e City and town data can be found in two places: the Geonames Database

provides official place-name data for the United States, while the GEOnet
Names Server provides similar data for the rest of the world.

Looking at these datasources, we can start to design the database schema for the
DISTAL system:

= = e

id id id
name level name
outline outline position

The 1evel field in the shorelines table corresponds to the level value
+ in the GSHHS database: 1 = coastline, 2 = lake, 3 = island-in-lake, and 4
= pond-on-island-in-lake. All of these features, including the lake and
e shoreline outlines, will be stored in a single database table which we will
name shorelines.

While this is very simple, it's enough to get us started. Let's use this schema to create
our database, first in MySQL:

import MySQLdb
connection = MySQLdb.connect (user="...", passwd="...")
cursor = connection.cursor ()

[195]

Working with Spatial Data

cursor.execute ("DROP DATABASE IF EXISTS distal")
cursor.execute ("CREATE DATABASE distal")
cursor.execute ("USE distal")

cursor.execute ("""
CREATE TABLE countries (
id INTEGER AUTO_INCREMENT PRIMARY KEY,
name CHAR (255) CHARACTER SET utf8 NOT NULL,
outline POLYGON NOT NULL,

SPATIAL INDEX (outline))

nn ll)

cursor.execute ("""
CREATE TABLE shorelines (
id INTEGER AUTO_INCREMENT PRIMARY KEY,
level INTEGER NOT NULL,
outline POLYGON NOT NULL,

SPATIAL INDEX (outline))

nn ll)

cursor.execute ("""
CREATE TABLE places (
id INTEGER AUTO INCREMENT PRIMARY KEY,
name CHAR (255) CHARACTER SET utf8 NOT NULL,
position POINT NOT NULL,

SPATIAL INDEX (position))

nn ll)

connection.commit ()

* Note that we define the country names and placename fields to use UTE-8
% character encoding. This allows us to store non-English names into these
"~ fields.

The same code in PostGIS would look like this:

import psycopg2

connection = psycopg?2.connect ("dbname=... user=...")
cursor = connection.cursor ()

cursor.execute ("DROP TABLE IF EXISTS countrieg")
cursor.execute ("""
CREATE TABLE countries (
id SERIAL,
name VARCHAR (255),

PRIMARY KEY (id))

[196]

Chapter 7

nn n)

cursor.execute ("""
SELECT AddGeometryColumn ('countries', 'outline',
4326, 'POLYGON', 2)
mew)
cursor.execute ("""
CREATE INDEX countryIndex ON countries
USING GIST (outline)

nn n)

cursor.execute ("DROP TABLE IF EXISTS shorelines")
cursor.execute ("""
CREATE TABLE shorelines (
id SERIAL,
level INTEGER,

PRIMARY KEY (id))
nn n)
cursor.execute ("""
SELECT AddGeometryColumn ('shorelines', 'outline',
4326, 'POLYGON', 2)
nn n)
cursor.execute ("""
CREATE INDEX shorelineIndex ON shorelines
USING GIST (outline)

nn n)

cursor.execute ("DROP TABLE IF EXISTS places")
cursor.execute ("""
CREATE TABLE places (
id SERIAL,
name VARCHAR (255),

PRIMARY KEY (id))
nn n)
cursor.execute ("""
SELECT AddGeometryColumn ('places', 'position',
4326, 'POINT', 2)
nn n)
cursor.execute ("""
CREATE INDEX placeIndex ON places
USING GIST (position)

nn n)

connection.commit ()

[197]

Working with Spatial Data

. Notice how the PostGIS version allows us to specify the SRID value for
% the geometry columns. We'll be using the WG84 datum and unprojected
= lat/long coordinates for all our spatial data, which is why we specified

SRID 4326 when we created our geometries.

And, finally, using SpatiaLite:

from pysglite2 import dbapi2 as sglite

if os.path.exists("distal.db"):

os.remove ("distal.db")
db = sglite.connect ("distal.db")
db.enable load extension (True)
db.execute ('SELECT load extension("...")')
cursor = db.cursor ()

Load the SpatialLite init file into our database.

f = file("init_ spatialite-2.3.sqgl", "r")
lines = []

for line in f.readlines():

line = line.rstrip()
if len(line) == 0: continue
if line.startswith("--"): continue

if line.startswith("BEGIN"): continue
if line.startswith ("COMMIT") : continue
lines.append(line)

f.close()

cmds = ("".join(lines)) .split(";")

for cmd in cmds:
cursor.execute (cmd)

db.commit ()

Create the database tables.

cursor.execute ("DROP TABLE IF EXISTS countries")
cursor.execute ("""
CREATE TABLE countries (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name CHAR (255))
m)
cursor.execute ("""
SELECT AddGeometryColumn ('countries', 'outline',
4326, 'POLYGON', 2)

nn ll)

cursor.execute ("""

[198]

Chapter 7

SELECT CreateSpatialIndex('countries', 'outline')

nun)

cursor.execute ("DROP TABLE IF EXISTS shorelines")
cursor.execute ("""
CREATE TABLE shorelines (
id INTEGER PRIMARY KEY AUTOINCREMENT,
level INTEGER)
m)
cursor.execute ("""
SELECT AddGeometryColumn ('shorelines', 'outline',
4326, 'POLYGON', 2)
m)
cursor.execute ("""
SELECT CreateSpatialIndex('shorelines', 'outline')

)
cursor.execute ("DROP TABLE IF EXISTS places")
cursor.execute ("""
CREATE TABLE places (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name CHAR (255))

nnn)

CurSOr_execute(nnu
SELECT AddGeometryColumn ('places', 'position',
4326, 'POINT', 2)

nnn)

CurSOr_execute(nnu
SELECT CreateSpatialIndex('places', 'position')

nnn)

db.commit ()

Now that we've set up our database, let's get the data we need for the DISTAL
application.

Downloading the data

As mentioned in the previous section, the DISTAL application will make use of four
separate sets of freely-available geo-spatial data:

e The World Borders Dataset

¢ The high-resolution GSHHS shoreline database

e The Geonames Database of U.S. placenames

e The GEONet Names Server's list of non-U.S. placenames.

[199]

Working with Spatial Data

For more information on these sources of data, please refer to Chapter 4,
= Sources of Geo-Spatial Data

To keep track of the data as we download it, create a directory named something like
DISTAL-data. Then, it's time to download the information we need.

World Borders Dataset

If you haven't already done so, download the World Borders Dataset from:

http://thematicmapping.org/downloads/world borders.php

When you decompress the TM_WORLD_BORDERS-0.3.zip archive, you will end up
with a folder containing the World Borders Dataset in Shapefile format. Move this
folder into your DISTAL-data directory.

GSHHS

We next need to download the GSHHS shoreline database in Shapefile format. If you
haven't already downloaded it, the database can be found at:
http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

Decompress the ZIP format archive and move the resulting GSHHS_shp folder (which
itself contains 20 separate Shapefiles) into your DISTAL-data directory.

Geonames

For the database of US placenames, go to: http://geonames.usgs.gov/domestic

Click on the Download Domestic Names hyperlink, and choose the download

all national features in one .zip file option. This will download a file named
NationalFile YYYYMMDD.zip, where YYyYMMDD is the datestamp identifying when
the file was last updated. Once again, decompress the resulting ZIP format archive
and move the NationalFile YYYYMMDD.txt file into your DISTAL-data directory.

GEOnet Names Server

Finally, to download the database of non-US placenames, go to:

http://earth-info.nga.mil/gns/html/cntry files.html

[200]

Chapter 7

Click on the option to download a single compressed ZIP file that contains the entire
country files dataset. This is a large download (300 MB compressed) that contains

all the placename information we need worldwide. The resulting file will be named
geonames_dd_dms_date_YYYYMMDD. zip, where once again YYYMMDD is the datestamp
identifying when the file was last updated.

\ Don't get confused by names here: we go to the Geonames website to
~ download a file named NationalFile, and to the GEOnet Names
Q Server to download a file named geonames. From now on, we'll refer to
the name of the file rather than the website it came from.

Decompress the ZIP format archive, and move the resulting geonames_dd_dms_
date_YYYYMMDD. txt file into the DISTAL-data directory.

Importing the data

We are now ready to import our four sets of data into the DISTAL database. We
will be using the techniques discussed in Chapter 3, Python Libraries for Geo-Spatial
Development and Chapter 5, Working with Geo-Spatial Data in Python to read the data
from these data sets, and then insert them into the database using the techniques we
discussed in Chapter 6, GIS in the Database.

Let's work through each of these files in turn.

World Borders Dataset

The World Borders Dataset consists of a Shapefile containing the outline of each
country along with a variety of metadata, including the country's name in Latin-1
character encoding. We can import this directly into our countries table using the
following Python code for MySQL.:

import os.path

import MySQLdb

import osgeo.ogr

connection = MySQLdb.connect (user="...", passwd="...")
cursor = connection.cursor ()

cursor.execute ("USE distal")
cursor.execute ("DELETE FROM countries")
cursor.execute ("SET GLOBAL max_ allowed packet=50000000")

srcFile = os.path.join("DISTAL-data", " TM_WORLD_BORDERS-0.3",
"TM_WORLD BORDERS-0.3.shp")

shapefile = osgeo.ogr.Open(srcFile)

layer = shapefile.GetLayer (0)

[201]

Working with Spatial Data

for i in range(layer.GetFeatureCount()) :
feature = layer.GetFeature (1)
name = feature.GetField ("NAME") .decode ("Latin-1")
wkt = feature.GetGeometryRef () .ExportToWkt ()

cursor.execute ("INSERT INTO countries (name,outline) " +
"VALUES (%s, PolygonFromText (%s, 4326))",
(name.encode ("utf8"), wkt))

connection.commit ()

The only unusual thing here is the SET GLOBAL max_allowed_packet instruction.
This command (which works with MySQL versions 5.1 and later) allows us to insert
larger geometries into the database. If you are using an earlier version of MySQL,
you will have to edit the my . cnf file and set this variable manually before running
the program.

Notice that we are following the recommended best practice of associating the
spatial reference with the polygon. In most cases, we will be dealing with
unprojected coordinates on the WGS84 datum (SRID 4326), though stating this
explicitly can save us some trouble when we come to dealing with data that uses
other spatial references.

Here is what the equivalent code would look like for PostGIS:

import os.path
import psycopg?2
import osgeo.ogr

connection = psycopg?2.connect ("dbname=... user=...")
cursor = connection.cursor ()

cursor.execute ("DELETE FROM countries")

srcFile = os.path.join("DISTAL-data", "TM_ WORLD BORDERS-0.3",
"TM WORLD BORDERS-0.3.shp")

shapefile = osgeo.ogr.Open(srcFile)

layer = shapefile.GetLayer (0)

for i in range(layer.GetFeatureCount ()) :
feature = layer.GetFeature (i)
name = feature.GetField("NAME") .decode ("Latin-1")
wkt = feature.GetGeometryRef () .ExportToWkt ()

cursor.execute ("INSERT INTO countries (name,outline) " +
"VALUES (%s, ST PolygonFromText (%s, " +
"4326))", (name.encode ("utf8"), wkt))

connection.commit ()

[202]

Chapter 7

And for SpatiaLite:

import os, os.path

from pysqglite2 import dbapi2 as sqglite
import osgeo.ogr

db = sglite.connect ("distal.db")
db.enable load extension (True)

db.execute ('SELECT load extension("...")"')
cursor = db.cursor ()

cursor.execute ("DELETE FROM countries")

srcFile = os.path.join("DISTAL-data", "TM_WORLD BORDERS-0.3",
"TM WORLD BORDERS-0.3.shp")

shapefile = osgeo.ogr.Open(srcFile)

layer = shapefile.GetLayer (0)

for i in range(layer.GetFeatureCount()) :
feature = layer.GetFeature (1)
name = feature.GetField ("NAME") .decode ("Latin-1")
wkt = feature.GetGeometryRef () .ExportToWkt ()

cursor.execute ("INSERT INTO countries (name,outline) " +
"VALUES (?, ST PolygonFromText (?, " +
"4326))", (name, wkt))

db.commit ()

SpatiaLite doesn't know about UTF-8 encoding, so in this case we store
' the country names directly as Unicode strings.

GSHHS

The GSHHS shoreline database consists of five separate Shapefiles defining the
land/water boundary at five different resolutions. For the DISTAL application, we
want to import the four levels of GSHHS data (coastline, lake, island-in-lake, pond-
in-island-in-lake) at full resolution. We can directly import these Shapefiles into the
shorelines table within our DISTAL database.

For MySQL, we use the following code:

import os.path

import MySQLdb

import osgeo.ogr

connection = MySQLdb.connect (user="...", passwd="...")
cursor = connection.cursor ()

[203]

Working with Spatial Data

cursor.execute ("USE distal")
cursor.execute ("DELETE FROM shorelines")
cursor.execute ("SET GLOBAL max_allowed packet=50000000")

for level in [1, 2, 3, 4]:
srcFile = os.path.join("DISTAL-data", "GSHHS shp", "f",
"GSHHS f L" + str(level) + ".shp")
shapefile = osgeo.ogr.Open(srcFile)
layer = shapefile.GetLayer (0)

for i in range(layer.GetFeatureCount()) :
feature = layer.GetFeature (i)
wkt = feature.GetGeometryRef () .ExportToWkt ()

cursor.execute ("INSERT INTO shorelines " +
"(level,outline) VALUES " +
"(%s, PolygonFromText (%$s, 4326))",
(level, wkt))

connection.commit ()

Note that this might take a minute or two to complete as we are importing more
than 180,000 polygons into the database.

The equivalent code for PostGIS would look like this:

import os.path
import psycopg?2
import osgeo.ogr

connection = psycopg?2.connect ("dbname=... user=...")
cursor = connection.cursor ()

cursor.execute ("DELETE FROM shorelines")

for level in [1, 2, 3, 4]:
srcFile = os.path.join("DISTAL-data", "GSHHS shp", "f",
"GSHHS f L" + str(level) + ".shp")
shapefile = osgeo.ogr.Open(srcFile)
layer = shapefile.GetLayer (0)

for i in range(layer.GetFeatureCount()) :
feature = layer.GetFeature (1)
wkt = feature.GetGeometryRef () .ExportToWkt ()

cursor.execute ("INSERT INTO shorelines " +
"(level,outline) VALUES " +
"(%s, ST PolygonFromText (%$s, 4326))",
(level, wkt))

connection.commit ()

[204]

Chapter 7

And using SpatiaLite:

import os.path

from pysqglite2 import dbapi2 as sqglite
import osgeo.ogr

db = sglite.connect ("distal.db")
db.enable load extension (True)

db.execute ('SELECT load extension("...")"')
cursor = db.cursor ()

cursor.execute ("DELETE FROM shorelines")

for level in [1, 2, 3, 4]:
srcFile = os.path.join("DISTAL-data", "GSHHS shp", "f",
"GSHHS f L" + str(level) + ".shp")
shapefile = osgeo.ogr.Open(srcFile)
layer = shapefile.GetLayer (0)

for i in range(layer.GetFeatureCount ()) :
feature = layer.GetFeature (1)
wkt = feature.GetGeometryRef () .ExportToWkt ()

cursor.execute ("INSERT INTO shorelines " +
"(level,outline) VALUES " +
"(?, ST PolygonFromText (?, 4326))",
(level, wkt))

db.commit ()

US placename data

The list of US placenames is stored in the large text file you downloaded named
NationalFile YYYYMMDD.txt (where YYYYMMDD is a timestamp). This is a pipe-
delimited file, meaning that each column is separated by a | character such as this:

FEATURE ID|FEATURE NAME|FEATURE CLASS|...|DATE EDITED
399|Agua Sal Creek|Stream|AZ|..|02/08/1980
400|Agua Sal Wash|Valley|AZ|..|02/08/1980

The first line contains the names of the various fields. Notice the third field in each
line, labelled FEATURE_cLASS. This tells us what type of feature we are dealing with,
in this case a Stream or a Valley. There are a lot of features we don't need for the
DISTAL application, for example the names of bays, beaches, bridges, oilfields, and
so on. In fact, there is only one feature class we are interested in: Populated Place.

[205]

Working with Spatial Data

Each feature includes the latitude and longitude of the associated place, in the 10th
and 11th columns, respectively. According to the documentation, these coordinates
use the NAD83 datum rather than the WGS84 datum used by the other data we are
importing. Unprojected lat/long coordinates in the NAD83 datum have an SRID
value of 4269.

One way of approaching all this would be to create a temporary database table,
import the entire NationalFile YYYYMMDD.txt file into it, extract the features with
our desired feature classes, translate them from NAD83 to WGS84, and finally insert
the features into our places table. However, this approach has two disadvantages:

e It would take a long time to insert all 2+ million features into the database,
when we only want a small percentage of these features in our places table

e MySQL doesn't support on-the-fly transformation of geometries, so we
would have to read the geometry from the database, convert it into an OGR
Geometry object, transform the geometry using OGR, and then convert it
back to WKT format for adding back into the database

To avoid all this, we'll take a slightly different approach:

1. Extract all the features from the file.
2. Ignore features with the wrong feature class.
3. Use pyproj to convert from NADS83 to WGS84.

4. Insert the resulting features directly into the places table.

With the exception of this final step, this approach is completely independent of the
database. This means that the same code can be used regardless of which database
you are using:

import os.path
import pyproj

srcProj = pyproj.Proj (proj='longlat', ellps='GRS80',
datum="'NADS83')

dstProj = pyproj.Proj (proj='longlat', ellps='WGS84',
datum='WGS84"')

f = file(os.path.join("DISTAL-data",
"NationalFile YYYYMMDD.txt"), "r")

heading = f.readline() # Ignore field names.
for line in f.readlines () :

parts = line.rstrip().split("|")

featureName = parts[1]

featureClass = parts|[2]

lat = float (parts[9])

[206]

Chapter 7

long = float (parts[10])

if featureClass == "Populated Place":
long, lat = pyproj.transform(srcProj, dstProj,
long, 1lat)
f.close()

Strictly speaking, the above code is being somewhat pedantic. We
are using pyproj to transform coordinates from NAD83 to WGS84.
. However, the data we are importing is all within the United States, and
% these two datums happen to be identical for points within the United
S States. Because of this, pyproj won't actually change the coordinates at
all. But, we will do this anyway, following the recommended practice
of knowing the spatial reference for our data and transforming when
necessary —even if that transformation is a no-op at times.

We can now add the database-specific code to add the feature into our places table.
For MySQL, this would involve the following:

import MySQLdDb

connection = MySQLdb.connect (user="...", passwd="...")
cursor = connection.cursor ()

cursor.execute ("USE distal")

cursor.execute ("INSERT INTO places " +
" (name, position) VALUES (%s, " +
"GeomFromWKB (Point (%s, %s), 4326))",
(featureName, long, lat))

connection.commit ()

Note that our INSERT statement creates a new Point object out of the translated
latitude and longitude values, and then uses GeomFromwkB () to assign an SRID value
to the geometry. The result is stored into the position column within the places
table.

[207]

Working with Spatial Data

The same code using PostGIS would look like this:

import psycopg?2

connection = psycopg?2.connect ("dbname=... user=...")
cursor = connection.cursor ()

cursor.execute ("SET NAMES 'utfsg'")

cursor.execute ("INSERT INTO places " +
" (name, position) VALUES (%s, " +
"ST MakePoint (%s,%s, 4326)",
(featureName, long, lat))

connection.commit ()

Because the PostGIS function ST _MakePoint () allows us to specify an SRID value
directly, we don't need to use GeomFromWkB to add the SRID after the geometry has
been created.

Finally, the SpatiaLite version would look like this:

from pysqglite2 import dbapi2 as sqglite

db = sglite.connect ("distal.db")
db.enable load extension (True)

db.execute ('SELECT load extension("...")"')
cursor = db.cursor ()

cursor.execute ("INSERT INTO places " +
" (name, position) VALUES "
"(?, MakePoint (?, ?, 4326))",
(featureName, long, lat))

db.commit ()

Worldwide placename data

The list of non-US placenames is stored in the geonames_dd_dms_date YYYYMMDD
file you downloaded earlier. This is a tab-delimited text file in UTF-8 character
encoding, and will look something like this:

RC TUFI ... FULL NAME ND RG NOTE MODIFY DATE
1 -1307834 ... Pavia 1993-12-21
1 -1307889 ... Santa Anna gjgscript 1993-12-21

[208]

Chapter 7

As with the US placename data, there are many more features here than we need for
the DISTAL application. Since we are only interested in the official names for towns
and cities, we need to filter this data in the following way:

e The rc (Feature Classification) field tells us what type of feature we are
dealing with. We want features with an Fc value of p (populated place).

e The NT (Name Type) field tells us the status of this feature's name. We want
names with an NT value of N (approved name).

e The DsG (Feature Designation Code) field tells us the type of feature, in more
detail than the Fc field. A full list of all the feature designation codes can be
found at http://geonames.nga.mil/ggmagaz/feadesgsearchhtml.asp.
We are interested in features with a DSG value of PPL (populated place), PPLA
(administrative capital), or PPLC (capital city).

There are also several different versions of each placename; we want the full name in
normal reading order, which is in the field named FuLL_NAME RO. Knowing this, we
can write some Python code to extract the features we want from the file:

f = file(os.path.join("DISTAL-data",

"geonames dd _dms date YYYYMMDD.txt"),

nypn)

heading = f.readline() # Ignore field names.
for line in f.readlines () :
parts = line.rstrip() .split("\t")
lat = float (parts([3])
long = float (parts[4])
featureClass = parts[9]
featureDesignation = parts[10]
nameType = parts[17]

featureName = parts[22]

if (featureClass == "P" and nameType == "N" and
featureDesignation in ["PPL", "PPLA", "PPLC"]):

f.close()

Now that we have the name, latitude, and longitude for each of the features we
want, we can re-use the code from the previous section to insert these features into
the database. For example, for MySQL we would do the following:

import MySQLdb

connection = MySQLdb.connect (user="...", passwd="...")
cursor = connection.cursor ()

cursor.execute ("USE distal")

[209]

Working with Spatial Data

cursor.execute ("INSERT INTO places " +
" (name, position) VALUES (%s, " +
"GeomFromWKB (Point (%s, %s), 4326))",
(featureName, long, lat))

connection.commit ()

M Because we are dealing with worldwide data here, the lat/long
Q values already use the WGS84 datum, so there is no need to
translate the coordinates before adding them to the database.

If you are using PostGIS or SpatiaLite, simply copy the equivalent code from the
previous section. Note that, because there are over two million features we want to
add to the database, it can take several minutes for this program to complete.

Implementing the DISTAL application

Now that we have the data, we can start to implement the DISTAL application itself.
To keep things simple, we will use CGI scripts to implement the user-interface.

CGI scripts aren't the only way we could implement the DISTAL
application. Other possible approaches include using web
. application frameworks such as TurboGears or Django, using
% AJAX to write your own dynamic web application, or even using
L tools such as Pyjamas (http://pyjs.org) to compile Python

code into JavaScript. All of these approaches, however, are more
complicated than CGI, and we will be making use of CGI scripts in
this chapter to keep the code as straightforward as possible.

Let's take a look at how our CGI scripts will implement the DISTAL application's
workflow:

[210]

Chapter 7

As you can see, there are three separate CGI scripts: selectCountry.py,

selectCountry.py

selectArea.py

Generate
low-resolution map
of selected country

y

Display the

showResults.py

lat/long coordinate

A

Identify placenames
within search radius

y i
Generate high- i

resolution map
showing search
results

A 4

Display the
generated map

Display country list \
e e e e e e .

generated map \
Calculate clicked-on /

User selects
desired country

User enters search
radius and clicks on
desired start point

selectArea.py, and showResults.py, each implementing a distinct part of the
DISTAL application. Let's work through the implementation of each of these scripts

in turn.

[211]

Working with Spatial Data

What is a CGI Script?

While the details of writing CGI scripts is beyond the scope of this book,
the basic concept is to print the raw HTML output to stdout, and to
process CGI parameters from the browser using the built-in cgi module.
For more information, see one of the CGI tutorials commonly available
on the Internet, for example: http://wiki.python.org/moin/
CgiScripts.
If you don't already have a web server capable of running CGI scripts,
it's trivial to set one up —simply copy the following code into a Python
program, which we will call webServer.py:
import BaseHTTPServer
\l import CGIHTTPServer

-~
Q address = ('', 8000)
handler = CGIHTTPServer.CGIHTTPRequestHandler

server = BaseHTTPServer.HTTPServer (address, handler)
server.serve forever()

Then, in the same directory as the webServer . py program, create a sub-
directory named cgi-bin. This sub-directory will hold the various CGI
scripts you create.

Running webServer . py will set up a web server at
http://127.0.0.1:8000 that will execute any CGI scripts you
place into the cgi -bin sub-directory. So, for example, to access the
selectCountry.py script, you would enter the following URL
into your web browser: http://127.0.0.1:8000/cgi-bin/
selectCountry.py

The "Select Country” script

The task of the selectCountry.py script is to display a list of countries to the
user so that the user can choose a desired country, which is then passed on to the
selectArea.py script for further processing.

Here is what the selectCountry.py script's output will look like:

[212]

Chapter 7

Afghanistan £y
Albania]
Algeria

American Samoa

Andorra

Angola

Anguilla

Antarctica

Antigua and Barbuda

Argentina v

| OK

This CGI script is very basic: we simply print out the contents of the HTML page that
lets the user choose a country from a list of country names:

print 'Content-Type: text/html; charset=UTF-8\n\n'
print '<htmls>'

print '<heads><title>Select Country</title></heads>'
print '<body>'

print '<form method="POST" action="selectArea.py">'
print '<select name="countryID" size="10">'

cursor.execute ("SELECT id,name FROM countries ORDER BY name")
for id,name in cursor:
print '<option value="'+str (id)+'">'+name+'</options>'

print '</select>'

print '<p>'

print '<input type="submit" value="OK">'
print '</forms'

print '</bodys>'

print '</htmls>'

Note that the code to access the database is the same for MySQL, PostGIS, and
SpatialLite, so this script will work the same on all three databases.

[213]

Working with Spatial Data

A Crash Course in HTML Forms

If you haven't used HTML forms before, don't panic. They are quite
straightforward, and if you want you can just copy the code from the
examples given here. The following brief overview may also help you to
understand how these forms work.

An HTML form is surrounded by <form> and </form> tags defining the
start and end of the form's definition. The action="..." attribute tells
the browser where to send the submitted data, and the method="..."
attribute tells the browser how to submit the data. In this case, we

are setting up a form that will use an HTTP POST request to send the
submitted form parameters to a CGI script named selectArea.py.

The contents of a form are made up of ordinary HTML elements, such as
textual labels and images, combined with special form-specific elements.
There are two types of form-specific elements we are interested in here:
the <select> element, which displays a list of the available countries,
and the <input > element, which in this case displays an OK button.

For each country, the <select> element includes an <opt ion> element
listing the name of the country and its associated record ID. When the
user selects a country (by choosing that country's name from the list), the
associated record ID will be submitted as a parameter named countryID
when the user clicks on the OK button.

The "Select Area” script

The next part of the DISTAL application is selectArea.py. This script generates
a web page that displays a simple map of the selected country. The user can enter
a desired search radius and click on the map to identify the starting point for the
DISTAL search:

[214]

Chapter 7

Albania
Select all features within 10 miles of a point.

Click on the map to identify your starting point:

In order to display a map like this, we need to use a map renderer to convert the raw
geo-spatial data into an image file. Map rendering using the Mapnik toolkit will be
covered in detail in Chapter 8, Using Python and Mapnik to Generate Maps; for now,

we are going to create a standalone mapGenerator.py module which does the map
rendering for us so that we can focus on the other aspects of the DISTAL application.

There are four parts to generating a map:
1. Calculating the bounding box which defines the portion of the world to be
displayed.
Calculating the map's dimensions.
Setting up the datasource.

Rendering the map image.

Let's look at each of these in turn.

Calculating the bounding box

Before we can show the selected country on a map, we need to calculate the
bounding box for that country — that is, the minimum and maximum latitude and
longitude values. Knowing the bounding box allows us to draw a map centered over
the desired country. If we didn't do this, the map would cover the entire world.

[215]

Working with Spatial Data

Given the internal record ID for a country, we can use the following code to retrieve
the bounding box:

cursor.execute ("SELECT AsText (Envelope (outline)) " +
"FROM countries where id=%s", (countryID,))
row = cursor.fetchone ()
if row != None:
envelope = shapely.wkt.loads (row[0])
minLong,minLat, maxLong,maxLat = envelope.bounds

This code uses MySQL. For PostGIS, replace AsText with ST _AsText
L and Envelope with ST Envelope. For SpatiaLite, replace %s with 2.

The AsText (Envelope (outline)) expression calculates the bounding box for the
selected country (in the form of a Polygon object), and retrieves it in WKT format.
Note that we convert the WKT text into a Shapely Geometry object, which allows us
to retrieve the minimum and maximum lat/long values using envelope.bounds.

Calculating the map's dimensions

The bounding box isn't useful only to zoom in on the desired part of the map. It also
helps us to correctly define the map's dimensions. Notice that the previous map of
Albania shows the country as being taller than it is wide. If you were to naively draw
this map as a square image, Albania would end up looking like this:

[216]

Chapter 7

Even worse, Chile would look like this:

rather than:

This is a slight simplification; the mapping toolkits generally
% do try to preserve the aspect ratio for a map, but their
L~ behavior is unpredictable and means that you can't identify

the lat/long coordinates for a clicked-on point.

[217]

Working with Spatial Data

To display the country correctly, we need to calculate the country's aspect ratio (its
width as a proportion of its height) and then calculate the size of the map image
based on this aspect ratio, while limiting the overall size of the image so that it can fit
within a web page. Here's the necessary code:

MAX WIDTH = 600
MAX HEIGHT = 400

width = float (maxLong - minLong)
height = float (maxLat - minLat)
aspectRatio = width/height
mapWidth = MAX WIDTH
mapHeight = int (mapWidth / aspectRatio)
if mapHeight > MAX HEIGHT:
Scale the map to fit.
scaleFactor = float (MAX HEIGHT) / float (mapHeight)
mapWidth = int (mapWidth * scaleFactor)
mapHeight = int (mapHeight * scaleFactor)

Doing this means that the map is correctly sized to reflect the dimensions of the
country we are displaying.

Setting up the datasource

The datasource tells the map generator how to access the underlying map data.
How datasources work is beyond the scope of this chapter; for now, we are simply
going to set up the required datasource dictionary and related files so that we can
generate our map. Note that the contents of this dictionary will vary depending on
which database you are using, as well as which table you are trying to access; in this
case, we are trying to display selected features from the countries table.

MySQL

To render maps using data in a MySQL database, you have to set up a special file
called a "virtual datasource" to tell the map generator how to access the data. Create
a file named countries.vrt in the same directory as your main script, and enter the
following into this file:

<OGRVRTDataSource>
<OGRVRTLayer name="countries">
<SrcDataSource>MYSQL:distal, user=USER, passwd=PASS
tables=countries</SrcDataSources>
<SrcSQL>SELECT id,outline FROM countries</SrcSQL>
</OGRVRTLayer>
</OGRVRTDataSource>

[218]

Chapter 7

Don't forget to replace USER with the username and pass with the password used to
access your MySQL database. Also, make sure all the text from <SrcDataSources to
</SrcDataSource> is on a single line.

Now that we have the virtual datasource file, we can go ahead and set up the MySQL
datasource dictionary using the following code:

vrtFile = os.path.join(os.path.dirname(file),
"countries.vrt")

datasource = {'type' : "OGR",
'file! : vrtFile,
'layer' : "countries"}

Note that we use Python's file global to avoid having to hardwire
% paths into the script. This assumes that the countries. vrt file is in the
’ same directory as the CGI script.

PostGIS
Setting up the datasource dictionary for a PostGIS database is straightforward:
datasource = {'type' : "PostGIS",
'dbname' : "distal",
'table' : "countries",
'user' : "USER",
'password' : "PASS"}

Obviously, you should replace USEr and pASs with the username and password
used to access your PostGIS database.

SpatialL.ite
Obtaining map data from a SpatiaLite database is also straightforward. The only

trick is that we have to include the full path to the SpatiaLite database file, so we
use _ file_ toavoid hardcoding path names into our script:

dbFile = os.path.join(os.path.dirname(_ file),

"distal.db")
datasource = {'type' : "SQLite",
'file! : dbFile,
'table' : "countries",
'geometry field' : "outline",
'key field' ;o ovidn}

[219]

Working with Spatial Data

Rendering the map image

With the bounding box, the map's dimensions, and the datasource all set up, we
are finally ready to render the map into an image file. This is done using a single
function call:

imgFile = mapGenerator.generateMap (datasource,
minLong, minlLat,
maxLong, maxLat,
mapWidth, mapHeight,
"[id] = "+str(countryID))

Note that our datasource has been set up to display features from the countries
table, and that " [id] = "+str (countryID) is a "highlight expression" used
to visually highlight the country with the given ID.

The mapGenerator.generateMap () function returns a reference to a PNG-format
image file containing the generated map. This image file is stored in a temporary
directory, and the file's relative pathname is returned to the caller. This allows us
to use the returned imgFile directly within our CGI script, like this:

print 'Content-Type: text/html; charset=UTF-8\n\n'

print '<htmls>'

print '<heads><title>Select Area</title></head>’

print '<body>"

print '' + name + ''

print '<p>'

print '<form method="POST" action="...">'

print 'Select all features within'

print '<input type="text" name="radius" value="10" size="2">'
print 'miles of a point.'

print '<p>'

print 'Click on the map to identify your starting point:'
print '
!'

print '<input type="image" src="' + imgFile + '" ismap>'
print '<input type="hidden" name="countryID"'

print ' value=""' + str(countryID) + '">'

print '<input type="hidden" name="mapWidth"'

print ' value=""' + str(mapWidth) + '">'

print '<input type="hidden" name="mapHeight"'

print ' value=""' + str(mapHeight) + '">'

print '</form>'

print '</body></html>"

[220]

Chapter 7

The <input type="hidden"> lines define "hidden form fields"
that pass information on to the next CGI script. We'll discuss how
this information is used in the next section.

The use of <input type="image" src="..." ismap> in this CGI script has the
interesting effect of making the map clickable: when the user clicks on the image, the
enclosing HTML form will be submitted with two extra parameters named x and y.
These contain the coordinate within the image that the user clicked on.

This completes the selectarea.py CGI script. Before it will run, you will also need
to download or type in the mapGenerator.py module, the source code of which is
given below:

mapGenerator.py

import os, os.path, sys, tempfile
import mapnik

def generateMap (datasource, minX, minY, maxX, maxy,

mapWidth, mapHeight,
hiliteExpr=None, background="#8080a0",
hiliteLine="#000000", hiliteFill="#408000",
normallLine="#404040", normalFill="#a0alal0",
points=None) :

srcType = datasource(['type']

del datasource['type'l

if srcType == "OGR":

source = mapnik.Ogr (**datasource)
elif srcType == "PostGIS":

source = mapnik.PostGIS (**datasource)
elif srcType == "SQLite":

source = mapnik.SQLite (**datasource)
layer = mapnik.Layer ("Layer")
layer.datasource = source
map = mapnik.Map (mapWidth, mapHeight,

'+proj=longlat +datum=WGS84')

map .background = mapnik.Color (background)
style = mapnik.Style()
rule = mapnik.Rule ()
if hiliteExpr != None:

rule.filter = mapnik.Filter (hiliteExpr)

rule.symbols.append (mapnik.PolygonSymbolizer (
mapnik.Color (hiliteFill)))

[221]

Working with Spatial Data

rule.symbols.append (mapnik.LineSymbolizer (
mapnik.Stroke (mapnik.Color (hiliteLine), 0.1)))

style.rules.append (rule)

rule = mapnik.Rule ()
rule.set else(True)

rule.symbols.append (mapnik.PolygonSymbolizer (
mapnik.Color (normalFill)))

rule.symbols.append (mapnik.LineSymbolizer (
mapnik.Stroke (mapnik.Color (normallLine), 0.1)))

style.rules.append (rule)

map.append style("Map Style", style)
layer.styles.append("Map Style")
map.layers.append (layer)

if points != None:
pointDatasource = mapnik.PointDatasource ()
for long,lat,name in points:
pointDatasource.add point (long, lat, "name", name)

layer = mapnik.Layer ("Points")
layer.datasource = pointDatasource

style = mapnik.Style()
rule = mapnik.Rule ()

pointImgFile = os.path.join(os.path.dirname(file),
"point.png")
shield = mapnik.ShieldSymbolizer (
"name", "DejaVu Sans Bold", 10,
mapnik.Color ("#000000"),
pointImgFile, "png", 9, 9)
shield.displacement (0, 7)
shield.unlock image = True
rule.symbols.append (shield)

style.rules.append (rule)

map.append style("Point Style", style)
layer.styles.append ("Point Style")

map.layers.append (layer)
map.zoom to box (mapnik.Envelope (minX, minY, maxX, maxY))

scriptDir = os.path.dirname(file)
cacheDir = os.path.join(scriptDir, "..", "mapCache")
if not os.path.exists(cacheDir) :

os.mkdir (cacheDir)

[222]

Chapter 7

fd,filename = tempfile.mkstemp (".png", dir=cacheDir)
os.close (fd)

mapnik.render to file(map, filename, "png")

return "../mapCache/" + os.path.basename (filename)

We won't be explaining how this module works here. For
more information on Mapnik, please refer to Chapter 8, Using
Python and Mapnik to Generate Maps.

Before you can run this CGI script, you need to have Mapnik installed. The Mapnik
toolkit can be found at: http://mapnik.org

If you are running Mac OS X and don't wish to compile Mapnik yourself from source,
a pre-built version can be downloaded from: http://dbsgeo. com/downloads

You will also need to have a small image file, named point . png, which is used to
mark placenames on the map. This 9 x 9 pixel image looks like this:

Place this file into the same directory as the mapGenerator.py module itself.

The "Show Results" script

The final CGI script is where all the work is done. We take the (x,y) coordinate the
user clicked on, along with the entered search radius, convert the (x,y) coordinate
into a longitude and latitude, and identify all the placenames within the specified
search radius. We then generate a high-resolution map showing the shorelines and
placenames within the search radius, and display that map to the user.

Let's examine each of these steps in turn.

Identifying the clicked-on point

The selectArea.py script generated an HTML form that was submitted when the
user clicked on the low-resolution country map. The showResults.py script then
receives the form parameters, including the x and y coordinates of the point the user
clicked on.

By itself, this coordinate isn't very useful as it is the pixel coordinate within the map
image. We need to translate the submitted (x,y) pixel coordinate into a latitude and
longitude value corresponding to the clicked-on point on the Earth's surface.

[223]

Working with Spatial Data

To do this, we need to have the following information:

e The map's bounding box in geographic coordinates: minLong, minLat,

maxLong, and maxLat

e The map's size in pixels: mapWidth and mapHeight
These variables were all calculated in the previous section and passed to us using
hidden form variables, along with the country ID, the desired search radius, and
the (x,y) coordinate of the clicked-on point. We can retrieve all of these using the
cgi module:

import cgi

form = cgi.FieldStorage ()

countryID = int (form['countryID'] .value)

radius = int (form['radius'] .value)

X = int (form['x'] .value)

y = int (form['y'] .value)

mapWidth = int (form['mapWidth'] .value)
[

mapHeight

int (form['mapHeight '] .value)

With this information, we can now calculate the latitude and longitude that the user
clicked on. To do this, we first calculate how far across the image the user clicked, as
a number in the range 0..1:

XFract = float (x)/float (mapWidth)

An xFract value of 0.0 corresponds to the left side of the image, while an xFract
value of 1.0 corresponds to the right side of the image. We then combine this with
the minimum and maximum longitude values to calculate the longitude of the
clicked-on point:

longitude = minLong + xFract * (maxLong-minLong)
We then do the same to convert the Y coordinate into a latitude value:

yFract = float (y)/float (mapHeight)
latitude = minLat + (l-yFract) * (maxLat-minLat)

Note that we are using (1-yFract) rather than yFract in the above calculation. This
is because the minLat value refers to the latitude of the bottom of the image, while a
yFract value of 0.0 corresponds to the fop of the image. By using (1-yFract), we
flip the values vertically so that the latitude is calculated correctly.

[224]

Chapter 7

Identifying features by distance

Let's review what we have achieved so far. The user has selected a country, viewed a
simple map of the country's outline, entered a desired search radius, and clicked on
a point on the map to identify the origin for the search. We have then converted this
clicked-on point to a latitude and longitude value.

All of this provides us with three numbers: the desired search radius, and the lat/
long coordinates for the point at which to start the search. Our task now is to identify
which features are within the given search radius of the clicked-on point:

Search Radius
(10 miles)

Starting Point
(Iat=50.9566, long=3.0981)

Because the search radius is specified as an actual distance in miles, we need to be able
to calculate distances accurately. We looked at an approach to solving this problem in
Chapter 2, GIS where we considered the concept of a Great Circle Distance:

[]
End Point = 38.167405°S, 176.234466°E

Start Point = 38.167445°S, 176.234436°E

Given a start and end point, the great circle distance calculation tells us the distance
along the Earth's surface between the two points.

[225]

Working with Spatial Data

In order to identify the matching features, we need to somehow find all the matching
placenames that have a great circle distance less than or equal to the desired search
radius. Let's look at some ways in which we could possibly identify these features.

Calculating distances manually

As we saw in Chapter 5, Working with Geo-Spatial Data in Python pyproj allows us to
do accurate great circle distance calculations based on two lat/long coordinates, like
this:

geod = pyproj.Geod(ellps='WGS84"')
anglel,angle2,distance = geod.inv(longl, latl,
long2, lat2)

The resulting distance is in meters, and we could easily convert this to miles as follows:
miles = distance / 1609.344

Based on this, we could write a simple program to find the features within the
desired search radius:

geod = pyproj.Geod(ellps="WGS84")
cursor.execute ("select id,X(position),Y(position) " +
"from places")
for id,long, lat in cursor:
anglel,angle2,distance = geod.inv(startLong, startlat,
long, 1lat)
if distance / 1609.344 <= searchRadius:

A program like this would certainly work, and would return an accurate list of all
features within the given search radius. The problem is one of speed: because there
are more than four million features in our places table, this program would take
several minutes to identify all the matching placenames. Obviously, this isn't a very
practical solution.

Using angular distances

We saw an alternative way of identifying features by distance in Chapter 5, Working
with Geo-Spatial Data in Python where we looked for all parks in or near an urban
area. In that chapter, we used an angular distance to estimate how far apart two
points were. An angular distance is a distance measured in degrees —technically,

it is the angle between two rays going out from the center of the Earth through the
two desired points on the Earth's surface. Because latitude and longitude values are
angular measurements, we can easily calculate an angular distance based on two
lat/long values, like this:

distance = math.sqgrt((long2-longl)**2) + (lat2-latl) **2)

[226]

Chapter 7

This is a simple Cartesian distance calculation. We are naively treating lat/long
values as if they were Cartesian coordinates. This isn't right, but it does give us a
distance measurement of sorts.

So, what does this angular distance measurement give us? We know that the bigger
the angular distance, the bigger the real (great circle) distance will be. In Chapter 5,
Working with Geo-Spatial Data in Python we used this to identify all parks in California
that where approximately within 10 kilometers of an urban area. However, we could
get away with this in Chapter 5 because we were only dealing with data for California.
In reality, the angular distance varies greatly depending on which latitude you are
dealing with; looking for points within +1 degree of longitude of your current location
will include all points within 111 km if you are at the equator, 100 km if you are at £30°
latitude, 55 km at £60°, and zero km at the poles:

90° N

60° N

30°N

Latitude
o

60° S

100km 50km 0 50km 100km
Length of One Degree of Longitude

Because DISTAL includes data for the entire world, angular measurements would

be all but useless—we can't assume that a given difference in latitude and longitude
values would equal a given distance across the Earth's surface in any way that would
help us do distance-based searching.

[227]

Working with Spatial Data

Using projected coordinates

Another way of finding all points within a given distance is to use a projected
coordinate system that accurately represents distance as differences between
coordinate values. For example, the Universal Transverse Mercator projection
defines Y coordinates as a number of meters north or south of the equator, and X
coordinates as a number of meters east or west of a given reference point. Using the
UTM projection, it would be easy to identify all points within a given distance by
using the Cartesian distance formula:

distance = math.sqrt ((x2-x1)**2 + (y2-yl)**2)
if distance < searchRadius:

Unfortunately, projected coordinate systems such as UTM are only accurate for
data that covers a small portion of the Earth's surface. The UTM coordinate system
is actually a large number of different projections, dividing the world up into 60
separate "zones", each six degrees of longitude wide. You need to use the correct
UTM zone for your particular data: California's coordinates belong in UTM zone
10, and attempting to project them into UTM zone 20 would cause your distance
measurements to be very inaccurate.

If you had data that covered only a small area of the Earth's surface, using a
projected coordinate system would have great advantages. Not only could you
calculate distances using Cartesian coordinates, you could also make use of database
functions such as PostGIS' sT_Dwithin () function to quickly find all points within a
given physical distance of a central point.

Unfortunately, the DISTAL application makes use of data covering the entire Earth.
For this reason, we can't use projected coordinates for this application, and have to
find some other way of solving this problem.

Of course, the DISTAL application was deliberately designed to include
% worldwide data, for precisely this reason. Being able to use a single UTM
A .
zone for all the data would be too convenient.

Actually, there is a way in which DISTAL could use projected UTM coordinates,

but it's rather complicated. Because every feature in a given database table has to
have the same spatial reference, it isn't possible to have different features in a table
belonging to different UTM zones — the only way we could store worldwide data

in UTM projections would be to have a separate database table for each UTM zone.
This would require 60 separate database tables! To identify the points within a given
distance, you would first have to figure out which UTM zone the starting point was
in, and then check the features within that database table. You would also have to
deal with searches that extend out beyond the edge of a single UTM zone.

[228]

Chapter 7

Needless to say, this approach is far too complex for us. It would work (and would
scale better than any of the alternatives), but we won't consider it because of its
complexity.

A hybrid approach

In the previous chapter, we looked at the process of identifying all points within a
given polygon. Because MySQL only handles bounding box intersection tests, we
ended up having to write a program that asked the database to identify all points
within the bounding box, and then manually checked each point to see if it was
actually inside the polygon:

T
i .
¥~ Bounding Box

Polygon —

This suggests a way we can solve the distance-based selection problem for DISTAL:
we calculate a bounding box that encloses the desired search radius, ask the database
to identify all points within that bounding box, and then calculate the great circle
distance for all the returned points, selecting just those points that are actually inside
the search radius. Because a relatively small number of points will be inside the
bounding box, calculating the great circle distance for just these points will be quick,
allowing us to accurately find the matching points without a large performance
penalty.

Let's start by calculating the bounding box. We already know the coordinates for the
starting point and the desired search radius:

Search Radius
3.2 miles

Starting Point
lat=-38.1674, long=176.2344

[229]

Working with Spatial Data

Using pypro3j, we can calculate the lat/long coordinates for four points by traveling
radius meters directly north, south, east, and west of the starting point:

We then use these four points to define the bounding box that encloses the desired
search radius:

Here's a Python function to calculate this bounding box:

import pyproj

def calcSearchBounds (startLat, startLong, searchRadius):
geod = pyproj.Geod(ellps="WGS84")

x,y,angle = geod.fwd(startLong, startLat, O,
searchRadius)
maxLat = y

x,y,angle = geod.fwd(startLong, startLat, 90,
searchRadius)
maxLong = X

x,y,angle = geod.fwd (startLong, startLat, 180,
searchRadius)

[230]

Chapter 7

minLat = y

Xx,y,angle = geod.fwd(startLong, startLat, 270,
searchRadius)
minLong = X

return (minLong, minLat, maxLong, maxLat)

Note that, because we're using pyproj to do a forward geodetic calculation, this will
return the correct lat/long coordinates for the bounding box regardless of the latitude
of the starting point. The only place this will fail is if startLat is within searchrRadius
meters of the North or South Pole —which is highly unlikely given that we're searching
for cities (and we could always add error-checking code to catch this).

Given this function, we can easily create a Polygon containing the bounding box, and
use the database to find all features within that bounding box. First, we create the
Polygon and convert it to WKT format:

from shapely.geometry import Polygon
import shapely.wkt

p = Polygon ([(minLong, minLat), (maxLong, minLat),
(maxLong, maxLat), (minLong, maxLat),
(minLong, minLat)])

wkt = shapely.wkt.dumps (p)

We can then pass this to the database to find all points within the bounding box,
using a spatial join. We haven't looked at the concept of spatial joins yet, so let's do
that now.

Spatial joins

If you have worked with databases in the past, you're probably already familiar with
the concept of a join operation, where you combine information from two or more
linked database tables. A traditional database join links tables together using field
values, for example by storing the primary key of one record in a second table:

books publishers
id b id
title name
publisherlD —

You can then join the tables together like this:

SELECT books.title,publisher.name FROM books,publishers
WHERE books.publisherID = publishers.id;

[231]

Working with Spatial Data

A spatial join works in the same way, except that you connect the records using
spatial predicates like MBRIntersects (), ST Contains (), or ST_DWithin (). These
predicates identify records that are related in some way spatially, for example by
having overlapping bounding boxes or being within a given distance of each other.

