B, P

Quick answers to common problems

Python Parallel
Programming Cookbook

Master efficient parallel programming to build powerful
applications using Python

Giancarlo Zaccone [] epen source

_ _ PUBLISHING
www.it-ebooks.info

http://www.it-ebooks.info/

Python Parallel
Programming
Cookbook

Master efficient parallel programming to build powerful
applications using Python

Giancarlo Zaccone

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Python Parallel Programming Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2015
Production reference: 1210815

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-958-3

www . packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Giancarlo Zaccone

Reviewers
Aditya Avinash

Ravi Chityala
Mike Galloy

Ludovic Gasc

Commissioning Editor
Sarah Crofton

Acquisition Editor
Meeta Rajani

Content Development Editor
Rashmi Suvarna

Technical Editor
Mrunmayee Patil

Copy Editor
Neha Vyas

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Disha Haria
Jason Monterio

Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Giancarlo Zaccone has more than 10 years of experience in managing research projects,
both in scientific and industrial domains. He worked as a researcher at the National Research
Council (CNR), where he was involved in a few parallel numerical computing and scientific
visualization projects.

He currently works as a software engineer at a consulting company, developing and
maintaining software systems for space and defense applications.

Giancarlo holds a master's degree in physics from the University of Naples Federico Il and has
completed a second-level postgraduate master's program in scientific computing from the
Sapienza University of Rome.

You can know more about him at https://it.linkedin.com/in/giancarlozaccone.

www.it-ebooks.info

https://it.linkedin.com/in/giancarlozaccone
http://www.it-ebooks.info/

About the Reviewers

Aditya Avinash is a graduate student who focuses on computer graphics and GPUs. His
areas of interest are compilers, drivers, physically based rendering, and real-time rendering.
His current focus is on making a contribution to MESA (the open source graphics driver
stack for Linux), where he will implement OpenGL extensions for the AMD backend. This is
something that he is really excited about. He also likes writing compilers to translate high-
level abstraction code into GPU code. He has developed Urutu, which gives GPUs thread-
level parallelism with Python. For this, NVIDIA funded him with a couple of Tesla K40 GPUs.
Currently, he is working on RockChuck, translating the Python code (written using data
parallel abstraction) into GPU/CPU code, depending on the available backend. This project
was started after he reviewed the opinions of a lot of Python programmers who wanted data
parallel abstraction for Python and GPUs.

He has a computer engineering background, where he designed hardware and software to fit
certain applications (ASIC). From this, he gained experience of how to use FPGAs and HDLs.
Apart from this, he mainly programs using Python and C++. In C++, he uses OpenGL, CUDA,
OpenCL, and other multicore programming APIs. Since he is a student, most of his work is
not affiliated with any institution or person.

Ravi Chityala is a senior engineer at Elekta Inc. He has more than 12 years of experience
in image processing and scientific computing. He is also a part time instructor at the
University of California, Santa Cruz Extension, San Jose, CA, where he teaches advanced
Python to programmers. He began using Python as a scripting tool and fell in love with the
language's simplicity, power, and expressiveness. He now uses it for web development,
scientific prototyping and computing, and he uses it as a glue to automate the process. He
combined his experience in image processing and his love for Python and coauthored the
book Image Acquisition and Processing using Python, published by CRC Press.

www.it-ebooks.info

http://www.it-ebooks.info/

Mike Galloy is a software developer who focuses on high-performance computing and
visualization in scientific programming. He works mostly on IDL, but occasionally uses C,
CUDA, and Python. He currently works for the National Center for Atmospheric Research
(NCAR) at the Mauna Loa Solar Observatory. Previously, he worked for Tech-X Corporation,
where he was the main developer for GPULIb, a library of IDL bindings for GPU-accelerated
computation routines. He is the creator and main developer of the open source projects,
IDLdoc, mgunit, and rIDL, as well as the author of the book Modern IDL.

Ludovic Gasc is a senior software developer and engineer at Eyepea and ALLOcloud, a
highly renowned open source VolP and unified communications company in Europe.

Over the last 5 years, he has developed redundant distributed systems for the telecom sector
that are based on Python, AsynclO, PostgreSQL, and Redis.

You can contact him on his blog at http://www.gmludo. eu.

He is also the creator of the blog API-Hour: Write efficient network daemons (HTTP, SSH) with
ease. For more information, visit http: //www.api-hour. io.

www.it-ebooks.info

http://www.gmludo.eu
http://www.api-hour.io
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

[a]PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» On demand and accessible via a web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate
access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface v
Chapter 1: Getting Started with Parallel Computing and Python 1
Introduction 2
The parallel computing memory architecture 3
Memory organization 6
Parallel programming models 14
How to design a parallel program 16
How to evaluate the performance of a parallel program 19
Introducing Python 21
Python in a parallel world 26
Introducing processes and threads 26
Start working with processes in Python 27
Start working with threads in Python 29
Chapter 2: Thread-based Parallelism 33
Introduction 34
Using the Python threading module 35
How to define a thread 35
How to determine the current thread 37
How to use a thread in a subclass 39
Thread synchronization with Lock and RLock 41
Thread synchronization with RLock 45
Thread synchronization with semaphores 48
Thread synchronization with a condition 52
Thread synchronization with an event 55
Using the with statement 59
Thread communication using a queue 62
Evaluating the performance of multithread applications 66

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 3: Process-based Parallelism 73
Introduction 74
How to spawn a process 75
How to name a process 77
How to run a process in the background 79
How to kill a process 81
How to use a process in a subclass 82
How to exchange objects between processes 84
How to synchronize processes 20
How to manage a state between processes 93
How to use a process pool 95
Using the mpi4py Python module 97
Point-to-point communication 101
Avoiding deadlock problems 104
Collective communication using broadcast 108
Collective communication using scatter 110
Collective communication using gather 114
Collective communication using Alltoall 116
The reduction operation 118
How to optimize communication 120

Chapter 4: Asynchronous Programming 127
Introduction 127
Using the concurrent.futures Python modules 128
Event loop management with Asyncio 134
Handling coroutines with Asyncio 138
Task manipulation with Asyncio 143
Dealing with Asyncio and Futures 147

Chapter 5: Distributed Python 151
Introduction 151
Using Celery to distribute tasks 152
How to create a task with Celery 154
Scientific computing with SCOOP 158
Handling map functions with SCOOP 163
Remote Method Invocation with Pyro4 167
Chaining objects with Pyro4 171
Developing a client-server application with Pyro4 177
Communicating sequential processes with PyCSP 184
Using MapReduce with Disco 190
A remote procedure call with RPyC 195

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 6: GPU Programming with Python 199
Introduction 200
Using the PyCUDA module 201
How to build a PyCUDA application 207
Understanding the PyCUDA memory model with matrix manipulation 212
Kernel invocations with GPUArray 218
Evaluating element-wise expressions with PyYCUDA 220
The MapReduce operation with PyCUDA 225
GPU programming with NumbaPro 229
Using GPU-accelerated libraries with NumbaPro 234
Using the PyOpenCL module 240
How to build a PyOpenCL application 243
Evaluating element-wise expressions with PyOpenCI 248
Testing your GPU application with PyOpenCL 251

Index 257

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The study of computer science should cover not only the principles on which computational
processing is based, but should also reflect the current state of knowledge of these fields.
Today, the technology requires that professionals from all branches of computer science know
both the software and hardware whose interaction at all levels is the key to understanding the
basics of computational processing.

For this reason, in this book, a special focus is given on the relationship between hardware
architectures and software.

Until recently, programmers could rely on the work of the hardware designers, compilers,
and chip manufacturers to make their software programs faster or more efficient without
the need for changes.

This era is over. So now, if a program is to run faster, it must become a parallel program.

Although the goal of many researchers is to ensure that programmers are not aware of the
parallel nature of the hardware for which they write their programs, it will take many years
before this actually becomes possible. Nowadays, most programmers need to thoroughly
understand the link between hardware and software so that the programs can be run
efficiently on modern computer architectures.

To introduce the concepts of parallel programming, the Python programming language has
been adopted. Python is fun and easy to use, and its popularity has grown steadily in recent
years. Python was developed more than 10 years ago by Guido van Rossum, who derived
Python's syntax simplicity and ease of use largely from ABC, which is a teaching language
that was developed in the 80s.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In addition to this specific context, Python was created to solve real-life problems, and it
borrows a wide variety of typical characteristics of programming languages, such as C ++,
Java, and Scheme. This is one of its most remarkable features, which has led to its broad
appeal among professional software developers, the scientific research industry, and
computer science educators. One of the reasons why Python is liked so much is because

it provides the best balance between the practical and conceptual approaches. It is an
interpreted language, so you can start doing things immediately without getting lost in the
problems of compilation and linking. Python also provides an extensive software library that
can be used in all sorts of tasks ranging from the Web, graphics, and of course, parallel
computing. This practical aspect is a great way to engage readers and allow them to carry out
projects that are important in this book.

This book contains a wide variety of examples that are inspired by many situations, and
these offer you the opportunity to solve real-life problems. This book examines the principles
of software design for parallel architectures, insisting on the importance of clarity of the
programs and avoiding the use of complex terminology in favor of clear and direct examples.
Each topic is presented as part of a complete, working Python program, which is followed by
the output of the program in question.

The modular organization of the various chapters provides a proven path to move from the
simplest arguments to the most advanced ones, but this is also suitable for those who only
want to learn a few specific issues.

| hope that the settings and content of this book are able to provide you with a useful
contribution for your better understanding and dissemination of parallel programming
techniques.

What this book covers

Chapter 1, Getting Started with Parallel Computing and Python, gives you an overview of
parallel programming architectures and programming models. This chapter introduces the
Python programming language, the characteristics of the language, its ease of use and
learning, extensibility, and richness of software libraries and applications. It also shows
you how to make Python a valuable tool for any application, and also, of course, for parallel
computing.

Chapter 2, Thread-based Parallelism, discusses thread parallelism using the threading Python
module. Through complete programming examples, you will learn how to synchronize and
manipulate threads to implement your multithreading applications.

Chapter 3, Process-based Parallelism, will guide through the process-based approach

to parallelize a program. A complete set of examples will show you how to use the
multiprocessing Python module. Also, this chapter will explain how to perform communication
through processes, using the message passing parallel programming paradigm via the mpidpy
Python module.

i |

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 4, Asynchronous Programming, explains the asynchronous model for concurrent
programming. In some ways, it is simpler than the threaded one because there is a single
instruction stream and tasks explicitly relinquish control instead of being suspended
arbitrarily. This chapter will show you how to use the Python asyncio module to organize each
task as a sequence of smaller steps that must be executed in an asynchronous manner.

Chapter 5, Distributed Python, introduces you to distributed computing. It is the process of
aggregating several computing units logically and may even be geographically distributed

to collaboratively run a single computational task in a transparent and coherent way. This
chapter will present some of the solutions proposed by Python for the implementation of
these architectures using the 00 approach, Celery, SCOOP, and remote procedure calls, such
as Pyro4 and RPyC. It will also include different approaches, such as PyCSP, and finally, Disco,
which is the Python version of the MapReduce algorithm.

Chapter 6, GPU Programming with Python, describes the modern Graphics Processing

Units (GPUs) that provide breakthrough performance for numerical computing at the cost of
increased programming complexity. In fact, the programming models for GPUs require the
programmer to manually manage the data transfer between a CPU and GPU. This chapter will
teach you, through the programming examples and use cases, how to exploit the computing
power provided by the GPU cards, using the powerful Python modules: PyCUDA, NumbaPro,
and PyOpenICL.

What you need for this book

All the examples of this book can be tested in a Windows 7 32-bit machine. Also, a Linux
environment will be useful.

The Python versions needed to run the examples are:

» Python 3.3 (for the first five chapters)
» Python 2.7 (only for Chapter 6, GPU Programming with Python)

The following modules (all of which are freely downloadable) are required:

» mpich-3.1.4

» pip6.1.1

» mpidpyl.3.1

» asyncio 3.4.3

» Celery3.1.18

» Numpy 1.9.2

» Flower 0.8.32 (optional)
» SCOOPO0.7.2

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

» Pyro4.4.36
» PyCSP0.9.0
» DISCO0.5.2
» RPyC3.3.0

» PyCUDA 2015.1.2

» CUDA Toolkit 4.2.9 (at least)

» NVIDIA GPU SDK 4.2.9 (at least)

» NVIDIA GPU driver

» Microsoft Visual Studio 2008 C++ Express Edition (at least)
» Anaconda Python Distribution

» NumbaPro compiler

» PyOpenCL 2015.1

» Win32 OpenCL Driver 15.1 (at least)

Who this book is for

This book is intended for software developers who want to use parallel programming
techniques to write powerful and efficient code. After reading this book, you will be able to
master the basics and the advanced features of parallel computing. The Python programming
language is easy to use and allows nonexperts to deal with and easily understand the topics
exposed in this book.

This book contains the following sections:

Getting ready

This section tells us what to expect in the recipe and describes how to set up any software or
any preliminary settings needed for the recipe.

How to do it...

This section characterizes the steps that are to be followed to "cook" the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This section usually consists a brief and detailed explanation of what happened in the
previous section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more anxious about the recipe.

See also

This section may contain references to the recipe.

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To execute
this first example, we need the program helloPythonWithThreads.py."

A block of code is set as follows:

print ("Hello Python Parallel Cookbook!!™")
closeInput = raw input ("Press ENTER to exit")

print "Closing calledProcess"

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

@asyncio.coroutine
def factorial (number) :
do Something

@asyncio.coroutine
Any command-line input or output is written as follows:

C:\>mpiexec -n 4 python virtualTopology.py

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Open an admin Command
Prompt by right-clicking on the command prompt icon and select Run as administrator."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visithttp://www.packtpub.com/support and register to have the files e-mailed directly
to you.

g

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will

be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

You can contact us at questions@packtpub. com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with
Parallel Computing
and Python

In this chapter, we will cover the following recipes:

What is parallel computing?

The parallel computing memory architecture
Memory organization

Parallel programming models

How to design a parallel program

How to evaluate the performance of a parallel program
Introducing Python

Python in a parallel world

Introducing processes and threads

Start working with processes and Python
Start working with threads and Python

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

Introduction

This chapter gives you an overview of parallel programming architectures and programming
models. These concepts are useful for inexperienced programmers who have approached
parallel programming techniques for the first time. This chapter can be a basic reference

for the experienced programmers. The dual characterization of parallel systems is also
presented in this chapter. The first characterization is based on the architecture of the
system and the second characterization is based on parallel programming paradigms.
Parallel programming will always be a challenge for programmers. This programming-based
approach is further described in this chapter, when we present the design procedure of a
parallel program. The chapter ends with a brief introduction of the Python programming
language. The characteristics of the language, ease of use and learning, and extensibility
and richness of software libraries and applications make Python a valuable tool for any
application and also, of course, for parallel computing. In the final part of the chapter, the
concepts of threads and processes are introduced in relation to their use in the language.

A typical way to solve a problem of a large-size is to divide it into smaller and independent
parts in order to solve all the pieces simultaneously. A parallel program is intended for a
program that uses this approach, that is, the use of multiple processors working together

on a common task. Each processor works on its section (the independent part) of the
problem. Furthermore, a data information exchange between processors could take place
during the computation. Nowadays, many software applications require more computing
power. One way to achieve this is to increase the clock speed of the processor or to increase
the number of processing cores on the chip. Improving the clock speed increases the heat
dissipation, thereby decreasing the performance per watt and moreover, this requires special
equipment for cooling. Increasing the number of cores seems to be a feasible solution, as
power consumption and dissipation are way under the limit and there is no significant gain in
performance.

To address this problem, computer hardware vendors decided to adopt multi-core
architectures, which are single chips that contain two or more processors (cores). On the
other hand, the GPU manufactures also introduced hardware architectures based on multiple
computing cores. In fact, today's computers are almost always present in multiple and
heterogeneous computing units, each formed by a variable number of cores, for example, the
most common multi-core architectures.

Therefore, it became essential for us to take advantage of the computational resources
available, to adopt programming paradigms, techniques, and instruments of parallel
computing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Based on the number of instructions and data that can be processed simultaneously,
computer systems are classified into four categories:

» Single instruction, single data (SISD)

» Single instruction, multiple data (SIMD)

» Multiple instruction, single data (MISD)

» Multiple instruction, multiple data (MIMD)

This classification is known as Flynn's taxonomy.

SISD SIMD

Single Instruction Single Instruction
Single Data Multiple Data

MISD . .
. . Multiple Instructions
Multiple Instructions Multiple Data
Single Data

The SISD computing system is a uniprocessor machine. It executes a single instruction that
operates on a single data stream. In SISD, machine instructions are processed sequentially.

In a clock cycle, the CPU executes the following operations:

» Fetch: The CPU fetches the data and instructions from a memory area, which is
called a register.
» Decode: The CPU decodes the instructions.

» Execute: The instruction is carried out on the data. The result of the operation is
stored in another register.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

Once the execution stage is complete, the CPU sets itself to begin another CPU cycle.

Control Instruction Processor Data Memory

The SISD architecture schema

The algorithms that run on these types of computers are sequential (or serial), since they
do not contain any parallelism. Examples of SISD computers are hardware systems with
a single CPU.

The main elements of these architectures (Von Neumann architectures) are:

» Central memory unit: This is used to store both instructions and program data

» CPU: This is used to get the instruction and/or data from the memory unit, which
decodes the instructions and sequentially implements them

» The lI/0 system: This refers to the input data and output data of the program

The conventional single processor computers are classified as SISD systems. The following
figure specifically shows which areas of a CPU are used in the stages of fetch, decode, and

execute:

Anthmetl_c Logic Control Unit
Unit
Registers Decode Unit
Data . Instruction
Bus Unit
Cache Cache

CPU's components in the fetch-decode-execute phase

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In this model, n processors, each with their own control unit, share a single memory unit.

In each clock cycle, the data received from the memory is processed by all processors
simultaneously, each in accordance with the instructions received from its control unit. In
this case, the parallelism (instruction-level parallelism) is obtained by performing several
operations on the same piece of data. The types of problems that can be solved efficiently

in these architectures are rather special, such as those regarding data encryption; for this
reason, the computer MISD did not find space in the commercial sector. MISD computers are
more of an intellectual exercise than a practical configuration.

Data Processor 1 Instruction 1 Control 1
Memory Data Processor 2 Instruction 2 Control 2
Data Processor N Instruction N Control N

The MISD architecture scheme

A SIMD computer consists of n identical processors, each with its own local memory, where

it is possible to store data. All processors work under the control of a single instruction
stream; in addition to this, there are n data streams, one for each processor. The processors
work simultaneously on each step and execute the same instruction, but on different data
elements. This is an example of data-level parallelism. The SIMD architectures are much more
versatile than MISD architectures. Numerous problems covering a wide range of applications
can be solved by parallel algorithms on SIMD computers. Another interesting feature is that
the algorithms for these computers are relatively easy to design, analyze, and implement. The
limit is that only the problems that can be divided into a number of subproblems (which are
all identical, each of which will then be solved contemporaneously, through the same set of
instructions) can be addressed with the SIMD computer. With the supercomputer developed
according to this paradigm, we must mention the Connection Machine (1985 Thinking
Machine) and MPP (NASA - 1983). As we will see in Chapter 6, GPU Programming with Python,
the advent of modern graphics processor unit (GPU), built with many SIMD embedded units
has lead to a more widespread use of this computational paradigm.

(5 -

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

This class of parallel computers is the most general and more powerful class according to
Flynn's classification. There are n processors, n instruction streams, and n data streams

in this. Each processor has its own control unit and local memory, which makes MIMD
architectures more computationally powerful than those used in SIMD. Each processor
operates under the control of a flow of instructions issued by its own control unit; therefore,
the processors can potentially run different programs on different data, solving subproblems
that are different and can be a part of a single larger problem. In MIMD, architecture is
achieved with the help of the parallelism level with threads and/or processes. This also
means that the processors usually operate asynchronously. The computers in this class
are used to solve those problems that do not have a regular structure that is required by
the model SIMD. Nowadays, this architecture is applied to many PCs, supercomputers, and
computer networks. However, there is a counter that you need to consider: asynchronous
algorithms are difficult to design, analyze, and implement.

Control 1 Instruction 1 Processor 1 Data Shared
Memory
Control 2 Instruction 2 Processor 2 Data
Interconnection
Control N Instruction N Processor N Data Network

The MIMD architecture scheme

Memory organization

Another aspect that we need to consider to evaluate a parallel architecture is memory
organization or rather, the way in which the data is accessed. No matter how fast the
processing unit is, if the memory cannot maintain and provide instructions and data at a
sufficient speed, there will be no improvement in performance. The main problem that must
be overcome to make the response time of the memory compatible with the speed of the
processor is the memory cycle time, which is defined as the time that has elapsed between
two successive operations. The cycle time of the processor is typically much shorter than
the cycle time of the memory. When the processor starts transferring data (to or from the
memory), the memory will remain occupied for the entire time of the memory cycle: during
this period, no other device (I/0 controller, processor, or even the processor itself that made
the request) can use the memory because it will be committed to respond to the request.

—e1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[
Distributed Memory

|
Shared Memory
I—I—I I
[|
Cluster of

The memory organization in MIMD architecture

Solutions to the problem of access memory resulted in a dichotomy of MIMD architectures.

In the first type of system, known as the shared memory system, there is high virtual memory
and all processors have equal access to data and instructions in this memory. The other type
of system is the distributed memory model, wherein each processor has a local memory that
is not accessible to other processors. The difference between shared memory and distributed
memory lies in the structure of the virtual memory or the memory from the perspective of
the processor. Physically, almost every system memory is divided into distinct components
that are independently accessible. What distinguishes a shared memory from a distributed
memory is the memory access management by the processing unit. If a processor were

to execute the instruction load RO, i, which means load in the RO register the contents of
the memory location i, the question now is what should happen? In a system with shared
memory, the i index is a global address and the memory location 1 is the same for each
processor. If two processors were to perform this instruction at the same time, they would
load the same information in their registers RO. In a distributed memory system, i is a local
address. If two processors were to load the statement R0 at the same time, different values
may end up in the respective register's R0, since, in this case, the memory cells are allotted
one for each local memory. The distinction between shared memory and distributed memory
is very important for programmers because it determines the way in which different parts of
a parallel program must communicate. In a system, shared memory is sufficient to build a
data structure in memory and go to the parallel subroutine, which are the reference variables
of this data structure. Moreover, a distributed memory machine must make copies of shared
data in each local memory. These copies are created by sending a message containing the
data to be shared from one processor to another. A drawback of this memory organization is
that sometimes, these messages can be very large and take a relatively long transfer time.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

Shared memory

The schema of a shared memory multiprocessor system is shown in the following figure. The
physical connections here are quite simple. The bus structure allows an arbitrary number

of devices that share the same channel. The bus protocols were originally designed to allow
a single processor, and one or more disks or tape controllers to communicate through the
shared memory here. Note that each processor has been associated with a cache memory,
as it is assumed that the probability that a processor needs data or instructions present in
the local memory is very high. The problem occurs when a processor modifies data stored in
the memory system that is simultaneously used by other processors. The new value will pass
from the processor cache that has been changed to shared memory; later, however, it must
also be passed to all the other processors, so that they do not work with the obsolete value.
This problem is known as the problem of cache coherency, a special case of the problem of
memory consistency, which requires hardware implementations that can handle concurrency
issues and synchronization similar to those having thread programming.

Processor Processor Processor Processor

cache cache cache cache

Main Memory I/O System

The shared memory architecture schema
The main features of shared memory systems are:

» The memory is the same for all processors, for example, all the processors associated
with the same data structure will work with the same logical memory addresses, thus
accessing the same memory locations.

» The synchronization is made possible by controlling the access of processors to the
shared memory. In fact, only one processor at a time can have access to the memory
resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

A shared memory location must not be changed from a task while another task
accesses it.

Sharing data is fast; the time required for the communication between two tasks is
equal to the time for reading a single memory location (it is depending on the speed
of memory access).

The memory access in shared memory systems are as follows:

>

Uniform memory access (UMA): The fundamental characteristic of this system is the
access time to the memory that is constant for each processor and for any area of
memory. For this reason, these systems are also called as symmetric multiprocessor
(SMP). They are relatively simple to implement, but not very scalable; the
programmer is responsible for the management of the synchronization by inserting
appropriate controls, semaphores, locks, and so on in the program that manages
resources.

Non-uniform memory access (NUMA): These architectures divide the memory area
into a high-speed access area that is assigned to each processor and a common
area for the data exchange, with slower access. These systems are also called as
Distributed Shared Memory Systems (DSM). They are very scalable, but complex to
develop.

No remote memory access (NORMA): The memory is physically distributed among
the processors (local memory). All local memories are private and can only access
the local processor. The communication between the processors is through a
communication protocol used for exchange of messages, the message-passing
protocol.

Cache only memory access (COMA): These systems are equipped with only

cache memories. While analyzing NUMA architectures, it was noticed that these
architectures kept the local copies of the data in the cache and that these data were
stored as duplication in the main memory. This architecture removes duplicates

and keeps only the cache memories, the memory is physically distributed among
the processors (local memory). All local memories are private and can only access
the local processor. The communication between the processors is through a
communication protocol for exchange of messages, the message-passing protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

Distributed memory

In a system with distributed memory, the memory is associated with each processor and a
processor is only able to address its own memory. Some authors refer to this type of system
as "multicomputer”, reflecting the fact that the elements of the system are themselves small
complete systems of a processor and memory, as you can see in the following figure:

Processor +
cache

Processor +
cache

Processor +
cache

Processor +
cache

[Interconnection Network]

mem [10| |[mem|yo| |[mem|[y0o| [mem |10]

Processor +
cache

Processor +
cache

Processor +
cache

Processor +
cache

The distributed memory architecture scheme

This kind of organization has several advantages. At first, there are no conflicts at the level
of the communication bus or switch. Each processor can use the full bandwidth of their
own local memory without any interference from other processors. Secondly, the lack of a
common bus means that there is no intrinsic limit to the number of processors, the size

of the system is only limited by the network used to connect the processors. Thirdly, there
are no problems of cache coherency. Each processor is responsible for its own data and
does not have to worry about upgrading any copies. The main disadvantage is that the
communication between processors is more difficult to implement. If a processor requires
data in the memory of another processor, the two processors should necessarily exchange
messages via the message-passing protocol. This introduces two sources of slowdown; to
build and send a message from one processor to another takes time, and also, any processor
should be stopped in order to manage the messages received from other processors. A
program designed to work on a distributed memory machine must be organized as a set of
independent tasks that communicate via messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Memory Memory

data data

Basic message passing

The main features of distributed memory systems are as follows:

>

Memory is physically distributed between processors; each local memory is directly
accessible only by its processor.

Synchronization is achieved by moving data (even if it's just the message itself)
between processors (communication).

The subdivision of data in the local memories affects the performance of the
machine—it is essential to make a subdivision accurate, so as to minimize the
communication between the CPUs. In addition to this, the processor that coordinates
these operations of decomposition and composition must effectively communicate
with the processors that operate on the individual parts of data structures.

The message-passing protocol is used so that the CPU's can communicate with
each other through the exchange of data packets. The messages are discrete units
of information; in the sense that they have a well-defined identity, so it is always
possible to distinguish them from each other.

Massively parallel processing

MPP machines are composed of hundreds of processors (which can be as large as hundreds
of thousands in some machines) that are connected by a communication network. The fastest
computers in the world are based on these architectures; some example systems of these
architectures are: Earth Simulator, Blue Gene, ASCI White, ASCI Red, and ASCI Purple and

Red Storm.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

A cluster of workstations

These processing systems are based on classical computers that are connected by
communication networks. The computational clusters fall into this classification.

An example of a cluster of workstation architecture

In a cluster architecture, we define a node as a single computing unit that takes part in the
cluster. For the user, the cluster is fully transparent—all the hardware and software complexity is
masked and data and applications are made accessible as if they were all from a single node.

Here, we've identified three types of clusters:

» The fail-over cluster: In this, the node's activity is continuously monitored, and when
one stops working, another machine takes over the charge of those activities. The
aim is to ensure a continuous service due to the redundancy of the architecture.

» The load balancing cluster: In this system, a job request is sent to the node that has
less activity. This ensures that less time is taken to complete the process.

» The high-performance computing cluster: In this, each node is configured to provide
extremely high performance. The process is also divided in multiple jobs on multiple
nodes. The jobs are parallelized and will be distributed to different machines.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The heterogeneous architecture

The introduction of GPU accelerators in the homogeneous world of supercomputing has
changed the nature of how supercomputers were both used and programmed previously.
Despite the high performance offered by GPUs, they cannot be considered as an autonomous
processing unit as they should always be accompanied by a combination of CPUs. The
programming paradigm, therefore, is very simple; the CPU takes control and computes in a
serial manner, assigning to the graphic accelerator the tasks that are computationally very
expensive and have a high degree of parallelism. The communication between a CPU and

GPU can take place not only through the use of a high-speed bus, but also through the sharing
of a single area of memory for both physical or virtual. In fact, in the case where both the
devices are not equipped with their own memory areas, it is possible to refer to a common
memory area using the software libraries provided by the various programming models,

such as CUDA and OpenCL. These architectures are called heterogeneous architectures,
wherein applications can create data structures in a single address space and send a job to
the device hardware appropriate for the resolution of the task. Several processing tasks can
operate safely on the same regions to avoid data consistency problems, thanks to the atomic
operations. So, despite the fact that the CPU and GPU do not seem to work efficiently together,
with the use of this new architecture, we can optimize their interaction with and performance
of parallel applications.

GPU
Multiprocessor 1 Multiprocessor 2
Multiprocessor 3 Multiprocessor 4
CPU ® ®
[[
Core 1 | | Core 2 ® ®
Core 3 | | Core 4 Multiprocessor N-1 Multiprocessor N

The heterogeneous architecture scheme

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

Parallel programming models

Parallel programming models exist as an abstraction of hardware and memory architectures.
In fact, these models are not specific and do not refer to particular types of machines or
memory architectures. They can be implemented (at least theoretically) on any kind of
machines. Compared to the previous subdivisions, these programming models are made at
a higher level and represent the way in which the software must be implemented to perform
a parallel computation. Each model has its own way of sharing information with other
processors in order to access memory and divide the work.

There is no better programming model in absolute terms; the best one to apply will depend
very much on the problem that a programmer should address and resolve. The most widely
used models for parallel programming are:

» The shared memory model

» The multithread model

» The distributed memory/message passing model
» The data parallel model

In this recipe, we will give you an overview of these models. A more accurate description
will be in the next chapters that will introduce you to the appropriate Python module that
implements these.

The shared memory model

In this model the tasks share a single shared memory area, where the access (reading and
writing data) to shared resources is asynchronous. There are mechanisms that allow the
programmer to control the access to the shared memory, for example, locks or semaphores.
This model offers the advantage that the programmer does not have to clarify the
communication between tasks. An important disadvantage in terms of performance is that

it becomes more difficult to understand and manage data locality; keeping data local to the
processor that works on it conserves memory accesses, cache refreshes, and bus traffic that
occur when multiple processors use the same data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The multithread model

In this model, a process can have multiple flows of execution, for example, a sequential

part is created and subsequently, a series of tasks are created that can be executed
parallelly. Usually, this type of model is used on shared memory architectures. So, it will be
very important for us to manage the synchronization between threads, as they operate on
shared memory, and the programmer must prevent multiple threads from updating the same
locations at the same time. The current generation CPUs are multithreaded in software and
hardware. Posix threads are the classic example of the implementation of multithreading

on software. The Intel Hyper-threading technology implements multithreading on hardware
by switching between two threads when one is stalled or waiting on 1/0. Parallelism can be
achieved from this model even if the data alignment is nonlinear.

The message passing model

The message passing model is usually applied in the case where each processor has its own
memory (distributed memory systems). More tasks can reside on the same physical machine
or on an arbitrary number of machines. The programmer is responsible for determining the
parallelism and data exchange that occurs through the messages. The implementation of
this parallel programming model requires the use of (ad hoc) software libraries to be used
within the code. Numerous implementations of message passing model were created: some
of the examples are available since the 1980s, but only from the mid-Q0s, was created

to standardized model, coming to a de facto standard called MPI (the message passing
interface). The MPI model is designed clearly with distributed memory, but being models of
parallel programming, multiplatform can also be used with a shared memory machine.

