-
Quick answers to common problems

Python Network
Programming Cookbook

Over 70 detailed recipes to develop practical solutions for a wide
range of real-world network programming tasks

Dr. M. O. Faruque Sarker |] open source

community experlence distilled
PUBLISHING
www.it-ebooks.info

http://www.it-ebooks.info/

Python Network
Programming
Cookbook

Over 70 detailed recipes to develop practical solutions for
a wide range of real-world network programming tasks

Dr. M. O. Faruque Sarker

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Python Network Programming Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1190314

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-346-3
www . packtpub. com

Cover Image by Gabrielay La Pintura (1inazal00@hotmail . com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Dr. M. O. Faruque Sarker

Reviewers
Ahmed Soliman Farghal

Vishrut Mehta
Tom Stephens
Deepak Thukral

Acquisition Editors
Aarthi Kumarswamy

Owen Roberts

Content Development Editor
Arun Nadar

Technical Editors
Manan Badani

Shashank Desai

Copy Editors
Janbal Dharmaraj

Deepa Nambiar

Karuna Narayanan

Project Coordinator
Sanchita Mandal

Proofreaders
Faye Coulman

Paul Hindle

Joanna McMahon

Indexer
Mehreen Deshmukh

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Dr. M. O. Faruque Sarker is a software architect, and DevOps engineer who's currently
working at University College London (UCL), United Kingdom. In recent years, he has been
leading a number of Python software development projects, including the implementation of
an interactive web-based scientific computing framework using the IPython Notebook service
at UCL. He is a specialist and an expert in open source technologies, for example, e-learning
and web application platforms, agile software development, and IT service management
methodologies such as DSDM Atern and ITIL Service management frameworks.

Dr. Sarker received his PhD in multirobot systems from University of South Wales where

he adopted various Python open source projects for integrating the complex software
infrastructure of one of the biggest multirobot experiment testbeds in UK. To drive his
multirobot fleet, he designed and implemented a decoupled software architecture called
hybrid event-driven architecture on D-Bus. Since 1999, he has been deploying Linux and
open source software in commercial companies, educational institutions, and multinational
consultancies. He was invited to work on the Google Summer of Code 2009/2010 programs
for contributing to the BlueZ and Tahoe-LAFS open source projects.

Currently, Dr. Sarker has a research interest in self-organized cloud architecture. In his
spare time, he likes to play with his little daughter, Ayesha, and is keen to learn about
child-centric educational methods that can empower children with self-confidence by
engaging with their environment.

I would like to thank everyone who has contributed to the publication of this
book, including the publisher, technical reviewers, editors, friends, and my
family members, specially my wife Shahinur Rijuani for her love and support
in my work. | also thank the readers who have patiently been waiting for this
book and who have given me lots of valuable feedback.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Ahmed Soliman Farghal is an entrepreneur and software and systems engineer
coming from a diverse background of highly scalable applications design, mission-critical
systems, asynchronous data analytics, social networks design, reactive distributed systems,
and systems administration and engineering. He has also published a technology patent

in distributed computer-based virtual laboratories and designed numerous large-scale
distributed systems for massive-scale enterprise customers.

A software engineer at heart, he is experienced in over 10 programming languages, but most
recently, he is busy designing and writing applications in Python, Ruby, and Scala for several
customers. He is also an open source evangelist and activist. He contributed and maintained
several open source projects on the Web.

Ahmed is a co-founder of Cloud Niners Ltd., a software and services company focusing on
highly scalable cloud-based applications that have been delivering private and public cloud
computing services to customers in the MEA region on different platforms and technologies.

A quick acknowledgment to some of the people who changed my entire life
for the better upon meeting or working with them; this gratitude does not
come in a specific order but resembles a great appreciation for their support,
help, and influence through my personal life and professional career.

| would also like to thank Prof. Dr. Soliman Farghal, my father, for his
continuous help and support and giving me an opportunity to play with a
real computer before | was able to speak properly and Sinar Shebl, my wife;
she has been of great help and a deep source of inspiration.

www.it-ebooks.info

http://www.it-ebooks.info/

Vishrut Mehta has been involved in open source development since two years and
contributed to various organizations, such as Sahana Software Foundation, GNOME, and
E-cidadania; he has participated in Google Summer of Code last year.

He is also the organization administrator for Google Code-In and has been actively involved
in other open source programs.

He is a dual degree student at llIT Hyderabad, and now he is pursuing his research under
Dr. Vasudeva Varma on topics related to Cloud Computing, Distributed Systems, Big Data,
and Software Defined Networks.

I would like to thank my advisors, Dr. Venkatesh Choppella and Dr. Vasudeva
Varma, who showed me the direction in my work and helped me a lot.

I would also like to thank my Google Summer of Code mentor, Patirica
Tressel.

Tom Stephens has worked in software development for nearly 10 years and is currently
working in embedded development dealing with smartcards, cryptography, and RFID in the
Denver metro area. His diverse background includes experience ranging from embedded
virtual machines to web UX/UI design to enterprise Business Intelligence. He is most
passionate about good software design, including intelligent testing and constantly evolving
practices to produce a better product with minimal effort.

Deepak Thukral is a polyglot who is also a contributor to various open source Python
projects. He moved from India to Europe where he worked for various companies helping
them scale their platforms with Python.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

a PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content
» Ondemand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Sockets, IPv4, and Simple Client/Server Programmin 7
Introduction 8
Printing your machine's name and IPv4 address 8
Retrieving a remote machine's IP address 10
Converting an IPv4 address to different formats 12
Finding a service name, given the port and protocol 13
Converting integers to and from host to network byte order 14
Setting and getting the default socket timeout 15
Handling socket errors gracefully 16
Modifying socket's send/receive buffer sizes 20
Changing a socket to the blocking/non-blocking mode 21
Reusing socket addresses 23
Printing the current time from the Internet time server 25
Writing a SNTP client 26
Writing a simple echo client/server application 27
Chapter 2: Multiplexing Socket 1/0 for Better Performance 31
Introduction 31
Using ForkingMixIn in your socket server applications 32
Using ThreadingMixIn in your socket server applications 35
Writing a chat server using select.select 38
Multiplexing a web server using select.epoll 45
Multiplexing an echo server using Diesel concurrent library 49
Chapter 3: IPv6, Unix Domain Sockets, and Network Interfaces 53
Introduction 54
Forwarding a local port to a remote host 54
Pinging hosts on the network with ICMP 58
Waiting for a remote network service 62

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Enumerating interfaces on your machine 65
Finding the IP address for a specific interface on your machine 67
Finding whether an interface is up on your machine 69
Detecting inactive machines on your network 70
Performing a basic IPC using connected sockets (socketpair) 73
Performing IPC using Unix domain sockets 74
Finding out if your Python supports IPv6 sockets 77
Extracting an IPv6 prefix from an IPv6 address 80
Writing an IPv6 echo client/server 82
Chapter 4: Programming with HTTP for the Internet 85
Introduction 85
Downloading data from an HTTP server 86
Serving HTTP requests from your machine 88
Extracting cookie information after visiting a website 921
Submitting web forms 94
Sending web requests through a proxy server 96
Checking whether a web page exists with the HEAD request 97
Spoofing Mozilla Firefox in your client code 99
Saving bandwidth in web requests with the HTTP compression 100
Writing an HTTP fail-over client with resume and partial downloading 103
Writing a simple HTTPS server code with Python and OpenSSL 105
Chapter 5: E-mail Protocols, FTP, and CGl Programming 107
Introduction 107
Listing the files in a remote FTP server 108
Uploading a local file to a remote FTP server 109
E-mailing your current working directory as a compressed ZIP file 111
Downloading your Google e-mail with POP3 115
Checking your remote e-mail with IMAP 117
Sending an e-mail with an attachment via Gmail SMTP server 119
Writing a guestbook for your (Python-based) web server with CGI 121
Chapter 6: Screen-scraping and Other Practical Applications 127
Introduction 127
Searching for business addresses using the Google Maps API 128
Searching for geographic coordinates using the Google Maps URL 129
Searching for an article in Wikipedia 131
Searching for Google stock quote 135
Searching for a source code repository at GitHub 137
Reading news feed from BBC 140
Crawling links present in a web page 143

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 7: Programming Across Machine Boundaries 147
Introduction 147
Executing a remote shell command using telnet 148
Copying a file to a remote machine by SFTP 150
Printing a remote machine's CPU information 152
Installing a Python package remotely 155
Running a MySQL command remotely 158
Transferring files to a remote machine over SSH 162
Configuring Apache remotely to host a website 165

Chapter 8: Working with Web Services - XML-RPC, SOAP, and REST 169
Introduction 169
Querying a local XML-RPC server 170
Writing a multithreaded multicall XML-RPC server 173
Running an XML-RPC server with a basic HTTP authentication 175
Collecting some photo information from Flickr using REST 179
Searching for SOAP methods from an Amazon S3 web service 184
Searching Google for custom information 186
Searching Amazon for books through product search API 188

Chapter 9: Network Monitoring and Security 191
Introduction 191
Sniffing packets on your network 192
Saving packets in the pcap format using the pcap dumper 195
Adding an extra header in HTTP packets 199
Scanning the ports of a remote host 201
Customizing the IP address of a packet 203
Replaying traffic by reading from a saved pcap file 205
Scanning the broadcast of packets 208

Index 211

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

All praises be to God! | am glad that this book is now published, and | would like to thank
everyone behind the publication of this book. This book is an exploratory guide to network
programming in Python. It has touched a wide range of networking protocols such as TCP/
UDP, HTTP/HTTPS, FTP, SMTP, POP3, IMAP, CGl, and so forth. With the power and interactivity
of Python, it brings joy and fun to develop various scripts for performing real-world tasks on
network and system administration, web application development, interacting with your local
and remote network, low-level network packet capture and analysis, and so on. The primary
focus of this book is to give you a hands-on experience on the topics covered. So, this book
covers less theory, but it's packed with practical materials.

This book is written with a "devops" mindset where a developer is also more or less in charge
of operation, that is, deploying the application and managing various aspects of it, such as
remote server administration, monitoring, scaling-up, and optimizing for better performance.
This book introduces you to a bunch of open-source, third-party Python libraries, which are
awesome to use in various usecases. | use many of these libraries on a daily basis to enjoy
automating my devops tasks. For example, | use Fabric for automating software deployment
tasks and other libraries for other purposes, such as, searching things on the Internet, screen-
scraping, or sending an e-mail from a Python script.

I hope you'll enjoy the recipes presented in this book and extend them to make them even
more powerful and enjoyable.

What this book covers

Chapter 1, Sockets, IPv4, and Simple Client/Server Programming, introduces you to Python's
core networking library with various small tasks and enables you to create your first client-
server application.

Chapter 2, Multiplexing Socket |/0 for Better Performance, discusses various useful
techniques for scaling your client/server applications with default and third-party libraries.

Chapter 3, IPv6, Unix Domain Sockets, and Network Interfaces, focuses more on
administering your local machine and looking after your local area network.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 4, Programming with HTTP for the Internet, enables you to create a mini command-
line browser with various features such as submitting web forms, handling cookies, managing
partial downloads, compressing data, and serving secure contents over HTTPS.

Chapter 5, E-mail Protocols, FTP, and CGIl Programming, brings you the joy of automating
your FTP and e-mail tasks such as manipulating your Gmail account, and reading or sending
e-mails from a script or creating a guest book for your web application.

Chapter 6, Screen-scraping and Other Practical Applications, introduces you to various
third-party Python libraries that do some practical tasks, for example, locating companies on
Google maps, grabbing information from Wikipedia, searching code repository on GitHub, or
reading news from the BBC.

Chapter 7, Programming Across Machine Boundaries, gives you a taste of automating your
system administration and deployment tasks over SSH. You can run commands, install
packages, or set up new websites remotely from your laptop.

Chapter 8, Working with Web Services - XML-RPC, SOAP, and REST, introduces you to various
API protocols such as XML-RPC, SOAP, and REST. You can programmatically ask any website or
web service for information and interact with them. For example, you can search for products
on Amazon or Google.

Chapter 9, Network Monitoring and Security, introduces you to various techniques for
capturing, storing, analyzing, and manipulating network packets. This encourages you to go
further to investigate your network security issues using concise Python scripts.

What you need for this book

You need a working PC or laptop, preferably with any modern Linux operating system such
as Ubuntu, Debian, CentOS, and so on. Most of the recipes in this book will run on other
platforms such as Windows and Mac OS.

You also need a working Internet connection to install the third-party software libraries
mentioned with respective recipes. If you do not have an Internet connection, you can
download those third-party libraries and install them in one go.

The following is a list of those third-party libraries with their download URLs:

» ntplib: https://pypi.python.org/pypi/ntplib/

» diesel: https://pypi.python.org/pypi/diesel/

» nmap: https://pypi.python.org/pypi/python-nmap

» scapy: https://pypi.python.org/pypi/scapy

» netifaces: https://pypi.python.org/pypi/netifaces/
» netaddr: https://pypi.python.org/pypi/netaddr

» pyopenssl: https://pypi.python.org/pypi/pyOpenSSL

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

» pygeocoder: https://pypi.python.org/pypi/pygocoder
» pyyaml: https://pypi.python.org/pypi/PyYAML

» requests: https://pypi.python.org/pypi/requests

» feedparser: https://pypi.python.org/pypi/feedparser
» paramiko: https://pypi.python.org/pypi/paramiko/

» fabric: https://pypi.python.org/pypi/Fabric

» supervisor: https://pypi.python.org/pypi/supervisor
» xmlrpclib: https://pypi.python.org/pypi/xmlrpclib

» SOAPpy: https://pypi.python.org/pypi/SOAPpyY

» bottlenose: https://pypi.python.org/pypi/bottlenose
» construct: https://pypi.python.org/pypi/construct/

The non-Python software needed to run some recipes are as follows:

» postfix: http://www.postfix.org/

» openssh server: http://www.openssh.com/

» mysql server: http://downloads.mysql.com/

» apache2: http://httpd.apache.org/download.cgi

Who this book is for

If you are a network programmer, system/network administrator, or a web application
developer, this book is ideal for you. You should have a basic familiarity with the Python
programming language and TCP/IP networking concepts. However, if you are a novice, you
will develop an understanding of the concepts as you progress with this book. This book will
serve as supplementary material for developing hands-on skills in any academic course on
network programming.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

If you need to know the IP address of a remote machine you can use the built-in library
function gethostbyname ().

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

A block of code is set as follows:

def test socket timeout () :

s = socket.socket (socket.AF INET, socket.SOCK STREAM)
print "Default socket timeout: %s" %s.gettimeout ()
s.settimeout (100)
print "Current socket timeout: %s" %s.gettimeout ()

Any command-line input or output is written as follows:

$ python 2 5 echo server with diesel.py --port=8800

[2013/04/08 11:48:32] {diesel} WARNING:Starting diesel <hand-rolled
select.epoll>

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
accountat http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http: //www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and
Simple Client/Server
Programming

In this chapter, we will cover the following recipes:

» Printing your machine's name and IPv4 address

» Retrieving a remote machine's IP address

» Converting an IPv4 address to different formats

» Finding a service name, given the port and protocol

» Converting integers to and from host to network byte order
» Setting and getting the default socket timeout

» Handling socket errors gracefully

» Modifying a socket's send/receive buffer size

» Changing a socket to the blocking/non-blocking mode
» Reusing socket addresses

» Printing the current time from the Internet time server
» Writing a SNTP client

» Writing a simple echo client/server application

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

Introduction

This chapter introduces Python's core networking library through some simple recipes. Python's
socket module has both class-based and instances-based utilities. The difference between

a class-based and instance-based method is that the former doesn't need an instance of a
socket object. This is a very intuitive approach. For example, in order to print your machine's

IP address, you don't need a socket object. Instead, you can just call the socket's class-based
methods. On the other hand, if you need to send some data to a server application, it is

more intuitive that you create a socket object to perform that explicit operation. The recipes
presented in this chapter can be categorized into three groups as follows:

» Inthe first few recipes, the class-based utilities have been used in order to extract
some useful information about host, network, and any target service.

» After that, some more recipes have been presented using the instance-based utilities.
Some common socket tasks, including manipulating the socket timeout, buffer size,
blocking mode, and so on, have been demonstrated.

» Finally, both class-based and instance-based utilities have been used to construct
some clients, which perform some practical tasks, for example, synchronizing the
machine time with an Internet server or writing a generic client/server script.

You can use these demonstrated approaches to write your own client/server application.

Printing your machine’'s name and

IPv4 address

Sometimes, you need to quickly discover some information about your machine, for example,
the host name, IP address, number of network interfaces, and so on. This is very easy to
achieve using Python scripts.

Getting ready

You need to install Python on your machine before you start coding. Python comes preinstalled
in most of the Linux distributions. For Microsoft Windows operating system, you can download
binaries from the Python website: http://www.python.org/download/

You may consult the documentation of your OS to check and review your Python setup. After
installing Python on your machine, you can try opening the Python interpreter from the
command line by typing python. This will show the interpreter prompt, >>>, which should
be similar to the following output:

~$ python
Python 2.7.1+ (r271:86832, Apr 11 2011, 18:05:24)
[GCC 4.5.2] on linux2

Type "help", "copyright", "credits" or "license" for more information. >>>

—e1]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

How to do it...

As this recipe is very short, you can try this in the Python interpreter interactively.

First, we need to import the Python socket library with the following command:

>>> import socket

Then, we call the gethostname () method from the socket library and store the result in a
variable as follows:

>>> host name = socket.gethostname ()

>>> print "Host name: %s" %host_name

Host name: debiané

>>> print "IP address: %s" %socket.gethostbyname (host name)
IP address: 127.0.1.1

The entire activity can be wrapped in a free-standing function, print machine info(),
which uses the built-in socket class methods.

We call our function from the usual Python _ main__ block. During runtime, Python assigns
values to some internal variables such as __name . Inthiscase, name refersto the
name of the calling process. When running this script from the command line, as shown in
the following command, the name willbe _main__, but it will be different if the module is
imported from another script. This means that when the module is called from the command
line, it will automatically run our print machine info function; however, when imported
separately, the user will need to explicitly call the function.

Listing 1.1 shows how to get our machine info, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter -1

This program is optimized for Python 2.7. It may run on any
other Python version with/without modifications.

import socket

def print machine info():
host name = socket.gethostname ()
ip address = socket.gethostbyname (host name)

print "Host name: %s" % host name
print "IP address: %s" % ip address

if name == ' main ':

print machine info()

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

In order to run this recipe, you can use the provided source file from the command line
as follows:

$ python 1 1 local machine_info.py
On my machine, the following output is shown:

Host name: debiané
IP address: 127.0.0.1

This output will be different on your machine depending on the system's host configuration.

The import socket statement imports one of Python's core networking libraries. Then, we use
the two utility functions, gethostname () and gethostbyname (host name). You can type
help (socket.gethostname) to see the online help information from within the command
line. Alternately, you can type the following address in your web browser at http://docs.
python.org/3/library/socket.html. You can refer to the following command:

gethostname (.. .)
gethostname () -> string

Return the current host name.

gethostbyname (.. .)
gethostbyname (host) -> address

Return the IP address (a string of the form '255.255.255.255') for a
host.

The first function takes no parameter and returns the current or localhost name. The second
function takes a single hostname parameter and returns its IP address.

Retrieving a remote machine's IP address

Sometimes, you need to translate a machine's hostname into its corresponding IP address,
for example, a quick domain name lookup. This recipe introduces a simple function to do that.

How to do it...

If you need to know the IP address of a remote machine, you can use a built-in library function,
gethostbyname (). In this case, you need to pass the remote hostname as its parameter.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In this case, we need to call the gethostbyname () class function. Let's have a look inside
this short code snippet.

Listing 1.2 shows how to get a remote machine's IP address as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import socket

def get remote machine info():
remote host = 'www.python.org'
try:
print "IP address: %s" %socket.gethostbyname (remote host)
except socket.error, err msg:
print "%s: %s" % (remote host, err msg)

if __name_ == '_main_ ':
get remote machine info()

If you run the preceding code it gives the following output:

$ python 1 2 remote_ machine info.py
IP address of www.python.org: 82.94.164.162

This recipe wraps the gethostbyname () method inside a user-defined function called
get remote machine info (). In this recipe, we introduced the notion of exception
handling. As you can see, we wrapped the main function call inside a try-except block.
This means that if some error occurs during the execution of this function, this error will be
dealt with by this try-except block.

For example, let's change the remote host value and replace www . python.org with
something non-existent, for example, www . pytgo . org. Now run the following command:

$ python 1 2 remote_ machine info.py

www.pytgo.org: [Errno -5] No address associated with hostname

The try-except block catches the error and shows the user an error message that there is
no IP address associated with the hostname, www.pytgo.org.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

Converting an IPv4 address to different

formats

When you would like to deal with low-level network functions, sometimes, the usual string
notation of IP addresses are not very useful. They need to be converted to the packed 32-bit
binary formats.

How to do it...

The Python socket library has utilities to deal with the various IP address formats. Here,
we will use two of them: inet _aton () and inet ntoa ().

Let us create the convert ip4 address () function, where inet aton () and
inet ntoa () will be used for the IP address conversion. We will use two sample IP
addresses, 127.0.0.1and 192.168.0.1.

Listing 1.3 shows ip4 address_conversion as follows

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import socket
from binascii import hexlify

def convert ip4 address():
for ip addr in ['127.0.0.1', '192.168.0.1']:
packed ip addr = socket.inet aton(ip addr)
unpacked ip addr = socket.inet ntoa(packed ip addr)
print "IP Address: %s => Packed: %s, Unpacked: %s"
% (ip_addr, hexlify(packed ip addr), unpacked ip addr)

if name == ' main ':
convert ip4 address()

Now, if you run this recipe, you will see the following output:

$ python 1 3 ip4 address conversion.py

IP Address: 127.0.0.1 => Packed: 7£000001, Unpacked: 127.0.0.1
IP Address: 192.168.0.1 => Packed: c0a80001, Unpacked: 192.168.0.1

Sk

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In this recipe, the two IP addresses have been converted from a string to a 32-bit packed
format using a for - in statement. Additionally, the Python hex11ify function is called from
the binascii module. This helps to represent the binary data in a hexadecimal format.

Finding a service name, given the port

and protocol

If you would like to discover network services, it may be helpful to determine what network
services run on which ports using either the TCP or UDP protocol.

Getting ready

If you know the port number of a network service, you can find the service name using the
getservbyport () socket class function from the socket library. You can optionally give the
protocol name when calling this function.

How to do it...

Let us define a £ind_service name () function, where the getservbyport () socket
class function will be called with a few ports, for example, 80, 25. We can use Python's
for-in loop construct.

Listing 1.4 shows finding_ service name as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import socket

def find service name() :
protocolname = 'tcp'!
for port in [80, 25]:
print "Port: %s => service name: %s" % (port, socket.
getservbyport (port, protocolname))

)

print "Port: %s => service name: %s" % (53, socket.
getservbyport (53, 'udp'))

if name == ' main ':

find service name ()

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

If you run this script, you will see the following output:
$ python 1 4 finding service name.py
Port: 80 => service name: http

Port: 25 => service name: smtp

Port: 53 => service name: domain

In this recipe, for-in statement is used to iterate over a sequence of variables. So for each
iteration we use one IP address to convert them in their packed and unpacked format.

Converting integers to and from host to

network byte order

If you ever need to write a low-level network application, it may be necessary to handle the
low-level data transmission over the wire between two machines. This operation requires
some sort of conversion of data from the native host operating system to the network format
and vice versa. This is because each one has its own specific representation of data.

How to do it...

Python's socket library has utilities for converting from a network byte order to host byte order
and vice versa. You may want to become familiar with them, for example, ntohl () /htonl ().

Let us define the convert integer () function, where the ntohl () /htonl () socket class
functions are used to convert IP address formats.

Listing 1.5 shows integer conversion as follows

#!/usr/bin/env python
Python Network Programming Cookbook -- Chapter -
This program is optimized for Python 2.7.
It may run on any other version with/without modifications.
import socket
def convert integer():
data = 1234
32-bit
print "Original: %s => Long host byte order: %s, Network byte
order: %s"\
% (data, socket.ntohl (data), socket.htonl (data))
16-bit

Sz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

print "Original: %s => Short host byte order: %s, Network byte
order: %s"

% (data, socket.ntohs (data), socket.htons (data))
if mname == ' main ':

convert integer()

If you run this recipe, you will see the following output:

$ python 1 5 integer conversion.py

Original: 1234 => Long host byte order: 3523477504, Network byte order:
3523477504

Original: 1234 => Short host byte order: 53764, Network byte order: 53764

Here, we take an integer and show how to convert it between network and host byte orders.
The ntohl () socket class function converts from the network byte order to host byte order
in a long format. Here, n represents network and h represents host; 1 represents long and s
represents short, that is 16-bit.

Setting and getting the default socket

timeout

Sometimes, you need to manipulate the default values of certain properties of a socket
library, for example, the socket timeout.

How to do it...

You can make an instance of a socket object and call a gettimeout () method to get the
default timeout value and the settimeout () method to set a specific timeout value. This is
very useful in developing custom server applications.

We first create a socket object inside a test _socket timeout () function. Then, we can
use the getter/setter instance methods to manipulate timeout values.

Listing 1.6 shows socket timeout as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7. It may run on any
other Python version with/without modifications

import socket

]

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

def test socket timeout () :
s = socket.socket (socket.AF INET, socket.SOCK STREAM)
print "Default socket timeout: %s" %s.gettimeout ()
s.settimeout (100)
print "Current socket timeout: %s" %s.gettimeout ()

if name == ' main ':
test socket timeout ()

After running the preceding script, you can see how this modifies the default socket timeout
as follows:

$ python 1 6 socket timeout.py
Default socket timeout: None

Current socket timeout: 100.0

In this code snippet, we have first created a socket object by passing the socket family and
socket type as the first and second arguments of the socket constructor. Then, you can

get the socket timeout value by calling gettimeout () and alter the value by calling the
settimeout () method. The timeout value passed to the settimeout () method can be in
seconds (non-negative float) or None. This method is used for manipulating the blocking-socket
operations. Setting a timeout of None disables timeouts on socket operations.

Handling socket errors gracefully

In any networking application, it is very common that one end is trying to connect, but the
other party is not responding due to networking media failure or any other reason. The
Python socket library has an elegant method of handing these errors via the socket .error
exceptions. In this recipe, a few examples are presented.

How to do it...

Let us create a few try-except code blocks and put one potential error type in each block. In
order to get a user input, the argparse module can be used. This module is more powerful
than simply parsing command-line arguments using sys.argv. In the try-except blocks, put
typical socket operations, for example, create a socket object, connect to a server, send data,
and wait for a reply.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The following recipe illustrates the concepts in a few lines of code.
Listing 1.7 shows socket_errors as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7. It may run on any
other Python version with/without modifications.

import sys
import socket
import argparse

def main():
setup argument parsing
parser = argparse.ArgumentParser (description='Socket Error

Examples')

parser.add argument ('--host', action="store", dest="host",
required=False)

parser.add argument ('--port', action="store", dest="port",
type=int, required=False)

parser.add argument ('--file', action="store", dest="file",

required=False)
given args = parser.parse_args()
host = given args.host
port = given args.port
filename = given_args.file

First try-except block -- create socket
try:

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
except socket.error, e:

print "Error creating socket: %s" % e

sys.exit (1)

Second try-except block -- connect to given host/port
try:
s.connect ((host, port))
except socket.gaierror, e:
print "Address-related error connecting to server: %s" % e
sys.exit (1)
except socket.error, e:
print "Connection error: %s" % e
sys.exit (1)

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

Third try-except block -- sending data
try:

s.sendall ("GET %s HTTP/1.0\r\n\r\n" % filename)
except socket.error, e:

print "Error sending data: %s" % e

sys.exit (1)

while 1:

Fourth tr-except block -- waiting to receive data from
remote host

try:
buf = s.recv(2048)
except socket.error, e:
print "Error receiving data: %s" % e
sys.exit (1)
if not len(buf):
break
write the received data
sys.stdout.write (buf)

if name == ' main ':
main ()

In Python, passing command-line arguments to a script and parsing them in the script can
be done using the argparse module. This is available in Python 2.7. For earlier versions of
Python, this module is available separately in Python Package Index (PyPl). You can install
this via easy install or pip.

In this recipe, three arguments are set up: a hostname, port number, and filename. The usage
of this script is as follows:

$ python 1 7 socket errors.py -host=<HOST> --port=<PORT> --file=<FILE>
If you try with a non-existent host, this script will print an address error as follows:

$ python 1 7 socket errors.py --host=www.pytgo.org --port=8080
--file=1 7 socket errors.py

Address-related error connecting to server: [Errno -5] No address
associated with hostname

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

If there is no service on a specific port and if you try to connect to that port, then this will
throw a connection timeout error as follows:

$ python 1 7 socket errors.py --host=www.python.org --port=8080
--file=1_7_socket_errors.py

This will return the following error since the host, www.python.org, is not listening on
port 8080:

Connection error: [Errno 110] Connection timed out

However, if you send an arbitrary request to a correct request to a correct port, the error may
not be caught in the application level. For example, running the following script returns no
error, but the HTML output tells us what's wrong with this script:

$ python 1 7 socket errors.py --host=www.python.org --port=80 --file=1 7
socket errors.py

HTTP/1.1 404 Not found

Server: Varnish

Retry-After: 0

content-type: text/html
Content-Length: 77

Accept-Ranges: bytes

Date: Thu, 20 Feb 2014 12:14:01 GMT
Via: 1.1 varnish

Age: 0

Connection: close

<html>
<head>
<title> </title>
</head>
<body>

unknown domain: </body></html>

In the preceding example, four try-except blocks have been used. All blocks use socket .error
except the second block, which uses socket .gaierror. This is used for address-related
errors. There are two other types of exceptions: socket .herror is used for legacy C API, and

if you use the settimeout () method in a socket, socket . timeout will be raised when a
timeout occurs on that socket.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

Modifying socket’'s send/receive buffer sizes

The default socket buffer size may not be suitable in many circumstances. In such
circumstances, you can change the default socket buffer size to a more suitable value.

How to do it...

Let us manipulate the default socket buffer size using a socket object's
setsockopt () method.

First, define two constants: SEND BUF SIZE/RECV_BUF SIZE and then wrap a socket
instance's call to the setsockopt () method in a function. It is also a good idea to check the
value of the buffer size before modifying it. Note that we need to set up the send and receive
buffer size separately.

Listing 1.8 shows how to modify socket send/receive buffer sizes as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7. It may run on any
other Python version with/without modifications

import socket

SEND BUF SIZE = 4096
RECV_BUF SIZE = 4096

def modify buff size():
sock = socket.socket (socket.AF INET, socket.SOCK STREAM)

Get the size of the socket's send buffer
bufsize = sock.getsockopt (socket.SOL SOCKET, socket.SO_ SNDBUF)
print "Buffer size [Before] :%d" %$bufsize

sock.setsockopt (socket .SOL TCP, socket.TCP_NODELAY, 1)
sock.setsockopt (

socket .SOL_SOCKET,

socket .SO_SNDBUF,

SEND BUF SIZE)
sock.setsockopt (

socket .SOL_SOCKET,

socket .SO_RCVBUF,

RECV_BUF SIZE)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

bufsize = sock.getsockopt (socket.SOL SOCKET, socket.SO_ SNDBUF)
print "Buffer size [After]:%d" %bufsize

if name == ' main ':
modify buff size()

If you run the preceding script, it will show the changes in the socket's buffer size. The following
output may be different on your machine depending on your operating system's local settings:

$ python 1 8 modify buff size.py
Buffer size [Before]:16384
Buffer size [After]:8192

You can call the getsockopt () and setsockopt () methods on a socket object to retrieve
and modify the socket object's properties respectively. The set sockopt () method takes
three arguments: level, optname, and value. Here, optname takes the option name and
value is the corresponding value of that option. For the first argument, the needed symbolic
constants can be found in the socket module (SO_*etc.).

Changing a socket to the blocking/

non-blocking mode

By default, TCP sockets are placed in a blocking mode. This means the control is not returned
to your program until some specific operation is complete. For example, if you call the
connect () API, the connection blocks your program until the operation is complete. On many
occasions, you don't want to keep your program waiting forever, either for a response from the
server or for any error to stop the operation. For example, when you write a web browser client
that connects to a web server, you should consider a stop functionality that can cancel the
connection process in the middle of this operation. This can be achieved by placing the socket
in the non-blocking mode.

How to do it...

Let us see what options are available under Python. In Python, a socket can be placed in

the blocking or non-blocking mode. In the non-blocking mode, if any call to API, for example,
send () or recv (), encounters any problem, an error will be raised. However, in the blocking
mode, this will not stop the operation. We can create a normal TCP socket and experiment
with both the blocking and non-blocking operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

In order to manipulate the socket's blocking nature, we need to create a socket object first.

We can then call setblocking (1) to set up blocking or setblocking (0) to unset
blocking. Finally, we bind the socket to a specific port and listen for incoming connections.

Listing 1.9 shows how the socket changes to blocking or non-blocking mode as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7. It may run on any
other Python version with/without modifications

import socket

def test socket modes() :
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.setblocking (1)
s.settimeout (0.5)
s.bind(("127.0.0.1", 0))

socket address = s.getsockname ()
print "Trivial Server launched on socket: %s" %str(socket address)
while (1) :

s.listen(1)

if __name_ == '_main_ ':
test socket modes ()

If you run this recipe, it will launch a trivial server that has the blocking mode enabled as
shown in the following command:

$ python 1 9 socket modes.py
Trivial Server launched on socket: ('127.0.0.1', 51410)

In this recipe, we enable blocking on a socket by setting the value 1 in the setblocking ()
method. Similarly, you can unset the value 0 in this method to make it non-blocking.

This feature will be reused in some later recipes, where its real purpose will be elaborated.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Reusing socket addresses

You want to run a socket server always on a specific port even after it is closed intentionally or
unexpectedly. This is useful in some cases where your client program always connects to that
specific server port. So, you don't need to change the server port.

How to do it...

If you run a Python socket server on a specific port and try to rerun it after closing it once, you
won't be able to use the same port. It will usually throw an error like the following command:

Traceback (most recent call last):
File "1 10 _reuse_socket_ address.py", line 40, in <module>
reuse socket addr()
File "1 10 _reuse_socket address.py", line 25, in reuse_ socket_ addr
srv.bind(('', local_port))
File "<string>", line 1, in bind

socket.error: [Errno 98] Address already in use
The remedy to this problem is to enable the socket reuse option, SO REUSEADDR.

After creating a socket object, we can query the state of address reuse, say an old state. Then,
we call the setsockopt () method to alter the value of its address reuse state. Then, we
follow the usual steps of binding to an address and listening for incoming client connections.
In this example, we catch the KeyboardInterrupt exception so that if you issue Ctrl + C,
then the Python script gets terminated without showing any exception message.

Listing 1.10 shows how to reuse socket addresses as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7. It may run on any
other Python version with/without modifications

import socket
import sys

def reuse_ socket addr():
sock = socket.socket (socket.AF_INET, socket.SOCK STREAM)

Get the old state of the SO REUSEADDR option
old state = sock.getsockopt (socket.SOL SOCKET, socket.SO REUSEADDR

s

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

print "Old sock state: %s" %old state

Enable the SO_REUSEADDR option
sock.setsockopt (socket.SOL SOCKET, socket.SO REUSEADDR, 1)

new state = sock.getsockopt (socket.SOL SOCKET, socket.SO
REUSEADDR)

print "New sock state: %s" %new_state
local port = 8282

srv = socket.socket (socket.AF INET, socket.SOCK STREAM)
srv.setsockopt (socket.SOL_ SOCKET, socket.SO REUSEADDR, 1)
srv.bind(('', local port))
srv.listen(1)
print ("Listening on port: %s " %local port)
while True:
try:
connection, addr = srv.accept ()
print 'Connected by %s:%s' % (addr[0], addr[1])
except KeyboardInterrupt:
break
except socket.error, msg:

)

print '%s' % (msg,)

if name == ' main_ ':
reuse_ socket e addr()

The output from this recipe will be similar to the following command:

$ python 1 10 reuse socket address.py
0ld sock state: 0
New sock state: 1

Listening on port: 8282

You may run this script from one console window and try to connect to this server from
another console window by typing telnet localhost 8282. After you close the server
program, you can rerun it again on the same port. However, if you comment out the line that
sets the SO_REUSEADDR, the server will not run for the second time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Printing the current time from the Internet

time server

Many programs rely on the accurate machine time, such as the make command in UNIX.
Your machine time may be different and need synchronizing with another time server in
your network.

Getting ready

In order to synchronize your machine time with one of the Internet time servers, you can write

a Python client for that. For this, ntplib will be used. Here, the client/server conversation will
be done using Network Time Protocol (NTP). If ntplib is not installed on your machine, you

can get it from PyPI with the following command using pip or easy install:

$ pip install ntplib

How to do it...

We create an instance of NTPClient and then we call the request () method on it by
passing the NTP server address.