In this case, we want to use a spatial join to identify all the places within the calculated
lat/long bounding box. To do this using MySQL, we would write the following;:

connection = MySQLdb.connect (user="...", passwd="...")

cursor = connection.cursor ()

cursor.execute ("USE distal")

cursor.execute ("SELECT id,name,X (position),Y(position) " +
"FROM places WHERE MBRContains (" +
"GeomFromText (%$s), position)", (wkt,))

for row in cursor:

Using PostGIS:

connection = psycopg2.connect ("dbname=... user=...")
cursor = connection.cursor ()
cursor.execute ("SET NAMES 'utfsg'")

cursor.execute ("SELECT id,name,X (position),Y(position) " +
"FROM places WHERE ST Contains (" +
"GeomFromText (%$s, 4326), position)", (wkt,))

for row in cursor:

Remember that SpatiaLite doesn't automatically use a spatial index for queries. To
make this code efficient in SpatiaLite, we have to check the spatial index directly:

db = sglite.connect ("distal.db")
db.enable load extension (True)

db.execute ('SELECT load extension("...")"')
cursor = db.cursor ()

cursor.execute ("SELECT id,name,X (position),Y(position) " +
"FROM places WHERE id in (SELECT pkid " +
"FROM idx places position " +
"WHERE xmin >= ? AND xmax <= ? " +
"AND ymin >= ? and ymax <= ?)",
(minLong, maxLong, minLat, maxLat))

for row in cursor:

[232]

Chapter 7

Obviously, spatial joins work best if the database includes spatial indexes that can
be used to join together the two tables. One of the challenges of developing spatial
queries is to make sure that the database can and does use your spatial indexes;
using the techniques described in the previous chapter, you can analyze your
queries, and modify them if necessary, to ensure that your spatial indexes are used.

Identifying points by true distance

Now that we have identified all the points within the bounding box, we can check
the Great Circle distance and discard those points that are inside the bounding box,
but outside the search radius:

geod = pyproj.Geod(ellps="WGS84")

for row in cursor:
id,name, long, lat = row
anglel,angle2,distance = geod.inv(startLong, startLat,
long, 1lat)
if distance > searchRadius: continue

Using this logic, we can achieve a 100 percent accurate distance-based lookup on
placenames, with the results taking only a fraction of a second to calculate.

Displaying the resulits

Now that we have calculated the list of placenames within the desired search radius,
we can use the mapGenerator.py module to display them. To do this, we first set up
a list of all the matching placenames:

placenames = [] # List of (long, lat, name) tuples.

for row in cursor:
id,name, long, lat = row
anglel,angle2,distance = geod.inv(startLong, startlat,
long, 1lat)
if distance > searchRadius: continue

placenames.append([long, lat, name])

We then set up our datasource to access the shorelines table. For MySQL, we set up
a shorelines.vrt file like this:

<OGRVRTDataSource>
<OGRVRTLayer name="shorelines">
<SrcDataSource>MYSQL:distal,user=USER, passwd=PASS,

[233]

Working with Spatial Data

tables=shorelines</SrcDataSources>
<SrcSQL>
SELECT id,outline FROM shorelines where level=1
</SrcSQL>
</OGRVRTLayer>
</OGRVRTDataSource>

and then define our datasource dictionary as follows:

vrtFile = os.path.join(os.path.dirname(file),
"shorelines.vrt")

datasource = {'type' : "OGR",
'file! : vrtFile,
"layer' : "shorelines"}

Notice that the SrcSQL statement in our . VRT file only includes
shoreline data where level = 1. This means that we're only displaying
. the coastlines, and not the lakes, islands-on-lakes, and so on. Because the
% mapGenerator.py module doesn’t support multiple datasources, we

L= aren’t able to draw lakes in this version of the DISTAL system. Extending
mapGenerator.py to support multiple datasources is possible, but is too
complicated for this chapter. For now we'll just have to live with this
limitation

Using PostGIS, we set up the datasource dictionary like this:

datasource = {'type' : "PostGIS",
'dbname' : "distal",
'table' : "shorelines",
'user' o mLoLun,
'password' : "..."}

And for SpatiaLite, we use the following code:

dbFile = os.path.join(os.path.dirname(file),

"distal.db")
datasource = {'type' : "SQLite",
'file! : dbFile,
'table' : "shorelines™",
'geometry field' : "outline",
'key field' :ovidn}

[234]

Chapter 7

We can then call mapGenerator.generateMap to generate an image file containing
the map:

imgFile = mapGenerator.generateMap (datasource,
minLong, minLat,
maxLong, maxLat,
mapWidth, mapHeight,
points=placenames)

When we called the map generator previously, we used a filter expression to
highlight particular features. In this case, we don't need to highlight anything.
Instead, we pass it the list of placenames to display on the map in the keyword
parameter named points.

The map generator creates a PNG-format file, and returns a reference to that file that
we can then display to the user:

print 'Content-Type: text/html; charset=UTF-8\n\n'
print '<htmls>'

print '<heads><title>Search Results</title></head>"
print '<body>"

print '' + countryName + ''

print '<p>'

print ''

print '</body>'

print '</htmls>'

This completes our first version of the showrResults.py CGI script.

Application review and improvements

At this stage, we have a complete implementation of the DISTAL system that works
as advertized: a user can choose a country, enter a search radius in miles, click on a
starting point, and see a high-resolution map showing all the placenames within the
desired search radius. We have solved the distance problem, and have all the data
needed to search for placenames anywhere in the world.

Of course, we aren't finished yet. There are several areas where our DISTAL
application doesn't work as well as it should, including;:

e Usability

e Quality

e Performance

e Scalability

[235]

Working with Spatial Data

Let's take a look at each of these issues, and see how we could improve our design
and implementation of the DISTAL system.

Usability

If you explore the DISTAL application, you will soon discover a major usability
problem with some of the countries. For example, if you click on the United States in
the Select Country page, you will be presented with the following map to click on:

United States
Select all features within 10 miles of a point.

Click on the map to identify your starting point:

Accurately clicking on a desired point using this map would be almost impossible.
What has gone wrong? The problem here is twofold:

¢ The United States outline doesn't just cover the mainland US, but also
includes the outlying states of Alaska and Hawaii. This increases the size of
the map considerably.

e Alaska crosses the 180th meridian — the Alaska Peninsula extends beyond
-180° west, and continues across the Aleutian Islands to finish at Attu Island
with a longitude of 172° east. Because it crosses the 180th meridian, Alaska
appears on both the left and right sides of the world map.

Because of this, the United States map goes from -180° to +180° longitude and +18° to
+72° latitude. This map is far too big to be usable.

Even for countries that aren't split into separate outlying states, and which don't
cross the 180th meridian, we can't be assured that the maps will be detailed enough
to click on accurately. For example, here is the map for Canada:

[236]

Chapter 7

Canada
Select all features within 10 miles of a point.

Click on the map to identify your starting point:

Because Canada is over 3,000 miles wide, accurately selecting a 10-mile search radius
by clicking on a point on this map would be an exercise in frustration.

An obvious solution to these usability issues would be to let the user "zoom in" on a
desired area of the large-scale map before clicking to select the starting point for the
search. Thus, for these larger countries, the user would select the country, choose
which portion of the country to search on, and then click on the desired starting point.

This doesn't solve the 180th meridian problem, which is somewhat more difficult.
Ideally, you would identify those countries that cross the 180th meridian and
reproject them into some other coordinate system that allows their polygons to be
drawn contiguously.

Quality

As you use the DISTAL system, you will quickly notice some quality issues related
to the underlying data that is being used. We are going to consider two such issues:
problems with the name data, and problems with the placename lat/long coordinates.

Placename issues

If you look through the list of placenames, you'll notice that some of the names have
double parentheses around them, like this:

((Shinavlash))
((Pilur))

((Kagarat))

((Ragaj))

[237]

Working with Spatial Data

((Goriceé))
((Lilaj))

These are names for places that are thought to no longer exist. Also, you will notice
that some names have the word historical in them, surrounded by either square
brackets or parentheses:

Fairbank (historical)
KopiljaKa [historicall]
Hardyville (historical)
Dorlol (historical)

Sotos Crossing (historical)
DuSanovac (historical)

Obviously, these should also be removed. Filtering out the names that should be
excluded from the DISTAL database is relatively straightforward, and could be added
to our import logic as we read the NationalFile and Geonames files into the database.

Lat/Long coordinate problems
Consider the following DISTAL map, covering part of The Netherlands:

[238]

Chapter 7

The placement of the cities looks suspiciously regular, as if the cities are neatly stacked
into rows and columns. Drawing a grid over this map confirms this suspicion:

The towns and cities themselves aren't as regularly spaced as this, of course —the
problem appears to be caused by inaccurately rounded lat/long coordinates within
the international placename data.

This doesn't affect the operation of the DISTAL application, but users may be
suspicious about the quality of the results when the placenames are drawn so
regularly onto the map. The only solution to this problem would be to find a source
of more accurate coordinate data for international placenames.

Performance

Our DISTAL application is certainly working, but its performance leaves something
to be desired. While the selectCountry.py and selectArea.py scripts run quickly,
it can take up to three seconds for showResults.py to complete. Clearly, this isn't
good enough: a delay like this is annoying to the user, and would be disastrous for
the server as soon as it receives more than 20 requests per minute as it would be
receiving more requests than it could process.

[239]

Working with Spatial Data

Finding the problem

Let's take a look at what is going on here. Adding basic timing code to showResults.
py reveals where the script is taking most of its time:

Calculating lat/long coordinate took 0.0110 seconds
Identifying placenames took 0.0088 seconds
Generating map took 3.0208 seconds

Building HTML page took 0.0000 seconds

Clearly, the map-generation process is the bottleneck here. Since it only took a fraction
of a second to generate a map within the selectarea.py script, there's nothing inherent
in the map-generation process that causes this bottleneck. So, what has changed?

It could be that displaying the placenames takes a while, but that's unlikely. It's

far more likely to be caused by the amount of map data that we are displaying:

the showResults. py script is using high-resolution shoreline outlines taken from
the GSHHS dataset rather than the low-resolution country outline taken from the
World Borders dataset. To test this theory, we can change the map data being used
to generate the map, altering showResults.py to use the low-resolution countries
table instead of the high-resolution shorelines table.

The result is a dramatic improvement in speed:
Generating map took 0.1729 seconds

So, how can we make the map generation in showResults.py faster? The answer lies
in the nature of the shoreline data and how we are using it. Consider the situation
where you are identifying points within 10 miles of Le Havre in France:

[240]

Chapter 7

The high-resolution shoreline image would look like this:

But, this section of coastline is actually part of the following GSHHS shoreline feature:

This shoreline polygon is enormous, consisting of over 1.1 million points, and we're
only displaying a very small part of it.

Because these shoreline polygons are so big, the map generator needs to read in the
entire huge polygon and then discard 99 percent of it to get the desired section of
shoreline. Also, because the polygon bounding boxes are so large, many irrelevant
polygons are being processed (and then filtered out) when generating the map. This
is why showResults.py is so slow.

[241]

Working with Spatial Data

Improving performance

It is certainly possible to improve the performance of the showResults.py script.
Because the DISTAL application only shows points within a certain (relatively small)
distance, we can split these enormous polygons into "tiles" that are then
pre-calculated and stored in the database.

Let's say that we're going to impose a limit of 100 miles to the search radius. We'll
also arbitrarily define the tiles to be one whole degree of latitude high, and one
whole degree of longitude wide:

41°

40°

39°

38°

Note that we could choose any tile size we like, but have selected whole
degrees of longitude and latitude to make it easy to calculate which tile
a given lat/long coordinate is inside. Each tile will be given an integer
latitude and longitude value, which we'll call iLat and iLong. We can
then calculate the tile to use for any given latitude and longitude, like this:
iLat = int(latitude)
iLong = int (longitude)

We can then simply look up the tile with the given iLat and iLong value.

[242]

Chapter 7

For each tile, we will use the same technique we used earlier to identify the bounding
box of the search radius, to define a rectangle 100 miles north, east, west, and south
of the tile:

Using the bounding box, we can calculate the intersection of the shoreline data with
this bounding box:

[243]

Working with Spatial Data

Any search done within the tile's boundary, up to a maximum of 100 miles in any
direction, will only display shorelines within this bounding box. We simply store
this intersected shoreline into the database, along with the lat/long coordinates for
the tile, and tell the map generator to use the appropriate tile's outline to display the
desired shoreline.

Calculating the tiled shorelines

Let's write the code that calculates these tiled shorelines. First off, we'll define a
function that calculates the tile bounding boxes. This function, expandrect (), takes
a rectangle defined using lat/long coordinates, and expands it in each direction by a
given number of meters:

def expandRect (minLat, minLong, maxLat, maxLong, distance):

geod = pyproj.Geod(ellps="WGS84")

midLat = (minLat + maxLat) / 2.0
midLong = (minLong + maxLong) / 2.0
try:

availDistance = geod.inv(midLong, maxLat, midLong,
+90) [2]
if availDistance >= distance:
x,y,angle = geod.fwd(midLong, maxLat, 0, distance)
maxLat =y

else:
maxLat = +90
except:
maxLat = +90 # Can't expand north.

try:
availDistance = geod.inv (maxLong, midLat, +180,
midLat) [2]
if availDistance >= distance:
Xx,y,angle = geod.fwd (maxLong, midLat, 90,
distance)
maxLong

I
X

else:

maxLong +180

except:
maxLong = +180 # Can't expand east.

try:
availDistance = geod.inv (midLong, minLat, midLong,
-90) [2]
if availDistance >= distance:
Xx,y,angle = geod.fwd(midLong, minLat, 180,

[244]

Chapter 7

distance)
minLat

I
~

else:
minLat = -90
except:
minLat = -90 # Can't expand south.
try:
availDistance = geod.inv(maxLong, midLat, -180,
midLat) [2]
if availDistance >= distance:
X,y,angle = geod.fwd(minLong, midLat, 270,

distance)
minLong = X
else:
minLong = -180
except:
minLong = -180 # Can't expand west.

return (minLat, minLong, maxLat, maxLong)

Notice that we've added error-checking here, to allow for rectangles close
L= to the North or South Pole.

Using this function, we can calculate the bounding rectangle for a given tile as follows:

minLat,minLong, maxLat, maxLong = expandRect (iLat, iLong,
iLat+1l, iLong+1,
MAX_DISTANCE)

We are now ready to load our shoreline polygons into memory:

shorelinePolys = []

cursor.execute ("SELECT AsText (outline) FROM shorelines " +
"WHERE level=1")
for row in cursor:
outline = shapely.wkt.loads (row[0])
shorelinePolys.append (outline)

. This implementation of the shoreline tiling algorithm uses a lot of
% memory. If your computer has less than 2 GB of RAM, you may need to
i~ store temporary results in the database. Doing this will of course slow

down the tiling process, but it will still work.

[245]

Working with Spatial Data

Then, we create a list-of-lists to hold the shoreline polygons that appear within
each tile:

tilePolys = []
for ilLat in range(-90, +90):
tilePolys.append([])
for iLong in range(-180, +180):
tilePolys[-1] .append([])

For a given iLat/iLong combination, tilePolys[iLat] [iLong] will contain a list
of the shoreline polygons that appear inside that tile.

We now want to fill the tilePolys array with the portions of the shorelines that
will appear within each tile. The obvious way to do this is to calculate the polygon
intersections, like this:

shorelineInTile = shoreline.intersection(tileBounds)

Unfortunately, this approach would take a very long time to calculate —just as the
map generation takes about 2-3 seconds to calculate the visible portion of a shoreline,
it takes about 2-3 seconds to perform this intersection on a huge shoreline polygon.
Because there are 360 x 180 = 64,800 tiles, it would take several days to complete this
calculation using this naive approach.

A much faster solution would be to "divide and conquer" the large polygons. We first
split the huge shoreline polygon into vertical strips, like this:

[246]

Chapter 7

We then split each vertical strip horizontally to give us the individual parts of the
polygon that can be merged into the individual tiles:

By dividing the huge polygons into strips, and then further dividing each strip,

the intersection process is much faster. Here is the code which performs this
intersection; we start by iterating over each shoreline polygon and calculating

the polygon's bounds:

for shoreline in shorelinePolys:

minLong,minLat, maxLong, maxLat = shoreline.bounds

minLong = int (math.
minLat = int (math.
maxLong = int (math.
maxLat = int (math.

floor (minLong))
floor (minLat))
ceil (maxLong))
ceil (maxLat))

We then split the polygon into vertical strips:

vStrips = []

for ilLong in range (minLong, maxLong+1l) :

stripMinLat =
stripMaxLat =
stripMinLong =
stripMaxLong =

minLat
maxLat
iLong
ilong + 1

bMinLat,bMinLong, bMaxLat, bMaxLong = \
expandRect (stripMinlLat, stripMinLong,

stripMaxLat, stripMaxLong,

[247]

Working with Spatial Data

MAX DISTANCE)

bounds = Polygon ([(bMinLong, bMinLat),
(bMinLong, bMaxLat),
(bMaxLong, bMaxLat),
()
()

bMaxLong, bMinLat),
bMinLong, bMinLat)])

strip = shoreline.intersection (bounds)
vStrips.append (strip)

Next, we process each vertical strip, splitting the strip into tile-sized blocks and
storing it into tilePolys:

stripNum = 0

for iLong in range (minLong, maxLong+1l) :
vStrip = vStrips [stripNum]
stripNum = stripNum + 1

for ilLat in range (minLat, maxLat+1l) :
bMinLat,bMinLong, bMaxLat,bMaxLong = \
expandRect (iLat, iLong, iLat+1l, iLong+1l,
MAX DISTANCE)

bounds = Polygon ([(bMinLong, bMinLat),
(bMinLong, bMaxLat),
(bMaxLong, bMaxLat),
()
()

bMaxLong, bMinLat),
bMinLong, bMinLat)])

polygon = vStrip.intersection (bounds)
if not polygon.is empty:
tilePolys[iLat] [iLong] . append (polygon)

We're now ready to save the tiled shorelines into the database. Before we do this, we
have to create the necessary database table. Using MySQL:

cursor.execute ("""
CREATE TABLE IF NOT EXISTS tiled shorelines (
intLat INTEGER,
intLong INTEGER,
outline POLYGON,
PRIMARY KEY (intLat, intLong))

nn ll)

Using PostGIS:

cursor.execute ("DROP TABLE IF EXISTS tiled shorelines")
cursor.execute ("""
CREATE TABLE tiled shorelines (
intLat INTEGER,

[248]

Chapter 7

intLong INTEGER,
PRIMARY KEY (intLat, intLong))

nn ll)
cursor.execute ("""
SELECT AddGeometryColumn('tiled shorelines', 'outline',
4326, 'POLYGON', 2)
nn ll)
cursor.execute ("""
CREATE INDEX tiledShorelineIndex ON tiled shorelines
USING GIST (outline)

nn ll)

And using SpatiaLite:

cursor.execute ("DROP TABLE IF EXISTS tiled shorelines")
cursor.execute ("""
CREATE TABLE tiled shorelines (
intLat INTEGER,
intLong INTEGER,
PRIMARY KEY (intLat, intLong))
nn ll)
cursor.execute ("""
SELECT AddGeometryColumn ('tiled shorelines', 'outline',
4326, 'POLYGON', 2)
nn ll)
cursor.execute ("""
SELECT CreateSpatialIndex('tiled shorelines', 'outline')

nn ll)

We can now combine each tile's shoreline polygons into a single MultiPolygon, and
save the results into the database:

for ilLat in range(-90, +90):
for iLong in range(-180, +180):
polygons = tilePolys[iLat] [iLong]
if len(polygons) == 0
outline = Polygon/()
else:
outline = shapely.ops.cascaded union (polygons)
wkt = shapely.wkt.dumps (outline)

cursor.execute ("INSERT INTO tiled shorelines " +
"(intLat, intLong, outline) " +
"VALUES (%s, %s, GeomFromText (%s))",
(iLat, iLong, wkt))
connection.commit ()

[249]

Working with Spatial Data

a1

S This code is for MySQL. For PostGIS, replace GeomFromText with ST_
GeomFromText. For SpatiaLite, you also need to replace %s with 2.

Using the tiled shorelines

All this gives us a new database table, tiled_shorelines, which holds the shoreline
data split into partly-overlapping tiles:

Since we can guarantee that all the shoreline data for a given set of search results will
be within a single tiled_shoreline record, we can modify showResults.py to use
this rather than the raw shoreline data. For PostGIS this is easy; we simply define our
datasource dictionary as follows:

iLat = int (round(startLat))
iLong = int (round (startLong))

sql

" (select outline from tiled shorelines" \

+

" where (iLat=%d) and (iLong=%d)) as shorelines" \
(iLat, iLong)

o°

[250]

Chapter 7

datasource =

{rtype" : "PostGIS",
'dbname'’ : "distal™",
'table! : sqgl,
'user' s,
'password' : "..."}

Notice that we're replacing the table name with an SQL sub-selection that directly
loads the desired shoreline data from the selected tile.

For SpatiaLite, the code is almost identical:

iLat = int (round(startLat))
iLong = int (round (startLong))

dbFile = os.p

ath.join(os.path.dirname(file),

"distal.db")
sgl = "(select outline from tiled shorelines" \
+ " where (iLat=%d) and (iLong=%d)) as shorelines" \
% (iLat, iLong)
datasource = {'type' : "SQLitem",
'file! : dbFile,
'table!' . sql,
'geometry field' : "outline",
'key field! :ovidr}

MySQL is a bit more tricky because we have to use a . VRT file to store the details of
the datasource. To do this, we create a temporary file, write the contents of the . vRT
file, and then delete the file once we're done:

iLat = int (round(startLat))
iLong = int (round (startLong))

fd, filename =

tempfile.mkstemp (" .vrt",

dir=os.path.dirname(_ file))
os.close (fd)
vrtFile = os.path.join(os.path.dirname(file),
filename)
f = file(vrtFile, "w")
f.write ('<OGRVRTDataSource>\n"')
f.write(' <OGRVRTLayer name="shorelines">\n')
f.write (" <SrcDataSource>MYSQL:distal,user=USER, ' +
'pass=PASS, tables=tiled shorelines' +
'</SrcDataSource>\n"')
f.write (' <SrcSQL>\n")
f.write (' SELECT outline FROM tiled shorelines WHERE ' +

' (intLat=%d) AND (intLong=%d)\n' % (iLat, iLong)

[251]

Working with Spatial Data

f.write ("' </SrcSQL>\n")
f.write(' </OGRVRTLayer>\n')
f.write ('</OGRVRTDataSources>"')
f.close()
datasource = {'type' : "OGR",
'file! : vrtFile,
'layer' : "shorelines"}

imgFile = mapGenerator.generateMap(...)

os.remove (vrtFile)

With these changes in place, the showResults. py script will use the tiled shorelines
rather than the full shoreline data downloaded from GSHHS. Let's now take a look at
how much of a performance improvement these tiled shorelines give us.

Analyzing the performance improvement

As soon as you run this new version of the DISTAL application, you'll notice a huge
improvement in speed: showResults.py now seems to return its results almost
instantly. Where before the map generator was taking 2-3 seconds to generate the
high-resolution maps, it's now only taking a fraction of a second:

Generating map took 0.1705 seconds

That's a dramatic improvement in performance: the map generator is now 15-20
times faster than it was, and the total time taken by the showResults.py script is
now less than a quarter of a second. That's not bad for a relatively simple change to
our underlying map data!

Further performance improvements

If changing the way the underlying map data is structured made such a difference

to the performance of the system, you might wonder what other performance
improvements could be made. In general, improving performance is all about
making your code more efficient (removing bottlenecks), and reducing the amount of
work that your code has to do (precalculating and caching data).

There aren't any real bottlenecks in our DISTAL CGI scripts. All the data is static,
and we don't have any complex loops in our scripts that could be optimized. There
is, however, one further operation that could possibly benefit from precalculations:
the process of identifying all placenames in a given area.

[252]

Chapter 7

At present, our entire database of placenames is being checked for each search
query. Of course, we're using a spatial index, which makes this process fast, but

we could in theory eke some more performance gains out of our code by grouping
placenames into tiles, just as we did with the shoreline data, and then only checking
those placenames that are in the current tile rather than the entire database of several
million placenames.

Before we go down this route, though, we need to do a reality check: is it really
worth implementing this optimization? If you look back at the timing results earlier
in this chapter, you'll see that the placename identification is already very fast:

Identifying placenames took 0.0088 seconds

Even if we were to group placenames by tile and limit the placename searching to
just one tile, it's unlikely that we'd improve the time taken. In fact, it could easily get
worse. Remember:

"Premature Optimization is the Root of All Evil."
- Donald Knuth.

Geo-spatial applications often make use of a caching tile server to
avoid unnecessarily rendering the same maps over and over. This
. isn't suitable for the DISTAL application; because the user clicks on a
point to identify the search circle, the generated map will be different
o— each time, and there is no real possibility of caching and re-using the
rendered maps. We will look at caching tile servers in Chapter 9, Web
Frameworks for Python Geo-Spatial Development as they are very useful
for other types of geo-spatial applications.

Scalability

Reducing the processing time from 3.0 to 0.2 seconds means that your application
could handle up to 250 requests per minute instead of 20 requests per minute. But,
what if you wanted to make DISTAL available on the Internet and had to support up
to 25,000 requests per minute? Obviously, improving performance won't be enough,
no matter how much you optimize your code.

[253]

Working with Spatial Data

Allowing the system to scale like this involves running the same software across
multiple servers, and using a load balancer to share the incoming requests among the
various servers:

Incoming
Request

Load Balancer

Application Application Application Application
Server Server Server Server

Fortunately, the DISTAL application is ideally suited to using a load balancer in this
way: the application has no need to save the user's state in the database (everything
is passed from one script to the next using CGI parameters), and the database itself
is read-only. This means it would be trivial to install the DISTAL CGI scripts and the
fully-populated database onto several servers, and use load balancing software such
as nginx (http://nginx.org/en) to share incoming requests among these servers.

Of course, not all geo-spatial applications will be as easy to scale as DISTAL. A more
complicated application is likely to need to store user state, and will require read/
write access rather than just read-only access to the database. Scaling these types of
systems is a challenge.

If your application involves intensive processing of geo-spatial data, you may be able
to have a dedicated database server shared by multiple application servers:

[254]

Chapter 7

Incoming
Request

Load Balancer

Application Application Application Application
Server Server Server Server

Database Server

As long as the database server is able to serve the incoming requests fast enough,
your application servers can do the heavy processing work in parallel. This type of
architecture can support a large number of requests — provided the database is able
to keep up.

If you reach the stage where a single database server can't manage all the requests, you
can redesign your system to use database replication. The most straightforward way
to do this is to have one database that accepts changes to the data (the "master"), and a
read-only copy of the database (the "slave") that can process requests, but can't make
updates. You then set up master-slave database replication so that any changes made
to the master database get replicated automatically to the slave. Finally, you need to
change your application so that any requests that alter the database get sent to the
master, and all other requests get sent to the slave:

Application
Server

Database updates Read-only requests
are sent to the master are sent to the slave

Slave
Database Server
(read-only)

Master

Database Server
(read/write)

Working with Spatial Data

Of course, if your application needs to scale to support huge volumes, you may end
up with multiple slaves, and use an internal database load balancer to share the
read-only requests among the available slaves:

Application
Server
Database updates Read-only requests are sent to
are sent to the master a slave via the load balancer
@atabase Load BaIanceD
Master Slave Slave Slave
Database Server Database Server Database Server Database Server
(read/write) (read-only) (read-only) (read-only)
'\ Database Replication | |
_____________________ S g |

There are other solutions, such as having multiple masters and memory-based
database clusters for high-speed retrieval, but these are the main ways in which
you can scale your geo-spatial applications.

Database replication is one of the few areas where MySQL outshines
PostGIS for geo-spatial development. PostGIS (via its underlying
PostgreSQL database engine) currently does not support database
replication out of the box; there are third-party tools available that

% implement replication, but they are complex and difficult to set up.

e MySQL, on the other hand, supports replication from the outset, and

is very easy to set up. There have been situations where geo-spatial
developers have abandoned PostGIS in favor of MySQL simply because
of its built-in support for database replication.

[256]

Chapter 7

Summary

In this chapter, we have implemented, tested, and made improvements to a simple
web-based application that displays shorelines, towns, and lakes within a given
radius of a starting point. This application was the impetus for exploring a number of
important concepts within geo-spatial application development, including:

The creation of a simple, but complete web-based geo-spatial application.
Using databases to store and work with large amounts of geo-spatial data.

Using a "black-box" map rendering module to create maps using spatial data
selected from a database.

Examining the issues involved in identifying features based on their true
distance rather than using a lat/long approximation.

Learning how to use spatial joins effectively.

Exploring usability issues in a prototype implementation.
Dealing with issues of data quality.

Learning how to pre-calculate data to improve performance.

Exploring how a geo-spatial application might be scaled to handle vast
numbers of users and requests.

As a result of our development efforts, we have learned:

How to set up a database and import large quantities of data from Shapefiles
and other datasources.

How to design and structure a simple web-based application to display maps
and respond to user input.

That there are three steps in displaying a map: calculating the lat/long
bounding box, calculating the pixel size of the map image, and telling the
map renderer which tables to get its data from.

Given the (x,y) coordinate of a point the user clicked on within a map, how to
translate this point into the equivalent latitude and longitude value.

Various ways in which true distance calculations, and selection of features by
distance, can be performed.

That manually calculating distance for every point using the Great Circle
distance formula is accurate, but very slow.

That angular distances (that is, differences in lat/long coordinates) is an
easy approximation of distance but doesn't relate in any useful way to true
distances across the Earth's surface.

[257]

Working with Spatial Data

That using projected coordinates makes true distance calculations easy, but is
limited to data covering only part of the Earth's surface.

That we can use a hybrid approach to accurately and quickly identify
features by distance, by calculating a lat/long bounding box to identify
potential features and then doing a Great Circle distance calculation on these
features to weed out the false positives.

How to set up a datasource to access and retrieve data from MySQL,
PostGIS and SpatiaLite databases.

That displaying a country's outline and asking the user to click on a desired
point works when the country is relatively small and compact, but breaks
down for larger countries.

That issues of data quality can affect the overall usefulness of your geo-
spatial application.

That you cannot assume that geo-spatial data comes in the best form for use
in your application.

That very large polygons can degrade performance, and can often be
split into smaller sub-polygons, resulting in dramatic improvements in
performance.

That a divide-and-conquer approach to splitting large polygons is much
faster than simply calculating the intersection using the full polygon each
time.

That just because you can think of an optimization doesn't mean that you
should do it. Only optimize after you have identified your application's true
bottlenecks.

Making your code faster is worthwhile, but to achieve true scalability
requires running multiple instances of your application on separate servers.

That you can use a load balancer to spread requests among your application
servers.

That a dedicated database server will often meet the needs of multiple
application servers.

That you can go beyond the capacity of a single database server by using
database replication and separating out the read/write requests from the
read-only requests, and using different servers for each one.

That the database replication capabilities of MySQL are much easier and
often more stable than the equivalent PostGIS capabilities, which are not
built in and require complex third-party support.

In the next chapter, we will explore the details of using the Mapnik library to convert
raw geo-spatial data into map images.

[258]

Using Python and Mapnik to

Generate Maps

Because geo-spatial data is almost impossible to understand until it is displayed, the
creation of maps to visually represent spatial data is an extremely important topic. In
this chapter, we will look at Mapnik, a powerful Python library for generating maps
out of geo-spatial data.

This chapter will cover:

The underlying concepts used by Mapnik to generate maps

How to create a simple map using the contents of a Shapefile

The different datasources that Mapnik support

How to use rules, filters, and styles to control the map-generation process

How to use symbolizers to draw lines, polygons, labels, points, and raster
images onto your map

How to define the colors used on a map
How to work with maps and layers
Your options for rendering a map image

How the mapGenerator.py module, introduced in the previous chapter,
uses Mapnik to generate maps

Using map definition files to control and simplify the map-generation process

Using Python and Mapnik to Generate Maps

Introducing Mapnik

Mapnik is a powerful toolkit for using geo-spatial data to create maps. Mapnik can
be downloaded from:

http://mapnik.org
Mapnik is a complex library with many different parts, and it is easy to get confused
by the various names and concepts. Let's start our exploration of Mapnik by looking
at a simple map:

One thing that may not be immediately obvious is that the various elements within
the map are layered:

[260]

Chapter 8

To generate this map, you have to tell Mapnik to initially draw the background, then
the polygons, and finally the labels. This ensures that the polygons sit on top of the
background, and the labels appear in front of both the polygons and the background.

Strictly speaking, the background isn't a layer. It's simply a color that
&~ Mapnik uses to fill in the map before it starts drawing the first layer.

Mapnik allows you to control the order in which the map elements are drawn through
the use of Layer objects. A simple map may consist of just one layer, but most maps
have multiple layers. The layers are drawn in a strict back-to-front order, so the first
layer you define will appear at the back. In the above example, the Polygons layer
would be defined first, followed by the Labels layer, to ensure that the labels appear in
front of the polygons. This layering approach is called the painter's algorithm because
of its similarity to placing layers of paint onto an artist's canvas.

[261]

Using Python and Mapnik to Generate Maps

Each Layer has its own Datasource, which tells Mapnik where to load the data
from. A Datasource can refer to a Shapefile, a spatial database, a raster image file,
or any number of other geo-spatial datasources. In most cases, setting up a Layer's
datasource is very easy.

Within each Layer, the visual display of the geo-spatial data is controlled through
something called a symbolizer. While there are many different types of symbolizers
available within Mapnik, three symbolizers are of interest to us here:

e The PolygonSymbolizer is used to draw filled polygons:

e The LineSymbolizer is used to draw the outline of polygons, as well as
drawing LineStrings and other linear features:

e The TextSymbolizer is used to draw labels and other text onto the map:

Democratic Republic of the Congo

[262]

Chapter 8

In many cases, these three symbolizers are enough to draw an entire map.
Indeed, almost all of the above example map was produced using just one
PolygonSymbolizer, one LineSymbolizer, and one TextSymbolizer:

“Polygon” Layer

PolygonSymbolizer
fill = mapnik.Color ("#406040")

LineSymbolizer

stroke = mapnik.Stroke(mapnik.Color ("#000000"), 0.1)

“Labels” Layer

TextSymbolizer

field = "NAME"

font = "DejaVu Sans Book"
size = 10

color =

mapnik.Color ("#000000")

The symbolizers aren't associated directly with a layer. Rather, there is an indirect
association of symbolizers with a layer through the use of styles and rules. We'll

look at styles in a minute, but for now let's take a closer look at the concept of a
Mapnik Rule.

A rule allows a set of symbolizers to apply only when a given condition is met. For
example, the map at the start of this chapter displayed Angola in brown, while the
other countries were displayed in green. This was done by defining two rules within

the Polygons layer:

“Polygon” Layer

Rule #1

filter = mapnik.Filter("[NAME] = 'Angola'")

PolygonSymbolizer

fill = mapnik.Color ("#604040")

Rule #2

filter = mapnik.Filter("[NAME] != 'Angola'")

PolygonSymbolizer

fill = mapnik.Color ("#406040")

[263]

Using Python and Mapnik to Generate Maps

The first rule has a filter that only applies to features that have a NAME attribute
equal to the string Angola. For features that match this Filter condition, the rule's
PolygonSymbolizer will be used to draw the feature in dark red.

The second rule has a similar filter, this time checking for features that don't have
a NAME attribute equal to Angola. These features are drawn using the second rule's
PolygonSymbolizer, which draws the features in dark green.

Obviously, rules can be very powerful in selectively changing the way features are
displayed on a map. We'll be looking at rules in much more detail in the Rules, filters,
and styles section of this chapter.

When you define your symbolizers, you place them into rules. The rules themselves
are grouped into styles, which can be used to organize and keep track of your various
rules. Each map layer itself has a list of the styles that apply to that particular layer.

While this complex relationship between layers, styles, rules, and symbolizers can
be confusing, it also provides much of Mapnik's power and flexibility, and it is
important that you understand how these various classes work together:

Map
Layer
Style
Rule
Filter
(optional)
Symbolizer

Finally, instead of using Python code to create the various Mapnik objects by hand,
you can choose to use a Map Definition File. This is an XML-format file that defines
all the symbolizers, filters, rules, styles, and layers within a map. Your Python code
then simply creates a new mapnik .Map object and tells Mapnik to load the map's
contents from the XML definition file. This allows you to define the contents of your
map separately from the Python code that does the map generation in much the
same way as an HTML templating engine separates form and content within a web
application.

[264]

Chapter 8

Creating an example map

To better understand how the various parts of Mapnik work together, let's write a
simple Python program that generates the map shown at the start of this chapter.
This map makes use of the World Borders Dataset that you downloaded in an earlier
chapter; copy the TM_WORLD_BORDERS-0 . 3 Shapefile directory into a convenient
place, and create a new Python script in the same place. We'll call this program
createExampleMap.py.

Obviously, if you've gotten this far without downloading and

installing Mapnik, you need to do so now. Mapnik can be found at:
’ http://mapnik.org.

We'll start by importing the Mapnik toolkit and defining some constants that the
program will need:

import mapnik

MIN LAT = -35
MAX LAT = +35
MIN LONG = -12
MAX LONG = +50
MAP WIDTH = 700
MAP HEIGHT = 800

The MIN_LAT, MAX LAT, MIN_LONG and MAX_ LONG constants define the lat/long
coordinates for the portion of the world to display on the map, while the MAP_WIDTH
and MAP_HEIGHT constants define the size of the generated map image, in pixels.
Obviously, you can change these if you want.

We're now ready to define the contents of the map. This map will have two layers:
one for drawing the polygons and another for drawing the labels, so we'll define
a Mapnik Style object for each of these two layers. Let's start with the style for the
Polygons layer:

polygonStyle = mapnik.Style ()

As we discussed in the previous section, a Filter object lets you choose which
particular features a rule will apply to. In this case, we want to set up two rules: one to
draw Angola in dark red, and another to draw all the other countries in dark green:

rule = mapnik.Rule ()

rule.filter = mapnik.Filter (" [NAME] = 'Angola'")

symbol = mapnik.PolygonSymbolizer (mapnik.Color ("#604040"))
rule.symbols.append (symbol)

[265]

Using Python and Mapnik to Generate Maps

polygonStyle.rules.append(rule)

rule = mapnik.Rule ()

rule.filter = mapnik.Filter (" [NAME] != 'Angola'")

symbol = mapnik.PolygonSymbolizer (mapnik.Coloxr ("#406040"))
rule.symbols.append (symbol)

polygonStyle.rules.append(rule)

Notice how we create a PolygonSymbolizer to fill the country polygon in an
appropriate color, and then add this symbolizer to our current rule. As we define
the rules, we add them to our polygon style.

Now that we've filled the country polygons, we'll define an additional rule to draw
the polygon outlines:

rule = mapnik.Rule ()
symbol = mapnik.LineSymbolizer (mapnik.Color ("#000000"), 0.1)
rule.symbols.append (symbol)

polygonStyle.rules.append(rule)

This is all that's required to display the country polygons onto the map. Let's now
go ahead and define a second Mapnik Style object for the Labels layer:

labelStyle = mapnik.Style()

rule = mapnik.Rule ()

symbol = mapnik.TextSymbolizer ("NAME", "DejaVu Sans Book", 12,
mapnik.Color ("#000000"))

rule.symbols.append (symbol)

labelStyle.rules.append(rule)

This style uses a TextSymbolizer to draw the labels onto the map. Notice that the
text of the labels will be taken from an attribute called NAME in the Shapefile; this
attribute contains the name of the country.

In this example, we are only using a single Mapnik Style for each layer.
When generating a more complex map, you will typically have a number

of styles that can be applied to each layer, and styles may be shared
T between layers as appropriate. For this example, though, we are keeping

the map definition as simple as possible.
Now that we have set up our styles, we can start to define our map's layers. Before
we do this, though, we need to set up our datasource:

datasource = mapnik.Shapefile(file="TM WORLD BORDERS-0.3/" +
"TM_WORLD BORDERS-0.3.shp")

[266]

Chapter 8

We can then define the two layers used by our map:

polygonLayer = mapnik.Layer ("Polygons")

polygonLayer.datasource = datasource

polygonLayer.styles.append ("PolygonStyle")

labellayer = mapnik.Layer ("Labels")

labellayer.datasource = datasource

labellayer.styles.append ("LabelStyle")

Notice that we refer to styles by name, rather than inserting the style

directly. This allows us to re-use styles, or to define styles in an XML
i

definition file and then refer to them within our Python code. We'll add
the styles themselves to our map shortly.

We can now finally create our Map object. A Mapnik Map object has a size and
projection, a background color, a list of styles, and a list of the layers that make up
the map:

map

map .
map .
map .
map .
map .

= mapnik.Map (MAP_WIDTH, MAP_ HEIGHT,
"+proj=longlat +datum=WGS84")
background = mapnik.Color ("#8080a0")

append_style ("PolygonStyle", polygonStyle)
append style("LabelStyle", labelStyle)

layers.append (polygonLayer)
layers.append (labellLayer)

The last thing we have to do is tell Mapnik to zoom in on the desired area of the
world, and then render the map into an image file:

map .

zoom_to_ box (mapnik.Envelope (MIN LONG, MIN LAT,
MAX LONG, MAX LAT))

mapnik.render to file(map, "map.png")

[267]

Using Python and Mapnik to Generate Maps

If you run this program and open the map . png file, you will see the map you
have generated:

Obviously, there's a lot more that you can do with Mapnik, but this example covers
the main points and should be enough to get you started generating your own maps.

Make sure that you play with this example to become familiar with the way Mapnik
works. Here are some things you might like to try:

e Adjust the MIN_LAT, MIN_LONG, MAX_LAT and MAX_LONG constants at the start

of the program to zoom in on the country where you reside
e Change the size of the generated image

e Alter the map's colors

[268]

Chapter 8

Add extra rules to display the country name in different font sizes and colors
based on the country's population

Hint: you'll need to use filters that look like this:
mapnik.Filter (" [POP2005] > 1000000 and
[POP2005] <= 2000000")

a1

~

Mapnik in depth

In this section, we will examine the Python interface to the Mapnik toolkit in much
more detail. The Python documentation for Mapnik (http://media.mapnik.org/
api_docs/python) is confusing and incomplete, so you may find this section to be
a useful reference guide while writing your own Mapnik-based programs.

The Mapnik toolkit is written in C++ and provides bindings to let

you access it via Python. Not every feature implemented in Mapnik
s is available from Python; only those features that are available and

relevant to the Python developer will be discussed here.

Data sources

Before you can access a given set of geo-spatial data within a map, you need to set
up a Mapnik Datasource object. This acts as a "bridge" between Mapnik and your

geo-spatial data:

Mapnik

A

Datasource

Geo-Spatial Data

You typically create the datasource using one of the convenience constructors
described below. Then you add that datasource to any Mapnik layer objects which

will use that data:

layer.datasource = datasource

[269]

Using Python and Mapnik to Generate Maps

A single datasource object can be shared by multiple layers, or it can be used by just
one layer.

There are many different types of datasources supported by Mapnik, some of which
are experimental or access data in commercial databases. Let's take a closer look at
the types of datasources you are likely to find useful.

Shapefile

It is easy to use a Shapefile as a Mapnik datasource. All you need to do is supply
the name and directory path for the desired Shapefile to the mapnik.Shapefile ()
convenience constructor:

import mapnik
datasource = mapnik.Shapefile(file="shapefile.shp")

If the Shapefile is in a different directory, you can use os.path.join () to define
the full path. For example, you can open a Shapefile in a directory relative to your
Python program like this:

datasource = mapnik.Shapefile(file=os.path.join("..", "data",
"shapes.shp"))

When you open a Shapefile datasource, the Shapefile's attributes can be used within
a filter expression, and as fields to be displayed by a TextSymbolizer. By default,
all text within the Shapefile will be assumed to be in UTF-8 character encoding; if
you need to use a different character encoding, you can use the encoding parameter,
like this:

datasource = mapnik.Shapefile(file="shapefile.shp",
encoding="latinl")

PostGIS

This datasource allows you to use data from a PostGIS database on your map.
The basic usage of the PostGIS datasource is like this:

import mapnik

datasource = mapnik.PostGIS (user="..." password="...",
dbname="...", table="...")

[270]

Chapter 8

You simply supply the username and password used to access the PostGIS database,
the name of the database, and the name of the table that contains the spatial data
you want to include on your map. As with the Shapefiles, the fields in the database
table can be used inside a filter expression, and as fields to be displayed using a
TextSymbolizer

There are some performance issues to be aware of when retrieving data from a
PostGIS database. Imagine that we're accessing a large database table, and use the
following to generate our map's layer:

datasource = mapnik.PostGIS (user="...", password="...",
dbname="...", table="myBigTable")

layer = mapnik.Layer ("myLayer")
layer.datasource = datasource
layer.styles.append ("myLayerStyle")

symbol = mapnik.PolygonSymbolizer (mapnik.Color ("#406080"))

rule = mapnik.Rule ()
rule.filter = mapnik.Filter("[level] = 1")
rule.symbols.append (symbol)

style = mapnik.Style()
style.rules.append (rule)

map.append style ("myLayerStyle", style)

Notice how the datasource refers to the myBigTable table within the PostGIS
database, and we use a filter expression ([level] = 1) to select the particular
records within that database table to be displayed using our PolygonSymbolizer.

When rendering this map layer, Mapnik will scan through every record in

the table, apply the filter expression to each record in turn, and then use the
PolygonSymbolizer to draw the record's polygon if, and only if, the record matches
the filter expression. This is fine if there aren't many records in the table, or if most of
the records will match the filter expression. But, imagine that the myBigTable table
contains a million records, with only 10,000 records having a 1level value of 1. In this
case, Mapnik will scan through the entire table and discard ninety-nine percent of
the records. Only the remaining one percent will actually be drawn.

As you can imagine, this is extremely inefficient. Mapnik will waste a lot of time
filtering the records in the database when PostGIS itself is much better suited to the
task. In situations like this, you can make use of a sub-select query so that the database
itself will do the filtering before the data is received by Mapnik. We actually used a sub-
select query in the previous chapter, where we retrieved tiled shoreline data from our
PostGIS database, though we didn't explain how it worked in any depth.

[271]

Using Python and Mapnik to Generate Maps

To use a sub-select query, you replace the table name with an SQL select statement
that does the filtering and returns the fields needed by Mapnik to generate the map's
layer. Here is an updated version of the last example, which uses a sub-select query:

query = " (select geom from myBigTable where level=1) as data"
datasource = mapnik.PostGIS (user="...", password="...",
dbname="...", table=query)

layer = mapnik.Layer ("myLayer")
layer.datasource = datasource
layer.styles.append ("myLayerStyle")

symbol = mapnik.PolygonSymbolizer (mapnik.Coloxr ("#406080"))

rule = mapnik.Rule ()
rule.symbols.append (symbol)

style = mapnik.Style()
style.rules.append (rule)

map.append style ("myLayerStyle", style)

We've replaced the table name with a PostGIS sub-select statement that filters out

all records with a 1evel value not equal to 1 and returns just the geom field for the
matching records back to Mapnik. We've also removed the rule.filter =linein
our code as the datasource will only ever return records that already match that filter
expression.

. Note that the sub-select statement ends with . . .as data. We

% have to give the results of the sub-select statement a name, even
s though that name is ignored. In this case, we've called the results

data, though you can use any name you like.

If you use a sub-select, it is important that you include all the fields used by your
filter expressions and symbolizers. If you don't include a field in the sub-select
statement, it won't be available for Mapnik to use.

GDAL

The GDAL datasource allows you to include any GDAL-compatible raster image
datafile within your map. The GDAL datasource is straightforward to use:

datasource = mapnik.Gdal (file="myRasterImage.tiff")

Once you have a GDAL datasource, you need to use a RasterSymbolizer to draw
it onto the map:

[272]

Chapter 8

layer = mapnik.Layer ("myLayer")
layer.datasource = datasource
layer.styles.append ("myLayerStyle")

symbol = mapnik.RasterSymbolizer ()

rule = mapnik.Rule ()
rule.symbols.append (symbol)
style = mapnik.Style()
style.rules.append (rule)

map.append style("myLayerStyle", style)

Mapnik provides another way of reading TIFF-format raster

images, using the Raster datasource. In general, using the GDAL
g datasource is more flexible and easier than using Raster.

OGR

The OGR datasource lets you display any OGR-compatible vector data on your
map. The convenience constructor for an OGR datasource requires at least two
named parameters:

datasource = mapnik.Ogr (file="...", layer="...")

The file parameter is the name of an OGR-compatible datafile, while layer is the
name of the desired layer within that datafile. You could use this, for example, to
read a Shapefile via the OGR driver:

datasource = mapnik.Ogr (file="shapefile.shp",
layer="shapefile")

More usefully, you can use this to load data from any vector-format datafile supported
by OGR. The various supported formats are listed on the following web page:

http://www.gdal.org/ogr/ogr formats.html

Of particular interest to us is the Virtual Datasource (VRT) format. The VRT format
is an XML-formatted file which allows you to set up an OGR datasource that isn't
stored in a simple file on disk. We saw in the previous chapter how this can be used
to display data from a MySQL database on a map, despite the fact that Mapnik itself
does not implement a MySQL datasource.

[273]

Using Python and Mapnik to Generate Maps

The VRT file format is relatively complex, though it is explained fully on the OGR
website. Here is an example of how you can use a VRT file to set up a MySQL virtual
datasource:

<OGRVRTDataSource>
<OGRVRTLayer name="myLayer">
<SrcDataSource>MYSQL:mydb, user=user, password=pass,
tables=myTable</SrcDataSource>
<SrcSQL>
SELECT name,geom FROM myTable
</SrcSQL>
</OGRVRTLayer>
</OGRVRTDataSource>

The <SrcbDataSources> element contains a string that sets up the OGR MySQL
datasource. This string is of the format:

MySQL: «dbName» , user=«username» , password=«pass», tables=«tables»

You need to replace «dbName» with the name of your database, «<username» and
«pass» with the username and password used to access your MySQL database, and
«tables» with a list of the database tables you want to retrieve your data from. If
you are retrieving data from multiple tables, you need to separate the table names
with a semicolon, such as:

tablegs=1lakes;rivers;coastlines

Note that all the text between <SrcbhataSources> and </SrcDataSources> must be
on a single line.