Machine A Machine B
task O task 1
data > data
send() send()
task 2 NETWORK task 3
data » data

[N
receive() receive()

The message passing paradigm model

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

The data parallel model

In this model, we have more tasks that operate on the same data structure, but each task
operates on a different portion of data. In the shared memory architecture, all tasks have
access to data through shared memory and distributed memory architectures, where the data
structure is divided and resides in the local memory of each task. To implement this model,

a programmer must develop a program that specifies the distribution and alignment of data.
The current generation GPUs operates high throughout with the data aligned.

array A
N A N
v v v
doi=1,25 do i=26,50 do i=51,100
A(i)=B(i)*delta A(i)=B(i)*delta A(i)=B(i)*delta
end do end do end do
Task 1 Task 2 Task 3

The data parallel paradigm model

How to design a parallel program

The design of algorithms that exploit parallelism is based on a series of operations, which
must necessarily be carried out for the program to perform the job correctly without producing
partial or erroneous results. The macro operations that must be carried out for a correct
parallelization of an algorithm are:

» Task decomposition

» Task assignment

» Agglomeration

» Mapping

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Task decomposition

In this first phase, the software program is split into tasks or a set of instructions that can
then be executed on different processors to implement parallelism. To do this subdivision,
there are two methods that are used:

» Domain decomposition: Here, the data of the problems is decomposed; the
application is common to all the processors that work on a different portion of
data. This methodology is used when we have a large amount of data that must be
processed.

» Functional decomposition: In this case, the problem is split into tasks, where each
task will perform a particular operation on all the available data.

Task assignment

In this step, the mechanism by which the task will be distributed among the various processes
is specified. This phase is very important because it establishes the distribution of workload
among the various processors. The load balance is crucial here; in fact, all processors must
work with continuity, avoiding an idle state for a long time. To perform this, the programmer
takes into account the possible heterogeneity of the system that tries to assign more tasks to
better performing processors. Finally, for greater efficiency of parallelization, it is necessary to
limit communication as much as possible between processors, as they are often the source of
slowdowns and consumption of resources.

Agglomeration

Agglomeration is the process of combining smaller tasks with larger ones in order to improve
performance. If the previous two stages of the design process partitioned the problem into a
number of tasks that greatly exceed the number of processors available, and if the computer
is not specifically designed to handle a huge number of small tasks (some architectures, such
as GPUs, handle this fine and indeed benefit from running millions or even billions of tasks),
then the design can turn out to be highly inefficient. Commonly, this is because tasks have
to be communicated to the processor or thread so that they compute the said task. Most
communication has costs that are not only proportional with the amount of data transferred,
but also incur a fixed cost for every communication operation (such as the latency which is
inherent in setting up a TCP connection). If the tasks are too small, this fixed cost can easily
make the design inefficient.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

Mapping

In the mapping stage of the parallel algorithm design process, we specify where each task is
to be executed. The goal is to minimize the total execution time. Here, you must often make
tradeoffs, as the two main strategies often conflict with each other:

» The tasks that communicate frequently should be placed in the same processor to
increase locality

» The tasks that can be executed concurrently should be placed in different processors
to enhance concurrency

This is known as the mapping problem, and it is known to be NP-complete. As such, no
polynomial time solutions to the problem in the general case exist. For tasks of equal size
and tasks with easily identified communication patterns, the mapping is straightforward (we
can also perform agglomeration here to combine tasks that map to the same processor.)
However, if the tasks have communication patterns that are hard to predict or the amount

of work varies per task, it is hard to design an efficient mapping and agglomeration scheme.
For these types of problems, load balancing algorithms can be used to identify agglomeration
and mapping strategies during runtime. The hardest problems are those in which the amount
of communication or the number of tasks changes during the execution of the program.

For these kind of problems, dynamic load balancing algorithms can be used, which run
periodically during the execution.

Dynamic mapping

There exists many load balancing algorithms for various problems, both global and local.
Global algorithms require global knowledge of the computation being performed, which
often adds a lot of overhead. Local algorithms rely only on information that is local to the
task in question, which reduces overhead compared to global algorithms, but are usually
worse at finding an optimal agglomeration and mapping. However, the reduced overhead
may reduce the execution time even though the mapping is worse by itself. If the tasks rarely
communicate other than at the start and end of the execution, a task-scheduling algorithm
is often used that simply maps tasks to processors as they become idle. In a task-scheduling
algorithm, a task pool is maintained. Tasks are placed in this pool and are taken from it by
workers.

There are three common approaches in this model, which are explained next.

Manager/worker

This is the basic dynamic mapping scheme in which all the workers connect to a the
centralized manager. The manager repeatedly sends tasks to the workers and collects the
results. This strategy is probably the best for a relatively small number of processors. The
basic strategy can be improved by fetching tasks in advance so that communication and
computation overlap each other.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Hierarchical manager/worker

This is the variant of a manager/worker that has a semi-distributed layout; workers are split
into groups, each with their own manager. These group managers communicate with the
central manager (and possibly, among themselves as well), while workers request tasks
from the group managers. This spreads the load among several managers and can, as such,
handle a larger amount of processors if all workers request tasks from the same manager.

Decentralize

In this scheme, everything is decentralized. Each processor maintains its own task pool and
communicates with the other processors in order to request tasks. How the processors choose
other processors to request tasks varies and is determined on the basis of the problem.

How to evaluate the performance of a

parallel program

The development of parallel programming created the need of performance metrics and a
software tool to evaluate the performance of a parallel algorithm in order to decide whether
its use is convenient or not. Indeed, the focus of parallel computing is to solve large problems
in a relatively short time. The factors that contribute to the achievement of this objective

are, for example, the type of hardware used, the degree of parallelism of the problem, and
which parallel programming model is adopted. To facilitate this, analysis of basic concepts
was introduced, which compares the parallel algorithm obtained from the original sequence.
The performance is achieved by analyzing and quantifying the number of threads and/or the
number of processes used.

To analyze this, a few performance indexes are introduced: speedup, efficiency, and scaling.

The limitations of a parallel computation are introduced by the Ahmdal's law to evaluate
the degree of the efficiency of parallelization of a sequential algorithm we have the
Gustafson's law.

Speedup is the measure that displays the benefit of solving a problem in parallel. It is defined
as the ratio of the time taken to solve a problem on a single processing element, TS, to the
time required to solve the same problem on p identical processing elements, Tp.

g=Is
We denote speedup by T» . We have a linear speedup, where if S=p, it means that the
speed of execution increases with the number of processors. Of course, this is an ideal case.
While the speedup is absolute when Ts is the execution time of the best sequential algorithm,
the speedup is relative when Ts is the execution time of the parallel algorithm for a single
processor.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

Let's recap these conditions:

» S =pislinear orideal speedup
» S <pisreal speedup
» S >pissuperlinear speedup

In an ideal world, a parallel system with p processing elements can give us a speedup equal
to p. However, this is very rarely achieved. Usually, some time is wasted in either idling or
communicating. Efficiency is a performance metric estimating how well-utilized the processors
are in solving a task, compared to how much effort is wasted in communication and
synchronization.

E = E = TS
We denote it by E and can define it as r prl; . The algorithms with linear speedup have
the value of E = 1; in other cases, the value of E is less than 1. The three cases are identified
as follows:

» When E=1,itis alinear case
» WhenE<1,itis areal case
» When E<< 1, itis a problem that is parallelizable with low efficiency

Scaling is defined as the ability to be efficient on a parallel machine. It identifies the
computing power (speed of execution) in proportion with the number of processors. By
increasing the size of the problem and at the same time the number of processors, there will
be no loss in terms of performance. The scalable system, depending on the increments of the
different factors, may maintain the same efficiency or improve it.

Amdahl's law

Amdahl's law is a widely used law used to design processors and parallel algorithms. It states

that the maximum speedup that can be achieved is limited by the serial component of the

s=_L

program: I-P ‘where 1 - P denotes the serial component (not parallelized) of a program.
This means that for, as an example, a program in which 90 percent of the code can be made
parallel, but 10 percent must remain serial, the maximum achievable speedup is 9 even for

an infinite number of processors.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Gustafson's law

Gustafson's law is based on the following considerations:

» While increasing the dimension of a problem, its sequential parts remain constant

» While increasing the number of processors, the work required on each of them still
remains the same

This states that S(P) =P - o (P - 1), where P is the number of processors, S is the speedup,
and o is the non-parallelizable fraction of any parallel process. This is in contrast to Amdahl's
law, which takes the single-process execution time to be the fixed quantity and compares

it to a shrinking per process parallel execution time. Thus, Amdahl's law is based on the
assumption of a fixed problem size; it assumes that the overall workload of a program does
not change with respect to the machine size (that is, the number of processors). Gustafson's
law addresses the deficiency of Amdahl's law, which does not take into account the total
number of computing resources involved in solving a task. It suggests that the best way to
set the time allowed for the solution of a parallel problem is to consider all the computing
resources and on the basis of this information, it fixes the problem.

Introducing Python

Python is a powerful, dynamic, and interpreted programming language that is used in a wide
variety of applications. Some of its features include:

» Aclear and readable syntax

» A very extensive standard library, where through additional software modules, we can
add data types, functions, and objects

» Easy-to-learn rapid development and debugging; the development of Python code in
Python can be up to 10 times faster than the C/C++ code

» Exception-based error handling
» A strong introspection functionality

» Richness of documentation and software community

Python can be seen as a glue language. Using Python, better applications can be developed
because different kinds of programmers can work together on a project. For example, when
building a scientific application, C/C++ programmers can implement efficient numerical
algorithms, while scientists on the same project can write Python programs that test and use
those algorithms. Scientists don't have to learn a low-level programming language and a C/
C++ programmer doesn't need to understand the science involved.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

You can read more about this from https://www.python.org/doc/
o essays/omg-darpa-mcc-position.

Getting ready

Python can be downloaded from https://www.python.org/downloads/.

Although you can create Python programs with Notepad or TextEdit, you'll notice that it's much
easier to read and write code using an Integrated Development Environment (IDE).

There are many IDEs that are designated specifically for Python, including IDLE (http://
www . python.org/idle), PyCharm (https://www.jetbrains.com/pycharm/), and
Sublime Text, (http://www.sublimetext.com/).

How to do it...

Let's take a look at some examples of the very basic code to get an idea of the features of
Python. Remember that the symbol >>> denotes the Python shell:

» Operations with integers:

>>> # This is a comment
>>> width = 20

>>> height = 5*9

>>> width * height

900

Only for this first example, we will see how the code appears in the Python shell:

[Python shel SRR

File Edit Shell Debug Options Windows Help
Python 3.3.0 (v3.3.0:bd8afb90ebf?, Sep 29 2012, 10:55:48) [M3C v.1600 32 bit (Intel)]
on win32

Type "copyright™, "credits" or "license ()" for more information.
»»> #This is a comment

>»>» width = 20

»=» height = 5*9

>>»>» width * height

900

I e

www.it-ebooks.info

https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/downloads/
http://www.python.org/idle
http://www.python.org/idle
https://www.jetbrains.com/pycharm/
http://www.sublimetext.com/
http://www.it-ebooks.info/

Chapter 1

Let's see the other basic examples:

>

Complex numbers:
>>> a=1.5+0.5j
>>> a.real

1.5

>>> a.imag

0.5

>>> abs(a) # sgrt(a.real**2 + a.imag**2)

5.0

Strings manipulation:

>>> word = 'Help'

>>> word
'HelpA'

>>> word [4]
Al

>>> word[0:2]
'He!

>>> word[-1]

1Al

Defining lists:
>>> a = ['spam',
>>> alo0]

' spam'’

>>> al3]

1234

>>> al[-2]

100

>>> al[l:-1]
['eggs', 100]
>>> len(a)

4

+ T'A!

The last character

'eggs', 100, 1234]

s

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

» Thewhile loop:
Fibonacci series:

>>> while b < 10:

e print b

N a, b = b, a+b
1

1

2

3

5

8

» The if command:
First we use the input () statement to insert an integer:
>>>x = int(input("Please enter an integer here: "))

Please enter an integer here:
Then we implement the if condition on the number inserted:

>>>if x < 0:

.o print ('the number is negative')
...elif x == 0:

.o print ('the number is zero')
...elif x == 1:

.o print ('the number is one')
...else:

.o print ('More')

oo

» The for loop:
>>> # Measure some strings:
«e. a = ['cat', 'window', 'defenestrate'l]
>>> for x in a:
.o print (x, len(x))
cat 3
window 6

defenestrate 12

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Defining functions:

>>> def fib(n): # write Fibonacci series up to n
e nnnprint a Fibonacci series up to n."""

.. a, b=20,1

.o while b < n:

.o print (b),

N a, b = b, a+b

>>> # Now call the function we just defined:
... £ib(2000)
112358 13 21 34 55 89 144 233 377 610 987 1597

Importing modules:
>>> import math
>>> math.sin (1)

0.8414709848078965

>>> from math import *
>>> log (1)
0.0

Defining classes:

>>> class Complex:

N def init (self, realpart, imagpart):
e self.r = realpart
.o self.i = imagpart

>>> x = Complex(3.0, -4.5)
>>> x.r, X.1i

(3.0, -4.5)

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

Python in a parallel worid

To be an interpreted language, Python is fast, and if speed is critical, it easily interfaces with
extensions written in faster languages, such as C or C++. A common way of using Python is to
use it for the high-level logic of a program; the Python interpreter is written in C and is known
as CPython. The interpreter translates the Python code in an intermediate language called
Python bytecode, which is analogous to an assembly language, but contains a high level of
instruction. While a Python program runs, the so-called evaluation loop translates Python
bytecode into machine-specific operations. The use of interpreter has advantages in code
programming and debugging, but the speed of a program could be a problem. A first solution
is provided by third-party packages, where a programmer writes a C module and then imports
it from Python. Another solution is the use of a Just-in-Time Python compiler, which is an
alternative to CPython, for example, the PyPy implementation optimizes code generation and
the speed of a Python program. In this book, we will examine a third approach to the problem;
in fact, Python provides ad hoc modules that could benefit from parallelism. The description of
many of these modules, in which the parallel programming paradigm falls, will be discussed in
subsequent chapters.

However, in this chapter, we will introduce the two fundamental concepts of threads and
processes and how they are addressed in the Python programming language.

Introducing processes and threads

A process is an executing instance of an application, for example, double-clicking on the
Internet browser icon on the desktop will start a process than runs the browser. A thread is
an active flow of control that can be activated in parallel with other threads within the same
process. The term "flow control" means a sequential execution of machine instructions. Also,
a process can contain multiple threads, so starting the browser, the operating system creates
a process and begins executing the primary threads of that process. Each thread can execute
a set of instructions (typically, a function) independently and in parallel with other processes
or threads. However, being the different active threads within the same process, they share
space addressing and then the data structures. A thread is sometimes called a lightweight
process because it shares many characteristics of a process, in particular, the characteristics
of being a sequential flow of control that is executed in parallel with other control flows that
are sequential. The term "light" is intended to indicate that the implementation of a thread is
less onerous than that of a real process. However, unlike the processes, multiple threads may
share many resources, in particular, space addressing and then the data structures.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Let's recap:

» A process can consist of multiple parallel threads.

» Normally, the creation and management of a thread by the operating system is
less expensive in terms of CPU's resources than the creation and management of
a process. Threads are used for small tasks, whereas processes are used for more
heavyweight tasks—basically, the execution of applications.

» The threads of the same process share the address space and other resources, while
processes are independent of each other.

Before examining in detail the features and functionality of Python modules for the
management of parallelism via threads and processes, let's first look at how the Python
programming language works with these two entities.

Start working with processes in Python

On common operating systems, each program runs in its own process. Usually, we start a
program by double-clicking on the icon's program or selecting it from a menu. In this recipe,
we simply demonstrate how to start a single new program from inside a Python program.

A process has its own space address, data stack, and other auxiliary data to keep track of
the execution; the OS manages the execution of all processes, managing the access to the
computational resources of the system via a scheduling procedure.

Getting ready

In this first Python application, you'll simply get the Python language installed.

[Referto https://www.python.org/ to get the latest version of Python.]
How to do it...

To execute this first example, we need to type the following two programs:

» called Process.py

» calling Process.py

e

www.it-ebooks.info

https://www.python.org/
http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python
You can use the Python IDE (3.3.0) to edit these files:

The code for the called Process.py file is as shown:

print ("Hello Python Parallel Cookbook!!™"
closeInput = raw_input ("Press ENTER to exit")

print "Closing calledProcess"
The code for the calling Process.py file is as shown:

##The following modules must be imported
import os

import sys

##this is the code to execute
program = "python"
print ("Process calling")

arguments = ["called Process.py"]

##we call the called Process.py script
os.execvp (program, (program,) + tuple(arguments))

print ("Good Bye!!")

To run the example, open the calling Process.py program with the Python IDE and then
press the F5 button on the keyboard.

You will see the following output in the Python shell:

74 *Python Shell* = | B |
| A —— -

File Edit Shell Debug Options Windows Help
Python 3.3.0 (v3.3.0:bd2afb%0ebf2, Sep 29 2012, 10:55:48) [M3C w.1600 32 bit [InJ
tel)] on win32

Type "copyright™, "credits" or "license ()" for more information.
i RESTART
T

Process calling

=)

Ln: 6|Col: 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

At same time, the OS prompt displays the following:

ChlJsers\Utente\Anaconda\python.exe |£|E|_X_hj

He1lo Python Parallel Cookhook?!?
Press EMTER to exit_

ml|

We have two processes running to close the OS prompt; simply press the Enter button on the
keyboard to do so.

In the preceding example, the execvp function starts a new process, replacing the current
one. Note that the "Good Bye" message is never printed. Instead, it searches for the program
called Process.py alongthe standard path, passes the contents of the second argument
tuple as individual arguments to that program, and runs it with the current set of environment
variables. The instruction input () in called Process.py is only used to manage the
closure of OS prompt. In the recipe dedicated to process-based parallelism, we will finally see
how to manage a parallel execution of more processes via the multiprocessing Python module.

Start working with threads in Python

As mentioned briefly in the previous section, thread-based parallelism is the standard way

of writing parallel programs. However, the Python interpreter is not fully thread-safe. In order
to support multithreaded Python programs, a global lock called the Global Interpreter Lock
(GIL) is used. This means that only one thread can execute the Python code at the same time;
Python automatically switches to the next thread after a short period of time or when a thread
does something that may take a while. The GIL is not enough to avoid problems in your own
programs. Although, if multiple threads attempt to access the same data object, it may end up
in an inconsistent state.

In this recipe, we simply show you how to create a single thread inside a Python program.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

How to do it...

To execute this first example, we need the program helloPythonWithThreads.py:

To use threads you need import Thread using the following code:

from threading import Thread

##Also we use the sleep function to make the thread "sleep"

from time import sleep

To create a thread in Python you'll want to make your class work as a
thread.

For this, you should subclass your class from the Thread class
class CookBook (Thread) :
def init (self):
Thread. init (self)

self.message = "Hello Parallel Python CookBook!!\n"

##this method prints only the message
def print message(self):

print (self.message)

##The run method prints ten times the message
def run(self):

print ("Thread Starting\n")

x=0

while (x < 10):
self.print message()
sleep(2)
X += 1

print ("Thread Ended\n")

#start the main process

print ("Process Started")

NED

www.it-ebooks.info

http://www.it-ebooks.info/

create an instance of the HelloWorld class

hello Python = CookBook ()

print the message...starting the thread
hello Python.start()

#end the main process

print ("Process Ended")

Chapter 1

To run the example, open the calling Process.py program with the Python IDE and then

press the F5 button on the keyboard.

You will see the following output in the Python shell:

Eile Edit Shell Debug Options Windows Help

Process Started
Thread Starting
Process Ended

Helln Parallel Python CookBook!!
FrE

Hello Parallel Python CookBook!!
Hello Parallel Python CookBook!!
Helln Parallel Python CookBook!!
Hello Parallel Python CookBook!!
Hello Parallel Python CookBook!!
Hello Parallel Python CookBook!!
Hello Parallel Python CookBook!!
Hello Parallel Python CookBook!!

Hello Parallel Python CookBook!!

Thread Ended

Python 3.3.0 (v3.3.0:bdB8afb%0ebf2, Sep 29 2012, 10:55:48) [M5C w.1600 32 bit
(| }] on win32

Type "copyright", "credits" or "license ()" for more information.

e RESTART

FrE

{(Intel *)

Ln: 31 |Col: 0

www.it-ebooks.info

Es

http://www.it-ebooks.info/

Getting Started with Parallel Computing and Python

While the main program has reached the end, the thread continues printing its message every
two seconds. This example demonstrates what threads are—a subtask doing something in a
parent process.

A key point to make when using threads is that you must always make sure that you never
leave any thread running in the background. This is very bad programming and can cause you
all sorts of pain when you work on bigger applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based
Parallelism

In this chapter, we will cover the following recipes:

» How to use the Python threading module

» How to define a thread

» How to determine the current thread

» How to use a thread in a subclass

» Thread synchronization with Lock and RLock
» Thread synchronization with semaphores

» Thread synchronization with a condition

» Thread synchronization with an event

» How to use the with statement

» Thread communication using a queue

» Evaluating the performance of multithread applications

» The criticality of multithreaded programming

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

Introduction

Currently, the most widely used programming paradigm for the management of concurrence
in software applications is based on multithreading. Generally, an application is made by a
single process that is divided into multiple independent threads, which represent activities
of different types that run parallel and compete with each other.

Although such a style of programming can lead to disadvantages of use and problems
that need to be solved, modern applications with the mechanism of multithreading are
still used quite widely.

Practically, all the existing operating systems support multithreading, and in almost all
programming languages, there are mechanisms that you can use to implement concurrent
applications through the use of threads.

Therefore, multithreaded programming is definitely a good choice to achieve concurrent
applications. However, it is not the only choice available—there are several other alternatives,
some of which, inter alia, perform better on the definition of thread.

A thread is an independent execution flow that can be executed parallelly and concurrently
with other threads in the system. Multiple threads can share data and resources, taking
advantage of the so-called space of shared information. The specific implementation of
threads and processes depends on the operating system on which you plan to run the
application, but, in general, it can be stated that a thread is contained inside a process and
that different threads in the same process conditions share some resources. In contrast to
this, different processes do not share their own resources with other processes.

Each thread appears to be mainly composed of three elements: program counter, registers,
and stack. Shared resources with other threads of the same process essentially include

data and operating system resources. Similar to what happens to the processes, even the
threads have their own state of execution and can synchronize with each other. The states of
execution of a thread are generally called ready, running, and blocked. A typical application of
a thread is certainly parallelization of an application software, especially, to take advantage
of modern multi-core processors, where each core can run a single thread. The advantage

of threads over the use of processes lies in the performance, as the context switch between
processes turns out to be much heavier than the switch context between threads that belong
to the same process.

Multithreaded programming prefers a communication method between threads using the
space of shared information. This choice requires that the major problem that is to be
addressed by programming with threads is related to the management of that space.

S E

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Using the Python threading module

Python manages a thread via the threading package that is provided by the Python
standard library. This module provides some very interesting features that make the
threading-based approach a whole lot easier; in fact, the threading module provides several
synchronization mechanisms that are very simple to implement.

The major components of the threading module are:

» The thread object
» The Lock object
» The RLock object
» The semaphore object
» The condition object
» The event object
In the following recipes, we examine the features offered by the threading library with different

application examples. For the examples that follow, we will refer to the Python distribution 3.3
(even though Python 2.7 could be used).

How to define a thread

The simplest way to use a thread is to instantiate it with a target function and then call the
start () method to let it begin its work. The Python module threading has the Thread ()
method that is used to run processes and functions in a different thread:

class threading.Thread (group=None,
target=None,
name=None,
args=(),
kwargs={})

In the preceding code:
» group: This is the value of group that should be None; this is reserved for future
implementations
» target: This is the function that is to be executed when you start a thread activity

» name: This is the name of the thread; by default, a unique name of the form
Thread-N is assigned to it

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

» args: This is the tuple of arguments that are to be passed to a target

» kwargs: This is the dictionary of keyword arguments that are to be used for the
target function

It is useful to spawn a thread and pass arguments to it that tell it what work to do. This
example passes a number, which is the thread number, and then prints out the result.

How to do it...

Let's see how to define a thread with the threading module, for this, a few lines of code are
necessary:

import threading

def function(i) :

print ("function called by thread %i\n" %i)
return

threads = []
for i in range(5):
t = threading.Thread (target=function , args=(i,))
threads.append(t)
t.start ()
t.join()

The output of the preceding code should be, as follows:

T
file Edit Shell Debug Options Windows Help

Bychon 3.3.0 (vi.3.0:bdfafba0ebdfl, Sep 20 2012, 10:55:48) [M5C v».1600 32 bic (Int =
el}] on windl

Iype “copyright”, "credita® or "licepse()* for more informavion.

Il 33 = BESTART mss =

n called by thre
called by

P R
on called by chre

tion called by

n called by chre

Lre 10/Cok 4

We should also point out that the output could be achieved in a different manner; in fact,
multiple threads might print the result back to stdout at the same time, so the output order
cannot be predetermined.

NEQ

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

To import the threading module, we simply use the Python command:
import threading

In the main program, we instantiate a thread, using the Thread object with a target function
called function. Also, we pass an argument to the function that will be included in the
output message:

t = threading.Thread(target=function , args=(i,))

The thread does not start running until the start () method is called, and that join ()
makes the calling thread wait until the thread has finished the execution:

t.start ()
t.join ()

How to determine the current thread

Using arguments to identify or name the thread is cumbersome and unnecessary. Each

Thread instance has a name with a default value that can be changed as the thread is

created. Naming threads is useful in server processes with multiple service threads that
handle different operations.

How to do it...

To determine which thread is running, we create three target functions and import the
time module to introduce a suspend execution of two seconds:

import threading
import time

def first function():
print (threading.currentThread () .getName () +\
str(' is Starting \n'))
time.sleep(2)
print (threading.currentThread () .getName () +\
str(' is Exiting \n'))
return

def second function() :
print (threading.currentThread () .getName () +\
str(' is Starting \n'))
time.sleep(2)

Eis

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

print (threading.currentThread () .getName ()+\
str(' is Exiting \n'))
return

def third function() :
print (threading.currentThread () .getName ()+\
str(' is Starting \n'))
time.sleep(2)
print (threading.currentThread () .getName ()+\

str(' is Exiting \n'))
return
if name == " main ":
tl = threading.Thread\

(name="'first function', target=first function)

t2 = threading.Thread\
(name="'second function', target=second function)
t3 = threading.Thread\
(name="'third function', target=third function)
tl.start()
t2.start ()
t3.start ()

The output of this should be, as follows:

T —— R =1

File Edit Shell Debug Options Windows Help

Bython 3.3.0 (v3.3.0:bd8afb20ebf2, Sep 22 2012, 10:55:48) [M3C v.1600 32 bit (Intel)] on win32
Type "copyright"™, "credits" or "license ()" for more information.

> RESTARRT
hS-S

first function is Starting

second function is Starting

third function is Starting

first function is Exiting
second function is Exiting
third function is Exiting

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

We instantiate a thread with a target function. Also, we pass the name that is to be printed
and if it is not defined, the default name will be used:

tl
t2
t3 = threading.Thread(target=third function)

threading.Thread (name="'first function', target=first function)

threading.Thread (name="'second function', target=second function)

Then, we call the start () and join () methods on them:

tl.start ()
t2.start ()
t3.start ()
tl.join()
t2.join()
t3.join()

How to use a thread in a subclass

To implement a new thread using the threading module, you have to do the following:

» Define a new subclass of the Thread class

» Overridethe init (self [,args]) method to add additional arguments

» Then, you need to override the run (self [,args]) method to implement what
the thread should do when it is started

Once you have created the new Thread subclass, you can create an instance of it and then
start a new thread by invoking the start () method, which will, in turn, call the run () method.

How to do it...

To implement a thread in a subclass, we define the myThread class. It has two methods that
must be overridden with the thread's arguments:

import threading
import time

exitFlag = 0
class myThread (threading.Thread) :
def init (self, threadID, name, counter):

threading.Thread. init (self)
self.threadID = threadID

s

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

self.name = name
self.counter = counter
def run(self):
print ("Starting " + self.name)
print time(self.name, self.counter, 5)
print ("Exiting " + self.name)

def print time(threadName, delay, counter):
while counter:

if exitFlag:

thread.exit ()
time.sleep(delay)
print ("%s: %$s" %\

(threadName, time.ctime (time.time())))

counter -= 1

Create new threads
threadl = myThread(l, "Thread-1", 1)
thread2 = myThread (2, "Thread-2", 2)

Start new Threads
threadl.start ()
thread2.start ()

print ("Exiting Main Thread")

When the previous code is executed, it produces the following result:

4 Python Shell S

Eile Edit Shell Debug Options Windows Help
Python 3.3.0 (v3.3.0:bd8afb%0ebf2, Sep 29 2012, 10:55:48) [M5C +.1600 32 bit (Intel)] on win32 _J

Type "copyright", "credits™ or "license ()" for more information.
Fr RESTART
FEE

Starting Thread-1
M Starting Thread-2

Thread-1: Sun Rpr 12 15:42:00 2015

I Thread-2: Sun Rpr 12 15:42:01 2015
Thread-1: Sun Apr 12 15:42:01 2015
Thread-1: Sun Apr 12 15:42:02 2015
Thread-2: Sun Apr 12 15:42:03 2015
Thread-1: Sun Apr 12 15:42:03 2015
Thread-1: Sun Apr 12 15:42:04 2015
Exiting Thread-1

Thread-2: Sun Apr 12 15:42:05 2015
Thread-2: 3un Apr 12 15:42:07 2015
Thread-2: Sun BRpr 12 15:42:09 2015
Exiting Thread-2

Exiting Main Thread
e

I Ln: 24 Coﬂl

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The threading module is the preferred form for creating and managing threads. Each thread is
represented by a class that extends the Thread class and overrides its run () method. Then,
this method becomes the starting point of the thread. In the main program, we create several
objects of the myThread type; the execution of the thread begins when the start () method
is called. Calling the constructor of the Thread class is mandatory—using it, we can redefine
some properties of the thread as the name or group of the thread. The thread is placed in the
active state of the call to start () and remains there until it ends the run () method or you
throw an unhandled exception to it. The program ends when all the threads are terminated.

The join () command just handles the termination of threads.

Thread synchronization with Lock and

RLock

When two or more operations belonging to concurrent threads try to access the shared
memory and at least one of them has the power to change the status of the data without

a proper synchronization mechanism a race condition can occur and it can produce invalid
code execution and bugs and unexpected behavior. The easiest way to get around the race
conditions is the use of a lock. The operation of a lock is simple; when a thread wants to
access a portion of shared memory, it must necessarily acquire a lock on that portion prior
to using it. In addition to this, after completing its operation, the thread must release the lock
that was previously obtained so that a portion of the shared memory is available for any other
threads that want to use it. In this way, it is evident that the impossibility of incurring races

is critical as the need of the lock for the thread requires that at a given instant, only a given
thread can use this part of the shared memory. Despite their simplicity, the use of a lock
works. However, in practice, we can see how this approach can often lead the execution to a
bad situation of deadlock. A deadlock occurs due to the acquisition of a lock from different
threads; it is impossible to proceed with the execution of operations since the various locks
between them block access to the resources.

Thread A Shared Variables Thread B
Thread A waits Thread B waits
for variable 1 . for variable 2
to be set by wait - set to be set by
Thread B Thread A
Thread A can't . Thread A can't
set variable 2 set - LS set variable 1

Deadlock

@l

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

For the sake of simplicity, let's think of a situation wherein there are two concurrent threads
(Thread A and Thread B) who have at their disposal resources 1 and 2. Suppose Thread A
requires resource 1 and Thread B requires resource 2. In this case, both threads require
their own lock and up to this point, everything proceeds smoothly. Imagine, however, that
subsequently, before releasing the lock, Thread A requires a lock on resource 2 and Thread
B requires a lock on resource 1, which is now necessary for both the processes. Since both
resources are locked, the two threads are blocked and waiting each other until the occupied
resource is released. This situation is the most emblematic example of the occurrence of a
deadlock situation. As said, therefore, showing the use of locks to ensure synchronization so
that you can access the shared memory on one hand is a working solution, but, on the other
hand, it is potentially destructive in certain cases.

In this recipe, we describe the Python threading synchronization mechanism called lock ().
It allows us to restrict the access of a shared resource to a single thread or a single type

of thread at a time. Before accessing the shared resource of the program, the thread must
acquire the lock and must then allow any other threads access to the same resource.

How to do it...

The following example demonstrates how you can manage a thread through the mechanism
of lock (). In this code, we have two functions: increment () and decrement (),
respectively. The first function increments the value of the shared resource, while the second
function decrements the value, where each function is inserted in a suitable thread. In
addition to this, each function has a loop in which the increase or decrease is repeated. We
want to make sure, through the proper management of the shared resources, that the result
of the execution is equal to the value of the shared variable that is initialized to zero.

