thon

Notes for Professionals

Chapter 29: Basic Input and Qutput

1: Using

700+ pages

of professional hints and tricks

Disclaimer

Goa l Kicke r.com This is an unofficial free book created for educational purposes and is

. not affiliated with official Python® group(? or company(s).
Free Programming Books All trademarks and registered trademarks are
the property of their respective owners

http://goalkicker.com
http://goalkicker.com

Contents

ADOUL ...t e e e bbb a bbb A b b s A et s A b s R AR A At s A e bt b s A e b s et enas et s ate 1
Chapter 1: Getting started with PYthon LONQUAQE ... sesasens 2
Section 1.1: GEHING STAMEA viiiiiiiiieceeeccee et ece et rtee e e rtee e e e e sebe e e et e e seste e s seeeesseeesaseeeansesssnseesansessassessansessaseeesasseesnne 2
Section 1.2: Creating variables and aSSIGNING VAIUES icueeirieeiirieeiiieesieeesnieessiseesssieessssesssssesssssssssasssssasssssasssssessseees 6
Section 1.3: BIOCK INAENTATION .iiiviiiiveeiiieiieesitesiteeseeseesstessseeseesssessseessesssesssessssesssessseessesssasssessssesssesssssssessseesssesssessses 9
SECHION 1.4: DATATUDES ceiieerieeeiiiiiteetieitteeseeitteesseereeessesssaeeessesteeessessstaessssssenessesseneessssssesessnsseseessssssenessesssenessessssnsessnn 11
SeCtion 1.5: COIIECTION TUDES icvverereersirreririeersiieessiseeseseesssisesssseesssiasssssesssssessssssssssasssssesssssesssssesssssasssssssssssassssesssssasssnn 15
Section 1.6: IDLE - PUTNON GUI iuiiiiiiciiiieeriescitesiesiesseessessseesseesssesssessssesssesssessssesssesssessssesssessssesssesssessnsesssessnssssessses 19
SY=Teniloa AU £=Y=T [T o T S 20
Section 1.8: Built in Modules AN FUNCLIONS uuiiiiiieeiiieeiiieeesiieessiieessiseesssseessssessaeesssesssssesssssesssssassssssssssasssssasssssnsssnne 21
Section 1.9: Creating O MOAUIE .iiciiiiieiiiiieeneeiseeseesree st eseesrtessreessesstssssaessesssaesseessssssseesssssssesssessssesssessseessessseessees 25
Section 1.10: Installation of PUthon 2.7.X ONA 3.X ccceeeecieeiciieeeeieeeiieescteeesieeeeiseesesseesesseesessesssssssssseessnsessessesssnsessessessns 26
Section 1.11: String function - Str() ANA FEPI() wivvveerrvieeiiiieeriiteeesreesseeesseeesseesssteessssesssssesssssnssssessssasssssasssssasssssasssnne 28
Section 1.12: Installing external MOdUIES USING DI tiveeeeerrerrreesieersesieeseesssesseesssessseesseesssssssasssessssssssassssssssasssesses 29
SY=TeniloTa AN I T = =11 o 0 1 (RS 30
Chapter 2: PUthON DAA TUPES ...ttt ssssssssssssssssssssssssssssesssssssssssssssesssssssssssssssesans 32
Section 2.1: StrNG DALA TUDE civveeeevveeriireeriieeenieeesiieesssieeesisesssssesssasssssasssssasssssasssssesssssasessssssssasssssasssssasssssasssssasssssassns 32
SECHON 2.2: SET DOLA TUDES tercveerervrerireerssreressseesssseesssseesssessaseessssesesssesssssasssssassssssssssssssssssssassessssesssssasssssasssssssssssassane 32
Section 2.3: NUMDEIS AOTA TUDE ciciieiciiieiciiiieiieieiieeseieeseteesiseeessteeessseesebessssteesestessasesssssesssseessnsessssesssssesssssasssssessnne 32
SeCHiON 2.4: LiST DOTA TUDE teirevreersvreerirreersiseessiseeesaressasesssesssssesssssesssssasssssesssssessssasssssasssssasssssssssssesssssnsssssassssssssssasssn 33
Section 2.5: DIictioNAry DOA TUDE .iiieveervrersreesieersrerseesieessiesseessaessessseesssesssassssesssesssasssssssssssassssssssesssassssesssasssassssasss 33
Section 2.6: TUPRIE DOTA TUDE wiiiceeierieeiiiieeiiiieessteessteesitesesseessssesssssesssssesssssessssssssssssssssesssssesssnsessensesssssesssssesssssessnseees 33
Chapter 3: INAENTALION ...ttt bbb bbb bbb bbbt b b b s et enes 34
Section 3.1 SIMPIE EXAMIPIE uiiiieiiieiieecieeseesre et e s reesreeseeseessteestaeste e teessaesate s bassseesstesasasssessstasssessssesssassseessesssasans 34
NYelaiile]a NIl u (o)A [ale Tl o ile]a IS o |6 Y=o 34
Section 3.3: INAENTATION EITOIS iviiiiivieiiiieeiiieeeiteessteesieesesteeseiseeseteesesseessstassssasssnsesssssesssnsessensessssessessessssesssssessnseees 35
Chapter 4: Comments and DOCUMENTALION ...t s st aenes 36
Section 4.1: Single line, inline and MUIlINE COMMENTS civivveierereriererireeerrieeerrreesieeessreresssesersseserssessssssesssssesssasesssesenes 36
Section 4.2: Programmatically acceSSING AOCSIINGS wievvveerereeeeerererireereireeresseeessseeseeessssesesssesssssesssssesssssesssssesssssassnns 36
Section 4.3: Write documentation USING AOCSTINGS .ueiiivieeririeeiniereiniieesieeesrieessiseesssseessssesssssesssasssssasssssasssssasssssassnns 37
Chapter 5: DA AN TIMIE ...t re s b s bbbt et nsnasassebessnsnanns 40
Section 5.1: Parsing a string into a timezone awdre datetime ODJECT .uviiiiiiieierieeerrererree e eree e e ereeessreeennne 40
Section 5.2: Constructing timezone-aware datEiMES ...iiiicieeciiieieieeecieeecreeeceeeesee s reeeereeseeeeesreeesseesesseesssnesenes 40
Section 5.3: Computing tiMe dIffErENCES ittt et srre e ssbee s sstee s sbaessstaesesbaesnstassnssassnsenas 42
Section 5.4: Basic datetime ODJECTS USUUE viiiiviererrreeiiieeeeieresitererirerersteserseesssessssesesssssssssesesssssssssesesssssersssssssssssssases 42
Section 5.5: SWItChing DEtWEEN TIME ZONES .iiicuiiieciieiciieeeciee st eecie e eete e setee e e stee e e ereesebeesesteesesteesseessssesessessensesssnseeas 43
Section 5.6: SIMPle dAte ArITNMETIC iiiiiveeiiiiieiiieeiiiee it ereee e ssriressrreessteesssteesssteesssaessssasssssesssssassssesssssassssassssnees 43
Section 5.7: Converting tiMestamp tO AOTETIME wuiiiiiviiiererieeerrererreeerreeecreeerteeessreeessresessseeersesessasesssesesssasersseennns 44
Section 5.8: Subtracting months from d date ACCUIALEIY .uuiiiicieiciieieiee ettt e cee e sree s rree s evee s e teeseabee s reeesnes 44
Section 5.9: Parsing an arbitrary ISO 8601 timestamp with miniMal [IOrariesiieeeeeeevereeeeeeirieeeeesereeeeeeeveeeeens 44
Section 5.10: Get an ISO 86071 tIMESIAMD veeevrrerrrreerereeersrrrersreeesseressreesssresssssesssssaessssassssssssssssssssessssssassssesssssasssssaessnses 45
Section 5.11: Parsing a string with a short time zone name into a timezone aware datetime object ... 45
Section 5.12: Fuzzy datetime parsing (extracting datetime out Of A tEXT) wiviivieeciiecverieeceece e 46
SeCtion 5.13: ILErATE OVEI AOLIES wiiiviiiireirieerieiseesiteiseeseesisesseeseesssesssessessssesssesssessssesssesssesssesssessssesssesssessssesssasssessnses 47
Chapter 6: DAt@ FOrMATLING ..ottt bbb bbbt es bbb s e bas s e basbenenbans 48
Section 6.1: Time between tWO dATE-TIMES iiviiiiiieeicieiciiee et eesee s erreeseteessteesssteessbee s e beessbeesessassassnsssssessssessssseesanse 48

Section 6.2: Outputting datetime ODJECT 1O STINGT vvvieiereeiieiiiiiiiiiiiierreeeeeeetisssisssreeeereeeeeesssssssssssssssssesssssssssssssssssenes 48

Section 6.3: Parsing String tO dAtETiME ODJECE .ttt e e e e e s s e e sssb b e e e e e e e e e seessssanssssnnens 48

CRAPLEE 7: ENUM ...ttt st s bbb bbb e bbb st as bbb et s b b et s b b et s s s et 49
Section 7.1: Creating an enum (PUthon 2.4 throUGN 3.3) civeccieeeiiciieereenieeeecesreeeeeesnreseessnsessessessenssssssssssessssssesesses 49
SECHON 7.2: IHEIATION troveeecireerireernireeessreesssteessseesseeesssssessseessssesesssesssssessssssssssssssssssssssssssssssssssssessssessssesesssesssssasssssnsssnne 49

CRAPLEE 8: SO ...ttt bbb bbb e bbb e bbb e bbb et b es e bt s e bt es e bt s e bt 50
Section 8.1: OPEIrQtIONS ON SEIS icvieeiiieiiireeiiiiiteetiiiieeesseriteessssrteessesssaressessssesessssssaeessssssesessssssesessesssasessessssseessnseneees 50
Section 8.2: Get the unique elemMeENnts Of O lIST wiiiviiiiivieiiiiieiiiieinee e sreessreessneesseeessraesssbaessssaessssesssssaesssanssssaassane 51
SECHION 8.3: SET OF SIS tiviiiviiiiiiriiiieiite st st sseestesrte e st e ste s teesbeesatessbaesseesatesssaesseesstasssaesatesstassseesssessseesseesnsesssassreenns 51
Section 8.4: Set Operations using Methods ANd BUIITINS ...uiicieeicieieniereiieeecieeseveeseieeseieesstesssveeessseessvessesesssnseees 51
Section 8.5: SEtS VErSUS MUIISELS .iiiiiiiieeiieiitieiieeitesiteeieeseesiteesseesaeesteesseesssesseesseesssesssesssssssesssessnsesssessseesssesssessnes 53

Chapter 9: Simple MathematicAl OPEIrAtOrS ...ttt sasaesnens 55
SECHON 9.1: DIVISION vevreveererrrerareeessreessseessssesessseessssessssssessssessssssesssssssssesssssssssssssssssasssssesssssessssssessssasssssssssssssssesesssassssne 55
NY=Terile]alke A N [5] o N U U URRSTRNt 56
SeCtion 9.3: EXPONENTIATION viiiveererreeesrreerirreessranessaeesseessssessssseesssssssssssssssessssasesssasssssasssssssssssssssssssssasssssasssssassssansssnne 57
Section 9.4: TrigoNOMETNIC FUNCHIONS wiiiiieciieeiieiiiieeseeitreessectreessesresessesreeeesssssteessesseneesessssenessessenessesssneessesssnessenns 58
Section 9.5: INPIACE OPEIATIONS wiiivieiiiieereiiieieieeeiieeeseeesireesesteessrteessteesasesesssessssessassesssssessassesssssessssesssnsesssssasssssessnns 59
SECHION 9.6. SUDIIACHION tiiuiiiciiicieestieiteeseesiteecteesteetessseessteesbeesseesse e bassseeessaesseessseansassseesssasssessstesssessseesnsesssessssessesnses 59
Section 9.7: MUNIDICOTION tiiveeeiiereereeieieeecteeeeteeesteeeeteeesseesesteesaseeesaseeesssasasssasasssesssssesessesesassesssesesssesesssesasssasessseennns 59
SECHON 9.8: LOGANMTNMS wiiiiiiieiiieiieiieeieiieeseieessteesieeeesteessbeesebaesssteesassessasesssssassssesssssesssssessnssessnsesssnsesssnsessessessssseesnns 60
SECHION 9.9: MOAUIUS eviiitiiiieiiiecee e st eseesteseteeseesrte s baesreesteesbaesaeesstaessessatesataessessntassessstesstasssessseessesssessnsesssassseenns 60

Chapter 10: BitWiSE OPEIALOIS ... et bbb s s bbb b s e bbbt s e e b s et enas 62
Section T10.1: BItWISE NOT ..uiiieccieeeereeeiieeeeetesetteeeeteeeseseesebeeseseeasssaesastesesssessastessssesesasesssnsesesnsessssesesnsesssssessssasasssesnnns 62
Section 10.2: Bitwise XOR (EXCIUSIVE OR) tiicieievireiiiieeiirieeiniteesiteessnessiseesessesssssesssssesssssesssssessssesssssasssssesssssasssnsessssees 63
SeCHioN 10.3: BItWISE AND uuveererveersrreersreeesseeesseessssesesssesssssessssssessssssssssesssssssssesssssasesssasssssasesssssssssesssssnsssssssssasesssnasssne 64
Section 10.4: BItWISE OR .eiiiicieiecieeiiieeeieeesieesesteeseteesesteeseseeeeaseesebeesentessassaesastessssssssastessssesessseesssessssessssessasessssenen 64
Section 10.5: BItWISE LETT SNt iviiiiiiieiiiieiiieesiieissee s siee st ssteessteesste e sstaessbaessbaesssbeesastassnseessnssassnsenssssassssessnsassns 64
Section 10.6: Bitwise RIGNT SHift ..iiiciiiiiiieiiieiiesresseeseesresseeseesstesseestessbeessaesssasssasssessssesssessssesssesssessssesssassseesnsasnne 65
Section 10.7: INPIACE OPEIATIONS wuviierreerereererireeeeeeraeeeeareeeeiseesasseesessesssssessssesssssssssnsessassesssssessessesssssesssssesssssesssssessnsees 65

Chapter 11: BOOIEAN OPEIALOIS ...ttt sas st st sas s essesas s ssesasssnens 66
Section 11.1: ‘and’ and “or’ are not guaranteed t0 return 0 DOOIEAN .icieeviieiiieereeiireee e eerrrereeserreeeesenaeeeeeaes 66
Section 11.2: A SIMPIE EXAMPIE .iiiiiiiiveiirieeiieestesrieisieesieessteeseesrtessseesseessesssesssessssesssasssesssesssesssessssesssesssesssesssesssessses 66
NYelaileTa R NS alea el olV]) =\VZe | IUTo L1l] o USRS 66
SECHON T14: ANA tiiiirieeiirieeiteeiitersieessieessteessteeseteesssaassssaessssesssssesssssesssssesssssesssstesesssesssseessssasssssesssssassssseessssasssssnssnnee 67
SECHON T15: OF uteeercreeeireersrreersreesseeessseesssseessssessssseessssesssssesssssessssssesssssssssesesssesssssesssssesssssesssssesssssssssssessssesessseessssessssses 67
Y=Tenilo a1 Y a) SRR 68

Chapter 12: Operator PreCEAENCE ...t ssss s tssssssssssssssssssssssssssssssssesssssssessesens 69
Section 12.1: Simple Operator Precedence EXamples in PUTNON ...iiciiiiiicieiieeniecieesee et esvee e ssteesreestessveesvneens 69

Chapter 13: Variable Scope and BiNAING ...t esess s sssassesssessssssessssssesans 70
Section 13.1: NONIOCAI VANIADBIES iiiiiiiiiiiiiiiiresiieseesresiresseessaesseeseesssessseessesssassseesssesssesssessssesssessssesssesssessssesssessnes 70
Section 13.2: GIODAI VANIGDIES .uiiiccieiiiieeeiieeecieeeeiteeseieeseteesstteessseeeesseessseesessesssssessessassssesssssessssessensesssssesssssessssenssnses 70
Section 13.3: LOCAI VAFIGDIES ..uiiiciieceeeieeiieeetesiteectteetesstessteeseeesteessaestessseessessnsesssessssesssasssessssssnsesssessssesssessssssssesssnens 71
Section 13.4: The del COMMIANG ciiciiiicieeiieeeereeeeieeeeeeeectreesbeeessreeesseessnsee e ssaesaseeessesessesesssesssnsesesssesesssessssenessseensnne 72
Section 13.5: Functions skip class scope when [00KING UD NAMES wuuviiiireereeeiiiereerinsereessiseseessesessesssssessesssssessesses 73
Section 13.6: LOCAI VS GIODAI SCOPE .rviiivreierrrererieierreeirereerseeesisesesssesessseserssesessssssrssessssssesssssesssssesssasesssssesssssosssassnssens 74
Section 13.7: BINAING OCCUITENCE wuvivceeerireeeeiieeeeireeseieeeeseesesteesssesesssesssssesesssesssssesssssesssssssssssessssssesasssssssesssssessssessnnses 76

Chapter 14: CONAILIONAIS ... st sas bbb bbb as bbb e bt ae b enasas 77
Section 14.1: Conditional Expression (or "The Ternary OREIrAtOr”) wiueeeeeirrereeriiiereeseiieeeessssseesessssesseessssseseeses 77
Section 14.2: if, €lif, ANA EISE wiiiiiviiicieiciirie ettt s e s ee s ste st e s te e te e bae s te e baesseesssaebaesssesasaesaesstassseenseessesnsaans 77

SECHON T4.3: TIULN VAIUES ceeiiiiieeeeeeetttee ettt ettt ettt e e e e s s s aab bt et e e e e e e s sessssssssssesaeeesesssssssssssssssneesesessssssssssssnnns 77

Section 14.4: BOOIEAN LOQIC EXDIESSIONS wuvriiiiiiiiiiieiiiierereeeeeeetiessessisssseeeeeesessssesssssssssssssessssssssessssssssssssessssssssssssssssssnes 78

Section 14.5: Using the cmp function to get the comparison result of tWo OLJECES ..uivvivvieeeercieeeeeerreeeeeerrreeeens 80
SecCtion 14.6: EISE STATEMENT .iiiiiiiviiiieeiiesiteiieesee et eseestesteesseeseessbeessaesatassaesssesssaeseesssessesssassssesssaesssessaessessssesnsans 80
Section 14.7: Testing if an object is None and ASSIGNING It .veeeevereereerriiereiieeeiieseieeeeieeesieesereesesseesssseesessnesssnssnnes 80
SECHON T4.8: If STATEMIENT 1iviiiivieiiiieeriieesitee e e srteessraeessbeessstaessbeessstaessssaesssasssseeessasesssesesssasssssesssssnsssssesssseesssaesnns 81
Chapter 15: COMPATISONS ...ttt s sttt b e bbb b s s bbb es st b aeb s st e b s sstesantenes 82
Section 15.1: Chain COMPAIISONS vivvereeerveerirersieesiresseesieesssessaessessssesssassssssssesssassssesssasssessssesssessessssesssassssssssasssassssssn 82
Section 15.2: COMPANISON DU TS VS "Z2 1iiiiiiiiieieiieisiteeseiteeseteeseteeseseessssteesseesebesssnsessasesssssesssssesssssnsssssessaseessssesssnne 83
Section 15.3: Greater than OF 1€SS thaN .iiciiiiiiciieieecie sttt e s e e beesee s te e baesstesbaessaesntessbaesseesasaaseens 84
SeCtioN 15.4: NOT EQUAI 1O tiiviiiriiiriiriieeitesitesiteeseestessteeseessessseesseessesssessssssssessseesssesssesssaesssesssesssesssesssesssssssassessnsans 84
SECHON 15.5: EQUAI TO tttieiiiiieiieieiiteieiteeseieesettessetteessbeeesveesebeesssseesesbasssssassassassastassnssssssessensesssseesensesssnsesssssessnssnssnnes 85
Section 15.6: COMPANING OBJECES wiiiiiiiiieriieiieeitteiteestesrteeseeseesrteesseesaestessseessesssassseesssssssesssesssesssessssesssasssessssesssans 85
CRAPLEE 16: LOOPS ...ttt sttt as bbb as bbb et b et as bt s st b s et es st ban bbb et e b s snbesaee 87
Section 16.1: Break and CoNtiNUE 1N LOOPS .veiveirveerrierseerieerseesieesssesseesssesssessassssesssesssassssesssasssassssesssassassssesssassaesss 87
SECHON T6.2: FOI IOOIPS witiiitiiiiirieieiiteisieeieiieessiteessteessteessseeessbeeessesssbessasessassasssstasssssessassasessenssnseessnsesssnsesssssessssseessne 89
Section 16.3: IHEIrAtiNG OVEL lISTS wiiiiiiiireerieesieiieeseessteeseesitessteesaestesssasssesssesssesssesssesssesssessssesssessnsesssesssesssesssasssessnses 89
Section 16.4: L00PS WIth AN "EISE" CIAUSE iicciiiiiieeiiieeeceee ettt eerteeseiteesereeeeseeeseste s s beeeseseeessseesessesssssesssnsesssssessassesssens 90
Section 16.5: The PASS STATEMIENT ..uiiiiciieiiriieiiiteriiee et e sireeeseessrreesebeessteesesteessstassssaessasesssssesssssesssnsasssssesssssessnsenssns 92
Section 16.6: Iterating OVEr AICHONAIIES .uuviivveeiireeerereriererireresiseeersresessseeerssssesssssersssesssssssssasesssssesssesesssaserssesesssassnsns 93
Section 16.7: The "Nalf 00" AO-WHhIIE ..uiiiciiieciiiieieeeecee et e et eeete e setteeestee e e stee s nbeesesteeseseeessesessesesasesssnseesensessssseennns 94
Section 16.8: Looping AN UNDPACKING wiiiiieerereeiiiieerireeisieesieeessieessseessssesssssesssssessssesssssasssssasssssasssssesssssassssssssssessnn 94
Section 16.9: Iterating different portion of a list with different SteP SIZE ..uuvivverervveeriereniee et erreeerreeersree e 95
SeCtioN T6.10: WHIlE LOOD wieiecierierieeriiereeteesirteeeseesesseessseesessesassssesaseesassesesasesssssesssssesssssesssssesssssessasesssssesssnsesssnsessssnsan 96
CRAPLEE T7: AFTAUS ...ttt st sas bbb e bbb as st b b st b e s b b e bbb et en b b et s b b et s b ebas b s sesaeas 98
Section 17.1: Access individual elements throUgh INAEXES ...uiiicieiiierinnireiiiiennieeesieessieessaeessnesssseeesssasssssasssssnsssnne 98
Section 17.2: BASIC INTrOdUCTION 1O AITAUS teverrrererirererrreeerveesiseeessseressseserssesesssesssssessssasesssasesssssessssssssssssssssssssssesssssessns 98
Section 17.3: Append any value to the array using append() MEethodivcericeercieeecieeecee e 99
Section 17.4: Insert value in an array using inSert() METhOA ...uuiiiiceeeiiiieeeecerrereeserereeeereeeesrrreeeesereeeessenneeeees 99
Section 17.5: Extend python array using extend() METNOd ...cuviccieierieeeriererree e e esreresreeesbesesareeessseesnnens 99
Section 17.6: Add items from list into array using fromlist() MEethodueeccericiiiiccieecee e see e 99
Section 17.7: Remove any array element using remove() MEthOd ...uuvvveieeerieriieeeeseieee e eereeeeesreeeesesseeeessnns 100
Section 17.8: Remove last array element using POR() METNOA .iiiciiiiiieeiirieerrer et et eereeessreeesbeeesreeens 100
Section 17.9: Fetch any element through its index using index() MEthOdcceeveiiiiirieiniieecrrerc e sreeeeen 100
Section 17.10: Reverse a python array using reverse() MEthod ...ciiiecceecieicieeieenee e esieeseesiessreeseessseesseeseeens 100
Section 17.11: Get array buffer information through buffer info() Methodeoccveeecieiecieeee e, 101
Section 17.12: Check for number of occurrences of an element using count() Methodccveveeeeeriveereeninneene. 101
Section 17.13: Convert array to string using tostring() METNOA ..iiviviiiieiiiieeciieeeieeeer e sreeesreeesreeorssesersveeen 101
Section 17.14: Convert array to a python list with same elements using tolist() Methodcceevceeeereereerveenne. 101
Section 17.15: Append a string to char array using fromstring() MEethoduevevccieeieiiieeeecreee e eereee e 101
Chapter 18: MUtIAIMENSIONAI QITAUS ...ttt bbb bbb bbb senes 102
SECHION T8.1: LISES IN TISES wrerereesvrrrireeseesiieeseessesiseeseesssessseessaessesssassssesnsesssessssesssessseesssesssesssssssesssessnsesssessseesssesssessnses 102
Section 18.2: LiStS iN lISTS 1N TISTS IN.. veeeerererereeerireeeesreresiseesesteeesseeeseseeessseeseseeassessssseeessssssssesssssesessesessesssssessnssessssees 102
ChAPter 19: DICHIONAIY ...ttt s sttt bbb st bbb et as bt es e bt es e b s s enanbenees 104
Section 19.1: INtroduction 1O DICHIONGIY ticveeerrieeriieererieeieiieererieessiseessseeessissssssesssssesssssesssssesssssesssssessssssssssasssssesssssasssn 104
Section 19.2: Avoiding KEUEITOr EXCEPRTIONS viivveeerrrererireeerireresiseeesveeesseressseeesssesesssesesssssesssssessssssssssesssesesssasesssasensses 105
Section 19.3: Iterating OVEr A DICHONAIY cevveeerrerrreeereereresieciereesesiseeeessssseressessssseessssssesessessssssessesssnesssssssssessssssesesss 105
Section 19.4: Dictionary With defAuUlt VAIUES .iciuiiiiiieiiiiiiiiieccieescieeseieeseteesstesssveesesieessveesesseessssessessessssesssnsnassnne 106
Section 19.5: Merging AICHIONGAIIES .iiiviiiieiereeriieiieeseesitesseessesseeseessseesseesseessessseesssesssasssasssssssasssessssasssessseesssesssnsns 107
Section 19.6: ACCESSING KEUS AN VAIUES .uviieeiieiiieeeiieeeitieeeiteessteeseteesssseesesseesesesesssessssesssssesssssesssnsessessessassesssens 107

Section 19.7: Accessing VAIUES Of O AICHIONGIU viviiiiiiiceiiiiiiierieeeeeiiisiiiireeeeeeeeeeeeesssssssssssseessseeessssssssssssssessesesssssnnns 108

Section 19.8: Credting O AICHIONGIU viiieeeerrrerreieeeeieeeeeeeeitrrrreeeeeeeeeesesssssssrrreseeesssesssssssssssssessessssessssssssssssseeesssssssssssnns 108

Section 19.9: Creating an ordered dICHONGIU .uiiivveeiiieeeniieeesieersieeesiieesssieessssesssssessssasssssaessssasssssasssssasssssasesssesssssaes 109
Section 19.10: Unpacking dictionaries using the ** OPEIrAtOr ...ccivieeercieeerireeeiieeerreesireeeecreeeseseeesssesesssesessesesssesens 109
Section 1911 The trailing COMMIO tiiiviiiieiieeeiieeeeteesiteeeeseeeesreeseteeseteesssteesaseeseasessssesssssesssnsesssnsessassessasessaseesssseessnne 110
Section 19.12: The diCt() CONSIIUCTON viiiiiiiiiiieriieeisieessiieessvteessiseesisesssesssssnesssesssssessssssssssesssssasssssasssssasssssnsssssassssans 110
Section 19.13: DICtioNArieS EXAMPIE wiiviiiiiviivriririeieesirerieeseesisesseesseesssesseesssesssesssessssesssessssssssesssessssssssesssessssesssassnees 110
Section 19.14: All combinations of diCtIONAIY VAIUESuiiiciiiiiieieiiiecciieecsieeeeteeseieeseieessstessstesesseessveesensesssnsessenes 111
CRAPLEE 20: LIST ...ttt bbb bbb s bbb bbb as b b aebesas b b s et ebasaebenantenas 112
Section 20.1: List methods and SUPPOItEd OPEIAOrS iiiiiiiiieerieecieeeeesiieesteeseessteesreeseeesteesseeseesssesssesssesssassseesns 112
Section 20.2: ACCESSING lIST VAIUES wiviiiieirieriierieesiiessieeseesssesseessesssessseessssssesssesssesssasssaesssesssassssssssasssesssssssesssass 117
Section 20.3: Checking if ISt IS EMPTU iiiievieeiiiieriiieesiieeeitesssrtesesteessrteeseveesesteessteesesesessssessasessessesssnsessessessssesssssens 118
Section 20.4: HEratiNG OVEL G lIST uuviiivieeirreeinieerirreeesiseesiseeessieeesseesssesssssesssssessssansssssessssssssssssesssaessssnsssssesssssassseness 118
Section 20.5: Checking whether an item IS IN G ISt vivceieicieeiiieeeiieeecee e ereeerreeesre e s ere e eebre e s ree e s beeeeraeesasaesnsens 119
Section 20.6: ANU GNA ALl ciiiieiiiieeiiieeeite e srte e esee s ssteesebee s srteesebeessstaesesbeesastasssstassasesssnsessssessansessssseessssesssssessaseesnsens 119
Section 20.7: ReVersing lISt ElEMENTS .iiiviiciiiiiieirieeceeste e eseeseesrte st esee s stessreeseessbessbessatassbaessaesnsessesssnesnsesssesnnes 120
Section 20.8: Concatendte ANA MEIQE lISTS tiiiiiiiiieiiiieeeieeeeieeeeieeesreesereeserteesereeessbeeeseseeesseeesseessnsesesssesssnsessnsees 120
Section 20.9: LeNGN OF QST wiiiiiiiiiieiiiee ittt eree s ebee s stee s e rbee s ataesssbeesastaessbaaesaseaesnsesssssesssnsesssseesansessnnens 121
Section 20.10: Remove dUpliCate VAIUES IN ISt viivveveriererierenieeenieeerreeenreeesisesessesesssesesssesesssesesssesssssssesssssssssssssens 121
Section 2011 COMPAISON OF lISTS cuieiiereeeririrreeeeeeiieseitreresseesesteeseseeeeseesaseessssssesasesesssesesasesssssesssssesssssessssessasesssnees 122
Section 20.12: Accessing VAIUES iN NESTEA IIST .uviiiveiiiiieeririeeiiiieesiieessieeessieeesseesssieesssseessssnsssssssssesssssesssssasssssasssnses 122
Section 20.13: Initializing a List to a Fixed NUmMber of EIEMENTS ...viiiveverirererieeerirerenieeenreeereeeeseeessseeesssesesssesonans 123
Chapter 21: List COMPreh@NSIONS ...ttt b bbbt 125
Section 21.1: List COMPIENENSIONS veeeeciereiieeeeiieeierieeserieeeeeeesaseeesaseeeesseessssassessesasssesssseessssssssasssssssesssssesssssesssssesssnes 125
Section 21.2: Conditional List COMPIrENENSIONS iivieeiiieeiivieeiiieesiieesiieesseeessaeessreessssaesssseessssaessssnsssssessssassssssassssens 127
Section 21.3: Avoid repetitive and expensive operations using conditional ClAUSE ...veeevcvererveeerveeereeessnveeennens 129
Section 21.4: Dictionary COMPrENENSIONS .cueeeeceerrieereireererreerasieereeresssessasesseasesssssessessessessesssssesssssessassesssesssssesssnn 130
Section 21.5: List Comprehensions With NEStEA LOOPS wiivvieiirrreeririerinieeisinesiiieessrieessseessssesssisesssseessssesssssesssssassssens 131
Section 21.6: GENEIrAtOr EXDIESSIONS .uiiicveerireeerrerersreressreeessseesssseesssssesssseessesesssesesssesssssssssssssssssssssssesssssssssasssssasssane 132
Section 21.7: Set COMPIENENSIONS .iiiicireeiieeeiieeeiiteeeiteeeerieeeeteesateseeteesaseesessessssseesesesassessassesssssesssssessssesssssesssseens 134
Section 21.8: Refactoring filter and map to list COMPreNENSIONS .uiiiicvivereeicireeeeeerieeeeeerrreeeesenreeeesesseeeessssseeseennns 135
Section 21.9: Comprehensions INVOIVING TUDIES w.iiiieverirererieeerireeesireeeireeeseeessseeesssesesssesessseserssesssssssssssessssssesssssesane 136
Section 21.10: Counting Occurrences Using COMPrENENSION wiviueerceeeeiieerireereireeeesseesesseeseessssssessssessessesssnseesesees 136
Section 2111 ChaNGING TUPES 1N G LISt cueeieeevreeiieeseeeiiresieeseesssesseessessseessesssesssssssessssssssssssssssssssssssssssssesssssssesssases 137
Section 21.12: Nested List COMPIrENENSIONS iciviiiieeiiieeeireresireeeereeesreeerteeesreeesseeesseeeessseesssesesssesesssesesssesesssesesnsens 137
Section 21.13: Iterate two or more list simultaneously within list COMPrenension ...ivieeeevciereenneeeeeennreeeeennns 138
Chapter 22: List slicing (selecting parts Of lISES) ... 139
Section 22.1: Using the third "Step” ArQUMENT .uuiiiieieiiereiiieeirreeereeeenieresiseeerssesesssesessseesssssssssssesssssesssasessssssssssssrsens 139
Section 22.2: Selecting a SUDIIST from G ST .ivviiiiiiiiiiieiiieritireesiesseeseessresseessessresseessse s sesssesssesssesssassssesssessnses 139
Section 22.3: Reversing A list With SHICING tivieiicieiiiieiiiieeiiieeesiee e sesiee s ssreesebeeseteessateeseseessssaessveessnsesssssessassesssens 139
Section 22.4: Shifting a liSt USING SHICING weeeeervteiiieeeeesiireieesiesitesseesieeesseeseessessssessesssssssessssssssesssessssssssesssesssssssasns 139
ChAPLer 23: GrOUPDU(..ottt sttt bbbt bbb bbb s bbb b bbb st st st st babebben 141
SECtiON 231 EXAMIPIE 4 ccvereeeiieeeeiereesiesees st eseeste st e e st e seseesse st e s e saeessesat e sesatessesaeessesneessesasessesntessesnsessesneessenas 141
SECtiON 23.2: EXAMIPIE 2 wvvviieiiriereeiiiieeeeesiieeeeeseseeeessssssssessssssesessessssssesssssessssssssasssssssssssesssssssssessssssssesssssasessesssansesssnns 141
SeCtioN 23.3: EXAMIPIE 3 .uiiicieiiieiiieeieeeieeieeseesteesseessessessseessssssessssesssesssessssesssesssessssesssessssesssesssessssesssessseesssesssessnes 142
Chapter 24: LINKEA ISTS ...ttt sas bbb sas bbb sas bbb sas b sasbesen st enans 144
Section 24.1: Single lINKed liSt EXAMPIE uviiiiiieeiiieeecieeeceeeecteeecee e e seeee e e s e rteeeerteeseseesesseeesseessseessnsessensessensesassseennns 144
Chapter 25: LINKEd LISt NOAE ...ttt ss st sas s sas s s sassessssasessssansens 148
Section 25.1: Write a simple Linked List NOdE IN PUTNON .uiiiiiiiiiiviieiiieeiiieeiiieesnieessaessvneessveesssseesssesssssessensessnnees 148

G APTEE 262 FIIEEE ...ttt et e e e e eeeeeete e etestete e eseas st easesesseseasessasenseseasesesseseasessasensssesssensesenseneasenessenes 149

SeCtioN 26.1: BASIC USE OF FIEEI wuviiiiiiiiiii ettt ettt et e e s e e e s e s b e e e e e e e e s seess s ssssssereeeeeesssesssssssssereeessessssannn 149

Section 26.2: Filter WithoUt TUNCHION .uiiiiiieiiieiinieeiiieesiieessneesseesssieessieesssieessseessssesssssessnssassnsasssssasssssesssssasssssassnns 149
Section 26.3: Filter s SNOrt-CIrCUIT CNECK tiiiiiiiererireeeiiteeerreeeireeereeescreeeseresesssesessesesssesesssessssssssssssesssssesssesesssesannne 150
Section 26.4: Complementary function: filterfalse, ifilterfalSE ... cebaeees 150
ChAPLEr 27: HEAPQccovvvveerireertseees sttt sss st sss st sssssss e sss s es s s s s s et es s s e s s s et s s sassensasastesssanes 152
Section 27.1: Largest and smallest items in O COECHION tivuviiiieierieerniieeiirieeenieesiieessneesseeesseesssseesssseesssseessssaesans 152
Section 27.2: Smallest itemM N O COIETHION uiiiiirereriiererirererieeerreeeeteeeseeeeereeeesbesesseeesssaeesssesessseesssssessesesssesssnsesensses 152
CRAPLEE 28: TUPIE ...ttt bbb bbb bbb bbb bbb bbb e bbb e bbb e bbb et es et bens 154
Y=Tenile]a T s N R U] o1 1= U 154
Section 28.2: TUPIES Are IMMIULADIE ..iiiiiiieicieicie sttt eceesriessteeseesteesteeseesteessaesreestaessassnsesssassseesnsesssassseesssasssaesns 155
Section 28.3: Packing and UNPACKING TUDIES ceuuereeieeeiieeeiieeeiteesiteeessreeesiseessseeessesssssessssssesssssssssesesssesesssesesssesens 155
Section 28.4: BuUilt-In TURIE FUNCHIONS cicuiiiicieeeciteeiiiieieiiteseteeseieesetesssstesseseesesseessseesessesssssesssssessasssssassessssesssssesssnne 156
Section 28.5: Tuple Are Element-wise Hashable and EQUATADIE .uuiviveeerieeenieeiiieeeieeesreeennreresseeesssesesssesorseeenns 157
Section 28.6: INAEXING TUDIES viiviiiivierrieriernieeriierseeseesisesseesisesssesseesssesssesssessssesssesssssssssssesssesssesssessssesssassssesssssssasns 158
Section 28.7: ReVErsing EIEMENTS iiiiiiiiiiiieiciee et et sesiee s steesesteessteessateesssaeesbeeesnbasssssessssbeesessessessessnssassssenssnnes 158
Chapter 29: BasicC INpUt ANd QUEPUL ...ttt ssss s ses s ssssssssssssssanens 159
NleilelalA N RIV S Tale It a =N o Tal il (0] alox1 (] o NSRS 159
SY<teuile]a N4 [l o101 dhiireY n a ke I i |/ 159
Section 29.3: ReAd frOM STAIN tivuiiiiviiiiiieeiiieesitee e sctesssiee s ebeessteesebeeseataesssbeesastaesssasesseassnsenssssesssnsesssssessensessnnees 161
Section 29.4: Using input() aNd raW_INPUL() ceveeevieerreesieesieeieesieeeieeseesisessseesssesssesssessssesssesssessssesssesssssssesssesssesnses 161
Section 29.5: Function to prompt User fOr O NUMDEE .iiiciiiiciiiecieecce ettt eceeeete e ere s ree e s eree e bee e sbee e eareas 161
Section 29.6: Printing a string without a Newling At the ENA ..iccieeeiiiciiieieeee e seree e e sebeeeessesraeeeeenns 162
Chapter 30: FIleS & FOIARIS I/Q ...ttt ssss s ssss s ssss s ssssssssasssssssssssssessassssssassnns 164
SeCtion 30.1: FIlE MOUES iciiiiieiiieiieeseeeiieeseestessteestestessseeseesteassesssessssasssessssesssessseesssesssasssessssesssesseesssasssesssessssassns 164
Section 30.2: Reading A file INE-DU-=lINE ..iiiiiiiireriiicieeeciee ettt ree e te e s re e s eee e e st e e sebeesebeeeenseesenbeesensessesseesans 165
Section 30.3: Iterate fileS (FECUISIVEIU) wiiiiviiiiiviiiiieeiieeeiieeesireessiieesssteessieessstesssssessssessssssessssesssssasssssasssssasssssessssaes 166
Section 30.4: Getting the full CONTENTS OF A FIlE wiivvvieiiiieiriieeree et eer st e e sreeerreeersreesnreeebesessasesssasennnes 166
SY<Terile]a 10 RoRAYA o 1aTe Tt 1o 1| L= USRS 167
Section 30.6: Check whether a file OF DAL EXISIS .iiiiiviiiiiveiiiieriirersreeeneessieessteessaeesseeesssessssseessssasssssessnssassssens 168
Section 30.7: Random File ACCESS USING MIMAD cverrreerreerrrersreesreessresseesssesssesssassssesssesssessssesssasssssssesssasssssssesssessses 169
NYelarile]aNCIORSHI (=T ol e Lol aTo I (<> a sl [a o I 1 U 169
Section 30.9: Checking if A file IS €MIPDTU viiivieerivieiiniieeiiieeenieesireesieeessreessieesssteesssseesssaesssssesssseessssasssssasssssasssssnssnnne 169
Section 30.10: Read a file between d ranNge OF lINES ..uuiivreiiiieiiciieeeieecrereereeesireeessreeesreeesresessseessssessssesesasesesnsens 170
Section 30.11: COPY O AIrECIONU TMEE iiiiiiieiciieeeeiee st eeiteeecteesecteesesteesebeesesteesssteesseeeesseesssessansessensessassessassessnssasanns 170
Section 30.12: Copying contents of one file to a different fileciiceeciiciecceccc e 170
ChApPter 31: OS.PALN ...ttt bbb e bbb bttt b as bbb s et bas et s aee 171
SeCtION 31T JOIN PATNS wiiiiiiieiitiiieiste st st eseesre st e seestessteesreestessbassanesssasssessssesssasssessssesssesssessssesssesseesssesssassssenss 171
Section 31.2: Path Component MANIDUIGTION ..uiiiicieeecrieeieiieeeiieeeiieeseeesssreseesseesssseessssesssssesssssessssssssssssssssesssssesssnsens 171
Section 31.3: Get the PArENT AIFECIONY viiiiveiiiiieerirreeniiteeiiteesieeesieessseeessseessssessssanesssseesssesssssssssssasssssasssssesssssassssness 171
Section 31.4: If the QIVEN PALN EXISES viiviiiiveivieirieinieerienneesiee st sseeseessreeseessesssesssessssesssesssessssesssasssessssessseeseesssesses 171
Section 31.5: check if the given path is a directory, file, symbolic link, Mount POINt E1C ..uueevevrcreeeeerireeeeeninnenne. 172
Section 31.6: Absolute Path from RelatiVe POth .iivveiiiieeeiiieiieriiereeiee e enreeenveeerseeessseeesssesesssesesssesosssasesssesonsns 172
Chapter 32: 1terables ANA ITEIALOFS ... et s st sas bbb sas e esaee 173
Section 32.1: Iterator Vs Iterable VS GENEIATON .iiiiiieeeeieeecieeecteesieeeesreeesiseeesseeseseessssesssssesssssessssesssssesesssesesasesenn 173
Section 32.2: EXtract VAIUES ONE DU ONE uiiiiiiiiiiieiiiiesitessiieeesieessteeseveesssteeseabeessstaessssesssstassnsessssesssssesssnsesssnsens 174
Section 32.3: Iterating OVEr eNtire HEIADIE ..iiviviieieiiecir e crreeerreeerreeestreessseeesbesessesessseserssaserssessssessrsens 174
Section 32.4: Verify only one element in IHEIrADIE ..uiiiiiieieceeiceeecie et ecrte e rtee s e e s re e s te e s ree e sneeesebeeesseeesnns 174
Section 32.5: What CON DE IHEIADIE .uuiiiiiiiiiieiciiis ittt sttt ssee e sste e ssree e sssae s sbeesesbaesssbaesesbeessssessssessnsesssnsasssnne 175

Section 32.6: TEratOr ISN'T FEENTIANT! .viiiereeeeieeiiiiiiriiiireerreeeeeeeiisssssrrrereseeeeesssssssssssssssssseesesssssssssssssssssssssesssssssnns 175

CAPLEE 33: FUNCLIONS ...ttt e eee e e et et s e eaeaee e easeeeeeasatseeseaeateesseasaaeseeeasaesseneatseseesanessseanaenssneaen 176

Section 33.1: Defining and calling SiMPle FUNCHIONS .iivcuiiiecieieieeieiieeeeieeeeieseerteescreesecteesereesebeesesseesesseeseseesssseassans 176
Section 33.2: Defining a function with an arbitrary number of ArguMENTS ...ueiieccceeeeeccieeeeeenreee e eereeeeeerreeeee e 177
Section 33.3: Lambda (INline€/ANONUMOUS) FUNCLIONS ..icveeriieirriirrenrierereeseentieseesseeseesseessesseessesseessessesssessessessenns 180
Section 33.4: Defining a function with optioNal ArgUMENTS ..iiiccieeiiieicieeecies et eree e ree s bee s re e s sabe e s aeeas 182
Section 33.5: Defining a function with optional Mutable ArgUMENTS ...uiiieceeeeeriiieeeeireeeeeereeeeeeereeeesernreeeeesnns 183
Section 33.6: Argument passing aNd MUTADIITY vivveeieeriieiiieinreenieereeseesiesseesssesseessesssesssesssaesssssssasssesssssssessnes 184
Section 33.7: Returning values from fUNCHIONS ..iiiiiiiiciieieiiisciiescsiteecreescieesete e sstte s eevee s e vee s ebeeseteesesbeesentessesenssnnes 185
SECHION 33.8: CIOSUIE citiiiieiieriteestesiteesseestesiteesseestesssesssessneesssesssessnsesssesssessnsssssesssesssesssessssesssesssesssesssessseessesssesnses 185
Section 33.9: Forcing the use of NOMEd DAIAMETENS viveccieeerieeecie e srreeeeree e reeesreeesrteesrsreesreeesssesesnsasessesens 186
Section 33.10: NeStEd fUNCHIONS wiiiiiieiiceeiriieeieieeseieessteessieesesseessseeseteesessesssssessasesssssessssesssssesssssesssssessssenssnsessssens 187
Section 33.11: RECUISION HIMIE uviiceeieeriieeieesieesiteeseeessessseessaessseessesseesssesssessssesssessseesssssssessssssssesssessnsesssesssessssesssassnses 187
Section 33.12: Recursive Lambda using assignNed VAIADBIE ...civicceeeecieeeieeeecteeecreeeeiesesneescneeeeereeeseseessssesssseesnnne 188
Section 33.13: RECUISIVE TUNCHIONS wiiiviiiiiiiieiiieeiiieeeitesssieeseiveeseteeseveesssteesssseessstaesssesssnsesssnsasssnsessessesssssessssesssssasans 188
Section 33.14: Defining a function With OrQUMENTS .ccvieiieierieeeiieeenreeereeeeireeesreeeesteeesresessresesssesesssesesssassssresonsees 189
Section 33.15: Iterable and dictioNAry UNDACKING ueievervrerieerreesieeneesssessseeseesssesssessssesssessassssesssessassssesssassssessses 189
Section 33.16: Defining a function with MUltiple ArgUMENTS icieiiiieeiiieeiiiee st e e sesree s sreesebeesseesssvveessveeeens 191
Chapter 34: Defining functions with list arguments ... 192
Section 34.1: FUNCHON AN CAll ciuiiiiiicieiiieiiiesieeseesiteeseeseeesteesaesseesseesssessssssessssssssasssassssesssassssssssesssesssssssasssesssses 192
Chapter 35: Functional Programming in PYthON ...t 193
SY<leuile]alc o0 i WeTanl oY o U] aTex 1) n U UR 193
SeCtion 35.2: MAP FUNCHION tiiiiiiiiieieiieeiiiieessiieeesteesiuteessseeessseesssesssssesssssesssssasssssesssssessssssssnsesssnsesssssessessesssssassnssassnne 193
Section 35.3: REAUCE FUNCHION wiiiiiiiiiieiieentesiiessieestesisessseessessseesssessesssessssesssasssessssesssessssssssesssesssesssessssssssesssessnes 193
SeCtion 35.4: FIEI FUNCHION uiiiiiiiiiiciieeciee ettt eectee s eteese e e s e teeseate e s see e sbte e s beeesnseesensaesenteesessaesansessseeesastessnseeesnseesnnes 193
Chapter 36: PArtial FUNCLIONS ...ttt s s bbb b s b ses b enassenenans 194
SecCtion 36.1: RAISE the DOWEL uiiiiiiieiiieieiitessiieessiteessteessteessseeesssaesssbasssssessssseessssassnssesssseessssesssssessssasssssassnsessnseaes 194
(@gTe] o] (=T -7 A0 DY elo] o 1 (o) =3O 195
Section 37.1: DECOratOr fFUNCHON .iiiiiiivieiieisiesiiesieestesitesseessessseesaessesssessssesssesssessssesssessssssssesssesssesssesssesssesssessses 195
SeCtion 37.2: DECOIATON CIASS wiiiiieieeiieeirieeeiteererieeeeiteeeeteeeeseeesaseesesseessseesssassessesasssessastssessesssnseesensesssnsesssnsessessesssnes 196
Section 37.3: Decorator with arguments (decorator FACIOIU) iiviiiiiiiiieiiieeiiiee e e ssieessreesseesssaesssveessvens 197
Section 37.4: Making a decorator look like the decorated fUNCHON ivvvievreeercieeerreeereeciree e eecreeesreeerreeesaneees 198
Section 37.5: Using a decorator t0 tiMe A fUNCHION .iiiiciieiciircciecccitescctee et eete s esvie s e svee s svee s sbe e e s vee s eabae s nteaeas 199
Section 37.6: Create singleton class With O AECOIATON iiiiiiiiieeiiiieeiiieeeniieesiieessteessneesseeessseessseessssessssessnssassnsens 200
ChAPLEE 38: CIASSES ..ottt ettt bbb a st as bbb as bbbt b et b as b b et e b s et sanbesans 201
Section 38.1: INtrOodUCHION 1O CIASSES .uiiiviirvieiseerieeiiieiseesieesseeseesssessseeseesssesssesseesssesssessssesssesssessssesssasssassssesssassnesns 201
Section 38.2: Bound, unbound, and statiC METNOAS iccuiiieciieieieicciee ettt s re e s te e s bte s s vte e s bee e s veeeenne 202
Section 38.3: BASIC INNEIMANCE wiiviiicieeciieiieiiieeseesieesteestesteesteesaestesssaesseesstaassassssssssasssessssssssassseesntesssassseesssasssassns 204
Section 38.4: MONKEY POTCIING wiiviiriiiriieiiiiiieniieiseeseessiesseeseessteesseessesssessseesssesssesssessssesssassssesssasssaessssssasssassnsessn 206
Section 38.5: New-style VS. Old-STUIE CIASSES icviiiiivierrcrieeriieesiieeeseeesireeessreesssteeseseeseseesssssssssseesessesssnsessansesssnsessnnes 206
Section 38.6: Class methods: alternate INHIANZEIS ivviiireeeirierenieeenieeereeiieeeereeesrseeessresesssesorssesosssssossseesssasesssssess 207
Section 38.7: MUIIDIE INNEMTANCE .uviviiiieeriiiritesterieeseesreestesree st sseessessseesseesssesssaesseessasssessssesssessseesssessseesaesnses 209
SECHON 38.8: PrOPEITIES wivivveeieiieeieiteeieiieeseiteessiteesereeeestesssseesesseessssessassasssssessassessssesssssasssnsesssssessssesssssesssssesssssesssssnen 211
Section 38.9: Default values for iINSTANCE VAIADIES ..iivviiiviiiiiieireieniererreeerieeerireeertreesseeesssesesssesesssessrssesesssessnns 212
Section 38.10: Class aNd iNStANCE VANIADIES .uvivcueeeiiieeeiieeecieeeiteeeeireeesireeeesieeesseesssesessseesasesssssesesssesssssesssssasessassns 213
Section 38.17: ClASS COMPOSITION tivveererieeririeeisiieesirteeesiseesieeseseessseesesseessssesssssesssssssssssessssesssssasssssesssssesssssesssssesssssnssn 214
Section 38.12: Listing All CIASS MEMIDEIS evveieviveeireeeeriveeeireresiteeesiseeesssesersssesssssesssesesssssesssesesssssessssssssssssssssessssssssens 215
Section 38.13: SINGIETON CIASS uviiiiiiieeieeeeeeecie e ettt esceeeeebeeeseteeesbee e s seesesbeesessasassseesastaseasseesaseeeasseessseessnsesesnsesesnsens 216
Section 38.14: Descriptors and DOttEd LOOKUDS ..uiiiivieeiiiieeiirieeiiieesiieessnesssseessssesssssesssssesssssnssssssssssesssssessssesssnsaes 217

CRAPLIEE 39: MEEACIASSES ...t eeee et et ee et eteeseeeetesessesesseseasessesessssessesessessasessesensesessesessessasessesensesessesessens 218

SeCtion 39.1: BASIC METACIASSES .eeerrreriieeiiieiieeeeiittrrereee et eessseesssssbsrreeeeessssssessssssssssesseeesssessssssssssssseesesessssssssssnsnes 218

Section 39.2: SINgletons USING METACIASSES .uviiivieiirrireriireeriieeinrieeesieessiieeesiseesssseesssssssssessssasssssasssssasssssasssssasssssassns 219
Section 39.3: USING O METACIASS wivvieirveerirerieesreerieeseesisessseeseesssessessssesssesssassssesssesssessssssssasssessssesssassssssssessassssesssaes 219
Section 39.4: INtrodUCtion tO METACIASSES icuiiiiiieiieiieriieeeieeeeciteesieeeesteesesteeserteeseseeesaseessssasessseessnsesassessessesssnsesans 219
Section 39.5: Custom functionality With METACIASSES ciivvuierivieirriieeiirieenireeiieeessieeesireesssieessseeessssesssssessssassssseessssees 220
Section 39.6: The defaUlt METACIASS .iiiiiiviiiieiiierreireesee st sreesrresseeseesstessbaesrresstassseessaesssaesseesssesssassseesssasssaesns 221
Chapter 40: String FOrMAtEING ..ottt bbbt s as st se bt en st enanbans 223
Section 40.1: Basics of StriNg FOrMATIING civcieeieceeicieeiiieeecieeseieeestessiveesesteessveessteessseesseseessasesssnsessssessessesssssassns 223
Section 40.2: Alignment aNd PAAAING cveevveerreeriieeiierieeeeesieesseeseeseeesteeseesrsesssasssessssesssassssssssesssasssssssasssesssssssassns 224
Section 40.3: FOrmat literals (f-StrNG) wiicveeveerrierrreerirerieeneesiiesseeseessresseessessseesessssesssesssssssesssessssesssessessssesssessses 225
NYelaile]aRZIORZ M SileTe] dhiie]aa nTe L il T e N 225
Section 40.5: NAMEd DIACENOIAEIS ..iiiiiiiiiiiieiiieectesieeceeseesteeseeseessteessaesreesstaesseesstessseessassntesssassseessesssessneesssansss 226
Section 40.6: String formatting With AGTETIME uviiciiiiieriieiiiiriererreesrre e s sressre e sresbe e s e e sse s baessnesasens 227
Section 40.7: Formatting NUMENICAI VAIUES .uuviiiieeiiieeiiiiesiieesiieessitesssseesessaessseesessesssssesssssasssssesssssnssssesssassessnsens 227
Section 40.8: Nested fOrMOTING tiiiiieeivieriieisieeiieeieeseesrieeseesreessteeseeseesstessseessesssasssessnsesssesssessssesssessnsesssasssessnsesns 228
Section 40.9: Format using Getitem ANA GEIATEE uiiiiciiiecieecieeecieeecie s eeeeeecee e ssreeeesreeesbeeesreeessseesenseesssseesanseesasens 228
Section 40.10: Padding and truncating strings, COMDBINEA .iicuiiiiieiiiiieiiieeeiteseiieessieessieessreessseeesssesssseessseessnees 228
Section 40.11: Custom fOrmMatting fOI G CIASS ivveieviveeiriereeiererirererireeerreeersresessseeesseesssesesssssesssesesssesssssesesssasssssessnns 229
Chapter 41: StriNg METINOAS ... bbb s st nas 231
Section 41.1: Changing the capitalization Of A STHNG ceecceereiieicee e ecree e re e e re e e sre e s te e s reeesanes 231
Section 41.2: str.translate: Translating characters in G STHNG .uueeeeevereeeeenieeeeeeiriereesereeeesereeeeesssseeeesssssessessssens 232
Section 41.3: str.format and f-strings: Format values iNtO A STIHNG veviveeeiireeeirereeieeenireeersererireeessseeesseessesesssesens 232
Section 41.4: String MOdUIE'S USEFUI CONSTANTS .uviiicviiieiiiieieeccieeeeteeecie e eceeeectee e sbeeeesteessbeesenteesestessanseesseessnseessnns 234
Section 41.5: Stripping unwanted leading/trailing characters from A StriNg .oueeeeveeeevieeeeseeeese e eeesreenees 235
Section 41.6: REVEISING O STING vevveeerreeerireeesseeesiseerssseessiseessssesssesesssesessseessssassssssssssssssssssssssssssssasssssssssssesssssasssssassns 235
Section 41.7: Split a string based on a delimiter into a list Of STHNGS cicvieveeiircieeeceeece e 236
Section 41.8: Replace all occurrences of one substring with another SUBSTING .uuvivvccieeeeiccieeeeeenreeeeeereeee e 237
Section 41.9: Testing what a String iS COMPOSEA OF ceurereiieeiiieeiiiecrrereeree e erreeerrreesereeesreeessesessesesssesssssesssens 238
YeTenile]a e [0 (i TaTe I @] ok (o 1] T T U 240
Section 41.11: Join a list of StriNgS INTO ONE STINGT cvveeiivirieriveeiiieersieeesieeesieessrseessrseeseraessssaesssseesssseessssasssssassssaessnnne 240
Section 41.12: Counting number of times a substring dPPEArs iN A StANG ciovveecreeeereeerireeersrererreeerreeeeeeessseeesane 240
Section 41.13: Case insensitive StriNg COMPAIISONS tiivviierieeeerieererireserieesaereeseeesareesesessssseessssesssssesssssesssssssssssessesens 241
SeCHiON 41.14: JUSTITU SIIINGS tivvieeiivieeiiiieeriiieeeniteesiteessseesiseesssseesssseessssesssssesssssassssasssssssssssesssssasssssasssssasssssesssssassssness 242
Section 41.15: Test the starting and ending characters of A STHNG .iiiceeeiceeecceeeeiee e e e eeeeeerrre e eereeeereee s 242
Section 41.16: Conversion between str or bytes data and unicode ChAraCtersiiercvieereceescvieeseeeeeceeeenne 243
Chapter 42: Using 100ps Within FUNCLIONS ...t bbb 245
Section 42.1: Return statement inside [00P iN A fTUNCHION vivviiiveeiniveeiiieenierenieeenreressreeenreeessseesssssesssesesssasesssesonns 245
Chapter 43: IMpPorting MOAUIES ...ttt sas e s st es s bnans 246
Section 43.1: IMPOrting G MOAUIE .uiiiiiiiiiiieieerieiseesre st eseessresseesaesssesssaessessseessaesssesssassssesssasssassssesssesssassssesssasns 246
Section 43.2. The __all__ SPECIAI VAMADIE .uiiiiiiiieiiiieiieeciteeciteseieeseieesste e ssateessseessbeesesbasssaveesesbasssssassessassnssasans 247
Section 43.3: Import modules from an arbitrary filesystem I0CAtION .vvievveeeriierenireeirreeererenree e eereeerreeesseens 248
Section 43.4: Importing all NAMES fromM A MOAUIE ..ieiieeeeieeecieeeeeeeecteeeeeeeeeteeeestee s sreeeeseesenseesesseeseseeesssesesaseeesnne 248
Section 43.5: Programmatic IMPOIMING wiiieueeievieeiiieeiiieessiteessieesseeessseessssessessessssseessssasssssesssssesssssessssssssssasssssesssssens 249
Section 43.6: PEP8 rules fOr IMPOIS .iiiiiiiiiicieiieeieesiieeseeseesitesseessaessseessaessesssaesssessssssassssssssasssassssssssesssesssesssasns 249
Section 43.7: Importing specific NAMES from A MOAUIE cuiiieciiieeiieeciee e ecee e eee e eereeeeereeeeseesenbeesesseseenseesans 250
Section 43.8: IMPOorting SUDMOAUIES ..uuiiiciiiiiiieiiieccieessrieeseieessteeseteesssteessssessaseessssassssesssssessssessssesssssnssnssassnsens 250
Section 43.9: Re-iMPOrting 0 MOTUIE .iiuiiiiiicieiieentesiieeseesteeseeseessssesseessessessseesssssssesssesssssssassssssssesssessnsesssasssases 250
SY=teuu (o115 %[0 NN [s aT Yo o AR @ 1 101 al o1) o NN USRS 251
Chapter 44: Difference between Module adnd PACKAQEerveerereereeneeeeeesereessessessenns 252

SECHON 441 MOAUIES ieiiiiiiiiiiieetiieiiiceirietee e eeeeeesssesssbbataeesseeeesesssssssbbsaasssssassssssssssssbsssssssssesssssessssssbsssrseeesessssssssnnss 252