The text inside the <srcsQL> element should be a MySQL select statement that
retrieves the desired information from the database table(s). As with the PostGIS
datasource, you can use this to filter out unwanted records before they are passed
to Mapnik, which will significantly improve performance.

The VRT file should be saved to disk. For example, the above virtual file definition
might be saved to a file named myLayer.vrt. You would then use this file to define
your OGR datasource, such as:

datasource = mapnik.Ogr(file="myLayer.vrt", layer="myLayer")

SQLite

The SQLite datasource allows you to include data from an SQLite (or SpatiaLite)
database on a map. The mapnik.SQLite () convenience constructor accepts a
number of keyword parameters; the ones most likely to be useful are:

[274]

Chapter 8

e file="...": The name and optional path to the SQLite database file
e table="...": The name of the desired table within this database
e geometry field="...": The name of a field within this table that holds the

geometry to be displayed
e key field="...": The name of the primary key field within the table

For example, to access a table named countries in a SpatiaLite database named
mapData .db, you might use the following:

datasource = mapnik.SQLite (file="mapData.db",
table="countries",
geometry field="outline",
key field="id")

All of the fields within the countries table will be available for use in Mapnik filters
and for display using a TextSymbolizer. The various symbolizers will use the
geometry stored in the out1line field for drawing lines, polygons, and so on.

OSM

The OSM datasource allows you to include OpenStreetMap data onto a map. The
OpenStreetMap data is stored in . 0sM format, which is an XML format containing the
underlying nodes, ways, and relations used by OpenStreetMap. The OpenStreetMap
data format, and options for downloading . osM files, can be found at:

http://wiki.openstreetmap.org/wiki/.osm
If you have downloaded a .0sM file and want to access it locally, you can set up your

datasource by using:

datasource = mapnik.OSM(file="myData.osm")

If you wish to use an OpenStreetMap API call to retrieve the OSM data on the fly,
you can do this by supplying a URL to read the data from, along with a bounding
box to identify which set of data you want to download. For example:

osmURL = "http://api.openstreetmap.org/api/0.6/map"
bounds = "176.193,-38.172,176.276,-38.108"
datasource = mapnik.OSM(url=osmURL, bbox=bounds)

The bounding box is a string containing the left, bottom, right, and top coordinates
for the desired bounding box, respectively.

[275]

Using Python and Mapnik to Generate Maps

PointDatasource

The PointDatasource is a relatively recent addition to Mapnik. It allows you to
manually define a set of data points that will appear on your map.

Setting up a point datasource is easy; you simply create the PointDatasource object:
datasource = mapnik.PointDatasource ()

You then use the PointDatasource's add_point () method to add the individual
points to the datasource. This method takes four parameters:

¢ long: The point's longitude

e lat: The point's latitude

e key: The name of the attribute for this point

e value: The value of the attribute for this point
You would normally use the same key for each data point, and set the value to
some appropriate string that you can then display on your map. For example, the

following code combines a PointDatasource with a TextSymbolizer to place labels
onto a map at specific lat/long coordinates:

datasource = mapnik.PointDatasource ()

datasource.add point (-0.126, 51.513, "label", "London")
datasource.add point (-2.591, 51.461, "label", "Bristol")
datasource.add point (1.2964, 52.630, "label", "Norwich")

layer = mapnik.Layer ("points")
layer.datasource = datasource
layer.styles.append ("pointStyle")

symbol = mapnik.TextSymbolizer ("label", "DejaVu Sans Bold",
10, mapnik.Color ("#000000"))

rule = mapnik.Rule ()
rule.symbols.append (symbol)

style = mapnik.Style()
style.rules.append (rule)

map.append_style ("pointStyle", style)

[276]

Chapter 8

Rules, filters, and styles

As we saw earlier in this chapter, Mapnik uses rules to specify which particular
symbolizers will be used to render a given feature. Rules are grouped together

into a style, and the various styles are added to your map and then referred to by
name when you set up your Layer. In this section, we will examine the relationship
between rules, filters, and styles, and see just what can be done with these various
Mapnik classes.

Let's take a closer look at Mapnik's Rule class. A Mapnik rule has two parts: a
set of conditions, and a list of symbolizers. If the rule's conditions are met then the
symbolizers will be used to draw the matching features onto the map.

There are three types of conditions supported by a rule:

1. A Mapnik filter can be used to specify an expression that must be met by the
feature if it is to be drawn.

2. The rule itself can specify minimum and maximum scale denominators that
must apply. This can be used to set up rules that are only used if the map is
drawn at a given scale.

3. The rule can have an else condition, which means that the rule will only be
applied if no other rule in the style has had its conditions met.

If all the conditions for a rule are met then the associated list of symbolizers will be
used to render the feature onto the map.

Let's take a look at these conditions in more detail.

Filters

Mapnik's Filter () constructor takes a single parameter: a string defining an
expression that the feature must match if the rule is to apply. You then store the
returned filter object into the rule's f£ilter attribute:

rule.filter = mapnik.Filter("...")

Let's consider a very simple filter expression, comparing a field or attribute against
a specific value:

filter = mapnik.Filter (" [level] = 1")

String values can be compared by putting single quote marks around the value,
such as:

filter = mapnik.Filter (" [type] = 'CITY'")

[277]

Using Python and Mapnik to Generate Maps

Note that the field name and value are both case-sensitive, and that you must
surround the field or attribute name with square brackets.

Of course, simply comparing a field with a value is the most basic type of comparison
you can do. Filter expressions have their own powerful and flexible syntax for defining
conditions, similar in concept to an SQL where expression. The following syntax
diagram describes all the options for writing filter expression strings:

Filter expression:
o [] value] o
Lo] o
- true) 4
- (D e (D GO Frg s>+
“>(not)->[filter-expression} /
L (and/or) g
Value:
o>~ cv;)nstamtlI 0
o 1 g
QD
r-Cmin value value |»())———
t>-Cmax)»(O-vaue}>)>[valie ())———
>Csart)0)
~>Csin (O)
>(eos > (O-lael-() g
Mapnik filters also support the spatial operators Equals,
Disjoint, Touches, Within, Overlaps, Crosses, Intersects,
% Contains, DWithin, Beyond, and BBOX. However, these operators
g are undocumented and it is not clear how they can be used, so we
B won't discuss them here.

[278]

Chapter 8

Scale denominators

Consider the following two maps:

S

s

Obviously, there's no point in drawing streets onto a map of the entire world.
Similarly, the country outlines shown on the world map are at too large a scale to
draw detailed coastlines for an individual city. But, if your application allows the
user to zoom in from the world map right down to an individual street, you will
need to use a single set of Mapnik styles to generate the map regardless of the scale
at which you are drawing it.

Mapnik allows you to do this by selectively displaying features based on the map's
scale denominator. If you had a map printed on paper at 1:100,000 scale, then the scale
denominator would be the number after the colon (100,000 in this case). Drawing maps
digitally makes this a bit more complicated, but the idea remains the same.

A Mapnik rule can have a minimum and maximum scale denominator value
associated with it:

rule.min_scale = 10000
rule.max_scale = 100000

If the minimum and maximum scale denominators are set then the rule will only
apply if the map's scale denominator is within this range.

You can also apply minimum and maximum scale factors to an entire layer:

layer.minzoom = 1.0/100000

layer.maxzoom = 1.0/200000

Note that rules use scale denominators while layers use scale factors.
M This can be rather confusing as the relationship between the two
Q is not straightforward. For more information on scale factors and
scale denominators, please refer to http://trac.mapnik.org/
wiki/ScaleAndPpi.

[279]

Using Python and Mapnik to Generate Maps

The whole layer will only be displayed when the map's current scale factor is within
this range. This is useful if you have a datasource that should only be used when
displaying the map at a certain scale — for example, only using high-resolution
shoreline data when the user has zoomed in.

Scale denominators can be used intuitively. For example, a scale denominator value
of 200,000 represents a map drawn at roughly 1:200,000 scale. But, this is only an
approximation; the actual calculation of a scale denominator has to take into account
two important factors:

1. Because Mapnik renders a map as a bitmapped image, the size of the
individual pixels within the image comes into play. Since bitmapped images
can be displayed on a variety of different computer screens with different pixel
sizes, Mapnik uses a standardized rendering pixel size as defined by the Open
Geospatial Consortium to define how big a pixel is going to be. This value is
0.28 mm, and is approximately the size of a pixel on modern video displays.

2. The map projection being used can have a huge effect on the calculated scale
denominator. Map projections always distort true distances, and a projection
that is accurate at the equator may be wildly inaccurate closer to the Poles.

Depending on the projection being used, the formula Mapnik uses to calculate the
scale denominator can get rather complicated. Rather than worrying about the
formulas, it is much easier just to ask Mapnik to calculate the scale denominator and
scale factor for us:

map = mapnik.Map (width, height, projection)
map.zoom_ to box (bounds)
print map.scale denominator (), map.scale()

You can then zoom the map to your desired scale and see what the scale factor and
denominator are, which you can then plug into your styles to choose which features
should be displayed at a given scale denominator range.

M Be careful if you are working with multiple projections.
Q A scale denominator that works for one projection may
need to be adjusted if you switch projections.

"Else" rules

Imagine that you want to draw some features in one color, and all other features in a
different color. One way to achieve this is to use Mapnik rules, as shown here:

rulel.filter = mapnik.Filter (" [level] = 1")

rule2.filter = mapnik.Filter (" [level] != 1")

[280]

Chapter 8

This is fine for simple filter expressions, but when the expressions get more
complicated it is a lot easier to use an "else" rule, as shown in the following snippet:

rulel.filter = mapnik.Filter (" [level] = 1")

rule2.set else(True)

If you call set_else (True) for a rule, that rule be used if, and only if, no previous
rule in the same style has had its filter conditions met.

Else rules are particularly useful if you have a number of filter conditions and want
to have a "catch-all" rule at the end that will apply if no other rule has been used to
draw the feature. For example:

rulel.filter = mapnik.Filter (" [type] = 'city'")
rule2.filter = mapnik.Filter (" [type] = 'town'")
rule3.filter = mapnik.Filter (" [type] = 'village'")

ruled4.filter.set else(True)

Symbolizers

Symbolizers are used to draw features onto a map. In this section, we will look at
how you can use the various types of symbolizers to draw lines, polygons, labels,
points, and images.

Drawing lines

There are two Mapnik symbolizers that can be used to draw lines onto a map:
LineSymbolizer and LinePatternSymbolizer. Let's look at each of these in turn.

LineSymbolizer

The LineSymbolizer draws linear features and traces around the outline of
polygons, as shown in the following image:

[281]

Using Python and Mapnik to Generate Maps

The LineSymbolizer is one of the most useful of the Mapnik symbolizers. Here is
the Python code that created the LineSymbolizer used to draw the dashed line in
the last example:

stroke = mapnik.Stroke ()

stroke.color = mapnik.Color ("#008000")
stroke.width = 1.0

stroke.add dash(5, 10)

symbolizer = mapnik.LineSymbolizer (stroke)

As you can see, the LineSymbolizer uses a Mapnik Stroke object to define how the
line will be drawn. To use a LineSymbolizer, you first create the stroke object and
set the various options for how you want the line to be drawn. You then create your
LineSymbolizer, passing the stroke object to the LineSymbolizer's constructor:

symbolizer = mapnik.LineSymbolizer (stroke)

Let's take a closer look at the various line-drawing options provided by the
stroke object.

Line color

By default, lines are drawn in black. You can change this by setting the stroke's
color attribute to a Mapnik color object:

stroke.color = mapnik.Color ("red")

For more information about the Mapnik color object, and the various ways in which
you can specify a color, please refer to the Using Colors section later in this chapter.

Line width

The line drawn by a LineSymbolizer will be one pixel wide by default. To change
this, set the stroke's width attribute to the desired width, in pixels:

stroke.width = 1.5
Note that you can use fractional line widths for fine-grained control of your line widths.
Opacity

You can change how opaque or transparent the line is by setting the stroke's
opacity attribute:

stroke.opacity = 0.8

The opacity can range from 0.0 (completely transparent) to 1.0 (completely
opaque). If the opacity is not specified, the line will be completely opaque.

[282]

Chapter 8

Line caps
The line cap specifies how the ends of the line should be drawn. Mapnik supports
three standard line cap settings:

U
——————e
A

BUTT_CAP ROUND_CAP SQUARE_CAP

By default, the lines will use BUTT_CAP style, but you can change this by setting the
stroke's 1ine cap attribute, such as:

strokel.line cap = mapnik.line_ cap.BUTT_CAP
stroke2.line_cap = mapnik.line_cap.ROUND_CAP
stroke3.line cap = mapnik.line_ cap.SQUARE_CAP

Line joins
When a line changes direction, the "corner" of the line can be drawn in one of three

standard ways:

MITER_JOIN ROUND_JOIN BEVEL_JOIN

The default behavior is to use MITER_JOIN, but you can change this by setting the
stroke's 1ine join attribute to a different value:

strokel.line join = mapnik.line join.MITER JOIN
stroke2.line join = mapnik.line join.ROUND JOIN
stroke3.line join = mapnik.line join.BEVEL JOIN

[283]

Using Python and Mapnik to Generate Maps

Dashed and dotted lines

You can add "breaks" to a line to make it appear dashed or dotted. To do this, you
add one or more dash segments to the stroke. Each dash segment defines a dash
length and a gap length; the line will be drawn for the given dash length, and will then
leave a gap of the specified length before continuing to draw the line:

dash length | gap length

dash segment dash segment dash segment

You add a dash segment to a line by calling the stroke's add_dash () method:

stroke.add dash(5, 5)
This will give the line a five-pixel dash followed by a five-pixel gap.

You aren't limited to just having a single dash segment; if you call add_dash ()
multiple times, you will create a line with more than one segment. These dash
segments will be processed in turn, allowing you to create varying patterns of dashes
and dots. For example:

stroke.add dash (10, 2)
stroke.add dash(2, 2)
stroke.add dash(2, 2)

would result in the following repeating line pattern:

[284]

Chapter 8

Drawing roads and other complex linear features
One thing that may not be immediately obvious is that you can draw
aroad onto a map by overlying two LineSymbolizers; the first
LineSymbolizer draws the edges of the road, while the second
LineSymbolizer draws the road's interior. For example:

stroke = mapnik.Stroke ()

stroke.color = mapnik.Color ("#bf7a3a")

stroke.width = 7.0

roadEdgeSymbolizer = mapnik.LineSymbolizer (stroke)

stroke = mapnik.Stroke ()
stroke.color = mapnik.Color ("#ffd3a9")
stroke.width = 6.0

roadInteriorSymbolizer = mapnik.LineSymbolizer (stroke)

This technique is commonly used for drawing street maps. The two
symbolizers that we just defined would then be overlaid to produce a
road, as shown in the following image:

s This technique can be used for more than just drawing roads;

Q the creative use of symbolizers is one of the main "tricks" to

achieving complex visual effects using Mapnik.

[285]

Using Python and Mapnik to Generate Maps

LinePatternSymbolizer

The LinePatternSymbolizer is used in those special situations where you

want to draw a line that can't be rendered using a simple Stroke object. The
LinePatternSymbolizer accepts a PDF or TIFF format image file, and draws that
image repeatedly along the length of the line or around the outline of a polygon:

s

5

ddy,.

Notice that linear features and polygon boundaries have a direction — that is, the line
or polygon border moves from one point to the next in the order in which the points
were defined when the geometry was created. For example, the points that make

up the line segment at the top of the above illustration were defined from left to
right —that is, the leftmost point is defined first, then the middle point, and then the
rightmost point.

The direction of a feature is important as it affects the way the LinePatternSymbolizer
draws the image. If the linestring that we just saw was defined in the opposite direction,
the LinePatternSymbolizer would draw it like this:

As you can see, the LinePatternSymbolizer draws the image oriented towards the
left of the line as it moves from one point to the next. To draw the image oriented
towards the right, you will have to reverse the order of the points within your feature.

To use a LinePatternSymbolizer within your Python code, you simply create an
instance of mapnik.LinePatternSymbolizer and give it the name of the image file,
the file format (PNG or TIFF), and the pixel dimensions of the image:

symbolizer = mapnik.LinePatternSymbolizer ("image.png",
"png", 11, 11)

[286]

Chapter 8

Drawing polygons

Just as there are two symbolizers to draw lines, there are two symbolizers to draw the
interior of a polygon: the PolygonSymbolizer and the PolygonPatternSymbolizer.
Let's take a closer look at each of these two symbolizers.

PolygonSymbolizer

A polygonSymbolizer fills the interior of a polygon with a single color:

You create a PolygonSymbolizer in the following way:

symbolizer = mapnik.PolygonSymbolizer ()

Let's take a closer look at the various options for controlling how the polygon
will be drawn.

Fill color

By default, a PolygonSymbolizer will draw the interior of the polygon in grey. To
change the color used to fill the polygon, set the PolygonSymbolizer's £111 attribute
to the desired Mapnik color object:

symbolizer.fill = mapnik.Color ("red")

For more information about creating Mapnik color objects, please refer to the Using
colors section later in this chapter.

Opacity
By default, the polygon will be completely opaque. You can change this by setting
the PolygonSymbolizer's opacity attribute:

symbolizer.fill opacity = 0.5

The opacity can range from 0.0 (completely transparent) to 1.0 (completely
opaque). In the previous illustration, the left polygon had an opacity of 0. 5.

[287]

Using Python and Mapnik to Generate Maps

Gamma correction

Gamma correction is an obscure concept, but can be very useful at times. If you
draw two polygons that touch with exactly the same fill color, you will still see a
line between the two, as shown in the following image:

This is because of the way Mapnik anti-aliases the edges of the polygons. If you
want these lines between adjacent polygons to disappear, you can add a gamma
correction factor:

symbolizer.gamma = 0.63

This results in the two polygons appearing as one:

It may take some experimenting, but using a gamma value of around 0.5 to 0.7 will
generally remove the ghost lines between adjacent polygons. The default value of
1.0 means that no gamma correction will be performed at all.

PolygonPatternSymbolizer

The PolygonpatternSymbolizer fills the interior of a polygon using a supplied
image file:

[288]

Chapter 8

The image will be tiled — that is, drawn repeatedly to fill in the entire interior
of the polygon:

Because the right side of one tile will appear next to the left side of the adjacent tile,
and the bottom of the tile will appear immediately above the top of the tile below it
(and vice versa), you need to choose an appropriate image that will look good when
it is drawn in this way.

Using the PolygonPatternSymbolizer is easy; as with the LinePatternSymbolizer,
you create a new instance and give it the name of your image file, the file format (PNG
or TIFF), and the width and height of the image:

symbolizer = mapnik.PolygonPatternSymbolizer ("image.png",
"png", 102, 80)

Drawing labels

Textual labels are an important part of any map. In this section, we will explore
the TextSymbolizer, which draws text onto a map.

s The shieldSymbolizer also allows you to draw
%j%“ labels, combining text with an image. We will look at the
' ShieldSymbolizer in the section on drawing points, below.

[289]

Using Python and Mapnik to Generate Maps

TextSymbolizer
The TextSymbolizer allows you to draw text onto point, line, and polygon features:

Ui

Paint Label

Polygon Labe|

The basic usage of a TextSymbolizer is quite simple. For example, the polygon in
the last illustration was labeled using the following code:

symbolizer = mapnik.TextSymbolizer ("label",
"DejaVu Sans Book", 10,
mapnik.Color ("black"))

This symbolizer will display the value of the feature's 1abel field using the given
font, font size, and color. Whenever you create a Text Symbolizer object, you must
provide these four parameters.

Let's take a closer look at these parameters, as well as the other options you have for
controlling how the text will be displayed.

Specifying the text to be displayed

You select the text to be displayed by passing a field or attribute name as the first
parameter to the TextSymbolizer's constructor. Note that the text will always
be taken from the underlying data; there is no option for hardwiring a label into
your rule.

M For many datasources the name is case-sensitive, so it
Q is best to ensure that you type in the name of the field
or attribute exactly. NAME is not the same as name.

[290]

Chapter 8

Selecting a suitable font

The label will be drawn using a font and font size you specify when you create the
TextSymbolizer object. You have two options for selecting a font: you can use one
of the built-in fonts supplied by Mapnik, or you can install your own custom font.

To find out what fonts are available, run the following program:

import mapnik
for font in mapnik.FontEngine.face names() :
print font

You can find out more about the process involved in installing a custom font on the
following web page:

http://trac.mapnik.org/wiki/UsingCustomFonts

Note that the font is specified by name, and that the font size is in points.

Drawing semi-transparent text

You can control how opaque or transparent the text is by setting the opacity
attribute, as shown here:

symbolizer.opacity = 0.5

The opacity ranges from 0.0 (completely transparent) to 1.0 (completely opaque).

Controlling text placement

There are two ways in which the TextSymbolizer places text onto the feature being
labeled. Using point placement (the default), Mapnik would draw labels on the three
features shown previously in the following way:

Uine Label

Foint Label

Polygon Label

[291]

Using Python and Mapnik to Generate Maps

As you can see, the labels are drawn at the center of each feature, and the labels are
drawn horizontally with no regard to the orientation of the line. The other option for
placing text onto the feature is to use line placement. Labeling the previous features
using line placement would result in the following:

4
L

Notice that the polygon's label is now drawn along the boundary of the polygon, and
the labels now follow the orientation of the line. The point feature isn't labeled at all
since the point feature has no lines within it.

You control the placement of the text by setting the symbolizer's 1abel placement
attribute, such as:

syml.label placement = mapnik.label placement.POINT_ PLACEMENT
sym2.label placement = mapnik.label placement.LINE PLACEMENT

Repeating labels

When labels are placed using LINE_PLACEMENT, Mapnik will by default draw the
label once, in the middle of the line. In many cases, however, it makes sense to have
the label repeated along the length of the line. To do this, you set the symbolizer's
label spacing attribute, as shown below:

symbolizer.label spacing = 30

Setting this attribute causes the labels to be repeated along the line or polygon
boundary. The value is the amount of space between each repeated label, in pixels.
Using the above label spacing, our line and polygon features would be displayed in
the following way:

[292]

Chapter 8

There are several other attributes that can be used to fine-tune the way repeated
labels are displayed:

symbolizer.force odd_labels = True: This tells the TextSymbolizer to
always draw an odd number of labels. This can make the labels look better in
some situations.

symbolizer.max_char_angle_delta = 45: This sets the maximum change

in angle (measured in degrees) from one character to the next. Using this can
prevent Mapnik from drawing labels around sharp corners. For example:

With no max_char_angle_delta With max_char_angle_delta=45

symbolizer.min_distance = 40: The minimum distance between repeated
labels, in pixels.

symbolizer.label position tolerance = 20: This sets the maximum
distance a label can move along the line to avoid other labels and sharp
corners. The value is in pixels, and defaults to min_distance/2.

[293]

Using Python and Mapnik to Generate Maps

Controlling text overlap

By default, Mapnik ensures that two labels will never intersect. If possible, it will
move the labels to avoid an overlap. If you look closely at the labels drawn around
the boundary of the following two polygons, you will see that the position of the left
polygon's labels has been adjusted to avoid an overlap:

If Mapnik decides that it can't move the label without completely misrepresenting
the position of the label then it will hide the label completely. You can see this in the
following illustration, where the two polygons are moved so they overlap:

The allow_overlap attribute allows you to change this behaviour:
symbolizer.allow overlap = True

Instead of hiding the overlapping labels, Mapnik will simply draw them one on top
of the other:

[294]

Chapter 8

Drawing text on a dark background

The TextSymbolizer will normally draw the text directly onto the map. This
works well when the text is placed over a lightly-colored area of the map, but if
the underlying area is dark, the text can be hard to read or even invisible:

Of course, you could choose a light text color, but that requires you to know in
advance what the background is likely to be. A better solution is to draw a "halo"
around the text, as shown in the following image:

The halo_£ill and halo_radius attributes allow you to define the color and size
of the halo to draw around the text, like this:

symbolizer.halo fill = mapnik.Color ("white")
symbolizer.halo _radius = 1

The radius is specified in pixels; generally, a small value such as 1 or 2 is enough
to ensure that the text is readable against a dark background.

Adjusting the position of the text
By default, Mapnik calculates the point at which the text should be displayed,
and then displays the text centered over that point, as shown here:

A
™

You can adjust this positioning in two ways: by changing the vertical alignment, and
by specifying a text displacement.

[295]

Using Python and Mapnik to Generate Maps

The vertical alignment can be controlled by changing the TextSymbolizer's
vertical_ alignment attribute. There are three vertical alignment values you can use:

sym2.vertical alignment = mapnik.vertical alignment.TOP
syml.vertical alignment = mapnik.vertical alignment.MIDDLE
sym3.vertical alignment = mapnik.vertical alignment.BOTTOM

mapnik.vertical_ alignment.MIDDLE is the default, and places the label centered
vertically over the point, as shown previously.

If you change the vertical alignment to mapnik.vertical alignment.TOP, the label
will be drawn above the point, as shown here:

E

Conversely, if you change the vertical alignment to mapnik.vertical alignment.
BOTTOV, the label will be drawn below the point:

e

Your other option for adjusting text positioning is to use the displacement ()
method to displace the text by a given number of pixels. For example:

symbolizer.displacement (5, 10)

This will shift the label five pixels to the right and ten pixels down from its
normal position:

‘Labiel

Beware

Changing the vertical displacement of a label will also change the label's
~ default vertical_alignment value. This can result in your label being
Q moved in unexpected ways because the vertical alignment of the label is
changed as a side-effect of setting the vertical displacement. To avoid this,
you should always set the vertical_ alignment attribute explicitly
- whenever you change the vertical displacement. .

[296]

Chapter 8

Splitting labels across multiple lines
Sometimes a label is too long to be displayed in the way that you might like:

In this case, you can use the wrap_width attribute to force the label to wrap across
multiple lines. For example:

symbolizer.wrap width = 70

This will cause the previous label to be displayed like the following;:

The value you specify is the maximum width of each line of text, in pixels.

Controlling character and line spacing

You can add extra space between each character in a label by setting the character_
spacing attribute, like the following;:

symbolizer.character spacing = 3

This results in our polygon being labeled as shown in the following image:

[297]

Using Python and Mapnik to Generate Maps

Unfortunately, character spacing only works when the text is
L drawn using point placement. Line placement is not yet supported.

You can also change the spacing between the various lines using the 1ine spacing
attribute:

symbolizer.line spacing = 8

Our polygon will then look similar to the following image:

Both the character spacing and the line spacing values are in pixels.

Controlling capitalization

There are times when you might want to change the case of the text being displayed.
You can do this by setting the text_convert attribute, as shown by the following:

symbolizerl.text convert = mapnik.text convert.toupper
symbolizer2.text convert = mapnik.text convert.tolower

These two settings will result in the labels being displayed as follows:

Drawing points

There are two ways of drawing a point using Mapnik: the PointSymbolizer allows
you to draw an image at a given point, and the ShieldSymbolizer combines an
image with a textual label to produce a "shield".

Let's examine how each of these two symbolizers work.

[298]

Chapter 8

PointSymbolizer
A pPointSymbolizer draws an image at the point. The default constructor takes no

arguments and displays each point as a 4x4-pixel black square:

symbolizer = PointSymbolizer ()

Alternatively, you can supply the name, type, and dimensions for an image file that
the PointSymbolizer will use to draw each point:

symbolizer = PointSymbolizer ("point.png", "png", 9, 9)

[299]

Using Python and Mapnik to Generate Maps

X N

Be aware that the Point Symbolizer draws the image centered over the
desired point. You may have to add transparent space around the image
so that the desired part of the image appears over the desired point. For
example, if you wish to draw a pin at an exact position, you might need to
format the image as the following:

The extra (transparent) whitespace ensures that the point of the pin is in
the center of the image, allowing the image to be drawn exactly at the
desired position on the map.

Whether you supply an image or not, the PointSymbolizer has two attributes that
you can use to modify its behavior:

symbolizer.allow overlap = True: If you set this attribute to True, all
points will be drawn even if the images overlap. The default (False) means
that points will only be drawn if they don't overlap.

symbolizer.opacity = 0.75: How opaque or transparent to draw the
image. A value of 0.0 will draw the image completely transparent, while a
value of 1.0 (the default) will draw the image completely opaque.

ShieldSymbolizer
A shieldSymbolizer draws a textual label and an associated image:
.
Label

The shieldsymbolizer works in exactly the same way as having a TextSymbolizer
and a PointSymbolizer rendering the same data. The only difference is that the
ShieldSymbolizer ensures that the text and image are always displayed together;
you'll never get the text without the image, or vice versa.

When you create a ShieldSymbolizer, you have to provide a number of parameters:

symbolizer = mapnik.ShieldSymbolizer (fieldName,

font, fontSize, color,
imageFile, imageFormat,
imageWidth, imageHeight)

[300]

Chapter 8

Where:

e fieldName is the name of the field or attribute to display as the textual label
e font is the name of the font to use when drawing the text
e fontSize of the size of the text, in points

e color is a Mapnik color object that defines the color to use for drawing
the text
e imageFile is the name (and optional path) of the file that holds the image to
display
® imageFormat is a string defining the format of the image file (PNG or TIFF)
e imageWidth is the width of the image file, in pixels

® imageHeight is the height of the image file, in pixels

Because shieldSymbolizer is a subclass of TextSymbolizer, all the positioning
and formatting options available for a TextSymbolizer can also be applied to a
ShieldSymbolizer. And, because it also draws an image, a ShieldSymbolizer also
has the allow _overlap and opacity attributes of a PointSymbolizer.

Be aware that you will most probably need to call the ShieldSymbolizer's
displacement () method to position the text correctly as by default the text appears
directly over the point, in the middle of the image.

Drawing raster images

The GDAL and Raster datasources allow you to include raster images within a map.
The Rastersymbolizer takes this raster data and displays it within a map layer, as
shown in the following image:

=7 E =
-
r F J __‘1::1 ,/'_,,‘:’ ! -
] ey P iy o oy g |
o — — ~
P - -
o >
B - i
1
q-' g > - Ny
& # >
2 » 2 ¥ = rd
i i rul - 3 A
>
— 3 S
~F 3 "
% 4 . _-—
S B ke :
. 45 g
£ 2 /5
: 3
- - - Z
JE e, T
- ’~ = /
¥ : 2
=2

[301]

Using Python and Mapnik to Generate Maps

Creating a RasterSymbolizer is very simple:

symbolizer = mapnik.RasterSymbolizer ()

A RasterSymbolizer will automatically draw the contents of the layer's raster-format
datasource onto the map.

The Rastersymbolizer supports the following options for controlling how the
raster data is displayed:

e gymbolizer.opacity = 0.5

This controls how opaque the raster image will be. A value of 0.0 makes the
image fully transparent, and a value of 1.0 makes it fully opaque. By default,
the raster image will be completely opaque.

e symbolizer.mode = "hard light"
This attribute tells the RastersSymbolizer how to combine the raster data
with the previously-rendered map data beneath it. These modes are similar

to the way layers are merged in image editing programs such as Photoshop
or the GIMP. The following merge modes are supported:

— ¥

s

normal screen hard_light

r S35 4

grain_merge

multiply

—

/4

multiply2

divide2

[302]

Chapter 8

a1

symbolizer.scaling = "fast"

This allows you to control the algorithm used to scale the raster image
data. The available options are: fast (uses the nearest-neighbor algorithm),
bilinear (uses bilinear interpolation across all four color channels), and
bilinears (uses bilinear interpolation for just a single color channel).

Mapnik does not currently support on-the-fly reprojection of raster data.

‘Q If you need to generate a map using a projection that is different from the

raster data's projection, you will need to reproject the raster data before it
can be displayed, for example by using gdalwarp.

One of the main uses for a RasterSymbolizer is to display a shaded relief background
such as the one shown previously. This gives the viewer a good impression of the
underlying terrain.

a shaded relief grayscale image. This image was then displayed using
s

The previous image was created using a Digital Elevation Map (DEM-
format) data file taken from the National Elevation Dataset. This file was
processed using the gdaldem utility with the hillshade option to create

a RasterSymbolizer set to hard light mode, laid on top of a pale
green background with the coastline defined from the GSHHS shoreline
database. You may find this process useful if you want to display a
shaded relief image as a background for your map.

Using colors

Many of the Mapnik symbolizers require you to supply a color value. These color
values are defined using the mapnik.Color class. Instances of mapnik.Color can be
created in one of four ways:

mapnik.Color(r, g, b, a)

Creates a color object by supplying separate red, green, blue, and alpha
(opacity) values. Each of these values should be in the range 0 to 255.
mapnik.Color(r, g, b)

Creates a color object by supplying red, green, and blue components. Each
value should be in the range 0 to 255. The resulting object will be completely
opaque.

mapnik.Color (colorName)

Creates a color object by specifying a standard CSS color name. A complete
list of the available color names can be found at: http://www.w3.org/TR/
css3-color/#svg-color.

[303]

Using Python and Mapnik to Generate Maps

® mapnik.Color (colorCode)

Creates a color object using an HTML color code. For example, #806040 is
medium brown.

Maps and layers

Once you have set up your datasources, symbolizers, rules, and styles, you can
combine them into Mapnik layers and place the various layers together onto a map.
To do this, you first create a mapnik . Map object to represent the map as a whole:

map = mapnik.Map (width, height, srs)

You supply the width and height of the map image you want to generate, in pixels,
and an optional Proj 4 format initialization string in srs. If you do not specify

a spatial reference system, the map will use +proj=latlong +datum=WGS84
(unprojected lat/long coordinates on the WGS84 datum).

After creating the map, you set the map's background color, and add your various
styles to the map by calling the map . append_style () method:

map.background = mapnik.Color ('white!')

map.append style("countryStyle", countryStyle)
map.append style("roadStyle", roadStyle)

map.append_ style

(
(
("pointStyle", pointStyle)
(

map.append style("rasterStyle", rasterStyle)

You also need to create the various layers within the map. To do this, you create a
mapnik.Layer object to represent each map layer:

layer = mapnik.Layer (layerName, srs)

Each layer is given a unique name, and can optionally have a spatial reference
associated with it. The srs string is a Proj.4 format initialization string; if no spatial
reference is given, the layer will use +proj=latlong +datum=WGS84.

Once you have created your map layer, you assign it a datasource and choose the
style(s) that will apply to that layer, identifying each style by name:
layer.datasource = myDatasource

layer.styles.append ("countryStyle")
layer.styles.append ("rasterStyle")

[304]

Chapter 8

Finally, you add your new layer to the map:

map.layers.append(layer)

Let's take a closer look at some of the optional methods and attributes of the Mapnik
Map and Layer objects. These can be useful when manipulating map layers, and

for setting up rules and layers which selectively apply based on the map's current
scale factor.

Map attributes and methods

The mapnik.Map class provides several additional methods and attributes that you
may find useful:

map .envelope ()

This method returns a mapnik.Envelope object representing the area of the
map that is to be displayed. The mapnik.Envelope object supports a number
of useful methods and attributes, but most importantly includes minx, miny,
maxx, and maxy attributes. These define the map's bounding box in map
coordinates.

map.aspect fix mode = mapnik.aspect fix.GROW_CANVAS

This controls how Mapnik adjusts the map if the aspect ratio of the map's
bounds does not match the aspect ratio of the rendered map image. The
following values are supported:

o

GROW_BBOX expands the map's bounding box to match the aspect ratio
of the generated image. This is the default behavior.

GROW_CANVAS expands the generated image to match the aspect ratio
of the bounding box.

SHRINK_BBOX shrinks the map's bounding box to match the aspect
ratio of the generated image.

SHRINK_CANVAS shrinks the generated image to match the aspect
ratio of the map's bounding box.

° ADJUST BBOX_ HEIGHT expands or shrinks the height of the map's
bounding box, while keeping the width constant, to match the aspect
ratio of the generated image.

° ADJUST BBOX_WIDTH expands or shrinks the width of the map's
bounding box, while keeping the height constant, to match the aspect
ratio of the generated image.

° ADJUST_ CANVAS_HEIGHT expands or shrinks the height of the
generated image, while keeping the width constant, to match the
aspect ratio of the map's bounding box.

[305]

Using Python and Mapnik to Generate Maps

° ADJUST CANVAS_WIDTH expands or shrinks the width of the
generated image, while keeping the height constant, to match the
aspect ratio of the map's bounding box.

map.scale denominator ()

Returns the current scale denominator used to generate the map. The
scale denominator depends on the map's bounds and the size of the
rendered image.

map.scale ()

Returns the current scale factor used by the map. The scale factor depends
on the map's bounds and the size of the rendered image.

map.zoom_all ()

Sets the map's bounding box to encompass the bounding box of each of the
map's layers. This ensures that all the map data will appear on the map.

map.zoom_to_box (mapnik.Envelope (minX, minY, maxX, maxY))

Sets the map's bounding box to the given values. Note that minX, minY, maxX,
and maxY are all in the map's coordinate system.

Layer attributes and methods

The mapnik.Layer class has the following useful attributes and methods:

layer.envelope ()

This method returns a mapnik . Envelope object representing the rectangular
area of the map that encompasses all the layer's data. The mapnik.Envelope
object supports a number of useful methods and attributes, but most
importantly includes minx, miny, maxx, and maxy attributes.

layer.active = False
This can be used to hide a layer within the map.
layer.minzoom = 1.0/100000

This sets the minimum scale factor that must apply if the layer is to
appear within the map. If this is not set, the layer will not have a
minimum scale factor.

layer.maxzoom = 1.0/10000

This sets the maximum scale factor that must apply if the layer is to be drawn
onto the map. If this is not set, the layer will not have a maximum scale factor.

[306]

Chapter 8

e layer.visible(1.0/50000)

This method returns True if this layer will appear on the map at the given
scale factor. The layer is visible if it is active and the given scale factor is
between the layer's minimum and maximum values.

Map rendering

After creating your mapnik .Map object and setting up the various symbolizers, rules,
styles, datasources, and layers within it, you are finally ready to convert your map
into a rendered image.

Before rendering the map image, make sure that you have set the appropriate
bounding box for the map so that the map will show the area of the world you are
interested in. You can do this by either calling map . zoom_to_box () to explicitly set the
map's bounding box to a given set of coordinates, or you can call map. zoom_all() to
have the map automatically set its bounds based on the data to be displayed.

Once you have set the bounding box, you can generate your map image by calling
the render to file() function, as shown below:

mapnik.render to file(map, 'map.png')

The parameters are the mapnik .Map object and the name of the image file to write the
map to. If you want more control over the format of the image, you can add an extra
parameter which defines the image format:

mapnik.render to file(map, 'map.png', 'png256"')

The supported image formats include:

Image Format Description

png A 32-bit PNG format image
png256 An 8-bit PNG format image
jpeg A JPEG-format image

svc An SVG-format image

pdf A PDF file

ps A postscript format file

[307]

Using Python and Mapnik to Generate Maps

The render_to_file() function works well when you want to generate a single
image from your entire map. Another useful way of rendering maps is to generate
a number of "tiles" that can then be stitched together to display the map at a higher

resolution:

Mapnik provides a helpful function for creating tiles like this out of a single map:
def render tile to file(map, xOffset, yOffset, width, height,
fileName, format)
Where:
e map is the mapnik.Map object containing the map data
e xOffset and yoffset define the top-left corner of the tile, in map coordinates

e width and height define the size of the tile, in map coordinates

[308]

Chapter 8

e fileName is the name of the file to save the tiled image into

e format is the file format to use for saving this tile

You can simply call this function repeatedly to create the individual tiles for your
map. For example:

for x in range (NUM_TILES ACROSS) :
for y in range (NUM _TILES DOWN) :

xOffset = TILE SIZE * x

yOffset = TILE SIZE * y

tileName = "tile %d %d.png" % (x, V)
mapnik.render_tile_to file(map, xOffset, yOffset,

TILE SIZE, TILE_SIZE,
tileName, "png")

Another way of rendering a map is to use a Mapnik. Image object to hold the
rendered map data in memory. You can then extract the raw image data from the
Image object, such as:

image = mapnik.Image (MAP_WIDTH, MAP_HEIGHT)
mapnik.render (map, image)
imageData = image.tostring('png')

MapGenerator revisited

Now that we have examined the Python interface to Mapnik, let's use this
knowledge to take a closer look at the mapGenerator.py module used in Chapter 7.
As well as being a more comprehensive example of creating maps programmatically,
the mapGenerator.py module suggests ways in which you can write your own
wrapper around Mapnik to simplify the creation of a map using Python code.

The MapGenerator's interface

The mapGenerator.py module defines just one function, generateMap (), which
allows you to create a simple map that is stored in a temporary file on disk. The
method signature for the generateMap () function looks like this:

def generateMap (datasource, minX, minY, maxX, maxy,
mapWidth, mapHeight,
hiliteExpr=None, background="#8080a0",
hiliteLine="#000000", hiliteFill="#408000",
normallLine="#404040", normalFill="#a0a0a0",
points=None)

[309]

Using Python and Mapnik to Generate Maps

The parameters are as follows:

e datasource is a dictionary defining the datasource to use for this map. This
dictionary should have at least one entry, type, which defines the type of
datasource. The following datasource types are supported: OGR, PostGIS,
and SQLite. Any additional entries in this dictionary will be passed as
keyword parameters to the datasource initializer.

* minX, minY, maxX, and maxY define the bounding box for the area to display,
in map coordinates.

e mapWidth and mapHeight are the width and height of the image to generate,
in pixels.

e hiliteExpr is a Mapnik filter expression to use to identify the feature(s) to
be highlighted.

® background is the HTML color code to use for the background of the map.

e hiliteLine and hiliteFill are the HTML color codes to use for the line
and fill for the highlighted features.

e normalLine and normalFill are the HTML color codes to use for the line
and fill for the non-highlighted features.

e points, if defined, should be a list of (long, lat, name) tuples identifying
points to display on the map.

Because many of these keyword parameters have default values, creating a simple
map only requires the datasource, bounding box, and map dimensions to be
specified. Everything else is optional.

The generateMap () function creates a new map based on the given parameters, and
stores the result as a PNG format image file in a temporary map cache directory. Upon
completion, it returns the name and relative path to the newly-rendered image file.

So much for the public interface to the mapGenerator.py module. Let's take a look
inside to see how it works.

Creating the main map layer

The module starts by creating a mapnik.Map object to hold the generated map.
We set the background color at the same time:

map = mapnik.Map (mapWidth, mapHeight,
'+proj=longlat +datum=WGS84')
map . background = mapnik.Color (background)

[310]

Chapter 8

We next have to set up the Mapnik datasource to load our map data from. To
simplify the job of accessing a datasource, the datasource parameter includes the
type of datasource, as well as any additional entries which are passed as keyword
parameters directly to the Mapnik datasource initializer:

srcType = datasource['type']
del datasource['type'l

if srcType == "OGR":

source = mapnik.Ogr (**datasource)
elif srcType == "PostGIS":

source = mapnik.PostGIS (**datasource)
elif srcType == "SQLite":

source = mapnik.SQLite (**datasource)

We then create our Layer object, and start defining the style that is used to draw the
map data onto the map:

layer = mapnik.Layer ("Layer")
layer.datasource = source

style = mapnik.Style()

We next set up a rule that only applies to the highlighted features:

rule = mapnik.Rule ()
if hiliteExpr != None:
rule.filter = mapnik.Filter (hiliteExpr)

This rule will use the "highlight" line and fill colors:

rule.symbols.append (mapnik.PolygonSymbolizer (
mapnik.Color (hiliteFill)))

rule.symbols.append (mapnik.LineSymbolizer (
mapnik.Stroke (mapnik.Color (hiliteLine), 0.1)))

We then add this rule to the style, and create another rule that only applies to the
non-highlighted features:

style.rules.append(rule)
rule = mapnik.Rule ()

rule.set_else(True)

This rule will use the "normal" line and fill colors:

rule.symbols.append (mapnik.PolygonSymbolizer (
mapnik.Color (normalFill)))

rule.symbols.append (mapnik.LineSymbolizer (
mapnik.Stroke (mapnik.Color (normallLine), 0.1)))

[311]

Using Python and Mapnik to Generate Maps

We then add this rule to the style, and add the style to the map and layer:

style.rules.append (rule)

map.append style("Map Style", style)
layer.styles.append("Map Style")

Finally, the layer is added to the map:

map.layers.append(layer)

Displaying points on the map

One of the features of the generateMap () function is that it can take a list of points
and display them directly onto the map without having to store those points into

a database. This is done through the use of a PointDataSource datasource and a
ShieldSymbolizer to draw the points onto the map:

if points != None:
pointDatasource = mapnik.PointDatasource ()
for long,lat,name in points:
pointDatasource.add point (long, lat, "name", name)

layer = mapnik.Layer ("Points")
layer.datasource = pointDatasource

style = mapnik.Style()
rule = mapnik.Rule()
pointImgFile = os.path.join(os.path.dirname(file),
"point.png")
shield = mapnik.ShieldSymbolizer (
"name", "DejaVu Sans Bold", 10,
mapnik.Color ("#000000"),
pointImgFile, "png", 9, 9)
shield.displacement (0, 7)
shield.unlock image = True
rule.symbols.append (shield)

style.rules.append(rule)

map.append_style("Point Style", style)
layer.styles.append ("Point Style")

map.layers.append(layer)

[312]

Chapter 8

Notice that the path to the point . png file is calculated as an
M absolute path based on the location of the mapGenerator.py
Q module itself (viathe ~ file global). This is done because the
module can be called as part of a CGI script, and CGI scripts do not
have a current working directory.

Rendering the map

Because the mapGenerator.py module is designed to be used within a CGI script,
the module makes use of a temporary map cache to hold the generated image files.
Before it can render the map image, the generateMap () function has to create the
map cache if it doesn't already exist, and create a temporary file within the cache
directory to hold the generated map:

scriptDir = os.path.dirname(file)
cacheDir = os.path.join(scriptDir, "..", "mapCache")
if not os.path.exists(cacheDir) :

os.mkdir (cacheDir)
fd,filename = tempfile.mkstemp (".png", dir=cacheDir)
os.close (fd)

Finally, we are ready to render the map into an image file, and return back
to the caller the relative path to the generated map file:

map.zoom to box(mapnik.Envelope (minX, minY, maxX, maxY))
mapnik.render to file(map, filename, "png")

return "../mapCache/" + os.path.basename (filename)

What the map generator teaches us

While in many ways the mapGenerator.py module is quite simplistic and designed
specifically to meet the needs of the DISTAL application presented in the previous
chapter, it is worth examining this module in depth because it shows how the
principle of encapsulation can be used to hide Mapnik's complexity and simplify the
process of map generation. Using the generateMap () function is infinitely easier
than creating all the datasources, layers, symbolizers, rules, and styles each time a
map has to be generated.

[313]

Using Python and Mapnik to Generate Maps

It would be a relatively easy task to design a more generic map generator that could
handle a variety of datasources and map layers, as well as various ways of returning
the results, without having to exhaustively define every object by hand. Designing
and implementing such a module would be very worthwhile if you want to use
Mapnik extensively from your Python programs. Hopefully, this section has given
you some ideas about how you can proceed with implementing your own high-level
Mapnik wrapper module.

Map definition files

There is one final approach to using Mapnik that is worth examining. In addition

to creating your symbolizers, rules, styles, and layers programmatically, Mapnik
allows you to store all of this information using a map definition file. This is an
XML-format file that defines the various Mapnik objects used to generate a map. For
example, consider the following Python program to create a simple world map using
the World Borders Dataset:

import mapnik

map = mapnik.Map (800, 400)
map .background = mapnik.Color ("steelblue")

style = mapnik.Style()

rule = mapnik.Rule ()

polySymbolizer = mapnik.PolygonSymbolizer ()
polySymbolizer.fill = mapnik.Color ("ghostwhite")

stroke = mapnik.Stroke ()

stroke.color = mapnik.Color ("gray")
stroke.width = 0.1

lineSymbolizer = mapnik.LineSymbolizer (stroke)

rule.symbols.append (polySymbolizer)

rule.symbols.append (lineSymbolizer)

style.rules.append (rule)

map.append style("My Style", style)

datasource = mapnik.Shapefile(file="TM WORLD BORDERS-0.3/" +
"TM_WORLD BORDERS-0.3.shp")

layer = mapnik.Layer ("layer")
layer.datasource = datasource
layer.styles.append ("My Style")
map.layers.append(layer)

map.zoom to box(mapnik.Envelope(-180, -90, +180, +90))
mapnik.render to file(map, "map.png")

[314]

Chapter 8

As you can see, this program creates a single rule containing two symbolizers:

a PolygonSymbolizer to draw the interior of the country in the color named
ghostwhite, and a LineSymbolizer to draw the outlines in gray. This rule is added to
a style named My Style, and a single layer is created loading the data from the World
Borders Dataset Shapefile. Finally, the map is rendered to a file named map . png.