The sample code is shown, as follows, where each feature within the sample code is properly
commented:

import threading

shared resource with lock =0
shared resource with no_lock =0
COUNT = 100000

shared resource lock = threading.Lock ()

####LOCK MANAGEMENT##

def increment_with_ lock() :
global shared_ resource_with lock
for i in range (COUNT) :

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

shared resource lock.acquire ()
shared resource with lock += 1
shared resource lock.release()

def decrement with lock():

global shared resource with lock

for i in range (COUNT) :

shared resource lock.acquire ()
shared resource with lock -=1
shared resource lock.release()

####NO LOCK MANAGEMENT ##
def increment without lock() :

global shared resource with no lock

for i in range (COUNT) :

shared resource with no lock += 1

def decrement without lock() :

global shared resource with no lock

for i in range (COUNT) :

shared resource with no lock -=1

####the Main program

if name == " main ":
tl = threading.Thread(target = increment with lock)
t2 = threading.Thread(target = decrement with lock)
t3 = threading.Thread(target = increment without lock)
t4 = threading.Thread(target = decrement without lock)
tl.start ()
t2.start ()
t3.start ()
t4.start ()
tl.join()
t2.join()
t3.join()
t4.join()
print ("the value of shared variable with lock management is %$s"\
%$shared resource with lock)
print ("the value of shared variable with race condition is %s"\

%$shared resource with no lock)

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

This is the result that you get after a single run:

e

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:55:48) [M5C v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.

i RESTART
p5:0-4

the walue of shared wariable with lock management is 0
the walue of shared wariable without lock management is -28050
>

As you can see, we have the correct result with the appropriate management and lock
instructions. Note again that the result for the shared variable without lock management
could differ from the result shown.

In the main method, we have the following procedures:

tl threading.Thread(target = increment with lock)

t2

threading.Thread(target = decrement with lock)
For thread starting, use:

tl.start ()
t2.start ()

For thread joining, use:

tl.join()
t2.join()

Inthe increment with lock () and decrement with lock () functions, you can see how
to use lock management. When you need to access the resource, call acquire () to hold the
lock (this will wait for the lock to be released, if necessary) and call release () to release it:

shared resource lock.acquire ()
shared resource with lock -=1
shared resource lock.release()

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Let's recap:

» Locks have two states: locked and unlocked

» We have two methods that are used to manipulate the locks: acquire () and
release ()

The following are the rules:

» If the state is unlocked, a call to acquire () changes the state to locked
» If the state is locked, a call to acquire () blocks until another thread calls release ()
» If the state is unlocked, a call to release () raises a RuntimeError exception

» If the state is locked, a call to release () changes the state to unlocked

There's more...

Despite their theoretical smooth running, the locks are not only subject to harmful situations
of deadlock, but also have many other negative aspects for the application as a whole. This is
a conservative approach which, by its nature, often introduces unnecessary overhead; it also
limits the scalability of the code and its readability. Furthermore, the use of a lock is decidedly
in conflict with the possible need to impose the priority of access to the memory shared by
the various processes. Finally, from a practical point of view, an application containing a lock
presents considerable difficulties when searching for errors (debugging). In conclusion, it
would be appropriate to use alternative methods to ensure synchronized access to shared
memory and avoid race conditions.

Thread synchronization with RLock

If we want only the thread that acquires a lock to release it, we must use a RLock () object.
Similar to the Lock () object, the RLock () object has two methods: acquire () and
release ().RLock () is useful when you want to have a thread-safe access from outside the
class and use the same methods from inside the class.

How to do it...

In the sample code, we introduced the Box class, which has the methods add () and
remove (), respectively, that provide us access to the execute () method so that we can
perform the action of adding or deleting an item, respectively. Access to the execute ()
method is regulated by RLock () :

import threading
import time

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

class Box (object) :

lock = threading.RLock ()

def init (self):
self.total items = 0O

def execute(self,n):
Box.lock.acquire ()
self.total items +=n
Box.lock.release ()

def add(self) :
Box.lock.acquire ()
self.execute (1)
Box.lock.release ()

def remove (self) :
Box.lock.acquire ()
self.execute(-1)
Box.lock.release ()

These two functions run n in separate
threads and call the Box's methods

def adder (box, items) :
while items > O0:
print ("adding 1 item in the box\n")
box.add ()
time.sleep(5)
items -=1

def remover (box,items) :
while items > O0:
print ("removing 1 item in the box")
box.remove ()
time.sleep(5)
items -=1

the main program build some
threads and make sure it works
if name == " main ":
items = 5
print ("putting %s items in the box " % items)
box = Box ()
tl = threading.Thread (target=adder, args=(box,items))
t2 = threading.Thread (target=remover, args=(box,items))
tl.start ()
t2.start ()

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

tl.join()
t2.join()
print ("%s items still remain in the box " % box.total items)

In the main program, we repeated what was written in the preceding example; the two threads
t1 and t2 are with the associated functions adder () and remover (). The functions are
active when the number of items is greater than zero. The call to RLock () is carried out
inside the Box class:

class Box (object) :
lock = threading.RLock ()

The two functions adder () and remover () interact with the items of the Box class,
respectively, and call the Box class methods: add () and remove (). In each method call,
a resource is captured and then released. As for the object 1ock (), RLock () owns the
acquire () and release () methods to acquire and release the resource; then for each
method, we have the following function calls:

Box.lock.acquire ()
#...do something
Box.lock.release ()

_—

[Python Shell - 1 =

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb%0ebf2, Sep 29 2012, 10:55:48) [M5C w.1600 32 bit (Intel))] on _*|
winiz2

Tyvpe "copyright™, "credits" or "license ()" for more information.
et EESTRET
gy

putting 5 items in the box
adding 1 item in the box

removing 1 item in the box
adding 1 item in the box

removing 1 item in the box
adding 1 item in the box

removing 1 item in the box
adding 1 item in the box
removing 1 item in the box

adding 1 item in the box
removing 1 item in the box

0 items still remain in the box
>

Ln: 22|Col: 4

The execution result of the RLock() object's example

@1

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

Thread synchronization with semaphores

Invented by E. Dijkstra and used for the first time in the operating system, a semaphore is
an abstract data type managed by the operating system, used to synchronize the access by
multiple threads to shared resources and data. Essentially, a semaphore is constituted of an
internal variable that identifies the number of concurrent access to a resource to which it is
associated.

Also, in the threading module, the operation of a semaphore is based on the two functions
acquire () and release (), as explained:

» Whenever a thread wants to access a resource that is associated with a semaphore,
it must invoke the acquire () operation, which decreases the internal variable of
the semaphore and allows access to the resource if the value of this variable appears
to be non-negative. If the value is negative, the thread would be suspended and the
release of the resource by another thread will be placed on hold.

» Whenever a thread has finished using the data or shared resource, it must release
the resource through the release () operation. In this way, the internal variable
of the semaphore is incremented, and the first waiting thread in the semaphore's
queue will have access to the shared resource.

acquire SHARED acquire
—>
Thread release RESOURCE release Thread

SEMAPHORE

Thread synchronization with semaphores

Although at first glance the mechanism of semaphores does not present obvious problems,
it works properly only if the wait and signal operations are performed in atomic blocks. If not,
or if one of the two operations is stopped, this could arise unpleasant situations.

Suppose that two threads execute simultaneously, the operation waits on a semaphore,
whose internal variable has the value 1. Also assume that after the first thread has

the semaphore decremented from 1 to 0, the control goes to the second thread, which
decrements the light from 0 to -1 and waits as the negative value of the internal variable.
At this point, with the control that returns to the first thread, the semaphore has a negative
value and therefore, the first thread also waits.

Therefore, despite the semaphore having access to a thread, the fact that the wait operation
was not performed in atomic terms has led to a solution of the stall.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Getting ready

The next code describes the problem, where we have two threads, producer () and
consumer () that share a common resource, which is the item. The task of producer () is
to generate the item while the consumer () thread's task is to use the item produced.

If the item has not yet produced the consumer () thread, it has to wait. As soon as the item is
produced, the producer () thread notifies the consumer that the resource should be used.

How to do it...

In the following example, we use the consumer-producer model to show you the
synchronization via semaphores. When the producer creates an item, it releases the
semaphore. Also, the consumer acquires it and consumes the shared resource. The
synchronization process done via the semaphores is shown in the following code:

###Using a Semaphore to synchronize threads

import threading
import time
import random

##The optional argument gives the initial value for the internal
##counter;

##it defaults to 1.

##If the value given is less than 0, ValueError is raised.
semaphore = threading.Semaphore (0)

def consumer () :
print ("consumer is waiting.")
##Acquire a semaphore
semaphore.acquire ()
##The consumer have access to the shared resource
print ("Consumer notify : consumed item number %s " %$item)

def producer() :
global item
time.sleep(10)
##ficreate a random item
item = random.randint (0,1000)
print ("producer notify : produced item number %s" %$item)

@]

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

##Release a semaphore, incrementing the internal counter by one.
##When it is zero on entry and another thread is waiting for it
##to become larger than zero again, wake up that thread.
semaphore.release ()

#Main program
if name == ' main ':
for i in range (0,5) :
tl
t2 threading.Thread (target=consumer)
tl.start ()
t2.start ()
tl.join()

threading.Thread (target=producer)

t2.join()
print ("program terminated")

This is the result that we get after five runs:

e T — L e
(| File Edit 5hell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afbS0ebf2, Sep 29 2012, 10:55:48) [M5C v.1600 32 bit (Intel)] ‘:J
on win32

| Tvpe "copyright"”, "credits" or "license ()" for more information.

> RESTART
o

consumer is waiting.

producer notify @ producted item number 193
Consumer notify : consumed item number 193
consumer is waiting.

producer notify : producted item number 631
Consumer notify : consumed item number 631
consumer is walting.

producer notify : producted item number 770
Consumer notify : consumed item number 770
consumey is waiting.

producer notify : producted item number &8E
Consumer notify : consumed item number 688
consumer is waiting.

producer notify @ producted item number 16
Consumer notify : consumed item number 16
program terminated

> |

SNED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Initializing a semaphore to O, we obtain a so-called semaphore event whose sole purpose is
to synchronize the computation of two or more threads. Here, a thread must necessarily make
use of data or common resources simultaneously:

semaphore = threading.Semaphore (0)

This operation is very similar to that described in the lock mechanism of the lock. The
producer () thread creates the item and after that, frees the resource by calling:

semaphore.release ()

The semaphore's release () method increments the counter and then notifies the other
thread. Similarly, the consumer () method acquires the data by:

semaphore.acquire ()

If the semaphore's counter is equal to 0, it blocks the condition's acquire () method until it
gets notified by a different thread. If the semaphore's counter is greater than 0, it decrements
the value.

Finally, the acquired data is then printed on the standard output:

print ("Consumer notify : consumed item number %s " %$item)

There's more...

A particular use of semaphores is the mutex. A mutex is nothing but a semaphore with an
internal variable initialized to the value 1, which allows the realization of mutual exclusion in
access to data and resources.

Semaphores are still commonly used in programming languages that are multithreaded;
however, using them you can run into situations of deadlock. For example, there is a deadlock
situation created when the thread t1 executes a wait on the semaphore s1, while the t2
thread executes a wait on the semaphore s1, and then t1, and then executes a wait on s2
and t2, and then executes a wait on s1.

i

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

Thread synchronization with a condition

A condition identifies a change of state in the application. This is a synchronization
mechanism where a thread waits for a specific condition and another thread notifies that this
condition has taken place. Once the condition takes place, the thread acquires the lock to get
exclusive access to the shared resource.

Getting ready

A good way to illustrate this mechanism is by looking again at a producer/consumer problem.
The class producer writes to a buffer as long as it is not full, and the class consumer takes the
data from the buffer (eliminating them from the latter), as long as the buffer is full. The class
producer will notify the consumer that the buffer is not empty, while the consumer will report
to the producer that the buffer is not full.

How to do it...

To show you the condition mechanism, we will again use the consumer producer model:

from threading import Thread, Condition
import time

items = []
condition = Condition/()

class consumer (Thread) :
def init (self):
Thread. init_ (self)

def consume (self) :
global condition
global items

condition.acquire ()
if len(items) ==
condition.wait ()
print ("Consumer notify : no item to consume")
items.pop ()
print ("Consumer notify : consumed 1 item")
print ("Consumer notify : items to consume are "\
+ str(len(items)))

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

condition.notify ()
condition.release()

def run(self):

for i in range(0,20):
time.sleep(10)
self.consume ()

class producer (Thread) :
def init (self):

Thread. init (self)

def produce (self) :

global condition
global items

condition.acquire ()
if len(items) == 10:
condition.wait ()
print ("Producer notify : items producted are "\
+ str(len(items)))
print ("Producer notify : stop the production!!")
items.append (1)
print ("Producer notify : total items producted "\
+ str(len(items)))
condition.notify ()
condition.release ()

def run(self):

for i in range(0,20):
time.sleep(5)
self .produce ()

if name == " main ":

producer = producer ()
consumer = consumer ()
producer.start ()
consumer.start ()
producer.join ()
consumer.join ()

-

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

This is the result that we get after a single run:

74 Python Shell

File Edit Shell
Producer notify : total items producted 7
Consumer notify : consumed 1 item
Consumer notify : items to consume are 6
Producer notify : total items producted 7
Producer notify : total items producted &
Consumer notify : consumed 1 item
Consumer notify : items to consume are 7

Debug Options Windows Help

Producer notify : total items producted &
Producer notify : total items producted 9
Consumer notify : consumed 1 item
Consumer notify : items to consume are B8
Producer notify : total items producted 9
Producer notify : total items producted 10
Consumer notify : consumed 1 item

Consumer notify : items to consume are 9
Producer notify : total items producted 10
Consumer notify : consumed 1 item
Consumer notify : items to consume are 9
Consumer notify : consumed 1 item
Consumer notify : items to consume are 8

Consumer notify : consumed 1 item
Consumer notify : items to consume are 7
Consumer notify : consumed 1 item
Consumer notify : items to consume are &
Consumer notify : consumed 1 item
Consumer notify : items to consume are 5
Consumer notify : consumed 1 item

Consumer notify : items to consume are 4
Consumer notify : consumed 1 item
Consumer notify : item= to consume are 3
Consumer notify : consumed 1 item
Consumer notify : item= to consume are 2
Consumer notify : consumed 1 item

Consumer notify : items to consume are 1
Consumer notify : consumed 1 item
Consumer notify : items to consume are 0
>3

Ln: 84

The class consumer acquires the shared resource that is modeled through the list items []:
condition.acquire ()
If the length of the list is equal to 0, the consumer is placed in a waiting state:

if len(items) == 0:
(

)

condition.wait

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Otherwise, it makes a pop operation from the items list:
items.pop ()
So, the consumer's state is notified to the producer and the shared resource is released:

condition.notify ()
condition.release()

The class producer acquires the shared resource and then it verifies that the list is completely
full (in our example, we place the maximum number of items, 10, that can be contained in
the items list). If the list is full, then the producer is placed in the wait state until the list is
consumed:

condition.acquire ()
if len(items) == 10:
condition.wait ()

If the list is not full, a single item is added. The state is notified and the resource is released:

condition.notify ()
condition.release()

There's more...

It's interesting to see the Python internals for the condition synchronizations mechanism. The
internal class _Condition creates a RLock () object if no existing lock is passed to the class's
constructor. Also, the lock will be managed when acquire () and released () are called:

class _Condition(_Verbose) :
def _ init__ (self, lock=None, verbose=None) :
_Verbose.__init__ (self, verbose)
if lock is None:
lock = RLock()
self. lock = lock

Thread synchronization with an event

Events are objects that are used for communication between threads. A thread waits for a
signal while another thread outputs it. Basically, an event object manages an internal flag that
can be set to true with the set () method and reset to false with the clear () method.
The wait () method blocks until the flag is true.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

How to do it...

To understand the thread synchronization through the event object, let's take a look again
at the producer/consumer problem:

import time
from threading import Thread, Event
import random

[]

event = Event ()

items

class consumer (Thread) :
def init (self, items, event):
Thread. init (self)
self.items = items
self.event = event

def run(self) :
while True:
time.sleep(2)
self.event.wait ()
item = self.items.pop ()
print ('Consumer notify : %d popped from list by %s'\
% (item, self.name))

class producer (Thread) :
def init (self, integers, event):
Thread. init (self)
self.items = items
self.event = event

def run(self):
global item
for i in range(100) :
time.sleep(2)
item = random.randint (0, 256)
self.items.append (item)
print ('Producer notify : item N° %d appended \
to list by %s'\
% (item, self.name))
print ('Producer notify : event set by %s'\

)

% self.name)

5]

www.it-ebooks.info

http://www.it-ebooks.info/

self.event.set ()
print ('Produce notify :

% self.name)
self.event.clear ()

if name == ' main ':
tl = producer (items, event)
t2 = consumer (items, event)

tl.start ()

t2.start ()

tl.join()
t2.join()

event cleared by %s \n'\

Chapter 2

This is the output that we get when we run the program. The t1 thread appends a value to
the list and then sets the event to notify the consumer. The consumer's call to wait () stops

blocking and the integer is retrieved from the list.

74 *Python Shell* :

File Edit Shell

Producer notify
Producer notify
Produce notify
Consumer notify

Producer notify
Producer notify
Produce notify

Consumer notify
Producer notify
Producer notify
Produce notify
Consumer notify

Producer notify
Producer notify
Produce notify
Consumer notify

Producer notify
Producer notify
Produce notify
Consumer notify

Producer notify
Producer notify
Produce notify
Consumer notify

Producer notify
Producer notify
Produce notify
Consumer notify

Producer notify
Producer notify
Produce notify
Consumer notify

Debug Options

Windows Help

item 204 appended to list by Thread-1
event set by Thread-1

event cleared by Thread-1

204 popped from list by Thread-2

item 98 appended to list by Thread-1
event set by Thread-1
event cleared by Thread-1

98 popped from list by Thread-2

item 90 appended to list by Thread-1
event set by Thread-1
event cleared by Thread-1

90 popped from list by Thread-2

item 3 appended to list by Thread-1
event set by Thread-1

event cleared by Thread-1

3 popped from list by Thread-2

item 162 appended to list by Thread-1
event set by Thread-1

event cleared by Thread-1

162 popped from list by Thread-2

item 208 appended to list by Thread-1
event set by Thread-1

event cleared by Thread-1

208 popped from list by Thread-2

item 97 appended to list by Thread-1
event set by Thread-1
event cleared by Thread-1

97 popped from list by Thread-2

item 233 appended to list by Thread-1
event set by Thread-1

event cleared by Thread-1

233 popped from list by Thread-2

=]

Ln: 480 |Col: 0

www.it-ebooks.info

7}

http://www.it-ebooks.info/

Thread-based Parallelism

The producer class is initialized with the list of items and the Event () function. Unlike the
example with condition objects, the item list is not global, but it is passed as a parameter:

class consumer (Thread) :
def init (self, items, event):
Thread. init (self)
self.items = items
self.event = event

In the run method for each item that is created, the producer class appends it to the list of
items and then notifies the event. There are two steps that you need to take for this and the
first step is as follows:

self.event.set ()
The second step is:
self.event.clear ()

The consumer class is initialized with the list of items and the Event () function.

In the run method, the consumer waits for a new item to consume. When the item arrives, it is
popped from the item list:

def run(self) :
while True:
time.sleep(2)
self.event.wait ()
item = self.items.pop ()
print ('Consumer notify : %d popped from list by %s' %
(item, self.name))

All the operations between the producer and the consumer classes can be easily resumed
with the help of the following schema:

Producer Event Management Consumer Event Management

add -8
item

wait C

set
event
‘|' remove

item

clear

Sl event

Thread synchronization with event objects

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Using the with statement

Python's with statement was introduced in Python 2.5. It's useful when you have two related
operations that must be executed as a pair with a block of code in between. Also, with the
with statement, you can allocate and release some resource exactly where you need it; for
this reason, the with statement is called a context manager. In the threading module, all
the objects provided by the acquire () and release () methods may be used ina with
statement block.

So the following objects can be used as context managers for a with statement:

» Lock

» RLock

» Condition
» Semaphore

Getting ready

In this example, we simply test all the objects using the with statement.

How to do it...

This example shows the basic use of the with statement. We have a set with the most
important synchronization primitives. So, we test them by calling each one with the with
statement:

import threading
import logging

logging.basicConfig(level=1logging.DEBUG,
format="' (% (threadName) -10s) % (message)s',)

def threading with(statement) :
with statement:
logging.debug('%s acquired via with' %statement)

def threading not with(statement) :
statement.acquire ()
try:
logging.debug('%s acquired directly' %statement)
finally:
statement.release ()

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

if name == ' main ':

#let's create a test battery
lock = threading.Lock ()
rlock = threading.RLock ()
condition = threading.Condition/()
mutex = threading.Semaphore (1)
threading synchronization list = \
[lock, rlock, condition, mutex]

#in the for cycle we call the threading with
e threading no with function
for statement in threading synchronization list
tl = threading.Thread(target=threading with,
args= (statement,))
t2 = threading.Thread(target=threading not with,
args= (statement,))
tl.start ()
t2.start ()
tl.join()
t2.join()

The output shows the use of the with statement for each function and also where it is not
used:

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bdSafb%0ebf2, Sep 29 2012, 10:55:48) [M5C v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license ()" for more information.

Fry RESTART
P

(Thread-1 «_thread.lock object at 0x01A23620> acguired via with
[Thread-2 «_thread.lock object at Ox01A25620> acgquired directly

(Thread-3 «_thread.RLock owner=3344 count=1> acquired via with

(Thread-4 <_thread.RLock owner=T7420 cou 1> acquired directly

(Thread-5 <Condition (<_thread.RLock owner=7720 count=1>,6 0)> acquired via with
(Thread-& <Condition (<_thread.RLock owner=6080 count=1>, 0)> acguired directly
[(Thread-7 <threading.Semaphore object at 0x01ED2710> acguired wvia with
(Thread-8 <threading.Semaphore object at 0x01EDS8710>» acquired directly

FrE

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

In the main program, we have defined a list, threading synchronization list, of
thread communication directives that are to be tested:

lock = threading.Lock ()

rlock = threading.RLock ()
condition = threading.Condition/()
mutex = threading.Semaphore (1)
threading synchronization list = \

[lock, rlock, condition, mutex]
After defining them, we pass each object in the for cycle:

for statement in threading synchronization list

tl = threading.Thread(target=threading with,
args= (statement,))
t2 = threading.Thread(target=threading not with,

args= (statement,))

Finally, we have two target functions, in which the threading with tests the with
statement:

def threading with(statement) :
with statement:
logging.debug('%s acquired via with' $%statement)

In the following example we have used the Python support for logging, as we can see:

logging.basicConfig(level=1logging.DEBUG,
format="' (% (threadName) -10s) % (message)s',)

It embeds the thread name in every log message using the formatter code's % (threadName)
s statement. The logging module is thread-safe, so the messages from different threads are
kept distinct in the output.

[ei-

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

Thread communication using a queue

As discussed earlier, threading can be complicated when threads need to share data or
resources. As we saw, the Python threading module provides many synchronization primitives,
including semaphores, condition variables, events, and locks. While these options exist, it

is considered a best practice to instead concentrate on using the module queue. Queues

are much easier to deal with and make threaded programming considerably safer, as they
effectively funnel all access to a resource of a single thread and allow a cleaner and more
readable design pattern.

We will simply consider these four queue methods:

» put (): This puts an item in the queue

» get ():This removes and returns an item from the queue

» task_done (): This needs to be called each time an item has been processed
» Jjoin(): This blocks until all items have been processed

How to do it...

In this example, we will see how to use the threading module with the queue module. Also, we
have two entities here that try to share a common resource, a queue. The code is as follows:

from threading import Thread, Event
from queue import Queue
import time

import random

class producer (Thread) :
def init (self, queue):
Thread. init (self)
self.queue = queue

def run(self)
for i in range(10):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

item = random.randint (0, 256)

self.queue.put (item)

print ('Producer notify: item N°%d appended to queue by %s
\n'\
% (item, self.name))

time.sleep(1)

class consumer (Thread) :
def init (self, queue):
Thread. init (self)
self.queue = queue

def run(self):
while True:
item = self.queue.get ()
print ('Consumer notify : %d popped from queue by %s'\
% (item, self.name))
self.queue.task done()

if mname == ' main ':
queue = Queue ()
tl = producer (queue
t2
t3
t4 consumer (queue
tl.start ()
t2.start ()
t3.start ()
t4.start ()

tl.join(

consumer (queue

consumer (queue

)
)
)
)

)
t2.join()
t3.join()
)

t4.join(

(&5}

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

After running the code, you should have an output similar to this:

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb30ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)] on win32 -
Type "copyright", "credits" or "license ()" for more information.

> RESTART

>

Producer notify : item N° 68 appended to gqueue by Thread-1
Consumer notify : 68 popped from queue by Thread-2
Producer notify : item N° 101 appended to gueue by Thread-1
Consumer notify : 101 popped from gueue by Thread-2

Producer notify : item N° 64 appended to gqueue by Thread-1
Consumer notify : 64 popped from gqueue by Thread-3

Producer notify : item N° 193 appended to gueue by Thread-1
Consumer notify : 193 popped from gueue by Thread-4

Producer notify : item N° 234 appended to gueue by Thread-1
Consumer notify : 234 popped from gueue by Thread-2

Consumer notify : 135 popped from queue by Thread-3Producer notify : item N° 135 appended to queue by Thread-1
Producer notify : item N° 186 appended to gueue by Thread-1
Consumer notify : 186 popped from gueue by Thread-4

Producer notify : item N° 135 appended to gueue by Thread-1
Consumer notify : 135 popped from gueue by Thread-2

Producer notify : item N° 217 appended to gueue by Thread-1
Consumer notify : 217 popped from gueue by Thread-3

Producer notify : item N° 87 appended to gqueue by Thread-1
Consumer notify : 87 popped from queue by Thread-4

Ln: 35/Col: 0

First, the producer class. We don't need to pass the integers list because we use the queue
to store the integers that are generated:

class producer (Thread) :
def _init__ (self, queue):
Thread. init__ (self)
self.queue = queue

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The thread in the producer class generates integers and puts them in the queue in a
for loop:

def run(self)
for i in range(100) :
item = random.randint (0, 256)
self.queue.put (item)

The producer uses Queue.put (item[, block[, timeout]]) toinsert data into the
queue. It has the logic to acquire the lock before inserting data in a queue.

There are two possibilities:

» If optional args block is true and timeout is None (this is the default case that
we used in the example), it is necessary for us to block until a free slot is available.
If timeout is a positive number, it blocks at most t imeout seconds and raises the
full exception if no free slot is available within that time.

» Ifthe block is false, put an item in the queue if a free slot is immediately available;
otherwise, raise the full exception (timeout is ignored in this case). Here, put ()
checks whether the queue is full and then calls wait () internally and after this, the
producer starts waiting.

Next is the consumer class. The thread gets the integer from the queue and indicates that
it is done working on it using task done ():

def run(self):
while True:
item = self.queue.get ()
self.queue.task done ()

The consumer uses Queue.get ([block [, timeout]]) and acquires the lock before
removing data from the queue. If the queue is empty, it puts the consumer in a waiting state.

Finally, in the main, we create the t thread for the producer and three threads, t1, t2, and t3
for the consumer class:

if __name_ == '_main_ ':

queue = Queue ()
t = producer (queue)

tl = consumer (queue)
t2 = consumer (queue)
t3 = consumer (queue)

]

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

t.start ()
tl.start ()
t2.start ()
t3.start ()

t.join ()
tl.join()
t2.join()
t3.join()

All the operations between the producer class and the consumer class can easily be
resumed with the following schema:

___________________ > " Consumer
: \ Thread 2

QUEUE i N
(/Producer\%___ i | -’/ Consumer
\ Thread / Thread 2
; 4 Consumer
> \ Thread 2

Thread synchronization with the queue module

Evaluating the performance of multithread

applications

In this recipe, we will verify the impact of the GIL, evaluating the performance of a multithread
application. The GIL, as described in the previous chapter, is the lock introduced by the
CPython interpreter. The GIL prevents parallel execution of multiple threads in the interpreter.
Before being executed each thread must wait for the GIL to release the thread that is running.
In fact, the interpreter forces the executing thread to acquire the GIL before it accesses
anything on the interpreter itself as the stack and instances of Python objects. This is precisely
the purpose of GIL—it prevents concurrent access to Python objects from different threads.
The GIL then protects the memory of the interpreter and makes the garbage work in the right
manner. The fact is that the GIL prevents the programmer from improving the performance by
executing threads in parallel. If we remove the GIL from the CPython interpreter, the threads
would be executed in parallel. The GIL does not prevent a process from running on a different
processor, it simply allows only one thread at a time to turn inside the interpreter.

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

How to do it...

The next code is a simple tool that is used to evaluate the performance of a multithreaded
application. Each test calls a function only once in a hundred loop iterations. Then, we will
see the fastest among the hundred calls. In the for loop, we call the non_threaded and
threaded functions. Also, we iterate the tests that increase the number of calls and threads.
We will try with 1, 2, 3, 4, and 8 at the end of calls threads. In the non-threaded execution,
we simply call the function sequentially the same number of times corresponding to those
threads that we would use. To keep things simple, all the measurements of the speed of
execution are provided by the Python's module timer.

This module is designed to evaluate the performance of pieces of Python code, which are
generally single statements.

The code is as follows:

from threading import Thread

class threads object (Thread) :
def run(self):
function to run()

class nothreads object (object) :
def run(self):
function to run()

def non threaded(num iter) :
funcs = []
for i in range(int (num iter)) :
funcs.append (nothreads object ())
for 1 in funcs:
i.run()

def threaded(num threads) :

funcs = []

for i in range (int (num threads)) :
funcs.append (threads object())

for 1 in funcs:
i.start ()

for 1 in funcs:
i.join()

def function to run():
pass

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

def show results(func name, results):

)

print ("%-23s %4.6f seconds" % (func_name, results))

if name == " main_ ":
import sys
from timeit import Timer

repeat = 100
number = 1
num_threads = [1, 2, 4, 8]

print ('Starting tests')
for i in num threads:
t = Timer ("non_threaded(%s)"\
% i, "from _main import non threaded")
best result =\
min (t.repeat (repeat=repeat, number=number))
show_results ("non threaded (%s iters)"\
% 1, best result)

t = Timer ("threaded(%s)"\

% i, "from main import threaded")
best result = \

min (t.repeat (repeat=repeat, number=number))
show_results ("threaded (%s threads)"\

% i, best result)

print ('Iterations complete')

We performed a total of three tests and for each head, we used a different function, changing
the function code function to run() defined in the sample code.

The machine used for these tests is a Core 2 Duo CPU - 2.33Ghz.

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The first test
In this test, we simply evaluate the empty function:

def function to_ run() :
pass

It will show us the overhead associated with each mechanism that we are testing:

7% Python shell ? -

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb30ebf2, Sep 29 2012, 10:55:48) [M5C v.1600 32 bit (In _J
tel)] on win32

Type "copyright™, "credits" or "license ()" for more information.
> RESTRRT
x>

Starting tests
non_threaded (1 iters)
threaded (1 threads)
non_threaded (2 iters)
threaded (2 threads)
non_threaded (4 iters)
threaded (4 threads)
non_threaded (8 iters)
threaded (8 threads)
Iterations complete
b5

.000005 seconds
.000188 =seconds
000006 =seconds
.000364 seconds
.000009 seconds
.000713 seconds
000012 =seconds
001397 seconds

[=J == I = P = =]

Ln:15|Col: 4

If we look at the results, we see how the thread calls are more expensive than the calls
without threads. In particular, we also note how the cost of adding the thread is proportional
to their number; in our example, we have four threads with 0.0007143 seconds, while with
eight threads, we employ 0.001397 seconds.

The second test

A typical example of threaded applications is the processing of numbers. Let's take a simple
method to calculate the brute force of the Fibonacci sequence; note that there is no sharing of
the state here, just try to include more tasks that generate sequences of numbers:

def function to run() :
a, b=0, 1
for i in range(10000) :
a, b=Db, a+b

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

This is the output:

F w
74 Python Shell Tl R =R X
File Edit Shell Debug Options Windows Help
32 j
Type "copyvright™, "credits" or "license ()" for more information.
> RESTART
>
Starting tests
non_threaded (1 iters) 0.021832 seconds
threaded (1 threads) 0.022062 seconds I
non_threaded (2 iters) 0.044926 seconds
threaded (2 threads) 0.045434 seconds
non_threaded (4 iters) 0. 0 seconds
threaded (4 threads) 0. seconds
non_threaded (8 iters) 0.177695 seconds
threaded (&8 threads) 0.178830 seconds
Iterations complete
> -

Ln: 17| Col: 4
= = =

As we can see from the output, we get no advantage by increasing the number of threads.
The function is executed in Python and because of the overhead for creating threads and GIL,
the multithreaded example can never be faster than the non-threaded example. Again, let's
remember that the GIL allows only one thread at a time to access the interpreter.