SECHON 44.2:. PACKOUES ciiiiiiiieiieiiettiieeeeeeesseeeessssasteteeeeeesssesssssssssesseesesssssesssssssssssssessssssssssssssssssssaesesssssssssssssssnneseees 252

Chapter 45: MAth MOAUIE ...t b bbb bbb bbb st nas 253
Section 45.1: Rounding: round, flOor, CEIl trUNC iiiiiiiiiiiiriiieiieeiniee st ssreessreessteessvaeesvaeessbnesssvnesssnsssssasssssassnnens 253
SECHON 45.2: TrHIJONOMEIIU uvterereeersreeessreressseesssseessseresssesesssesssssesessssessssassssssesssssssssesesssssssssesssssssssssassssssssssssessresssssans 254
Section 45.3: Pow for faster eXponentiGtiON .iiiciiiceececeeeeieeecieeseieeseieeseeeeeseeesebeesesbeessseessssessssssssassessasesssssessanne 255
Section 45.4: Infinity and NAN ("NOt G NUMIDEI) ciuiiiiiiiiiieeiiieesnieesnreeseteesseessnreesssieessseessseessssesssssessssasssssaessnne 255
SeCtioN 45.5: LOGAMTNMS wiiiiiiieiiiiiiiiiieeiitesseeseesrtesseeseestessteeseesstesssessaeesssasssessssesssasssessnsesssesssesssesssesssesssesssassnees 258
SECHON 45.6. CONSIANTS viiieiiiiiitieieitereiteesesteese e e setteesabeeeesseessbeesasbasssssaesastaesastesssseeessesesnsesssnsessensesssseesassassssenssnse 258
Section 45.7: IMAGINAIY NUMDEIS wiiivieiiiieiiiieeiiieeinieessieesiteesssessseeessieessssesssssesssssesssssessssansssssessssasssssasssssasssssasens 259
SECHON 45.8: COPUING SIANS wvvrerereersrreressreesssseeseseressseassaresssssessssssessssesssssssssssassssssesssssssssssssssasssssssssssssssssaessssasssssssssnes 259
Section 45.9: Complex numbers and the cmMath MOAUIE ..iceiiieciiiiiiieicie e st ssabe e sree s 259

Chapter 46: COmMPIeX MO ... bbb bbb bbb st nas 262
Section 46.1: Advanced cOMPIEX AMTAMETIC vivveivereriereiiierenireeerirererireesrreeereeessseesssesesssesesssesesssasesssssosssasosssesosssens 262
Section 46.2: Basic COMPIEX ArAMETIC wiivviiiveiireiriiiiieinieriieiseesisessieeseesssessseeseesssesssasssaesssesssassssesssassssesssesssasssases 263

Chapter 47: Collections MOAUIE ...t e s st enae b 264
Section 47.1: COlECTIONS.COUNTEL 1iiviiiiivieeieieeiiieeesteesirteeesttessteesesbaessbeesesbasssstassestasssstasssssessnsessensesssnsessessesssnsesssnsens 264
Section 47.2: COlleCtioNS.OrdEIrEADICT .ivvvveirrvrerrrereriererirererireeerreesrseeeesseressseserssesesssesersssssssssssssssesssssesssasesssasssssasonsens 265
Section 47.3: COlleCtioNS.AETAUIAICT ..vviiiiieeeiceieceeeeiteeeceeeereees e e e ee e esre e s e eeeeeseeesbeseebeessssaessnseessssessassesssenesnseessnns 266
Section 47.4: COlleCtioNS.NAMEAIUDIE .iiiiiiiiiiiieiiiiieiee et seieesste e sste e s sae s sssee e esbeesssbaesssbesssssassessesssssaessseesssseessnsenesn 267
Section 47.5: COIECHIONS.AEGQUE .uiiiiiiciieiiiiieiitesie et eseesteesteesaesstessseeste e baesseessbasssaesstesssasseesssessseesseesssesssessnsesnses 268
Section 47.6: COlleCtioNS.CRAINMUD cvieieiieeeciereereeeiieeeeeeeserteeesreesesseeseseesesteseesseesasesesssesesaseesssesssssesssssesssssessssseesnns 269

Chapter 48: Operator MOAUIE ... st sss bbbt es s st sas b sas s e 271
SECHON 48.1: HEMUETIEL tiiiiiiiieeiiitieites st eerte s srteeseteessteessstee s baeeesbees s beesesbaesssbaesassesssstessassassnsessensesssnsessssseessseesnns 271
Section 48.2: Operators as alternative t0 an iNfiX OPEIATOr .iiiviiiiiererieeerirererreeerreeerreeerreeesrreeessseressseserssesesseees 271
SYeTenile]a T s IRl M =11 aT e [l | = SN 271

Chapter 49: JSON MOAUIE ...ttt es et b s s s bbb s bbb st resasbenssaesenans 273
Section 49.1: Storing At iN G fIlE wiiviiiiiiiiiiieirree ettt esee s srree s s baessteesssbeesesteessstassbeesssasssnbaesantasssseesnnee 273
Section 49.2: Retrieving data fromM G fil€ vuiiiiiveicrererieeirieeerieeerreeerteeessreeesiseeesseeessesesssesesssessrssesssesesssssesssesesresens 273
Section 49.3: FOrmatting JSON OUTPUL cuuieieiieiiiieeiicieesieeitreesessteeessssteeesseseeaessssssenessssssesessesssnesssnnsenessssssenessenns 273
Section 49.4: "load’ vs "loads’, "AUMP’ VS "AUIMIDS’ icieiiiveeeriireeiieeesieessiieesssieesssseessssssssasssssasssssesssssesssssesssssasssssassans 274
Section 49.5: Calling “json.tool” from the command line to pretty-print JSSON OUtPUL vivvvveeecveeereeecireeenireeennes 275
Section 49.6: JSSON encoding CUSTOM ODJECES ..uviiiiviiieeiieiiiieeeiieeeiieeseieeseieeseteeseseeeesseesssseesesesasnsessessessssessnssnssans 275
Section 49.7: Creating JSON from PULNON ICT .uiiiiiieiiieeiiieeinieesiieessieessieesseeesssneesssesssssnessssesssssnsssssnssssessssnnesn 276
Section 49.8: Creating PUthon dict from JSON .ueeeceererirererreeerreeerreeeeeeeessseessseeesssesesssesesssesesssasesssesessesssssessnsens 276

Chapter 50: SOIIt@3 MOAUIE ...ttt s e bbbt ae bt as bt sas b bens 277
Section 50.1: Sglite3 - Not require SEpArate SEIVEr PDIOCESS wiiiviveievieererreeririeesereeeeieeesasessenessssseessssesssssesssssessesenss 277
Section 50.2: Getting the values from the database and Error handling ..eeeeeecveeceeecieecieeneesieecieeseescseeseesenen 277

Chapter 51: The 0S MOAUIE ...ttt e s s bbb bbb bbbt s st banans 279
Section 51.1: makedirs - recursive direCtOry CrEATION iivievicceeeecreeesiereeireeesiseeersreeesseeessesesssessseesssesesssesesssasesssesens 279
NYelaile]a N WA G=lo i (=l e e | =Te1 o) U RS 280
Section 51.3: Get CUITENT AIFECTONY uviriveeirireerirreersieeessieeessieessseesssseessssessssssesssaessssasesssasssssasssssasssssessssssssssasesssasssssans 280
Section 51.4: Determine the name of the 0PErating SYUSIEM ..ivviiiiiiivieiieiniienienseeseessresseeseesssessseeseesssesssaesnenss 280
Section 51.5: REMOVE O QIFECTONY wiiivieiiieeiiiieeiiiteesiieessteesseeeesseesesseeseseesessesssssesssssssssseessssesssssessensessessessessesssssessns 280
Section 51.6: FOIIoOW @ SUMINK (POSIX) uvteeveerreriieeeeesieeasreeseesssessseesssssssassssssssessssssssssssssssssssssssssssssssssssssessssssssesssasas 280
Section 51.7: Change permisSioNs ON G fll€ iiiiviiieerverrieinieeriierseesieesitesseeseesssesseesseesssesssaesssesssasssaesssesssasssassssesns 280

Chapter 52: The 10CAIE MOAUIE ...ttt ettt es s sas e st nes 281
Section 52.1: Currency Formatting US Dollars Using the 10Cale MOAUIE ..uiivcureereiiiriereeiiieeeenrreeeesnnrereessssvenees 281

Chapter 53: Iterto0lS MOAUIE ...ttt bbb bbb bbbt 282

Section 53.1: Combinations Method in [HErTOOIS MOAUIE ...eeeeeeveeieieiiiiiiiiiiiiireetteeeeeeesssssssserreeeseseessssssssssssreessesesess 282

Section 53.2: HEIrTOOIS.AIOPWHNIIE ittt e et e e e e e e s s e e s s sassaseeeeeeseessssesssassssbsseeeeesssssssssnnes 282

Section 53.3: Zipping two iterators until they are both eXhAUStEdueeeeeecieiiieeeee e ree e 283
Section 53.4: Take O SIICE Of 0 GENEIALON wiiiiiieiirereriieeeireeerreeeireesieeesereeesisesesssesessasssssesessssessssessssssesssesesssesessresens 283
Section 53.5: Grouping items from an iterable object USINg A fTUNCHION wuviiiiiveriiiiiiereeiirerecceireeeeenireeeeennreeeeon 284
Section 53.6: IHErTOOISIAKEWNIIE iiiiiiiiiieiiiiieiitee sttt ssree s srre e ssteessbaesabtaessbaaessaassssanesssasesssesssssaessnsassnnens 285
Section 53.7: itertoolS.0EMMUIATIONS iiviiivierierieeriierieeseessieeseessessseesseesssesssesseesssessseesssesssesssessssesssesssessssesssessssessses 285
SeCtion 53.8: IHEITOOIS.FEDEAL tiiiiviiiiiieeririieiiiereiieeereeeereeeerteess e e seteeesbeseasseeeenbessasseesasbaesastassastessastessnsesesseesanseesnnses 286
Section 53.9: Get an accumulated sum of NuMbers in AN HErabIE ...iiiiiicieceeicieciecceece e s e 286
Section 53.10: Cycle through elements iN AN FEIATON iiiiviccieeeiieeeriee e erreeeeeeeeeeeesreeesseeesbeeessseeessseessssessssseens 286
NYelaile]aNe SN I REIT=Ta (eYo] IS oTe Yo [V U U 286
Section 53.12: IHErTOOIS.COUNT uiiiciiecieiciteriteeseeetesiteesteestessseesseesseesseesssessaesseesssesssassseesssesssassssessassseesnsesssessseessennses 287
Section 53.13: Chaining multiple iterators tOGETNET it ece e eree e e e e e re e sebeeseseesenseesans 288
Chapter 54: ASYUNCIO MOAUIE ...ttt s sttt sas st s st ae st as b e s e bt enes 289
Section 54.1: Coroutine and DelegatioN SUNTAX .iiicveeecieeeriieereiieeresieessieessriesesssesssseessssesssssesssssasssssesssssessssssssssssssane 289
Section 54.2: ASUNCNIONOUS EXECUTOIS uveiiriveeiiereereresireeerireresssesersseserssesessssesssssesssasesssssesssasesssssssssasesssassnssassssssesns 290
SeCtion 54.3: USING UVLOOD tieccteeerreiriieeiieiitteeseeereressessseseesesssteessesssseessessssnsesassssssessesssssssssssssesssssssenessesssensesessssesessns 291
Section 54.4: Synchronization PrimitivVe: EVENT .iiiiieiiiieiiieeiiieessiecsstesssieesesieesesieessseessssesssssessssesssssesssnsesssnsasssnees 291
Section 54.5: A SIMPIE WEDSOCKET iuiiiiiiiiiiiiiriiiceesiessitesre e st s st ssreeseestessba e s testessbaesstesssasssaesssasssessssessesssaens 292
Section 54.6. Common Misconception ADOUL ASUNCIO wivcvieeeeeeereiereieeeeireesesreeseteeesssessseesessesssssesssssessssessssesssnees 292
Chapter 55: RANAOM MOAUIE ...t ettt bttt bt aens 294
Section 55.1: Creating a random USEI DASSWOIA icuueeecveeeeieeeiireeesieessiseesssieessssesssseesssasssssesssssasssssessessesssssasssssassnne 294
Section 55.2: Create cryptographically secure random NUMDEIS .uvvievveeerveeenereeirerensreeessseeersseeerssesesssesssssesssens 294
Section 55.3: Random and sequences: shuffle, choice and SAMPIE ..ueeeeciiiiiieecieeecier e vee e 295
Section 55.4: Creating random integers and floats: randint, randrange, random, and uniformccceeeveeeeennee 296
Section 55.5: Reproducible random numbers: Seed aNd StALE .ivvvvevieeerreeeiieeerrerersiererreeerreeesreesrsseesssesesssesenane 297
NYelaile]alctoNoRl atolale o] aali=1lale AU NIl 1]l] o SR 298
Chapter 56: FUNCLOOIS MOAUIE ...ttt sas s sas st ssas st enasbens 299
SECHON 561 DAMTIAL 1etriiiieeiiiieeiniee e seite et esree s ssteessrteessteesssteessaaessbasssssaessssessnsteesssseesnstessssesssssesssnsessssseesnsassnsees 299
SECtION 56.2: CMNP_ 1O KEU tirviiiiiierieriieiieestesiteeseesiteesteeseessessseesssesssesssessssssssesssessssesssassssssssesssessssssssessseessesssesssnss 299
SECHON 56.3: IrU_CACNE ciiiiieieecciteectee ettt sete e e sttt s s tte s e sbee s ebe e seabeesesteesestee s bes e e sesesnbesaanbessansaesastasaastessastessaseesanseessnse 299
SeCtioN 56.4: tOLAl OFAEIING tvveiivieririieeriieeririeeesireesiteessraeesssreesssessssseessssesssssesssssssssseasessasssssasssssesssssesssssessssanssnssassnn 300
SECHION 56.5: FEAUCE wiivuiiiiiiiiiiiieiiieestesiiesseeseesstessteeseesssesssessasesssesssessssesssesssessssesssesssessssssssasssesssessseessesssesssessssesne 301
Chapter 57: The diS MOAUIE ...ttt bbb bbb et es e st naebans 302
Section 57.1: What is PUthON DUTECOAE? ..uiiiiiiiiicitieiciie sttt scite s eette s stte s e e e s tee s sabeesestesssbaessaveesenbeessnseesensassnnens 302
Section 57.2: Constants in the diS MOAUIE ..uiiciiiiieiiiiieicee et e st sse et esrte s re s seestessba e s e e stessbeesaeesnsasssaesseesnses 302
Section 57.3: DisasSemMBliNG MOAUIES .iiiuiiiviiiiiiiiieriieirenierseesreessieeseesssessseeseesssessseesssesssesssessssesssesssessssesssesssssssses 302
Chapter 58: The bASE64 MOAUIE ...ttt bbb bbb b b s b naes 304
Section 58.1: Encoding and DecodiNg BASEBO4uiiiiciieriieieiieessiteeseieessteeseteessseeessseesssbesssssesssnsasssnsasssssnssnssessnnens 305
Section 58.2: Encoding and DeCOAING BASES2 ..viiivrererirererireeerireeerieeeesveeessesesssssesssesesssasesssssosssesessssssssssssssasesssasesans 306
Section 58.3: Encoding and DecOdiNg BASETE ...uuivvierreirireriieeneesisesnieeseesssesseesssessssssessssesssasssssssssssssssassssasssassnes 306
Section 58.4: Encoding and DeCOAING ASCIIBE ..iiiiiieiivireiiieeeiieeesteesirtesesieessteessteessstesssssessssesssssesssnsesssssessssassnns 307
Section 58.5: Encoding and DeCOAING BASEBS ...cccvveeerrererirereiirereniieeerireeersseeerseessseseessesesssssssssesesssssosssesessssssssssesans 308
Chapter 59: QUEUE MOAUIE ...ttt e bbb as bbb as bbb sastee 309
Section 59.1: SIMPIE EXAMIPIE ..iiivviriririeirirerieertesitesseesieessseeseesrsessseeseesssessseesssesssessseesssessseesseesssessseesssesssesssessssessses 309
Chapter 60: DEQUE MOAUIE ...ttt sas s sas st s s b b s e bbb e bt es e b s bens 310
Section 60.1: BASIC AEQUE USING civveeerrrueerieeeiiiueeeireeiesieesesseesssieessssesssssssssssssssssssssesssssesssssesssssesssssesssssssssssssssssssssasssn 310
Section 60.2: Available MEthOdS IN AEGUE ..uuviivviiiirereriererieeerreeereeesrtreessreeessseeesssesesssesesssesorssesessssesssssesssesesssasesans 310
Section 60.3: liMit AEQUE SIZE .ueeiecieieeireeeiiieeeeieescieseceeeeeteessbeeesstteessbeeasssaeessseeaastassasesesastesassasesaseessssesassesssssesssnsesans 311

Section 60.4: Breadth FIrSt SEAMCA ueiiiiiiiiiiiiiiccciiirteee e eee s seeccssbbbreeeeeee et e s ssssssssssssssssesseessssssssssssssssssesessssssssssnnes 311

Chapter 61: WEDDroWSEEr MOAUIE ... ettt e e et eee e eseatees e eraaseseessaesessesteasssssasaasesasaseeseeaen 312

Section 61.1: Opening a URL With DEfQUIT BIOWSEL ..uiiiciiierciieecieesiieeecteeesiteesesteesesseesssteesessesssssessesesssssesssnsesssssesssn 312
Section 61.2: Opening a URL with Different BrOWSEIS iivviiiiivieeiiiiieiiieeiiteennieeesieesssieessseesssiesssssesssssessssasssssssssssans 313
ChAPLEr B2: TKINTEI ...ttt bbb bbb bbb bbb bbb s bt 314
Section 62.1: GEOMELIY MONGUGELS vveierrerersreerssreerssseessseesssesessseeessssessssessssssessssassssssesssssssssssssssssssssasssssassssssesssssssssens 314
NYelaile]aNe YA NWaslallaale]lu<la) (=TaAY o] ol lelo Lile]a NN 315
Chapter 63: pyautoguUi MOAUIE ...t sas s ss s s e s s nases 317
SeCtion 63.1: MOUSE FUNCLIONS iiviiiiieirieeesiressieessiieesssseessssessssesssssessssesssssasssssasssssesssssssssseassssasssssasssssasssssnsssssassnsans 317
Section 63.2: KeYbOArd FUNCHIONS iiiveiiieeivieineiseeseesseeseesssessseeseesssesssassseesssesssesssesssesssessssssssasssessssesssasssesssessses 317
Section 63.3: Screenshot ANd IMAge RECOGNITION cuveriiieeriieeeiieeeieeseieeeeiteeseteeseeeessseesssseessssessessesssssesssssasssssessns 317
Chapter 64: INdexing ANA SHCING ..ot sttt sss st sss s st ssssssessses 318
SeCtioN 64.1: BOSIC SHTING cuveerreeeeerreeriieeseesieeesseeesesiseesesssesssesssessssssssesssssssssssssssssssssesssessssesssssssessssssssassssesssesssessses 318
Section 64.2: ReVEISING AN ODJECT .iiiviiiiviiriiiiieiriteiieeseesitesseeseesssessseessesssessseesssesssesssaessssssessssssssssssessssesssesssessses 319
Section 64.3: SIICE ASSIGNMIENT uiiiiieeiirireieieeeireeesteeseteeeseeesrreesesbeessteesesessestasssssessssessssssessnseesessesssnsessessesssssesssnsens 319
Section 64.4: Making a Shallow COPY OFf GN GITAY ccuiiiiiicieiiieeieecieectesieesteeseeste s e e e eeeste s saestesbaessaesnsesnsaesssesnsens 319
Section 64.5: Indexing custom classes: __getitem_ ., _setitem__ and __delitem_ _ .ceevveveeceeeeceeecieeenee, 320
Section 64.6: BASIC INAEXING tiivvieeiiiieeriiieeiiiieeiiieessteesirteeesseesssseesessesssssessessessassesssssessssessssssessnsesssssesssssessessesssssesssssans 321
Chapter 65: Plotting with MAtplOtliD ...t 322
Section 65.1: Plots with Common X-axis but different Y-axis : USING TWINX() veevveeerrveeerreeeereeesieeenseressseeonsveeensens 322
Section 65.2: Plots with common Y-axis and different X-axis using tWinU() .eeeecveeeceeeeireeerseeeereessseeseeeeseseeesans 323
Section 65.3: A Simple Plot in MATPIOHD tvveeiivieeiiieeiiieieiteesieeserieeesireeseieessteessteessseeesssaesssesssssassssesssssassssesssnsees 325
Section 65.4. Adding more features to a simple plot : axis labels, title, axis ticks, grid, and legendc.eeeuee 326
Section 65.5: Making multiple plots in the same figure by superimposition similar to MATLABcccceeveeneeee. 327
Section 65.6: Making multiple Plots in the same figure using plot superimposition with separate plot
[t a 2] 0 T [T K] USRS 328
Chapter 66: Graph=tOOL ... s st as bbb e bbb e bt s e bt en et 330
SECHON B6.1: PUDOTPIUS wiiiiiieiiiieiieiieeieiitessiieeseiteessteessaesssseessssesssssessassesssssessessesssssesssssesssssassssssssnsesssssasssnsesssssessssesan 330
SECtION 66.2: PUGIAPNVIZ wivcteiieeiiiiiiiiesiesieeseesitessseeseesssessseessssssesssessssesssessssesssesssassssesssesssessssesssesssesssesssesssssssessses 330
ChApter 67: GENEIATOIS ...ttt b s s as et as e bbb et b s et esas b e b s asbenassnsnans 332
SY=Tenile]a oY/ R In) df Yo U] T 332
Section 67.2: INTINITE SEQUENTCES .iiiviiiiiiiiiiireiiieessiteessieessteessrteessrteesssaessbesssssasssaseessssesssssesssssesssssesssssessssensssssassnsens 334
Section 67.3: Sending ODJECTS tO O GENEITLON .uiviivirereriiererreeeireeereresireeerreressreeerseeessessssseesssssesssesesssssesssesesssesonsns 335
Section 67.4: Yielding all values from another iHErabIE ...iiiciiiicieiccieecce et sre e e re e s neee s 336
SECHON B7.5: ILEIATION tivivtreriiieersireesiireersiteessiseesseesssaesssseessssessssesssssassssesssssessssesssssesssssesssssessssssssssesssnsesssssasssssasssnses 336
Section 67.6: The NEXE() TUNCHION wiiviiiviiieeririiitestesireeseestessesseesssessseessaessessseesssesssesssessssesssessssssnsesssessssesssesssnssnses 336
SECHON 67.7: COOULINES ureircrieeeitieeeiieeseiteeeerteeseteeeateesaseseeaseessseesssessessssssssessassesassesssnsesssssesssssessssesssssesssssessaeessnnes 337
Section 67.8: Refactoring list-DUildiNg COAE .uuiiiiiiiiiiiiiiieiniieiiieesiieeesieessieessteessteesereeesssnesssseessssasssseessssasssseeen 337
Section 67.9: Yield with recursion: recursively listing all files in O dIrECIOrY .uuvevcveeerieeerireeerirererreeerreeeceeesereeennne 338
Section 67.10: GENEIATOr EXPIESSIONS tiiiveercreererrerssireereseesesseesasessarssssmssessaesssssesssssessessesssssesssssesssssessassessssessessesssnn 339
Section 67.11: Using a generator to find FIboNACCE NUMDEIS ciiivuieiiviiiiiiieeiiieeiiieesnneesieeessieessseessssesssssnssssvesssnns 339
SECHION 67.12: SEAICING tivvitiittisieritiiitesee st eseesiee st esaessesssaesseessesssaesssssssssssessssesssesssassssssssessssesssesssesssesssesseesses 339
Section 67.13: Iterating over generators iN PAFAHE] .iiiiiiecieiiceeecee e esee e see s e sreesesbee s ete e sesbeesesteeseseaesane 340
ChAPLEr 68: REAUCE ...ttt bttt b bbbt bbbt b et b ae bbb b et s et b s et nastne 341
SECHON B8.1: OVENVIEW tivvveeiiieeenireesireessiteesineessieesssseesssseessssesesssssssssessssasssssesssssesssssssssssssssssessssesssssasssssasssssasssssassssens 341
SeCtion 68.2: USING FEAUCE uiiiviiiiieiieiieiseesiiesseeseesssesssesssesssesssesssesssesssasssesssesssessssesssesssessssesssassseesssesssessessssassses 341
Section 68.3: CUMUIATIVE DIOTUCT iuiiiiccieiieieeiiieeeiteseiteeseiteeseteesssteesesessessessssesssssesssssesssssesssseessssesssnsessessesssssesssssees 342
Section 68.4: Non short-circuit VAriant Of ANU/GIL aeeeiceeeiieeiieececcieeee ettt eve s ere st esrs s essesseeseesbeensesseenes 342
Chapter 69: MAP FUNCLION ...ttt as bbb as bt b as e b as e as bt es et sasaes 343

Section 69.1: Basic use of map. itertools.imap and future_DUIINS.MAD covveveeeeviireeeeeiiieeeeieiieeeesssssreessssseeeessnns 343

Section 69.2: Mapping each VAIUE IN AN HEEIADIE ettt e e e e e e s s s s es s ras e e e e eeseesssenns 343

Section 69.3: Mapping values of different iErables ... ssree s srbeesssaeessbeesans 344
Section 69.4: Transposing with Map: Using "None" as function argument (python 2.X only) ..ecceeeeeveeerverennee. 346
Section 69.5: Series and PArallel MODDING cveiecrieeeiiereiieeeiteeeieesesieesssieeseeesessesesasessessesssssesssssessessesssssessssessassesssnne 346
Chapter 70: EXPONENEIALION ...ttt st s st essstesss st sss e besastesesasbesassesesastesas 349
Section 70.1: Exponentiation using builtins: ** aNd POW() wueieceeriveerinieeiniieesinieesnneesneeesneessseesssseessssesssssesssasssssens 349
Section 70.2: Square root: math.sgrt() anNd CMATN.SAM cvueveeceeerree et eeree e scree e e esreeerrreesreeeesraeesanesesnrens 349
Section 70.3: Modular exponentiation: pow() With 3 ArQUMENTS .cveeeeieiiieeeeiniieeeceiiieeeeseireereesiseeseesesssessessssenes 350
Section 70.4: ComMputing |arge INTEGEE FOOTS ivviiivreeirrieeenieesiiieeeniieessseessiseessiseessaessssesesssesssssasssssssssssessssasssssasssnn 350
Section 70.5: Exponentiation using the math module: MAth.DOW() cueeeeceeeeiereeiee e eecree et e e e e reeenne 351
Section 70.6: Exponential function: math.exp() and CMAth.eXP() wueeecvieercriereiieriieererieeeerreessieesseesssveesssreesesseesenne 352
Section 70.7: Exponential function minus 1: MAth.eXPmMT() wiiceeceeneeireeneeseesrieeceeseesseeeseeseessseeseessesssasssessnsesnn 352
Section 70.8: Magic methods and exponentiation: builtin, math and CMAth ..eeeeeeeceeneeeeeeceenee e e 353
Section 70.9: Roots: nth-root with fractional EXPONENTS .iicciiiiicieiiiiiiiciee et eree s ebeesebee s sbeessateeseseee s 354
(@ gTo] o €=T A R ST=To | ool 11 o | O TP EUR RPN 355
Section 71.1: Sedrching fOr AN ElEMENT ..uiiiiiicieiieitecce et e se e te s sbe e st e ste s e e saeesbeesbaessseebassseesssasssaean 355
Section 71.2: Searching in custom classes: —_containS_— aNd — HEI _ wiivcevecceeeeieeeceeeecreeeecree e e e ereeeenree e 355
Section 71.3: Getting the index for strings: str.index(), str.rindex() and str.find(), str.rfind() .eeccveveveerivieensceeennnns 356
Section 71.4: Getting the index list and tuples: listindex(), tURIEINAEX() rivivveeerrreeerrerenireeerireresireresireeerssesessseesnnns 357
Section 71.5: Searching key(s) for a VAIUE IN AICt icviiiecceeicieeicieeeciesecieeeesieeseeeeseeeeesteeeseseeeesbeeeeseesensesssnsessesseennns 357
Section 71.6: Getting the index for sorted sequences: bisect.bisect [eft() .vvvvviiiriieiiiiennien e e 358
Section 71.7: Searching NEStEA SEQUENCES .uivvvveeirrveeerrreiireeeeireresiseeerssesersseesrsssssssssesssssesssesesssasessseserssssersssssssssssssene 358
Chapter 72: Sorting, Minimum and MAXIMUM ...ttt s st s s sesases 360
Section 72.1: Make custom ClASSES OFAEIADIE ..iiiiiiiiciieciie ettt et et e e te e s eee e e ebee e sebee e s beeesbeeesabeeesnseesensaesnnses 360
Section 72.2: Special CASE: AICHIONANIES .iiiiviveiiiieeirieeiniieesirteeesiteesieesesieessrseessssaessssesssssessssesssssasssssesssssasssssnsssssassssans 362
Section 72.3: UsiNg the KEU OrQUMENT iiiiiiiiiiiiiesiieiieestesiiesseesssesssessseesssesssessssesssssssessssesssesssesssesssessssssssesssnssnses 363
Section 72.4: Default Argument 10 MOX, MIN uieiccieeeeiieeeieeeereeeeieeseeeeeseeesereesssseeeessessesseesessessssssssaseessssesssnsesssnsees 363
Section 72.5: Getting O SOrEd SEQUENCE wiivvieiiivieeiiieeeieeesieeesiieesssieesssseessrsesssssesssssessssssssssasssssasssssesssssesssssasssssassne 364
Section 72.6: Extracting N largest or N smallest items from an iterdbleviviceeeeceeerieeecree e e 364
Section 72.7: Getting the minimum or Maximum Of SEVEIAl VAIUES ...eccccieriiieeeiieeecieeeieesesieeseveeseseeseseeeseseeesane 365
Section 72.8: Minimum and Maximum Of O SEQUENCE .uiivcuueiiieeeriieeenieeenieessisnessseesssseesssesssasssssasssssesssssasssssessnnne 365
ChApter 73: COUNTING ..ottt ettt sas bbb e bbbt bbb et b ae e b et b s et bas s b s aee 366
Section 73.1: Counting all occurrence of all items in an iterable: collectionsS.COUNLEN ..uiivvvvercreeercrererreeernreeennees 366
Section 73.2: Getting the most common value(-s): collections.Counter.most_ commMOoNn() ..ccceeeereervereeereneeeeennns 366
Section 73.3: Counting the occurrences of one item in a sequence: list.count() and tuple.count()cccceeeeeenne 366
Section 73.4: Counting the occurrences of a substring in a string: Str.COUNT() wivvevercieeerreeeecieeeeeeecreeeereeeereeens 367
Section 73.5: Counting OCCUrrenCes iN NUMPU AITAY wevveivveeerserruneessssssnsessssssesessssssasesssssssssssssssssssssssssasessssssasessssses 367
Chapter 74: The Print FUNCLION ...ttt bbbt b st s st b st s sassesassens 368
SECHON 740 PrINT DASICS veerevieeeriueerirreeesiseesiseessiseessaesssesssssesssssesssssasssssesssssssssssssssssessssasesssasssssasssssasssssassssansssssassssans 368
SECHON 74.2: Print DAFAMETIEIS ..viircieeeecrererireerereersiteesereesaeeesssessssseessssesssssesssssessssssesssssssssesssssesssssessssasssssassasasssnens 369
Chapter 75: Regular EXPressSions (REGEX)ccceeinesreinseessinsissssessssssssssssssessssssssssssssssssesssssssesseses 371
Section 75.1: Matching the beginNing Of O StHNG cicvieiiivieiiieeiieeeesee e ree s sie e sste e s ste s ssveeessbeessbeesebeesessaesessaesnns 371
SECHION 75.2: SEAICIING tivtiieieiiieiieesiteeieestesiteeseeseesteesseeseestasssassssesssasssessssesssasssessnsesssesssessssesssesssesssesssessnsesssassse 372
Section 75.3: PreCOMPIlEd DATIEINS .viivviervieiieiiieeriierieesitesiiesseesieessseeseesssesssessseesssesssasssassssesssassessssesssassssesssasssaesns 372
SECHON 75.4: FIATS titvtteiiieeiiieeeniteeiiieeseiteessteessteesssteessseesssesssssesssssesssssasssssessnssessnsesssssessssesssssesssssessssessssenssnseesssens 373
SECtiON 75.5: REPIGCING wiiieeerrrriiieeeeeriieiieesieesieeseessessseesseesssesssesssssssssssessssssssesssssssssssssssssssssesssessssssssesssessssssssasssass 374
NYelaile]alssXeul silale WA NN [eTaE@1VZ=Tx o] o) ol ale N4 lo] £l aT=T 374
Section 75.7: Checking for allowed CRAIACIEIS ittt et srre e ssee s s srae s sbee s s bae s sbaesesvaessabassnnsans 375
Section 75.8: Splitting a string USING requUIAr EXPIESSIONS vuvivrreeerreeerrereersveeesreressseresssesesssesersseesssssesssssesssasssssesensses 375

SECHION 75.9: GrOUDING civiieieeeetreeiiieeeeettieeeesssasrtreeeeeesssessassssssseseeessesssssssssssssstssessssssssesssssssssrsesesssssssssssssssssnnesessessns 375

Section 75.10: EScaping SPECial CRAINOCTEIS eveeeiiiieeiiee ettt et e e e r e e e e e s eesssesssssbaseeeeeeesesssssssnssssnnns 376

Section 75.11: Match an expression only in SPeCifiC IOCATIONS ..vvvieiierierreiiiiveereerireeeesesreereesiseeseesesssessessssseseessnnnes 377
Section 75.12: Iterating over matches USING TEFINAILE ..uviiiiiverieeerrererreeerreeerreeesreesrrreeeerreesereeessesessasesssesenanes 378
Chapter 76: COPUING AALQ ...ttt bbb bbbt bbb bbb bbbt esae bt en s sanes 379
NYelaile]a AN RI@eT o1V e e [lorile]aTe] U 379
Section 76.2: Performing A SNAIOW CODUY riiiivieeiirieeiniieeriiieeesseesisessseesssseessssesssssesssssessssesssssasssssasssssasssssnssssassssens 379
Section 76.3: Performing O AEEP COPU wiirvrerrreirreerrrersieesieesiessieesseesssessessssesssessessssssssesssessssesssasssssssesssessnssssesssessses 379
Section 76.4: Performing a ShAllow COPY OF G LISt wuiiiiiiiiiiiiieiieiciiieicieeseieeseieessieessree e sveeesbeessveessbesssnseesensaesnnens 379
SECHON 76.5: COPY O SET uriiriieiiiieisieeesieersiieesssteeesiseesssaesssisessssssssssasssssasssssesssssesssssessssasssssssssssesssssasssssesssssasssssnsssnn 379
Chapter 77: Context Managers (“with” StAatement) ... 381
Section 77.1: Introduction to context managers and the with StatemMENtvevceeeecieecceeeccee e 381
Section 77.2: Writing your OwWn CONTEXE MONGGEL wuiiiivieererreeriieeeieeeeirtesesreesesseesesseessssesssssessssesssssesssssesssssesssssesssnn 381
Section 77.3: Writing your own contextmanager using generator SUNTAX .uueiicceeereeecrseeeeesesereeesssseesessesseesesssnnes 382
Section 77.4: Multiple CONTEXE MUANGAGELS wiivviiriieirieerirerseesitessieesieesreessreesieesssesssessessssesssessessssesssassessssesssessessssassses 383
NYelaile]a WA o]allale It Xe o e]=) SRR 383
SeCtion 77.6: MANAJE RESOUITES civvveererreersireesireessiaeessseesseesssseesssseessssesssssessssssssasesssasssssessssssssssssssssssssssasesssasssssans 384
Chapter 78: The __name__ specCial VArIABIE ... sses b 385
SYeTeuile]a A< H HENN alolnat= TN o a o |1 NN 385
SecCtion 78.2: USE iN TOGUING tieveerrvrrerrrieesieeesiiueesireeeeseesesseesessesssssesssssssssssessssssssssesssssessssesssssesssssesssssesssssssssssssssensn 385
Section 78.3: function class or_ MOAUIE. NOME __ wiivvceeeiveeeeiereeireeenrererireeesreeesseesssseesssssesssesesssssesssesesssssonsns 385
Chapter 79: Checking Path Existence adnd PermiSSIONSeieererieneeeeereneessesesesesssssesens 387
Section 79.1: Perform checks USING OS.0CCESS wiiiiiiieieiiriiieeeetieeeirieeeteeesseesssseesssesessesesaseessssesesssesssssessesesssssesssssens 387
Chapter 80: Creating PYthon PACKAQGES ...t tssssss s s sessssassessssssessssens 388
Section 80.1: INTrOTUCTION viiivieierireeiiieesieeesieeeesieesesteesesseesstesssssessssesssssessssessessesssssessssessnsesssssessssesssnsessssessnssassssens 388
Section 80.2: UPlOAING 10 PUPI .uiiiiiiiiieiieicieeste st eseeseessieesseeseesstessseesssesssesssessssasssesssessssasssessssesssasssesssesssasssaesns 388
Section 80.3: Making PACKAJE EXECUTADIE .iiicuiiiiiieieiieeeiie et eeite e e seee e e rte e s evee e s sbee e sbeesebeeesabeessnseeeessaesanseesnens 390
Chapter 81: Usage of "pip” module: PYPl PAckage MANAQET ... esesesssnenns 392
Section 81.1: Example Use Of COMMIANGAS ciivviiiiiiieriieeiirieeeniieesnieessteesstesssreessssaesssseesssseesssessssasssssssssssessssesssssasssnne 392
Section 81.2: HaNdlING IMPOItEIrror EXCEPRTION .reiivceeerveeeiereeiteeesireeessreresiseeersesesesesssssesssesesssesesssesesssesessssessssesssens 392
YeTenilo]al s J IS o Tl 31Tt 11 S 393
Chapter 82: pip: PYPI PACKAGE MANGAQEN ...ttt ssssssssssssssssssssssssssssssssssssssesssssssessess 394
Section 82.1: INSTAIl PACKAGES iiiiiiiiiiiiiiieiiiieiiieessieesiieessteessseessssesessseesssessssesssssassssassssssessssasssssasssssesssssasssssnssnnne 394
Section 82.2: To list all packages iNStalled USING DI ticeeeveerrreerieerreesreeseesssesseesseesssesssesssessssssassssssssassssssssssssasns 394
Section 82.3: UpGrade PACKOGES .ciiiicieieeiiieieiieeseieeeeteeseseeeesseessseesesseesessesssssessasesssssesssasesssssesssssesssnsesssssessnssessnsens 394
Section 82.4: UNINSTAIl PACKAGES ciiiieiiririiiiieeiiieenieessiieessiseesssieessiseessssssssasssssasssssesssssssssssessssssssssssssssasssssasssssasssssaes 395
Section 82.5: Updating all outdated pacKAgES ON LINUX .ueeeeceeeeerererireeerireeerireeessseessssesesseesssssesssesesssssesssesesssassnnns 395
Section 82.6: Updating all outdated packages 0N WINAOWS ..uiccceieiciieeeiieereieescieeseieeesseeessveesesseesssessessnssessessnnes 395
Section 82.7: Create a requirements.txt file of all packages on the SUSTEM ..uiviveceecviercieeceeceee e 395
Section 82.8: Using a certain PYthon version With DID wueeeeeecceeeeieeeiieeecieeeceeeesreeessieeesreeesreeessseesenseesssesessseeesnns 396
Section 82.9: Create a requirements.txt file of packages only in the current VirtuQlenVeeeeeeeveeeeeencneeeeennns 396
Section 82.10: Installing packages Not yet 0N PIP AS WHEEIS wuiviviiiiiiireiiiieiieeenieeesreeenreresseeessesesssessnssesensens 397
Chapter 83: Parsing Command Line@ arguUMENTScoceccneeeseees s essss s ssesessenas 400
Section 83.1: Hello WOIIA IN OFQDAISE wiivvvervieiseerireeireeseesisesseessesssesseesssesssesssessssesssasssesssesssassssesssasssassssesssassssesssees 400
Section 83.2: Using command line arguments With GGV ..ueeicieeicieeecieecniee e ecseesssieesesveessveeseveesssessessesssseesens 400
Section 83.3: Setting mutually exclusive arguments With ArgpAISE ..uvviveeenveeeiieeeenieresireeensrerensseeerssesessseesssseesnns 401
Section 83.4: Basic example With AOCOPT ..iiiviiivieriieinrierierieestesiieeseestessseeseesssesssesseesssesssaessesssesssasssesssassassnesss 402
Section 83.5: Custom parser error message With QrgRAISE .uiiiiiieiiieeiniieeiiieeeneeessieesesieesssieesssseesssessssasssssesssnsees 402
Section 83.6: Conceptual grouping of arguments with argparse.add _argument group() .eeeeeeeeeeeeencreeenneee 403

Section 83.7: Advanced example with docopt and docopt_diSPATCN weivviviiieeeeereeeeeeeeeeee e 404

Chapter 84: SUBPIOCESS LIDIOIY ... teee e e et e e e e eese s eseaseeeseasassesesaseesessaassessesanaeens 406

Section 84.1: More fIexibility With PODEN civciiiecieiecieieitie st eeeteescie e s etee s ecvte s e sveeseteesssbaesestaesssseesstessseessnseessnsesannses 406
Section 84.2: Calling EXternal COMMIANTS .uiiiiiieiiieeiiiieeiiiieeiniieesiiieessieeesseessssessssseesssseessssesssssessssasssssasssssasssssassssens 407
Section 84.3: How to create the command ISt ArQUIMENT ..ueiecveeecieeeeieeeiieeerreresreeerreeesseesrsreesssesesssesesssesesssesens 407
ChAPLEE 85: SELUD.PU oottt bbbt bbb as st bbb bbb as bbb e bbb e bbb et st b et st nanbns 408
Section 85.1: PUIDOSE OF SETUDDU wueircreereriiriiieeiciieeeieeseiteesesteeseteeseteessssessastessasessassessansesssnsesssnsesssssessssssssasessssensn 408
Section 85.2: Using source control metadata in SETUD.DU wiiiiceeerreersiieernrieeesiieesnnieessisessnsseesssassssssesssesssssasssssassns 408
Section 85.3: Adding command line scripts to your pUthon DACKAGE ..cceeeeceeeiirereeieeenreeerreeerreeernreeesreeessseeesans 409
NYelaile]lal: PR Yo e Iale MlalSite]lelile]a o] o) ule]a T RS 409
ChApPter 86: RECUISION ...ttt st s s bbb bbb s b bbb b et b s b bbb s s besansenes 411
Section 86.1: The What, How, and When Of RECUISION ..iciiiciiiiiiiiecieccieecte e eseestesvessveeseesteesseeseessvessseesnesnves 411
Section 86.2: Tree exploration With FECUISION iiiiieccereeieeeeieeesteeeceeeesteeeseseeessreeesssaeessesessasssssessssssssssssesssesesssesens 414
Section 86.3: SUM Of NUMDEIS fromM T10 N uiiicieiicieeccie ettt te e s e e e vee e s b ee e e beesenbeesssbeesssseesssenssseessnrens 415
Section 86.4: Increasing the Maximum ReCUrSioN DEPTN ..vviviveeiiveeirieeiiereniererirerensteeeniseeorsseeersssessssessssesesssasennne 415
Section 86.5: Tdil Recursion - BA PIrOCHICE wiiiieiiiieeeireeeeireeeeieeeerieessreeseteeessseessseeesssesesesesssssesesssesssssesesssesssssessssses 416
Section 86.6: Tail Recursion Optimization Through Stack INTroSPECHION ..uveeeiieivveereeriiiereeieieeeesnrreeeesesreneessnnns 416
ChApPter 87: TUPE HINLS ... sttt ssss s s bbb ss s ss s sss st s s s st sssssansassnses 418
Section 87.1: AAdIiNg tUPES 10 O fUNCHION iiiiiiiiiiiieeieeseesiesseeseeste st e seesstessteeseessbessseesatesbasssessnsessassneesnsesssesnnes 418
YeTeauile]al s WA A N Lo aaT=te I HU] o) = RN 419
SECHON 87.3: GENEIIC TUDES tivveererrreesrreesirieessiseessseesesessssseesessasssssesssssesssssssesssssssssessssesssssessassasssssesssssesssssessnssasssseessns 419
Section 87.4: Variables aNd AHIDULES ciiviiiiiiieiciisie sttt sie e s sesssteesre e seesstessseesaeessbasssassaeesbesssnesnsesssasssessnses 419
Section 87.5: Class Members AN METNOAS iuiiiiieeieieeccie et ecie e ctee e rtee e ste e s ste e e e ree s seatesebee e s seesenbaesensaesssseesanses 420
Section 87.6: Type hints for KEYwOord ArgUMENTS .iiiicieiivieeiiiieeiniieesiiieesiteesssessseeesssassssseesssseessssesssssessssnsssssessnsens 420
CRAPLEE 88: EXCEPLIONS ...ttt sttt st st sttt sttt st sttt bebebesesesesenessssasasasanas 421
Section 88.1: CAtChiNG EXCEPTIONS ..iiiieirvieiiieiieesiieesieeseesitesseessesssessseessssssesssesssessssssssesssesssessssesssasssssssssssasssssssses 421
Nelaile]ale 1N BleNale) leloite]alo1VZ=T U111 ale | RS 421
Section 88.3: Re-raiSING EXCEPTIONS .uviiiivieerireeirrieeriiieereiieessiieessieessraeessssessssasssssasssssesssssesssssesssssesssssssssssessssasssssasssnne 422
Section 88.4: Catching MUIIPIE EXCEPTIONS tivvvviireeeiiirerieresirererireresireeerreresseeessesesseeesssseesssesesssssesssssesssasessseserssens 422
NYelaile]al eI NoNl = (el=To)ile]a im i [=Ta @ 1ol o]0 R 423
SECHON B8.6: EISE wiiiiiiriiiiieiiiiieeiniieesiieesiteessteesiseesestaesssnesssesssseesssssessnsesssssesssssesssssesssssesssssesssseessssesssssasssssesssssesssssaes 425
Section 88.7: RAISING EXCEPTIONS .uvieeveerrireererreersireerireeesseresseesssesssssesssssessssssssssssesssssssssssesssssssssesssssssssssesssssssssssassane 425
Section 88.8: Creating CUStOM EXCEPRTION TUDES wiiviieecriereirieeiiiereireeeeiteeseieesetesssssesseseesessesssaseessssessesesssnsessessessnnes 426
Section 88.9: Practical examples of exception NANAIING cuviiiieerieiiniieenieeenieeenieeseteessseesseeesseesssseessssesssssessnnne 426
Section 88.10: EXCeptions are ODJECTS TOO .iiiiviiirieriireeiireesiieesieeesereeesreresssesessseserssesessesssssesessssesssssssssasesssssessens 427
Section 88.11: Running clean-up code With fINAIY .ceeieceeeiiieieiieieiee e scie e ecie s eee s stee s sveeseteeseressestesseveessnseessane 427
Section 88.12: Chain exceptions With raiSE frOM .iiiiiiiiiieiriieieiieeiieeeniee e ssteessreeseeeesssnesssseessssnessssesssssesssseess 428
Chapter 89: Raise CUstom Errors / EXCEPLIONS ...t sesssssssesssssesssssssssessessanes 429
Section 89.1: CUSTOM EXCEPTION wviircvverrerererieeerieressreeessseesssseessseessseassssesesssesssssesssssessssssssssassssssssssesssssesssssasssssasssnses 429
Section 89.2: CAtCh CUSTOM EXCEPTION tiiivvieeiiiiiiiieeiiieieiitessittesesteessteeseteesestessssteesesesssssessssesssnsesssnsessessessssesssnsens 429
Chapter 90: CommMonwealth EXCEPLIONS ... s s ssassens 430
SeCtioN 90.1: OFTNEI EITOIS cvvviivveeirveeiieeeiireeesieresiseresssesesssesesssesesssesessssssssssssssssesssssesssssesssssesssssosssasssssssssssasosssesssssens 430
Section 90.2: NameError: name "??27?"is NOt AEFINEA civcuviieiieieieieecee e e et cee e eree e sereeessbeeesseesenbeesensaesssseenans 431
SECHON 90.3: TUDEEITOIS wiiiiiiiieiteeiiieeeeteesitteseiteesesteeseseesastessssesssasesssnsesssnsessassesssssesssssssssseassssesssssessensessssessessessnnees 432
Section 90.4: SUNtAX Error ON JOOU COUE wuuiiiiiiiiireieiierenireeerreeerveesssreeessesesssesesssesesssasesssesesssesesssssssssssessssessssesssene 433
Section 90.5: IndentationErrors (or indentation SUNTAXEITOIS) wuvivceeeeceeieieeeeieeesteeecteeectreescreeeecreeesseeesseesensees 434
(@l To] o] 2= ol R Ul | 1 o YOO 436
SECHON LT HTTP GET ctviiicieeieieeisieessteeeste s siteeseteesssteeseataessstaesssaassnsessansesssnsessansesssssessnssessnsesssssesssnsessessesssssessnsans 436
SeCtioN 912 HTTP POST uiiiceiceeiieeiteeseesteesteeseestesssaesesssesssasssessssasssassssesssesssessssesssesssessssesssesssesssesssesssesssasssassns 436

Chapter 92: Web scraping WIth PUTRON ...ttt eete e eeeeeseeeeseses s e snane e eaneeneas 438

Section 92.1: Scraping using the SCrapy fraMEWOIK .iiiuiiicceiecieeccieeecie e ccie e eeeeeecrte e ebee e e steesebeesenseesesseeseneessesenesn 438
Section 92.2: Scraping using Selenium WEDDIIVEL iiviiiiiieiivieeiiieesiieeeneessineessieesssseessssesssssesssssessssasssssasssssassssaes 438
Section 92.3: Basic example of using requests and IXml to scrape some datd ..iecceeevreeerreeeereeesieeeeseeessseeennne 439
Section 92.4: Maintaining web-scraping SeSSioN With FEQUESTES ..uiiiiieeicrieeiiieeecieeeciesecreesesreesereeseveeseteesesseesane 439
Section 92.5: Scraping USINg BEAULITUISOUDZ ..viiiviieiiiiiiiniiteeiieeesiieessieessieessseessseesssasssssaessssasssssasssssesssssnsssssassnsens 440
Section 92.6: Simple web content download With UrlliD.rEQUEST .ueviecieverieeeririeecree et ecreeeereeesree e reeesreeenne 440
Section 92.7: MOdify SCrapy USEE GOENT .uiiiiiiieeiiieieiieieiiteseiteeseiteeseteessteessseesssseessssessssesssssesssssesssssesssssssssssessssensn 440
Section 92.8: SCrapING Wt CUIT uiiiieeceecie ettt s ee e eete e see s stessbeesatesste e s e e sate s basssaesntesbassseesnsasssessnsesnsanns 440
Chapter 93: HTML PAFSING ..ottt sssastesss it s tesss et ssstessssstesassesessstesassasssastessssssessssessssssenans 442
Section 93.1: Using CSS selectors in BEAULITUISOUD .iiiiiiiiiiiiiiiiiiinieeniessieeseessesssssseesssesssesssesssssssasssssssasssassses 442
SECHON 93.2: PUQUEIU tiiiiuieieitieeiiieeeeiteeesiteeseteesetesssstessasessessesssseesensesssssesssssasssssssssssessnsesssssesssnsessensesssssessnssassassnssnses 442
Section 93.3: Locate a text after an element in BEAUTITUISOUD covvvivvivieiriieeiiiieiiieenieeenreeenieeenseesnneeessesessseeenane 443
Chapter 94: MANIPUIAtING XML ...ttt esas bbb b s bbb s e bbb aee 444
Section 94.1: Opening and reading Using an EIEMENTTIEE ..uuiivcieeeieeecieeecree e eceeeecrre e sreeeeree e s beeesresesasaessnseas 444
Section 94.2: Create and Build XML DOCUMIENTS ciicueeeeererireeriireeserieesssieesssensssssessssessessesssssessessesssssesssssessssssssssasssane 444
Section 94.3: ModifUiNg AN XML FIlE wiivviiiiieerieriieicieesiesiteeseesrtessteesseeseessseesseeseesssesssesssasssassssesssasssesssesssasssessnsesne 445
Section 94.4: Searching the XML With XPOTN weiicceeeecieiiieecciec et sceeeecreeesireeeeteeseseesenreeseseeesnseesbesessesssnsasasnsenens 445
Section 94.5: Opening and reading large XML files using iterparse (incremental parsing) ..eeeeeeeeeeeeeneneeeeennns 446
Chapter 95: PUthon REQUESES POST ...ttt be s s b s s s s s sesenans 447
SECtION 95.1: SIMPIE POSE uviicieiiieiieiitteseesitessteestesrteesreestessteessaestesssaessessstesssassseesssasssessssesstesssessssesssessseesnsesssassseesns 447
NYelaile]al® /oW Al seTaiaall =l aleoYe [<Te I 1 £ U 448
SecCtion 95.3: FIlE UDIOGA wiiiiiiiiiiiieiitiesiiteseiteessteeseteessnteessssessseassssessssseesensasssssessessessnstassnssessnsessssesssnsesssssassssessnnn 448
SECHON 95.4: RESPDONSES wircureersrrrersrreerseressreeesseeessseeessseessssessssseesssssssssssesssssssssasesssssssssesesssssssssesssssssssssasssssassssessssaes 449
NYelarile]a o RN AXU) o T=Ta Y ulele L] o NN 449
SECHION 95.6: PrOXIES uveerevveersreesseeesieesssieesssieesssseessssessssasssssssssssesssssasssssesssssesssssesssssessssasssssssssssesssssesssssesssssasssssessnnn 450
Chapter 96: DISLrIDUTION ...ttt b et s st rnnns 452
SECHON 96.1: DUZADD cevveerererersrrrersreressseeessseessssassssssessssesssssesssssssssasssssssssssessssssssssssesssssssssssesssssssssasssssssssssesssssassssassns 452
NYelarile]a R Lo WA @ = 1= 7.4 U 453
Chapter 97: Property OBJECLS ...ttt st s s st ssas s sas st sss st essssasssnansans 454
Section 97.1: Using the @property decorator for read-write Properti€Sccvvvveeevrereererreeeeeerrreeeeesssreeeessssseeeeeses 454
Section 97.2: Using the @Property AECOIATON .iiiiiiiiireeeiieeerreesireeerreeesireeesssesesssesesseesssssssssesesssssesssesesssasssssesensses 454
Section 97.3: Overriding just a getter, setter or a deleter of a property ObJECtiivveereveercieeecieecsie e eeieenn 455
Section 97.4: Using properties WithOUT AECOIATONS .iiiiviiiiiiieiiiiieinieeinieessiieessiseessseesssseesssesssseesssseessssesssssasssssessnnne 455
Chapter 98: OVEIIOAAING ...ttt st sttt b bbbttt e b e e abe e sessanasasasas 458
Section 98.1: Operator OVEIOOAING ..iiivieiieirieerieriieeneesiteesieesieessteeseesreesssesseesssesssesssassssssssassseesssesssassssssssasssassssesses 458
Section 98.2: MAQIC/DUNAEr METNOAS wcuvieeeeriiriiriiriiticricreresrerereseesreseeseeseessersersebsesesssssessensensessersossessersessersessersens 459
Section 98.3: Container ANd SEQUENCE TUDES uuivvieereerieeriieeieesiesseeseesnteessesseesssesssessseesssesssassssssssesssesssssssesssessnses 460
Section 98.4: CAllODIE TUDES ivviiveiriiriiiireesiiesitestesireeseessessseesaesssesssessssesssessseesssesssessseesssesssessssesssesssessssesssessessnses 461
Section 98.5: Handling unimplemented DENAVIOUL ..iiiciiiiiiiiiieeiciie sttt csee st se e s sveeseteeseste s seatesssbeessseesenne 461
Chapter 99: POIUMOIPRISI ...t tsses st ssss s sssssssssssss st ssssssssssssssssesssssssessessssessasens 463
Section 99.1: DUCK TUDING wievverereerieeeierseesiteesieesaesseessasssessssasssesssessssasssesssssssesssessnsesssasssessnsesssessssssssesssasssesssassassns 463
Section 99.2: BASIC POIYUMOIDNISIT ticviiiieicieiieiriieiiieiseesisessieeseesssesssesseesssesssesssesssesssesssesssasssassssesssasssessssesssassnesss 463
Chapter 100: Method OVErTIAING ...ttt sas b s st esas b s sas s s e bt esansnens 466
Section 100.1: BASIC MEthOd OVEITIAING .uiiiivieeierireiiieeiiieeesieessieesesieesssseessseessssssssseessssesssssesssssessessesssssesssssassssaessnses 466
Chapter 101: User-Defined MEethOAS ...ttt bbbt 467
Section 101.1: Creating user-defined Method ODJECES civiivireieriieierieeerieeerreeerreeereeesrreeessreresseeesssesesssesosssesersseeens 467
Section 101.2: TUIIE EXAMIPIE .uiiiiceeeeiieeeiteeeeiteeeireeeesteeessteeseteeeesteeseseeessseeesasesssbesasssasasssesasssasasssesssseesesssnesnseessssenenn 468

Chapter 102: String representations of class instances: str and repr

INETNOAS ...ttt ettt et e et et ees e et et e e seeaeateseseasaeeeseeatatseeseaseessessasassseasaseeseeasasseseesatsssseasaeessseasaeneseeannens 469