Here is what the resulting map looks like:

This program was written entirely using Python code. Now, consider the following
map definition file, which creates exactly the same map using an XML stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE Map>

<Map bgcolor="steelblue" srs="+proj=latlong +datum=WGS84">
<Style name="My Style">
<Rule>
<PolygonSymbolizers>
<CssParameter name="fill"s>ghostwhite</CssParameter>
</PolygonSymbolizers>
<LineSymbolizers
<CssParameter name="stroke"s>gray</CssParameter>
<CssParameter name="stroke-width">0.1l</CssParameters
</LineSymbolizer>
</Rule>
</Style>

<Layer name="world" srs="+proj=latlong +datum=WGS84">
<StyleName>My Style</StyleName>

[315]

Using Python and Mapnik to Generate Maps

<Datasource>
<Parameter name="type"s>shape</Parameters>
<Parameter name="file">TM WORLD BORDERS-0.3/TM WORLD BORDERS-
0.3.shp</Parameter>
</Datasource>
</Layer>
</Map>

To use this stylesheet, you call the 1oad map () function to load the contents of the
map definition file into a Mapnik Map object before rendering it, as shown here:

map = mapnik.Map (800, 400)

mapnik.load map (map, "mapDefinition.xml")

map.zoom to box(mapnik.Envelope(-180, -90, +180, +90))
mapnik.render to file(map, "map.png")

Either approach is perfectly valid. You may prefer to do all your coding in Python
(with or without a wrapper module), or you might like the more compact XML
stylesheet definition. With only a few exceptions, anything you can do in Python can
be done with the XML stylesheets, and vice versa.

Unlike the Python bindings, the format for the XML definition file is thoroughly
documented. More information on the syntax of the map definition file can be found at:

http://trac.mapnik.org/wiki/XMLConfigReference

You don't have to choose between doing all your map definition in the XML or
doing it all in Python; Mapnik supports a hybrid approach where you can define

as much or as little in the XML file, and use Python to do the rest. For example, you
might like to define your Mapnik styles in the XML file, and use Python to define the
datasources and map layers. To do this, you would set up your map definition file,
as shown here:

<?xml version="1.0" encoding="utf-8"?>
< !DOCTYPE Map>

<Map bgcolor="steelblue" srs="+proj=latlong +datum=WGS84">
<Style name="My Style">
<Rule>
<PolygonSymbolizers>
<CssParameter name="fill">ghostwhite</CssParameter>
</PolygonSymbolizers
<LineSymbolizers>
<CssParameter name="stroke'"s>gray</CssParameters>
<CssParameter name="stroke-width">0.1l</CssParameters
</LineSymbolizers>
</Rule>
</Style>
</Map>

[316]

Chapter 8

Your Python code would then look like this:

import mapnik

map = mapnik.Map (800, 400)

mapnik.load map (map, "sampleXMLStylesheet.xml")

datasource = mapnik.Shapefile(file="TM WORLD BORDERS-0.3/" +
"TM_WORLD BORDERS-0.3.shp")

layer = mapnik.Layer ("layer")

layer.datasource = datasource

layer.styles.append ("My Style")

map.layers.append(layer)

map.zoom to box(mapnik.Envelope(-180, -90, +180, +90))
mapnik.render to file(map, "map.png")

Notice how we simply exclude the <Layer> section from the XML file, and then
create our map layers using Python.

This hybrid approach has the advantage of separating out the visual representation
of the map from the code used to generate it: the XML file defines the various styles
to use for rendering the map, but doesn't include any map-generation logic itself.
Indeed, you can completely change the appearance of the map just by changing the
XML stylesheet, without having to change a single line of code in your program.
This is very similar to the way HTML templating engines separate form and function
within a web application.

Summary

In this chapter, we have explored the Mapnik map-generation toolkit in depth.
We learned:

e That Mapnik is a powerful and flexible toolkit for generating a variety of maps

e That Mapnik uses the painter's algorithm to draw the various parts of a map in
the correct order

e That rendering a map requires you to set up map layers and their associated
datasources, in the order in which they will appear on the map.

e That datasources act as a "bridge" between Mapnik and your geo-spatial data

e That Mapnik can directly use Shapefiles, PostGIS databases, GDAL-
compatible raster image files, OGR-compatible vector data, SQLite/
SpatiaLite databases, and OpenStreetMap files as datasources

e That OGR's virtual datasource (VRT) format can be used by Mapnik to read
data from a MySQL database

[317]

Using Python and Mapnik to Generate Maps

That the PointDatasource allows you to manually create a set of data points
and place them onto a map, without having to store them in a database or
shapefile

That each layer has one or more styles associated with it
That each style consists of one or more rules

That each rule has a list of symbolizers telling Mapnik how to draw the layer's
features onto the map

That a rule can have an optional filter that selects the features the rule
applies to

That you can selectively enable or disable rules and layers based on the
map's scale

That the LineSymbolizer allows you to draw solid and dotted lines onto a
map, following linear features and the boundaries of polygons

That the LinePatternSymbolizer uses an image file to draw more complex
images along the length of a line or polygon boundary

That the PolygonSymbolizer draws the interior of a polygon with a solid
color

That the PolygonPatternSymbolizer allows you to fill the interior of a
polygon with a repeating image

That the TextSymbolizer can be used to draw labels onto point, line, and
polygon features

That the PointSymbolizer draws images onto the map at coordinates
specified by point features

That the shieldSymbolizer combines the features of a Text Symbolizer
with a PointSymbolizer to draw an image and label together

That the RasterSymbolizer can be used to draw raster-format images onto
a map

That once you have set up your various datasources, symbolizers, rules, and
styles, you combine them into Layer objects and place the various layers
together onto a Map object

That a layer's styles are referred to by name, with the style definitions
themselves being stored in the map

That you tell the map which area of the world to display, typically by calling
the map.zoom to box () method, and then call mapnik.render to file()
to render the map into an image file

[318]

Chapter 8

e Thatyou can use the render _tile to_file () function to create multiple
high-resolution tiles out of a single map

e That you can use a Mapnik.Image object to work with a rendered map image
in memory rather than having to store it on disk

e That the mapGenerator.py module defined in Chapter 7 is an example of a
higher-level wrapper that can hide Mapnik's complexity and make it easier to
use

e That you can use a map definition file as a simpler way of creating maps
without having to define all the symbolizers, rules, styles, datasources, and
layers in Python

e That you can use a map definition file as a stylesheet, separating the logic of
building a map from the way it is formatted, in the same way that an HTML
templating engine separates form and content in a web application

In the next chapter, we will explore some of the frameworks available for creating
web-based geo-spatial applications.

[319]

Web Frameworks for Python

Geo-Spatial Development

In this chapter, we will examine various options for developing web-based

geo-spatial applications. We will explore a number of important concepts used by web
applications, and geo-spatial web applications in particular, as well as studying some
of the important open protocols used by these applications and a number of tools that
you can use to implement your own web-based geo-spatial systems.

In particular, we will:

Examine the architecture used by web applications

Learn about web application stacks

Explore the concept of a "full stack" web application framework

Learn about web services

See how map rendering can be implemented as a standalone web service
Learn how tile caching can be used to improve performance

See how web servers act as a frontend to a web application

Explore how JavaScript user interface libraries can enhance a web
application's user interface

See how "slippy maps" can be created using an application stack

Examine the web frameworks available for developing geo-spatial
applications

Learn about some of the important open protocols for working with geo-
spatial data within a web application

Explore some of the major tools and frameworks available for building your
own geo-spatial web applications

Web Frameworks for Python Geo-Spatial Development

Web application concepts

In this section, we will examine a number of important concepts related to web-
based application development in general, as well as concepts specific to developing
geo-spatial applications that are accessed via a web server.

Web application architecture

There are many ways you can approach the development of a web-based application.
You can write your own code by hand, for example as a series of CGI scripts, or

you can use one of the many web application frameworks that are available. In this
section, we will look at the different ways web applications can be structured so that
the different parts work together to implement the application's functionality.

A bare-bones approach

In Chapter 7, we created a simple web application named DISTAL. This web
application was built using CGI scripts to provide distance-based identification of
towns and other features. DISTAL is a good example of a "bare bones" approach to
web application development, using nothing more than a web server, a database,
and a collection of CGI scripts:

| CGl Scripts

i selectCountry. 1
| 1y-py !
| selectArea.py 1 Web
3 Server

showResults.py

|

o

,,,,,,,,,,,,,,,,,,

The advantage of this approach is simplicity: you don't need any special tools or
knowledge to write a web application in this way. The disadvantage is that you have
to do all the low-level coding by hand. It's a very tedious and slow way of building a
web application, especially a complex one with lots of features.

[322]

Chapter 9

Web application stacks

To simplify the job of building web-based applications, you generally make use of
existing tools that allow you to write your application at a higher level. For example,
you might choose to implement a complex web application in the following way:

Presentation Tier

Web Server

URL Mapper

Library

E Application Tier i
i HTML Templating || !
] Engine)
E Bl Reporting Engine i
] Logic P)

User Session
Management

Data Tier

| Object-Relational Mapper |

Apache

Dojo

Cheetah

Reportiab

WSGIState

SQLAichemy

MySQL

This "stack" of tools works together to implement your application: at the lowest

level, you have a data tier that deals with the storage of data. In this case, the

application uses MySQL for the database and SQLAIchemy as an object-relational
mapper to provide an object-oriented interface to this database. The application tier
contains the application's business logic, as well as various libraries to simplify the
job of building a stateful and complex web application. Finally, the presentation tier
deals with the user interface, serving web pages to the users, mapping incoming
URLs to the appropriate calls to your business logic, and using a sophisticated
JavaScript library to build complex user interfaces within the user's web browser.

[323]

Web Frameworks for Python Geo-Spatial Development

_ Different terms are sometimes used for these three tiers. For example, the
% data tier is sometimes called the data access layer, and the application
/<~ tier is sometimes called the business logic layer. The concept is the same,
however.

Don't be too concerned about the details of this particular application's
architecture — the main thing to realize is that there is a "stack" of tools all
working together, where each tool makes use of the tools below it. Also, notice
the complexity of this system: this application depends on a lot of different tools
and libraries. Developing, deploying, and upgrading an application like this can
be challenging because it has so many different parts.

Web application frameworks

To avoid the complexity of mixing and matching so many different parts, web
developers have created various frameworks that combine tools to provide a complete
web development system. Instead of having to select, install, and deploy ten
different libraries, you can simply choose a complete framework that brings a known
good set of libraries together, and adds its own logic to provide a complete "batteries
included" web development experience. Most of these toolkits provide you with
built-in logic to handle tasks such as:

e Defining and migrating your database schema
e Keeping track of user sessions, and handling user authentication

e Building sophisticated user interfaces, often using AJAX to handle complex
widgets within the user's browser

e Automatically allowing users to create, read, update, and delete records in
the database (the so-called CRUD interface)

e Simplifying the creation of database-driven applications through standard
templates and recipes

There is a lot more to these frameworks, but the important thing to remember is
that they aim to provide a "full stack" of features to allow developers to quickly
implement the most common aspects of a web application with a minimum of fuss.
They aim to provide rapid application development (RAD) for web-based systems.

There are a number of Python-based web application frameworks available,
including TurboGears, Django, Zope, Web2py, and Webware. Some of these
frameworks also include extensions for developing geo-spatial web applications.

[324]

Chapter 9

Web services

A web service is a piece of software that has an application programming interface

(API) that is accessed via the HTTP protocol. Web services generally implement the
behind-the-scenes functionality used by other systems; they don't generally have an
interface that allows end users to access them directly.

Web services are accessed via a URL; other parts of the system send a request to this
URL and receive back a response, often in the form of XML or JSON encoded data,
which is then used for further processing.

Types of web services

There are two main types of web services you are likely to encounter:
RESTful web services, which use parts of the URL itself to tell the web
service what to do, and "big web services" that typically use the SOAP
protocol to communicate with the outside world.

REST stands for REpresentational State Transfer. This protocol uses
sub-paths within the URL to define the request to be made. For example,
a web service might use the following URL to return information about a
customer:

-~
Q http://myserver.com/webservice/customer/123

In this example, customer defines what type of information you want,
and 123 is the internal ID of the desired customer. RESTful web services
are very easy to implement and use, and are becoming increasingly
popular with web application developers.

A "big web service", on the other hand, has just one URL for the entire
web service. A request is sent to this URL as an XML-format message, and
the response is sent back, also as an XML-formatted message. The SOAP
protocol is often used to describe the message format and how the web
service should behave. Big web services are popular in large commercial
systems, despite being more complex than their RESTful equivalent.

Let's take a look at a simple but useful web service. This CGI script, called

greatCircleDistance.py, calculates and returns the great-circle distance between

two coordinates on the Earth's surface. Here is the full source code for this web service:
#!/usr/bin/python

import cgi
import pyproj

form = cgi.FieldStorage ()

latl float (form['latl'] .value)
longl = float (form['longl'] .value)

[325]

Web Frameworks for Python Geo-Spatial Development

lat2 = float (form['lat2'] .value)
long2 = float (form['long2'] .value)

geod = pyproj.Geod(ellps="WGS84")
anglel,angle2,distance = geod.inv(longl, latl, long2, lat2)

print 'Content-Type: text/plain'
print
print distance

Because this is intended to be used by other systems rather than end users, the two
coordinates are passed as query parameters, and the resulting distance (in meters)
is returned as the body of the HTTP response. Because the returned value is a single
number, there is no need to encode the results using XML or JSON; instead, the
distance is returned as plain text.

Let's now look at a simple Python program that calls this web service:

import urllib

URL = "http://127.0.0.1:8000/cgi-bin/greatCircleDistance.py"

params = urllib.urlencode({'latl’ : 53.478948, # Manchester.
'longl' : -2.246017,
'lat2! : 53.411142, # Liverpool.
'long2' : -2.977638})

f = urllib.urlopen (URL, params)

response = f.read()

f.close()

print response

Running this program tells us the distance in meters between these two coordinates,
which happen to be the locations of Manchester and Liverpool in England:

% python callWebService.py
49194.46315

While this might not seem very exciting, web services are an extremely important
part of web-based development. When developing your own web-based geo-spatial
applications, you may well make use of existing web services, and potentially
implement your own web services as part of your web application.

[326]

Chapter 9

Map rendering

We saw in Chapter 8 how Mapnik can be used to generate good-looking maps.
Within the context of a web application, map rendering is usually performed by

a web service that takes a request and returns the rendered map image file. For
example, your application might include a map renderer at the relative URL /render
that accepts the following parameters:

® minX, maxX, minY, maxyY
The minimum and maximum latitude and longitude for the area to
include on the map.

e width, height
The pixel width and height for the generated map image.

e layers

A comma-separated list of layers that are to be included on the map.
The available predefined layers are: coastline, forest, waterways,
urban, and street.

e format
The desired image format. Available formats are: png, jpeg, and gif.

This hypothetical /render web service would return the rendered map image back
to the caller. Once this has been set up, the web service would act as a black box
providing map images upon request for other parts of your web application.

As an alternative to hosting and configuring your own map renderer, you can choose
to use an openly available external renderer. For example, OpenStreetMap provides
a freely-available map renderer for OpenStreetMap data at:

http://dev.openstreetmap.de/staticmap

Tile caching

Because creating an image out of raw map data is a time- and processor-intensive
operation, your entire web application can be overloaded if you get too many requests
for data at any one time. As we saw with the DISTAL application in Chapter 7, there is
a lot you can do to improve the speed of the map-generation process, but there are still
limits on how many maps your application can render in a given time period.

[327]

Web Frameworks for Python Geo-Spatial Development

Because the map data is generally quite static, you can get a huge improvement in
your application's performance by caching the generated images. This is generally
done by dividing the world up into tiles, rendering tile images as required, and then
stitching the tiles together to produce the desired map:

Tile caches work in exactly the same way as any other cache:

e When a tile is requested, the tile cache checks to see if it contains a copy of
the rendered tile. If so, the cached copy is returned right away.

e Otherwise, the map rendering service is called to generate the tile, and the
newly-rendered tile is added to the cache before returning it back to the caller.

e As the cache grows too big, tiles that haven't been requested for a long time
are removed to make room for new tiles.

Of course, tile caching will only work if the underlying map data doesn't change. As
we saw when building the DISTAL application, you can't use a tile cache where the
rendered image varies from one request to the next.

[328]

Chapter 9

One interesting use of a tile cache is to combine it with map overlays to improve
performance even when the map data does change. Because the outlines of countries
and other physical features on a map don't change, it is possible to use a map
generator with a tile cache to generate the base map onto which changing features
are then drawn as an overlay:

The final map could be produced using Mapnik, by drawing the overlay onto the
base map, which is accessed using a RasterDataSource and displayed using a
RasterSymbolizer. If you have enough disk space, you could even pre-calculate all
of the base map tiles and have them available for quick display. Using Mapnik in this
way is a fast and efficient way of combining changing and non-changing map data
onto a single view —though there are other ways of overlaying data onto a map, as
we shall see in the section on OpenLayers.

[329]

Web Frameworks for Python Geo-Spatial Development

Web servers

In many ways, a web server is the least interesting part of a web application: the web
server listens for incoming HTTP requests from web browsers and returns either
static content or the dynamic output of a program in response to these requests:

Dynamic Contents

User Login Home Map
Page Page Page

Web

Static Contents
Server

EERNR S

styles.css Dojo.js logo.jpg

There are many different types of web servers, ranging from the pure-Python
SimpleHTTPServer included in the Python Standard Library, through more
fully-featured servers such as CherryPy, and of course the most popular
industrial-strength web server of them all: Apache.

One of the main consequences of your choice of web server is how fast your
application will run. Obviously, a pure-Python web server will be slower than a
compiled high-performance server such as Apache. In addition, writing CGI scripts
in Python will cause the entire Python interpreter to be started up every time a
request is received —so, even if you are running a high performance web server, your
application can still run slowly if you don't structure your application correctly. A
slow web server doesn't just affect your application's responsiveness: if your server
runs slowly, it won't take many requests to overload the server.

Another consequence of your choice of web server is how your application's code
interacts with the end user. The HTTP protocol itself is stateless — that is, each
incoming request is completely separate, and a web page handler has no way of
knowing what the user has done previously unless you explicitly code your pages
in such a way that the application's state is passed from one request to the next (for
example, using hidden HTML form fields as we did in our implementation of the
DISTAL application in Chapter 7).

Because some web servers run your Python code only when a request comes in,
there is often no way of having a long-running process sitting in the background
that keeps track of the user's state or performs other capabilities for your web page
handlers. For example, an in-memory cache might be used to improve performance,
but you can't easily use such a cache with CGI scripts as the entire interpreter is
restarted for every incoming HTTP request.

[330]

Chapter 9

One of the big advantages of using a web application framework is that you don't
need to worry about these sorts of issues: in many cases, the web framework itself
will include a simple web server you can use for development, and provides a
standard way of using industry-standard web servers when you deploy your
application. The challenges of performance, keeping track of the user's state,

and using long-running processes will all have been solved for you by the web
framework. It is, however, worthwhile to understand some of the issues involved in
the choice of a web server, and to know where the web server fits within the overall
web application. This will help you to understand what your web framework is
doing, and how to configure and deploy it to achieve the best possible performance.

User interface libraries

While it is easy to build a simple web-based interface in HTML, users are
increasingly expecting web applications to compete with desktop applications in
terms of their user interface. Selecting objects by clicking on them, drawing images
with the mouse, and dragging-and-dropping are no longer actions restricted to
desktop applications.

AJAX (Asynchronous JavaScript and XML) is the technology typically used to build
complex user interfaces in a web application. In particular, running JavaScript code
on the user's web browser allows the application to dynamically respond to user
actions, and make the web page behave in ways that simply can't be achieved with
static HTML pages.

While JavaScript is ubiquitous, it is also hard to program in. The various web
browsers in which the JavaScript code can run all have their own quirks and
limitations, making it hard to write code that runs the same way on every browser.
JavaScript code is also very low level, requiring detailed manipulation of the web
page contents to achieve a given effect. For example, implementing a pop-up menu
requires the creation of a <DIV> element that contains the menu, formatting it
appropriately (typically using CSS), and making it initially invisible. When the user
clicks on the page, the pop-up menu should be shown by making the associated
<div> element visible. You then need to respond to the user mousing over each
item in the menu by visually highlighting that item and un-highlighting the
previously-highlighted item. Then, when the user clicks, you have to hide the
menu again before responding to the user's action.

All this detailed low-level coding can take weeks to get right —especially when
dealing with multiple types of browsers and different browser versions. Since all
you want to do in this case is have a pop-up menu that allows the user to choose an
action, it just isn't worth doing all this low-level work yourself. Instead, you would
typically make use of one of the available user interface libraries to do all the hard
work for you.

[331]

Web Frameworks for Python Geo-Spatial Development

These user interface libraries are written in JavaScript, and you typically add them to
your website by making the JavaScript library file(s) available for download, and then
adding a line like the following to your HTML page to import the JavaScript library:

<script type="text/javascript" src="library.js">

If you are writing your own web application from scratch, you would then make
calls to the library to implement the user interface for your application. However,
many of the web application frameworks that include a user interface library will
write the necessary code for you, making even this step unnecessary.

There are many different types of user interface libraries that you can make use of.
As well as general Ul libraries such as Dojo and script.aculo.us that provide

a desktop-like user experience, there are other libraries specifically designed for
implementing geo-spatial web applications. We will explore some of these later in
this chapter.

The "slippy map" stack

The "slippy map" is a concept popularized by Google Maps: a zoomable map where
the user can click-and-drag to scroll around and double-click to zoom in. Here is an
example of a Google Maps slippy map showing a portion of Europe:

[Qhberdeen L _Map | Salelllle [Hybrid |
R i e
North Sea T
A Edinburgh a
o 0 Kobenhgyn fstianstad
. Glasgow Danmark
T United Denmark
Kingdom . OFlenshiig
o Darlngton . 5'“8“ G
_\Eelf_asl et O Kiell Rostack o
BT Legds - Bper &ﬁwerm ; Keszalin
 Dublin Pre%lmoo & o Stderibuy Lok Szczecin
nd o Manchester, Rotherharm {Qecnpuralt | Gorztw
A . Emmen ©Bremen . Wielkopolski
pioe 5 Leicester WD peeomone Hannover | Berlin -] G
Tl Osnabrick (+} -
: Birmingham & = — o nebtcly o o Poznane H
Nartharmptan Bar; Nederland Eraunschwei
| Lendon o) z?:)nm e e Drortrmun 9 oCatbis Haliez ©|
(CardiNi g Bristol 0 o "“‘Bgmg Ve.g,gno:" Demschla“d 9 gl eipzig Wrogaw
Egah
Seuthampton®. ggaghica. Ll Belgique v I [+ et Qpok
Flymauth @ Beigium ! Ziickaul Liberec Z\;\h
o 8 ™ Ceska Republika
Le Havre Arniens Luxembourg frEnkfurt Czech Repubiic
=2 AL i © am Main DNumberg ey
] G annl eIITI
Sea Eranooy Caen i Aalen 4 oRegenshurg r"“'-\BrI'IDJ
o <] Paris Troyes Strasbourg Stmgan Ingolstadt ' =T
Brest “Rennes@ -+ Lo Mans Ondans TS Freiburs i QMun:;h en o
FOWERED EY Afiars o Breisgau Konstanz :—‘“"‘\O-sl ; Wiend s, |
Sant-t y erreic
98 ZhLpazie o O @Tows ODunn Schweu i Bf'dap
Mantes o Ofafsttata ©2010 m[(Telp Atlas = Foiint of Usel

(Image copyright Google; map data copyright Europa Technologies, PPWK,
Tele Atlas).

[332]

Chapter 9

Slippy maps have become extremely popular, and much of the work done on
geo-spatial web application development has been focused on creating and
working with slippy maps.

The slippy map experience is typically implemented using a custom software stack,

as shown in the following image:

—>
User

ty

Web Server

Ul Library

yoejs dejy Addis ayj

Tile Cache

Map Renderer

e =
e —

Map Data
« =

Starting at the bottom, the raw map data is typically stored in a Shapefile or
database. This is then rendered using a tool such as Mapnik, and a tile cache is used
to speed up repeated access to the same map images. A user-interface library such
as OpenLayers is then used to display the map in the user's web browser, and to
respond when the user clicks on the map. Finally, a web server is used to allow web
browsers to access and interact with the slippy map.

[333]

Web Frameworks for Python Geo-Spatial Development

The geo-spatial web application stack

The slippy map stack is intended to display a slippy map within a web page,
allowing the user to view a map but not generally to make any changes. A more
comprehensive solution allows the user to not only view maps, but also to make
changes to geo-spatial data from within the web application itself and perform
other functions such as analyzing data and performing spatial queries. A complete
geo-spatial web application stack would consist of a web application framework
with an integrated slippy map stack and built-in tools for editing, querying, and
analyzing geo-spatial data.

In many ways, the geo-spatial web application stack is the epitomé of geo-spatial
web development: it allows for rapid development of geo-spatial applications with

a minimum of coding, and using existing libraries to do almost all the hard work.
While you still need to understand how the web application framework (and its geo-
spatial extensions) operate, and there are bugs and technical issues to be considered,
these frameworks can save you a tremendous amount of time and effort compared
with a "roll your own" solution.

Protocols

Because web-based applications are generally broken into multiple components,

the way these components communicate becomes extremely important. It's quite
likely that your web application will use off-the-shelf components or rely on existing
components running on a remote server. In these cases, the protocols used to
communicate between the various components is crucial to allowing these various
components to work together.

In terms of geo-spatial web applications, a number of standard protocols have been
developed to allow different components to communicate. For example, the Web
Map Service (WMS) protocol provides a standard way for a web service to receive a
map-generation request and return the map image back to the caller.

In this section, we will examine the major protocols relating to geo-spatial web
applications. Many of the standard tools and building blocks will make use of these
protocols, so it is worthwhile becoming at least passingly familiar with them.

The Web Map Service (WMS) protocol

The WMS protocol defines the interface to a web service that creates map images
upon request:

[334]

Chapter 9

At a minimum, the Web Map Service needs to implement the following two

HTTP requests:

GetCapabilities

This request returns information about the Web Map Service itself.
This request returns an XML document that describes the web
service, including:

o

o

Which operations are supported by the web service

The maximum width and height of the generated map,
in pixels

The maximum number of layers that can be included
in the map

A list of the available map layers

A list of the various visual styles that can be applied to the
map's features

A latitude/longitude bounding box defining the area of the
Earth the Web Map Service can generate maps for

Which Coordinate Reference System is used by the
map's data.

The range of scale factors at which the map can be generated

A URL linking to the underlying map data

[335]

Web Frameworks for Python Geo-Spatial Development

GetMap

This request generates and returns an actual map image based on the
supplied parameters. The supplied parameters include:

o

A comma-separated list of the layers to include in the map

o

A comma-separated list of styles to apply to the map

o

A CRS code indicating which Coordinate Reference System is
used by the supplied bounding box parameters. For example,
the code crs: 84 indicates that the coordinates are longitude
and latitude values using the WGS 84 datum

The bounding box defining the area of the Earth to be covered
by the map

The width and height of the generated map image, in pixels
The image format to use for the generated map
The GetMap request will return the generated map as an image file of

the requested format. For example, if the request parameters included
FORMAT=JPEG, the returned data would be a JPEG-format image.

The Web Map Service may also optionally implement the following request:

GetFeaturelInfo

Returns more detailed information about the feature or features at a
given coordinate within a rendered map image. The parameters used
by this request include:

o

The map-generation parameters used to create a map image

o

The pixel coordinate of a desired point in the rendered
map image

Upon completion, this request returns information about the features
at or near the given position in the rendered map image. The

results are usually in XML format. Note that the exact information
returned by a GetFeatureInfo request is not specified by the WMS
Specification.

For more information about the WMS protocol, you can find the complete
specification for this protocol on the Open Geospatial Consortium's website:

http://www.opengeospatial.org/standards/wms

[336]

Chapter 9

WMS-C

Because the WMS protocol is a generic protocol for generating map images, it is not
ideally suited to producing map tiles that can be easily cached. To get around this
limitation, a set of recommendations were made to limit the way in which WMS
operates, to make it more suitable for serving tiled images. This recommendation,
known as WMS-C or the WMS Tiling Client Recommendation, ensures that the
generated map images consist of fixed-size tiles. It also suggests extensions to the
WMS protocol to make it clear that the rendered map images are map tiles.

More details about the WMS-C protocol can be found at:

http://wiki.osgeo.org/wiki/WMS Tiling Client Recommendation

The Web Feature Service (WFS) protocol

The WFS protocol defines a web service that allows other parts of a web application
to query and manipulate geo-spatial features independently of how those features
are stored:

Web Feature Service

ﬁ =l
E ;i Data Storage
RN B
Update
7 AY

A Web Feature Service represents geo-spatial features using Geography Markup
Language (GML), which is an XML schema for storing and representing
geographical information. GML is an international standard, allowing features to be
represented and stored in a platform-agnostic way.

[337]

Web Frameworks for Python Geo-Spatial Development

At a minimum, a Web Feature Service needs to support the following requests,
which allow client systems to query the WES and retrieve features:

® GetCapabilities

This request returns information about the Web Feature Service
itself. This request returns an XML document that describes the web
service, including:

o

Which operations are supported by the web service

o

Which types of features can be stored and retrieved by the
web service

Which operations are supported by each type of feature

e DescribeFeatureType

This request returns an XML document describing the structure of
one or more types of features. This provides information about the
attributes stored for each feature, as well as the way in which the
feature itself is represented in the datastore.

® GetFeature

This request queries the WFS, returning features that match certain
criteria. The caller can request which properties to retrieve and a
maximum number of matching features to return, as well as both
spatial and non-spatial query parameters.

The Web Feature Service may also allow client systems to add, update and delete
features. This can be done in one of two ways: by allowing the client to lock one or
more features before making a series of changes and then unlocking the features
again, or simply by making the updates one at a time. The locking approach ensures
that two processes don't both update the same feature at the same time, though not
all Web Feature Services support locking.

The following requests support locking and non-locking changes to the datastore:

e TLockFeature

Lock one or more features so that other processes cannot make any
changes to those features.

® GetFeatureWithLock

Retrieve one or more features, and immediately lock the retrieved
features.

[338]

Chapter 9

e Transaction

This request is used to add, update, and delete features. It also allows
previously-locked features to be unlocked, allowing other processes
to make changes to those features.

Finally, the Web Feature Service can optionally support external linking, where
features (possibly stored in different Web Feature Services) can be linked together.
This is done through supporting the retrieval of nested features within the
GetFeature request, and the separate GetGmlObject request that returns a given
feature referred to by an xLink ID.

Web Feature Services are intended to abstract the storage and retrieval away from
other parts of a web application, allowing different datastores to be used, and to
allow information stored in separate places (possibly on separate servers) to be
seamlessly combined. Unfortunately, the WFS protocol is quite complicated, relying
heavily on complex XML schemas, which makes accessing and using a Web Feature
Service somewhat challenging. Despite this, the open and scalable nature of the WFS
protocol does make it worthwhile. Depending on your requirements, you may wish
to make use of this protocol in your applications — especially if you are trying to
access or manipulate data stored externally.

More information about Web Feature Services, including a complete specification for
the WEFS protocol, can be found at:

http://www.opengeospatial.org/standards/wfs

The TMS (Tile Map Service) protocol

The TMS protocol defines the interface to a web service that returns map tile
images upon request. The TMS protocol is similar to WMS, except that it is simpler
and more oriented towards the storage and retrieval of map tiles rather than
arbitrarily-specified complete maps.

The TMS protocol uses RESTful (REpresentational State Transfer) principles, which
means that the URL used to access the web service includes all of the information
needed to complete a request. Unlike WMS, there is no need to create and submit
complex XML documents to retrieve a map tile —all of the information is contained
within the URL itself.

Within the TMS protocol, a Tile Map Service is a mechanism for providing access to
rendered map images at a given set of scale factors and using a predetermined set of
spatial reference systems.

[339]

Web Frameworks for Python Geo-Spatial Development

A single TMS Server can host multiple Tile Map Services:

TMS Server

Tile Map Service | | Tile Map Service | | Tile Map Service
version 1.0 version 1.1 version 1.2

This is typically used to have different versions of a Tile Map Service available so
that new versions of the Tile map Service can be implemented without breaking
clients that depend on features in an older version.

Each Tile Map Service within a TMS Server is identified by a URL that is used to
access that particular service. For example, if a TMS Server is running at http://
tms.myserver. com, version 1.2 of the Tile Map Service running on that server would
generally reside at the sub-URL http://tms.myserver.com/1.2/. Accessing the
top-level URL (that is, http://tms.myserver.com) returns a list of all the Tile Map
Services available on that server:

<?xml version="1.0" encoding="UTF-8"/>

<Services>

<TileMapService title="MyServer TMS" version="1.0"
href="http://tms.myserver.com/1.0/"/>

<TileMapService title="MyServer TMS" version="1.1"
href="http://tms.myserver.com/1.1/"/>

<TileMapService title="MyServer TMS" version="1.2"
href="http://tms.myserver.com/1.2/"/>

</Services>

Each Tile Map Service provides access to one or more Tile Maps:

Tile Map Service version 1.2

World Base Map USA Contour Australian
Map Land-Use Map

A Tile Map is a complete map of all or part of the Earth, displaying particular sets of
features or styled in a particular way. The examples given in the previous image of

a worldwide base map, a contour map, and a land-use map show how different Tile
Maps might contain different sorts of map data or cover different areas of the Earth's
surface. Different Tile Maps may also be used to make maps available in different
image formats, or to provide maps in different spatial reference systems.

[340]

Chapter 9

If a client system accesses the URL for a particular Tile Service, the Tile Service
would return more detailed information about that service, including a list of the Tile
Maps available within that service:

<?xml version="1.0" encoding="UTF-8"/>
<TileMapService version="1.2" services="http://tms.myserver.com">
<Title>MyServer TMS</Title>
<Abstract>TMS Service for the myserver.com server</Abstract>
<TileMaps>
<TileMap title="World Base Map"
srs="EPSG:4326"
profile="none"
href="http://tms.myserver.com/1.2/baseMap"/>
<TileMap title="USA Contour Map"
srs="EPSG:4326"
profile="none"
href="http://tms.myserver.com/1.2/usaContours"/>
<TileMap title="Australian Land-Use Map"
srs="EPSG:4326"
profile="none"
href="http://tms.myserver.com/1.2/ausLandUse"/>
</TileMap>
</TileMaps>
</TileMapService>

Client systems accessing rendered maps via a TMS Server will generally want to

be able to display that map at various resolutions. For example, a world base map
might initially be displayed as a complete map of the world, and the user can zoom
in to see a more detailed view of a desired area:

[341]

Web Frameworks for Python Geo-Spatial Development

This zooming-in process is done through the use of appropriate scale factors. Each
Tile Map consists of a number of Tile Sets, where each Tile Set depicts the map at

a given scale factor. For example, the first image in the previous illustration was
drawn at a scale factor of approximately 1:100,000,000, the second at a scale factor of
1:10,000,000, the third at a scale factor of 1:1,000,000, and the last at a scale factor of
1:100,000. Thus, there would be four Tile Sets within this Tile Map, one for each of
the scale factors.

If a client system accesses the URL for a given Tile Map, the server will return
information about that map, including a list of the available Tile Sets:

<?xml version="1.0" encoding="UTF-8">
<TileMap version="1.2"
tilemapservice="http://tms.myserver.com/1.2">
<Title>World Base Map</Title>
<Abstract>Base map of the entire world</Abstracts>
<SRS>ESPG:4326</SRS>
<BoundingBox minx="-180" miny="-90" maxx="180" maxy="90"/>
<Origin x="-180" y="-90"/>
<TileFormat width="256"
height="256"
mime-type="1image/png"
extension="png"/>
<TileSets profile="none">
<TileSet href="http://tms.myserver.com/1l.2/basemap/0"
units-per-pixel="0.703125"
order="0"/>
<TileSet href="http://tms.myserver.com/1l.2/basemap/1"
units-per-pixel="0.3515625"
order="1"/>
<TileSet href="http://tms.myserver.com/1l.2/basemap/2"
units-per-pixel="0.17578125"
order="2"/>
<TileSet href="http://tms.myserver.com/1l.2/basemap/3"
units-per-pixel="0.08789063"
order="3"/>
</TileSets>
</TileMap>

Notice how each Tile Set has its own unique URL. This URL will be used to retrieve
the individual Tiles within the Tile Set. Each Tile is given an x and y coordinate
value indicating its position within the overall map. For example, using the above
Tile Map covering the entire world, the third Tile Set would consist of 32 tiles
arranged as follows:

[342]

Chapter 9

x=0 x=1 x=2 x=3 x=4 x=5 x=6 x=7
y=3 y=3 y=3 y=3 y=3 y=3 y=3 y=3
x=0 x=1 x=2 x=3 x=4 x=5 xX=6 x=7
y=2 y=2 y=2 y=2 y=2 y=2 y=2 y=2
x=0 x=1 x=2 x=3 x=4 x=5 x=6 x=7
y=1 y=1 y=1 y=1 y=1 y=1 y=1 y=1
x=0 x=1 Xx=2 x=3 x=4 X=5 X=6 Xx=7
y=0 y=0 y=0 y=0 y=0 y=0 y=0 y=0

This arrangement of tiles is defined by the following information taken from the Tile
Map and the selected Tile Set:

e The Tile Map uses the ESPG:4326 spatial reference system, which equates to
longitude/latitude coordinates based on the WGS84 datum. This means that
the map data is using latitude/longitude coordinate values, with longitude
values increasing from left to right, and latitude values increasing from
bottom to top.

e The map's bounds range from -180 to +180 in the x (longitude) direction, and
from -90 to +90 in the y (latitude) direction.

e The map's origin is at (-180,-90) — that is, the bottom-left corner of the map.

e Each Tile in the Tile Map is 256 pixels wide and 256 pixels high.

e The third Tile Set has a units-per-pixel value of 0.17578125.
Multiplying the units-per-pixel value by the tile's size, we can see that each tile
covers 0.17578125 * 256 = 45 degrees of latitude and longitude. Since the map covers

the entire Earth, this yields eight tiles across and four tiles high, with the origin in the
bottom-left corner.

Once the client software has decided on a particular Tile Set to use, and has
calculated the x and y coordinates for the desired tile, retrieving that tile's image is
a simple matter of concatenating the Tile Set's URL, the x and y coordinates, and the
image file suffix:

url = tileSetURL + "/" + x + "/" + y + "." + imgFormat

For example, to retrieve the tile at coordinate (3, 2) from the above Tile Set, you
would use the following URL:

http://tms.myserver.com/1.2/basemap/2/3/2.png

[343]

Web Frameworks for Python Geo-Spatial Development

Notice how this URL (and indeed, every URL used by the TMS protocol) looks as
if it is simply retrieving a file from the server. Behind the scenes, the TMS Server
may indeed be running a complex set of map-generation and map-caching code to
generate these tiles on demand —but the entire TMS Server could just as easily be
defined by a series of hardwired XML files and a number of directories containing
pre-generated image files.

This notion of a Static Tile Map Server is a deliberate design feature of the

TMS protocol. If you don't need to generate too many map tiles, or if you have a
particularly large hard disk, you could easily pre-generate all the tile images and
create a static TMS server by creating a few XML files and serving the whole thing
behind a standard web server such as Apache.

While you might not implement your own dynamic TMS Server from scratch, you
may well wish to make use of TMS servers in your own web applications, either
by creating a Static Tile Map Server, or by using an existing software library that
implements the TMS protocol such as the open-source TileCache server. TileCache
will be discussed in the next section of this chapter.

The full specification for the TMS protocol can be found at:

http://wiki.osgeo.org/wiki/Tile Map Service Specification

Tools

When discussing tools for developing geo-spatial web applications, it is worth
remembering that all of the libraries and toolkits we have discussed in earlier
chapters (SpatiaLite, MySQL, PostGIS, Mapnik, OGR, GDAL, Proj, Shapely,

and so on) can also be used for web applications. In this section, we will add

to this collection by examining some of the major Python libraries available for
implementing tile caching and slippy maps. We will also look at some of the web
application frameworks that support geo-spatial development.

Tile caching

There are three main tools for implementing tile caching within a Python geo-spatial
web application: TileCache, mod_tile, and TileLite. Let's take a closer look at
each of these.

[344]

Chapter 9

TileCache

TileCache (http://tilecache.org) is a tile caching system written in Python. It
supports both the Tile Map Service (TMS) protocol and the tiling-oriented extension
to the Web Map Service (WMS) protocol called WMS-C. TileCache can accept
rendered map images from Mapnik and from other servers that support the WMS
protocol. Internally, TileCache can store the cached tiles on disk or in memory, as
well as supporting other caching mechanisms such as Google Disk or Amazon S3.

TMS ¢— <4—— Mapnik
TileCache
WMS-C —— «—— WMS

TileCache is fast and versatile, while also being easy to set up. When configured
appropriately and running on a fast server, TileCache is capable of handling more
than 300 requests per second.

TileCache can be configured to work with a variety of web servers, including acting
as a CGI script, running under Apache using mod_python, running a standalone
FastCGI or WSGI server, and can even be configured to work with Microsoft's IIS
web server.

To use TileCache with Mapnik, you need to create an XML-format map definition
file as described in the Map Definition Files section in Chapter 8 of this book. You then
refer to this map definition file in the TileCache configuration file, like this:

[mapLayer]
type=Mapnik
mapfile=/path/to/mapDefinition.xml

You can then access your map tiles using the standard TMS RESTful protocol, as
described earlier in this chapter.

[345]

Web Frameworks for Python Geo-Spatial Development

mod _tile

mod_tile (http://wiki.openstreetmap.org/wiki/Mod_tile) is an Apache
module that implements tile caching for maps rendered using Mapnik. mod_tile is
written in C, and so works extremely quickly. The mod_tile tiling system consists
of two separate parts: a map rendering daemon called renderd, and the mod_tile
module itself. The interaction between Mapnik, renderd, mod_tile, and Apache
can be described in the following way:

>l L ;
Apache mod_tile t------ >
P |1 renderd
A
Saved Map q
Tiles IETEILS

The renderd daemon sits in the background waiting for requests to generate map
tiles. When the Apache web server receives an incoming request for a map tile,

the mod_tile module checks the filesystem to see if that tile exists. If so, the tile is
returned immediately. Otherwise, a request is sent to renderd to create the map tile.
renderd listens for incoming tile-generation requests, calls Mapnik to create the tile,
and saves it to the filesystem.

The mod_tile module uses a simple RESTful protocol to access map tiles:

http://myserver.com/tileserver/ [zoom] / [X]/[Y] .png

where [zoom] is the desired zoom level, and [X] and [Y] are the coordinates for the
desired tile.

The renderd and mod_tile configuration files include important options for
controlling how the mod_tile system works. This includes the relative URL used
to access the tile cache, where on the filesystem the map tiles will be stored, and the
name of the XML map definition file used by Mapnik to render the map images.

Because mod_tile has been written specifically for use by OpenStreetMap, it does
have some quirks: it doesn't use a standard protocol for accessing map tiles, and it is
limited to using Mapnik for map rendering. However, if this matches your particular
application's requirements, mod_tile is a powerful and proven tile caching system
that you may well wish to use in your own web application.

[346]

Chapter 9

TileLite

As the name suggests, TileLite (http://bitbucket.org/springmeyer/tilelite)

is a lightweight tile server, written in Python. It serves tiles rendered using Mapnik,
and uses WSGI for communicating with a web server. TileLite is easy to install and

configure, and comes with its own server you can use for development purposes.

For deploying in a high-performance environment, you can combine TileLite
with the mod_wsgi module to use TileLite within Apache. Because TileLite is a
long-running process, it has a single Mapnik Map object that is held in memory
to quickly produce map tiles on demand.

TileLite works with Mapnik, mod_wsgi and Apache in the following way:

<+—» Apache [«—»{ mod_wsgi i« » TileLite
A
// :
Saved Map :
Tiles Mapnik

TileLite is intended to be a plug-in replacement for mod_tile, and so uses
mod_tile's URL scheme for accessing map tiles:

http://myserver.com/tileserver/ [zoom] / [x]/ [y] .png

Because it is written in pure Python, it is easy to explore the TileLite source code and
see how it works. It is fast and simple, and may well be suited to providing the tile
caching needs of your geo-spatial web application.

User interface libraries

JavaScript code running on the user's web browser, in conjunction with AJAX
technology, has made it possible to include complex user interfaces previously only
seen on desktop-based GUI systems. Because of the complexity of the JavaScript
code needed to achieve commonly-used parts of a user interface, a number of large
and powerful Ul libraries have been developed to simplify the task of building a
complex web interface. Dojo, script.aculo.us, Rico, and YUI are examples of some
of the more popular JavaScript user interface libraries.

[347]

Web Frameworks for Python Geo-Spatial Development

It is easy to forget that geo-spatial web applications are, first and foremost, ordinary
web applications that also happen to work with geo-spatial data. Much of a geo-spatial
web application's functionality is rather mundane: providing a consistent look and
feel, implementing menus or toolbars to navigate between pages, user signup, login
and logout, entry of ordinary (non-geo-spatial) data, reporting, and so on. All of this
functionality can be handled by one of these general-purpose user interface libraries,
and you are free to either choose one or more libraries of your liking, or make use of
the Ul library built into whatever web application framework you have chosen to use.

These general-purpose user interface libraries, and the process of using them to
implement non-geo-spatial functionality, has been covered by many other books

and websites. We will not look at them in depth here. Instead, we will look at the Ul
libraries specifically aimed at viewing or editing geo-spatial data, usually via a slippy
map interface.

Let's take a closer look at two of these libraries: the fully-featured OpenLayers, and
the simpler Mapiator library.

OpenlLayers

OpenlLayers (http://openlayers.org) is a sophisticated JavaScript library for
building mapping applications. It includes a JavaScript API for building slippy
maps, combining data from multiple layers, and including various widgets for
manipulating maps as well as viewing and editing vector-format data.

To use OpenLayers in your web application, you first need to create an HTML file to
be loaded into the user's web browser, and write some JavaScript code that uses the
OpenLayers API to build the desired map. OpenLayers then builds your map and
allows the user to interact with it, loading map data from the various datasource(s)
you have specified. OpenLayers can read from a variety of geo-spatial datasources,
including TMS, WMS, and WFS servers. All these various parts work together to
produce the user interface for your web application in the following way:

User's Web Browser

My Web App 3 Your JavaScript i TMS Server
2, ! | HTML File Pt
: Code
i
OpenlLayers Library

WFS Server

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i é WMS Server
| ;i

Google Maps

[348]

Chapter 9

To use OpenLayers, you have to be comfortable writing JavaScript
~ code. This is almost a necessity when creating your own web

Q applications. Fortunately, the OpenLayers APl is very high level,
and makes map-creation relatively simple.

Here is an example HTML page that displays a slippy map using OpenLayers:

<html>
<head>
<script src="http://openlayers.org/api/OpenlLayers.js">
</scripts>
<script type="text/javascript"s>
function initMap()
var map = new OpenLayers.Map ("map") ;
var layer = new Openlayers.Layer.WMS ("Layer",
"http://labs.metacarta.com/wms/vmap0O",
{layers: 'basic'});
map .addLayer (layer) ;
map . zoomToMaxExtent () ;
}
</scripts>
</head>
<body onload="initMap () ">
<div style="width:100%; height:100%" id="map"></div>
</body>
</html>

As you can see, the map uses a block-level element, in this case a <div> element, to
hold the map. Initializing the map involves a short JavaScript function that defines
the map object, adds a layer, and prepares the map for display.

Internally, the OpenLayers API uses a Map object to represent the slippy map itself,
and one or more Layer objects which represent the map's datasources.

As with Mapnik layers, multiple OpenLayers layers can be laid on top of each other
to produce the overall map image, and layers can be shown or hidden depending on
the map's current scale factor.

[349]

Web Frameworks for Python Geo-Spatial Development

There are two types of layers supported by OpenLayers: Base Layers and Overlay
Layers. Base layers sit behind the overlay layers, and are generally used to display
raster format data (images, generated map tiles, and so on). Overlay layers, on the other
hand, sit in front of the base layers, and are generally used to display vector format
data, including points, lines, polygons, bounding boxes, text, markers, and so on:

/ Overlay Layers

Base Layer

Displayed Map|

Different Layer subclasses represent different types of datasources: openLayers.
Layer.TMS, OpenlLayers.Layer.WMS, OpenLayers.Layer.Google, and so on. In
addition, the OpenLayers.Layer.Vector class represents vector-format data that
can be loaded from a variety of sources, and optionally edited by the user. To have
the vector layer read features from the server, you set up a Protocol object that
tells OpenLayers how to communicate with the server. The most common protocol
is HTTP, though several other protocols, including WES, are also supported. The
Protocol object usually includes the URL used to access the server.

[350]

Chapter 9

As well as setting the protocol, you also supply the Format used to read and write
data. Supported formats include GML, GeoJSON, GeoRSS, OSM, and WKT, among
others. Format objects also support on-the-fly reprojection of vector data so that
data from different sources, using different map projections, can be combined onto a
single map.

In addition to the map itself, OpenLayers allows you to use various Control objects,
either embedded within the map or shown elsewhere on the web page. Control
objects include simple push-buttons, controls for panning and zooming the map,
controls that display the map's current scale, controls for showing and hiding layers,
and various controls for selecting, adding, and editing vector features. There are
also invisible controls that change the behavior of the map itself. For example, the
Navigation control allows the user to pan and zoom by clicking-and-dragging on
the map, and the Argparser control tells OpenLayers to scan the URL's query string
during page load for arguments that adjust how the map is initially displayed.

OpenLayers is a very powerful tool for building geo-spatial web interfaces. Even if
you don't use it directly in your own code, many of the web application frameworks
that support geo-spatial web development (including TurboGears, Mapfish, and
GeoDjango) use OpenLayers internally to display and edit map data.