Listing 1.11shows how to print the current time from the Internet time server is as follows:

#!/usr/bin/env python
Python Network Programming Cookbook -- Chapter - 1
This program is optimized for Python 2.7. It may run on any
other Python version with/without modifications

import ntplib
from time import ctime

def print time():
ntp client = ntplib.NTPClient ()
response = ntp client.request ('pool.ntp.org')
print ctime (response.tx time)

if name == ' main ':
print_ time ()

In my machine, this recipe shows the following output:

$ python 1 11 print machine time.py
Thu Mar 5 14:02:58 2012

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

Here, an NTP client has been created and an NTP request has been sent to one of the Internet
NTP servers, pool .ntp.org. The ctime () function is used for printing the response.

Writing a SNTP client

Unlike the previous recipe, sometimes, you don't need to get the precise time from the NTP
server. You can use a simpler version of NTP called simple network time protocol.

How to do it...

Let us create a plain SNTP client without using any third-party library.

Let us first define two constants: NTP_SERVER and TIME1970. NTP_ SERVER is the server
address to which our client will connect, and TIME1970 is the reference time on January 1,
1970 (also called Epoch). You may find the value of the Epoch time or convert to the Epoch
time at http://www.epochconverter.com/. The actual client creates a UDP socket
(SOCK_DGRAM) to connect to the server following the UDP protocol. The client then needs to
send the SNTP protocol data (' \x1b' + 47 * '\0')in a packet. Our UDP client sends and
receives data using the sendto () and recvifrom() methods.

When the server returns the time information in a packed array, the client needs a specialized
struct module to unpack the data. The only interesting data is located in the 11th element
of the array. Finally, we need to subtract the reference value, TIME1970, from the unpacked
value to get the actual current time.

Listing 1.11 shows how to write an SNTP client as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7. It may run on any
other Python version with/without modifications

import socket

import struct

import sys

import time

NTP_SERVER = "O.uk.pool.ntp.org"
TIME1970 = 2208988800L

def sntp client():

client = socket.socket (socket.AF INET, socket.SOCK DGRAM)
data = '\xlb' + 47 * '\0'

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

client.sendto(data, (NTP_SERVER, 123))
data, address = client.recvfrom(1024)
if data:
print 'Response received from:', address
t = struct.unpack('!12I', data) [10]
t -= TIME1970
print '\tTime=%s' % time.ctime (t)

if name == ' main ':
sntp _client ()

This recipe prints the current time from the Internet time server received with the SNTP
protocol as follows:

$ python 1 12 sntp client.py
Response received from: ('87.117.251.2', 123)
Time=Tue Feb 25 14:49:38 2014

This SNTP client creates a socket connection and sends the protocol data. After receiving the

response from the NTP server (in this case, 0.uk.pool .ntp.org), it unpacks the data with

struct. Finally, it subtracts the reference time, which is January 1, 1970, and prints the time
using the ctime () built-in method in the Python time module.

Writing a simple echo client/server

application

After testing with basic socket APIs in Python, let us create a socket server and client now.
Here, you will have the chance to utilize your basic knowledge gained in the previous recipes.

How to do it...

In this example, a server will echo whatever it receives from the client. We will use the Python
argparse module to specify the TCP port from a command line. Both the server and client
script will take this argument.

First, we create the server. We start by creating a TCP socket object. Then, we set the reuse
address so that we can run the server as many times as we need. We bind the socket to the
given port on our local machine. In the listening stage, we make sure we listen to multiple
clients in a queue using the backlog argument to the 1isten () method. Finally, we wait for
the client to be connected and send some data to the server. When the data is received, the
server echoes back the data to the client.

e

www.it-ebooks.info

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

Listing 1.13a shows how to write a simple echo client/server application as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7. It may run on any
other Python version with/without modifications.

import socket
import sys
import argparse

host = 'localhost'!
data_payload = 2048
backlog = 5

def echo_server (port) :
"wn A simple echo server """
Create a TCP socket
sock = socket.socket (socket.AF INET, socket.SOCK STREAM)
Enable reuse address/port
sock.setsockopt (socket .SOL_SOCKET, socket.SO REUSEADDR, 1)
Bind the socket to the port
server_address = (host, port)
print "Starting up echo server on %s port %s" % server address
sock.bind (server_address)
Listen to clients, backlog argument specifies the max no. of
queued connections
sock.listen (backlog)
while True:
print "Waiting to receive message from client"
client, address = sock.accept ()
data = client.recv(data payload)
if data:
print "Data: %s" %data
client.send(data)
print "sent %s bytes back to %$s" % (data, address)
end connection
client.close()

if __name_ == '_main_ ':

parser = argparse.ArgumentParser (description='Socket Server
Example')

parser.add argument ('--port', action="store", dest="port",

type=int, required=True)
given args = parser.parse_args()
port = given args.port
echo_server (port)

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

On the client-side code, we create a client socket using the port argument and connect to the
server. Then, the client sends the message, Test message. This will be echoedto
the server, and the client immediately receives the message back in a few segments. Here,
two try-except blocks are constructed to catch any exception during this interactive session.

Listing 1-13b shows the echo client as follows:

#!/usr/bin/env python
Python Network Programming Cookbook -- Chapter - 1

This program is optimized for Python 2.7. It may run on any

other Python version with/without modifications.

import socket
import sys

import argparse
host = 'localhost'
def echo_client (port) :

"wn A simple echo client """
Create a TCP/IP socket

sock = socket.socket (socket.AF INET, socket.SOCK STREAM)

Connect the socket to the server
server_address = (host, port)

°

print "Connecting to %s port %s" % server address

sock.connect (server address)

Send data
try:
Send data

message = "Test message. This will be echoed"

°

print "Sending %s" % message
sock.sendall (message)
Look for the response
amount received = 0
amount expected = len(message)
while amount_received < amount_expected:
data = sock.recv(16)
amount_received += len(data)
print "Received: %s" % data
except socket.errno, e:
print "Socket error: %s" %str(e)
except Exception, e:
print "Other exception: %s" %str(e)
finally:

www.it-ebooks.info

s

http://www.it-ebooks.info/

Sockets, IPv4, and Simple Client/Server Programming

print "Closing connection to the server"
sock.close ()

if name == ' main ':

parser = argparse.ArgumentParser (description='Socket Server
Example')

parser.add argument ('--port', action="store", dest="port",

type=int, required=True)
given args = parser.parse_args()
port = given args.port
echo client (port)

In order to see the client/server interactions, launch the following server script in one console:

$ python 1 13a echo server.py --port=9900

Starting up echo server on localhost port 9900

Waiting to receive message from client

Now, run the client from another terminal as follows:

$ python 1 13b echo client.py --port=9900
Connecting to localhost port 9900

Sending Test message. This will be echoed
Received: Test message. Th

Received: is will be echoe

Received: d

Closing connection to the server

Upon connecting to the localhost, the client server will also print the following message:

Data: Test message. This will be echoed
sent Test message. This will be echoed bytes back to ('127.0.0.1', 42961)

Waiting to receive message from client

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket 1/0
for Better Performance

In this chapter, we will cover the following recipes:

» Using ForkingMixIn in your socket server applications

» Using ThreadingMixIn in your socket server applications
» Writing a chat server using select.select

» Multiplexing a web server using select.epoll

» Multiplexing an echo server using Diesel concurrent library

Introduction

This chapter focuses on improving the socket server performance using a few useful
techniques. Unlike the previous chapter, here we consider multiple clients that will be
connected to the server and the communication can be asynchronous. The server does not
need to process the request from clients in a blocking manner, this can be done independent
of each other. If one client takes more time to receive or process data, the server does not
need to wait for that. It can talk to other clients using separate threads or processes.

In this chapter, we will also explore the select module that provides the platform-specific I/0
monitoring functions. This module is built on top of the select system call of the underlying
operating system's kernel. For Linux, the manual page is located at http://man7.org/
linux/man-pages/man2/select.2.html and can be checked to see the available
features of this system call. Since our socket server would like to interact with many clients,
select can be very helpful to monitor non-blocking sockets. There are some third-party
Python libraries that can also help us to deal with multiple clients at the same time. We have
included one sample recipe of using Diesel concurrent library.

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

Although, for the sake of brevity, we will be using two or few clients, readers are free to extend
the recipes of this chapter and use them with tens and hundreds of clients.

Using ForkingMixin in your socket server

applications

You have decided to write an asynchronous Python socket server application. The server will
not block in processing a client request. So the server needs a mechanism to deal with each
client independently.

Python 2.7 version's SocketServer class comes with two utility classes: ForkingMixIn
and ThreadingMixIn. The ForkingMixin class will spawn a new process for each client
request. This class is discussed in this section. The ThreadingMixIn class will be discussed
in the next section. For more information, you can refer to the Python documentation at
http://docs.python.org/2/library/socketserver.html.

How to do it...

Let us rewrite our echo server, previously described in Chapter 1, Sockets, IPv4, and Simple
Client/Server Programming. We can utilize the subclasses of the SocketServer class family.
It has ready-made TCP, UDP, and other protocol servers. We can create a ForkingServer
class inherited from TCPServer and ForkingMixin. The former parent will enable our
ForkingServer class to do all the necessary server operations that we did manually before,
such as creating a socket, binding to an address, and listening for incoming connections. Our
server also needs to inherit from ForkingMixin to handle clients asynchronously.

The ForkingServer class also needs to set up a request handler that dictates how to
handle a client request. Here our server will echo back the text string received from the
client. Our request handler class ForkingServerRequestHandler is inherited from the
BaseRequestHandler provided with the SocketServer library.

We can code the client of our echo server, ForkingClient, in an object-oriented fashion.

In Python, the constructor method of a class is called __init (). By convention, it takes a
self-argument to attach attributes or properties of that particular class. The ForkingClient
echo server will be initialized at init () and sends the message to the server at the
run () method respectively.

If you are not familiar with object-oriented programming (OOP) at all, it might be helpful to
review the basic concepts of OOP while attempting to grasp this recipe.

In order to test our ForkingServer class, we can launch multiple echo clients and see how
the server responds back to the clients.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Listing 2.1 shows a sample code using ForkingMixin in a socket server application

as follows:

#!/usr/bin/env python
Python Network Programming Cookbook -- Chapter - 2

This

program is optimized for Python 2.7.

#
It may run on any other version with/without modifications.
See more: http://docs.python.org/2/library/socketserver.html

import
import
import
import

SERVER
SERVER_

os

socket
threading
SocketServer

HOST = 'localhost'
PORT = 0 # tells the kernel to pick up a port dynamically

BUF_SIZE = 1024
ECHO_MSG = 'Hello echo server!'

class ForkedClient () :

nnn

def

def

A client to test forking server"""

__init_ (self, ip, port):

Create a socket

self.sock = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
Connect to the server

self.sock.connect ((ip, port))

run (self) :

nrmw Cclient playing with the serverm"""

Send the data to server

current process_id = os.getpid()

print 'PID %s Sending echo message to the server : "%$s"' %

(current process_id, ECHO_MSG)

sent_data_length = self.sock.send (ECHO_MSG)
print "Sent: %d characters, so far..." %sent data length

Display server response
response = self.sock.recv (BUF_SIZE)
print "PID %s received: %s" % (current process_id,

response [5:])

def

shutdown (self) :
"wn Cleanup the client socket """
self.sock.close()

class ForkingServerRequestHandler (SocketServer.BaseRequestHandler) :

s

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

def handle(self) :
Send the echo back to the client
data = self.request.recv(BUF_SIZE)
current process id = os.getpid()

response = '%s: %s' % (current process id, data)

print "Server sending response [current process id: datal] =
[$s]" %response

self.request.send (response)

return

class ForkingServer (SocketServer.ForkingMixIn,
SocketServer.TCPServer,
) :
"""Nothing to add here, inherited everything necessary from
parents"""
pass

def main() :
Launch the server
server = ForkingServer ((SERVER HOST, SERVER PORT),
ForkingServerRequestHandler)
ip, port = server.server address # Retrieve the port number
server thread = threading.Thread(target=server.serve forever)
server_ thread.setDaemon (True) # don't hang on exit
server_ thread.start ()
print 'Server loop running PID: %s' %os.getpid()

Launch the client (s)
clientl = ForkedClient (ip, port)
clientl.run()

client2 = ForkedClient (ip, port)
client2.run()

Clean them up
server.shutdown ()
clientl.shutdown ()
client2.shutdown ()
server.socket.close ()

if name == ' main ':
main ()

An instance of ForkingServer is launched in the main thread, which has been daemonized
to run in the background. Now, the two clients have started interacting with the server.

S E

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If you run the script, it will show the following output:

$ python 2 1 forking mixin socket server.py
Server loop running PID: 12608
PID 12608 Sending echo message to the server : "Hello echo server!"

Sent: 18 characters, so far...

Server sending response [current process id: datal = [12610: Hello echo
server!]

PID 12608 received: : Hello echo server!

PID 12608 Sending echo message to the server : "Hello echo server!"

Sent: 18 characters, so far...

Server sending response [current process id: datal = [12611l: Hello echo
server!]
PID 12608 received: : Hello echo server!

The server port number might be different in your machine since this is dynamically chosen by
the operating system kernel.

Using ThreadingMixin in your socket server

applications

Perhaps you prefer writing a multi-threaded application over a process-based one due to any
particular reason, for example, sharing the states of that application across threads, avoiding
the complexity of inter-process communication, or something else. In such a situation, if you
like to write an asynchronous network server using SocketServer library, you will need
ThreadingMixin.

Getting ready

By making a few minor changes to our previous recipe, you can get a working version of
socket server using ThreadingMixin.

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased

this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the

| files e-mailed directly to you. -

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

How to do it...

As seen in the previous socket server based on ForkingMixIn, ThreadingMixIn

socket server will follow the same coding pattern of an echo server except a few things.
First, our ThreadedTCPServer will inherit from TCPServer and TheadingMixIn. This
multi-threaded version will launch a new thread when a client connects to it. Some more
details can be found at http://docs.python.org/2/library/socketserver.html.

The request handler class of our socket server, ForkingServerRequestHandler, sends
the echo back to the client from a new thread. You can check the thread information here. For
the sake of simplicity, we put the client code in a function instead of a class. The client code
creates the client socket and sends the message to the server.

Listing 2.2 shows a sample code on echo socket server using ThreadingMixIn as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 2

This program is optimized for Python 2.7

It may run on any other version with/without modifications.
import os

import socket

import threading

import SocketServer

SERVER_HOST = 'localhost'

SERVER_PORT = 0 # tells the kernel to pick up a port dynamically
BUF_SIZE = 1024

def client (ip, port, message) :
nnewo A client to test threading mixin server"""
Connect to the server
sock = socket.socket (socket.AF INET, socket.SOCK STREAM)
sock.connect ((ip, port))

try:

sock.sendall (message)

response = sock.recv (BUF_SIZE)

print "Client received: %s" %$response
finally:

sock.close ()

class ThreadedTCPRequestHandler (SocketServer.BaseRequestHandler) :
" An example of threaded TCP request handler """
def handle(self):

data = self.request.recv(1024)
current thread = threading.current thread()
response = "%s: %s" % (current thread.name, data)

self.request.sendall (response)

NEQ

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

class ThreadedTCPServer (SocketServer.ThreadingMixIn, SocketServer.
TCPServer) :

"""Nothing to add here, inherited everything necessary from

parentsll nn
pass
if name == " main ":

Run server

server = ThreadedTCPServer ((SERVER_HOST, SERVER PORT),
ThreadedTCPRequestHandler)

ip, port = server.server address # retrieve ip address

Start a thread with the server -- one thread per request
server thread = threading.Thread(target=server.serve forever)
Exit the server thread when the main thread exits

server_ thread.daemon = True

server_ thread.start ()

print "Server loop running on thread: %s" $%server thread.name
Run clients

client (ip, port, "Hello from client 1")

client (ip, port, "Hello from client 2")

client (ip, port, "Hello from client 3")

Server cleanup

server.shutdown ()

This recipe first creates a server thread and launches it in the background. Then it launches
three test clients to send messages to the server. In response, the server echoes back the
message to the clients. In the handle () method of the server's request handler, you can see
that we retrieve the current thread information and print it. This should be different in each
client connection.

In this client/server conversation, the sendall () method has been used to guarantee the
sending of all data without any loss:

$ python 2 2 threading mixin socket server.py

Server loop running on thread: Thread-1

Client received: Thread-2: Hello from client 1

Client received: Thread-3: Hello from client 2

Client received: Thread-4: Hello from client 3

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

Writing a chat server using select.select

Launching a separate thread or process per client may not be viable in any larger network
server application where several hundred or thousand clients are concurrently connected
to the server. Due to the limited available memory and host CPU power, we need a better
technique to deal with large number of clients. Fortunately, Python provides the select
module to overcome this problem.

How to do it...

We need to write an efficient chat server that can handle several hundred or a large number
of client connections. We will use the select () method from the select module that will
enable our chat server and client to do any task without blocking a send or receive call all
the time.

Let us design this recipe such that a single script can launch both client and server with an
additional - -name argument. Only if - -name=server is passed from the command line,
the script will launch the chat server. Any other value passed to the - -name argument, for
example, client1, client2, will launch a chat client. Let's specify our char server port
number from the command line using - -port argument. For a larger application, it may be
preferable to write separate modules for the server and client.

Listing 2.3 shows an example of chat application using select .select as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 2
This program is optimized for Python 2.7

It may run on any other version with/without modifications
import select

import socket

import sys

import signal

import cPickle

import struct

import argparse

SERVER_HOST = 'localhost'
CHAT SERVER _NAME = 'server'

Some utilities

def send(channel, *args):
buffer = cPickle.dumps (args)
value = socket.htonl (len (buffer))
size = struct.pack("L",value)

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

channel.send (size)
channel.send (buffer)

def receive (channel) :

size = struct.calcsize("L")
size = channel.recv(size)
try:
size = socket.ntohl (struct.unpack("L", size) [0])

except struct.error, e:
return ''
buf = "
while len(buf) < size:
buf = channel.recv(size - len(buf))
return cPickle.loads (buf) [0]

The send () method takes one named argument channel and positional argument *args.
It serializes the data using the dumps () method from the cPickle module. It determines
the size of the data using the struct module. Similarly, receive () takes one named
argument channel.

Now we can code the ChatServer class as follows:

class ChatServer (object) :
"mroAn example chat server using select """
def init (self, port, backlog=5) :
self.clients = 0
self.clientmap = {}
self.outputs = [] # list output sockets
self.server = socket.socket (socket.AF INET, socket.SOCK STREAM)
Enable re-using socket address
self.server.setsockopt (socket.SOL SOCKET, socket.SO REUSEADDR, 1)
self.server.bind ((SERVER HOST, port))
print 'Server listening to port: %s ...' %port
self.server.listen (backlog)
Catch keyboard interrupts
signal.signal (signal.SIGINT, self.sighandler)

def sighandler (self, signum, frame):
nnw Clean up client outputs"""
Close the server
print 'Shutting down server...'
Close existing client sockets
for output in self.outputs:

output.close ()

self.server.close()

s

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

def get client name(self, client):
nnmw Return the name of the client """
info = self.clientmap[client]
host, name = info[0] [0], info[1]
return '@'.join((name, host))

Now the main executable method of the ChatServer class should look like the following code:

def run(self):
inputs = [self.server, sys.stdin]
self.outputs = []
running = True
while running:

try:
readable, writeable, exceptional = \
select.select (inputs, self.outputs, [])
except select.error, e:
break
for sock in readable:
if sock == self.server:
handle the server socket
client, address = self.server.accept ()
print "Chat server: got connection %d from %s" %\
(client.fileno (), address)
Read the login name
cname = receive(client) .split ('NAME: ') [1]

Compute client name and send back
self.clients += 1

send(client, 'CLIENT: ' + str(address[0]))
inputs.append(client)
self.clientmap[client] = (address, cname)

Send joining information to other clients
msg = "\n(Connected: New client (%d) from %s)" %\
(self.clients, self.get client name(client))
for output in self.outputs:
send (output, msg)
self.outputs.append(client)
elif sock == sys.stdin:
handle standard input
junk = sys.stdin.readline ()
running = False
else:
handle all other sockets
try:
data = receive (sock)
if data:
Send as new client's message...

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

msg = '\n#[' + self.get client name (sock)\
+ 'l>>' + data
Send data to all except ourself
for output in self.outputs:
if output != sock:
send (output, msg)
else:
print "Chat server: %d hung up" % \
sock.fileno()
self.clients -=1
sock.close ()
inputs.remove (sock)
self.outputs.remove (sock)
Sending client leaving info to others
msg = "\n(Now hung up: Client from %s)" %\
self.get client name (sock)
for output in self.outputs:
send (output, msg)
except socket.error, e:
Remove
inputs.remove (sock)
self.outputs.remove (sock)
self.server.close()

The chat server initializes with a few data attributes. It stores the count of clients, map of
each client, and output sockets. The usual server socket creation also sets the option to
reuse an address so that there is no problem restarting the server again using the same port.
An optional backlog argument to the chat server constructor sets the maximum number of
queued connections to listen by the server.

An interesting aspect of this chat server is to catch the user interrupt, usually via keyboard,
using the signal module. So a signal handler sighandler is registered for the interrupt
signal (SIGINT). This signal handler catches the keyboard interrupt signal and closes all
output sockets where data may be waiting to be sent.

The main executive method of our chat server run () performs its operation inside a while
loop. This method registers with a select interface where the input argument is the chat server
socket, stdin. The output argument is specified by the server's output socket list. In return,
select provides three lists: readable, writable, and exceptional sockets. The chat server

is only interested in readable sockets where some data is ready to be read. If that socket
indicates to itself, then that will mean a new client connection has been established. So the
server retrieves the client's name and broadcasts this information to other clients. In another
case, if anything comes from the input arguments, the chat server exits. Similarly, the chat
server deals with the other client's socket inputs. It relays the data received from any client to
others and also shares their joining/leaving information.

@l

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

The chat client code class should contain the following code:

class ChatClient (object) :
"rwo A command line chat client using select """

split ('.

STRE

port

def

AM)

def

__init_ (self, name, port, host=SERVER HOST) :

self.name = name
self.connected = False
self.host = host
self.port = port
Initial prompt
self.prompt='[' + '@'.join((name, socket.gethostname().
")y) o+ '1s
Connect to server at port
try:
self.sock = socket.socket (socket.AF INET, socket.SOCK _

self.sock.connect ((host, self.port))

print "Now connected to chat server@ port %d" % self.port

self.connected = True

Send my name...

send (self.sock, 'NAME: ' + self.name)

data = receive (self.sock)

Contains client address, set it

addr = data.split ('CLIENT: ') [1]

self.prompt = '[' + '@'.join((self.name, addr)) + ']I> '
except socket.error, e:

print "Failed to connect to chat server @ port %d" % self.

sys.exit (1)

run (self) :
"nw Chat client main loop """
while self.connected:
try:
sys.stdout.write (self.prompt)
sys.stdout.flush()
Wait for input from stdin and socket
readable, writeable,exceptional = select.select ([0,

self.sock]l, [1,11)

for sock in readable:
if sock == 0:
data = sys.stdin.readline() .strip()
if data: send(self.sock, data)
elif sock == self.sock:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

data = receive (self.sock)

if not data:
print 'Client shutting down.'
self.connected = False
break

else:
sys.stdout.write (data + '\n')
sys.stdout.flush()

except KeyboardInterrupt:
print " Client interrupted. """
self.sock.close()
break

The chat client initializes with a name argument and sends this name to the chat server upon
connecting. It also sets up a custom prompt [namee@host] >. The executive method of
this client run () continues its operation as long as the connection to the server is active.

In a manner similar to the chat server, the chat client also registers with select (). If
anything in readable sockets is ready, it enables the client to receive data. If the sock value

is 0 and there's any data available then the data can be sent. The same information is also
shown in stdout or, in our case, the command-line console. Our main method should now get
command-line arguments and call either the server or client as follows:

if mname == " main ":
parser = argparse.ArgumentParser (description='Socket Server
Example with Select')
parser.add argument ('--name', action="store", dest="name",
required=True)
parser.add argument ('--port', action="store", dest="port",
type=int, required=True)
given args = parser.parse_args()
port = given args.port
name = given args.name
if name == CHAT SERVER NAME:
server = ChatServer (port)
server.run/()
else:
client = ChatClient (name=name, port=port)
client.run()

We would like to run this script thrice: once for the chat server and twice for two chat clients.
For the server, we pass —-name=server and port=8800. For client1, we change the name
argument - -name=clientl and for client2, we put - -name=client2. Then from the
clientl value prompt we send the message "Hello from client 1", which is printed in
the prompt of the client2. Similarly, we send "hello from client 2"from the prompt
of the client2, which is shown in the prompt of the client1.

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

The output for the server is as follows:

$ python 2_3_chat_ server with select.py --name=server --port=8800
Server listening to port: 8800 ...

Chat server: got connection 4 from ('127.0.0.1', 56565)

Chat server: got connection 5 from ('127.0.0.1', 56566)

The output for client1 is as follows:

$ python 2 3 chat server with select.py --name=clientl --port=8800
Now connected to chat server@ port 8800

[clientl@127.0.0.1]>

(Connected: New client (2) from client2@127.0.0.1)
[client1@127.0.0.1]> Hello from client 1

[clientl@127.0.0.1]>

#[client2@127.0.0.1] >>hello from client 2

The output for client?2 is as follows:

$ python 2 3 chat server with select.py --name=client2 --port=8800
Now connected to chat server@ port 8800

[client2@127.0.0.1]>

#[clientl@127.0.0.1] >>Hello from client 1

[client2@127.0.0.1]> hello from client 2

[client2@127.0.0.1]

The whole interaction is shown in the following screenshot:

SO ® Ffarug@ubuntu: chapterz

Fit Vi File Edit v Terminal Help

Faruggubun 3 S Py 2 i ntu:chapter2s python 2_3 chat_server_with_select.py

rt=8806

clientl
t2

clie
v clientl

nane=clicn

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

At the top of our module, we defined two utility functions: send () and receive ().

The chat server and client use these utility functions, which were demonstrated earlier. The
details of the chat server and client methods were also discussed earlier.

Multiplexing a web server using select.epoll

Python's select module has a few platform-specific, networking event management functions.
On a Linux machine, epol1 is available. This will utilize the operating system kernel that will
poll network events and let our script know whenever something happens. This sounds more
efficient than the previously mentioned select . select approach.

How to do it...

Let's write a simple web server that can return a single line of text to any connected
web browser.

The core idea is during the initialization of this web server, we should make a call to
select.epoll () and register our server's file descriptor for event notifications. In the
web server's executive code, the socket event is monitored as follows:

Listing 2.4 Simple web server using select.epoll
#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 2

This program is optimized for Python 2.7

It may run on any other version with/without modifications.
socket
select
argparse

import
import
import

SERVER__

HOST =

EOL1 = b'\n\n'
EOL2 = b'\n\r\n'
SERVER_RESPONSE
01:01:01 GMT\r\nContent-Type: text/plain\r\nContent-Length: 25\r\n\r\n
Hello from Epoll Server!"""

'localhost!

= b"""HTTP/1.1 200 OK\r\nDate: Mon, 1 Apr 2013

class EpollServer (object) :
nnmo A socket server using Epoll"""
def init (self, host=SERVER HOST, port=0):

self.
self.
self.
self.
self.
self.

sock

sock.
sock.
sock.
sock.
sock.

= socket.socket (socket .AF INET, socket.SOCK STREAM)
setsockopt (socket .SOL_ SOCKET, socket.SO REUSEADDR, 1)
bind((host, port))

listen(1)

setblocking(0)

setsockopt (socket . IPPROTO_TCP, socket.TCP_NODELAY, 1)

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

print "Started Epoll Server"
self.epoll = select.epoll ()
self.epoll.register(self.sock.fileno(), select.EPOLLIN)

def run(self):
"mrExecutes epoll server operation"""
try:
connections = {}; requests = {}; responses = {}
while True:
events = self.epoll.poll (1)
for fileno, event in events:
if fileno == self.sock.fileno():
connection, address = self.sock.accept ()
connection.setblocking(0)
self.epoll.register (connection.fileno (), select.EPOLLIN)
connections [connection.fileno()] = connection
requests [connection.fileno()] = b'!
responses [connection.fileno()] = SERVER RESPONSE
elif event & select.EPOLLIN:
requests [fileno] += connections[fileno] .recv(1024)
if EOL1 in requests[fileno] or EOL2 in requests[fileno]:
self.epoll.modify(fileno, select.EPOLLOUT)
print ('-'*40 + '\n' + requests([fileno] .decode() [:-2])
elif event & select.EPOLLOUT:
byteswritten = connections[fileno] .send (responses[fileno])
responses [fileno] = responses[fileno] [byteswritten:]
if len(responses[fileno]) == 0:
self.epoll.modify(fileno, 0)
connections [fileno] .shutdown (socket.SHUT RDWR)
elif event & select.EPOLLHUP:
self.epoll.unregister (fileno)
connections[fileno] .close ()
del connections[fileno]
finally:
self.epoll.unregister(self.sock.fileno())
self.epoll.close()
self.sock.close()

if name == ' main ':

parser = argparse.ArgumentParser (description='Socket Server Example
with Epoll')

parser.add argument ('--port', action="store", dest="port", type=int,

required=True)
given args = parser.parse_args()
port = given args.port
server = EpollServer (host=SERVER HOST, port=port)
server.run/()

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If you run this script and access the web server from your browser, such as Firefox or IE, by
entering http://localhost:8800/, the following output will be shown in the console:

$ python 2 4 simple web server with epoll.py --port=8800

Started Epoll Server

GET / HTTP/1l.1

Host: localhost:8800

Connection: keep-alive

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

User-Agent: Mozilla/5.0 (X11; Linux i1686) AppleWebKit/537.31 (KHTML, like
Gecko) Chrome/26.0.1410.43 Safari/537.31

DNT: 1

Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-GB,en-US;g=0.8,en;g=0.6
Accept-Charset: ISO-8859-1,utf-8;9=0.7,%*;9=0.3

Cookie: MoodleSession=69149dgnvhett7br3gebsrcmhl;
MOODLEID1 =%257F%25BA%2B%2540V

GET /favicon.ico HTTP/1.1
Host: localhost:8800
Connection: keep-alive
Accept: */*

DNT: 1

User-Agent: Mozilla/5.0 (X11l; Linux i1686) AppleWebKit/537.31 (KHTML, like
Gecko) Chrome/26.0.1410.43 Safari/537.31

Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-GB,en-US;g=0.8,en;g=0.6
Accept-Charset: ISO-8859-1,utf-8;9=0.7,%*;9=0.3

You will also be able to see the following line in your browser:

Hello from Epoll Server!

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

The following screenshot shows the scenario:

File Edit View Search Terminal Help
farug@ubuntu:chapter2$ python 2_4_simple_web_server_with_epoll.py --port=8see
Started Epoll Server

GET / HTTP/1.1
Host: localhost:8808
Connection: keep-alive
User-Agent: Mozilla/5.@ (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.52 Safari/536.5
\Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/*;q=0.8
\Accept-Encoding: gzip,deflate,sdch
/Accept-Language: en-US,en;q=0.8
-Charset: IS0-8859-1,utf-8;q=0.7,*;q=0.3

GET /favicon.ico HTTP/1.1

Host: localhost:8800

Connection: keep-alive

Accept: */*

User-Agent: Mozilla/5.@ (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.52 Safari/536.5
\Accept-Encoding: gzip,deflate,sdch

/Accept-Language: en-US,en;q=08.8

\Accept-Charset: IS0-8859-1,utf-8;q=0.7,*;9=0.3

™ @ localhost:8800 - Google Chrome

localhost:8800

- = | @ localhost

Hello from Epoll Server!

In our Epollserver web server's constructor, a socket server is created and bound
to a localhost at a given port. The server's socket is set to the non-blocking mode
(setblocking (0)). The TCP_NODELAY option is also set so that our server can
exchange data without buffering (as in the case of an SSH connection). Next, the
select.epoll () instance is created and the socket's file descriptor is passed to
that instance to help monitoring.

In the run () method of the web server, it starts receiving the socket events. These events are
denoted as follows:
» EPOLLIN: This socket reads events
» EPOLLOUT: This socket writes events
In case of a server socket, it sets up the response SERVER_RESPONSE. When the socket
has any connection that wants to write data, it can do that inside the EPOLLOUT event

case. The EPOLLHUP event signals an unexpected close to a socket that is due to the
internal error conditions.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Multiplexing an echo server using Diesel

concurrent library

Sometimes you need to write a large custom networking application that wants to avoid
repeated server initialization code that creates a socket, binds to an address, listens, and
handles basic errors. There are numerous Python networking libraries out there to help you
to remove boiler-plate code. Here, we can examine such a library called Diesel.

Getting ready

Diesel uses a non-blocking technique with co-routines to write networking severs efficiently.
As stated on the website, Diesel's core is a tight event loop that uses epoll to deliver nearly
flat performance out to 10,000 connections and beyond. Here, we introduce Diesel with a
simple echo server. You also need diesel library 3.0 or any later version. You can do that with
pip command: $ pip install diesel >= 3.0.

How to do it...

In the Python Diesel framework, applications are initialized with an instance of the
Application () class and an event handler is registered with this instance. Let's see
how simple it is to write an echo server.

Listing 2.5 shows the code on the echo server example using Diesel as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 2

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.
You also need diesel library 3.0 or any later version

import diesel
import argparse

class EchoServer (object) :
"nmw An echo server using diesel"""

def handler(self, remote addr) :
"""Runs the echo server""!"
host, port = remote addr[0], remote addr[1]
print "Echo client connected from: %s:%d" % (host, port)

while True:
try:

www.it-ebooks.info

http://www.it-ebooks.info/

Multiplexing Socket |/0 for Better Performance

message = diesel.until eol ()
your message = ': '.join(['You said', message])
diesel.send(your message)
except Exception, e:
print "Exception:",e

def main(server port) :
app = diesel.Application()
server = EchoServer ()
app.add service(diesel.Service (server.handler, server port))
app.run()

if name == ' main ':

parser = argparse.ArgumentParser (description='Echo server example
with Diesel')

parser.add argument ('--port', action="store", dest="port",
type=int, required=True)

given args = parser.parse_args()

port = given args.port

main (port)

If you run this script, the server will show the following output:

$ python 2 5 echo server with diesel.py --port=8800

[2013/04/08 11:48:32] {diesel} WARNING:Starting diesel <hand-rolled
select.epoll>

Echo client connected from: 127.0.0.1:56603

On another console window, another Telnet client can be launched and the echoing message
to our server can be tested as follows:

$ telnet localhost 8800

Trying 127.0.0.1...

Connected to localhost.

Escape character is '"]'.

Hello Diesel server ?

You said: Hello Diesel server ?

SNED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The following screenshot illustrates the interaction of the Diesel chat server:

farug@ubuntu: chapter2
File Edit View Search Terminal Help

farug@ubuntu:chapter2s

farug@ubuntu:chapter2s python 2_5_echo_server_with_diesel.py --port=8800
[2014/82/22 10:13:23] {diesel} WARNING:Starting diesel <hand-rolled select.epoll=>
Echo client connected from: 127.0.0.1:52494

File Edit View Search Terminal Help

farug@ubuntu:chapter2$ telnet localhost 8800
Trying 127.0.8.1...

Connected to localhost.

Escape character is '~]'.

Hello Diesel sever!

You said: Hello Diesel sever!

Our script has taken a command-line argument for - -port and passed this to the main ()
function where our Diesel application has been initialized and run.

Diesel has a notion of service where an application can be built with many services.
EchoServer has a handler () method. This enables the server to deal with individual
client connections. The Service () method takes the handler method and a port number
to run that service.

Inside the handler () method, we determine the behavior of the server. In this case, the
server is simply returning the message text.

If we compare this code with Chapter 1, Sockets, IPv4, and Simple Client/Server
Programming, in the Writing a simple echo client/server application recipe (listing 1.13a),
it is very clear that we do not need to write any boiler-plate code and hence it's very easy to
concentrate on high-level application logic.

i

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain
Sockets, and
Network Interfaces

In this chapter, we will cover the following topics:

» Forwarding a local port to a remote host

» Pinging hosts on the network with ICMP

» Waiting for a remote network service

» Enumerating interfaces on your machine

» Finding the IP address for a specific interface on your machine
» Finding whether an interface is up on your machine

» Detecting inactive machines on your network

» Performing a basic IPC using connected sockets (socketpair)
» Performing IPC using Unix domain sockets

» Finding out if your Python supports IPv6 sockets

» Extracting an IPv6 prefix from an IPv6 address

» Writing an IPv6 echo client/server

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

Introduction

This chapter extends the use of Python's socket library with a few third-party libraries. It also
discusses some advanced techniques, for example, the asynchronous ayncore module from
the Python standard library. This chapter also touches upon various protocols, ranging from
an ICMP ping to an IPv6 client/server.

In this chapter, a few useful Python third-party modules have been introduced by some
example recipes. For example, the network packet capture library, Scapy, is well known
among Python network programmers.

A few recipes have been dedicated to explore the IPv6 utilities in Python including an IPv6
client/server. Some other recipes cover Unix domain sockets.