The third test

The following test consists in reading 1,000 times a block of data (1Kb) from the test.dat
file. The function tested is as follows:

def function to_ run() :
fh=open ("C:\\CookBookFileExamples\\test.dat", "rb")
size = 1024
for i in range(1000) :
fh.read (size)

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

These are the results of the test:

¢ Python Shell

File Edit Shell Debug Options Windows Help {

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel _J
}] on win3z

>33 |

Type "copyright™, "credits" or "license()" for more information.
il RESTART
FrE

Starting tests
non_threaded (1 iters)
threaded (1 threads)
non_threaded (2 iters)
threaded (2 threads)
non_threaded (4 iters)
threaded (4 threads)
non_threaded (8 iters)
threaded (& threads)
Iterations complete

.074713 seconds
.074958 seconds
.150131 seconds
.082746 seconds
.301600 seconds (
.168953 seconds
. 604644 seconds
. 353848 seconds

[T T e Y T e e

=]

Ln:15|Col: 4

We have begun to see a better result in the multithreading case. In particular, we've noted
how the threaded execution is half time-consuming if we compare it with the non_threaded
one. Let's remember that in real life, we would not use threads as a benchmark. Typically, we
would put the threads in a queue, pull them out, and perform other tasks. Having multiple
threads that execute the same function although useful in certain cases, is not a common use
case for a concurrent program, unless it divides the data in the input.

The fourth test

In the final example, we use urllib.request, a Python module for fetching URL's. This
module based on the socket module, is written in C and is thread-safe.

The following script tries to get to the https://www.packtpub.com/ main page and simply
read the first 1k bytes of it:

def

function to_run():
import urllib.request
for i in range(10) :
with urllib.request.urlopen ("https://www.packtpub.com/")as f:
f.read(1024)

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Thread-based Parallelism

The following is the result of the preceding code:

%4 Python Shell . | 5 e S|

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb30ebf2, Sep 29 2012, 10:55:48) [MEC v.1600 32 bit (In
tel)] on win3Zz

Type "copyright", "credits"™ or "license ()" for more information.
Fr RESTART
e ge g
Starting tests

§| non_threaded (1 iters) 3.133642 seconds
threaded (1 threads) 3.159738 seconds

|| non_threaded (2 iters) 6.626534 seconds
threaded (2 threads) 3.383511 seconds
non_threaded (4 iters) 135.403415 seconds

I threaded (4 threads) 3.732269 seconds
non_threaded (& iters) 26.904945 seconds
threaded (8 threads) 4.927647 seconds
Iterations complete

e

Ln:15|Col: 4

As you can see, during the 1/0, the GIL is released. The multithreading execution becomes
faster than the single-threaded execution. Since many applications perform a certain amount
of work in the 1/0, the GIL does not prevent a programmer from creating a multithreading
work that concurrently increases the speed of execution.

Let's remember that you do not add threads to speed up the startup time of an application,

but to add support to the concurrence. For example, it's useful to create a pool of threads once
and then reuse the worker. This allows us to split a big dataset and run the same function on
different parts (the producer/consumer model). So, although it is not the norm for concurrent
applications, these tests are designed to be simple. Is the GIL an obstacle for those who work on
pure Python and try to exploit multi-core hardware architectures? Yes it does. While threads are
a language construct, the CPython interpreter is the bridge between the threads and operating
system. This is why Jython, IronPython, and others interpreters do not possess GIL, as it was
simply not necessary and it has not been reimplemented in the interpreter.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based
Parallelism

In this chapter, we will cover the following recipes:

» Using the multiprocessing Python module
» How to spawn a process

» How to name a process

» How to run a process in the background

» How to Kill a process

» How to use a process in a subclass

» How to exchange objects between processes
» Using a queue to exchange objects

» Using pipes to exchange objects

» How to synchronize processes

» How to manage a state between processes
» How to use a process pool

» Using the mpi4py Python module

» Point-to-point communication

» Avoiding deadlock problems

» Collective communication using broadcast

» Collective communication using a scatter function

(75}

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

» Collective communication using a gather function
» Collective communication using A11toAll
» Reduction operation

» How to optimize the communication

Introduction

In the previous chapter, we saw how to use threads to implement concurrent applications.
This section will examine the process-based approach. In particular, the focus is on two
libraries: the Python multiprocessing module and the Python mpi4py module.

The Python multiprocessing library, which is part of the standard library of the language,
implements the shared memory programming paradigm, that is, the programming of a system
that consists of one or more processors that have access to a common memory.

The Python library mpi4py implements the programming paradigm called message passing.
It is expected that there are no shared resources (and this is also called shared nothing) and
that all communications take place through the messages that are exchanged between the
processes.

For these features, it is in contrast with the techniques of communication that provide
memory sharing and the use of lock or similar mechanisms to achieve mutual exclusion.

In a message passing code, the processes are connected via the communication primitives
of the types send () and receive ().

In the introduction of the Python multiprocessing docs, it is clearly mentioned that all the
functionality within this package requires the main module to be importable to the children
(https://docs.python.org/3.3/library/multiprocessing.html).

The main module is not importable to the children in IDLE, even if you run the script
as a file with IDLE. To get the correct result, we will run all the examples from the Command
Prompt:

python multiprocessing example.py

Here, multiprocessing example.py is the script's name. For the examples described
in this chapter, we will refer to the Python distribution 3.3 (even though Python 2.7 could be
used).

7

www.it-ebooks.info

https://docs.python.org/3.3/library/multiprocessing.html
http://www.it-ebooks.info/

Chapter 3

How to spawn a process

The term "spawn" means the creation of a process by a parent process. The parent process
can of course continue its execution asynchronously or wait until the child process ends its
execution. The multiprocessing library of Python allows the spawning of a process through the
following steps:

1. Build the object process.
2. Callits start () method. This method starts the process's activity.
3. Callits join () method. It waits until the process has completed its work and exited.

How to do it...

This example shows you how to create a series (five) of processes. Each process is associated
with the function foo (i), where 1 is the ID associated with the process that contains it:

#Spawn a Process: Chapter 3: Process Based Parallelism
import multiprocessing

def foo(i):
print ('called function in process: %s' %i)
return

if _name_ == '_main_ ':
Process_jobs = []

for i in range(5):
p = multiprocessing.Process (target=foo, args=(i,))
Process_jobs.append (p)
p.start ()
p.join()

To run the process and display the results, let's open the Command Prompt, preferably in
the folder containing the example file (named spawn_a_ process.py), and then type the
following command:

python spawn_a process.py

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

We obtain the following output using this command:

C:\Python CookBook\ Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python spawn a process.py

called function in process: 0
called function in process: 1
called function in process: 2
called function in process: 3

4

called function in process:

As explained in the introduction section of this recipe, to create the object process, we must
first import the multiprocessing module with the following command:

import multiprocessing
Then, we create the object process in the main program:

p = multiprocessing.Process (target=foo, args=(i,))
Further, we call the start () method:

p.start ()

The object process has for argument the function to which the child process is associated
(in our case, the function is called foo ()). We also pass an argument to the function that
takes into account the process in which the associated function is situated. Finally, we call
the join () method on the process created:

p.join()

Without p. join (), the child process will sit idle and not be terminated, and then, you must
manually kill it.

This reminds us once again of the importance of instantiating the Process object within the
main section:

if __name_ == '_main_ ':

7@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This is because the child process created imports the script file where the target function is
contained. Then, by instantiating the process object within this block, we prevent an infinite
recursive call of such instantiations. A valid workaround is used to define the target function
in a different script, and then imports it to the namespace. So for our first example, we could
have:

import multiprocessing
import target function

if __name_ == '_main_ ':
Process_jobs = []
for i in range(5):
p = multiprocessing.Process \
(target=target_ function.function,args=(i,))
Process_jobs.append (p)
p.start ()
p.join()

Here, target function.py is as shown:

#target function.py

def function(i):
print ('called function in process: %s' %i)
return

The output is always similar to that shown in the preceding example.

How to name a process

In the previous example, we identified the processes and how to pass a variable to the target
function. However, it is very useful to associate a name to the processes as debugging an
application requires the processes to be well marked and identifiable.

How to do it...

The procedure to name a process is similar to that described for the threading library (see the
recipe How to determine the current thread in Chapter 2, Thread-based Parallelism, of the
present book.)

(77}

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

In the main program, we create a process with a name and a process without a name. Here,
the common target is the foo () function:

#Naming a Process: Chapter 3: Process Based Parallelism
import multiprocessing
import time

def fool():
name = multiprocessing.current process () .name
print ("Starting %s \n" %name)
time.sleep(3)
print ("Exiting %s \n" $name)
if __name_ == '_main_ ':

process_with name = \
multiprocessing.Process)\
(name="'foo_process',\
target=£foo)
process_with name.daemon = True
process_with default name = \
multiprocessing.Process)\
(target=£foo)
process_with name.start ()
process_with default name.start ()

To run the process, open the Command Prompt and type the following command:

python naming process.py

This is the result that we get after using the preceding command:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python naming process.py

Starting foo process

Starting Process-2

Exiting foo process

Exiting Process-2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The operation is similar to the procedure used for naming a thread. To name a process, we
should provide an argument with the object's name:

process with name = multiprocessing.Process
(name='foo function', target=foo)

In this case, we called the foo function process. If the process child wants to know which
its parent process is, it must use the following statement:

name = multiprocessing.current process () .name

This statement will provide the name of the parent process.

How to run a process in the background

Running a process in background is a typical mode of execution of laborious processes
that do not require your presence or intervention, and this course may be concurrent to the
execution of other programs. The Python multiprocessing module allows us, through the
daemonic option, to run background processes.

How to do it...

To run a background process, simply follow the given code:

import multiprocessing
import time

def fool():
name = multiprocessing.current process () .name
print ("Starting %s \n" %$name)
time.sleep(3)
print ("Exiting %s \n" %name)
if mname == ' main ':

background process = multiprocessing.Process\
(name='background_process',\
target=£foo)

background process.daemon = True

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

NO_background process = multiprocessing.Process)\
(name="'NO_background_process', \
target=£foo)

NO_ background process.daemon = False

background process.start ()
NO_background process.start ()

To run the script from the Command Prompt, type the following command:
python background process.py
The final output of this command is as follows:

C:\Python CookBook\ Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python background process.py

Starting NO_background process

Exiting NO_ background process

To execute the process in background, we set the daemon parameter:
background process.daemon = True

The processes in the no-background mode have an output, so the daemonic process ends
automatically after the main program ends to avoid the persistence of running processes.

There's more...

Note that a daemonic process is not allowed to create child processes. Otherwise, a daemonic
process would leave its children orphaned if it gets terminated when its parent process exits.
Additionally, these are not Unix daemons or services, they are normal processes that will be
terminated (and not joined) if non-daemonic processes have exited.

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to kill a process

It's possible to kill a process immediately using the terminate () method. Also, we use the
is_alive () method to keep track of whether the process is alive or not.

How to do it...

In this example, a process is created with the target function foo (). After the start, we Kill it
with the terminate () function:

#kill a Process: Chapter 3: Process Based Parallelism
import multiprocessing
import time

def fool():
print ('Starting function')
time.sleep(0.1)
print ('Finished function')
if _name_ == '_main_ ':

p = multiprocessing.Process (target=£foo)

print ('Process before execution:', p, p.is_alive())
p.start ()

print ('Process running:', p, p.is_alive())
p.terminate ()

print ('Process terminated:', p, p.is_alive())
p.join()

print ('Process joined:', p, p.is_alive())

print ('Process exit code:', p.exitcode)

s

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

The following is the output we get when we use the preceding command:

4 Python Shell SARCN X

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb%0ebf2, Sep 29 2012, 10:55:48) [M5C w.1600 32 bit (Int J
el}] on win3Z2

Type "copyright™, "credits" or "license ()" for more information.
b RESTART
v oe g

Process before execution: <Process(Process-1, initial)> False
Process running: <Process (Process-1, started)> True

Procesz terminated: <Process (Process-1, stopped[SIGTERM])> True
Process joined: <Process (Process-1, stopped[SIGTERM]) > False
Frocess exit code: -15

>33 | -
Ln:10|Cel: 4

b =

We create the process and then monitor its lifetime by the is_alive () method. Then, we
finish it with a call to terminate ():

p.terminate()

Finally, we verify the status code when the process is finished, and read the attribute of the
ExitCode process. The possible values of ExitCode are, as follows:

» == 0:This means that no error was produced

» > 0:This means that the process had an error and exited that code

» < 0:This means that the process was killed with a signal of -1 * ExitCode

For our example, the output value of the ExitCode code is equal to -15. The negative value
-15 indicates that the child was terminated by an interrupt signal identified by the number 15.

How to use a process in a subclass

To implement a custom subclass and process, we must:

» Define a new subclass of the Process class

» Overridethe init (self [,args]) method to add additional arguments

» Overridethe run(self [,args]) method to implement what Process should
when it is started

Once you have created the new Process subclass, you can create an instance of it and then
start by invoking the start () method, which will in turn call the run () method.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

We will rewrite the first example in this manner:

#Using a process in a subclass Chapter 3: Process Based #Parallelism
import multiprocessing

class MyProcess (multiprocessing.Process) :
def run(self):
print ('called run method in process: %s' %self.name)
return

if name =
jobs = []
for i in range(5):
p = MyProcess ()
jobs.append (p)
p.start ()
p.join()

= ' main ':

To run the script from the Command Prompt, type the following command:
python subclass process.py
The result of the preceding command is as follows:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python subclass process.py

called run method in process: MyProcess-1
called run method in process: MyProcess-2
called run method in process: MyProcess-3
called run method in process: MyProcess-4

called run method in process: MyProcess-5

Each Process subclass could be represented by a class that extends the Process class and
overrides its run () method. This method is the starting point of Process:

class MyProcess (multiprocessing.Process) :
def run(self):
print ('called run method in process: %s' %self.name)
return

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

In the main program, we create several objects of the type MyProcess (). The execution of
the thread begins when the start () method is called:

p = MyProcess()
p.start ()

The join () command just handles the termination of processes.

How to exchange objects between

processes

The development of parallel applications has the need for the exchange of data between
processes. The multiprocessing library has two communication channels with which it can
manage the exchange of objects: queues and pipes.

Communication
Channels

Communication channels in the multiprocessing module

Using queue to exchange objects

As explained before, it is possible for us to share data with the queue data structure.

A queue returns a process shared queue, is thread and process safe, and any serializable
object (Python serializes an object using the pickable module) can be exchanged through it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

In the following example, we show you how to use a queue for a producer-consumer problem.
The producer class creates the item and queues and then, the consumer class provides
the facility to remove the inserted item:

import multiprocessing
import random
import time

class producer (multiprocessing.Process) :
def init (self, queue):
multiprocessing.Process. init (self)
self.queue = queue

def run(self)
for i in range(10) :

item = random.randint (0, 256)

self.queue.put (item)

print ("Process Producer : item %d appended to queue %s"\

% (item,self.name))

time.sleep (1)
print ("The size of queue is %s"

o

% self.queue.gsize())

class consumer (multiprocessing.Process) :
def init (self, queue):
multiprocessing.Process.__init__ (self)
self.queue = queue

def run(self):
while True:
if (self.queue.empty()) :
print ("the queue is empty")
break
else
time.sleep(2)
item = self.queue.get ()
print ('Process Consumer : item %d popped from by %s \n'\

% (item, self.name))
time.sleep (1)

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

if _name_ == '_main_ ':

queue = multiprocessing.Queue ()
process_producer = producer (queue)
process_consumer = consumer (queue)
process_producer.start ()
process_consumer.start ()
process_producer.join ()
process_consumer.join ()

This is the output that we get after the execution:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python using queue.py

Process Producer : item 69 appended to queue producer-1
The size of queue is 1

Process Producer : item 168 appended to queue producer-1
The size of queue is 2

Process Consumer : item 69 popped from by consumer-2
Process Producer : item 235 appended to queue producer-1
The size of queue is 2

Process Producer : item 152 appended to queue producer-1
The size of queue is 3

Process Producer : item 213 appended to queue producer-1
Process Consumer : item 168 popped from by consumer-2
The size of queue is 3

Process Producer : item 35 appended to queue producer-1
The size of queue is 4

Process Producer : item 218 appended to queue producer-1
The size of queue is 5

Process Producer : item 175 appended to queue producer-1
Process Consumer : item 235 popped from by consumer-2
The size of queue is 5

Process Producer : item 140 appended to queue producer-1
The size of queue is 6

Process Producer : item 241 appended to queue producer-1
The size of queue is 7

Process Consumer : item 152 popped from by consumer-2

Process Consumer : item 213 popped from by consumer-2

~[ee]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Process Consumer : item 35 popped from by consumer-2
Process Consumer : item 218 popped from by consumer-2
Process Consumer : item 175 popped from by consumer-2
Process Consumer : item 140 popped from by consumer-2
Process Consumer : item 241 popped from by consumer-2

the queue is empty

The multiprocessing class has its Queue object instantiated in the main program:

if name == ' main_ ':
queue = multiprocessing.Queue ()

Then, we create the two processes, producer and consumer, with the Queue object as an
attribute:

process_producer = producer (queue)
process_consumer = consumer (queue)

The process producer is responsible for entering 10 items in the queue using its put ()
method:

for i in range(10) :
item = random.randint (0, 256)
self.queue.put (item)

The process consumer has the task of removing the items from the queue (using the get
method) and verifying that the queue is not empty. If this happens, the flow inside the while
loop ends with a break statement:

def run(self):
while True:

if (self.queue.empty()):
print ("the queue is empty")
break

else
time.sleep(2)
item = self.queue.get ()
print ('Process Consumer : item %d popped from by %s

\n'\

% (item, self.name))
time.sleep(1)

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

There's more...

A queue has the JoinaleQueue subclass. It has the following two additional methods:

» task_done ():This indicates that a task is complete, for example, after the get ()
method is used to fetch items from the queue. So, it must be used only by queue
consumers.

» Jjoin(): This blocks the processes until all the items in the queue have been
achieved and processed.

Using pipes to exchange objects

The second communication channel is the pipe data structure.
A pipe does the following:

» Returns a pair of connection objects connected by a pipe

» Inthis, every object has send/receive methods to communicate between processes

How to do it...

Here is a simple example with pipes. We have one process pipe the gives out numbers from
0 to 9 and another process that takes the numbers and squares them:

import multiprocessing

def create items (pipe) :
output pipe, = pipe
for item in range(10) :
output pipe.send(item)
output pipe.close()

def multiply items(pipe 1, pipe 2):
close, input pipe = pipe 1
close.close()
output pipe, = pipe 2
try:

while True:
item = input pipe.recv()
output pipe.send(item * item)
except EOFError:
output pipe.close()

(e

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

if name == ' main ':

#First process pipe with numbers from 0 to 9
pipe 1 = multiprocessing.Pipe (True)
process pipe 1 = \
multiprocessing.Process\
(target=create items, args=(pipe 1,))
process pipe 1l.start()

#second pipe,
pipe 2 = multiprocessing.Pipe (True)
process _pipe 2 = \
multiprocessing.Process\
(target=multiply items, args=(pipe 1, pipe 2,))
process pipe 2.start()

pipe 1[0] .close()
pipe 2[0] .close()

try:
while True:

print (pipe 2[1] .recv())
except EOFError:
print ("End")

The output obtained is as follows:

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bdSafb90ebf2, Sep 29 2012, 10:55:48) [M5C v.1600 32 bit (Intel)] on win32
Tvpe "copyvright™, "credits™ or "license()" for more information.

b5 RESTRRT
P

]

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

Let's remember that the pipe () function returns a pair of connection objects connected by a
two way pipe. In the example, out pipe contains the numbers from O to 9, generated by the
target function create items ():

def create items (pipe) :
output pipe, = pipe
for item in range(10):
output pipe.send(item)
output pipe.close()

In the second process, we have two pipes: the input pipe and final output pipe that contains
the results:

process pipe 2 = multiprocessing.Process (target=multiply items,
args=(pipe 1, pipe 2,))

These are finally printed as:

try:
while True:
print (pipe 2[1].recv())
except EOFError:
print ("End")

How to synchronize processes

Multiple processes can work together to perform a given task. Usually, they share data. It is
important that the access to shared data by various processes does not produce inconsistent
data. Processes that cooperate by sharing data must therefore act in an orderly manner in
order to access that data. Synchronization primitives are quite similar to those encountered
for the library and threading.

They are as follows:

» Lock: This object can be in one of the states: locked and unlocked. A lock object
has two methods, acquire () and release (), to manage the access to a shared
resource.

» Event: This realizes simple communication between processes, one process signals
an event and the other processes wait for it. An Event object has two methods,
set () and clear (), to manage its own internal flag.

» Condition: This object is used to synchronize parts of a workflow, in sequential or
parallel processes. It has two basic methods, wait () is used to wait for a condition
andnotify all () is used to communicate the condition that was applied.

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Semaphore: This is used to share a common resource, for example, to support a fixed
number of simultaneous connections.

RLock: This defines the recursive 1ock object. The methods and functionality for
RLock are the same as the Threading module.

Barrier: This divides a program into phases as it requires all of the processes to
reach it before any of them proceeds. Code that is executed after a barrier cannot
be concurrent with the code executed before the barrier.

How to do it...

The example here shows the use of barrier () to synchronize two processes. We have
four processes, wherein process1 and process2 are managed by a barrier statement, while
process3 and process4 have no synchronizations directives:

import multiprocessing

from multiprocessing import Barrier, Lock, Process
from time import time
from datetime import datetime

def test_with_barrier (synchronizer, serializer):

def

name = multiprocessing.current process () .name
synchronizer.wait ()
now = time ()
with serializer:
print ("process %s ----> %s" \
% (name, datetime. fromtimestamp (now)))

test _without barrier() :
name = multiprocessing.current process () .name
now = time ()
print ("process %s ----> %s" \
% (name ,datetime.fromtimestamp (now)))

if __name_ == '_main_ ':

synchronizer = Barrier(2)
serializer = Lock()
Process (name='pl - test with barrier'\
,target=test_with barrier,\
args= (synchronizer, serializer)) .start ()
Process (name='p2 - test with barrier'\
,target=test_with barrier,\
args= (synchronizer, serializer)) .start ()
Process (name='p3 - test without barrier'\

i

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

,target=test without barrier) .start ()
Process (name='p4 - test without barrier'\
,target=test without barrier) .start ()

By running the script, we can see that processl1 and process2 print out the same timestamps:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python process barrier.py

process pl - test with barrier ----> 2015-05-09 11:11:33.291229
process p2 - test with barrier ----> 2015-05-09 11:11:33.291229
process p3 - test without barrier ----> 2015-05-09 11:11:33.310230
process p4 - test without barrier ----> 2015-05-09 11:11:33.333231

In the main program, we created four processes; however, we also need a barrier and lock
primitive. The parameter 2 in the barrier statement stands for the total number of process
that are to be managed:

if name == ' main ':

synchronizer = Barrier(2)

serializer = Lock()

Process (name='pl - test with barrier'\
,target=test_with barrier,\
args= (synchronizer, serializer)) .start ()

Process (name='p2 - test with barrier'\
,target=test_with barrier,\
args= (synchronizer, serializer)) .start ()

The test_with barrier function executes the barrier's wait () method:

def test with barrier(synchronizer, serializer):
name = multiprocessing.current process () .name
synchronizer.wait ()

When the two processes have called the wait () method, they are released simultaneously:

now = time ()
with serializer:
print ("process %s ----> %s" % (name \
,datetime.fromtimestamp (now)))

www.it-ebooks.info

http://www.it-ebooks.info/

The following figure shows you how a barrier works with the two processes:

Process P1

Process P2

The two Process
are executed

Barrier

Process P2 reaches the Barrier, it

Process P1

Process P2

sends a signal to Process P1, and
blocks until P1 reaches the Barrier.

Barrier

All the Processes are arrived at the
Barrier. They access to their shared
resources to update their local data
and keep on executing.

Process P1

Process P2

Barrier

Process management with a barrier

How to manage a state between processes

Python multiprocessing provides a manager to coordinate shared information between all its
users. A manager object controls a server process that holds Python objects and allows other

processes to manipulate them.

A manager has the following properties:

» It controls the server process that manages a shared object

» It makes sure the shared object gets updated in all processes when anyone

modifies it

Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

How to do it...

Let's see an example of how to share a state between processes:

1. First, the program creates a manager list, shares it between n number of
taskWorkers, and every worker updates an index.

2. After all workers finish, the new list is printed to stdout:

import multiprocessing

def worker (dictionary, key, item):
dictionaryl[key]l = item

if mname == ' main ':
mgr = multiprocessing.Manager ()
dictionary = mgr.dict ()
jobs = [multiprocessing.Process\
(target=worker, args=(dictionary, i, i*2))
for 1 in range(10)
]
for j in jobs:
j.start ()
for j in jobs:
j.join ()
print ('Results:', dictionary)

The output is as follows:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>python manager.py

key = 0 value = 0

key = 2 value = 4
key = 6 value = 12
key = 4 value = 8
key = 8 value = 16
key = 7 value = 14
key = 3 value = 6
key = 1 value = 2
key = 5 value = 10
key = 9 value = 18

Results: {0: O, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9:
18}

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We declare the manager with the following statement:
mgr = multiprocessing.Manager ()

In the next statement, a data structure of the type dictionary is created:
dictionary = mgr.dict ()

Then, the multiprocess is launched:

jobs = [multiprocessing.Process \
(target=taskWorker, args=(dictionary,i,i*2))
for i in range(10)

]

for j in jobs:
j.start ()

Here, the target function taskWorker adds an item to the data structure dictionary:

def taskWorker (dictionary, key, item):
dictionaryl[key]l = value

Finally, we get the output and all the dictionaries are printed out:
for j in jobs:
j.join ()
print ('Results:', d)

How to use a process pool

The multiprocessing library provides the Pool class for simple parallel processing tasks. The
Pool class has the following methods:

» apply(): It blocks until the result is ready.

» apply async ():Thisis a variant of the apply () method, which returns a result
object. It is an asynchronous operation that will not lock the main thread until all the
child classes are executed.

» map (): This is the parallel equivalent of the map () built-in function. It blocks until
the result is ready, this method chops the iterable data in a number of chunks that
submits to the process pool as separate tasks.

[55]-

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

map_async (): This is a variant of the map () method, which returns a result object.
If a callback is specified, then it should be callable, which accepts a single argument.
When the result becomes ready, a callback is applied to it (unless the call failed). A

callback should be completed immediately; otherwise, the thread that handles the
results will get blocked.

How to do it...

This example shows you how to implement a process pool to perform a parallel application.
We create a pool of four processes and then we use the pool's map method to perform a
simple calculation:

def function square(data) :
result = data*data
return result

if __name_ == '_main_ ':
inputs = list (range(100))
pool = multiprocessing.Pool (processes=4)
pool outputs = pool.map(function square, inputs)
pool.close ()
pool.join()
print ('Pool :', pool_ outputs)

This is the result that we get after completing the calculation:

C:\Python CookBook\Chapter 3 - Process Based Parallelism\Example Codes
Chapter 3>\python process pool.py

Pool : [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196,
225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784,
841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600,
1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704,
2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096,
4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776,
5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744,
7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801]

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The multiprocessing.Pool method applies function square to the input element to
perform a simple calculation. The total number of parallel processes is four:

pool = multiprocessing.Pool (processes=4)
The pool . map method submits to the process pool as separate tasks
pool outputs = pool.map(function square, inputs)
The parameter inputs is a list of integer from 0 to 100:
inputs = list (range (100))
The result of the calculation is stored in pool outputs. Then, the final result is printed:
print ('Pool :', pool outputs)

It is important to note that the result of the pool .map () method is equivalent to Python's
built-in function map (), except that the processes run parallelly.

Using the mpi4py Python module

The Python programming language provides a number of MPI modules to write parallel
programs. The most interesting of these is the mpi4py library. It is constructed on top of the
MPI-1/2 specifications and provides an object-oriented interface, which closely follows MPI-2
C++ bindings. A C MPI user could use this module without learning a new interface. Therefore,
it is widely used as an almost full package of an MPI library in Python.

The main applications of the module, which will be described in this chapter, are:

» Point-to-point communication
» Collective communication

» Topologies

o7}

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

Getting ready

The installation procedure of mpi4py using a Windows machine is, as follows (for other OS,
referto http://mpi4py.scipy.org/docs/usrman/install.html#):

1. Download the MPI software library mpich
from http://www.mpich.org/downloads/.

n ==

] © miprgomion || mpkch sfom windows S4B 4 h 40RO @ =

B b ishan || Comainizane

M PI C H High-Performance Portable MPI

Home About Downloads Documentation Support ABI Compatibility Initiative

Search
Downloads
= News
= Documentation
= Downloads
= Support
= About

MPICH is distributed under a BSD-like license. NOTE: MPICH binary packages are
available in many UNIX distributions and for Windows. For example, you can search for it
using “yum” (on Fedora), "apt” (Debian/Ubuntu), "pkg_add" (FreeBSD) or “port"/"brew” (Mac
0S). If avallable for your platform, this is likely the easlest installation method since it
automatically checks for dependency packages and installs them. Otherwise you can use the

installation guide for installing MPICH from the source code below. MPICHZ Was awardedan

Release Platform Download Size R&D100 award in 2005
mpich-3.1.4 (stable release) MPICH [http] 11 MB
hydra-3.1.4 (stable release) Hydra [http] 3 MB

(mpiexec)

The MPICH download page
2. Open an admin Command Prompt by right-clicking on the command prompt icon and
select Run as administrator.

3. Runmsiexec /i mpich installation file.msi from the admin Command
Prompt to install MPICH2.

During the installation, select the option that installs MPICH2 for all users.

5. Run wmpiconfig and store the username/password. Use your real Windows login
name and password.

6. Add C:\Program Files\MPICH2\bin to the system path—no need to reboot the
machine.

7. Check smpd using smpd -status. It should return smpd running on
Shostnames.

8. To test the execution environment, go to the SMPICHROOT\ examples directory and
run cpi.exe using mpiexec -n 4 cpi.

5]

www.it-ebooks.info

http://mpi4py.scipy.org/docs/usrman/install.html#
http://www.mpich.org/downloads/
http://www.it-ebooks.info/

Chapter 3

9. Download the Python installer pip from https://pip.pypa.io/en/stable/
installing.html.

It will create a pip.exe file in the Scripts directory of your Python distribution.

o = ro— |
mpich ~fow wrdows @B A 40R- 0 O =
Docs »Installation ©) Edit on GitHub
Installation
Installation

Pythan & Python & OS Support «

pip incl

pip works with CPython versions 2.6, 2.7, 3.2, 3.3, 3.4 and also pypy.

Install pip

Upsradepip pip works on Unix/Linux, OS X, and Windows.

Python 2.5 was supported through v1.3.1, and Python 2.4 was supported through v1.1.

pip included with Python

Python 2.7.9 and later (on the python2 series), and Python 3.4 and later include pip by default [1], so
you may have pip already.

Install pip

@ Read the Docs

To install pip, securely download get-pip.py. []

The PIP download page
10. Then, from the Command Prompt, type the following to install mpi4py:

C:> pip install mpidpy

How to do it...

Let's start our journey to the MPI library by examining the classic code or a program that prints
the phrase "Hello, world!" on each process that is instantiated:

#hello.py

from mpi4py import MPI

comm = MPI.COMM WORLD

rank = comm.Get_rank ()

print ("hello world from process ", rank)

To execute the code, type the following command line:

C:> mpiexec -n 5 python helloWorld MPI.py

s

www.it-ebooks.info

https://pip.pypa.io/en/stable/installing.html
https://pip.pypa.io/en/stable/installing.html
http://www.it-ebooks.info/

Process-based Parallelism
This is the result that we would get after we execute this code:

('hello world from process ', 1)
('hello world from process ', 0)
('hello world from process ', 2)
('hello world from process ', 3)

('hello world from process ', 4)

In MPI, the processes involved in the execution of a parallel program are identified by a
sequence of non-negative integers called ranks. If we have a number p of processes that runs
a program, the processes will then have a rank that goes from 0 to p-1. The function MPI that
comes to us to solve this problem has the following function calls:

rank = comm.Get_ rank ()

This function returns the rank of the process that called it. The comm argument is called a
communicator, as it defines its own set of all processes that can communicate together,
namely:

comm = MPI.COMM WORLD

An example of communication between processes in MPL.COMM_WORLD

There's more...

It should be noted that, for illustration purposes only, the stdout output will not always

be ordered, as multiple processes can apply at the same time by writing on the screen

and the operating system arbitrarily chooses the order. So, we are ready for a fundamental
observation: every process involved in the execution of MPI runs the same compiled binary,
so each process receives the same instructions to be executed.