SY=TeniloYa T 07 R 4 @) 41V o 469
Section 102.2: Both methods implemented, eval-round-trip style —_ repr_ () wcceevreeeeeereeeeeerneeeessereeeessennens 473
Chapter 103: DEDUQGQING ..ottt sttt ss bbb s bbb s bbb b et sas e b s et s ae b s et sesaebnas 474
Section 103.1: Via IPYthon AN IDAD wiiciiiiiiiiiiiiiiieniiiieesiessiesseesstesssesssesssessseessesssasssessssesssessssssssesssessssesssesssassnses 474
Section 103.2: The Python Debugger: Step-through Debugging with — pdb_ eeeveciiecceeeceeecee e, 474
Section 103.3: REMOTE AEDUGGEL iviiiirieiiiieiiieeeiieessieessiteessieessaeessssessssesssssasssssesssssasssssesssssasssssesssssessssssssssassnsans 476
Chapter 104: Reading and WItIiNG CSV ...ttt ss st sas e ses st sas s sasbenans 477
Section 104.1: USING DOANAOS uverceeereerrreeseeseesssesseesrsesseessesssessassssessssssseessssssesssessssesssasssassssssssassssssssasssessssssssesssass 477
NY=Tenile]al (0 AV o dTale W LI L VAN 11 [OOSR 477
Chapter 105: Writing to CSV from String OF LiSt ...t essesbenans 478
Section 105.1: BASIC WIITE EXAMIPIE .uiiiivieiirveeriireeiiiieesiieesiteesiseesieessssesssssesssssessssasssssasssssasssssasssssasssssasssanssssasssssans 478
Section 105.2: Appending a String as a Newline in A CSV fIle uiiiiieririreeeiieecceeeecrteeereeescreeeereeeereessreeseneeesereee s 478
Chapter 106: Dynamic code execution with "exec’ and "evaleeeneneeenersesenene. 479
Section 106.1: Executing code provided by untrusted user using exec, eval, or astliteral_evalveeeene. 479
Section 106.2: Evaluating a string containing a Python literal with ast.literdl _ eval ..., 479
Section 106.3: Evaluating statemMents WIth EXEC iiiiiviiiiiiiiieiieinieiiesieesee e sseeseesressreeseessessseesnesssessseesanesssasns 479
Section 106.4: Evaluating an eXpression WIth EVAL et seieessieeeseesssseesesseessseeseseessssesssssessnsees 480
Section 106.5: Precompiling an expression to evaluate it MUItIPIE TIMES vvivvveeirveeenieeenireeenreeenreeenreeenveeennens 480
Section 106.6: Evaluating an expression with eval using custom globalScviiceeneervienneenieeneeseesreeseeseessnens 480
Chapter 107: Pyinstaller - Distributing PYUthon Code ..., 481
Section 107.1: INStAllATION AN SETUD wiiiciiiiiiiiiiieiiieeieieesiteessteessitesesteessbeesebaessstessssseessesssssaesssesssssesssssessassessnsens 481
Section 107.2: USING PUINSTAIEE ..iiiiiiieiiieiieesiteeieeseesitessieesaesssessseesssssssasssassssesssssssessssssssssssssssesssessssssssessssssssssssasas 481
NYelauile]a R0 YA =1 ale] [aTe l e X @ aT-Nl o] o [T oL 482
Section 107.4: Bundling t0 A SINGIE FIlE ciuiiiiiiiiiiiiiiiiies sttt steeseiee s steessateesssaeessvaessbesssssasssubeessssasssnsessnssessssenesn 482
Chapter 108: Data Visualization with PYUthON ...t 483
SECHION T08.1: SEADOIN itiitiiiieiiieeseesiiereeestesiteeseeseeesteesseesaesstaessaesatesssaessessstesssassssssstessseessessstessseestesssessseesnsasssassns 483
SYeTeniloTa T 01 17 o 1 o] o 1 N 485
SECHON TO8.3: PIOLIY teureerireeriiieiesiteesitereieessiieessteesssseessssessssessssseesssaessssessssesssssassnsasssssassssesssssessssesssssasssasssssasssnsans 486
SECHON T08.4: MAUGAVI uveirireerrireerireersieeessseeessiesesssesesssesssssesesssesssssassssseessssessssssesssssssssesesssssssssesssssesssssasssssesssssaesssaes 488
Chapter 109: The Interpreter (Command Lin€ CONSOIE) ... renssesenans 490
NYelaile]a 01 A RICT lutlalo Mo Tlat=lne | I aT=1l o 490
Section 109.2: Referring t0 the |AST EXPIrESSION .iiiivviiiiiiieiiiieiiieersireesreeserieessteesseeesssesssseessssasssssesssssesssssasssssessan 490
Section 109.3: Opening the PUthON CONSOIE wuiiiiiviiririrerireeerreeerreeereeescteeesereeesisesessesessesesssesssssessssssesssssesssesesssesennne 491
Section 109.4: The PYTHONSTARTUR VAFIGDIE wuiiicieeeciieeitieeeiieeeeiteeseiieeseieeseseeessseessssesssssesssssessesessessesssssassssssssane 491
Section 109.5: ComMMANd lINE AFQUMENTS wiiivueiiiireereiteerniieesireeessiseesiieesssaessssesssssassssssssssessssanssssssssssasssssasssssasssssassns 491
Nelaile]aMIO X CISiuilaloNalslIoXe] oloIui o] a I e] o] L= f 492
Chapter 110: *args ANA **KWAFQScccoceeeiiireeieiesesns s tsses s esssssssesas s sessssestessssessessssessessssssessssssesssses 494
Section 110.1: Using *kwargs when Writing fUNCHIONS .uiiiiiiiieiieicieecciee ettt steeesteessvte e svee s sbee s sveesevne s nes 494
Section 110.2: Using *args when writing fUNCHIONS ..iiiiiicieiiiecieeiieciecie st stessiseeeeestessseestessvassssesasasssaesssesases 494
Section 110.3: Populating kwarg values with a diCHONGIY wiivceeerceeerirererieeerreeeieeeesreeesereeesereeesssesessesesssesssnsessnsees 495
Section 110.4: Keyword-only and Keyword-required arguUmMENTS ..ccievccieeecrieererieeesiieesieeeeseesssseessssessssessssessssens 495
Section 110.5: Using *kwargs when calling fUNCHIONS vivivviiiieriiieieieeiiieeeieeesnireeeseeessseeesssesesssesesssesssssesossesonssens 495
Section 110.6: *kwargs and defQUIL VAIUES ..iicvevvieeieinireniieiniesiiesseessessseeseesssessessssesssesssessssesssassessssesssessassssessses 495
Section 110.7: Using *args when Calling fUNCHIONS civuiiiiieeiiieeiiieeiieeeesieessreeseieeseseesenteessssesssssesssesssssessssesssssessnn 496
Chapter 111: GArbage COECLION ...t bbb bbbt s et 497
Section 111.1: Reuse Of PriMITIVE ODJECIS wuiiiviiiirereiiieeiierenireeerireeeriteeessreeereeesssaeesssesesssesesssesosssasesssesssssessssssesssssesane 497
Section 111.2: Effects of the del COMMIANT ciiciiiicieieiieeecee et escre e e reeeeerte e s beeesseeesabeeesssaessssaessnsessssseean 497

Section 111.3: REferenNCE COUNTING wiiiiiiiiiiiiciiiiiiieee e et e e st e e s ssesarbbreereeeeeeessesssssssasssrseesessssssssssssssnsseeeessnns 498

Section 11.4: Garbage Collector for ReferenCe CUCIES oottt eee e ee s eessassr e e e e e s e e s s sesssasssenees 498

Section 111.5: Forcefully dealloCatiNg ODJECTS viiivviiiiriveeiiieeiniieeriieessiieesssieesssseesssaeessssessssesssssasssssesssssasssssesssssessssassn 499
Section 111.6: Viewing the refCouNnt Of AN ODJECE wiiviiiiiieieiieeiiieecereecreeerreeesreeerre e e eeessreeesbeeessesesasessrnsassnssessnnns 500
Section 111.7: Do not wait for the garbage collection tO ClEAN UD .iiiiceeiccieereieeecieeecie e eciie s evresesree s sveeseveesevee s 500
Section 111.8: Managing garbAQE COHECTION .uiiiivieeiivieeiiiieeriieeenteesieeesseeessseesssseessssessssessssansssssessssasssssasssssasssssasens 500
Chapter 112: Pickle datad SerialiSAtiON ...t et s sttt sas e sesaee 502
Section 112.1: Using Pickle to serialize and deserialize an ODJECT ..uiiiiieeicreeerieeerirereeieeesreeerreeesreesesressssesessseeenans 502
NYelaile]a NI ARGV te]a al V4= el [=Te I B 1o (o U 502
Chapter 113: BiNAry DAtQ ...t ssss st sss st s s sss st sasssssssss s ssessssssssanses 504
Section 113.1: Format a list of values int0 a BYtE ODJECT wiiiiiiciieiieciecceecte ettt st sre e s teesbe e s ee s beeaaeas 504
Section 113.2: Unpack a byte object according to a fOrmat STrNG .eeccveeeeceeeccieeeeieeerreeerreeeereeeceeeesreeesreeesseeens 504
Section 113.3: PACKING O SEFUCTUIE uuiiiicieiiiiieeicieeecteescieesete s sstteessbeessseessbessssseessseessssasssssessnssasssssssssseessssenssnsesssnsens 504
(@ g To o €= ol i K50 o [T o 1RO U VTP 506
Section 114.1: Dictionary Key INIHIANIZATIONS vuiiivereiieeeiirerenireeenieeerieeenreeereeesssseessesesssasesssssosssesesssssosssesesssssssssssssens 506
Section 114.2: SWItChING VAMADIES ..viiiiiiiiiiiiieeiiecsee ettt ssre st seessre s s e e seessbeesbeesssessbassseesssesssesssassssesssassnes 506
Section 114.3: Use truth VAIUE tESTING ticviiiiiiiieiiieiirieeisieessieeesieessiveesesteessteesesteesssteesssssssnsesssssesssnsessensesssssessnssasssens 506
Section 114.4: Test for " _main__ " to avoid unexpected cOde XECUTION ..uiiivereirrererirereniieeerveeeneeeenseeessseeennens 507
Chapter 115: DAtA SErIAlZALION ...ttt bbb s et esas st enans 508
Section 115.1: Serialization USING JSON .iiicieieieeeecieeeeireeeeieeesseeeetesestesseseesessesessssesssesesssesssssesssssesssssassssesesssesssnsens 508
Section 115.2: Serialization USING PICKIE uiiiiiiiiiiiiiieiieisiee st ssteessieesste e sssteessbtesssvae s sabeessseesssbeessssaessssnssnssessnsenesn 508
Chapter 116: MUILIPrOCESSINGccovoveeriirieieirisirisss sttt ssss s sssssssssssssssssesssssssssssssssssssssssssssssnens 510
Section 116.1: RunNinNg TWO SIMPIE PrOCESSES evvererverervrerrrveeeireressseresssesesssesesssessrssssessssesssssesssssesssssesssssosssssosssassnns 510
Section 116.2: USING POOI ONA MO ceecuiiiiiiieieiieeeeteescieeeeieesctteeseteeeesseeesbeeessseesessessessassssesssastessssesesssessssessssesssssesnnns 510
Chapter 117: MUILITRreading ...t st bbb s bbbt as st sa s 512
Section 117.1: Basics of MURITNAIEAAING vviiiviiiiiriieiiieeiiieesstessireeeseeesseesesbeesssteeseveesssteessssessssesssssessssessssesssssnssnnee 512
Section 117.2: Communicating DEtWEEN TNIEAUS ..vviiiveiirirererieeerreeerreeeeeesreressreresssesersesessseesssseesssssesssasesssesersrens 513
NYelaile]a NI WAL @=To) i1ale Mo Y o) =T o o] o] NN 514
Section 117.4: Advanced use Of MUITITNIEAAS ciiviiiiiieiiiiiiiieeiiiee sttt eree s se e s rteessbeesssteessssesssaesssasssssaessnne 514
Section 117.5: Stoppable Thread with @ While LOOD cuiiiviiiiiiiienieiseerie sttt ssieeseesressieesseesatessseessnesssesssassnnenns 516
Chapter 118: Processes ANd TRF@AAS ...ttt eses st es bt es s st s s s esassanbens 517
NYelaile]a NI NREC] o] olo] Nl =Ta oY) (=T ol N Yo U 517
Section 118.2: Running in MUILIPIE TAFEAAS iiviiivieeiiriieiiieeiieeeeinessieeessieesssseessseesssesssssessssansssssessssesssssasssssasssssassns 518
Section 118.3: RUNNING iN MUNIPIE PrOCESSES wiivvrererirererireeeireeeireeeesreeesiseeesssesesssesesssesesssesssssessssssesssssesssesesssasesssassnns 519
Section 118.4: Sharing State BetWEEN THIEATUS ..iiiiieiicciiiieieeeiieeecieeecrte e e srte e esteesebeeseteessseeesestesssseessseessnsessensesannes 519
Section 118.5: Sharing State BEIWEEN PrOCESSES iivviiiriviiiriieiiieeiniieessiieesssieessiseessesessassssseessssesssssesssssessssasssssssssane 520
Chapter 119: PUthON CONCUITENCY ...ttt ssas bbbt bbb sas bbb sas b ses st sassesasanes 521
Section 119.1: The MUItIProCesSING MOTUIE ..uviiicieieirereiiieerireeesireeerireeesreeesseesesseesssesesasesesssasesssssssssesesssasssssesssssesens 521
Section 119.2: The threading MOAUIE .uiiiiciieicieeciie ettt e seree e rbe e seteesebeesaseeessbesesseessnbesessesssnsesssnseesansessnnses 522
Section 119.3: Passing data between multiproCeSSiNG PrOCESSES .uiivvervieereerieerireesieessresseesseesssesseessessssessassssesns 522
Chapter 120: Parallel COMPULALION ...ttt b s bbb sas bbb enas 524
Section 120.1: Using the multiprocessing module to paralleliSe TASKS ..iiiivveicieeerieeerirererieeerreeeceeeesreeessseeeseseeens 524
Section 120.2: Using a C-extension t0 pardlleliZe TASKS ..uuiiiiieiiieeiciieeeiieescieesseeeesieesenveessssessssesssssessssenssnsessensens 524
Section 120.3: Using Parent and Children scripts to execute code in pArdllel ...uuieieiereeeiieeeneeeineeeeneeennneeenne 524
Section 120.4: Using PyPar module t0 pArAlIElIZE ...cvivvvirvieiiiinieniienseiseessiesseeseesssesseessessseesseesssesssesssnsssesssessnes 525
ChAPLEr 121: SOCKELS ...ttt bbbt bbb e bbb e bbb e bbb as bbb e bt n e bt 526
Section 121.1: ROW SOCKETS ON LINUX ueererieerirereesieessieeseseesssseessssessssesssssssssssesssssesssssessessesssssesssssassssssssssssssssessessesssnne 526
Section 121.2: Sending dAta VIO UDP ..iiiicieiiieiiirectesiteesieeseesrteestseseessessseessssssassseesssssssasssssssssssessssssssesssassnsesssasas 526
Section 121.3: ReceivVing data VIA UDP ...iiiciiiecieeecieeectieeeiteeeeieeseseeseeessssseesestessssesessesessesasssesasssesssssessssesesasssssnsens 527

Section 121.4: SENAING AATA VIO TCP uueiiiiiiiieiieeeiiiicciiitrerreee e et e s ssssssssbareeeseseeessssssssssssssssssessesssssssssssssssssrseesesssssnnns 527

Section 121.5: Multi-threaded TCP SOCKET SEIVEL ittt e e e e e e e s ss st e e e e e e e s sesssssssssseeeeeseessssens 527

ChapPter 122: WEDSOCKELS ...ttt st ss st bssas s s e b s s sas s ssssassessesanens 530
Section 122.1: Simple EChO With GIONTID wiiiiviiiiiiiiiiiiiiiieiieesnire st ssee s sreesssieesssbaessabeessstesssssesssasssssasssvasssssens 530
Section 122.2: Wrapper Class With GIONTED wiiviiicieeieeiiiiiieeneesiesseesieessresseessessseesaesssesssaesssesssssssassssesssessseesssesssasns 530
Section 122.3: Using Autobahn as a WebsOCKet FACIONY .uuiiiiiiiiiiiiiiieicieeecie s ecie s ectesesvee s sveeseveeseveesenteesesenesanes 531

Chapter 123: Sockets And Message Encryption/Decryption Between Client and Server

.. 533
Section 123.1: Server side IMPIEMENTATION wiiiicieeiirieeeiieeeireeeereeeereeeeteesereeeeeeeseeeeesseeesesesssssesessessssesessesssnseesnnees 533
Section 123.2: Client side IMPIEMENTATION wiiiiivieriiieeirieeiiiieessrieessiteesiteeesaesssreessssesssssesssssessssesssssasssssesssssesssssesssssees 535

Chapter 124: PYthon NEeTWOIKINGccccoceireneneeninssrsessssssessessssssssssssens 537
Section 124.1: Credating d SIMPIE HIED SEIVEL rviiiieieriiecrieecieee e esireresireeerresesssesssseesssesesssssesssesesssesesssssssssesesens 537
Section 124.2: Creating O TCP SEIVEL wiiiiiiietieciereeeeeitreeseeiateesessseeessessesesssssseeesssssssnessessssssessesssssessesssseesssssenessenns 537
Section 124.3: Creating 0 UDP SEIVEL .uiiiiiiiiiiieeiieeisiieessiieesssieesssesssssessssasssssesssssasssssesssssessssesssssasssssasssssesssssesssssaes 538
Section 124.4: Start Simple HttpServer in a thread and 0pen the DroOWSEr ..uvieieieeecieeeceeecreeerree e eree e 538
Section 124.5: The simplest Python socket client-Server EXAmMPIE ...uiicieeecieeeerieeeiieeeceeeesreeeesreeseieeesseeeseseesseves 539

Chapter 125: PYUthON HTTP SEIVE ...ttt sesss s s st s ssssesesassessssesssassesnsasses 540
Section 125.1: RuNning @ SIMPIE HT TP SEIVEL wiiiiviviiiiieeiiiieeinireesiieessiseessseessssesssnessssesssssesssssesssssesssssasssssasssssesssssas 540
SeCtion 125.2: SEIVING FIlES wiiiiiiiiiiiiieiieeiiiesieeste st ssteestesrtesseesaesstaesseeste s baesseesssasssaesssesssasssaessssssassssesssasssaesssessees 540
Section 125.3: Basic handling of GET, POST, PUT using BaseHTTPRequestHaNdIErcccveceeeecrereecieenecieeseieene 541
Section 125.4: Programmatic APl Of SIMPIEHTTPSEIVEL auuuiiieiiieeeireieeeecereeeeerireeeeseenrereesssseeseeseseessssssssssesssnses 542

ChAPLEE 126: FIASK ...ttt ettt bbb as bbb bbb as bbb b s et bas bbbt b s et sasbesans 544
Section 126.1: FIleS AN TEMPIOTES .iiiviiiivieriiieieerieesiieestesiesseeseesisessseessesssessseesssesssasssassssesssassssssssssssassssssssasssassses 544
SECHON 126.2: TNE DASICS teuvteeeieeieiteeieiteeeeieessieesereeeesseesssseesesseessseesassassastsssassessasessessessansessensessssesssssesssssessssessssensn 544
Section 126.3: ROULING URLS icvieiiivieeriieesiteesieessieeessieesssseesssseessssesssssessssssssssssssssasssssasssssasssssnssssesssssssssssssssaessssansss 545
Section 126.4: HTTP MELNOUAS .uviiviiiririirieeneesiieeseessesisesseessessseesssesssesssessssesssesssessssesssesssessssesssessssesssesssesssesssessses 546
Section 126.5: JiNjO TEMPIATING ueereereererieererieererieeearieesieeeeseesssseesesesssssesssssesssssessssssssssesssssesssssessessesssssesssssasssssnssnnes 546
Section 126.6: The REQUEST ODJECT iviiiiiiciiiiieiiiesie et estesieesteeseesstessbeeseestesssaesaeestasssessseesssasssessntesssassseesnsasssansns 547

Chapter 127: Introduction to RabbitMQ using AMQPSTOIMccovenrresninessesessssesessssesesess 549
Section 127.1: How to consume messages from RADDITMOQ ..iiiiiieeicieiecieesreeersreeecreeecreeeerreesereeessbeeeeseeesasessensens 549
Section 127.2: How to publish messages t0 RADDITMQ ..uiiiiciiiiiieicieicreccre et sste e ssrte s svee s sbe e s s vee s vae s nes 550
Section 127.3: How to create a delayed queue in RABDITMO .iiuiiiiiiiiiiiicieccee et steesveeseesteessne e 550

Chapter 128: DESCIIPLOL ...ttt bbb s bbb bbb et bbb s et b st n e tenas 553
Section 128.1: SIMPIE AESCHIPTON iiiiiiriririieseerirtrieesressreestesssesseeseesssessseessesssesssessssesssessaesssesssessssesssessseesssesssassses 553
Section 128.2: TWO-WAUY CONVEISIONS vieiievrrereerssrrrreesserrsresssssssesessssssasessssssssessssssssssssssnssssssssasessssssassssssssssssssssssnssssses 554

Chapter 129: tempfile NamedTempPOoraryFile ...t sessaenas 555
Section 129.1: Create (and write to a) known, persistent temMPOrary file ...uevueeeeeeeiieeennerenreeenrerenseeenneeenees 555

Chapter 130: Input, Subset and Output External Data Files using Pandas ... 556
Section 130.1: Basic Code to Import, Subset and Write External Data Files Using PANddS ..ccceeeeceeeeceeeecreenne 556

Chapter 131: UNZIPPING Fl@S ...ttt sttt sas s sesas s s sas b essssassessssassensnsens 558
Section 131.1: Using Python ZipFile.extractall() to decompress a ZIP file ..vuevivvcieereieiiiereeniieeeeeeneeeeeseveeeeennns 558
Section 131.2: Using Python TarFile.extractall() to decompress a tarball uvevveeeeveeenierenirerenreeerreeerreesnseeeennens 558

Chapter 132: Working with ZIP archives ...t 559
Section 132.1: Examining Zipfile CONTENTS cuiieecieieiieecieeeeiee et eeceeeectteserteeeesteeesbeesesteesesseeseneasssesesaseesssesssnseesnnes 559
Section 132.2: OPENING ZIP FIIES uutiiivieiiiiieiiiteiiiteesiteeeseeesireesssieesssseeseseesssessssssessssessessasssseessssesssssessnssesssssnssnsessnne 559
Section 132.3: Extracting zip file contents 10 A AIFECTOMU civviieerveeivieeieerieesieesee e ssteeseesrtessreesreessessseesseessesssaeses 560
Section 132.4: Creating NEW AICRIVES ..iiiciieiiieeieieeeiteeeeiteesesieesesteeseteesesseesaseessesesesaseesssesssssessssessessessssssssssessssenenn 560

Chapter 133: Getting StArt With GZIP ... sssas e 561

Section 133.1: Read and Write GNU ZID fllES ivvivvviiiiriieeiiiiiiiiciiiiirierreeeeceeessessssreseeseeeeeeeessssssssssssssssesesssssssssssssssssnes 561

CAPLEE 1342 STACK ...ttt e et et e e et et ee e e st aueeeseasaesesaeataeeseeaseesseasatessseasatsesesaseessesanasssenasnesnenen 562

Section 134.1: Creating a Stack class with A List ODJECT .ivceirveerrieriieeniierierneenieessieeseesssessseesseesssessseesssesssessasssaesns 562
Section 134.2: PArSing PAIENTNESES ..ccuvirviercriereeririeireeneesrteieesssessseesseessssssseesseesssassseesssesssassseessssssssesssessssesseesssessses 563
Chapter 135: Working around the Global Interpreter LOCK (GIL)cccoovrenereereerereereeneereurenneene 564
Section 135.1: MUIIDIrOCESSING.POOI wiiiiiiiieiriiiiiiisiesiieeseestesseeseesssessseessesssessseessesssessssesssesssesssesssesssessssesssessaesnses 564
Section 135.2: CULNON NOGIL wiivviiriiireirrierieesieessiesseeseesstessseesseesssessseesseesssessseesssesssessseesssesssasssessssesssessseesssesssesssaessses 565
Chapter 136: DEPIOUMIENT ...ttt ss s es s st sse s s ssessessssssssessssssssnssnssesans 566
Section 136.1: Uploading & CONAQA PACKAGE ...vvvveercrerreerieerirerseesieesereeseessseseseesseesssesssesssessssessseesssssssasssessssssssessseesas 566
ChAPter 137: LOGQING ...cccovvrerireeririreesissireesessisesssesssssssssssssssssssssssasssssssssssssssssssssssesssssnsens 568
Section 137.1: Introduction t0 PUthON LOGTING .eerveeerrrreecrerreenrrrseesresieesresseessesseesseseessesseessesesssesseessesseessesseessesseessesse 568
Section 137.2: LOQQING EXCEPTIONS tvuvereverereerreersrerseesseessressieesssesssessseesssesssasssessssesssassssesssesssassssesssasssessssesssesssassssessses 569
Chapter 138: Web Server Gateway INterface (WSGI)nneninenesesesesessesssesessessesseens 572
Section 138.1: Server ObJECt (METNOA) wiiiiiiriririirieriererrerresresesesesesessessessessessessessesssssssassessessessessessessessessensensesseses 572
Chapter 139: PYthon Server SENt EVENLS ... sissessess 573
SECHON 1391 FIASK SSE .oerverrieeeirerteniereesreseesreseesseseessesseesse st essesseessesueessesstensesseessesasensesseessesneesesseensesseessesnsensessens 573
SeCtioN 139.2: ASUNCIO SSE .iivvereverereersuerireeseesssessseeseesssessseesssesssesssesssssssssessessssesssesssssssssssssessssssssessessssssssessssesssssssasns 573
Chapter 140: Alternatives to switch statement from other languages ..., 574
Section 140.1: Use what the language offers: the if /€IS CONSIIUCT vivivververeeeerenenenenenrensesseseerseseereeeesseseeseesenns 574
Section 140.2: Use a diCt Of FUNCHIONS viiviiiiiiiviiiiiinieriieeseesitesitesseessessteesseessessseessaesssessseesssssssesssessssssssassssssasssasns 574
Section 140.3: Use ClASS INTrOSPECTION veerveerererreerseersreesieessrersreesseesssesssessssesssessessssesssesssassssesssasssaesssssssassssesssssssassns 575
Section 140.4: USINg O CONTEXT MANGUEL civveerevreersireesireeessiaeesssesssaeesssnessssasssssesssssassssasessssessssasssssasssssasssssassssasssssn 576
Chapter 141: List destructuring (aka packing and UNpACKiNg)c.cccceerrreeurieresissenessseesesessenes 577
Section 141.1: Destructuring ASSIJNMENT ..eevceereiereerieeeee st rcree st seesereeseeseeseste st e seeseseesreesreesseesmeesreesmeesaensnnesne 577
Section 141.2: Packing fUNCHION GrQUMENTS .veivvverereereerieerireeseessiessreesieesssessseesseesssesssessssssssssssassssssssesssaesssasssasssesas 578
Section 141.3: Unpacking fUNCHION ArQUMENTS uiiivieeieeiierieineesiessieeseeseessseesseessesssesssnssnsesssesssessssasssasssssssasssassns 580
Chapter 142: Accessing Python source code and bytecode ..., 581
Section 142.1: Display the bytecode of A fUNCHION ...iiciiiierviiiiiiniinieestesiesseesee e ssreesssessvessseessessseesseesssesssesssaens 581
Section 142.2: Display the source code Of AN ODJECT vivciirrierieriiereente ettt et see s e e seesressreesseesasesssaesnees 581
Section 142.3: Exploring the code object Of A fUNCHION ciiiiiiiiiiiiiiiiciiesecsie st sresseeseesressseessesssessnesasessaens 582
CRAPLEE 143: MIXINS ...t ssssssse s sassassssssssssssssssssssssssssssssassessssnssans 583
SECHON T43.1: MIXIN vevvreerrversreeseessuerseesieesssesseesssessseeseesssesssessssesssessseesssssssesssessssesssesssessssessseesssssssesssessssesssesssaesssesssasns 583
Section 143.2: Overriding MethOdS iN MIXINS .vivvvereeerrreerreerserseesseessressreesseesssessseesseesssesssesssssssssesssesssesssassssesssesssassnes 584
Chapter 14 4: AttriDULE ACCESS ...t st bbbt s s st es st nes 585
Section 144.1: Basic Attribute Access using the Dot NOTALION .uiivvieecerieeniierieesiesiesseeseessresseessessseessnesssesssessnns 585
Section 144.2: Setters, GEtters & PrOPEITIES .cccciiieciireieiriieeeee e ste et sert e st e s e e sesee e s eeesree s s st e senseessnsnesaneessanens 585
CRAPLEE 145: AFCPUY ...ttt b s s s sasssen 587
Section 145.1: createDissolvedGDB to create a file gdb on the WOrkSpPACEiiivvviiiiiieiivieeiiieeneeesieessieessveeens 587
Section 145.2: Printing one field's value for all rows of feature class in file geodatabase using Search
CUTSOF tevteerveseesseseessesseessesesssessesssessasssessesssessesssessesssessesssesssessessesssessesssesseessesseessessesssessesssesseessessesssessaessesasssessens 587
Chapter 146: Abstract Base ClASSeS (ADC) ...t ssesssssssssssssssssssssssssssssssssssens 588
Section 146.1: Setting the ABCMeta MELACIASS wiiviiiviiiieinieeiieiiieiseesiresseeseesrsessresseesssesssesssessssssssesssssssesssassesssses 588
Section 146.2: Why/How to use ABCMeta and @abstractmMethod ..iievevecerieneieeeereeesesesesiesessessessesseseesennes 588
Chapter 147: Plugin and EXtENSION CIASSEScccoovririninininininininesesesssssssessssssssssssssssssssssssssssessens 590
SECHION T47.1: MIXINS weereveerreerreerereeseesseessressseessessssessseessssssseesssesssessseesssessssssseesssssssesssessssesssssseesssesssaesseesssesssassseessssssnes 590
Section 147.2: Plugins with CUStOMIZEA CIASSES .viiveervieiieiseeriierseeseessieeseesreesssesseesssesssaesessssesssesssssssesssassssesse 591
Chapter 148: Immutable datatypes(int, float, str, tuple and frozensets)ccccceveunnee.. 593
Section 148.1: Individual characters of strings are Not ASSIGNADIE ..uuiiecieiricieeeeiieeciee e e ecee e ecee s esbee s e sree s eveeseaeeas 593

Section 148.2: Tuple's individual members aren’t ASSIGNADIE ..uvviiiivcriiiiiniiieeeierieeee it eessreeeeesesbeeeesssreeeeesnnns 593

Section 148.3: Frozenset's are immutable and NOt ASSIGNADIE ..eeeeeeeeiiiiiiiieecceieeeeeeee e e e e e e e e sasaeees 593

Chapter 149: Incompatibilities moving from Python 2 to Python 3ccccoooeeevceveveennnne, 594
Section 149.1: INTEUET DIVISION wiiiivreeierreerireeriieererieessieessieeesssesssssessssasssssssssssasssssasssssesssssesssssesssssessssasssssassssasssssasssnne 594
Section 149.2: UNPACKING HEIADIES ..viiiiiivieiiiiiieiieeseeste st eseeseesteeseeseessteesseesssesssasssessssesssessssssssesssassnsesssassseesns 595
Section 149.3: Strings: BUtes VErsuS UNICOTE .uiiiiiiiriiieiiirieeeiieesieeseieeeeseesseseessssessssessessesssssesssssssssseessssesssasesssnsens 597
Section 149.4: Print statement vS. Print fUNCHION ciivieiivieiiiieeiiieeiiieessreesieeessieessiseesssseessssesssssesssssesssssessssasssssasssnne 599
Section 149.5: Differences between range and Xrange fUNCHIONS icivieceeeiiieerieeenireeerreeerreeerreeecreeeesreeessesesssens 600
Section 149.6: Raising and hanNdling EXCEPTIONS viiicieeeiieriiiieiiieeieieeseieeseieeseteeseveesesseessseesessesssssessessessasessssssessane 601
Section 149.7: Leaked variables in [ist COMPIrENENSION ..uiicieeieiieenieeireieeeeesrieeseeeseeesteeseesssesssaesssessessseesssesses 603
Section 149.8: True, FAISE NG NONE .iiiiiiiereiieieereeeiteeeireeesiseeesireeesseesssseesesesesssssesssesesssesesssesesssesssssessassesssssesssssesans 604
SECHON T49.9: USEE INPDUL uttiiiiieiiieeeietesiteseitteseiteesesteesstaesssasssstessssesssnseesssasssssessessessasssssssssssnseesessesssnseesensessessessnnes 604
Section 149.10: Comparison Of dIffErENT TUDES wivvveiiieriiiiieiiieeirerenreeerrererreeerreeerseeeersseesssesesssesesssesesssasesssssonsrens 605
Section 149.11: .next() method on iterators rENAMEA ...ciicieivierrernieerierreenee e sseeseesreessreeseesssesssesseesssesssassssessne 605
Section 149.12: filter(). map() and zip() return iterators instedd Of SEQUENCES ...uuevevirvereeeiiiereeeeiriereesreeeeenennne 606
Section 149.13: RENAMEA MOUUIES wiivuiiriiiiiiiiieiiteeseesteesteestessseesseeseessseessesssssssseessessssssssessssssssesssessssssssesssesssesssasns 606
Section 149.14: Removed operators <> and ™, synonymous with = and repr() .eeeeecceeeeeeeeceeesceeescreeseseesenees 607
SECHON T49.15: IONG VS. INT tiiuiiiiiiiiiiieeiiteieieessiteessteesstteesstteessbeessbaesssbaesestassastasssstasesesssseesansessessessessessntassnsessnseens 607
Section 149.16: All classes are "new-style classes” in PUTNON 3 ..uiiiiieiereeeiieeenrerenierenrereseeeersressssesesssesesesesesssens 608
NYelaile]a NN VAN Rt=To [VIel=HIalo X [o]ale =T ae o1V 11 Ee] n 609
Section 149.18: ADSOIUtE/REIALIVE IMPOITS ivivvivierrirrerrereerrerereeereereereereereeseesessessessessessessersessesessersersessssessessessensonse 609
SECHON T49.19: MAD() treerrreeerrrerersreessrreessraresssseessesssssesessseessssessssssessssassssesesssssssssessssssesssssessssessssssesssssssssasesssasssssassssnes 611
Section 149.20: The round() function tie-breaking anNd retUrn tUDPE .uuivvcveeecieriiieeecieescceescieeseee e scie e seveeeeeveeeeane 612
SECHION T49. 21 FIIE 1/Q worteiiriiriiriirestestesteseeeeeeseessesseseeseeseesessessessessessessonsossessessessessessessessssessessessessersosensonsonsessessessens 613
Section 149.22: cmp function removed iN PUTNON 3uiiiieieiiieiieeerrereereeerreeeereeessseeessesesssesesssesesssesessssssessessnsens 613
Section 149.23: OCtAl CONSTANTS wiiiiveeierierreiieeriiereiteeerttesesteeseteessaeeseseeseasesessesssasesssssesssssessassesssssessasessessesssnsessssens 614
Section 149.24: Return value when writing 1O O file ODJECT wuiviiiiiiiieeiiiieeeecccreeeeeerereeeerrreeeesesreeeesesseeeesensensesenns 614
Section 149.25: exec statement is A fUNCHION IN PULNON 3 ..uviiiciiiiiiieerieeerieeerreecreeeesteeeseseeesresessesesssesesssesesssessnns 614
Section 149.26: encode/decode to hex No 1oNger AVAIIADBIE ..iiiciiiiciiieiiiicee et e e e s 615
Section 149.27: Dictionary Method ChANGES uiiiiiiiiiiiiiiiieinitecniee st ssreesrne e ssieeessraesssbeessteessssesssssassssaassnsaessnsens 616
Section 149.28: CIASS BOOIEAN VAIUE ...ueiiicreieriiereriteeerteresreeesreeessreesssseesesesesssssesasesesssesessesesssesesssssssssesessssesassessnsens 616
Section 149.29: hasattr function bug in PUTNON 2 ..uuiiiciiieiee ettt seie s scie e sevte s ssvte s sveesebeessavaesensaesessessnnes 617

ChApPter 150: 203 OO ...ttt bbb bbb bbb bbb bbbt s et s et sesaee 618
SeCtioN 150.1: BASIC USTOE tievreeeerserrereesssrrereesssssreeeesssseseesssssesesssssesessssssssessssssassssssssasssssssssssessssssasessssssassssssssasessssnns 618

Chapter 151: Non-official Python implementations ... esssesnens 620
SeCtioN 1511 IFONPULNON wiiiiiiiitiitesitssiteste st sseesstessreeseessessbeessessseesseesssasssaesseesssasssessssesssesssessssessseeseesssesssesssenses 620
Y=Terile]a T oY 172 V14 aT] o N OSSR 620
SECHON T51.3: TIONSCIUDT teerivreeesrreersrreessraressseeesssaessssessssseessssesessasesssssssssasssssesssssessssssssssssssssasssssasssssasssssasssssasssssassssnes 621

Chapter 152: ADStraCt SUNTAX trE@ ...ttt as s bbbt see 624
Section 152.1: Analyze functions in & PULNON SCIPT wiivieivieiiieereeriierieeneesireeseesssessseeseesssesssessssesssesssassssesssasssassses 624

Chapter 153: UNICOAEe ANA BULES ...ttt esae st eses st ss st es s s ssssassesassansens 626
Section 153.1: Encoding/decoding error NANAING ..iiiiveeeererrerrerereeeereereeeereersereesessessessessessessersossessessessessessesserens 626
SECHON T153.2: FIlE 1/Q stieieieiecteecteeeteste s steesteste s te e steesteasbeesaeestaasbaesatesstaesseessteasbaesseesstasssassssesstasssessssesssasssesssennes 626
SECHON T153.3: BAUSICS cuvveeeireeeeireeeseeeeiieeeiseresiseesssesesssesesssessasesssssesesssssssssesssssssssssesssssesssssessasesssssesssssesssssesesssessssessssees 627

Chapter 154: Python Serial Communication (PYSEriQl)cueeeneineeereenesseereeseessessessseesennne 629
Section 154.1: INIHIAlIZE SEIAI ABVICE iiiviiiiiiieiiiiieiieesirteseriee s eteessteessteessateessressssatessbeasssassssbessessesssssassssassssessnssees 629
Section 154.2: Read from SEIQI DOIT vuiivireeeriieeeriveeeiieeeieeeesseeessreeessseeerssesesssssessssesssssesssssesssssesssasesssesssssesssssassssssssnns 629
Section 154.3: Check what serial ports are available on Your MAChINEcviceervieriieeneeniienieeneessiesseessessseesseens 629

Chapter 155: Neo4j and Cypher USING PYZNEOeeeerereresesesesaesessaeseesessassassassassassassassassens 631

Section 155.1: ADdiNg NOJES 1O NEOA] GIOPN ciiiieeeiiiiiiiieetiiiiiiiccirrieee e eeeeeessssssssrteeeeseeeesessssssssssssssssseessssssssssssssees 631

Section 155.2: IMporting aNd AUTNENTICATING uevreiiiiiieiiiieeeecrreee e e e e s srre e e e e e e e s sessssasssssereeeseessssesssssssssnsneees 631

Section 155.3: Adding Relationships t0 NEO4] GIrOPN .iiiicveiiieeiiiieerniieeiinieessieessiieesssseesssesssesssssasssssasssssasssssesssssaes 631
Section 155.4: Query 1: Autocomplete 0N NEWS TIIES ..iiiviiiiiieivieirieinieeniesseesee e sseeseesreeesseeseesssesssesseesssasssaeses 631
Section 155.5: Query 2 : Get News Articles by Location on a particular datecceeeecceeecceeeecieeeceen e eecieeeeeen 632
Section 155.6: CYpher QUEIY SAMIPIES ..civvercierieeriieereesieesieesrteseesereesseeseessreeseessessseeseessssssseesssesssessseesssesssassseesas 632
Chapter 156: Basic CUrses With PUthON ...ttt sssssssens 633
Section 156.1: The wrapper() Nelper TUNCHION .iiviiiciiiieiieiceesie st ssee e ssresseeseessteeseessessseesseesssesssessressssasssaessnesns 633
Section 156.2: Basic INVOCATION EXAMIPIE ..vivcveerierrriieiieniiersieeseesisessseeseesssessseesssesssesssessssesssesssassssssssassssesssssssesssess 633
Chapter 157: Templates in PULNON ...ttt ses st s bbb ssssssssens 634
Section 157.1: Simple data output program USING tEMPIALE .ivcvereereereerrerieereeneeriesieesseseessessesssessesssesasssesesssesses 634
Section 157.2: ChANQING AEIMITEL cuviriirrterrirreerrereesereeeresteseeees e st esresees e seessesaeesseeneessesaeessesnsessesneesesasessesneesesnes 634
CRAPLEE 158: PIllOW ...ttt ssssss s sassss s s ssssss s ssssssssssssssssassssssssanssnssnses 635
Section 158.1: ReAd IMAGE FIlE ivvvirciirreeriirririertersieeieesstessseestesssessseesseesssessseesssesssassseesssesssessssesssessssesssesssesseesssesnes 635
Section 158.2: CONVErt fIleS 10 JPEG iiiiiviiiiiiiesiiesitecte st ssieescteesveesseestessseesae s bassseesssessassseesnsesssessssssssesssessnsesnses 635
Chapter 159: The pass StALEMENT ...t ssss st ssss s sssssssens 636
Section 159.1: IgNOre AN EXCEPTION .eirveerrerreeceerersrerteseeseeseeseessesteeesseessestessessassesseessessteneessesssssssensessesssessesnsessasnes 636
Section 159.2: Create a new Exception that can Be CAUGNT ..uiiiiiieiiviiiiciee sttt s see e e svae s sveesevees 636
Chapter 160: CLI subcommands with precise help OUtPUL ..., 637
Section 160.1: Native WAy (NO lIDFAMIES) .uivvvecrerreerrerieerieneeniesieessesieessesasssesseessessasssessasssessasssessasssessasssessasssessasssessasses 637
Section 160.2: argparse (default help fFOrMAOTIEN) it esne s 637
Section 160.3: argparse (Custom help FOrMOIEN) .iivviiciirierrierreerierieenee e ssreeseesseessreeseessessseesseesssessseesssesssasne 638
Chapter 161: DALADASE ACCESS ...ttt sss s s s s s s b s e s sssssassesesenssasassesesans 640
SECHON TOLT: SOLITE uvvervrreersreeersrreerireerssseeessseesssseesssseessssessssesssssssssasesssesssssesssssssssssesssssasssssessssssssssssesssasssssasesssasssssans 640
Section 161.2: Accessing MySQOL database using MUSOLAD ..c.cecveeiiviiniiniinininiiincnencrerereecrereeeeeeee e 645
SecCtion T161.3: CONNECTION .uivvvererrerreerrrerseesseessseesseesseesssesseesseesssessseesssessssssseesssesssasssessssesssessseesssssssaesssessssssssesssesssassses 646
Section 161.4: PostgreSQL Database access USING PSUCOPTZ uverurerereereesreessreeseesssessesseesssessassssesssessassssssssassses 647
Section 161.5: Oracle dOtADASE ..iiviiiiiiviiiiiiniereereeste sttt e st ssreesrtesstessbaessessseessaesssesssaesssesssesssaesssesssesssaessesssaens 648
Section 161.6: USING SAIAICREMY trverereirierrieriieenitesieeseeseesteesseeseesressseeseesssessseeseesssssssesssssssssssesssesssasssesssesssessnes 649
Chapter 162: Connecting PYthon tO SQL SEIVEI ... sissesssssssss s ssssssssssssssssns 651
Section 162.1: Connect to Server, Create Table, QUErY DOO icvvviieeveerveerieinieesieesseeseesseesssessessssesssessessssesssasssees 651
Chapter 163: POSTOIE@SQLcooiririririneerensensessessessesssassessssssssns 652
Section 163.1: GETHING STAMEA ..iiiviirriirieerirerieritesiteeseeseesste et e saessseesseessessseesseesssessseesssesssesssessssessseesseesssessseessaessses 652
Chapter 164: PUthon AQNA EXCEI ...t sssssssssssssssssssssssssssssssssssssns 653
Section 164.1: Read the excel data uSiNg XIrd MOAUIE ...ccuveriieieerrienrieseenreereeseessreeseeseesreeseessessseesseesssessneesses 653
Section 164.2: Format EXcel fileS With XISXWIITET .iiiiiiviiiiieniieriiiiieeseesieeseesssessseeseessssssseessesssessseesssesssasssesssesssaens 653
Section 164.3: Put list data intO A EXCEI'S fIlE .iivviirviiririirriiriieiitirieniessec e st eseesressreeseesbessbeesaeessessseessnesssassneesses 654
SECHION 164.4: OPENPUXL uvercreereerieerereesieesireesreesieesesessseesseesssessseesssssssesseesssesssesssssssssssesssssssssssseesssesssessseesssesssassnsesas 655
Section 164.5: Create excel Charts With XISXWIIEE ivvuiiveiiveeiveiiieisieesresseeseesrresseeseesssesssessessssesssessessssesssesssaesnnes 655
Chapter 165: TUrtle GrAPIICS ...ttt s sssssssssssssssssssssssssssssnssnsans 658
Section 165.1: Ninja Twist (TUItle GIrAPNICS) tiveieveerrreeseenieersreeseesssessseeseesssessseesseesssessaesssesssssssassssssssassssesssssssassaess 658
Chapter 166: PYthON PEISISTENCE ...ttt ssssssessssssssssssassasssnes 659
Section 166.1: PUtNON PEISISTENCE ..iivivcriireerieerceereesieeeteseesreeseeseesseesseesesssesssesssessseessesssessseessessssssseesssssssassn 659
Section 166.2: Function utility for SaVe aNd 10O ...iiiciiiieiivieiiiineeiieiseeseesresseeseesssessseeseesssesssesssesssassseesssssssassns 660
Chapter 167: DeSIGN PALLEINS ... ssnes 661
Section 167.1: Introduction to design patterns and SiNgleton PAtTEIrN .cuieeceevecieiscieeecieescree et s e s evee s 661
Section 167.2: StrateQU POTIEIN ciiircierierierceeree st seee e st et e seesre st e seesreesaeesaeesssaesseesasesssaesneesasessssesneesasessneennes 663
SECHON TO7.3: PIOXU weerereereerserrereersterasesastesseesaseesseesaeesaseesseesaeesastesseessesesteseesasessseeseesasessseesneesaseeseesneesasnesneesneesaneesnes 664

CRAPLEE 168: NASKIID ...t e e et et e et et ees e seateeseessaesesseseateesseaeateseseasaeessnsseeseeneaseennens 666

Section 168.1: MD5 NOSN OF G STING wueiiiiiiiiiiiieeciirteee et eeeeeeesre e e et e e sesssssssssseereeeeeessssessssssssssessesssessssssssssssssnrnnees 666

Section 168.2: algorithm provided DY OPENSSL ..iiicvieiiiiieeiirieeeiieesieeesineesieesssieessssesssssessssassssssessssasssssasssssasssssassns 667
Chapter 169: Creating a Windows service using PUthON ..., 668
Section 169.1: A Python script that Can De rUN AS 0 SEIVICE .uiviiiiiieeeeieeeiireeerreresireeerreeesseesrnreessseeesssesesssesesssesens 668
Section 169.2: Running a Flask web application AS 0 SEIVICE .iiiiiicieiiiieeeiieesiteeeeiieeseieeseieesesesssseessssesssaseessnvens 669
Chapter 170: Mutable vs Immutable (and Hashable) in Python ... 670
Section 170.1: Mutable VS IMMUIADIE iiiiiiivieiiiieeiiiteiiee e esrieessrieessrieessseesssbeesssaeesssaesssesssssasssssessssassssanssnssasssans 670
Section 170.2: Mutable and ImmMutable aS ArQUIMENTS iccieeeceeeiireeeiiererireeerreeeseeessseeesssesesssesesssesesssesessssessssesssens 672
Chapter 171: CONFIGPAISEI ...t et as bbb bbb e bt ae bt en e b aes 674
Section 171.1: Creating configuration file programMmMAtICAIY .veeeeiiereeeiiniiereeniiereesiriereeserreeeeesssseeeesssssassessssens 674
SECHION 171.2: BASIC USOUE tereierrrereeresrrrereessrrreeeessssseseesssssesessssssesssssssssssesssssssssssssssasessssssassssssssssssssssssnssssssssssssssssasessss 674
Chapter 172: Optical Character ReCOGNILION ...ttt b s s aens 675
SECHION 172.1: PUTESSEIUCT tttiseirrririreiseesiresseesssessseeseesssesssesssesssesssessssesssesssessssesssesssesssesssessssessseessesssesssessssesssessses 675
SECHON 172.2: PUDCR cutiiiciteeciteesciteeesttessveessteesetesseateeseseaesastessnbessansesssssessassasssssessnssesssstessnstessnsessensessassessensessssessnns 675
Chapter 173: Virtual @NVIFONMENTES ...ttt st sssssssssssssssssssesasssssssses 677
Section 173.1: Creating and UsiNg A Virtual ENVIFONMENT ..uviivveeirreeeirereerreeerireressseeesseesssssesssssesssssesssasesssssssssessssens 677
Section 173.2: Specifying specific python version to use in script 0N UNIX/LINUX .ueeveeecveerreesieeesreeneesseeesseereeens 679
Section 173.3: Creating a virtual environment for a different version of pUthoNcveeveviieeeeinciereeieee e 679
Section 173.4: Making virtual environments USING ANGCONAG cvvuveeeiveeervreeieeennreressseeersseressseeorsseeersssesssasesssasesssene 679
Section 173.5: Managing multiple virtual environments with virtualeNVWIrappRErccveceeeeceeeeceeeecieeeceeeeereeeeane 680
Section 173.6: Installing packages in d Virtual ENVIFONMENT wiiviciveeeeieiireereeiiriereeniireeeessssseeeesessessessssssesessssssssssnns 681
Section 173.7: Discovering which virtual environment YOU Ore USING wieceveeerrreeerrveeerueeersveesssesesssesessseserssesesssseonsns 682
Section 173.8: Checking if running inside a Virtual ENVIFONMENT ..uiieciieeeceereieeeeieeeeieeecrreescreeeesreeesseeesseesesseesnnns 683
Section 173.9: Using virtualenv With fiSh SREIl ..iiiiiiiiieiiiieiiciiccieecies e ree s ebe e s tee s ebee s staesnsvessnneas 683
Chapter 174: Python Virtual Environment - VIrtUQIENV ... ssenans 685
SeCtioN 1741 INSTAIGTION uviivieicieiseeirieeceestestesseestesteeseeseesteessaesaee s taessaessteasaessessntesssesssnessesssessnsesssassseessesssassns 685
SECHION T74.2:. USTUGE ciiecirieiieecitteeieiiteeeseiittteesseisaeeesessssesessesssesessessssssessessseessesssseesssssssesessessssssessessseeessnsssseessssssenessenns 685
Section 174.3: Install a package in YOUL VIrtUGIENY uiiiiiieiivieeiiieeiiieeennessiseessnieessssessssseessssssssssessssesssssassssesssssaes 685
Section 174.4: Other useful VirtudlenV COMMUONGAS wiiicivvercrererireeerreeeireeenreeesisesesssesesssesesssesesssesesssessssssesssasesssasessens 686
Chapter 175: Virtual environment with virtualenVwWrappereecnereeseeseenenens 687
Section 175.1: Create virtual environment with VirtUGIENVWIQDPEL ..viiicieeieiieeeieeeciee et e eceeeecree s sreeeesreesereesenes 687
Chapter 176: Create virtual environment with virtualenvwrapper in windows 689
Section 176.1: Virtual environment with virtualenvwrapper fOr WiNAOWSccveveeecrieeeererveeeenscreeeeessseeeessssseeeeeses 689
CRAPLEE 1772 SUS ..ottt bbbt bbb bbbt bbb bbbt bas bbb asbebasaebebasbebesanbenans 690
Section 177.1: ComMMANd [iN€ ArQUIMENTS 1evvveeeeireeerreeeiieeeeieeesireeessreressseserssesesssesssssessssssesssssesssssesssssesssssssssessssssessnns 690
Y=Terile]a N WAV R Yol aTo]l aTe] n = PSR 690
Section 177.3: StANAArd IO STFEAM vvvieiiivieerireeiiiteesrteesieessiteesssseessrseesssssesssasesssesesssasssssesssssasssssessssasssssasssssasssssans 690
Section 177.4: Ending the process prematurely and returning an eXit COAE .uiivmirinrvrirrreeeireenieeerireeersreressseeennne 690
Chapter 178: ChemPy - python PACKAQE ...ttt st esas s es st esassaes 691
Section 178.1: PArSING fOMMUIGE .iiiiiieicieiecieeecie ettt eectte s etee s e te e setteesebte s s sbee s sbeesenbeeesnbessesbaesestesssenssnstessnsenssseesansens 691
Section 178.2: Balancing stoichiometry of a chemical reaCtionicccceeceiceecieeceecee e esre e e 691
Section 178.3: BAIANCING FEACTIONS ..veveeiererireeeeieeereeeeieeeeeseeesiseeesssesesssseesssesssssessssssssssesesssesesssssesssesesssasssssasessssessnns 691
NYeleuile]a 4SRRI @ a 1= aallele] I =Yo TUT] |1 oY a1 U 692
Section 178.5: IONIC SIFENGLN it cicce ettt ste e be e st e s te s be e st esteesbaesrtessbaesbaesatesnbaesseesatesssassseesnsennses 692
Section 178.6: Chemical kinetics (system of ordinary differential eqUAtioNS) ...ccccecceeeecreeerceeeeceeerieeeeeeeeereeeane 692
ChAPLer 179: PUGAME ...ttt s bbb as bbb bbb e bbb as bbb s bt as bbb e bbb e bt s et st en s sas 694
Section 179.1: PUgAME'S MIXEI MOAUIE .uiiiivieeiiieeiiieeeiieesiteeesieessireesesieessseesssseesssesesssesssssesssssesssssessssssssssasssasesssnsens 694

Section 179.2: INStAIING PUGAME .iiivciveereiiirreeeiiiiteeeeiserereessssereesssssseeesssssssesessssssssessssssssessssssssessssssssssssssssssssssssssessnn 695

CRAPLEE T80: PUGIET ...ttt et e e e ete e e e e s ats e s e e stseseataeesessaseeseensatsessesatesseeasatessnsasaeseseaseannens 696

Section 180.1: INStAllAtiON Of PUGIET ivciiiieiriiiriieiieinieriiteseesriesseeseessseesseessessseesseesssssseesssesssesssesssssssesssassssssssesssaess 696
Section 180.2: HEllO WOIIA IN PUGIET ivcvireereieriiereeeneeseessieeseesteesseesseesssessseeseesssessseesessssesssesssssssessseesssesssassseessses 696
Section 180.3: PIaying SOUNA IN PUGIET .uiirveeivieiieinieesiieeseesireeseeseesssessseessesssesssesssssssesssssssssssassssssssesssessssesssasssasns 696
Section 180.4: Using PYGIEt FOr OPENGL vivieirieerrrerreeriteriieeseessiessreesieesssessseesssesssesssessssesssesssessssesssessssesssesssasssaesss 696
Section 180.5: Drawing Points Using Pyglet aNd OPENGL viivivieeiivieeiiieeriieesineesieessinesssseessisesssssessssssssssasssssassssens 696
ChAPLEr 181: AUGIOoceierieerieee ettt ss s s s s s s ss s se s st s st s sasssnsessssnsessssnsassssans 698
Section 181.1: WOrking With WAV FIIES .uiiiiiiiiiriiiieiieises st sseeseeste st s seesstesstessaeessesssesssessssesssessnsesssasssnssnsesssessses 698
Section 181.2: Convert any soundfile with python and fIMPEg ccceiieieeiciieicicccee e e ee e eaes 698
Section 181.3: PIAYING WINAOWS' DEEPS weuverreereerrerrreresreesesseesesssesasssessasssesasssessesssessesssessasssessasssessasssessasssessasssassasss 698
Section 181.4: AUIO WIth PUGIET ..eeceeriierierrireerierteseseesestes e seesse st e e sees e st essesaeessesueessesueessesasessesaeessesseessesneessesnes 699
Chapter 182: PUAUAIOccovriririnierienrineinieniessessssessnes 700
Section 182.1: Callback MOde AUAIO I/Q ecuiirveercieereerieriieeneesstessreeseesssessseesseesssessseesssesssssssassssesssessseesssesssasssaesssasne 700
Section 182.2: BIocking MOdE AUTIO I/Q uviiireeerirrenrisresrensessessessessessessesesseseeseeseesessessessessessessessessessessessessessessesseses 701
ChAPLer 183: SNEIVE ...t s bbb s bbbt senstes 703
Section 183.1: Creating A NEW SHEIT ...ioiiiiiiecerterertecest ettt st esee st et st e s st e s e s st e sssaeessesmeensesaeessesnens 703
Section 183.2: SAMPIE COAE FOr SNEIVE .iiviirciirriirieriieree sttt ste st seesteesreeseesbessseesseesssessseesssessassseesssesseenses 704
Section 183.3: To summarize the interface (key is a string, data is an arbitrary object): ...vceeeeerveeceescvennens 704
SeCtioN 183.4: WITE-DACK .uiiiviiiciiiiiiriieiitiniteiseeste st st eseesress e e ssesstesssaessae s baessaesssesssaessaessseessaesssesssaesseessseesseesseens 704
Chapter 184: |1oT Programming with Python and Raspberry Plncencneceieinnnnn. 706
Section 184.1: ExXample - TEMPEIAtUIE SENSOI vivvieceerreersreesreerssessreeseessseesseesssssssssssassssssssssssassssssssassssesssssssasssssssses 706
Chapter 185: kivy - Cross-platform Python Framework for NUI Development 709
SECHON T85.1: FIIST ADID teuveeritteritieiitee it ittt st s et e st seste e st e sbae s sabt e sebteses bt e samatesesasessaessbesesasaeseabaesensaesansaesaneaas 709
Chapter 186: Pandas Transform: Preform operations on groups and concatenate the
FESUIES ..ottt et s bR b et e R A e R AR R b e n R st en 711
Section 186.1: SIMPIE trANSTOIM wiiviiiviiiieirieeiierreesrre sttt st e sreesstees e e sae s beessaesssesssaessaessseessaesssesssessseesssessseessaeen 711
Section 186.2: MUIIDIE rESUILS DEI GIOUD cuverevercreerrerrrreeseesseessseesseessseesseessesssssssseessssssssessaesssssssassssssssssssssssssssssessaess 712
Chapter 187: Similarities in syntax, Differences in meaning: Python vs. JavaScript 713
SeCtioN 187.1: IN" WD TISES wevcverierseereereeriensieseeteseesteseeteseetesseessesseessessasssesssessessasssesseessesssessessasssesnsessessasssessessesnes 713
Chapter 188: Call PUthon from CH ...ttt ssssnssssans 714
Section 188.1: Python script to be called by CH APPIICATION vviivvvervreenreeriierieeritersieeseessessieeseesssessseesseesssesssaessaesns 714
Section 188.2: C# code calling PULNON SCIDT vivcvercierieerrierieerieesiteeseesseessressseesseessseeseesssessseesseesssesssessssssssssssessssesane 714
ChAPLEr 189: CLUPES ...ttt sttt st ass s s s ss b s ss s s ss s n s s s s ensnsanses 716
SECHION 189.1: CLUDES QITAUS wreerreerreerereereeraeerereesseesareesstesaeesaseesseesasssaseeseesasessseesseesasessseesssesaseesseesaseseseesseesssessseesseesas 716
Section 189.2: Wrapping fUNCLIONS fOr CLUDES viiveervierieinieeriieineeneesiteeseesssessseeseesssessseessaesssesssessssesssesssesssassssassn 716
SECHON 189.3: BASIC USOUE cuuvteririeriteeritresitesaistessistesesteseteesesssesaseessastsssastesenstssanstesanssesanesesasessaseesssstessnseesanseesanens 717
Section 189.4: COMMON PITFAIIS cverveerrirreererreerieritesrtsstesrestesresseesseseesseseesseseesessessssseessessassseseessessssssessasssssssensessans 717
Section 189.5: BASIC CIUPES ODJECT .uiirvierveirreirrierieesiteritesseesieesssesseesseesssessseesssesssesseesssesssesssessssesssesssessssessseessasssses 718
Section 189.6: COMPIEX USATE ueervverrreerreersreesreerseesareeseesssessseesseesssssssaessessssesssessasesssessseessssssssssseesssesssassssssssassseesssesas 719
Chapter 190: Writing @XtENSIONS ...t sssessssnens 720
Section 190.1: Hello World With C EXIENSION .uuiiveiceerveeireenieesieesseeseesisessesseesssessessessssssssassessssasssassssesssassassssasn 720
Section 190.2: C Extension USiNg C++ AN BOOST wivcvirvieirreeriieeseeniiersieeseesssesseeseesssessseesssesssessseesssssssssssassssssssesssaess 720
Section 190.3: Passing an open file t0 C EXTENSIONS ..ivvvererveererreenenieesesreesesseessesieesessesssessesssesseessessasssessasssessesses 722
Chapter 191: PULRON LEX=YACCccccvuvireririreisirirsisesiseesssesssssssssssses 723
Section 191.1: Getting StArted WIth PLY ittt ssiesseestessvesseesstessseesssesssaessaesssssssassssssssasssessssesssesssness 723
Section 191.2: The "Hello, World!" of PLY - A SImple CAlCUIATON ..iiiiiiiiiiiieecieeiiieeeseee e sesveesereeseveessseesesseesenens 723
Section 191.3: Part 1. Tokenizing INPUL WItN LEX cvuuiiviiivieeiiesiieiieeseesieesieeseesteesseessesssesssaesssssssesssessnsesssesssssssesssesas 725

Section 191.4: Part 2: Parsing Tokenized INPUT With YOCC i eeeeirirrreteee e e e e s s s sssssssrreseeeessesssssnnnns 728

ChAPLEr 192: UNIE TEOSTING ..ot e et et e e e eteee e eateeseseeaseeseeeaseassessaseseesasassessesatesssessasessssanaesseneann 732

Section 192.1: Test Setup and Teardown within @ UNitteSt. TESTCASE .iivevierrciereeieeeiieeeieeeerreseeeesereesesreeesveesevees 732
Section 192.2: Asserting ON EXCEPTIONS .uiiiiivieiiiieeeiieeiniieeesieessiieesssseessisesssesssssaessssasssssasssssesssssasssssesssssassssasssssasssnne 732
Section 192.3: TEStING EXCEPTIONS vivevrverrrreerereeersrerersreeesseressseessssesssssssssssessssesssssssessesssssssssssssssssasssssssssssasssnssessssasssne 733
Section 192.4: Choosing Assertions Within UNITTESTIS .uiiiicieieiiieiiiieeecieeecieeeciesestee e e sreese e e seeeesesseesseesssseessaveesensens 734
Section 192.5: UNit eSS WIh PUTEST wiiiivieiiiiiiiiiiieiiieesiteesseessieessieessseessareessseesssneesssasssssassssasssssassssesssssasssanssnne 735
Section 192.6: Mocking functions with unittest.Mock.Create QUIOSPEC ...uvivvveeiceeeeiereritererreeeereeerreeeeeeeenneee e 738
ChAPLEr 193: PU.LEST ...ttt b st bbbt as bbbt bbb e bbb e bbb as bbb e bt n et st 740
Section 193.1: SEHNG UD PULEST ciiiiiiiiiciiiieeiictressesiee e s serteee s sesteee e s sebtee e sesabbeeessssbasessesssanesssssseneessssenaessssssanessnns 740
Section 193.2: INTr0 1O TEST FIXIUIES wiiivieiiriieerivieeriieesieeessieeesiseeessiesesssnssssesssssnssssesssssssssssessssesssssasssssasssssasesssessnsaes 740
Section 193.3: FAIlING TESES wiivvrerrreirvrerieesraesireeseesssesssesseesssesssesssesssesssessssesssesssessssesssessssesssesssessssesssesssessssesssessssessses 743
ChApPter 194: ProfiliNg ...ttt e ae st as bbb e bbb as bbb e st sas e 745
Section 194.1: %%timeit and %tiMEit iN IPUTNON iiiiiiiiicieecciec sttt scie e s see s ssvte e sebee s sbee s ebeesebeesesbaesans 745
Section 194.2: Using cProfile (Preferred Profiler) ..iiieieiiesceesiesciessee e ssiessseeseesssesssasssesssesssessnsesssessnes 745
Section 194.3: tiMEIt() FTUNCHION tiiviiiiieiicierieineersiesseesee e st e seessre s st e seessvessseeseessbassseesssesssasssessnsesssesssessssessseessaesnses 745
Section 194.4: timeit COMMANGA INE ciiciiiiiiiiiiieicireeceeseeesete e ssre e e ste s sbee s esbeesssbeesebeesssseesesbaesastassessassnssassnssessnsees 746
Section 194.5: line_profiler in COMMANGA INE uviiiiereirieeeiirererieeerreeereeeenreresisesessresessseserssesessssessssessssssesssasesssesorsrens 746
Chapter 195: Python speed Of Program ...t sesss s sas e ss s sassesans 747
Section 195.1: DEQUE OPEITTIONS ecvteeereeirrreereerrrrrersesrreresseassteeessesseeesseesssreessssssesessesssesessssssssessssssssessessssnsessessseneessnnes 747
Section 195.2: AIGOrithmiC NOTATIONS icueiiiveeiiiieiiiieeiiieesiteessteesseeessae e ssbee s e baessbeesesbaesssbaesastaessssesssssessnsenssnseessnsens 747
SECHON 195.3: NOTATION teirvrererrrreersreeesrueesssseersrseessseessssesssasessssessssesssssssssssessssasssssssesssesssssasssssesssssesssssesssssessssasesssasessne 748
SeCtion 195.4: LiST OPEIATIONS tiecvuieeiieeiereeieeiireereeitreessesaeeeseesssteesasasseressessssnessassssesssssssenessessssesessesssssessessssaesssssseneses 749
SeCtion 195.5: SET OPEIATIONS wiiivieiiivieerirereriieeeieereseeseiseesssteesssesssssessssesssssesssssessssseessssessssssssssesssssesssssesssssesssssassssens 749
Chapter 196: Performance OptimiZAtion ...t s s senes 751
Section 196.1: COAE PIOFIlING wivviiirieiieerieerieesee st sieeseesreessteesaeseessseessessssesssessseesssasssassseessesssessessssesssesssesssesssessnses 751
Chapter 197: Security and CryptOgrAPRy ...ttt esae b san b 753
Section 197.1: Secure PASSWOIrd HASNING wieiccieiieiiieiiieeeciee et sesttesesteeseteeseiesseseeeseveesesseesssessensesssssessessesssssessssseenans 753
Section 197.2: Calculating MeSSAGE DIGEST uvierivieeiivieeririeeiniteesieersneessiieesssieessssesssssessssesssssasssssesssssasssssnssnssassssnes 753
Section 197.3: Avdilable Hashing AIJOITNMIS .vuiiiieeeririrerireeerreeerreesrresereeeereeessreeessresessesessesesssesesssesesssesssssesssens 753
Section 197.4: FIle HASNING ccitieeiiiiiieieiieieiee st e sttt eecte e sbee s e svee s sveesenteeseste e s steesabeeesasesesnbesasnsessassaeasntessssenssaseessnsens 754
Section 197.5: Generating RSA signatures USING PUCITUDPTO wiveiirivreeerrirrrneeersireeeeesssireresssssseseesssssnsessssssssessssssanesssns 754
Section 197.6: Asymmetric RSA encryption USING PUCIUDRTO wevveecvreeieeiereereeciereesesiseeeesssseeessessssseessssssensssessssnsesens 755
Section 197.7: Symmetric encryption USING PUCITUDPTO wuiieiieiiiererieiiireeieiitressesirneessssseeesssssesessssssenessessssnssssssssesesses 756
Chapter 198: Secure Shell Connection iN PYtRON ... 757
SeCtion 198.1: SSN CONNECTION tivviviiivieeiiiieeisreesireesieeesseesssseesssteesssseessseessssasssssaessssesssssessssesssssesssssesssseesssseessssasssnsans 757
Chapter 199: PUthON ANti-PAtIEINS ...ttt s sttt aee 758
Section 199.1: Overzealous EXCEPT CIAUSE wiiiiiiiiiereeiererirererireresreeeieeeesseeesisesesssesesssesesssesesssssssssessssssssssssesssssesssesess 758
Section 199.2: Looking before you leap with processor-intensive TUNCHION ...uviiiieeeeiiiereeiiieeeeeiieeeeennveeeeon 758
Chapter 200: COMMON PItFAIISoooioieee et bbbt bbb bbbt 760
Section 200.1: List multiplication and COMMON FEfErENCES .uuiiivieiriiererieeenieernrireesireessrieesssseesssneessseessssaessssassssnes 760
Section 200.2: Mutable default ArQUMENT .uiiiiieiecieeeieeecee e e e e s eere e e reessreeesebeeesbesesssasesssesssssesessssesasseesnsens 763
Section 200.3: Changing the sequence You are iterating OVEL ..iiiivieicceererieeseiieeseieeesieesseesessesssssessessesssssesssnsees 764
Section 200.4: Integer aNd StrNG IJENTIEY covvecveeerieeieriieeireieeseeesesseesstessreeseessseesseeseesssesssesssesssesssesssesssessneesnses 767
Section 200.5: DictioNaries Are UNOIAEIEA .iiiviviiiceeecieeeeieeeieeeeireeesereeessesessseeesssesesssesesssessssesessssesssssssssesesasessssens 768
Section 200.6: Variable leaking in list comprehensions and fOr I0OPS .iivieeiieicieeeeiiiieerecniriereesrteeeesereeeeesnnnes 769
Section 200.7: ChAINING Of OF OEITLON .uuiiiirereerreeerireeeriereerveesireesseressseserssasesssssorssesessssssssssesssssesssasessssssrssasesssassrsns 769
Section 200.8: sys.argv[0] is the name of the file being EXECULE ...uiivviveeciieeiciee et 770
Section 200.9: Accessing int [Iterals’ ttrDULES ciiiiiiiiiiiiiciee sttt srre e ssre s ssre e esre s e stae s sbee s e bee s sbae s ataessavessnsaas 770

Section 200.10: Global Interpreter Lock (GIL) and bIOCKING thIrEQAS auuveeeieeeiieiiiiiiiiirrrereeeeeeeeeesisissrereeeeeeessssssssnns 771

Section 200.1T: MUIDIE FETUIN auueeiieeiieiiiieee ettt et e e e eeeesbar e e e e eessseeessassbs s e e reeseeesssesssssssssseeessasssssesssnssssrnrsaesessns 772

Section 200.12: PYThONIC JSON KEUS .uvererrecreerrerrireeseesirresseesseessssesseesssesssaesseesssssssessssesssssssessssesssassssesssssssassseessssssses 772
Chapter 201: HIAAEN FEALUIES ...ttt sssssssssssssssssssssssssssssssssssssesssssssssssssssnens 774
Section 201.1: Operator OVEIIOATING ..eeveererreererreererseessesseessesseessesseessesseessesseessesseessesseessesseessesssessesssessessaessessasssesses 774
CFEAILS ...ttt sttt b st st s bbb eSSt s e eSSt R AR R AR bbbt s 775

YOU MAY QISO LIKE ...ttt et e et ate e e et aeseseas et seeseaseeeseseasesesesaseessensatsssseasasesessasaaeseasasetseeneannessens 788

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:
http://GoalKicker.com/PythonBook

This Python® Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end
of this book whom contributed to the various chapters. Images may be copyright

of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Python® group(s) or company(s) nor Stack Overflow. All
trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

GoalKicker.com -

Python® Notes for Professionals

http://goalkicker.com/PythonBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 1. Getting started with Python
Language

Version Release Date
3.7] 2017-05-08

—

3.6 2016-12-23
3.5 2015-09-13
3.4 2014-03-17
3.3 2012-09-29
3.2 2011-02-20
3.1 2009-06-26
3.0 2008-12-03
Python 2.x

Version Release Date
2.7 2010-07-03
2.6 2008-10-02
2.5 2006-09-19

24 2004-11-30
2.3 2003-07-29
2.2 2001-12-21
2.1 2001-04-15
2.0 2000-10-16

Section 1.1: Getting Started

Python is a widely used high-level programming language for general-purpose programming, created by Guido van
Rossum and first released in 1991. Python features a dynamic type system and automatic memory management
and supports multiple programming paradigms, including object-oriented, imperative, functional programming,
and procedural styles. It has a large and comprehensive standard library.