Forwarding a local port to a remote host

Sometimes, you may need to create a local port forwarder that will redirect all traffic from a
local port to a particular remote host. This might be useful to enable proxy users to browse a
certain site while preventing them from browsing some others.

How to do it...

Let us create a local port forwarding script that will redirect all traffic received at port 8800 to
the Google home page (http://www.google.com). We can pass the local and remote host
as well as port number to this script. For the sake of simplicity, let's only specify the local port
number as we are aware that the web server runs on port 80.

Listing 3.1 shows a port forwarding example, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse

LOCAL_SERVER _HOST = 'localhost'
REMOTE_SERVER_HOST = 'www.google.com'
BUFSIZE = 4096

import asyncore

import socket

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

First, we define the PortForwarder class:

class PortForwarder (asyncore.dispatcher) :

def

def

__init (self, ip, port, remoteip,remoteport,backlog=5) :
asyncore.dispatcher. init (self)
self.remoteip=remoteip

self.remoteport=remoteport
self.create_socket (socket.AF_ INET, socket.SOCK STREAM)
self.set reuse_addr()

self.bind((ip,port))

self.listen(backlog)

handle_accept (self) :

conn, addr = self.accept/()

print "Connected to:",addr

Sender (Receiver (conn) ,self.remoteip, self.remoteport)

Now, we need to specify the Receiver and Sender classes, as follows:

class Receiver (asyncore.dispatcher) :

def

def

def

def

def

def

_ init__ (self,conn):
asyncore.dispatcher. init (self,conn)
self.from remote_ buffer="'"
self.to remote buffer='"
self.sender=None
handle_ connect (self) :
pass
handle_read(self):
read = self.recv (BUFSIZE)
self.from remote buffer += read
writable (self) :
return (len(self.to remote buffer) > 0)
handle write(self):
sent = self.send(self.to_remote_buffer)
self.to_remote_buffer = self.to_remote_buffer[sent:]
handle_ close(self):
self.close()
if self.sender:

self.sender.close()

class Sender (asyncore.dispatcher) :

def

_ init_ (self, receiver, remoteaddr,remoteport) :
asyncore.dispatcher. init (self)
self.receiver=receiver

receiver.sender=self
self.create_socket (socket .AF_INET, socket.SOCK_ STREAM)
self.connect ((remoteaddr, remoteport))

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

def handle connect (self) :
pass
def handle read(self):
read = self.recv(BUFSIZE)
self.receiver.to_remote buffer += read
def writable(self):
return (len(self.receiver.from remote buffer) > 0)
def handle write(self):
sent = self.send(self.receiver.from remote buffer)

self .receiver.from remote buffer = self.receiver.from remote
buffer[sent:]

def handle close(self):
self.close()
self.receiver.close ()

if name == " main ":

parser = argparse.ArgumentParser (description='Port forwarding
example')

parser.add argument ('--local-host', action="store", dest="local
host", default=LOCAL_ SERVER HOST)

parser.add argument ('--local-port', action="store", dest="local
port", type=int, required=True)

parser.add argument ('--remote-host', action="store", dest="remote
host™", default=REMOTE_SERVER_ HOST)

parser.add argument ('--remote-port', action="store", dest="remote

port", type=int, default=80)

given args = parser.parse_args()

local host, remote host = given args.local host, given args.
remote host

local port, remote port = given args.local port, given args.
remote port

)

print "Starting port forwarding local %s:%s => remote %s:%s" %
(local host, local port, remote host, remote port)

PortForwarder (local host, local port, remote host, remote port)
asyncore.loop ()

If you run this script, it will show the following output:

$ python 3 1 port forwarding.py --local-port=8800

Starting port forwarding local localhost:8800 => remote www.google.com:80

Now, open your browser and visit http://localhost:8800. This will take you to the Google
home page and the script will print something similar to the following command:

Connected to: ('127.0.0.1', 38557)

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The following screenshot shows the forwarding a local port to a remote host:

Applications Places "™ g] @)

File Edit View Search Terminal Help

farug@ubuntu:chapter3$ python 3_1_port_forwarding.py --local-port=8800
Starting port forwarding local localhost:8888 => remote www.google.com:80
Connected to: ('127.8.0.1', 52513)

Connected to: ('127.0.0.1"', 52514)

File Edit View Search Terminal Help
farug@ubuntu:chapter2z$ |:|
B Google

k3 @ | 8 https://www.google.co.uk

Google - Google Chrome

+You

Google

We created a port forwarding class, PortForwarder subclassed, from asyncore.
dispatcher, which wraps around the socket object. It provides a few additional helpful
functions when certain events occur, for example, when the connection is successful or a
client is connected to a server socket. You have the choice of overriding the set of methods
defined in this class. In our case, we only override the handle accept () method.

Two other classes have been derived from asyncore.dispatcher. The Receiver class
handles the incoming client requests and the Sender class takes this Receiver instance
and processes the sent data to the clients. As you can see, these two classes override

the handle read(), handle write (), and writeable () methods to facilitate the
bi-directional communication between the remote host and local client.

In summary, the PortForwarder class takes the incoming client request in a local socket
and passes this to the Sender class instance, which in turn uses the Receiver class
instance to initiate a bi-directional communication with a remote server in the specified port.

7}

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

Pinging hosts on the network with ICMP

An ICMP ping is the most common type of network scanning you have ever encountered. It
is very easy to open a command-line prompt or terminal and type ping www.google.com.
How difficult is that from inside a Python program? This recipe shows you an example of a
Python ping.

Getting ready

You need the superuser or administrator privilege to run this recipe on your machine.

How to do it...

You can lazily write a Python script that calls the system ping command-line tool, as follows:

import subprocess
import shlex

command line = "ping -c 1 www.google.com"
args = shlex.split (command line)
try:

subprocess.check call (args, stdout=subprocess.PIPE,\
stderr=subprocess.PIPE)
print "Google web server is up!"
except subprocess.CalledProcessError:
print "Failed to get ping."

However, in many circumstances, the system's ping executable may not be available or may be
inaccessible. In this case, we need a pure Python script to do that ping. Note that this script
needs to be run as a superuser or administrator.

Listing 3.2 shows the ICMP ping, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import os
import argparse
import socket
import struct
import select
import time

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

ICMP_ECHO REQUEST = 8 # Platform specific
DEFAULT TIMEOUT = 2
DEFAULT COUNT = 4

class Pinger (object) :
"nmwo pings to a host -- the Pythonic way"""
def init (self, target host, count=DEFAULT COUNT,
timeout=DEFAULT TIMEOUT) :
self.target host = target host
self.count = count
self.timeout = timeout
def do_checksum(self, source string):
nnn o Verify the packet integritity """
sum = 0
max_count = (len(source_ string)/2)*2
count = 0
while count < max_ count:
val = ord(source stringl[count + 1])*256 + ord(source
string[count])
sum = sum + val
sum = sum & OxXfEffffff

count = count + 2

if max count<len(source string) :
sum = sum + ord(source string[len(source string) - 1])
sum = sum & OxXfEffffff

sum = (sum >> 16) + (sum & Oxffff)

sum = sum + (sum >> 16)

answer = ~sum
answer = answer & Oxffff
answer = answer >> 8 | (answer << 8 & O0xff£00)

return answer

def receive pong(self, sock, ID, timeout) :

Receive ping from the socket.

time remaining = timeout
while True:

start _time = time.time()
readable = select.select([sock], []l, [], time remaining)
time spent = (time.time() - start time)
if readable[0] == []: # Timeout
return

time received = time.time()
recv_packet, addr = sock.recvfrom(1024)
icmp header = recv _packet [20:28]

s

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

type, code, checksum, packet ID, sequence = struct.unpack(
"bbHHh", icmp header
)

if packet ID == ID:
bytes In double = struct.calcsize("d")
time sent = struct.unpack("d", recv packet[28:28 +

bytes In doublel]) [0]
return time received - time sent

time remaining = time remaining - time spent
if time remaining <= 0:
return

We need a send_ping () method that will send the data of a ping request to the target host.
Also, this will call the do_checksum () method for checking the integrity of the ping data,
as follows:

def send ping(self, sock, ID) :

Send ping to the target host

target _addr = socket.gethostbyname (self.target host)

my checksum = 0

Create a dummy header with a 0 checksum.

header = struct.pack("bbHHh", ICMP_ECHO REQUEST, 0, my_
checksum, ID, 1)

bytes In double = struct.calcsize("d")
data = (192 - bytes In double) * "Q"
data = struct.pack("d", time.time()) + data

Get the checksum on the data and the dummy header.
my checksum = self.do checksum(header + data)
header = struct.pack(
"bbHHh", ICMP_ECHO REQUEST, 0, socket.htons(my checksum),

)
packet = header + data
sock.sendto (packet, (target addr, 1))

Let us define another method called ping once () that makes a single ping call to the target
host. It creates a raw ICMP socket by passing the ICMP protocol to socket (). The exception
handling code takes care if the script is not run by a superuser or if any other socket error
occurs. Let's take a look at the following code:

def ping once(self):

Returns the delay (in seconds) or none on timeout.

icmp = socket.getprotobyname ("icmp")

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

try:
sock = socket.socket (socket.AF INET, socket.SOCK RAW,
icmp)
except socket.error, (errno, msg) :
if errno == 1:
Not superuser, so operation not permitted
msg += "ICMP messages can only be sent from root user
processes"

raise socket.error (msg)

except Exception, e:

print "Exception: %s" % (e)
my ID = os.getpid() & OXFFFF
self.send ping(sock, my ID)
delay = self.receive pong(sock, my ID, self.timeout)
sock.close ()
return delay

The main executive method of this class is ping (). It runs a for loop inside which the
ping once () method is called count times and receives a delay in the ping response in
seconds. If no delay is returned, that means the ping has failed. Let's take a look at the
following code:

def ping(self):

Run the ping process
nmnn

for i in xrange(self.count) :
print "Ping to %s..." % self.target host,

try:
delay = self.ping once()
except socket.gaierror, e:
print "Ping failed. (socket error: '$s')" % e[1l]
break
if delay == None:
print "Ping failed. (timeout within %ssec.)" % \ \
self.timeout
else:
delay = delay * 1000

print "Get pong in %0.4fms" % delay

if mname == ' main ':
parser = argparse.ArgumentParser (description='Python ping')
parser.add argument ('--target-host', action="store", dest="target
host", required=True)

given args = parser.parse_args()

target host = given args.target host
pinger = Pinger (target host=target host)
pinger.ping/()

[ei-

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces
This script shows the following output. This has been run with the superuser privilege:

$ sudo python 3 2 ping remote host.py --target-host=www.google.com

Ping to www.google.com... Get pong in 7.6921lms
Ping to www.google.com... Get pong in 7.1061lms
Ping to www.google.com... Get pong in 8.921lms
Ping to www.google.com... Get pong in 7.9899ms

A Pinger class has been constructed to define a few useful methods. The class initializes
with a few user-defined or default inputs, which are as follows:

» target host: This is the target host to ping
» count: This is how many times to do the ping
» timeout: This is the value that determines when to end an unfinished ping operation

The send_ping () method gets the DNS hostname of the target host and creates an ICMP_
ECHO REQUEST packet using the struct module. It's necessary to check the data integrity
of the method using the do_checksum () method. It takes the source string and manipulates
it to produce a proper checksum. On the receiving end, the receive pong () method

waits for a response until the timeout occurs or receives the response. It captures the ICMP
response header and then compares the packet ID and calculates the delay in the request
and response cycle.

Waiting for a remote network service

Sometimes, during the recovery of a network service, it might be useful to run a script to
check when the server is online again.

How to do it...

We can write a client that will wait for a particular network service forever or for a timeout. In
this example, by default, we would like to check when a web server is up in localhost. If you
specified some other remote host or port, that information will be used instead.

Listing 3.3 shows waiting for a remote network service, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

&

www.it-ebooks.info

http://www.it-ebooks.info/

import argparse

import socket

import errno

from time import time as now

DEFAULT TIMEOUT = 120
DEFAULT_ SERVER_HOST
DEFAULT_ SERVER_PORT

'localhost!
80

class NetServiceChecker (object) :
"rr Wait for a network service to come online"""
def init (self, host, port, timeout=DEFAULT TIMEOUT) :
self.host = host
self.port = port
self.timeout = timeout

Chapter 3

self.sock = socket.socket (socket.AF INET, socket.SOCK STREAM)

def end wait (self):
self.sock.close()

def check(self):
nnw Check the service """
if self.timeout:
end time = now() + self.timeout

while True:
try:
if self.timeout:
next timeout = end time - now()
if next timeout < 0:
return False
else:
print "setting socket next timeout %ss"
%$round (next timeout)
self.sock.settimeout (next timeout)
self.sock.connect ((self.host, self.port))
handle exceptions
except socket.timeout, err:
if self.timeout:
return False
except socket.error, err:
print "Exception: %s" %err
else: # 1if all goes well
self.end wait ()

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

return True

if name == ' main ':
parser = argparse.ArgumentParser (description='Wait for Network

Service')

parser.add argument ('--host', action="store", dest="host",
default=DEFAULT SERVER_ HOST)

parser.add argument ('--port', action="store", dest="port",
type=int, default=DEFAULT SERVER_ PORT)

parser.add argument ('--timeout', action="store", dest="timeout",

type=int, default=DEFAULT TIMEOUT)

given args = parser.parse_args()

host, port, timeout = given args.host, given args.port, given
args.timeout

service checker = NetServiceChecker (host, port, timeout=timeout)

print "Checking for network service %s:%s ..." %(host, port)

if service checker.check() :

print "Service is available again!"

If a web server, such as Apache, is running on your machine, this script will show the
following output:

$ python 3 3 wait for remote service.py

Waiting for network service localhost:80 ...

setting socket next timeout 120.0s

Service is available again!

Now, stop the Apache process, run this script, and restart Apache again. The output pattern
will be different. On my machine, the following output pattern was found:

Exception: [Errno 103] Software caused connection abort

setting socket next timeout 104.189137936

Exception: [Errno 111] Connection refused

setting socket next timeout 104.186291933

Exception: [Errno 103] Software caused connection abort

setting socket next timeout 104.186164856

Service is available again!

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The following screenshot shows the waiting for an active Apache web server process:

y qualified domatn name, using 127.9.0.1 for ServerName

y qualified domain name, using 127.9.9.1 for ServerName

The preceding script uses the argparse module to take the user input and process the
hostname, port, and timeout, that is how long our script will wait for the desired network
service. It launches an instance of the NetServiceChecker class and calls the check ()
method. This method calculates the final end time of waiting and uses the socket's
settimeout () method to control each round's end time, that is next timeout. It then
uses the socket's connect () method to test if the desired network service is available until
the socket timeout occurs. This method also catches the socket timeout error and checks the
socket timeout against the timeout values given by the user.

Enumerating interfaces on your machine

If you need to list the network interfaces present on your machine, it is not very complicated in
Python. There are a couple of third-party libraries out there that can do this job in a few lines.
However, let's see how this is done using a pure socket call.

Getting ready

You need to run this recipe on a Linux box. To get the list of available interfaces, you can
execute the following command:

$ /sbin/ifconfig

]

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

How to do it...

Listing 3.4 shows how to list the networking interfaces, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.
import sys

import socket

import fcntl

import struct

import array

SIOCGIFCONF = 0x8912 #from C library sockios.h
STUCT_SIZE 32 32

STUCT_SIZE 64 = 40

PLATFORM 32 MAX NUMBER = 2%**32

DEFAULT_ INTERFACES = 8

def list interfaces():
interfaces = []
max_ interfaces = DEFAULT INTERFACES
is 64bits = sys.maxsize > PLATFORM 32 MAX NUMBER
struct size = STUCT SIZE 64 if is 64bits else STUCT SIZE 32
sock = socket.socket (socket.AF INET, socket.SOCK DGRAM)
while True:
bytes = max interfaces * struct size
interface names = array.array('B', '\0' * bytes)
sock _info = fcntl.ioctl(
sock.fileno (),
SIOCGIFCONF,
struct.pack('iL', bytes,interface names.buffer info () [0])
)
outbytes = struct.unpack('iL', sock info) [0]
if outbytes == bytes:
max_ interfaces *= 2
else:
break
namestr = interface names.tostring()
for i in range (0, outbytes, struct size):
interfaces.append ((namestr[i:1+16] .split('\0', 1) [0]))
return interfaces

if name == ' main ':

interfaces = list interfaces()

print "This machine has %s network interfaces: %s."
% (len(interfaces), interface)

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The preceding script will list the network interfaces, as shown in the following output:

$ python 3 4 list network interfaces.py

This machine has 2 network interfaces: ['lo', 'ethO0'].

This recipe code uses a low-level socket feature to find out the interfaces present on the
system. The single 1ist interfaces () method creates a socket object and finds the
network interface information from manipulating this object. It does so by making a call to the
fnctl module's ioctl () method. The fnctl module interfaces with some Unix routines,
for example, £nctl (). This interface performs an 1/0 control operation on the underlying file
descriptor socket, which is obtained by calling the £ileno () method of the socket object.

The additional parameter of the ioct1 () method includes the STOCGIFADDR constant
defined in the C socket library and a data structure produced by the struct module's
pack () function. The memory address specified by a data structure is modified as a result
of the ioctl () call. In this case, the interface names variable holds this information.
After unpacking the sock_info return value of the ioctl () call, the number of network
interfaces is increased twice if the size of the data suggests it. This is done in a while loop
to discover all interfaces if our initial interface count assumption is not correct.

The names of interfaces are extracted from the string format of the interface names
variable. It reads specific fields of that variable and appends the values in the interfaces'
list. At the end of the 1ist interfaces () function, this is returned.

Finding the IP address for a specific

interface on your machine

Finding the IP address of a particular network interface may be needed from your Python
network application.

Getting ready

This recipe is prepared exclusively for a Linux box. There are some Python modules specially
designed to bring similar functionalities on Windows and Mac platforms. For example, see
http://sourceforge.net/projects/pywin32/ for Windows-specific implementation.

How to do it...

You can use the fnct1 module to query the IP address on your machine.

&7}

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

Listing 3.5 shows us how to find the IP address for a specific interface on your machine,
as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import sys
import socket
import fcntl
import struct
import array

def get ip_ address (ifname) :
s = socket.socket (socket .AF_INET, socket.SOCK_DGRAM)
return socket.inet ntoa(fcntl.ioctl(
s.fileno(),
0x8915, # SIOCGIFADDR
struct.pack('256s', ifname[:15])

) [20:24])
if __name_ == '_main_ ':

#interfaces = 1list interfaces()

parser = argparse.ArgumentParser (description='Python networking
utils"')

parser.add argument ('--ifname', action="store", dest="ifname",

required=True)

given args = parser.parse_args ()

ifname = given_args.ifname

print "Interface [%s] --> IP: %s" %(ifname, get ip
address (ifname))

The output of this script is shown in one line, as follows:

$ python 3 5 get interface ip address.py --ifname=eth0
Interface [eth0] --> IP: 10.0.2.15

This recipe is similar to the previous one. The preceding script takes a command-line argument:
the name of the network interface whose IP address is to be known. The get_ip address ()
function creates a socket object and calls the fnctl.ioctl () function to query on that object
about IP information. Note that the socket . inet_ntoa () function converts the binary data to
a human-readable string in a dotted format as we are familiar with it.

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Finding whether an interface is up on

your machine

If you have multiple network interfaces on your machine, before doing any work on a particular
interface, you would like to know the status of that network interface, for example, if the
interface is actually up. This makes sure that you route your command to active interfaces.

Getting ready

This recipe is written for a Linux machine. So, this script will not run on a Windows or Mac
host. In this recipe, we use nmap, a famous network scanning tool. You can find more about
nmap from its website http://nmap.org/.

You also need the python-nmap module to run this recipe. This can be installed by pip,
as follows:

$ pip install python-nmap

How to do it...

We can create a socket object and get the IP address of that interface. Then, we can use any
of the scanning techniques to probe the interface status.

Listing 3.6 shows the detect network interface status, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import socket

import struct

import fcntl

import nmap

SAMPLE PORTS = '21-23'

def get interface status(ifname) :
sock = socket.socket (socket.AF INET, socket.SOCK DGRAM)
ip address = socket.inet ntoa(fcntl.ioctl(
sock.fileno (),
0x8915, #SIOCGIFADDR, C socket library sockios.h
struct.pack('256s', ifname[:15])
) [20:24])

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

nm = nmap.PortScanner ()
nm.scan (ip address, SAMPLE PORTS)
return nm[ip address] .state()

if name == "' main_ ':

parser = argparse.ArgumentParser (description='Python networking
utils"')

parser.add argument ('--ifname', action="store", dest="ifname",

required=True)

given args = parser.parse_args()

ifname = given args.ifname

print "Interface ([%s] is: %s" %(ifname, get interface
status (ifname))

If you run this script to inquire the status of the etho status, it will show something similar to
the following output:
$ python 3 6 find network interface status.py --ifname=eth0

Interface [eth0] is: up

The recipe takes the interface's name from the command line and passes it to the
get_interface status () function. This function finds the IP address of that interface
by manipulating a UDP socket object.

This recipe needs the nmap third-party module. We can install that PyPI using the pip install
command. The nmap scanning instance, nm, has been created by calling PortScanner ().
An initial scan to a local IP address gives us the status of the associated network interface.

Detecting inactive machines on your network

If you have been given a list of IP addresses of a few machines on your network and you are
asked to write a script to find out which hosts are inactive periodically, you would want to create
a network scanner type program without installing anything on the target host computers.

Getting ready

This recipe requires installing the Scapy library (> 2.2), which can be obtained at
http://www.secdev.org/projects/scapy/files/scapy-latest.zip.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

We can use Scapy, a mature network-analyzing, third-party library, to launch an ICMP scan.
Since we would like to do it periodically, we need Python's sched module to schedule the
scanning tasks.

Listing 3.7 shows us how to detect inactive machines, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.
This recipe requires scapy-2.2.0 or higher

import argparse

import time

import sched

from scapy.all import sr, srp, IP, UDP, ICMP, TCP, ARP, Ether
RUN_FREQUENCY = 10

scheduler = sched.scheduler(time.time, time.sleep)

def detect inactive hosts(scan hosts):
nmnn
Scans the network to find scan hosts are live or dead
scan_hosts can be like 10.0.2.2-4 to cover range.
See Scapy docs for specifying targets.
nmnn
global scheduler
scheduler.enter (RUN_FREQUENCY, 1, detect inactive hosts, (scan_

hosts,))
inactive hosts = []
try:
ans, unans = sr(IP(dst=scan_hosts)/ICMP(),retry=0, timeout=1)
ans.summary (lambda (s,r) : r.sprintf("$IP.src% is alive"))

for inactive in unans:
print "%s is inactive" %inactive.dst
inactive hosts.append(inactive.dst)
print "Total %d hosts are inactive" % (len(inactive hosts))
except KeyboardInterrupt:

exit (0)
if name == " main ":
parser = argparse.ArgumentParser (description='Python networking
utils')
parser.add argument ('--scan-hosts', action="store", dest="scan
hosts", required=True)

given args = parser.parse_args()

scan_hosts = given args.scan hosts

scheduler.enter (1, 1, detect inactive hosts, (scan hosts,))
scheduler.run ()

7}

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

The output of this script will be something like the following command:

$ sudo python 3 7 detect inactive machines.py --scan-hosts=10.0.2.2-4
Begin emission:

.*,..Finished to send 3 packets.

Received 6 packets, got 1 answers, remaining 2 packets
10.0.2.2 is alive

10.0.2.4 is inactive

10.0.2.3 is inactive

Total 2 hosts are inactive

Begin emission:

* Finished to send 3 packets.

Received 3 packets, got 1 answers, remaining 2 packets
10.0.2.2 is alive

10.0.2.4 is inactive

10.0.2.3 is inactive

Total 2 hosts are inactive

The preceding script first takes a list of network hosts, scan_hosts, from the command line.
It then creates a schedule to launch the detect inactive hosts () function after a
one-second delay. The target function takes the scan_hosts argument and calls Scapy's
sr () function.

This function schedules itself to rerun after every 10 seconds by calling the
schedule.enter () function once again. This way, we run this scanning task periodically.

Scapy's sr () scanning function takes an IP, protocol and some scan-control information. In
this case, the IP () method passes scan_hosts as the destination hosts to scan, and the
protocol is specified as ICMP. This can also be TCP or UDP. We do not specify a retry and
one-second timeout to run this script faster. However, you can experiment with the options
that suit you.

The scanning sr () function returns the hosts that answer and those that don't as a tuple. We
check the hosts that don't answer, build a list, and print that information.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Performing a basic IPC using connected

sockets (socketpair)

Sometimes, two scripts need to communicate some information between themselves via two
processes. In Unix/Linux, there's a concept of connected socket, of socketpair. We can
experiment with this here.

Getting ready

This recipe is designed for a Unix/Linux host. Windows/Mac is not suitable for running
this one.

How to do it...

We use a test_socketpair () function to wrap a few lines that test the socket's
socketpair () function

List 3.8 shows an example of socketpair, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import socket
import os

BUFSIZE = 1024
def test socketpair():
nnn Test Unix socketpair"""

parent, child = socket.socketpair()

pid = os.fork()

try:

if pid:
print "@Parent, sending message..."
child.close()
parent.sendall ("Hello from parent!")
response = parent.recv (BUFSIZE)
print "Response from child:", response
parent.close ()

else:

print "@Child, waiting for message from parent"

(75}

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

parent.close ()
message = child.recv (BUFSIZE)
print "Message from parent:", message
child.sendall ("Hello from child!!")
child.close()
except Exception, err:
print "Error: %s" %err

if name == ' main ':
test socketpair()

The output from the preceding script is as follows:

$ python 3 8 ipc using socketpairs.py
@Parent, sending message...

@Child, waiting for message from parent
Message from parent: Hello from parent!

Response from child: Hello from child!!

The socket.socketpair () function simply returns two connected socket objects. In our
case, we can say that one is a parent and another is a child. We fork another process via a
os.fork () call. This returns the process ID of the parent. In each process, the other process'
socket is closed first and then a message is exchanged via a sendall () method call on the
process's socket. The try-except block prints any error in case of any kind of exception.

Performing IPC using Unix domain sockets

Unix domain sockets (UDS) are sometimes used as a convenient way to communicate
between two processes. As in Unix, everything is conceptually a file. If you need an example of
such an IPC action, this can be useful.

How to do it...

We launch a UDS server that binds to a filesystem path, and a UDS client uses the same path
to communicate with the server.

Listing 3.9a shows a Unix domain socket server, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

7

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

import socket
import os
import time

SERVER_PATH = "/tmp/python unix socket server"

def run unix domain socket server() :
if os.path.exists (SERVER_ PATH) :
os.remove (SERVER_PATH)

print "starting unix domain socket server."
server = socket.socket (socket.AF UNIX, socket.SOCK DGRAM)
server.bind (SERVER_PATH)

print "Listening on path: %s" %SERVER PATH
while True:

datagram = server.recv(1024)

if not datagram:

break
else:
print "-" * 20
print datagram
if "DONE" == datagram:
break
print "-" * 20

print "Server is shutting down now..."
server.close ()

os.remove (SERVER PATH)

print "Server shutdown and path removed."

if name == '_ main__ ':
run _unix domain socket server()

Listing 3.9b shows a UDS client, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import socket
import sys

SERVER_PATH = "/tmp/python unix socket server"
def run unix domain socket client():

""r Run "a Unix domain socket client """
sock = socket.socket (socket.AF UNIX, socket.SOCK DGRAM)

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

Connect the socket to the path where the server is listening
server address = SERVER PATH
print "connecting to %$s" % server address
try:
sock.connect (server address)
except socket.error, msg:
print >>sys.stderr, msg
sys.exit (1)

try:
message = "This is the message. This will be echoed back!™"
print "Sending [%$s]" %message
sock.sendall (message)
amount received = 0
amount expected = len(message)

while amount received < amount expected:
data = sock.recv(1l6)
amount received += len(data)
print >>sys.stderr, "Received [%s]" % data

finally:
print "Closing client"
sock.close ()

if name == '_ main__ ':
run unix domain socket client ()

The server output is as follows:

$ python 3 9a unix domain socket server.py
starting unix domain socket server.

Listening on path: /tmp/python unix socket server

This is the message. This will be echoed back!
The client output is as follows:

$ python 3 9b unix domain socket client.py
connecting to /tmp/python unix socket server

Sending [This is the message. This will be echoed back!]

7@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

A common path is defined for a UDS client/server to interact. Both the client and server use
the same path to connect and listen to.

In a server code, we remove the path if it exists from the previous run of this script. It then
creates a Unix datagram socket and binds it to the specified path. It then listens for incoming
connections. In the data processing loop, it uses the recv () method to get data from the
client and prints that information on screen.

The client-side code simply opens a Unix datagram socket and connects to the shared server
address. It sends a message to the server using sendall (). It then waits for the message to
be echoed back to itself and prints that message.

Finding out if your Python supports

IPv6 sockets

IP version 6 or IPv6 is increasingly adopted by the industry to build newer applications. In case
you would like to write an IPv6 application, the first thing you'd like to know is if your machine
supports IPv6. This can be done from the Linux/Unix command line, as follows:

$ cat /proc/mnet/if ineté6
00000000000000000000000000000001 01 80 10 80 lo
£e800000000000000a0027f£f£fe950d1a 02 40 20 80 ethO

From your Python script, you can also check if the IPv6 support is present on your machine,
and Python is installed with that support.

Getting ready

For this recipe, use pip to install a Python third-party library, netifaces, as follows:

$ pip install netifaces

How to do it...

We can use a third-party library, netifaces, to find out if there is IPv6 support on your
machine. We can call the interfaces () function from this library to list all interfaces
present in the system.

Listing 3.10 shows the Python IPv6 support checker, as follows:

#!/usr/bin/env python
Python Network Programming Cookbook -- Chapter - 3
This program is optimized for Python 2.7.

(77}

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

It may run on any other version with/without modifications.
This program depends on Python module netifaces => 0.8
import socket

import argparse

import netifaces as ni

def inspect ipvé support () :

"nv Find the ipvé address"""
print "IPV6 support built into Python: %s" %socket.has ipvé
ipvé_addr = {}
for interface in ni.interfaces():

all addresses = ni.ifaddresses(interface)

print "Interface %s:" %interface

for family,addrs in all addresses.iteritems() :

fam name = ni.address families[family]

print ' Address family: %s' % fam name
for addr in addrs:
if fam name == 'AF INET6':
ipvée_addr[interface] = addr['addr']
print ! Address : %s' % addr['addr'l]
nmask = addr.get ('netmask', None)
if nmask:
print Netmask : %s' % nmask
bcast = addr.get ('broadcast', None)
if bcast:
print Broadcast: %s' % bcast

if ipvé_addr:
print "Found IPvé6 address: %s" %$ipvé_addr
else:

print "No IPvé interface found!"

if name == ' main ':

inspect ipvé support ()
The output from this script will be as follows:

$ python 3 10 check ipvé support.py
IPV6 support built into Python: True
Interface lo:
Address family: AF PACKET
Address : 00:00:00:00:00:00
Address family: AF INET
Address : 127.0.0.1

@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Netmask : 255.0.0.0
Address family: AF INET6
Address : ::1
Netmask : ffff:ffff:ffff:fFff:EFfF:EFEF:EFEF:FEFEF
Interface ethO:
Address family: AF PACKET
Address : 08:00:27:95:0d:1a
Broadcast: ff:ff:ff:ff:£ff:£ff
Address family: AF INET
Address : 10.0.2.15
Netmask : 255.255.255.0
Broadcast: 10.0.2.255
Address family: AF INET6
Address : fe80::a00:27ff:fe95:dla
Netmask : ffff:ffff:ffff:£Ff£fFf::
Found IPv6 address: {'lo': '::1', 'ethO': 'fe80::a200:27ff:fe95:dla'}

The following screenshot shows the interaction between the IPv6 client and server:

File Edit View Search Terminal Help

farug@ubuntu:chapter3$ python 3_12a_ipv6_echo_server.py --port=8800
server lisenting on localhost:8800

connected to ('127.8.8.1', 43596)

teceived data from the client: [Hello from ipvé client]

sent data echoed back to the client: [Hello from ipvé client]

(<1-Xno

faruq@ubuntu: chapter3

File Edit View Search Terminal Help

farug@ubuntu:chapter3$ python 3_12b_ipv6_echo_client.py --port=8800
send data to server: Hello from ipvé client

teceived from server 'Hello from ipvé client'’

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

The IPv6 support checker function, inspect ipvé support (), first checks if Python is
built with IPv6 using socket .has_ipvé. Next, we call the interfaces () function from the
netifaces module. This gives us the list of all interfaces. If we call the i faddresses ()
method by passing a network interface to it, we can get all the IP addresses of this interface.
We then extract various IP-related information, such as protocol family, address, netmask,
and broadcast address. Then, the address of a network interface has been added to the
IPv6_address dictionary if its protocol family matches AF_INET6.

Extracting an IPv6 prefix from an

IPv6 address

In your IPv6 application, you need to dig out the IPv6 address for getting the prefix
information. Note that the upper 64-bits of an IPv6 address are represented from a global
routing prefix plus a subnet ID, as defined in RFC 3513. A general prefix (for example, /48)
holds a short prefix based on which a number of longer, more specific prefixes (for example,
/64) can be defined. A Python script can be very helpful in generating the prefix information.

How to do it...

We can use the netifaces and netaddr third-party libraries to find out the IPv6 prefix
information for a given IPv6 address, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import socket
import netifaces as ni
import netaddr as na

def extract ipvé infol():

nen Extracts IPv6e information"™"
print "IPV6 support built into Python: %s" %socket.has ipvé
for interface in ni.interfaces():

all addresses = ni.ifaddresses (interface)

print "Interface %s:" %interface

for family,addrs in all addresses.iteritems() :

fam name = ni.address families[family]

#print ' Address family: %s' % fam name
for addr in addrs:
if fam name == 'AF INET6':

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

addr = addr(['addr']

has eth string = addr.split("%eth")

if has eth string:
addr = addr.split ("%eth") [0]

Chapter 3

print " IP Address: %s" %na.IPNetwork (addr)
print " IP Version: %s" %na.IPNetwork (addr) .version
print " IP Prefix length: %s" %na.IPNetwork (addr) .prefixlen
print " Network: %s" %na.IPNetwork (addr) .network
print " Broadcast: %s" %na.IPNetwork (addr) .broadcast
if name == ' main ':

extract ipvé_info()
The output from this script is as follows:

$ python 3 11 extract ipvé prefix.py
IPV6 support built into Python: True
Interface lo:
IP Address: ::1/128
IP Version: 6
IP Prefix length: 128
Network: ::1
Broadcast: ::1
Interface ethO:
IP Address: fe80::a00:27ff:fe95:dla/128
IP Version: 6
IP Prefix length: 128
Network: fe80::a00:27ff:£fe95:dla
Broadcast: fe80::a00:27ff:fe95:dla

Python's netifaces module gives us the network interface IPv6 address. It uses the
interfaces () and ifaddresses () functions for doing this. The netaddr module is
particularly helpful to manipulate a network address. It has a IPNetwork () class that
provides us with an address, IPv4 or IPv6, and computes the prefix, network, and broadcast
addresses. Here, we find this information class instance's version, prefixlen, and network

and broadcast attributes.

www.it-ebooks.info

s

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

Writing an IPv6 echo client/server

You need to write an IPv6 compliant server or client and wonder what could be the differences
between an IPv6 compliant server or client and its IPv4 counterpart.

How to do it...

We use the same approach as writing an echo client/server using IPv6. The only major
difference is how the socket is created using IPv6 information.