100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Point-to-point communication

One of the most important features among those provided by MPI is the point-to-point
communication, which is a mechanism that enables data transmission between two
processes: a process receiver, and process sender.

The Python module mpi4py enables point-to-point communication via two functions:

» Comm.Send(data, process_destination): This sends data to the destination
process identified by its rank in the communicator group

» Comm.Recv(process_ source): This receives data from the source process, which
is also identified by its rank in the communicator group

The comm parameter, which stands for communicator, defines the group of processes, that
may communicate through message passing:

comm = MPI.COMM WORLD

How to do it...

In the following example, we show you how to utilize the comm. send and comm. recv
directives to exchange messages between different processes:

from mpi4py import MPI

comm=MPI.COMM_WORLD
rank = comm.rank

print ("my rank is : " , rank)
if rank==0:
data= 10000000
destination process = 4

comm.send (data,dest=destination process)
print ("sending data %s " %data + \
"to process %d" %destination process)

if rank==1:
destination process = 8
data= "hello"
comm.send (data,dest=destination process)
print ("sending data %s :" %data + \
"to process %d" %destination process)

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

if rank==4:

data=comm.recv (source=0)

print

("data received is = %s" %data)

if rank==8:

datal=comm.recv (source=1)

print

To run the script, type the following:

("datal received is = %s" %datal)

C:\>mpiexec -n 9 python pointToPointCommunication.py

This is the output that you'll get after you run the script:

('"my rank is
('my rank is
sending data
('my rank is
('my rank is
sending data
('my rank is
('my rank is

('"my rank is

data received is

('"my rank is

datal received is

('my rank is

hello

7

7

7

7

5)
1)

:to process 8

3)
0)

10000000 to process 4

7

7

7

7

7

2)
7)
4)

10000000

8)

6)

We ran the example with a total number of processes equal to nine. So in the communicator
group, comm, we have nine tasks that can communicate with each other:

comm=MPI.COMM WORLD

Also, to identify a task or processes inside the group, we use their rank value:

rank = comm.rank

We have two sender processes and two receiver processes.

102

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The process of a rank equal to zero sends numerical data to the receiver process of a rank
equal to four:

if rank==0:
data= 10000000
destination process = 4
comm.send (data,dest=destination process)

Similarly, we must specify the receiver process of rank equal to four. Also, we note that the
comm. recv statement must contain as an argument, the rank of the sender process:

if rank==4:
data=comm.recv (source=0)

For the other sender and receiver processes, the process of a rank equal to one and the
process of a rank equal to eight, respectively, the situation is the same but the only difference
is the type of data. In this case, for the sender process, we have a string that is to be sent:

if rank==1:
destination process = 8
data= "hello"
comm.send (data,dest=destination process)

For the receiver process of a rank equal to eight, the rank of the sender process is pointed out:

if rank==8:
datal=comm.recv (source=1)

The following figure summarizes the point-to-point communication protocol in mpi4py:

sender receiver

send Request to send

receive

Permission to send

P
\

DATA

\

~
pd

y

The send/receive transmission protocol

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

It is a two-step process, consisting of sending some data from one task (sender) and of
receiving these data by another task (receiver). The sending task must specify the data to be
sent and their destination (the receiver process), while the receiving task has to specify the
source of the message to be received.

There's more...

The comm. send () and comm.recv () functions are blocking functions; they block the caller
until the buffered data involved can safely be used. Also in MPI, there are two management
methods of sending and receiving messages:

» The buffered mode
» The synchronous mode

In the buffered mode, the flow control returns to the program as soon as the data to be sent
has been copied to a buffer. This does not mean that the message is sent or received. In
the synchronous mode, however, the function only gets terminated when the corresponding
receive function begins receiving the message.

Avoiding deadlock problems

A common problem we face is that of the deadlock. This is a situation where two (or more)
processes block each other and wait for the other to perform a certain action that serves
to another, and vice versa. The mpi4py module doesn't provide any specific functionality to
resolve this but only some measures, which the developer must follow to avoid problems of
deadlock.

How to do it...

Let's first analyze the following Python code, which will introduce a typical deadlock problem;
we have two processes, rank equal to one and rank equal to five, that communicate which
each other and both have the data sender and data receiver functionality:

from mpi4py import MPI
comm=MPI.COMM_WORLD

rank = comm.rank
print ("my rank is : " , rank)

104

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

if rank==1:
data_send= "a"
destination process = 5
source_process = 5

data received=comm.recv(source=source process)
comm.send (data_ send,dest=destination process)

print ("sending data %s " %data_send + \
"to process %d" %destination process)
print ("data received is = %s" %data received)

if rank==5:
data_send= "b"
destination process = 1
source_process = 1

comm.send (data send,dest=destination process)
data received=comm.recv (source=source process)

print ("sending data %s :" %data_send + \
"to process %d" %destination process)
print ("data received is = %s" %data received)

If we try to run this program (it makes sense to execute it with only two processes), we note
that none of the two processes are able to proceed:

C:\>mpiexec -n 9 python deadLockProblems.py

('"my rank is : ', 8)
('"my rank is : ', 3)
('"my rank is : ', 2)
('"my rank is : ', 7)
('"my rank is : ', 0)
('"my rank is : ', 4)
('"my rank is : ', 6)

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

Both prepare to receive a message from the other and get stuck there. This happens because
the function MPI comm. recv () as well as the comm. send () MPI blocks them. It means that
the calling process waits for their completion. As for the comm. send () MPI, the completion
occurs when the data has been sent and may be overwritten without modifying the message.
The completion of the comm. recv () MPI, instead, is when the data has been received and
can be used. To solve the problem, the first idea that occurs is to invert the comm. recv ()
MPI with the comm. send () MPI in this way:

if rank==1:
data_send= "a"
destination process = 5
source_process = 5
comm.send (data_send,dest=destination process)
data received=comm.recv (source=source_ process)

if rank==5:
data_send= "b"
destination process = 1
source_process = 1
data received=comm.recv (source=source_ process)
comm.send (data_send,dest=destination process)

This solution, however, even if correct from the logical point of view, not always ensures the
avoidance of a deadlock. Since the communication is carried out through a buffer, where the
comm. send () MPI copies the data to be sent, the program runs smoothly only if this buffer
is able to hold them all. Otherwise, there is a deadlock: the sender cannot finish sending
data because the buffer is committed and the receiver cannot receive data as it is blocked
by a comm. send () MPI, which is not yet complete. At this point, the solution that allows us
to avoid deadlocks is used to swap the sending and receiving functions so as to make them
asymmetrical:

if rank==1:
data_send= "a"
destination process = 5
source_process = 5
comm.send (data_send,dest=destination process)
data received=comm.recv (source=source_ process)

if rank==5:
data_send= "b"
destination process = 1
source_process = 1
comm.send (data_send,dest=destination process)
data received=comm.recv (source=source_ process)

106

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Finally, we get the correct output:

C:\>mpiexec -n 9 python deadLockProblems.py

('"my rank is : ', 7)
('‘my rank is : ', 0)
('‘my rank is : ', 8)
('"my rank is : ', 1)

sending data a to process 5
data received is = b

('‘my rank is : ', 5)

sending data b :to process 1

data received is = a

('my rank is : ', 2)
('‘my rank is : ', 3)
('‘my rank is : ', 4)
('‘my rank is : ', 6)

The solution to the deadlock is not the only solution. There is, for example, a particular
function that unifies the single call that sends a message to a given process and receives
another message that comes from another process. This function is called Sendrecv:

Sendrecv (self, sendbuf, int dest=0, int sendtag=0, recvbuf=None, int
source=0, int recvtag=0, Status status=None)

As you can see, the required parameters are the same as the comm. send () MPI and the
comm.recv () MPI. Also, in this case, the function blocks, but compared to the two already
seen previously it offers the advantage of leaving the communication subsystem responsible
for checking the dependencies between sending and receiving, thus avoiding the deadlock. In
this way the code of the previous example becomes as shown:

if rank==1:
data_send= "a"
destination process = 5
source_process = 5
data received=comm.sendrecv(data send,dest=destination process,
source =source_process)
if rank==5:
data_send= "b"

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

destination process = 1

source_process = 1

data received=comm.sendrecv(data send,dest=destination process,
source=source_process)

Collective communication using broadcast

During the development of a parallel code, we often find ourselves in the situation where we
have to share between multiple processes the value of a certain variable at runtime or certain
operations on variables that each process provides (presumably with different values).

To resolve this type of situations, the communication trees are used (for example the process
0 sends data to the processes 1 and 2, which respectively will take care of sending them to
the processes 3, 4, 5, and 6, and so on).

Instead, MPI libraries provide functions ideal for the exchange of information or the use of
multiple processes that are clearly optimized for the machine in which they are performed.

O O O O

Broadcasting data from process O to processes 1, 2, 3, and 4

A communication method that involves all the processes belonging to a communicator is
called a collective communication. Consequently, a collective communication generally
involves more than two processes. However, instead of this, we will call the collective
communication broadcast, wherein a single process sends the same data to any other
process. The mpi4py functionalities in the broadcast are offered by the following method:

buf = comm.bcast (data_to_share, rank of root process)

This function simply sends the information contained in the message process root to every
other process that belongs to the comm communicator; each process must, however, call it by
the same values of root and comm.

108

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

Let's now see an example wherein we've used the broadcast function. We have a root process
of rank equal to zero that shares its own data, variable to_ share, with the other
processes defined in the communicator group:

from

comm
rank

mpi4py import MPI

= MPI.COMM_WORLD
= comm.Get rank()

if rank == O0:

variable to share = 100

else:

variable to share

variable to_ share

print ("process =

sqn

None

= comm.bcast (variable to share, root=0)

$rank + " variable shared = %4 " \

$variable to share)

The output obtained with a communicator group of ten processes is:

C:\>mpiexec

process
process
process
process
process
process
process
process
process

process

1
N B v Ul A W N O O

-n 10 python broadcast.py

variable
variable
variable
variable
variable
variable
variable
variable
variable

variable

shared
shared
shared
shared
shared
shared
shared
shared
shared

shared

The process root of rank zero instantiates a variable, variabile to share, equal to 100.
This variable will be shared with the other processes of the communication group:

if rank == O0:

100
100
= 100
= 100
= 100
= 100
= 100
= 100
= 100
= 100

variable to share = 100

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

To perform this, we also introduce the broadcasting communication statement:
variable_to_share = comm.bcast (variable_to_share, root=0)

Here, the parameters in the function are the data to be shared and the root process or main
sender process, as denoted in the previous figure. When we run the code, in our case, we
have a communication group of ten processes, variable to_ share is shared between the

others processes in the group. Finally, the print statement visualizes the rank of the running
process and the value of its variable:

print ("process = %d" %rank + " variable shared = %d " \

$variable to share)

There's more...

Collective communication allows simultaneous data transmission between multiple processes
in a group. In mpi4py the collective communication are provided only in their blocking version
(they block the caller method until the buffered data involved can safely be used.)

The most commonly collective operations are:
» Barrier synchronization across the group's processes
» Communication functions:
o Broadcasting data from one process to all process in the group

o Gathering data from all process to one process
o Scattering data from one process to all process

» Reduction operation

Collective communication using scatter

The scatter functionality is very similar to a scatter broadcast but has one major difference,
while comm.bcast sends the same data to all listening processes, comm. scatter can

send the chunks of data in an array to different processes. The following figure illustrates
the functionality of scatter:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Scattering data from process O to processes 1, 2, 3, 4

The comm. scatter function takes the elements of the array and distributes them to the
processes according to their rank, for which the first element will be sent to the process zero,
the second element to the process 1, and so on. The function implemented in mpi4py is as
follows:

recvbuf = comm.scatter (sendbuf, rank of root process)

How to do it...

In the next example, we see how to distribute data to different processes using the scatter
functionality:

from mpi4py import MPI

comm = MPI.COMM_ WORLD
rank = comm.Get rank ()

if rank == O0:
array to share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10]

else:
array to_share = None

recvbuf = comm.scatter (array to share, root=0)
print ("process = %d" %rank + " recvbuf = %d " %array to_ share)

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism
The output of the preceding code is, as follows:

C:\>mpiexec -n 10 python scatter.py

process = 0 variable shared =1
process = 4 variable shared = 5
process = 6 variable shared = 7
process = 2 variable shared = 3
process = 5 variable shared = 6
process = 3 variable shared = 4
process = 7 variable shared = 8
process = 1 variable shared = 2
process = 8 variable shared = 9
process = 9 variable shared = 10

The process of rank zero distributes the array to_share data structure to other processes:
array to_share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10]

The recvbuf parameter indicates the value of the ith variable that will be sent to the ith
process through the comm. scatter statement:

recvbuf = comm.scatter (array to share, root=0)

We also remark that one of the restrictions to comm. scatter is that you can scatter as many
elements as the processors you specify in the execution statement. In fact attempting
to scatter more elements than the processors specified (three in this example), you will get
an error like this:
C:\> mpiexec -n 3 python scatter.py
Traceback (most recent call last):

File "scatter.py", line 13, in <module>

recvbuf = comm.scatter (array to share, root=0)

File "Comm.pyx", line 874, in mpi4py.MPI.Comm.scatter (c:\users\utente\
appdata

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

\local\temp\pip-build-hl4iaj\mpid4py\src\mpi4py.MPI.c:73400)

File "pickled.pxi", line 658, in mpi4py.MPI.PyMPI scatter (c:\users\
utente\app

datallocal\temp\pip-build-hl4iaj\mpid4py\src\mpi4py.MPI.c:34035)

File "pickled.pxi", line 129, in mpi4py.MPI. p Pickle.dumpv (c:\users\
utente\a

ppdatal\local\temp\pip-build-hl4iaj\mpi4py\src\mpid4py.MPI.c:28325)
ValueError: expecting 3 items, got 10

mpiexec aborting job...

job aborted:

rank: node: exit codel: error messagel
0: Utente-PC: 123: mpiexec aborting job
1l: Utente-PC: 123

2: Utente-PC: 123

There's more...

The mpi4py library provides two other functions that are used to scatter data:

» comm.scatter (sendbuf, recvbuf, root=0): This sends data from one
process to all other processes in a communicator.

» comm.scatterv(sendbuf, recvbuf, root=0):This scatters data from one
process to all other processes in a group that provides different amount of data and
displacements at the sending side.

The sendbuf and recvbuf arguments must be given in terms of a list (as in, the point-to-
point function comm. send):

buf = [data, data size, data_ typel]

Here, data must be a buffer-like object of the size data_size and of the type data_type.

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

Collective communication using gather

The gather function performs the inverse of the scatter functionality. In this case, all
processes send data to a root process that collects the data received. The gather function
implemented in mpi4py is, as follows:

recvbuf = comm.gather (sendbuf, rank of root process)

Here, sendbuf is the data that is sent and rank of root process represents the process
receiver of all the data:

O © OO

Gathering data from processes 1, 2, 3, 4

How to do it...

In the following example, we wanted to represent just the condition shown in the preceding
figure. Each process builds its own data that is to be sent to the root processes that are
identified with the rank zero:

from mpi4py import MPI

comm = MPI.COMM_ WORLD
size = comm.Get size()
rank = comm.Get rank ()
data = (rank+1)**2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

data = comm.gather (data, root=0)
if rank == 0:
print ("rank = %s " %rank +\
"...receiving data to other process")
for i in range(l,size):
datal[i] = (i+1)**2
value = datal[i]
print (" process %s receiving %s from process %$s"\
% (rank , value , 1))

Finally, we run the code with a group of processes equal to five:

C:\>mpiexec -n 5 python gather.py

rank = 0 ...receiving data to other process
process 0 receiving 4 from process 1
process 0 receiving 9 from process 2
process 0 receiving 16 from process 3
process 0 receiving 25 from process 4

The root process zero receives data from the other four processes, as we represented in the
previous figure.

We have n processes sending their data:
data = (rank+1l)**2
If the rank of the process is zero, then the data is collected in an array:

if rank == 0:
for i in range(l,size):
datal[i] = (i+1)**2
value = datal[i]

The gathering of data is given instead by the following function:

data = comm.gather (data, root=0)

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

There's more...

To collect data, mpi4py provides the following functions:

» gathering to one task: comm.Gather, comm.Gatherv, and comm.gather

» gathering to all tasks: comm.Allgather, comm.Allgatherv, and comm.
allgather

Collective communication using Alltoall

The Alltoall collective communication combines the scatter and gather functionality.
In mpi4py, there are three types of Al1toall collective communication:

» comm .Alltoall (sendbuf, recvbuf): The all-to-all scatter/gather sends data
from all-to-all processes in a group

» comm.Alltoallv(sendbuf, recvbuf): The all-to-all scatter/gather vector sends
data from all-to-all processes in a group, providing different amount of data and
displacements

» comm.Alltoallw(sendbuf, recvbuf): Generalized all-to-all communication
allows different counts, displacements, and datatypes for each partner

How to do it...

In the following example, we'll see a mpi4py implementation of comm.Alltoall. We
consider a communicator group of processes, where each process sends and receives an
array of numerical data from the other processes defined in the group:

from mpi4py import MPI
import numpy

comm = MPI.COMM WORLD
size = comm.Get size()
rank = comm.Get rank ()

a size =1
senddata

(rank+1) *numpy.arange (size,dtype=int)
recvdata = numpy.empty(size*a size,dtype=int)
comm.Alltoall (senddata, recvdata)

print (" process %s sending %s receiving %s"
% (rank , senddata , recvdata))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We run the code with a communicator group of five processes and the output we get is as

follows:

C:\>mpiexec -n 5 python alltoall.py

process
process
process
process

process

0

1
2
3
4

sending
sending
sending
sending

sending

[0 1
[0 2
[o
[o
[o

2
4
3
4
5

The comm.alltoall method takes the ith object from sendbuf of the task j and copies it
into the jth object of the recvbuf argument of the task i.

3 4] receiving [0 0 O O O]
6 8] receiving [1 2 3 4 5]
6 9 12] receiving [2 4 6 8 10]
8 12 16] receiving [3 6 9 12 15]
10 15 20] receiving [4 8 12 16 20]

We could also figure out what happened using the following schema:

8

10

3 4 0 0 0 0 0
6 8 1 2 3 4 5
Alltotall
9 12 # 2 4 6 8 10
12 16 3 6 9 12 15
15 20 4 8 12 16 20

The Alltoall collective communication

The following are our observations regarding the schema:

» The process PO contains the data array [0 1 2 3 4], where it assigns 0 to itself, 1 to
the process P1, 2 to the process P2, 3 to the process P3, and 4 to the process P4.

» The process P1 contains the data array [0 2 4 6 8], where it assigns 0 to PO, 2 to
itself, 4 to the process P2, 6 to the process P3, and 8 to the process PA4.

» The process P2 contains the data array [0 3 6 9 12], where it assigns 0 to PO, 3 to
the process P1, 6 to itself, 9 to the process P3, and 12 to the process P4.

» The process P3 contains the data array [0 4 8 12 16], where it assigns 0 to PO, 4 to
the process P1, 8 to the process P2, 12 to itself, and 16 to the process P4.

» The process P4 contains the data array [0 5 10 15 20], where it assigns 0 to PO, 5 to
the process P1, 10 to the process P2, 15 to the process, and P3 and 20 to itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

There's more...

All-to-all personalized communication is also known as total exchange. This operation is
used in a variety of parallel algorithms, such as the Fast Fourier transform, matrix transpose,
sample sort, and some parallel database join operations.

The reduction operation

Similar to comm.gather, comm. reduce takes an array of input elements in each process
and returns an array of output elements to the root process. The output elements contain the
reduced result.

In mpi4py, we define the reduction operation through the following statement:

comm.Reduce (sendbuf, recvbuf, rank of root process, op = type of
reduction operation)

We must note that the difference with the comm.gather statement resides in the op
parameter, which is the operation that you wish to apply to your data, and the mpi4py module
contains a set of reduction operations that can be used. Some of the reduction operations
defined by MPI are:

» MPI.MaAX: This returns the maximum element

» MPI.MIN: This returns the minimum element

» MPI.SUM: This sums up the elements

» MPI.PROD: This multiplies all elements

» MPI.LAND: This performs a logical operation and across the elements

» MPI.MAXLOC: This returns the maximum value and the rank of the process
that owns it

» MPI.MINLOC: This returns the minimum value and the rank of the process
that owns it

How to do it...

Now, we'll see how to implement a sum of an array of elements with the reduction operation
MP1I.SUM, using the reduction functionality. Each process will manipulate an array of size
three. For array manipulation, we used the functions provided by the numpy Python module:

import numpy

import numpy as np
from mpi4py import MPI
comm = MPI.COMM WORLD

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

size comm.size

rank = comm.rank

array size = 3
recvdata = numpy.zeros (array size,dtype=numpy.int)

senddata = (rank+1l)*numpy.arange (a_size,dtype=numpy.int)
print (" process %s sending %s " % (rank , senddata))

comm.Reduce (senddata, recvdata, root=0, op=MPI.SUM)

print ('on task',6 rank, 'after Reduce: data = ',recvdata)

It makes sense to run the code with a communicator group of three processes, that is, the

size of the manipulated array. Finally, we obtain the result as:

C:\>mpiexec -n 3 python reduction2.py
process 2 sending [0 3 6]

on task 2 after Reduce: data = [0 0 0]
process 1 sending [0 2 4]
on task 1 after Reduce: data = [0 0 0]

process 0 sending [0 1 2]

on task 0 after Reduce: data = [0 6 12]

To perform the reduction sum, we use the comm.Reduce statement and also identify with
rank zero, the root process, which will contain recvbuf, that represents the final result of the

computation:

comm.Reduce (senddata, recvdata, root=0, op=MPI.SUM)

Also, we must note that with the op=MP1I . SUM option, we apply the sum operation to all of the
elements of the column array. To better understand how the reduction operates, let's take a

look at the following figure:

sendbuf reduction

MPIL.SUM
recvbuf

sl 0 6

The reduction collective communication

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

The sending operation is as follows:

» The process PO sends the data array [0 1 2]
» The process P1 sends the data array [0 2 4]
» The process P2 sends the data array [0 3 6]

The reduction operation sums the ith elements of each task and then puts the result in the ith
element of the array in the root process PO.

For the receiving operation, the process PO receives the data array [0 6 12].

How to optimize communication

An interesting feature that is provided by MPI concerns the virtual topologies. As already
noted, all the communication functions (point-to-point or collective) refer to a group of
processes. We have always used the MPI_COMM_WORLD group that includes all processes.

It assigns a rank 0 to n-1 for each process that belongs to a communicator of the size n.
However, MPI allows us to assign a virtual topology to a communicator. It defines a particular
assignment of labels to the different processes. A mechanism of this type permits you to
increase the execution performance. In fact, if you build a virtual topology, then every node
will communicate only with its virtual neighbor, optimizing the performance.

For example, if the rank was randomly assigned, a message could be forced to pass to many
other nodes before it reaches the destination. Beyond the question of performance, a virtual
topology makes sure that the code is more clear and readable. MPI provides two building
topologies. The first construct creates Cartesian topologies, while the latter creates any kind of
topologies. Specifically, in the second case, we must supply the adjacency matrix of the graph
that you want to build. We will deal only with Cartesian topologies, through which it is possible
to build several structures that are widely used: mesh, ring, toroid, and so on. The function
used to create a Cartesian topology is, as follows:

comm.Create_ cart ((number of rows,number of columns))

Here, number of rows and number of columns specify the rows and columns of the grid
that is to be made.

How to do it...

In the following example, we see how to implement a Cartesian topology of the size MxN. Also,
we define a set of coordinates to better understand how all the processes are disposed:

from mpi4py import MPI
import numpy as np

120

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

UP =0

DOWN =

LEFT = 2

RIGHT = 3

neighbour processes = [0,0,0,0]

if name == " main ":
comm = MPI.COMM_ WORLD

rank = comm.rank
size = comm.size

grid rows = int (np.floor (np.sqgrt (comm.size)))
grid column = comm.size // grid_rows

if grid rows*grid column > size:

grid column -= 1

if grid rows*grid column > size:
grid rows -= 1

if (rank == 0)

print ("Building a %d x %d grid topology:"\

)

% (grid rows, grid column))

cartesian communicator = \
comm.Create_cart (\
(grid_rows, grid column), \
periods=(True, True), reorder=True)
my mpi row, my mpi col = \
cartesian communicator.Get coords\
(cartesian communicator.rank)

neighbour_ processes [UP], neighbour processes [DOWN] \
= cartesian communicator.Shift (0, 1)
neighbour_ processes [LEFT], \
neighbour processes[RIGHT] = \
cartesian communicator.Shift (1, 1)
print ("Process = %s \
row = %$s \
column = %s ----> neighbour processes[UP] = %s \
neighbour processes [DOWN] = %s \
neighbour processes [LEFT] =%s neighbour processes[RIGHT]=%s" \
% (rank, my mpi row, \
my mpi_ col,neighbour processes[UP], \

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

neighbour processes [DOWN], \
neighbour processes[LEFT] , \
neighbour processes [RIGHT]))

By running the script, we obtain the following result:

C:\>mpiexec -n 4 python virtualTopology.py
Building a 2 x 2 grid topology:

Process = 0 row = 0 column = 0 ---->
neighbour processes[UP] = -1

neighbour processes[DOWN] = 2

neighbour processes|[LEFT] =-1

neighbour processes[RIGHT]=1

Process = 1 row = 0 column = 1 ---->

neighbour processes|[UP] = -1

1]
w

neighbour processes [DOWN]

]
o

neighbour processes|[LEFT]

]
1
[

neighbour processes[RIGHT]

Process = 2 row = 1 column = 0 ---->
neighbour processes[UP] = 0
neighbour processes[DOWN] = -1
neighbour processes|[LEFT] =-1

neighbour processes[RIGHT]=3

Process = 3 row = 1 column = 1 ---->
neighbour processes[UP] = 1
neighbour processes[DOWN] = -1

neighbour processes[LEFT] =2
neighbour processes[RIGHT]=-1
For each process, the output should read as: if neighbour processes = -1,thenithas

no topological proximity; otherwise, neighbour processes shows the rank of the process
closely.

122

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The resulting topology is a mesh of 2x2 (refer to the previous figure for a mesh

representation), the size of which is equal to the number of processes in the input,
that is, four:

grid rows = int (np.floor (np.sqgrt (comm.size)))
grid column = comm.size // grid rows
if grid rows*grid column > size:
grid column -= 1
if grid rows*grid column > size:
grid rows -= 1

Then, the Cartesian topology is built:

cartesian communicator = comm.Create cart(\

(grid rows, grid column), periods=(False, False), reorder=True)

To find out the position of the ith process, we use the Get _coords () method in the following
form:

my mpi row, my mpi col = cartesian communicator.Get coords(cartesian
communicator.rank)

For each process, in addition to their coordinates, we calculated

and got to know which processes are topologically closer. For

this purpose, we used the comm.Shift function comm.Shift (rank

source, rank dest)

In this form we have:

neighbour processes[UP], neighbour processes[DOWN] = \ cartesian
communicator.Shift (0, 1)

neighbour processes[LEFT], neighbour processes[RIGHT] = \ cartesian_
communicator.Shift (1, 1)

www.it-ebooks.info

http://www.it-ebooks.info/

Process-based Parallelism

The obtained topology is shown in the following figure:

The virtual mesh 2x2 topology

To obtain a toroidal topology of the size MxN, we need the following lines of code:

cartesian_communicator = comm.Create_cart((grid rows, grid_column),
periods=(True, True), reorder=True)

This corresponds to the following output:

C:\>mpiexec -n 4 python VirtualTopology.py
Building a 2 x 2 grid topology:
Process = 0 row = 0 column = 0 ---->
neighbour processes [UP] = 2
neighbour processes [DOWN] = 2
neighbour processes [LEFT] =1
neighbour processes [RIGHT]=1

Process = 1 row = 0 column = 1 ---->
neighbour processes [UP] = 3
neighbour processes [DOWN] = 3
neighbour processes [LEFT] =0
neighbour processes [RIGHT] =0

Process = 2 row = 1 column = 0 ---->
neighbour processes[UP] = 0
neighbour processes [DOWN] = 0
neighbour processes [LEFT] =3 neighbour processes[RIGHT] =3
Process = 3 row = 1 column = 1 ---->
neighbour processes[UP] = 1
neighbour processes [DOWN] = 1
neighbour processes [LEFT] =2
neighbour processes [RIGHT] =2

www.it-ebooks.info

http://www.it-ebooks.info/

Also, it covers the topology represented here:

The virtual toroidal 2x2 topology

Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous
Programming

In this chapter, we will cover the following recipes:

» How to use the concurrent . futures Python module
» Event loop management with Asyncio

» Handling coroutines with Asyncio

» Task manipulation with Asyncio

» Dealing with Asyncio and Futures

Introduction

With the sequential and parallel execution model, there is a third model, called the
asynchronous model, that is of fundamental importance to us along with the concept of event
programming. The execution model of asynchronous activities can be implemented using a
single stream of main control, both in uniprocessor systems and multiprocessor systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

In the asynchronous model of a concurrent execution, various tasks intersect with the
timeline, and all of this happens under the action of a single flow of control (single-threaded).
The execution of a task can be suspended and then resumed, but this alternates the time of
other tasks. The following figure expresses this concept in a clear manner:

Task 1 Task 2 Task 3

v

Time

Asynchronous programming model

As you can see, the tasks (each with a different color) are interleaved with one another, but
they are in a single thread of control; this implies that when one task is in execution, the
other tasks are not. A key difference between the multithreaded programming model and the
single-threaded asynchronous concurrent model is that in the first case, the operating system
decides on the timeline, whether to suspend the activity of a thread and start another, while
in the second case, the programmer must assume that a thread may be suspended and
replaced with another at any time.

The programmer can program a task as a sequence of smaller steps that are executed
intermittently; so if a task uses the output of another, the dependent task must be written to
accept its input.

Using the concurrent.futures Python

modules

With the release of Python 3.2, the concurrent . future module was introduced, which
allows us to manage concurrent programming tasks, such as process and thread pooling,
nondeterministic execution flows, and processes and thread synchronization.

This package is built by the following classes:

» concurrent.futures.Executor: This is an abstract class that provides methods
to execute calls asynchronously.

» submit (function ,argument): This schedules the execution of a function
(called callable) on the arguments.

128

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

» map (function,argument): This executes the function on arguments in an
asynchronous mode.

» shutdown (Wait = True): This signals the executor to free any resource.

» concurrent.futures.Future: This encapsulates the asynchronous execution
of a callable function. Future objects are instantiated by submitting tasks (functions
with optional parameters) to executors.

Executors are abstractions that are accessed through their subclasses: thread or process
ExecutorPools. In fact, instantiation of threads and process is a resource-demanding task,
so it is better to pool these resources and use them as repeatable launchers or executors
(hence, the executors concept) for parallel or concurrent tasks.

Dealing with the process and thread pool

A thread or process pool (also called pooling) indicates a software manager that is used to
optimize and simplify the use of threads and/or processes within a program. Through the
pooling, you can submit the task (or tasks) that are to be executed to the pooler. The pool

is equipped with an internal queue of tasks that are pending and a number of threads or
processes that execute them. A recurring concept in pooling is reuse: a thread (or process) is
used several times for different tasks during its lifecycle. It decreases the overhead of creating
and increasing the performance of the program that takes advantage of the pooling. Reuse is
not a rule, but it is one of the main reasons that lead a programmer to use pooling in his/her
application.

Task Queue

@@@@©O—0O—

= OIQIQIOIC
- (e|

Task Completed

Pooling management

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

Getting ready

The current . Futures module provides two subclasses of the Executor class,
respectively, which manipulates a pool of threads and a pool of processes asynchronously.
The two subclasses are as follows:

» concurrent.futures.ThreadPoolExecutor (max_workers)
» concurrent.futures.ProcessPoolExecutor (max_workers)

The max_workers parameter identifies the max number of workers that execute the call
asynchronously.

How to do it...

The following example shows you the functionality of process and thread pooling. The task

to be performed is that we have a list of numbers from one to 10, number 1list. For each
element of the list, a count is made up to 10,000,000 (just to waste time) and then the latter
number is multiplied with the ith element of the list.