Two major versions of Python are currently in active use:

e Python 3.x is the current version and is under active development.
¢ Python 2.x is the legacy version and will receive only security updates until 2020. No new features will be
implemented. Note that many projects still use Python 2, although migrating to Python 3 is getting easier.

You can download and install either version of Python here. See Python 3 vs. Python 2 for a comparison between
them. In addition, some third-parties offer re-packaged versions of Python that add commonly used libraries and
other features to ease setup for common use cases, such as math, data analysis or scientific use. See the list at the
official site.

Verify if Python is installed

To confirm that Python was installed correctly, you can verify that by running the following command in your
favorite terminal (If you are using Windows OS, you need to add path of python to the environment variable before
using it in command prompt):

$ python --version

Python 3.x version = 3.0

If you have Python 3 installed, and it is your default version (see Troubleshooting for more details) you should see

GoalKicker.com - Python® Notes for Professionals 2

https://www.python.org/downloads/release/python-360/
https://www.python.org/downloads/release/python-350/
https://www.python.org/download/releases/3.4.0/
https://www.python.org/download/releases/3.3.0/
https://www.python.org/download/releases/3.2/
https://www.python.org/download/releases/3.1/
https://www.python.org/download/releases/3.0/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.6/
https://www.python.org/download/releases/2.5/
https://www.python.org/download/releases/2.4/
https://www.python.org/download/releases/2.3/
https://www.python.org/download/releases/2.2/
https://www.python.org/download/releases/2.1/
https://www.python.org/download/releases/2.0/
https://www.python.org/downloads/
https://www.python.org/download/alternatives/
https://www.python.org/download/alternatives/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

something like this:

$ python --version
Python 3.6.0

Python 2.x version = 2.7

If you have Python 2 installed, and it is your default version (see Troubleshooting for more details) you should see
something like this:

$ python --version
Python 2.7.13

If you have installed Python 3, but § python --version outputs a Python 2 version, you also have Python 2
installed. This is often the case on MacOS, and many Linux distributions. Use $ python3 instead to explicitly use the
Python 3 interpreter.

Hello, World in Python using IDLE
IDLE is a simple editor for Python, that comes bundled with Python.
How to create Hello, World program in IDLE

e Open IDLE on your system of choice.
o In older versions of Windows, it can be found at A11 Programs under the Windows menu.
o In Windows 8+, search for IDLE or find it in the apps that are present in your system.
o On Unix-based (including Mac) systems you can open it from the shell by typing $ idle
python_file.py.
¢ It will open a shell with options along the top.

In the shell, there is a prompt of three right angle brackets:

Now write the following code in the prompt:

("Hello, World")

Hit| Enter |

("Hello, World")
Hello, World

Hello World Python file
Create a new file hello.py that contains the following line:

Python 3.x Version = 3.0
('Hello, World")

Python 2.x vVersion = 2.6

You can use the Python 3 function in Python 2 with the following statement:

__future__ print_function

GoalKicker.com - Python® Notes for Professionals 3

https://docs.python.org/2/library/idle.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Python 2 has a number of functionalities that can be optionally imported from Python 3 using the __future__
module, as discussed here.

Python 2.x version = 2.7

If using Python 2, you may also type the line below. Note that this is not valid in Python 3 and thus not
recommended because it reduces cross-version code compatibility.

'Hello, World'

In your terminal, navigate to the directory containing the file hello.py.

Type python hello.py, then hit the key.

$ python hello.py
Hello, World

You should see Hello, World printed to the console.

You can also substitute hello.py with the path to your file. For example, if you have the file in your home directory
and your user is "user" on Linux, you can type python /home/user/hello.py.

Launch an interactive Python shell

By executing (running) the python command in your terminal, you are presented with an interactive Python shell.
This is also known as the Python Interpreter or a REPL (for 'Read Evaluate Print Loop').

$ python

Python 2.7.12 (default, Jun 28 2016, 08:46:01)

[GCC 6.1.1 20160602] on linux

Type "help", "copyright", "credits" "license" more information.
'Hello, World'

Hello, World

If you want to run Python 3 from your terminal, execute the command python3.

$ python3

Python 3.6.0 (default, Jan 13 2017, 00:00:00)

[GCC 6.1.1 20160602] on linux

Type "help", "copyright", "credits" "license" more information.
('Hello, World')

Hello, World

Alternatively, start the interactive prompt and load file with python -i <file.py>.

In command line, run:

$ python -i hello.py
"Hello World"

There are multiple ways to close the Python shell:

exit()

GoalKicker.com - Python® Notes for Professionals 4

https://docs.python.org/3.6/tutorial/interpreter.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

or
quit()

Alternatively,| CTRL + D |will close the shell and put you back on your terminal's command line.

If you want to cancel a command you're in the middle of typing and get back to a clean command prompt, while

staying inside the Interpreter shell, use| CTRL + C |

Try an interactive Python shell online.

Other Online Shells
Various websites provide online access to Python shells.
Online shells may be useful for the following purposes:

¢ Run a small code snippet from a machine which lacks python installation(smartphones, tablets etc).
¢ Learn or teach basic Python.
¢ Solve online judge problems.

Examples:

Disclaimer: documentation author(s) are not affiliated with any resources listed below.

e https://www.python.org/shell/ - The online Python shell hosted by the official Python website.

e https://ideone.com/ - Widely used on the Net to illustrate code snippet behavior.

e https://repl.it/languages/python3 - Powerful and simple online compiler, IDE and interpreter. Code, compile,
and run code in Python.

o https://www.tutorialspoint.com/execute _python online.php - Full-featured UNIX shell, and a user-friendly
project explorer.

e http://rextester.com/l/python3_online_compiler - Simple and easy to use IDE which shows execution time

Run commands as a string

Python can be passed arbitrary code as a string in the shell:

$ python -c 'print("Hello, World")'
Hello, World

This can be useful when concatenating the results of scripts together in the shell.
Shells and Beyond

Package Management - The PyPA recommended tool for installing Python packages is PIP. To install, on your
command line execute pip install <the package name=. For instance, pip install numpy. (Note: On windows
you must add pip to your PATH environment variables. To avoid this, use python -m pip install <the package
name>)

Shells - So far, we have discussed different ways to run code using Python's native interactive shell. Shells use
Python's interpretive power for experimenting with code real-time. Alternative shells include IDLE - a pre-bundled
GUI, IPython - known for extending the interactive experience, etc.

Programs - For long-term storage you can save content to .py files and edit/execute them as scripts or programs

GoalKicker.com - Python® Notes for Professionals

https://www.python.org/shell/
https://www.python.org/shell/
https://ideone.com/
https://repl.it/languages/python3
https://www.tutorialspoint.com/execute_python_online.php
http://rextester.com/l/python3_online_compiler
https://pip.pypa.io/en/stable/
https://docs.python.org/3/library/idle.html
https://ipython.org/install.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

with external tools e.g. shell, IDEs (such as PyCharm), Jupyter notebooks, etc. Intermediate users may use these
tools; however, the methods discussed here are sufficient for getting started.

Python tutor allows you to step through Python code so you can visualize how the program will flow, and helps you
to understand where your program went wrong.

PEP8 defines guidelines for formatting Python code. Formatting code well is important so you can quickly read what
the code does.

Section 1.2: Creating variables and assigning values

To create a variable in Python, all you need to do is specify the variable name, and then assign a value to it.
<variable name> = <value>

Python uses = to assign values to variables. There's no need to declare a variable in advance (or to assign a data
type to it), assigning a value to a variable itself declares and initializes the variable with that value. There's no way to
declare a variable without assigning it an initial value.

Integer

a 2
print(a)

Output: 2

Integer

b 9223372036854775807
print(b)

Output: 9223372036854775807

Floating point
pi 3.14
print(pi)

Output: 3.74

String

c ‘A’
print(c)

Output: A

String

name "John Doe'
print(name)

Output: John Doe

Boolean
q True

print(q)
Output: True

Empty value or null data type
X None

print(x)

Output: None

Variable assignment works from left to right. So the following will give you an syntax error.

0 X
Output: SyntaxError: can't assign to literal

GoalKicker.com - Python® Notes for Professionals 6

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.jetbrains.com/pycharm/download/
https://github.com/jupyter/notebook
http://www.pythontutor.com/visualize.html#mode=edit
https://www.python.org/dev/peps/pep-0008/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

You can not use python's keywords as a valid variable name. You can see the list of keyword by:

import keyword
print(keyword.kwlist)

Rules for variable naming:

1. Variables names must start with a letter or an underscore.

X True # valid
_y = True # valid

9x False # starts with numeral
SyntaxError: invalid syntax

S8y = False # starts with symbol
SyntaxError: invalid syntax

2. The remainder of your variable name may consist of letters, numbers and underscores.
has_@_in_it "Still Valid"
3. Names are case sensitive.

X 9
y = X*5
NameError: name 'X' is not defined

Even though there's no need to specify a data type when declaring a variable in Python, while allocating the
necessary area in memory for the variable, the Python interpreter automatically picks the most suitable built-in
type for it:

a 2

print(type(a))
Output: <type 'int'>

b = 9223372036854775807

print(type(b))
Output: <type 'int'>

pi = 3.14

print(type(pi))
Output: <type 'float'>

c "A'
print(type(c))
Output: <type 'str'>

name "John Doe'
print(type(name))
Output: <type 'str'>

q True

print(type(q))
Output: <type 'bool'>

X None
print(type(x))

GoalKicker.com - Python® Notes for Professionals

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Output: <type 'NoneType's

Now you know the basics of assignment, let's get this subtlety about assignment in python out of the way.

When you use = to do an assignment operation, what's on the left of = is a name for the object on the right. Finally,
what = does is assign the reference of the object on the right to the name on the left.

That is:

a_name an_object # "a_name" is now a name for the reference to the object "an_object”

So, from many assignment examples above, if we pick pi = 3.14, then pi is a name (not the name, since an object
can have multiple names) for the object 3.14. If you don't understand something below, come back to this point
and read this again! Also, you can take a look at this for a better understanding.

You can assign multiple values to multiple variables in one line. Note that there must be the same number of
arguments on the right and left sides of the = operator:

a, b, c 1, 2, 3
(a, b, c)
Output: 1 2 3

a, b, c 1, 2
Traceback (most recent call last):
File "name.py", line N module
a, b, c 1, 2
ValueError: need more than 2 values to unpack

a, b 1, 2, 3
Traceback (most recent call last):
File "name.py", line N module
a, b=1, 2,3
ValueError: too many values to unpack

The error in last example can be obviated by assigning remaining values to equal number of arbitrary variables.
This dummy variable can have any name, but it is conventional to use the underscore (_) for assigning unwanted
values:

(a, b)
Output: 1, 2

Note that the number of _ and number of remaining values must be equal. Otherwise 'too many values to unpack
error' is thrown as above:

a, b, _ 1,2,3,4
Traceback (most recent call last):
File "name.py", line N module
a, b 1,2,3,4

ValueError: too many values to unpack (expected 3)
You can also assign a single value to several variables simultaneously.

a b =c 1
(a, b, ¢)
Output: 1 1 1

GoalKicker.com - Python® Notes for Professionals 8

http://effbot.org/zone/python-objects.htm
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

When using such cascading assignment, it is important to note that all three variables a, b and c refer to the same
object in memory, an int object with the value of 1. In other words, a, b and ¢ are three different names given to the
same int object. Assigning a different object to one of them afterwards doesn't change the others, just as expected:

a b =c 1 # all three names a, b and c refer to same int object with value 1
print(a, b, c)

Output: 1 1 1

b =2 # b now refers to another int object, one with a value of 2
print(a, b, c)

Output: 1 2 1 # so output is as expected.

The above is also true for mutable types (like 1ist, dict, etc.) just as it is true for immutable types (like int, string,
tuple, etc.):

X y [7, 8, 9] # x and y refer to the same list object just created, [7, 8, 9]

X [13, 8, 9] # x now refers to a different list object just created, [13, 8, 9]
print(y) # y still refers to the list it was first assigned

Output: [7, 8, 9]

So far so good. Things are a bit different when it comes to modifying the object (in contrast to assigning the name to
a different object, which we did above) when the cascading assignment is used for mutable types. Take a look
below, and you will see it first hand:

X y [7, 8, 9] # x and y are two different names for the same list object just created, [7
8, 9]

x[0] 13 # we are updating the value of the list [7, 8, 9] through one of its names, x
in this case

print(y) # printing the value of the list using its other name

Output: [13, 8, 9] # hence, naturally the change is reflected
Nested lists are also valid in python. This means that a list can contain another list as an element.

X [1, 2, [3, 4, 5], 6, 7] # this is nested list
print x[2]

Output: [3, 4, 5]

print x[2][1]

Output: 4

Lastly, variables in Python do not have to stay the same type as which they were first defined -- you can simply use
= to assign a new value to a variable, even if that value is of a different type.

a 2
print(a)
Output: 2

a "New value"

print(a)
Output: New value

If this bothers you, think about the fact that what's on the left of = is just a name for an object. First you call the int
object with value 2 a, then you change your mind and decide to give the name a to a string object, having value
'New value'. Simple, right?

Section 1.3: Block Indentation

Python uses indentation to define control and loop constructs. This contributes to Python's readability, however, it

GoalKicker.com - Python® Notes for Professionals 9

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

requires the programmer to pay close attention to the use of whitespace. Thus, editor miscalibration could result in
code that behaves in unexpected ways.

Python uses the colon symbol (:) and indentation for showing where blocks of code begin and end (If you come
from another language, do not confuse this with somehow being related to the ternary operator). That is, blocks in
Python, such as functions, loops, if clauses and other constructs, have no ending identifiers. All blocks start with a
colon and then contain the indented lines below it.

For example:

def my_function(): # This is a function definition. Note the colon (:)
a 2 # This line belongs to the function because it's indented
return a # This line also belongs to the same function
print(my_function()) # This line is OUTSIDE the function block
or
if a > b: # If block starts here
print(a) # This is part of the if block
else: # else must be at the same level as if
print(b) # This line is part of the else block

Blocks that contain exactly one single-line statement may be put on the same line, though this form is generally not
considered good style:

if a > b: print(a)
else: print(b)

Attempting to do this with more than a single statement will not work:

if x >y:ry=x
print(y) # IndentationError: unexpected indent

if x y: while y z:y -=1 # SyntaxError: invalid syntax

An empty block causes an IndentationError. Use pass (a command that does nothing) when you have a block with
no content:

def will_be_implemented_later():
pass

Spaces vs. Tabs

In short: always use 4 spaces for indentation.

Using tabs exclusively is possible but PEP 8, the style guide for Python code, states that spaces are preferred.
Python 3.x Version = 3.0

Python 3 disallows mixing the use of tabs and spaces for indentation. In such case a compile-time error is
generated: Inconsistent use of tabs and spaces in indentation and the program will not run.

Python 2.x version = 2.7

Python 2 allows mixing tabs and spaces in indentation; this is strongly discouraged. The tab character completes
the previous indentation to be a multiple of 8 spaces. Since it is common that editors are configured to show tabs

GoalKicker.com - Python® Notes for Professionals 10

https://en.wikipedia.org/wiki/%3F:
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://docs.python.org/2/reference/lexical_analysis.html#indentation
https://docs.python.org/2/reference/lexical_analysis.html#indentation
https://docs.python.org/2/reference/lexical_analysis.html#indentation
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

as multiple of 4 spaces, this can cause subtle bugs.

Citing PEP 8:

When invoking the Python 2 command line interpreter with the -t option, it issues warnings about code
that illegally mixes tabs and spaces. When using -tt these warnings become errors. These options are
highly recommended!

Many editors have "tabs to spaces" configuration. When configuring the editor, one should differentiate between
the tab character (\t') and the key.

¢ The tab character should be configured to show 8 spaces, to match the language semantics - at least in cases
when (accidental) mixed indentation is possible. Editors can also automatically convert the tab character to
spaces.

¢ However, it might be helpful to configure the editor so that pressing the key will insert 4 spaces,
instead of inserting a tab character.

Python source code written with a mix of tabs and spaces, or with non-standard number of indentation spaces can
be made pep8-conformant using autopep8. (A less powerful alternative comes with most Python installations:

reindent.py)

Section 1.4: Datatypes

Built-in Types
Booleans

bool: A boolean value of either True or False. Logical operations like and, or, not can be performed on booleans.

X or y # if x is False then y otherwise x
x and y # if x is False then x otherwise y
not x # if x is True then False, otherwise True

In Python 2.x and in Python 3.x, a boolean is also an int. The bool type is a subclass of the int type and True and
False are its only instances:

issubclass(bool, int) # True

isinstance(True, bool) # True
isinstance(False, bool) # True

If boolean values are used in arithmetic operations, their integer values (1 and @ for True and False) will be used to
return an integer result:

True + False 1#1 + 0
True * True 1T#1 %1

— -

Numbers

e int:Integer number

a 2
b 100

GoalKicker.com - Python® Notes for Professionals 1

https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
http://stackoverflow.com/questions/2625294/how-do-i-autoformat-some-python-code-to-be-correctly-formatted
https://pypi.python.org/pypi/Reindent/0.1.0
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

c 123456789
d 38563846326424324

Integers in Python are of arbitrary sizes.

Note: in older versions of Python, a 1long type was available and this was distinct from int. The two have
been unified.

e float: Floating point number; precision depends on the implementation and system architecture, for
CPython the float datatype corresponds to a C double.

a 2.0
b 1600 .e0
c 123456789 .e1

e complex: Complex numbers

a 2+ 1j
b = 160 + 10j

The <, <=, > and >= operators will raise a TypeError exception when any operand is a complex number.

Strings
Python 3.x version = 3.0

e str: a unicode string. The type of 'hello’
e bytes: a byte string. The type of b'hello’

Python 2.x version = 2.7

e str: a byte string. The type of 'hello’
® bytes: synonym for str
¢ unicode: a unicode string. The type of u'hello’

Sequences and collections
Python differentiates between ordered sequences and unordered collections (such as set and dict).

e strings (str, bytes, unicode) are sequences

e reversed: A reversed order of str with reversed function

a reversed('hello")

e tuple: An ordered collection of n values of any type (n 0).

a (1, 2, 3)
b= 1(a', 1, 'python', (1, 2))
b[2] 'something else' # returns a TypeError

Supports indexing; immutable; hashable if all its members are hashable

e 1list: An ordered collection of n values (n 0)

GoalKicker.com - Python® Notes for Professionals

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

a [1, 2, 3]
b ['a', 1, 'python', (1, 2), [1, 2]]
b[2] 'something else' # allowed

Not hashable; mutable.

¢ set: An unordered collection of unique values. Items must be hashable.
a {1, 2, 'a'}

e dict: An unordered collection of unique key-value pairs; keys must be hashable.

2: '"two'}

b {*a': [1, 2, 3]
'b': 'a string'}

An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() method). Hashable objects which
compare equality must have the same hash value.

Built-in constants

In conjunction with the built-in datatypes there are a small number of built-in constants in the built-in namespace:

a

e True: The true value of the built-in type bool

¢ False: The false value of the built-in type bool

¢ None: A singleton object used to signal that a value is absent.

e Ellipsisor ...:used in core Python3+ anywhere and limited usage in Python2.7+ as part of array notation.

numpy and related packages use this as a 'include everything' reference in arrays.

e NotImplemented: a singleton used to indicate to Python that a special method doesn't support the specific

arguments, and Python will try alternatives if available.

None # No value will be assigned. Any valid datatype can be assigned later

Python 3.x version = 3.0

None doesn't have any natural ordering. Using ordering comparison operators (<, <=, >=, >) isn't supported anymore
and will raise a TypeError.

Python 2.x version = 2.7

None is always less than any number (None < -32 evaluates to True).

Testing the type of variables

In python, we can check the datatype of an object using the built-in function type.

a

‘123"

print(type(a))
Out: <class 'str'>

b

123

GoalKicker.com - Python® Notes for Professionals

13

https://docs.python.org/3.5/glossary.html
https://docs.python.org/3.5/glossary.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

print(type(b))
Out: <class 'int'>

In conditional statements it is possible to test the datatype with isinstance. However, it is usually not encouraged

to rely on the type of the variable.

i 7

if isinstance(i, int):
i+=1

elif isinstance(i, str):
i = int(i)
i+=1

For information on the differences between type() and isinstance() read: Differences between isinstance and

type in Python

To test if something is of NoneType:

X None
if x is None:

print('Not a surprise, I just defined x as None.')

Converting between datatypes

You can perform explicit datatype conversion.

For example, '123"is of str type and it can be converted to integer using int function.

a '123"
b = int(a)

Converting from a float string such as '123.456' can be done using float function.

a '123.456'

b = float(a)

c = int(a) # ValueError: invalid literal for int() with base 10:
d = int(b) # 123

You can also convert sequence or collection types

a "hello’

list(a) # ['h', 'e', '1", '1", '0']
set(a) #A{'o"', 'e', '1", 'h'}
tuple(a) # ('h', 'e', '1', 'l", '0")

Explicit string type at definition of literals

With one letter labels just in front of the quotes you can tell what type of string you want to define.

'foo bar':results str

taken verbatim as you typed

normal "foo\nbar' # foo
bar
escaped ‘foo\\nbar' # foo\nbar

b'foo bar':results bytes in Python 3, str in Python 2
u'foo bar':results str in Python 3, unicode in Python 2

'123.456'

r'foo bar':results so called raw string, where escaping special characters is not necessary, everything is

GoalKicker.com - Python® Notes for Professionals

14

https://stackoverflow.com/questions/1549801/differences-between-isinstance-and-type-in-python
https://stackoverflow.com/questions/1549801/differences-between-isinstance-and-type-in-python
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

raw r'foo\nbar' # foo\nbar

Mutable and Immutable Data Types

An object is called mutable if it can be changed. For example, when you pass a list to some function, the list can be
changed:

def f(m):
m.append(3) # adds a number to the list. This is a mutation.
X [1, 2]
f(x)
X [1, 2] # False now, since an item was added to the list

An object is called immutable if it cannot be changed in any way. For example, integers are immutable, since there's
no way to change them:

def bar():
x = (1, 2)
g(x)
X (1, 2) # Will always be True, since no function can change the object (1, 2)

Note that variables themselves are mutable, so we can reassign the variable x, but this does not change the object
that x had previously pointed to. It only made x point to a new object.

Data types whose instances are mutable are called mutable data types, and similarly for immutable objects and
datatypes.

Examples of immutable Data Types:

int, long, float, complex
® str

® bytes

e tuple

e frozenset

Examples of mutable Data Types:

® bytearray
e list

* set

e dict

Section 1.5: Collection Types

There are a number of collection types in Python. While types such as int and str hold a single value, collection
types hold multiple values.

Lists

The 1list type is probably the most commonly used collection type in Python. Despite its name, a list is more like an
array in other languages, mostly JavaScript. In Python, a list is merely an ordered collection of valid Python values. A
list can be created by enclosing values, separated by commas, in square brackets:

int_list = [1, 2, 3]

GoalKicker.com - Python® Notes for Professionals 15

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

string_list = ['abc', 'defghi']
A list can be empty:

empty_list [1

The elements of a list are not restricted to a single data type, which makes sense given that Python is a dynamic

language:
mixed_list [1, "abc', True, 2.34, None]
A list can contain another list as its element:

nested_list [[a', 'b"', 'c¢'], [1, 2, 3]1]

The elements of a list can be accessed via an index, or numeric representation of their position. Lists in Python are

zero-indexed meaning that the first element in the list is at index 0, the second element is at index 1 and so on:

names ['Alice', 'Bob', 'Craig', 'Diana', 'Eric']
print(names[0]) # Alice
print(names[2]) # Craig

Indices can also be negative which means counting from the end of the list (-1 being the index of the last element).

So, using the list from the above example:

print(names[-1]) # Eric
print(names[-4]) # Bob

Lists are mutable, so you can change the values in a list:

names[0] Ann
print(names)

Outputs ['Ann', 'Bob', 'Craig', 'Diana', 'Eric']
Besides, it is possible to add and/or remove elements from a list:
Append object to end of list with L.append(object), returns None.

names ['Alice', 'Bob', 'Craig', 'Diana', 'Eric']
names.append("Sia")

print(names)

Outputs ['Alice', 'Bob', 'Craig', 'Diana', 'Eric', 'Sia']

Add a new element to list at a specific index. L.insert(index, object)

names.insert(1, "Nikki")
print(names)
Outputs ['Alice', 'Nikki', 'Bob', 'Craig', 'Diana', 'Eric', 'Sia']

Remove the first occurrence of a value with L. remove(value), returns None

names.remove("Bob")
print(names) # Outputs ['Alice', 'Nikki', 'Craig’', 'Diana’, 'Eric', 'Sia']

Get the index in the list of the first item whose value is x. It will show an error if there is no such item.

GoalKicker.com - Python® Notes for Professionals

16

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

name.index("Alice")
0

Count length of list

len(names)
6

count occurrence of any item in list

a [1, 1, 1, 2, 3, 4]
a.count(1)
3

Reverse the list

a.reverse()

[4, 3, 2, 1, 1, 1]
or

al[::-1]

[4, 3, 2, 1, 1, 1]

Remove and return item at index (defaults to the last item) with L.pop([index]), returns the item
names.pop() # Outputs 'Sia’
You can iterate over the list elements like below:

for element in my_list:
print (element)

Tuples

A tuple is similar to a list except that it is fixed-length and immutable. So the values in the tuple cannot be changed
nor the values be added to or removed from the tuple. Tuples are commonly used for small collections of values
that will not need to change, such as an IP address and port. Tuples are represented with parentheses instead of
square brackets:

ip_address ('10.20.30.40', 8080)

The same indexing rules for lists also apply to tuples. Tuples can also be nested and the values can be any valid
Python valid.

A tuple with only one member must be defined (note the comma) this way:
one_member_tuple = ('Only member',)

or

one_member_tuple 'Only member' # No brackets

or just using tuple syntax

one_member_tuple = tuple(['Only member'])

GoalKicker.com - Python® Notes for Professionals 17

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Dictionaries

A dictionary in Python is a collection of key-value pairs. The dictionary is surrounded by curly braces. Each pair is
separated by a comma and the key and value are separated by a colon. Here is an example:

state_capitals {

"Arkansas': 'Little Rock'
‘Colorado': 'Denver’
"California’': 'Sacramento’

'Georgia': 'Atlanta'’

To get a value, refer to it by its key:
ca_capital = state_capitals['California’]
You can also get all of the keys in a dictionary and then iterate over them:

k state_capitals.keys():
('{} is the capital of {}'.format(state_capitals[k], k))

Dictionaries strongly resemble JSON syntax. The native json module in the Python standard library can be used to
convert between JSON and dictionaries.

set

A set is a collection of elements with no repeats and without insertion order but sorted order. They are used in
situations where it is only important that some things are grouped together, and not what order they were
included. For large groups of data, it is much faster to check whether or not an element is in a set than itis to do
the same for a list.

Defining a set is very similar to defining a dictionary:

first_names {'Adam', 'Beth', 'Charlie'}

Or you can build a set using an existing list:

my_list [1,2,3]
my_set = set(my_list)

Check membership of the set using in:

name first_names:
(name)

You can iterate over a set exactly like a list, but remember: the values will be in an arbitrary, implementation-
defined order.

defaultdict

A defaultdict is a dictionary with a default value for keys, so that keys for which no value has been explicitly
defined can be accessed without errors. defaultdict is especially useful when the values in the dictionary are
collections (lists, dicts, etc) in the sense that it does not need to be initialized every time when a new key is used.

A defaultdict will never raise a KeyError. Any key that does not exist gets the default value returned.

GoalKicker.com - Python® Notes for Professionals 18

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

For example, consider the following dictionary

state_capitals {

"Arkansas': 'Little Rock'
‘Colorado': 'Denver’
"California’': 'Sacramento’

'Georgia': 'Atlanta'’

If we try to access a non-existent key, python returns us an error as follows

state_capitals['Alabama’]
Traceback (most recent call last):

File "<ipython-input-61-236329695e6f>", line 1, in <module
state_capitals['Alabama’]

KeyError: 'Alabama’
Let us try with a defaultdict. It can be found in the collections module.

from collections import defaultdict
state_capitals = defaultdict(lambda: 'Boston')

What we did here is to set a default value (Boston) in case the give key does not exist. Now populate the dict as
before:

state_capitals['Arkansas'] 'Little Rock'
state_capitals['California’] 'Sacramento’
state_capitals['Colorado'] 'Denver’

state_capitals['Georgia'] "Atlanta’
If we try to access the dict with a non-existent key, python will return us the default value i.e. Boston

state_capitals['Alabama’]
'Boston’

and returns the created values for existing key just like a normal dictionary

state_capitals['Arkansas']
‘Little Rock'

Section 1.6: IDLE - Python GUI

IDLE is Python'’s Integrated Development and Learning Environment and is an alternative to the command line. As
the name may imply, IDLE is very useful for developing new code or learning python. On Windows this comes with
the Python interpreter, but in other operating systems you may need to install it through your package manager.

The main purposes of IDLE are:

Multi-window text editor with syntax highlighting, autocompletion, and smart indent

Python shell with syntax highlighting

Integrated debugger with stepping, persistent breakpoints, and call stack visibility

Automatic indentation (useful for beginners learning about Python's indentation)

Saving the Python program as .py files and run them and edit them later at any them using IDLE.

GoalKicker.com - Python® Notes for Professionals 19

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

In IDLE, hit F5 or run Python Shell to launch an interpreter. Using IDLE can be a better learning experience for
new users because code is interpreted as the user writes.

Note that there are lots of alternatives, see for example this discussion or this list.

Troubleshooting
¢ Windows
If you're on Windows, the default command is python. If you receive a " 'python' is not recognized" error,
the most likely cause is that Python's location is not in your system's PATH environment variable. This can be
accessed by right-clicking on 'My Computer' and selecting 'Properties' or by navigating to 'System' through
'Control Panel'. Click on 'Advanced system settings' and then 'Environment Variables...". Edit the PATH variable

to include the directory of your Python installation, as well as the Script folder (usually
C:\Python27;C:\Python27\Scripts). This requires administrative privileges and may require a restart.

When using multiple versions of Python on the same machine, a possible solution is to rename one of the
python.exe files. For example, naming one version python27.exe would cause python27 to become the
Python command for that version.

You can also use the Python Launcher for Windows, which is available through the installer and comes by
default. It allows you to select the version of Python to run by using py -[x.y] instead of python[x.y]. You
can use the latest version of Python 2 by running scripts with py -2 and the latest version of Python 3 by
running scripts with py -3.

¢ Debian/Ubuntu/MacOS

This section assumes that the location of the python executable has been added to the PATH environment
variable.

If you're on Debian/Ubuntu/MacOS, open the terminal and type python for Python 2.x or python3 for Python
3.X.

Type which python to see which Python interpreter will be used.
e Arch Linux

The default Python on Arch Linux (and descendants) is Python 3, so use python or python3 for Python 3.x and
python2 for Python 2.x.

¢ Other systems

Python 3 is sometimes bound to python instead of python3. To use Python 2 on these systems where it is
installed, you can use python2.

Section 1.7: User Input

Interactive input

GoalKicker.com - Python® Notes for Professionals 20

http://stackoverflow.com/questions/81584/what-ide-to-use-for-python
https://wiki.python.org/moin/PythonEditors
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

To get input from the user, use the input function (note: in Python 2.x, the function is called raw_input instead,
although Python 2.x has its own version of input that is completely different):

Python 2.x version = 2.3

name = raw_input("What is your name? ")
Out: What is your name? _

Security Remark Do not use input() in Python2 - the entered text will be evaluated as if it were a
Python expression (equivalent to eval(input()) in Python3), which might easily become a vulnerability.
See this article for further information on the risks of using this function.

Python 3.x version = 3.0

name = input("What is your name? ")
Out: What is your name? _

The remainder of this example will be using Python 3 syntax.

The function takes a string argument, which displays it as a prompt and returns a string. The above code provides a
prompt, waiting for the user to input.

name = input("What is your name? ")
Out: What is your name?

If the user types "Bob" and hits enter, the variable name will be assigned to the string "Bob":

name = input("What is your name? ")
Out: What is your name? Bob
print(name)

Out: Bob

Note that the input is always of type str, which is important if you want the user to enter numbers. Therefore, you
need to convert the str before trying to use it as a number:

X = input("Write a number:")

Out: Write a number: 10

X/ 2

Out: TypeError: unsupported operand type(s) for /: 'str' and 'int'
float(x) / 2

Out: 5.0

NB: It's recommended to use try/except blocks to catch exceptions when dealing with user inputs. For instance, if
your code wants to cast a raw_input into an int, and what the user writes is uncastable, it raises a ValueError.

Section 1.8: Built in Modules and Functions

A module is a file containing Python definitions and statements. Function is a piece of code which execute some
logic.

pow(2,3) #8

To check the built in function in python we can use dir (). If called without an argument, return the names in the
current scope. Else, return an alphabetized list of names comprising (some of) the attribute of the given object, and
of attributes reachable from it.

GoalKicker.com - Python® Notes for Professionals 21

https://docs.python.org/2/library/functions.html#input
https://medium.com/@GallegoDor/python-exploitation-1-input-ac10d3f4491f#.cr6w4z7q8
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

>>> dir(__builtins__)

"ArithmeticError’',
"AssertionError’',
"AttributeError’,
'BaseException’,
'BufferError',
'BytesWarning',
‘DeprecationWarning’,
"EOFError"',
"Ellipsis’,
"EnvironmentError’,
"Exception’,

'False’,
'FloatingPointError',
'FutureWarning',
'GeneratorExit’,
"IOError"',
"ImportError',
"ImportWarning',
"IndentationError’',
"IndexError',
‘KeyError",
'KeyboardInterrupt',
"LookupError',
‘MemoryError',
‘NameError',

"None',
‘NotImplemented',
"NotImplementedError',
"OSError"',
"OverflowError',
'PendingDeprecationWarning’,
'ReferenceError',
"RuntimeError"',
"RuntimeWarning’,
'StandardError’,
'StopIteration’,
‘SyntaxError',
‘SyntaxWarning',
'SystemError',
'SystemExit',
'"TabError',

'True',

‘TypeError',
"UnboundLocalError"',
"UnicodeDecodeError',
"UnicodeEncodeError',
"UnicodeError',
‘UnicodeTranslateError’,
"UnicodeWarning',
‘UserWarning',
'ValueError',
‘Warning',
'ZeroDivisionError',
'__debug__",
'__doc__",
'__import__",
'__name__",

' __package__",

"abs',

'all',

GoalKicker.com - Python® Notes for Professionals

22

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

‘any’,
‘apply’,
'basestring’,
"bin',
"bool’,
"buffer',
"bytearray’,
'bytes"’,
‘callable’,
"chr',
"classmethod’,
‘emp’,
'coerce',
‘compile’,
‘complex’,
‘copyright',
'credits’',
"delattr’',
‘dict’,
‘dir',
"divmod',
"enumerate’,
"eval',
"execfile',
"exit',
‘file',
"filter',
'float',
"format',
"frozenset',
‘getattr’,
‘globals’,
"hasattr',
"hash',
"help’,
"hex",

'id',
"input’,
‘int',
"intern',
"isinstance’,
"issubclass’,
"iter',
"len',
"license’,
"list’,
"locals’,
‘long’,
‘map’,
"max',
‘memoryview',
‘min',
"next’,
‘object’,
‘oct',
‘open’,
‘ord',
‘pow’,
‘print',
‘property’,
‘quit’,
‘range’,

GoalKicker.com - Python® Notes for Professionals

23

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

"raw_input’
'reduce’
‘reload’
"repr'
"reversed’
"round’
‘set’
'setattr’
‘slice’
‘sorted’
'staticmethod’
"str'
"sum'
"super’
"tuple’
'type’
‘unichr’
"unicode’
‘vars'
‘xrange’
'zip’

To know the functionality of any function, we can use built in function help .

help(max)
Help on built-in function max in module __builtin__:
max(...)

max(iterable[, key=func]) -> value

max(a, b, ¢, ...[, key=func]) -> value

With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.

Built in modules contains extra functionalities. For example to get square root of a number we need to include math
module.

import math
math.sqrt(16) # 4.0

To know all the functions in a module we can assign the functions list to a variable, and then print the variable.

import math

dir(math)

['__doc__', '__name__', '__package__', 'acos', 'acosh'

‘asin', 'asinh', 'atan', 'atan2', ‘'atanh', 'ceil', 'copysign'
'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expml'
'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma'
"hypot', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log1@’
"loglp', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt’'
"tan', 'tanh', 'trunc']

it seems __doc__ is useful to provide some documentation in, say, functions

math.__doc__
'This module is always available. It provides access to the\nmathematical
functions defined by the C standard.'

In addition to functions, documentation can also be provided in modules. So, if you have a file named

GoalKicker.com - Python® Notes for Professionals 24

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

helloWorld.py like this:

"""This is the module docstring."""

def sayHello():
"""This is the function docstring."""
return 'Hello World'

You can access its docstrings like this:

import helloWorld
helloWorld.__doc__
'This is the module docstring.'
helloWorld.sayHello.__doc__
'This is the function docstring.'

¢ For any user defined type, its attributes, its class's attributes, and recursively the attributes of its class's base

classes can be retrieved using dir()

class MyClassObject(object):

pass

dir(MyClassObject)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__'
‘__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__"
'__sizeof__', '__str__"', '__subclasshook__"', '__weakref__"']

'__hash__"
'__setattr__'

'__getattribute__'
'__repr__"'

Any data type can be simply converted to string using a builtin function called str. This function is called by default

when a data type is passed to print

str(123) # "123"

Section 1.9: Creating a module
A module is an importable file containing definitions and statements.

A module can be created by creating a . py file.

hello.py
def say_hello():
print("Hello!")

Functions in a module can be used by importing the module.

For modules that you have made, they will need to be in the same directory as the file that you are importing them

into. (However, you can also put them into the Python lib directory with the pre-included modules, but should be

avoided if possible.)

$ python
import hello
hello.say_hello()
"Hello!"

Modules can be imported by other modules.

greet.py
import hello

GoalKicker.com - Python® Notes for Professionals

25

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

hello.say_hello()

Specific functions of a module can be imported.

greet.py
from hello import say_hello
say_hello()

Modules can be aliased.

greet.py
import hello as ai
ai.say_hello()

A module can be stand-alone runnable script.

run_hello.py

if __name__ '__main__":
from hello import say_hello
say_hello()

Run it!

$ python run_hello.py
"Hello!"

If the module is inside a directory and needs to be detected by python, the directory should contain a file named
__init__.py.

Section 1.10: Installation of Python 2.7.x and 3.x

Note: Following instructions are written for Python 2.7 (unless specified): instructions for Python 3.x are
similar.

Windows

First, download the latest version of Python 2.7 from the official Website (https://www.python.org/downloads/).
Version is provided as an MSI package. To install it manually, just double-click the file.

By default, Python installs to a directory:
C:\Python27\
Warning: installation does not automatically modify the PATH environment variable.
Assuming that your Python installation is in C:\Python27, add this to your PATH:
C:\Python27\;C:\Python27\Scripts\
Now to check if Python installation is valid write in cmd:

python --version

GoalKicker.com - Python® Notes for Professionals

https://www.python.org/downloads/)
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Python 2.x and 3.x Side-By-Side
To install and use both Python 2.x and 3.x side-by-side on a Windows machine:

1. Install Python 2.x using the MSI installer.

o Ensure Python is installed for all users.
o Optional: add Python to PATH to make Python 2.x callable from the command-line using python.

2. Install Python 3.x using its respective installer.

o Again, ensure Python is installed for all users.
o Optional: add Python to PATH to make Python 3.x callable from the command-line using python. This

may override Python 2.x PATH settings, so double-check your PATH and ensure it's configured to your
preferences.

o Make sure to install the py launcher for all users.

Python 3 will install the Python launcher which can be used to launch Python 2.x and Python 3.x interchangeably
from the command-line:

P:\>py -3

Python 3.6.1 (v3.6.1:69c@db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" "license" more information.

C:\>py -2

Python 2.7.13 (v2.7.13:a06454b1afal, Dec 17 2016, 20:42:59) [MSC v.1500 32 Intel)] on win32
Type "help", "copyright", "credits" "license" more information.

To use the corresponding version of pip for a specific Python version, use:

C:\>py -3 -m pip -V
pip 9.0.1 C:\Python36\1lib\site-packages (python 3.6)

C:\>py -2 -m pip -V
pip 9.0.1 C:\Python27\1lib\site-packages (python 2.7)

Linux

The latest versions of CentOS, Fedora, Red Hat Enterprise (RHEL) and Ubuntu come with Python 2.7.

To install Python 2.7 on linux manually, just do the following in terminal:

wget --no-check-certificate https://www.python.org/ftp/python/2.7.X/Python-2.7.X.tgz
tar -xzf Python-2.7.X.tgz

cd Python-2.7.X

./configure

make

sudo make install

Also add the path of new python in PATH environment variable. If new python is in /root/python-2.7.X then run
export PATH = SPATH:/root/python-2.7.X

Now to check if Python installation is valid write in terminal:

GoalKicker.com - Python® Notes for Professionals 27

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

python --version

Ubuntu (From Source)

If you need Python 3.6 you can install it from source as shown below (Ubuntu 16.10 and 17.04 have 3.6 version in
the universal repository). Below steps have to be followed for Ubuntu 16.04 and lower versions:

sudo apt install build-essential checkinstall

sudo apt install libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev 1libgdbm-
dev libc6-dev 1libbz2-dev

wget https://www.python.org/ftp/python/3.6.1/Python-3.6.1.tar.xz

tar xvf Python-3.6.1.tar.xz

cd Python-3.6.1/

./configure --enable-optimizations

sudo make altinstall

macOsS
As we speak, macOS comes installed with Python 2.7.10, but this version is outdated and slightly modified from the

regular Python.

The version of Python that ships with OS X is great for learning but it's not good for development. The
version shipped with OS X may be out of date from the official current Python release, which is
considered the stable production version. (source)

Install Homebrew:

/usr/bin/ruby -e "S$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)

Install Python 2.7:

brew install python

For Python 3.x, use the command brew install python3 instead.

Section 1.11: String function - str() and repr()

There are two functions that can be used to obtain a readable representation of an object.

repr(x) calls x.__repr__(): a representation of x. eval will usually convert the result of this function back to the
original object.

str(x) calls x.__str__(): a human-readable string that describes the object. This may elide some technical detail.
repr()

For many types, this function makes an attempt to return a string that would yield an object with the same value
when passed to eval(). Otherwise, the representation is a string enclosed in angle brackets that contains the name
of the type of the object along with additional information. This often includes the name and address of the object.

str()

For strings, this returns the string itself. The difference between this and repr(object) is that str(object) does
not always attempt to return a string that is acceptable to eval(). Rather, its goal is to return a printable or 'human

GoalKicker.com - Python® Notes for Professionals 28

http://docs.python-guide.org/en/latest/starting/install/osx/
https://brew.sh/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

readable’ string. If no argument is given, this returns the empty string,

Example 1:

s w'o"w

repr(s) # Output: "\'w\\\'o"w\"'

str(s) # Output: 'w\'o"w'

eval(str(s)) s # Gives a SyntaxError
eval(repr(s)) s # Output: True

Example 2:

import datetime

today = datetime.datetime.now()

str(today) # Output: '2016-09-15 66:58:46.915000'

repr(today) # Output: 'datetime.datetime(2016, 9, 15, 6, 58, 46, 915000)'

When writing a class, you can override these methods to do whatever you want:

class Represent(object):

def __init__(self, x, y):
self.x, self.y = x, y

def __repr__(self):
return "Represent(x={},y=\"{}\")".format(self.x, self.y)

def __str__(self):
return "Representing x as {} and y as {}".format(self.x, self.y)

Using the above class we can see the results:

r = Represent(1, "Hopper")

print(r) # prints __str__

print(r.__repr__) # prints
Represent(x=1, y="Hopper")>"
rep r.__repr__() # sets the execution of __repr__ to a new variable
print(rep) # prints 'Represent(x=1,y="Hopper")'

r2 = eval(rep) # evaluates rep

print(r2) # prints __str__ from new object

print(r2 r) # prints 'False' because they are different objects

_repr__: '<bound method Represent.__repr__ of

Section 1.12: Installing external modules using pip

pip is your friend when you need to install any package from the plethora of choices available at the python
package index (PyPl). pip is already installed if you're using Python 2 >=2.7.9 or Python 3 >= 3.4 downloaded from
python.org. For computers running Linux or another *nix with a native package manager, pip must often be
manually installed.

On instances with both Python 2 and Python 3 installed, pip often refers to Python 2 and pip3 to Python 3. Using
pip will only install packages for Python 2 and pip3 will only install packages for Python 3.

Finding / installing a package
Searching for a package is as simple as typing

$ pip search <query

GoalKicker.com - Python® Notes for Professionals 29

https://pip.pypa.io/en/stable/installing/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Searches for packages whose name or summary contains <query>

Installing a package is as simple as typing (in a terminal / command-prompt, not in the Python interpreter)

$ pip install [package_name] # latest version of the package
$ pip install [package_name]==x.x.X # specific version of the package

S pip install '[package_namel>=x.x.x' # minimum version of the package
where x.x.x is the version number of the package you want to install.
When your server is behind proxy, you can install package by using below command:

$ pip --proxy http://<server address>:<port> install
Upgrading installed packages

When new versions of installed packages appear they are not automatically installed to your system. To get an
overview of which of your installed packages have become outdated, run:

$ pip list --outdated
To upgrade a specific package use

$ pip install [package_name] --upgrade

Updating all outdated packages is not a standard functionality of pip.
Upgrading pip
You can upgrade your existing pip installation by using the following commands

e On Linux or macOS X:
$ pip install -U pip

You may need to use sudo with pip on some Linux Systems
e On Windows:

py -m pip install -U pip
or

python -m pip install -U pip

For more information regarding pip do read here.

Section 1.13: Help Utility

Python has several functions built into the interpreter. If you want to get information of keywords, built-in
functions, modules or topics open a Python console and enter:

GoalKicker.com - Python® Notes for Professionals

30

https://pip.pypa.io/en/stable/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

help()

You will receive information by entering keywords directly:

help(help)
or within the utility:
help> help

which will show an explanation:

Help on Helper in module sitebuiltins object:

class Helper(builtins.object)
Define the builtin 'help'.

This is a wrapper around pydoc.help that provides a helpful message
when 'help' is typed at the Python interactive prompt.

I

I

I

I

I

| Calling help() at the Python prompt starts an interactive help session.
| Calling help(thing) prints help for the python object 'thing'.
I

I

I

I

I

I

I

Methods defined here:
__call_(self, *args, **kwds)
__repr__ (self)

Data descriptors defined here:

I
I
| dict

| dictionary for instance variables (if defined)
I

I

I

__weakref
list of weak references to the object (if defined)

You can also request subclasses of modules:
help(pymysql.connections)
You can use help to access the docstrings of the different modules you have imported, e.g., try the following:
help(math)
and you'll get an error

math
help(math)

And now you will get a list of the available methods in the module, but only AFTER you have imported it.

Close the helper with quit

GoalKicker.com - Python® Notes for Professionals

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 2: Python Data Types

Data types are nothing but variables you use to reserve some space in memory. Python variables do not need an
explicit declaration to reserve memory space. The declaration happens automatically when you assign a value to a
variable.

Section 2.1: String Data Type

String are identified as a contiguous set of characters represented in the quotation marks. Python allows for either
pairs of single or double quotes. Strings are immutable sequence data type, i.e each time one makes any changes
to a string, completely new string object is created.

a_str = 'Hello World'

print(a_str) #output will be whole string. Hello World
print(a_str[0]) #output will be first character. H
print(a_str[0:5]) #output will be first five characters. Hello

Section 2.2: Set Data Types

Sets are unordered collections of unique objects, there are two types of set:

1. Sets - They are mutable and new elements can be added once sets are defined

basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
print(basket) # duplicates will be removed

> {'orange', 'banana', 'pear', 'apple'}

a = set('abracadabra')

print(a) # unique letters in a

> {'a'", 'r', 'b', 'c', 'd'}

a.add('z")

print(a)

>{|a’ ICIV |r|’ lbl’ IZI, ldl}

2. Frozen Sets - They are immutable and new elements cannot added after its defined.

b = frozenset('asdfagsa')

print(b)

> frozenset({'f', 'g', 'd', 'a', 's'})

cities = frozenset(["Frankfurt", "Basel", "Freiburg"])
print(cities)

> frozenset({'Frankfurt', 'Basel', 'Freiburg'})

Section 2.3: Numbers data type

Numbers have four types in Python. Int, float, complex, and long.

int_num = 10 #int value
float_num = 10.2 #float value
complex_num = 3.14j #complex value

long_num = 1234567L #long value

GoalKicker.com - Python® Notes for Professionals 32

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 2.4: List Data Type

A list contains items separated by commas and enclosed within square brackets [].lists are almost similar to arrays

in C. One difference is that all the items belonging to a list can be of different data type.

list = [123,'abcd',10.2,'d"] #can be an array of any data type or single data type.
list1 = ['hello', 'world']

print(list) #will output whole list. [123, 'abcd',16.2,'d"]

print(list[0:2]) #will output first two element of list. [123, "abcd']

print(list1 * 2) #will gave listl1 two times. ['hello', 'world', 'hello’, 'world']
print(list + list1) #will gave concatenation of both the lists.

[123, "abcd', 10.2, 'd", "hello', 'world']

Section 2.5: Dictionary Data Type

Dictionary consists of key-value pairs. It is enclosed by curly braces {} and values can be assigned and accessed
using square brackets[].

dic={'name':'red', 'age':10}

print(dic) #will output all the key-value pairs. {'name':'red', 'age':10}
print(dic['name']) #will output only value with 'name' key. 'red’
print(dic.values()) #will output list of values in dic. ['red',10]

(

print(dic.keys()) #will output list of keys. ['name', 'age']

Section 2.6: Tuple Data Type

Lists are enclosed in brackets [] and their elements and size can be changed, while tuples are enclosed in
parentheses () and cannot be updated. Tuples are immutable.

tuple = (123, 'hello')

tuplel = ('world")

print(tuple) #will output whole tuple. (123, 'hello')
print(tuple[0]) #will output first value. (123)
print(tuple + tuplel) #will output (123, 'hello’, 'world')
tuple[1]="'update’ #this will give you error.

GoalKicker.com - Python® Notes for Professionals

33

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 3: Indentation

Section 3.1: Simple example

For Python, Guido van Rossum based the grouping of statements on indentation. The reasons for this are explained
in the first section of the "Design and History Python FAQ". Colons, :, are used to declare an indented code block,
such as the following example:

class ExampleClass:
#Every function belonging to a class must be indented equally
def __init__(self):
name "example"

def someFunction(self, a):
#Notice everything belonging to a function must be indented
if a 93
return True
else:
return False

#If a function is not indented to the same level it will not be considers as part of the parent class
def separateFunction(b):
for i in b:
#Loops are also indented and nested conditions start a new indentation
if i 1:
return True
return False

separateFunction([2,3,5,6,1])

Spaces or Tabs?

The recommended indentation is 4 spaces but tabs or spaces can be used so long as they are consistent. Do not
mix tabs and spaces in Python as this will cause an error in Python 3 and can causes errors in Python 2.

Section 3.2: How Indentation is Parsed

Whitespace is handled by the lexical analyzer before being parsed.

The lexical analyzer uses a stack to store indentation levels. At the beginning, the stack contains just the value 0,
which is the leftmost position. Whenever a nested block begins, the new indentation level is pushed on the stack,
and an "INDENT" token is inserted into the token stream which is passed to the parser. There can never be more
than one "INDENT" token in a row (IndentationError).

When a line is encountered with a smaller indentation level, values are popped from the stack until a value is on top
which is equal to the new indentation level (if none is found, a syntax error occurs). For each value popped, a
"DEDENT" token is generated. Obviously, there can be multiple "DEDENT" tokens in a row.

The lexical analyzer skips empty lines (those containing only whitespace and possibly comments), and will never
generate either "INDENT" or "DEDENT" tokens for them.

At the end of the source code, "DEDENT" tokens are generated for each indentation level left on the stack, until just
the O is left.