Mapiator

Mapiator (http://pdietrich.github.com/mapiator) is a simple JavaScript library
for including slippy maps within a web application. The main benefits of Mapiator
are that it is small and easy to use: simply load the Mapiator. js library into your
web page and add a few lines of JavaScript code to set up and display your map. For
example, the following HTML page:

<html>
<head>
<title>My Map</title>
<script type="text/javascript" src="Mapiator.js"></script>
<script type="text/javascript"s>
function onLoad()
var map = new Mapiator.Map ("mapID") ;
map.setZoomLevel (3) ;
map.setCenter(48.0, 10.0);
map.redraw () ;
}
</script>
</head>
<body onload="onLoad () ">

[351]

Web Frameworks for Python Geo-Spatial Development

<div id="mapID" style="width:800px; height:500px">
</div>
</body>
</html>

will result in the following slippy map being displayed:

By default, Mapiator displays relief map tiles downloaded from http://maps-for-
free.com when zoomed out, and street maps taken from http://openstreetmap.
org when zoomed in beyond level 11. This is easy to change to use your own map
tiles if you wish; you simply implement your own getTileUrl () function that
returns the URL to use for a given zoom level and X/Y coordinate value.

Mapiator includes functions for creating vector data that is overlaid onto the map.
These vector elements can be created programmatically, or loaded from a WKT
format string. You can also add DOM elements directly to the map image, for
example to display buttons or other controls within the map.

While there is no built-in functionality for editing and saving vector data, the
Mapiator.js library is relatively small and easy to understand; if your geo-spatial
application includes the need to display a slippy map using read-only raster and
vector data, Mapiator is an excellent choice.

[352]

Chapter 9

Web application frameworks

In this section, we will examine three of the major Python-based web application
frameworks that also support geo-spatial web application development.

GeoDjango

Django (http://djangoproject.org) is a rapid application development (RAD)
framework for building database-oriented web applications using Python.
GeoDjango is a set of extensions to Django that add geo-spatial capabilities to the
Django framework.

To understand how GeoDjango works, it is first necessary to understand a little
about Django itself. Let's start by taking a closer look at Django.

Understanding Django

The Django framework is highly respected, and used to power thousands of web
applications currently deployed across the Internet. The major parts of Django
include an object-relational mapper, an automatically-generated admin interface,
a flexible URL mapper, a web templating system, a caching framework, and
internationalization logic. Putting these elements together, Django allows you

to quickly build sophisticated web applications to implement a wide variety of
database-oriented systems.

A Django project consists of a number of apps, where each app implements a
standalone set of functionality:

My Django Project

My App Authentication

Sessions Admin Interface

When creating a web application, you define your own app, and will typically
make use of one or more predefined apps that come with Django. One of the most
important predefined apps is the admin interface, which allows you to administer
your web application, view and edit data, and so on. Other useful predefined apps
implement persistent sessions, user authentication, site maps, user comments,
sending e-mails, and viewing paginated data. A large number of user-contributed
apps are also available.

[353]

Web Frameworks for Python Geo-Spatial Development

Internally, each app consists of three main parts:

i Django App i
i Views 1
| (Application Tier) i
i Model Templates i
i (Data Tier) (Presentation Tier) i

The Model is the app's data tier. This contains everything related to the application's
data, how it is structured, how to import it, how to access it, how data is validated,
and so on.

The Templates make up the app's presentation tier. These describe how information
will be presented to the user.

The Views make up the application tier, and hold the application's business logic. A
view is a Python function responsible for accepting incoming requests and sending
out the appropriate response. Views typically make use of the model and template to
produce their output.

Make sure that you don't confuse Django's model-template-view
architecture with the model-view-controller(MVC) pattern commonly
used in software development. The two are quite distinct, and describe
the different tiers in the web application stack in very different ways.
While the model in both Django and MVC represents the data tier,
Django uses the view to hold the application logic, and separates out the
presentation using templates. MVC, on the other hand, allows the view
to directly specify the presentation of the data, and uses a controller to

represent the application's business logic. The differences between the
~ two above-mentioned design patterns can be summarized as follows:

2.

Model-View-C
Pattern Pattern

Presentation tier View Template

Application Tier Controller View

Data Tier Model Model

[354]

Chapter 9

There is a lot more to Django than can be covered in this brief introduction, but this
is enough to understand how GeoDjango extends the Django framework.

GeoDjango
The GeoDjango extension builds on Django's capabilities to add complete support

for building geo-spatial web applications. In particular, it extends the following parts
of the Django system:

1. The Model

o

The Django model is extended to support geo-spatial data
types and spatial queries.

As geo-spatial features are read from the database, the object-
relational mapper automatically converts them into GEOS
objects, providing methods for querying and manipulating
these features in a sophisticated way similar to the interface
provided by Shapely.

The Model can import data from any OGR-supported vector
datasource into the GeoDjango database.

GeoDjango can use introspection to see which attributes are
available in a given OGR datasource, and automatically set
up the model to store and import these attributes.

2. The Template

o

Django's templating system is extended to allow for the
display of geo-spatial data using an embedded OpenLayers

slippy map.

3. The Admin Interface

o

Django's admin interface is extended to allow the user to
create and edit geo-spatial data using OpenLayers. The
vector data is displayed on top of a base map using either
OpenStreetMap data or a less detailed WMS source called
Vector Map Level 0.

All told, the GeoDjango extension makes Django an excellent choice for developing
geo-spatial web applications. We will be working with GeoDjango in much more
detail in the remaining chapters of this book.

[355]

Web Frameworks for Python Geo-Spatial Development

MapFish

MapFish (http://mapfish.org) is an extension to the Pylons web application
framework in much the same way as GeoDjango is an extension to Django. Pylons is
a lightweight web application framework modeled after the popular Ruby on Rails
framework. Using the WSGI (Web Server Gateway Interface) standard, Pylons brings
together a number of third-party tools to implement a complete web development
framework, supporting features such as a model-view-controller architecture, URL
mapping, form handling, sessions, user accounts, and various options for deploying
your web application, as well as internationalization, testing, logging, and debugging
tools.

Pylons supports a variety of HTML templating engines and database toolkits. The
default Pylons project uses a standard set of tools, for example the Mako templating
system and the SQLAlchemy object-relational mapper. But, these are just defaults,
and you can easily replace them with whatever set of tools you wish to use. Pylons
acts as the glue between the tools you choose, rather than requiring a particular
toolset.

MapFish builds on Pylons to create a complete geo-spatial web application framework.
MapFish itself is broken into two portions: a server portion and a client portion:

MapFish Client
MapFish
JavaScript Library REElER
ExtS GeoExt
MapFish Server
MapFish Web
Services Pylons
SQLAIchemy Shapely
e —
PostGIS Database

[356]

Chapter 9

The MapkFish Server uses PostGIS, SQLAlchemy, and Shapely to provide an
object-oriented layer on top of your geo-spatial data as part of a Pylons application.
The server also implements a number of RESTful web services, using a custom
protocol known as the MapFish Protocol. These allow the client software to view
and make changes to the underlying geo-spatial data.

The MapFish Client software consists of a JavaScript library that provides the

user interface for a MapFish application. The MapFish JavaScript library builds on
OpenLayers to produce a slippy map, along with the ExtJS and GeoExt libraries to
provide user-interface widgets and common behaviors such as feature selection and
editing, searching, enabling and disabling layers, and so on.

Putting all this together, MapFish allows developers to build complex user interfaces
for geo-spatial web applications, along with server-side components to implement
features such as geocoding, spatial analysis, and editing geo-spatial features.

TurboGears

Just like GeoDjango is an extension to the existing Django web framework
and MapFish is an extension to Pylons, the TurboGears web framework
(http://turbogears.org) also has an extension designed to make it easy

to implement your own geo-spatial web applications. This extension is named
tgext .geo, and comes bundled with TurboGears.

TurboGears is a sophisticated and extremely popular web application framework
built upon Pylons and using a number of standard components, including the
SQLAIchemy object-relational mapper, the Genshi templating system, and the
ToscaWidgets user interface library. TurboGears also uses the MVC architecture to
separate the application's data, business logic, and presentation.

[357]

Web Frameworks for Python Geo-Spatial Development

The tgext . geo extension to TurboGears makes use of several existing third-party
libraries rather than trying to implement its own functionality. As with MapFish,
tgext .geo consists of both client and server components:

tgext.geo Client Software

| tw.openlayers || MapFish Client |

| OpenlLayers |

5

tgext.geo Server Software

| Tiecache || MapFish Server |

| GeoAlchemy || FeatureServer |

— -

tgext .geo uses the ToscaWidgets tw.openlayers wrapper around the OpenLayers
library to make it easy to embed a slippy map into your TurboGears application.
Alternatively, you can use OpenLayers directly, or use the MapFish client libraries if
you prefer.

On the server side, tgext . geo consists of four parts:

o TileCache is used to serve externally-generated map tiles and display them
as a background for your own map data, without wasting bandwidth or time
regenerating the map tiles every time they are needed.

¢ GeoAlchemy (http://geoalchemy.org) provides an object-relational
mapper for geo-spatial data stored in a PostGIS, MySQL, or SpatialLite
database. As the name suggests, GeoAlchemy is built on top of SQLAlchemy.

e The MapFish RESTful protocol provides a simple way for the client code to
read and update the geo-spatial data held in the database.

e FeatureServer (http://featureserver.org) provides a more feature-
complete interface to the application's geo-spatial data. FeatureServer
implements the WES protocol, as well as providing a RESTful interface to
geo-spatial data in a number of different formats, including JSON, GML,
GeoRSS, KML, and OSM.

[358]

Chapter 9

The tgext . geo extension to TurboGears makes it possible to quickly build complete
and complex geo-spatial applications on top of these components using the
TurboGears framework.

Summary

In this chapter, we have surveyed the geo-spatial web development landscape,
examining the major concepts behind geo-spatial web application development, some
of the main open protocols used by geo-spatial web applications, and a number of
Python-based tools for implementing geo-spatial applications that run over the Internet.

We have seen:

That a web application stack allows you to build complex, but highly
structured web applications using off-the-shelf components.

That a web application framework supports rapid development of web-based
applications, providing a "batteries included" or "full stack" development
experience.

That web services make functionality available to other software components
via an HTTP-based API.

That a map renderer such as Mapnik can be used to build a web service that
provides map-rendering services to other parts of a web application.

That tile caching dramatically improves the performance of a web application
by holding previously-generated map tiles, and only generating new tiles as
they are needed.

That tile caching is often used to provide a base map onto which your own
geo-spatial data is displayed using overlays.

That web servers provide the interface between your web application and the
outside world.

That a user-interface library, generally using AJAX technology, runs in the
user's web browser and provides a sophisticated user interface not possible
with traditional HTML web pages.

That the slippy map, popularized by Google Maps, is the ubiquitous interface
for viewing and manipulating geo-spatial data.

That slippy maps are generally implemented using a custom application
stack that combines map data, a renderer, a tile cache, and a Ul library, all
sitting behind a web server.

[359]

Web Frameworks for Python Geo-Spatial Development

That complete geo-spatial web application stacks, developed using

web application frameworks, can implement sophisticated geo-spatial
features, including data manipulation, searching, and analysis with far less
development effort than would be required using a "roll your own" solution.

That geo-spatial web protocols allow different components to communicate
in a standard way.

That the Web Map Service (WMS) is an XML-based protocol for generating
map images on demand.

That the WMS-C protocol is a suggested extension to WMS suited to the
generation of map tiles.

That the Web Feature Service (WFS) protocol allows for querying, retrieving,
and updating geo-spatial data using a web-based APL

That the Tile Map Service (TMS) is a simpler, RESTful protocol for retrieving
map tiles without having to use XML or deal with the complexity of the
WMS protocol.

That TileCache is a Python-based tile caching system supporting both the
TMS and WMS-C protocols.

That mod_tile is an Apache module for caching map tiles, using a custom
interface protocol and rendering tiles using Mapnik.

That TileLite is a lightweight tile server, written in Python, that is designed to
be a fast, easy-to-use, and flexible alternative to mod_tile.

That existing general-purpose user interface libraries such as Dojo, script.
aculo.us, Rico, and YUI can all be used in geo-spatial applications to
implement the non-spatial portions of the user interface.

The OpenLayers is a major JavaScript library for implementing slippy maps,
allowing the user to view and edit geo-spatial data.

That Mapiator is a simpler JavaScript library implementing a slippy map
interface for viewing, but not editing, geo-spatial data.

That GeoDjango is a powerful extension to the popular Django web
application framework that provides a complete geo-spatial web application
development environment, including an automatically-generated admin
interface for viewing and editing geo-spatial data.

That MapFish is an extension to the Pylons web application framework,
making it possible to build complex geo-spatial web applications on top of
Pylons.

[360]

Chapter 9

o That the tgext.geo extension to TurboGears supports geo-spatial web
application development by integrating OpenLayers, MapFish, and TileCache,
as well as supporting an object-relational mapper for geo-spatial data and a
WMS-compatible feature server, all within the TurboGears framework.

In the next chapter, we will start to build a complete mapping application using
PostGIS, Mapnik, and GeoDjango.

[361]

10

Putting it All Together:
A Complete Mapping
Application

In the final three chapters of this book, we will bring together all the topics discussed
in previous chapters to implement a sophisticated web-based mapping application
called ShapeEditor. In this chapter, we will cover:

How to design a geo-spatial application, and then translate that design into
code

How Django web applications are structured
How to set up a new Django project and application
How Django represents data structures as objects

How to use GeoDjango's built-in "admin" system to view and edit
geo-spatial data

About the ShapeEditor

As we have seen, Shapefiles are commonly used to store, make available, and
transfer geo-spatial data. We have worked with Shapefiles extensively in this book,
obtaining freely-available geo-spatial data in Shapefile format, writing programs to
load data from a Shapefile, and creating Shapefiles programmatically.

Putting it All Together: A Complete Mapping Application

While it is easy enough to edit the attributes associated with a Shapefile's features,
editing the features themselves is a lot more complicated. One approach would be
to install a GIS system, use it to import the data, make changes, and then export the
data into another Shapefile. While this works, it is hardly convenient if all you want
to do is make a few changes to a Shapefile's features. It would be much easier if we
had a web application specifically designed for editing Shapefiles.

This is precisely what we are going to implement: a web-based Shapefile editor.
Rather unimaginatively, we'll call this program ShapeEditor.

The following flowchart depicts the ShapeEditor's basic workflow:

| Import Shapefile |

v

| View Shapefile's features

| Select a feature |

v

| Edit selected feature |

| Export Shapefile |

The user starts by importing a Shapefile using the ShapeEditor's web interface:

L M@ N o) ShapeEditor)
ElZ] @ E] @ hupy//127.0 Y7 v [[Q~ Google
Import Shapefile

Select a Zipped Shapefile: (Browse...)

—

Character encoding: [UTF-8 3]

o e
[Submit) (_Cancel)

[364]

Chapter 10

Our ShapeEditor implementation wasn't chosen for its good looks;
. instead, it concentrates on getting the features working. It would be
easy to add stylesheets and edit the HTML templates to improve the
L= appearance of the application, but doing so would make the code harder
to understand. This is why we've taken such a minimalist approach to the
user interface. Making it pretty is an exercise left to the reader.

Once the Shapefile has been imported, the user can view the Shapefile's features on
a map, and can select a feature by clicking on it. In this case, we have imported the
World Borders Dataset used several times throughout this book:

A hnp:,r,r12?.0.0.1:3000;shape-edrmr;ed Trv
Edit Shapefile

Please choose a feature to edit

[365]

Putting it All Together: A Complete Mapping Application

The user can then edit the selected feature's geometry, as well as see a list of the
attributes associated with that feature:

ShapeEditor —
& |[x|[®] @ hiup://127.0.0.1:8000/shape-editor/ed 7 ¥

[M=)

Clear Feature's Geometry
AREA 31800
FIPS IV
1502 CI
1503 CIv
LAT 7.632
LON -5.556
NAME Cote d'Tvoire
POF2005 18384701
REGION 2
SUBREGION 11
UN 384

Once the user has finished making changes to the Shapefile, he or she can export the
Shapefile again by clicking on the Export hyperlink on the main page:

[366]

Chapter 10

800 ShapeEditor -
(<]> e){x](a] @ hup/127.0 7 v Q- Google)
ShapeEditor
Available Shapefiles:

4 -0.3. Edi E Del
e B B e

That pretty much covers all of the ShapeEditor's functionality. It's a comparatively
simple application, but it can be very useful if you need to work with geo-spatial
data in Shapefile format. And, of course, through the process of implementing

the ShapeEditor, you will learn how to write your own complex geo-spatial web
applications using GeoDjango.

Designing the application

Let's take a closer look at the various parts of the ShapeEditor to see what's involved
in implementing it.

Importing a Shapefile

When the user imports a Shapefile, we have to store the contents of that Shapefile
into the database so that GeoDjango can work with it. Because we don't know in
advance what types of geometries the Shapefile will contain, or what attributes
might be associated with each feature, we need to have a generic representation

of a Shapefile's contents in the database rather than defining separate fields in the
database for each of the Shapefile's attributes. To support this, we'll use the following
collection of database objects:

Shapefiles

Attributes Features

Attribute Values

[367]

Putting it All Together: A Complete Mapping Application

Each imported Shapefile will be represented by a single shapefile object in the
database. Each shapefile object will have a set of Attribute objects, which define
the name and data type for each attribute within the Shapefile. The Shapefile
object will also have a set of Feature objects, one for each imported feature. The
Feature object will hold the feature's geometry, and will in turn have a set of
AttributeValue objects holding the value of each attribute for that feature.

To see how this works, let's imagine that we import the World Borders Dataset into
the ShapeEditor. The first feature in this Shapefile would be stored in the database in
the following way:

Shapefiles

TM_WORLD_BORDERS-0.3.shp

Attributes .. Features

FIPS -1
) Attribute Values

503 ||

AC

NAME ||

POP2005 |.| ATG

“1-[Antigua and Barbuda |

N | T 83039 v

LAT

-61.783 "

T 17.078 '

The Shapefile object represents the uploaded TM_WORLD_BORDERS-0. 3. shp Shapefile,
and has a number of Attribute objects associated with it, one for each attribute in the
Shapefile. There are a number of Feature objects associated with the Shapefile; the
feature shown in the above image represents Antigua and Barbuda. The MultiPolygon
geometry for this feature is stored in the Feature object, and has a number of
AttributeValue objects holding the individual attribute values for this feature.

[368]

Chapter 10

While this is a somewhat roundabout way of storing Shapefile data in a database
(it would be more common to use the ogrinspect .py utility to create a static
GeoDjango model out of the Shapefile's features), we have to do this because we
don't know the Shapefile's structure ahead of time, and don't want to be constantly
adding a new database table whenever a Shapefile is imported.

With this basic model in place to store a Shapefile's data in the database, we can
continue designing the rest of the "Import Shapefile" logic.

Because Shapefiles are represented on disk by a number of separate files, we will
expect the user to create a ZIP archive out of the Shapefile and upload the zipped
Shapefile. This saves us having to handle multiple file uploads for a single Shapefile,
and makes things more convenient for the user as Shapefiles often come in ZIP
format already.

Once the ZIP archive has been uploaded, our code will need to decompress the
archive and extract the individual files that make up the Shapefile. We'll then have
to read through the Shapefile to find its attributes, create the appropriate Attribute
objects, and then process the Shapefile's features one at a time, creating Feature
and AttributeValue objects as we go. All of this will be quite straightforward to
implement.

Selecting a feature

Before the user can edit a feature, we have to let the user select the desired feature.
Unfortunately, this is an area where GeoDjango's built-in editing code lets us down:
the GeoDjango admin module displays a text-based list of the features, and only
shows a map once a particular feature has been selected. This is because GeoDjango
can only display a single feature on a map at once thanks to the way GeoDjango's
geometry editor has been implemented.

This isn't really suitable for the ShapeEditor as we have no useful information to
display to the user, and simply seeing a list of attribute values isn't going to be
very helpful. Instead, we will bypass GeoDjango's built-in editor and instead use
OpenLayers directly to display a map showing all the features in the imported
Shapefile. We'll then let the user click on a feature to select it for editing.

[369]

Putting it All Together: A Complete Mapping Application

Here is how we'll implement this particular feature:

User's Web Browser

’ Openlayers ‘

Click Handler }» Whj "Edit Feature" page§

Server

’ TMS Server ‘ ’FindFeature View‘

Map Renderer| .-~

OpenLayers needs to have a source of map files to display, so we'll create our own
simple Tile Map Server (TMS) built on top of a Mapnik-based map renderer to
display the Shapefile's features stored in the database. We'll also write a simple "click
handler" in JavaScript which intercepts clicks on the map and sends off an AJAX
request to the server to see which feature the user clicked on. If the user does click on
a feature (rather than just clicking on the map's background), the user's web browser
will be redirected to the "Edit Feature" page so that the user can edit the clicked-on
feature.

There's a lot here, requiring a fair amount of custom coding, but the end result is a
friendly interface to ShapeEditor allowing the user to quickly point-and-click at a
desired feature to edit it. In the process of building all this, we'll also learn how to
use OpenLayers directly within a GeoDjango application, and how to implement our
own Tile Map Server built on top of Mapnik.

Editing a feature

To let the user edit the feature, we'll use GeoDjango's built-in geo-spatial editing
widget. There is a slight amount of work required here because we want to use
this widget outside of GeoDjango's admin interface and will need to customize the
interface slightly.

[370]

Chapter 10

The only other issue that needs to be dealt with is the fact that we don't know

in advance what type of feature we'll be editing. Shapefiles can hold any type

of geometry, from Points and LineStrings through to MultiPolygons and
GeometryCollections. Fortunately, all the features in a Shapefile have to have the
same geometry type, so we can store the geometry type in the shapefile object and
use it to select the appropriate editor when editing that Shapefile's features.

Exporting a Shapefile

Exporting a Shapefile involves the reverse of the "Import Shapefile" process: we have
to create a new Shapefile on disk, define the various attributes which will be stored
in the Shapefile, and then process all the features and their attributes, writing them
out to disk one at a time. Once this has been done, we can create a ZIP archive from
the contents of the shapefile, and tell the user's web browser to download that ZIP
archive to the user's hard disk.

Prerequisites

Before you can build the ShapeEditor application, make sure that you have installed
the following libraries and tools introduced in Chapter 3 and Chapter 6:

e OGR

e Mapnik

e PROJA4

® pyproj

e PostgreSQL
e PostGIS

e psycopg?2

You will also need to download and install Django. Django (http://djangoproject.
com) comes with GeoDjango built-in, so once you've installed Django itself you're all
set to go. Click on the Download link on the Django website and download the latest
official version of the Django software.

1
‘Q If your computer runs Microsoft Windows, you may need to download a

utility to decompress the . tar. gz file before you can use it.

[371]

Putting it All Together: A Complete Mapping Application

Once you have downloaded it, you can install Django by following the instructions
in the Django Installation Guide. This can be found at:

http://docs.djangoproject.com/en/dev/topics/install

Once you have installed it, you may want to run through the GeoDjango tutorial
(available at http://geodjango.org), though this isn't required to build the
ShapeEditor application. If you decide not to follow the tutorial, you will still need
to set up the template_postgis template so that new PostGIS databases can be
created. To do this, follow the instructions at:

http://docs.djangoproject.com/en/dev/ref/contrib/gis/
install/#spatialdb-template

The structure of a Django application

While a complete tutorial on Django is beyond the scope of this book, it is worth
spending a few minutes becoming familiar with how Django works. In Django, you
start by building a project that contains one or more applications. Each project has a
single database that is shared by the applications within it:

Project

Applications

A\A A

Django comes with a large number of built-in applications that you can include as
part of your project, including;:

¢ An authentication system supporting user accounts, groups, permissions,
and authenticated sessions

¢ Anadmin interface, allowing the user to view and edit data

¢ A markup application supporting lightweight text markup languages,
including RestructuredText and Markdown

¢ A messages framework for sending and receiving messages

[372]

Chapter 10

e A sessions system for keeping track of anonymous (non-authenticated)
sessions

e A sitemaps framework for generating site maps
e A syndication system for generating RSS and ATOM feeds

The GeoDjango extension is implemented as another application within Django that
you turn on when you wish to use it.

The project has a settings file that you to use to configure the project as a whole. These
settings include a list of the applications you want to include in the project, which
database to use, as well as various other project- and application-specific settings.

As we saw in the previous chapter, a Django application has three main components:

Model ------ Template

The models define your application's data structures, the views contain your
application's business logic, and the templates are used to control how information
is presented to the user. These correspond to the data, application, and presentation
tiers within a traditional web application stack. Let's take a closer look at each of
these in turn.

[373]

Putting it All Together: A Complete Mapping Application

Models

Because Django provides an object-relational mapper on top of the database, you don't
have to deal with SQL directly. Instead, you define a model which describes the data
you want to store, and Django will automatically map that model onto the database:

The rest of your
application
| Models |

1)

| Object-Relational Mapper |

S —

This high-level interface to the database is a major reason why working in Django is
so efficient.

In the ShapeEditor, the database objects we looked at earlier (Shapefile,

Attribute, Feature, and AttributeValue) are all models, and
s will be defined in a file named models . py that holds the ShapeEditor's
models.

Views

In Django, a view is a Python function which responds when a given URL is called.
For example, the ShapeEditor application will respond to the /editFeature URL by
allowing the user to edit a feature; the function which handles this URL is called the
"edit feature" view, and will be defined like this:

def editFeature(request, shapefile id, feature id):

In general, an application's views will be defined in a Python module named, as you
might expect, views.py. Not all of the application's views have to be defined in this
file, but it is common to use this file to hold your application's views.

[374]

Chapter 10

At its simplest, a view might return the HTML text to be displayed, such as:

def myView (request) :
return HttpResponse ("Hello World")

Of course, views will generally be a lot more complicated, dealing with database
objects and returning very sophisticated HTML pages. Views can also return other
types of data, for example to display an image or download a file.

When an incoming request is sent to a URL within the web application, that request
is forwarded to the view in the following way:

Web Server

URLConf

AY

View

The web server receives the request and passes it on to a URL dispatcher, which in
Django parlance is called a URLConf. This is a Python module that maps incoming
URLs to views. The view function then processes the request and returns a response,
which is passed to the web server so that it can be sent back to the user's web browser.

The URLConf module is normally named urls.py, and consists of a list of regular
expression patterns and the views these patterns map to. For example, here is a copy
of part of the ShapeEditor's urls.py file:

from django.conf.urls.defaults import *
urlpatterns = patterns ('geodjango.shapeEditor.views',
(r'*shape-editors’,
'listShapefiles'),

[375]

Putting it All Together: A Complete Mapping Application

This tells Django that any URL that matches the pattern “shape-editor$ (that
is, a URL consisting only of the text shape-editor) will be mapped to the
listShapefiles function, which can be found in the geodjango. shapeEditor.
views module.

This is a slight simplification: the geodjango. shapeEditor.views

entry in the above code example is actually a prefix that is applied to
&~ the view name. Prefixes can be anything you like; they don't have to be

module names.

As well as simply mapping URLs to view functions, the URLConf module also lets
you define parameters to be passed to the view function. Take, for example, the
following URL mapping:

(r'“shape-editor/edit/ (?P<shapefile id>\d+)s',
'editShapefile'),

The syntax is a bit complicated thanks to the use of regular expression patterns, but
the basic idea is that the URL mapping will accept any URL of the form

shape-editor/edit/NNNN

where NNNN is a sequence of one or more digits. The actual text used for NNNN will
be passed to the editShapefile () view function as an extra keyword parameter
named shapefile id. This means that the view function would be defined like this:

def editShapefile(request, shapefile id):

While the URL mapping does require you to be familiar with regular expressions,
it is extremely flexible and allows you to define exactly which view will be called
for any given incoming URL, as well as allowing you to include parts of the URL as
parameters to the view function.

. Remember that Django allows multiple applications to exist within
% a single project. Because of this, the URLConf module belongs to the
A project, and contains mappings for all the project's applications in one
place.

[376]

Chapter 10

Templates

To simplify the creation of complex HTML pages, Django provides a sophisticated
templating system. A template is a text file that is processed to generate a web
page by taking variables from the view and processing them to generate the page
dynamically. For example, here is a snippet from the 1istShapefiles.html
template used by the ShapeEditor:

Available Shapefiles:
<table>
{% for shapefile in shapefiles %}
<tr>
<td>{{ shapefile.filename }}</td>
</tr>
{% endfor %}
</table>

As you can see, most of the template is simply HTML, with a few programming
constructs added. In this case, we loop through the shapefiles list, creating a table
row for each Shapefile, and display (among other things) the Shapefile's file name.

To use this template, the view might look something like this:

def myView (request) :
shapefiles = ...
return render_ to_response ("listShapefiles.html",
{'shapefiles' : shapefiles})

As you can see, the render _to_response () function takes the name of the template,
and a dictionary containing the variables to use when processing the template. The
result is an HTML page which will be displayed.

All of the templates for an application are generally stored in a directory
=" named templates within the application's directory.

Django also includes a library for working with data-entry forms. A form is a Python
class defining the various fields to be entered, along with data-validation and other
behaviors associated with the form. For example, here is the "import Shapefile" form
used by the ShapeEditor:

class ImportShapefileForm(forms.Form) :
import_file = forms.FileField(label="Select a Shapefile")
character_encoding = forms.ChoiceField(...)

[377]

Putting it All Together: A Complete Mapping Application

forms.FileFieldis a standard Django form field for handling file uploads, while
forms.ChoiceField is a standard form field for displaying a drop-down menu of
available choices. It's easy to use a form within a Django view; for example:

def importShapefile(request) :
if request.method == "GET":
form = ImportShapefileForm()
return render to_ response ("importShapefile.html",
{'form' : form})
elif request.method == "POST":
form = ImportShapefileForm(request.POST,
request.FILES)
if form.is valid() :
shapefile = request.FILES['import file']
encoding = request.POST['character encoding']

else:
return render to_ response ("importShapefile.html",
{'form' : form})

If the user is submitting the form (request.method == "POST"), we check that the
form's contents are valid and process them. Otherwise, we build a new form from
scratch. Notice that the render to response () function is called with the form
object as a parameter to be passed to the template. This template will look something
like the following;:

<html>
<head>
<title>ShapeEditor</title>
</head>
<body>
<hl>Import Shapefile</hl>
<form enctype="multipart/form-data" method="post"
action="import">
{{ form.as p }}
<input type="submit" value="Submit"/>
</form>
</body>
</html>

The {{ form.as_p }} renders the form in HTML format (embedded within a <p>
tag) and includes it in the template at that point.

Forms are especially important when working with GeoDjango because the map
editor widgets are implemented as part of a form.

[378]

Chapter 10

This completes our whirlwind tour of Django. It's certainly not comprehensive, and
you are encouraged to follow the tutorials on the Django website to learn more, but
we have covered enough of the core concepts for you to understand what is going on
as we implement the ShapeEditor. Without further ado, let's start implementing the
ShapeEditor by setting up a PostGIS database for our application to use.

Setting up the database

Assuming you have created a PostgreSQL template for PostGIS as described in
the Prerequisites section of this chapter, setting up the PostGIS database for the
ShapeEditor is trivial —simply type the following at the command prompt:

% createdb -T template postgis geodjango

If you don't have PostgreSQL's createdb command on your path, you
M may have to prefix this command with the directory where PostgreSQL's
Q command-line tools are stored. For example: C: \Program Files)\
PostgreSQL\8.4\bin\createdb -T template postgis
geodjango

This will create a new database named geodjango that we will use to hold our
ShapeEditor application.

. You may be wondering why we called this geodjango rather than
shapeEditor. This is because the database belongs to the Django project
X~ rather than to the application. We'll call our project geodjango, and our
application shapeEditor.

All going well, you should now have a database named geodjango on your
computer. You can test this by typing the following into the command line:
% psqgl geodjango

You should see the PostgreSQL command line prompt:

psqgl (8.4.3)

Type "help" for help.

geodjango=#

[379]

Putting it All Together: A Complete Mapping Application

If you then type \d and press Return, you should see a list of the tables in your new
PostGIS database:

List of relations

Schema | Name | Type | Owner
———————— D e e T

public | geography columns | view | user

public | geometry columns | table | user

public | spatial ref sys | table | user
(3 rows)

These three tables are installed automatically by the template_postgis template. To
leave the PostgreSQL command-line client, type \q and press Return:

geodjango=# \q
%

Congratulations! You have just set up a PostGIS database for the ShapeEditor
application to use.

Setting up the GeoDjango project
We now have to create the Django project that will hold the ShapeEditor application.

To do this, cd into the directory where you want the project to be placed and type the
following:

% django-admin.py startproject geodjango

When you installed Django, it should have placed the

django-admin.py program onto your path, so you

shouldn't need to tell the computer where this file resides.

All going well, Django will create a directory named geodjango that contains several
files. Let's take a closer look at these files:
e init .py
You should be familiar with this type of file; it simply tells Python
that this directory holds a Python package.
® manage.py

This Python script is auto-generated by Django. We will use it to
start, stop, and configure our geodjango project.

[380]

Chapter 10

® settings.py

This Python module contains various settings for our GeoDjango
project. These settings include options for turning debugging on
or off, information about which database the Django project will
use, where to find the project's URLConf module, and a list of the
applications that should be included in the project.

® urls.py
This is the URLConf module for the project. It maps incoming URLs
to views within the project's applications.

Now that the project has been created, we next need to configure it. To do this, edit
the settings.py file. We want to make the following changes to this file:

1. Tell Django to use the PostGIS database we set up earlier for this project.

2. Add the GeoDjango application to the project to enable the GeoDjango
functionality.

To tell Django to use PostGIS, edit the DATABASES variable to look like the following:

DATABASES = {

'default': {
'ENGINE' : 'django.contrib.gis.db.backends.postgis',
'NAME' : 'geodjango',
'USER' H
'PASSWORD' : '...'

}

Make sure you enter the username and password used to access your particular
PostgreSQL database.

To enable the GeoDjango functionality, add the following line to the INSTALLED
ApPs variable at the bottom of the file:

'django.contrib.gis'

This completes the configuration of our geodjango project.

[381]

Putting it All Together: A Complete Mapping Application

Setting up the ShapeEditor application

We next need to create the ShapeEditor application itself. Remember that
applications exist inside a project—to create our application, cd into the geodjango
project directory, and type the following;:

python manage.py startapp shapeEditor

This will create a new directory within the geodjango directory named
shapeEditor. This application directory will be set up with the following files:

e init .py
This is another Python package initialization file, telling Python that
the shapeEditor directory holds a Python package.

® models.py
This Python module will hold the ShapeEditor's data models.

® tests.py

This Python module holds various unit tests for your application. We
won't be using this.

e views.py

This Python module will hold various views for the ShapeEditor
application.

Now that we have created the application itself, let's add it to our project. Edit the
settings.py file again, and add the following entry to the INSTALLED APPS list:

'shapeEditor'

While we're editing the settings.py file, let's make one more change that will
save us some trouble down the track. Go to the MIDDLEWARE CLASSES setting, and
comment out the django.middleware.csrf.CsrfViewMiddleware line. This entry
tells Django to perform extra error checking when processing forms to prevent
cross-site request forgery. Implementing CSRF support requires adding extra code
to our form templates, which we won't be doing here to keep things simple.

\ If you deploy your own applications on the Internet, you should read the
~ CSRF documentation on the Django website and enable CSRF support.
Q Otherwise, your application will be susceptable to cross-site request
forgery attacks.

That's all we have to do to create the basic framework for our ShapeEditor
application. Now, let's tell Django what data we need to work with.

[382]

Chapter 10

Defining the data models

We already know which database objects we are going to need to store the uploaded
Shapefiles:

The shapefile object will represent a single uploaded Shapefile.

Each Shapefile will have a number of Attribute objects, giving the name,
data type, and other information about each attribute within the Shapefile

Each Shapefile will have a number of Feature objects, which hold the
geometry for each of the Shapefile's features

Each feature will have a set of AttributeVvalue objects, which hold the value
for each of the feature's attributes

Let's look at each of these in more detail, and think about exactly what information
will need to be stored in each object.

Shapefile

When we import a Shapefile, there are a few things we are going to need to remember:

The original name of the uploaded file. We will display this in the "list
Shapefiles" view so that the user can identify the Shapefile within this list.

Which spatial reference system the Shapefile's data was in. When we

import the Shapefile, we will convert it to use latitude and longitude
coordinates using the WGS84 datum (EPSG 4326), but we need to remember
the Shapefile's spatial reference system so that we can use it again when
exporting the features. For simplicity, we're going to store the spatial
reference system in WKT format.

What type of geometry was stored in the Shapefile. We'll need this to know
which field in the Feature object holds the geometry.

The character encoding to use for the Shapefile's attributes. Shapefiles do

not always come in UTF-8 character encoding, and while we'll convert the
attribute values to Unicode when importing the data, we do need to know
which character encoding the file was in, so we'll store this information in the
Shapefile object as well. This allows us to use the same character encoding
when exporting the Shapefile again.

[383]

Putting it All Together: A Complete Mapping Application

Attribute

When we export a Shapefile, it has to have the same attributes as the original
imported file. Because of this, we have to remember the Shapefile's attributes.
That is what the Attribute object does. We will need to remember the following
information for each attribute:

Which Shapefile the attribute belongs to
The name of the attribute

The type of data stored in this attribute (string, floating-point number,
and so on)

The field width of the attribute, in characters

For floating-point attributes, the number of digits to display after
the decimal point

All of this information comes directly from the Shapefile's layer definition.

Feature

Each feature in the imported Shapefile will need to be stored in the database. Because
PostGIS (and GeoDjango) uses different field types for different types of geometries,
we need to define separate fields for each geometry type. Because of this, the
Feature object will need to store the following information:

Which Shapefile the feature belongs to

The Point geometry, if the Shapefile stores this type of geometry

The MultiPoint geometry, if the Shapefile stores this type of geometry

The MultiLineString geometry, if the Shapefile stores this type of geometry
The MultiPolygon geometry, if the Shapefile stores this type of geometry

The GeometryCollection geometry, if the Shapefile stores this type of geometry

[384]

Chapter 10

Isn't something missing?

If you've been paying attention, you've probably noticed that some of
the geometry types are missing. What about Polygons or LineStrings?
Because of the way data is stored in a Shapefile, it is impossible to know
in advance whether a Shapefile holds Polygons or MultiPolygons, and
similarly if it holds LineStrings or MultiLineStrings. The Shapefile's

%‘ internal structure makes no distinction between these geometry types.

Because of this, a Shapefile may claim to store Polygons when it really
contains MultiPolygons, and similarly for LineString geometries.

For more information, see http://code.djangoproject.com/
ticket/7218.

To work around this limitation, we store all Polygons as MultiPolygons,
and all LineStrings as MultiLineStrings. This is why we don't need
Polygon or LineString fields in the Feature object.

AttributeValue

The AttributevValue object holds the value for each of the feature's attributes. This

object is quite straightforward, storing the following information:

Which feature the attribute value is for
Which attribute this value is for

The attribute's value, as a string

[For simplicity, we'll be storing all attribute values as strings.]

The models.py file

Now that we know what information we want to store in our database, it's easy
to define our various model objects. To do this, edit the models.py file in the
shapeEditor directory, and make sure it looks like this:

from django.contrib.gis.db import models

class Shapefile(models.Model) :

filename = models.CharField(max length=255)
srs_wkt = models.CharField(max_length=255)
geom_type = models.CharField(max length=50)
(

encoding = models.CharField(max length=20)

[385]

Putting it All Together: A Complete Mapping Application

class Attribute (models.Model) :
shapefile = models.ForeignKey (Shapefile)

name = models.CharField (max_length=255)
type = models.IntegerField()
width = models.IntegerField()

)

precision = models.IntegerField(

class Feature (models.Model) :
shapefile = models.ForeignKey (Shapefile)
geom_point = models.PointField(srid=4326,
blank=True, null=True)
geom_multipoint = \
models.MultiPointField(srid=4326,
blank=True, null=True)
geom multilinestring = \
models.MultiLineStringField (srid=4326,
blank=True, null=True)
geom multipolygon = \
models.MultiPolygonField (srid=4326,
blank=True, null=True)
geom_geometrycollection = \
models.GeometryCollectionField (srid=4326,
blank=True,
null=True)

objects = models.GeoManager ()

class AttributeValue (models.Model) :
feature = models.ForeignKey (Feature)
attribute = models.ForeignKey (Attribute)
value = models.CharField(max length=255,
blank=True, null=True)

There are a few things to be aware of here:

e Notice that the from..import statement at the top has changed. We're
importing the GeoDjango models, rather than the standard Django ones.

e We use models.CharField objects to represent character data, and models.
IntegerField objects to represent integers. Django provides a whole raft of
field types for you to use. GeoDjango also adds its own field types to store
geometry fields, as you can see from the definition of the Feature object.

e To represent relations between two objects, we use a models.ForeignKey
object.

[386]

Chapter 10

e Because the Feature object will store geometry data, we want to allow
GeoDjango to perform spatial queries on this data. To enable this, we define
a GeoManager () instance for the Feature class.

e Notice that several fields (in particular, the geom xxX fields in the Feature
object) have both blank=True and null=True. These are actually quite
distinct: blank=True means that the admin interface allows the user to leave
the field blank, while nul1=True tells the database that these fields can be set
to NULL in the database. For the Feature object, we'll need both so that we
don't get validation errors when entering geometries via the admin interface.

That's all we need to do (for now) to define our database model. After you've made
these changes, save the file, cd into the geodjango project directory, and type:

python manage.py syncdb

This command tells Django to check the models and create new database tables as
required. Because the default settings for a new project automatically include the
auth application, you will also be asked if you want to create a superuser account.
Go ahead and create one; we'll need a superuser for the next section, where we
explore GeoDjango's built-in admin interface.

All going well, GeoDjango will have set up your geo-spatial database to use the
various database tables you have defined. If you want, you can explore this by typing;:

psql geodjango

This will run the PostgreSQL command-line client. Type \ d and press Return
to show a list of all the database tables that have been created:

List of relations

Schema | Name | Type | Owner
———————— D e e il Tl
public | auth group | table | user
public | auth group id seq | sequence | user
public | auth group permissions | table | user
public | auth group permissions id seq | sequence | user
public | auth message | table | user
public | auth message id seq | sequence | user
public | auth permission | table | user
public | auth permission id seq | sequence | user
public | auth user | table | user
public | auth user groups | table | user
public | auth user groups id seq | sequence | user

[387]

Putting it All Together: A Complete Mapping Application

public | auth user id seq | sequence | user
public | auth user user permissions | table | user
public | auth user user permissions_id seq | sequence | user
public | django_content type | table | user
public | django_content type id seq | sequence | user
public | django_session | table | user
public | django_site | table | user
public | django_site id seq | sequence | user
public | geography columns | view | user
public | geometry columns | table | user
public | shapeEditor attribute | table | user
public | shapeEditor attribute id seq | sequence | user
public | shapeEditor attributevalue | table | user
public | shapeEditor attributevalue id seq | sequence | user
public | shapeEditor feature | table | user
public | shapeEditor feature id seq | sequence | user
public | shapeEditor shapefile | table | user
public | shapeEditor shapefile id seq | sequence | user
public | spatial ref sys | table | user
(30 rows)

To make sure that each application's database tables are unique, Django adds the
application name to the start of the table name. This means that the table names

for the models we have created are actually called shapeEditor shapefile,
shapeEditor_feature, and so on. We'll be working with these database tables
directly later on, when we want to use Mapnik to generate maps using the imported
Shapefile data.

Playing with the admin system

Before we can use the built-in admin application, we will need to enable it. This
involves adding the admin application to the project, sync'ing the database, telling
the admin application about our database objects, and adding the admin URLs to our
urls.py file. Let's work through each of these in turn:

1. Add the admin application to the project.

Edit your settings.py file and uncomment the 'django.contrib.
admin' line within the INSTALLED APPS list:

INSTALLED APPS = (

[388]

Chapter 10

'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
'django.contrib.messages',
Uncomment the next line to enable the admin:
'django.contrib.admin',
'django.contrib.gis"',
'shapeEditor'

)

2. Re-synchronize the database.

From the command line, cd into your geodjango project directory
and type:

python manage.py syncdb
This will add the admin application's tables to your database.
3. Add our database objects to the admin interface.

We next need to tell the admin interface about the various database
object we want to work with. To do this, create a new file in the
shapeEditor directory named admin.py, and enter the following
into this file:
from django.contrib.gis import admin
from models import Shapefile, Feature, \

Attribute, AttributeValue

admin.site.register (Shapefile, admin.ModelAdmin)
admin.site.register (Feature, admin.GeoModelAdmin)
admin.site.register (Attribute, admin.ModelAdmin)

admin.site.register (AttributeValue, admin.ModelAdmin)

This tells Django how to display the various objects in the admin
interface. If you want, you can subclass admin.ModelAdmin (or
admin.GeoModelAdmin) and customize how it works. For now, we'll
just accept the defaults.

Notice that we use an admin.GeoModelAdmin object for the Feature
class. This is because the Feature objects include geometries that we
want to edit using a slippy map. We'll see how this works shortly.

[389]

Putting it All Together: A Complete Mapping Application

4. Add the admin URLs to the project.

Edit the urls.py file (in the main geodjango directory) and
uncomment the three lines that refer to the admin application. Then,
change the from django.contrib import admin line to read:

from django.contrib.gis import admin
The following listing shows how this file should end up, with the
three lines you need to change highlighted:

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:
from django.contrib.gis import admin
admin.autodiscover ()

urlpatterns = patterns('"',

Example:

(r'*geodjango/', include ('geodjango.foo.urls')),

Uncomment the admin/doc line below and add 'django.contrib.
admindocs'

to INSTALLED APPS to enable admin documentation:

(r'*admin/doc/', include('django.contrib.admindocs.urls')),

Uncomment the next line to enable the admin:
(r'"admin/', include (admin.site.urls)),

)

When this is done, it is time to run the application. cd into the main geodjango
project directory and type:

python manage.py runserver

This will start up the Django server for your project. Open a web browser and
navigate to the following URL:

http://127.0.0.1:8000/admin/shapeEditor

You should see the Django administration login page:

[390]

Chapter 10

og in | Django site admin =]

A hip://127.0.0.1:8000/admin/shapeEditor/ Y7 v M Q- Coogle

Django administration

Username: |

Password:

Enter the username and password for the superuser you created earlier, and you will
see the main admin interface for the ShapeEditor application:

ditor administration | Django site admin

A hitp://127.0.0.1:8000/admin/shapeEditor/ v

Djan go administration Welcome, erik. Change password / Log out

Home » Shapeeditor

ShapeEditor administration

Attribute values dpAdd #Change
Attributes dpAdd . #Change
Features gpAdd . Change
Shapefiles gpAdd . Change

Let's use this admin interface to create a dummy Shapefile. Click on the Add link on

the Shapefiles row, and you will be presented with a basic input screen for entering a
new Shapefile:

Q~ Google

Django administration Welcome, erik. Change password [Log out

Home » ShapeEditor » Shapefiles > Add shapefile

Add shapefile

Filename: |
Srs wkt:
Geom type:

Enceding:

Save and add another Save and continue editing ‘ E

[391]

Putting it All Together: A Complete Mapping Application

Enter some dummy values into the various fields (it doesn't matter what you enter),
and click on the Save button to save the new Shapefile object into the database. A
list of the Shapefiles in the database will be shown, at the moment just showing the
shapefile you created:

0o Select shapefile to change | Django site admin =
[«]»J{c)[x][] @ hup:/127.0.0.1:8000/admin/shapeEditor/shapefile/ ¢ v | (Qr Google

Django administration Welcome, erik. Change password / Log out
Home » ShapeEditor » Shapefiles
Select shapefile to change | Add shapefile | +]
Action: | ——=ememmm j Go | 0 of 1selected

[Shapefile
(0 Shapefile object

1 shapefile

As you can see, the new Shapefile object has been given a rather unhelpful label:

Shapefile object. This is because we haven't yet told Django what textual label to
use for a Shapefile (or any of our other database objects). To fix this, edit the models.
py file and add the following method onto the end of the shapefile class definition:

def unicode_ (self):
return self.filename

The _ unicode__ method returns a human-readable summary of the Shapefile
object's contents. In this case, we are showing the filename associated with the
Shapefile. If you then reload the web page, you can see that the Shapefile now has a
useful label:

[392]

Chapter 10

800 Select shapefile to change | Django site admin =
6 http://127.0.0.1:8000/admin/shapeEditor/shapefile/ ¢ v J Q- Google

Django ad m i n i st I’ation Welcome, erik. Change password / Log out

Home » ShapeEditor » Shapefiles

@ The shapefile "shapefile.shp” was changed successfully.

Select shapefile to change
Action: | ceemmm——— j Go | 0 of 1selected
[| Shapefile

O shapefile.shp

1 shapefile

Go ahead and add __unicode__ methods to the other model objects as well:

class Attribute (models.Model) :

def unicode_ (self):
return self.name

class Feature (models.Model) :

def _ unicode_ (self):
return str(self.id)

class AttributeValue (models.Model) :

def _ unicode_ (self):
return self.value

While this may seem like busy work, it's actually quite useful to have your database
objects able to describe themselves. If you wanted to, you could further customize
the admin interface, for example by showing the attributes and features associated
with the selected Shapefile. For now, though, let's take a look at GeoDjango's built-in
geometry editors.

[393]

Putting it All Together: A Complete Mapping Application

Go back to the ShapeEditor administration page (by clicking on the ShapeEditor
hyperlink near the top of the window), and click on the Add button in the Features
row. As with the Shapefile, you will be asked to enter the details for a new Feature.
This time, however, the admin interface will use a slippy map to enter each of the
different geometry types supported by the Feature object:

Welcome, erik. Change password / Log out |

Home » ShapeEditor » Features » Add feature

Add feature

Shapefile:

Geom point:

Scale = 1: 28M

16.96289, 6.94336
Delete all Features

Geom
multipoint:

[394]

Chapter 10

Obviously, having multiple slippy maps like this isn't quite what we want, and if we
wanted to we could set up a custom GeoModeladmin subclass to avoid this, but that's
not important right now. Instead, try selecting the Shapefile to associate this feature
with by choosing your Shapefile from the pop up menu, and then scroll down to the
Geom Multipolygon field and try adding a couple of polygons to the map. Then, use
the Edit Polygon tool () to make changes to the polygons; the interface should be
fairly obvious once you play with it for a minute or two.