Listing 12a shows an IPv6 echo server, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 3

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import socket
import sys

HOST = 'localhost'

def echo_server (port, host=HOST) :
""n"Echo server using IPve """
for res in socket.getaddrinfo(host, port, socket.AF UNSPEC,
socket .SOCK_STREAM, 0, socket.AI PASSIVE):
af, socktype, proto, canonname, sa = res
try:
sock = socket.socket (af, socktype, proto)
except socket.error, err:
print "Error: %s" %err

try:
sock.bind (sa)
sock.listen(1)
print "Server listening on %s:%s" % (host, port)
except socket.error, msg:
sock.close ()
continue
break
sys.exit (1)
conn, addr = sock.accept ()
print 'Connected to', addr
while True:
data = conn.recv(1024)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

print "Received data from the client: [%$s]" %data

if not data: break

conn.send (data)

print "Sent data echoed back to the client: [%$s]" %data
conn.close ()

if name == ' main ':

parser = argparse.ArgumentParser (description='IPv6 Socket Server
Example')

parser.add argument ('--port', action="store", dest="port",

type=int, required=True)
given args = parser.parse_args()
port = given args.port
echo_ server (port)

Listing 12b shows an IPv6 echo client, as follows:

#!/usr/bin/env python
Python Network Programming Cookbook -- Chapter - 3
This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import socket
import sys

HOST = 'localhost'
BUFSIZE = 1024

def ipvé echo client (port, host=HOST) :
for res in socket.getaddrinfo(host, port, socket.AF UNSPEC,
socket .SOCK_STREAM) :
af, socktype, proto, canonname, sa = res
try:
sock = socket.socket (af, socktype, proto)
except socket.error, err:
print "Error:%s" %err
try:
sock.connect (sa)
except socket.error, msg:
sock.close ()
continue
if sock is None:
print 'Failed to open socket!'
sys.exit (1)

&)

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6, Unix Domain Sockets, and Network Interfaces

msg = "Hello from ipvé client"
print "Send data to server: %s" %msg
sock.send (msg)
while True:
data = sock.recv (BUFSIZE)
print 'Received from server',6 repr (data)
if not data:
break
sock.close ()

if name == ' main ':

parser = argparse.ArgumentParser (description='IPvé6 socket client
example')

parser.add argument ('--port', action="store", dest="port",

type=int, required=True)
given args = parser.parse_args()
port = given args.port
ipve echo client (port)

The server output is as follows:

$ python 3 12a ipv6 echo server.py --port=8800

Server lisenting on localhost:8800

Connected to ('127.0.0.1', 35034)

Received data from the client: [Hello from ipv6 client]

Sent data echoed back to the client: [Hello from ipvé6 client]
The client output is as follows:

$ python 3 12b ipvé6 echo client.py --port=8800
Send data to server: Hello from ipvé client

Received from server 'Hello from ipvé client'

The IPv6 echo server first determines its IPv6 information by calling socket .getaddrinfo ().
Notice that we passed the AF_UNSPEC protocol for creating a TCP socket. The resulting
information is a tuple of five values. We use three of them, address family, socket type, and
protocol, to create a server socket. Then, this socket is bound with the socket address from the
previous tuple. It then listens to the incoming connections and accepts them. After a connection
is made, it receives data from the client and echoes it back.

On the client-side code, we create an IPv6-compliant client socket instance and send the
data using the send () method of that instance. When the data is echoed back, the recv ()
method is used to get it back.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with
HTTP for the Internet

In this chapter, we will cover the following topics:

» Downloading data from an HTTP server

» Serving HTTP requests from your machine

» Extracting cookie information after visiting a website

» Submitting web forms

» Sending web requests through a proxy server

» Checking whether a web page exists with the HEAD request

» Spoofing Mozilla Firefox in your client code

» Saving bandwidth in web requests with the HTTP compression

» Writing an HTTP fail-over client with resume and partial downloading
» Writing a simple HTTPS server code with Python and OpenSSL

Introduction

This chapter explains Python HTTP networking library functions with a few third-party libraries.
For example, the requests library deals with the HTTP requests in a nicer and cleaner way.
The OpenSsSL library is used in one of the recipes to create a SSL-enabled web server.

Many common HTTP protocol features have been illustrated in a few recipes, for example,
the web form submission with POST, manipulating header information, use of compression,
and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

Downloading data from an HTTP server

You would like to write a simple HTTP client to fetch some data from any web server using the
native HTTP protocol. This can be the very first steps towards creating your own HTTP browser.

How to do it...

Let us access www . python . org with our Pythonic minimal browser that uses
Python's httplib.

Listing 4.1 explains the following code for a simple HTTP client:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import httplib

REMOTE_SERVER_ HOST
REMOTE_SERVER_ PATH

'www.python.org'

l/l

class HTTPClient:

def init (self, host):
self.host = host

def fetch(self, path):
http = httplib.HTTP (self.host)

Prepare header
http.putrequest ("GET", path)

http.putheader ("User-Agent", _ file)
http.putheader ("Host", self.host)
http.putheader ("Accept", "*/*")

http.endheaders ()

try:
errcode, errmsg, headers = http.getreply()

except Exception, e:

~[ee]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

print "Client failed error code: %s message:%s headers:%s"
% (errcode, errmsg, headers)
else:
print "Got homepage from %s" %self.host

file = http.getfile()
return file.read()

if name == " main ":
parser = argparse.ArgumentParser (description='HTTP Client

Example"')

parser.add argument ('--host', action="store", dest="host",
default=REMOTE_SERVER_ HOST)

parser.add argument ('--path', action="store", dest="path",

default=REMOTE_SERVER PATH)
given args = parser.parse_args()
host, path = given args.host, given args.path
client = HTTPClient (host)
print client.fetch(path)

This recipe will by default fetch a page from www . python.org. You can run this recipe with
or without the host and path arguments. If this script is run, it will show the following output:

$ python 4 1 download data.py --host=www.python.org
Got homepage from www.python.org

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0g9/1999/xhtml" xml:lang="en" lang="en">

<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<title>Python Programming Language – Official Website</title>

If you run this recipe with an invalid path, it will show the following server response:

$ python 4 1 download data.py --host='www.python.org' --path='/not-
exist'
Got homepage from www.python.org

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>Page Not Found</title>
<meta name="keywords" content="Page Not Found" />

<meta name="description" content="Page Not Found" />

This recipe defines an HTTPClient class that fetches data from the remote host. It is built
using Python's native httplib library. In the fetch () method, it uses the HTTP () function
and other auxiliary functions to create a dummy HTTP client, such as putrequest () or
putheader (). It first puts the GET/path string that is followed by setting up a user agent,
which is the name of the current script (__file).

The main request getreply () method is put inside a try-except block. The response is
retrieved from the getfile () method and the stream's content is read.

Serving HTTP requests from your machine

You would like to create your own web server. Your web server should handle client requests
and send a simple hello message.

How to do it...

Python ships with a very simple web server that can be launched from the command line
as follows:

$ python -m SimpleHTTPServer 8080

This will launch an HTTP web server on port 8080. You can access this web server from your
browser by typing http://localhost :8080. This will show the contents of the current
directory from where you run the preceding command. If there is any web server index file,
for example, index.html, inside that directory, your browser will show the contents of
index.html. However, if you like to have full control over your web server, you need to
launch your customized HTTP server..

Listing 4.2 gives the following code for the custom HTTP web server:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse

(e

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

import sys
from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer

'127.0.0.1"
8800

DEFAULT HOST
DEFAULT PORT

class RequestHandler (BaseHTTPRequestHandler) :
" Custom request handler"""

def do GET (self):
"1 Handler for the GET requests """
self.send response (200)
self.send header ('Content-type', 'text/html')
self.end headers ()
Send the message to browser
self.wfile.write("Hello from server!")

class CustomHTTPServer (HTTPServer) :
"A custom HTTP server"
def init (self, host, port):
server address = (host, port)
HTTPServer. init (self, server address, RequestHandler)

def run server (port) :

try:
server= CustomHTTPServer (DEFAULT HOST, port)
print "Custom HTTP server started on port: %$s" % port
server.serve forever ()

except Exception, err:
print "Error:%s" %err

except KeyboardInterrupt:
print "Server interrupted and is shutting down...

server.socket.close ()

if name == " main ":

parser = argparse.ArgumentParser (description='Simple HTTP Server
Example')

parser.add argument ('--port', action="store", dest="port",
type=int, default=DEFAULT PORT)

given args = parser.parse_args()

port = given args.port

run_server (port)

]

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

The following screenshot shows a simple HTTP server:

File Edit View Search Terminal Help

farug@ubuntu:chapter4$ python 4_2 simple_http_server.py --port=8800
Custom HTTP server started on port: 8800

localhost - - [22/Feb/2014 11:25:41] "GET / HTTP/1.1" 200 -

localhost - - [22/Feb/2014 11:25:41] "GET ffavicon.ico HTTP/1.1" 200 -

localhost:8800 - Google Chrome

| localhost:B800

- € | @ localhost Al &

Hello from server!

If you run this web server and access the URL from a browser, this will send the one line text
Hello from server! tothe browser, as follows:

$ python 4 2 simple http server.py --port=8800

Custom HTTP server started on port: 8800

localhost - - [18/Apr/2013 13:39:33] "GET / HTTP/1.1" 200 -
localhost - - [18/Apr/2013 13:39:33] "GET /favicon.ico HTTP/1.1" 200

In this recipe, we created the CustomHTTPServer class inherited from the HTTPServer
class. In the constructor method, the CustomHTTPServer class sets up the server address
and port received as a user input. In the constructor, our web server's RequestHandler
class has been set up. Every time a client is connected, the server handles the request
according to this class.

The RequestHandler defines the action to handle the client's GET request. It sends an HTTP
header (code 200) with a success message Hello from server! using the write () method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Extracting cookie information after

visiting a website

Many websites use cookies to store their various information on to your local disk. You would like
to see this cookie information and perhaps log in to that website automatically using cookies.

How to do it...

Let us try to pretend to log in to a popular code-sharing website, www . bitbucket .org. We
would like to submit the login information on the login page, https://bitbucket.org/
account/signin/?next=/. The following screenshot shows the login page:

™ ™ Log in — Bitbucket - Google Chrome

& Log in — Bitbucket

Ll & Atlassian, Inc. [US] https://bitbucket.org

LDg in Switch to OpeniD log in

Username or email

Password

m Forgot your password?

Need an account? Sign up free

or

g Google n Facebook 5 Twitter GitHub

So, we note down the form element IDs and decide which fake values should be submitted.
We access this page the first time, and the next time, we access the home page to observe
what cookies have been set up.

Listing 4.3 explains extracting cookie information as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import cookielib
import urllib

import urllib2

ID USERNAME = 'id username'

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

ID PASSWORD = 'id password'

USERNAME = 'you@email.com'

PASSWORD = 'mypassword'

LOGIN URL = 'https://bitbucket.org/account/signin/?next=/"
NORMAL URL = 'https://bitbucket.org/’

def extract cookie info():
nnn Fake login to a site with cookie""™"
setup cookie jar
cj = cookielib.Cookiedar ()
login data = urllib.urlencode ({ID USERNAME : USERNAME,
ID_PASSWORD : PASSWORD})
create url opener
opener = urllib2.build opener (urllib2.HTTPCookieProcessor(cj))
resp = opener.open(LOGIN URL, login data)

send login info
for cookie in cj:
print "----First time cookie: %s --> %s" % (cookie.name,
cookie.value)
print "Headers: %s" %resp.headers

now access without any login info
resp = opener.open (NORMAL URL)
for cookie in cj:
print "++++Second time cookie: %s --> %s" % (cookie.name,
cookie.value)

print "Headers: %s" %resp.headers

if name == ' main_ ':
extract cookie info()

Running this recipe results in the following output:

$ python 4 3 extract cookie information.py

----First time cookie: bb session --> aed58ddel228571bf60466581790566d
Headers: Server: nginx/1.2.4

Date: Sun, 05 May 2013 15:13:56 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 21167

Connection: close

X-Served-By: bitbucket04

Content-Language: en

X-Static-Version: c67fb01467cf

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Expires: Sun, 05 May 2013 15:13:56 GMT

Vary: Accept-Language, Cookie

Last-Modified: Sun, 05 May 2013 15:13:56 GMT
X-Version: 14£9c66ad9db

ETag: "3ba8ld9eb350c295a453b5ab6e88935e"
X-Request-Count: 310

Cache-Control: max-age=0

Set-Cookie: bb session=aed58ddel228571bf60466581790566d; expires=Sun, 19-
May-2013 15:13:56 GMT; httponly; Max-Age=1209600; Path=/; secure

Strict-Transport-Security: max-age=2592000
X-Content-Type-Options: nosniff

++++Second time cookie: bb session --> aed58ddel228571bf60466581790566d
Headers: Server: nginx/1.2.4

Date: Sun, 05 May 2013 15:13:57 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 36787

Connection: close

X-Served-By: bitbucket02

Content-Language: en

X-Static-Version: c67fb01467cf

Vary: Accept-Language, Cookie

X-Version: 14£f9c66ad9db

X-Request-Count: 97
Strict-Transport-Security: max-age=2592000
X-Content-Type-Options: nosniff

We have used Python's cookielib and set up a cookie jar, cj. The login data has been
encoded using urllib.urlencode. urllib2 has a build opener () method, which takes
the predefined cookie jar with an instance of HTTPCookieProcessor () and returns a URL
opener. We call this opener twice: once for the login page and once for the home page of the
website. It seems that only one cookie, bb_session, was set with the set-cookie directive
present in the page header. More information about cookielib can be found on the official
Python documentation site at http://docs.python.org/2/library/cookielib.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

Submitting web forms

During web browsing, we submit web forms many times in a day. Now, you would like do that
using the Python code.

Getting ready

This recipe uses a third-party Python module called requests. You can install the compatible
version of this module by following the instructions from http://docs.python-
requests.org/en/latest/user/install/. For example, you can use pip to install
requests from the command line as follows:

$ pip install requests

How to do it...

Let us submit some fake data to register with www . twitter.com. Each form submission
has two methods: GET and POST. The less sensitive data, for example, search queries, are
usually submitted by GET and the more sensitive data is sent via the POST method. Let us
try submitting data with both of them.

Listing 4.4 explains the submit web forms, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import requests
import urllib
import urllib2

ID USERNAME = 'signup-user-name'

ID EMAIL = 'signup-user-email’

ID PASSWORD = 'signup-user-password'

USERNAME = 'username'

EMAIL = 'you@email.com'

PASSWORD = 'yourpassword'

SIGNUP_URL = 'https://twitter.com/account/create'

def submit form() :
nmnn Submit a formll nn
payload = {ID USERNAME : USERNAME,

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

ID EMAIL . EMAIL,
ID PASSWORD : PASSWORD, }

make a get request
resp = requests.get (SIGNUP_ URL)
print "Response to GET request: %$s" %resp.content

send POST request

resp = requests.post (SIGNUP_URL, payload)

print "Headers from a POST request response: %s" %$resp.headers
#print "HTML Response: %s" %$resp.read()

if name == ' main ':
submit form()

If you run this script, you will see the following output:

$ python 4 4 submit web form.py
Response to GET request: <?xml version="1.0" encoding="UTF-8"?>
<hash>

<error>This method requires a POST.</error>

<request>/account/create</request>

</hash>
Headers from a POST request response: {'status': '200 OK', 'content-
length': '21064"', 'set-cookie': ' twitter sess=BAh7CD--

d2865d40d1365eeb2175559dc5e6b99f64ea39ff; domain=.twitter.com;

path=/; HttpOnly', 'expires': 'Tue, 31 Mar 1981 05:00:00 GMT',
'vary': 'Accept-Encoding', 'last-modified': 'Sun, 05 May 2013
15:59:27 GMT', 'pragma': 'no-cache', 'date': 'Sun, 05 May 2013
15:59:27 GMT', 'x-xss-protection': 'l; mode=block', 'x-transaction':
'a4b425eda23b5312', 'content-encoding': 'gzip', 'strict-transport-
security': 'max-age=631138519', 'server': 'tfe', 'x-mid':
'£7cde%9a3£3d111310427116adc90bf3e8c95e868"', 'x-runtime': '0.09969',
'etag': '"7af6£92a7£f7b4d37a6454caa6094071d"', 'cache-control': 'no-

cache, no-store, must-revalidate, pre-check=0, post-check=0', 'x-
frame-options': 'SAMEORIGIN', 'content-type': 'text/html;
charset=utf-8'}

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

This recipe uses a third-party module, requests. It has convenient wrapper methods, get ()
and post (), that do the URL encoding of data and submit forms properly.

In this recipe, we created a data payload with a username, password, and e-mail for creating
the Twitter account. When we first submit the form with the GET method, the Twitter website
returns an error saying that the page only supports POST. After we submit the data with POST,
the page processes it. We can confirm this from the header data.

Sending web requests through a proxy

server

You would like to browse web pages through a proxy. If you have configured your browser with
a proxy server and that works, you can try this recipe. Otherwise, you can use any of the public
proxy servers available on the Internet.

Getting ready

You need to have access to a proxy server. You can find a free proxy server by searching on
Google or on any other search engine. Here, for the sake of demonstration, we have used
165.24.10.8.

How to do it...

Let us send our HTTP request through a public domain proxy server.

Listing 4.5 explains proxying web requests across a proxy server as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import urllib

URL = 'https://www.github.com'
PROXY ADDRESS = "165.24.10.8:8080"

if name == ' main ':
resp = urllib.urlopen (URL, proxies = {"http" : PROXY ADDRESS})
print "Proxy server returns response headers: %s "
$resp.headers

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

If you run this script, it will show the following output:

$ python 4 5 proxy web request.py

Proxy server returns response headers: Server: GitHub.com
Date: Sun, 05 May 2013 16:16:04 GMT

Content-Type: text/html; charset=utf-8

Connection: close

Status: 200 OK

Cache-Control: private, max-age=0, must-revalidate
Strict-Transport-Security: max-age=2592000
X-Frame-Options: deny

Set-Cookie: logged in=no; domain=.github.com; path=/; expires=Thu, 05-
May-2033 16:16:04 GMT; HttpOnly

Set-Cookie: gh sess=BAh7...; path=/; expires=Sun, 01-Jan-2023 00:00:00
GMT; secure; HttpOnly

X-Runtime: 8

ETag: "66fcc37865eb05c19b2d15fbb44cd7a9"
Content-Length: 10643

Vary: Accept-Encoding

This is a short recipe where we access the social code-sharing site, www.github. com, with a
public proxy server found on Google search. The proxy address argument has been passed to
the urlopen () method of urllib. We print the HTTP header of response to show that the
proxy settings work here.

Checking whether a web page exists with

the HEAD request

You would like to check the existence of a web page without downloading the HTML content.
This means that we need to send a get HEAD request with a browser client. According to
Wikipedia, the HEAD request asks for the response identical to the one that would correspond
to a GET request, but without the response body. This is useful for retrieving meta-information
written in response headers, without having to transport the entire content.

How to do it...

We would like to send a HEAD request to www . python. org. This will not download the
content of the homepage, rather it checks whether the server returns one of the valid
responses, for example, OK, FOUND, MOVED PERMANENTLY, and so on.

o7}

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet
Listing 4.6 explains checking a web page with the HEAD request as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.
import argparse

import httplib

import urlparse

import re

import urllib

DEFAULT URL = 'http://www.python.org'
HTTP_GOOD_ CODES = [httplib.OK, httplib.FOUND, httplib.MOVED_
PERMANENTLY]

def get_server_status_code (url) :

wan

Download just the header of a URL and

return the server's status code.

wan

host, path = urlparse.urlparse (url) [1:3]

try:
conn = httplib.HTTPConnection (host)
conn.request ('HEAD', path)
return conn.getresponse () .status
except StandardError:

return None

if __name_ == '_main_ ':

parser = argparse.ArgumentParser (description='Example HEAD
Request')

parser.add_argument ('--url', action="store", dest="url",

default=DEFAULT_URL)
given args = parser.parse_args()
url = given_args.url
if get_server status_code(url) in HTTP_GOOD CODES:
print "Server: %s status is OK: " %url
else:
print "Server: %s status is NOT OK!" %url

Running this script shows the success or error if the page is found by the HEAD request
as follows:

$ python 4 6 checking webpage with HEAD request.py

Server: http://www.python.org status is OK!

$ python 4 6 checking webpage with HEAD request.py --url=shttp://www.
zytho.org

Server: http://www.zytho.org status is NOT OK!

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We used the HTTPConnection () method of httplib, which can make a HEAD request to a
server. We can specify the path if necessary. Here, the HTTPConnection () method checks
the home page or path of www.python.org. However, if the URL is not correct, it can't find
the return response inside the accepted list of return codes.

Spoofing Mozilla Firefox in your client code

From your Python code, you would like to pretend to the web server that you are browsing from
Mozilla Firefox.

How to do it...

You can send the custom user-agent values in the HTTP request header.
Listing 4.7 explains spoofing Mozilla Firefox in your client code as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import urllib2

BROWSER = 'Mozilla/5.0 (Windows NT 5.1; rv:20.0) Gecko/20100101
Firefox/20.0'
URL = 'http://www.python.org'

def spoof firefox():
opener = urllib2.build opener ()
opener.addheaders = [('User-agent', BROWSER)]
result = opener.open (URL)
print "Response headers:"
for header in result.headers.headers:
print "\t",header

if name == ' main ':
spoof firefox()

If you run this script, you will see the following output:

$ python 4 7 spoof mozilla firefox in client code.py
Response headers:

Date: Sun, 05 May 2013 16:56:36 GMT

Server: Apache/2.2.16 (Debian)

s

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

Last-Modified: Sun, 05 May 2013 00:51:40 GMT
ETag: "105800d-5280-4dbedfcb07£00"
Accept-Ranges: bytes

Content-Length: 21120

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

We used the build opener () method of urllib2 to create our custom browser whose
user-agent string has been set up asMozilla/5.0 (Windows NT 5.1; rv:20.0)
Gecko/20100101 Firefox/20.0.

Saving bandwidth in web requests with the

HTTP compression

You would like to give your web server users better performance in downloading web pages.
By compressing HTTP data, you can speed up the serving of web contents.

How to do it...

Let us create a web server that serves contents after compressing it to the gzip format.

Listing 4.8 explains the HTTP compression as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.
import argparse

import string

import os

import sys

import gzip

import cStringIO

from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer

DEFAULT HOST '127.0.0.1"
DEFAULT PORT = 8800

HTML_CONTENT = """<htmls><body><hl>Compressed Hello World!</hl></
body></html>"""

100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

class RequestHandler (BaseHTTPRequestHandler) :
" Custom request handler"""

def do GET (self):
"1 Handler for the GET requests """
self.send response (200)
self.send header('Content-type', 'text/html')
self.send header ('Content-Encoding', 'gzip"')

zbuf = self.compress buffer (HTML CONTENT)
sys.stdout.write ("Content-Encoding: gzip\r\n")
self.send header ('Content-Length',len (zbuf))
self.end headers ()

Send the message to browser
zbuf = self.compress buffer (HTML CONTENT)
sys.stdout.write ("Content-Encoding: gzip\r\n")
("Content-Length: %d\r\n" % (len(zbuf)))
sys.stdout.write ("\r\n")
(zbuf)

sys.stdout.write

self.wfile.write
return

def compress buffer(self, buf):
zbuf = cStringIO.StringIO()
zfile = gzip.GzipFile(mode = 'wb', fileobj = zbuf,
compresslevel = 6)
zfile.write (buf)
zfile.close()
return zbuf.getvalue ()

if name == ' main ':

parser = argparse.ArgumentParser (description='Simple HTTP Server
Example')

parser.add argument ('--port', action="store", dest="port",
type=int, default=DEFAULT PORT)

given args = parser.parse_args()

port = given args.port

server address = (DEFAULT HOST, port)

server = HTTPServer (server address, RequestHandler)

server.serve forever ()

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

You can run this script and see the Compressed Hello World! text (as a result of the HTTP
compression) on your browser screen when accessing http://localhost:8800 as follows:

$ python 4 8 http compression.py

localhost - - [22/Feb/2014 12:01:26] "GET / HTTP/1.1" 200 -
Content-Encoding: gzip

Content-Encoding: gzip

Content-Length: 71

localhost - - [22/Feb/2014 12:01:26] "GET /favicon.ico HTTP/1.1" 200 -
Content-Encoding: gzip

Content-Encoding: gzip

Content-Length: 71

The following screenshot illustrates serving compressed content by a web server:

File Edit View Search Terminal Help

farug@ubuntu:chapter4s

farug@ubuntu:chapter4$ python 4_8 http_compression.py
localhost - - [22/Feb/2014 12:01:26] "GET / HTTP/1.1" 200 -
Content-Encoding: gzip

Content-Encoding: gzip

Content-Length: 71

localhost - - [22/Feb/2014 12:01:26] "GET /favicon.ico HTTP/1.1" 2080 -
Content-Encoding: gzip

Content-Encoding: gzip

Content-Length: 71

localhost:8800 - Google Chrome

3 localhost:8800

= ' @ localhost B €

Compressed Hello World!

We created a web server by instantiating the HTTPServer class from the BaseHTTPServer
module. We attached a custom request handler to this server instance, which compresses
every client response using a compress_buffer () method. A predefined HTML content has
been supplied to the clients.

102

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Writing an HTTP fail-over client with resume

and partial downloading

You would like to create a fail-over client that will resume downloading a file if it fails for any
reason in the first instance.

Let us download the Python 2.7 code from www.python.org. A resume _download () file
will resume any unfinished download of that file.

Listing 4.9 explains resume downloading as follows:

#!/usr/bin/env python
Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.# It may run on any other
version with/without modifications.

import urllib, os

TARGET URL = 'http://python.org/ftp/python/2.7.4/"
TARGET FILE = 'Python-2.7.4.tgz'

class CustomURLOpener (urllib.FancyURLopener) :
""rmOverride FancyURLopener to skip error 206 (when a
partial file is being sent)

def http error 206 (self, url, fp, errcode, errmsg, headers,
data=None) :
pass

def resume download() :
file exists = False
CustomURLClass = CustomURLOpener ()
if os.path.exists (TARGET FILE) :
out file = open(TARGET FILE, "ab")
file exists = os.path.getsize (TARGET FILE)
#If the file exists, then only download the unfinished part
CustomURLClass.addheader ("Download range", "bytes=%s-" %
(file exists))
else:
out file = open(TARGET FILE, "wb")

web page = CustomURLClass.open (TARGET URL + TARGET FILE)

#If the file exists, but we already have the whole thing, don't

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

download again
if int (web page.headers['Content-Length']) == file exists:
loop = 0
print "File already downloaded!"

byte count = 0
while True:
data = web page.read(8192)
if not data:
break
out file.write(data)
byte count = byte count + len(data)

web page.close()
out file.close()

for k,v in web page.headers.items() :
print k, "=",v
print "File copied", byte count, "bytes from", web page.url

if name == ' main ':
resume download ()

Running this script will result in the following output:

$ python 4 9 http fail over client.py
content-length = 14489063

content-encoding = x-gzip

accept-ranges = bytes

connection = close

server = Apache/2.2.16 (Debian)

last-modified = Sat, 06 Apr 2013 14:16:10 GMT
content-range = bytes 0-14489062/14489063
etag "1748016-dd15e7-4d9b1d8685e80™"

date = Tue, 07 May 2013 12:51:31 GMT

content-type = application/x-tar

File copied 14489063 bytes from http://python.org/ftp/python/2.7.4/
Python-2.7.4.tgz

In this recipe, we created a custom URL opener class inheriting from the FancyURLopener
method of urllib, but http error_ 206 () is overridden where partial content is
downloaded. So, our method checks the existence of the target file and if it is not present, it
tries to download with the custom URL opener class.

104

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Writing a simple HTTPS server code with

Python and OpenSSL

You need a secure web server code written in Python. You already have your SSL keys and
certificate files ready with you.

Getting ready

You need to install the third-party Python module, pyOpenSsSL. This can be grabbed from
PyPl (https://pypi.python.org/pypi/pyOpenSSL). Both on Windows and Linux
hosts, you may need to install some additional packages, which are documented at
http://pythonhosted.org//pyOpenSSL/.

How to do it...

After placing a certificate file on the current working folder, we can create a web server that
makes use of this certificate to serve encrypted content to the clients.

Listing 4.10 explains the code for a secure HTTP server as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 4

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.
Requires pyOpenSSL and SSL packages installed

import socket, os

from SocketServer import BaseServer

from BaseHTTPServer import HTTPServer

from SimpleHTTPServer import SimpleHTTPRequestHandler
from OpenSSL import SSL

class SecureHTTPServer (HTTPServer) :
def init (self, server address, HandlerClass) :

BaseServer. init (self, server address, HandlerClass)
ctx = SSL.Context (SSL.SSLv23 METHOD)
fpem = 'server.pem' # location of the server private key and

the server certificate
ctx.use privatekey file (fpem)
ctx.use certificate file(fpem)
self.socket = SSL.Connection (ctx,

socket.socket (self.address family, self.socket type))
self.server bind()
self.server activate()

www.it-ebooks.info

http://www.it-ebooks.info/

Programming with HTTP for the Internet

class SecureHTTPRequestHandler (SimpleHTTPRequestHandler) :
def setup(self):
self.connection = self.request
self.rfile = socket. fileobject (self.request, "rb",
self.rbufsize)
self .wfile = socket. fileobject (self.request, "wb",
self .wbufsize)

def run server (HandlerClass = SecureHTTPRequestHandler,
ServerClass = SecureHTTPServer) :
server address = ('', 4443) # port needs to be accessible by
user
server = ServerClass(server address, HandlerClass)
running address = server.socket.getsockname ()
print "Serving HTTPS Server on %s:%s ..."
% (running address[0], running address[1])
server.serve forever ()
if name == ' main ':
run_server ()

If you run this script, it will result in the following output:

$ python 4 10 https server.py
Serving HTTPS Server on 0.0.0.0:4443

If you notice the previous recipes that create the web server, there is not much difference

in terms of the basic procedure. The main difference is in applying the SSL Context ()
method with the SSLv23 METHOD argument. We have created the SSL socket with the Python
OpenSSL third-party module's Connection () class. This class takes this context object
along with the address family and socket type.

The server's certificate file is kept in the current directory, and this has been applied with the
context object. Finally, the server has been activated with the server activate () method.

106

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP,
and CGI Programming

In this chapter, we will cover the following recipes:

» Listing the files in a remote FTP server

» Uploading a local file to a remote FTP server

» E-mailing your current working directory as a compressed ZIP file
» Downloading your Google e-mail with POP3

» Checking your remote e-mail with IMAP

» Sending an e-mail with an attachment via the Gmail SMTP server

» Writing a guestbook for your (Python-based) web server with CGI

Introduction

This chapter explores the FTP, e-mail, and CGI communications protocol with a Python recipe.
Python is a very efficient and friendly language. Using Python, you can easily code simple FTP
actions such as a file download and upload.

There are some interesting recipes in this chapter, such as manipulating your Google e-mail,
also known as the Gmail account, from your Python script. You can use these recipes to
check, download, and send e-mails with IMAP, POP3, and SMTP protocols. In another recipe, a
web server with CGl also demonstrates the basic CGl action, such as writing a guest comment
form in your web application.

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP, and CGI Programming

Listing the files in a remote FTP server

You would like to list the files available on the official Linux kernel's FTP site, ftp.kernel.org.
You can select any other FTP site to try this recipe.

Getting ready

If you work on a real FTP site with a user account, you need a username and password.
However, in this instance, you don't need a username (and password) with Linux kernel's
FTP site as you can log in anonymously.

How to do it...

We can use the £tplib library to fetch files from our selected FTP site. A detailed
documentation of this library can be found at http://docs.python.org/2/library/
ftplib.html.

Let us see how we can fetch some files with ftplib.
Listing 5.1 gives a simple FTP connection test as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 5

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

FTP_SERVER URL = 'ftp.kernel.org'

import ftplib

def test ftp connection(path, username, email):
#O0pen ftp connection
ftp = ftplib.FTP(path, username, email)

#List the files in the /pub directory
ftp.cwd (" /pub")

print "File list at %s:" %path

files = ftp.dir()

print files

ftp.quit ()
if name == ' main ':
test ftp connection(path=FTP_SERVER URL, username='anonymous',
email="nobodye@nourl.com',

)

108

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This recipe will list the files and folders present in the FTP path, ftp.kernel .org/pub. If
you run this script, you can see the following output:

$ python 5 1 list files_on_ ftp server.py
File list at ftp.kernel.org:

drwxrwxr-x 6 ftp ftp 4096 Dec 01 2011 dist
drwxr-xr-x 13 ftp ftp 4096 Nov 16 2011 linux
drwxrwxr-x 3 ftp ftp 4096 Sep 23 2008 media
drwxr-xr-x 17 ftp ftp 4096 Jun 06 2012 scm
drwxrwxr-x 2 ftp ftp 4096 Dec 01 2011 site
drwxr-xr-x 13 ftp ftp 4096 Nov 27 2011 software
drwxr-xr-x 3 ftp ftp 4096 Apr 30 2008 tools

This recipe uses ftplib to create an FTP client session with ftp.kernel .org. The
test ftp connection () function takes the FTP path, username, and e-mail address
for connecting to the FTP server.

An FTP client session can be created by calling the FTP () function of £tplib with the
preceding connection's credentials. This returns a client handle which then can be used to
run the usual ftp commands, such as the command to change the working directory or
cwd (). The dir () method returns the directory listing.

It is good idea to quit the FTP session by calling ftp.quit ().

Uploading a local file to a remote FTP server

You would like to upload a file to an FTP server.

Getting ready

Let us set up a local FTP server. In Unix/Linux, you can install the wu-ftpd package using the
following command:

$ sudo apt-get install wu-£ftpd

On a Windows machine, you can install the FileZilla FTP server, which can be downloaded
from https://filezilla-project.org/download.php?type=server

You should create an FTP user account following the FTP server package's user manual.

You would also like to upload a file to an ftp server. You can specify the server address, login
credentials, and filename as the input argument of your script. You should create a local file
called readme. txt with any text in it.

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP, and CGI Programming

How to do it...

Using the following script, let's set up a local FTP server. In Unix/Linux, you can install the
wu-ftpd package. Then, you can upload a file to the logged-in user's home directory. You can
specify the server address, login credentials, and filename as the input argument of your script.

Listing 5.2 gives the FTP Upload Example as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 5

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import os
import argparse
import ftplib

import getpass

LOCAL FTP_SERVER = 'localhost'

LOCAL FILE = 'readme.txt'

def ftp upload(ftp server, username, password, file name) :
print "Connecting to FTP server: %s" %ftp server
ftp = ftplib.FTP(ftp server)
print "Login to FTP server: user=%s" %username
ftp.login(username, password)

ext = os.path.splitext(file name) [1]
if ext in (".txt", ".htm", ".html"):
ftp.storlines ("STOR " + file name, open(file name))
else:
ftp.storbinary ("STOR " + file name, open(file name, "rb"),
1024)

print "Uploaded file: %s" %file name

if name == ' main ':

parser = argparse.ArgumentParser (description='FTP Server Upload
Example')

parser.add argument ('--ftp-server', action="store", dest="ftp
server", default=LOCAL FTP SERVER)

parser.add argument ('--file-name', action="store", dest="file
name", default=LOCAL FILE)

parser.add_argument('——username', action="store", dest="username",

default=getpass.getuser())
given args = parser.parse_args()
ftp server, file name, username = given args.ftp server, given
args.file name, given args.username
password = getpass.getpass (prompt="Enter you FTP password: ")
ftp upload(ftp server, username, password, file name)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

If you set up a local FTP server and run the following script, this script will log in to the FTP
server and then will upload a file. If a filename argument is not supplied from command line
by default, it will upload the readme . txt file.

$ python 5 2 upload file to ftp server.py
Enter your FTP password:

Connecting to FTP server: localhost

Login to FTP server: user=faruq

Uploaded file: readme.txt

$ cat /home/faruq/readme.txt
This file describes what to do with the .bz2 files you see elsewhere

on this site (ftp.kernel.org).

In this recipe, we assume that a local FTP server is running. Alternatively, you can connect to a
remote FTP server. The ftp upload () method uses the FTP () function of Python's £tplib
to create an FTP connection object. With the 1ogin () method, it logs in to the server.

After a successful login, the ftp object sends the STOR command with either the
storlines () or storbinary () method. The first method is used for sending ASCII
text files such as HTML or text files. The latter method is used for binary data such as
zipped archive.

It's a good idea to wrap these FTP methods with try-catch error-handling blocks, which is
not shown here for the sake of brevity.

E-mailing your current working directory as

a compressed ZIP file

It might be interesting to send the current working directory contents as a compressed ZIP
archive. You can use this recipe to quickly share your files with your friends.

Getting ready

If you don't have any mail server installed on your machine, you need to install a local mail
server such as postfix. On a Debian/Ubuntu system, this can be installed with default
settings using apt -get, as shown in the following command:

$ sudo apt-get install postfix

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP, and CGI Programming

How to do it...

Let us first compress the current directory and then create an e-mail message. We can
send the e-mail message via an external SMTP host, or we can use a local e-mail server to
do this. Like other recipes, let us get the sender and recipient information from parsing the
command-line inputs.

Listing 5.3 shows how to convert an e-mail folder into a compressed ZIP file as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 5

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import os
import argparse
import smtplib
import zipfile
import tempfile
from email import encoders
from email.mime.base import MIMEBase
from email.mime.multipart import MIMEMultipart
def email dir zipped(sender, recipient):
zf = tempfile.TemporaryFile (prefix='mail', suffix='.zip')
zip = zipfile.ZipFile(zf, 'w')
print "Zipping current dir: %s" %os.getcwd()
for file name in os.listdir(os.getcwd()) :
zip.write(file name)
zip.close ()
zf .seek (0)
Create the message
print "Creating email message..."
email msg = MIMEMultipart ()

email msg['Subject'] = 'File from path %s' %os.getcwd()
email msg['To'] = ', '.join(recipient)

email msg['From'] = sender

email msg.preamble = 'Testing email from Python.\n'
msg = MIMEBase ('application', 'zip')

msg.set payload(zf.read())

encoders.encode_base64 (msg)

msg.add header ('Content-Disposition', 'attachment',
filename=os.getcwd () [-1] + '.zip'")

email msg.attach (msg)

email msg = email msg.as_string()

www.it-ebooks.info

http://www.it-ebooks.info/

send the message
print "Sending email message..."
smtp = None
try:
smtp = smtplib.SMTP('localhost!')
smtp.set debuglevel (1)
smtp.sendmail (sender, recipient, email msg)
except Exception, e:
print "Error: %s" %str(e)
finally:
if smtp:
smtp.close ()

if name == ' main ':
parser = argparse.ArgumentParser (description='Email Example')

Chapter 5

parser.add argument ('--sender', action="store", dest="sender",

default="'you@you.com')

parser.add argument ('--recipient', action="store",
dest="recipient")

given args = parser.parse_args()

email dir zipped(given args.sender, given args.recipient)

Running this recipe shows the following output. The extra output is shown because we
enabled the e-mail debug level.
$ python 5 3 email current dir zipped.py --recipient=farug@localhost

Zipping current dir: /home/faruqg/Dropbox/PacktPub/pynet-cookbook/
pynetcookbook code/chapter5

Creating email message...