By doing this, the following cases are evaluated:

» Sequential execution
» Athread pool with 5 workers

Consider the following code:

#
Concurrent.Futures Pooling - Chapter 4 Asynchronous Programming

#

import concurrent.futures
import time

number list = [1,2,3,4,5,6,7,8,9,10]

def evaluate item(x):
#count...just to make an operation
result item = count (x)
#print the input item and the result
print ("item " + str(x) + " result " + str(result item))

def count (number)
for i in range(0,10000000) :
i=i+1
return i*number

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

if name == " main ":

##Sequential Execution
start time = time.clock()
for item in number list:
evaluate item(item)
print ("Sequential execution in " + \
str(time.clock() - start time), "seconds")

##Thread pool Execution
start _time 1 = time.clock()
with concurrent.futures.ThreadPoolExecutor (max_workers=5) \
as executor:
for item in number list:
executor.submit (evaluate item, item)
print ("Thread pool execution in " + \
str(time.clock() - start time 1), "seconds")

##Process pool Execution
start _time 2 = time.clock()
with concurrent.futures.ProcessPoolExecutor (max_workers=5)\
as executor:
for item in number list:
executor.submit (evaluate item, item)
print ("Process pool execution in " + \
str(time.clock() - start time 2), "seconds")

After running the code, we have the following results with the execution time:

C:\Python CookBook\Chapter 4- Asynchronous Programming\ spython
Process pool with concurrent futures.py
item 1 result 10000000

item 2 result 20000000
item 3 result 30000000
item 4 result 40000000
item 5 result 50000000
item 6 result 60000000
item 7 result 70000000
item 8 result 80000000

item 9 result 90000000
item 10 result 100000000
Sequential execution in 17.241238674183425 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

item
item
item
item
item
item
item
item
item
item
Thre

item
item
item
item
item
item
item
item
item
item
Proc

result 40000000
result 20000000
result 10000000
result 50000000
result 30000000
result 70000000
result 60000000
result 80000000
10 result 100000000
9 result 90000000
ad pool execution in 17.14648646290675 seconds

W O W Ul RN

result 30000000
result 10000000
result 20000000
result 40000000
result 50000000
result 60000000
result 70000000
result 90000000

8 result 80000000

10 result 100000000
ess pool execution in 9.913172716938618 seconds

O J o0 U1 BN P W

We build a list of numbers stored in number 1ist and for each element in the list, we
operate the counting procedure until 100,000,000 iterations. Then, we multiply the resulting
value for 100,000,000:

def

def

132

evaluate item(x) :
#icount...just to make an operation
result item = count (x)

count (number)
for i in range(0,10000000) :
i=i+1

return i*number

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4
In the main program, we execute the task that will be performed in a sequential mode:

if __name_ == "_main_ ":
for item in number list:
evaluate item(item)

Also, in a parallel mode, we will use the concurrent . futures module's pooling capability
for a thread pool:

with concurrent.futures.ThreadPoolExecutor (max_workers=5) \
as executor:
for item in number_ list:
executor.submit (evaluate_item, item)

The ThreadPoolExecutor executes the given task using one of its internally pooled
threads. It manages five threads working on its pool. Each thread takes a job out from the
pool and executes it. When the job is executed, it takes the next job to be processed from the
thread pool.

When all the jobs are processed, the execution time is printed:

print ("Thread pool execution in " + \
str(time.clock() - start time 1), "seconds")

For the process pooling implemented by the ProcessPoolExecutor class, we have:

with concurrent.futures.ProcessPoolExecutor (max_ workers=5)\
as executor:
for item in number_ list:
executor.submit (evaluate_item, item)

Like ThreadPoolExecutor, the ProcessPoolExecutor class is an executor

subclass that uses a pool of processes to execute calls asynchronously. However, unlike
ThreadPoolExecutor, the ProcessPoolExecutor uses the multiprocessing module,
which allows us to outflank the global interpreter lock and obtain a shorter execution time.

The pooling is used in almost all server applications, where there is a need to handle more
simultaneous requests from any number of clients. Many other applications, however, require
that each task should be performed instantly or you have more control over the thread that
executes it. In this case, pooling is not the best choice.

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

Event loop management with Asyncio

The Python module Asyncio provides facilities to manage events, coroutines, tasks and
threads, and synchronization primitives to write concurrent code. The main components and
concepts of this module are:

» An event loop: The Asyncio module allows a single event loop per process

» Coroutines: This is the generalization of the subroutine concept. Also, a coroutine
can be suspended during the execution so that it waits for external processing (some
routine in 1/0) and returns from the point at which it had stopped when the external
processing was done.

» Futures: This defines the Future object, such as the concurrent . futures
module that represents a computation that has still not been accomplished.

» Tasks: This is a subclass of Asyncio that is used to encapsulate and manage
coroutines in a parallel mode.

In this recipe, the focus is on handling events. In fact, in the context of asynchronous
programming, events are very important since they are inherently asynchronous.

What is an event loop

Within a computational system, the entity that can generate events is called an event source,
while the entity that negotiates to manage an event is called the event handler. Sometimes,
there may be a third entity called an event loop. It realizes the functionality to manage all the
events in a computational code. More precisely, the event loop acts cyclically during the whole
execution of the program and keeps track of events that have occurred within a data structure
to queue and then process them one at a time by invoking the event handler if the main
thread is free. Finally, we report a pseudocode of an event loop manager:

while (1) {

events = getEvents();
for (e in events)
processEvent (e) ;

}

All the events in the while loop are caught and then processed by the event handler. The
handler that processes an event is the only activity that takes place in the system. When the
handler has ended, the control is passed on to the next event that is scheduled.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Getting ready

Asyncio provides the following methods that are used to manage an event loop:

>

loop = get event loop (): Using this, you can get the event loop for the current
context.

loop.call later(time delay, callback, argument): This arranges for the
callback that is to be called after the given time delay seconds.

loop.call soon(callback, argument): This arranges for a callback that is to
be called as soon as possible. The callback is called after call soon () returns and
when the control returns to the event loop.

loop.time (): This returns the current time, as a float value, according to the event
loop's internal clock.

asyncio.set_event loop (): This sets the event loop for the current context to
loop.

asyncio.new_event loop (): This creates and returns a new event loop object
according to this policy's rules.

loop.run_ forever (): This runs until stop () is called.

How to do it...

In this example, we show you how to use the loop event statements provided by the Asyncio
library to build an application that works in an asynchronous mode. Let's consider the
following code:

import asyncio

import datetime

import time

def function 1(end time, loop):

print ("function 1 called")
if (loop.time() + 1.0) < end time:

loop.call later(l, function 2, end time, loop)
else:

loop.stop ()

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

def function 2(end time, loop):

print ("function 2 called ")
if (loop.time() + 1.0) < end time:

loop.call later(l, function 3, end time, loop)
else:

loop.stop ()

def function 3(end time, loop):

print ("function 3 called")
if (loop.time() + 1.0) < end time:

loop.call later(l, function 1, end time, loop)
else:

loop.stop ()

def function 4 (end time, loop):

print ("function 5 called")
if (loop.time() + 1.0) < end time:

loop.call later(l, function 4, end time, loop)
else:

loop.stop ()

loop = asyncio.get event loop()

end loop = loop.time() + 9.0
loop.call soon(function 1, end loop, loop)
#loop.call soon(function 4, end loop, loop)

loop.run forever ()
loop.close()

The output of the preceding code is as follows:

C:\Python Parallel Programming INDEX\Chapter 4- Asynchronous
Programming >python asyncio loop.py
function 1 called

function 2 called

function 3 called

function 1 called

function 2 called

function 3 called

function 1 called

function 2 called

function 3 called

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In this example, we defined three asynchronous tasks, where each task calls the subsequent
in the order, as shown in the following figure:

Task 1 Task 2 Task 3

v

Time

Task execution in the example
To accomplish this, we need to capture the event loop:
loop = asyncio.get event loop()
Then, we schedule the first call to function 1 () bythe call_ soon construct:

end loop = loop.time() + 9.0
loop.call soon(function 1, end loop, loop)

Let's note the definition of function 1:

def function 1(end time, loop):

print ("function 1 called")
if (loop.time() + 1.0) < end time:

loop.call later(l, function 2, end time, loop)
else:

loop.stop ()

This defines the asynchronous behavior of the application with the following arguments:
» end_time: This defines the upper time limit within function_1 and makes the call
to function_ 2 throughthe call later method

» loop: This is the loop event that was captured previously with the get _event
loop () method

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

The task of function_1 is pretty simple, which is to print its name, but it could also be more
computationally intensive:

print ("function 1 called")

After performing the task, it is compared to 1oop.time () with the total length of the run;
the total number of the cycles is 12 and if it is not passed this time, then it is executed with
the call later method with a delay of 1 second:

if (loop.time() + 1.0) < end time:
loop.call later(l, function 2, end time, loop)
else:
loop.stop ()

For funcion 2 () and function 3 (), the operation is the same.
If the running time expires, then the loop event must end:

loop.run forever()
loop.close ()

Handling coroutines with Asyncio

We saw, in the course of the various examples presented, that when a program becomes
very long and complex, it is convenient to divide it into subroutines, each of which realizes a
specific task for which it implements a suitable algorithm. The subroutine cannot be executed
independently, but only at the request of the main program, which is then responsible for
coordinating the use of subroutines. Coroutines are a generalization of the subroutine. Like a
subroutine, the coroutine computes a single computational step, but unlike subroutines, there
is no main program that can be used to coordinate the results. This is because the coroutines
link themselves together to form a pipeline without any supervising function responsible for
calling them in a particular order. In a coroutine, the execution point can be suspended and
resumed later after keeping track of its local state in the intervening time. Having a pool of
coroutines, it is possible to interleave their computations: run the first one until it yields the
control back, then run the second, and so on down the line.

The control component of the interleave is the even loop, which was explained in the previous
recipe. It keeps track of all the coroutines and schedules when they will be executed.

The other important aspects of coroutines are, as follows:

» Coroutines allow multiple entry points that can be yielded multiple times

» Coroutines can transfer the execution to any other coroutines

138

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The term "yield" is used to describe a coroutine that pauses and passes the control flow to
another coroutine. Since coroutines can pass values along with the control flow to another
coroutine, the phrase "yielding a value" is used to describe the yielding and passing of a value
to the coroutine that receives the control.

Getting ready

To define a coroutine with the Asyncio module, we simply use an annotation:

import asyncio

@asyncio.coroutine

def coroutine_ function(function_arguments)
DO_SOMETHING

How to do it...

In this example, we will see how to use the coroutine mechanism of Asyncio to simulate
a finite state machine of five states. A finite state machine or automaton (FSA) is a
mathematical model that is widely used not only in engineering disciplines, but also in
sciences, such as mathematics and computer science. The automata through which we
want to simulate the behavior is as follows:

Finite state machine

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

In the preceding diagram, we have indicated with S0, S1, $2, $3, and S4 the states of the
system. Here, 0 and 1 are the values for which the automata can pass from one state to the
next (this operation is called a transition). So for example, the state S0 can be passed to the
state S1 only for the value 1 and SO can be passed to the state $2 only for the value 0. The
Python code that follows, simulates a transition of the automaton from the state S0, the so-
called Start State, up to the state $4, the End State:

#Asyncio Finite State Machine

import asyncio
import time
from random import randint

@asyncio.coroutine
def StartState():
print ("Start State called \n")
input value = randint(0,1)
time.sleep (1)
if (input_value == 0):
result = yield from State2 (input_value)
else
result = yield from Statel (input_value)
print ("Resume of the Transition : \nStart State calling "\
+ result)

@asyncio.coroutine
def Statel(transition value):

outputValue = str(("State 1 with transition value = %s \n"\
% (transition_value)))
input value = randint(0,1)
time.sleep (1)
print ("...Evaluating...")
if (input_value == 0):
result = vyield from State3 (input_ value)
else

result = yield from State2 (input_value)
result = "State 1 calling " + result
return (outputValue + str(result))

@asyncio.coroutine
def State2(transition value):

140

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

outputValue = str(("State 2 with transition value = %s \n" \
% (transition value)))

input value = randint(0,1)

time.sleep(1)

print ("...Evaluating...")

if (input value == 0):

result = yield from Statel (input_ value)
else

result = yield from State3 (input value)
result = "State 2 calling " + result
return (outputValue + str(result))

@asyncio.coroutine
def State3(transition value):

outputValue = str(("State 3 with transition value = %s \n" \
% (transition value)))

input value = randint(0,1)

time.sleep(1)

print ("...Evaluating...")

if (input value == 0):

result = yield from Statel (input value)
else

result = yield from EndState (input value)
result = "State 3 calling " + result
return (outputValue + str(result))

@asyncio.coroutine
def EndState(transition value):
outputValue = str(("End State with transition value = %s \n"\
% (transition value)))
print ("...Stop Computation...")
return (outputValue)

if name == " main ":
print ("Finite State Machine simulation with Asyncio Coroutine")
loop = asyncio.get event loop()
loop.run until complete(StartState())

After running the code, we have an output similar to this:

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter
4>python asyncio state machine.py

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

Finite State Machine simulation with Asyncio Coroutine

Start State called
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Evaluating. ..
.Stop Computation...

Resume of the Transition

Start State calling State 1 with transition value = 1
State 1 calling State 3 with transition value = 0
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 3 with transition value = 1
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 1 with transition value = 0
State 1 calling State 3 with transition value = 0
State 3 calling State 1 with transition value = 0
State 1 calling State 2 with transition value = 1
State 2 calling State 3 with transition value = 1
State 3 calling End State with transition value = 1

Each state of the automata has been defined with the following annotation:
@asyncio.coroutine
For example, the state S0 is defined as:

@asyncio.coroutine

def StartState() :
print ("Start State called \n")
input value = randint(0,1)

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

time.sleep(1)
if (input value == 0):

result = yield from State2 (input value)
else

result = yield from Statel (input_ value)

The transition to the next state is determined by input_value, which is defined by the
randint (0,1) function of Python's module random. This function provides randomly the
value O or 1. In this manner, it randomly determines to which state the finite state machine
will be passed:

input value = randint(0,1)

After determining the value at which state the finite state machine will be passed, the
coroutine calls the next coroutine using the command yield from:

if (input value == 0):
result = yield from State2 (input value)
else
result = yield from Statel (input_ value)

The variable result is the value that each coroutine returns. It is a string, and by the end of the
computation, we can reconstruct the transition from the initial state of the automation, the
Start State, up to the final state, the End State.

The main program starts the evaluation inside the event loop as:

if mname == " main ":
print ("Finite State Machine simulation with Asyncio Coroutine")
loop = asyncio.get event loop ()
loop.run until complete(StartState())

Task manipulation with Asyncio

Asyncio is designed to handle asynchronous processes and concurrent task executions on an
event loop. It also provides us with the asyncio.Task () class for the purpose of wrapping
coroutines in a task. Its use is to allow independently running tasks to run concurrently with
other tasks on the same event loop. When a coroutine is wrapped in a task, it connects the
task to the event loop and then runs automatically when the loop is started, thus providing a
mechanism to automatically drive the coroutine.

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

Getting ready

The Asyncio module provides us with the asyncio.Task (coroutine) method to handle
computations with tasks. It schedules the execution of a coroutine. A task is responsible
for the execution of a coroutine object in an event loop. If the wrapped coroutine yields
from a future, the task suspends the execution of the wrapped coroutine and waits for the
completion of the future.

When the future is complete, the execution of the wrapped coroutine restarts with the result
or the exception of the future. Also, we must note that an event loop only runs one task at a
time. Other tasks may run parallelly if other event loops run in different threads. While a task
waits for the completion of a future, the event loop executes a new task.

How to do it...

In the following sample code, we've shown you how three mathematical functions can be
executed concurrently by the Asyncio.Task () statement:

Asyncio using Asyncio.Task to execute three math function in parallel

import asyncio

@asyncio.coroutine
def factorial (number) :
f =1
for i in range (2, number+l) :

print ("Asyncio.Task: Compute factorial(%s)" % (1))
yield from asyncio.sleep (1)
f o*= 1

print ("Asyncio.Task - factorial (%$s) = %s" % (number, £f))

@asyncio.coroutine
def fibonacci (number) :
a, b =20, 1
for i in range (number) :
print ("Asyncio.Task: Compute fibonacci (%s)" % (1))
yield from asyncio.sleep (1)
a, b=Db, a+ b
print ("Asyncio.Task - fibonacci (%$s) = %s" % (number, a))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

@asyncio.coroutine
def binomialCoeff (n, k):
result = 1
for i in range(1l, k+1):
result = result * (n-i+1) / i
print ("Asyncio.Task: Compute binomialCoeff (%s)" % (1))
yield from asyncio.sleep (1)
print ("Asyncio.Task - binomialCoeff (%s , %s) = \

)

%$s" % (n,k,result))

if name == " main ":
tasks = [asyncio.Task(factorial(10)),
asyncio.Task (fibonacci (10)),
asyncio.Task (binomialCoeff (20,10))]
loop = asyncio.get event loop ()
loop.run until complete (asyncio.wait (tasks))
loop.close ()

The result of the preceding code is:

C:\ Python CookBook \Chapter 4- Asynchronous Programming\codes -
Chapter 4> python asyncio Task.py

Asyncio.Task: Compute factorial(2)
Asyncio.Task: Compute fibonacci (0)
Asyncio.Task: Compute binomialCoeff (1)
Asyncio.Task: Compute factorial (3)
Asyncio.Task: Compute fibonacci (1)
Asyncio.Task: Compute binomialCoeff (2)
Asyncio.Task: Compute factorial (4)
Asyncio.Task: Compute fibonacci (2)
Asyncio.Task: Compute binomialCoeff (3)
Asyncio.Task: Compute factorial (5)
Asyncio.Task: Compute fibonacci (3)
Asyncio.Task: Compute binomialCoeff (4)
Asyncio.Task: Compute factorial (6)
Asyncio.Task: Compute fibonacci (4)
Asyncio.Task: Compute binomialCoeff (5)
Asyncio.Task: Compute factorial (7)
Asyncio.Task: Compute fibonacci (5)
Asyncio.Task: Compute binomialCoeff (6)
Asyncio.Task: Compute factorial (8)
Asyncio.Task: Compute fibonacci (6)
Asyncio.Task: Compute binomialCoeff (7)
Asyncio.Task: Compute factorial (9)
Asyncio.Task: Compute fibonacci (7)

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

Asyncio.Task: Compute binomialCoeff (8)
Asyncio.Task: Compute factorial (10)
Asyncio.Task: Compute fibonacci (8)
Asyncio.Task: Compute binomialCoeff (9)
Asyncio.Task - factorial (10) = 3628800
Asyncio.Task: Compute fibonacci (9)
Asyncio.Task: Compute binomialCoeff (10)
Asyncio.Task - fibonacci(10) = 55

Asyncio.Task - binomialCoeff (20 , 10) = 184756.0

In this example, we defined three coroutines, factorial, fibonacci, and
binomialCoeff each of which, as explained previously, is identified by the @asyncio.
coroutine decorator:

@asyncio.coroutine
def factorial (number) :
do Something

@asyncio.coroutine
def fibonacci (number) :
do Something

@asyncio.coroutine
def binomialCoeff (n, k):
do Something

To perform these three tasks parallelly, we first put them in the list tasks, in the following
manner:

if mname == " main ":
tasks = [asyncio.Task(factorial(10)),
asyncio.Task (fibonacci (10)),
asyncio.Task (binomialCoeff (20,10))]

Then, we get the event loop:

loop = asyncio.get event loop()

146

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Next, we run the tasks:

loop.run until complete (asyncio.wait (tasks))
Here, asyncio.wait statement (tasks) waits for the given coroutines to complete.
In the last statement, we close the event loop:

loop.close ()

Dealing with Asyncio and Futures

Another key component of the Asyncio module is the Future class. This is very similar to
concurrent . futures.Futures, but of course, it is adapted in the main mechanism of
Asyncio's event loop. The asyncio.Future class represents a result (but can also be an
exception) that is not yet available. It therefore represents an abstraction of something that is
yet to be accomplished.

Callbacks that have to process any results are in fact added to the instances of this class.

Getting ready

To manage an object Future in Asyncio, we must declare the following:

import asyncio
future = asyncio.Future ()

The basic methods of this class are:

» cancel (): This cancels the future and schedules callbacks
» result (): This returns the result that this future represents
» exception (): This returns the exception that was set on this future

» add done callback (fn): This adds a callback that is to be run when future is
executed

» remove done callback (fn): This removes all instances of a callback from the
"call when done" list

» set result (result): This marks the future as complete and sets its result

» set exception (exception): This marks the future as complete and sets an
exception

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

How to do it...

The following example shows you how to use the Futures class for the management of two
coroutines first coroutine and second coroutine that perform the tasks, such as the
sum of the first n integers and second the factorial of n. The code is as follows:

Asyncio.Futures - Chapter 4 Asynchronous Programming
nmnn

import asyncio

import sys

#SUM OF N INTEGERS
@asyncio.coroutine
def first coroutine (future,N):

count = 0

for i in range(1l,N+1):

count=count + i
yield from asyncio.sleep (4)
future.set result ("first coroutine (sum of N integers) result = "\
+ str(count))

#FACTORIAL (N)
@asyncio.coroutine
def second coroutine (future,N) :
count = 1
for i in range (2, N+1):
count *= i
yield from asyncio.sleep(3)
future.set result ("second coroutine (factorial) result = "\
+ str(count))

def got result (future) :
print (future.result ())

148

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

if name == " main ":
N1 = int(sys.argv[1l])
N2 = int(sys.argv[2])

loop = asyncio.get event loop()

futurel = asyncio.Future ()
future2 = asyncio.Future ()
tasks = [

first coroutine (futurel,N1),
second_coroutine (future2,N2)]

futurel.add done callback(got result)
future2.add done callback(got result)

loop.run until complete (asyncio.wait (tasks))
loop.close ()

The following output is obtained after multiple runs:

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter
4>python Asyncio future.py 1 1

first coroutine (sum of N integers) result =1
second coroutine (factorial) result =1

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter
4>python Asyncio future.py 2 2

first coroutine (sum of N integers) result = 3
second coroutine (factorial) result = 2

C:\ Python CookBook\Chapter 4- Asynchronous Programming\codes -
Chapter 4>python Asyncio future.py 3 3

first coroutine (sum of N integers) result = 6
second coroutine (factorial) result = 6

C:\ Python CookBook\Chapter 4- Asynchronous Programming\codes -
Chapter 4>python Asyncio future.py 5 5

first coroutine (sum of N integers) result = 15
second coroutine (factorial) result = 120

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming

In the main program, we define the objects' future to associate the coroutines:

if name == " main ":
futurel = asyncio.Future ()
future2 = asyncio.Future ()

While defining the tasks, we pass the object future as an argument of coroutines:

tasks = [first coroutine(futurel,N1),
second coroutine (future2,N2)]

Finally, we add a callback that is to be run when the future gets executed:

futurel.add done callback(got result)
future2.add done callback(got result)

Here, got _result is a function that prints the final result of the future:

def got result (future) :
print (future.result())

In the coroutine wherein we pass the object future as an argument, after the computation, we
set a sleep time of 3 seconds for the first coroutine and 4 seconds for the second coroutine:

yield from asyncio.sleep(sleep time)

Then, we mark the future as complete and set its result with the help of future.set
result ().

Swapping the sleep time between the coroutines, we invert the output results (we first do that
for the second coroutine output):

C:\Python CookBook\Chapter 4- Asynchronous Programming\codes - Chapter
4>python Asyncio future.py 1 10

second coroutine (factorial) result = 3628800
first coroutine (sum of N integers) result =1
150

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

In this chapter, we will cover the following recipes:

>

Using Celery to distribute tasks

How to create a task with Celery

Scientific computing with SCOOP

Handling map functions with SCOOP

Remote method invocation with Pyro4

Chaining objects with Pyro4

Developing a client-server application with Pyro4
Communicating sequential processes with PyCSP
Using MapReduce with Disco

A remote procedure call with RPyC

Introduction

The basic idea of distributed computing is to break each workload into an arbitrary number
of tasks, usually indicated with the name, into reasonable pieces for which a computer in

a distributed network will be able to finish and return the results flawlessly. In distributed
computing, there is the absolute certainty that the machines on your network are always
available (latency difference, unpredictable crash or network computers, and so on). So, you
need a continuous monitoring architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

The fundamental problem that arises from the use of this kind of technology is mainly
focused on the proper management of traffic (that is devoid of errors both in transmission
and reception) of any kind (data, jobs, commands, and so on). Further, a problem stems from
a fundamental characteristic of distributed computing: the coexistence in the network of
machines that support different operating systems which are often incompatible with others.
In fact, the need to actually use the multiplicity of resources in a distributed environment has,
over time, led to the identification of different calculation models. Their goal is essentially

to provide a framework for the description of the cooperation between the processes of a
distributed application. We can say that, basically, the different models are distinguished
according to a greater or lesser capacity to use the opportunities provided by the distribution.
The most widely used model is the client-server model. It allows processes located on
different computers to cooperate in real time through the exchange of messages, thereby
achieving a significant improvement over the previous model, which requires the transfer

of all the files, in which computations are performed on the data offline. The client-server
model is typically implemented through remote procedure calls, which extend the scope of a
local call, or through the paradigm of distributed objects (Object-Oriented Middleware).This
chapter will then present some of the solutions proposed by Python for the implementation of
these computing architectures. We will then describe the libraries that implement distributed
architectures using the 00 approach and remote calls, such as Celery, SCOOP, Pyro4, and
RPyC, but also using different approaches, such as PyCSP and Disco, which are the Python
equivalent of the MapReduce algorithm.

Using Celery to distribute tasks

Celery is a Python framework used to manage a distributed task, following the Object-Oriented
Middleware approach. Its main feature consists of handling many small tasks and distributing
them on a large number of computational nodes. Finally, the result of each task will then be
reworked in order to compose the overall solution.

To work with Celery, we need the following components:

» The Celery module (of course!!)

» A message broker. This is a Celery-independent software component, the middleware,
used to send and receive messages to distributed task workers. A message broker
is also known as a message middleware. It deals with the exchange of messages in
a communication network. The addressing scheme of this type of middleware is no
longer of the point-to-point type but is a message-oriented addressing scheme. The
best known is the Publish/Subscribe paradigm.

152

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Broker will only dispatch

Messages awaiting dispatch more messages when the
to a consumer consumer has space
>} | <] Broker

Publish

Producer

Producer waits until notified

> Consumer sends an ack when
by the broker it has more

its consumed

The message broker architecture

Celery supports many types of message brokers—the most complete of which are RabbitMQ
and Redis.

How to do it...

To install Celery, we use the pip installer. In Command Prompt, just type the following:

pip install celery

After this, we must install the message broker. There are several choices available for us to
do this, but in our examples, we use RabbitMQ, which is a message-oriented middleware
(also called broker messaging), that implements the Advanced Message Queuing Protocol
(AMQP). The RabbitMQ server is written in Erlang, and it is based on the Open Telecom
Platform (OTP) framework for the management of clustering and failover. To install RabbitMQ,
download and run Erlang (http://www.erlang.org/download.html), and then just
download and run the RabbitMQ installer (http://www.rabbitmg.com/download.html).
It takes a few minutes to download and will set up RabbitMQ and run it as a service with a
default configuration.

Finally, we install Flower (http://flower.readthedocs.org), which is a web-based tool
used to monitor tasks (running progress, task details, and graphs and stats).

To install it, just type the following from Command Prompt:

pip install -U flower

www.it-ebooks.info

http://www.erlang.org/download.html
http://www.rabbitmq.com/download.html
http://flower.readthedocs.org
http://www.it-ebooks.info/

Distributed Python

Then, we can verify the Celery installation. In Command Prompt, just type the following:
C:\celery --version

After this, the text shown as follows should appear:

3.1.18 (Cipater)

The usage of Celery is pretty simple, as shown:

Usage: celery <command> [options]

Here, the options are as shown:

Options:
-A APP, --app=APP app instance to use (e.g. module.attr name)
-b BROKER, --broker=BROKER
url to broker. default is 'amgp://guest@
localhost//"
--loader=LOADER name of custom loader class to use.
--config=CONFIG Name of the configuration module

--workdi r=WORKING DIRECTORY
Optional directory to change to after

detaching.
-C, --no-color
-q, --quiet
--version show program's version number and exit
-h, --help show this help message and exit

» For more complete details about the Celery installation procedure, you can visit
www.celeryproject.com

How to create a task with Celery

In this recipe, we'll show you how to create and call a task using the Celery module. Celery
provides the following methods that make a call to a task:
» apply async(args[, kwargs[, ..]]):Thistask sends a task message

» delay(*args, **kwargs): Thisis a shortcutto send a task message, but does
not support execution options

www.it-ebooks.info

www.celeryproject.com
http://www.it-ebooks.info/

Chapter 5

The delay method is better to use because it can be called as a regular function:
task.delay(argl, arg2, kwargl='x',6 kwarg2='y')
While using apply async you should write:

task.apply async (args=[argl, arg2] kwargs={'kwargl': 'x', 'kwarg2':
'y'}

How to do it...

To perform this simple task, we implement the following two simple scripts:

###
addTask.py :Executing a simple task
###

from celery import Celery
app = Celery('addTask', broker='amgp://guest@localhost//")

@app . task
def add(x, y):
return x + y
while the second script is

###
#addTask.py : RUN the AddTask example with
###

import addTask

if __name_ == '_main_ ':
result = addTask.add.delay(5,5)

We must note again that the RabbitMQ service starts automatically on our server upon
installation. So, to execute the Celery worker server, we simply type the following command
from Command Prompt:

celery -A addTask worker --loglevel=info

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

The output is shown in the first Command Prompt:

.]
B Seleziona Prompt dei comandi - celery -A examplel worker --loglevel=info = | B ||

Hicrosoft Windows [Uersione 6.1.76811] -
Copyright (c> 208089 Microsoft Corporation. Tutti i diritti eisewwati.

C:sUserssUtentesDesktopsPython CookBook+Python Parallel Programming INDEX“Chapter 5 - Dist
pibuted Pythonschapter 4 — codes>celery —A examplel worker ——loglevel=info A
[2815-85-38 14:49:11.374: YARNING-MainProcess] C:“\Python33slibssite—packagesscelerysappssu =
orker_py:161: CDeprecationWarning:

Btarting from version 3.2 Celery will refuse to accept pickle by default.

The pickle serializer is a security concern as it may give attackers

the ability to execute any command. It’s important to secure

your broker from unauthorized access when using pickle,. zo we think

that enabling pickle should require a deliberate action and not he

the default choice.

If you depend on pickle then vou should set a setting to disable this
arning and to be sure that everything will continue working

hen you upgrade to Celery 3.2::
CELERY_ACCEPT_CONTENI = [‘pickle’. ®json’. 'msgpack’, ‘yaml’]

fou must only enable the zerializewrs that you will actually use.

warnings .warn(CDeprecationWarning{W_PICKLE_DEPRECATED)>
celeryBlitente-PC v3.1_.18 {(Cipaterd
Windows—7-6.1.7681-5F1

[configl

.> app: tasks :Bx2a8df 70

.2 transpopt: angp:/sguest 2*edlocalhost 15672,/
.» results: disahle

.» concurrency: 2 C{prefork)

[queues]
.? celery exchange=celery(direct? key=celery

[tasks]
- examplel.add

[2815-85-3@ 14:49:11.512: INFO-/MainProcess] Connected to amgp://guest:z»*=@127_8.8.1:5672//
[2015-@5-38 14:49:11,688: INFO-MainProcess] mingle: searching for neighbors

[2015-0A5—-38 14:49:12.621: INFO/MainProcess] mingle: all alone

[2015-A5-30 14:49:12,.648: WARNING/MainProcess] celeryBlUtente—-PC ready.

Let's note the warnings in the output to disable pickle as a serializer for security concerns.
The default serialization format is pickle simply because it is convenient (it supports the task
of sending complex Python objects as task arguments). Whether you use pickle or not, you
may want to turn off this warning by setting the CELERY ACCEPT CONTENT configuration
variable; for reference, take a look at http://celery.readthedocs.org/en/latest/
configuration.html.

Now, we launch the addTask_main script from a second Command Prompt:

BN Prompt dei comandi‘ . m. - m" - E@é]

:NUserssUtentesDesktopi\Python CookBook“Python Parallel Programming INDER“Chapter 5 — Dist‘
ibuted Pythonschapter 4 — codes>python addTask_main.py_

156

www.it-ebooks.info

http://celery.readthedocs.org/en/latest/configuration.html
http://celery.readthedocs.org/en/latest/configuration.html
http://www.it-ebooks.info/

Chapter 5

Finally, the result from the first Command Prompt should be like this:

[2015-A5—3A 15:19:37,.123: INFO-MainProcess] Connected to amgp:/- guest:=*=@3127_ A.A.1:5672//
[2015-A5—-3@ 15:19:37.231: INFI’MainProcess] mingle: searching for neighbors
z19: : INFO-MainProcess] mingle: all alone
= UARNING-MainProcess] celerylUtente—-PC ready.
: INF0-MainProcess] Received task: addTask.add[2cBaf4c3-72%a—4a38-

: INFO-MainProcess] Task addTask.add[2cBaf4c3-92%9a—4a38-9582-8d453h
: INFOsMainProcess] Received task: addTask.add[4bB76fad4-18c?-4d%e—
: INFO-MainProcess] Task addTask.add[4bB76fa4-18c9-4d%e—%ab6d-bAbdb

@5-30 15:31:42,.148: INFO-MainProcess] Received task: addTask.add[fe3?1d19-a8%f-408a—
af 21-d?f £ 79cdd??51
[2015-A5-38 15:31:42,144: INFO/MainProcess] Task addTask.add[fe391d19-aB89f-48Ba—af21-d7ff7
2cdd??5]1 succeeded in Bs: 18

The result is 10 (you can read it in the last line), as we expected.