When you're done, click on Save to save your new feature. If you edit it again, you'll
see your saved geometry (or geometries) once again on the slippy maps.

That completes our tour of the admin interface. We won't be using this for end users
as we don't want to require users to log in before making changes to the Shapefile
data. We will, however, be borrowing some code from the admin application so that
end users can edit their Shapefile features using a slippy map.

Summary

You have now finished implementing the first part of the ShapeEditor application.
Even at this early stage, you have made good progress, learning how GeoDjango
works, designing the application, and laying the foundations for the functionality
you will implement in the next two chapters.

In this chapter, you have learned:
e That the GeoDjango extension to Django can be used to build sophisticated

geo-spatial web applications.

e That a Django project consists of a single database and multiple Django
applications.

e That Django uses objects to represent records in the database.

e That a Django view is a Python function that responds when a given URL
is called.

e That the mapping from URLSs to views is controlled by a URLConf module
named urls.py defined at the project level.

e That Django uses a powerful templating system to simplify the creation of
complex HTML pages.

e That Django allows you to define forms for handling the input of data

e That Django form fields make it easy to accept and validate a variety of
different types of data.

[395]

Putting it All Together: A Complete Mapping Application

e That GeoDjango provides its own set of form fields for editing geo-spatial data.

e That an application's data objects are defined in a file called models.py.

e That GeoDjango's built-in "admin" system allows you to view and edit
geo-spatial data using slippy maps.

In Chapter 11, we will implement a view to show the available Shapefiles, as well as
writing the rather complex code for importing and exporting Shapefiles.

[396]

11

ShapeEditor: Implementing
List View, Import, and Export

In this chapter, we will continue our implementation of the ShapeEditor application.
We will start by implementing a "list" view to show the available Shapefiles, and
then work through the details of importing and exporting Shapefiles via a web
interface.

In this chapter, we will learn:

e How to display a list of records using a Django template

e How to deal with the complexities of Shapefile data, including issues with
geometries and attribute data types

e How to import a Shapefile's data using a web interface

e How to export a Shapefile using a web interface

Implementing the "List Shapefiles"” view

When the user first opens the ShapeEditor application, we want them to see a list of
the previously-uploaded Shapefiles, with import, edit, export, and delete options.
Let's build this list view, which acts as the starting point for the entire ShapeEditor
application.

We'll start by tidying up the urls.py module so that we can add more URLs as we
need them. Edit the urls.py file to look like this:

from django.conf.urls.defaults import *
from django.contrib.gis import admin
admin.autodiscover ()

urlpatterns = patterns ('geodjango.shapeEditor.views',

ShapeEditor: Implementing List View, Import, and Export

(r'“shape-editors$', 'listShapefiles'),
)
urlpatterns += patterns('"',

(r'*admin/', include (admin.site.urls)),

)

Notice that we've now got two separate sets of URL patterns: one accessing functions
within the geodjango. shapeEditor.views module, and the other for the admin
interface. Splitting the URLs up like this is convenient as it lets us group the URLs
logically by which module the views are defined in.

Let's take a closer look at the first URL pattern definition:

urlpatterns = patterns('geodjango.shapeEditor.views',
(r'“shape-editor$', 'listShapefiles!'),
)

This tells Django that any incoming URL that has a path name equal to

/ shape-editor should be mapped to the geodjango. shapeEditor.views.
listShapefiles () function. This is the top-level URL for our entire application.
Notice that we use regular expressions (and the r' . . . ' syntax convention) to define
the URL to match against.

Now that we've set up our URL, let's write the view to go with it. We'll start by
creating a very simple implementation of the 1istShapefiles () view, just to make
sure it works. Open the views.py module in the shapeEditor directory and edit the
file to look like this:

from django.http import HttpResponse

def listShapefiles (request):

return HttpResponse ("in listShapefiles")

If it isn't already running, start up the GeoDjango web server. To do this, open a
command-line window, cd into the geodjango project directory, and type:

python manage.py runserver
Then, open your web browser and navigate to the following URL:

http://127.0.0.1:8000/shape-editor

All going well, you should see in listShapefiles appear on the web page. This tells us
that we've created the 1istsShapefiles () view function and have successfully set
up the URL mapping to point to this view.

[398]

Chapter 11

We now want to create the view which will display the list of Shapefiles. To do so,
we'll make use of a Django template. Start by editing the views.py module, and
change the module's contents to look like this:

from django.http import HttpResponse
from django.shortcuts import render to response
from geodjango.shapeEditor.models import Shapefile

def listShapefiles (request):
shapefiles = Shapefile.objects.all() .order by('filename')
return render to_ response("listShapefiles.html",
{'shapefiles' : shapefiles})

The listShapefiles () view function now does two things:

1. Itloads the list of all Shapefile objects from the database into memory, sorted
by filename.

2. It passes this list to a Django template (in the file 1istShapefiles.html),
which is rendered into an HTML web page and returned back to the caller.

Let's go ahead and create the 1istShapefiles.html template. Create a directory
called templates within the shapeEditor directory, and create a new file in this
directory named listShapefiles.html. This file should have the following contents:

<html>
<head>
<title>ShapeEditor</title>
</head>
<body>
<hl>ShapeEditor</hl>
{$ if shapefiles %}
Available Shapefiles:
<table border="0" cellspacing="0" cellpadding="5"
style="padding-left:20px">
{$ for shapefile in shapefiles %}
<tr>
<td>{{
shapefile.filename }}</td>
<td> </td>
<td>

Edit

</td>
<td> </td>
<td>

[399]

ShapeEditor: Implementing List View, Import, and Export

<a href="/shape-editor/export/{{ shapefile.id

bivs

Export

</td>
<td> </td>
<td>

Delete

</td>
</tr>
{% endfor %}
</table>

{% endif %}
<button type="button"

onClick='window.location="/shape-editor/import";'>
Import New Shapefile
</buttons>
</body>
</html>

This template works as follows:
o If the shapefiles list is not empty, it creates an HTML table to display
the Shapefiles
e For each entry in the shapefiles list, a new row in the table is created

e Each table row consists of the Shapefile's filename (in monospaced text),
along with Edit, Export, and Delete hyperlinks

e Finally, an Import New Shapefile button is displayed at the bottom
We'll look at the hyperlinks used in this template shortly, but for now just create

the file, make sure the Django server is running, and reload your web browser. You
should see the following page:

anon ShapeEditor -
-

(e)2) (#] @ nhtp://127.0.0.1:8000/shape-editor ¢ v | Q- Google
ShapeEditor

Available Shapefiles:
shapefile.shp Edit Export Delete

(Import New Shapefile)]

[400]

Chapter 11

As you can see, the Shapefile we created earlier in the admin interface is shown,
along with the relevant hyperlinks and buttons to access the rest of the ShapeEditor's
functionality:

The Edit hyperlink will take the user to the /shape-editor/edit/1 URL,
which will let the user edit the Shapefile with the given record ID

The Export hyperlink will take the user to the /shape-editor/export/1
URL, which will let the user download a copy of the Shapefile with the
given ID

The Delete hyperlink will take the user to the /shape-editor/delete/1
URL, which will let the user delete the given Shapefile

The Import New Shapefile button will take the user to the /shape-editor/
import URL, which will let the user upload a new Shapefile

You can explore these URLs by clicking on them if you want—they won't do
anything other than display an error page, but you can see how the URLs link the
various parts of the ShapeEditor's functionality together. You can also take a detailed
look at the Django error page, which can be quite helpful in tracking down bugs.

Now that we have a working first page, let's start implementing the core
functionality of the ShapeEditor application. We'll start with the logic required to
import a Shapefile.

Importing Shapefiles

The process of importing a Shapefile involves the following steps:

Ll s

Display a form prompting the user to upload the Shapefile's ZIP archive.
Decompress the ZIP file to extract the uploaded Shapefile.
Open the Shapefile and read the data out of it into the database.

Delete the temporary files we have created.

Let's work through each of these steps in turn.

[401]

ShapeEditor: Implementing List View, Import, and Export

The "import shapefile” form

Let's start by creating a placeholder for the "import shapefile" view. Edit the urls.py
module and add a second entry to the geodjango. shapeEditor.views pattern list:

urlpatterns = patterns ('geodjango.shapeEditor.views',
(r'“shape-editors$', 'listShapefiles'),
(r'“shape-editor/import$', 'importShapefile'),
)

Then, edit the views.py module and add a dummy importShapefile () view
function to respond to this URL:

def importShapefile (request) :
return HttpResponse ("More to come")

You can test this if you want: run the Django server, go to the main page, and click
on the Import New Shapefile button. You should see the More to come message.

To let the user enter data, we're going to use a Django form. Forms are custom
classes that define the various fields that will appear on the web page. In this case,
our form will have two fields: one to accept the uploaded file, and the other to select
the character encoding from a pop up menu. We're going to store this form in a file
named forms.py in the shapeEditor directory; go ahead and create this file, and
then edit it to look like this:

from django import forms

CHARACTER_ ENCODINGS = [("ascii", "ASCII"),
("latinl", "Latin-1"),
(llutf8", IIUTF_SII)]

class ImportShapefileForm(forms.Form) :

import file = forms.FileField(label="Select a Zipped
Shapefile")

character encoding =
forms.ChoiceField (choices=CHARACTER ENCODINGS, initial="utfsg")

The first field is a FileField which accepts uploaded files. We give this field a
custom label which will be displayed in the web page. For the second field, we'll
use a ChoiceField, which displays a pop up menu. Notice that the CHARACTER
ENCODINGS list shows the various choices to display in the pop up menu; each entry
in this listis a (value, label) tuple, where label is the string to be displayed and
value is the actual value to use for that field when the user chooses this item from
the list.

Now that we have created the form, go back to views.py and change the definition
of the importShapefile () view function to look like this:

[402]

Chapter 11

def importShapefile(request) :
if request.method == "GET":
form = ImportShapefileForm()
return render to response ("importShapefile.html",
{rform' : form})
elif request.method == "POST":
form = ImportShapefileForm(request.POST,
request.FILES)
if form.is valid() :
shapefile = request.FILES['import file']
encoding = request.POST|['character encoding']
More to come...
return HttpResponseRedirect ("/shape-editor")

return render to response ("importShapefile.html",
{rform' : form})

Also, add these two import statements to the top of the module:

from django.http import HttpResponseRedirect
from geodjango.shapeEditor.forms import ImportShapefileForm

Let's take a look at what is happening here. The importsShapefile () function will
initially be called with an HTTP GET request; this will cause the function to create a
new ImportShapefileForm object, and then call render_to_response () to display
that form to the user. When the form is submitted, the importShapefile () function
will be called with an HTTP posT request. In this case, the ImportShapefileForm
will be created with the submitted data (request.POST and request . FILES), and
the form will be checked to see that the entered data is valid. If so, we extract the
uploaded Shapefile and the selected character encoding.

At this point, because we haven't implemented the actual importing code, we simply
redirect the user back to the main /shape-editor page again. As the comment says,
we'll add more code here shortly.

If the form was not valid, we once again call render_to_response () to display the
form to the user. In this case, Django will automatically display the error message(s)
associated with the form so the user can see why the validation failed.

To display the form, we'll use a Django template and pass the form object as a
parameter. Let's create that template now; add a new file named importShapefile.
html in the templates directory and enter the following text into this file:

<html>
<head>
<title>ShapeEditor</title>
</head>

[403]

ShapeEditor: Implementing List View, Import, and Export

<body>
<hl>Import Shapefile</hls>
<form enctype="multipart/form-data" method="post"
action="import">
{{ form.as p }}
<input type="submit" value="Submit"/>
<button type="button"
onClick='window.location="/shape-editor";'>
Cancel
</buttons>
</form>
</body>
</html>

As you can see, this template defines an HTML <form> and adds Submit and Cancel
buttons. The body of the form is not specified. Instead, we use {{ form.as_p }} to
render the form object as a series of <p> (paragraph) elements.

Let's test this out. Start up the Django web server if it is not already running, open
a web browser, and navigate to the http://127.0.0.1:8000/shape-editor URL.
Then, click on the Import New Shapefile button. All going well, you should see the
following page:

ann ShapeEditor —
(<])lel[x][a) @ nup/irz7.od v Q- Google
Import Shapefile

Select a Zipped Shapefile: (Browse...)

—

Character encoding: [UTF-8 %)

e W 4 5
| Submit) | Cancel)

If you attempt to submit the form without uploading anything, an error message
will appear saying that the import_file field is required. This is the default error-
handling for any form: by default, all fields are required. If you do select a file for
uploading, all that will happen is that the user will get redirected back to the main
page again; this is because we haven't implemented the actual import logic yet.

Now that we've implemented the form itself, let's work on the code required to
process the uploaded Shapefile.

[404]

Chapter 11

Extracting the uploaded Shapefile

Because the process of importing data is going to be rather involved, we'll put this
code into a separate module. Create a new file named shapefileIO.py within the
shapeEditor directory and add the following text to this file:

def importData (shapefile, characterEncoding) :
return "More to come..."

Since it's quite possible for the process of importing a Shapefile to fail (for example, if
the user uploads a file that isn't a ZIP archive), our importbData () function is going
to return an error message if something goes wrong. Let's go back and change our
view (and template) to call this importbata () function and display the returned
error message, if any.

Edit the views.py module, and add the following highlighted lines to the
importShapefile () view function:

def importShapefile (request) :
if request.method == "GET":
form = ImportShapefileForm()
return render_ to_response ("importShapefile.html",
{'form® : form,
'errMsg' : None})
elif request.method == "POST":
errMsg = None # initially.
form = ImportShapefileForm(request.POST,
request.FILES)
if form.is wvalid() :
shapefile = request.FILES['import file']
encoding = request.POST|['character encoding']
errMsg = shapefileIO.importData (shapefile,
encoding)
if errMsg == None:
return HttpResponseRedirect ("/shape-editor")
return render_ to_response ("importShapefile.html",
{'form® : form,
'errMsg' : errMsg})

You'll also need to add import shapefileIO to the top of the file.

Now, edit the importShapefile.html template, and add the following lines to the
file immediately below the <h1>Import Shapefile<hls line:

)

{$ if errMsg %}
<i>{{ errMsg }}</i>
{% endif %}

[405]

ShapeEditor: Implementing List View, Import, and Export

This will display the error message to the user if it is not None.

Go ahead and try out your changes: click on the Import New Shapefile button,
select a ZIP archive, and click on Submit. You should see the text More to come...
appear at the top of the form, which is the error text returned by our dummy
importData () function.

We're now ready to start implementing the import logic. Edit the shapefileIO.py
module again and get ready to write the body of the importData () function. We'll
take this one step at a time.

When we set up a form that includes a FileField, Django returns to us an
UploadedFile object representing the uploaded file. Our first task is to read the
contents of the UploadedFile object and store it into a temporary file on disk so that
we can work with it. Add the following to your importData () function:

fd, fname = tempfile.mkstemp (suffix=".zip")
os.close (fd)

f = open(fname, "wb")

for chunk in shapefile.chunks() :
f.write (chunk)

f.close()

As you can see, we use the tempfile module from the Python standard library to
create a temporary file, and then copy the contents of the shapefile object into it.

M Because tempfile.mkstemp () returns both a file descriptor and a
Q filename, we call os.close (£d) to close the file descriptor. This allows
us to re-open the file using open () and write to it in the normal way.

We're now ready to open the temporary file and check that it is indeed a ZIP archive
containing the files that make up a Shapefile. Here is how we can do this:

if not zipfile.is zipfile(fname) :
os.remove (fname)
return "Not a valid zip archive."

zip = zipfile.ZipFile (fname)
required suffixes = [".shp", ".shx", ".dbf", ".prj"]
hasSuffix = {}

for suffix in required suffixes:
hasSuffix[suffix] = False

for info in zip.infolist():
extension = os.path.splitext (info.filename) [1].lower ()

if extension in required suffixes:

[406]

Chapter 11

hassSuffix[extension] = True

for suffix in required suffixes:
if not hasSuffix[suffix]:
zip.close()
os.remove (fname)
return "Archive missing required "+suffix+" file."

Notice that we use the Python standard library's zipfile module to check the
contents of the uploaded ZIP archive and return a suitable error message if
something is wrong. We also delete the temporary file before returning an error
message so that we don't leave temporary files lying around.

Finally, now that we know that the uploaded file is a valid ZIP archive containing
the files that make up a Shapefile, we can extract these files and store them into a
temporary directory:

zip = zipfile.ZipFile (fname)
shapefileName = None
dirname = tempfile.mkdtemp ()
for info in zip.infolist():
if info.filename.endswith(".shp"):

shapefileName = info.filename
dstFile = os.path.join(dirname, info.filename)
f pen (dstFile, "wb")
f. wrlte(21p read (info.filename))
()

f.close
zip.close()

Notice that we create a temporary directory to hold the extracted files before copying
the files into this directory. At the same time, we remember the name of the main . shp
file from the archive as we'll need to use this name when we add the Shapefile into

the database.

Because we've used some of the Python standard library modules in this code, you'll
also need to add the following to the top of the module:

import os, os.path, tempfile, zipfile

[407]

ShapeEditor: Implementing List View, Import, and Export

Importing the Shapefile's contents
Now that we've extracted the Shapefile's files out of the ZIP archive, we are ready
to import the data from the uploaded Shapefile. The process of importing the
Shapefile's contents involves the following steps:
1. Open the Shapefile.
Add the Shapefile object to the database.
Define the Shapefile's attributes.
Store the Shapefile's features.
Store the Shapefile's attributes.

ARSI

Let's work through these steps one at a time.

Open the Shapefile

We will use the OGR library to open the Shapefile:

try:
datasource = ogr.Open(os.path.join(dirname,
shapefileName))
layer = datasource.GetLayer (0)
shapefileOK = True
except:

traceback.print exc()
shapefileOK = False

if not shapefileOK:
os.remove (fname)
shutil.rmtree (dirname)
return "Not a valid shapefile."

Once again, if something goes wrong we clean up our temporary files and return a
suitable error message. We're also using the traceback library module to display
debugging information in the web server's log, while returning a friendly error
message that will be shown to the user.

In this program, we will be using OGR directly to read and write
Shapefiles. GeoDjango provides its own Python interface to OGR in the
contrib.gis.gdal package, but unfortunately GeoDjango's version
doesn't implement writing to Shapefiles. Because of this, we will use the
OGR Python bindings directly, and require you to install OGR separately.

[408]

Chapter 11

Because this code uses a couple of standard library modules, as well as the OGR
library, we'll have to add the following import statements to the top of the
shapefileIO.py module:

import shutil, traceback
from osgeo import ogr

Add the Shapefile object to the database

Now that we've successfully opened the Shapefile, we are ready to read the data out
of it. First off, we'll create the shapefile object to represent this imported Shapefile:

srcSpatialRef = layer.GetSpatialRef ()

shapefile = Shapefile(filename=shapefileName,
srs_wkt=srcSpatialRef .ExportToWkt (),
geom_type="More to come",
encoding=characterEncoding)

shapefile.save ()

As you can see, we get the spatial reference from the Shapefile's layer, and then store
the Shapefile's name, spatial reference, and encoding into a Shapefile object, which
we then save into the database. There's only one glitch: what value are we going to
store into the geom_type field?

The geom_type field is supposed to hold the name of the geometry type that this
Shapefile holds. While OGR is able to tell us the geometry type as a numeric constant,
the OGRGeometryTypeToName () function in OGR is not exposed by the Python
bindings, so we can't get the name of the geometry directly using OGR.

To work around this, we'll implement our own version of

OGRGeometryTypeToName (). Because we're going to have a number of these sorts of
functions, we'll store this in a separate module, which we'll call utils.py. Create the
utils.py file inside the shapeEditor directory, and then add the following code to
this module:

from osgeo import ogr

def ogrTypeToGeometryName (ogrType) :

return {ogr.wkbUnknown : 'Unknown',
ogr .wkbPoint : 'Point',
ogr.wkbLineString : 'LineString',
ogr .wkbPolygon : 'Polygon',
ogr.wkbMultiPoint : 'MultiPoint',
ogr.wkbMultiLineString : 'MultiLineString',
ogr.wkbMultiPolygon : 'MultiPolygon',
ogr .wkbGeometryCollection : 'GeometryCollection',
ogr .wkbNone : 'None',
ogr.wkbLinearRing : 'LinearRing'}.get (ogrType)

[409]

ShapeEditor: Implementing List View, Import, and Export

Every self-respecting Python program should have a utils.py module;
— it's about time we added one in the ShapeEditor.

Now that we have our own version of OGRGeometryTypeToName (), we can use this
to set the geom_type field in the shapefile object. Go back to the shapefileIO.py
module and make the following changes to the end of your importbata () function:

srcSpatialRef = layer.GetSpatialRef ()

geometryType = layer.GetLayerDefn () .GetGeomType ()

\
utils.ogrTypeToGeometryName (geometryType)

geometryName

shapefile = Shapefile(filename=shapefileName,
srs_wkt=srcSpatialRef .ExportToWkt (),
geom type=geometryName,
encoding=characterEncoding)
shapefile.save ()

To make this code work, we'll have to add the following import statements to the
top of the shapefileIO.py module:

from geodjango.shapeEditor.models import Shapefile
import utils

Define the Shapefile's attributes

Now that we've created the shapefile object to represent the imported Shapefile,
our next task is to create Attribute objects describing the Shapefile's attributes. We
can do this by querying the OGR Shapefile; add the following code to the end of the
importData () function:

attributes = []
layerDef = layer.GetLayerDefn ()
for i in range(layerDef.GetFieldCount ()) :
fieldDef = layerDef.GetFieldDefn (i)
attr = Attribute (shapefile=shapefile,
name=fieldDef .GetName (),
type=fieldDef .GetType (),
width=fieldDef .GetWidth (),
precision=fieldDef.GetPrecision())
attr.save()
attributes.append(attr)

[410]

Chapter 11

Notice that as well as saving the Attribute objects into a database, we also create a
separate list of these attributes in a variable named attributes. We'll use this later
on when we import the attribute values for each feature.

Don't forget to add the following import statement to the top of the module:

from geodjango.shapeEditor.models import Attribute

Store the Shapefile's features

Our next task is to extract the Shapefile's features and store them as Feature objects
in the database. Because the Shapefile's features can be in any spatial reference,

we need to transform them into our internal spatial reference system (EPSG 4326,
unprojected latitude and longitude values) before we can store them. To do this,
we'll use an OGR CoordinateTransformation () object.

Here is how we're going to scan through the Shapefile's features, extract the geometry
from each feature, transform it into the EPSG 4326 spatial reference, and convert it into
a GeoDjango GEOS geometry object so that we can store it into the database:

dstSpatialRef = osr.SpatialReference ()
dstSpatialRef.ImportFromEPSG (4326)

coordTransform = osr.CoordinateTransformation(srcSpatialRef,
dstSpatialRef)

for i in range(layer.GetFeatureCount()) :
srcFeature = layer.GetFeature (i)
srcGeometry = srcFeature.GetGeometryRef ()
srcGeometry.Transform(coordTransform)
geometry = GEOSGeometry (srcGeometry.ExportToWkt ())

So far, so good. Unfortunately, we're now faced with a couple of problems: firstly,

the inability of Shapefiles to distinguish between Polygons and MultiPolygons (and
between LineStrings and MultiLineStrings) as described in the previous chapter means
that we have to wrap a Polygon geometry inside a MultiPolygon, and a LineString
geometry inside a MultiLineString, so that all the features in the Shapefile will have the
same geometry type. This is kind of messy, so we'll write a utils.py function to do
this. Add the following line to the end of your importbData () function (along with the
code we have just seen, if you haven't already typed this in) to wrap the geometry:

geometry = utils.wrapGEOSGeometry (geometry)

The second problem we have is that we need to decide which particular field within
the Feature object will hold our geometry. When we defined the Feature object, we
had to create separate geometry fields for each of the geometry types; we now need
to decide which of these fields will be used to store a given type of geometry.

[411]

ShapeEditor: Implementing List View, Import, and Export

Because we sometimes have to wrap up geometries, we can't simply use the
geometry name to identify the field. This is another messy function that we'll
implement in utils.py. For now, just add the following line to the end of your
importData () function:

geometryField = utils.calcGeometryField (geometryName)

Now that we've sorted out these problems, we're finally ready to store the feature's
geometry into a Feature object within the database:

args - {)

args ['shapefile'] = shapefile
args [geometryField] = geometry
feature = Feature(**args)

feature.save ()

. Notice that we use keyword arguments (**args) to create the Feature
% object. This lets us store the geometry into the correct field of the
= Feature object with a minimum of fuss. The alternative, using a series of
if...elif...elif statements, would have been much more tedious.

Before we move on, we'd better implement those two extra functions in the utils.
py module. Here is the implementation for the wrapGEOSGeometry () function:

def wrapGEOSGeometry (geometry) :
if geometry.geom type == "Polygon":
return MultiPolygon (geometry)
elif geometry.geom type == "LineString":
return MultiLineString(geometry)
else:
return geometry

and here is the implementation for the calcGeometryField () function:

def calcGeometryField (geometryType) :
if geometryType == "Polygon":
return "geom multipolygon"
elif geometryType == "LineString":
return "geom multilinestring"
else:
return "geom " + geometryType.lower ()

[412]

Chapter 11

You're also going to have to add the following import statement to the top of the
utils.py module:

from django.contrib.gis.geos.collections \
import MultiPolygon, MultiLineString

Finally, in the shapefileIO.py module, you'll have to add the following import
statements:

from django.contrib.gis.geos.geometry import GEOSGeometry
from osgeo import osr
from geodjango.shapeEditor.models import Feature

Store the Shapefile's attributes

Now that we've dealt with the feature's geometry, we can look at importing the
feature's attributes. The basic process involves iterating over the attributes, extracting
the attribute value from the OGR feature, creating an Attributevalue object to store
the value, and then saving it into the database:

for attr in attributes:
value =
attrValue = AttributeValue (feature=feature,
attribute=attr,
value=value)
attrvValue.save ()

The challenge is to extract the attribute value from the feature. Because the OGR
Feature object has different methods to call to extract different types of field values,
we are going to have to check for the different field types, call the appropriate
GetFieldAs () method, convert the resulting value to a string, and then store

this string into the Attributevalue object. NULL values will also have to be
handled appropriately. In addition, we have to deal with character encoding: any
strings values will have to be converted from the Shapefile's character encoding

into Unicode text so that they can be saved into the database. Because of all this
complexity, we'll define a new utils.py function to do the hard work, and simply
call that function from importbata ().

Note that because the user might have selected the wrong character encoding for
the Shapefile, the process of extracting the attribute value can actually fail. Because
of this, we have to add error-handling to our code. To support error-handling, our
utility function, getOGRFeatureAttribute (), will return a (success, result)
tuple, where success will be True if, and only if, the attribute was successfully
extracted, and result will either be the extracted attribute value (as a string), or an
error message explaining why the operation failed.

[413]

ShapeEditor: Implementing List View, Import, and Export

Let's add the necessary code to our importData () function to store the attribute values
into the database and gracefully handle any conversion errors that might occur:

for attr in attributes:
success, result = utils.getOGRFeatureAttribute (
attr, srcFeature,
characterEncoding)
if not success:
os.remove (fname)
shutil.rmtree (dirname)
shapefile.delete()
return result

attrValue = AttributeValue (feature=feature,
attribute=attr,
value=result)
attrvValue.save ()

Notice that we pass the Attribute object, the OGR feature, and the character encoding
to the getOGRFeatureAttribute () function. If an error occurs, we clean up the
temporary files, delete the Shapefile object we created earlier, and return the error
message back to the caller. If the attribute was successfully extracted, we create a new
AttributeValue object with the attribute's value, and save it into the database.

Note that we use shapefile.delete () toremove the partially-imported
Shapefile from the database. By default, Django will also automatically
* delete any records that are related to the record being deleted through a
% ForeignKey field. This means that the Shapefile object will be deleted,
along with all the related Attribute, Feature, and Attributevalue
objects. With one line of code, we can completely remove all references to
the Shapefile's data.

Now, let's implement that getOGRFeatureAttribute () function. Add the following
toutils.py:

def getOGRFeatureAttribute (attr, feature, encoding) :
attrName = str (attr.name)

if not feature.IsFieldSet (attrName) :
return (True, None)

needsEncoding = False
if attr.type == ogr.OFTInteger:
value = str(feature.GetFieldAsInteger (attrName))
elif attr.type == ogr.OFTIntegerList:
value = repr (feature.GetFieldAsIntegerList (attrName))
elif attr.type == ogr.OFTReal:

[414]

Chapter 11

value = feature.GetFieldAsDouble (attrName)
value = "$* . *f" & (attr.width, attr.precision, wvalue)
elif attr.type == ogr.OFTReallList:
values = feature.GetFieldAsDoubleList (attrName)
sValues = []
for value in values:
sValues.append ("$*.*f" & (attr.width,

attr.precision, value))

value = repr (sValues)
elif attr.type == ogr.OFTString:
value = feature.GetFieldAsString (attrName)
needsEncoding = True
elif attr.type == ogr.OFTStringList:
value = repr (feature.GetFieldAsStringList (attrName))
needsEncoding = True
elif attr.type == ogr.OFTDate:
parts = feature.GetFieldAsDateTime (attrName)
year,month,day, hour, minute, second, tzone = parts
value = "%d, %d, %d,%d" % (year,month,day, tzone)
elif attr.type == ogr.OFTTime:
parts = feature.GetFieldAsDateTime (attrName)
year,month,day, hour, minute, second, tzone = parts
value = "%d,%d, %d, %d" % (hour,minute, second, tzone)
elif attr.type == ogr.OFTDateTime:
parts = feature.GetFieldAsDateTime (attrName)

year,month,day, hour, minute, second, tzone = parts
value = "%d, %d, %d, %d, %d, %d, %d, %d" % (year,month,day,
hour,minute,
second, tzone)
else:
return (False, "Unsupported attribute type: " +
str(attr.type))

if needsEncoding:
try:
value = value.decode (encoding)
except UnicodeDecodeError:
return (False, "Unable to decode value in " +
repr (attrName) + " attribute. " +
"Are you sure you're using the right " +
"character encoding?")

return (True, value)

[415]

ShapeEditor: Implementing List View, Import, and Export

There's a lot of ugly code here relating to the extraction of different field types from
the OGR feature. Don't worry too much about these details; the basic concept is that
we extract the attribute's value, convert it to a string, and perform character encoding
on the string if necessary.

Finally, we'll have to add the following import statement to the top of the
shapefileIO.py module:

from geodjango.shapeEditor.models import AttributeValue

Cleaning up

Now that we've imported the Shapefile's data, all that's left is to clean up our
temporary files and tell the caller that the import succeeded. To do this, simply add
the following lines to the end of your importData () function:

os.remove (fname)
shutil.rmtree (dirname)
return None

That's it!

To test all this out, grab a copy of the TM_WORLD_BORDERS-0 . 3 Shapefile in ZIP file
format. You can either use the original ZIP archive that you downloaded from the
World Borders Dataset website, or you can recompress the Shapefile into a new ZIP
archive. Then, run the ShapeEditor, click on the Import New Shapefile button, click
on Browse..., and select the ZIP archive you want to import.

Because the World Borders Dataset's features use the Latinl character encoding,
you need to make sure that this encoding is selected from the pop up menu. Then,
click on Submit, and wait a few seconds for the Shapefile to be imported. All going
well, the world borders dataset will appear in the list of imported Shapefiles:

enNnO ShapeEditor ()

(«]r)le)lx][a) @ ntp/127 ¢r v Q- Google
ShapeEditor

Available Shapefiles:
TM_WORLD_BORDERS-0.3.shp [Edit Export Delete
Edit

shapefile.shp Export Delete

(Import Mew Shapefile]

[416]

Chapter 11

If a problem occurs, check the error message to see what might be wrong. Also,
go back and make sure you have typed the code in exactly as described. If it
works, congratulations! You have just implemented the most difficult part of the
ShapeEditor. It gets easier from here.

Exporting Shapefiles

We next need to implement the ability to export a Shapefile. The process of exporting a

Shapefile is basically the reverse of the import logic, and involves the following steps:
1. Create an OGR Shapefile to receive the exported data.

Save the features into the Shapefile.

Save the attributes into the Shapefile.

Compress the shapefile into a ZIP archive.

Delete our temporary files.

AL

Send the ZIP file back to the user's web browser.

All this work will take place in the shapefileI0.py module, with help from some
utils.py functions. Before we begin, let's define the exportData () function so that
we have somewhere to place our code. Edit shapefileIo.py, and add the following
new function:

def exportData (shapefile) :

return "More to come..."

While we're at it, let's create the "export shapefile" view function. This will call
the exportbData () function to do all the hard work. Edit views.py and add the
following new function:

def exportShapefile(request, shapefile id):
try:
shapefile = Shapefile.objects.get (id=shapefile id)
except Shapefile.DoesNotExist:
raise Http404

return shapefileIO.exportData (shapefile)

This is all pretty straightforward. Then, edit urls.py and add the following entry to
the geodjango. shapeEditor.views URL pattern list:

(r'”*shape-editor/export/ (?P<shapefile id>\d+)$',
'exportShapefile'),

[417]

ShapeEditor: Implementing List View, Import, and Export

We've already got the /export URL defined in our "list shapefiles" view, so the user
can click on the Export hyperlink to call our view function. This in turn will call
shapefileIO.exportData () to do the actual exporting. Let's start implementing
that exportbata () function.

Define the OGR Shapefile

We'll use OGR to create the new Shapefile that will hold the exported features. Let's
start by creating a temporary directory to hold the Shapefile's contents; replace your
placeholder version of exportData () with the following;:

def exportData (shapefile):
dstDir = tempfile.mkdtemp ()
dstFile = str(os.path.join(dstDir, shapefile.filename))

Now that we've got somewhere to store the Shapefile (and a filename for it),
we'll create a spatial reference for the Shapefile to use, and set up the Shapefile's
datasource and layer:

dstSpatialRef = osr.SpatialReference ()
dstSpatialRef.ImportFromWkt (shapefile.srs wkt)

driver = ogr.GetDriverByName ("ESRI Shapefile")

datasource = driver.CreateDataSource (dstFile)

layer = datasource.Createlayer (str (shapefile.filename),
dstSpatialRef)

. Notice that we're using str () to convert the Shapefile's filename to
an ASCII string. This is because Django uses Unicode strings, but OGR
& can't handle unicode filenames. We'll need to do the same thing for the
attribute names.

Now that we've created the Shapefile itself, we next need to define the various fields
which will hold the Shapefile's attributes:

for attr in shapefile.attribute set.all():
field = ogr.FieldDefn(str(attr.name), attr.type)
field.SetWidth(attr.width)
field.SetPrecision(attr.precision)
layer.CreateField(field)

Notice how the information needed to define the field is taken directly from the
Attribute object; Django makes iterating over the Shapefile's attributes easy.

That completes the definition of the Shapefile. We're now ready to start saving the
Shapefile's features.

[418]

Chapter 11

Saving the features into the Shapefile

Because the Shapefile can use any valid spatial reference, we'll need to transform the
Shapefile's features from the spatial reference used internally (EPSG 4326) into the
Shapefile's own spatial reference. Before we can do this, we'll need to set up an osr.
CoordinateTransformation object to do the transformation:

srcSpatialRef = osr.SpatialReference ()
srcSpatialRef . Import FromEPSG (4326)

coordTransform = osr.CoordinateTransformation (srcSpatialRef,
dstSpatialRef)

We'll also need to know which geometry field in the Feature object holds the
feature's geometry data:

geomField = utils.calcGeometryField(shapefile.geom type)

With this information, we're ready to start exporting the Shapefile's features:

for feature in shapefile.feature set.all():
geometry = getattr (feature, geomField)

Right away, however, we encounter a problem. If you remember when we
imported the Shapefile, we had to wrap a Polygon or a LineString geometry into a
MultiPolygon or MultiLineString so that the geometry types would be consistent
in the database. Now that we're exporting the Shapefile, we need to unwrap

the geometry so that features that had only one Polygon or LineString in their
geometries are saved as Polygons and LineStrings rather than MultiPolygons and
MultiLineStrings. We'll use a utils.py function to do this unwrapping:

geometry = utils.unwrapGEOSGeometry (geometry)
We'll implement this utils.py function shortly.

Now that we've unwrapped the feature's geometry, we can go ahead and convert
it back into an OGR geometry again, transform it into the Shapefile's own spatial
reference system, and create an OGR feature using that geometry:

dstGeometry = ogr.CreateGeometryFromWkt (geometry.wkt)
dstGeometry.Transform(coordTransform)

dstFeature = ogr.Feature (layer.GetLayerDefn())
dstFeature.SetGeometry (dstGeometry)

[419]

ShapeEditor: Implementing List View, Import, and Export

Finally, we need to add the feature to the layer and call the Destroy () method to
save the feature (and then the layer) into the Shapefile:

layer.CreateFeature (dstFeature)
dstFeature.Destroy ()

datasource.Destroy ()

Before we move on, let's add our new unwrapGEOSGeometry () function toutils.py.
This code is quite straightforward, pulling a single Polygon or LineString object out
of a MultiPolygon or MultiLineString if they contain only one geometry:

def unwrapGEOSGeometry (geometry) :
if geometry.geom type in ["MultiPolygon",
"MultiLineString"]:
if len(geometry) == 1:
geometry = geometry[0]
return geometry

So far, so good: we've created the OGR feature, unwrapped the feature's geometry,
and stored everything into the Shapefile. Now, we're ready to save the feature's
attribute values.

Saving the attributes into the Shapefile

Our next task is to save the attribute values associated with each feature. When we
imported the Shapefile, we extracted the attribute values from the various OGR data
types and converted them into strings so they could be stored into the database. This
was done using the utils.getOGRFeatureAttribute () function. We now have to
do the opposite: storing the string value into the OGR attribute field. As before, we'll
use a utils.py function to do the hard work; add the following highlighted lines to
the bottom of your exportData () function:

dstFeature = ogr.Feature (layer.GetLayerDefn())
dstFeature.SetGeometry (dstGeometry)

for attrValue in feature.attributevalue set.all():
utils.setOGRFeatureAttribute (attrValue.attribute,
attrvValue.value,
dstFeature,
shapefile.encoding)

layer.CreateFeature (dstFeature)
dstFeature.Destroy ()

datasource.Destroy ()

[420]

Chapter 11

Now, let's implement the setOGRFeatureAttribute () function withinutils.py.
As with the getOGRFeatureAttribute () function, setOGRFeatureAttribute ()
is rather tedious, but straightforward: we have to deal with each OGR data type
in turn, processing the string representation of the attribute value and calling the
appropriate SetField () method to set the field's value. Here is the relevant code:

def setOGRFeatureAttribute (attr, value, feature, encoding):
attrName = str (attr.name)

if value == None:
feature.UnsetField (attrName)

return
if attr.type == ogr.OFTInteger:
feature.SetField (attrName, int (value))
elif attr.type == ogr.OFTIntegerList:
integers = eval (value)
feature.SetFieldIntegerList (attrName, integers)
elif attr.type == ogr.OFTReal:
feature.SetField (attrName, float (value))
elif attr.type == ogr.OFTReallist:
floats = []

for s in eval (value) :
floats.append(eval(s))
feature.SetFieldDoubleList (attrName, floats)

elif attr.type == ogr.OFTString:

feature.SetField (attrName, value.encode (encoding))
elif attr.type == ogr.OFTStringList:

strings = []

for s in eval (value) :
strings.append (s.encode (encoding))
feature.SetFieldStringList (attrName, strings)

elif attr.type == ogr.OFTDate:
parts = value.split(",")
year = int(parts([0])
month = int (parts[1])
day = int (parts([2])
tzone = int (parts[3])

feature.SetField (attrName, year, month, day,
0, 0, 0, tzone)

elif attr.type == ogr.OFTTime:
parts = value.split(",")
hour = int (parts[0
minute = int (parts(l

1)

(1)
second = int (parts([2])
tzone = int (parts[3])

[421]

ShapeEditor: Implementing List View, Import, and Export

feature.SetField (attrName, 0, 0, O,
hour, minute, second, tzone)

elif attr.type == ogr.OFTDateTime:
parts = value.split(",")
year = int (parts[0])
month = int(parts[1])
day = int (parts[2])
hour = int (parts[3])
minute = int (parts[4])
second = int (parts[5])

tzone = int (partsl[6])
feature.SetField (attrName, year, month, day,
hour, minute, second, tzone)

Compressing the Shapefile

Note that we use a temporary file object, named temp, to store the ZIP archive's
contents. Go back to the shapefileIo.py module and add the following to the end
of your exportbData () function:

temp = tempfile.TemporaryFile ()
zip = zipfile.ZipFile(temp, 'w', zipfile.ZIP DEFLATED)

shapefileBase = os.path.splitext (dstFile) [0]
shapefileName = os.path.splitext (shapefile.filename) [0]

for fName in os.listdir(dstDir) :
zip.write (os.path.join(dstDir, fName), fName)

zip.close()

Note that we use a temporary file, named temp, to store the ZIP archive's contents.
We'll be returning temp to the user's web browser once the export process has
finished.

Deleting temporary files

We next have to clean up after ourselves by deleting the Shapefile that we
created earlier:

shutil.rmtree (dstDir)

Notice that we don't have to remove the temporary ZIP archive as that's done
automatically for us by the tempfile module when the file is closed.

[422]

Chapter 11

Returning the ZIP archive to the user

The last step in exporting the Shapefile is to send the ZIP archive to the user's web
browser so that it can be downloaded onto the user's computer. To do this, we'll
create an HttpResponse object that includes a Django FileWrapper object to attach
the ZIP archive to the HTTP response:

f = FileWrapper (temp)
response = HttpResponse (f, content type="application/zip")

response ['Content-Disposition'] = \
"attachment; filename=" + shapefileName + ".zip"
response ['Content-Length'] = temp.tell ()

temp.seek (0)
return response

As you can see, we set up the HTTP response to indicate that we're returning a file
attachment. This forces the user's browser to download the file rather than trying to
display it. We also use the original Shapefile's name as the name of the downloaded file.

This completes the definition of the exportData () function. There's only one more
thing to do: add the following import statements to the top of the shapefileIO.py
module:

from django.http import HttpResponse
from django.core.servers.basehttp import FileWrapper

We've finally finished implementing the "Export Shapefile" feature. Test it out

by running the server and clicking on the Export hyperlink beside one of your
Shapefiles. All going well, there'll be a slight pause and you'll be prompted to save
your Shapefile's ZIP archive to disk:

an 0 Opening TM_WORLD_BORDERS-0.3.zip

You have chosen to open
| TM_WORLD_BORDERS-0.3.zip

which is a: PC ZIP Archive
from: http://127.0.0.1:8000

What should Firefox do with this file?

() Open with | Stufflt Expander (default) ﬂ
#) Save File

| Do this automatically for files like this from now on.

 ~ 1)\
S

[423]

ShapeEditor: Implementing List View, Import, and Export

Summary

In this chapter, we continued our implementation of the ShapeEditor by adding three
important functions: the "list" view, and the ability to import and export Shapefiles.
While these aren't very exciting features, they are a crucial part of the ShapeEditor.

In the process of implementing these features, we have learned:

How to use Django's templating language to display a list of records within a
web page.

How you can use the zipfile standard library module to extract the
contents of an uploaded Shapefile before opening that Shapefile using OGR.

That you need to wrap Polygon and LineString geometries when importing
data from a Shapefile into a PostGIS database to avoid problems caused by a
Shapefile's inability to distinguish between Polygons and MultiPolygons, and
between LineStrings and MultiLineStrings.

That when you call the object .delete () method, Django automatically
deletes all the linked records for you, simplifying the process of removing a
record and all its associated data.

That you can use OGR to create a new Shapefile, and the zipfile library
module to compress it, so that you can export geo-spatial data using a web
interface.

With this functionality out of the way, we can now turn our attention to the most
interesting parts of the ShapeEditor: the code which displays and lets the user edit
geometries using a slippy map interface. This will be the main focus for the final
chapter of this book.

[424]

12

ShapeEditor: Selecting and
Editing Features

In this final chapter, we will implement the remaining features of the ShapeEditor
application. A large part of this chapter will involve the use of OpenLayers and the
creation of a Tile Map Server so that we can display a map with all the Shapefile's
features on it, and allow the user to click on a feature to select it. We'll also
implement the the ability to add, edit, and delete features, and conclude with an
exploration of how the ShapeEditor can be used to work with geo-spatial data, and
how it can serve as the springboard for your own geo-spatial development efforts.

In this chapter, we will learn:

e How to implement a Tile Map Server using Mapnik and GeoDjango

e How to use OpenLayers to display a slippy map on a web page

e How to write a custom "click" handler for OpenLayers

¢ How to use AJAX requests within OpenLayers

e How to perform spatial queries using GeoDjango

¢ How to use GeoDjango's built-in editing widgets in your own application
e How to edit geo-spatial data using GeoDjango's built-in editing widgets

e How to customize the interface for GeoDjango's editing widgets

¢ How to add and delete records in a Django web application

ShapeEditor: Selecting and Editing Features

Selecting a feature to edit

As we discussed in the section on designing the ShapeEditor, GeoDjango's built-in
map widgets can only display a single feature at a time. In order to display a map
with all the Shapefile's features on it, we will have to use OpenLayers directly, along
with a Tile Map Server and a custom AJAX-based click handler. The basic workflow
will look like this:

Tile Map Server
creates tiles using the
Shapefile’s features

A

OpenlLayers displays
the map to the user

A

User clicks on the map

A
Click handler asks the

server which feature
was clicked on

Server identifies the
clicked-on feature

v
User’s web browser is
redirected to the “Edit
Feature” page for the
clicked-on feature

Let's start by implementing the Tile Map Server, and then see what's involved in
using OpenLayers, along with a custom click handler and some server-side AJAX
code to respond when the user clicks on the map.

Implementing the Tile Map Server

As we discussed in Chapter 9, the Tile Map Server Protocol is a simple RESTful
protocol for serving map tiles. The TMS protocol includes calls to identify the various
maps that can be displayed, along with information about the available map tiles, as
well as providing access to the map tile images themselves.

[426]

Chapter 12

Let's briefly review the terminology used by the TMS protocol:

A Tile Map Server is the overall web server that is implementing the TMS
protocol.

A Tile Map Service provides access to a particular set of maps. There can be
multiple Tile Map Services hosted by a single Tile Map Server.

A Tile Map is a complete map of all or part of the Earth's surface, displaying
a particular set of features or styled in a particular way. A Tile Map Service
can provide access to more than one Tile Map.

A Tile Set consists of a set of tiles displaying a given Tile Map at a given
zoom level.

A Tile is a single map image representing a small portion of the map being
displayed by the Tile Set.

This may sound confusing, but it's actually not too bad. We'll be implementing a Tile
Map Server with just one Tile Map Service, which we'll call the "ShapeEditor Tile
Map Service". There will be one Tile Map for each Shapefile that has been uploaded,

and we

11 support Tile Sets for a standard range of zoom levels. Finally, we'll use

Mapnik to render the individual Tiles within the Tile Set.

We'll create a separate module, tms . py, for our Tile Map Server's code. Create this
file (inside the shapeEditor directory), and enter the following:

from django.http import HttpResponse

def

def

def

def

root (request) :
return HttpResponse ("Tile Map Server")

service (request, version):

return HttpResponse ("Tile Map Service")

tileMap (request, version, shapefile id):

return HttpResponse ("Tile Map")

tile(request, version, shapefile id, zoom, x, y):
return HttpResponse ("Tile")

Obviously, these are only placeholders, but they give us the basic structure for our
Tile Map Server, and let us set up the URL mappings we will need. Now, go back
and edit the urls.py module, adding the following code to the end of the module:

urlpatterns += patterns('geodjango.shapeEditor.tms',

(r'“shape-editor/tms$"',
'root'), # "shape-editor/tms" calls root ()
(r'“shape-editor/tms/ (?P<version>[0-9.]1+)3$",
'service'), # eg, "shape-editor/tms/1.0" calls

service (version=1.0)

[427]

ShapeEditor: Selecting and Editing Features

(r'“shape-editor/tms/ (?P<version>[0-9.1+)/"' +
r' (?P<shapefile id>\d+)$',
'tileMap'), # eg, "shape-editor/tms/1.0/2" calls
tileMap (version=1.0, shapefile id=2)
(r'“shape-editor/tms/ (?P<version>[0-9.1+)/"' +
r' (?P<shapefile id>\d+)/ (?P<zoom>\d+) /' +
r' (?P<x>\d+) / (?P<y>\d+) \ .pngs$"',
'tile'), # eg, "shape-editor/tms/1.0/2/3/4/5" calls
tile(version=1.0, shapefile id=2, zoom=3, x=4,
y=5)
)

Each of these URL patterns maps an incoming RESTful URL to the appropriate view
function within our new tms.py module. The included comments give an example of
how the regular expressions map URLSs to the view functions.

To test that this works, run the GeoDjango server and point your web browser to
http://127.0.0.1:8000/shape-editor/tms. You should see the text you entered
into your placeholder root () view function.