Sending email message...

send: 'ehlo [127.0.0.1]1\r\n’

reply: '250-debian6.debian2013.com\r\n’'
reply: '250-PIPELINING\r\n'

reply: '250-SIZE 10240000\r\n’'

reply: '250-VRFY\r\n'

reply: '250-ETRN\r\n'

reply: '250-STARTTLS\r\n'

reply: '250-ENHANCEDSTATUSCODES\r\n'
reply: '250-8BITMIME\r\n'

reply: '250 DSN\r\n'

reply: retcode (250); Msg: debian6.debian2013.com
PIPELINING

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP, and CGI Programming

SIZE 10240000

VRFY

ETRN

STARTTLS

ENHANCEDSTATUSCODES

8BITMIME

DSN

send: 'mail FROM:<you@you.com> size=9141\r\n'
reply: '250 2.1.0 Ok\r\n'

reply: retcode (250); Msg: 2.1.0 Ok

send: 'rcpt TO:<farug@localhost>\r\n'

reply: '250 2.1.5 Ok\r\n'

reply: retcode (250); Msg: 2.1.5 Ok

send: 'data\r\n'

reply: '354 End data with <CR><LF>.<CR><LF>\r\n'
reply: retcode (354); Msg: End data with <CR><LF>.<CR><LF>
data: (354, 'End data with <CR><LF>.<CR><LF>')

send: 'Content-Type: multipart/mixed;
boundary="===============0388489101==. .. [TRUNCATED]

reply: '250 2.0.0 Ok: queued as 42D2F34A996\r\n’

reply: retcode (250); Msg: 2.0.0 Ok: queued as 42D2F34A996

data: (250, '2.0.0 Ok: queued as 42D2F34A996"')

We have used Python's zipfile, smtplib and an email module to achieve our objective of
e-mailing a folder as a zipped archive. This is done using the email dir zipped () method.
This method takes two arguments: the sender and recipient's e-mail addresses to create the
e-mail message.

In order to create a ZIP archive, we create a temporary file with the tempfile module's
TemporaryFile () class. We supply a filename prefix, mail, and suffix, . zip. Then, we
initialize the ZIP archive object with the zipFile () class by passing the temporary file as its
argument. Later, we add files of the current directory with the ZIP object's write () method call.

To send an e-mail, we create a multipart MIME message with the MIMEmultipart () class
from the email .mime.multipart module. Like our usual e-mail message, the subject,
recipient, and sender information is added in the e-mail header.

114

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We create the e-mail attachment with the MIMEBase () method. Here, we first specify the
application/ZIP header and call set_payload () on this message object. Then, in order
to encode the message correctly, the encode base64 () method from encoder's module
is used. It is also helpful to use the add_header () method to construct the attachment
header. Now, our attachment is ready to be included in the main e-mail message with an
attach () method call.

Sending an e-mail requires you to call the SMTP () class instance of smtplib. There is a
sendmail () method that will utilize the routine provided by the OS to actually send the
e-mail message correctly. Its details are hidden under the hood. However, you can see a

detailed interaction by enabling the debug option as shown in this recipe.

» Further information about the Python libraries can be found at the URL
http://docs.python.org/2/library/smtplib.html

Downloading your Google e-mail with POP3

You would like to download your Google (or virtually any other e-mail provider's) e-mail via the
POP3 protocol.

Getting ready

To run this recipe, you should have an e-mail account with Google or any other service provider.

How to do it...

Here, we attempt to download the first e-mail message from a user's Google e-mail account.
The username is supplied from a command line, but the password is kept secret and not
passed from the command line. This is rather entered while the script is running and kept
hidden from display.

Listing 5.4 shows how to download our Google e-mail via POP3 as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 5

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse

import getpass

import poplib

GOOGLE_POP3_SERVER = 'pop.googlemail.com'

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP, and CGI Programming

def download email (username) :
mailbox = poplib.POP3 SSL (GOOGLE POP3 SERVER, '995')
mailbox.user (username)
password = getpass.getpass (prompt="Enter you Google password: ")
mailbox.pass (password)
num messages = len(mailbox.list () [1])
print "Total emails: %s" %num messages
print "Getting last message"
for msg in mailbox.retr (num messages) [1]:
print msg
mailbox.quit ()

if name == ' main ':

parser = argparse.ArgumentParser (description='Email Download
Example')

parser.add_argument('——username', action="store", dest="username",

default=getpass.getuser())
given args = parser.parse_args()
username = given_args.username
download email (username)

If you run this script, you will see an output similar to the following one. The message is
truncated for the sake of privacy.

$ python 5 4 download google email via pop3.py --username=<USERNAME>
Enter your Google password:

Total emails: 333

Getting last message

... [TRUNCATED]

This recipe downloads a user's first Google message via POP3. The download email ()
method creates a mailbox object with Python, the POP3 SSL () class of poplib. We passed
the Google POP3 server and port address to the class constructor. The mailbox object then
sets up a user account with the user () method call. The password is collected from the user
securely using the getpass module's getpass () method and then passed to the mailbox
object. The mailbox's 1ist () method gives us the e-mail messages as a Python list.

This script first displays the number of e-mail messages stored in the mailbox and retrieves
the first message with the retr () method call. Finally, it's safe to call the quit () method
on the mailbox to clean up the connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Checking your remote e-mail with IMAP

Instead of using POP3, you can also use IMAP to retrieve the e-mail message from your Google
account. In this case, the message won't be deleted after retrieval.

Getting ready

To run this recipe, you should have an e-mail account with Google or any other service provider.

How to do it...

Let us connect to your Google e-mail account and read the first e-mail message. If you don't
delete it, the first e-mail message would be the welcome message from Google.

Listing 5.5 shows us how to check Google e-mail with IMAP as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 5

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import getpass
import imaplib
GOOGLE_IMAP SERVER = 'imap.googlemail.com'
def check_email (username) :
mailbox = imaplib.IMAP4 SSL(GOOGLE IMAP SERVER, '993')
password = getpass.getpass (prompt="Enter you Google password: ")
mailbox.login (username, password)
mailbox.select ('Inbox')
typ, data = mailbox.search (None, 'ALL')
for num in datal[0] .split () :
typ, data = mailbox.fetch(num, ' (RFC822)"')

print 'Message %$s\n%s\n' % (num, datal0] [1])
break

mailbox.close ()

mailbox.logout ()

if _name_ == '_main_ ':

parser = argparse.ArgumentParser (description='Email Download
Example!')

parser.add argument ('--username', action="store", dest="username",

default=getpass.getuser())
given args = parser.parse_args()
username = given_args.username
check email (username)

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP, and CGI Programming

If you run this script, this will show the following output. In order to remove the private part of
the data, we truncated some user data.

$$ python 5 5 check remote email via imap.py --username=<USER NAME>
Enter your Google password:

Message 1

Received: by 10.140.142.16; Sat, 17 Nov 2007 09:26:31 -0800 (PST)
Message-ID: <...>@mail.gmail.com>

Date: Sat, 17 Nov 2007 09:26:31 -0800

From: "Gmail Team" <mail-noreply@google.com>

To: "<User Full Name>" <USER NAME>@gmail.com>

Subject: Gmail is different. Here's what you need to know.
MIME-Version: 1.0

Content-Type: multipart/alternative;

boundary="----= Part 7453 30339499.1195320391988"

—————— = Part 7453 30339499.1195320391988
Content-Type: text/plain; charset=IS0-8859-1
Content-Transfer-Encoding: 7bit

Content-Disposition: inline

Messages that are easy to find, an inbox that organizes itself, great

spam-fighting tools and built-in chat. Sound cool? Welcome to Gmail.

To get started, you may want to:

[TRUNCATED]

The preceding script takes a Google username from the command line and calls the check
email () function. This function creates an IMAP mailbox with the IMAP4 SSL () class of
imaplib, which is initialized with Google's IMAP server and default port.

Then, this function logs in to the mailbox with a password, which is captured by the
getpass () method of the getpass module. The inbox folder is selected by calling the
select () method on the mailbox object.

The mailbox object has many useful methods. Two of them are search () and fetch ()
that are used to get the first e-mail message. Finally, it's safer to call the close () and
logout () method on the mailbox object to end the IMAP connection.

118

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Sending an e-mail with an attachment via

Gmail SMTP server

You would like to send an e-mail message from your Google e-mail account to another
account. You also need to attach a file with this message.

Getting ready

To run this recipe, you should have an e-mail account with Google or any other service provider.

How to do it...

We can create an e-mail message and attach Python's python-1logo.gif file with the e-mail
message. Then, this message is sent from a Google account to a different account.

Listing 4.6 shows us how to send an e-mail from your Google account:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 5

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import os
import getpass
import re
import sys
import smtplib

from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

SMTP_SERVER = 'smtp.gmail.com'
SMTP_PORT = 587

def send email (sender, recipient):
" Send email message """
msg = MIMEMultipart ()
msg['Subject'] = 'Python Email Test'
msg['To'] = recipient
msg['From'] = sender
subject = 'Python email Test'
message = 'Images attached.'
attach image files

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP, and CGI Programming

files = os.listdir (os.getcwd())
gifsearch = re.compile(".gif", re.IGNORECASE)
files = filter(gifsearch.search, files)
for filename in files:
path = os.path.join(os.getcwd (), filename)
if not os.path.isfile(path):

continue
img = MIMEImage (open(path, 'rb').read(), _subtype="gif")
img.add header ('Content-Disposition', 'attachment',

filename=filename)
msg.attach (img)

part = MIMEText ('text', "plain")
part.set payload(message)
msg.attach (part)

create smtp session

session = smtplib.SMTP (SMTP_SERVER, SMTP_PORT)

session.ehlo ()

session.starttls ()

session.ehlo

password = getpass.getpass (prompt="Enter you Google password: ")
session.login(sender, password)

session.sendmail (sender, recipient, msg.as_string())

print "Email sent."

session.quit ()

if name == ' main ':
parser = argparse.ArgumentParser (description='Email Sending
Example')
parser.add argument ('--sender', action="store", dest="sender")
parser.add argument ('--recipient', action="store",

dest="recipient")
given args = parser.parse_args()
send _email (given args.sender, given args.recipient)

Running the following script outputs the success of sending an e-mail to any e-mail address if
you provide your Google account details correctly. After running this script, you can check your
recipient e-mail account to verify that the e-mail is actually sent.

$ python 5 6 send email from gmail.py --sender=<USERNAME>@gmail.com -
recipient=<USER>@<ANOTHER COMPANY.com>

Enter you Google password:

Email sent.

120

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In this recipe, an e-mail message is created in the send_email () function. This function is
supplied with a Google account from where the e-mail message will be sent. The message
header object, msg, is created by calling the MIMEMultipart () class and then subject,
recipient, and sender information is added on it.

Python's regular expression-handling module is used to filter the .gif image on the current
path. The image attachment object, img, is then created with the MIMEImage () method from
the email .mime. image module. A correct image header is added to this object and finally, the
image is attached with the msg object created earlier. We can attach multiple image files within
a for loop as shown in this recipe. We can also attach a plain text attachment in a similar way.

To send the e-mail message, we create an SMTP session. We call some testing method on this
session object, such as ehlo () or starttls (). Then, log in to the Google SMTP server with
a username and password and a sendmail () method is called to send the e-mail.

Writing a guestbook for your (Python-based)

web server with CGI

Common Gateway Interface (CGl) is a standard in web programming by which custom scripts
can be used to produce web server output. You would like to catch the HTML form input from
a user's browser, redirect it to another page, and acknowledge a user action.

How to do it...

We first need to run a web server that supports CGl scripts. We placed our Python CGI script
inside a cgi-bin/ subdirectory and then visited the HTML page that contains the feedback
form. Upon submitting this form, our web server will send the form data to the CGl script, and
we'll see the output produced by this script.

Listing 5.7 shows us how the Python web server supports CGl:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 5

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import os

import cgi

import argparse

import BaseHTTPServer

import CGIHTTPServer

import cgitb

cgitb.enable() ## enable CGI error reporting

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP, and CGI Programming

def web server(port) :

server = BaseHTTPServer.HTTPServer

handler = CGIHTTPServer.CGIHTTPRequestHandler #RequestsHandler
server address = ("", port)

handler.cgi directories = ["/cgi-bin",]

httpd = server(server address, handler)

print "Starting web server with CGI support on port: %s ..." %port
httpd.serve forever()

if name == ' main ':

parser = argparse.ArgumentParser (description='CGI Server Example')
parser.add argument ('--port', action="store", dest="port",

type=int, required=True)

given args = parser.parse_args()
web server (given args.port)

The following screenshot shows CGl enabled web server is serving contents:

File Edit View Search Terminal Help

faruq@ubuntu:chapters$ python 5_7_cgi_server.py --port=8800
Starting web server with CGI support on port: 8800 ...
localhost - - [22/Feb/2014 12:28:38] "GET / HTTP/1.1" 200 -

Directory listing for / - Google Chrome

B Directory listing for /

@ localhost % A

=
-

Directory listing for /

5 1 list files on ftp server.py

5 2 upload file to fip server.py

5 3 email current dir zipped.py

5 4 download google email via pop3.py
5 5 check remote email via imap.py

5 6 send email from gmail.py

5 7 cgi server.py
5 7 send feedback.html

init _.py
cgi-bin/
python-logo. gif
readme. txt

122

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5
If you run this recipe, you will see the following output:

$ python 5 7 cgi server.py --port=8800
Starting web server with CGI support on port: 8800 ...
localhost - - [19/May/2013 18:40:22] "GET / HTTP/1.1" 200 -

Now, you need to visit http://localhost:8800/5 7 send feedback.html from
your browser.

You will see an input form. We assume that you provide the following input to this form:

Name: Userl

Comment: Commentl

The following screenshot shows the entering user comment in a web form:

File Edit View Search Terminal Help

farug@ubuntu:chapter5$ python 5_7_cgi_server.py --port=8800

Starting web server with CGI support on port: 8860 ...

localhost - - [22/Feb/2014 12:28:38] "GET / HTTP/1.1" 200 -

localhost - - [22/Feb/2014 12:29:56] "GET /5_7_send_feedback.html HTTP/1.1" 2080 -
localhost - - [22/Feb/2014 12:29:56] code 404, message File not found

localhost - - [22/Feb/2014 12:29:56] "GET /favicon.ico HTTP/1.1" 404 -

localhost:8800/5_7_sen
= & | @ localhost w N

Name:
Comment: Submit

Then, your browser will be redirected to http://localhost:8800/cgi-bin/5 7 get
feedback.py where you can see the following output:

Userl sends a comment: Commentl

www.it-ebooks.info

http://www.it-ebooks.info/

E-mail Protocols, FTP, and CGI Programming

The user comment is shown in the browser:

|] CGI Program Example

- @ | © localhost w A

Userl sends a comment: Commentl

We have used a basic HTTP server setup that can handle CGI requests. Python provides these
interfaces in the BaseHTTPServer and CGIHTTPserver modules.

The handler is configured to use the /cgi-bin path to launch the CGI scripts. No other path
can be used to run the CGI scripts.

The HTML feedback form located on 57 send feedback.html shows a very basic HTML
form containing the following code:

<html>
<body>
<form action="/cgi-bin/5 7 get feedback.py" method="post">
Name: <input type="text" name="Name">

Comment: <input type="text" name="Comment" />
<input type="submit" value="Submit" />
</form>
</body>
</html>

Note that the form method is POST and action is set to the /cgi-bin/5 7 get feedback.
py file. The contents of this file are as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 5

This program requires Python 2.7 or any later version

import cgi

import cgitb

Create instance of FieldStorage

form = cgi.FieldStorage ()

124

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Get data from fields

name = form.getvalue('Name')

comment = form.getvalue('Comment')

print "Content-type:text/html\r\n\r\n"
print "<html>"

print "<head>"

print "<title>CGI Program Example </title>"
print "</head>"

print "<body>"

print "<h2> %s sends a comment: %s</h2>" % (name, comment)
print "</body>"

print "</html>"

In this CGI script, the FieldStorage () method is called from cgilib. This returns a form
object to process the HTML form inputs. Two inputs are parsed here (name and comment)
using the getvalue () method. Finally, the script acknowledges the user input by echoing
a line back saying that the user x has sent a comment.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping
and Other Practical
Applications

In this chapter, we will cover the following topics:

» Searching for business addresses using the Google Maps API

» Searching for geographic coordinates using the Google Maps URL
» Searching for an article in Wikipedia

» Searching for Google stock quote

» Searching for a source code repository at GitHub

» Reading news feed from BBC

» Crawling links present in a web page

Introduction

This chapter shows some of the interesting Python scripts that you can write to extract useful
information from the web, for example, searching for a business address, stock quote for a
particular company or the latest news from a news agency website. These scripts demonstrate
how Python can extract simple information in simpler ways without communicating with
complex APIs.

Following these recipes, you should be able to write code for complex scenarios, for example,
find the details about a business, including location, news, stock quote, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

Searching for business addresses using the

Google Maps API

You would like to search for the address of a well-known business in your area.

Getting ready

You can use the Python geocoding library pygeocoder to search for a local business.
You need to install this library from PyPl with pip or easy install, by entering
$ pip install pygeocoder Of $ easy install pygeocoder.

How to do it...

Let us find the address of Argos Ltd., a well-known UK retailer using a few lines of
Python code.

Listing 6.1 gives a simple geocoding example to search for a business address, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 6
This program is optimized for Python 2.7.
It may run on any other version with/without modifications.

from pygeocoder import Geocoder
def search business(business name) :
results = Geocoder.geocode (business name)

for result in results:
print result

if name == ' main ':
business name = "Argos Ltd, London"
print "Searching %s" %business name
search business (business name)

This recipe will print the address of Argos Ltd., as shown. The output may vary slightly based
on the output from your installed geocoding library:

$ python 6 1 search business addr.py
Searching Argos Ltd, London

Argos Ltd, 110-114 King Street, London, Greater London W6 0QP, UK

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This recipe relies on the Python third-party geocoder library.

This recipe defines a simple function search business () that takes the business name
as an input and passes that to the geocode () function. The geocode () function can return
zero or more search results depending on your search term.

In this recipe, the geocode () function has got the business name Argos Ltd., London, as
the search query. In return, it gives the address of Argos Ltd., which is 110-114 King Street,
London, Greater London W6 OQP, UK.

The pygeocoder library is powerful and has many interesting and useful features
for geocoding. You may find more details on the developer's website at
https://bitbucket.org/xster/pygeocoder/wiki/Home.

Searching for geographic coordinates using

the Google Maps URL

Sometimes you'd like to have a simple function that gives the geographic coordinates of a city
by giving it just the name of that city. You may not be interested in installing any third-party
libraries for this simple task.

How to do it...

In this simple screen-scraping example, we use the Google Maps URL to query the latitude
and longitude of a city. The URL used to query can be found after making a custom search on
the Google Maps page. We can perform the following steps to extract some information from
Google Maps.

Let us take the name of a city from the command line using the argparse module.

We can open the maps search URL using the urlopen () function of urllib. This will give
an XML output if the URL is correct.

Now, process the XML output in order to get the geographic coordinates of that city.

Listing 6.2 helps finding the geographic coordinates of a city using Google Maps, as shown:
#!/usr/bin/env python
Python Network Programming Cookbook -- Chapter - 6

This program is optimized for Python 2.7.
It may run on any other version with/without modifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

import argparse
import os
import urllib

ERROR_STRING = '<error>'

def find lat long(city):
"nm Find geographic coordinates """
Encode query string into Google maps URL
url = 'http://maps.google.com/?g="' + urllib.quote(city) +
'&output=js'

)

print 'Query: %s' % (url)

Get XML location from Google maps
xml = urllib.urlopen(url) .read()

if ERROR STRING in xml:
print '\nGoogle cannot interpret the city.'
return

else:

Strip lat/long coordinates from XML
lat,1lng = 0.0,0.0

center =
xml [xml.find (' {center')+10:xml.£find('}"',xml.£find (' {center'))]
center = center.replace('lat:','') .replace('lng:',"'")

lat,1lng = center.split(',")
print "Latitude/Longitude: %s/%s\n" % (lat, 1lng)

if name == ' main ':
parser = argparse.ArgumentParser (description='City Geocode
Search!')
parser.add argument ('--city', action="store", dest="city",

required=True)
given args = parser.parse_args()

print "Finding geographic coordinates of %s"
%$given args.city
find lat long(given args.city)

If you run this script, you should see something similar to the following:

$ python 6 2 geo coding by google maps.py --city=London
Finding geograhic coordinates of London

Query: http://maps.google.com/?g=London&output=js
Latitude/Longitude: 51.511214000000002/-0.119824

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This recipe takes a name of a city from the command line and passes that to the
find lat long () function. This function queries the Google Maps service using the
urlopen () function of urllib and gets the XML output. Then, the error string ' <errors>"'
is searched for. If that's not present, it means there are some good results.

If you print out the raw XML, it's a long stream of characters produced for the browser. In the
browser, it would be interesting to display the layers in maps. But in our case, we just need the
latitude and longijtude.

From the raw XML, the latitude and longitude is extracted using the string method £ind ().
This searches for the keyword "center". This list key possesses the geographic coordinates
information. But it also contains the additional characters which are removed using the string
method replace ().

You may try this recipe to find out the latitude/longitude of any known city of the world.

Searching for an article in Wikipedia

Wikipedia is a great site to gather information about virtually anything, for example, people,
places, technology, and what not. If you like to search for something on Wikipedia from your
Python script, this recipe is for you.

Here is an example:

Islam - Wikipedia, the free encyclopedia - Google Chrome

- amending our Terms of Use: @

@ Please o & prop isclosed paid editing.

Islam

From Wikipedia. e bee encyciopedia

For offwr uses, o 15 (Pzmal
tstam (st Y aranic: piudll,
A hook consadend by 15 AReents 10 he the verbal
& and compesed of haa of k
Murshens befieve thil God s o i 171 el the purpeose of exvistence is 10 submit 1o and serve Allah {God). Y Muslims also believe that
1513 5 T COMpRAD AN UNiverSal vorsion of & prmondial Eh Tat wis rviaied Bons many Times Ieoughaut the workd, nchling notably through
A Abrs and J hom they cormider prophees. | They maimain that the previous messages and revelations have besn
bt COnSIter i A Queman B0 b Both th U o ' Retgions concepts.
5! . WhICh Are Basic CONCepRs and otiigatory Ac)
VNG QUIGINGE N MUINEANCLS Bopcs Trom b

e and Abraharmic relgon atculated by the Quran,
eachings and ROMAAIve exampks [calied the
. An agherent of IS1am is caled & Musim

i et Lrgest Musbe-majoety
n A 20% in en 1 Sizanie minortes ae also found In Europe. Ch
Ameficas, COMVENS and IMmigrant communities ane found in SAmost every pan of the workd (see
Toliowers or 23% of & 151 jgtam s the second-iagest reigion and one of the 1AS1EsE-Growin

ABOUE 13 of MUSImS Ve in Indones

Comuents

e wikipedia.orgfwikifFakat

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

Getting ready

You need to install the pyyaml third-party library from PyPI using pip or easy install by
entering $ pip install pyyaml or $ easy install pyyaml.

How to do it...

Let us search for the keyword Islam in Wikipedia and print each search result in one line.
Listing 6.3 explains how to search for an article in Wikipedia, as shown:

#!/usr/bin/env python

-*- coding: utf-8 -*-

Python Network Programming Cookbook -- Chapter - 6

This program is optimized for Python 2.7.

It may run on any other version with/without modifications

import argparse
import re
import yaml
import urllib
import urllib2

SEARCH URL = 'http://%$s.wikipedia.org/w/api.php?action=query&list=sear
ch&srsearch=%s&sroffset=%d&srlimit=%d&format=yaml'

class Wikipedia:

def init (self, lang='en'):
self.lang = lang

def get content (self, url):
request = urllib2.Request (url)
request.add_header ('User-Agent', 'Mozilla/20.0')

try:
result = urllib2.urlopen (request)
except urllib2.HTTPError, e:
print "HTTP Error:%s" % (e.reason)
except Exception, e:
print "Error occurred: %s" %str(e)
return result

def search content (self, query, page=1, 1limit=10):
offset = (page - 1) * limit

132

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

)

url = SEARCH URL % (self.lang, urllib.quote plus (query),
offset, limit)
content = self. get content(url) .read()

parsed
search

yaml.load (content)
parsed['query'] ['search']

if not search:

return

results = []

for article in search:
snippet = article['snippet']
snippet = re.sub(r'(?m)<.*?>', '', snippet)
snippet = re.sub(r'\s+', ' ', snippet)
snippet = snippet.replace(' . ', '. ')
snippet = snippet.replace(' , ', ', ')

snippet = snippet.strip()

results.append ({
'title' : article['title'].strip(),
'snippet' : snippet

)
return results

if mname == ' main ':
parser = argparse.ArgumentParser (description='Wikipedia search')
parser.add argument ('--query', action="store", dest="query",
required=True)
given args = parser.parse_args()

wikipedia = Wikipedia()

search term = given args.query

print "Searching Wikipedia for %s" %search term
results = wikipedia.search content (search term)

print "Listing %s search results..." %len(results)
for result in results:

print "==%s== \n \t%s" %(result['title'], result['snippet'])
print "---- End of search results ----"

Running this recipe to query Wikipedia about Islam shows the following output:

$ python 6 3 search article in wikipedia.py --query='Islam'
Searching Wikipedia for Islam
Listing 10 search results...

==Islam==

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

Islam. (' | = | s | 1 | a: | m Juwda, ar | ALA | al-’Islam
@l12rs'le:m | IPA | ar-al islam. ...

==Sunni Islam==

Sunni Islam (' | s | u: | n | io0or ' | s | v | n| i]) is the
largest branch of Islam ; its adherents are referred to in Arabic as ...
==Muslim==

A Muslim, also spelled Moslem is an adherent of Islam, a
monotheistic Abrahamic religion based on the Qur'an —which Muslims
consider the ...

==Sharia==

is the moral code and religious law of Islam. Sharia deals with
many topics addressed by secular law, including crime, politics, and ...
==History of Islam==

The history of Islam concerns the Islamic religion and its
adherents, known as Muslim s. " "Muslim" is an Arabic word meaning

"one who ...

==Caliphate==

a successor to Islamic prophet Muhammad) and all the Prophets
of Islam. The term caliphate is often applied to successions of
Muslim ...
==Islamic fundamentalism==

Islamic ideology and is a group of religious ideologies seen as
advocating a return to the "fundamentals" of Islam : the Quran and
the Sunnah. ...
==Islamic architecture==

Islamic architecture encompasses a wide range of both secular
and religious styles from the foundation of Islam to the present day. ...

---- End of search results ----

First, we collect the Wikipedia URL template for searching an article. We created a class
called wikipedia, which has two methods: get content () and search content ().
By default upon initialization, the class sets up its language attribute 1ang to en (English).

The command-line query string is passed to the search content () method. It then
constructs the actual search URL by inserting variables such as language, query string, page
offset, and number of results to return. The search_content () method can optionally take
the parameters and the offset is determined by the (page -1) * limit expression.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The content of the search result is fetched via the _get content () method which calls the
urlopen () function of urllib. In the search URL, we set up the result format yaml, which
is basically intended for plain text files. The yaml search result is then parsed with Python's
pyyaml library.

The search result is processed by substituting the regular expressions found in each result
item. For example, the re.sub (r' (?m)<.*?>"', '', snippet) expression takes

the snippet string and replaces a raw pattern (?m) <. *?>). To learn more about regular
expressions, visit the Python document page, available at http://docs.python.org/2/
howto/regex.html.

In Wikipedia terminology, each article has a snippet or a short description. We create a list of
dictionary items where each item contains the title and the snippet of each search result. The
results are printed on the screen by looping through this list of dictionary items.

Searching for Google stock quote

If the stock quote of any company is of interest to you, this recipe can help you to find today's
stock quote of that company.

Getting ready

We assume that you already know the symbol used by your favorite company to enlist itself
on any stock exchange. If you don't know, get the symbol from the company website or just
search in Google.

How to do it...

Here, we use Google Finance (http://finance.google.com/) to search for the stock
quote of a given company. You can input the symbol via the command line, as shown in the
next code.

Listing 6.4 describes how to search for Google stock quote, as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 6

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse

import urllib

import re

from datetime import datetime

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

SEARCH _URL = 'http://finance.google.com/finance?g="

def get quote (symbol) :
content = urllib.urlopen (SEARCH URL + symbol) .read()

m = re.search('id="ref 694653 1".*?>(.*?)<', content)
if m:

quote = m.group (1)
else:

quote = 'No quote available for: ' + symbol

return quote

if name == ' main ':

parser = argparse.ArgumentParser (description='Stock gquote
search!')

parser.add argument ('--symbol', action="store", dest="symbol",
required=True)

given args = parser.parse_args()

print "Searching stock quote for symbol '%s'" %given args.symbol

print "Stock quote for %s at %s: %s" %(given args.symbol ,
datetime.today (), get quote(given args.symbol))

If you run this script, you will see an output similar to the following. Here, the stock quote for
Google is searched by inputting the symbol goog, as shown:

$ python 6 4 google stock quote.py --symbol=goog

Searching stock quote for symbol 'goog'

Stock quote for goog at 2013-08-20 18:50:29.483380: 868.86

This recipe uses the urlopen () function of urllib to get the stock data from the Google
Finance website.

By using the regular expression library re, it locates the stock quote data in the first group of
items. The search () function of re is powerful enough to search the content and filter the ID
data of that particular company.

Using this recipe, we searched for the stock quote of Google, which was 868 .86 on August
20, 2013.

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Searching for a source code repository at

GitHub

As a Python programmer, you may already be familiar with GitHub (http://www.github.
com), a source code-sharing website, as shown in the following screenshot. You can share
your source code privately to a team or publicly to the world using GitHub. It has a nice API
interface to query about any source code repository. This recipe may give you a starting point
to create your own source code search engine.

GitHub - Bulld software better, together. - Google Chrome

tps://github.com

GitHub

Build software

d cod

better, together.

Getting ready

To run this recipe, you need to install the third-party Python library requests by entering $
pip install requestsoOr$ easy install requests.

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

How to do it...

We would like to define a search_repository () function that will take the name of
author (also known as coder), repository, and search key. In return, it will give us back the
available result against the search key. From the GitHub API, the following are the available
search keys: issues _url, has wiki, forks url, mirror url, subscription url,
notifications url, collaborators url, updated at, private, pulls url,
issue comment url, labels url, full name, owner, statuses_url, id, keys__
url, description, tags_url, network count, downloads url, assignees url,
contents url,git refs url, open_ issues_ count, clone url, watchers count
git tags url,milestones url, languages_url, size, homepage, fork, commits
url, issue_events_url, archive url, comments url, events url, contributors
url, html url, forks, compare url, open issues,git url, svn url, merges url,
has issues, ssh _url, blobs url, master branch,git commits url, hooks url
has downloads, watchers, name, language, url, created at, pushed at, forks
count, default branch, teams_url, trees url, organization, branches url,
subscribers url, and stargazers_url.

Listing 6.5 gives the code to search for details of a source code repository at GitHub,
as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 6

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

SEARCH URL BASE = 'https://api.github.com/repos'
import argparse
import requests

import json

def search repository(author, repo, search for='homepage') :

url = "%s/%s/%s" % (SEARCH URL BASE, author, repo)
print "Searching Repo URL: %s" %url
result = requests.get (url)

if (result.ok) :

repo_info = json.loads(result.text or result.content)
print "Github repository info for: %s" %$repo
result = "No result found!"
keys = []
for key,value in repo info.iteritems() :

if search for in key:

result = value
return result

138

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

if name == ' main ':

parser = argparse.ArgumentParser (description='Github search')

parser.add argument ('--author', action="store", dest="author",
required=True)

parser.add argument ('--repo', action="store", dest="repo",
required=True)

parser.add argument ('--search for', action="store",

dest="search for", required=True)

given args = parser.parse_args()
result = search repository(given args.author, given args.repo,
given args.search for)
if isinstance (result, dict):
print "Got result for '%$s'..." %(given args.search for)
for key,value in result.iteritems() :
print "%s => %s" % (key,value)
else:
print "Got result for %s: %$s" %(given args.search for,
result)

If you run this script to search for the owner of the Python web framework Django, you can get
the following result:

$ python 6 5 search code github.py --author=django --repo=django
--search for=owner

Searching Repo URL: https://api.github.com/repos/django/django
Github repository info for: django

Got result for 'owner'...

following url => https://api.github.com/users/django/following{/other
user}

events url => https://api.github.com/users/django/events{/privacy}
organizations url => https://api.github.com/users/django/orgs

url => https://api.github.com/users/django

gists url => https://api.github.com/users/django/gists{/gist_id}

html url => https://github.com/django

subscriptions url => https://api.github.com/users/django/subscriptions

avatar url => https://l.gravatar.com/avatar/fd542381031aa84dca86628ece84f
c07?d=https%3A%2F%2Fidenticons.github.com%2Fe94df919e51ae96652259468415d
4£f77 .png

repos_url => https://api.github.com/users/django/repos

received events url => https://api.github.com/users/django/received
events

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

gravatar id => £d542381031aa84dca86628ece84£fc07

starred url => https://api.github.com/users/django/starred{/owner}{/repo}
login => django

type => Organization

id => 27804

followers url => https://api.github.com/users/django/followers

This script takes three command-line arguments: repository author (- -author), repository
name (- -repo), and the item to search for (- -search for). The arguments are processed
by the argpase module.

Our search repository () function appends the command-line arguments to a fixed
search URL and receives the content by calling the requests module's get () function.

The search results are, by default, returned in the JSON format. This content is then processed
with the j son module's loads () method. The search key is then looked for inside the

result and the corresponding value of that key is returned back to the caller of the

search _repository () function.

In the main user code, we check whether the search result is an instance of the Python
dictionary. If yes, then the key/values are printed iteratively. Otherwise, the value is printed.

Reading news feed from BBC

If you are developing a social networking website with news and stories, you may be interested
to present the news from various world news agencies, such as BBC and Reuters. Let us try to
read news from BBC via a Python script.

Getting ready

This recipe relies on Python's third-party feedparser library. You can install this by running
the following command:

$ pip install feedparser

Or

$ easy install feedparser

140

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

First, we collect the BBC's news feed URL from the BBC website. This URL can be used

as a template to search news on various types, such as world, UK, health, business, and
technology. So, we can take the type of news to display as user input. Then, we depend on
the read news () function, which will fetch the news from the BBC.

Listing 6.6 explains how to read news feed from the BBC, as shown in the following code:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 6

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

from datetime import datetime
import feedparser
BBC_FEED URL = 'http://feeds.bbci.co.uk/news/%s/rss.xml’'

def read news (feed url):
try:
data = feedparser.parse(feed url)
except Exception, e:
print "Got error: %s" %str(e)

for entry in data.entries:
print (entry.title)
print (entry.link)
print (entry.description)

print ("\n")
if name == ' main ':
print "==== Reading technology news feed from bbc.co.uk
(%$s)====" %datetime.today ()

print "Enter the type of news feed: "

print "Available options are: world, uk, health, sci-tech,
business, technology"

type = raw_input ("News feed type:")

read news (BBC_FEED URL %type)

print "==== End of BBC news feed ====="

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

Running this script will show you the available news categories. If we choose technology as
the category, you can get the latest news on technology, as shown in the following command:

$ python 6 6 read bbc news feed.py

==== Reading technology news feed from bbc.co.uk (2013-08-20
19:02:33.940014) ====

Enter the type of news feed:

Available options are: world, uk, health, sci-tech, business, technology
News feed type:technology

Xbox One courts indie developers

http://www.bbc.co.uk/news/technology-23765453#sa-ns_mchannel=rss&ns_
source=PublicRSS20-sa

Microsoft is to give away free Xbox One development kits to encourage
independent developers to self-publish games for its forthcoming console.

Fast in-flight wi-fi by early 2014

http://www.bbc.co.uk/news/technology-23768536#sa-ns_mchannel=rss&ns_
source=PublicRSS20-sa

Passengers on planes, trains and ships may soon be able to take advantage
of high-speed wi-fi connections, says Ofcom.

Anonymous 'hacks council website!'

http://www.bbc.co.uk/news/uk-england-surrey-23772635¢#sa-ns
mchannel=rss&ns_source=PublicRSS20-sa

A Surrey council blames hackers Anonymous after references to a Guardian
journalist's partner detained at Heathrow Airport appear on its website.