Let's focus on the first script, addTask . py. In the first two lines of code, we create a Celery
application instance that uses the RabbitMQ service ad broker:

from celery import Celery
app = Celery('addTask', broker='amgp://guest@localhost//')

The first argument in the Celery function is the name of the current module (addTask . py)
and the second argument is the broker keyboard argument, which indicates the URL used to
connect the broker (RabbitMQ). Then, we introduce the task. Each task must be added with
the annotation (decorator) @app . task.

The decorator helps Celery to identify which functions can be scheduled in the task queue.
After the decorator, we create the task that the workers can execute. Our first task will be a
simple function that performs the sum of two numbers:

@app.task
def add(x, y):
return x + y

In the second script, AddTask_main.py, we call our task by using the delay () method:

if name == ' main ':
result = addTask.add.delay(5,5)

Let's remember that this method is a shortcut to the apply async () method, which gives
us greater control of the task execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

There's more...

If RabbitMQ operates under its default configuration, Celery can connect with no other
information other than amgp: //scheme.

Scientific computing with SCOOP

Scalable Concurrent Operations in Python (SCOOP) is a Python module to distribute
concurrent tasks (called Futures) on heterogeneous computational nodes. Its architecture is
based on the @MQ package, which provides a way to manage Futures between the distributed
systems. The main application of SCOOP resides in scientific computing that requires the
execution of many distributed tasks using all the computational resources available.

To distribute its futures, SCOOP uses a variation of the broker patterns:

. . worker

worker

Worker origin

worker

broker

. . o

The SCOOP architecture

worker

The central element of the communication system is the broker that interacts with all the
independent workers to dispatch messages between them. The Futures are created in the
worker elements instead of the central node (the broker) with a centralized serialization
procedure. This makes the topology architecture more reliable and makes performance better.
In fact, the broker's main workload consists of networking and interprocess |I/0 between
workers with relatively low CPU processing time.

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Getting ready

The SCOOP module is available at https://github.com/soravux/scoop/ and its
software dependencies are as follows:

» Python>=2.60r>=3.2

» Distribute >= 0.6.2 or setuptools >= 0.7

» Greenlet>=0.3.4

» pyzmg >= 13.1.0 and libzmqg >= 3.2.0

» SSH for remote execution
SCOOP can be installed on Linux, Mac, and Windows machines. Like Disco, its remote usage
requires an SSH software, and it must be enabled as a password-less authentication between
every computing node. For a complete reference about the SCOOP installation procedure, you

can read the information guide at http://scoop.readthedocs.org/en/0.7/install.
html.

On a Windows machine, you can install SCOOP simply by typing the following command:
pip install SCOOP
Otherwise, you can type the following command from SCOOP's distribution directory:

Python setup.py install

How to do it...

SCOOQP is a library full of functionality that is primarily used in scientific computing problems.
Among the methods used to find a solution to these problems that are computationally
expensive, there is the Monte Carlo algorithm. A complete discussion of this method would
take up many pages of a book, but in this example, we want to show you how to parallelize a
Monte Carlo method for the solution of the following problem, the calculation of the number ,
using the features of SCOOP. So, let's consider the following code:

import math

from random import random
from scoop import futures
from time import time

www.it-ebooks.info

https://github.com/soravux/scoop/
http://scoop.readthedocs.org/en/0.7/install.html
http://scoop.readthedocs.org/en/0.7/install.html
http://www.it-ebooks.info/

Distributed Python

def evaluate number of points in unit circle(attempts) :
points fallen in unit disk = 0
for i in range (0,attempts)
x = random()
y = random/()
radius = math.sgrt(x*x + y*y)
#ithe test is ok if the point fall in the unit circle
if radius < 1
#if ok the number of points in a disk is increased
points fallen in unit disk = \
points fallen in unit disk + 1
return points fallen in unit disk

def pi calculus with Montecarlo Method(workers, attempts):
print ("number of workers %i - number of attempts %i"

% (workers, attempts))
bt = time()
#in this point we call scoop.futures.map function
#the evaluate number of points_in unit_circle \
#function is executed in an asynchronously way
#and several call this function can be made concurrently
evaluate task = \

futures.map (evaluate points in circle,
[attempts] * workers)

taskresult= sum(evaluate task)

print ("%i points fallen in a unit disk after " \
% (Taskresult/attempts))
pivalue = (4. * Taskresult/ float (workers * attempts))
computationalTime = time() - bt
print ("value of pi = " + str(pivValue))
print ("error percentage = " + \
str((((abs(pivalue - math.pi)) * 100) / math.pi)))
print ("total time: " + str(computationalTime))
if name == " main ":

for i in range (1,4):
#let's fix the numbers of workers...only two,
#but it could be much greater
pi calculus_with Montecarlo Method (i*1000, 1*1000)
print (" ")

160

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

To run a SCOOP program, you must open Command Prompt and type the following
instructions:

python -m scoop name file.py
For our script, we'll expect output like this:
C:\Python CookBook\Chapter 5 - Distributed Python\chapter 5 -

codes>python -m scoop pi_calculus with montecarlo method.py

[2015-06-01 15:16:32,685] launcher INFO SCOOP 0.7.2 dev on win32
using Python 3.3.0 (v3.3.0:bd8afb90e

bf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)], API: 1013

[2015-06-01 15:16:32,685] launcher INFO Deploying 2 worker(s) over 1
host (s) .

[2015-06-01 15:16:32,685] launcher INFO Worker d--istribution:
[2015-06-01 15:16:32,686] launcher INFO 127.0.0.1: 1+
origin

Launching 2 worker(s) using an unknown shell.

number of workers 1000 - number of attempts 1000

785 points fallen in a unit disk after

value of pi = 3.140636

error percentage = 0.03045122952842962

total time: 10.258585929870605

number of workers 2000 - number of attempts 2000
1570 points fallen in a unit disk after

value of pi = 3.141976

error percentage = 0.012202295220195048

total time: 20.451170206069946

number of workers 3000 - number of attempts 3000
2356 points fallen in a unit disk after

value of pi = 3.1413777777777776

error percentage = 0.006839709526630775

total time: 32.3558509349823

[2015-06-01 15:17:36,894] launcher (127.0.0.1:59239) INFO Root
process is done.

[2015-06-01 15:17:36,896] launcher (127.0.0.1:59239) INFO Finished
cleaning spawned subprocesses.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

The correct value of pi becomes more precise as we increase the number of attempts and
workers.

@ o0 O
O

Monte Carlo evaluation of m: counting points inside the circle

The code presented in the preceding section is just one of the many implementations of
the Monte Carlo method for the calculation of . The evaluate points in circle
() function is taken randomly and then given a point of coordinates (x, ¥), and then it is
determined whether or not this point falls within the circle of the unit area.

Whenever the points fallen in unit_disk condition is verified, the variable is
incremented. When the inner loop of the function ends, it will represent the total number of
points falling within the circle. This number is sufficient to calculate the value of pi. In fact, the
probability that the point falls within the circumference is m/ 4, that is the ratio between the
area of the unit circle, equal to m and the area of the circumscribed square equal to 4.

So, by calculating the ratio between the number of points fallen inside the disc, taskresult,
and the number of shots made, workers * attempts, you obtain an approximation of /4 and
of course, also of the number m:

pivalue = (4. * taskresult / float (workers attempts *))
The SCOOP function is as shown:
futures.map (evaluate points in circle, [attempts] * workers)

This takes care of distributing the computational load between the available workers and at
the same time, collects all the results. It executes evaluate points in circleinan
asynchronous way and makes several calls to evaluate points in circle concurrently.

162

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Handling map functions with SCOOP

A common task that is very useful when dealing with lists or other sequences of data is to
apply the same operation to each element of the list and then collect the result. For example,
a list update may be done in the following way from the Python IDLE:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>updated items = []

>>>for x in items:

>>> updated items.append (x*2)

>>> updated items
>>> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

This is a common operation. However, Python has a built-in feature that does most of the
work.

The Python function map (aFunction, aSequence) applies a passed-in function to each
item in an iterable object and returns a list containing all the function call results. Now, the
same example would be:

>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>def multiplyFor2 (x) :return x*2

>>>print (list (map (multiplyFor2,items)))

>>>[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Here, we passed in the map function the user-defined function multiplyFor2. Itis applied to
each item in the items list, and finally, we collect the result in a new list that is printed.

Also, we can pass in a lambda function (a function defined and called without being bound to
an identifier) as an argument instead of a function. The same example now becomes:
>>>items = [1,2,3,4,5,6,7,8,9,10]

>>>print (list (map (lambda x:x*2,items)))

>>>[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

The map built-in function has performance benefits because it is faster than a manually
coded for loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

Getting ready

The SCOOP Python modules define more than one map function that allow asynchronous
computation that could be propagated to its workers. These functions are:

>

futures.map ((func, iterables, kargs):This returns a generator that
iterates the results in the same order as its inputs. It can thus act as a parallel
substitute for the standard Python map () function.

futures.map_as completed(func, iterables, kargs): This will yield
results as soon as they are made available.

futures. scoop.futures.mapReduce (mapFunc, reductionOp,
iterables, kargs): This allows us to parallelize a reduction function after we
apply the map () function. It returns a single element.

How to do it...

In this example, we'll compare the MapReduce version of SCOOP with its serial
implementation:

Compare SCOOP MapReduce with a serial implementation

import operator

import time

from scoop import futures

def simulateWorkload (inputData) :

def

time.sleep(0.01)
return sum(inputData)

CompareMapReduce () :
mapScoopTime = time.time ()
res = futures.mapReduce (
simulateWorkload,
operator.add,
list([a] * a for a in range(1000)),
)
mapScoopTime = time.time() - mapScoopTime
print ("futures.map in SCOOP executed in {0:.3f}s \
with result:{1}".format (

164

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

mapScoopTime,
res

)

mapPythonTime = time.time ()
res = sum(
map (
simulateWorkload,
list([a]l] * a for a in range(1000))

)
mapPythonTime = time.time() - mapPythonTime
print ("map Python executed in: {0:.3f}s \
with result: {1}".format (
mapPythonTime,
res

)

if name == ' main ':
CompareMapReduce ()

To evaluate the script, you must type the following command:

python -m scoop map reduce.py

> [2015-06-12 20:13:25,602] launcher INFO SCOOP 0.7.2 dev on win32
using Python 3.4.3 (v3.4.3:9b73flc3e601, Feb 24 2015, 22:43:06) [MSC
v.1600 32 bit (Intel)], API: 1013

[2015-06-12 20:13:25,602] launcher INFO Deploying 2 worker(s) over 1
host (s) .

[2015-06-12 20:13:25,602] launcher INFO Worker d--istribution:
[2015-06-12 20:13:25,602] launcher INFO 127.0.0.1: 1 + origin
Launching 2 worker(s) using an unknown shell.

futures.map in SCOOP executed in 8.459s with result: 332833500

map Python executed in: 10.034s with result: 332833500

[2015-06-12 20:13:45,344] launcher (127.0.0.1:2559) INFO Root process
is donme.

[2015-06-12 20:13:45,368] launcher (127.0.0.1:2559) INFO Finished
cleaning spawned subprocesses.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

In this example, we compare the SCOOP implementation of the MapReduce function with
the serial implementation. The core of the script is the CompareMapReduce () function
that contains the two implementations. Also in this function, we evaluate the execution time
according to the following schema:

mapScoopTime = tme.time ()

#Run SCOOP MapReduce
mapScoopTime = time.time () - mapScoopTime
mapPythonTime = time.time ()

#Run serial MapReduce
mapPythonTime = time.time() - mapPythonTime

Then in the output, we report the resulting time:

futures.map in SCOOP executed in 8.459s with result: 332833500
map Python executed in: 10.034s with result: 332833500

To obtain the comparable execution time, we simulate a computational workload that
introduces a time.sleep statement in the simulatedWordload function:

def simulateWorkload (inputData, chose=None) :
time.sleep(0.01)
return sum(inputData)

The SCOOP implementation of mapReduce is as follows:

res = futures.mapReduce (
simulateWorkload,
operator.add,
list([a]l] * a for a in range(1000)),

)
The futures-mapReduce function has the following arguments:
» simulateWork: This will be called to execute the Futures. We also need to

remember that a callable must return a value.

» operator.add: This will be called to reduce the Futures results. However, it also
must support two parameters and return a single value.

» list (...) : This is the iterable object that will be passed to the callable object as a
separate Future.

166

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The serial implementation of mapReduce is, as follows:

res = sum(
map (

simulateWorkload,

list([a] * a for a in range(1000))

)

The Python standard map () function has two arguments: the simulateWorkload function
and the 1ist () iterable object. However, to reduce the result, we used the Python function

sum.

Remote Method Invocation with Pyro4

Python Remote Objects (Pyro4) is a library that resembles Java's Remote Method Invocation
(RMI), which allows you to invoke a method of a remote object (that belongs to a different
process and is potentially on a different machine) almost as if the object were local (that is,

it belonged to the same process in which it runs the invocation). In this sense, the Remote
Method Invocation technology can be traced from a conceptual point of view. The idea of a
remote procedure call (RPC) is reformulated for the object-oriented paradigm (in which, of
course, the procedures are replaced by methods). The use of a mechanism for remote method
invocation in an object-oriented system entails the significant advantages of uniformity and
symmetry in the project, since it allows us to model the interactions between distributed
processes using the same conceptual tool that is used to represent the interactions between
the different objects of an application or the method call.

—

Client

I

Stubs

v
v

Transport

Application

\

Server

I

Skeletons

v
v

Transport

Remote Reference Layer (RRL)

\ Network /

RMI System

Remote Method Invocation

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

As you can see from the preceding figure, Pyro4 allows us to manage and distribute objects in
the client-server style. This means that the main parts of a Pyro4 system may switch from a
client called to a remote object to an object called to serve a function. It is important to note
that during the remote calling, there are always two distinct parts that a client and server
accepts and executes the client call. Finally, the entire management of this mechanism is
provided by Pyro4 in a distributed way.

Getting ready

The installation procedure is quite simple with the pip installer; from your command shell,
type: pip install pyro

Otherwise, you can download the complete package from https://github.com/irmen/
Pyro4 and install the package with the Python setup.py install command from the package
directory.

For our examples, we'll use a Python3.3 distro on a Windows machine.

How to do it...

In this example, we'll see how to build and use a simple client-server communication using the
Pyro4 middleware. So, we must have two Python scripts.

The code for the server (server.py) is:

import Pyro4

class Server (object) :
def welcomeMessage (self, name) :
return ("Hi welcome " + str (name))

def startServer() :
server = Server ()
daemon = Pyro4.Daemon ()
ns = Pyro4.locateNS()
uri = daemon.register (server)
ns.register ("server", uri)
print ("Ready. Object uri =", uri)
daemon . requestLoop ()

if __name_ == "_main_ ":
startServer ()

168

www.it-ebooks.info

https://github.com/irmen/Pyro4
https://github.com/irmen/Pyro4
http://www.it-ebooks.info/

Chapter 5

The code for the client (c1ient.py) is as follows:

import Pyro4

uri = input ("What is the Pyro uri of the greeting object? ") .strip()
name = input ("What is your name? ").strip()

server = Pyro4.Proxy ("PYRONAME:server")

print (server.welcomeMessage (name))

To run the example, we need a Pyro name server running. To do this, you can type the
following command from Command Prompt:

python -m Pyro4.naming

After this, you'll see the following message:

M — —
R e Pt L e
. e

sUserssUtente>python —m Pyrod.naming e
ot starting broadcast server for localhost. L
S running on localhost:9898 (127.8.8.1>

arning: HMAC key not set. Anyone can connect to this server?

RI = PYRO:Pyro.NameServer@localhost:7878

This means that the name server is running in your network. Then, you can start the server
and the client scripts in two separate console windows. To run the server, just type the
following;:

python server.py

Now, you'll see something similar to what is shown in the following screenshot:

:N\UserssUtentesDesktopsPython ConkBook\Python Parallel Programming INDER“Chapter 5 - Distributed Python\-—
hapter 5 - codes>python server.
eady. Object uri = PYRO:obj_| 6754335chh464calﬂBhd?cPfc132af9d@10ca1host L2862

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

To run the client, just type:

python client.py

After this, a message like this will appear:

insert the PYRO4 server URI (help : PYRONAME:server)

After the correct insertion, you must insert the name of the Pyro4 server, that is,
PYRONAME : server

insert the PYRO4 server URI (help : PYRONAME:server) PYRONAME:server
You'll see the following message asking you to type your name:
What is your name? Rashmi

Finally, you'll see a welcome message, Hi welcome Rashmi, as shown in the following
screenshot:

B Prompt dei comandi

Microsoft Windows [Uersione 6.1.76811
Copyright <c> 288? Microsoft Corporation. Tutti i diritti riservati.

C:xlUserssUtentesDesktopiPython CookBook“Fython Parallel Programming INDEX“\Chapter 5 — Distributed Python*
chapter 5 — codes>python client.py

insert the PYRO4 server URI Chelp : PYRONAME:server) PYRONAME:server

hat is your name? Rashmi

Hi welcome Rashmi

C:xlUserssUtentesDezsktopiPython CookBook“Fython Parallel Programming INDEX“Chapter 5 — Disztributed Python™
chapter 5 — codes>_

The server contains the object (the Server class) that can be accessed remotely. In our
example, this object only has the welcomeMessage () method that returns a string with
the name inserted in the client session:

class Server (object) :
def welcomeMessage (self, name) :
return ("Hi welcome " + str (name))

To start the server (the startServer () function), we must follow some simple steps:

1. Build the instance (hamed server) of the Server class: server = Server ().

170

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

2. Make a Pyro daemon: daemon = Pyro4.Daemon (). Pyro4 uses daemon objects to
dispatch incoming calls to appropriate objects. A server must create one daemon that
manages everything from its instance. Each server has a daemon that knows about

all the Pyro objects that the server provides.

3. To execute this script, we have to run a Pyro name server. So, we have to locate this

name server that runs: ns = Pyro4.locateNS ().

4. Then, we need to register the server as Pyro Object object. It will be known only
inside the Pyro daemon: uri = daemon.register (server). It returns the URI for

the registered object.

5. Finally, we can register the object server with a name in the name server:

ns.register ("server", uri).

6. The function ends with a call to daemon's eventloop method. It starts the event

loop of the server and waits for calls.

The Pyro4 API enables the developer to distribute objects in a transparent way. Our client
scripts send the requests to the server program to execute the welcomeMessage () method.
The remote call is performed first by creating a Proxy object. In fact, Pyro4 clients use proxy
objects to forward method calls to the remote objects and pass results back to the calling code:

server = Pyro4.Proxy ("PYRONAME:server")

Now, we'll call the server's method that prints a welcome message:

print (server.welcomeMessage (name))

Chaining objects with Pyro4

In this recipe, we'll show you how to create a chain of objects, which call each other, with

Pyro4. Let's suppose that we want to build a distributed architecture like this:

Client -

Server 3

Server 2

Chaining an object with Pyro4

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

We have four objects: a client and three servers disposed in a chain topology, as shown in the
preceding figure. The client forwards a request to Serverd and starts the chain call, forwarding
the request to Server2. Then, it calls the next object in the chain and Server3. The chain call
ends when Server3 calls Serverl again.

The example we're going to show highlights the aspects of the management of remote
objects, which can be easily extended to handle more complex distributed architectures.

How to do it...

To implement a chain of objects with Pyro4, we need five Python scripts. The first one is the
client (client.py). Here is the code for it:

from _ future import print_function
import Pyro4

obj = Pyro4.core.Proxy ("PYRONAME:example.chain.A")

)

print ("Result=%s" % obj.process(["hello"]))

Each server will be characterized by the parameter this, which identifies it in the chain, and
the parameter next, which defines the next server (that is, subsequent to this) in the chain.

For a visualization of the implemented chain you can see the figure associated with this recipe.

» server 1.py:
from _ future import print_function
import Pyro4
import chainTopology

this = "1v
next = "2"
servername = "example.chainTopology." + this

daemon = Pyro4.core.Daemon ()

obj = chainTopology.Chain(this, next)
uri = daemon.register (obj)

ns = Pyro4.naming.locateNS ()
ns.register (servername, uri)

enter the service loop.
print ("server %s started " % this)
daemon . requestLoop ()

172

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

server 2.py:

from _ future import print_function
import Pyro4

import chainTopology

this = "2"
next = "3"
servername = "example.chainTopology." + this

daemon = Pyro4.core.Daemon ()

obj = chain.chainTopology (this, next)
uri = daemon.register (obj)

ns = Pyro4.naming.locateNS ()
ns.register (servername, uri)

enter the service loop.
print ("server %s started " % this)
daemon . requestLoop ()

server 3.py:

from _ future import print_function
import Pyro4
import chainTopology

this = "3"
next = "1"
servername = "example.chainTopology." + this

daemon = Pyro4.core.Daemon ()

obj = chain.chainTopology (this, next)
uri = daemon.register (obj)

ns = Pyro4.naming.locateNS ()
ns.register (servername, uri)

enter the service loop.
print ("server %s started " % this)
daemon . requestLoop ()

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python
The last script is the chain object, as shown in the following code:
» chainTopology.py:

from _ future import print_function
import Pyro4

class Chain(object) :
def init_ (self, name, next):
self.name = name
self .nextName = next
self .next = None

def process(self, message) :
if self.next is None:
self.next = Pyro4.core.Proxy ("PYRONAME:example.chain."

+ self.nextName)

if self.name in message:

print ("Back at %s; the chain is closed!" % self.name)

return ["complete at " + self.name]
else:

print ("$s forwarding the message to the object %s" \

% (self.name, self.nextName))

message.append (self.name)
result = self.next.process (message)
result.insert (0, "passed on from " + self.name)
return result

To execute this example, start by running the Pyro4 name server:

C:>python -m Pyro4.naming

Not starting broadcast server for localhost.

NS running on localhost:9090 (127.0.0.1)

Warning: HMAC key not set. Anyone can connect to this server!
URI = PYRO:Pyro.NameServer@localhost:9090

Then, run the three servers. In three separate Command Prompts, type the python server
name.py command.

174

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

A message like this should appear after this for server 1:

Bl Prompt dei comandi - python server_Lpy - = | B |

icrosoft Windows [Versione 6.1.76811 -
opyright (c> 280%? Microsoft Corporation. Tutti i diritti risewvati.

s\UzersslUtentesDesktops\Python CookBook\Python Parallel Programming IMNDEX“Chapter 5 — Distributed Python
hapter 5 — codes>chain>python server_1.py
erver_1 started

For server 2, something similar to what is shown in the following screenshot will appear:

Bl Prompt dei comandi - python server_2py - = [B |

NUserssUtentesDesktops\Python CookBook\Python Parallel Programming IMNDEX“Chapter 5 — Distributed Python A“
hapter 5 — codes>chain>python server_2.py
erver_2 started

A message similar to what is shown in the following screenshot should appear for server 3:

Prompt dei comandi - python server_3, = | B
= Rl £z GG S R ——
icrosoft Windows [Versione 6.1.760811 -
opyright (c> 20@? Microsoft Corporation. Tutti i diritti risewrvati.

:sUserssUtentesDesktopiPython CookBook:Fython Parallel Programming INDEX-Chapter 5 — Distributed Python*
hapter 5 — codes™chain>python server_3.py
erver_3 started

Finally, you must run the client . py script from another command shell:

EX Prompt dei comandi SRS X

icrosoft Windows [Versione 6.1.76811 -
opyright (c> 2009 Microsoft Corporation. Tutti i diritti risewrvati.

sUserssUtentesDesktopiPython CookBook\Fython Parallel Programming INDEX-Chapter 5 — Distributed Python*
hapter 5 — codes“chain>python client.py
esult=['passed on from 1°’,. ‘passed on from 2’',. ‘passed on from 3°',. ‘complete at 1°1

The preceding message shows as a result the forwarding request passed across the three
servers, when it comes back to server 1 the task is completed. Also, here, we can focus
on the behavior of the object servers when the request is forwarded to the next object in
the chain. To see what happens next, refer to the message below the start message in the
following screenshot for server 1:

B Prompt dei comandi - python server_Lpy L= | (2] S

icrosoft Windows [Versione 6.1.76811]] -
opyright {(c> 280%? Microsoft Corporation. Tutti i diritti riservati.

s\UzersslUtentesDesktops\Python CookBook\Python Parallel Programming IMNDEX“Chapter 5 — Distributed Python
hapter 5 — codes>chain>python server_1.py

erver_1 started

forvarding the message to the obhject 2

forvarding the message to the ohject 2

ack at 1; the chain is closed?

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

The result of server 2 is as follows:

m e ez T =

-
:sUsersslUtentesDesktopsPython CookBook“\Python Parallel Programming IMDEX“Chapter 5 — Distributed Python“
hapter 5 — codes“chain>python server_2.py [

erver_2 started
forvarding the message to the obhject 3

The result of server_3 is as follows:

B Prompt dei comandi - python server_3.py

:sUserssUtentesDesktops\Python CookBook“\Python Parallel Programming INDEX“Chapter 5 — Distributed Python\-—
hapter 5 — codes™chain>python server_3.py

erver_3 started
forvarding the message to the ohject 1

The core of this example is the Chain class that we defined in the chainTopology.

py script. It allows communication between the three servers. In fact, each server calls
the class to find out which is the next element in the chain (refer to the method process in
chainTopology.py). Also, it executes the call with the Pyro4 . core.proxy statement:

if self.next is None:

self.next = Pyro4.core.Proxy ("PYRONAME:example.
chainTopology." + self.nextName)

If the chain is closed (the last call is done from server 3 to server 1), a closing message
is printed out:

if self.name in message:
o

print ("Back at %s; the chain is closed!" % self.name)
return ["complete at " + self.name]

A forwarding message is printed out if there is a next element in the chain:

)

print ("$s forwarding the message to the object %s" % (self.name, self.

nextName))
message.append (self.name)
result = self.next.process (message)
result.insert (0, "passed on from " + self.name)
return result
176

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The code for the server is the same and only differs on the definition of the current element
and the next element of the chain, for example, this is the definition for the first server
(server 1):

this = "1
next = "2"

The remaining lines of the following code define, in the same manner as the previous
example, the communication with the next element in the chain:

servername = "example.chainTopology." + this
daemon = Pyro4.core.Daemon ()

obj = chainTopology.Chain(this, next)

uri = daemon.register (obj)

ns = Pyro4.naming.locateNS ()

ns.register (servername, uri)
daemon . requestLoop ()

Finally, in the client script, we start the process by calling the first element (server 1) inthe
chain:

obj = Pyro4.core.Proxy ("PYRONAME:example.chainTopology.1l")

Developing a client-server application with

Pyro4

In this recipe, we'll show you how to build a simple client-server application with Pyro4. The
application that we'll show here is not complete, but is equipped with all the methods that
will successfully complete and improve it.

A client-server application indicates a network architecture in which, generally, a client
computer or terminal connects to a server for the use of a certain service, such as the sharing
of a certain resource hardware/software with other clients and relying on the underlying
protocol architecture. In our system, the server manages an online shopping site, while the
clients manage the customers that are registered on this site and connect to it for shopping.

How to do it...

For the sake of simplicity, we have three scripts. The first one represents the object client
in which we have customer management, the second script is the object shop, and the third
script is the object server.

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

For the server (server.py), the code is as follows:

#

The Shops server

#

from _ future import print_function

import Pyro4
import shop

ns = Pyro4.naming.locateNS ()

daemon = Pyro4.core.Daemon ()

uri = daemon.register (shop.Shop())

ns.register ("example.shop.Shop", uri)

print (list (ns.list (prefix="example.shop.") .keys()))
daemon.requestLoop ()

The code for the client (c1ient.py) is as follows:

from _ future import print_function
import sys
import Pyro4

A Shop client.
class client (object) :
def init_ (self, name , cash):
self.name = name
self.cash = cash
def doShopping deposit cash(self, Shop) :
print ("\n*** %s is doing shopping with %s:"\
% (self.name, Shop.name()))
print ("Log on")
Shop.logOn (self.name)
print ("Deposit money %s" %self.cash)
Shop.deposit (self.name, self.cash)
print ("balance=%.2f" % Shop.balance (self.name))
print ("Deposit money %s" %self.cash)
Shop.deposit (self.name, 50)
print ("balance=%.2f" % Shop.balance (self.name))
print ("Log out")
Shop.logOut (self .name)

def doShopping buying a book(self, Shop) :
print ("\n*** %s is doing shopping with %s:"\

178

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

)

% (self.name, Shop.name()))

print ("Log on")

Shop.logOn (self.name)

print ("Deposit money %s" %self.cash)

Shop.deposit (self.name, self.cash)

print ("balance=%.2f" % Shop.balance (self.name))

print ("%s is buying a book for %ss$"\
% (self .name,37))

Shop.buy (self .name,37)

print ("Log out")

Shop.logOut (self .name)

if name == ' main ':

ns = Pyro4.naming.locateNS()

uri = ns.lookup ("example.shop.Shop")
print (uri)

Shop = Pyro4.core.Proxy (uri)

meeta = client ('Meeta',50)

rashmi = client ('Rashmi',100)
rashmi.doShopping buying a book (Shop)
meeta.doShopping deposit cash (Shop)

print ("")

print ("")

print ("")

print ("")

print ("The accounts in the %s:" % Shop.name())
accounts = Shop.allAccounts()

for name in accounts.keys() :
print (" %s : %.2f"\

)

% (name, accounts [name]))

This is the code for the object shop (shop . py):

class Account (object) :

def init (self):
self. balance = 0.0

def pay(self, price):
self. balance -= price

def deposit(self, cash):
self. balance += cash

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

def

balance (self) :
return self. balance

class Shop (object) :

180

def

def

def

def

def

def

def

def

__init (self):

self.accounts = {}

self.clients = ['Meeta', 'Rashmi', 'John', 'Ken']
name (self) :

return 'BuyAnythingOnline'

logOn (self, name) :

if name in self.clients
self.accounts[name] = Account ()

else
self.clients.append (name)
self.accounts[name] = Account ()

logOut (self, name) :
print ('logout %s' %name)

deposit (self, name, amount) :
try:

return self.accounts [name] .deposit (amount)
except KeyError:

raise KeyError ('unknown account')

balance (self, name) :
try:

return self.accounts [name] .balance ()
except KeyError:

raise KeyError ('unknown account')

allAccounts (self) :
accs = {}
for name in self.accounts.keys() :
accs [name] = self.accounts[name] .balance ()
return accs

buy (self,name,price) :
balance = self.accounts[name] .balance ()
self.accounts [name] .pay (price)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5
To execute the code, you must first enable the Pyro4 name sever:

C:>python -m Pyro4.naming

Not starting broadcast server for localhost.

NS running on localhost:9090 (127.0.0.1)

Warning: HMAC key not set. Anyone can connect to this server!

URI = PYRO:Pyro.NameServer@localhost:9090

Then, start the server by using the python server.py command. A shell like the one shown
in the following screenshot will appear when you do this:

BEX Prompt dei comandi - python server.py | Elﬂlﬂ_hj

icrosoft Windows [Versione 6.1.760811 -
opyright (c> 2809 Microsoft Corporation. Tutti i diritti risewvati.

:sUsersslUtentesDesktopiPython CookBook“\Python Parallel Programming INDEX“Chapter 5 — Distributed Python
hapter 5 — codes“banks>python server.py
[’'example.shop.S8hop’ 1

Finally, you should start the customer simulation with the following command:

python client.py

The following text will be printed out with the use of the following command:
C:\Users\Utente\Desktop\Python CookBook\Python Parallel Programming
INDEX\Chapter 5 - Distributed Python)\

chapter 5 - codes\banks>python client.py
PYRO:0bj 8c4a5b4ae7554c2c9feee5b0113902e0@localhost:59225

*%% Rashmi is doing shopping with BuyAnythingOnline:
Log on

Deposit money 100

balance=100.00

Rashmi is buying a book for 37%

Log out

**%* Meeta is doing shopping with BuyAnythingOnline:
Log on
Deposit money 50

balance=50.00

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

Deposit money 50
balance=100.00

Log out

The accounts in the BuyAnythingOnline:
Meeta : 100.00
Rashmi : 63.00

This output shows a simple session for two customers, Meeta and Rashmi.