For example:

GoalKicker.com - Python® Notes for Professionals 34

https://docs.python.org/3/faq/design.html
https://docs.python.org/3/faq/design.html#why-are-colons-required-for-the-if-while-def-class-statements
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
http://stackoverflow.com/questions/2034517/pythons-interpretation-of-tabs-and-spaces-to-indent/25471702#25471702
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

if foo:

if bar:
X 42
else:
print foo

is analyzed as:

<if> <foo> <:> [0]
<INDENT> <if> <bar> <:> [0, 4]
<INDENT> <x> <=> <42> [0, 4, 8]
<DEDENT> <DEDENT> <else> <:> [0]
<INDENT> <print> <foo> [0, 2]
<DEDENT>

The parser than handles the "INDENT" and "DEDENT" tokens as block delimiters.

Section 3.3: Indentation Errors

The spacing should be even and uniform throughout. Improper indentation can cause an IndentationError or
cause the program to do something unexpected. The following example raises an IndentationError:

a 7
if a 93
print "foo"
else:
print "bar"
print "done"

Or if the line following a colon is not indented, an IndentationError will also be raised:

if True:
print "true"

If you add indentation where it doesn't belong, an IndentationError will be raised:

if True:
a 6
b 5

If you forget to un-indent functionality could be lost. In this example None is returned instead of the expected False:

def isEven(a):
if a%2 0:
return True
#this next line should be even with the if
return False
print isEven(7)

GoalKicker.com - Python® Notes for Professionals 35

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 4: Comments and Documentation

Section 4.1: Single line, inline and multiline comments

Comments are used to explain code when the basic code itself isn't clear.
Python ignores comments, and so will not execute code in there, or raise syntax errors for plain English sentences.
Single-line comments begin with the hash character (#) and are terminated by the end of line.
¢ Single line comment:
This is a single line comment in Python
¢ Inline comment:
print("Hello World") # This line prints "Hello World"

e Comments spanning multiple lines have """ or ' ' ' on either end. This is the same as a multiline string, but
they can be used as comments:

This type of comment spans multiple lines.
These are mostly used for documentation of functions, classes and modules.

Section 4.2: Programmatically accessing docstrings

Docstrings are - unlike regular comments - stored as an attribute of the function they document, meaning that you
can access them programmatically.

An example function

def func():
"""This is a function that does nothing at all"""
return

The docstring can be accessed using the __doc__ attribute:

print(func.__doc__)
This is a function that does nothing at all
help(func)

Help on function func in module __main__:
func()

This is a function that does nothing at all

Another example function

GoalKicker.com - Python® Notes for Professionals 36

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

function.__doc__ is just the actual docstring as a string, while the help function provides general information
about a function, including the docstring. Here's a more helpful example:

def greet(name, greeting="Hello"):
"""Print a greeting to the user ‘name’

Optional parameter "greeting’ can change what they're greeted with."""

print("{} {}".format(greeting, name))

help(greet)

Help on function greet in module __main__:
greet(name, greeting='Hello")

Print a greeting to the user name
Optional parameter greeting can change what they're greeted with.

Advantages of docstrings over regular comments

Just putting no docstring or a regular comment in a function makes it a lot less helpful.

def greet(name, greeting="Hello"):
Print a greeting to the user ‘name’
Optional parameter ‘greeting can change what they're greeted with.

print("{} {}".format(greeting, name))

print(greet.__doc__)
None
help(greet)

Help on function greet in module main:

greet(name, greeting='Hello')

Section 4.3: Write documentation using docstrings

A docstring is a multi-line comment used to document modaules, classes, functions and methods. It has to be the
first statement of the component it describes.

def hello(name):
"""Greet someone.

Print a greeting ("Hello") for the person with the given name.

print("Hello "+name)

class Greeter:
mu AL ObjeCt used to greet people.

GoalKicker.com - Python® Notes for Professionals 37

https://www.python.org/dev/peps/pep-0257/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

It contains multiple greeting functions for several languages
and times of the day.

The value of the docstring can be accessed within the program and is - for example - used by the help command.

Syntax conventions
PEP 257

PEP 257 defines a syntax standard for docstring comments. It basically allows two types:
¢ One-line Docstrings:
According to PEP 257, they should be used with short and simple functions. Everything is placed in one line, e.g:

def hello():
"""Say hello to your friends.
print("Hello my friends!")

The docstring shall end with a period, the verb should be in the imperative form.
¢ Multi-line Docstrings:
Multi-line docstring should be used for longer, more complex functions, modules or classes.

def hello(name, language="en"):
"""Say hello to a person.

Arguments:
name: the name of the person
language: the language in which the person should be greeted

print(greeting[language]+" "+name)

They start with a short summary (equivalent to the content of a one-line docstring) which can be on the same line
as the quotation marks or on the next line, give additional detail and list parameters and return values.

Note PEP 257 defines what information should be given within a docstring, it doesn't define in which format it
should be given. This was the reason for other parties and documentation parsing tools to specify their own
standards for documentation, some of which are listed below and in this question.

Sphinx

Sphinx is a tool to generate HTML based documentation for Python projects based on docstrings. Its markup
language used is reStructuredText. They define their own standards for documentation, pythonhosted.org hosts a
very good description of them. The Sphinx format is for example used by the pyCharm IDE.

A function would be documented like this using the Sphinx/reStructuredText format:

def hello(name, language="en"):
"""Say hello to a person.

:param name: the name of the person

:type name: str

:param language: the language in which the person should be greeted
:type language: str

GoalKicker.com - Python® Notes for Professionals 38

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/#multi-line-docstrings
https://stackoverflow.com/questions/5334531/using-javadoc-for-python-documentation
http://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/rst.html
https://pythonhosted.org/an_example_pypi_project/sphinx.html
https://www.jetbrains.com/pycharm/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

:return: a number
:rtype: int

print(greeting[language]+" "+name)
return 4

Google Python Style Guide

Google has published Google Python Style Guide which defines coding conventions for Python, including
documentation comments. In comparison to the Sphinx/reST many people say that documentation according to
Google's guidelines is better human-readable.

The pythonhosted.org page mentioned above also provides some examples for good documentation according to
the Google Style Guide.

Using the Napoleon plugin, Sphinx can also parse documentation in the Google Style Guide-compliant format.

A function would be documented like this using the Google Style Guide format:

def hello(name, language="en"):
"""Say hello to a person.

Args:
name: the name of the person as string
language: the language code string

Returns:
A number.

print(greeting[language]+" "+name)
return 4

GoalKicker.com - Python® Notes for Professionals 39

https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
https://pythonhosted.org/an_example_pypi_project/sphinx.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 5. Date and Time
Section 5.1: Parsing a string into a timezone aware datetime
object

Python 3.2+ has support for %z format when parsing a string into a datetime object.
UTC offset in the form +HHMM or -HHMM (empty string if the object is naive).

Python 3.x version = 3.2

import datetime
dt = datetime.datetime.strptime("2016-04-15T08:27:18-08500", "%Y-%m-%dT%H:%M:%S%z")

For other versions of Python, you can use an external library such as dateutil, which makes parsing a string with
timezone into a datetime object is quick.

import dateutil.parser
dt = dateutil.parser.parse("2016-04-15T08:27:18-0500")

The dt variable is now a datetime object with the following value:

datetime.datetime(2016, 4, 15, 8, 27, 18, tzinfo=tzoffset(None, -186000))

Section 5.2: Constructing timezone-aware datetimes

By default all datetime objects are naive. To make them timezone-aware, you must attach a tzinfo object, which
provides the UTC offset and timezone abbreviation as a function of date and time.

Fixed Offset Time Zones

For time zones that are a fixed offset from UTC, in Python 3.2+, the datetime module provides the timezone class, a
concrete implementation of tzinfo, which takes a timedelta and an (optional) name parameter:

Python 3.x version = 3.2

from datetime import datetime, timedelta, timezone
JST = timezone(timedelta(hours=+9))

dt = datetime(2015, 1, 1, 12, @8, 0, tzinfo=JST)
print(dt)
2015-01-01 12:00:00+09:00

print(dt.tzname())
UTC+09:00

dt = datetime(2015, 1, 1, 12, 0, 0, tzinfo=timezone(timedelta(hours=9), 'JST'))
print(dt.tzname)
'JST'

For Python versions before 3.2, it is necessary to use a third party library, such as dateutil. dateutil provides an
equivalent class, tzoffset, which (as of version 2.5.3) takes arguments of the form dateutil.tz.tzoffset(tzname
offset), where offset is specified in seconds:

Python 3.x version < 3.2

GoalKicker.com - Python® Notes for Professionals 40

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://dateutil.readthedocs.org/en/latest/
http://dateutil.readthedocs.io
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Python 2.x version < 2.7

from datetime import datetime, timedelta
from dateutil import tz

JST = tz.tzoffset('JST', 9 * 3600) # 3600 seconds per hour
dt = datetime(2015, 1, 1, 12, 0, tzinfo=JST)

print(dt)

2015-01-01 12:00:00+09:00

print(dt.tzname)

'JST'

Zones with daylight savings time

For zones with daylight savings time, python standard libraries do not provide a standard class, so it is necessary to
use a third party library. pytz and dateutil are popular libraries providing time zone classes.

In addition to static time zones, dateutil provides time zone classes that use daylight savings time (see the
documentation for the tz module). You can use the tz.gettz() method to get a time zone object, which can then
be passed directly to the datetime constructor:

from datetime import datetime

from dateutil import tz

local = tz.gettz() # Local time

PT = tz.gettz('US/Pacific') # Pacific time

dt_1 = datetime(2015, 1, 1, 12, tzinfo=local) # I am in EST

dt_pst = datetime(2615, 1, 1, 12, tzinfo=PT)

dt_pdt = datetime(2015, 7, 1, 12, tzinfo=PT) # DST is handled automatically
print(dt_1)

2015-01-01 12:00:00-05:00

print(dt_pst)

2015-01-01 12:00:00-08:00

print(dt_pdt)

2015-07-01 12:00:00-07:00

CAUTION: As of version 2.5.3, dateutil does not handle ambiguous datetimes correctly, and will always default to
the later date. There is no way to construct an object with a dateutil timezone representing, for example
2015-11-01 1:30 EDT-4, since this is during a daylight savings time transition.

All edge cases are handled properly when using pytz, but pytz time zones should not be directly attached to time
zones through the constructor. Instead, a pytz time zone should be attached using the time zone's localize
method:

from datetime import datetime, timedelta
import pytz

PT = pytz.timezone('US/Pacific')

dt_pst = PT.localize(datetime(2015, 1, 1, 12))
dt_pdt = PT.localize(datetime(2015, 11, 1, 8, 30))
print(dt_pst)

2015-01-01 12:00:00-08:00

print(dt_pdt)

2015-11-01 00:30:00-07:00

Be aware that if you perform datetime arithmetic on a pytz-aware time zone, you must either perform the
calculations in UTC (if you want absolute elapsed time), or you must call normalize() on the result:

GoalKicker.com - Python® Notes for Professionals 41

http://pytz.sourceforge.net/
http://dateutil.readthedocs.io/en/stable/tz.html
http://dateutil.readthedocs.io/en/stable/tz.html
http://dateutil.readthedocs.io/en/stable/tz.html
http://dateutil.readthedocs.io/en/stable/tz.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

dt_new = dt_pdt + timedelta(hours=3) # This should be 2:36 AM PST
print(dt_new)

2015-11-01 03:30:00-07:00

dt_corrected = PT.normalize(dt_new)

print(dt_corrected)

2015-11-01 02:30:00-08:00

Section 5.3: Computing time differences

the timedelta module comes in handy to compute differences between times:

from datetime import datetime, timedelta
now = datetime.now()
then = datetime(2016, 5, 23) # datetime.datetime(2016, 05, 23, 0, 0, 0)

Specifying time is optional when creating a new datetime object
delta = now-then

deltais of type timedelta

print(delta.days)

60
print(delta.seconds)
40826

To get n day's after and n day's before date we could use:
n day's after date:

def get_n_days_after_date(date_format="%d %B %Y", add_days=120):

date_n_days_after = datetime.datetime.now() + timedelta(days=add_days)
return date_n_days_after.strftime(date_format)

n day's before date:

def get_n_days_before_date(self, date_format="%d %B %Y", days_before=120):

date_n_days_ago = datetime.datetime.now() - timedelta(days=days_before)
return date_n_days_ago.strftime(date_format)

Section 5.4: Basic datetime objects usage

The datetime module contains three primary types of objects - date, time, and datetime.

import datetime

Date object
today = datetime.date.today()
new_year = datetime.date(2017, 01, 01) #datetime.date(2017, 1, 1)

Time object
noon = datetime.time(12, ©, 0) #datetime.time(12, 8)

Current datetime
now = datetime.datetime.now()

GoalKicker.com - Python® Notes for Professionals

42

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Datetime object
millenium_turn datetime.datetime(20006, 1, 1, @, O, 0) #datetime.datetime(2666, 1, 1, 0, 0)

Arithmetic operations for these objects are only supported within same datatype and performing simple arithmetic
with instances of different types will result in a TypeError.

subtraction of noon from today
noon-today
Traceback (most recent call last):
File "<stdin>", line 1, in <module
TypeError: unsupported operand type(s) for -: 'datetime.time' and 'datetime.date’
However, it is straightforward to convert between types.

Do this instead
print('Time since the millenium at midnight:

datetime.datetime(today.year, today.month, today.day) - millenium_turn)
Or this

print('Time since the millenium at noon:
datetime.datetime.combine(today, noon) - millenium_turn)

Section 5.5: Switching between time zones
To switch between time zones, you need datetime objects that are timezone-aware.

from datetime import datetime
from dateutil import tz

utc = tz.tzutc()
local = tz.tzlocal()

utc_now = datetime.utcnow()
utc_now # Not timezone-aware.

utc_now = utc_now.replace(tzinfo=utc)
utc_now # Timezone-aware.

local_now = utc_now.astimezone(local)
local_now # Converted to local time.

Section 5.6: Simple date arithmetic

Dates don't exist in isolation. It is common that you will need to find the amount of time between dates or
determine what the date will be tomorrow. This can be accomplished using timedelta objects

import datetime

today = datetime.date.today()
print('Today:', today)

yesterday = today - datetime.timedelta(days=1)
print('Yesterday:', yesterday)

tomorrow = today + datetime.timedelta(days=1)
print('Tomorrow:', tomorrow)

print('Time between tomorrow and yesterday:', tomorrow - yesterday)

GoalKicker.com - Python® Notes for Professionals 43

https://docs.python.org/3/library/datetime.html#timedelta-objects
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

This will produce results similar to:

Today: 2016-04-15

Yesterday: 2016-04-14

Tomorrow: 2016-04-16

Difference between tomorrow and yesterday: 2 days, 0:00:00

Section 5.7: Converting timestamp to datetime

The datetime module can convert a POSIX timestamp to a ITC datetime object.

The Epoch is January 1st, 1970 midnight.

import time
from datetime import datetime
seconds_since_epoch=time.time() #7469182681.769

utc_date=datetime.utcfromtimestamp(seconds_since_epoch) #datetime.datetime(2616, 7, 22, 160, 18,
769000)

Section 5.8: Subtracting months from a date accurately

Using the calendar module

import calendar
from datetime import date

def monthdelta(date, delta):
m, y = (date.month+delta) % 12, date.year + ((date.month)+delta-1) // 12
if not m: m = 12
d = min(date.day, calendar.monthrange(y, m)[1])
return date.replace(day=d, month=m, year=y)

next_month = monthdelta(date.today(), 1) #datetime.date(2016, 16, 23)

Using the dateutils module

import datetime
import dateutil.relativedelta

d = datetime.datetime.strptime("2013-03-31", "%Y-%m-%d")
d2 = d - dateutil.relativedelta.relativedelta(months=1) #datetime.datetime(2013, 2, 28, 6, 8)

Section 5.9: Parsing an arbitrary ISO 8601 timestamp with
minimal libraries

Python has only limited support for parsing ISO 8601 timestamps. For strptime you need to know exactly what
format it is in. As a complication the stringification of a datetime is an ISO 8601 timestamp, with space as a
separator and 6 digit fraction:

str(datetime.datetime(2016, 7, 22, 9, 25, 59, 555555))
'2016-07-22 09:25:59.555555"

but if the fraction is 0, no fractional part is output

71

GoalKicker.com - Python® Notes for Professionals

44

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

str(datetime.datetime (2016, 7, 22, 9, 25, 59, 0))
'2016-07-22 09:25:59'

But these 2 forms need a different format for strptime. Furthermore, strptime’ does not support at all
parsing minute timezones that have a:in it, thus2016-07-22 09:25:59+0300can be parsed, but the
standard format2016-07-22 09:25:59+03:00 " cannot.

There is a single-file library called is08601 which properly parses ISO 8601 timestamps and only them.
It supports fractions and timezones, and the T separator all with a single function:

import iso08601

is08601.parse_date('2016-87-22 09:25:59")

datetime.datetime (2016, 7, 22, 9, 25, 59, tzinfo=<is08601.Utc>)
is08601.parse_date('2016-07-22 09:25:59+03:00")

datetime.datetime(2016, 7, 22, 9, 25, 59, tzinfo=<FixedOffset '+63:00' ...>)
is08601.parse_date('2016-07-22 09:25:59Z")

datetime.datetime (2016, 7, 22, 9, 25, 59, tzinfo=<iso086071.Utc>)
iso08601.parse_date('2016-87-22T09:25:59.000111+63:00")

datetime.datetime (2016, 7, 22, 9, 25, 59, 111, tzinfo=<FixedOffset '+83:00' ...>)

If no timezone is set, is08601.parse_date defaults to UTC. The default zone can be changed with default_zone
keyword argument. Notably, if this is None instead of the default, then those timestamps that do not have an
explicit timezone are returned as naive datetimes instead:

is08601.parse_date('2016-087-22T09:25:59', default_timezone=None)
datetime.datetime (2016, 7, 22, 9, 25, 59)
is08601.parse_date('2016-07-22T709:25:59Z"', default_timezone=None)
datetime.datetime (2016, 7, 22, 9, 25, 59, tzinfo=<is08601.Utc>)

Section 5.10: Get an ISO 8601 timestamp

Without timezone, with microseconds

from datetime import datetime
datetime.now().isoformat()

Out: '2016-07-31T723:08:20.886783"'

With timezone, with microseconds

from datetime import datetime

from dateutil.tz import tzlocal
datetime.now(tzlocal()).isoformat()

Out: '2016-07-31T723:09:43.535074-07:00'

With timezone, without microseconds

from datetime import datetime
from dateutil.tz import tzlocal

datetime.now(tzlocal()).replace(microsecond=0).isoformat()
Out: '2016-07-31T723:10:30-07:00'

See |SO 8601 for more information about the ISO 8601 format.

Section 5.11: Parsing a string with a short time zone name into

GoalKicker.com - Python® Notes for Professionals 45

https://bitbucket.org/micktwomey/pyiso8601/src/43c6749d06c4aac6b1156911e85a0b952ca8a324/iso8601/iso8601.py?at=default&fileviewer=file-view-default
https://pypi.python.org/pypi/iso8601
https://en.wikipedia.org/wiki/ISO_8601
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

a timezone aware datetime object

Using the dateutil library as in the previous example on parsing timezone-aware timestamps, it is also possible to
parse timestamps with a specified "short" time zone name.

For dates formatted with short time zone names or abbreviations, which are generally ambiguous (e.g. CST, which
could be Central Standard Time, China Standard Time, Cuba Standard Time, etc - more can be found here) or not

necessarily available in a standard database, it is necessary to specify a mapping between time zone abbreviation
and tzinfo object.

from dateutil import tz
from dateutil.parser import parse

ET tz.gettz
CT tz.gettz
MT tz.gettz
PT tz.gettz

'"US/Eastern')
'US/Central')
"US/Mountain')
'US/Pacific')

—~ o~ o~ o~

us_tzinfos {'CST': CT, 'CDT': CT

"EST': ET, 'EDT': ET

"MST': MT, 'MDT': MT

"PST': PT, 'PDT': PT}
dt_est = parse('2014-01-02 04:00:00 EST', tzinfos=us_tzinfos)
dt_pst = parse('2016-03-11 16:00:00 PST', tzinfos=us_tzinfos)
After running this:

dt_est

datetime.datetime (2014, 1, 2, 4, 0, tzinfo=tzfile('/usr/share/zoneinfo/US/Eastern’))
dt_pst

datetime.datetime(2016, 3, 11, 16, 0, tzinfo=tzfile('/usr/share/zoneinfo/US/Pacific'))

It is worth noting that if using a pytz time zone with this method, it will not be properly localized:

from dateutil.parser import parse
import pytz

EST = pytz.timezone('America/New_York")
dt parse('2014-02-03 ©9:17:00 EST', tzinfos={'EST': EST})

This simply attaches the pytz time zone to the datetime:

dt.tzinfo # Will be in Local Mean Time!
<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>

If using this method, you should probably re-localize the naive portion of the datetime after parsing:

dt_fixed = dt.tzinfo.localize(dt.replace(tzinfo=None))
dt_fixed.tzinfo # Now it's EST.
<DstTzInfo 'America/New_York' EST-1 day, 19:00:00 STD>)

Section 5.12: Fuzzy datetime parsing (extracting datetime out
of a text)

It is possible to extract a date out of a text using the dateutil parser in a "fuzzy" mode, where components of the

GoalKicker.com - Python® Notes for Professionals 46

https://dateutil.readthedocs.io
https://www.timeanddate.com/time/zones/
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

string not recognized as being part of a date are ignored.

from dateutil.parser import parse

dt = parse("Today is January 1, 2047 at 8:21:00AM", fuzzy=True)
print(dt)

dt is now a datetime object and you would see datetime.datetime (2047, 1, 1, 8, 21) printed.

Section 5.13: Iterate over dates

Sometimes you want to iterate over a range of dates from a start date to some end date. You can do it using
datetime library and timedelta object:

import datetime

The size of each step in days
day_delta = datetime.timedelta(days=1)

start_date = datetime.date.today()
end_date = start_date + 7*day_delta

for i in range((end_date - start_date).days):
print(start_date + ixday_delta)

Which produces:

2016-07-21
2016-07-22
2016-07-23
2016-07-24
2016-07-25
2016-07-26
2016-07-27

GoalKicker.com - Python® Notes for Professionals

47

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 6: Date Formatting

Section 6.1: Time between two date-times

from datetime import datetime

a = datetime(2016,10,06,0,0,0)
b = datetime(2016,10,01,23,59,59)
a-b

datetime.timedelta(4, 1)

(a-b).days

4
(a-b).total_seconds()
518399.60

Section 6.2: Outputting datetime object to string
Uses C standard format codes.

from datetime import datetime

datetime_for_string = datetime(2016,10,1,0,0)
datetime_string_format = '%b %d %Y, %H:%M:%S’
datetime.strftime(datetime_for_string, datetime_string_format)
Oct 01 2016, 00:00:00

Section 6.3: Parsing string to datetime object
Uses C standard format codes.

from datetime import datetime

datetime_string = 'Oct 1 2016, 00:00:00'
datetime_string_format = '%b %d %Y, %H:%M:%S’
datetime.strptime(datetime_string, datetime_string_format)
datetime.datetime(2016, 10, 1, 6, 0)

GoalKicker.com - Python® Notes for Professionals

48

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 7: Enum
Section 7.1: Creating an enum (Python 2.4 through 3.3)

Enums have been backported from Python 3.4 to Python 2.4 through Python 3.3. You can get this the enum34
backport from PyPI.

pip install enum34
Creation of an enum is identical to how it works in Python 3.4+

from enum import Enum

class Color(Enum):
red = 1
green = 2
blue = 3

print(Color.red) # Color.red

print(Color(1)) # Color.red
print(Color['red']) # Color.red

Section 7.2: Iteration

Enums are iterable:

class Color(Enum):
red = 1
green = 2
blue = 3

[c for ¢ in Color] # [<Color.red: 1>, <Color.green: 2>, <Color.blue: 3>]

GoalKicker.com - Python® Notes for Professionals

https://pypi.python.org/pypi/enum34
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 8: Set

Section 8.1: Operations on sets

with other sets

Intersection
{1, 2, 3, 4, 5}.intersection({3, 4, 5, 6}) # {3, 4, 5}

{1, 2, 3, 4,
Union

{1, 2, 3, 4,
{1, 2, 3, 4,

Difference
{1, 2, 3, 4}
{1, 2, 3, 4}

5} & {3, 4, 5, 6}

5}.union({3, 4, 5, 6})
5} | {3, 4, 5, 6}

- {2, 3, 5}

Symmetric difference with

{1, 2, 3, 4}.symmetric_difference({2, 3, 5}) # {1,

{1, 2, 3, 4}

~ {2, 3, 5}

Superset check
{1, 2}.issuperset({1, 2, 3})

{1, 2} >= {1,

2, 3}

Subset check
{1, 2}.issubset({1, 2, 3})

{1, 2} <= {1,

2, 3}

Disjoint check
{1, 2}.isdisjoint ({3, 4})
{1, 2}.isdisjoint ({1, 4})

with single elements

Existence check

2 in {1,2,3} # True

4 in {1,2,3} # False

4 not in {1,2,3} # True

Add and Remove

s = {1,2,3}

s.add(4) #s == {1,2,3,4)

s.discard(3)
s.discard(5)

s.remove(2)
.remove(2)

[

Set operations return new sets, but have the corresponding in-place versions:

method
union
intersection
difference

#s == {1,2,
#s == {1,2
#s == {1,4}
KeyError!

in-place operation

s|=t
S&=t
s-=t

symmetric_differences A=t

.difference({2, 3, 5})

True
True

True
False

4}
4}

{3, 4, 5}

{1, 2, 3, 6}
{1, 2, 3, 4, 5, 6}

AN
o

{1, 4}
{1, 4}

N

, 5}
5)

3

{1,

N

False
False

in-place method
update
intersection_update
difference_update
symmetric_difference_update

GoalKicker.com - Python® Notes for Professionals

50

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

For example:

s = {1, 2}
s.update({3, 4}) # s == {1, 2, 3, 4}

Section 8.2: Get the unique elements of a list

Let's say you've got a list of restaurants -- maybe you read it from a file. You care about the unique restaurants in
the list. The best way to get the unique elements from a list is to turn it into a set:

restaurants = ["McDonald's", "Burger King", "McDonald's", "Chicken Chicken"]
unique_restaurants = set(restaurants)

print(unique_restaurants)

prints {'Chicken Chicken', "McDonald's", 'Burger King'}

Note that the set is not in the same order as the original list; that is because sets are unordered, just like dicts.

This can easily be transformed back into a List with Python's built in 1ist function, giving another list that is the
same list as the original but without duplicates:

list(unique_restaurants)
['Chicken Chicken', "McDonald's", 'Burger King']

It's also common to see this as one line:

Removes all duplicates and returns another list
list(set(restaurants))

Now any operations that could be performed on the original list can be done again.

Section 8.3: Set of Sets
{{1,2}, {3,4}}

leads to:

TypeError: unhashable type: 'set'
Instead, use frozenset:

{frozenset({1, 2}), frozenset({3, 4})}

Section 8.4: Set Operations using Methods and Builtins
We define two sets aand b

>>>a = {1, 2, 2, 3, 4}
{3, 3, 4, 4, 5}

>>> b

NOTE: {1} creates a set of one element, but {} creates an empty dict. The correct way to create an
empty set is set().

GoalKicker.com - Python® Notes for Professionals

51

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Intersection
a.intersection(b) returns a new set with elements present in both a and b

a.intersection(b)
{3, 4}

Union
a.union(b) returns a new set with elements present in either a and b

a.union(b)
{1, 2, 3, 4, 5}

Difference
a.difference(b) returns a new set with elements presentin a but notinb
a.difference(b)
{1, 2}

b.difference(a)

{5}
Symmetric Difference

a.symmetric_difference(b) returns a new set with elements present in either a or b but not in both

a.symmetric_difference(b)

{1, 2, 5}
b.symmetric_difference(a)
{1, 2, 5}
NOTE: a.symmetric_difference(b) b.symmetric_difference(a)

Subset and superset
c.issubset(a) tests whether each element of cis in a.

a.issuperset(c) tests whether each element of cisin a.

c {1, 2}

c.issubset(a)
True

a.issuperset(c)
True

The latter operations have equivalent operators as shown below:

Method Operator
a.intersection(b) a&hb
a.union(b) alb
a.difference(b) a-b
a.symmetric_difference(b)a * b
a.issubset(b) a b
a.issuperset(b) a b

Disjoint sets

Sets a and d are disjoint if no elementin a is also in d and vice versa.

GoalKicker.com - Python® Notes for Professionals 52

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

d = {5, 6}

a.isdisjoint(b) # {2, 3, 4} are in both sets
False

a.isdisjoint(d)
True

This is an equivalent check, but less efficient
len(a & d) 0
True

This is even less efficient
a&d set()
True

Testing membership
The builtin in keyword searches for occurances

1 in a
True

6 in a
False

Length
The builtin 1en() function returns the number of elements in the set
len(a)

len(b)

Section 8.5: Sets versus multisets

Sets are unordered collections of distinct elements. But sometimes we want to work with unordered collections of
elements that are not necessarily distinct and keep track of the elements' multiplicities.

Consider this example:

setA {'a','b",'b",'c"}
setA
set(['a', 'c', 'b'])

By saving the strings "a', 'b', 'b', 'c' into a set data structure we've lost the information on the fact that 'b’
occurs twice. Of course saving the elements to a list would retain this information

listA ['a','b','b",'c"']
listA
[a', 'b', 'b', 'c']

but a list data structure introduces an extra unneeded ordering that will slow down our computations.

For implementing multisets Python provides the Counter class from the collections module (starting from version
2.7):

Python 2.x Version = 2.7

from collections import Counter
counterA = Counter(['a','b','b"','c'])

GoalKicker.com - Python® Notes for Professionals 53

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

counterA
Counter({'b': 2, 'a': 1, 'c': 1})

Counter is a dictionary where where elements are stored as dictionary keys and their counts are stored as
dictionary values. And as all dictionaries, it is an unordered collection.

GoalKicker.com - Python® Notes for Professionals

54

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 9: Simple Mathematical Operators

Numerical types and their metaclasses
The numbers module contains the abstract metaclasses for the numerical types:

subclasses numbers.Number numbers.Integral numbers.Rational numbers.Real numbers.Complex

bool v v v v v
int v v v v v
fractions.Fraction v - v v v
float v - - v v
complex v - - - v

decimal.Decimal v - - - -

Python does common mathematical operators on its own, including integer and float division, multiplication,
exponentiation, addition, and subtraction. The math module (included in all standard Python versions) offers
expanded functionality like trigonometric functions, root operations, logarithms, and many more.

Section 9.1: Division

Python does integer division when both operands are integers. The behavior of Python's division operators have
changed from Python 2.x and 3.x (see also Integer Division).

a, b, ¢, d, e 3, 2, 2.0, -3, 10

Python 2.x version = 2.7

In Python 2 the result of the ' /' operator depends on the type of the numerator and denominator.

a/b # =1
a/c #=1.5
d/b # = -2
b/ a # =10
d/ e # = -1

Note that because both a and b are ints, the result is an int.
The result is always rounded down (floored).
Because c is a float, the result of a / cis a float.
You can also use the operator module:
import operator the operator module provides 2-argument arithmetic functions

#
operator.div(a, b) # =1
operator.__div__(a, b) # =1

Python 2.x version = 2.2
What if you want float division:
Recommended:

from __future__ import division # applies Python 3 style division to the entire module

GoalKicker.com - Python® Notes for Professionals 55

https://docs.python.org/library/numbers.html#numbers.Number
https://docs.python.org/library/numbers.html#numbers.Integral
https://docs.python.org/library/numbers.html#numbers.Rational
https://docs.python.org/library/numbers.html#numbers.Real
https://docs.python.org/library/numbers.html#numbers.Complex
https://docs.python.org/library/functions.html#bool
https://docs.python.org/library/functions.html#int
https://docs.python.org/library/fractions.html#fractions.Fraction
https://docs.python.org/library/functions.html#float
https://docs.python.org/library/functions.html#complex
https://docs.python.org/library/decimal.html#decimal.Decimal
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

a/lb # =1

Okay (if you don't want to apply to the whole module):

a/ (b=*1.0) #=1.5
1T.06xa /b #=1.5
a/b*1.0 #=1.0 (careful with order of operations)

from operator import truediv
truediv(a, b) #=1.5

Not recommended (may raise TypeError, eg if argument is complex):

float(a) / b # =
a / float(b) # =

- -
a O

Python 2.x version = 2.2

The ' // ' operator in Python 2 forces floored division regardless of type.

a//b # =
al//l c # =

Python 3.x version = 3.0

In Python 3 the / operator performs 'true' division regardless of types. The // operator performs floor division and

maintains type.

a/b #=1.5

e/ b #=05.0
a//lb # =1
al/lc #=1.0
import operator #
operator.truediv(a, b) #=1.5
operator.floordiv(a, b) #=1
operator.floordiv(a, c) #=1.0

Possible combinations (builtin types):

e int and int (gives an int in Python 2 and a float in Python 3)
e int and float (gives a float)

e int and complex (gives a complex)

e float and float (gives a float)

e float and complex (gives a complex)

e complex and complex (gives a complex)

See PEP 238 for more information.

Section 9.2: Addition

Using the "+" operator:
a+h #=3

0o "

Using the "in-place" "+=" operator to add and assign:

the operator module provides 2-argument arithmetic functions

GoalKicker.com - Python® Notes for Professionals

56

https://www.python.org/dev/peps/pep-0238/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

a+=b # a = 3 (equivalent to a = a + b)
import operator # contains 2 argument arithmetic functions for the examples
operator.add(a, b) # =5 since a is set to 3 right before this line

The "+=" operator is equivalent to:
a = operator.iadd(a, b) # a = 5 since a is set to 3 right before this line

Possible combinations (builtin types):

int and int (gives an int)

e int and float (gives a float)

e int and complex (gives a complex)

e float and float (gives a float)

e float and complex (gives a complex)

e complex and complex (gives a complex)

Note: the + operator is also used for concatenating strings, lists and tuples:

"first string + "second string" # = 'first string second string’

(1, 2, 3] + [4, 5, 6] #=1[1,2,3, 4,5, 6]

Section 9.3: Exponentiation

a, b=2,3
(a ** b) # =8
pow(a, b) # =8

import math
math.pow(a, b) #

8.0 (always float; does not allow complex results)

import operator
operator.pow(a, b)

H

=8

Another difference between the built-in pow and math . pow is that the built-in pow can accept three arguments:

pow(2, 3, 2) # 0, calculates (2 ** 3) % 2, but as per Python docs,
does so more efficiently

Special functions
The function math.sqrt(x) calculates the square root of x.

import math
import cmath

c =4
math.sqrt(c) # = 2.0 (always float; does not allow complex results)
cmath.sqrt(c) # = (2+0j) (always complex)

To compute other roots, such as a cube root, raise the number to the reciprocal of the degree of the root. This
could be done with any of the exponential functions or operator.

GoalKicker.com - Python® Notes for Professionals 57

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

import math

x =8

math.pow(x, 1/3) # evaluates to 2.0
xxx(1/3) # evaluates to 2.0

The function math.exp(x) computes e *x x.

math.exp(0) # 1.6
math.exp(1) # 2.718281828459045 (e)

The function math.expm1(x) computese ** x - 1. When x is small, this gives significantly better precision than
math.exp(x) - 1.

math.expm1(0) #0.0

math.exp(1e-6) - 1 # 1.0000004999621837e-06
math.expml(1e-6) # 1.0000005000001665e-06
exact result # 1.000000500000166666708333341666. . .

Section 9.4: Trigonometric Functions

import math

math.sin(a) # returns the sine of 'a' in radians
Out: 0.8414709848078965

math.cosh(b) # returns the inverse hyperbolic cosine of 'b' in radians
Out: 3.7621956910836314

math.atan(math.pi) # returns the arc tangent of 'pi' in radians
0ut: 1.2626272556789115

math.hypot(a, b) # returns the Euclidean norm, same as math.sqrt(a*a + b*b)
Out: 2.23606797749979

Note that math.hypot(x, y) is also the length of the vector (or Euclidean distance) from the origin (6, 9)
to the point (x, vy).

To compute the Euclidean distance between two points (x1, y1) & (x2, y2) you can use math.hypot as
follows

math.hypot(x2-x1, y2-y1)

To convert from radians -> degrees and degrees -> radians respectively use math.degrees and math.radians

math.degrees(a)
Out: 57.29577951308232

math.radians(57.29577951308232)
Out: 1.0

GoalKicker.com - Python® Notes for Professionals

58

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 9.5: Inplace Operations

It is common within applications to need to have code like this:

a a+ 1
or
a a*x 2

There is an effective shortcut for these in place operations:

a += 1
and
a *= 2

Any mathematic operator can be used before the '=' character to make an inplace operation:

e -=decrement the variable in place

¢ +=increment the variable in place

e x= multiply the variable in place

e /=divide the variable in place

e //=floor divide the variable in place # Python 3
¢ %= return the modulus of the variable in place

e xx=raise to a power in place

Other in place operators exist for the bitwise operators (#, | etc)

Section 9.6: Subtraction

a, b=1 2

Using the "-" operator:

b - a # =1

import operator # contains 2 argument arithmetic functions
operator.sub(b, a) # =1

Possible combinations (builtin types):

e int and int (gives an int)

e int and float (gives a float)

e int and complex (gives a complex)

e float and float (gives a float)

e float and complex (gives a complex)

e complex and complex (gives a complex)

Section 9.7: Multiplication

import operator

GoalKicker.com - Python® Notes for Professionals

59

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

operator.mul(a, b) # =06

Possible combinations (builtin types):

e int and int (gives an int)

e int and float (gives a float)

e int and complex (gives a complex)

e float and float (gives a float)

e float and complex (gives a complex)

e complex and complex (gives a complex)

Note: The * operator is also used for repeated concatenation of strings, lists, and tuples:

3 * 'ab' # = 'ababab’

3% ('a’, 'b') #=('a’, 'b', 'a’, 'b', 'a’

Section 9.8: Logarithms

’

'b')

By default, the math.log function calculates the logarithm of a number, base e. You can optionally specify a base as

the second argument.

import math
import cmath

math.log(5) # = 1.6094379124341003
optional base argument. Default is math.e
math.log(5, math.e) # = 1.6094379124341003

cmath.log(5) # = (1.6094379124341003+67)

math.log(1000, 10) # 3.0 (always returns float)

cmath.log(1600, 10) # (3+0j)

Special variations of the math.log function exist for different bases.

Logarithm base e - 1 (higher precision for low values)

math.log1p(5) # = 1.791759469228655

Logarithm base 2

math.log2(8) #=3.0
Logarithm base 160
math.log10(100) #=2.0

cmath.log10(100) # = (2+07)

Section 9.9: Modulus

Like in many other languages, Python uses the % operator for calculating modulus.

3% 4 # 3
10 % 2 #0
6 % 4 # 2

Or by using the operator module:

import operator

operator.mod(3 , 4) # 3

GoalKicker.com - Python® Notes for Professionals

60

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

operator.mod(10 , 2) # 0
operator.mod(6 , 4) # 2

You can also use negative numbers.

-9% 7 #
9 % -7 #
-9 % -7 #

9

=§)

=2

If you need to find the result of integer division and modulus, you can use the divmod function as a shortcut:

quotient, remainder = divmod(9, 4)
quotient = 2, remainder = 1 as 4 * 2 + 1 == 9

GoalKicker.com - Python® Notes for Professionals

61

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 10: Bitwise Operators

Bitwise operations alter binary strings at the bit level. These operations are incredibly basic and are directly
supported by the processor. These few operations are necessary in working with device drivers, low-level graphics,
cryptography, and network communications. This section provides useful knowledge and examples of Python's
bitwise operators.

Section 10.1: Bitwise NOT

The ~ operator will flip all of the bits in the number. Since computers use signed number representations — most
notably, the two's complement notation to encode negative binary numbers where negative numbers are written
with a leading one (1) instead of a leading zero (0).

This means that if you were using 8 bits to represent your two's-complement numbers, you would treat patterns
from 0606 0606 to 6111 1111 to represent numbers from 0 to 127 and reserve 1xxx xxxx to represent negative
numbers.

Eight-bit two's-complement numbers

Bits Unsigned Value Two's-complement Value

0000 00000 0
0000 0001 1 1
0000 00102 2
01111110126 126
01111111127 127
1000 0000 128 -128
1000 0001 129 -127
1000 0010 130 -126
11111110254 -2
11111111 255 -1

In essence, this means that whereas 1618 0110 has an unsigned value of 166 (arrived at by adding (128 * 1) +
(64 % @) + (32 % 1) + (16 * 8) + (8 * 0) + (4 * 1) + (2 * 1) + (1 * 0)), it has atwo's-complement value
of -90 (arrived at by adding (128 * 1) - (64 *) - (32 * 1) - (16 * 0) - (8 * 0) - (4 * 1) - (2 * 1) -
(1 * 0), and complementing the value).

In this way, negative numbers range down to -128 (1060 0060). Zero (0) is represented as 6060 6000, and minus
one(-1)as 1111 1111.

In general, though, this means ~n = -n - 1.

0 = 0b0OOOO 00OOO
0

Out: -1

-1 = 0b1111 1111

1 = 0b0oooO 0001
1

Out: -2

-2 = 1111 1110

2 = 0b0oooo 0010
2

Out: -3

-3 = 0b1111 1101

GoalKicker.com - Python® Notes for Professionals 62

https://en.wikipedia.org/wiki/Signed_number_representations
https://en.wikipedia.org/wiki/Two%27s_complement
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

123 = 0b0O111 1011
~123

Out: -124

-124 = 0b1000 0100

Note, the overall effect of this operation when applied to positive numbers can be summarized:
~n -> -|n+1|

And then, when applied to negative numbers, the corresponding effect is:
~-n -> |n-1|

The following examples illustrate this last rule...

-0 = 0booOO 0000

~-0

Out: -1

-1 = 6b1111 1111

0 is the obvious exception to this rule, as -0 == 0 always

-1 = 6b1000 6001
~1

Out: @

0 = 0b0AO0 0000

-2 = 06b1111 11160
~=2

Out: 1

1 = 0boooo 0001

-123 = 0b1111 1011
~-123

Out: 122

122 = 0bO111 1010

Section 10.2: Bitwise XOR (Exclusive OR)

The » operator will perform a binary XOR in which a binary 1 is copied if and only if it is the value of exactly one
operand. Another way of stating this is that the result is 1 only if the operands are different. Examples include:

H H H R
>
-0 2O
|

60 = 6b1111600
30 = 0bO11110
60 * 30

Out:. 34

34 = 0b100010

bin(60 * 30)
Out: 6b100070

GoalKicker.com - Python® Notes for Professionals

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 10.3: Bitwise AND

The & operator will perform a binary AND, where a bit is copied if it exists in both operands. That means:

#0 &0 =20
#0&1 =20
#1 &0 =20
#1 &1 =1

60 = 0b111100
30 = 0bO11110
60 & 30

Out: 28

28 = 0b11100

bin(60 & 30)
Out: 0b11100

Section 10.4: Bitwise OR

The | operator will perform a binary "or," where a bit is copied if it exists in either operand. That means:

H W KR W

60 = 6b111100
30 = 0bO11110
60 | 30

Out: 62

62 = 0b111110

bin(60 | 30)
Out: 0b111110

Section 10.5: Bitwise Left Shift

The << operator will perform a bitwise "left shift," where the left operand's value is moved left by the number of bits

given by the right operand.

2 = 0b106

2 << 2

Out: 8

8 = 6b1066

bin(2 << 2)
Out: 0b1000

Performing a left bit shift of 1 is equivalent to multiplication by 2:

7 << 1
Out: 14

Performing a left bit shift of n is equivalent to multiplication by 2*xn:

3 << 4

GoalKicker.com - Python® Notes for Professionals

64

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Out: 48

Section 10.6: Bitwise Right Shift

The == operator will perform a bitwise "right shift," where the left operand's value is moved right by the number of

bits given by the right operand.

8 = 0b1000
8 >> 2

Out: 2

2 = 0b106

bin(8 =>> 2)
Out: 0b1o

Performing a right bit shift of 1 is equivalent to integer division by 2:

36 >> 1
Out: 18

15 >> 1
Out: 7

Performing a right bit shift of n is equivalent to integer division by 2*xn:

48 >> 4
Out: 3

59 >> 3
Out: 7

Section 10.7: Inplace Operations

All of the Bitwise operators (except ~) have their own in place versions

a = 0boo1

a &= 0b0o10
a = 0booo
a = 0boo1

a |= 0bo1o
a = 6bo11
a = 0boo1

a <<= 2

a = 6b100
a = 0b100

a >>= 2

a = 0boo1
a = 0b101

a *= 0bo11

a = 0b110

GoalKicker.com - Python® Notes for Professionals

65

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 11: Boolean Operators

Section 11.1: ‘and” and “or’ are not guaranteed to return a

boolean

When you use or, it will either return the first value in the expression if it's true, else it will blindly return the second

value. l.e. or is equivalent to:

def or_(a, b):
if a:
return a
else:
return b

For and, it will return its first value if it's false, else it returns the last value:

def and_(a, b):
if not a:
return a
else:
return b

Section 11.2: A simple example

In Python you can compare a single element using two binary operators--one on either side:

if 3.14 < x < 3.142:
print("x is near pi")

In many (most?) programming languages, this would be evaluated in a way contrary to regular math: (3.14 < x) <

3.142, butin Python itis treated like 3.14 < x and x < 3.142, just like most non-programmers would expect.

Section 11.3: Short-circuit evaluation

Python minimally evaluates Boolean expressions.

>>> def true_func():
print("true_func()")
return True

>>> def false_func():
print("false_func()")
return False

>>> true_func() or false_func()
true_func()

True

>>> false_func() or true_func()
false_func()

true_func()

True

>>> true_func() and false_func()
true_func()

false_func()

False

>>> false_func() and false_func()

GoalKicker.com - Python® Notes for Professionals

66

https://en.wikipedia.org/wiki/Short-circuit_evaluation
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

false_func()
False

Section 11.4: and

Evaluates to the second argument if and only if both of the arguments are truthy. Otherwise evaluates to the first
falsey argument.

X = True
True
z=xandy # z = True

<
]

x = True
y = False
z =xand y # z = False

x = False
y = True
z =xand y # z = False

X = False

y = False
z =xand y # z = False

z=xandy #z =y, soz =1, see ‘and” and ‘or are not guaranteed to be a boolean

z=xandy # z = x, so z = 0 (see above)

z=xandy # z =y, so z = 0 (see above)

<
1l
(a9}

z=xandy # z = x, so z = 0 (see above)

The 1's in the above example can be changed to any truthy value, and the @'s can be changed to any falsey value.

Section 11.5: or

Evaluates to the first truthy argument if either one of the arguments is truthy. If both arguments are falsey,
evaluates to the second argument.

x = True
y = True
z =xory#z=True
x = True
y = False

z =XxXory#z-=True

x = False
y = True
z=xory#z=True

GoalKicker.com - Python® Notes for Professionals

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

X = False
y = False

z =xory#z = False

x =1

y:

z=xory#z=x, soz =1, see 'and’ and ‘or are not guaranteed to be a boolean
X =1

y =9

z=xo0ory#z=x, soz=1 (see above)

X =0
y =1
z=xory#z=y, soz=1 (see above)
X =0
y =290

z=XxXxory#z=y, soz =280 (see above)

The 1's in the above example can be changed to any truthy value, and the 8's can be changed to any falsey value.

Section 11.6: not

It returns the opposite of the following statement:

X = True
y = not x # y = False
x = False
y = not x # y = True

GoalKicker.com - Python® Notes for Professionals

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 12: Operator Precedence

Python operators have a set order of precedence, which determines what operators are evaluated firstin a
potentially ambiguous expression. For instance, in the expression 3 * 2 + 7, first 3 is multiplied by 2, and then the
result is added to 7, yielding 13. The expression is not evaluated the other way around, because * has a higher
precedence than +.

Below is a list of operators by precedence, and a brief description of what they (usually) do.

Section 12.1: Simple Operator Precedence Examples in python

Python follows PEMDAS rule. PEMDAS stands for Parentheses, Exponents, Multiplication and Division, and Addition
and Subtraction.

Example:

>>>a, b, ¢, d=2, 3, 5, 7

>>> a ** (b + ¢) # parentheses

256

>>> a * b **x ¢ # exponent: same as ‘a * (b ** c)’

7776

>>>a+b*c /d # multiplication / division: same as ‘a + (b * ¢ / d)°
4.142857142857142

Extras: mathematical rules hold, but not always:

>>> 300 / 300 * 200
200.0

>>> 300 * 200 / 300

200.0

>>> 1e300 / 1e300 * 1e200
1e+200

>>> 1e300 * 1e200 / 1e300
inf

GoalKicker.com - Python® Notes for Professionals 69

https://docs.python.org/3/tutorial/floatingpoint.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 13: Variable Scope and Binding

Section 13.1: Nonlocal Variables

Python 3.x Version = 3.0

Python 3 added a new keyword called nonlocal. The nonlocal keyword adds a scope override to the inner scope.
You can read all about it in PEP 3104. This is best illustrated with a couple of code examples. One of the most
common examples is to create function that can increment:

def counter():

num 0
def incrementer():
num += 1

return num
return incrementer

If you try running this code, you will receive an UnboundLocalError because the num variable is referenced before
it is assigned in the innermost function. Let's add nonlocal to the mix:

def counter():
num 0
def incrementer():
nonlocal num
num += 1
return num
return incrementer

¢ = counter()
=1
c() # =2
=3

Basically nonlocal will allow you to assign to variables in an outer scope, but not a global scope. So you can't use
nonlocal in our counter function because then it would try to assign to a global scope. Give it a try and you will
quickly get a SyntaxError. Instead you must use nonlocal in a nested function.

(Note that the functionality presented here is better implemented using generators.)

Section 13.2: Global Variables

In Python, variables inside functions are considered local if and only if they appear in the left side of an assignment
statement, or some other binding occurrence; otherwise such a binding is looked up in enclosing functions, up to
the global scope. This is true even if the assignment statement is never executed.

X "Hi'

def read_x():
print(x) # x is just referenced, therefore assumed global

read_x() # prints Hi

def read_y():
print(y) # here y is just referenced, therefore assumed global

GoalKicker.com - Python® Notes for Professionals 70

https://www.python.org/dev/peps/pep-3104/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

read_y() # NameError: global name 'y' is not defined

def read_y():
y 'Hey' # y appears in an assignment, therefore it's local
print(y) # will find the local y

read_y() # prints Hey

def read_x_local_fail():
if False:
X 'Hey' # x appears in an assignment, therefore it's local
print(x) # will look for the _local_ z, which is not assigned, and will not be found

read_x_local_fail() # UnboundLocalError: local variable 'x' referenced before assignment

Normally, an assignment inside a scope will shadow any outer variables of the same name:
X "Hi'

def change_local_x():

X ‘Bye’

print(x)
change_local_x() # prints Bye
print(x) # prints Hi

Declaring a name global means that, for the rest of the scope, any assignments to the name will happen at the
module's top level:

X "Hi'

def change_global_x():
global x
X 'Bye’
print(x)

change_global_x() # prints Bye
print(x) # prints Bye

The global keyword means that assignments will happen at the module's top level, not at the program's top level.

Other modules will still need the usual dotted access to variables within the module.
To summarize: in order to know whether a variable x is local to a function, you should read the entire function:

if you've found global x, then x is a global variable

If you've found nonlocal x, then x belongs to an enclosing function, and is neither local nor global
If you've found x = 50r for x in range(3) or some other binding, then x is a local variable
Otherwise x belongs to some enclosing scope (function scope, global scope, or builtins)

AN~

Section 13.3: Local Variables

If a name is bound inside a function, it is by default accessible only within the function:

def foo():
a 5
print(a) # ok

print(a) # NameError: name 'a' is not defined

GoalKicker.com - Python® Notes for Professionals

l

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Control flow constructs have no impact on the scope (with the exception of except), but accessing variable that was
not assigned yet is an error:

def foo():
if True:
a)
print(a) # ok

b 3
def bar():
if False:

b=25
print(b) # UnboundLocalError: local variable 'b' referenced before assignment

Common binding operations are assignments, for loops, and augmented assignments suchasa += 5

Section 13.4: The del command

This command has several related yet distinct forms.

del v

If vis a variable, the command del v removes the variable from its scope. For example:

X 5

print(x) # out: 5

del x

print(x) # NameError: name 'f' is not defined

Note that del is a binding occurrence, which means that unless explicitly stated otherwise (using nonlocal
or global), del v will make v local to the current scope. If you intend to delete v in an outer scope, use
nonlocal v or global vinthe same scope of the del v statement.

In all the following, the intention of a command is a default behavior but is not enforced by the language. A class
might be written in a way that invalidates this intention.

del v.name
This command triggers a call to v.__delattr__(name).

The intention is to make the attribute name unavailable. For example:

class A:
pass

a = A()

a.x 7

print(a.x) # out: 7
del a.x

print(a.x) # error: AttributeError: 'A' object has no attribute 'x'

del v[item]
This command triggers a call to v.__delitem__(item).

The intention is that item will not belong in the mapping implemented by the object v. For example:

GoalKicker.com - Python® Notes for Professionals 72

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

x={'a": 1, 'b': 2}

del x['a']

print(x) # out: {'b': 2}
print(x['a']) # error: KeyError: 'a'

del v[a:b]

This actually calls v.__delslice__(a, b).

The intention is similar to the one described above, but with slices - ranges of items instead of a single item. For
example:

x = [0, 1, 2, 3, 4]
del x[1:3]
print(x) # out: [0, 3, 4]

See also Garbage Collection#The del command.

Section 13.5: Functions skip class scope when looking up
names

Classes have a local scope during definition, but functions inside the class do not use that scope when looking up

names. Because lambdas are functions, and comprehensions are implemented using function scope, this can lead

to some surprising behavior.

a = 'global'’

class Fred:
a = 'class' # class scope
= (a for i in range(10)) # function scope
[a for i in range(18)] # function scope
a # class scope
lambda: a # function scope
lambda a=a: a # default argument uses class scope

-~ ® QO O T
1

@staticmethod # or @classmethod, or regular instance method
def g(): # function scope
return a

print(Fred.a) # class

print(next(Fred.b)) # global

print(Fred.c[@]) # class in Python 2, global in Python 3
print(Fred.d) # class

print(Fred.e()) # global

print(Fred.f()) # class

print(Fred.g()) # global

Users unfamiliar with how this scope works might expect b, ¢, and e to print class.

From PEP 227:

Names in class scope are not accessible. Names are resolved in the innermost enclosing function scope.
If a class definition occurs in a chain of nested scopes, the resolution process skips class definitions.

From Python's documentation on naming and binding:

GoalKicker.com - Python® Notes for Professionals

73

http://www.python.org/dev/peps/pep-0227/
http://docs.python.org/3/reference/executionmodel.html#naming
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

The scope of names defined in a class block is limited to the class block; it does not extend to the code
blocks of methods - this includes comprehensions and generator expressions since they are
implemented using a function scope. This means that the following will fail:

class A:
a 42
b = list(a + i for i in range(10))

This example uses references from this answer by Martijn Pieters, which contains more in depth analysis of this
behavior.

Section 13.6: Local vs Global Scope
What are local and global scope?
All Python variables which are accessible at some point in code are either in local scope or in global scope.

The explanation is that local scope includes all variables defined in the current function and global scope includes
variables defined outside of the current function.

foo 1 # global

def func():
bar = 2 # local
print(foo) # prints variable foo from global scope
print(bar) # prints variable bar from local scope

One can inspect which variables are in which scope. Built-in functions locals() and globals() return the whole
scopes as dictionaries.

foo 1

def func():
bar = 2
print(globals().keys()) # prints all variable names in global scope
print(locals().keys()) # prints all variable names in local scope

What happens with name clashes?
foo = 1

def func():
foo = 2 # creates a new variable foo in local scope, global foo is not affected

print(foo) # prints 2
global variable foo still exists, unchanged:

print(globals()['foo']) # prints 1
print(locals()['foo']) # prints 2

To modify a global variable, use keyword global:

foo 1

def func():
global foo
foo 2 # this modifies the global foo, rather than creating a local variable

GoalKicker.com - Python® Notes for Professionals 74

http://stackoverflow.com/questions/13905741/accessing-class-variables-from-a-list-comprehension-in-the-class-definition/13913933#13913933
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

The scope is defined for the whole body of the function!
What it means is that a variable will never be global for a half of the function and local afterwards, or vice-versa.

foo = 1

def func():
This function has a local variable foo, because it is defined down below.
So, foo is local from this point. Global foo is hidden.

print(foo) # raises UnboundLocalError, because local foo is not yet initialized

foo = 7
print(foo)

Likewise, the opposite:

foo = 1

def func():
In this function, foo is a global variable from the beginning

foo = 7 # global foo is modified

print(foo) # 7
print(globals()['foo']) # 7

global foo # this could be anywhere within the function
print(foo) # 7

Functions within functions

There may be many levels of functions nested within functions, but within any one function there is only one local
scope for that function and the global scope. There are no intermediate scopes.

foo = 1
def f1():

bar = 1

def f2():
baz = 2
here, foo is a global variable, baz is a local variable
bar is not in either scope
print(locals().keys()) # ['baz']
print('bar' in locals()) # False
print('bar' in globals()) # False

def f3():
baz = 3
print(bar) # bar from f1 is referenced so it enters local scope of f3 (closure)
print(locals().keys()) # ['bar', 'baz']
print('bar' in locals()) # True
print('bar' in globals()) # False

def f4():
bar = 4 # a new local bar which hides bar from local scope of f1
baz = 4
print(bar)

print(locals().keys()) # ['bar', 'baz']
print('bar' in locals()) # True

GoalKicker.com - Python® Notes for Professionals

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

print('bar' in globals()) # False
global vs nonlocal (Python 3 only)

Both these keywords are used to gain write access to variables which are not local to the current functions.

The global keyword declares that a name should be treated as a global variable.

foo = @ # global foo

def f1():
foo 1 # a new foo local in f1

def f2():
foo 2 # a new foo local in f2

def f3():
foo = 3 # a new foo local in f3
print(foo) # 3
foo = 30 # modifies local foo in f3 only

def f4():
global foo
print(foo) # 0
foo = 100 # modifies global foo

On the other hand, nonlocal (see Nonlocal Variables), available in Python 3, takes a local variable from an
enclosing scope into the local scope of current function.

From the Python documentation on nonlocal:

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest
enclosing scope excluding globals.

Python 3.x version = 3.0
def f1():

def f2():
foo 2 # a new foo local in f2

def f3():
nonlocal foo # foo from f2, which is the nearest enclosing scope
print(foo) # 2
foo = 20 # modifies foo from f2!

Section 13.7: Binding Occurrence

X 5
X += 7
for x in iterable: pass

Each of the above statements is a binding occurrence - x become bound to the object denoted by 5. If this statement
appears inside a function, then x will be function-local by default. See the "Syntax" section for a list of binding
statements.

GoalKicker.com - Python® Notes for Professionals 76

https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://docs.python.org/3/reference/simple_stmts.html#nonlocal
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 14: Conditionals

Conditional expressions, involving keywords such as if, elif, and else, provide Python programs with the ability to
perform different actions depending on a boolean condition; True or False. This section covers the use of Python
conditionals, boolean logic, and ternary statements.

Section 14.1: Conditional Expression (or "The Ternary
Operator")

The ternary operator is used for inline conditional expressions. It is best used in simple, concise operations that are
easily read.

¢ The order of the arguments is different from many other languages (such as C, Ruby, Java, etc.), which may
lead to bugs when people unfamiliar with Python's "surprising" behaviour use it (they may reverse the order).

e Some find it "unwieldy", since it goes contrary to the normal flow of thought (thinking of the condition first
and then the effects).

"Greater than 2" if n 2 else "Smaller than or equal to 2"
Out: 'Greater than 2'

The result of this expression will be as it is read in English - if the conditional expression is True, then it will evaluate
to the expression on the left side, otherwise, the right side.

Ternary operations can also be nested, as here:

n 5
"Hello" if n > 10 else "Goodbye" if n > 5 else "Good day"

They also provide a method of including conditionals in lambda functions.

Section 14.2: if, elif, and else

In Python you can define a series of conditionals using if for the first one, elif for the rest, up until the final
(optional) else for anything not caught by the other conditionals.

number = 5

if number > 2:
print("Number is bigger than 2.")

elif number < 2: # Optional clause (you can have multiple elifs)
print("Number is smaller than 2.")

else: # Optional clause (you can only have one else)
print("Number is 2.")

Outputs Number is bigger than 2

Using else if instead of elif will trigger a syntax error and is not allowed.

Section 14.3: Truth Values

The following values are considered falsey, in that they evaluate to False when applied to a boolean operator.