Let's make that top-level view function do something useful. Go back to the tms.py
module, and change the root () function to look like this:

def root (request) :
try:
baseURL = request.build absolute uri()
xml = []
xml.append ('<?xml version="1.0" encoding="utf-8" ?>')
xml.append ('<Services>"')

xml.append (' <TileMapService ' +
'title="ShapeEditor Tile Map Service" ' +
'version="1.0" href="' + baseURL + '/1.0"/>"')

xml .append ('</Services>"')

return HttpResponse ("\n".join(xml), mimetype="text/xml")
except:

traceback.print exc()

return HttpResponse ("")

You'll also need to add the following import statement to the top of the module:

import traceback

This view function returns an XML-format response describing the one-and-only Tile
Map Service supported by our TMS server. This Tile Map Service is identified by a
version number, 1.0 (Tile Map Services are typically identified by version number).
If you now go to http://127.0.0.1:8000/shape-editor/tms, you'll see the TMS
response displayed in your web browser:

[428]

Chapter 12

anno

(«]»r][e][x][m] @ hup//127.0.0.1:8000/shape-editor/tms v v Q- Google

Mozilla Firefox —

This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <Services>

</Services>

<TileMapService title="ShapeEditor Tile Map Service" version="1.0" href="http://127.0.0.1:8000/shape-editor/tms/1.0"/>

As you can see, this provides a list of the Tile Map Services. OpenLayers will use this
to access our Tile Map Service.

Error Handling

Notice that we've wrapped our TMS view functionina try. . .except
statement, and used the traceback standard library module to print
out the exception if something goes wrong. We're doing this because our
code will be called directly by OpenLayers using AJAX; Django helpfully
handles exceptions and returns an HTML error page to the caller, but in
this case OpenLayers won't display that page if something goes wrong.
Instead, all you'll see are broken image icons instead of a map, and the
error itself will remain a mystery.

By wrapping our Python codeina try. . .except statement, we can
catch any exceptions in our Python code and print them out. This will
cause the error to appear in Django's web server log so we can see what
went wrong. This is a useful technique to use whenever you write AJAX
request handlers in Python.

We're now ready to implement the Tile Map Service itself. Edit tms.py again, and
change the service () function to look like this:

def service(request, version):

try:

if version != "1.0":
raise Http404

baseURL = request.build absolute uri ()
xml = []
xml .append ('<?xml version="1.0" encoding="utf-8" ?>')

xml .append ('<TileMapService version="1.0" services=""' +
baseURL + '">')

xml .append (' <Title>ShapeEditor Tile Map Service' +
'</Title>")

xml.append (' <Abstract></Abstract>')

xml .append (' <TileMaps>"')

[429]

ShapeEditor: Selecting and Editing Features

for shapefile in Shapefile.objects.all():
id = str(shapefile.id)
xml . append (' <TileMap title="' +
shapefile.filename + '"')

xml . append (' srs="EPSG:4326"")
xml . append (' href="'+baseURL+"'/'+id+'"/>")
xml.append (' </TileMaps>')

xml.append ('</TileMapServices>"')
return HttpResponse ("\n".join(xml), mimetype="text/xml")
except:
traceback.print exc()
return HttpResponse("")

You'll also need to add the following import statements to the top of the module:

from django.http import Http404
from geodjango.shapeEditor.models import Shapefile

Notice that this function raises an Ht tp4 04 exception if the version number is wrong.
This exception tells Django to return a HTTP 404 error, which is the standard error
response when an incorrect URL has been used. We then iterate over the various
Shapefile objects in the database, listing each uploaded Shapefile as a Tile Map.

If you save this file and enter http://127.0.0.1:8000/shape-editor/tms/1.0 into
your web browser, you should see a list of the available tile maps, in XML format:

J

|ano Mozilla Firefox

ElZ] @ E] @ ntep://127.0.0.1:8000/shape-editor /tms /1.0 ¥r v H Q- Google

This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <TileMapService version="1.0" services="http://127.0.0.1:8000/shape-editor/tms/1.0">
<Title>ShapeEditor Tile Map Service</Title>
<Abstract/>
— <TileMaps>
<TileMap title="shapefile.shp" srs="EPSG:4326" href="http://127.0.0.1:8000/shape-editor/tms/1.0/2"/>
<TileMap title="TM_WORLD_BORDERS-0.3 shp" srs="EPSG:4326" href="http://127.0.0.1:8000/shape-editor/tms/1.0/3"/>
</TileMaps>
</TileMapService>

We next need to implement the tileMap () function, which displays the various Tile
Sets available for a given Tile Map. Before we do this, though, we're going to have to
learn a bit about the notion of zoom levels.

[430]

Chapter 12

As we have seen, slippy maps allow the user to zoom in and out when viewing a
map's contents. This zooming is done by controlling the map's zoom level. Typically,
a zoom level is specified as a simple number: zoom level zero is when the map is
fully zoomed out, zoom level 1 is when the map is zoomed in once, and so on.

Let's start by considering the map when it is zoomed out completely (in other words,
has a zoom level of 0). In this case, we want the entire Earth's surface to be covered
by just two map tiles:

Each map tile at this zoom level would cover 180° of latitude and longitude. If
each tile was 256 pixels square, this would mean that each pixel would cover 180 /
256 = 0.703125 map units, where in this case a "map unit" is a degree of latitude or
longitude. This number is going to be very important when it comes to calculating
the Tile Maps.

Now, whenever we zoom in (for example, by going from zoom level 0 to zoom level
1), the dimensions of the Earth covered by each tile is halved. For example, the Earth
would be split into tiles at zoom level 1 in the following way:

[431]

ShapeEditor: Selecting and Editing Features

This implies that, for any zoom level, we can calculate the number of map units
covered by a single pixel on the map using the following formula:

, ‘ 0.703125
Map units per pixel = —Sorratar
2

Since we'll be using this formula in our TMS server, let's go ahead and add the
following code to the end of our tms.py module:

def unitsPerPixel (zoomLevel) :

return 0.703125 / math.pow (2, zoomLevel)

Notice that we start the function name with an

underscore; this is a standard Python convention

for naming "private" functions within a module.

You'll also need to add an import math statement to the top of the file.

Next, we need to add some constants to the top of the module to define the size of
each map tile, and how many zoom levels we support:

MAX ZOOM LEVEL = 10
TILE WIDTH = 256
TILE HEIGHT = 256

With all this, we're finally ready to implement the tileMap () function to return
information about the available Tile Sets for a given Shapefile's Tile Map. Edit this
function to look like the following:

def tileMap (request, version, shapefile id):
try:

if version != "1.0":
raise Http404

try:
shapefile = Shapefile.objects.get (id=shapefile id)

except Shapefile.DoesNotExist:
raise Http404

baseURL = request.build absolute uri ()

xml = []
xml .append ('<?xml version="1.0" encoding="utf-8" ?>')
xml .append('<TileMap version="1.0" ' +

'tilemapservice="' + baseURL + '">')
xml.append (' <Title>' + shapefile.filename + '</Title>")
xml.append (' <Abstract></Abstract>')
xml.append (' <SRS>EPSG:4326</SRS>")

[432]

Chapter 12

xml.append (' <BoundingBox minx="-180" miny="-90" ' +
'maxx="180" maxy="90"/>")
xml.append (' <Origin x="-180" y="-90"/>")
xml.append (' <TileFormat width="' + str(TILE WIDTH) +
'" height="' + str(TILE HEIGHT) + '" ' +
'mime-type="image/png" extension="png"/>"')
xml .append (' <TileSets profile="global-geodetic">")
for zoomLevel in range (0, MAX ZOOM LEVEL+1) :
unitsPerPixel = unitsPerPixel (zoomLevel)
xml . append (' <TileSet href="' +
baseURL + '/' + str(zoomLevel) +
'" units-per-pixel="'+str (unitsPerPixel) +
'" order="' + str(zoomLevel) + '"/>"')
xml.append (' </TileSets>')
xml.append('</TileMap>"')
return HttpResponse ("\n".join(xml), mimetype="text/xml")
except:
traceback.print exc()
return HttpResponse ("")

As you can see, we start with some basic error-checking on the version and Shapefile
ID, and then iterate through the available zoom levels to provide information about
the available Tile Sets. If you save your changes and enter http://127.0.0.1:8000/
shape-editor/tms/1.0/2 into your web browser, you should see the following
information about the Tile Map for the Shapefile object with record ID 2:

ann Mozilla Firefox =

[<]»][c] [#] @ hup://127.0.0.1:8000/shape-editor/tms/1.0/2 ¥ v HQ- Google

This XML file does not appear to have any style information associated with it. The document tree is shown below.

— <TileMap version="1.0" tilemapservice="http://127.0.0.1:8000/shape-editor/tms/1.0/2">

<Title>shapefile.shp</Title>

<Abstract/>

<SRS>EPSG:4326</SRS>

<BoundingBox minx="-180" miny="-90" maxx="180" maxy="90"/>

<Origin x="-180" y="-90"/>

<TileFormat width="256" height="256" mime-type="image/png" extension="png"/>

— <TileSets profile="global-geodetic">

<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1.0/2/0" units-per-pixel="0.703125" order="0"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1.0/2/1" units-per-pixel="0.3515625" order="1"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1.0/2/2" units-per-pixel="0.17578125" order="2"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1 .0/2/3" units-per-pixel="0.087890625" order="3"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1 .0/2/4" units-per-pixel="0.0439453125" order="4"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1.0/2/53" units-per-pixel="0.02197265625" order="5"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1.0/2/6" units-per-pixel="0.010986328125" order="6"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1.0/2/7" units-per-pixel="0.0054931640625" order="7"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1.0/2/8" units-per-pixel="0.00274658203125" order="8"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1.0/2/9" units-per-pixel="0.00137329101562" order="9"/>
<TileSet href="http://127.0.0.1:8000/shape-editor/tms/1.0/2/10" units-per-pixel="0.000686645507812" order="10"/>

</TileSets>

</TileMap>

[433]

ShapeEditor: Selecting and Editing Features

Notice that we provide a total of 11 zoom levels, from 0 to 10, with an appropriately-
calculated units-per-pixel value for each zoom level.

We have now implemented three of the four view functions required to implement
our own Tile Map Server. For the final function, tile (), we are going to have to
write our own tile renderer. The tile () function accepts a Tile Map Service version,
a Shapefile ID, a zoom level, and the X and Y coordinates for the desired tile:

def tile(request, version, shapefile id, zoom, x, y):

This function needs to generate the appropriate map tile and return the rendered
image back to the caller. Before we implement this function, let's take a step back and
think about what the map rendering will look like.

We want the map to display the various features within the given Shapefile.
However, by themselves these features won't look very meaningful:

{o

It isn't until these features are shown in context, by displaying a base map behind the
features, that we can see what they are supposed to represent:

[434]

Chapter 12

Because of this, we're going to have to display a base map on which the features
themselves are drawn. Let's build that base map, and then we can use this, along
with the Shapefile's features, to render the map tiles.

Setting up the base map

For our base map, we're going to use the World Borders Dataset we've used several
times throughout this book. While this dataset doesn't look great when zoomed right
in, it works well as a base map on which we can draw the Shapefile's features.

We'll start by creating a database model to hold the base map's data: edit your
models.py file and add the following definition:

class BaseMap (models.Model) :
name = models.CharField(max length=50)
geometry = models.MultiPolygonField(srid=4326)

objects = models.GeoManager ()
def unicode_ (self):

return self.name

As you can see, we're storing the country names as well as their geometries, which
happen to be MultiPolygons. Now, from the command line, cd into your project
directory and type:

% python manage.py syncdb
This will create the database table used by the BaseMap object.

Now that we have somewhere to store the base map, let's import the data. Place
a copy of the World Borders Dataset Shapefile somewhere convenient, open up a
command-line window and cd into your geodjango project directory. Then type:

% python manage.py shell

This runs a Python interactive shell with your project's settings and paths installed.
Now, create the following variable, replacing the text with the absolute path to the
World Borders Dataset's Shapefile:

>>> shapefile = "/path/to/TM WORLD BORDERS-0.3.shp"

[435]

ShapeEditor: Selecting and Editing Features

Then type the following;:

>>> from django.contrib.gis.utils import LayerMapping
>>> from geodjango.shapeEditor.models import BaseMap

>>> mapping = LayerMapping(BaseMap, shapefile, {'name' : "NAME",

'geometry' : "MULTIPOLYGON"}, transform=False, encoding="iso-8859-1")

>>> mapping.save(strict=True, verbose=True)

We're using GeoDjango's LayerMapping module to import the data from this
Shapefile into our database. The various countries will be displayed as they are
imported, which will take a few seconds.

Once this has been done, you can check the imported data by typing commands into
the interactive shell. For example:

>>> print BaseMap.objects.count ()
246
>>> print BaseMap.objects.all()

[<BaseMap: Antigua and Barbuda>, <BaseMap: Algeria>, <BaseMap:
Azerbaijan>, <BaseMap: Albania>, <BaseMap: Armenia>, <BaseMap: Angolas,
<BaseMap: American Samoa>, <BaseMap: Argentina>, <BaseMap: Australia>,
<BaseMap: Bahrain>, <BaseMap: Barbados>, <BaseMap: Bermuda>, <BaseMap:
Bahamas>, <BaseMap: Bangladesh>, <BaseMap: Belize>, <BaseMap: Bosnia and
Herzegovina>, <BaseMap: Bolivia>, <BaseMap: Burma>, <BaseMap: Benin>,
<BaseMap: Solomon Islands>, '...(remaining elements truncated)...'l]

Feel free to play some more if you want; the Django tutorial includes several
examples of exploring your data objects using the interactive shell.

Because this base map is going to be part of the ShapeEditor application itself (the
application won't run without it), it would be good if Django could treat that data as
part of the application's source code. That way, if we ever had to rebuild the database
from scratch, the base map would be reinstalled automatically.

Django allows you to do this by creating a fixture. A fixture is a set of data that can
be loaded into the database on demand, either manually or automatically when the
database is initialized. We'll save our base map data into a fixture so that Django can
reload that data as required.

Create a directory named fixtures within the shapeEditor application directory.
Then, in a terminal window, cd into the geodjango project directory and type:

% python manage.py dumpdata shapeEditor shapeEditor.BaseMap >
shapeEditor/fixtures/initial data.json

[436]

Chapter 12

This will create a fixture named initial_ data.json. As the name suggests, the
contents of this fixture will be loaded automatically if Django ever has to re-initialize
the database.

Now that we have a base map, let's use it to implement our tile rendering code.

Tile rendering

Using our knowledge of Mapnik, we're going to implement the TMS server's tile ()
function. Our generated map will consist of two layers: a base layer showing the
base map, and a feature layer showing the features in the imported Shapefile.

Since all our data is stored in a PostGIS database, we'll be using a mapnik.PostGIS
datasource for both layers.

Our tile () function can be broken down into five steps:

Parse the query parameters.
Set up the map.
Define the base layer.

Define the feature layer.

AN

Render the map.

Let's work through each of these in turn.

Parsing the query parameters

Edit the tms . py module, and delete the dummy code we had in the tile ()
function. We'll add our parsing code one step at a time, starting with some basic
error-checking code to ensure the version number is correct and that the Shapefile
exists, and once again wrap our entire view functionin a try. . .except statement
to catch typos and other errors:

try:
if version != "1.0":
raise Http404

try:

shapefile = Shapefile.objects.get (id=shapefile id)
except Shapefile.DoesNotExist:

raise Http404

[437]

ShapeEditor: Selecting and Editing Features

We now need to convert the query parameters (which Django passes to us as strings)
into integers so that we can work with them:

zoom = int (zoom)
bl = int (x)
vy = int (y)

We can now check that the zoom level is correct:

if zoom < 0 or zoom > MAX ZOOM LEVEL:
raise Http404

Our next step is to convert the supplied x and y parameters into the minimum and
maximum latitude and longitude values covered by the tile. This requires us to use
the unitsPerPixel () function we defined earlier to calculate the amount of the
Earth's surface covered by the tile for the current zoom level:

xExtent = unitsPerPixel (zoom) * TILE WIDTH
yExtent = unitsPerPixel (zoom) * TILE HEIGHT
minlLong = x * xExtent - 180.0

minLat = y * yExtent - 90.0

maxLong = minLong + xExtent
maxLat = minLat + yExtent

Finally, we can add some rudimentary error-checking to ensure that the tile's
coordinates are valid:

if (minLong < -180 or maxLong > 180 or
minLat < -90 or maxLat > 90) :
raise Http404

Setting up the map

We're now ready to create the mapnik.Map object to represent the map. This is trivial:

map = mapnik.Map (TILE WIDTH, TILE HEIGHT,
"+proj=longlat +datum=WGS84")
map .background = mapnik.Color ("#7391ad")

Defining the base layer

We now want to define the layer that draws our base map. To do this, we have to set
up a mapnik.PostGIS datasource for the layer:

dbSettings = settings.DATABASES|['default']
datasource = \
mapnik.PostGIS (user=dbSettings['USER'],
password=dbSettings ['PASSWORD'],

[438]

Chapter 12

dbname=dbSettings['NAME'],
table="'"shapeEditor basemap"',
srid=4326,

geometry field="geometry",

geometry table='"shapeEditor basemap"')

As you can see, we get the name of the database, the username, and the password
from our project's settings module. We then set up a PostGIS datasource using
these settings.

There is one surprising thing here: notice how the table and geometry table
parameters have extra quotes within the string. This is because of a quirk in the way
PostgreSQL works: unless you put quotes around a field or table name, PostgreSQL
helpfully converts that name to lowercase. Most of the time you won't even notice
this, but because we're using the database directly rather than going through
Django's object-relational mapper, we will get an error if we don't add extra quotes
to these table names.

\ An alternative would have been to keep the name of the Django
~ application entirely in lowercase, but shapeeditor is much harder to
Q read than shapeEditor. These extra quotes are a minor price to pay for
having a good-looking application name.

Now that we have set up our datasource, let's create the base layer itself:

baselayer = mapnik.Layer ("baselLayer")
baselayer.datasource = datasource
baseLayer.styles.append ("baseLayerStyle")

We now need to set up the layer's style. In this case, we'll use a single rule with
two symbolizers: a PolygonSymbolizer that draws the interior of the base map's
polygons, and a LineSymbolizer to draw the polygon outlines:

rule = mapnik.Rule ()

rule.symbols.append (
mapnik.PolygonSymbolizer (mapnik.Color ("#b5d19c")))
rule.symbols.append (
mapnik.LineSymbolizer (mapnik.Color ("#404040"), 0.2))

style = mapnik.Style()
style.rules.append (rule)

Finally, we can add the base layer and its style to the map:

map.append style("baseLayerStyle", style)
map.layers.append (baselLayer)

[439]

ShapeEditor: Selecting and Editing Features

Defining the feature layer

Our next task is to add another layer to draw the Shapefile's features onto the map.
Once again, we'll set up a mapnik.PostGIS datasource for the new layer:

geometryField = utils.calcGeometryField(shapefile.geom type)

query = '(select ' + geometryField \

+ ' from "shapeEditor feature" where' \

+ ' shapefile id=' + str(shapefile.id) + ') as geom'
datasource = \

mapnik.PostGIS (user=dbSettings['USER'],
password=dbSettings ['PASSWORD'],
dbname=dbSettings|['NAME'],
table=query,
srid=4326,
geometry field=geometryField,
geometry table='"shapeEditor feature"')

In this case, we are calling utils.calcGeometryField () to see which field in the
shapeEditor_ feature table contains the geometry we're going to display. Once
again, we're adding extra quotes to the table name to avoid PostgreSQL's annoying
tendency to convert unquoted names to lowercase.

We're now ready to create the new layer itself:

featurelLayer = mapnik.Layer ("featureLayer")
featurelayer.datasource = datasource
featurelayer.styles.append ("featureLayerStyle")

Next, we want to define the styles used by the feature layer. As before, we'll have just
a single rule, but in this case we'll use different symbolizers depending on the type of
feature we are displaying:

rule = mapnik.Rule ()

if shapefile.geom type in ["Point", "MultiPoint"]:
rule.symbols.append (mapnik.PointSymbolizer ())
elif shapefile.geom type in ["LineString", "MultiLineString"]:
rule.symbols.append (
mapnik.LineSymbolizer (mapnik.Coloxr ("#000000"), 0.5))
elif shapefile.geom type in ["Polygon", "MultiPolygon"]:
rule.symbols.append (
mapnik.PolygonSymbolizer (mapnik.Color ("#f7edee")))
rule.symbols.append (
mapnik.LineSymbolizer (mapnik.Coloxr ("#000000"), 0.5))

style = mapnik.Style()
style.rules.append (rule)

[440]

Chapter 12

Finally, we can add our new feature layer to the map:

map.append style("featureLayerStyle", style)
map.layers.append (featurelayer)

Rendering the Map Tile

We've looked at using Mapnik to render map images in Chapter 9. The basic process
of rendering a map tile is the same, except that we won't be storing the results into
an image file on disk. Instead, we'll create a mapnik. Image object, use it to extract
the raw image data in PNG format, and return that data back to the caller using an
Ht tpResponse object:

map.zoom_to_box (mapnik.Envelope (minLong, minLat,
maxLong, maxLat))

image = mapnik.Image (TILE WIDTH, TILE HEIGHT)

mapnik.render (map, image)

imageData = image.tostring('png')

return HttpResponse (imageData, mimetype="image/png")
All that's left now is to add our error-catching code to the end of the function:

except:
traceback.print exc()
return HttpResponse ("")

That completes the implementation of our Tile Map Server's tile () function. Let's
tidy up and do some testing.

Completing the Tile Map Server

Because we've referred to some new modules in our tms . py module, we'll have to
add some extra import statements to the top of the file:

from django.conf import settings
import mapnik
import utils

In theory, our Tile Map Server should now be ready to go. Let's test it by running the
GeoDjango server. If you don't currently have the GeoDjango web server running, cd
into the geodjango project directory and type:

% python manage.py runserver

Start up your web browser and enter the following URL into your browser's
address bar:

http://127.0.0.1:8000/shape-editor/tms/1.0/2/0/0/0.png

[441]

ShapeEditor: Selecting and Editing Features

All going well, you should see a 256x256-pixel map tile appear in your web browser:

™) 0.png (PNG Image, 256x256 pixels)

(> e Mo Nl B b v v fQ- Coogle

Problems?

If you see an error message, you may need to change the ID of the
Shapefile you are displaying. The URL is structured like this:

http://path/to/tms/<version>/<shapefile
id>/<zoom>/<x>/<y>.png

N If you've been working through this chapter in order, the record ID of

=~ the World Borders Dataset Shapefile you imported earlier should be 2,

Q but if you've imported other Shapefiles in the meantime, or created more
Shapefile records while playing with the admin interface, you may need
to use a different record ID. To see what record ID a given Shapefile has,
gotohttp://127.0.0.1:8000/shape-editor and click on the Edit
hyperlink for the desired Shapefile. You'll see a Page Not Found error,
but the final part of the URL shown in your web browser's address bar
will be the record ID of the Shapefile. Replace the record ID in the above
URL with the correct ID, and the map tile should appear.

Congratulations, you have just implemented your own working Tile Map Server!

Using OpenLayers to display the map

Now that we have our TMS server up and running, we can use the OpenLayers
library to display the rendered map tiles within a slippy map. We'll call OpenLayers
from within a view, which we'll call the "edit shapefile" view since selecting a
feature is the first step towards being able to edit that feature.

[442]

Chapter 12

Let's implement the "edit shapefile" view. Edit the urls.py module, and add the
following highlighted entry to the geodjango. shapeEditor.views URL pattern:

urlpatterns = patterns ('geodjango.shapeEditor.views',
(r'“shape-editors$', 'listShapefiles'),
(r'"“shape-editor/imports$', 'importShapefile'),
(r'“shape-editor/edit/ (?P<shapefile id>\d+)$',
'editShapefile!'),
)

This will pass any incoming URLs of the form /shape-editor/edit/N to the
editShapefile () view function.

Let's implement that function. Edit the views.py module and add the following code:

def editShapefile(request, shapefile id):
try:
shapefile = Shapefile.objects.get (id=shapefile id)
except Shapefile.DoesNotExist:
Raise Http404

tmsURL = "http://"+request.get host () +"/shape-editor/tms/"

return render to response ("selectFeature.html",
{'shapefile' : shapefile,
' tmsURL' : tmsURL})

As you can see, we obtain the desired shapefile object, calculate the URL
used to access our TMS server, and pass this information to a template called
selectFeature.html. That template is where all the hard work will take place.

Now, we need to write the template. Start by creating a new file named

selectFeature.html in your application's templates directory, and
enter the following into this file:

<html>
<head>
<title>ShapeEditor</title>
<style type="text/css">
div#map {
width: 600px;
height: 400px;
border: 1lpx solid #ccc;

}

</style>
</head>
<body>

[443]

ShapeEditor: Selecting and Editing Features

<hl>Edit Shapefile</hl>
Please choose a feature to edit

<div id="map" class="map"></div>

<div style="margin-left:20px">
<button type="button"
onClick='window.location="/shape-editor";'>
Cancel
</buttons>
</div>
</body>
</html>

This is only the basic outline for this template, but it gives us something to work
with. If you start up the GeoDjango server, go to the main ShapeEditor page and
click on the Edit hyperlink for a Shapefile. You should see the basic outline for the

"select feature" page:

eano ShapeEditor

[«]» J{e]{x][#] @ hup//127.0.0.1:8000/shape-editor/edit/3 ¥r v |{Qr Google

Edit Shapefile

Please choose a feature to edit

Far-aaeere'
| Cancel)

Notice that we created a <div> element to hold the OpenLayers map, and we use
a CSS stylesheet to give the map a fixed size and border. The map itself isn't being
displayed yet because we haven't written the JavaScript code needed to launch

OpenLayers. Let's do that now.

Add the following <script> tags to the <head> section of your template:

<script src="http://openlayers.org/api/OpenlLayers.js">

</script>

<script type="text/javascript"s>
function init () {}

</script>

[444]

Chapter 12

Also, change the <body> tag definition to look like this:

<body onload="init () ">

Notice that there are two <script> tags: the first loads the openLayers. js library
from the http://openlayers.org website, while the second will hold the JavaScript
code that we'll write to create the map. We've also defined a JavaScript function
called init () which will be called when the page is loaded.

Let's implement that initialization function. Replace the line which says function
init () {} with the following:

function init ()

map = new OpenlLayers.Map ('map',
{maxResolution: 0.703125,
numZoomLevels: 11});

layer = new Openlayers.Layer.TMS ('TMS',
"{{ tmsURL }}",
{serviceversion: "1.0",
layername: "{{ shapefile.id }}",
type: 'png'});

map .addLayer (layer) ;

map . zoomToMaxExtent () ;

}

Even if you haven't used JavaScript before, this code should be quite straightforward:
the first instruction creates an OpenLayers .Map object representing the slippy map.
We then create an OpenLayers.Layer. TMS object to represent a map layer that takes
data from a TMS server. Then, we add the layer to the map, and zoom the map out as
far as possible so that the user sees the entire world when the map is first displayed.

Notice that the Map object accepts the ID of the <div> tag in which to place the map,
along with a dictionary of options. The maxResolution option defines the maximum
resolution to use for the map, and the numzoomLevels option tells OpenLayers how
many zoom levels the map should support.

For the Layer.TMS object, we pass in the URL used to access the Tile Map Server
(which is a parameter passed to the template from our Python view), along with the
version of the Tile Map Service to use and the name of the layer —which in our Tile
Map Server is the record ID of the Shapefile to display the features for.

[445]

ShapeEditor: Selecting and Editing Features

That's all we need to do to get a basic slippy map working with OpenLayers. Save your
changes, start up the GeoDjango web server if it isn't already running, and point your
web browser to: http://127.0.0.1:8000/shape-editor. Click on the Edit hyperlink
for the Shapefile you imported, and you should see the working slippy map:

You can zoom in and out, pan around, and click to your heart's content. Of course,
nothing actually works yet (apart from the Cancel button), but we have got a slippy
map working with our Tile Map Server and the OpenLayers JavaScript widget.
That's quite an achievement!

[446]

Chapter 12

What if it doesn't work?

If the map isn't being shown for some reason, there are several possible
causes. First, check the Django web server log as we are printing any
Python exceptions there. If that doesn't reveal the problem, look at your
web browser's Error Console window to see if there are any errors at
N the JavaScript level. Because we are now writing JavaScript code, error

~ messages will appear within the web browser rather than in Django's
server log. In FireFox, you can view JavaScript errors by selecting the
Error Console item from the Tools menu. Other browsers have similar
windows for showing JavaScript errors.

JavaScript debugging can be quite tricky, even for people experienced
with developing web-based applications. If you do get stuck, you
may find the following article helpful: http: //www.webmonkey .
com/2010/02/javascript debugging for beginners

Intercepting mouse clicks

When the user clicks on the map, we want to intercept that mouse click, identify

the map coordinate that the user clicked on, and then ask the server to identify the
clicked-on feature (if any). To intercept mouse clicks, we will need to create a custom
OpenLayers. Control subclass. We'll follow the OpenLayers convention of adding
the subclass to the OpenLayers namespace by calling our new control OpenLayers.
Control.Click. Once we've defined our new control, we can create an instance of
the control and add it to the map so that the control can respond to mouse clicks.

All of this has to be done in JavaScript. The code can be a bit confusing, so let's take
this one step at a time. Edit your selectFeature.html file and add the following
code to the <script> tag, immediately before your init () function:

Openlayers.Control.Click = OpenLayers.Class (
OpenlLayers.Control, {
defaultHandlerOptions: {

'single’ : true,
'double'’ . false,
'pixelTolerance' : 0,
'stopSingle’ : false,
'stopDouble' : false

b

initialize: function(options) {
this.handlerOptions = Openlayers.Util.extend (
{}, this.defaultHandlerOptions) ;
Openlayers.Control .prototype.initialize.apply (
this, arguments) ;

[447]

ShapeEditor: Selecting and Editing Features

this.handler = new Openlayers.Handler.Click(
this, {'click' : this.onClick}, this.handlerOptions) ;
}
onClick: function(e) {
alert ("click")
b
}
)

Don't worry too much about the details here—the initialize () functionis

a bit of black magic that creates a new OpenLayers.Control.Click instance
and sets it up to run as an OpenLayers control. What is interesting to us are the
defaultHandlerOptions dictionary and the onclick () function.

The defaultHandlerOptions dictionary tells OpenLayers how you want the click
handler to respond to mouse clicks. In this case, we want to respond to single clicks,
but not double-clicks (as these are used to zoom further in to the map).

The onClick () function is actually a JavaScript method for our OpenLayers.
Control.Click class. This method will be called when the user clicks on the
map —at the moment, all we're doing is displaying an alert box with the

message "click", but that's enough to ensure that the click control is working.

Now that we've defined our new click control, let's add it to the map. Add the
following lines immediately before the closing } for the init () function:

var click = new OpenLayers.Control.Click() ;
map.addControl (click) ;
click.activate();

As you can see, we create a new instance of our OpenLayers.Control.Click class,
add it to the map, and activate it.

With all this code written, we can now reload the Select Feature web page and see
what happens when the user clicks on a map:

[448]

Chapter 12

One ShapeEditor D
The page at http://127.0.0.1:8000 says: X.C°%9/

Edit Shapl ! . Click
Please choose a feat ok

P

So far, so good. Now, let's implement the real onclick () function to respond to

the user's mouse click. When the user clicks on the map, we're going to send the
clicked-on latitude and longitude value to the server using an AJAX request. The
server will return the URL of the "edit feature" page for the clicked-on feature, or an
empty string if no feature was clicked on. If a URL was returned, we'll then redirect
the user's web browser to that URL.

To make the AJAX call, we're going to use the OpenLayers.Request .GET function,
passing in a callback function that will be called when a response is received back
from the server. Let's start by writing the AJAX call.

Replace our dummy oncClick () function with the following;:

onClick: function(e) {
var coord = map.getLonLatFromViewPortPx (e.xy) ;
var request = OpenLayers.Request.GET({

url : "{{ findFeatureURL }}",
params : {shapefile id : {{ shapefile.id }},
latitude : coord.lat,

[449]

ShapeEditor: Selecting and Editing Features

longitude : coord.lon},
callback : this.handleResponse
1
}

This function does two things: it obtains the map coordinate that corresponds to the
clicked-on point (by calling the map . getLonLatFromviewPortPx () method), and
then creates an OpenLayers.Request .GET AJAX call to send the request to the server
and call the handleResponse () callback function when the response is received.

Notice that the OpenLayers.Request .GET () function accepts a set of query
parameters (in the params entry), as well as a URL to send the request to (in the url
entry), and a callback function to call when the response is received (in the callback
entry). We're using a template parameter, {{ findFeatureURL }}, to select the
URL to send the request to. This will be provided by our editShapeFile () view
function when the template is loaded. When we make the request, the query
parameters will consist of the record ID of the Shapefile and the clicked-on

latitude and longitude values.

While we're editing the selectFeature.html template, let's go ahead and
implement the callback function. Add the following function to the end of the
OpenLayers.Control.Click class definition (immediately below the closing }
for the onclick () function):

handleResponse: function(request)
if (request.status != 200) {
alert ("Server returned a "+request.status+" error");
return;
}i
if (request.responseText != "")
window.location.href = request.responseText;
}i
}

You will also need to add a comma after the onClick () function's

closing parenthesis, or you'll get a JavaScript error. Just like with Python,
g you need to add commas to separate dictionary entries in JavaScript.

Even if you're not familiar with JavaScript, this function should be easy to
understand: if the response didn't have a status value of 200, an error message is
displayed. Otherwise, we check that the response text is not blank, and if so we
redirect the user's web browser to that URL.

[450]

Chapter 12

Now that we've implemented our callback function, let's go back to our view module
and define the findFeatureURL parameter that will get passed to the template

we've created. Edit the view.py module to add the following highlighted lines to the
editShapefile () function:

def editShapefile(request, shapefile id):
try:
shapefile = Shapefile.objects.get (id=shapefile id)
except Shapefile.DoesNotExist:
raise Http404

tmsURL = "http://"+request.get host()+"/shape-editor/tms/"
findFeatureURL = "http://" + request.get host() \
+ "/shape-editor/findFeature"

return render to response("selectFeature.html",

{'shapefile" : shapefile,
'findFeatureURL' : findFeatureURL,
' tmsURL' : tmsURL})

This parameter will contain the URL the click handler will send its AJAX request to.
This URL will look something like this:

http://127.0.0.1:8000/shape-editor/findFeature

Our onClick () function will add shapefile id, latitude and longitude
query parameters to this request, so the AJAX request sent to the server will look
something like this:

http://127.0.0.1:8000/shape-editor/findFeature?shapefile id=1
&latitude=-38.1674&longitude=176.2344

With our click handler up and running, we're now ready to start implementing the
findFeature () view function to respond to these AJAX requests.

Implementing the "find feature” view

We now need to write the view function that receives the AJAX request, checks to see
which feature was clicked on (if any), and returns a suitable URL to use to redirect
the user's web browser to the "edit" page for that clicked-on feature. To implement
this, we're going to make use of GeoDjango's spatial query functions.

Let's start by adding the findFeature view itself. To do this, edit views.py and add
the following placeholder code:

def findFeature (request) :
return HttpResponse("")

[451]

ShapeEditor: Selecting and Editing Features

Returning an empty string tells our AJAX callback function that no feature was
clicked on. We'll replace this with some proper spatial queries shortly. First, though,
we need to add a URL pattern so that incoming requests will get forwarded to the
findFeature () view function. Edit urls.py and add the following entry to the
geodjango.shapeEditor.views URL pattern list:

(r'*shape-editor/findFeature$', 'findFeature'),

You should now be able to run the ShapeEditor, click on the Edit hyperlink for an
uploaded Shapefile, see a map showing the various features within the Shapefile, and
click somewhere on the map. In response, the system should do—absolutely nothing!
This is because our findFeature () function is returning an empty string, so the
system thinks that the user didn't click on a feature and so ignores the mouse click.

In this case, "absolutely nothing" is good news. As long as no error
. messages are being displayed, either at the Python or JavaScript level, this
% tells us that the AJAX code is running correctly. So, go ahead and try this,
L even though nothing happens, just to make sure that you haven't got any
bugs in your code. You should see the AJAX calls in the list of incoming
HTTP requests being received by the server.

Before we implement the findFeature () function, let's take a step back and think
what it means for the user to "click on" a feature's geometry. The ShapeEditor
supports a complete range of possible geometry types: Point, LineString, Polygon,
MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection. Checking if the
user clicked on a Polygon or MultiPolygon feature is straightforward enough—we
simply see if the clicked-on point is inside the polygon's bounds. But, because lines
and points have no interior (their area will always be zero), a given coordinate could
never be "inside" a Point or a LineString geometry. It might get infinitely close, but in
all practical terms the user can never click inside a Point or a LineString,.

This means that a spatial query of the form:

SELECT * FROM features WHERE ST Contains (feature.geometry,
clickPt)

is not going to work. Instead, we have to allow for the user clicking close to the
feature rather than within it. To do this, we'll calculate a search radius, in map units,
and then use the Dwithin () spatial query function to find all features within the
given search radius of the clicked-on point.

[452]

Chapter 12

Let's start by calculating the search radius. We know that the user might click
anywhere on the Earth's surface, and that we are storing all our features in lat/

long coordinates. We also know that the relationship between map coordinates
(latitude/longitude values) and actual distances on the Earth's surface varies widely
depending on whereabouts on the Earth you are: a degree at the equator equals a
distance of 111 kilometers, while a degree in Sweden is only half that far.

To allow for a consistent search radius everywhere in the world, we will use pyproj
to calculate the distance in map units given the clicked-on location and a desired
linear distance. Let's add this function to our utils.py module:

def calcSearchRadius(latitude, longitude, distance):
geod = pyproj.Geod(ellps="WGS84")
x,y,angle = geod.fwd(longitude, latitude, 0, distance)
radius = y-latitude
x,y,angle = geod.fwd(longitude, latitude, 90, distance)
radius = max(radius, x-longitude)
x,y,angle = geod.fwd(longitude, latitude, 180, distance)
radius = max(radius, latitude-y)

x,y,angle = geod.fwd(longitude, latitude, 270, distance)
radius = max(radius, longitude-x)

return radius

This function calculates the distance, in map units, of a given linear distance
measured in meters. It calculates the lat/long coordinates for four points directly
north, south, east, and west of the starting location and the given number of meters
away from that point. It then calculates the difference in latitude or longitude
between the starting location and the end point:

saaibap 6£10°0

0.0127 degrees . 0.0128 degrees

seaibap Zg1L0°0

[453]

ShapeEditor: Selecting and Editing Features

Finally, it takes the largest of these differences and returns it as the search radius,
which is measured in degrees of latitude or longitude.

Because our utils.py module is now using pyproj, add the following import
statement to the top of this module:

import pyproj

With the calcSearchRadius () function written, we can now use the bwithin ()
spatial query to identify all features close to the clicked-on location. The general
process of doing this in GeoDjango is to use the filter () function to create a spatial
query, like this:

query = Feature.objects.filter (geometry dwithin=(pt, radius))

This creates a query set that returns only the Feature objects that match the given
criteria. GeoDjango cleverly adds support for spatial queries to Django's built-in
filtering capabilities; in this case, the geometry dwithin=(pt, radius) parameter
tells GeoDjango to perform the dwithin () spatial query using the two supplied
parameters on the field named geometry within the Feature object. Thus, this
statement will be translated by GeoDjango into a spatial database query that looks
something like this:

SELECT * from feature WHERE ST DWithin(geometry, pt, radius)

Note that the geometry dwithin keyword parameter includes two
underscore characters; Django uses a double-underscore to separate the
’ field name from the filter function's name.

Knowing this, and having the utils.calcSearchRadius () function implemented,
we can finally implement the findFeature () view function. Edit views.py and
replace the body of the findFeature () function with the following:

def findFeature (request) :
try:
shapefile id = int (request.GET['shapefile id'])
latitude float (request .GET['latitude'])
longitude = float (request.GET['longitude'])

shapefile = Shapefile.objects.get (id=shapefile id)
pt = Point (longitude, latitude)
radius = utils.calcSearchRadius (latitude, longitude, 100)

if shapefile.geom type == "Point":
query = Feature.objects.filter(
geom_point dwithin=(pt, radius))
elif shapefile.geom type in ["LineString", "MultiLineString"]:

[454]

Chapter 12

query = Feature.objects.filter(
geom multilinestring dwithin=(pt, radius))
elif shapefile.geom type in ["Polygon", "MultiPolygon"]:
query = Feature.objects.filter(
geom multipolygon dwithin=(pt, radius))
elif shapefile.geom type == "MultiPoint":
query = Feature.objects.filter(
geom multipoint dwithin=(pt, radius))
elif shapefile.geom type == "GeometryCollection":
query = feature.objects.filter(
geom_geometrycollection dwithin=(pt, radius))
else:
print "Unsupported geometry: " + shapefile.geom type
return HttpResponse ("")

if query.count() != 1:
return HttpResponse ("")

feature = query.all() [0]
return HttpResponse ("/shape-editor/editFeature/" +
str (shapefile id)+"/"+str (feature.id))
except:
traceback.print exc()
return HttpResponse ("")

There's a lot here, so let's take this one step at a time. First off, we've wrapped all our
code inside a try. . .except statement:

def findFeature (request) :
try:

except:
traceback.print exc()
return HttpResponse ("")

This is the same technique we used when implementing the Tile Map Server; it
means that any Python errors in your code will be displayed in the web server's log,
and the AJAX function will return gracefully rather than crashing.

We then extract the supplied query parameters, converting them from strings to
numbers, load the desired shapefile object, create a GeoDjango pPoint object out of
the clicked-on coordinate, and calculate the search radius in degrees:

shapefile id = int (request.GET['shapefile id'])
latitude float (request .GET['latitude'])
longitude = float (request.GET['longitude'])

shapefile = Shapefile.objects.get (id=shapefile id)

[455]

ShapeEditor: Selecting and Editing Features

pt = Point (longitude, latitude)
radius = utils.calcSearchRadius (latitude, longitude, 100)

We're now ready to perform the spatial query. However, because our Feature object
has separate fields to hold each different type of geometry, we have to build the
query based on the geometry's type:

if shapefile.geom type == "Point":
query = Feature.objects.filter(
geom_point_ dwithin=(pt, radius))
elif shapefile.geom type in ["LineString", "MultiLineString"]:
query = Feature.objects.filter(
geom_multilinestring dwithin=(pt, radius))
elif shapefile.geom type in ["Polygon", "MultiPolygon"]:
query = Feature.objects.filter(
geom multipolygon dwithin=(pt, radius))
elif shapefile.geom type == "MultiPoint":
query = Feature.objects.filter(
geom multipoint dwithin=(pt, radius))
elif shapefile.geom type == "GeometryCollection":
query = feature.objects.filter(
geom_geometrycollection dwithin=(pt, radius))
else:
print "Unsupported geometry: " + shapefile.geom type
return HttpResponse ("")

In each case, we choose the appropriate geometry field, and use _ dwithin to
perform a spatial query on the appropriate field in the Feature object.

Once we've created the appropriate spatial query, we simply check to see if the query
returned exactly one Feature. If not, we return an empty string back to the AJAX
handler's callback function to tell it that the user did not click on a feature:

if query.count() != 1:
return HttpResponse ("")

If there was exactly one matching feature, we get the clicked-on feature and use it
to build a URL redirecting the user's web browser to the "edit feature" URL for the
clicked-on feature:

feature = query.all() [0]
return HttpResponse ("/shape-editor/editFeature/" +
str (shapefile id)+"/"+str (feature.id))

[456]

Chapter 12

After typing in the above code, add the following import statements to the top of the
views.py module:

import traceback

from django.contrib.gis.geos import Point

from geodjango.shapeEditor.models import Feature
import utils

This completes the findFeature () view function. Save your changes, run the
GeoDjango web server if it is not already running, and try clicking on a Shapefile's
features. If you click on the ocean, nothing should happen —but if you click on a
feature, you should see your web browser redirected to a URL of the form:

http://127.0.0.1:8000/shape-editor/editFeature/X/Y

where X is the record ID of the Shapefile, and Y is the record ID of the clicked-on
feature. Of course, at this stage you're simply going to get a Page Not Found error
because you haven't written that page yet. But, at least you can click on a feature
to select it, which is a major milestone in the development of the ShapeEditor
application. Congratulations!

Editing features

Now that we know which feature we want to edit, our next task is to implement
the "edit feature" page itself. To do this, we are going to have to create a custom
form with a single input field, named geometry, that uses a map-editing widget for
editing the feature's geometry. To create this form, we're going to borrow elements
from GeoDjango's built-in "admin" interface, in particular the django.contrib.
gis.admin.GeoModelAdmin class. This class provides a method named get_map_
widget () which returns an editing widget that we can then include in a custom-
generated form.

The process of building this form is a bit involved thanks to the fact that we have to
create a new django. forms. Form subclass on-the-fly to be handle the different types
of geometries that can be edited. Let's put this complexity into a new function within
the utils.py module, which we'll call getMapForm ().

Edit the utils.py module and type in the following code:
def getMapForm(shapefile) :
geometryField = calcGeometryField(shapefile.geom type)

adminInstance = admin.GeoModelAdmin (Feature, admin.site)
field
widgetType = adminInstance.get map widget (field)

Feature. meta.get field(geometryField)

class MapForm(forms.Form) :

[457]

ShapeEditor: Selecting and Editing Features

geometry = forms.CharField(widget=widgetType (),
label="")

return MapForm

You'll also need to add the following import statements to the top of the file:

from django import forms
from django.contrib.gis import admin
from models import Feature

The getMapForm () function creates a new GeoModelAdmin instance. We met
GeoModelAdmin earlier in this chapter when we explored GeoDjango's built-in admin
interface; here, we are using it to generate an appropriate map widget for editing the
type of geometry stored in the current Shapefile.

The getMapForm () function creates and returns a new django. forms . Form subclass
with the appropriate widget type used to edit this particular Shapefile's features.
Note that the getMapForm () function returns the MapForm class rather than an
instance of that class; we'll use the returned class to create the appropriate MapForm
instances as we need them.

With this function behind us, we can now implement the rest of the "edit feature"
view. Let's start by setting up the view's URL; edit urls.py and add the following to
the list of geodjango. shapeEditor.view patterns:

(r'”“shape-editor/editFeature/ (?P<shapefile id>\d+)/' +
r' (?P<feature_id>\d+)$', 'editFeature'),

We're now ready to implement the view function itself. Edit the views.py module
and start defining the editFeature () function:

def editFeature(request, shapefile id, feature id):
try:
shapefile = Shapefile.objects.get (id=shapefile id)
except ShapeFile.DoesNotExist:
raise Http404

try:

feature = Feature.objects.get (id=feature_ id)
except Feature.DoesNotExist:

raise Http404

So far, this is quite straightforward: we load the shapefile object for the current
Shapefile, and the Feature object for the feature we are editing. We next want to
load into memory a list of that feature's attributes so that these can be displayed to
the user:

[458]

Chapter 12

attributes = []
for attrValue in feature.attributevalue set.all():
attributes.append([attrValue.attribute.name,
attrvValue.valuel)
attributes.sort ()

This is where things get interesting. We need to create a Django Form object (actually,
an instance of the MapForm class created dynamically by the getMapForm () function
we wrote earlier), and use this form instance to display the feature to be edited.
When the form is submitted, we'll extract the updated geometry and save it back into
the Feature object again, before redirecting the user back to the "edit Shapefile" page
to select another feature.

As we saw when we created the "import Shapefile" form, the basic Django idiom for
processing a form looks like this:

if request.method == "GET":
form = MyForm()
return render to response ("template.html",
{rform' : form})
elif request.method == "POST":
form = MyForm(request.POST)
if form.is valid() :
..extract and save the form's contents...
return HttpResponseRedirect ("/somewhere/else")
return render to response ("template.html",
{rform' : form})

When the form is to be displayed for the first time, request . method will be set to
GET. In this case, we create a new form object and display the form as part of an
HTML template. When the form is submitted by the user, request .method will be
set to POST. In this case, a new form object is created that is bound to the submitted
posT arguments. The form's contents are then checked, and if they are valid they are
saved and the user is redirected back to some other page. If the form is not valid, it
will be displayed again along with a suitable error message.

Let's see how this idiom is used by the "edit feature" view. Add the following to the
end of your new view function:

geometryField = utils.calcGeometryField(shapefile.geom type)
formType = utils.getMapForm(shapefile)

if request.method == "GET":
wkt = getattr(feature, geometryField)
form = formType ({'geometry' : wkt})

return render to response ("editFeature.html",

[459]

ShapeEditor: Selecting and Editing Features

{'shapefile' : shapefile,
'form! : form,
'attributes' : attributes})
elif request.method == "POST":

form = formType (request.POST)
try:
if form.is valid() :
wkt = form.clean datal['geometry']
setattr (feature, geometryField, wkt)
feature.save ()
return HttpResponseRedirect ("/shape-editor/edit/" +
shapefile id)
except ValueError:
pass

return render to response("editFeature.html",

{'shapefile' : shapefile,
'form!' : form,
'attributes' : attributes})

As you can see, we call utils.getMapForm() to create a new django. forms.
Form subclass that will be used to edit the feature's geometry. We also call utils.
calcGeometryField () to see which field in the Feature object should be edited.

The rest of this function pretty much follows the Django idiom for form-processing.
The only interesting thing to note is that we get and set the geometry field (using
the getattr () and setattr () functions, respectively) in WKT format. GeoDjango
treats geometry fields as if they were character fields that hold the geometry in WKT
format. The GeoDjango JavaScript code then takes that WKT data (which is stored
in a hidden form field named geometry) and passes it to OpenLayers for display as
a vector geometry. OpenLayers allows the user to edit that vector geometry, and the
updated geometry is stored back into the hidden geometry field as WKT data. We
then extract that updated geometry's WKT text, and store it back into the Feature
object again.