Amazon.com website goes offline

http://www.bbc.co.uk/news/technology-23762526#sa-ns_mchannel=rss&ns_
source=PublicRSS20-sa

Amazon's US website goes offline for about half an hour, the latest high-
profile intermnet firm to face such a problem in recent days.

[TRUNCATED]

In this recipe, the read _news () function relies on Python's third-party module feedparser.
The feedparser module's parser () method returns the feed data in a structured fashion.

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In this recipe, the parser () method parses the given feed URL. This URL is constructed from
BBC FEED URL and user input.

After some valid feed data is obtained by calling parse (), the contents of the data is then
printed, such as title, link, and description, of each feed entry.

Crawling links present in a web page

At times you would like to find a specific keyword present in a web page. In a web browser, you
can use the browser's in-page search facility to locate the terms. Some browsers can highlight
it. In a complex situation, you would like to dig deep and follow every URL present in a web
page and find that specific term. This recipe will automate that task for you.

How to do it...

Let us write a search 1links () function that will take three arguments: the search URL,
the depth of the recursive search, and the search key/term, since every URL may have links
present in the content and that content may have more URLSs to crawl. To limit the recursive
search, we define a depth. Upon reaching that depth, no more recursive search will be done.

Listing 6.7 gives the code for crawling links present in a web page, as shown in the
following code:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 6

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import sys
import httplib
import re

processed = []

def search links(url, depth, search):
Process http links that are not processed yet
url_is_processed = (url in processed)
if (url.startswith("http://") and (not url_is processed)) :
processed.append (url)
url = host = url.replace("http://", "", 1)
path = "/

urlparts = url.split("/")
if (len(urlparts) > 1):

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

host = urlparts[0]
path = url.replace(host, "", 1)

Start crawling

print "Crawling URL path:%s%s " % (host, path)
conn = httplib.HTTPConnection (host)

req = conn.request ("GET", path)

result = conn.getresponse ()

find the links
contents = result.read()
all links = re.findall('href="(.*?)"', contents)

if (search in contents) :
print "Found " + search + " at " + url

print " ==> %s: processing %s links" % (str(depth),
str(len(all links)))
for href in all links:
Find relative urls
if (href.startswith("/")):
href = "http://" + host + href

Recurse links
if (depth > 0):
search links (href, depth-1, search)

else:
print "Skipping link: %s ..." %url

if name == ' main ':

parser = argparse.ArgumentParser (description='Webpage link
crawler')

parser.add argument ('--url', action="store", dest="url",
required=True)

parser.add argument ('--query', action="store", dest="query",
required=True)

parser.add argument ('--depth', action="store", dest="depth",
default=2)

given args = parser.parse_args()

try:
search links(given args.url,
given args.depth,given args.query)
except KeyboardInterrupt:
print "Aborting search by user request."

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If you run this script to search www.python.org for python, you will see an output similar to
the following;:

$ python 6 7 python link crawler.py --url='http://python.org’'
--query="'python'
Crawling URL path:python.org/
Found python at python.org
==> 2: processing 123 links
Crawling URL path:www.python.org/channews.rdf
Found python at www.python.org/channews.rdf
==> 1: processing 30 links
Crawling URL path:www.python.org/download/releases/3.4.0/
Found python at www.python.org/download/releases/3.4.0/
==> 0: processing 111 links

Skipping link: https://ep2013.europython.eu/blog/2013/05/15/epc20145-
call-proposals

Crawling URL path:www.python.org/download/releases/3.2.5/
Found python at www.python.org/download/releases/3.2.5/

==> 0: processing 113 links

Skipping link: http://www.python.org/download/releases/3.2.4/
Crawling URL path:wiki.python.org/moin/WikiAttack2013

“CAborting search by user request.

This recipe can take three command-line inputs: search URL (- -ur1l), the query string
(- -query), and the depth of recursion (- -depth). These inputs are processed by the
argparse module.

When the search 1links () function is called with the previous arguments, this will
recursively iterate on all the links found on that given web page. If it takes too long to finish,
you would like to exit prematurely. For this reason, the search links () function is placed
inside a try-catch block which can catch the user's keyboard interrupt action, such as Ctrl + C.

The search links () function keeps track of visited links via a list called processed. This
is made global to give access to all the recursive function calls.

www.it-ebooks.info

http://www.it-ebooks.info/

Screen-scraping and Other Practical Applications

In a single instance of search, it is ensured that only HTTP URLs are processed in order to
avoid the potential SSL certificate errors. The URL is split into a host and a path. The main
crawling is initiated using the HTTPConnection () function of httplib. It gradually makes a
GET request and a response is then processed using the regular expression module re. This
collects all the links from the response. Each response is then examined for the search term.
If the search term is found, it prints that incident.

The collected links are visited recursively in the same way. If any relative URL is found, that
instance is converted into a full URL by prefixing http:// to the host and the path. If the
depth of search is greater than 0, the recursion is activated. It reduces the depth by 1 and
runs the search function again. When the search depth becomes 0, the recursion ends.

146

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across
Machine Boundaries

In this chapter, we will cover the following recipes:

» Executing a remote shell command using telnet
» Copying a file to a remote machine by SFTP

» Printing a remote machine's CPU information

» Installing a Python package remotely

» Running a MySQL command remotely

» Transferring files to a remote machine over SSH

» Configuring Apache remotely to host a website

Introduction

This chapter promotes some interesting Python libraries. The recipes are presented aiming

at the system administrators and advanced Python programmers who like to write code that
connects to remote systems and executes commands. The chapter begins with lightweight
recipes with a built-in Python library, telnet1lib. It then brings Paramiko, a well-known
remote access library. Finally, the powerful remote system administration library, fabric,

is presented. The fabric library is loved by developers who regularly script for automatic
deployments, for example, deploying web applications or building custom application binaries.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

Executing a remote shell command

using telnet

If you need to connect an old network switch or router via telnet, you can do so from a Python
script instead of using a bash script or an interactive shell. This recipe will create a simple
telnet session. It will show you how to execute shell commands to the remote host.

Getting ready

You need to install the telnet server on your machine and ensure that it's up and running.
You can use a package manager that is specific to your operating system to install the telnet
server package. For example, on Debian/Ubuntu, you can use apt-get Or aptitude to
install the telnetd package, as shown in the following command:

$ sudo apt-get install telnetd
$ telnet localhost

How to do it...

Let us define a function that will take a user's login credentials from the command prompt
and connect to a telnet server.

Upon successful connection, it will send the Unix '1s' command. Then, it will display the
output of the command, for example, listing the contents of a directory.

Listing 7.1 shows the code for a telnet session that executes a Unix command remotely
as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 7

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import getpass
import sys
import telnetlib

def run telnet session():
host = raw_input ("Enter remote hostname e.g. localhost:")
user = raw_input ("Enter your remote account: ")
password = getpass.getpass()

session = telnetlib.Telnet (host)

148

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

session.read until ("login: ")

session.write (user + "\n")

if password:
session.read until ("Password: ")
session.write (password + "\n")

session.write("1ls\n")
session.write ("exit\n")

print session.read all()

if name == ' main ':
run_ telnet session()

If you run a telnet server on your local machine and run this code, it will ask you for your
remote user account and password. The following output shows a telnet session executed
on a Debian machine:

$ python 7 1 execute remote telnet cmd.py
Enter remote hostname e.g. localhost: localhost
Enter your remote account: farug

Password:

1s

exit

Last login: Mon Aug 12 10:37:10 BST 2013 from localhost on pts/9
Linux debian6 2.6.32-5-686 #1 SMP Mon Feb 25 01:04:36 UTC 2013 i686

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
You have new mail.

farug@debian6:~$ 1ls

down Pictures Videos
Downloads projects yEd
Dropbox Public

env readme. txt

farug@debian6:~$ exit
logout

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

This recipe relies on Python's built-in telnetlib networking library to create a telnet
session. The run_telnet session () function takes the username and password from the
command prompt. The getpass module's getpass () function is used to get the password
as this function won't let you see what is typed on the screen.

In order to create a telnet session, you need to instantiate a Telnet () class, which takes a
hostname parameter to initialize. In this case, localhost is used as the hosthame. You can
use the argparse module to pass a hostname to this script.

The telnet session's remote output can be captured with the read_until () method. In the
first case, the login prompt is detected using this method. Then, the username with a new line
feed is sent to the remote machine by the write () method (in this case, the same machine
accessed as if it's remote). Similarly, the password was supplied to the remote host.

Then, the 1s command is sent to be executed. Finally, to disconnect from the remote host,
the exit command is sent, and all session data received from the remote host is printed on
screen using the read _all () method.

Copying a file to a remote machine by SFTP

If you want to upload or copy a file from your local machine to a remote machine securely, you
can do so via Secure File Transfer Protocol (SFTP).

Getting ready

This recipe uses a powerful third-party networking library, Paramiko, to show you an example
of file copying by SFTP, as shown in the following command. You can grab the latest code of
Paramiko from GitHub (https://github.com/paramiko/paramiko) or PyPlI:

$ pip install paramiko

How to do it...

This recipe takes a few command-line inputs: the remote hostname, server port, source
filename, and destination filename. For the sake of simplicity, we can use default or hard-
coded values for these input parameters.

In order to connect to the remote host, we need the username and password, which can be
obtained from the user from the command line.

150

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Listing 7.2 explains how to copy a file remotely by SFTP, as shown in the following code:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 7

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import paramiko
import getpass

SOURCE = '7_2 copy_remote file over sftp.py'
DESTINATION ='/tmp/7 2 copy remote file over sftp.py '

def copy file(hostname, port, username, password, src, dst):
client = paramiko.SSHClient ()
client.load system host keys ()
print " Connecting to %$s \n with username=%s... \n"

% (hostname, username)
t = paramiko.Transport ((hostname, port))
t.connect (username=username, password=password)
sftp = paramiko.SFTPClient.from transport (t)
print "Copying file: %s to path: %s" % (SOURCE, DESTINATION)
sftp.put (src, dst)

sftp.close()

t.close()
if __name_ == '_main_ ':

parser = argparse.ArgumentParser (description='Remote file copy')

parser.add argument ('--host', action="store", dest="host",
default="'localhost')

parser.add argument ('--port', action="store", dest="port",
default=22, type=int)

parser.add_argument ('--src', action="store", dest="src",
default=SOURCE)

parser.add _argument ('--dst', action="store", dest="dst",

default=DESTINATION)
given args = parser.parse_args()
hostname, port = given args.host, given args.port

src, dst = given args.src, given args.dst

username = raw_input ("Enter the username:")
password = getpass.getpass ("Enter password for %s: " %$username)

copy_file(hostname, port, username, password, src, dst)

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

If you run this script, you will see an output similar to the following:

$ python 7 2 copy remote file over sftp.py

Enter the username:farug

Enter password for farugq:

Connecting to localhost

with username=faruqg...

Copying file: 7 2 copy remote file over sftp.py to path:
/tmp/7_2 copy remote file over sftp.py

This recipe can take the various inputs for connecting to a remote machine and copying a file
over SFTP.

This recipe passes the command-line input to the copy file () function. It then creates
a SSH client calling the sSHC1ient class of paramiko. The client needs to load the
system host keys. It then connects to the remote system, thus creating an instance of the
transport class. The actual SFTP connection object, sftp, is created by calling the
SFTPClient.from_ transport () function of paramiko. This takes the transport
instance as an input.

After the SFTP connection is ready, the local file is copied over this connection to the remote
host using the put () method.

Finally, it's a good idea to clean up the SFTP connection and underlying objects by calling the
close () method separately on each object.

Printing a remote machine's CPU

information

Sometimes, we need to run a simple command on a remote machine over SSH. For example,
we need to query the remote machine's CPU or RAM information. This can be done from a
Python script as shown in this recipe.

Getting ready

You need to install the third-party package, Paramiko, as shown in the following command,
from the source available from GitHub's repository at https://github.com/paramiko/
paramiko:

$ pip install paramiko

152

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We can use the paramiko module to create a remote session to a Unix machine.

Chapter 7

Then, from this session, we can read the remote machine's /proc/cpuinfo file to extract

the CPU information.
Listing 7.3 gives the code for printing a remote machine's CPU information, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 7

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import getpass
import paramiko

RECV_BYTES = 4096
COMMAND = 'cat /proc/cpuinfo’

def print remote cpu info(hostname, port, username, password) :
client = paramiko.Transport ((hostname, port))
client.connect (username=username, password=password)

stdout data [1
stderr data = []
session = client.open channel (kind='session')
session.exec_command (COMMAND)
while True:
if session.recv_ready():
stdout data.append(session.recv (RECV_BYTES))
if session.recv_stderr ready():
stderr data.append(session.recv_stderr (RECV_BYTES))
if session.exit status ready () :

break
print 'exit status: ', session.recv_exit status()
print ''.join(stdout data)
print ''.join(stderr data)

session.close()
client.close()

if name == ' main ':

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

parser = argparse.ArgumentParser (description='Remote file copy')

parser.add argument ('--host', action="store", dest="host",
default='localhost')
parser.add argument ('--port', action="store", dest="port",

default=22, type=int)
given args = parser.parse_args()

hostname, port = given args.host, given args.port
username = raw_input ("Enter the username:")
password = getpass.getpass ("Enter password for %s: " %username)

print remote cpu info(hostname, port, username, password)

Running this script will show the CPU information of a given host, in this case, the local
machine, as follows:

$ python 7 3 print remote cpu info.py
Enter the username: faruq

Enter password for faruq:

exit status: 0

processor : 0

vendor id : GenuineIntel
cpu family : 6

model : 42

model name Intel (R) Core(TM) 1i5-2400S CPU @ 2.50GHz

stepping Y

cpu MHz : 2469.677
cache size : 6144 KB
fdiv bug : no

hlt bug : no

£f00£f bug : no
coma_bug : no

fpu : yes

fpu exception : yes
cpuid level : 5

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp lm constant
tsc up pni monitor ssse3 lahf 1m

bogomips : 4939.35

clflush size : 64

cache alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

First, we collect the connection parameters such as hostname, port, username, and
password. These parameters are then passed to the print remote cpu info () function.

This function creates an SSH client session by calling the transport class of paramiko.
The connection is made thereafter using the supplied username and password. We can create
a raw communication session using open_channel () on the SSH client. In order to execute
a command on the remote host, exec _command () can be used.

After sending the command to the remote host, the response from the remote host can

be caught by blocking the recv_ready () event of the session object. We can create

two lists, stdout data and stderr data, and use them to store the remote output and
error messages.

When the command exits in the remote machine, it can be detected using the
exit status_ready () method, and the remote session data can be concatenated
using the join () string method.

Finally, the session and client connection can be closed using the close () method on
each object.

Installing a Python package remotely

While dealing with the remote host in the previous recipes, you may have noticed that we need
to do a lot of stuff related to the connection setup. For efficient execution, it is desirable that
they become abstract and only the relevant high-level part is exposed to the programmers. It is
cumbersome and slow to always explicitly set up connections to execute commands remotely.

Fabric (http://fabfile.org/), a third-party Python module, solves this problem. It only
exposes as many APIs as can be used to efficiently interact with remote machines.

In this recipe, a simple example of using Fabric will be shown.

Getting ready

We need Fabric to be installed first. You can install Fabric using the Python packing tools,
pip oreasy install, as shown in the following command. Fabric relies on the paramiko
module, which will be installed automatically.

$ pip install fabric

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

Here, we will connect the remote host using the SSH protocol. So, it's necessary to run

the SSH server on the remote end. If you like to test with your local machine (pretending to
access as a remote machine), you may install the openssh server package locally. On a
Debian/Ubuntu machine, this can be done with the package manager, apt -get, as shown
in the following command:

$ sudo apt-get install openssh-server

How to do it...

Here's the code for installing a Python package using Fabric.
Listing 7.4 gives the code for installing a Python package remotely as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 7

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

from getpass import getpass
from fabric.api import settings, run, env, prompt

def remote_ server():
env.hosts = ['127.0.0.1"]
env.user = prompt ('Enter user name: ')
env.password = getpass ('Enter password: ')

def install package() :
run("pip install yolk")

Fabric scripts are run in a different way as compared to the normal Python scripts. All functions
using the fabric library must be referred to a Python script called fabfile.py. There's no
traditional __main__ directive in this script. Instead, you can define your method using the
Fabric APls and execute these methods using the command-line tool, £ab. So, instead of calling
python <scripts.py, you can run a Fabric script, which is defined in a fabfile.py

script and located under the current directory, by calling fab one function name

another function name.

So, let's create a fabfile.py script as shown in the following command. For the sake of
simplicity, you can create a file shortcut or link from any file to a fabfile.py script. First,
delete any previously created fabfile.py file and create a shortcutto fabfile:

$ rm -rf fabfile.py

$ In -s 7_4 install python package remotely.py fabfile.py

156

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

If you call the fabfile now, it will produce the following output after installing the Python
package, yolk, remotely as follows:

$ In -sfn 7 4 install python package remotely.py fabfile.py

$ fab remote server install package

Enter user name: farug

Enter password:

[127.0.0.1] Executing task 'install package'

[127.0.0.1] run: pip install yolk

[127.0.0.1] out: Downloading/unpacking yolk

[127.0.0.1] out: Downloading yolk-0.4.3.tar.gz (86kB):

[127.0.0.1] out: Downloading yolk-0.4.3.tar.gz (86kB): 100% 86kB
[127.0.0.1] out: Downloading yolk-0.4.3.tar.gz (86kB):

[127.0.0.1] out: Downloading yolk-0.4.3.tar.gz (86kB): 86kB
downloaded

[127.0.0.1] out: Running setup.py egg info for package yolk
[127.0.0.1] out: Installing yolk script to /home/faruq/env/bin
[127.0.0.1] out: Successfully installed yolk

[127.0.0.1] out: Cleaning up...

[127.0.0.1] out:

Done.

Disconnecting from 127.0.0.1... done.

This recipe demonstrates how a system administration task can be done remotely using a
Python script. There are two functions present in this script. The remote_server () function
sets up the Fabric env environment variables, for example, the hostname, user, password,
and so on.

The other function, install package (), calls the run () function. This takes the commands
that you usually type in the command line. In this case, the command is pip install yolk.
This installs the Python package, yolk, with pip. As compared to the previously described
recipes, this method of running a remote command using Fabric is easier and more efficient.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

Running a MySQL command remotely

If you ever need to administer a MySQL server remotely, this recipe is for you. It will show you
how to send database commands to a remote MySQL server from a Python script. If you need
to set up a web application that relies on a backend database, this recipe can be used as a
part of your web application setup process.

Getting ready

This recipe also needs Fabric to be installed first. You can install Fabric using the Python
packing tools, pip or easy install, as shown in the following command. Fabric relies on
the paramiko module, which will be installed automatically.

$ pip install fabric

Here, we will connect the remote host using the SSH protocol. So, it's necessary to run the
SSH server on the remote end. You also need to run a MySQL server on the remote host. On a
Debian/Ubuntu machine, this can be done with the package manager, apt -get, as shown in
the following command:

$ sudo apt-get install openssh-server mysqgl-server

How to do it...

We defined the Fabric environment settings and a few functions for administering MySQL
remotely. In these functions, instead of calling the mysqgl executable directly, we send the
SQL commands to mysqgl via echo. This ensures that arguments are passed properly to the
mysqgl executable.

Listing 7.5 gives the code for running MySQL commands remotely, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 7

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

from getpass import getpass
from fabric.api import run, env, prompt, cd

def remote server():
env.hosts = ['127.0.0.1"']

Edit this list to include remote hosts
env.user =prompt ('Enter your system username: ')
env.password = getpass ('Enter your system user password: ')
env.mysglhost = 'localhost'’
env.mysgluser = 'root'prompt ('Enter your db username: ')

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

env.password = getpass ('Enter your db user password: ')
env.db _name = ''

def show _dbs() :

" Wraps mysqgl show databases cmd"""

g = "show databases"

run("echo '%s' | mysgl -u%s -p%s" %(q, env.mysqluser,
env.mysglpassword))

def run sqgl (db name, query):
"nmw Generic function to run sgl"""
with cd('/tmp') :
run("echo '%s' | mysqgl -u%s -p%s -D %s" %(query,
env.mysgluser, env.mysglpassword, db name))

def create db():
""n"Create a MySQL DB for App version"""
if not env.db name:
db name = prompt ("Enter the DB name:")
else:
db _name = env.db_name
run ('echo "CREATE DATABASE %s default character set utf8 collate
utf8 unicode ci;"|mysgl --batch --user=%s --password=%s --
host=%s"'\

% (db_name, env.mysqgluser, env.mysglpassword, env.mysglhost),
pty=True)

def 1s db():
""m List a dbs with size in MB """
if not env.db name:
db name = prompt ("Which DB to 1s?")
else:
db _name = env.db_name
query = """SELECT table schema
"DB Name",
Round (Sum(data_length + index length) / 1024 / 1024, 1) "DB Size
in MB"
FROM information schema.tables
WHERE table schema = \"%s\"
GROUP BY table schema """ %db name
run_sqgl (db_name, query)

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

def empty db():

"nro Empty all tables of a given DB """

db name = prompt ("Enter DB name to empty:")

cmd = "o

(echo 'SET foreign key checks = 0;';

(mysgldump -u%s -p%s --add-drop-table --no-data %s

grep “DROP) ;

echo 'SET foreign key checks = 1;') | \

mysgl -u%s -p%s -b %s

" % (env.mysgluser, env.mysglpassword, db name, env.mysqgluser,
env.mysglpassword, db name)

run (cmd)

In order to run this script, you should create a shortcut, fabfile.py. From the command
line, you can do this by typing the following command:

$ 1In -sfn 7 5 run mysql command remotely.py fabfile.py
Then, you can call the fab executable in various forms.

The following command will show a list of databases (using the SQL query, show
databases):

$ fab remote server show dbs

The following command will create a new MySQL database. If you haven't defined the Fabric
environment variable, do_name, a prompt will be shown to enter the target database name. This
database will be created using the SQL command, CREATE DATABASE <database names
default character set utf8 collate utf8 unicode ci;.

$ fab remote server create db
This Fabric command will show the size of a database:
$ fab remote server 1ls db()

The following Fabric command will use the mysgldump and mysqgl executables to empty a
database. This behavior of this function is similar to the truncating of a database, except it
removes all the tables. The result is as if you created a fresh database without any tables:

$ fab remote server empty db()
The following will be the output:

$ § fab remote server show dbs

[127.0.0.1] Executing task 'show dbs’

[127.0.0.1] run: echo 'show databases' | mysqgl -uroot -p<DELETED>
[127.0.0.1] out: Database

160

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[127.0.0.1] out: information schema
[127.0.0.1] out: mysql

[127.0.0.1] out: phpmyadmin
[127.0.0.1] out:

Done.

Disconnecting from 127.0.0.1... done.

$ fab remote server create db
[127.0.0.1] Executing task 'create db'
Enter the DB name: testl23

[127.0.0.1] run: echo "CREATE DATABASE testl23 default character set utf8
collate utf8 unicode ci;"|mysqgl --batch --user=root --password=<DELETED>
--host=localhost

Done.
Disconnecting from 127.0.0.1... done.
$ fab remote server show dbs

[127.0.0.1] Executing task 'show dbs'

[127.0.0.1] run: echo 'show databases' | mysqgl -uroot -p<DELETED>
[127.0.0.1] out: Database

[127.0.0.1] out: information schema

[127.0.0.1] out: collabtive

[127.0.0.1] out: testl23

[127.0.0.1] out: testdb

[127.0.0.1] out:

Done.

Disconnecting from 127.0.0.1... done.

This script defines a few functions that are used with Fabric. The first function,

remote_ server (), sets the environment variables. The local loopback IP (127.0.0.1)
is put to the list of hosts. The local system user and MySQL login credentials are set and
collected via getpass ().

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

The other function utilizes the Fabric run () function to send MySQL commands to the remote
MySQL server by echoing the command to the mysqgl executable.

The run_sqgl () function is a generic function that can be used as a wrapper in other
functions. For example, the empty db () function calls it to execute the SQL commands.
This can keep your code a bit more organized and cleaner.

Transferring files to a remote machine

over SSH

While automating a remote system administration task using Fabric, if you want to transfer
files between your local machine and the remote machine with SSH, you can use the Fabric's
built-in get () and put () functions. This recipe shows you how we can create custom
functions to transfer files smartly by checking the disk space before and after the transfer.

Getting ready

This recipe also needs Fabric to be installed first. You can install Fabric using Python packing
tools, pip or easy install, as shown in the following command:

$ pip install fabric

Here, we will connect the remote host using the SSH protocol. So, it's necessary to install and
run the SSH server on the remote host.

How to do it...

Let us first set up the Fabric environment variables and then create two functions, one for
downloading files and the other for uploading files.

Listing 7.6 gives the code for transferring files to a remote machine over SSH as follows:
#!/usr/bin/env python
Python Network Programming Cookbook -- Chapter - 7

This program is optimized for Python 2.7.
It may run on any other version with/without modifications.

from getpass import getpass
from fabric.api import local, run, env, get, put, prompt, open shell

def remote_ server():

env.hosts = ['127.0.0.1"]
env.password = getpass ('Enter your system password: ')
env.home folder = '/tmp'
def login() :
162

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

open_shell (command="cd %s" %env.home folder)

def download file():
print "Checking local disk space..."
local("df -h")
remote path = prompt ("Enter the remote file path:")
local path = prompt ("Enter the local file path:")
get (remote path=remote path, local path=local path)
local("ls %s" %$local path)

def upload file():
print "Checking remote disk space..."
run("df -h")
local path = prompt ("Enter the local file path:")
remote path = prompt ("Enter the remote file path:")
put (remote path=remote path, local path=local path)
run("ls %s" %remote path)

In order to run this script, you should create a shortcut, fabfile.py. From the command
line, you can do this by typing the following command:

$ 1In -sfn 7 6 transfer file over ssh.py fabfile.py

Then, you can call the fab executable in various forms.

First, to log on to a remote server using your script, you can run the following Fabric function:
$ fab remote server login

This will give you a minimum shell-like environment. Then, you can download a file from a
remote server to your local machine using the following command:

$ fab remote server download file
Similarly, to upload a file, you can use the following command:
$ fab remote server upload file

In this example, the local machine is used via SSH. So, you have to install the SSH server
locally to run these scripts. Otherwise, you can modify the remote server () function and
point it to a remote server, as follows:

$ fab remote server login
[127.0.0.1] Executing task 'login'
Linux debian6 2.6.32-5-686 #1 SMP Mon Feb 25 01:04:36 UTC 2013 i686

The programs included with the Debian GNU/Linux system are free software;

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

You have new mail.

Last login: Wed Aug 21 15:08:45 2013 from localhost

cd /tmp

farug@debian6:~$ cd /tmp

farug@debiané6:/tmp$

<CTRL+D>
farug@debiané6:/tmp$ logout

Done.

Disconnecting from 127.0.0.1... done.

$ fab remote server download file
[127.0.0.1] Executing task 'download file'
Checking local disk space...

[localhost] local: df -h

Filesystem Size Used Avail Use% Mounted on
/dev/sdal 62G 47G 126G 81% /

tmpfs 506M 0 506M 0% /lib/init/rw
udev 501M 160K 501M 1% /dev

tmpfs 506M 408K 505M 1% /dev/shm

Z_ DRIVE 1012G 944G 69G 94% /media/z
C_DRIVE 466G 248G 218G 54% /media/c

Enter the remote file path: /tmp/op.txt

Enter the local file path: .

[127.0.0.1] download: chapter7/op.txt <- /tmp/op.txt
[localhost] local: 1s .

7 1 execute remote telnet cmd.py 7 3 print remote cpu info.py
7 5 run mysql command remotely.py 7 7 configure Apache for hosting

website remotely.py fabfile.pyc init .py test.txt

7 2 copy remote file over sftp.py 7 4 install python package
remotely.py 7 6 transfer file over ssh.py fabfile.py
index.html op.txt vhost.conf

Done.

Disconnecting from 127.0.0.1... done.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In this recipe, we used a few of Fabric's built-in functions to transfer files between local and
remote machines. The 1ocal () function does an action on the local machine, whereas the
remote actions are carried out by the run () function.

This is useful to check the available disk space on the target machine before uploading a file
and vice versa.

This is achieved by using the Unix command, df. The source and destination file paths can
be specified via the command prompt or can be hard coded in the source file in case of an
unattended automatic execution.

Configuring Apache remotely to host

a website

Fabric functions can be run as both regular and super users. If you need to host a website in a
remote Apache web server, you need the administrative user privileges to create configuration
files and restart the web server. This recipe introduces the Fabric sudo () function that

runs commands in the remote machine as a superuser. Here, we would like to configure the
Apache virtual host for running a website.

Getting ready

This recipe needs Fabric to be installed first on your local machine. You can install Fabric
using the Python packing tools, pip or easy install, as shown in the following command:

$ pip install fabric

Here, we will connect the remote host using the SSH protocol. So, it's necessary to install
and run the SSH server on the remote host. It is also assumed that the Apache web server is
installed and running on the remote server. On a Debian/Ubuntu machine, this can be done
with the package manager, apt -get, as shown in the following command:

$ sudo apt-get install openssh-server apache2

How to do it...

First, we collect our Apache installation paths and some configuration parameters, such
as web server user, group, virtual host configuration path, and initialization scripts. These
parameters can be defined as constants.

Then, we set up two functions, remote server () and setup vhost (), to execute the
Apache configuration task using Fabric.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

Listing 7.7 gives the code for configuring Apache remotely to host a website as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 7

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

from fabric.api import env, put, sudo, prompt
from fabric.contrib.files import exists

WWW_DOC_ROOT = "/data/apache/test/"

WWW_USER = "www-data"

WWW_GROUP = "www-data"

APACHE SITES PATH = "/etc/apache2/sites-enabled/"
APACHE INIT SCRIPT = "/etc/init.d/apache2 "

def remote_ server():
env.hosts = ['127.0.0.1"']
env.user = prompt ('Enter user name: ')
env.password = getpass('Enter your system password: ')

def setup vhost () :
"wn o Setup a test website """
print "Preparing the Apache vhost setup..."

print "Setting up the document root..."
if exists (WWW_DOC_ROOT) :

sudo ("rm -rf %s" %WWW_DOC_ROOT)
sudo ("mkdir -p %s" %WWW_DOC_ROOT)

setup file permissions
sudo ("chown -R %s.%s %s" %(env.user, env.user, WWW_DOC ROOT))

upload a sample index.html file
put (local path="index.html", remote path=WWW DOC_ ROOT)
sudo ("chown -R %s.%s %s" % (WWW_USER, WWW_GROUP, WWW_DOC_ROOT))

print "Setting up the vhost..."

sudo ("chown -R %s.%s %s" %(env.user, env.user,
APACHE SITES_ PATH))

166

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

upload a pre-configured vhost.conf
put (local path="vhost.conf", remote path=APACHE SITES PATH)

)

sudo ("chown -R %s.%s %s" %('root', 'root', APACHE SITES PATH))

restart Apache to take effect

sudo ("%s restart" $%APACHE INIT SCRIPT)

print "Setup complete. Now open the server path
http://abc.remote-server.org/ in your web browser."

In order to run this script, the following line should be appended on your host file, for
example,. /etc/hosts:

127.0.0.1 abc.remote-server.org abc

You should also create a shortcut, fabfile.py. From the command line, you can do this by
typing the following command:
$ 1In -sfn 7_7 configure Apache for hosting website remotely.py

fabfile.py
Then, you can call the fab executable in various forms.

First, to log on to a remote server using your script, you can run the following Fabric function.
This will result in the following output:

$ fab remote_ server setup vhost

[127.0.0.1] Executing task 'setup vhost'

Preparing the Apache vhost setup...

Setting up the document root...

[127.0.0.1] sudo: rm -rf /data/apache/test/

[127.0.0.1] sudo: mkdir -p /data/apache/test/

[127.0.0.1] sudo: chown -R faruq.faruq /data/apache/test/
[127.0.0.1] put: index.html -> /data/apache/test/index.html
[127.0.0.1] sudo: chown -R www-data.www-data /data/apache/test/
Setting up the vhost...

[127.0.0.1] sudo: chown -R faruq.faruq /etc/apache2/sites-enabled/
[127.0.0.1] put: vhost.conf -> /etc/apache2/sites-enabled/vhost.conf
[127.0.0.1] sudo: chown -R root.root /etc/apache2/sites-enabled/
[127.0.0.1] sudo: /etc/init.d/apache2 restart

[127.0.0.1] out: Restarting web server: apache2apache2: Could not
reliably determine the server's fully qualified domain name, using
127.0.0.1 for ServerName

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Across Machine Boundaries

[127.0.0.1] out: ... waiting apache2: Could not reliably determine the
server's fully qualified domain name, using 127.0.0.1 for ServerName

[127.0.0.1] out:
[127.0.0.1] out:

Setup complete. Now open the server path http://abc.remote-server.org/ in
your web browser.

Done.

Disconnecting from 127.0.0.1... done.

After you run this recipe, you can open your browser and try to access the path you set up on
the host file (for example, /etc/hosts). It should show the following output on your browser:
It works!

This is the default web page for this server.

The web server software is running but no content has been added,

yet.

This recipe sets up the initial Apache configuration parameters as constants and then defines
two functions. In the remote server () function, the usual Fabric environment parameters,
for example, hosts, user, password, and so on, are placed.

The setup vhost () function executes a series of privileged commands. First, it checks
whether the website's document root path is already created using the exists () function.
If it exists, it removes that path and creates it in the next step. Using chown, it ensures that
the path is owned by the current user.

In the next step, it uploads a bare bone HTML file, index.html, to the document root path.
After uploading the file, it reverts the permission of the files to the web server user.

After setting up the document root, the setup_ vhost () function uploads the supplied
vhost . conf file to the Apache site configuration path. Then, it sets its owner as the root user.

Finally, the script restarts the Apache service so that the configuration is activated. If the
configuration is successful, you should see the sample output shown earlier when you open
the URL, http://abc.remote-server.org/, in your browser.

168

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web
Services - XML-RPC,
SOAP, and REST

In this chapter, we will cover the following recipes:

» Querying a local XML-RPC server

» Writing a multithreaded, multicall XML-RPC server

» Running an XML-RPC server with a basic HTTP authentication
» Collecting some photo information from Flickr using REST

» Searching for SOAP methods from an Amazon S3 web service
» Searching Google for custom information

» Searching Amazon for books through product search API

Introduction

This chapter presents some interesting Python recipes on web services using three different
approaches, namely, XML Remote Procedure Call (XML-RPC), Simple Object Access
Protocol (SOAP), and Representational State Transfer (REST). The idea behind the web
services is to enable an interaction between two software components over the Web through
a carefully designed protocol. The interface is machine readable. Various protocols are used
to facilitate the web services.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

Here, we bring examples from three commonly used protocols. XML-RPC uses HTTP as the
transport medium, and communication is done using XML contents. A server that implements
XML-RPC waits for a call from a suitable client. The client calls that server to execute remote
procedures with different parameters. XML-RPC is simpler and comes with a minimum
security in mind. On the other hand, SOAP has a rich set of protocols for enhanced remote
procedure calls. REST is an architectural style to facilitate web services. It operates with HTTP
request methods, namely, GET, POST, PUT, and DELETE. This chapter presents the practical
use of these web services protocols and styles to achieve some common tasks.

Querying a local XML-RPC server

If you do a lot of web programming, it's most likely that you will come across this task: to get
some information from a website that runs an XML-RPC service. Before we go into the depth
of an XML-RPC service, let's launch an XML-RPC server and talk to it first.

Getting ready

In this recipe, we will use the Python Supervisor program that is widely used to launch and
manage a bunch of executable programs. Supervisor can be run as a background daemon
and can monitor child processes and restart if they die suddenly. We can install Supervisor
by simply running the following command:

$pip install supervisor

How to do it...

We need to create a configuration file for Supervisor. A sample configuration is given in this
recipe. In this example, we define the Unix HTTP server socket and a few other parameters.
Note the rpcinterface: supervisor section where rpcinterface factory is defined
to communicate with clients.

Using Supervisor, we configure a simple server program in the program:8_2
multithreaded multicall xmlrpc server.py section by specifying the command
and some other parameters.

Listing 8.1a gives the code for a minimal Supervisor configuration, as shown:

[unix_http_ server]

file=/tmp/supervisor.sock ; (the path to the socket file)
chmod=0700 ; socket file mode (default 0700)
[supervisord]

logfile=/tmp/supervisord.log
loglevel=info

170

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

pidfile=/tmp/supervisord.pid
nodaemon=true

[rpcinterface:supervisor]

supervisor.rpcinterface factory = supervisor.rpcinterface:make main
rpcinterface

[program:8 2 multithreaded multicall xmlrpc_server.pyl
command=python 8 2 multithreaded multicall xmlrpc_ server.py ; the
program (relative uses PATH, can take args)

process name=% (program name)s ; process_name expr (default

% (program name) s)

If you create the preceding Supervisor configuration file in your favorite editor, you can run
Supervisor by simply calling it.