GoalKicker.com - Python® Notes for Professionals 77

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

None

¢ False
¢ 9, or any numerical value equivalent to zero, for example 0L, 0.0, 8j
e Empty sequences: "', "", (), []

Empty mappings: {}
User-defined types where the __bool__ or __len__ methods return 0 or False

All other values in Python evaluate to True.

Note: A common mistake is to simply check for the Falseness of an operation which returns different Falsey values
where the difference matters. For example, using if foo() rather than the more explicit if foo() is None

Section 14.4: Boolean Logic Expressions

Boolean logic expressions, in addition to evaluating to True or False, return the value that was interpreted as True
or False. It is Pythonic way to represent logic that might otherwise require an if-else test.

And operator

The and operator evaluates all expressions and returns the last expression if all expressions evaluate to True.
Otherwise it returns the first value that evaluates to False:

1 and 2
1 and ©

1 and "Hello World"
"Hello World"

and "Pancakes"

Or operator

The or operator evaluates the expressions left to right and returns the first value that evaluates to True or the last
value (if none are True).

1 or 2
None or 1

0 or []
[]

Lazy evaluation

When you use this approach, remember that the evaluation is lazy. Expressions that are not required to be
evaluated to determine the result are not evaluated. For example:

def print_me():
print('I am here!")
0 and print_me()

GoalKicker.com - Python® Notes for Professionals 78

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

In the above example, print_me is never executed because Python can determine the entire expression is False
when it encounters the 0 (False). Keep this in mind if print_me needs to execute to serve your program logic.

Testing for multiple conditions
A common mistake when checking for multiple conditions is to apply the logic incorrectly.

This example is trying to check if two variables are each greater than 2. The statement is evaluated as - if (a) and
(b > 2). This produces an unexpected result because bool(a) evaluates as True when a is not zero.

a 1
b==6
if a and b 2:
print('yes')
. else:
print('no')

yes
Each variable needs to be compared separately.

if a>2and b > 2:
print('yes')
. else:
print('no')

no

Another, similar, mistake is made when checking if a variable is one of multiple values. The statement in this
example is evaluated as - if (a 3) or (4) or (6).This produces an unexpected result because bool(4) and

bool(6) each evaluate to True

a 1
if a 3 or 4 or 6:
print('yes")
. else:

print('no')
yes
Again each comparison must be made separately

if a 3 or a 4 or a 6:
print('yes")
. else:
print('no')

no

Using the in operator is the canonical way to write this.

if a in (3, 4, 6):
print('yes")
. else:
print('no')

GoalKicker.com - Python® Notes for Professionals

79

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

no

Section 14.5: Using the cmp function to get the comparison
result of two objects

Python 2 includes a cmp function which allows you to determine if one object is less than, equal to, or greater than
another object. This function can be used to pick a choice out of a list based on one of those three options.

Suppose you need to print 'greater than'ifx > y, 'less than' ifx < yand 'equal’ ifx ==y

['equal', 'greater than', 'less than',]J[cmp(x,y)]

x,y = 1,1 output: 'equal'
x,y = 1,2 output: 'less than'
x,y = 2,1 output: 'greater than'

cmp(x,y) returns the following values

Comparison Result

X<y -1
X==y 0
X>y 1

This function is removed on Python 3. You can use the cmp_to_key(func) helper function located in functools in
Python 3 to convert old comparison functions to key functions.

Section 14.6: Else statement

if condition:
body
else:
body

The else statement will execute it's body only if preceding conditional statements all evaluate to False.

if True:

print "It is true!"
else:

print "This won't get printed..”
Output: It is true!
if False:

print "This won't get printed..”
else:

print "It is false!"

Output: It is false!

Section 14.7: Testing if an object is None and assigning it
You'll often want to assign something to an object if it is None, indicating it has not been assigned. We'll use aDate.

The simplest way to do this is to use the is None test.

if aDate is None:

GoalKicker.com - Python® Notes for Professionals 80

https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

aDate=datetime.date.today()

(Note that it is more Pythonic to say is None instead of == None.)

But this can be optimized slightly by exploiting the notion that not None will evaluate to True in a boolean
expression. The following code is equivalent:

if not aDate:
aDate=datetime.date.today()

But there is a more Pythonic way. The following code is also equivalent:

aDate-aDate or datetime.date.today()

This does a Short Circuit evaluation. If aDate is initialized and is not None, then it gets assigned to itself with no net

effect. Ifit is None, then the datetime.date.today() gets assigned to aDate.

Section 14.8: If statement

if condition:
body

The if statements checks the condition. If it evaluates to True, it executes the body of the if statement. If it
evaluates to False, it skips the body.

if True:
print "It is true!"
It is true

if False:
print "This won't get printed.."

The condition can be any valid expression:

if 2 + 2 4:
print "I know math!"
I know math

GoalKicker.com - Python® Notes for Professionals

81

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 15: Comparisons

Parameter Details
X First item to be compared
y Second item to be compared

Section 15.1: Chain Comparisons

You can compare multiple items with multiple comparison operators with chain comparison. For example

is just a short form of:

X y and y z
This will evaluate to True only if both comparisons are True.
The general form is

aOPboOPcoOPd...

Where 0P represents one of the multiple comparison operations you can use, and the letters represent arbitrary
valid expressions.

Note that @ 1 0 evaluates to True, even though @ 0 is False. Unlike the common mathematical
notation in which x y z means that x, y and z have different values. Chaining == operations has
the natural meaning in most cases, since equality is generally transitive.

Style

There is no theoretical limit on how many items and comparison operations you use as long you have proper
syntax:

1 =1 2 0.5 100 24

The above returns True if each comparison returns True. However, using convoluted chaining is not a good style. A
good chaining will be "directional", not more complicated than

1 X -4 y 8
Side effects

As soon as one comparison returns False, the expression evaluates immediately to False, skipping all remaining
comparisons.

Note that the expression expina > exp > b will be evaluated only once, whereas in the case of
a exp and exp b

exp will be computed twice if a > exp is true.

GoalKicker.com - Python® Notes for Professionals 82

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

< N

Section 15.2: Comparison by is vs ==
A common pitfall is confusing the equality comparison operators is and ==.
a b compares the value of a and b.

a is b will compare the identities of a and b.

To illustrate:

a 'Python is fun!'

b "Python is fun!'

a b # returns True

a is b # returns False

a [1, 2, 3, 4, 5]

b a # b references a
a b # True

ais b # True

b al:] # b now references a copy of a
a b # True

ais b # False [!1]

Basically, is can be thought of as shorthand for id(a) id(b).

Beyond this, there are quirks of the run-time environment that further complicate things. Short strings and small
integers will return True when compared with is, due to the Python machine attempting to use less memory for
identical objects.

"short'
"short'
5
5
isb #T
isd#T

rue
rue

O 0 O 0 T o

But longer strings and larger integers will be stored separately.

'not so short'
‘not so short'
1000
1000

is b # False

is d # False

O 0o O 0 T o

You should use is to test for None:

if myvar is not None:
not None
pass
if myvar is None:
None
pass

A use of is is to test for a “sentinel” (i.e. a unique object).

sentinel = object()
def myfunc(var=sentinel):

GoalKicker.com - Python® Notes for Professionals

83

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

if var is sentinel:
value wasn’'t provided
pass

else:
value was provided

pass

Section 15.3: Greater than or less than

These operators compare two types of values, they're the less than and greater than operators. For numbers this

simply compares the numerical values to see which is larger:

12 4
True
12 4
False
1 4
True

For strings they will compare lexicographically, which is similar to alphabetical order but not quite the same.

"alpha" "beta"
True

"gamma" "beta"
True

"gamma" "OMEGA"
False

In these comparisons, lowercase letters are considered 'greater than' uppercase, which is why "gamma" < "OMEGA"

is false. If they were all uppercase it would return the expected alphabetical ordering result:

"GAMMA" "OMEGA"
True

Each type defines it's calculation with the < and > operators differently, so you should investigate what the

operators mean with a given type before using it.

Section 15.4: Not equal to

This returns True if x and y are not equal and otherwise returns False.

12 1

True

12 12!

True

12" 12"
False

GoalKicker.com - Python® Notes for Professionals

84

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 15.5: Equal To

This expression evaluates if x and y are the same value and returns the result as a boolean value. Generally both
type and value need to match, so the int 12 is not the same as the string '12".

12 12

True

12 1

False

12! 12!

True

'spam’ 'spam’
True

"spam'’ ‘spam '
False

12! 12

False

Note that each type has to define a function that will be used to evaluate if two values are the same. For builtin
types these functions behave as you'd expect, and just evaluate things based on being the same value. However
custom types could define equality testing as whatever they'd like, including always returning True or always
returning False.

Section 15.6: Comparing Objects

In order to compare the equality of custom classes, you can override == and ! = by defining __eq__and __ne__
methods. You can also override __1t__ (<), __le__(<=), __gt__(>), and __ge__ (>). Note that you only need to
override two comparison methods, and Python can handle the rest (== is the same as not < and not >, etc.)

class Foo(object):
def __init__(self, item):
self.my_item = item
def __eq__(self, other):

return self.my_item other.my_item
a = Foo(5)
b = Foo(5)
a b # True
a b # False
ais b # False

Note that this simple comparison assumes that other (the object being compared to) is the same object type.
Comparing to another type will throw an error:

class Bar(object):
def __init__(self, item):
self.other_item = item
def __eq__(self, other):

return self.other_item other.other_item
def __ne__(self, other):
return self.other_item other.other_item
¢ = Bar(5)
a G # throws AttributeError: 'Foo' object has no attribute 'other_item'

GoalKicker.com - Python® Notes for Professionals 85

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Checking isinstance() or similar will help prevent this (if desired).

GoalKicker.com - Python® Notes for Professionals

86

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 16: Loops

Parameter Details
boolean expression expression that can be evaluated in a boolean context, e.g. x < 10
variable variable name for the current element from the iterable
iterable anything that implements iterations

As one of the most basic functions in programming, loops are an important piece to nearly every programming
language. Loops enable developers to set certain portions of their code to repeat through a number of loops which
are referred to as iterations. This topic covers using multiple types of loops and applications of loops in Python.

Section 16.1: Break and Continue in Loops

break statement

When a break statement executes inside a loop, control flow "breaks" out of the loop immediately:

i 0
while i 7:
print(i)
if i 4:
print("Breaking from loop")
break
i+=1

The loop conditional will not be evaluated after the break statement is executed. Note that break statements are
only allowed inside loops, syntactically. A break statement inside a function cannot be used to terminate loops that
called that function.

Executing the following prints every digit until number 4 when the break statement is met and the loop stops:

o~ WNREFRO

reaking from loop

break statements can also be used inside for loops, the other looping construct provided by Python:

for i in (0, 1, 2, 3, 4):
print(i)
if i 2:
break

Executing this loop now prints:

=

Note that 3 and 4 are not printed since the loop has ended.

GoalKicker.com - Python® Notes for Professionals 87

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

If a loop has an else clause, it does not execute when the loop is terminated through a break statement.
continue statement

A continue statement will skip to the next iteration of the loop bypassing the rest of the current block but
continuing the loop. As with break, continue can only appear inside loops:

for i in (0, 1, 2, 3, 4, 5):
if i 2 or i 4:
continue
print(i)

g w = 0o

Note that 2 and 4 aren't printed, this is because continue goes to the next iteration instead of continuing on to
print(i) wheni 20ri 4,

Nested Loops

break and continue only operate on a single level of loop. The following example will only break out of the inner
for loop, not the outer while loop:

while True:
for i in range(1,5):
if i 2:
break # Will only break out of the inner loop!

Python doesn't have the ability to break out of multiple levels of loop at once -- if this behavior is desired,
refactoring one or more loops into a function and replacing break with return may be the way to go.

Use return from within a function as a break

The return statement exits from a function, without executing the code that comes after it.

If you have a loop inside a function, using return from inside that loop is equivalent to having a break as the rest of

the code of the loop is not executed (note that any code after the loop is not executed either):

def break_loop():
for i in range(1, 5):
if (i 2):
return(i)
print(i)
return(5)

If you have nested loops, the return statement will break all loops:

def break_all():
for j in range(1, 5):
for i in range(1,4):
if i#*j 6:
return(i)
print(ix*j)

will output:

GoalKicker.com - Python® Notes for Professionals

88

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

1*1
1%2
1%3
1%4
2*1
2%2
return because 2%#3 = 6, the remaining iterations of both loops are not executed

AN DWN

Section 16.2: For loops

for loops iterate over a collection of items, such as 1ist or dict, and run a block of code with each element from
the collection.

for i in [0, 1, 2, 3, 4]:
print(i)

The above for loop iterates over a list of numbers.

Each iteration sets the value of i to the next element of the list. So first it will be @, then 1, then 2, etc. The output
will be as follow:

A~ WNRE O

range is a function that returns a series of numbers under an iterable form, thus it can be used in for loops:

for i in range(5):
print(i)

gives the exact same result as the first for loop. Note that 5 is not printed as the range here is the first five
numbers counting from 0.

Iterable objects and iterators

for loop can iterate on any iterable object which is an object which defines a __getitem__ or a __iter__ function.

The __iter__ function returns an iterator, which is an object with a next function that is used to access the next
element of the iterable.

Section 16.3: Iterating over lists

To iterate through a list you can use for:

for x in ['one’ two "three', 'four']:

print(x)
This will print out the elements of the list:

one
two
three
four

GoalKicker.com - Python® Notes for Professionals

89

http://stackoverflow.com/questions/9884132/what-exactly-are-pythons-iterator-iterable-and-iteration-protocols
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

The range function generates numbers which are also often used in a for loop.

for x in range(1, 6):
print(x)

The result will be a special range sequence type in python >=3 and a list in python <=2. Both can be looped through
using the for loop.

Uu s WN R

If you want to loop though both the elements of a list and have an index for the elements as well, you can use
Python's enumerate function:

for index, item in enumerate(['one’ two', 'three', 'four']):

print(index, '::', item)

enumerate will generate tuples, which are unpacked into index (an integer) and item (the actual value from the list).
The above loop will print

(6, '"::', 'one")
(1, "', "two")
(2, "::", '"three")
(3, '"::", 'four")

Iterate over a list with value manipulation using map and lambda, i.e. apply lambda function on each element in the
list:

x = map(lambda e : e.upper(), ['one', 'two', 'three', 'four'l])
print(x)

Output:
['ONE', 'TWO', 'THREE', 'FOUR'] # Python 2.x

NB: in Python 3.x map returns an iterator instead of a list so you in case you need a list you have to cast the result
print(list(x))

Section 16.4: Loops with an "else"” clause

The for and while compound statements (loops) can optionally have an else clause (in practice, this usage is fairly
rare).

The else clause only executes after a for loop terminates by iterating to completion, or after a while loop
terminates by its conditional expression becoming false.

for i in range(3):
print(i)

else:
print('done")

i=20

GoalKicker.com - Python® Notes for Professionals 90

https://docs.python.org/3/library/stdtypes.html#ranges
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

while i Sh
print(i)
i+=1

else:
print('done")

output:

The else clause does not execute if the loop terminates some other way (through a break statement or by raising

an exception):

for i in range(2):
print(i)
if i 1:
break
else:
print('done")

output:

Most other programming languages lack this optional else clause of loops. The use of the keyword else in

particular is often considered confusing.

The original concept for such a clause dates back to Donald Knuth and the meaning of the else keyword becomes

clear if we rewrite a loop in terms of if statements and goto statements from earlier days before structured
programming or from a lower-level assembly language.

For example:

while loop_condition():

if break_condition():
break

is equivalent to:

pseudocode

start
if loop_condition():

if break_condition():
goto <<end

goto <<start

GoalKicker.com - Python® Notes for Professionals

N

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

end

These remain equivalent if we attach an else clause to each of them.

For example:

while loop_condition():

if break_condition():
break

else:
print('done')

is equivalent to:

pseudocode

start
if loop_condition():

if break_condition():
goto <<end

goto <<start
else:
print('done")

end

A for loop with an else clause can be understood the same way. Conceptually, there is a loop condition that
remains True as long as the iterable object or sequence still has some remaining elements.

Why would one use this strange construct?
The main use case for the for...else construct is a concise implementation of search as for instance:

a [1, 2, 3, 4]
for i in a:
if type(i) is not int:
print(i)
break
else:
print("no exception")

To make the else in this construct less confusing one can think of it as "if not break" or "if not found".

Some discussions on this can be found in [Python-ideas] Summary of for...else threads, Why does python use 'else’
after for and while loops?, and Else Clauses on Loop Statements

Section 16.5: The Pass Statement

pass is a null statement for when a statement is required by Python syntax (such as within the body of a for or
while loop), but no action is required or desired by the programmer. This can be useful as a placeholder for code
that is yet to be written.

for x in range(10):

GoalKicker.com - Python® Notes for Professionals 92

https://mail.python.org/pipermail/python-ideas/2009-October/006155.html
https://stackoverflow.com/questions/9979970/why-does-python-use-else-after-for-and-while-loops
https://stackoverflow.com/questions/9979970/why-does-python-use-else-after-for-and-while-loops
http://python-notes.curiousefficiency.org/en/latest/python_concepts/break_else.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

pass #we don't want to do anything, or are not ready to do anything here, so we'll pass

In this example, nothing will happen. The for loop will complete without error, but no commands or code will be
actioned. pass allows us to run our code successfully without having all commands and action fully implemented.

Similarly, pass can be used in while loops, as well as in selections and function definitions etc.

while x y:
pass

Section 16.6: Iterating over dictionaries

Considering the following dictionary:
d={"a":1, "b":2, "c": 3}
To iterate through its keys, you can use:

for key in d:
print(key)

Output:

"p

This is equivalent to:

for key in d.keys():
print(key)

or in Python 2:

for key in d.iterkeys():
print(key)

To iterate through its values, use:

for value in d.values():
print(value)

Output:

To iterate through its keys and values, use:

for key, value in d.items():
print(key, "::", value)

Output:

GoalKicker.com - Python® Notes for Professionals

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Note that in Python 2, .keys(), .values() and .items() return a list object. If you simply need to iterate through
the result, you can use the equivalent .iterkeys(), .itervalues() and .iteritems().

The difference between .keys() and .iterkeys(), .values() and .itervalues(), .items() and .iteritems() is
that the iter* methods are generators. Thus, the elements within the dictionary are yielded one by one as they are
evaluated. When a list object is returned, all of the elements are packed into a list and then returned for further
evaluation.

Note also that in Python 3, Order of items printed in the above manner does not follow any order.

Section 16.7: The "half loop"” do-while

Unlike other languages, Python doesn't have a do-until or a do-while construct (this will allow code to be executed
once before the condition is tested). However, you can combine a while True with a break to achieve the same
purpose.

a 10

while True:
a a-1
print(a)
if a<7:

break
print('Done.")

This will print:

O o0 N

one.

Section 16.8: Looping and Unpacking

If you want to loop over a list of tuples for example:
collection = [('a', 'b", 'c'), ('x', 'y', 'z'), ('1', '2', '3")]
instead of doing something like this:

for item in collection:
i1 item[0]
i2 item[1]
i3 item[2]
logic

or something like this:

for item in collection:

GoalKicker.com - Python® Notes for Professionals 94

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

i1, i2, i3 = item
logic

You can simply do this:

for i1, i2, i3 in collection:
logic

This will also work for most types of iterables, not just tuples.

Section 16.9: Iterating different portion of a list with different
step size

Suppose you have a long list of elements and you are only interested in every other element of the list. Perhaps you
only want to examine the first or last elements, or a specific range of entries in your list. Python has strong indexing
built-in capabilities. Here are some examples of how to achieve these scenarios.

Here's a simple list that will be used throughout the examples:

Ist ['alpha', 'bravo', 'charlie', ‘'delta', 'echo']

Iteration over the whole list
To iterate over each element in the list, a for loop like below can be used:

for s in 1st:
print s[:1] # print the first letter

The for loop assigns s for each element of 1st. This will print:

O O O T o

Often you need both the element and the index of that element. The enumerate keyword performs that task.

for idx, s in enumerate(lst):
print("%s has an index of %d" % (s, idx))

The index idx will start with zero and increment for each iteration, while the s will contain the element being
processed. The previous snippet will output:

alpha has an index of 0
bravo has an index of 1
charlie has an index of 2
delta has an index of 3
echo has an index of 4

Iterate over sub-list
If we want to iterate over a range (remembering that Python uses zero-based indexing), use the range keyword.

for i in range(2,4):
print("lst at %d contains %s" % (i, 1lst[i]))

GoalKicker.com - Python® Notes for Professionals 95

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

This would output:

1st at 2 contains charlie
1lst at 3 contains delta

The list may also be sliced. The following slice notation goes from element at index 1 to the end with a step of 2.
The two for loops give the same result.

for s in 1st[1::2]:
print(s)

for i in range(1, len(1lst), 2):
print(1lst[i])

The above snippet outputs:

bravo
delta

Indexing and slicing is a topic of its own.

Section 16.10: While Loop

A while loop will cause the loop statements to be executed until the loop condition is falsey. The following code will
execute the loop statements a total of 4 times.

i 0

while i 4:
#loop statements
i i+ 1

While the above loop can easily be translated into a more elegant for loop, while loops are useful for checking if
some condition has been met. The following loop will continue to execute until myObject is ready.

myObject = anObject()
while myObject.isNotReady():
myObject.tryToGetReady()

while loops can also run without a condition by using numbers (complex or real) or True:

import cmath

complex_num = cmath.sqrt(-1)
while complex_num: # You can also replace complex_num with any number, True or a value of any

type
print(complex_num) # Prints 1j forever

If the condition is always true the while loop will run forever (infinite loop) if it is not terminated by a break or return
statement or an exception.

while True:
print "Infinite loop"
Infinite loop
Infinite loop
Infinite loop

GoalKicker.com - Python® Notes for Professionals 96

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

GoalKicker.com - Python® Notes for Professionals

97

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 17: Arrays

Parameter Details

Represents signed integer of size 1 byte

Represents unsigned integer of size 1 byte

Represents character of size 1 byte

Represents unicode character of size 2 bytes

Represents signed integer of size 2 bytes

Represents unsigned integer of size 2 bytes

Represents signed integer of size 2 bytes

Represents unsigned integer of size 2 bytes

Represents unicode character of size 4 bytes

Represents signed integer of size 4 bytes

Represents unsigned integer of size 4 bytes

Represents floating point of size 4 bytes

Represents floating point of size 8 bytes

"Arrays" in Python are not the arrays in conventional programming languages like C and Java, but closer to lists. A
list can be a collection of either homogeneous or heterogeneous elements, and may contain ints, strings or other

= +HH I T C O W oT

o

lists.

Section 17.1: Access individual elements through indexes

Individual elements can be accessed through indexes. Python arrays are zero-indexed. Here is an example:

my_array = array('i', [1,2,3,4,5])
print(my_array[1])

2

print(my_array[2])

3

print(my_array[0])

1

Section 17.2: Basic Introduction to Arrays

An array is a data structure that stores values of same data type. In Python, this is the main difference between
arrays and lists.

While python lists can contain values corresponding to different data types, arrays in python can only contain
values corresponding to same data type. In this tutorial, we will understand the Python arrays with few examples.

If you are new to Python, get started with the Python Introduction article.

To use arrays in python language, you need to import the standard array module. This is because array is not a
fundamental data type like strings, integer etc. Here is how you can import array module in python :

from array import =*
Once you have imported the array module, you can declare an array. Here is how you do it:
arrayIdentifierName = array(typecode, [Initializers])

In the declaration above, arrayIdentifierName is the name of array, typecode lets python know the type of array
and Initializers are the values with which array is initialized.

GoalKicker.com - Python® Notes for Professionals

98

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Typecodes are the codes that are used to define the type of array values or the type of array. The table in the
parameters section shows the possible values you can use when declaring an array and it's type.

Here is a real world example of python array declaration :
my_array = array('i',[1,2,3,4])

In the example above, typecode used is i. This typecode represents signed integer whose size is 2 bytes.
Here is a simple example of an array containing 5 integers

from array import #*
my_array = array('i', [1,2,3,4,5])
for i in my_array:
print(i)
1
2
3
4
5

Section 17.3: Append any value to the array using append()
method

my_array = array('i', [1,2,3,4,5])
my_array.append(6)
array('i', [1, 2, 3, 4, 5, 6])

Note that the value 6 was appended to the existing array values.

Section 17.4: Insert value in an array using insert() method

We can use the insert() method to insert a value at any index of the array. Here is an example :

my_array = array('i', [1,2,3,4,5])
my_array.insert(0,0)
#array('i', [0, 1, 2, 3, 4, 5])

In the above example, the value 0 was inserted at index 0. Note that the first argument is the index while second
argument is the value.

Section 17.5: Extend python array using extend() method

A python array can be extended with more than one value using extend() method. Here is an example :

my_array = array('i', [1,2,3,4,5])
my_extnd_array = array('i', [7,8,9,10])
my_array.extend(my_extnd_array)

array('i', [1, 2, 3, 4, 5, 7, 8, 9, 10])

We see that the array my_array was extended with values from my_extnd_array.

Section 17.6: Add items from list into array using fromlist()

GoalKicker.com - Python® Notes for Professionals 99

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

method

Here is an example:

my_array = array('i', [1,2,3,4,5])
c=[11,12,13]

my_array.fromlist(c)

array('i', [1, 2, 3, 4, 5, 11, 12, 13])

So we see that the values 11,12 and 13 were added from list c to my_array.

Section 17.7: Remove any array element using remove()
method

Here is an example :
my_array = array('i', [1,2,3,4,5])

my_array.remove(4)
array('i', [1, 2, 3, 5])

We see that the element 4 was removed from the array.

Section 17.8: Remove last array element using pop() method

pop removes the last element from the array. Here is an example :

my_array = array('i', [1,2,3,4,5])

my_array.pop()
array('i', [1, 2, 3, 4])

So we see that the last element (5) was popped out of array.

Section 17.9: Fetch any element through its index using index()
method

index() returns first index of the matching value. Remember that arrays are zero-indexed.

my_array = array('i', [1,2,3,4,5])
print(my_array.index(5))

5

my_array = array('i', [1,2,3,3,5])
print(my_array.index(3))

3

Note in that second example that only one index was returned, even though the value exists twice in the array

Section 17.10: Reverse a python array using reverse() method

The reverse() method does what the name says it will do - reverses the array. Here is an example :

my_array = array('i', [1,2,3,4,5])
my_array.reverse()
array('i', [5, 4, 3, 2, 1])

GoalKicker.com - Python® Notes for Professionals 100

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 17.11. Get array buffer information through
buffer_info() method

This method provides you the array buffer start address in memory and number of elements in array. Here is an
example:

my_array = array('i', [1,2,3,4,5])
my_array.buffer_info()
(33881712, 5)

Section 17.12: Check for number of occurrences of an element
using count() method

count () will return the number of times and element appears in an array. In the following example we see that the
value 3 occurs twice.

my_array = array('i', [1,2,3,3,5])
my_array.count(3)
2

Section 17.13: Convert array to string using tostring() method

tostring() converts the array to a string.

my_char_array = array('c', ['g','e','e",'k'])
array('c', 'geek')
print(my_char_array.tostring())

geek

Section 17.14: Convert arraﬁ to a python list with same
elements using tolist() method

When you need a Python 1ist object, you can utilize the tolist() method to convert your array to a list.

my_array = array('i', [1,2,3,4,5])
c = my_array.tolist()
#[1, 2, 3, 4, 5]

Section 17.15: Append a string to char array using fromstring()
method

You are able to append a string to a character array using fromstring()

my_char_array = array('c', ['g','e','e", 'k'])
my_char_array.fromstring("stuff")
print(my_char_array)

#array('c', 'geekstuff')

GoalKicker.com - Python® Notes for Professionals 101

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 18: Multidimensional arrays

Section 18.1: Lists in lists
A good way to visualize a 2d array is as a list of lists. Something like this:

1st=[[1,2,3],[4,5,6],[7,8,9]]

here the outer list 1st has three things in it. each of those things is another list: The first oneis: [1,2,3], the second
oneis: [4,5,6] and the third one is: [7,8,9]. You can access these lists the same way you would access another
other element of a list, like this:

print (1lst[0])
#output: [1, 2, 3]

print (lst[1])
#output: [4, 5, 6]

print (1lst[2])
#output: [7, 8, 9]

You can then access the different elements in each of those lists the same way:

print (lst[e][e])
#output: 1

print (1st[0][1])
#output: 2

Here the first number inside the [] brackets means get the list in that position. In the above example we used the
number 8 to mean get the list in the 0th position which is [1,2,3]. The second set of [] brackets means get the
item in that position from the inner list. In this case we used both @ and 1 the Oth position in the list we got is the
number 1 and in the 1st position it is 2

You can also set values inside these lists the same way:
1st[0]=[10,11,12]

Now thelistis [[10,11,12],[4,5,6]1,[7,8,9]]. In this example we changed the whole first list to be a completely
new list.

Ist[1][2]=15

Now the listis [[10,11,12],[4,5,15],[7,8,9]]. In this example we changed a single element inside of one of the
inner lists. First we went into the list at position 1 and changed the element within it at position 2, which was 6 now
it's 15.

Section 18.2: Lists in lists in lists in..
This behaviour can be extended. Here is a 3-dimensional array:

[[[111,112,113],[121,122,123],[131,132,133]1,[[211,212,213],[221,222,223],[231,232,233]],[[311,312,
313],[321,322,323],[331,332,333]]]

GoalKicker.com - Python® Notes for Professionals 102

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

As is probably obvious, this gets a bit hard to read. Use backslashes to break up the different dimensions:

[[[111,112,113],[121,122,123],[131,132,133]],\
[[211,212,2131,[221,222,223],[231,232,233]1,\
[[311,312,313],[321,322,323],[331,332,333]1]]1

By nesting the lists like this, you can extend to arbitrarily high dimensions.

Accessing is similar to 2D arrays:

print
print
print
print
etc.

myarray)
myarray[1])
myarray[2][1])
myarray[1][0][2])

—~ o~ o~ o~

And editing is also similar:

myarray[1]=new_n-1_d_list
myarray[2][1]=new_n-2_d_list

myarray[1][@][2]=new_n-3_d_list #or a single number if you're dealing with 3D arrays

etc.

GoalKicker.com - Python® Notes for Professionals

103

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 19: Dictionary

Parameter Details
key The desired key to lookup
value The value to set or return

Section 19.1: Introduction to Dictionary

A dictionary is an example of a key value store also known as Mapping in Python. It allows you to store and retrieve
elements by referencing a key. As dictionaries are referenced by key, they have very fast lookups. As they are
primarily used for referencing items by key, they are not sorted.

creating a dict
Dictionaries can be initiated in many ways:
literal syntax

d = {} # empty dict
d {"key': 'value'} # dict with initial values

Python 3.x Version = 3.5

Also unpacking one or multiple dictionaries with the literal syntax is possible

makes a shallow copy of otherdict

d = {**otherdict}

also updates the shallow copy with the contents of the yetanotherdict.
d = {**otherdict, **yetanotherdict}

dict comprehension
d = {k:v for k,v in [('key', 'value',6)]}

see also: Comprehensions

built-in class: dict()

d = dict() # empty dict

d = dict(key="'value') # explicit keyword arguments

d = dict([('key', 'value')]) # passing in a list of key/value pairs

make a shallow copy of another dict (only possible if keys are only strings!)
d = dict(**otherdict)

modifying a dict

To add items to a dictionary, simply create a new key with a value:
d['newkey'] = 42

It also possible to add 1ist and dictionary as value:

d['new_1list']
d['new_dict']

[1, 2, 3]
{'nested_dict': 1}

To delete an item, delete the key from the dictionary:

del d['newkey']

GoalKicker.com - Python® Notes for Professionals 104

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 19.2: Avoiding KeyError Exceptions

One common pitfall when using dictionaries is to access a non-existent key. This typically results in a KeyError
exception

mydict {}
mydict['not there']

Traceback (most recent call last):
File "<stdin>", line 1, in <module
KeyError: 'not there'

One way to avoid key errors is to use the dict.get method, which allows you to specify a default value to returnin
the case of an absent key.

value = mydict.get(key, default_value)

Which returns mydict[key] if it exists, but otherwise returns default_value. Note that this doesn't add key to
mydict. So if you want to retain that key value pair, you should use mydict.setdefault(key, default_value),
which does store the key value pair.

mydict {}

print(mydict)

{}

print(mydict.get("foo", "bar"))
bar

print(mydict)

{}
print(mydict.setdefault("foo", "bar"))
bar

print(mydict)

{'foo': 'bar'}

An alternative way to deal with the problem is catching the exception
try:
value = mydict[key]

except KeyError:
value = default_value

You could also check if the key is in the dictionary.
if key in mydict:
value = mydict[key]

else:
value default_value

Do note, however, that in multi-threaded environments it is possible for the key to be removed from the dictionary
after you check, creating a race condition where the exception can still be thrown.

Another option is to use a subclass of dict, collections.defaultdict, that has a default_factory to create new entries in
the dict when given a new_key.

Section 19.3: Iterating Over a Dictionary

If you use a dictionary as an iterator (e.g. in a for statement), it traverses the keys of the dictionary. For example:

GoalKicker.com - Python® Notes for Professionals 105

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

d {'a': 1, 'b': 2, 'c':3}
for key in d:
print(key, d[key])
#c 3
b 2
#a 1

The same is true when used in a comprehension

print([key for key in d])
#['c', 'b', 'a']

Python 3.x Version = 3.0

The items() method can be used to loop over both the key and value simultaneously:

for key, value in d.items():
print(key, value)

#c 3

#b 2

#a 1l

While the values() method can be used to iterate over only the values, as would be expected:

for key, value in d.values():
print(key, value)
3
2
1

Python 2.x version = 2.2

Here, the methods keys(), values() and items() return lists, and there are the three extra methods iterkeys()
itervalues() and iteritems() to return iterators.

Section 19.4: Dictionary with default values
Available in the standard library as defaultdict

from collections import defaultdict

d = defaultdict(int)

d['key'] # 0
d['key'] 5
d['key'] #5

d = defaultdict(lambda: 'empty')

d['key'] # 'empty'’
d['key'] "full'
d['key'] # 'full'’

[*] Alternatively, if you must use the built-in dict class, using dict.setdefault() will allow you to create a default
whenever you access a key that did not exist before:

d = {}
{}
d.setdefault('Another_key', []).append("This worked!")

d

GoalKicker.com - Python® Notes for Professionals 106

https://docs.python.org/3/library/collections.html#collections.defaultdict
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

{"Another_key': ['This worked!']}

Keep in mind that if you have many values to add, dict.setdefault() will create a new instance of the initial value
(in this example a []) every time it's called - which may create unnecessary workloads.

[*] Python Cookbook, 3rd edition, by David Beazley and Brian K. Jones (O’Reilly). Copyright 2013 David Beazley and Brian
Jones, 978-1-449-34037-7.

Section 19.5: Merging dictionaries

Consider the following dictionaries:

fish {'name': "Nemo", 'hands': "fins", 'special': "gills"}
dog {'name': "Clifford", 'hands': "paws", 'color': "red"}
Python 3.5+
fishdog {**fish, *xdog}
fishdog
{'hands': 'paws', 'color': 'red', 'name': 'Clifford', 'special': 'gills'}

As this example demonstrates, duplicate keys map to their lattermost value (for example "Clifford" overrides
"Nemo").

Python 3.3+

from collections import ChainMap
dict(ChainMap(fish, dog))
{"hands': 'fins', 'color': 'red', 'special': 'gills’', ‘'name': 'Nemo'}

With this technique the foremost value takes precedence for a given key rather than the last ("Clifford" is thrown
out in favor of "Nemo").

Python 2.x, 3.x

from itertools import chain
dict(chain(fish.items(), dog.items()))
{'hands': 'paws', 'color': 'red', 'name': 'Clifford', 'special': 'gills'}

This uses the lattermost value, as with the **-based technique for merging ("Clifford" overrides "Nemo").
fish.update(dog)
fish
{'color': 'red', 'hands': 'paws', ‘'name': 'Clifford', 'special': 'gills'}

dict.update uses the latter dict to overwrite the previous one.

Section 19.6: Accessing keys and values

When working with dictionaries, it's often necessary to access all the keys and values in the dictionary, either in a
for loop, a list comprehension, or just as a plain list.

Given a dictionary like:

mydict {
‘a': "1
‘b': "2
}

GoalKicker.com - Python® Notes for Professionals 107

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

You can get a list of keys using the keys() method:

print(mydict.keys())
Python2: ['a', 'b']
Python3: dict_keys(['b', 'a'])

If instead you want a list of values, use the values() method:

print(mydict.values())
Python2: ['1', '2']
Python3: dict_values(['2', '1'])

If you want to work with both the key and its corresponding value, you can use the items() method:

print(mydict.items())
Python2: [('a', '1'), ('b', '2')]
Python3: dict_items([('b', '2'), ('a', '1')])

NOTE: Because a dict is unsorted, keys (), values(), and items() have no sort order. Use sort(), sorted(), or an
OrderedDict if you care about the order that these methods return.

Python 2/3 Difference: In Python 3, these methods return special iterable objects, not lists, and are the equivalent
of the Python 2 iterkeys(), itervalues(), and iteritems() methods. These objects can be used like lists for the
most part, though there are some differences. See PEP 3106 for more details.

Section 19.7: Accessing values of a dictionary

dictionary {"Hello": 1234, "World": 5678}
print(dictionary["Hello"])

The above code will print 1234.

The string "Hello" in this example is called a key. It is used to lookup a value in the dict by placing the key in
square brackets.

The number 1234 is seen after the respective colon in the dict definition. This is called the value that "Hello" maps
to in this dict.

Looking up a value like this with a key that does not exist will raise a KeyError exception, halting execution if
uncaught. If we want to access a value without risking a KeyError, we can use the dictionary.get method. By
default if the key does not exist, the method will return None. We can pass it a second value to return instead of
None in the event of a failed lookup.

w = dictionary.get("whatever")
x = dictionary.get("whatever", "nuh-uh")

In this example w will get the value None and x will get the value "nuh-uh".

Section 19.8: Creating a dictionary

Rules for creating a dictionary:

¢ Every key must be unique (otherwise it will be overridden)
e Every key must be hashable (can use the hash function to hash it; otherwise TypeError will be thrown)

GoalKicker.com - Python® Notes for Professionals 108

https://www.python.org/dev/peps/pep-3106/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

e There is no particular order for the keys.

Creating and populating it with values
stock = {'eggs': 5, 'milk': 2}

Or creating an empty dictionary
dictionary = {}

And populating it after
dictionary['eggs'] = 5
dictionary['milk'] = 2

Values can also be lists
mydict = {'a': [1, 2, 3], 'b': ['one', 'two', 'three']}

Use list.append() method to add new elements to the values list
mydict['a'].append(4) #=>{'a': [1, 2, 3, 4], 'b': ['one', 'two', 'three']}
mydict['b'].append('four') # => {'a': [1, 2, 3, 4], 'b': ['one', 'two', 'three', 'four']}

We can also create a dictionary using a list of two-items tuples
iterable = [('eggs', 5), ('milk', 2)]
dictionary = dict(iterables)

Or using keyword argument:
dictionary = dict(eggs=5, milk=2)

Another way will be to use the dict.fromkeys:
dictionary = dict.fromkeys((milk, eggs)) # => {'milk': None, 'eggs': None}
dictionary = dict.fromkeys((milk, eggs), (2, 5)) # => {'milk': 2, 'eggs': 5}

Section 19.9: Creating an ordered dictionary

You can create an ordered dictionary which will follow a determined order when iterating over the keys in the
dictionary.

Use OrderedDict from the collections module. This will always return the dictionary elements in the original
insertion order when iterated over.

from collections import OrderedDict

d = OrderedDict()
d['first'] = 1

d['second'] = 2
d['third'] = 3
d['last'] = 4

Outputs "first 1", "second 2", "third 3", "last 4"

for key in d:
print(key, d[key])

Section 19.10: Unpacking dictionaries using the ** operator

You can use the ** keyword argument unpacking operator to deliver the key-value pairs in a dictionary into a
function's arguments. A simplified example from the official documentation:

>>>
>>> def parrot(voltage, state, action):
print("This parrot wouldn't", action, end=' ")
print("if you put", voltage, "volts through it.", end=' ")

GoalKicker.com - Python® Notes for Professionals 109

https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

print("E's", state, "!")

d {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
parrot(*xd)

This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised '!

As of Python 3.5 you can also use this syntax to merge an arbitrary number of dict objects.

fish {'name': "Nemo", 'hands': "fins", 'special': "gills"}
dog {'name': "Clifford", 'hands': "paws", 'color': "red"}
fishdog {**fish, #**dog}
fishdog
{'hands': 'paws', 'color': 'red', 'name': 'Clifford', 'special': 'gills'}

As this example demonstrates, duplicate keys map to their lattermost value (for example "Clifford" overrides
"Nemo").

Section 19.11: The trailing comma
Like lists and tuples, you can include a trailing comma in your dictionary.

role {"By day": "A typical programmer"
"By night": "Still a typical programmer", }

PEP 8 dictates that you should leave a space between the trailing comma and the closing brace.

Section 19.12: The dict() constructor

The dict() constructor can be used to create dictionaries from keyword arguments, or from a single iterable of
key-value pairs, or from a single dictionary and keyword arguments.

dict(a=1, b=2, c¢=3) #{'a':1, 'b': 2, '¢c': 3)
dict([('d', 4), ('e', 5), ('f', 6)]) # {'d': 4, 'e': 5 'f': 6}
dict([('a', 1)], b=2, c=3) #{'a':1, 'b': 2, '¢c': 3)
dict({'a' : 1, 'b' : 2}, c=3) #{'a': 1, 'b': 2, 'c': 3}

Section 19.13: Dictionaries Example

Dictionaries map keys to values.

car {}

car["wheels"] 4
car["color"] "Red"
car["model"] "Corvette"

Dictionary values can be accessed by their keys.

print "Little " + car["color"] + + car["model"] + "!"
This would print out "Little Red Corvette!"

Dictionaries can also be created in a JSON style:

car {"wheels": 4, "color": "Red", "model": "Corvette"}

GoalKicker.com - Python® Notes for Professionals

10

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Dictionary values can be iterated over:

for key in car:
print key + ": " + car[key]

wheels: 4

color: Red

model: Corvette

Section 19.14: All combinations of dictionary values

options {
IIXII : [Ilall IIbII]
"y": [10, 20, 30]

Given a dictionary such as the one shown above, where there is a list representing a set of values to explore for the
corresponding key. Suppose you want to explore "x"="a" with "y"=16, then "x"="a" with"y"=18, and so on until
you have explored all possible combinations.

You can create a list that returns all such combinations of values using the following code.

import itertools

options {
"x": ["a", "b"]
"y": [10, 20, 30]}

keys = options.keys()

values = (options[key] for key in keys)

combinations = [dict(zip(keys, combination)) for combination in itertools.product(*values)]
print combinations

This gives us the following list stored in the variable combinations:

{'x": '"a', 'y': 10}
{'x b y': 10}
{'x": 'a y': 20}
{'x": 'b", 'y': 20}
{'x a y': 30}
{"x b y': 30}]

GoalKicker.com - Python® Notes for Professionals m

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 20: List

The Python List is a general data structure widely used in Python programs. They are found in other languages,
often referred to as dynamic arrays. They are both mutable and a sequence data type that allows them to be indexed
and sliced. The list can contain different types of objects, including other list objects.

Section 20.1: List methods and supported operators

Starting with a given list a:

a

1.

(1, 2, 3, 4, 5]

append(value) — appends a new element to the end of the list.

Append values 6, 7, and 7 to the list
a.append(6)

a.append(7)

a.append(7)

#a:[1, 2, 3, 4,5 6, 7, 7]

Append another list

= [8, 9]

.append(b)

a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9]]

o T H

Append an element of a different type, as list elements do not need to have the same type
my_string = "hello world"

a.append(my_string)

#a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9], "hello world"]

Note that the append() method only appends one new element to the end of the list. If you append a list to
another list, the list that you append becomes a single element at the end of the first list.

Appending a list to another list
=1[1, 2,3, 4 5,6, 7, 7]

= [8, 9]

.append(b)

#a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9]]
a[8]

Returns: [8,9]

O o %

o]

2. extend(enumerable) - extends the list by appending elements from another enumerable.

=[1, 2, 3, 4, 5 6,7, 7]
b =108, 9, 10]

Extend list by appending all elements from b
a.extend(b)
#a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]

Extend list with elements from a non-1list enumerable:
a.extend(range(3))
a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 0, 1, 2]

%

Lists can also be concatenated with the + operator. Note that this does not modify any of the original lists:

GoalKicker.com - Python® Notes for Professionals 12

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

a [1, 2, 3, 4, 5, 6] +[7, 71 + b
#a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]

3. index(value, [startIndex]) —gets the index of the first occurrence of the input value. If the input value is
not in the list a ValueError exception is raised. If a second argument is provided, the search is started at that
specified index.

a.index(7)
Returns: 6

a.index(49) # ValueError, because 49 is not in a.

a.index(7, 7)
Returns: 7

a.index(7, 8) # ValueError, because there is no 7 starting at index 8

4. insert(index, value) —inserts value just before the specified index. Thus after the insertion the new
element occupies position index.

a.insert(0, @) # insert @ at position @
a.insert(2, 5) # insert 5 at position 2
#a: [0, 1, 5, 2, 3, 4, 5,6, 7, 7, 8 9, 19]

5. pop([index]) —removes and returns the item at index. With no argument it removes and returns the last
element of the list.

.pop(2)

Returns: 5

a: [e, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]
.pop(8)

Returns: 7

a: [e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

HOoH oo R o

With no argument:

a.pop()

Returns: 10

#a: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

6. remove(value) —removes the first occurrence of the specified value. If the provided value cannot be found, a
ValueError is raised.

.remove(0)

.remove(9)

a: [1, 2, 3, 4, 5, 6, 7, 8]
.remove(10)

ValueError, because 16 is not in a

H O o o

7. reverse() —reverses the list in-place and returns None.

a.reverse()
#a: [8, 7,6, 5 4,3, 2, 1]

There are also other ways of reversing a list.

GoalKicker.com - Python® Notes for Professionals 13

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

8. count(value) — counts the number of occurrences of some value in the list.

a.count(7)
Returns: 2

9. sort() —sorts the list in numerical and lexicographical order and returns None.

a.sort()
#a=1[1, 2, 3, 4, 5, 6, 7, 8]
Sorts the list in numerical order

Lists can also be reversed when sorted using the reverse=True flag in the sort() method.

a.sort(reverse=True)
#a=1[8 7, 6,5 4, 3, 2, 1]

If you want to sort by attributes of items, you can use the key keyword argument:

import datetime

class Person(object):
def __init__(self, name, birthday, height):
self.name = name
self.birthday = birthday
self.height = height

def __repr__(self):
return self.name

1 = [Person("John Cena", datetime.date(1992, 9, 12), 175),
Person("Chuck Norris", datetime.date(1996, 8, 28), 180),
Person("Jon Skeet", datetime.date(1991, 7, 6), 185)]

[a]

.sort(key=lambda item: item.name)
1: [Chuck Norris, John Cena, Jon Skeet]

H*

=

.sort(key=1lambda item: item.birthday)

1: [Chuck Norris, Jon Skeet, John Cena]
1.sort(key=1lambda item: item.height)
1: [John Cena, Chuck Norris, Jon Skeet]

In case of list of dicts the concept is the same:
import datetime

1 = [{'name':'John Cena', 'birthday': datetime.date(1992, 9, 12), 'height': 175},
{'name': 'Chuck Norris', 'birthday': datetime.date(1990, 8, 28), 'height': 180},
{'name': 'Jon Skeet', 'birthday': datetime.date(1991, 7, 6), 'height': 185}]

1.sort(key=lambda item: item['name'])
1: [Chuck Norris, John Cena, Jon Skeet]

1.sort(key=lambda item: item['birthday'])
1: [Chuck Norris, Jon Skeet, John Cena]

1.sort(key=lambda item: item['height'])
1: [John Cena, Chuck Norris, Jon Skeet]

GoalKicker.com - Python® Notes for Professionals

14

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Sort by sub dict:

import datetime

1 [{'name':"'John Cena', 'birthday': datetime.date(1992, 9, 12), 'size': {'height': 175
'weight': 100}}

{'name': 'Chuck Norris', ‘'birthday': datetime.date(1990, 8, 28), 'size' : {'height': 180
‘weight': 90}}

{'name': 'Jon Skeet', 'birthday': datetime.date(1991, 7, 6), 'size': {'height': 185
'weight': 110}}]

1.sort(key=lambda item: item['size']['height'])
1: [John Cena, Chuck Norris, Jon Skeet]

Better way to sort using attrgetter and itemgetter

Lists can also be sorted using attrgetter and itemgetter functions from the operator module. These can help
improve readability and reusability. Here are some examples,

from operator import itemgetter,attrgetter

people [{'name':'chandan', 'age':20, 'salary':2000}
{'name' :'chetan', 'age':18, 'salary' :5000}
{'name' :'guru', 'age':30, 'salary' :3000}]

by_age = itemgetter('age')

by_salary = itemgetter('salary')

people.sort(key=by_age) #in-place sorting by age
people.sort(key=by_salary) #in-place sorting by salary

itemgetter can also be given an index. This is helpful if you want to sort based on indices of a tuple.

list_of_tuples = [(1,2), (3,4), (5,0)]
list_of_tuples.sort(key=itemgetter(1))
print(list_of_tuples) #[(5, 9), (1, 2), (3, 4)]

Use the attrgetter if you want to sort by attributes of an object,

persons = [Person("John Cena", datetime.date(1992, 9, 12), 175)

Person("Chuck Norris", datetime.date(1996, 8, 28), 180)

Person("Jon Skeet", datetime.date(1991, 7, 6), 185)] #reusing Person class from above
example

person.sort(key=attrgetter('name')) #sort by name
by_birthday = attrgetter('birthday")
person.sort(key=by_birthday) #sort by birthday

10. clear() —removes all items from the list

a.clear()
#a =[]

11. Replication — multiplying an existing list by an integer will produce a larger list consisting of that many copies
of the original. This can be useful for example for list initialization:

["blah"] * 3
= [

b
#b "blah", "blah", "blah"]

GoalKicker.com - Python® Notes for Professionals 15

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

b [1, 3, 5] =5
[71 3/ 5/ 1/ 3/ 5/ 1/ 3/ 5/ 7/ 3/ 5’ 7’ 3’ 5]

Take care doing this if your list contains references to objects (eg a list of lists), see Common Pitfalls - List
multiplication and common references.

12. Element deletion - it is possible to delete multiple elements in the list using the del keyword and slice
notation:

a = list(range(10))
del al::2]

#a=1_[1, 3, 5, 7, 9]
del a[-1]

#a=1[1, 3, 5 7]
del af:]

#a=1[]

13. Copying

The default assignment "=" assigns a reference of the original list to the new name. That is, the original name
and new name are both pointing to the same list object. Changes made through any of them will be reflected
in another. This is often not what you intended.

b= a
a.append(6)
#b: [1, 2, 3, 4, 5, 6]

If you want to create a copy of the list you have below options.
You can slice it:
new_list = old_list[:]
You can use the built in list() function:
new_list = list(old_list)
You can use generic copy.copy():

import copy
new_list copy.copy(old_list) #inserts references to the objects found in the original.

This is a little slower than list() because it has to find out the datatype of old_list first.

If the list contains objects and you want to copy them as well, use generic copy.deepcopy():

import copy
new_list copy.deepcopy(old_list) #inserts copies of the objects found in the original.

Obviously the slowest and most memory-needing method, but sometimes unavoidable.

Python 3.x version = 3.0

GoalKicker.com - Python® Notes for Professionals 16

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

copy() — Returns a shallow copy of the list

aa = a.copy()
#aa = [1, 2, 3, 4, 5]

Section 20.2: Accessing list values

Python lists are zero-indexed, and act like arrays in other languages.

1st [1, 2, 3, 4]
1st[0] # 1
Ist[1] # 2

Attempting to access an index outside the bounds of the list will raise an IndexError.
1st[4] # IndexError: list index out of range

Negative indices are interpreted as counting from the end of the list.

Ist[-1] # 4
1st[-2] # 3
1st[-5] # IndexError: list index out of range

This is functionally equivalent to
Ist[len(1lst)-1] # 4

Lists allow to use slice notation as 1st[start:end:step]. The output of the slice notation is a new list containing
elements from index start to end-1. If options are omitted start defaults to beginning of list, end to end of list and

stepto 1:

Ist[1:] # [2, 3, 4]

1st[:3] # [1, 2, 3]

Ist[::2] # [1, 3]

Ist[::-1] # [4, 3, 2, 1]

1st[-1:0:-1] # [4, 3, 2]

1st[5:8] # [] since starting index is greater than length of 1st, returns empty list
Ist[1:10] # [2, 3, 4] same as omitting ending index

With this in mind, you can print a reversed version of the list by calling
lst[::-1] #[4, 3, 2, 1]

When using step lengths of negative amounts, the starting index has to be greater than the ending index otherwise
the result will be an empty list.

1st[3:1:-1] # [4, 3]
Using negative step indices are equivalent to the following code:

reversed(lst)[0:2] # 6 1 -1
#2 =3 -1

The indices used are 1 less than those used in negative indexing and are reversed.

GoalKicker.com - Python® Notes for Professionals 17

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Advanced slicing

When lists are sliced the __getitem__() method of the list object is called, with a slice object. Python has a builtin
slice method to generate slice objects. We can use this to store a slice and reuse it later like so,

data = 'chandan purohit 22 2000' #assuming data fields of fixed length
name_slice = slice(0,19)

age_slice = slice(19,21)

salary_slice = slice(22,None)

#now we can have more readable slices
print(data[name_slice]) #chandan purohit
print(data[age_slice]) #'22'
print(data[salary_slice]) #'26000'

This can be of great use by providing slicing functionality to our objects by overriding __getitem__ in our class.

Section 20.3: Checking if list is empty

The emptiness of a list is associated to the boolean False, so you don't have to check len(1lst) == 6, butjust 1st
or not 1st

Ist = []
if not lst:
print("list is empty")

Output: list is empty

Section 20.4: Iterating over a list
Python supports using a for loop directly on a list:

my_list = ['foo', 'bar', 'baz']
for item in my_list:
print(item)

Output: foo
Output: bar
Output: baz

You can also get the position of each item at the same time;

for (index, item) in enumerate(my_list):
print('The item in position {} is: {}'.format(index, item))

Output: The item in position 6 is: foo
Output: The item in position 1 is: bar
Output: The item in position 2 is: baz

The other way of iterating a list based on the index value:

for i in range(0, len(my_list)):
print(my_list[i])

#output:

>>>

foo

bar

GoalKicker.com - Python® Notes for Professionals 18

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

baz
Note that changing items in a list while iterating on it may have unexpected results:

for item in my_list:
if item "foo':
del my_list[0]
print(item)

Output: foo
Output: baz

In this last example, we deleted the first item at the first iteration, but that caused bar to be skipped.

Section 20.5: Checking whether an item is in a list

Python makes it very simple to check whether an item is in a list. Simply use the in operator.

1st ['test', 'twest', 'tweast', 'treast']

"test' in 1lst
Out: True

"toast' in 1lst
Out: False

Note: the in operator on sets is asymptotically faster than on lists. If you need to use it many times on
potentially large lists, you may want to convert your 1list to a set, and test the presence of elements on
the set.

slst = set(lst)
"test' in slst
Out: True

Section 20.6: Any and All

You can use all() to determine if all the values in an iterable evaluate to True

nums [1, 1, @, 1]
all(nums)

False

chars [a', 'b', 'c¢', 'd']
all(chars)

True

Likewise, any () determines if one or more values in an iterable evaluate to True

nums [1, 1, @, 1]

any(nums)

True

vals [None, None, None, False]
any(vals)

False

While this example uses a list, it is important to note these built-ins work with any iterable, including generators.

GoalKicker.com - Python® Notes for Professionals 19

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

vals [1, 2, 3, 4]

any(val > 12 for val in vals)

False

any((val * 2) > 6 for val in vals)
True

Section 20.7: Reversing list elements

You can use the reversed function which returns an iterator to the reversed list:

In [3]: rev reversed(numbers)

In [4]: rev
Out[4]: [9, 8, 7, 6, 5, 4, 3, 2, 1]

Note that the list "numbers" remains unchanged by this operation, and remains in the same order it was originally.
To reverse in place, you can also use the reverse method.

You can also reverse a list (actually obtaining a copy, the original list is unaffected) by using the slicing syntax,
setting the third argument (the step) as -1:

In [1]: numbers [1, 2, 3, 4, 5, 6, 7, 8, 9]

In [2]: numbers[::-1]
Out[2]: [9, 8, 7, 6, 5, 4, 3, 2, 1]

Section 20.8: Concatenate and Merge lists

1. The simplest way to concatenate 1ist1 and list2:

merged list1 + list2

2. zip returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables:

alist ['a1', 'a2', 'a3']
blist ['b1', 'b2', 'b3']

for a, b in zip(alist, blist):
print(a, b)

Output:
al b1
a2 b2
a3 b3

If the lists have different lengths then the result will include only as many elements as the shortest one:

alist [ta1', 'a2', 'a3']

blist ['b1", 'b2', "b3', 'b4']

for a, b in zip(alist, blist):
print(a, b)

Output:
al b1

GoalKicker.com - Python® Notes for Professionals 120

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

a2 b2
a3 b3

alist []
len(list(zip(alist, blist)))

Output:
0

For padding lists of unequal length to the longest one with Nones use itertools.zip_longest
(itertools.izip_longest in Python 2)

alist ['a1', 'a2', 'a3']
blist ['b1']
clist ['e1', 'c2', 'c3', 'c4']

for a,b,c in itertools.zip_longest(alist, blist, clist):
print(a, b, c)

Output:

al b1 c1

a2 None c2
a3 None c3
None None c4

3. Insert to a specific index values:

alist [123, 'xyz',6 'zara', 'abc']

alist.insert(3, [2009])

print("Final List :", alist)
Output:

Final List : [123, 'xyz',6 ‘'zara', 2009, 'abc']

Section 20.9: Length of a list

Use len() to get the one-dimensional length of a list.

len(['one', 'two'l) # returns 2

len(['one', [2, 3], 'four'l) # returns 3, not 4

len() also works on strings, dictionaries, and other data structures similar to lists.
Note that 1en() is a built-in function, not a method of a list object.

Also note that the cost of 1en() is 0(1), meaning it will take the same amount of time to get the length of a list
regardless of its length.

Section 20.10: Remove duplicate values in list

Removing duplicate values in a list can be done by converting the list to a set (that is an unordered collection of
distinct objects). If a 1ist data structure is needed, then the set can be converted back to a list using the function
list():

GoalKicker.com - Python® Notes for Professionals 121

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

names = ["aixk", "duke", "edik", "tofp", "duke"]
list(set(names))
Out: ['duke', 'tofp', 'aixk', 'edik']

Note that by converting a list to a set the original ordering is lost.

To preserve the order of the list one can use an OrderedDict

import collections
>>> collections.OrderedDict.fromkeys(names) .keys()
Out: ['aixk', 'duke', 'edik', 'tofp']

Section 20.11: Comparison of lists

It's possible to compare lists and other sequences lexicographically using comparison operators. Both operands
must be of the same type.

[1, 10, 180] < [2, 10, 160]

True, because 1 < 2

[1, 10, 180] < [1, 10, 160]

False, because the lists are equal
[1, 10, 108] <= [1, 10, 1600]

True, because the lists are equal
[1, 10, 180] < [1, 10, 101]

True, because 100 < 101

[1, 10, 160] < [0, 10, 160]

False, because 0 < 1

If one of the lists is contained at the start of the other, the shortest list wins.