So much for the editFeature () view function. Let's now create the template used
by this view. Create a new file named editFeature.html within the templates
directory, and enter the following text into this file:

<html>
<head>
<title>ShapeEditor</title>
<script src="http://openlayers.org/api/OpenLayers.js">
</script>
</head>
<body>

[460]

Chapter 12

<hl>Edit Feature</hl>

<form method="POST" action="">
<table>
{{ form.as table }}
<tr>
<td></td>
<td align="right">
<table>
{$ for attr in attributes %}
<tr>

<td>{{ attr.o0 }}</td>
<td>{{ attr.1 }}</td>
</tr>
{% endfor %}
</table>
</td>
</tr>
<tr>
<td></td>
<td align="center">
<input type="submit" value="Save"/>

<button type="button"
onClick='window.location="/shape-editor/edit/{{ shapefile.id }}";'>
Cancel
</buttons>
</td>
</tr>
</table>
</form>
</body>
</html>

This template uses an HTML table to display the form, and uses the {{ form.as_
table }} template function call to render the form as HTML table rows. We then
display the list of feature attributes within a sub-table, and finally include Save and
Cancel buttons at the bottom.

[461]

ShapeEditor: Selecting and Editing Features

With all this code written, we are finally able to edit features within the ShapeEditor:

Delete all Features

LAT 7.632

LON -5.556
NAME Cote dIvoire
POP2005 18584701
REGION 2
SUBREGION 11

UN 384

Within this editor, you can make use of a number of GeoDjango's built-in features to
edit the geometry:

e You can click on the Edit Geometry tool (-1 to select a feature for editing.

e You can click on the Add Geometry tool (- :) to start drawing a new
geometry.

e When a geometry is selected, you can click on a dark circle and drag it to
move the endpoints of a line segment.

e When a geometry is selected, you can click on a light circle to split an existing
line segment in two, making a new point that can then be dragged.

[462]

Chapter 12

e If you hold the mouse down over a dark circle, you can press the Delete key
(or type d) to delete that point. Note that this only works if the geometry has
more than three points.

® You can click on the Delete all Features hyperlink to delete the current
feature's geometries. We'll look at this hyperlink in more detail shortly.

Once you have finished editing the feature, you can click on the Save button to save
the edited features, or the Cancel button to abandon the changes.

While this is all working well, there is one rather annoying quirk: GeoDjango lets

the user remove the geometries from a map by using a hyperlink named Delete

all Features. Since we're currently editing a single feature, this hyperlink is rather
confusingly named: what it actually does is delete the geometries for this feature, not the
feature itself. Let's change the text of this hyperlink to something more meaningful.

Go to the copy of Django that you downloaded, and navigate to the contrib/gis/
templates/gis/admin directory. In this directory is a file named openlayers.html.
Take a copy of this file, and move it into your templates directory, renaming it to
openlayers-custom.html.

Open your copy of this file, and look near the bottom for the text Delete all
Features. Change this to Clear feature's Geometry, and save your changes.

So far, so good. Now, we need to tell the GeoDjango editing widget to use our
custom version of the openlayers.html file. To do this, edit your utils.py module
and find your definition of the getMapForm () function. Replace the line that defines
the adminInstance variable with the following highlighted lines:

def getMapForm(shapefile) :
geometryField = calcGeometryField(shapefile.geom type)

class CustomGeoModelAdmin (admin.GeoModelAdmin) :
map template = "openlayers-custom.html"

adminInstance = CustomGeoModelAdmin (Feature, admin.site)
field = Feature. meta.get field(geometryField)
widgetType = adminInstance.get map widget (field)

class MapForm(forms.Form) :
geometry = forms.CharField(widget=widgetType (),
label="")

return MapForm

[463]

ShapeEditor: Selecting and Editing Features

If you then try editing a feature, you'll see that your customized version of the
openlayers.html file is being used:

Clear Feature's Geometry

By replacing the template, and by creating your own custom subclass of
GeoModelAdmin, you can make various changes to the appearance and functionality
of the built-in editing widget. If you want to see what is possible, take a look at the
modules in the django.contrib.gis.admin directory.

Adding features

We'll next implement the ability to add a new feature. To do this, we'll put an Add
Feature button onto the "edit shapefile" view. Clicking on this button will call the
"edit feature" view, but without a feature ID. We'll then modify the "edit feature"
view so that if no feature ID is given, a new Feature object will be created.

Edit your views.py module, find the editShapefile () function, and add the
following highlighted lines to this function:

def editShapefile(request, shapefile id):
try:
shapefile = Shapefile.objects.get (id=shapefile id)
except Shapefile.DoesNotExist:
raise Http404

tmsURL = "http://"+request.get host()+"/shape-editor/tms/"
findFeatureURL = "http://" + request.get host () \

+ "/shape-editor/findFeature"
addFeatureURL = "http://" + request.get host() \

+ "/shape-editor/editFeature/" \
+ str(shapefile id)

return render to response("selectFeature.html",

{'shapefile" : shapefile,
'findFeatureURL' : findFeatureURL,
'addFeatureURL' : addFeatureURL,

' tmsURL' : tmsURL})

[464]

Chapter 12

Then edit the selectFeature.html template and add the following highlighted
lines to the body of this template:

<body onload="init () ">
<hl>Edit Shapefile</hl>
Please choose a feature to edit

<div id="map" class="map"></div>

<div style="margin-left:20px">
<button type="button"
onClick='window.location="{{ addFeatureURL }}";'>
Add Feature
</button>
<button type="button"
onClick='window.location="/shape-editor";'>
Cancel
</buttons>
</div>
</body>

This will place the Add Feature button onto the "select feature" page. Clicking on
that button will call the URL http://shape-editor/editFeature/N (where N is
the record ID of the current Shapefile).

We next need to add a URL pattern to support this URL. Edit urls.py and add the
following entry to the geodjango. shapeEditor.views URL pattern list:

(r'”*shape-editor/editFeature/ (?P<shapefile id>\d+)$"',
'editFeature'), # feature id = None -> add.

Then go back to views.py and edit the function definition for the editFeature ()
function. Change the function definition to look like this:

def editFeature(request, shapefile id, feature_ id=None) :

Notice that the feature_id parameter is now optional. Now, find the following
block of code:

try:

feature = Feature.objects.get (id=feature_ id)
except Feature.DoesNotExist:

raise Http404

[465]

ShapeEditor: Selecting and Editing Features

You need to replace this block of code with the following:

if feature id == None:
feature = Feature (shapefile=shapefile)
else:
try:
feature = Feature.objects.get (id=feature id)

except Feature.DoesNotExist:
raise Http404

This will create a new Feature object if the feature_id is not specified, but still fail
if an invalid feature ID was specified.

With these changes, you should be able to add a new feature to the Shapefile. Go
ahead and try it out: run the GeoDjango web server if it's not already running and
click on the Edit hyperlink for your imported Shapefile. Then, click on the Add
Feature hyperlink, and try creating a new feature. The new feature should appear on
the Select Feature view:

Q- Google

Edit Shapefile

Please choose a feature to edit

[466]

Chapter 12

Deleting features

We next want to let the user delete an existing feature. To do this, we'll add a Delete
Feature button to the "edit feature" view. Clicking on this button will redirect the
user to the "delete feature" view for that feature.

Edit the editFeature.html template, and add the following highlighted lines to the
<form> section of the template:

<form method="POST" action="">
<table>

<tr>
<td></td>
<td align="right">

<input type="submit" name="delete"
value="Delete Feature"/>

</td>

</tr>

{{ form.as_table }}

Notice that we've used <input type="submit"> for this button. This will submit the
form, with an extra POST parameter named delete. Now, edit the views.py module
again, and add the following to the top of the editFeature () function:

if request.method == "POST" and "delete" in request.POST:
return HttpResponseRedirect ("/shape-editor/deleteFeature/"
+shapefile id+"/"+feature_id)

We next want to set up the "delete Feature" view. Edit urls.py and add the
following to the geodjango. shapeEditor.views list of URL patterns:

(r'“shape-editor/deleteFeature/ (?P<shapefile id>\d+)/' +
r' (?P<feature_id>\d+)$', 'deleteFeature'),

Next, create a new file named deleteFeature.html in the templates directory, and
enter the following text into this file:

<html>
<head>
<title>ShapeEditor</title>
</head>
<body>
<hl>Delete Feature</hl>
<form method="POST">
Are you sure you want to delete this feature?

<p/>

[467]

ShapeEditor: Selecting and Editing Features

<button type="submit" name="confirm"
value="1">Delete</button>

<button type="submit" name="confirm"
value="0">Cancel</button>

</form>
</body>
</html>

This is a simple HTML form that confirms the deletion. When the form is submitted,
the POST parameter named confirm will be set to 1 if the user wishes to delete the
feature. Let's now implement the view that uses this template. Edit views.py and
add the following new view function:

def deleteFeature(request, shapefile id, feature id):
try:
feature = Feature.objects.get (id=feature_ id)
except Feature.DoesNotExist:
raise Http404
if request.method == "POST":
if request.POST['confirm'] == "1":
feature.delete ()
return HttpResponseRedirect ("/shape-editor/edit/" +
shapefile id)

return render to response("deleteFeature.html")

As you can see, deleting features is quite straightforward.

Deleting Shapefiles

The final piece of functionality we'll need to implement is the "delete shapefile" view.
This will let the user delete an entire uploaded Shapefile. The process is basically the
same as for deleting features; we've already got a Delete hyperlink on the main page,
so all we have to do is implement the underlying view.

Edit urls.py and add the following entry to the geodjango. shapeEditor.views
URL pattern list:

(r'“shape-editor/delete/ (?P<shapefile id>\d+)$',
'deleteShapefile'),

Then edit views.py and add the following new view function:

def deleteShapefile(request, shapefile id):
try:

[468]

Chapter 12

shapefile = Shapefile.objects.get (id=shapefile id)
except Shapefile.DoesNotExist:
raise Http404

if request.method == "GET":
return render to response("deleteShapefile.html",
{'shapefile' : shapefile})
elif request.method == "POST":
if request.POST['confirm'] == "1":
shapefile.delete()
return HttpResponseRedirect ("/shape-editor")

Notice that we're passing the shapefile object to the template. This is because we
want to display some information about the Shapefile on the confirmation page.

Remember that shapefile.delete () doesn't just delete the
y Shapefile object itself; it also deletes all the objects associated with the
Shapefile through ForeignKey fields. This means that the one call to
g shapefile.delete () will also delete all the Attribute, Feature,
and AttributeValue objects associated with that Shapefile.

Finally, create a new template named deleteShapefile.html, and enter the
following text into this file:

<html>
<head>
<title>ShapeEditor</title>
</head>
<body>
<hl>Delete Shapefile</hl>
<form method="POST">
Are you sure you want to delete the
"{{ shapefile.filename }}" shapefile?
<p/>
<button type="submit" name="confirm"
value="1">Delete</buttons>

<button type="submit" name="confirm"
value="0">Cancel</buttons>
</form>
</body>
</html>

You should now be able to click on the Delete hyperlink to delete a Shapefile. Go
ahead and try it; you can always re-import your Shapefile if you need it.

[469]

ShapeEditor: Selecting and Editing Features

Using ShapeEditor

Congratulations! You have just finished implementing the last of the ShapeEditor's
features, and you now have a complete working geo-spatial application built using
GeoDjango. Using the ShapeEditor, you can import Shapefiles, view their features
and the feature attributes, make changes to the feature geometries, add and delete
features, and then export the Shapefile again.

This is certainly a useful application. Even if you don't have a full-blown GIS system
installed, you can now make quick and easy changes to a Shapefile's contents using
the ShapeEditor. And, of course, the ShapeEditor is a great starting point for the
development of your own geo-spatial applications.

Further improvements and enhancements

As with any new application, there are a number of ways in which the ShapeEditor
could be improved. For example:

e Adding user signup and login so that each user has his or her own private set
of Shapefiles rather than every user seeing the entire list of all the uploaded
Shapefiles.

e Adding the ability to edit a feature's attribute values.

e Using a higher resolution base map. An obvious candidate for this would be
the GSHHS high-resolution shoreline database.

e Adding a tile cache for our TMS server.

e Using JavaScript to add a "please wait" pop up message while a Shapefile is
being imported or exported.

e Improving the reusability of the ShapeEditor's codebase. We've concentrated
on learning how to use GeoDjango to build a working system, but with a
suitable redesign the code could be made much more generic so that it can be
used in other applications as well.

Feel free to make these improvements; you will learn a lot more about GeoDjango,
and about geo-spatial development in general, if you take the time to implement
these features. As you work with the ShapeEditor, you'll probably come up with
your own list of things you'd like to improve.

[470]

Chapter 12

Summary

In this chapter, we finished implementing a sophisticated geo-spatial web
application using GeoDjango, Mapnik, PostGIS, OGR, and pyproj. This application
is useful in its own right, as well as being a springboard to developing your own
geo-spatial web applications.

We have learned:

That we can easily create our own Tile Map Server using Mapnik
and GeoDjango.

That we can include OpenLayers on our own web pages, independent of
GeoDjango, and display map data from our Tile Map Server.

How we can create a custom "click handler" to respond to mouse clicks
within an OpenLayers map.

That we can use AJAX calls to have the server respond to events within the
web browser.

That GeoDjango provides a powerful query language for performing spatial
queries without writing a single line of SQL.

How to "borrow" geometry editing widgets from GeoDjango and use them
within your own web application.

That you can create your own GeoModelAdmin subclass to change the
appearance and functionality of GeoDjango's geometry editing widgets.

That you can use a simple HTML form to confirm the deletion of a record.

This completes our exploration of GeoDjango, and also completes this book.
Hopefully, you have learned a lot about geo-spatial development, and how to create
geo-spatial applications using Python. With these tools at your disposal, you are now
ready to start developing your own complex geo-spatial applications. Have fun!

[471]

Symbols

<SrcDataSource> element 274

A

AddGeometryColumn() function 156, 161
add_point() method 276
AddPoint() method 105
affine transformation 49, 110
AJAX 331
analyzeGeometry() function 42
angular distance 25,132,226
application, designing
about 367
feature, editing 370, 371
feature, selecting 369
Shapefile, exporting 371
Shapefile, importing 367, 368
Application Programming Interfaces
(APIs) 18
ArcGRID 92
ARC/Info Binary Grid (.adf) format. See
ArcGRID
ARC/INFO Interchange format 80
areas 73
Asynchronous JavaScript and XML. See
AJAX
Attribute object 384
AttributeValue object 385, 413, 414
azimuthal projection

types 32
B

Band Interleaved by Line (BIL) format 38
Band Interleaved by Pixel (BIP) format 38

Index

Band Sequential (BSQ) format 38
bare-bones approach
about 322
advantages 322
disadvantages 322
base layer
about 350
defining 438, 439
base map
setting up 435, 436
big web service 325
border, calculating
between Thailand and Myanmar 123-126
bounding box
calculating, for country 102, 103
saving, into Shapefile 104-108
bounding box, selectArea.py script
calculating 215, 216
buffer() method 62
BuildingSymbolizer 66
built-in admin application
using 388-395
built-in applications, Django
about 372
admin interface 372
authentication system 372
markup application 372
messages framework 372
sessions system 373
sitemaps framework 373
syndication system 373

Cc

calcGeometryField() function 412
callback function 449
CBSA 128

CGI scripts
about 211
selectArea.py script 214, 215
selectCountry.py script 212, 213
showResults.py script 223
civic location 24
CloudMade
about 75
URL 75
colors
using 303
commercial database, geo-spatial
about 164
MS SQL Server 165
Oracle 164, 165
complex linear features
drawing 285
components, Django application
model 374
template 377, 378
view 374, 376
conic projection
about 31
types 31
coordinates 10
coordinates systems
projected coordinate systems 33
unprojected coordinate system 33
CoordinateTransformation() object 411
Core Based Statistical Area. See CBSA
CreateSpatiallndex() function 163
cursor.execute() method 150
cylindrical projections
about 29
example 30
types 31

D

database
setting up 379, 380
database, DISTAL application
building 195-199
designing 195-199
database load balancer 256
database objects
using 368
database replication 255

data, DISTAL application
downloading 199
importing 201
data download, DISTAL application
Geonames, downloading 200
GEOnet Names Server, downloading 200
GSHHS shoreline database, downloading
200
World Borders Dataset, downloading 200
data format, DCW 80
data format, GLOBE 90, 91
data format, Landsat 86
data format, OpenStreetMap 73
data format, TIGER 77, 78
data importing, DISTAL application
GSHHS 203, 204
US placename data 205-207
World Borders Dataset 201-203
Worldwide placename data 208, 210
data model, GDAL
dataset 48
raster band 48
raster size 49
data models
defining 383-387
dataset 48
datasource, selectArea.py script
MySQL 218
PostGIS 219
setting up 218
SpatiaLite 219
datasources, Mapnik
about 269, 270
GDAL 272,273
OGR 273,274
OSM 275
PointDatasource 276
PostGIS 270-272
Shapefile 270
SQLite 274,275
datum
about 35, 115
changing 119-122
reference datums 35
DCW
about 79
data format 80

[474]

DCW data
obtaining 80, 81
using 80, 81
defaultHandlerOptions dictionary 448
def render_tile_to_file() function 308
DescribeFeatureType request 338
Destroy() method 105, 420
Digital Chart of the World. See DCW
Digital Elevation Map (DEM-format)
about 38, 85, 108, 303
height data, analyzing 108-114
Digital Raster Graphic (DRG) 38
DISTAL 191, 322
DISTAL application
CGI scripts 210
database, building 195-199
database, designing 195-199
data, downloading 199
data, importing 201
implementing 210
issues 235
workflow 191-194, 210
distance
about 25
angular distance 25
linear distance 25
traveling distance 26
distance calculations, showResults.py script
about 225
angular distances, using 226, 227
hybrid approach 229-231
manual 226
points, identifying 233
projected coordinates, using 228
Spatial Joins 231, 232
Django
about 353
admin interface 355
model 355
templating system 355
Django application
components 373
structure 372
Django application, components
model 374
template 377, 378
view 374,376

django.forms.Form subclass
creating 457

Django framework 353

Django model 355

documentation, PostGIS 157

documentation, SpatiaLite 160

E

EO00 format 80
else rule

about 280

using 281
Envelope() function 175
EPSG 167
error handling 429
ESRI 119
European Petroleum Survey Group.

See EPSG

EveryBlock

URL 64

EXPLAIN QUERY PLAN command 178

exportData() function 417
external linking 339

F

false easting 34
false northing 34
feature layer
defining 440, 441
Feature object 384, 411
features
adding 464-466
deleting 467, 468
editing 370, 371, 457-463
selecting 369
selecting, for edit 426
features, PostGIS 157
fields 103
filters
about 277
example 278
findFeature() function 452
findFeatureURL parameter 451
findFeature view
implementing 451
findPoints() function 44

[475]

fixture 436 spatial queries, performing 451-455

fwd() method 56 TMS protocol, implementing with 428
FWTools GeoDjango project
URL 54 setting up 380, 381
geodjango project directory 435
G Geofabrik
about 75
%;alr)nﬁa correction 288 URL 75

Geographical Information Systems. See GIS

about 17, 48 Geographic Names Information System. See
data model 48-50 GNIS

documentation 53

hies 156
example code 50, 51 geographies

Geography Markup Language. See GML

{_?Isziugc;s 53 GeoJSON 38
GDAL datasource 272, 273 g:gigi?:il:: 18
gdaldem utility 94 8 about 103, 156
Generall.zed Search Tree index type. See saving, into text file 126
GiST) GeometryCollection class 61
generateMap() function Geometry object 122
about 309 geom_type field 409
pa.rameters 310 Geonames
using 313) downloading 200
generateMap() function, parameters GEOnet Names Server. See GNS
background 310 georeferencing transform 49
d'a’Fasource 310 GEOS library
hiliteExpr 310 URL 63

hiliteFill 310 . :
I geo-spatial, commercial databases
hiliteLine 310
about 164

map‘l—/\lle'iiglﬁt 331100 MS SQL Server 165
mapWidt Oracle 164, 165

maxX 310 i
geo-spatial data
maxY 310
; about 71
minX 310 analyzing 12,13, 59
minY 310 o

attributes 10
coordinates 10
manipulating 59

normalFill 310
normalLine 310

pOiH’fS 310) raster format sources 85
Generic Mapping Tools (GMT) 83 readine 47, 102
geocode 12 S n

representing 122, 123
Gegd d%sg storing 122, 123
;:;2 ds 56 vector based sources 72
0 visualizing 13-15, 63
geodetic distance 134 writing 47, 102

gr(,;e ch?ic location 24 Geospatial Data Abstraction Library.
eoDjango
about 353 See GDAL

[476]

geo-spatial databases
best practices 165-173
geo-spatial databases, best practices 165-173
geo-spatial data, examples
prerequisites 101
geo-spatial development
about 9
applications 11
example 9, 10
working 10
geo-spatial development, applications
geo-spatial data, analyzing 12,13
geo-spatial data, visualizing 13-15
geo-spatial mash-up, creating 16
geo-spatial mash-up
creating 16
geo-spatial, open source databases
about 149
MySQL 149-152
PostGIS 152-158
SpatiaLite 158-164
geo-spatial web applications
protocols 334
tools 344
geo-spatial web application stack 334
GeoTIFF files 86
GetCapabilities request 335, 338
GetFeaturelnfo request 336
GetFeature request 338
GetFeatureWithLock request 338
GetFieldAs() method 413
getLineSegmentsFromGeometry()
function 134
getMapForm() function 458
GetMap request 336
GetNoDataValue() method 114
getOGRFeatureAttribute()
function 413, 414, 421
GIS
about 21
data format 37
GIS, concepts
about 21
coordinate system 32, 34
datums 35
distance 25, 26
location 22, 24

projections 28, 29
shapes 36
units 27, 28
GIS data
working with, manually 39-45
GIS data format
about 37
Band Interleaved by Line (BIL) 38
Band Interleaved by Pixel (BIP) 38
coverage 38
Digital Elevation Model (DEM) 38
Digital Raster Graphic (DRG) 38
Geography Markup Language (GML) 39
GeoJSON 38
micro-formats 38
shapefile 38
simple features 38
TIGER/Line 38
Well-known Binary (WKB) 38
Well-known Text (WKT) 38
GiST 146
Global Land One-kilometer Base Elevation.
See GLOBE
Global Positioning System. See GPS
Global Self-Consistent, Hierarchical,
High-Resolution Shoreline.
See GSHHS
GLOBE
about 90
data format 90, 91
GLOBE data
obtaining 91
using 91
GML 337
GNIS
about 96
database 96
GNIS data
about 96, 97
obtaining 97
using 97
GNS
about 94
database 95
downloading 200
obtaining 95
using 95

[477]

GNS database
about 95
Google
Google Earth 17
Google Maps 17
products, limitations 17
Google Earth 17
Google Maps 17
Google Maps slippy map example 332
GPS 17
GPS receiver 22
great circle distance 26
Great Circle Distance concept 225
Ground Control Points (GCPs) 50
GSHHS
about 82
downloading 200
importing 203, 204
GSHHS database
about 83
obtaining 84

H

Haversine formula 27
height data
analyzing, digital elevation map (DEM)
used 108-114
help() command 53
Http404 exception 430

importData() function 405, 406, 414
ImportShapefileForm object 403
importShapefile() function 403
importShapefile() view function 402, 405
initialize() function 448
installation, PostGIS 152, 154
installation, Psycopg 153
installation, pysqlite 159
installation, SpatiaLite

about 158

for Linux 159

for Mac OS X 158

for MS Windows 158
interpreted language 8
inverse projection 55

inv() method 56
issues, DISTAL application

J

performance 239
quality 237
scalability 253-256
usability 236, 237

Java

comparing, with Python 8

jurisdictional locations 24

L

labels

drawing 289

Labels layer 261
Landsat

about 86
data format 86

Landsat imagery

about 86
obtaining 87-89

latitude 22
LayerMapping module

data, importing from ShapeFile 436

layers, Mapnik

about 304
creating 304

length

calculating, for Thai-Myanmar
border 133-138

linear distance 25
LinearRing class 61
linear rings 104
LinePatternSymbolizer

about 65, 286
working 286

line placement

about 292
allow_overlap attribute 294
labels, repeating 292

text, drawing on dark background 295

text overlap, controlling 294

lines

drawing 281

linestring 36

[478]

LineString class 60
LineSymbolizer

about 65, 262, 281, 439

color attribute, setting 282

line_cap attribute, setting 283

line color, setting 282

line_join attribute, setting 283

opacity, setting 282

working 282
Linux

SpatiaLite, installing on 159
listShapefiles() function 398
List Shapefiles view

implementing 397-401
listShapefiles() view function 398, 399
load_map() function 316
location

about 22

civic location 24

example 22,24

geodetic location 24

jurisdictional locations 24

measuring 22,24
LockFeature request 338
longitude 23

Mac OS X
SpatialLite, installing on 158
main map layer
creating 310-312
map
base layer, defining 438, 439
displaying, OpenLayers used 442-445
feature layer, defining 440, 441
generating 261
rendering 313
zoom levels 431, 432
map.append_style() method 304
map definition file
about 264, 314
example 314
using 314
map dimensions, selectArea.py script
calculating 216-218

Mapfish
about 356
URL 356
working 357
MapGenerator
mind map layer, creating 310-312
points, displaying on map 312, 313
map.getLonLatFromViewPortPx() method
450
Mapiator
about 351
working 352
map image, selectArea.py script
rendering 220-223
Mapnik
about 63, 260
datasources 269, 270
design 64, 65
documentation 67
else rule 280, 281
example code 66, 67
features 63
filters 277,278
layers 304
map, generating 261, 265
map rendering 307
resources 68
scale denominators 279, 280
symbolizers 65, 66, 281
TMS protocol, implementing with 427, 428
URL 68, 260
working 63, 261, 268
world map, displaying 66, 67
mapnik.Color class
instances, creating ways 303
mapnik.Layer class 306
mapnik.Layer class, methods
layer.envelope() 306
layer.visible() 307
mapnik.Map class
about 305
methods 305
mapnik.Map class, methods
map.envelope() 305
map.scale() 306
map.scale_denominator() 306
map.zoom_all() 306

[479]

map.zoom_to_box() 306 mouse clicks

mapnik.Map object intercepting 447-451
creating 438 MS SQL Server
mapnik.PostGIS datasource about 165
setting up 438, 440 limitations 165
Mapnik rule 263 MS Windows
conditions 277 SpatiaLite, installing on 158
mapnik.Shapefile() constructor 270 MultiLineString class 61
mapnik.SQLite() constructor 274 MultiPoint class 61
mapnik tool 16 MultiPolygon class 61
Mapnik toolkit 269 MVC 354
importing 265 MySQL
Mapnik wiki about 149, 188, 323
URL 67 accessing, from Python programs 149, 150
map object advantages 152
about 64 query optimization process 174, 175
creating 64, 267 working with 179-182
map renderer 215 MySQL database 218
map rendering MySQLdb module 150
about 327 MySQL-Python driver 149
example 327
about 307 N
MapServer tool 16
Map Tile NAD 27 35
rendering 441 NAD 83 35
MarkersSymbolizer 66 National Elevation Dataset. See NED
mash-ups NED 92
about 16 NED data
example 16 about 92
maxResolution option 445 obtaining 93
MBRContains() function 151 using 93
meridians 24 nginx
micro-formats 38 about 254
minimum bounding rectangle 147 URL 254
mirror sites, OpenStreetMap data nodes 73
about 75 npts() method 56
CloudMade 75 numZoomLevels option 445
Geofabrik 75
model 374 o
models.py file oblate spheroid 21
about 385
- OGC
editing 386 about 18
model-view-controller pattern. See MVC URL 18
mod_tile module OGR

about 346
working 346
mod_wsgi module 347

about 17,48, 77
design 51, 52
documentation 53

[480]

example code 52

resources 53
OGR Datasource 273, 274
OGRGeometryTypeToName() function 409
ogrinspect.py utility 369
OGR library. See OGR
onClick() function 448
Open Geospatial Consortium. See OGC
OpenLayers

about 348

example 349

maps, displaying 442-445

types 350

URL 348

using 348-351
OpenLayers.Control class 447
OpenLayers.Control.Click class 448
OpenLayers.Layer.TMS object 445
OpenLayers.Map object 445
OpenLayers.Request.GET function 449
OpenLayers.Request.GET() function 450
open source databases, geo-spatial

about 149

MySQL 149-152

PostGIS 152-158

SpatiaLite 158-164
OpenStreetMap

about 72

data format 73

URL 15
OpenStreetMap API

using 74,75
OpenStreetMap data

obtaining 74

using 74
OpenStreetMap XML data

example 73

working with 76
Oracle 164
Oracle Locator 165
Oracle Spatial 164
orthorectification 87
osm2pgsql tool 76
OsmApi module 75
OSM datasource 275
osmexport utility 76
os.path.join() function 270

other source types, geo-spatial data
about 94
GNS 94, 95

overlay 14

Overlay Layers 350

P

painter's algorithm 261
parallels 24
parks
identifying, near urban areas 128-132
performance, DISTAL application issues
about 239
improving 242-244
performance improvement, analyzing 252,
253
problem finding 240, 241
tiled shorelines, calculating 244-249
tiled shorelines, using 250-252
pipe-delimited compressed text files 97
Planet.osm database 75
point
about 36
coordinate, calculating for 139, 141
Point class 60
PointDatasource
about 276
setting up 276
point placement 291
points
displaying, on map 312, 313
drawing 298
PointSymbolizer 65, 299, 300
polygon 37
Polygon class 61
polygon.contains(point) method 151
PolygonPatternSymbolizer 65, 288
polygons
drawing 287
Polygons layer 261
PolygonSymbolizer
about 65, 262, 287, 439
color, setting for polygon 287
gamma correction 288
opacity, setting for polygon 287
using 264

[481]

PostGIS
about 12,17,152, 188
documentation 157
features 157
installing 152, 154
query optimization process 175, 176
using 155
working with 182, 184
PostGIS database 219
PostGIS datasource 270-272
PostGIS, installing
about 152
requisites 152, 154
PostGIS manual
URL 157
PostgreSQL manual
URL 157
prime meridian 24
PROJ 4 17
Proj class
about 55
working 55
projected coordinate systems
about 33
map units 34
origin 34
working 33
projection 11
about 28, 54, 115
azimuthal projection 31
changing, geographic and UTM coordinates
used 115-119
conic projection 31
cylindrical projection 29, 30
pyproj library 54
Proj Python library 12
protocols, geo-spatial web applications
about 334
TMS 339-344
WES 337-339
WMS 334, 335
Psycopg
about 152,153
installing 153
Psycopg documentation
URL 157
Pylons 356

pyproj library
about 54
classes 55
design 55
documentation 58
example code 57
resources 58
pyproj library, classes
Geod 56
Proj 55
pyproj Python library 133
pysqlite
installing 159
pysqlite database adapter 158
pysqlite, installing 159
Python
about 7
comparing, with Java 8
features 8,9
geo-spatial databases, working 178
geo-spatial development 9
SpatiaLite, accessing from 160
URL 7
versions 9
Python Database API specification 150
Python, libraries
GDAL 48
OGR 48
Python Package Index
about 9
URL 9
Python programs
MySQL, accessing from 149, 150
Python Standard Libraries 8

Q

quality, DISTAL application issues
about 237
lat/long coordinate problems 238, 239
placename issues 237

query optimization process, MySQL
about 174
example 174,175

query optimization process, PostGIS
about 175
example 176

[482]

query optimization process, SpatiaLite scripting language 7

about 177 search radius 452
example 178 selectArea.py script
query parameters about 214, 215
parsing 437, 438 bounding box, calculating 215, 216
datasource, setting up 218
R map dimensions, calculating 216-218
map image, rendering 220-223
raster band map renderer, using 215
about 48 selectCountry.py script 212, 213
contents 50 select statement 272
raster format sources, geo-spatial data service() function 429
about 85 setField() method 105
GLOBE 90 SetField() method 421
Landsat 86-89 setOGRFeatureAttribute() function 421
NED. 92 shape.buffer() method 130
raster images ShapeEditor
drawing 301-303 basic workflow 364, 366
raster size 49 further enhancements 470
RasterSymbolizer further improvements 470
about 65, 301 using 470
benefits 303 ShapeEditor application
working 302 requisites 371
ReadRaster() method 112 setting up 382
reference datums features, adding 464-466
NAD 27 35 features, deleting 467, 468
NAD 83 35 features, editing 457-463
WGS 84 35 features, selecting for edit 426
relations 73 List Shapefiles view, implementing 397-401
rendered daemon 346 Shapefiles, exporting 417
render_to_file() function 307, 308 Shapefiles, importing 401
render_to_response() function 403 TMS prototcol, implementing 426, 427
REpresentational State Transfer. See REST Shapefile
REST 325 about 38, 39, 363
RESTful web services 325 bounding box, saving into 104-108
R-Tree indexes deleting 468, 469
about 147 exporting 371, 417
using 147, 148 importing 367, 368, 401
Ruby OSM Library 76 importing, tips 383
rules 277 Shapefile datasource 270
shapefileIO.py module 422
S shapefile object 406

Shapefile's contents, importing

scalability, DISTAL application issues 253- Shapefile object, adding to

256 . database 409, 410
scale denominators Shapefile. opening 408
about 279 p + OP &

using 279, 280 Shapefile's attributes, defining 410

[483]

Shapefile's attributes, storing 413-416
Shapefile's features, storing 411, 412
steps 408
Shapefiles, exporting
attributes, saving into Shapefile 420, 421
features, saving into Shapefile 419
OGR Shapefile, defining 418
Shapefile, compressing 422
steps 417
temporary files, deleting 422
ZIP archive, returning to user 423
Shapefiles, importing
import Shapefile form 402-404
Shapefile's contents, importing 408
temporary files, cleaning up 416, 417
uploaded Shapefile, extracting 405-407
Shapely 127
Shapely library
about 59
classes 60, 61
design 60
documentation 62
example code 61, 62
resources 62
Shapely library, classes
GeometryCollection 61
LinearRing 61
LineString 60
MultiLineString 61
MultiPoint 61
MultiPolygon 61
Point 60
Polygon 61
shapes
about 36
linestring 36
point 36
polygon 37
ShieldSymbolizer
about 66, 289, 300
parameters 300
working 300
ShieldSymbolizer, parameters
color 301
fieldName 301
font 301
fontSize 301

imageFile 301
imageFormat 301
imageHeight 301
imageWidth 301
showResults.py script
about 223
clicked-on point, identifying 223, 224
features, identifying by distance 225
results, displaying 233-235
SimpleHTTPServer 330
simple world map
creating, World Borders Dataset
used 314, 315
slippy map 332, 333, 431
spatial data types 145
spatial functions 146
spatial indexes
about 146
using, guidelines 172
SpatiaLite
about 158, 188
accessing, from Python 160
capabilities 163, 164
documentation 160
installing 158
installing, on Linux 159
installing, on Mac OS X 158
installing, on MS Windows 158
query optimization process 177,178
using 161-163
working with 184, 186, 187
SpatiaLite database 219
SpatiaLite, installing
about 158
on Linux 159
on Mac OS X 158
on MS Windows 158
spatial join 146, 231
SPATIAL keyword 146
spatially-enabled database
about 145
speed, comparing 188
spatial queries
about 145
performing, GeoDjango used 451-455
spatial query functions 451
spatial reference 104

[484]

Spatial Reference Identifier. See SRID

SpatialReference object 122

SQLAIchemy 323

SQLite datasource 274, 275

SRID 167

ST_AsText() function 157

Static Tile Map Server 344

ST_Buffer() function 171

ST_DWithin() function 172,228

ST_GeomFromText() function 156

ST_Intersection() function 171

ST_IsEmpty() function 171

styles 277

sub-select query 271

symbolizers, Mapnik
about 262, 281
BuildingSymbolizer 66
LinePatternSymbolizer 65, 281, 286
LineSymbolizer 65, 262, 263, 281
MarkersSymbolizer 66
PointSymbolizer 65, 299, 300
PolygonPatternSymbolizer 65, 288
PolygonSymbolizer 65, 262, 263, 287
RasterSymbolizer 65, 301, 302, 303
ShieldSymbolizer 66, 300
TextSymbolizer 65, 262, 290

T

tags 73
tempfile module 406, 422
template
about 377
using 377, 378
text
drawing, on dark background 295
text column 145
text file
geometries, saving 126
TextSymbolizer
about 65, 262, 290
capitalization, controlling 298
character spacing, controlling 297
font, selecting 291
labels, drawing on map 266
labels, splitting 297
line spacing, controlling 297

semi-transparent text, drawing 291
text placement, controlling 291
text position, adjusting 295
tgext.geo extension
about 358
parts 358
TIGER
about 76, 77
data format 77,78
TIGER data
obtaining 78, 79
using 78,79
TIGER/Line 38
TIGER/Line Shapefiles 77
Tile 427
TileCache
about 345
features 345
mod_tile module 346
URL 345
tile caching
about 327,344
TileCache 345
TileLite 347
working 328, 329
tile() function 434, 437
TileLite 347
Tile Map 427
tileMap() function
about 430, 432
implementing 433
Tile Map Server
completing 441, 442
Tile Map Server (TMS) 370, 427
Tile Map Service
about 339, 427
implementing 429, 430
Tile Map Service protocol.
See TMS protocol
tile rendering 437
Tile Set 427
TMS protocol
about 339-341, 426
implementing 427
Tile 427
Tile Map 427
Tile Map Server (TMS) 427

[485]

Tile Map Service 427
Tile Set 427
working 342, 344
tms.py module 432
tools, geo-spatial web applications
about 344
tile caching 344
user interface libraries 347, 348
Topologically Integrated Geographic En-
coding, and Referencing System. See
TIGER
Transaction request 339
transform() function 55
traveling distance 26
triggers 177
try...except statement 429
TurboGears
about 357
tgext.geo extension 358
URL 357

U

units
about 27
converting 132, 133
standardizing 132, 133
Universal Transverse Mercator (UTM)
coordinate system 34
unprojected coordinates 11
unprojected coordinate systems 33
unwrapGEOSGeometry() function 420
UploadedFile object 406
URLConf module 375
urls.py module 402
usability, DISTAL application
issues 236, 237
user interface libraries
about 331, 347
Mapiator 351, 352
OpenLayers 348-351
US placename data
importing 205-207
utils.getOGRFeatureAttribute()
function 420

\'

VACUUM ANALYZE command 175
vector based sources, geo-spatial data

about 72
DCW 79-81
GSHHS 82, 83
OpenStreetMap 72, 74
TIGER 76,77,78
World Borders Dataset 84, 85
view 374, 376
views module 398
views.py module 399
virtual datasource 218

w

ways 73
web application architecture
about 322
bare-bones approach 322
web application frameworks 324
web application stacks 323
web services 325, 326
web application frameworks
about 324, 353
advantages 331
GeoDjango 353, 354
Mapfish 356, 357
TurboGears 357, 358
web application stacks 323
Web Features Service protocol.
See WFS protocol
WebGIS website
URL 115
Web Map Service protocol.
See WMS protocol
web servers
about 330
selecting, consequences 330
types 330
web service
about 325
example 325, 326
types 325

[486]

web service, types
about 325
big web service 325
RESTful 325
Well-Known Binary. See WKB
Well-Known Text. See WKT
WES protocol
about 337
DescribeFeatureType request,
implementing 338
GetCapabilities request, implementing 338
GetFeature request, implementing 338
GetFeatureWithLock request 338
LockFeature request 338
Transaction request 339
WGS 84 35
WKB 123
WKT 123
WMS-C protocol 337
WMS protocol
about 334

GetCapabilities request, implementing 335
GetFeaturelnfo request, implementing 336
GetMap request, implementing 336
WMS-C 337
WMS Tiling Client Recommendation.
See WMS-C protocol
World Borders Dataset
error, for downloading 102
using 123-126
about 84
downloading 200
importing 201-203
obtaining 85
Worldwide placename data
importing 208, 209
wrapGEOSGeometry() function 412

Y4

zipfile module 407

[487]

open source

community experience distilled

PUBLISHING

Thank you for buying
Python Geospatial Development

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Matplotlib for Python Developers
ISBN: 978-1-847197-90-0 Paperback: 308 pages

Build remarkable publication-quality plots the easy
way

1. Create high quality 2D plots by using
Matplotlib productively

2. Incremental introduction to Matplotlib, from

Matplotlib for Python the ground up to advanced levels

Developers 3. Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them
in Python applications

PACKT

Python 3 Object Oriented

Programming
ISBN: 978-1-849511-26-1 Paperback: 404 pages

Harness the power of Python 3 objects

1. Learn how to do Object Oriented Programming
in Python using this step-by-step tutorial

2. Design public interfaces using abstraction,
encapsulation, and information hiding

Python 3

Object Oriented Programming

3. Turn your designs into working software by
studying the Python syntax

Please check www.PacktPub.com for information on our titles

community experience distilled

[open source

PUBLISHING

Agile Web Application

Development with Yii1.1 and PHP5
ISBN: 978-1-847199-58-4 Paperback: 368 pages

Fast-track your Web application development by
harnessing the power of the Yii PHP framework

1. A step-by-step guide to creating a modern,
sophisticated web application using an
Agile Web Application Development with incremental and iterative approach to software

Yii1.1 and PHP5 development

2. Build a real-world, user-based, database-driven
project task management application using the
Yii development framework

Django 1.1 Testing and
Debugging
ISBN: 978-1-847197-56-6 Paperback: 436 pages

Building rigorously tested and bug-free Django
applications

1. Develop Django applications quickly with
fewer bugs through effective use of automated
testing and debugging tools.

Django 1.1 Testing
and Debu gg in g 2. Ensure your code is accurate and stable

throughout development and production by
' ' using Django's test framework.

3. Understand the working of code and its
generated output with the help of debugging
tools.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Geo-Spatial Development Using Python
	Python
	Geo-spatial development
	Applications of geo-spatial development
	Analyzing geo-spatial data
	Visualizing geo-spatial data
	Creating a geo-spatial mash-up

	Recent developments
	Summary

	Chapter 2:
GIS
	Core GIS concepts
	Location
	Distance
	Units
	Projections
	Cylindrical projections
	Conic projections
	Azimuthal projections
	The nature of map projections

	Coordinate systems
	Datums
	Shapes

	GIS data formats
	Working with GIS data manually
	Summary

	Chapter 3:
Python Libraries for Geo-Spatial Development
	Reading and writing geo-spatial data
	GDAL/OGR
	GDAL design
	GDAL example code
	OGR design
	OGR example code

	Documentation
	Availability

	Dealing with projections
	pyproj
	Design
	Proj
	Geod

	Example code
	Documentation
	Availability

	Analyzing and manipulating
geo-spatial data
	Shapely
	Design
	Example code
	Documentation
	Availability

	Visualizing geo-spatial data
	Mapnik
	Design
	Example code
	Documentation
	Availability

	Summary

	Chapter 4:
Sources of Geo-Spatial Data
	Sources of geo-spatial data in vector format
	OpenStreetMap
	Data format
	Obtaining and using OpenStreetMap data

	TIGER
	Data format
	Obtaining and using TIGER data

	Digital Chart of the World
	Data format
	Available layers
	Obtaining and using DCW data

	GSHHS
	Data format
	Obtaining the GSHHS database

	World Borders Dataset
	Data format
	Obtaining the World Borders Dataset

	Sources of geo-spatial data in raster format
	Landsat
	Data format
	Obtaining Landsat imagery

	GLOBE
	Data format
	Obtaining and using GLOBE data

	National Elevation Dataset
	Data format
	Obtaining and using NED data

	Sources of other types of geo-spatial data
	GEOnet Names Server
	Data format
	Obtaining and using GEOnet Names Server data

	GNIS
	Data format
	Obtaining and using GNIS data

	Summary

	Chapter 5:
XWorking with Geo-Spatial Data in Python
	Prerequisites
	Reading and writing geo-spatial data
	Task: Calculate the bounding box for each country in the world
	Task: Save the country bounding boxes into
a Shapefile
	Task: Analyze height data using a digital elevation map

	Changing datums and projections
	Task: Change projections to combine Shapefiles using geographic and UTM coordinates
	Task: Change datums to allow older and newer TIGER data to be combined

	Representing and storing geo-spatial data
	Task: Calculate the border between Thailand and Myanmar
	Task: Save geometries into a text file

	Working with Shapely geometries
	Task: Identify parks in or near urban areas

	Converting and standardizing units
of geometry and distance
	Task: Calculate the length of the
Thai-Myanmar border
	Task: Find a point 132.7 kilometers west of Soshone, California

	Exercises
	Summary

	Chapter 6:
GIS in the Database
	Spatially-enabled databases
	Spatial indexes
	Open source spatially-enabled databases
	MySQL
	PostGIS
	Installing and configuring PostGIS
	Using PostGIS
	Documentation
	Advanced PostGIS features

	SpatiaLite
	Installing SpatiaLite
	Installing pysqlite
	Accessing SpatiaLite from Python
	Documentation
	Using SpatiaLite
	SpatiaLite capabilities

	Commercial spatially-enabled databases
	Oracle
	MS SQL Server

	Recommended best practices
	Use the database to keep track of spatial references
	Use the appropriate spatial reference for your data
	Option 1: Use a database that supports geographies
	Option 2: Transform features as required
	Option 3: Transform features from the outset
	When to use unprojected coordinates

	Avoid on-the-fly transformations within a query
	Don't create geometries within a query
	Use spatial indexes appropriately
	Know the limits of your database's query optimizer
	MySQL
	PostGIS
	SpatiaLite

	Working with geo-spatial databases
using Python
	Prerequisites
	Working with MySQL
	Working with PostGIS
	Working with SpatiaLite
	Speed comparisons

	Summary

	Chapter 7:
Working with Spatial Data
	About DISTAL
	Designing and building the database
	Downloading the data
	World Borders Dataset
	GSHHS
	Geonames
	GEOnet Names Server

	Importing the data
	World Borders Dataset
	GSHHS
	US placename data
	Worldwide placename data

	Implementing the DISTAL application
	The "Select Country" script
	The "Select Area" script
	Calculating the bounding box
	Calculating the map's dimensions
	Setting up the data source
	Rendering the map image

	The "Show Results" script
	Identifying the clicked-on point
	Identifying features by distance
	Displaying the results

	Application review and improvements
	Usability
	Quality
	Placename issues
	Lat/Long coordinate problems

	Performance
	Finding the problem
	Improving performance
	Calculating the tiled shorelines
	Using the tiled shorelines
	Analyzing the performance improvement
	Further performance improvements

	Scalability

	Summary

	Chapter 8:
Using Python and Mapnik to Generate Maps
	Introducing Mapnik
	Creating an example map
	Mapnik in depth
	Data sources
	Shapefile
	PostGIS
	GDAL
	OGR
	SQLite
	OSM
	PointDatasource

	Rules, filters, and styles
	Filters
	Scale denominators
	"Else" rules

	Symbolizers
	Drawing lines
	Drawing polygons
	Drawing labels
	Drawing points
	Drawing raster images
	Using colors

	Maps and layers
	Map attributes and methods
	Layer attributes and methods

	Map rendering

	MapGenerator revisited
	The MapGenerator's interface
	Creating the main map layer
	Displaying points on the map
	Rendering the map
	What the map generator teaches us

	Map definition files
	Summary

	Chapter 9:
Web Frameworks for Python Geo-Spatial Development
	Web application concepts
	Web application architecture
	A bare-bones approach
	Web application stacks
	Web application frameworks
	Web services

	Map rendering
	Tile caching
	Web servers
	User interface libraries
	The "slippy map" stack
	The geo-spatial web application stack

	Protocols
	The Web Map Service (WMS) protocol
	WMS-C

	The Web Feature Service (WFS) protocol
	The TMS (Tile Map Service) protocol

	Tools
	Tile caching
	TileCache
	mod_tile
	TileLite

	User interface libraries
	OpenLayers
	Mapiator

	Web application frameworks
	GeoDjango
	MapFish
	TurboGears

	Summary

	Chapter 10:
Putting it All Together: A Complete Mapping Application
	About the ShapeEditor
	Designing the application
	Importing a Shapefile
	Selecting a feature
	Editing a feature
	Exporting a Shapefile

	Prerequisites
	The structure of a Django application
	Models
	Views
	Templates

	Setting up the database
	Setting up the GeoDjango project
	Setting up the ShapeEditor application
	Defining the data models
	Shapefile
	Attribute
	Feature
	AttributeValue
	The models.py file

	Playing with the admin system
	Summary

	Chapter 11:
ShapeEditor: Implementing List View, Import, and Export
	Implementing the "List Shapefiles" view
	Importing Shapefiles
	The "import shapefile" form
	Extracting the uploaded Shapefile
	Importing the Shapefile's contents
	Open the Shapefile
	Add the Shapefile object to the database
	Define the Shapefile's attributes
	Store the Shapefile's features
	Store the Shapefile's attributes

	Cleaning up

	Exporting Shapefiles
	Define the OGR Shapefile
	Saving the features into the Shapefile
	Saving the attributes into the Shapefile
	Compressing the Shapefile
	Deleting temporary files
	Returning the ZIP archive to the user

	Summary

	Chapter 12:
ShapeEditor: Selecting and Editing Features
	Selecting a feature to edit
	Implementing the Tile Map Server
	Setting up the base map
	Tile rendering

	Using OpenLayers to display the map
	Intercepting mouse clicks
	Implementing the "find feature" view

	Editing features
	Adding features
	Deleting features
	Deleting Shapefiles
	Using ShapeEditor
	Further improvements and enhancements
	Summary

	Index