Now, we can code an XML-RPC client that can act as a Supervisor proxy and give us the
information about the running processes.

Listing 8.1b gives the code for querying a local XML-RPC server, as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 8

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.
import supervisor.xmlrpc

import xmlrpclib

def query supervisr (sock) :
transport = supervisor.xmlrpc.SupervisorTransport (None, None,
'unix://%s' %sock)
proxy = xmlrpclib.ServerProxy ('http://127.0.0.1",
transport=transport)

print "Getting info about all running processes via
Supervisord..."

print proxy.supervisor.getAllProcessInfo ()

if name == ' main ':

query_ supervisr (sock='/tmp/supervisor.sock')
If you run the Supervisor daemon, it will show the output similar to the following;:

chapter8$ supervisord
2013-09-27 16:40:56,861 INFO RPC interface 'supervisor' initialized
2013-09-27 16:40:56,861 CRIT Server 'unix http server' running

without any HTTP authentication checking

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

2013-09-27 16:40:56,861 INFO supervisord started with pid 27436
2013-09-27 16:40:57,864 INFO spawned:

'8 2 multithreaded multicall xmlrpc server.py' with pid 27439
2013-09-27 16:40:58,940 INFO success:

8 2 multithreaded multicall xmlrpc server.py entered RUNNING state,

process has stayed up for > than 1 seconds (startsecs)

Note that our child process, 8 2 multithreaded multicall xmlrpc_ server.py, has
been launched.

Now, if you run the client code, it will query the XML-RPC server interface of Supervisor and list
the running processes, as shown:

$ python 8 1 query xmlrpc server.py

Getting info about all running processes via Supervisord...
[{'now': 1380296807, 'group':

'8 2 multithreaded multicall xmlrpc server.py', 'description': 'pid
27439, uptime 0:05:50', 'pid': 27439, 'stderr logfile':

'/tmp/8 2 multithreaded multicall xmlrpc server.py-stderr---
supervisor-i VmKz.log', 'stop': 0, 'statename': 'RUNNING', 'start':
1380296457, 'state': 20, 'stdout logfile':

'/tmp/8 2 multithreaded multicall xmlrpc server.py-stdout---
supervisor-eMudgk.log', 'logfile':

'/tmp/8 2 multithreaded multicall xmlrpc server.py-stdout---
supervisor-eMudgk.log', 'exitstatus': 0, 'spawnerr': '', 'name':

'8 2 multithreaded multicall xmlrpc_server.py'}]

This recipe relies on running the Supervisor daemon (configured with rpcinterface)
in the background. Supervisor launches another XML-RPC server, as follows: 8 2
multithreaded multicall xmlrpc server.py.

The client code has a query supervisr () method, which takes an argument for the
Supervisor socket. In this method, an instance of SupervisorTransport is created
with the Unix socket path. Then, an XML-RPC server proxy is created by instantiating the
ServerProxy () class of xmlrpclib by passing the server address and previously
created transport.

The XML-RPC server proxy then calls the Supervisor's getAll1ProcessInfo () method,
which prints the process information of the child process. This process includes pid,
statename, description, and so on.

172

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Writing a multithreaded multicall XML-RPC

server

You can make your XML-RPC server accept multiple calls simultaneously. This means
that multiple function calls can return a single result. In addition to this, if your server is
multithreaded, then you can execute more code after the server is launched in a single
thread. The program's main thread will not be blocked in this manner.

How to do it...

We can create a ServerThread class inheriting from the threading. Thread class and
wrap a SimpleXMLRPCServer instance in an attribute of this class. This can be set up to
accept multiple calls.

Then, we can create two functions: one launches the multithreaded, multicall XML-RPC server
and the other creates a client to that server.

Listing 8.2 gives the code for writing a multithreaded, multicall XML-RPC server, as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 8

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import xmlrpclib
import threading

from SimpleXMLRPCServer import SimpleXMLRPCServer
some trivial functions
def add(x,y):

return x+y

def subtract(x, y):
return x-y

def multiply(x, y):
return x*y

def divide(x, y):
return x/y

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

class ServerThread(threading.Thread) :

def init (self, server addr):
threading.Thread. init (self)
self.server = SimpleXMLRPCServer (server_ addr)
self.server.register multicall functions/()
self.server.register function(add, 'add')
self.server.register function(subtract, 'subtract')
self.server.register function(multiply, 'multiply')
self.server.register function(divide, 'divide')

def run(self):
self.server.serve forever ()

def run server (host, port) :
server code
server addr = (host, port)
server = ServerThread (server addr)
server.start () # The server is now running
print "Server thread started. Testing the server..."

def run client (host, port):
client code
proxy = xmlrpclib.ServerProxy ("http://%s:%s/" % (host, port))
multicall = xmlrpclib.MultiCall (proxy)
multicall.add (7, 3)
multicall.subtract (7,3)
multicall . multiply (7, 3)
multicall.divide(7,3)
result = multicall ()
print "7+3=%d, 7-3=%d, 7*3=%d, 7/3=%d" % tuple(result)

if name == ' main ':
parser = argparse.ArgumentParser (description='Multithreaded
multicall XMLRPC Server/Proxy')

parser.add argument ('--host', action="store", dest="host",
default='localhost')
parser.add argument ('--port', action="store", dest="port",

default=8000, type=int)
parse arguments
given args = parser.parse_args()
host, port = given args.host, given args.port
run_server (host, port)
run client (host, port)

174

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

If you run this script, you will see the output similar to the following:

$ python 8 2 multithreaded multicall xmlrpc server.py --port=8000
Server thread started. Testing the server...

localhost - - [25/Sep/2013 17:38:32] "POST / HTTP/1.1" 200 -
7+3=10, 7-3=4, 7*3=21, 7/3=2

In this recipe, we have created a ServerThread subclass inheriting from the Python
threading library's Thread class. This subclass initializes a server attribute that creates
an instance of the SimpleXMLRPC server. The XML-RPC server address can be given
via the command-line input. In order to enable the multicall function, we called the
register multicall functions () method on the server instance.

Then, four trivial functions are registered with this XML-RPC server: add (), subtract (),
multiply (), and divide (). These functions do exactly the same operation as their
names suggest.

In order to launch the server, we pass a host and port to the run_server () function. A
server instance is created using the ServerThread class discussed earlier. The start ()
method of this server instance launches the XML-RPC server.

On the client side, the run_client () function accepts the same host and port arguments
from the command line. It then creates a proxy instance of the XML-RPC server discussed
earlier by calling the ServerProxy () class from xmlrpclib. This proxy instance is then
passed onto the MulticCall class instance, multicall. Now, the preceding four trivial RPC
methods can be run, for example, add, subtract, multiply, and divide. Finally, we can
get the result via a single call, for example, multicall (). The result tuple is then printed in
a single line.

Running an XML-RPC server with a basic

HTTP authentication

Sometimes, you may need to implement authentication with an XML-RPC server. This recipe
presents an example of a basic HTTP authentication with an XML-RPC server.

How to do it...

We can create a subclass of SimpleXMLRPCServer and override its request handler so that
when a request comes, it is verified against a given login credentials.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

Listing 8.3a gives the code for running an XML-RPC server with a basic HTTP authentication,
as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 8

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import xmlrpclib
from base64 import b64decode

from SimpleXMLRPCServer import SimpleXMLRPCServer,
SimpleXMLRPCRequestHandler

class SecureXMLRPCServer (SimpleXMLRPCServer) :

def init_ (self, host, port, username, password, *args,
**kargs) :
self.username = username
self.password = password
authenticate method is called from inner class
class VerifyingRequestHandler (SimpleXMLRPCRequestHandler) :
method to override
def parse_ request (request) :
if\ SimpleXMLRPCRequestHandler.parse_request (request) :
authenticate
if self.authenticate (request.headers):
return True
else:
if authentication fails return 401
request.send error (401, 'Authentication\ failed
ZZZ'")
return False
initialize
SimpleXMLRPCServer. init (self, (host, port),
requestHandler=VerifyingRequestHandler, *args, **kargs)

def authenticate(self, headers):
headers = headers.get ('Authorization') .split ()
basic, encoded = headers[0], headers[1]
if basic != 'Basic':
print 'Only basic authentication supported'’
return False
secret = bé64decode (encoded) .split (':")

176

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

username, password = secret[0], secret[1]
return True if (username == self.username and password ==
self .password) else False

def run server (host, port, username, password) :
server = SecureXMLRPCServer (host, port, username, password)
simple test function
def echo(msg) :
"m""Reply client in upper case """
reply = msg.upper ()
print "Client said: %s. So we echo that in uppercase: %s"
% (msg, reply)
return reply
server.register function(echo, 'echo!')
print "Running a HTTP auth enabled XMLRPC server on %$s:%s..."
% (host, port)
server.serve forever ()

if name == ' main ':
parser = argparse.ArgumentParser (description='Multithreaded
multicall XMLRPC Server/Proxy')

parser.add argument ('--host', action="store", dest="host",
default='localhost"')

parser.add argument ('--port', action="store", dest="port",
default=8000, type=int)

parser.add_argument('——username', action="store",
dest="username", default='user')

parser.add argument ('--password', action="store",

dest="password", default='pass')
parse arguments
given args = parser.parse_args()
host, port = given args.host, given args.port
username, password = given args.username, given args.password
run_server (host, port, username, password)

If this server is run, then the following output can be seen by default:

$ python 8 3a xmlrpc server with http auth.py
Running a HTTP auth enabled XMLRPC server on localhost:8000...

Client said: hello server.... So we echo that in uppercase: HELLO
SERVER. ..
localhost - - [27/Sep/2013 12:08:57] "POST /RPC2 HTTP/1.1" 200 -

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

Now, let us create a simple client proxy and use the same login credentials as used with
the server.

Listing 8.3b gives the code for the XML-RPC Client, as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 8

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import xmlrpclib

def run client (host, port, username, password) :

server = xmlrpclib.ServerProxy ('http://%s:%s@%s:%s' % (username,
password, host, port,))

msg = "hello server..."

print "Sending message to server: %s " %msg

print "Got reply: %s" %server.echo (msg)

if __name_ == '_main_ ':
parser = argparse.ArgumentParser (description='Multithreaded
multicall XMLRPC Server/Proxy')

parser.add argument ('--host', action="store", dest="host",
default="'localhost"')

parser.add argument ('--port', action="store", dest="port",
default=8000, type=int)

parser.add argument ('--username', action="store",

dest="username", default='user')
parser.add argument ('--password', action="store",
dest="password", default='pass')
parse arguments
given args = parser.parse_args ()
host, port = given args.host, given args.port
username, password = given args.username, given args.password
run client (host, port, username, password)

If you run the client, then it shows the following output:

$ python 8 3b xmprpc client.py
Sending message to server: hello server...

Got reply: HELLO SERVER...

178

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In the server script, the SecureXMLRPCServer subclass is created by inheriting

from SimpleXMLRPCServer. In this subclass' initialization code, we created the
VerifyingRequestHandler class that actually intercepts the request and does the basic
authentication using the authenticate () method.

In the authenticate () method, the HTTP request is passed as an argument. This method
checks the presence of the value of Authorization. If its value is set to Basic, it then
decodes the encoded password with the b64decode () function from the baseé64 standard
module. After extracting the username and password, it then checks that with the server's
given credentials set up initially.

Inthe run_server () function, a simple echo () subfunction is defined and registered with
the SecureXMLRPCServer instance.

In the client script, run_client () simply takes the server address and login credentials and
passes them to the ServerProxy () instance. It then sends a single line message via the
echo () method.

Collecting some photo information from

Flickr using REST

Many Internet websites provide a web services interface through their REST APIs. Flickr,
a famous photo sharing website, has a REST interface. Let's try to gather some photo
information to build a specialized database or other photo-related application.

How to do it...

We need the REST URLs for making the HTTP requests. For simplicity's sake, the URLs are
hard coded in this recipe. We can use the third-party requests module to make the REST
requests. It has the convenient get (), post (), put (), and delete () methods.

In order to talk to Flickr web services, you need to register yourself and get a secret API key.
This API key can be placed in a Llocal settings.py file or supplied via the command line.

Listing 8.4 gives the code for collecting some photo information from Flickr using REST,
as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 8

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

import argparse
import json
import requests

try:

from local settings import flickr apikey
except ImportError:

pass

def collect photo info(api key, tag, max count):

""nCollects some interesting info about some photos from Flickr.
com for a given tag """

photo collection = []

url = "http://api.flickr.com/services/rest/?method=flickr.photos.
search&tags=%s&format=json&nojsoncallback=1&api key=%s" %(tag, api
key)

resp = requests.get (url)

results = resp.json()

count = 0

for p in results|['photos'] ['photo']:

if count >= max count:
return photo collection

print 'Processing photo: "%s"' % p['title']
photo = {}
url = "http://api.flickr.com/services/rest/?method=flickr.

photos.getInfo&photo id=" + p['id'] + "&format=json&nojsoncallback=1&a
pi key=" + api key

info = requests.get (url) .json()

photo["flickrid"] = p['id']

photo["title"] = info['photo']l['title'] [' content']

photo["description"] = info['photo'] ['description'] ['
content']

photo["page url"] = infol['photo'] ['urls'] ['url'] [0] ['
content']

photo["farm"] = info['photo'] ['farm']
photo["server"] = info['photo'] ['server']
photo["secret"] = info['photo'] ['secret']

comments
numcomments = int (info['photo'] ['comments'] [' content'])
if numcomments:
#print " Now reading comments (%d)..." % numcomments
url = "http://api.flickr.com/services/rest/?method=flickr.
photos.comments.getList&photo id=" + p['id'] + "&format=json&nojsoncal
lback=1&api key=" + api key
comments = requests.get (url) .json/()

180

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

photo["comment"] = []
for ¢ in comments['comments'] ['comment']:
comment = {}
comment ["body"] = c[' content']
comment ["authorid"] = c['author']
comment ["authorname"] = c['authorname']
photo ["comment"] . append (comment)
photo collection.append (photo)
count = count + 1

return photo collection

if name == ' main ':

parser = argparse.ArgumentParser (description='Get photo info from
Flickr!')

parser.add argument ('--api-key', action="store", dest="api key",
default=flickr apikey)

parser.add argument ('--tag', action="store", dest="tag",
default="'Python')

parser.add argument ('--max-count', action="store", dest="max

count", default=3, type=int)
parse arguments
given args = parser.parse_args()
api key, tag, max count = given args.api key, given args.tag,
given args.max count
photo _info = collect photo info(api key, tag, max count)
for photo in photo info:
for k,v in photo.iteritems() :
if k == "title":
print "Showing photo info...."
elif k == "comment":
"\tPhoto got %s comments." %len(v)
else:
print "\t%s => %s" %(k,Vv)

You can run this recipe with your Flickr API key either by placing itin a local settings.py
file or supplying it from the command line (via the - -api-key argument). In addition to the
API key, a search tag and maximum count of the result arguments can be supplied. By default,
this recipe will search for the Python tag and restrict the result to three entries, as shown in
the following output:

$ python 8 4 get flickr photo info.py

Processing photo: "legolas"

Processing photo: ""The Dance of the Hunger of Kaa""

Processing photo: "Rocky"

description => Stimson Python

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

Showiing photo info....
farm => 8
server => 7402
secret => 6cbae671b5
flickrid => 10054626824
page url => http://www.flickr.com/photos/102763809@N03/10054626824/

description => " 'Good. Begins now the dance--the Dance of the
Hunger of Kaa. Sit still and watch.'

He turned twice or thrice in a big circle, weaving his head from right to
left.

Then he began making loops and figures of eight with his body, and soft,
oozy triangles that melted into squares and five-sided figures, and
coiled mounds, never resting, never hurrying, and never stopping his
low humming song. It grew darker and darker, till at last the dragging,
shifting coils disappeared, but they could hear the rustle of the
scales."

(From "Kaa's Hunting" in "The Jungle Book" (1893) by
Rudyard Kipling)

These 0ld abandoned temples built around the 12th century belong to the
abandoned city which inspired Kipling's Jungle Book.

They are rising at the top of a mountain which dominates the jungle at
811l meters above sea level in the centre of the jungle of Bandhavgarh
located in the Indian state Madhya Pradesh.

Baghel King Vikramaditya Singh abandoned Bandhavgarh fort in 1617 when
Rewa, at a distance of 130 km was established as a capital.

Abandonment allowed wildlife development in this region.

When Baghel Kings became aware of it, he declared Bandhavgarh as their
hunting preserve and strictly prohibited tree cutting and wildlife
hunting...

Join the photographer at <a href="http://www.facebook.com/laurent.
goldstein.photography" rel="nofollow">www.facebook.com/laurent.goldstein.
photography

© All photographs are copyrighted and all rights reserved.

Please do not use any photographs without permission (even for private
use) .

The use of any work without consent of the artist is PROHIBITED and will
lead automatically to consequences.

182

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Showiing photo info....
farm => 6
server => 5462
secret => 6£9c0e7£83
flickrid => 10051136944
page _url => http://www.flickr.com/photos/designldg/10051136944/
description => Ball Python
Showiing photo info....
farm => 4
server => 3744
secret => 529840767f
flickrid => 10046353675
page url =>

http://www.flickr.com/photos/megzzdollphotos/10046353675/

This recipe demonstrates how to interact with Flickr using its REST APIs. In this example, the
collect photo info () tag takes three parameters: Flickr APl key, a search tag, and the
desired number of search results.

We construct the first URL to search for photos. Note that in this URL, the value of the method
parameteris flickr.photos.search and the desired result format is JSON.

The results of the first get () call are stored in the resp variable and then converted to the
JSON format by calling the json () method on resp. Now, the JSON data is read in a loop
looking into the ['photos'] ['photo'] iterator. Aphoto collection listis created

to return the result after organizing the information. In this list, each photo information is
represented by a dictionary. The keys of this dictionary are populated by extracting information
from the earlier JSON response and another GET request to get the information regarding the
specific photo.

Note that to get the comments about a photo, we need to make another get () request
and gather comment information from the ['comments'] ['comment '] elements of the
returned JSON. Finally, these comments are appended to a list and attached to the photo
dictionary entry.

In the main function, we extract the photo collection dictionary and print some useful
information about each photo.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

Searching for SOAP methods from an

Amazon S3 web service

If you need to interact with a server that implements web services in Simple Object Access
Procedure (SOAP), then this recipe can help to get a starting point.

Getting ready

We can use the third-party SOAPpy library for this task. This can be installed by running the
following command:

$pip install SOAPpy

How to do it...

We create a proxy instance and introspect the server methods before we can call them.

In this recipe, let's interact with an Amazon S3 storage service. We have got a test URL for the
web services API. An API key is necessary to do this simple task.

Listing 8.5 gives the code for searching for SOAP methods from an Amazon S3 web service,
as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 8

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import SOAPpy
TEST URL = 'http://s3.amazonaws.com/ec2-downloads/2009-04-04.ec2.wsdl'

def list soap methods (url) :
proxy = SOAPpy.WSDL.Proxy (url)
print '%d methods in WSDL:' % len(proxy.methods) + '\n'
for key in proxy.methods.keys () :
"Key Details:"

for k,v in proxy.methods[key]. dict .iteritems():
print "%s ==> %s" % (k,v)
if name == ' main ':

list soap methods (TEST URL)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

If you run this script, it will print the total number of available methods that support web
services definition language (WSDL) and the details of one arbitrary method, as shown:
$ python 8 5 search amazonaws with SOAP.py

/home/faruq/env/1lib/python2.7/site-packages/wstools/XMLSchema.py:1280:
UserWarning: annotation is

ignored
warnings.warn('annotation is ignored')

43 methods in WSDL:

Key Name: ReleaseAddress
Key Details:
encodingStyle ==> None
style ==> document
methodName ==> ReleaseAddress
retval ==> None
soapAction ==> ReleaseAddress
namespace ==> None
use ==> literal
location ==> https://ec2.amazonaws.com/
inparams ==> [<wstools.WSDLTools.ParameterInfo instance at
0x8£fb9d0c>]
outheaders ==> []
inheaders ==> []
transport ==> http://schemas.xmlsoap.org/soap/http
outparams ==> [<wstools.WSDLTools.ParameterInfo instance at

0x8fb9d2c>]

This script defines a method called 1ist soap methods () that takes a URL and constructs
a SOAP proxy object by calling the WSDL. Proxy () method of SOAPpy. The available SOAP
methods are available under this proxy's method attribute.

An iteration over the proxy's method keys are done to introspect the method keys. A for loop
just prints the details of a single SOAP method, that is, the name of the key and details about it.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

Searching Google for custom information

Searching Google for getting information about something seems to be an everyday activity for
many people. Let's try to search Google for some information.

Getting ready

This recipe uses a third-party Python library, requests, which can be installed via pip, as
shown in the following command:

$ pip install SOAPpy

How to do it...

Google has sophisticated APIs to conduct a search. However, they require you to register and
get the API keys by following a specific way. For simplicity's sake, let us use Google's old plain
Asynchronous JavaScript (AJAX) API to search for some information about Python books.

Listing 8.6 gives the code for searching Google for custom information, as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 8

This program is optimized for Python 2.7.# It may run on any other
version with/without modifications.

import argparse

import json

import urllib

import requests

BASE URL = 'http://ajax.googleapis.com/ajax/services/search/web?v=1.0"

def get search url (query) :
return "%s&%s" % (BASE_URL, query)

def search info(tag):
query = urllib.urlencode({'q': tag})
url = get search url (query)
response = requests.get (url)
results = response.json()

data = results|['responseData'l]

print 'Found total results: %s' %
data['cursor'] ['estimatedResultCount']

hits = datal['results']

print 'Found top %d hits:' % len(hits)

for h in hits:

186

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

print ' ', h['url']
print 'More results available from %s' %
data['cursor'] ['moreResultsUrl']
if mname == ' main ':
parser = argparse.ArgumentParser (description='Search info from
Google')
parser.add argument ('--tag', action="store", dest="tag",

default="'Python books')
parse arguments
given args = parser.parse_args()
search info(given args.tag)

If you run this script by specifying a search query in the - -tag argument, then it will search
Google and print a total results count and the top four hits pages, as shown:
$ python 8 6 search products from Google.py
Found total results: 12300000
Found top 4 hits:
https://wiki.python.org/moin/PythonBooks
http://www.amazon.com/Python-Languages-Tools-Programming-
Books/b%3Fie%3DUTF8%26node%3D285856
http://pythonbooks.revolunet.com/
http://readwrite.com/2011/03/25/python-is-an-increasingly-popu
More results available from
http://www.google.com/search?oe=utf8&ie=utf8&source=uds&start=0&hl=en

&g=Python+books

In this recipe, we defined a short function, get _search _url (), which constructs the search
URL from a BASE_URL constant and the target query.

The main search function, search_info (), takes the search tag and constructs the query.
The requests library is used to make the get () call. The returned response is then turned
into JSON data.

The search results are extracted from the JSON data by accessing the value of the
'responseData’' key. The estimated results and hits are then extracted by accessing the
relevant keys of the result data. The first four hit URLs are then printed on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

Searching Amazon for books through

product search API

If you like to search for products on Amazon and include some of them in your website or
application, this recipe can help you to do that. We can see how to search Amazon for books.

Getting ready

This recipe depends on the third-party Python library, bott1lenose. You can install this library
using pip, as shown in the following command:

$ pip install bottlenose

First, you need to place your Amazon account's access key, secret key, and affiliate ID into
local settings.py. A sample settings file is provided with the book code. You can also
edit this script and place it here as well.

How to do it...

We can use the bottlenose library that implements the Amazon's product search APIs.

Listing 8.7 gives the code for searching Amazon for books through product search APIs,
as shown:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 8

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
import bottlenose
from xml.dom import minidom as xml

try:

from local settings import amazon account
except ImportError:

pass

ACCESS KEY = amazon_account ['access key']

SECRET_KEY = amazon_account ['secret key']
AFFILIATE ID = amazon_account['affiliate id']

188

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

def search for books(tag, index):
"""Search Amazon for Books """
amazon = bottlenose.Amazon (ACCESS KEY, SECRET KEY, AFFILIATE ID)
results = amazon.ItemSearch (
SearchIndex = index,
Sort = "relevancerank",
Keywords = tag
)

parsed result = xml.parseString(results)

all items = []
attrs = ['Title', '"Author', 'URL']

for item in parsed result.getElementsByTagName ('Item') :
parse_item = {}

for attr in attrs:
parse item[attr] = ""
try:
parse item[attr] =
item.getElementsByTagName (attr) [0] .childNodes [0] .data
except:
pass
all items.append(parse item)
return all items

if name == ' main_ ':
parser = argparse.ArgumentParser (description='Search info from

Amazon')

parser.add argument ('--tag', action="store", dest="tag",
default="'Python')

parser.add argument ('--index', action="store", dest="index",

default="'Books"')
parse arguments
given args = parser.parse_args()
books = search for books(given args.tag, given args.index)

for book in books:
for k,v in book.iteritems () :
print "%s: %s" % (k,v)
print "-" * 80

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Web Services - XML-RPC, SOAP, and REST

If you run this recipe with a search tag and index, you can see some results similar to the
following output:

$ python 8 7 search amazon for books.py --tag=Python --index=Books

URL: http://www.amazon.com/Python-In-Day-Basics-Coding/dp/tech-data/1l
490475575%3FSubscriptionId%3DAKIAIPPW3IK76PBRLWBA%26tag%3D7052-6929-
7878%261inkCode%3Dxm2%26camp%3D2025%26creative%3D386001%26creative-
ASIN%3D1490475575

Author: Richard Wagstaff

Title: Python In A Day: Learn The Basics, Learn It Quick, Start Coding
Fast (In A Day Books) (Volume 1)

URL: http://www.amazon.com/Learning-Python-Mark-Lutz/dp/tech-data/1449355
730%3FSubscriptionId%3DAKIAIPPW3IK76PBRLWBA%26tag%3D7052-6929-7878%261ink
Code%3Dxm2%26camp%3D2025%26creative%3D386001%26creativeASIN%3D1449355730

Author: Mark Lutz

Title: Learning Python

URL: http://www.amazon.com/Python-Programming-Introduction-Computer-
Science/dp/tech-data/1590282418%3FSubscriptionId%3DAKIAIPPW3IK7 6PBRLWBA%2
6tag%3D7052-6929-7878%261inkCode%3Dxm2%26camp%3D2025%26creative%3D386001%
26creativeASIN%3D1590282418

Author: John Zelle
Title: Python Programming: An Introduction to Computer Science 2nd
Edition

This recipe uses the third-party bottlenose library's Amazon () class to create an

object for searching Amazon through the product search API. This is done by the top-level
search for books () function. The ItemSearch () method of this object is invoked with
passing values to the SearchIndex and Keywords keys. It uses the relevancerank
method to sort the search results.

The search results are processed using the xm1 module's minidom interface, which has

a useful parseString () method. It returns the parsed XML tree-like data structure.

The getElementsByTagName () method on this data structure helps to find the item's
information. The item attributes are then looked up and placed in a dictionary of parsed items.
Finally, all the parsed items are appended ina all_items () list and returned to the user.

190

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring
and Security

In this chapter, we will cover the following recipes:

» Sniffing packets on your network

» Saving packets in the pcap format using the pcap dumper
» Adding an extra header in HTTP packets

» Scanning the ports of a remote host

» Customizing the IP address of a packet

» Replaying traffic by reading from a saved pcap file

» Scanning the broadcast of packets

Introduction

This chapter presents some interesting Python recipes for network security monitoring and
vulnerability scanning. We begin by sniffing packets on a network using the pcap library. Then,
we start using Scapy, which is a Swiss knife type of library that can do many similar tasks.
Some common tasks in packet analysis are presented using Scapy, such as saving a packet
in the pcap format, adding an extra header, and modifying the IP address of a packet.

Some other advanced tasks on network intrusion detection are also included in this chapter,
for example, replaying traffic from a saved pcap file and broadcast scanning.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Security

Sniffing packets on your network

If you are interested in sniffing packets on your local network, this recipe can be used as
the starting point. Remember that you may not be able to sniff packets other than what
is destined to your machine, as decent network switches will only forward traffic that is
designated to your machine.

Getting ready

You need to install the pylibpcap library (Version 0.6.4 or greater) for this recipe to work. It's
available at SourceForge (http://sourceforge.net/projects/pylibpcap/).

You also need to install the construct library, which can be installed from PyPI via pip or
easy install, as shown in the following command:

$ easy install comnstruct

How to do it...

We can supply command-line arguments, for example, the network interface name and TCP
port number, for sniffing.

Listing 9.1 gives the code for sniffing packets on your network, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 9

This program is optimized for Python 2.6.

It may run on any other version with/without modifications.

import argparse
import pcap
from construct.protocols.ipstack import ip stack

def print packet (pktlen, data, timestamp) :
"nwo Callback for printing the packet payload""™"
if not data:

return

stack = ip stack.parse(data)
payload = stack.next.next.next
print payload

192

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

def main() :
setup commandline arguments
parser = argparse.ArgumentParser (description='Packet Sniffer')

parser.add argument ('--iface', action="store", dest="iface",
default='eth0')
parser.add argument ('--port', action="store", dest="port",

default=80, type=int)
parse arguments
given args = parser.parse_args()
iface, port = given args.iface, given args.port
start sniffing
pc = pcap.pcapObject ()
pc.open live(iface, 1600, 0, 100)
pc.setfilter('dst port %d' %port, 0, 0)

print 'Press CTRL+C to end capture'
try:
while True:
pc.dispatch(1l, print packet)
except KeyboardInterrupt:
print 'Packet statistics: %d packets received, %d packets

dropped, %d packets dropped by the interface' % pc.stats()
if name == ' main ':
main ()

If you run this script passing the command-line arguments, - -iface=eth0 and - -port=80,
this script will sniff all the HTTP packets from your web browser. So, after running this script,
if you access http://www.google.com on your browser, you can then see a raw packet
output like the following:

python 9 1 packet sniffer.py --iface=eth0 --port=80

Press CTRL+C to end capture

e

0000 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 0d Oa GET / HTTP/1.1..
0010 48 6f 73 74 3a 20 77 77 77 2e 67 6f 6f 67 6c 65 Host: www.google
0020 2e 63 6f 6d 0d Oa 43 6f 6e 6e 65 63 74 69 6f 6e .com. .Connection
0030 3a 20 6b 65 65 70 2d 61 6¢c 69 76 65 0d Oa 41 63 : keep-alive..Ac
0040 63 65 70 74 3a 20 74 65 78 74 2f 68 74 6d 6¢c 2c cept: text/html,
0050 61 70 70 6c 69 63 61 74 69 6f 6e 2f 78 68 74 6d application/xhtm
0060 6c 2b 78 6d 6c 2c 61 70 70 6c 69 63 61 74 69 6f l+xml,applicatio
0070 6e 2f 78 64 6¢c 3b 71 3d 30 2e 39 2c 2a 2f 2a 3b n/xml;qg=0.9,*/%;
0080 71 34 30 2e 38 0d Oa 55 73 65 72 2d 41 67 65 6e g=0.8..User-Agen

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Security

0090
00A0
00BO
00cCo
00DO
00EO
00F0
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
01A0
01BO
01co
01DO0

74
58
20
2e
20
36
72
6f
43
74
41
2b
od
67
73
67
55
36
74
66
33

3a
31
41
33
47
2e
69
6d
50
73
51
6f
O0a
3a
64
75
53
od
3a
2d
od

20
31
70
31
65
30
2f
65
71
6b
69
50
41
20
63
61
3b
Oa
20
38
Oa

4d
3b
70
20
63
2e
35
2d
31
42
70
4b
63
67
68
67
71
41
49
3b
43

6f
20
6c
28
6b
31
33
56
79
43
74
41
63
Ta
od
65
3d
63
53
71
6f

“CPacket statistics:

7a
4c
65
4b
6f
34
37
61
51
4b
73
51
65
69
O0a
3a
30
63
4f
3d
6f

69
69
57
48
29
31
2e
72
45
4f
6b
3d
70
70
41
20
2e
65
2d
30
6b

17 packets received,

6c
6e
65
54
20
30
33
69
49
32
42
3d
74
2c
63
65
38
70
38
2e
69

6c
75
62
4d
43
2e
31
61
6b
79
43
od
2d
64
63
6e
2c
74
38
37
65

61
78
4b
4c
68
34
od
74
62
51
4c
O0a
45
65
65
2d
65
2d
35
2c
3a

2f
20
69
2c
72
33
Oa
69
62
45
65
44
6e
66
70
47
6e
43
39
2a
20

35
69
74
20
6f
20
58
6f
4a
49
32
4e
63
6c
74
42
3b
68
2d
3b
50

2e
36
2f
6c
6d
53
2d
6e
41
70
79
54
6f
61
2d
2c
71
61
31
71
52

packets dropped by the interface

This recipe relies on the pcapObject () class from the pcap library to create an instance of
sniffer. In the main () method, an instance of this class is created, and a filter is set using the
setfilter () method so that only the HTTP packets are captured. Finally, the dispatch ()
method starts sniffing and sends the sniffed packet to the print packet () function for

postprocessing.

30
38
35
69
65
61
43
73
51
37
51
3a
64
74
4c
65
3d
72
2c
3d
45

20
36
33
6b
2f
66
68
3a
69
62
45
20
69
65
61
6e
30
73
75
30
46

0 packets

28 t: Mozilla/5.0 (
29 X11l; Linux i686)
37 AppleWebKit/537
65 .31 (KHTML, like
32 Gecko) Chrome/2
61 6.0.1410.43 safa
72 ri/537.31..X-Chr
20 ome-Variations:
59 CPqlyQEIkbbJAQiY
4a tskBCKO2yQEIp7bJd
49 AQiptskBCLe2yQEI
31 +oPKAQ==..DNT: 1
6e . .Accept-Encodin
2c g: gzip,deflate,
6e sdch. .Accept-Lan
2d guage: en-GB,en-
2e US;g=0.8,en;g=0.
65 6..Accept-Charse
74 t: ISO-8859-1,ut
2e £-8;9=0.7,*;g=0.
3d 3..Cookie: PREF=
dropped, 0

Inthe print packet () function, if a packet has data, the payload is extracted using the
ip stack.parse () method from the construct library. This library is useful for low-level

data processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Saving packets in the pcap format using the

pcap dumper

The pcap format, abbreviated from packet capture, is a common file format for saving
network data. More details on the pcap format can be found at http://wiki.wireshark.
org/Development/LibpcapFileFormat.

If you want to save your captured network packets to a file and later re-use them for further
processing, this recipe can be a working example for you.

How to do it...

In this recipe, we use the Scapy library to sniff packets and write to a file. All utility functions
and definitions of Scapy can be imported using the wild card import, as shown in the
following command:

from scapy.all import *
This is only for demonstration purposes and not recommended for production code.

The sniff () function of Scapy takes the name of a callback function. Let's write a callback
function that will write the packets onto a file.

Listing 9.2 gives the code for saving packets in the pcap format using the pcap dumper,
as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 9

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import os
from scapy.all import *

pkts = []
iter = 0
pcapnum = 0

def write cap (x):
global pkts
global iter
global pcapnum
pkts.append (x)
iter += 1
if iter == 3:

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Security

pcapnum += 1

pname = "pcap%d.pcap" % pcapnum
wrpcap (pname, pkts)
pkts = []
iter = 0
if name == ' main ':
print "Started packet capturing and dumping... Press CTRL+C to exit"

sniff (prn=write cap)

print "Testing the dump file..."
dump_file = "./pcapl.pcap"
if os.path.exists (dump file) :
print "dump fie %s found." %dump file
pkts = sniff (offline=dump file)
count = 0
while (count <=2):
print "----Dumping pkt:%s----" %count
print hexdump (pkts [count])
count += 1
else:
print "dump fie %s not found." %dump file

If you run this script, you will see an output similar to the following:

python 9 2 save packets in pcap format.py
“CStarted packet capturing and dumping... Press CTRL+C to exit
Testing the dump file...
dump fie ./pcapl.pcap found.
----Dumping pkt:0----
0000 08 00 27 95 0D 1A 52 54 00 12 35 02 08 00 45 00 L
RT..5...E.
0010 00 DB E2 6D 00 00 40 06 7C 9E 6C A0 A2 62 0A 00
..m..@.|.1..b..
0020 02 OF 00 50 99 55 97 98 2C 84 CE 45 9B 6C 50 18
.P.U..,..E.1P.
0030 FF FF 53 EO 00 00 48 54 54 50 2F 31 2E 31 20 32 ..S...HTTP/1.1
2
0040 30 30 20 4F 4B 0D OA 58 2D 44 42 2D 54 69 6D 65 00 OK..X-DB-
Time
0050 6F 75 74 3A 20 31 32 30 OD OA 50 72 61 67 6D 61 out: 120..
Pragma

0060 3A 20 6E 6F 2D 63 61 63 68 65 0D OA 43 61 63 68 : no-cache..
Cach

196

www.it-ebooks.info

http://www.it-ebooks.info/

0070 65 2D 43 6F 6E
ca

0080 63 68 65 0D 0A
Typ

0090 65 3A 20 74 65
plain..D

00a0 61 74 65 3A 20
Sep

00b0 20 32 30 31 33
G

00cO 4D 54 0D OA 43
Leng

00do 74 68 3A 20 31
{ nretn

00e0 3A 20 22 70 75
None

----Dumping pkt:1----

0000 52 54 00 12 35
RT..5..."'..... E.
0010 01 D2 1F 25 40
.. %5@.@....... 1.