[1, 18] < [1, 10, 100]
True

Section 20.12: Accessing values in nested list

Starting with a three-dimensional list:

alist = [[[1,2],13,4]], [[5,6,7],[8,9,10], [12, 13, 14]]]
Accessing items in the list:

print(alist[e][0][1])
#2
#Accesses second element in the first list in the first list

print(alist[1][1][2])
#10
#Accesses the third element in the second 1list in the second list

Performing support operations:

alist[0][0].append(11)

print(alist[@][6][2])

#11

#Appends 11 to the end of the first list in the first list

GoalKicker.com - Python® Notes for Professionals 122

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Using nested for loops to print the list:

for row in alist: #0One way to loop through nested lists
for col in row:

print(col)
#[1, 2, 11]
#[3, 4]
#[5, 6, 7]
#[8, 9, 10]

#[12, 13, 14]

Note that this operation can be used in a list comprehension or even as a generator to produce efficiencies, e.g.:

[col for row in alist for col in row]
#[[1, 2, 11], [3, 4], [5, 6, 7], [8, 9, 18], [12, 13, 14]]

Not all items in the outer lists have to be lists themselves:

alist[1].insert(2, 15)
#Inserts 15 into the third position in the second list

Another way to use nested for loops. The other way is better but I've needed to use this on occasion:

for row in range(len(alist)): #A less Pythonic way to loop through lists
for col in range(len(alist[row])):
print(alist[row][col])

#[1, 2, 11]
#[3, 4]
#[5, 6, 7]
#[8, 9, 18]
#15

#[12, 13, 14]
Using slices in nested list:

print(alist[1][1:])
#[[8, 9, 10], 15, [12, 13, 14]]
#Slices still work

The final list:

print(alist)
#[[1, 2, 11], [3, 4]], [[5, 6, 7], [8, 9, 18], 15, [12, 13, 14]]]

Section 20.13: Initializing a List to a Fixed Number of Elements

For immutable elements (e.g. None, string literals etc.):

[None] * 10
['test'] * 10

my_list
my_list

For mutable elements, the same construct will result in all elements of the list referring to the same object, for
example, for a set:

>>> my_list=[{1}] * 10

GoalKicker.com - Python® Notes for Professionals 123

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

print(my_list)
[y, {1y,), {1}, {1}, {1}, {0}, {0}, {1}, {1}]
my_list[0].add(2)
print(my_list)
({1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {0, 2}, {1, 2}, {1, 2}, {1, 2}]

Instead, to initialize the list with a fixed number of different mutable objects, use:

my_list=[{1} for _ in range(10)]

GoalKicker.com - Python® Notes for Professionals 124

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 21: List comprehensions

List comprehensions in Python are concise, syntactic constructs. They can be utilized to generate lists from other
lists by applying functions to each element in the list. The following section explains and demonstrates the use of
these expressions.

Section 21.1: List Comprehensions

A list comprehension creates a new list by applying an expression to each element of an iterable. The most basic
form is:

[<expression> for <element> in <iterable>]
There's also an optional 'if' condition:
[<expression> for <element> in <iterable> if <condition>]
Each <element> in the <iterable> is plugged in to the <expressions> if the (optional) <condition> evaluates to true

. All results are returned at once in the new list. Generator expressions are evaluated lazily, but list comprehensions
evaluate the entire iterator immediately - consuming memory proportional to the iterator's length.

To create a list of squared integers:

squares [x * x for x in (1, 2, 3, 4)]
squares: [1, 4, 9, 16]

The for expression sets x to each value in turn from (1, 2, 3, 4). The result of the expression x * x is appended
to aninternal 1ist. The internal 1ist is assigned to the variable squares when completed.

Besides a speed increase (as explained here), a list comprehension is roughly equivalent to the following for-loop:

squares [1

for x in (1, 2, 3, 4):
squares.append(x * x)

squares: [1, 4, 9, 16]

The expression applied to each element can be as complex as needed:

Get a list of uppercase characters from a string
[s.upper() for s in "Hello World"]
#['H', 'E', 'L', 'L, '0', "', 'W', '0', 'R', 'L', 'D"]

Strip off any commas from the end of strings in a list
[w.strip(',') for w in ['these,', 'words,,', 'mostly', 'have,commas, ']]
['these', 'words', 'mostly', 'have,commas']

Organize letters in words more reasonably - in an alphabetical order

sentence "Beautiful is better than ugly"

["".join(sorted(word, key = lambda x: x.lower())) for word in sentence.split()]
['aBefiltuu', 'is', 'beertt', 'ahnt', 'gluy']

else

else can be used in List comprehension constructs, but be careful regarding the syntax. The if/else clauses should
be used before for loop, not after:

GoalKicker.com - Python® Notes for Professionals 125

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://wiki.python.org/moin/PythonSpeed/PerformanceTips#Loops
http://stackoverflow.com/questions/39518899/3-array-generators-faster-than-1-for-loop/39519661#39519661
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

create a list of characters in apple, replacing non vowels with '#'
Ex - 'apple’ --> ['a’', 'x', 'x', 'x' ,‘'e']

[x for x in 'apple' if x in 'aeiou' else '*']

#SyntaxError: invalid syntax

When using if/else together use them before the loop
[x if x in 'aeiou' else 'x' for x in 'apple']
#[’a’, I*Il I*I l*r rel]

’ ’

Note this uses a different language construct, a conditional expression, which itself is not part of the
comprehension syntax. Whereas the if after the for...in js a part of list comprehensions and used to filter
elements from the source iterable.

Double Iteration

Order of double iteration [... for x in ... for y in ...]is either natural or counter-intuitive. The rule of
thumb is to follow an equivalent for loop:

def foo(i):
return i, i + 0.5

for i in range(3):

for x in foo(i):
yield str(x)

This becomes:
[str(x)
for i in range(3)
for x in foo(i)
This can be compressed into one line as [str(x) for i in range(3) for x in foo(i)]

In-place Mutation and Other Side Effects

Before using list comprehension, understand the difference between functions called for their side effects
(mutating, or in-place functions) which usually return None, and functions that return an interesting value.

Many functions (especially pure functions) simply take an object and return some object. An in-place function

modifies the existing object, which is called a side effect. Other examples include input and output operations such
as printing.

list.sort() sorts a list in-place (meaning that it modifies the original list) and returns the value None. Therefore, it
won't work as expected in a list comprehension:

[x.sort() for x in [[2, 1], [4, 3], [0, 11]1]
[None, None, None]

Instead, sorted() returns a sorted list rather than sorting in-place:

[sorted(x) for x in [[2, 11, [4, 31, [0, 11]]
[[1, 2], [3, 4], [0, 1]]

Using comprehensions for side-effects is possible, such as I/0 or in-place functions. Yet a for loop is usually more

GoalKicker.com - Python® Notes for Professionals 126

http://docs.python.org/3/reference/expressions.html#conditional-expressions
http://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Pure_function
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#sorted
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

readable. While this works in Python 3:
[print(x) for x in (1, 2, 3)]
Instead use:

for x in (1, 2, 3):
print(x)

In some situations, side effect functions are suitable for list comprehension. random. randrange() has the side
effect of changing the state of the random number generator, but it also returns an interesting value. Additionally,
next() can be called on an iterator.

The following random value generator is not pure, yet makes sense as the random generator is reset every time the
expression is evaluated:

from random import randrange
[randrange(1, 7) for _ in range(10)]
#[2, 3,2, 1,1,5 2, 4,3, 5]

Whitespace in list comprehensions

More complicated list comprehensions can reach an undesired length, or become less readable. Although less
common in examples, it is possible to break a list comprehension into multiple lines like so:

x for x
in 'foo'
if x not in 'bar’

Section 21.2: Conditional List Comprehensions

Given a list comprehension you can append one or more if conditions to filter values.

[<expression> for <element> in <iterable> if <condition>]

For each <element> in <iterable>; if <condition> evaluates to True, add <expression> (usually a function of
<element>) to the returned list.

For example, this can be used to extract only even numbers from a sequence of integers:

[x for x in range(10) if x % 2 0]
Oout: [0, 2, 4, 6, 8]

Live demo

The above code is equivalent to:

even_numbers [1
for x in range(10):
if x % 2 0:
even_numbers.append(x)

print(even_numbers)
out: [0, 2, 4, 6, 8]

GoalKicker.com - Python® Notes for Professionals 127

https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
http://coliru.stacked-crooked.com/a/8ea85b7b87f57876
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Also, a conditional list comprehension of the form [e for x in y if c](where e and c are expressions in terms of
x) is equivalent to list(filter(lambda x: ¢, map(lambda x: e, y))).

Despite providing the same result, pay attention to the fact that the former example is almost 2x faster than the
latter one. For those who are curious, this is a nice explanation of the reason why.

Note that this is quite different fromthe ... if ... else ... conditional expression (sometimes known as a
ternary expression) that you can use for the <expression> part of the list comprehension. Consider the following
example:

[x if x % 2 0 else None for x in range(10)]
Out: [0, None, 2, None, 4, None, 6, None, 8, None]

Live demo

Here the conditional expression isn't a filter, but rather an operator determining the value to be used for the list
items:

<value-if-condition-is-true> if <condition> else <value-if-condition-is-false>
This becomes more obvious if you combine it with other operators:

[2 * (x if x % 2 @ else -1) + 1 for x in range(10)]
Out: [1, -1, 5, -1, 9, -1, 13, -1, 17, -1]

Live demo

If you are using Python 2.7, xrange may be better than range for several reasons as described in the xrange
documentation.

[2 * (x if x % 2 0 else -1) + 1 for x in xrange(10)]
Out: [1, -1, 5, -1, 9, -1, 13, -1, 17, -1]

The above code is equivalent to:

numbers []
for x in range(10):
if x % 2 0:
temp = Xx
else:
temp = -1
numbers.append(2 * temp + 1)
print(numbers)
out: [1, -1, 5, -1, 9, -1, 13, -1, 17, -1]

One can combine ternary expressions and if conditions. The ternary operator works on the filtered result:

[x if x > 2 else '*' for x in range(10) if x % 2 0]

Out: ['*', '*', 4, 6, 8]
The same couldn't have been achieved just by ternary operator only:

[x if (x > 2 and x % 2 == @) else '+’ for x in range(10)]
#Out:['*', k', k', k' 4, 'x',6, 'x', 8, '#']

See also: Filters, which often provide a sufficient alternative to conditional list comprehensions.

GoalKicker.com - Python® Notes for Professionals 128

http://stackoverflow.com/questions/39518899/3-array-generators-faster-than-1-for-loop/39519661#39519661
http://coliru.stacked-crooked.com/a/38edffb6f855e3fc
http://coliru.stacked-crooked.com/a/59802eec8ad5deb8
https://docs.python.org/2/library/functions.html#xrange
https://docs.python.org/2/library/functions.html#xrange
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 21.3: Avoid repetitive and expensive operations using
conditional clause

Consider the below list comprehension:

def f(x):
import time
time.sleep(.1) # Simulate expensive function
return x**2

[f(x) for x in range(1000) if f(x) > 10]
[16, 25, 36, ...]

This results in two calls to f(x) for 1,000 values of x: one call for generating the value and the other for checking the
if condition. If f(x) is a particularly expensive operation, this can have significant performance implications.
Worse, if calling f () has side effects, it can have surprising results.

Instead, you should evaluate the expensive operation only once for each value of x by generating an intermediate
iterable (generator expression) as follows:

[v for v in (f(x) for x in range(1060)) if v > 10]
[16, 25, 36, ...]

Or, using the builtin map equivalent:

[v for v in map(f, range(1000)) if v > 10]
[16, 25, 36, ...]

Another way that could result in a more readable code is to put the partial result (v in the previous example) in an
iterable (such as a list or a tuple) and then iterate over it. Since v will be the only element in the iterable, the result is
that we now have a reference to the output of our slow function computed only once:

[v for x in range(1000) for v in [f(x)] if v 10]
[16, 25, 36, ...]

However, in practice, the logic of code can be more complicated and it's important to keep it readable. In general, a
separate generator function is recommended over a complex one-liner:

def process_prime_numbers(iterable):
for x in iterable:
if is_prime(x):
yield f(x)

[x for x in process_prime_numbers(range(1000)) if x > 10]
[11, 13, 17, 19, ...]

Another way to prevent computing f(x) multiple times is to use the @functools.1lru_cache()(Python 3.2+)
decorator on f(x). This way since the output of f for the input x has already been computed once, the second
function invocation of the original list comprehension will be as fast as a dictionary lookup. This approach uses
memoization to improve efficiency, which is comparable to using generator expressions.

Say you have to flatten a list

1-=1[[1, 2, 3], [4, 5, 61, [7], [8, 9]l

GoalKicker.com - Python® Notes for Professionals 129

https://docs.python.org/3.5/library/functions.html#map
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://en.wikipedia.org/wiki/Memoization
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Some of the methods could be:

reduce(lambda x, y: x+y, 1)
sum(1l, [])

list(itertools.chain(*1))

However list comprehension would provide the best time complexity.

[item for sublist in 1 for item in sublist]

The shortcuts based on + (including the implied use in sum) are, of necessity, O(LA2) when there are L sublists -- as
the intermediate result list keeps getting longer, at each step a new intermediate result list object gets allocated,
and all the items in the previous intermediate result must be copied over (as well as a few new ones added at the
end). So (for simplicity and without actual loss of generality) say you have L sublists of | items each: the first | items
are copied back and forth L-1 times, the second | items L-2 times, and so on; total number of copies is | times the
sum of x for x from 1 to L excluded, i.e., | * (L**2)/2.

The list comprehension just generates one list, once, and copies each item over (from its original place of residence
to the result list) also exactly once.

Section 21.4: Dictionary Comprehensions

A dictionary comprehension is similar to a list comprehension except that it produces a dictionary object instead of
a list.

A basic example:

Python 2.x version = 2.7

{x: x * x for x in (1, 2, 3, 4)}
Out: {1: 1, 2: 4, 3: 9, 4: 16}

which is just another way of writing:

dict((x, x * x) for x in (1, 2, 3, 4))
Out: {1: 1, 2: 4, 3: 9, 4: 16}

As with a list comprehension, we can use a conditional statement inside the dict comprehension to produce only
the dict elements meeting some criterion.

Python 2.x version = 2.7

{name: len(name) for name in ('Stack', 'Overflow', 'Exchange') if len(name) 6}
Out: {'Exchange': 8, 'Overflow': 8}

Or, rewritten using a generator expression.

dict((name, len(name)) for name in ('Stack', 'Overflow', 'Exchange') if len(name) 6)
Out: {'Exchange': 8, 'Overflow': 8}

Starting with a dictionary and using dictionary comprehension as a key-value pair filter

Python 2.x version = 2.7
initial_dict {'x": 1, 'y': 2}

GoalKicker.com - Python® Notes for Professionals 130

https://www.python.org/dev/peps/pep-0274/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

{key: value for key, value in initial_dict.items() if key "x'}
Out: {'x': 1}

Switching key and value of dictionary (invert dictionary)

If you have a dict containing simple hashable values (duplicate values may have unexpected results):
my_dict {1: 'a', 2: 'b', 3: 'c'}
and you wanted to swap the keys and values you can take several approaches depending on your coding style:

* swapped {v: k for k, v in my_dict.items()}

e swapped = dict((v, k) for k, v in my_dict.iteritems())
e swapped = dict(zip(my_dict.values(), my_dict))

e swapped = dict(zip(my_dict.values(), my_dict.keys()))
e swapped = dict(map(reversed, my_dict.items()))

print(swapped)
Out: {a: 1, b: 2, c: 3}

Python 2.x Version = 2.3

If your dictionary is large, consider importing itertools and utilize izip or imap.

Merging Dictionaries
Combine dictionaries and optionally override old values with a nested dictionary comprehension.

dict1 {'w:1, '"x': 1}

dict2 = {'x': 2, 'y': 2, 'z': 2}

{k: v for d in [dict1, dict2] for k, v in d.items()}
#Oout: {'w': 1, 'x': 2, 'y':2, 'z':2}

However, dictionary unpacking (PEP 448) may be a preferred.

Python 3.x version = 3.5

{**dict1, #**dict2}
#out: {'w': 1, 'x':2, 'y':2, 'z':2}

Note: dictionary comprehensions were added in Python 3.0 and backported to 2.7+, unlike list comprehensions,
which were added in 2.0. Versions < 2.7 can use generator expressions and the dict() builtin to simulate the
behavior of dictionary comprehensions.

Section 21.5: List Comprehensions with Nested Loops

List Comprehensions can use nested for loops. You can code any number of nested for loops within a list
comprehension, and each for loop may have an optional associated if test. When doing so, the order of the for
constructs is the same order as when writing a series of nested for statements. The general structure of list
comprehensions looks like this:

[expression for targetl in iterablel [if condition1]
for target2 in iterable2 [if condition2]...
for targetN in iterableN [if conditionN]]

GoalKicker.com - Python® Notes for Professionals 131

https://docs.python.org/2/library/itertools.html
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0274/
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

For example, the following code flattening a list of lists using multiple for statements:

data [[1, 2], [3, 4], [5, 6]]
output [1]
for each_list in data:
for element in each_list:
output.append(element)
print(output)
Out: [1, 2, 3, 4, 5, 6]

can be equivalently written as a list comprehension with multiple for constructs:

data [[1, 21, [3, 4], [5, 6]]

output [element for each_list in data for element in each_list]
print(output)

Oout: [1, 2, 3, 4, 5, 6]

Live Demo
In both the expanded form and the list comprehension, the outer loop (first for statement) comes first.

In addition to being more compact, the nested comprehension is also significantly faster.

In [1]: data [[1,2],13,4],[5,6]]
In [2]: def f():

output=[]

for each_list in data:

for element in each_list:
output.append(element)
.. return output

In [3]: timeit f()
1000000 loops, best of 3: 1.37 us per loop
In [4]: timeit [inner for outer in data for inner in outer]
1000000 loops, best of 3: 632 ns per loop

The overhead for the function call above is about 740ns.

Inline ifs are nested similarly, and may occur in any position after the first for:

data [[11, [2, 3], [4, 5]]

output [element for each_list in data
if len(each_list) 2
for element in each_list
if element 5]

print(output)

Out: [2, 3, 4]

Live Demo

For the sake of readability, however, you should consider using traditional for-loops. This is especially true when
nesting is more than 2 levels deep, and/or the logic of the comprehension is too complex. multiple nested loop list
comprehension could be error prone or it gives unexpected result.

Section 21.6: Generator Expressions

Generator expressions are very similar to list comprehensions. The main difference is that it does not create a full
set of results at once; it creates a generator object which can then be iterated over.

GoalKicker.com - Python® Notes for Professionals 132

https://ideone.com/R7uwEP
https://ideone.com/kPO2Zy
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

For instance, see the difference in the following code:

1list comprehension
[x**2 for x in range(10)]
Output: [e, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Python 2.x version = 2.4

generator comprehension
(x**2 for x in xrange(10))
Output: <generator object <genexpr> at 0x11b4b7c86>

These are two very different objects:

e the list comprehension returns a 1ist object whereas the generator comprehension returns a generator.

¢ generator objects cannot be indexed and makes use of the next function to get items in order.

Note: We use xrange since it too creates a generator object. If we would use range, a list would be created. Also,
xrange exists only in later version of python 2. In python 3, range just returns a generator. For more information,

see the Differences between range and xrange functions example.

Python 2.x version = 2.4
g (x**2 for x in xrange(10))
print(g[e])

Traceback (most recent call last):
File "<stdin>", line 1, in <module

TypeError: 'generator' object has no attribute '__getitem__'
g.next() 0
g.next() # 1
g.next() 4

g.next() # 81

g.next() # Throws StopIteration Exception

Traceback (most recent call last):
File "<stdin>", line 1, in <module
StopIteration

Python 3.x version = 3.0

NOTE: The function g.next() should be substituted by next(g) and xrange with range since

Iterator.next() and xrange() do not exist in Python 3.

Although both of these can be iterated in a similar way:

for i in [x**2 for x in range(10)]:
print(i)

Out:

2O

GoalKicker.com - Python® Notes for Professionals

133

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

81

Python 2.x version = 2.4
for i in (x**2 for x in xrange(10)):
print(i)

Out:

2O

81

Use cases

Generator expressions are lazily evaluated, which means that they generate and return each value only when the
generator is iterated. This is often useful when iterating through large datasets, avoiding the need to create a
duplicate of the dataset in memory:

for square in (x**2 for x in range(1000000)) :
#do something

Another common use case is to avoid iterating over an entire iterable if doing so is not necessary. In this example,
an item is retrieved from a remote API with each iteration of get_objects(). Thousands of objects may exist, must
be retrieved one-by-one, and we only need to know if an object matching a pattern exists. By using a generator
expression, when we encounter an object matching the pattern.

def get_objects():
"""Gets objects from an API one by one"""
while True:
yield get_next_item()

def object_matches_pattern(obj):
perform potentially complex calculation
return matches_pattern

def right_item_exists():
items = (object_matched_pattern(each) for each in get_objects())
for item in items:
if item.is_the_right_one:

return True
return False

Section 21.7: Set Comprehensions

Set comprehension is similar to list and dictionary comprehension, but it produces a set, which is an unordered
collection of unique elements.

Python 2.x version = 2.7

A set containing every value in range(5):
{x for x in range(5)}
Oout: {0, 1, 2, 3, 4}

GoalKicker.com - Python® Notes for Professionals 134

https://docs.python.org/2/tutorial/datastructures.html#sets
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

A set of even numbers between 1 and 10:
{x for x in range(1, 11) if x % 2 0}
Out: {2, 4, 6, 8, 16}

Unique alphabetic characters in a string of text:

text "When in the Course of human events it becomes necessary for one people..."
{ch.lower() for ch in text if ch.isalpha()}

Out: set(['a', 'c¢', 'b', 'e', 'f', 'i', 'h', 'm', '1', 'o’,

[[]] 1] 1 1

‘n', 'p', ‘'s', 'r', ‘u', 't', 'w', 'v', 'y'])
Live Demo

Keep in mind that sets are unordered. This means that the order of the results in the set may differ from the one
presented in the above examples.

Note: Set comprehension is available since python 2.7+, unlike list comprehensions, which were added in 2.0. In
Python 2.2 to Python 2.6, the set() function can be used with a generator expression to produce the same result:

Python 2.x version = 2.2

set(x for x in range(5))
Out: {6, 1, 2, 3, 4}

Section 21.8: Refactoring filter and map to list
comprehensions

The filter or map functions should often be replaced by list comprehensions. Guido Van Rossum describes this
well in an open letter in 2005:

filter (P, S) is almost always written clearer as [x for x in S if P(x)], and this has the huge
advantage that the most common usages involve predicates that are comparisons, e.g. x==42, and
defining a lambda for that just requires much more effort for the reader (plus the lambda is slower than
the list comprehension). Even more so for map(F, S) which becomes [F(x) for x in S]. Of course, in
many cases you'd be able to use generator expressions instead.

The following lines of code are considered "not pythonic" and will raise errors in many python linters.

filter(lambda x: x % 2 @, range(10)) # even numbers < 10
map(lambda x: 2*x, range(10)) # multiply each number by two
reduce(lambda x,y: x+y, range(10)) # sum of all elements in list

Taking what we have learned from the previous quote, we can break down these filter and map expressions into
their equivalent list comprehensions; also removing the lambda functions from each - making the code more
readable in the process.

Filter:

P(x) =x %2 ==20

S = range(10)

[x for x in range(10) if x % 2 0]

Map

F(x) = 2*x

S = range(10)

[2#x for x in range(10)]

GoalKicker.com - Python® Notes for Professionals 135

https://ideone.com/Fd95Zl
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
http://www.artima.com/weblogs/viewpost.jsp?thread=98196
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Readability becomes even more apparent when dealing with chaining functions. Where due to readability, the
results of one map or filter function should be passed as a result to the next; with simple cases, these can be
replaced with a single list comprehension. Further, we can easily tell from the list comprehension what the outcome
of our process is, where there is more cognitive load when reasoning about the chained Map & Filter process.

Map & Filter
filtered = filter(lambda x: x % 2 0, range(10))
results = map(lambda x: 2xx, filtered)

List comprehension
results = [2*x for x in range(10) if x % 2 0]

Refactoring - Quick Reference

e Map

map(F, S) [F(x) for x in S]

¢ Filter

filter (P, S) [x for x in S if P(x)]

where F and P are functions which respectively transform input values and return a bool

Section 21.9: Comprehensions involving tuples

The for clause of a list comprehension can specify more than one variable:

[x +y for x, y in [(1, 2), (3, 4), (5, 6)]]
out: [3, 7, 11]

[x +y for x, y in zip([1, 3, 5], [2, 4, 6])]
out: [3, 7, 11]

This is just like regular for loops:

for x, y in [(1,2), (3,4), (5,6)]:
print(x+y)

Note however, if the expression that begins the comprehension is a tuple then it must be parenthesized:

[x, y for x, y in [(1, 2), (3, 4), (5, 6)]]
SyntaxError: invalid syntax

[(x, y) for x, y in [(1, 2), (38, 4), (5, 6)]]
#out: [(1, 2), (3, 4), (5 6)]

Section 21.10: Counting Occurrences Using Comprehension

When we want to count the number of items in an iterable, that meet some condition, we can use comprehension
to produce an idiomatic syntax:

GoalKicker.com - Python® Notes for Professionals 136

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Count the numbers in ‘range(16000) that are even and contain the digit "9 :
print (sum(

1 for x in range(1000)

if x % 2 0 and

'9' in str(x)

)
Out: 95

The basic concept can be summarized as:

Iterate over the elements in range(1000).

Concatenate all the needed if conditions.

Use 1 as expression to return a 1 for each item that meets the conditions.
Sum up all the 1s to determine number of items that meet the conditions.

HMwnN =

Note: Here we are not collecting the 1s in a list (note the absence of square brackets), but we are passing the ones
directly to the sum function that is summing them up. This is called a generator expression, which is similar to a
Comprehension.

Section 21.11: Changing Types in a List

Quantitative data is often read in as strings that must be converted to numeric types before processing. The types
of all list items can be converted with either a List Comprehension or the map () function.

Convert a list of strings to integers.
items ["1","2","3","4"]

[int(item) for item in items]

out: [1, 2, 3, 4]

Convert a list of strings to float.
items ["1", 2", "3", "4"]

map (float, items)

Out:[1.0, 2.0, 3.0, 4.0]

Section 21.12: Nested List Comprehensions

Nested list comprehensions, unlike list comprehensions with nested loops, are List comprehensions within a list
comprehension. The initial expression can be any arbitrary expression, including another list comprehension.

#List Comprehension with nested loop
[x +y for x in [1, 2, 3] for y in [3, 4, 5]]
#0ut: [4, 5, 6, 5, 6, 7, 6, 7, 8]

#Nested List Comprehension
[[x +y for x in [1, 2, 3]] for y in [3, 4, 5]]
#0ut: [[4, 5, 6], [5 6, 7], [6, 7, 8]]

The Nested example is equivalent to

1=1]
for y in [3, 4, 5]:
temp = []
for x in [1, 2, 3]:
temp.append(x + y)
1.append(temp)

GoalKicker.com - Python® Notes for Professionals 137

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

One example where a nested comprehension can be used it to transpose a matrix.
matrix = [[1,2,3],

[4,5,6],

[7,8,9]]

[[row[i] for row in matrix] for i in range(len(matrix))]
#[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

Like nested for loops, there is no limit to how deep comprehensions can be nested.

[[[1+]+ k for k in 'cd'] for j in 'ab'] for i in '12']
#out: [[['1ac', 'T1ad'], ['1bc', '1bd']], [['2ac', '2ad'], ['2bc', '2bd']]]

Section 21.13: Iterate two or more list simultaneously within
list comprehension

For iterating more than two lists simultaneously within list comprehension, one may use zip() as:

>>> list_1 = [1, 2, 3 , 4]

>>> list_2 = ['a', 'b', 'c', 'd']
>>> list_3 = ['6', '7', '8", '9']
Two lists

>>> [(i, j) for i, j in zip(list_1, list_2)]

[(1, 'a'), (2, 'b"), (38, 'c'), (4, 'd")]

Three lists

>>> [(i, j, k) for i, j, k in zip(list_1, list_2, list_3)]
[(1, 'a', '6"'), (2, 'b', '7"), (3, 'c', '8"), (4, 'd', '9')]

S0 on ...

GoalKicker.com - Python® Notes for Professionals

138

https://docs.python.org/2/library/functions.html#zip
https://docs.python.org/2/library/functions.html#zip
https://docs.python.org/2/library/functions.html#zip
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 22: List slicing (selecting parts of
Iists?

Section 22.1: Using the third "step” argument
st = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

Ist[::2]
Output: ['a’, 'c', 'e', 'g'l]

Ist[::3]
Output: ['a', 'd', 'g']

Section 22.2: Selecting a sublist from a list
Ist = ['a', 'b', 'c¢c', 'd', 'e']

1st[2:4]
Output: ['c', 'd']

1st[2:]
Output: ['c', 'd', 'e']

1st[:4]
Output: ['a', 'b', 'c', 'd']

Section 22.3: Reversing a list with slicing

a=1[1,2, 3, 4, 5]

steps through the list backwards (step=-1)
b =al::-1]

built-in list method to reverse 'a'’
a.reverse()

if a = b:
print(True)

print(b)
Output:

True
#[5 4,3, 2, 1]

Section 22.4: Shifting a list using slicing

def shift_list(array, s):
"""Shifts the elements of a list to the left or right.

Args:

array - the list to shift

s - the amount to shift the 1list ('+': right-shift, '-': left-shift)
Returns:

shifted_array - the shifted list

GoalKicker.com - Python® Notes for Professionals 139

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

calculate actual shift amount (e.g., 11 --> 1 if length of the array is 5)
s %= len(array)

reverse the shift direction to be more intuitive
s *= -1

shift array with list slicing
shifted_array = array[s:] + array[:s]

return shifted_array
my_array = [1, 2, 3, 4, 5]

negative numbers
shift_list(my_array, -7)
>>> [3, 4, 5, 1, 2]

no shift on numbers equal to the size of the array
shift_list(my_array, 5)
>>> [1, 2, 3, 4, 5]

works on positive numbers
shift_list(my_array, 3)
>>> [31 41 51 11 2]

GoalKicker.com - Python® Notes for Professionals 140

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 23: groupby()

Parameter Details
iterable Any python iterable
key Function(criteria) on which to group the iterable

In Python, the itertools.groupby() method allows developers to group values of an iterable class based on a
specified property into another iterable set of values.

Section 23.1: Example 4

In this example we see what happens when we use different types of iterable.

things [("animal", "bear"), ("animal", "duck"), ("plant", "cactus"), ("vehicle", "harley"), \
("vehicle", "speed boat"), ("vehicle", "school bus")]
dic {}
f = lambda x: x[9]
for key, group in groupby(sorted(things, key=f), f):
dic[key] list(group)

dic
Results in
{"animal': [('animal', 'bear'), ('animal', ‘'duck')]
"plant': [('plant', 'cactus')]
'vehicle': [('vehicle', 'harley')
('vehicle', 'speed boat')
('vehicle', 'school bus')]}

This example below is essentially the same as the one above it. The only difference is that | have changed all the
tuples to lists.

things [["animal", "bear"], ["animal", "duck"], ["vehicle", "harley"], ["plant", "cactus"], \
["vehicle", "speed boat"], ["vehicle", "school bus"]]
dic {}
f lambda x: x[0]
for key, group in groupby(sorted(things, key=f), f):
dic[key] list(group)

dic
Results
{'animal': [['animal', ‘'bear'], ['animal', 'duck']]
"plant': [['plant', 'cactus']]
"vehicle': [['vehicle', 'harley']
['vehicle', 'speed boat']
['vehicle', 'school bus']]}

Section 23.2: Example 2

This example illustrates how the default key is chosen if we do not specify any

¢ = groupby(['goat', 'dog', 'cow', 1, 1, 2, 3, 11, 108, ('persons', 'man', 'woman')])
dic {}
for k, v in c:

dic[k] list(v)

GoalKicker.com - Python® Notes for Professionals

141

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

dic

Results in
{1: [1, 1]
2: [2]
3: [3]
('persons', 'man', 'woman'): [('persons', 'man', 'woman')]
"cow': ['cow']
"dog': ['dog']
10: [10]

11: [11]
'goat': ['goat']}

Notice here that the tuple as a whole counts as one key in this list

Section 23.3: Example 3

Notice in this example that mulato and camel don't show up in our result. Only the last element with the specified
key shows up. The last result for c actually wipes out two previous results. But watch the new version where | have

the data sorted first on same key.

list_things ['goat', 'dog', 'donkey', 'mulato', 'cow', 'cat ('persons', 'man’
'wombat', 'mongoose', 'malloo', 'camel']

c = groupby(list_things, key=lambda x: x[0])

dic {}

for k, v in c:

dic[k] list(v)

dic
Results in

{'c': ['camel']

'd': ['dog', 'donkey']

'g": ['goat']

'm': ['mongoose', 'malloo’]

"persons': [('persons', 'man', 'woman')]

'w': ['wombat']}
Sorted Version

list_things ['goat', 'dog', 'donkey', ‘'mulato', 'cow', 'cat', ('persons', 'man’

'wombat', 'mongoose', 'malloo', 'camel']

sorted_list = sorted(list_things, key = lambda x: x[0])

print(sorted_list)

print()

c = groupby(sorted_list, key=lambda x: x[0])

dic {}

for k, v in c:

dic[k] list(v)

dic
Results in

['cow', 'cat', 'camel', 'dog', 'donkey', 'goat', 'mulato', 'mongoose', 'malloo’

'woman'), 'wombat']

{'c': ['cow', 'cat',6 'camel']

‘woman")

"woman')

('persons'’

\

man

GoalKicker.com - Python® Notes for Professionals

142

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

'd': ['dog', 'donkey'l],

'g': ['goat'],
'm': ['mulato’', 'mongoose', 'malloo'],
"persons': [('persons', 'man', 'woman')]

'w': ['wombat']}

GoalKicker.com - Python® Notes for Professionals 143

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 24: Linked lists

A linked list is a collection of nodes, each made up of a reference and a value. Nodes are strung together into a
sequence using their references. Linked lists can be used to implement more complex data structures like lists,

stacks, queues, and associative arrays.

Section 24.1: Single linked list example

This example implements a linked list with many of the same methods as that of the built-in list object.

class Node:

def

def

def

def

def

__init__(self, val):
self.data val
self.next None

getData(self):
return self.data

getNext(self):
return self.next

setData(self, val):
self.data = val

setNext(self, val):
self.next val

class LinkedList:

def

def

def

def

def

__init__(self):
self.head None

isEmpty(self):
"""Check if the list is empty
return self.head is None

add(self, item):

"""Add the item to the list"""
new_node = Node(item)
new_node.setNext(self.head)
self.head = new_node

size(self):
"""Return the length/size of the list"""
count 0
current = self.head
while current is not None:
count += 1
current = current.getNext()
return count

search(self, item):
current self.head
found False
while current is not None and not found:
if current.getData() is item:
found True
else:
current = current.getNext()

Search for item in list. If found, return True.

If not found,

return False

GoalKicker.com - Python® Notes for Professionals

144

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

return found

def remove(self, item):
"""Remove item from list. If item is not found in 1list, raise ValueError
current = self.head
previous None
found False
while current is not None and not found:
if current.getData() is item:
found = True
else:
previous = current
current = current.getNext()
if found:
if previous is None:
self.head = current.getNext()
else:
previous.setNext(current.getNext())

else:
raise ValueError
print 'Value not found.'

def insert(self, position, item):
Insert item at position specified. If position specified is
out of bounds, raise IndexError
if position > self.size() - 1:
raise IndexError
print "Index out of bounds."
current self.head
previous None
pos 0
if position is @:
self.add(item)
else:
new_node = Node(item)
while pos position:
pos += 1
previous current
current = current.getNext()
previous.setNext(new_node)
new_node.setNext(current)

def index(self, item):
Return the index where item is found.
If item is not found, return None.
current self.head
pos 0
found False
while current is not None and not found:
if current.getData() is item:
found = True
else:
current = current.getNext()
pos += 1
if found:
pass
else:
pos None

GoalKicker.com - Python® Notes for Professionals 145

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

return pos

def pop(self, position = None):

If no argument is provided, return and remove the item at the head.
If position is provided, return and remove the item at that position.
If index is out of bounds, raise IndexError

if position > self.size():
print 'Index out of bounds'
raise IndexError

current = self.head
if position is None:
ret = current.getData()
self.head = current.getNext()
else:
pos 0
previous None
while pos position:
previous = current
current = current.getNext()
pos += 1
ret = current.getData()

previous.setNext(current.getNext())

print ret
return ret

def append(self, item):

"""Append item to the end of the list"""

current self.head

previous None

pos 0

length = self.size()

while pos length:
previous current
current = current.getNext()
pos += 1

new_node = Node(item)

if previous is None:
new_node.setNext(current)
self.head = new_node

else:
previous.setNext(new_node)

def printList(self):
"""Print the list"""
current self.head
while current is not None:
print current.getData()
current = current.getNext()

Usage functions much like that of the built-in list.

11 = LinkedList()
11.add('1")
11.add('H")
1l.insert(1,'e")
11.append('1")
11.append('0")
11.printList()

GoalKicker.com - Python® Notes for Professionals

146

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

O KO I

GoalKicker.com - Python® Notes for Professionals 147

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 25: Linked List Node

Section 25.1: Write a simple Linked List Node in python
A linked list is either:

e the empty list, represented by None, or
¢ a node that contains a cargo object and a reference to a linked list.

#! /usr/bin/env python

class Node:
def __init__(self, cargo=None, next=None):
self.car = cargo
self.cdr = next
def __str__(self):
return str(self.car)

def display(lst):
if 1st:
w("%s " % lst)
display(lst.cdr)
else:
w("nil\n")

GoalKicker.com - Python® Notes for Professionals 148

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 26: Filter

Parameter Details
function callable that determines the condition or None then use the identity function for filtering (positional-only)
iterable iterable that will be filtered (positional-only)

Section 26.1: Basic use of filter

To filter discards elements of a sequence based on some criteria:

names = ['Fred', 'Wilma', 'Barney']
def long_name(name) :

return len(name) > 5
Python 2.x version = 2.0

filter(long_name, names)
Out: ['Barney']

[name for name in names if len(name) > 5] # equivalent list comprehension
Out: ['Barney']

from itertools import ifilter

ifilter(long_name, names) # as generator (similar to python 3.x filter builtin)
Out: <itertools.ifilter at 0x4197e160>

list(ifilter(long_name, names)) # equivalent to filter with lists

Out: ['Barney']

(name for name in names if len(name) > 5) # equivalent generator expression
Out: <generator object <genexpr> at 0x0000000003FD5D38>

Python 2.x vVersion = 2.6

Besides the options for older python 2.x versions there is a future_builtin function:
from future_builtins import filter

filter(long_name, names) # identical to itertools.ifilter

Out: <itertools.ifilter at 6x3ebOba8>

Python 3.x vVersion = 3.0

filter(long_name, names) # returns a generator
Out: <filter at Ox1fc6e443470>
list(filter(long_name, names)) # cast to list

Out: ['Barney']

(name for name in names if len(name) > 5) # equivalent generator expression
Out: <generator object <genexpr> at 0x000001C6F49BF4CO0>

Section 26.2: Filter without function

If the function parameter is None, then the identity function will be used:

list(filter(None, [1, ©, 2, [], '', 'a'l)) # discards 0, [] and "'
out: [1, 2, 'a']

Python 2.x Version = 2.0.1
[i for 1 in [1, ©, 2, [], '"', 'a'] if i] # equivalent list comprehension
Python 3.x version = 3.0.0

(i for i in [1, ©, 2, [], "', 'a'] if i) # equivalent generator expression

GoalKicker.com - Python® Notes for Professionals 149

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 26.3: Filter as short-circuit check

filter (python 3.x) and ifilter (python 2.x) return a generator so they can be very handy when creating a short-
circuit test like or or and:

Python 2.x version = 2.0.1

not recommended in real use but keeps the example short:
from itertools import ifilter as filter

Python 2.x Version = 2.6.1

from future_builtins import filter
To find the first element that is smaller than 100:

car_shop = [('Toyota', 1000), ('rectangular tire', 80), ('Porsche', 5000)]
def find_something_smaller_than(name_value_tuple):

print('Check {@}, {1}$'.format(*name_value_tuple)

return name_value_tuple[1] < 100
next(filter(find_something_smaller_than, car_shop))
Print: Check Toyota, 1008$
Check rectangular tire, 86$S
Out: ('rectangular tire', 89)

The next-function gives the next (in this case first) element of and is therefore the reason why it's short-circuit.

Section 26.4: Complementary function: filterfalse, ifilterfalse

There is a complementary function for filter in the itertools-module:

Python 2.x version = 2.0.1

not recommended in real use but keeps the example valid for python 2.x and python 3.x
from itertools import ifilterfalse as filterfalse

Python 3.x Version = 3.0.0

from itertools import filterfalse

which works exactly like the generator filter but keeps only the elements that are False:

Usage without function (None):
list(filterfalse(None, [1, ©, 2, [], "', 'a'l)) # discards 1, 2, 'a'
#out: [0, [], "']

Usage with function
names = ['Fred', 'Wilma', 'Barney']

def long_name(name) :
return len(name) > 5

list(filterfalse(long_name, names))
Out: ['Fred', 'Wilma']

Short-circuit usage with next:
car_shop = [('Toyota', 1000), ('rectangular tire', 80), ('Porsche', 5000)]
def find_something_smaller_than(name_value_tuple):

print('Check {0}, {1}$'.format(*name_value_tuple)

return name_value_tuple[1] < 100
next(filterfalse(find_something_smaller_than, car_shop))
Print: Check Toyota, 1008$

GoalKicker.com - Python® Notes for Professionals 150

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Out: ('Toyota', 1000)

Using an equivalent generator:

car_shop = [('Toyota', 1000), ('rectangular tire', 88), ('Porsche', 5000)]
generator = (car for car in car_shop if not car[1] < 100)
next(generator)

GoalKicker.com - Python® Notes for Professionals 151

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 27: Heapq

Section 27.1: Largest and smallest items in a collection

To find the largest items in a collection, heapg module has a function called nlargest, we pass it two arguments, the
first one is the number of items that we want to retrieve, the second one is the collection name:

import heapq

numbers = [1, 4, 2, 100, 20, 50, 32, 200, 150, 8]
print(heapg.nlargest(4, numbers)) # [206, 150, 100, 50]

Similarly, to find the smallest items in a collection, we use nsmallest function:
print(heapqg.nsmallest(4, numbers)) # [1, 2, 4, 8]

Both nlargest and nsmallest functions take an optional argument (key parameter) for complicated data
structures. The following example shows the use of age property to retrieve the oldest and the youngest people
from people dictionary:

people = |
{'firstname': 'John', 'lastname': 'Doe', 'age': 30},
{'firstname': 'Jane', 'lastname': 'Doe', 'age': 25},
{'firstname': 'Janie', 'lastname': 'Doe', ‘'age': 10},
{'firstname': 'Jane', 'lastname': 'Roe', 'age': 22},
{'firstname': 'Johnny', 'lastname': 'Doe', 'age': 12},
{'firstname': 'John', 'lastname': 'Roe', ‘'age': 45}

]

oldest = heapg.nlargest(2, people, key=lambda s: s['age'])

print(oldest)

Output: [{'firstname': 'John', 'age': 45, 'lastname': 'Roe'}, {'firstname': 'John', ‘'age': 30,
"lastname': 'Doe'}]

youngest = heapqg.nsmallest(2, people, key=lambda s: s['age'l])
print(youngest)

Output: [{'firstname': 'Janie', 'age': 10, 'lastname': 'Doe'}, {'firstname': 'Johnny', ‘'age': 12,
"lastname’': 'Doe'}]

Section 27.2: Smallest item in a collection

The most interesting property of a heap is that its smallest element is always the first element: heap[9]

import heapq

numbers = [10, 4, 2, 100, 20, 50, 32, 200, 150, 8]

heapq.heapify(numbers)
print(numbers)
Output: [2, 4, 16, 100, 8, 50, 32, 200, 150, 20]

heapq.heappop(numbers) # 2
print(numbers)
Output: [4, 8, 16, 160, 20, 50, 32, 200, 150]

GoalKicker.com - Python® Notes for Professionals 152

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

heapq.heappop(numbers) # 4
print(numbers)
Output: [8, 20, 10, 1060, 150, 50, 32, 200]

GoalKicker.com - Python® Notes for Professionals 153

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 28: Tuple

A tuple is an immutable list of values. Tuples are one of Python's simplest and most common collection types, and
can be created with the comma operator (value = 1, 2, 3).

Section 28.1: Tuple

Syntactically, a tuple is a comma-separated list of values:

Create an empty tuple with parentheses:

t0 = ()
type(t0) # <type 'tuple'>

To create a tuple with a single element, you have to include a final comma:

t1 ‘a'
type(t1) # <type 'tuple'>

Note that a single value in parentheses is not a tuple:

t2 ('a')
type(t2) # <type 'str'>

To create a singleton tuple it is necessary to have a trailing comma.

t2 ('a',)
type(t2) # <type 'tuple'>

Note that for singleton tuples it's recommended (see PEP8 on trailing commas) to use parentheses. Also, no white
space after the trailing comma (see PEP8 on whitespaces)

t2 = ('a',) # PEP8-compliant
t2 ‘a' # this notation is not recommended by PEP8
t2 (‘a',) # this notation is not recommended by PEP8

Another way to create a tuple is the built-in function tuple.

t = tuple('lupins')

print(t) #('1', 'u', 'p', 'i', 'n', 's')
t = tuple(range(3))
print(t) # (0, 1, 2)

These examples are based on material from the book Think Python by Allen B. Downey.

GoalKicker.com - Python® Notes for Professionals 154

https://www.python.org/dev/peps/pep-0008/#when-to-use-trailing-commas
https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements
http://greenteapress.com/thinkpython/html/index.html
http://greenteapress.com/thinkpython/html/index.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 28.2: Tuples are immutable

One of the main differences between 1ists and tuples in Python is that tuples are immutable, that is, one cannot
add or modify items once the tuple is initialized. For example:

t = (1, 4, 9)
t[o] 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module
TypeError: 'tuple' object does not support item assignment

Similarly, tuples don't have .append and .extend methods as list does. Using += is possible, but it changes the
binding of the variable, and not the tuple itself:

(1

NAO N+t

(1

Be careful when placing mutable objects, such as lists, inside tuples. This may lead to very confusing outcomes
when changing them. For example:

t=(1, 2, 3, [1, 2, 3])
(1, 2, 3, [1, 2, 3])
t[3] += [4, 5]

Will both raise an error and change the contents of the list within the tuple:

TypeError: 'tuple' object does not support item assignment
t
(1, 2, 3, [1, 2, 3, 4, 5])

You can use the += operator to "append" to a tuple - this works by creating a new tuple with the new element you
"appended" and assign it to its current variable; the old tuple is not changed, but replaced!

This avoids converting to and from a list, but this is slow and is a bad practice, especially if you're going to append
multiple times.

Section 28.3: Packing and Unpacking Tuples

Tuples in Python are values separated by commas. Enclosing parentheses for inputting tuples are optional, so the
two assignments

a=1, 2, 3 # a is the tuple (1, 2, 3)

and

a (1, 2, 3) # a is the tuple (1, 2, 3)

are equivalent. The assignmenta = 1, 2, 3is also called packing because it packs values together in a tuple.

Note that a one-value tuple is also a tuple. To tell Python that a variable is a tuple and not a single value you can use

GoalKicker.com - Python® Notes for Professionals 155

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

a trailing comma

a 1 # a is the value 1
a 1, # a is the tuple (1,)

A comma is needed also if you use parentheses

a=(1,) # a is the tuple (1,)
a = (1) # a is the value 1 and not a tuple

To unpack values from a tuple and do multiple assignments use

unpacking AKA multiple assignment
X, y, z=(1, 2, 3)

H R H®
N < X
I
I
W N =

The symbol _ can be used as a disposable variable name if one only needs some elements of a tuple, acting as a
placeholder:

a 1, 2, 3, 4
X a

H R

y
X 2
y 3]
Single element tuples:

x 1s the value 1
X 1, # x is the tuple (1,)

X
Y

In Python 3 a target variable with a * prefix can be used as a catch-all variable (see Unpacking Iterables):

Python 3.x Version = 3.0
first, *more, last (1, 2, 3, 4, 5)

first == 1
more == [2, 3, 4]
last == 5

Section 28.4: Built-in Tuple Functions
Tuples support the following build-in functions
Comparison

If elements are of the same type, python performs the comparison and returns the result. If elements are different
types, it checks whether they are numbers.

e If numbers, perform comparison.
¢ If either element is a number, then the other element is returned.
¢ Otherwise, types are sorted alphabetically .

If we reached the end of one of the lists, the longer list is "larger." If both list are same it returns 0.

tuple1 (‘a', 'b', 'c", 'd', 'e")
tuple2 ("1

GoalKicker.com - Python® Notes for Professionals 156

https://www.python.org/dev/peps/pep-3132/
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

tuple3 (‘a'", 'b', 'c"', 'd', 'e")

cmp(tuplel, tuple2)
Out: 1

cmp(tuple2, tuplel)
Out: -1

cmp(tuplel, tuple3)
Out: ©

Tuple Length
The function len returns the total length of the tuple

len(tuplet)
Out: 5

Max of a tuple
The function max returns item from the tuple with the max value

max(tuplel)

Out: 'e’
max (tuple2)
OQut: '3’

Min of a tuple
The function min returns the item from the tuple with the min value

min(tuplel)

Out: 'a'
min(tuple2)
Out: '1'

Convert a list into tuple

The built-in function tuple converts a list into a tuple.
list [1,2,3,4,5]

tuple(list)
Out: (1, 2, 3, 4, 5)

Tuple concatenation

Use + to concatenate two tuples

tuplel + tuple2
out: (lal Ibl ICI Idl lel I—II l2| |3|)

Section 28.5: Tuple Are Element-wise Hashable and Equatable

hash((1, 2)) # ok
hash(([], {"hello"}) # not ok, since lists and sets are not hashabe

Thus a tuple can be put inside a set or as a key in a dict only if each of its elements can.

{(1,2) } # ok

GoalKicker.com - Python® Notes for Professionals 157

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

{ ([1, {"hello"})) # not ok

Section 28.6: Indexing Tuples

x = (1, 2, 3)

x[0] # 1
x[1] # 2
x[2] # 3

x[3] # IndexError: tuple index out of range

Indexing with negative numbers will start from the last element as -1:
x[-1] # 3

x[-2] # 2

x[-3] # 1
x[-4] # IndexError: tuple index out of range

Indexing a range of elements
print(x[:-1]) # (71, 2)

print(x[-1:]) # (3,)
print(x[1:3]) # (2, 3)

Section 28.7: Reversing Elements

Reverse elements within a tuple

colors = "red", "green", "blue"
rev = colors[::-1]

rev: ("blue", "green", "red")
colors = rev

colors: ("blue", "green", "red")

Or using reversed (reversed gives an iterable which is converted to a tuple):

rev = tuple(reversed(colors))

rev: ("blue", "green", "red")
colors = rev
colors: ("blue", "green", "red")

GoalKicker.com - Python® Notes for Professionals 158

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 29: Basic Input and Output

Section 29.1: Using the print function

Python 3.x Version = 3.0

In Python 3, print functionality is in the form of a function:

print("This string will be displayed in the output")
This string will be displayed in the output

print("You can print \n escape characters too.")
You can print escape characters too.

Python 2.x version = 2.3

In Python 2, print was originally a statement, as shown below.

print "This string will be displayed in the output”
This string will be displayed in the output

print "You can print \n escape characters too."
You can print escape characters too.

Note: using from __future__ import print_function in Python 2 will allow users to use the print() function the
same as Python 3 code. This is only available in Python 2.6 and above.

Section 29.2: Input from a File

Input can also be read from files. Files can be opened using the built-in function open. Using a with <command> as
<name> syntax (called a 'Context Manager') makes using open and getting a handle for the file super easy:

with open('somefile.txt', 'r') as fileobj:
write code here using fileobj

This ensures that when code execution leaves the block the file is automatically closed.

Files can be opened in different modes. In the above example the file is opened as read-only. To open an existing
file for reading only use r. If you want to read that file as bytes use rb. To append data to an existing file use a. Use
w to create a file or overwrite any existing files of the same name. You can use r+ to open a file for both reading and
writing. The first argument of open() is the filename, the second is the mode. If mode is left blank, it will default to

r.

let's create an example file:
with open('shoppinglist.txt', 'w') as fileobj:
fileobj.write('tomato\npasta\ngarlic')

with open('shoppinglist.txt', 'r') as fileobj:
this method makes a list where each line
of the file is an element in the list
lines = fileobj.readlines()

print(lines)
['tomato\n', 'pasta\n', ‘'garlic']

with open('shoppinglist.txt', 'r') as fileobj:

GoalKicker.com - Python® Notes for Professionals 159

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

here we read the whole content into one string:

content = fileobj.read()

get a list of lines, just like int the previous example:
lines = content.split('\n")

print(lines)
['tomato', 'pasta', 'garlic']

If the size of the file is tiny, it is safe to read the whole file contents into memory. If the file is very large it is often
better to read line-by-line or by chunks, and process the input in the same loop. To do that:

with open('shoppinglist.txt', 'r') as fileobj:
this method reads line by line:
lines []
for line in fileobj:
lines.append(line.strip())

When reading files, be aware of the operating system-specific line-break characters. Although for line in
fileobj automatically strips them off, it is always safe to call strip() on the lines read, as it is shown above.

Opened files (fileobj in the above examples) always point to a specific location in the file. When they are first
opened the file handle points to the very beginning of the file, which is the position 8. The file handle can display its
current position with tell:

fileobj open('shoppinglist.txt', 'r")
pos = fileobj.tell()
print('We are at %u.' % pos) # We are at 0.

Upon reading all the content, the file handler's position will be pointed at the end of the file:

content = fileobj.read()

end = fileobj.tell()

print('This file was %u characters long.' % end)
This file was 22 characters long.
fileobj.close()

The file handler position can be set to whatever is needed:

fileobj open('shoppinglist.txt', 'r")
fileobj.seek(7)

pos = fileobj.tell()

print('We are at character #%u.' % pos)

You can also read any length from the file content during a given call. To do this pass an argument for read().
When read() is called with no argument it will read until the end of the file. If you pass an argument it will read that
number of bytes or characters, depending on the mode (rb and r respectively):

reads the next 4 characters

starting at the current position

next4 = fileobj.read(4)

what we got?

print(next4) # 'cucu’

where we are now?

pos = fileobj.tell()

print('We are at %u.' % pos) # We are at 11, as we was at 7, and read 4 chars.

fileobj.close()

GoalKicker.com - Python® Notes for Professionals 160

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

To demonstrate the difference between characters and bytes:

with open('shoppinglist.txt', 'r') as fileobj:
print(type(fileobj.read())) # <class 'str'>

with open('shoppinglist.txt', 'rb') as fileobj:
print(type(fileobj.read())) # <class 'bytes'>

Section 29.3: Read from stdin
Python programs can read from unix pipelines. Here is a simple example how to read from stdin:
import sys

for line in sys.stdin:
print(line)

Be aware that sys.stdin is a stream. It means that the for-loop will only terminate when the stream has ended.
You can now pipe the output of another program into your python program as follows:

$ cat myfile | python myprogram.py

In this example cat myfile can be any unix command that outputs to stdout.

Alternatively, using the fileinput module can come in handy:

import fileinput
for line in fileinput.input():
process(line)

Section 29.4: Using input() and raw_input()
Python 2.x version = 2.3

raw_input will wait for the user to enter text and then return the result as a string.
foo raw_input("Put a message here that asks the user for input")
In the above example foo will store whatever input the user provides.

Python 3.x version = 3.0

input will wait for the user to enter text and then return the result as a string.

foo = input("Put a message here that asks the user for input")

In the above example foo will store whatever input the user provides.

Section 29.5: Function to prompt user for a number

def input_number(msg, err_msg=None):
while True:
try:

GoalKicker.com - Python® Notes for Professionals 161

https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://docs.python.org/2/library/sys.html#sys.stdin
https://docs.python.org/2/library/fileinput.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

return float(raw_input(msg))
except ValueError:
if err_msg is not None:
print(err_msg)

def input_number(msg, err_msg=None):
while True:
try:
return float(input(msg))
except ValueError:
if err_msg is not None:
print(err_msg)

And to use it:

user_number = input_number("input a number: ", "that's not a number!")

Or, if you do not want an "error message":

user_number = input_number("input a number: ")

Section 29.6: Printing a string without a newline at the end

Python 2.x version = 2.3

In Python 2.x, to continue a line with print, end the print statement with a comma. It will automatically add a
space.

print "Hello,",
print "World!"
Hello, World!

Python 3.x vVersion = 3.0

In Python 3.x, the print function has an optional end parameter that is what it prints at the end of the given string.
By default it's a newline character, so equivalent to this:

print("Hello, ", end="\n")
print("World!")

Hello,

World!

But you could pass in other strings

print("Hello, ", end="")
print("World!")
Hello, World!

print("Hello, ", end="
")
print("World!")
Hello,
World!

print("Hello, ", end="BREAK")

print("World!")
Hello, BREAKWorld!

If you want more control over the output, you can use sys.stdout.write:

GoalKicker.com - Python® Notes for Professionals 162

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

import sys

sys.stdout.write("Hello, ")
sys.stdout.write("World!")
Hello, World!

GoalKicker.com - Python® Notes for Professionals 163

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 30: Files & Folders |/O

Parameter Details
filename the path to your file or, if the file is in the working directory, the filename of your file
access_mode a string value that determines how the file is opened
buffering an integer value used for optional line buffering

When it comes to storing, reading, or communicating data, working with the files of an operating system is both
necessary and easy with Python. Unlike other languages where file input and output requires complex reading and
writing objects, Python simplifies the process only needing commands to open, read/write and close the file. This
topic explains how Python can interface with files on the operating system.

Section 30.1: File modes

There are different modes you can open a file with, specified by the mode parameter. These include:

e 'r' -reading mode. The default. It allows you only to read the file, not to modify it. When using this mode the
file must exist.

e 'w' -writing mode. It will create a new file if it does not exist, otherwise will erase the file and allow you to
write to it.

e 'a' - append mode. It will write data to the end of the file. It does not erase the file, and the file must exist for
this mode.

e 'rb' - reading mode in binary. This is similar to r except that the reading is forced in binary mode. This is
also a default choice.

e 'r+' -reading mode plus writing mode at the same time. This allows you to read and write into files at the
same time without having to use r and w.

e 'rb+' - reading and writing mode in binary. The same as r+ except the data is in binary
e 'wb' - writing mode in binary. The same as w except the data is in binary.

e 'w+' -writing and reading mode. The exact same as r+ but if the file does not exist, a new one is made.
Otherwise, the file is overwritten.

e 'wb+' - writing and reading mode in binary mode. The same as w+ but the data is in binary.
e 'ab' - appending in binary mode. Similar to a except that the data is in binary.

e 'a+' - appending and reading mode. Similar to w+ as it will create a new file if the file does not exist.
Otherwise, the file pointer is at the end of the file if it exists.

e 'ab+' - appending and reading mode in binary. The same as a+ except that the data is in binary.

with open(filename, 'r') as f:
f.read()

with open(filename, 'w') as f:
f.write(filedata)

with open(filename, 'a') as f:
f.write('\\n' + newdata)

r r+ w w+ a at

Read v v X v X VY
Write X v v v v V

GoalKicker.com - Python® Notes for Professionals 164

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Createsfile x x « «
Erases file X x v v x X
Initial position Start Start Start Start End End

Python 3 added a new mode for exclusive creation so that you will not accidentally truncate or overwrite and

existing file.

will raise FileExistsError.

e 'xb+' - writing and reading mode. The exact same as x+ but the data is binary

X X+
Read X
Write v /
Createsfile «
Erases file X X

Initial position Start Start

Allow one to write your file open code in a more pythonic manner:

Python 3.x version = 3.3

try:
with open("fname", "r") as fout:
Work with your open file
except FileExistsError:
Your error handling goes here

In Python 2 you would have done something like

Python 2.x vVersion = 2.0

import os.path
if os.path.isfile(fname):
with open("fname", "w") as fout:
Work with your open file
else:
Your error handling goes here

Section 30.2: Reading a file line-by-line

The simplest way to iterate over a file line-by-line:

with open('myfile.txt', 'r') as fp:
for line in fp:
print(line)

'x' - open for exclusive creation, will raise FileExistsError if the file already exists
e 'xb' - open for exclusive creation writing mode in binary. The same as x except the data is in binary.
'x+' - reading and writing mode. Similar to w+ as it will create a new file if the file does not exist. Otherwise,

readline() allows for more granular control over line-by-line iteration. The example below is equivalent to the one

above:

with open('myfile.txt', 'r') as fp:
while True:
cur_line = fp.readline()
If the result is an empty string
if cur_line e
We have reached the end of the file

GoalKicker.com - Python® Notes for Professionals

165

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

break
print(cur_line)

Using the for loop iterator and readline() together is considered bad practice.

More commonly, the readlines() method is used to store an iterable collection of the file's lines:

with open("myfile.txt", "r") as fp:
lines = fp.readlines()

for i in range(len(lines)):
print("Line " + str(i) +

+ line)

This would print the following:

Line O: hello

Line 1: world

Section 30.3: Iterate files (recursively)

To iterate all files, including in sub directories, use os.walk:

import os
for root, folders, files in os.walk(root_dir):
for filename in files:
print root, filename

root_dir can be "." to start from current directory, or any other path to start from.
Python 3.x version = 3.5

If you also wish to get information about the file, you may use the more efficient method os.scandir like so:

for entry in os.scandir(path):
if not entry.name.startswith('.') and entry.is_file():
print(entry.name)

Section 30.4: Getting the full contents of a file

The preferred method of file i/o is to use the with keyword. This will ensure the file handle is closed once the
reading or writing has been completed.

with open('myfile.txt') as in_file:
content = in_file.read()

print(content)
or, to handle closing the file manually, you can forgo with and simply call close yourself:

in_file = open('myfile.txt', 'r')
content = in_file.read()
print(content)

in_file.close()

GoalKicker.com - Python® Notes for Professionals

166

https://docs.python.org/3/library/os.html#os.scandir
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Keep in mind that without using a with statement, you might accidentally keep the file open in case an unexpected
exception arises like so:

in_file = open('myfile.txt', 'r')
raise Exception("oops")
in_file.close() # This will never be called

Section 30.5: Writing to a file

with open('myfile.txt', 'w') as f:
f.write("Line 1")

f.write("Line 2")
f.write("Line 3")
f.write("Line 4")

If you open myfile.txt, you will see that its contents are:

Line 1Line 2Line 3Line 4

Python doesn't automatically add line breaks, you need to do that manually:

with open('myfile.txt', 'w') as f:

f.write("Line 1\n")
f.write("Line 2\n")
f.write("Line 3\n")
f.write("Line 4\n")
Line 1
Line 2
Line 3
Line 4

Do not use os.linesep as a line terminator when writing files opened in text mode (the default); use \n instead.

If you want to specify an encoding, you simply add the encoding parameter to the open function:
with open('my_file.txt', 'w', encoding='utf-8') as f:
f.write('utf-8 text')

It is also possible to use the print statement to write to a file. The mechanics are different in Python 2 vs Python 3,
but the concept is the same in that you can take the output that would have gone to the screen and send it to a file
instead.

Python 3.x Version = 3.0

with open('fred.txt', 'w') as outfile:
s "I'm Not Dead Yet!"
print(s) # writes to stdout
print(s, file = outfile) # writes to outfile

#Note: it is possible to specify the file parameter AND write to the screen

#by making sure file ends up with a None value either directly or via a variable
myfile = None

print(s, file = myfile) # writes to stdout

GoalKicker.com - Python® Notes for Professionals 167

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

print(s, file = None) # writes to stdout

In Python 2 you would have done something like

Python 2.x vVersion = 2.0

outfile = open('fred.txt',
s = "I'm Not Dead Yet!"
print s # writes to stdout

print >> outfile, s # writes to outfile

wh)

Unlike using the write function, the print function does automatically add line breaks.

Section 30.6: Check whether a file or path exists
Employ the EAFP coding style and try to open it.

import errno

try:
with open(path) as f:
File exists
except IOError as e:
Raise the exception if it is not ENOENT (No such file or directory)
if e.errno != errno.ENOENT:
raise
No such file or directory

This will also avoid race-conditions if another process deleted the file between the check and when it is used. This
race condition could happen in the following cases:

¢ Using the os module:

import os
os.path.isfile('/path/to/some/file.txt")
Python 3.x version = 3.4
e Using pathlib:
import pathlib

path = pathlib.Path('/path/to/some/file.txt")
if path.is_file():

To check whether a given path exists or not, you can follow the above EAFP procedure, or explicitly check the path:

import os
path = "/home/myFiles/directory1"”

if os.path.exists(path):
Do stuff

GoalKicker.com - Python® Notes for Professionals 168

https://docs.python.org/glossary.html#term-eafp
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 30.7: Random File Access Using mmap

Using the mmap module allows the user to randomly access locations in a file by mapping the file into memory. This
is an alternative to using normal file operations.

import mmap

with open('filename.ext', 'r') as fd:
0: map the whole file
mm = mmap.mmap(fd.fileno(), 0)

print characters at indices 5 through 10
print mm[5:10]

print the line starting from mm's current position
print mm.readline()

write a character to the 5th index
mm[5] = 'a’

return mm's position to the beginning of the file
mm.seek (0)

close the mmap object
mm.close()

Section 30.8: Replacing text in a file

import fileinput

replacements = {'Search1': 'Replacel’,
‘Search2': 'Replace2'}

for line in fileinput.input('filename.txt', inplace=True):
for search_for in replacements:
replace_with = replacements|[search_for]

line = line.replace(search_for, replace_with)
print(line, end="'")

Section 30.9: Checking if a file is empty

>>> import os
>>> os.stat(path_to_file).st_size ==

or

>>> import os
>>> os.path.getsize(path_to_file) > ©

However, both will throw an exception if the file does not exist. To avoid having to catch such an error, do this:

import os
def is_empty_file(fpath):
return os.path.isfile(fpath) and os.path.getsize(fpath) > 0@

which will return a bool value.

GoalKicker.com - Python® Notes for Professionals 169

https://docs.python.org/2/library/mmap.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 30.10: Read a file between a range of lines
So let's suppose you want to iterate only between some specific lines of a file
You can make use of itertools for that

import itertools

with open('myfile.txt', 'r') as f:
for line in itertools.islice(f, 12, 30):
do something here

This will read through the lines 13 to 20 as in python indexing starts from 0. So line number 1 is indexed as 0
As can also read some extra lines by making use of the next () keyword here.

And when you are using the file object as an iterable, please don't use the readline() statement here as the two
techniques of traversing a file are not to be mixed together

Section 30.11: Copy a directory tree

import shutil
source='//192.168.1.2/Daily Reports'
destination='D:\\Reports\\Today"
shutil.copytree(source, destination)

The destination directory must not exist already.

Section 30.12: Copying contents of one file to a different file

with open(input_file, 'r') as in_file, open(output_file, 'w') as out_file:
for line in in_file:
out_file.write(line)

¢ Using the shutil module:

import shutil
shutil.copyfile(src, dst)

GoalKicker.com - Python® Notes for Professionals

170

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 31: os.path

This module implements some useful functions on pathnames. The path parameters can be passed as either
strings, or bytes. Applications are encouraged to represent file names as (Unicode) character strings.

Section 31.1: Join Paths
To join two or more path components together, firstly import os module of python and then use following:

import os
os.path.join('a', 'b', 'c')

The advantage of using os.path is that it allows code to remain compatible over all operating systems, as this uses
the separator appropriate for the platform it's running on.

For example, the result of this command on Windows will be:

>>> os.path.join('a', 'b', 'c')
"a\b\c’

In an Unix OS:

>>> os.path.join('a', 'b', 'c")
‘a/b/c’

Section 31.2: Path Component Manipulation

To split one component off of the path:

>>> p = os.path.join(os.getcwd(), 'foo.txt')
>>> p

"/Users/csaftoiu/tmp/foo.txt’

>>> os.path.dirname(p)

' /Users/csaftoiu/tmp’

>>> os.path.basename(p)

"foo.txt'

>>> os.path.split(os.getcwd())
('/Users/csaftoiu/tmp', 'foo.txt')

>>> os.path.splitext(os.path.basename(p))
('foo', '.txt")

Section 31.3: Get the parent directory

os.path.abspath(os.path.join(PATH_TO_GET_THE_PARENT, os.pardir))

Section 31.4: If the given path exists

to check if the given path exists

path = '/home/john/temp'
os.path.exists(path)
#this returns false if path doesn't exist or if the path is a broken symbolic link

GoalKicker.com - Python® Notes for Professionals 171

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 31.5: check if the given path is a directory, file,

symbolic link, mount point etc
to check if the given path is a directory

dirname = '/home/john/python’
os.path.isdir(dirname)

to check if the given path is a file

filename = dirname + 'main.py’
os.path.isfile(filename)

to check if the given path is symboalic link

symlink = dirname + 'some_sym_link'
os.path.islink(symlink)

to check if the given path is a mount point

mount_path = '/home'
os.path.ismount(mount_path)

Section 31.6: Absolute Path from Relative Path

Use os.path.abspath:

>>> os.getcwd()
'/Users/csaftoiu/tmp’

>>> os.path.abspath('foo")
'/Users/csaftoiu/tmp/foo’

>>> os.path.abspath('../foo")
'/Users/csaftoiu/foo’

>>> os.path.abspath('/foo")
"/foo'

GoalKicker.com - Python® Notes for Professionals

172

https://en.wikipedia.org/wiki/Symbolic_link
http://www.linuxtopia.org/online_books/introduction_to_linux/linux_Mount_points.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 32: Iterables and lterators

Section 32.1: Iterator vs Iterable vs Generator

An iterable is an object that can return an iterator. Any object with state that has an __iter__ method and returns
an iterator is an iterable. It may also be an object without state that implements a __getitem__ method. - The
method can take indices (starting from zero) and raise an IndexError when the indices are no longer valid.

Python's str class is an example of a __getitem__ iterable.

An Iterator is an object that produces the next value in a sequence when you call next(*object*) on some object.
Moreover, any object with a __next__ method is an iterator. An iterator raises StopIteration after exhausting the
iterator and cannot be re-used at this point.

Iterable classes:
Iterable classes define an __iter__ and a __next__ method. Example of an iterable class:

class MyIterable:
def __iter__(self):
return self

def __next__(self):
#code

#Classic iterable object in older versions of python, __getitem__ is still supported...
class MySequence:

def __getitem__(self, index):

if (condition):
raise IndexError
return (item)

#Can produce a plain ‘iterator’ instance by using iter(MySequence())

Trying to instantiate the abstract class from the collections module to better see this.
Example:

Python 2.x version = 2.3

import collections
collections.Iterator()
TypeError: Cant instantiate abstract class Iterator with abstract methods next

Python 3.x version = 3.0

TypeError: Cant instantiate abstract class Iterator with abstract methods __next__

Handle Python 3 compatibility for iterable classes in Python 2 by doing the following:

Python 2.x version = 2.3

class MyIterable(object): #or collections.Iterator, which I'd recommend....

GoalKicker.com - Python® Notes for Professionals 173

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

def __iter__(self):
return self
def next(self): #code

__nhext__ = next

Both of these are now iterators and can be looped through:

ex1
ex2

MyIterableClass()
MySequence ()

for (item) in (ex1): #code
for (item) in (ex2): #code

Generators are simple ways to create iterators. A generator is an iterator and an iterator is an iterable.

Section 32.2: Extract values one by one

Start with iter () built-in to get iterator over iterable and use next() to get elements one by one until
StopIteration is raised signifying the end:

= {1, 2} # or 1list or generator or even iterator
= iter(s) # get iterator

next(i) # a =1

= next(i) #b =2

= next(i) # raises StopIteration

O T o H »
I}

Section 32.3: Iterating over entire iterable

s = {1, 2, 3}
get every element in s
for a in s:

print a # prints 1, then 2, then 3

copy into list
11 = list(s) # 11 = [1, 2, 3]

use list comprehension
12 = [a * 2 for a in s if a > 2] # 12 = [6]

Section 32.4: Verify only one element in iterable

Use unpacking to extract the first element and ensure it's the only one:

a, = iterable
def foo():
yield 1

a, = foo() #a =1

nums = [1, 2, 3]
a, = nums # ValueError: too many values to unpack

GoalKicker.com - Python® Notes for Professionals

174

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 32.5: What can be iterable

Iterable can be anything for which items are received one by one, forward only. Built-in Python collections are

iterable:

[1, 2, 3] # list, iterate over items
(1, 2, 3) # tuple

{1, 2, 3} # set

{1: 2, 3: 4} # dict, iterate over keys

Generators return iterables:

def foo(): # foo isn't iterable yet...
yield 1

res = foo() # ...but res already is

Section 32.6: Iterator isn't reentrant!

def gen():
yield 1

iterable = gen()
for a in iterable:
print a

What was the first item of iterable? No way to get it now.

Only to get a new iterator
gen()

GoalKicker.com - Python® Notes for Professionals

175

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 33: Functions

Parameter Details
argl, ..., argN Regular arguments
*args Unnamed positional arguments

kwi, ..., kwN Keyword-only arguments
**kwargs The rest of keyword arguments

Functions in Python provide organized, reusable and modular code to perform a set of specific actions. Functions
simplify the coding process, prevent redundant logic, and make the code easier to follow. This topic describes the
declaration and utilization of functions in Python.

Python has many built-in functions like print(), input(), len(). Besides built-ins you can also create your own
functions to do more specific jobs—these are called user-defined functions.

Section 33.1: Defining and calling simple functions

Using the def statement is the most common way to define a function in python. This statement is a so called single
clause compound statement with the following syntax:

def function_name(parameters):
statement(s)

function_name is known as the identifier of the function. Since a function definition is an executable statement its
execution binds the function name to the function object which can be called later on using the identifier.

parameters is an optional list of identifiers that get bound to the values supplied as arguments when the function is
called. A function may have an arbitrary number of arguments which are separated by commas.

statement(s) — also known as the function body — are a nonempty sequence of statements executed each time the
function is called. This means a function body cannot be empty, just like any indented block.

Here’s an example of a simple function definition which purpose is to print Hello each time it’s called:

def greet():
print("Hello")

Now let’s call the defined greet() function:

greet()
Out: Hello

That’s another example of a function definition which takes one single argument and displays the passed in value
each time the function is called:

def greet_two(greeting):
print(greeting)

After that the greet_two() function must be called with an argument:

greet_two("Howdy")
Out: Howdy

Also you can give a default value to that function argument:

GoalKicker.com - Python® Notes for Professionals 176

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

def greet_two(greeting="Howdy"):
print(greeting)

Now you can call the function without giving a value:

greet_two()
Out: Howdy

You'll notice that unlike many other languages, you do not need to explicitly declare a return type of the function.
Python functions can return values of any type via the return keyword. One function can return any number of
different types!

def many_types(x):
if x 0:
return "Hello!"
else:
return 0

print(many_types(1))
print(many_types(-1))

Output:
0
Hello

As long as this is handled correctly by the caller, this is perfectly valid Python code.

A function that reaches the end of execution without a return statement will always return None:

def do_nothing():
pass

print(do_nothing())
Out: None

As mentioned previously a function definition must have a function body, a nonempty sequence of statements.
Therefore the pass statement is used as function body, which is a null operation — when it is executed, nothing
happens. It does what it means, it skips. It is useful as a placeholder when a statement is required syntactically, but
no code needs to be executed.

Section 33.2: Defining a function with an arbitrary number of
arguments

Arbitrary number of positional arguments:

Defining a function capable of taking an arbitrary number of arguments can be done by prefixing one of the
arguments with a *

def func(*args):
args will be a tuple containing all values that are passed in
for 1 in args:
print(i)

func(1, 2, 3) # Calling it with 3 arguments

Out: 1
2
3]

GoalKicker.com - Python® Notes for Professionals 177

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

list_of_arg_values [1, 2, 3]

func(*list_of_arg_values) # Calling it with list of values, * expands the list
Out: 1

2

3

func() # Calling it without arguments
No Output

You can't provide a default for args, for example func(*args=[1, 2, 3]) will raise a syntax error (won't even
compile).

You can't provide these by name when calling the function, for example func(*args=[1, 2, 3]) will raise a
TypeError.

But if you already have your arguments in an array (or any other Iterable), you can invoke your function like this:
func(*my_stuff).

These arguments (*args) can be accessed by index, for example args[@] will return the first argument
Arbitrary number of keyword arguments

You can take an arbitrary number of arguments with a name by defining an argument in the definition with two *
in front of it:

def func(*xkwargs):
kwargs will be a dictionary containing the names as keys and the values as values
for name, value in kwargs.items():
print(name, value)

func(value1=1, value2=2, value3=3) # Calling it with 3 arguments
Out: valuel 1

value2 2
value3 3
func() # Calling it without arguments

No Out put

my_dict {'foo': 1, 'bar': 2}

func(**my_dict) # Calling it with a dictionary
Out: foo 1
bar 2

You can't provide these without names, for example func(1, 2, 3) will raise a TypeError.

kwargs is a plain native python dictionary. For example, args['valuel'] will give the value for argument value1. Be
sure to check beforehand that there is such an argument or a KeyError will be raised.

Warning
You can mix these with other optional and required arguments but the order inside the definition matters.

The positional/keyword arguments come first. (Required arguments).
Then comes the arbitrary *arg arguments. (Optional).

Then keyword-only arguments come next. (Required).

Finally the arbitrary keyword *xkwargs come. (Optional).

GoalKicker.com - Python® Notes for Professionals 178

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

|-positional-|-optional-|---keyword-only--|-optional-|
func(argl, arg2-=10 *args, kwargl, kwarg2=2, xxkwargs):

¢ arg1 must be given, otherwise a TypeError is raised. It can be given as positional (func(10)) or keyword
argument (func(arg1=10)).

¢ kwarg1l must also be given, but it can only be provided as keyword-argument: func(kwarg1=10).

e arg2 and kwarg2 are optional. If the value is to be changed the same rules as for arg1 (either positional or
keyword) and kwarg1 (only keyword) apply.

e xargs catches additional positional parameters. But note, that arg1 and arg2 must be provided as positional
arguments to pass arguments to *args: func(1, 1, 1, 1).

e xxkwargs catches all additional keyword parameters. In this case any parameter that is not arg1, arg2,
kwarg1 or kwarg2. For example: func(kwarg3=10).

¢ In Python 3, you can use * alone to indicate that all subsequent arguments must be specified as keywords.
For instance the math.isclose function in Python 3.5 and higher is defined using math.isclose (a, b
*, rel_tol=1e-09, abs_tol=0.0), which means the first two arguments can be supplied positionally but the
optional third and fourth parameters can only be supplied as keyword arguments.

Python 2.x doesn't support keyword-only parameters. This behavior can be emulated with kwargs:

func(argl, arg2=10, =**kwargs):

kwarg1 kwargs.pop("kwargl")
KeyError:
TypeError("missing required keyword-only argument: 'kwargl'")

kwarg2 = kwargs.pop('kwarg2", 2)
function body ...

Note on Naming

The convention of naming optional positional arguments args and optional keyword arguments kwargs is just a
convention you can use any names you like but it is useful to follow the convention so that others know what you
are doing, or even yourself later so please do.

Note on Uniqueness

Any function can be defined with none or one *args and none or one **kwargs but not with more than one of
each. Also *args must be the last positional argument and **kwargs must be the last parameter. Attempting to use
more than one of either will result in a Syntax Error exception.

Note on Nesting Functions with Optional Arguments

It is possible to nest such functions and the usual convention is to remove the items that the code has already
handled but if you are passing down the parameters you need to pass optional positional args with a * prefix and
optional keyword args with a ** prefix, otherwise args with be passed as a list or tuple and kwargs as a single
dictionary. e.g.:

fn(*xkwargs) :
(kwargs)
f1(**kwargs)

f1(*xkwargs) :
(len(kwargs))

GoalKicker.com - Python® Notes for Professionals 179

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

fn(a=1, b=2)

Out:

{'a': 1, 'b': 2}
2

Section 33.3: Lambda (Inline/Anonymous) Functions

The lambda keyword creates an inline function that contains a single expression. The value of this expression is
what the function returns when invoked.

Consider the function:

def greeting():
return "Hello"

which, when called as:
print(greeting())
prints:
Hello
This can be written as a lambda function as follows:

greet_me lambda: "Hello"

See note at the bottom of this section regarding the assignment of lambdas to variables. Generally, don't
doit.

This creates an inline function with the name greet_me that returns Hello. Note that you don't write return when
creating a function with lambda. The value after : is automatically returned.

Once assigned to a variable, it can be used just like a regular function:
print(greet_me())
prints:
Hello
lambdas can take arguments, too:

strip_and_upper_case = lambda s: s.strip().upper()

strip_and_upper_case(" Hello ")
returns the string:

HELLO

They can also take arbitrary number of arguments / keyword arguments, like normal functions.

GoalKicker.com - Python® Notes for Professionals 180

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

greeting = lambda x, =*args, **kwargs: print(x, args, kwargs)
greeting('hello', 'world', world='world")

prints:
hello ('world',) {'world': 'world'}

lambdas are commonly used for short functions that are convenient to define at the point where they are called
(typically with sorted, filter and map).

For example, this line sorts a list of strings ignoring their case and ignoring whitespace at the beginning and at the
end:

sorted([" foo ", " bAR", "BaZ "1, key=lambda s: s.strip().upper())
Out:
[’ bAR', 'BaZ ", ' foo ']

Sort list just ignoring whitespaces:

sorted([" foo ", " bAR", "BaZ "1, key=lambda s: s.strip())
Out:
['BaZ Yo bAR', ' foo ']

Examples with map:

sorted(map(lambda s: s.strip().upper(), [" foo ", " bAR", "BaZ 1)
Out:
['BAR', 'BAZ', 'F00']

sorted(map(lambda s: s.strip(), [" foo ", " bAR", "BaZ 1)
Out:
['BaZ', 'bAR', 'foo']

Examples with numerical lists:

my_list [3, -4, -2, 5, 1, 7]

sorted(my_list, key=lambda x: abs(x))
Out:

#[1, -2, 3, -4, 5, 7]

list(filter(lambda x: x>0, my_list))
Out:

#[3, 5 1, 7]

list(map(lambda x: abs(x), my_list))

Out:
[3, 4, 2, 5, 1, 7]

One can call other functions (with/without arguments) from inside a lambda function.

def foo(msg):
print(msg)

greet = lambda x = "hello world": foo(x)
greet()

prints:

GoalKicker.com - Python® Notes for Professionals 181

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

hello world

This is useful because 1ambda may contain only one expression and by using a subsidiary function one can run
multiple statements.

NOTE

Bear in mind that PEP-8 (the official Python style guide) does not recommend assigning lambdas to variables (as we
did in the first two examples):

Always use a def statement instead of an assignment statement that binds a lambda expression directly
to an identifier.

Yes:
def f(x): return 2xx
No:

f lambda x: 2#*x

The first form means that the name of the resulting function object is specifically f instead of the generic
<lambda>. This is more useful for tracebacks and string representations in general. The use of the
assignment statement eliminates the sole benefit a lambda expression can offer over an explicit def
statement (i.e. that it can be embedded inside a larger expression).

Section 33.4: Defining a function with optional arguments
Optional arguments can be defined by assigning (using =) a default value to the argument-name:

def make(action='nothing'):
return action

Calling this function is possible in 3 different ways:

make("fun")
Out: fun

make (action="sleep")
Out: sleep

The argument is optional so the function will use the default value if the argument is
not passed in.

make ()
Out: nothing

Warning
Mutable types (1ist, dict, set, etc.) should be treated with care when given as default attribute. Any

mutation of the default argument will change it permanently. See Defining a function with optional
mutable arguments.

GoalKicker.com - Python® Notes for Professionals 182

https://www.python.org/dev/peps/pep-0008/#programming-recommendations
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Section 33.5: Defining a function with optional mutable
arguments

There is a problem when using optional arguments with a mutable default type (described in Defining a function
with optional arguments), which can potentially lead to unexpected behaviour.

Explanation

This problem arises because a function's default arguments are initialised once, at the point when the function is
defined, and not (like many other languages) when the function is called. The default values are stored inside the
function object's __defaults__ member variable.

def f(a, b=42, c=[]):
pass

print(f.__defaults__)
Out: (42, [])

For immutable types (see Argument passing and mutability) this is not a problem because there is no way to
mutate the variable; it can only ever be reassigned, leaving the original value unchanged. Hence, subsequent are
guaranteed to have the same default value. However, for a mutable type, the original value can mutate, by making
calls to its various member functions. Therefore, successive calls to the function are not guaranteed to have the
initial default value.

def append(elem, to=[]):
to.append(elem) # This call to append() mutates the default variable "to"
return to

append(1)
Out: [1]

append(2) # Appends it to the internally stored list
out: [1, 2]

append(3, []) # Using a new created list gives the expected result
out: [3]

Calling it again without argument will append to the internally stored list again
append(4)
Out: [1, 2, 4]

Note: Some IDEs like PyCharm will issue a warning when a mutable type is specified as a default
attribute.

Solution

If you want to ensure that the default argument is always the one you specify in the function definition, then the
solution is to always use an immutable type as your default argument.

A common idiom to achieve this when a mutable type is needed as the default, is to use None (immutable) as the
default argument and then assign the actual default value to the argument variable if it is equal to None.

def append(elem, to=None):
if to is None:
to = []

GoalKicker.com - Python® Notes for Professionals 183

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

to.append(elem)
return to

Section 33.6: Argument passing and mutability

First, some terminology:

¢ argument (actual parameter): the actual variable being passed to a function;
e parameter (formal parameter): the receiving variable that is used in a function.

In Python, arguments are passed by assignment (as opposed to other languages, where arguments can be
passed by value/reference/pointer).

e Mutating a parameter will mutate the argument (if the argument's type is mutable).

def foo(x): # here x is the parameter
x[@] = 9 # This mutates the list labelled by both x and y
print(x)

y = [4, 5, 6]

foo(y) # call foo with y as argument
Out: [9, 5, 6] # list labelled by x has been mutated
print(y)

Out: [9, 5, 6] # list labelled by y has been mutated too

¢ Reassigning the parameter won'’t reassign the argument.

def foo(x): # here x is the parameter, when we call foo(y) we assign y to x
x[@] = 9 # This mutates the list labelled by both x and y
x = [1, 2, 3] # x is now labeling a different list (y is unaffected)
x[2] = 8 # This mutates x's list, not y's list

y = [4, 5, 6] # y is the argument, x is the parameter

foo(y) # Pretend that we wrote "x = y", then go to line 1

y

Out: [9, 5, 6]
In Python, we don’t really assign values to variables, instead we bind (i.e. assign, attach) variables
(considered as names) to objects.

¢ Immutable: Integers, strings, tuples, and so on. All operations make copies.
¢ Mutable: Lists, dictionaries, sets, and so on. Operations may or may not mutate.

= [3, 1, 9]

= X

.append(5) # Mutates the list labelled by x and y, both x and y are bound to [3, 1, 9]
.sort() # Mutates the list labelled by x and y (in-place sorting)

= x + [4] # Does not mutate the list (makes a copy for x only, not y)

- X #z is x ([1, 3, 9, 4])

+= [6] # Mutates the list labelled by both x and z (uses the extend function).

= sorted(x) # Does not mutate the list (makes a copy for x only).
Out: [1, 3, 4, 5, 6, 9]

Out: [1, 3, 5, 9]

N #< & X X X N X X X < X

GoalKicker.com - Python® Notes for Professionals 184

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Out: [1, 3, 5, 9, 4, 6]

Section 33.7: Returning values from functions

Functions can return a value that you can use directly:

def give_me_five():
return 5

print(give_me_five()) # Print the returned value
Out: 5

or save the value for later use:

num = give_me_five()
print(num) # Print the saved returned value
Out: 5

or use the value for any operations:

print(give_me_five() + 10)
Out: 15

If return is encountered in the function the function will be exited immediately and subsequent operations will not
be evaluated:

def give_me_another_five():
return 5
print('This statement will not be printed. Ever.')

print(give_me_another_five())
Out: 5

You can also return multiple values (in the form of a tuple):

def give_me_two_fives():
return 5, 5 # Returns two §

first, second = give_me_two_fives()
print(first)

Out: 5

print(second)

Out: 5

A function with no return statement implicitly returns None. Similarly a function with a return statement, but no
return value or variable returns None.

Section 33.8: Closure

Closures in Python are created by function calls. Here, the call to makeInc creates a binding for x that is referenced
inside the function inc. Each call to makeInc creates a new instance of this function, but each instance has a link to a
different binding of x.

def makeInc(x):
def inc(y):
x is "attached" in the definition of inc

GoalKicker.com - Python® Notes for Professionals 185

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

return y + x
return inc

incOne = makeInc(1)
incFive = makelInc(5)

incOne(5) # returns 6
incFive(5) # returns 10

Notice that while in a regular closure the enclosed function fully inherits all variables from its enclosing
environment, in this construct the enclosed function has only read access to the inherited variables but cannot
make assignments to them

def makeInc(x):
def inc(y):
incrementing x 1is not allowed
X +=y
return Xx

return inc

incOne = makeInc(1)
incOne(5) # UnboundLocalError: local variable 'x' referenced before assignment

Python 3 offers the nonlocal statement (Nonlocal Variables) for realizing a full closure with nested functions.

Python 3.x Version = 3.0

def makeInc(x):
def inc(y):
nonlocal x
now assigning a value to x is allowed
X +=y
return x

return inc

incOne = makeInc(1)
incOne(5) # returns 6

Section 33.9: Forcing the use of named parameters

All parameters specified after the first asterisk in the function signature are keyword-only.

def f(*a, b):
pass

f(1, 2, 3)
TypeError: f() missing 1 required keyword-only argument: 'b'

In Python 3 it's possible to put a single asterisk in the function signature to ensure that the remaining arguments
may only be passed using keyword arguments.

def f(a, b, *, c):
pass

f(1, 2, 3)
TypeError: f() takes 2 positional arguments but 3 were given

GoalKicker.com - Python® Notes for Professionals 186

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

f(1, 2, ¢c=3)
No error

Section 33.10: Nested functions

Functions in python are first-class objects. They can be defined in any scope

def fibonacci(n):
def step(a,b):
return b, a+b
a, b 9, 1
for i in range(n):
a, b = step(a, b)
return a

Functions capture their enclosing scope can be passed around like any other sort of object

def make_adder(n):

def adder(x):
return n + X

return adder

add5 = make_adder(5)

add6 = make_adder(6)

add5(10)

#out: 15

add6(10)

#0ut: 16

def repeatedly_apply(func, n, x):
for i in range(n):
x = func(x)
return x

repeatedly_apply(add5, 5, 1)
#0ut: 26

Section 33.11: Recursion limit

There is a limit to the depth of possible recursion, which depends on the Python implementation. When the limit is
reached, a RuntimeError exception is raised:

def cursing(depth):
try:
cursing(depth + 1) # actually, re-cursing
except RuntimeError as RE:
print('I recursed {} times!'.format(depth))

cursing(9)
Out: I recursed 1883 times!

It is possible to change the recursion depth limit by using sys.setrecursionlimit(limit) and check this limit by
sys.getrecursionlimit().

sys.setrecursionlimit(2000)
cursing(9)
Out: I recursed 1997 times!

GoalKicker.com - Python® Notes for Professionals 187

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

From Python 3.5, the exception is a RecursionError, which is derived from RuntimeError.

Section 33.12: Recursive Lambda using assigned variable

One method for creating recursive lambda functions involves assigning the function to a variable and then
referencing that variable within the function itself. Acommon example of this is the recursive calculation of the

factorial of a number - such as shown in the following code:

lambda_factorial

Description of code

lambda i:1 if i

0 else ixlambda_factorial(i-1)
print(lambda_factorial(4)) # 4 # 3 #+ 2 # 1 = 12 # 2 = 24

The lambda function, through its variable assignment, is passed a value (4) which it evaluates and returns 1 if itis O

or else it returns the current value (i) * another calculation by the lambda function of the value - 1 (i-1). This

continues until the passed value is decremented to O (return 1). A process which can be visualized as:

Final Answer 24 [4 * &)

im=d

lambda_factorial|4]

Lambda_factorial{4-1}

v

raturn & {273]

larmbsda_factorial|3)
Fas 3
Lambda_factorial{3-1}

Fatisrm & |:1‘ "l:l

lambda_factorial|z)
==
Lambda_factoriall2-1]

Fatush 1|

1%1)

lambda_factorial{i)
j==1
Lambda_factorial{ 1-1)

return 1 {ifi == 0]

Section 33.13: Recursive functions

lambda_factorial{d)
i==0
return 1

A recursive function is a function that calls itself in its definition. For example the mathematical function, factorial,

defined by factorial(n)

n*(n-1)*(n-2)*...*3%2%1. can be programmed as

GoalKicker.com - Python® Notes for Professionals

188

http://i.stack.imgur.com/uitTM.jpg
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

def factorial(n):
#n here should be an integer
if n 0:
return 1
else:
return n*factorial(n-1)

the outputs here are:

factorial(9)
#out 1
factorial(1)
#out 1
factorial(2)
#out 2
factorial(3)
#out 6

as expected. Notice that this function is recursive because the second return factorial(n-1), where the function

calls itself in its definition.

Some recursive functions can be implemented using lambda, the factorial function using lambda would be
something like this:

factorial = lambda n: 1 if n 0 else nxfactorial(n-1)

The function outputs the same as above.

Section 33.14: Defining a function with arguments
Arguments are defined in parentheses after the function name:

def divide(dividend, divisor): # The names of the function and its arguments
The arguments are available by name in the body of the function
print(dividend / divisor)

The function name and its list of arguments are called the signature of the function. Each named argument is
effectively a local variable of the function.

When calling the function, give values for the arguments by listing them in order

divide(10, 2)
output: 5

or specify them in any order using the names from the function definition:

divide(divisor=2, dividend=10)
output: 5

Section 33.15: Iterable and dictionary unpacking

Functions allow you to specify these types of parameters: positional, named, variable positional, Keyword args
(kwargs). Here is a clear and concise use of each type.

def unpacking(a, b, c=45, d=60, *args, **kwargs):

GoalKicker.com - Python® Notes for Professionals

189

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

1

Traceback (most
"<stdin>"

2

File

print(a, b

unpacking(1
45 60 () {}
unpacking(1
34 () {}
unpacking(1
34 () {}
unpacking(1

340 0O

pair (3,)
unpacking(1
34 () {}
unpacking(1
34 () {}
unpacking(1

unpacking(1

C

d, arg
2)
2, 3, 4)
2, c=3
2, d=4
2, *pair
2, d=4
2, *pair

s, kwargs)

d-=4)

c=3)

d=4)
*pair)

c=3)

recent call last):

line 1

2, ¢c=3

in <module
TypeError: unpacking() got multiple values for argument '

*pair)

Traceback (most recent call last):

File

args_list
unpacking(1

1234 () {}

unpacking(1

1234 () {}

Traceback (most
"<stdin>"

File

unpacking(1

unpacking(1

"<stdin>"

[

line 1

3]

2, *args_list, d=4)

2, d=4

2, ¢c=3

in <module
TypeError: unpacking() got multiple values for argument

*args_list)

*args_list)

recent call last):

line 1

in <module
TypeError: unpacking() got multiple values for argument
2, *args_list

Traceback (most recent call last):

File

"<stdin>"

pair = (3, 4)

unpacking(1

1234 () {}

1234 (3, 4) {}

unpacking(1

unpacking(1

line 1

in <module
TypeError: unpacking() got multiple values for argument

2, *pair)

2, 3, 4

2, d=4

*pair)

*pair)

Traceback (most recent call last):

File

unpacking(1

"<stdin>"

line 1

in <module
TypeError: unpacking() got multiple values for argument 'd’
2, *pair

d-4)

Traceback (most recent call last):

File

args_list
unpacking(1

1234 () {}

unpacking(1

"<stdin>"

[

line 1

3, 4]

in <module
TypeError: unpacking() got multiple values for argument 'd’

2, *args_list)

2, 3, 4

1234 (3, 4) {}

*args_list)

c=3)

GoalKicker.com - Python® Notes for Professionals

190

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

unpacking(1, 2, d=4, *args_list)
Traceback (most recent call last):
File "<stdin>", line 1, in <module
TypeError: unpacking() got multiple values for argument 'd’
unpacking(1, 2, *args_list, d=4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module
TypeError: unpacking() got multiple values for argument 'd’

arg_dict {'c':3, 'd':4}
unpacking(1 **arg_dict)
1234 () {}
arg_dict {'d':4, 'c':3}
unpacking(1 **arg_dict)
1234 () {}
arg_dict = {'c':3, 'd':4, 'not_a_parameter': 75}
unpacking(1, 2, **arg_dict)
1234 () {'not_a_parameter': 75}

N

N

unpacking(1, 2, *pair, **arg_dict)
Traceback (most recent call last):
File "<stdin>", line 1, in <module
TypeError: unpacking() got multiple values for argument 'd'
unpacking(1, 2, 3, 4, **arg_dict)
Traceback (most recent call last):
File "<stdin>", line 1, in <module
TypeError: unpacking() got multiple values for argument 'd’

Positional arguments take priority over any other form of argument passing
unpacking(1, 2, **arg_dict, c=3)
1234 () {'not_a_parameter': 75}
unpacking(1, 2, 3, **arg_dict, c=3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module
TypeError: unpacking() got multiple values for argument 'c'

Section 33.16: Defining a function with multiple arguments

One can give a function as many arguments as one wants, the only fixed rules are that each argument name must
be unique and that optional arguments must be after the not-optional ones:

def func(valuel, value2, optionalvalue=10):
return '{0} {1} {2}'.format(valuel, value2, optionalvaluel)

When calling the function you can either give each keyword without the name but then the order matters:

print(func(1, 'a', 100))
Out: 1 a 100

print(func('abc', 14))
abc 14 10

Or combine giving the arguments with name and without. Then the ones with name must follow those without but
the order of the ones with name doesn't matter:

print(func('This', optionalvalue='StackOverflow Documentation', value2='is'))
Out: This is StackOverflow Documentation

GoalKicker.com - Python® Notes for Professionals 191

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 34: Defining functions with list
arguments

Section 34.1: Function and Call
Lists as arguments are just another variable:
def func(myList):
for item in myList:
print(item)

and can be passed in the function call itself:

func([1,2,3,5,7])

N o woN =

Or as a variable:

aList = ['a','b",'c','d"]
func(alList)

o 0 T o

GoalKicker.com - Python® Notes for Professionals 192

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 35: Functional Programming in
Python

Functional programming decomposes a problem into a set of functions. Ideally, functions only take inputs and
produce outputs, and don’t have any internal state that affects the output produced for a given input.below are
functional techniques common to many languages: such as lambda, map, reduce.

Section 35.1: Lambda Function

An anonymous, inlined function defined with lambda. The parameters of the lambda are defined to the left of the
colon. The function body is defined to the right of the colon. The result of running the function body is (implicitly)
returned.

s=lambda x:x*x
s(2) 4

Section 35.2: Map Function

Map takes a function and a collection of items. It makes a new, empty collection, runs the function on each item in
the original collection and inserts each return value into the new collection. It returns the new collection.

This is a simple map that takes a list of names and returns a list of the lengths of those names:

name_lengths = map(len, ["Mary", "Isla", "Sam"])
print(name_lengths) [4, 4, 3]

Section 35.3: Reduce Function
Reduce takes a function and a collection of items. It returns a value that is created by combining the items.

This is a simple reduce. It returns the sum of all the items in the collection.

total reduce(lambda a, x: a + x, [0, 1, 2, 3, 4])
print(total) 10

Section 35.4: Filter Function

Filter takes a function and a collection. It returns a collection of every item for which the function returned True.

arr=[1,2,3,4,5,6]
[i for 1 in filter(lambda x:x>4,arr)] # outputs[5,6]

GoalKicker.com - Python® Notes for Professionals 193

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 36: Partial functions

Param details
X the number to be raised
y the exponent

raise the function to be specialized

As you probably know if you came from OOP school, specializing an abstract class and use it is a practice you
should keep in mind when writing your code.

What if you could define an abstract function and specialize it in order to create different versions of it? Thinks it as
a sort of function Inheritance where you bind specific params to make them reliable for a specific scenario.

Section 36.1: Raise the power

Let's suppose we want raise x to a number y.

You'd write this as:

def raise_power(x, y):
return x*xy

What if your y value can assume a finite set of values?

Let's suppose y can be one of [3,4,5] and let's say you don't want offer end user the possibility to use such function
since it is very computationally intensive. In fact you would check if provided y assumes a valid value and rewrite
your function as:

def raise(x, y):
if y in (3,4,5):
return Xx**y
raise NumberNotInRangeException("You should provide a valid exponent")

Messy? Let's use the abstract form and specialize it to all three cases: let's implement them partially.

from functors import partial
raise_to_three = partial(raise, y=3)
raise_to_four = partial(raise, y=4)
raise_to_five = partial(raise, y=5)

What happens here? We fixed the y params and we defined three different functions.

No need to use the abstract function defined above (you could make it private) but you could use partial applied
functions to deal with raising a number to a fixed value.

GoalKicker.com - Python® Notes for Professionals 194

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 37: Decorators

Parameter Details
f The function to be decorated (wrapped)

Decorator functions are software design patterns. They dynamically alter the functionality of a function, method, or
class without having to directly use subclasses or change the source code of the decorated function. When used
correctly, decorators can become powerful tools in the development process. This topic covers implementation and
applications of decorator functions in Python.

Section 37.1: Decorator function

Decorators augment the behavior of other functions or methods. Any function that takes a function as a parameter
and returns an augmented function can be used as a decorator.

This simplest decorator does nothing to the function being decorated. Such
minimal decorators can occasionally be used as a kind of code markers.
def super_secret_function(f):

return f

super_secret_function
def my_function():
print("This is my secret function.")

The @-notation is syntactic sugar that is equivalent to the following:
my_function = super_secret_function(my_function)

It is important to bear this in mind in order to understand how the decorators work. This "unsugared" syntax makes
it clear why the decorator function takes a function as an argument, and why it should return another function. It
also demonstrates what would happen if you don't return a function:

def disabled(f):

This function returns nothing, and hence removes the decorated function
from the local scope.

pass

disabled
def my_function():
print("This function can no longer be called...")

my_function()
TypeError: 'NoneType' object is not callable

Thus, we usually define a new function inside the decorator and return it. This new function would first do
something that it needs to do, then call the original function, and finally process the return value. Consider this
simple decorator function that prints the arguments that the original function receives, then calls it.

#This is the decorator
def print_args(func):
def inner_func(*args, **kwargs):
print(args)
print(kwargs)
return func(*args, *xkwargs) #Call the original function with its arguments.

GoalKicker.com - Python® Notes for Professionals 195

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

retu

print_a
def mult
retu

print(mu
#Output:

(3,5) - This is actually the 'args' that the function receives.
{} - This is the 'kwargs', empty because we didn't specify keyword arguments.

rn inner_func

rgs
iply(num_a, num_b):
rn num_a * num_b

1tiply(3, 5))

15 - The result of the function.

Section 37.2: Decorator class

As mentioned in the introduction, a decorator is a function that can be applied to another function to augment its

behavior. The syntactic sugar is equivalent to the following: my_func

decorator(my_func). But what if the

decorator was instead a class? The syntax would still work, except that now my_func gets replaced with an instance
of the decorator class. If this class implements the __call__() magic method, then it would still be possible to use
my_func as if it was a function:

class Decorator(object):
"""Simple decorator class."""

def __init__(self, func):
self.func = func

def __call__(self, =*args, **kwargs):
print('Before the function call.')
res = self.func(*args, **kwargs)
print('After the function call.')
return res

Decorator

def testfunc():
print('Inside the function.')

testfunc()

Before
Inside
After

the function call.
the function.
the function call.

Note that a function decorated with a class decorator will no longer be considered a "function" from type-checking
perspective:

import types
isinstance(testfunc, types.FunctionType)

False
type(testfunc)
<class '__main__.Decorator'>

Decorating Methods

For decorating methods you need to define an additional __get__-method:

from types import MethodType

class Decorator(object):

def

__init__(self, func):
self.func func

GoalKicker.com - Python® Notes for Professionals

196

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

def __call__(self, =*args, **kwargs):
print('Inside the decorator.")
return self.func(*args, =**kwargs)

def __get__(self, instance, cls):
Return a Method if it is called on an instance
return self if instance is None else MethodType(self, instance)

class Test(object):
Decorator
def __init__(self):
pass

a = Test()

Inside the decorator.

Warning!

Class Decorators only produce one instance for a specific function so decorating a method with a class decorator
will share the same decorator between all instances of that class:

from types import MethodType

class CountCallsDecorator(object):
def __init__(self, func):
self.func = func
self.ncalls = © # Number of calls of this method

def __call__(self, =*args, **kwargs):
self.ncalls += 1 # Increment the calls counter
return self.func(*args, #*xkwargs)

def __get__(self, instance, cls):
return self if instance is None else MethodType(self, instance)

class Test(object):
def __init__(self):
pass

CountCallsDecorator
def do_something(self):
return 'something was done'

Test()
.do_something()
.do_something.ncalls # 1
Test()
.do_something()
.do_something.ncalls # 2

O T T O o0 0

Section 37.3: Decorator with arguments (decorator factory)

A decorator takes just one argument: the function to be decorated. There is no way to pass other arguments.

But additional arguments are often desired. The trick is then to make a function which takes arbitrary arguments
and returns a decorator.

GoalKicker.com - Python® Notes for Professionals 197

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Decorator functions

def decoratorfactory(message):
def decorator(func):
def wrapped_func(*args, #*xkwargs):
print('The decorator wants to tell you: {}'.format(message))
return func(*args, **kwargs)
return wrapped_func
return decorator

decoratorfactory('Hello World")
def test():

pass

test()

The decorator wants to tell you: Hello World

Important Note:

With such decorator factories you must call the decorator with a pair of parentheses:

decoratorfactory # Without parentheses
def test():
pass

test()

TypeError: decorator() missing 1 required positional argument: 'func’

Decorator classes
def decoratorfactory(xdecorator_args, **decorator_kwargs):
class Decorator(object):
def __init__(self, func):
self.func = func
def __call__(self, *args, xxkwargs):
print('Inside the decorator with arguments {}'.format(decorator_args))
return self.func(*args, =**kwargs)
return Decorator
decoratorfactory(10)
def test():

pass

test()

Inside the decorator with arguments (10,)

Section 37.4: Making a decorator look like the decorated

GoalKicker.com - Python® Notes for Professionals 198

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

function

Decorators normally strip function metadata as they aren't the same. This can cause problems when using meta-
programming to dynamically access function metadata. Metadata also includes function's docstrings and its name.
functools.wraps makes the decorated function look like the original function by copying several attributes to the
wrapper function.

from functools import wraps

The two methods of wrapping a decorator are achieving the same thing in hiding that the original function has
been decorated. There is no reason to prefer the function version to the class version unless you're already using
one over the other.

As a function

def decorator(func):
Copies the docstring, name, annotations and module to the decorator
wraps(func)
def wrapped_func(*args, #*xkwargs):
return func(*args, **kwargs)
return wrapped_func

decorator
def test():
pass

test.__name__

'test’

As a class

class Decorator(object):
def __init__(self, func):
Copies name, module, annotations and docstring to the instance.
self._wrapped = wraps(func)(self)

def __call__(self, *args, *xkwargs):
return self._wrapped(*args, **kwargs)

Decorator
def test():
"""Docstring of test."""
pass

test.__doc_

'Docstring of test.'

Section 37.5: Using a decorator to time a function

import time
def timer(func):
def inner(*args, *xkwargs):
t1 time.time()

GoalKicker.com - Python® Notes for Professionals 199

https://docs.python.org/3.5/library/functools.html#functools.wraps
https://docs.python.org/3.5/library/functools.html#functools.wraps
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

f = func(*args, **kwargs)
t2 = time.time()
print 'Runtime took {0} seconds'.format(t2-t1)
return f
return inner

timer
def example_function():
#do stuff

example_function()

Section 37.6: Create singleton class with a decorator

A singleton is a pattern that restricts the instantiation of a class to one instance/object. Using a decorator, we can
define a class as a singleton by forcing the class to either return an existing instance of the class or create a new
instance (if it doesn't exist).

def singleton(cls):
instance [None]
def wrapper(*args, **kwargs):
if instance[0] is None:
instance[9] cls(*args, **kwargs)
return instance[0]

return wrapper

This decorator can be added to any class declaration and will make sure that at most one instance of the class is
created. Any subsequent calls will return the already existing class instance.

singleton
class SomeSingletonClass:
X 2
def __init__(self):
print("Created!")

instance = SomeSingletonClass() # prints: Created!
instance = SomeSingletonClass() # doesn't print anything
print(instance.x) # 2

instance.x 3
print(SomeSingletonClass().x) # 3

So it doesn't matter whether you refer to the class instance via your local variable or whether you create another
"instance", you always get the same object.

GoalKicker.com - Python® Notes for Professionals 200

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Chapter 38: Classes

Python offers itself not only as a popular scripting language, but also supports the object-oriented programming
paradigm. Classes describe data and provide methods to manipulate that data, all encompassed under a single
object. Furthermore, classes allow for abstraction by separating concrete implementation details from abstract
representations of data.

Code utilizing classes is generally easier to read, understand, and maintain.

Section 38.1: Introduction to classes

A class, functions as a template that defines the basic characteristics of a particular object. Here's an example:

class Person(object):

"""A simple class.""" # docstring
species "Homo Sapiens” # class attribute
def __init__(self, name): # special method

This is the initializer. It's a special
method (see below).

self.name name # instance attribute

def __str__(self): # special method
"""This method is run when Python tries
to cast the object to a string. Return
this string when using print(), etc.

return self.name

def rename(self, renamed): # regular method
"""Reassign and print the name attribute.
self.name renamed
print("Now my name is {}".format(self.name))

There are a few things to note when looking at the above example.

1. The class is made up of attributes (data) and methods (functions).

2. Attributes and methods are simply defined as normal variables and functions.

3. As noted in the corresponding docstring, the __init__() method is called the initializer. It's equivalent to the
constructor in other object oriented languages, and is the method that is first run when you create a new
object, or new instance of the class.

4. Attributes that apply to the whole class are defined first, and are called class attributes.

5. Attributes that apply to a specific instance of a class (an object) are called instance attributes. They are
generally defined inside __init__(); this is not necessary, but it is recommended (since attributes defined
outside of __init__() run the risk of being accessed before they are defined).

6. Every method, included in the class definition passes the object in question as its first parameter. The word
self is used for this parameter (usage of self is actually by convention, as the word self has no inherent
meaning in Python, but this is one of Python's most respected conventions, and you should always follow it).

7. Those used to object-oriented programming in other languages may be surprised by a few things. One is that
Python has no real concept of private elements, so everything, by default, imitates the behavior of the
C++/Java public keyword. For more information, see the "Private Class Members" example on this page.

8. Some of the class's methods have the following form: __functionname__(self, other_stuff). All such
methods are called "magic methods" and are an important part of classes in Python. For instance, operator
overloading in Python is implemented with magic methods. For more information, see the relevant

GoalKicker.com - Python® Notes for Professionals 201

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

documentation.
Now let's make a few instances of our Person class!

Instances

kelly = Person("Kelly")
joseph = Person("Joseph")
john_doe = Person("John Doe")

We currently have three Person objects, kelly, joseph, and john_doe.

We can access the attributes of the class from each instance using the dot operator . Note again the difference
between class and instance attributes:

Attributes

kelly.species
"Homo Sapiens'

john_doe.species
"Homo Sapiens'

joseph.species
"Homo Sapiens'

kelly.name
'Kelly'

joseph.name
"Joseph'

We can execute the methods of the class using the same dot operator .:

Methods
john_doe.__str__()
"John Doe'
print(john_doe)
"John Doe'

john_doe.rename("John")
‘Now my name is John'

Section 38.2: Bound, unbound, and static methods

The idea of bound and unbound methods was removed in Python 3. In Python 3 when you declare a method within
a class, you are using a def keyword, thus creating a function object. This is a regular function, and the surrounding
class works as its namespace. In the following example we declare method f within class A, and it becomes a
function A. f:

Python 3.x version = 3.0

class A(object):
def f(self, x):
return 2 * X
A.f
<function A.f at ...> (in Python 3.x)

In Python 2 the behavior was different: function objects within the class were implicitly replaced with objects of type
instancemethod, which were called unbound methods because they were not bound to any particular class instance.
It was possible to access the underlying function using . __func__ property.

Python 2.x version = 2.3
A.f

GoalKicker.com - Python® Notes for Professionals 202

https://python-history.blogspot.com/2009/02/first-class-everything.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

<unbound method A.f> (in Python 2.x)

A.f.__class__

<type 'instancemethod'>
A.f.__func__

<function f at ...>

The latter behaviors are confirmed by inspection - methods are recognized as functions in Python 3, while the
distinction is upheld in Python 2.

Python 3.x Version = 3.0

import inspect

inspect.isfunction(A.f)
True
inspect.ismethod(A.f)

False

Python 2.x version = 2.3

import inspect

inspect.isfunction(A.f)
False
inspect.ismethod(A.f)

True

In both versions of Python function/method A. f can be called directly, provided that you pass an instance of class A
as the first argument.

Af(1, 7)

Python 2: TypeError: unbound method f() must be called with

A instance as first argument (got int instance instead)
Python 3: 14

a = A()

A.f(a, 20)

#

Python 2 & 3: 40

Now suppose a is an instance of class A, what is a. f then? Well, intuitively this should be the same method f of class
A, only it should somehow "know" that it was applied to the object a —in Python this is called method bound to a.

The nitty-gritty details are as follows: writing a. f invokes the magic __getattribute__ method of a, which first
checks whether a has an attribute named f (it doesn't), then checks the class A whether it contains a method with
such a name (it does), and creates a new object m of type method which has the reference to the original A.f in
m.__func__, and a reference to the object ainm.__self__. When this object is called as a function, it simply does
the following: m(...) m.__func__(m.__self__, ...).Thus this objectis called a bound method because when
invoked it knows to supply the object it was bound to as the first argument. (These things work same way in Python
2 and 3).

a = A()

a.f

<bound method A.f of <__main__.A object at ...>>

a.f(2)

4

Note: the bound method object a.f is recreated #*every time#* you call it:

a.f is a.f # False

As a performance optimization you can store the bound method in the object's
__dict__, in which case the method object will remain fixed:

a.f = a.f

GoalKicker.com - Python® Notes for Professionals 203

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

a.f is a.f # True

Finally, Python has class methods and static methods — special kinds of methods. Class methods work the same
way as regular methods, except that when invoked on an object they bind to the class of the object instead of to the
object. Thusm.__self__ = type(a). When you call such bound method, it passes the class of a as the first
argument. Static methods are even simpler: they don't bind anything at all, and simply return the underlying
function without any transformations.

class D(object):
multiplier = 2

classmethod
def f(cls, x):
return cls.multiplier * x

staticmethod
def g(name):
print("Hello, %s" % name)

D.f

<bound method type.f of <class '__main__.D'>>
D.f(12)

24

D.g

<function D.g at ...>

D.g("world")

Hello, world

Note that class methods are bound to the class even when accessed on the instance:

d = D()

d.multiplier 1337

(D.multiplier, d.multiplier)

(2, 1337)

d.f

<bound method D.f of <class '__main__.D'>>
d.f(10)

20

It is worth noting that at the lowest level, functions, methods, staticmethods, etc. are actually descriptors that
invoke __get__, __set__and optionally __del__ special methods. For more details on classmethods and
staticmethods:

e What is the difference between @staticmethod and @classmethod in Python?
e Meaning of @classmethod and @staticmethod for beginner?

Section 38.3: Basic inheritance

Inheritance in Python is based on similar ideas used in other object oriented languages like Java, C++ etc. A new
class can be derived from an existing class as follows.

class BaseClass(object):
pass

class DerivedClass(BaseClass):
pass

GoalKicker.com - Python® Notes for Professionals 204

http://stackoverflow.com/questions/136097/what-is-the-difference-between-staticmethod-and-classmethod-in-python
http://stackoverflow.com/questions/12179271/python-classmethod-and-staticmethod-for-beginner
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

The BaseClass is the already existing (parent) class, and the DerivedClass is the new (child) class that inherits (or
subclasses) attributes from BaseClass. Note: As of Python 2.2, all classes implicitly inherit from the object class,
which is the base class for all built-in types.

We define a parent Rectangle class in the example below, which implicitly inherits from object:

class Rectangle():
def __init__(self, w, h):

self.w = w

self.h = h

def area(self):
return self.w * self.h

def perimeter(self):
return 2 * (self.w + self.h)

The Rectangle class can be used as a base class for defining a Square class, as a square is a special case of
rectangle.

class Square(Rectangle):
def __init__(self, s):
call parent constructor, w and h are both s
super(Square, self).__init__(s, s)
self.s s

The Square class will automatically inherit all attributes of the Rectangle class as well as the object class. super() is
used to call the __init__() method of Rectangle class, essentially calling any overridden method of the base class.
Note: in Python 3, super () does not require arguments.

Derived class objects can access and modify the attributes of its base classes:

r.area()

Output: 12
r.perimeter()
Output: 14
s.area()

Output: 4
s.perimeter()
Output: 8

Built-in functions that work with inheritance
issubclass(DerivedClass, BaseClass):returns True if DerivedClass is a subclass of the BaseClass
isinstance(s, Class):returns True if sis an instance of Class or any of the derived classes of Class

subclass check
issubclass(Square, Rectangle)
Output: True

instantiate
r = Rectangle(3, 4)
s = Square(2)

isinstance(r, Rectangle)
Output: True
isinstance(r, Square)

GoalKicker.com - Python® Notes for Professionals 205

https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html
http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Output: False
A rectangle is not a square

isinstance(s, Rectangle)
Output: True
A square 1s a rectangle

isinstance(s, Square)
Output: True

Section 38.4: Monkey Patching

In this case, "monkey patching" means adding a new variable or method to a class after it's been defined. For
instance, say we defined class A as

class A(object):
def __init__(self, num):
self.num = num

def __add__(self, other):
return A(self.num + other.num)

But now we want to add another function later in the code. Suppose this function is as follows.

def get_num(self):
return self.num

But how do we add this as a method in A? That's simple we just essentially place that function into A with an
assignment statement.

A.get_num get_num

Why does this work? Because functions are objects just like any other object, and methods are functions that
belong to the class.

The function get_num shall be available to all existing (already created) as well to the new instances of A
These additions are available on all instances of that class (or its subclasses) automatically. For example:
foo = A(42)

A.get_num get_num

bar = A(6)

foo.get_num() # 42

bar.get_num() # 6

Note that, unlike some other languages, this technique does not work for certain built-in types, and it is not
considered good style.

Section 38.5: New-style vs. old-style classes

Python 2.x version = 2.2.0

New-style classes were introduced in Python 2.2 to unify classes and types. They inherit from the top-level object

GoalKicker.com - Python® Notes for Professionals 206

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

type. A new-style class is a user-defined type, and is very similar to built-in types.

new-style class
class New(object):
pass

new-style instance
new = New()

new.__class__

<class '__main__.New'>
type(new)

<class '__main__.New'>
issubclass(New, object)
True

Old-style classes do not inherit from object. Old-style instances are always implemented with a built-in instance
type.

old-style class
class 01d:
pass

old-style instance
old = 01d()

old.__class__
<class __main__.01ld at ...>

type(old)

<type 'instance'>
issubclass(01d, object)
False

Python 3.x Version = 3.0.0
In Python 3, old-style classes were removed.

New-style classes in Python 3 implicitly inherit from object, so there is no need to specify MyClass(object)
anymore.

class MyClass:
pass

my_inst = MyClass()

type(my_inst)

<class '__main__.MyClass'>
my_inst.__class__

<class '__main__.MyClass'>
issubclass(MyClass, object)
True

Section 38.6: Class methods: alternate initializers

Class methods present alternate ways to build instances of classes. To illustrate, let's look at an example.

Let's suppose we have a relatively simple Person class:

class Person(object):

GoalKicker.com - Python® Notes for Professionals 207

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

__init__(self, first_name, last_name, age):
self.first_name first_name

self.last_name last_name

self.age = age

self.full_name first_name + " " + last_name

greet(self):
("Hello, my name is

+ self.full_name + ".")

It might be handy to have a way to build instances of this class specifying a full name instead of first and last name

separately. One way to do this would be to have last_name be an optional parameter, and assuming that if it isn't
given, we passed the full name in:

Person(object):

__init__(self, first_name, age, last_name=None):
last_name None:

self.first_name, self.last_name = first_name.split(" ", 2)

self.first_name first_name
self.last_name last_name

self.full_name self.first_name + " " + self.last_name
self.age = age

greet(self):
("Hello, my name is " + self.full_name + ".")

However, there are two main problems with this bit of code:

1. The parameters first_name and last_name are now misleading, since you can enter a full name for
first_name. Also, if there are more cases and/or more parameters that have this kind of flexibility, the
if/elif/else branching can get annoying fast.

2. Not quite as important, but still worth pointing out: what if last_name is None, but first_name doesn't split

into two or more things via spaces? We have yet another layer of input validation and/or exception
handling...

Enter class methods. Rather than having a single initializer, we will create a separate initializer, called
from_full_name, and decorate it with the (built-in) classmethod decorator.

Person(object):

__init__(self, first_name, last_name, age):
self.first_name = first_name

self.last_name = last_name

self.age = age

self.full_name = first_name + " " + last_name
classmethod
from_full_name(cls, name, age):
v name:
ValueError
first_name, last_name = name.split(" ", 2)

cls(first_name, last_name, age)

greet(self):
("Hello, my name is " + self.full_name + ".")

GoalKicker.com - Python® Notes for Professionals 208

http://goalkicker.com/
http://goalkicker.com/
http://goalkicker.com/

Notice cls instead of self as the first argument to from_full_name. Class methods are applied to the overall class,
not an instance of a given class (which is what self usually denotes). So, if c1s is our Person class, then the returned
value from the from_full_name class method is Person(first_name, last_name, age), which uses Person's
__init__ to create an instance of the Person class. In particular, if we were to make a subclass Employee of Person,
then from_full_name would work in the Employee class as well.

To show that this works as expected, let's create instances of Person in more than one way without the branching

in__init__:
In [2]: bob Person("Bob", "Bobberson", 42)
In [3]: alice Person.from_full_name("Alice Henderson", 31)

In [4]: bob.greet()
Hello, my name is Bob Bobberson.

In [5]: alice.greet()
Hello, my name is Alice Henderson.

Other references:

e Python @classmethod and @staticmethod for begin