0020 A2 62 99 55 00

0030 F9 28 1C D6 00

0040 72 69 62 65 3F

0050 30 35 36 34 37

0060 36 30 36 39 36
60696994 3008084

0070 30 37 37 31 34
07714,10194611 1

0080 31 30 35 33 30
105309843820211,

0090 31 34 36 34 32
146428052 329438

00a0 36 33 34 34 30
6344084,11601531

00b0 5F 32 37 39 31
~279184475771,10

00cO 31 39 34 38 32
194828 300749659

0o0do 30 30 2C 33 33

74

43

78

53

20

6F

35

6E

02

00

50

00

68

34

39

2¢C

39

38

38

38

38

30

72

6F

74

75

31

6E

0D

74

08

40

CE

47

6F

36

39

31

38

30

34

34

5F

39

6F

6E

2F

6E

35

74

0A

22

00

06

45

45

73

26

34

30

34

35

2¢C

34

33

39

6C

74

70

2¢C

3A

65

0D

7D

27

FE

9B

54

74

6E

5F

31

33

32

31

37

30

31

3A

65

6C

20

32

6E

oA

95

EF

6C

20

5F

73

33

39

38

5F

31

35

30

39

20

6E

61

31

32

74

7B

0D

0A

97

2F

69

5F

30

34

32

33

36

37

37

38

6E

74

69

35

3A

2D

22

1A

00

98

73

6E

6D

30

36

30

32

30

37

34

32

6F

2D

6E

20

33

4C

72

08

02

2D

75

74

61

38

31

32

39

31

31

39

5F

2D

54

0D

53

36

65

65

00

OF

37

62

3D

70

30

31

31

34

35

2C

36

38

63

79

0A

65

20

6E

74

45

6C

50

73

35

3D

38

5F

31

33

33

31

35

31

61

70

44

70

47

67

22

00

A0

18

63

31

31

34

31

2C

38

31

30

39

39

Chapter 9

e-Control: no-

che..Content-

e: text/

ate: Sun, 15
2013 15:22:36

MT..Content-
th: 15....

: "punt"}

.b.U.P.E.1..-
.(....GET /
ribe?host

0564746&ns

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Security

00,330991982 819

00e0 33 35 33 37 30 36 30 36 2C 31 36 33 32 37 38 35
35370606,1632785
00fo0 35 5F 31 32 39 30 31 32 32 39 37 34 33 26 75 73
5 12901229743&us
0100 65 72 5F 69 64 3D 36 35 32 30 33 37 32 26 6E 69 er
id=6520372&ni
0110 64 3D 32 26 74 73 3D 31 33 37 39 32 35 38 35 36
d=2&ts=137925856
0120 31 20 48 54 54 50 2F 31 2E 31 0D OA 48 6F 73 74 1 HTTP/1.1..
Host
0130 3A 20 6E 6F 74 69 66 79 33 2E 64 72 6F 70 62 6F : notify3.
dropbo
0140 78 2E 63 6F 6D 0D OA 41 63 63 65 70 74 2D 45 6E x.com. .Accept-
En
0150 63 6F 64 69 6E 67 3A 20 69 64 65 6E 74 69 74 79 coding:
identity
0160 0D OA 43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 6B 65 . .Connection:
ke
0170 65 70 2D 61 6C 69 76 65 0D OA 58 2D 44 72 6F 70 ep-alive. .X-
Drop
0180 62 6F 78 2D 4C 6F 63 61 6C 65 3A 20 65 6E 5F 55 box-Locale:
en U
0190 53 0D OA 55 73 65 72 2D 41 67 65 6E 74 3A 20 44 S..User-Agent:
D
0la0 72 6F 70 62 6F 78 44 65 73 6B 74 6F 70 43 6C 69
ropboxDesktopCli
01bo0 65 6E 74 2F 32 2E 30 2E 32 32 20 28 4C 69 6E 75 ent/2.0.22
(Linu
0lcoO 78 3B 20 32 2E 36 2E 33 32 2D 35 2D 36 38 36 3B X; 2.6.32-5-
686;
01do 20 69 33 32 3B 20 65 6E 5F 55 53 29 0D 0OA 0D OA i32; en_
Us)....
None
----Dumping pkt:2----
0000 08 00 27 95 0D 1A 52 54 00 12 35 02 08 00 45 00 L
RT..5...E.
0010 00 28 E2 6E 00 00 40 06 7D 50 6C A0 A2 62 0A 00 .(.n..e.}
Pl..b..
0020 02 OF 00 50 99 55 97 98 2D 37 CE 45 9D 16 50 10 ...P.U..
7.E..P.
0030 FF FF CA F1 00 00 00 00 00 00 00 00 i ieiieeennn
None

198

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

This recipe uses the sniff () and wrpacp () utility functions of the Scapy library to capture
all the network packets and dump them onto a file. After capturing a packet via sniff (), the
write cap () function is called on that packet. Some global variables are used to work on
packets one after another. For example, packets are stored in a pkts []list and packet and
variable counts are used. When the value of the count is 3, the pkts list is dumped onto a file
named pcapl.pcap, the count variable is reset so that we can continue capturing another
three packets and dumped onto pcap2 .pcap, and so on.

Inthe test_dump_ file () function, assume the presence of the first dump file,
pcapl.dump, in the working directory. Now, sniff () is used with an offline parameter,
which captured packets from the file instead of network. Here, the packets are decoded one
after another using the hexdump () function. The contents of the packets are then printed on
the screen.

Adding an extra header in HTTP packets

Sometimes, you would like to manipulate an application by supplying a custom HTTP header
that contains custom information. For example, adding an authorization header can be useful
to implement the HTTP basic authentication in your packet capture code.

How to do it...

Let us sniff the packets using the sniff () function of Scapy and define a callback function,
modify packet header (), which adds an extra header of certain packets.

Listing 9.3 gives the code for adding an extra header in HTTP packets, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 9

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

from scapy.all import *

def modify packet header (pkt) :
""" Parse the header and add an extra header"""
if pkt.haslayer (TCP) and pkt.getlayer (TCP) .dport == 80 and
pkt.haslayer (Raw) :
hdr = pkt[TCP] .payload. dict
extra item = {'Extra Header' : ' extra value'}
hdr.update (extra item)
send_hdr = '\r\n'.join (hdr)
pkt [TCP] .payload = send hdr

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Security

pkt .show ()

del pkt[IP].chksum

send (pkt)

if mname == ' main ':
start sniffing

sniff (filter="tcp and (port 80)", prn=modify packet header)

If you run this script, it will show a captured packet; print the modified version of it and send
it to the network, as shown in the following output. This can be verified by other packet

capturing tools such as tcpdump or wireshark:

$ python 9 3 add extra http header in sniffed packet.py

###[Ethernet]###

dst

src
type

###[IP]###

version =

ihl =

tos =

0x8

len =
id =
flags =
frag =
ttl =
proto =
chksum =
src =

dst =

\options \

[TCP]1###
sport
dport
seq
ack
dataofs
reserved
flags

window

200

00

4L

5L

0x0

525

13419

DF

oL

64

tcp

0x171
10.0.2.15
82.94.164.16

= 49273

= wWww

= 107715690
= 216121024
= 5L

= OL

= PA

= 6432

52:54:00:12:35:02
08:00:27:95:0d:1a

2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

chksum = 0x50f
urgptr =0
options = [1]
[Raw]###
load = 'Extra Header\r\nsent time\r\nfields\r\

naliastypes\r\npost transforms\r\nunderlayer\r\nfieldtype\r\ntime\r\
ninitialized\r\noverloaded fields\r\npacketfields\r\npayload\r\ndefault
fields'

Sent 1 packets.

First, we set up the packet sniffing using the sniff () function of Scapy, specifying
modify packet header () as the callback function for each packet. All TCP packets
having TCP and a raw layer that are destined to port 80 (HTTP) are considered for
modification. So, the current packet header is extracted from the packet's payload data.

The extra header is then appended to the existing header dictionary. The packet is then
printed on screen using the show () method, and for avoiding the correctness checking
failure, the packet checksum data is removed from the packet. Finally, the packet is sent
over the network.

Scanning the ports of a remote host

If you are trying to connect to a remote host using a particular port, sometimes you get the
message saying that Connection is refused. The reason for this is that, most likely, the
server is down on the remote host. In such a situation, you can try to see whether the port is
open or in the listening state. You can scan multiple ports to identify the available services

in a machine.

How to do it...

Using Python's standard socket library, we can accomplish this port-scanning task. We can
take three command-line arguments: target host, and start and end port numbers.

Listing 9.4 gives the code for scanning the ports of a remote host, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 9

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

201

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Security

import argparse
import socket
import sys

def scan ports(host, start port, end port):
""" Scan remote hosts """
#Create socket
try:
sock = socket.socket (socket.AF INET, socket.SOCK STREAM)
except socket.error,err msg:

print 'Socket creation failed. Error code: '+ str(err msg[0])
+ ' Error mesage: ' + err msgl[l]
sys.exit ()

#Get IP of remote host
try:
remote ip = socket.gethostbyname (host)
except socket.error,error msg:
print error msg
sys.exit ()

#Scan ports
end port += 1
for port in range(start port,end port):

try:
sock.connect ((remote ip,port))
print 'Port ' + str(port) + ' is open'

sock.close ()

sock = socket.socket (socket.AF INET, socket.SOCK STREAM)
except socket.error:

pass # skip various socket errors

if name == ' main ':
setup commandline arguments
parser = argparse.ArgumentParser (description='Remote Port

Scanner')

parser.add argument ('--host', action="store", dest="host",
default='localhost"')

parser.add argument ('--start-port', action="store",
dest="start port", default=1l, type=int)

parser.add argument ('--end-port', action="store",

dest="end port", default=100, type=int)
parse arguments
given args = parser.parse_args()
host, start port, end port = given args.host,
given args.start port, given args.end port
scan_ports (host, start port, end port)

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

If you run this recipe to scan your local machine's port 1 to 100 to detect open ports, you will
get an output similar to the following;:

python 9 4 scan port of a remote host.py --host=localhost --start-
port=1l --end-port=100

Port 21 is open
Port 22 is open
Port 23 is open
Port 25 is open

Port 80 is open

This recipe demonstrates how to scan open ports of a machine using Python's standard
socket library. The scan_port () function takes three arguments: hostname, start port, and
end port. Then, it scans the entire port range in three steps.

Create a TCP socket using the socket () function.

If the socket is created successfully, then resolve the IP address of the remote host using the
gethostbyname () function.

If the target host's IP address is found, try to connect to the IP using the connect () function.
If that's successful, then it implies that the port is open. Now, close the port with the close ()
function and repeat the first step for the next port.

Customizing the IP address of a packet

If you ever need to create a network packet and customize the source and destination IP or
ports, this recipe can serve as the starting point.

How to do it...

We can take all the useful command-line arguments such as network interface name, protocol
name, source IP, source port, destination IP, destination port, and optional TCP flags.

We can use the Scapy library to create a custom TCP or UDP packet and send it over
the network.

Listing 9.5 gives the code for customizing the IP address of a packet, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 9

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

203

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Security

import argparse

import sys

import re

from random import randint

from scapy.all import IP,TCP,UDP, conf, send

def send packet (protocol=None, src_ ip=None, src port=None, flags=None,
dst ip=None, dst port=None, iface=None) :
"""Modify and send an IP packet.""™"
if protocol == 'tcp':
packet = IP(src=src_ip, dst=dst ip)/TCP(flags=flags,
sport=src_port, dport=dst port)
elif protocol == 'udp':
if flags: raise Exception(" Flags are not supported for udp")
packet = IP(src=src_ip, dst=dst_ ip) /UDP(sport=src_port,
dport=dst_ port)
else:

)

raise Exception ("Unknown protocol %s" % protocol)

send (packet, iface=iface)

if name == ' main ':
setup commandline arguments
parser = argparse.ArgumentParser (description='Packet Modifier')

parser.add argument ('--iface', action="store", dest="iface",
default='etho")

parser.add argument ('--protocol', action="store",
dest="protocol", default='tcp')

parser.add argument ('--src-ip', action="store", dest="src_ ip",
default='1.1.1.1")

parser.add argument ('--src-port', action="store",
dest="src_port", default=randint (0, 65535))

parser.add argument ('--dst-ip', action="store", dest="dst ip",
default='192.168.1.51")

parser.add argument ('--dst-port', action="store",
dest="dst port", default=randint (0, 65535))

parser.add argument ('--flags', action="store", dest="flags",

default=None)
parse arguments
given args = parser.parse_args()
iface, protocol, src ip, src port, dst ip, dst port, flags =
given args.iface, given args.protocol, given args.src_ip,\
given args.src port, given args.dst ip, given args.dst port,
given args.flags
send packet (protocol, src ip, src port, flags, dst ip,
dst _port, iface)

204

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In order to run this script, enter the following commands:

tcpdump src 192.168.1.66

tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode

listening on ethO, link-type EN1OMB (Ethernet), capture size 65535 bytes

*C18:37:34.309992 IP 192.168.1.66.60698 > 192.168.1.51.666: Flags [S],
seq 0, win 8192, length 0

1 packets captured
1 packets received by filter

0 packets dropped by kernel

$ sudo python 9 5 modify ip in a packet.py
WARNING: No route found for IPv6 destination :: (no default route?)

Sent 1 packets.

This script defines a send_packet () function to construct the IP packet using Scapy. The
source and destination addresses and ports are supplied to it. Depending on the protocol, for
example, TCP or UDP, it constructs the correct type of packet. If the packet is TCP, the flags
argument is used; if not, an exception is raised.

In order to construct a TCP packet, Sacpy supplies the 1P () /TCP () function. Similarly, in
order to create a UDP packet, the 1P () /UDP () function is used.

Finally, the modified packet is sent using the send () function.

Replaying traffic by reading from a saved

pcap file

While playing with network packets, you may need to replay traffic by reading from a previously
saved pcap file. In that case, you'd like to read the pcap file and modify the source or
destination IP addresses before sending them.

How to do it...

Let us use Scapy to read a previously saved pcap file. If you don't have a pcap file, you can
use the Saving packets in the pcap format using pcap dumper recipe of this chapter to do that.

205

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Security

Then, parse the arguments from the command line and pass them to a send_packet ()
function along with the parsed raw packets.

Listing 9.6 gives the code for replaying traffic by reading from a saved pcap file, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 9

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

import argparse
from scapy.all import =*

def send packet (recvd pkt, src_ip, dst_ip, count):
"m"m Send modified packets"""
pkt_cnt = 0
p_out = []

for p in recvd pkt:

pkt_cnt += 1

new_pkt = p.payload

new pkt [IP].dst = dst_ip

new_pkt [IP] .src = src_ip

del new pkt [IP] .chksum

p_out.append (new_pkt)

if pkt _cnt % count == 0:
send (PacketList (p_out))
p_out = []

Send rest of packet
send (PacketList (p_out))
print "Total packets sent: %d" %pkt cnt

if __name_ == '_main_ ':
setup commandline arguments
parser = argparse.ArgumentParser (description='Packet Sniffer')

parser.add argument ('--infile', action="store", dest="infile",
default="'pcapl.pcap"')

parser.add argument ('--src-ip', action="store", dest="src_ip",
default='1.1.1.1")

parser.add argument ('--dst-ip', action="store", dest="dst ip",
default='2.2.2.2")

parser.add argument ('--count', action="store", dest="count",

default=100, type=int)

206

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

parse arguments
given args = ga = parser.parse_args ()
global src_ip, dst ip
infile, src_ip, dst ip, count = ga.infile, ga.src_ip,
ga.dst_ip, ga.count
try:
pkt reader = PcapReader (infile)
send packet (pkt_ reader, src ip, dst_ip, count)
except IOError:

)

print "Failed reading file %s contents" % infile
sys.exit (1)

If you run this script, it will read the saved pcap file, pcapl . pcap, by default and send the
packet after modifying the source and destination IP addressesto1.1.1.1and2.2.2.2
respectively, as shown in the following output. If you use the tcpdump utility, you can see
these packet transmissions.

python 9 6 replay traffic.py

Sent 3 packets.

Total packets sent 3

tcpdump src 1.1.1.1

tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode

listening on eth0, link-type EN10OMB (Ethernet), capture size 65535
bytes

*C18:44:13.186302 IP 1.1.1.1.www > ARennes-651-1-107-2.w2-
2.abo.wanadoo.fr.39253: Flags [P.], seq 2543332484:2543332663, ack
3460668268, win 65535, length 179

1 packets captured

3 packets received by filter

0 packets dropped by kernel

This recipe reads a saved pcap file, pcapl .pcap, from the disk using the PcapReader ()
function of Scapy that returns an iterator of packets. The command-line arguments are parsed
if they are supplied. Otherwise, the default value is used as shown in the preceding output.

207

www.it-ebooks.info

http://www.it-ebooks.info/

Network Monitoring and Security

The command-line arguments and the packet list are passed to the send_packet ()
function. This function places the new packets in the p_out list and keeps track of the
processed packets. In each packet, the payload is modified, thus changing the source and
destination IPs. In addition to this, the checksum packet is deleted as it was based on the
original IP address.

After processing one of the packets, it is sent over the network immediately. After that, the
remaining packets are sent in one go.

Scanning the broadcast of packets

If you encounter the issue of detecting a network broadcast, this recipe is for you. We can
learn how to find the information from the broadcast packets.

How to do it...

We can use Scapy to sniff the packets arriving to a network interface. After each packet is
captured, they can be processed by a callback function to get the useful information from it.

Listing 9.7 gives the code for scanning the broadcast of packets, as follows:

#!/usr/bin/env python

Python Network Programming Cookbook -- Chapter - 9

This program is optimized for Python 2.7.

It may run on any other version with/without modifications.

from scapy.all import =*
import os
captured data = dict()

END PORT = 1000

def monitor packet (pkt) :
if IP in pkt:
if not captured data.has key (pkt [IP].src):
captured datal[pkt [IP].src] = []

if TCP in pkt:
if pkt[TCP] .sport <= END_ PORT:
if not str(pkt [TCP].sport) in captured datal[pkt [IP].src]:
captured_data [pkt [IP] .src] .append (str (pkt [TCP] .sport))

208

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

os.system('clear')
ip list = sorted(captured data.keys())
for key in ip list:

ports=', '.join(captured datalkeyl])

if len (captured datalkey]) == 0:
print '$s' % key
else:
print '%s (%s)' % (key, ports)
if name == ' main ':

sniff (prn=monitor packet, store=0)

If you run this script, you can list the broadcast traffic's source IP and ports. The following is a
sample output from which the first octet of the IP is replaced:

python 9 7 broadcast scanning.py
10.0.2.15

XXX.194.41.129 (80)

XXX.194.41.134 (80)

XXX.194.41.136 (443)
XXX.194.41.140 (80)

XXX.194.67.147 (80)

XXX.194.67.94 (443)

XXX.194.67.95 (80, 443)

This recipe sniffs packets in a network using the sniff () function of Scapy. It has a
monitor packet () callback function that does the postprocessing of packets. Depending on
the protocol, for example, IP or TCP, it sorts the packets in a dictionary called captured data.

If an individual IP is not already present in the dictionary, it creates a new entry; otherwise,
it updates the dictionary with the port number for that specific IP. Finally, it prints the IP
addresses and ports in each line.

209

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols C
_get_content() method 135 CGI
used, for writing web server
A guestbook 121-125
chat server
add_header() method 115 writing, select.select used 38-45
Amazon check_email() function 118
searching, for books through product search check() method 65
APl 188-190 client code
Amazon() class 190 Mozilla Firefox, spoofing in 99, 100

Amazon S3 web service

] Common Gateway Interface. See CGI
SOAP methods, searching from 184, 185

compress_buffer() method 102

Apache o compressed ZIP file
remotely configuring, to host current working directory, emailing
website 165-168 as 111-115
Ap|.alication() class 49 connected sockets (socketpair)
article used, for IPC performing 73, 74
searching, in Wikipedia 131-134

Connection() class 106
Asynchronous JavaScript (AJAX) APl 186 Context() method 106

authenticate() method 179 convert_integer() function 14

convert_ip4_address() function 12
B cookie information
b64decode() function 179 extracting, after website visit 91-93

bandwidth, web requests copy_file() function 152

saving, HTTP compression used 100-102 CPU information, remote machine
BBC printing 152-155

news feed, reading from 140-143 crawling links, webpage

broadcast, packets abp ut 11:; 145
scanning 208, 209 using 143
working 145

build_opener() method 93, 100
business addresses
searching, Google Maps APl used 128, 129

ctime() function 26
current time

printing, from Internet time server 25, 26
current working directory

e-mailing, as compressed ZIP file 111-115

www.it-ebooks.info

http://www.it-ebooks.info/

CustomHTTPServer class 90
custom information
searching, from Google 186, 187

D

data

downloading, from HTTP server 86-88
default socket timeout

getting, gettimeout() method used 15, 16

setting, settimeout() method used 15, 16
detect_inactive_hosts() function 72
Diesel concurrent library

used, for echo server multiplexing 49-51
dispatch() method 194
do_checksum() method 60, 62
download_email() method 116
dumps() method 39

E

echo client/server application

writing 27-30
echo server

multiplexing, Diesel concurrent library

used 49-51

email_dir_zipped() method 114
e-mail with attachment

sending, via Gmail SMTP server 119-121
empty_db() function 162
encode_base64() method 115
EPOLLHUP event 48
EPOLLOUT event 48
exit_status_ready() method 155
extra header

adding, in HTTP packets 199-201

F

Fabric
used, for remote Python package
installation 156, 157
used, for remotely running MySQL
command 158-162
FancyURLopener method 104
fetch() method 88
FieldStorage() method 125

212

file
copying, to remote machine via
SFTP 150-152
fileno() method 67
files
listing, in remote FTP server 108, 109
transferring, to remote machine
with SSH 162-165
find_lat_long() function 131
find_service_name() function
defining 13
Flickr
REST, used for photo information
collection 179-183
fnctl.ioctl() function 68
ForkingMixIn
using, in socket server applications 32-35
ForkingServer class
using 32
FTP()function 109
ftp_upload() method 111

G

geocode() function 129
geographic coordinates

searching, Google Maps URL used 129-131
getAllProcessinfo() method 172
getElementsByTagName() method 190
getfile() method 88
gethostbyname() function

used, for resolving remote host’s

IP address 203
used, for retrieving remote machine IP
address 10, 11

gethostbyname(host_name) function 10
gethostname() function 10
gethostname() method 9
get_interface_status() function 70
get_ip_address() function 68
getpass() function 150
getpass() method 116,118
get_remote_machine_info() function 11
getreply()method 88
get_search_url() function 187
getservbyport() socket class function

used, for service name search 13

www.it-ebooks.info

http://www.it-ebooks.info/

getsockopt() method 21
gettimeout() method
used, for default socket timeout
getting 15, 16
getvalue() method 125
GitHub
source code repository, searching at 137-140
URL 137
Gmail SMTP server
used, for sending e-mail with
attachment 119-121
Google
searching, for custom information 186, 187
Google e-mail
downloading, POP3 used 115, 116
Google Finance
URL 135
used, for stock quote searching 135, 136
Google Maps API
used, for business addresses
searching 128, 129
Google Maps URL
used, for geographic coordinates
searching 129-131
guestbook
writing, for web server with CGI 121-125

H

handle_accept() method 57
handle() method 37
handle_read() method 57
handle_write() method 57
HEAD request

used, for checking web page existence 97-99
hexdump() function 199
hexlify function 13
hostname parameter 10
hosts

pinging, on network with ICMP 58-62
HTTP authentication

XML-RPC server, running with 175-179
HTTPClient class 88
HTTP compression

used, for saving bandwidth in web

requests 100-102

HTTPConnection() function 146
HTTPConnection() method 99
HTTP fail-over client
writing, with resume downloading 103, 104
HTTP() function 88
HTTP packets
extra header, adding in 199-201
HTTP requests
serving, from machine 88-90
HTTP server
data, downloading from 86-88
HTTPS server code
writing, Python OpenSSL used 105, 106

ICMP
used, for pinging hosts on network 58-62
ifaddresses() method 80
IMAP
used, for checking remote e-mail 117, 118
IMAP4_SSL() class 118
inactive machines, network
detecting 70-72
inspect_ipv6_support() function 80
integers
converting, from host to network
byte order 14, 15
converting, from network to host
byte order 14, 15
interface_names variable 67
Internet time server
current time, printing from 25, 26
ioctl() method 67
IP address
finding, for specific interface 67, 68
IP address, packet
customizing 203-205
IP address, remote machine
retrieving 10, 11
IPC
performing, connected sockets (socketpair)
used 73,74
performing, UDS used 74-77
IPNetwork() class 81
ip_stack.parse() method 194

213

www.it-ebooks.info

http://www.it-ebooks.info/

IP()/TCP() function 205
IPv4 address
converting, to different formats 12, 13
printing 8-10
IPV6 address
IPV6 prefix, extracting from 80, 81
IPV6 echo client/server
writing 82-84
IPV6 prefix
extracting, from IPV6 address 80, 81
ItemSearch() method 190

L

listen() method 27
list_interfaces() function 67
list_interfaces() method 67
list_soap_methods() method 185
local file

uploading, to remote FTP server 109-111
local network

packets, sniffing on 192-194
local port

forwarding, to remote host 54-57
local XML-RPC server

querying 170-172
logout() method 118

machine

HTTP requests, serving from 88-90
machine name

printing 8-10
machine time

synchronizing, with Internet time server 25
mailbox object 116
MIMEBase() method 115
MIMEImage() method 121
MIMEMultipart() class 114,121
modify_packet_header() function 199
monitor_packet()callback function 209
Mozilla Firefox

spoofing, in client code 99, 100
multithreaded multicall XML-RPC server

writing 173-175
MySQL command

remotely running 158-161

214

NetServiceChecker class 65
network interfaces, machine

enumerating 65-67

status, detecting 69, 70
network interface, specific

IP address, finding for 67, 68
network service name

finding, with port and protocol 13, 14
Network Time Protocol. See NTP
news feed

reading, from BBC 140-143
ntohl() socket class function 15
NTP

using 25

0

object-oriented programming (OOP) 32
OpenSSL
Python used, for writing HTTP server
code 105, 106

P

packet capture format. See pcap format
packets
broadcast, scanning 208, 209
saving, in pcap format with pcap
dumper 195-199
sniffing, on local network 192-194
pack() function 67
parser() method, feedparser module
working 142
parseString() method 190
pcap dumper
used, for saving packets in pcap
format 195-199
pcap format
packets, saving in 195-199
pcapObject() class 194
PcapReader() function 207
photo information
collecting, from Flickr with REST 179-183
Pinger class 62
ping_once() method 60

www.it-ebooks.info

http://www.it-ebooks.info/

POP3

used, for downloading Google

e-mail 115, 116

POP3_SSL() class 116
port and protocol

used, for service name finding 13, 14
PortForwarder class

creating 57
ports, remote host

scanning 201-203
print_machine_info function 9
print_packet() function 194
print_remote_cpu_info() function 155
product search APl, Amazon

used, for searching books 188-190
proxy server

web requests, sending through 96, 97
PyPl 18
Python

downloading, URL 8
Python IPv6 support checker

inspect_ipve_support() function 80

using 77-80
Python OpenSSL

used, for HTTPS server code writing 105, 106
Python package

remotely installing, Fabric used 155-157
Python Package Index. See PyPI

Q

query_supervisr()method 172

read_news() function 141, 142
read_until() method 150
receive_pong() method 62
Receiver class 57
recvfrom() method 26
recv() method 77
recv_ready() event 155
register_multicall_functions() method 175
remote e-mail

checking, IMAP used 117, 118
remote FTP server

files, listing in 108, 109

local file, uploading to 109-111

remote host

local port, forwarding to 54-57

ports, scanning 201-203
remote machine

file, copying via SFTP 150-152

files, transferring over SSH 162-165
remote network service

waiting for 62-65
remote_server() function 157, 161, 163
remote shell command

executing, telnet used 148-150
Representational State Transfer. See REST
RequestHandler class 90
REST

used, for collecting photo information from

Flickr 179-183

resume downloading

used, for writing HTTP fail-over

client 103, 104

run_client() function 175
run() method, chat server

functioning 41-43
run_server() function 175
run_sql() function 162
run_telnet_session() function 150

S

saved pcap file

reading, to replay traffic 205-207
scan_port() function 203
Scapy 54
schedule.enter() function 72
search_business() function 129
search_content() method 134
search_for_books() function 190
search_info() function 187
search_links() function 143, 145
search_repository() function 138, 140
Secure File Transfer Protocol. See SFTP
select.epoll

used, for multiplexing web server 45-48
select.select

used, for writing chat server 38-45
sendall() method 37, 74
send_email() function 121
sendmail() method 115

215

www.it-ebooks.info

http://www.it-ebooks.info/

send() method 39
send_packet() function 205, 208
send_ping() method 60
sendto() method 26
server_activate() method 106
ServerProxy() class 172, 175
ServerThread class
creating 173
Service() method 51
setblocking() method 22
setfilter() method 194
setsockopt() method
used, for altering address reuse state
value 23,24
used, for default socket buffer size
manipulating 20, 21
settimeout() method
used, for default socket timeout
setting 15, 16
setup_vhost() function 168
SFTP
used, for copying file to remote
machine 150, 152
SFTPClient.from_transport() function 152
Simple Object Access Protocol (SOAP) 184
SNTP client
writing 26, 27
SOAP methods
searching, from Amazon S3 web
service 184, 185
socket addresses
reusing 23, 24
socket blocking/non-blocking mode
changing 21, 22
socket errors
handling 16-19
socket.inet_ntoa() function 68
socket send/receive buffer sizes
modifying 20, 21
socket server applications
ForkingMixIn, using in 32-34
ThreadingMixIn, using in 35-37
SocketServer class utility classes
ForkingMixIn 32-35
ThreadingMixIn 35-37
socket.socketpair() function 74

216

source code repository
searching, at GitHub 137-140
sr() function 72
SSH
used, for transferring files to remote
machine 162-165
SSHClient class 152
stock quote
searching, Google Finance used 135, 136
storbinary() method 111
storlines() method 111

T

telnet
used, for executing remote shell
command 148-150
Telnet() class 150
TemporaryFile() class 114
test_dump_file() function 199
test_ftp_connection() function 109
test_socketpair() function 73
test_socket_timeout() function 15
ThreadingMixIn
using, in socket server applications 35-37
traffic
replaying, by reading from saved
pcap file 205-207

U

uDsS

used, for IPC performing 74-77
Unix domain sockets. See UDS
urlopen() function 129

Vv
VerifyingRequestHandler class 179

w

web contents serving
speeding up, HTTP compression
used 100-102
web forms
submitting 94-96

www.it-ebooks.info

http://www.it-ebooks.info/

web page existence

checking, HEAD request used 97-99
web requests

sending, through proxy server 96, 97
web server

multiplexing, select.epoll used 45-48
Wikipedia

article, searching in 131-134
writeable() method 57
write_cap() function 199
WSDL.Proxy() method 185
wu-ftpd package

installing 109

X

XML Remote Procedure Call. See XML-RPC
XML-RPC 170
XML-RPC server
with basic HTTP authentication,
running 175-179
XML-RPC server, local
querying 170-172
XML-RPC server, multithreaded multicall
writing 173-175

Z
ZipFile() class 114

217

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Python Network Programming Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Mastering Python Regular

Expressions
ISBN: 978-1-78328-315-6 Paperback: 110 pages

Leverage regular expressions in Python even for the
most complex features

1. Explore the workings of Regular Expressions

in Python.
Mastering Python 2. Learn all about optimizing regular expressions
Regular Expressions using RegexBuddy.

3. Full of practical and step-by-step examples,
tips for performance, and solutions for
performance-related problems faced by users
all over the world.

Python Data Visualization
Cookbook

ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization.

Python Data Visualization
Cookbook 2. Understand the topics such as importing data for
visualization and formatting data for visualization.

3. Understand the underlying data and how to use
the right visualizations.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Python 3 Web Development
Beginner's Guide
ISBN: 978-1-84951-374-6 Paperback: 336 pages

Use Python to create, theme, and deploy unique
web applications

_ = 1. Build your own Python web applications
e from scratch.
Python 3 Web
Development 2. Follow the examples to create a number of
T different Python-based web applications, including
a task list, book database, and wiki application.

3. Have the freedom to make your site your own
without having to learn another framework.

4. Part of Packt's Beginner's Guide Series:
practical examples will make it easier for you
to get going quickly.

Kivy: Interactive Applications
in Python

ISBN: 978-1-78328-159-6 Paperback: 138 pages

Create cross-platform Ul/UX applications and games
in Python

1. Use Kivy to implement apps and games in Python
that run on multiple platforms.

Kivy: Interactive Applications 2. Discover how to build a User Interface (Ul) through
in Python the Kivy Language.

3. Glue the Ul components with the logic of the
applications through events and the powerful
Kivy properties.

4. Detect gestures, create animations, and
schedule tasks.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Sockets, IPv4, and Simple Client/Server Programming
	Introduction
	Printing your machine's name and
IPv4 address
	Retrieving a remote machine's IP address
	Converting an IPv4 address to different formats
	Finding a service name, given the port
and protocol
	Converting integers to and from host to network byte order
	Setting and getting the default socket timeout
	Handling socket errors gracefully
	Modifying socket's send/receive buffer sizes
	Changing a socket to the blocking/
non-blocking mode
	Reusing socket addresses
	Printing the current time from the Internet time server
	Writing a SNTP client
	Writing a simple echo client/server application

	Chapter 2: Multiplexing Socket I/O for Better Performance
	Introduction
	Using ForkingMixIn in your socket server applications
	Using ThreadingMixIn in your socket server applications
	Writing a chat server using select.select
	Multiplexing a web server using select.epoll
	Multiplexing an echo server using Diesel concurrent library

	Chapter 3: IPv6, Unix Domain Sockets, and
Network Interfaces
	Introduction
	Forwarding a local port to a remote host
	Pinging hosts on the network with ICMP
	Waiting for a remote network service
	Enumerating interfaces on your machine
	Finding the IP address for a specific interface on your machine
	Finding whether an interface is up on
your machine
	Detecting inactive machines on your network
	Performing a basic IPC using connected sockets (socketpair)
	Performing IPC using Unix domain sockets
	Finding out if your Python supports
IPv6 sockets
	Extracting an IPv6 prefix from an
IPv6 address
	Writing an IPv6 echo client/server

	Chapter 4: Programming with HTTP for the Internet
	Introduction
	Downloading data from an HTTP server
	Serving HTTP requests from your machine
	Extracting cookie information after
visiting a website
	Submitting web forms
	Sending web requests through a proxy server
	Checking whether a web page exists with the HEAD request
	Spoofing Mozilla Firefox in your client code
	Saving bandwidth in web requests with the HTTP compression
	Writing an HTTP fail-over client with resume and partial downloading
	Writing a simple HTTPS server code with Python and OpenSSL

	Chapter 5: E-mail protocols, FTP, and CGI programming
	Introduction
	Listing the files in a remote FTP server
	Uploading a local file to a remote FTP server
	E-mailing your current working directory as a compressed ZIP file
	Downloading your Google e-mail with POP3
	Checking your remote e-mail with IMAP
	Sending an e-mail with an attachment via Gmail SMTP server
	Writing a guestbook for your (Python-based) web server with CGI

	Chapter 6: Screen-scraping and Other Practical Applications
	Introduction
	Searching for business addresses using the Google Maps API
	Searching for geographic coordinates using the Google Maps URL
	Searching for an article in Wikipedia
	Searching for Google stock quote
	Searching for a source code repository at GitHub
	Reading news feed from BBC
	Crawling links present in a web page

	Chapter 7: Programming Across Machine Boundaries
	Introduction
	Executing a remote shell command
using telnet
	Copying a file to a remote machine by SFTP
	Printing a remote machine's CPU information
	Installing a Python package remotely
	Running a MySQL command remotely
	Transferring files to a remote machine
over SSH
	Configuring Apache remotely to host
a website

	Chapter 8: Working with Web Services – XML-RPC, SOAP, and REST
	Introduction
	Querying a local XML-RPC server
	Writing a multithreaded multicall XML-RPC server
	Running an XML-RPC server with a basic HTTP authentication
	Collecting some photo information from Flickr using REST
	Searching for SOAP methods from an Amazon S3 web service
	Searching Google for custom information
	Searching Amazon for books through product search API

	Chapter 9: Network Monitoring
and Security
	Introduction
	Sniffing packets on your network
	Saving packets in the pcap format using the pcap dumper
	Adding an extra header in HTTP packets
	Scanning the ports of a remote host
	Customizing the IP address of a packet
	Replaying traffic by reading from a saved pcap file
	Scanning the broadcast of packets

	Index