The server side of the application must locate the Shop () object, calling the statement:
ns = Pyro4.naming.locateNS()
Then, it must enable a communication channel:

daemon = Pyro4.core.Daemon ()

uri = daemon.register (shop.Shop())
ns.register ("example.shop.Shop", uri)
daemon . requestLoop ()

The shop . py script contains classes for account and shop management. The shop class
manages each account. It provides methods to log in and log out, manage customer's money,
and to buy items:

class Shop (object) :

def logOn (self, name) :
if name in self.clients

self.accounts [name] = Account ()
else

self.clients.append (name)

self.accounts [name] = Account ()

def logOut (self, name) :
print ('logout %s' %name)

def deposit(self, name, amount) :
try:
return self.accounts [name] .deposit (amount)
except KeyError:
raise KeyError ('unknown account')

182

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

def balance (self, name):
try:
return self.accounts[name] .balance ()
except KeyError:
raise KeyError ('unknown account')

def buy(self,name,price):
balance = self.accounts[name] .balance /()
self.accounts [name] .pay (price)

Each customer has their own Account object that provides methods for customer deposit
management:

class Account (object) :
def init (self):
self. balance = 0.0

def pay(self, price):
self. balance -= price

def deposit(self, cash):
self. balance += cash

def balance (self):
return self. balance

Finally, the client . py script contains the class that is used to start the simulation. In the
main program, we instantiate two customers, Rashmi and Meeta:

meeta = client ('Meeta',50)

rashmi = client ('Rashmi',100)
rashmi.doShopping buying a book (Shop)
meeta.doShopping deposit cash (Shop)

They deposit some cash end on the site and then start with their shopping as shown:

» Rashmi buys a book:

def doShopping buying a book(self, Shop) :
Shop.logOn (self.name)
Shop.deposit (self.name, self.cash)
Shop.buy (self .name,37)
Shop.logOut (self .name)

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

» Meeta twice deposits $100 in her account:

def doShopping deposit cash(self, Shop) :
Shop.logOn (self.name)
Shop.deposit (self.name, self.cash)
Shop.deposit (self.name, 50)
Shop.logOut (self .name)

» At the end of the simulation, the main program reports the count's deposit of Meeta
and Rashmi:

print ("The accounts in the %s:" % Shop.name())
accounts = Shop.allAccounts ()
for name in accounts.keys():
print (" %s : %.2f"\
% (name, accounts[name]))

Communicating sequential processes with

PyCSP

PyCSP is a Python module based on communicating sequential processes, which is a
programming paradigm developed to build concurrent programs via message passing. The
PyCSP module is characterized by:

» The exchange of messages between processes
» The possibility of using a thread to use shared memory
» The exchange of messages is done through channels

The channels allow:

» An exchange of values between processes
» The synchronization of processes

PyCSP allows the use of different channel types: One20ne, One2Any, Any20ne, and Any20ne.
These names indicate the number of writers and readers that can communicate over the
channel.

Getting ready

PyCSP can be installed using the pip installer via the following command:
pip install python-csp

Also, it is possible to download the entire distribution from GitHub (https://github.com/
futurecore/python-csp).

184

www.it-ebooks.info

https://github.com/futurecore/python-csp
https://github.com/futurecore/python-csp
http://www.it-ebooks.info/

Chapter 5
Download it and then type the following from the installation directory:
python setup.py install

For our examples, we will use the Python Version 2.7

How to do it...

In this first example, we want to introduce the basic concepts of PyCSP, the processes, and
channels. So, we have defined two processes named counter and printer. We now want to see
how to define the communication between these processes:

Let's consider the following code:

from pycsp.parallel import *

@process
def processCounter (cout, limit):
for i in xrange(limit) :
cout (1)
poison (cout)

@process
def processPrinter (cin):
while True:
print cin(),

A = Channel('A"')

Parallel (
processCounter (A.writer (), limit=5),
processPrinter (A.reader())

shutdown ()

To execute this code, simply press the run button on the Python2.7 IDLE. An output like this
will be shown after this:

Python 2.7.9 (default, Dec 10 2014, 12:28:03) [MSC v.1500 64 bit (AMD64)]
on win32
Type "copyright", "credits" or "license()" for more information.

>>> ========================RESTART ==========================

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

In this example, we used the functions defined in the pycsp.parallel module:

from pycsp.parallel import *

This module has the Any2Any channel type, which allows multiple processes, which are
attached to the ends of the channels, to communicate through it. To create the channel A,
we use the following statement:

A = Channel ('A')

This new channel is automatically hosted in the current Python interpreter. For each Python
interpreter that imports the pycsp.parallel module, only a port that handles all the
channels started in the Python interpreter will be listed. However, this module does not
provide a name server available for the channels. So to connect to a hosted channel, you
must know the right location.

For example, to connect the channel B to the localhost port 8888, we input the following code:
A = pycsp.Channel ('B', connect=('localhost, 8888))
In PyCSP, we have three basic ways to manage a channel:

» channel.Disconnect (): This allows the Python interpreter to quit. It is used in a
client-server setting, where a client wants to be Disconnected after it receives a reply
from a server.

» channel.reader (): This creates and returns the reader end of the channel.
» channel.writer (): This creates and returns the writer end of the channel.

To indicate a process, we use the @process decorator. In PyCSP, each generated CSP
process is implemented as a single OS thread. In this example, we have two processes: a
counter and a printer. The process counter has two arguments: cout to redirect its output and
limit, which defines the total number of items to be printed:

@process
def counter (cout, limit):
for i in xrange(limit) :
cout (1)
poison (cout)

The poison statement, poison (cout), means that the channel end is poisoned. This means
that all subsequent reads and writes on this channel will throw an exception that can be used
to end the current procedure or Disconnect the channel. We also note that the poisoning may
cause a race condition if there are multiple concurrent procedures.

186

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The process printer only has one argument, which is the item to print, defined in the cin
variable:

@process
def printer(cin):
while True:
print cin(),

The core of the script is in the following line of code:

A = Channel ('A')
This defines the A channel, which permits communication between the two processes.
Finally, the Parallel statement is as follows:

Parallel (
counter (A.writer (), limit=10),
printer (A.reader ())

)

This starts all the processes and blocks them only if the counter and process have terminated
communication with each other. This statement represents the basic idea of CSP: concurrent
processes synchronize with each other by synchronizing their I/0 through the channel A. The
way to do this is to allow I/0 to occur only when a process counter states that it is ready to
output to a process printer specifically and the process printer states that it is ready to input
from a process counter. If one of these happens without the other being true, the process is
put in a wait queue until the other process is ready.

Each PyCSP application creates a server thread to manage the incoming communication over
the channels. So, it is always necessary to terminate each PyCSP application with a call to the
shutdown () method:

shutdown ()
PyCSP provides two methods to trace its execution:

» Tracelnit(<filename>, stdout=<True | False>):Thisis used to start
the trace

» TraceQuit (): This is used to stop the trace

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

These must be placed in the following schema:

from pycsp.common.trace import *

TraceInit ("trace.log")

nnn

PROCESSES TO BE TRACED

nnn

TraceQuit ()
shutdown ()

For our example, we have built the log trace (with a limit count equal to three):

{'chan name': 'A', 'type': 'Channel'}
{'chan name': 'A', 'type': 'ChannelEndWrite'}
{'chan name': 'A', 'type': 'ChannelEndRead'}

{'processes': [{'func name': 'processCounter', 'process id':
'9cb4b3720ed111le5bb4c0024813d643d.processCounter'}, {'func name':
'processPrinter', 'process id': '9cb63a0f0edll11e5993a0024813d643d.
processPrinter'}], 'process id': '9c42428f0edl11e59bal0024813d643d
INIT ', 'type': 'BlockOnParallel'}

{'func_name': 'processCounter', 'process id':
'9¢cb4b3720ed1l11e5bb4c0024813d643d.processCounter!', 'type':
'StartProcess'}

{'func_name': 'processPrinter', 'process id':
'9cb63a0f0edl111e5993a0024813d643d.processPrinter', 'type':
'StartProcess'}

{'process _id': '9cb4b3720ed11lle5bb4c0024813d643d.processCounter’,
name': 'A', 'type': 'BlockOnWrite', 'id': 0}

{'process id': '9cb63alf0edl11e5993a0024813d643d.processPrinter’,
name': 'A', 'type': 'BlockOnRead', 'id': 0}

{'process id': '9cb63alf0edl11e5993a0024813d643d.processPrinter’,
name': 'A', 'type': 'DoneRead', 'id': 0}

{'process _id': '9cb4b3720ed11lle5bb4c0024813d643d.processCounter’,
name': 'A', 'type': 'DoneWrite', 'id': 0}

{'process _id': '9cb4b3720ed11l1le5bb4c0024813d643d.processCounter’',
name': 'A', 'type': 'BlockOnWrite', ‘'id': 1}

{'process_id': '9cb63a0f0edll11e5993a0024813d643d.processPrinter’',
name': 'A', 'type': 'BlockOnRead', 'id': 1}

188

.

'chan_

'chan_

'chan_

'chan_

'chan_

'chan_

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

{'process _id': '9cb63a0f0edll1e5993a0024813d643d.processPrinter', 'chan
name': 'A', 'type': 'DoneRead', 'id': 1}

{'process_id': '9cb4b3720edllle5bb4c0024813d643d.processCounter', 'chan
name': 'A', 'type': 'DoneWrite', 'id': 1}

{'process_id': '9cb4b3720edllle5bb4c0024813d643d.processCounter', 'chan
name': 'A', 'type': 'BlockOnWrite', 'id': 2}

{'process _id': '9cb63a0f0edll1e5993a0024813d643d.processPrinter', 'chan
name': 'A', 'type': 'BlockOnRead', 'id': 2}

{'process_id': '9cb63a0f0edll1e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'DoneRead', 'id': 2}

{'process_id': '9cb4b3720edllle5bb4c0024813d643d.processCounter', 'chan
name': 'A', 'type': 'DoneWrite', 'id': 2}

{'process_id': '9cb4b3720edllle5bb4c0024813d643d.processCounter', 'chan
name': 'A', 'type': 'Poison', 'id': 3}

{'func_name': 'processCounter', 'process id':
'9cb4b3720ed1l11le5bb4c0024813d643d.processCounter', 'type': 'QuitProcess'}
{'process _id': '9cb63a0f0edll1e5993a0024813d643d.processPrinter', 'chan
name': 'A', 'type': 'BlockOnRead', 'id': 3}

{'func_name': 'processPrinter', 'process id':
'9cb63a0f0edl111e5993a0024813d643d.processPrinter', 'type': 'QuitProcess'}
{'process _id': '9cb63a0f0edll1e5993a0024813d643d.processPrinter', 'chan_
name': 'A', 'type': 'Poison', 'id': 3}

{'processes': [{'func_name': 'processCounter', 'process id':
'9cb4b3720ed111e5bb4c0024813d643d.processCounter'}, {'func name':
'processPrinter', 'process id': '9cb63a0f0edl11e5993a0024813d643d.

processPrinter'}], 'process id': '9c42428f0edl11e59bal0024813d643d.
INIT ', 'type': 'DoneParallel'}

{'type': 'TraceQuit'}

There's more...

CSP is a formal language used to describe the interactions of concurrent processes. It falls
under the mathematical theory of competition, which is known as algebra processes. It has
been used in practice as a tool for the specification and verification of the competition aspects
of a wide variety of systems. The rules of the CSP-inspired programming language Occam are
now widely used as a parallel programming language.

For those of you who are interested in CSP's theory, we suggest you go

through Hoare's original book, which is available online at http://www.
’ usingcsp.com/cspbook.pdf.

www.it-ebooks.info

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://www.it-ebooks.info/

Distributed Python

Using MapReduce with Disco

Disco is a Python module based on the MapReduce framework introduced by Google, which
allows the management of large distributed data in computer clusters. The applications
written using Disco can be performed in the economic cluster of machines with a very short
learning curve. In fact, the technical difficulties related to the processes that are distributed as
load balancing, job scheduling, and the communications protocol are completely managed by
Disco and hidden from the developer.

The typical applications of this module are essentially as follows:

>

>

>

Web indexing
URL access counter
Distributed sort

Map
Input Instance
Data #1 #1

®
PS Reduce Output
PS Instance Data

Map
Input Instance
Data #N #N

The MapReduce schema

The MapReduce algorithm implemented in Disco is as follows:

>

Map: The master node takes the input data, breaks it into smaller subtasks,

and distributes the work to the slave nodes. The single map node produces the
intermediate result of the map () function in the form of pairs [key, value] stored
on a distributed file whose location is given to the master at the end of this step.

Reduce: The master node collects the results. It combines the pairs [key,
value] in the lists of values that share the same key and sorts them for the key
(lexicographical and increasing or user-defined). The pairs of the form [key,
IteratorList (value, value, ...)] arepassed tothe nodes thatrunthe
reducer function reduce ().

Moreover, the output data that is stored on files, can be the input for a new map and reduce
procedure, allowing, in this way, to concatenate more MapReduce jobs.

190

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Getting ready
The Disco module is available at https://github.com/
i Discoproject/Disco.

You need a Linux/Unix distribution to install it.
The following are the prerequisites (on each server):

» The SSH daemon and client
» Erlang/OTP R14A or newer version

» Python 2.6.6 or newer version, Python 3.2 or newer version
Finally, to install Disco, type the following lines:

git clone git://github.com/Discoproject/Disco.git $Disco HOME
cd $Disco_HOME

make

cd 1ib && python setup.py install --user && cd ..

bin/Disco nodaemon

The next step is to enable a password-less login for all servers in the Disco clusters. For a
single machine installation, you must run the following command:

ssh-keygen -N '' -f ~/.ssh/id dsa
Then, type the following;:
cat ~/.ssh/id dsa.pub >> ~/.ssh/authorized keys

Now if you try to log in to all servers in the cluster or localhost, you will not need to give a
password nor answer any questions after the first log in attempt.

For any questions about Disco's installation, refer to http://Disco.
S readthedocs.org/en/latest/intro.html.

In the next example, we have used a Python 2.7 distro on a Linux machine.

www.it-ebooks.info

https://github.com/Discoproject/Disco
https://github.com/Discoproject/Disco
http://Disco.readthedocs.org/en/latest/intro.html
http://Disco.readthedocs.org/en/latest/intro.html
http://www.it-ebooks.info/

Distributed Python

How to do it...

In the following example, we examine a typical MapReduce problem using the Disco module.
Given a text, we must count all the occurrences of some words in the text:

from Disco.core import Job, result iterator

def map(line, params) :
import string
for word in line.split():
strippedWord = word.translate\
(string.maketrans("",""), string.punctuation)
yield strippedWord, 1

def reduce(iter, params) :
from Disco.util import kvgroup
for word, counts in kvgroup (sorted(iter)):
yield word, sum(counts)

if name == ' main ':
job = Job () .run(input="There are known knowns.\

These are things we know that we know.\
There are known unknowns. \
That is to say,\
there are things that \
we know we do not know.\
But there are also unknown unknowns.\
There are things \
we do not know we do not know",

map=map,

reduce=reduce)

sort_in numerical order =\
open ('SortNumerical.txt', 'w')
sort_in alpbabetically order = \
open ('SortAlphabetical.txt', 'w')

wordCount = []
for word, count in \
result iterator(job.wait (show=True)) :
sort_in alpbabetically order.write('$s \t %d\n' %
(str(word), int (count)))

192

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

wordCount . append ((word, count))

sortedWordCount =sorted(wordCount, \
key=lambda count: count[1],\
reverse=True)

for word, count in sortedWordCount:
sort_in numerical order.write('%$s \t %d\n'\

)

% (str(word), int(count)))

sort _in alpbabetically order.close()
sort_in numerical order.close()

After running the script, we have the two resulting files that we've reported in the following
table:

Sortnumerical.txt SortAlphabetical.txt
6 are also 1
6 know are 6
6 we but 1
5 there do 3
3 do is 1
3 not know 6
3 that known 2
3 things knowns 1
2 known not 3
2 unknowns say 1
1 also to 1
1 but that 3
1 is there 5
1 knowns these 1
1 say things 3
1 to unknown 1
1 these unknowns 2
1 unknown we 6

www.it-ebooks.info

http://www.it-ebooks.info/

Distributed Python

The core of this example are the map and reduce functions. The map function Disco has two
arguments line that represent the sentence to be analyzed. However, params will be ignored
in this example.

Here, the sentence is split in to one or more words, the punctuation symbols are ignored, and
all words are converted to lowercase:

def map(line, params) :
import string
for word in line.split():
strippedWord = word.translate\
(string.maketrans("",""), string.punctuation)
yield strippedWord, 1

The result of a map function on a line of text is a series of tuples in the form of a key and a
value. For example, the sentence "There are known knowns" takes on this form:

[("There", 1), ("are", 1), ("known", 1), ("knowns",1)]

Let's remember that the MapReduce framework manipulates enormous datasets that are
larger than the common memory space in a single machine, so the keyword yield at the end
of the map function allows Disco to manage datasets in a smarter way. The reduce function
operates on two arguments, iter, that are iterable objects (it acts like a list data structure),
while the params argument linked in the map function is ignored in this example.

Each iterable object is sorted into alphabetical order using the Python function sorted:

def reduce(iter, params) :
from Disco.util import kvgroup
for word, counts in kvgroup (sorted(iter)):
yield word, sum(counts)

On the sorted list, we apply Disco's function kvgroup. It groups values of consecutive keys,
which are compared to be equal. Finally, the occurrence of each word in the text is obtained
through the Python function sum.

In the main part, we use Disco's job function to execute the mapReduce function:

job = Job () .run(input="There are known knowns.\
These are things we know that we know.\
There are known unknowns. \
That is to say,\
there are things that \
we know we do not know.\
But there are also unknown unknowns.\

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

There are things \

we do not know we do not know",
map=map,
reduce=reduce)

Finally, the results are ordered into numerical and alphabetical order and they are printed in
two output files:

sort _in numerical order = open('SortNumerical.txt',K 'w')

sort _in alpbabetically order = open('SortAlphabetical.txt', 'w')

There's more...

Disco is a very powerful framework that is rich with different functionalities. A full discussion
of this module is beyond the scope of this book.

[To get a complete introduction, refer to http://Discoproject.org/.]

A remote procedure call with RPyC

Remote Python Call (RPyC) is a Python module that is used for remote procedure calls as
well as for distributed computing. The idea at the base of RPC is to provide a mechanism to
transfer control from a program (client) to another (server), similar to what happens with the
invocation of a subroutine in a centralized program. The advantages of this approach are that
it has very simple semantics and knowledge and familiarity of the centralized mechanism of
a function call. In a procedure invocation, the client process is suspended until the process
server has performed the necessary computations and has given the results of computations.
The effectiveness of this method is due to the fact that the client-server communication takes
the form of a procedure call instead of invocations to the transport layer so that all the details
of the operation of the network are hidden from the application program by placing them in
local procedures called stubs. The main features of RPyC are:

» In syntactic transparency a remote procedure call can have the same syntax as a
local call

» In semantic transparency a remote procedure call is semantically equivalent to the
local one

» Handling synchronous and asynchronous communication

www.it-ebooks.info

http://Discoproject.org/
http://www.it-ebooks.info/

Distributed Python

» Symmetric communication protocol means that both the client and server can serve
a request

Calling Procedure Called Procedure

Received procedure
and start procedure

execution
Request Message

I = '» Procedure Execution

Send Reply and wait
for next request

Resume
Execution 4 - - ="

Reply Message

\4

The remote procedure call model

Getting ready

The installation procedure is quite simple with the pip installer. From your command shell,
type the following:

pip install rpyc

Otherwise, you can go to https://github.com/tomerfiliba/rpyc and download the
complete package (it is a . zip file). Finally, to install rypc, you must type the command:
Python setup.py install from the package directory.

After the installation, you can just explore this library. In our examples, we will run a client and
server on the same machine, localhost. Running a server with rypc is very simple: go to the
directory . . /rpyc-master/bin of the rpyc package directory and then execute the file
rpyc_classic.py:

C:\ Python CookBook\ Chapter 5- Distributed Python\rpyc-master\bins>python
rpyc_classic.py

196

www.it-ebooks.info

https://github.com/tomerfiliba/rpyc
http://www.it-ebooks.info/

Chapter 5

After running this script, you'll read on Command Prompt the following output message:

INFO:SLAVE/18812:server started on [0.0.0.0]:18812

How to do it...

We are now ready for the first example that shows you how to redirect stdout of a remote
process:

import rpyc

import sys

¢ = rpyc.classic.connect ("localhost")
c.execute ("print ('hi python cookbook')")
c.modules.sys.stdout = sys.stdout
c.execute ("print ('hi here')")

By running this script, you'll see the redirected output in the server side:

C:\Python CookBook\Chapter 5- Distributed Python\rpyc-master\bin>python
rpyc_classic.py

INFO:SLAVE/18812:server started on [0.0.0.0]:18812
INFO:SLAVE/18812:accepted 127.0.0.1:6279
INFO:SLAVE/18812:welcome [127.0.0.1]:6279

hi python cookbook

The first step is to run a client that connects to the server:

import rpyc

¢ = rpyc.classic.connect ("localhost")

Here, the client-side statement rpyc.classic.connect (host, port) creates a socket
connection to the given host and port. Sockets define the endpoint of a connection. rpyc
uses sockets to communicate with other programs, which may be distributed on different
computers.

Next, we have the following statement:
c.execute ("print ('hi python cookbook')")

This executes the print statement on the server (a remote exec statement).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming
with Python

In this chapter, we will cover the following recipes:

» Using the PyCUDA module

» How to build a PyCUDA application

» Understanding the PyCUDA Memory Model with matrix manipulation
» Kernel invocations with GPUArray

» Evaluating element-wise expressions with PyCUDA

» The MapReduce operation with PyCUDA

» GPU programming with NumbaPro

» Using GPU-accelerated libraries with NumbaPro

» Using the PyOpenCL module

» How to build a PyOpenCL application

» Evaluating element-wise expressions with PyOpenCL

» Testing your GPU application with PyOpenCL

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

Introduction

The graphics processing unit (GPU) is an electronic circuit that specializes in processing
data to render images from polygonal primitives. Although they were designed to carry out
rendering images, the GPU has continued to evolve, becoming more complex and efficient in
serving both the real-time and offline rendering community and in performing any scientific
computations. GPUs are characterized by a highly parallel structure, which allows it to
manipulate large datasets in an efficient manner. This feature combined with the rapid
improvement in graphics hardware performance and the extent of programmability caught
the attention of the scientific world with the possibility of using GPU for purposes other than
just rendering images. Traditional GPUs are fixed function devices where the whole rendering
pipeline is built on hardware. This restricts graphics programmers, leading them to use
different, efficient and high-quality rendering algorithms. Hence, a new GPU was built with
millions of lightweight parallel cores, which were programmable to render graphics using
shaders. This is one of the biggest advancements in the field of computer graphics and

the gaming industry. With lots of programmable cores available, the GPU vendors started
developing models for parallel programming. Each GPU is indeed composed of several
processing units called Streaming Multiprocessor (SM) that represent the first logic level of
parallelism; and each SM infact works simultaneously and independently from the others.

Thread Execution Control Unit

v v ! v
SM SM SM SM SM SM
SM SM SM SM SM SM
SM SM SM SM SM SM
SP SP SP
SM SM SM SM SM SM
SP SP SP
SM SM SM SM SM SM
SP SP SP
Special Special Special
Function Unit Function Unit Function Unit
Local Local Local
Memory Memory Memory

Device Memory

|
[e

The GPU architecture

200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Each SM is in turn divided into a group of Stream Processors (SP), each of which has a core
of real execution and can sequentially run a thread. An SP represents the smallest unit of
an execution logic and represents the level of finer parallelism. The division in SM and SP

is structural in nature, but it is possible to outline a further logical organization of the SP of
a GPU, which are grouped together in logical blocks characterized by a particular mode of
execution. All cores that make up a group run the same instruction at the same time. This

is just the Single instruction, multiple data (SIMD) model, which we described in the first
chapter of this book.

Each SM also has a number of registers, which represent an area of memory for quick
access that is temporary, local (not shared between the cores), and limited in size. This
allows storage of frequently used values from a single core. The general-purpose computing
on graphics processing units (GP-GPU) is the field devoted to the study of the techniques
needed to exploit the computing power of the GPU to perform calculations quickly, thanks

to the high level of parallelism inside. As seen before, GPUs are structured quite differently
from conventional processors; for this, they have problems of a different nature and require
specific programming techniques. The most outstanding feature that distinguishes a graphics
processor is the high number of cores available, which allow us to carry out many threads

of execution competitors, which are partially synchronized for the execution of the same
operation. This feature is very useful and efficient in situations where you want to split your
work in many parts to perform the same operations on different data. On the contrary, it is
hard to make the best use of this architecture when there is a strong sequential and logical
order to be respected in the operations to be carried out; otherwise, the work cannot be
evenly divided into many small subparts. The programming paradigm that characterizes

the GPU computing is called Stream Processing because the data can be viewed as a
homogeneous flow of values to which the same operations are applied synchronously.

Currently, the most efficient solutions to exploit the computing power provided by GPU cards
are the software libraries CUDA and OpenCL. In the following recipes, we will present the
realization of these software libraries in the Python programming language.

Using the PyCUDA module

PyCUDA is a Python wrap for Compute Unified Device Architecture (CUDA), the software
library developed by NVIDIA for GPU programming. The CUDA programming model is the
starting point of understanding how to program the GPU properly with PyCUDA. There are
concepts that must be understood and assimilated to be able to approach this tool correctly
and to understand the more specific topics that are covered in the following recipes.

201

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

A hybrid programming model

The programming model "hybrid" of CUDA (and consequently of PyCUDA, which is a Python
wrapper) is implemented through specific extensions to the standard library of the C language.
These extensions have been created, whenever possible, syntactically like the function calls in
the standard C library. This allows a relatively simple approach to a hybrid programming model
that includes the host and device code. The management of the two logical parts is done by
the NVCC compiler. Here is a brief description of how this compiler works:

1. It separates a device code from a host-code device.
2. ltinvokes a default compiler (for example, GCC) to compile the host code.

3. It builds the device code in the binary form (Cubin objects) or in the form assembly
(code PTX).

4. It generates a host key "global" that also includes code PTX.

The compiled CUDA code is converted to a device-specific binary by the driver, during runtime.
All the previously mentioned steps are executed by PyCUDA at runtime, which makes it a
Just-in-time (JIT) compiler. The drawback of this approach is the increased load time of

the application, which is the only way to maintain compatibility "forward", that is, you can
perform operations on a device that does not exist at the time of the actual compilation.

A JIT compilation therefore makes an application compatible with future devices that are

built on architectures with higher computing power, so it is not yet possible to generate

any binary code.

v

Run nvce —» .cubin

Kernel Invocation Upload to GPU QJ
PyCUDA
Run on GPU

The PyCUDA execution model

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The kernel and thread hierarchy

An important element of a CUDA program is a kernel. It represents the code that is executed
parallelly on the basis of specifications that will be clarified later with the examples described
here. Each kernel's execution is done by computing units that are called threads. Unlike
threads in CPU, GPU threads are lighter in such a way that the change of context is not one

of the factors to be taken into account in a code performance evaluation because it can be
considered as instantaneous. To determine the number of threads that must perform a single
kernel and their logical organization, CUDA defines a two-level hierarchy. In the highest level,
it defines a so-called grid of blocks. This grid represents a bidimensional structure where the
thread blocks are distributed, which are three-dimensional.

GRID 1
Block 1 Block 2
Thread 1 Thread 2 Thread 1 Thread 2
Thread 3 Thread 4 Thread 3 Thread 4
Block 3 Block 4
Thread 1 Thread 2 Thread 1 Thread 2
Thread 3 Thread 4 Thread 3 Thread 4

The distribution of (3-dimensional) threads in a two-level hierarchy of PyCUDA

Based on this structure, a kernel function must be launched with additional parameters that
specify precisely the size of the grid and block.

Getting ready

On the Wiki page http://wiki.tiker.net/PyCuda/Installation, the basic
instructions to install PyCuda on the main operative systems (Linux, Mac, and Windows) are
explained.

203

www.it-ebooks.info

http://wiki.tiker.net/PyCuda/Installation
http://www.it-ebooks.info/

GPU Programming with Python

With these instructions, you will build a 32-bit PyCUDA library for a Python 2.7 distro:

1. The first step is to download and install all the components provided by NVDIA to
develop with CUDA (refer to https://developer.nvidia.com/cuda-toolkit-
archive) for all the available versions. These components are:

[m]

The CUDA toolkit is available at http://developer.download.nvidia.
com/compute/cuda/4_ 2/rel/toolkit/cudatoolkit 4.2.9
win 32.msi.

The NVIDIA GPU Computing SDK is available at http://developer.
download.nvidia.com/compute/cuda/4 2/rel/sdk/
gpucomputingsdk 4.2.9 win 32.exe.

The NVIDIA CUDA Development Driver is available at http://developer.
download.nvidia.com/compute/cuda/4_ 2/rel/drivers/
devdriver_ 4.2 winvista-win7_ 32 301.32 general.exe.

Download and install NumPy (for 32-bit Python 2.7) and Visual Studio C++ 2008
Express (be sure to set all the system variables).

Open the file msvc9compiler.py located at /Python27/1ib/distutils/. After
the line 641: 1d_args.append ('/IMPLIB:' + implib file), add the new
line 1d_args.append('/MANIFEST').

Download PyCUDA from https://pypi.python.org/pypi/pycuda.

Open Visual Studio 2008 Command Prompt, click on Start, go to All Programs |
Microsoft Visual Studio 2008 | Visual Studio Tools | Visual Studio Command
Prompt (2008), and follow the given steps:

1.
2.
3.

Go in the PyCuda directory.
Execute python configure.py.
Edit the created file siteconf .py:

BOOST_INC_DIR
BOOST_LIB_DIR

(]
(]

BOOST_ COMPILER = 'gcc43'

USE_SHIPPED_ BOOST = True

BOOST PYTHON LIBNAME = ['boost python']

BOOST THREAD LIBNAME = ['boost thread']

CUDA_TRACE = False

CUDA _ROOT = 'C:\\Program Files\\NVIDIA GPU Computing

Toolkit\\CUDA\\v4.2"

CUDA ENABLE GL = False

CUDA ENABLE CURAND = True

CUDADRV_LIB DIR = ['${CUDA ROOT}/1lib/Win32']
CUDADRV_LIBNAME = ['cuda'l

20

www.it-ebooks.info

http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_win_32.msi
http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_win_32.msi
http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_win_32.msi
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_winvista-win7_32_301.32_general.exe
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_winvista-win7_32_301.32_general.exe
http://developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_winvista-win7_32_301.32_general.exe
https://pypi.python.org/pypi/pycuda
http://www.it-ebooks.info/

Chapter 6

CUDART LIB DIR
CUDART_ LIBNAME
CURAND LIB DIR '${CcuDbA ROOT}/1ib/Win32']
CURAND_LIBNAME ['curand']

CXXFLAGS = ['/EHsc']

LDFLAGS = ['/FORCE']

['${CcUDA_ROOT}/1lib/Win32"']
['cudart']
[

6. Finally, install PyCUDA with the following commands in VS2008 Command Prompt:

python setup.py build
python setup.py install

At %) @ CaTookitarchive % (R b@

a8 widiacom [medhydro "E ¥ ® 4800 =

FANVIDIA CUDA ZONE

CUDA Toolkit Archive

Previous releases of the CUDA Toalkit, GPU Computing SDK, documentation and developer drivers can be found using Get Started - Parallel Computing

the links below. Please select the release you want frem the list below, and be sure to check for

more recent production drivers appropriate for your hardware configuration.

Latest Release CUDAFAQ
[March 2015)

Archived Releases GPU Computing ¥F

[August 2014] g NVIDIA

(April 2014)
{July 2013) h swaids for #GPU-powered
(0ct 2012)

4.7 |April 2012)

4.1 (Jan 2012)
[May 2011)
[Nov 2010)
(June 2010}
[March 2010)

[Sept 2009)

How to do it...

The present example has a dual function. The first is to verify that PyCUDA is properly installed
and the second is to read and print the characteristics of the GPU cards:

even mare

The CUDA toolkit download page

import pycuda.driver as drv
drv.init ()

print "$d device(s) found." % drv.Device.count ()
for ordinal in range (drv.Device.count()) :

205

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

dev = drv.Device (ordinal)
print "Device #%d: %s" % (ordinal, dev.name())
print " Compute Capability: %d.%d" % dev.compute capability ()

print " Total Memory: %s KB" % (dev.total memory()//(1024))
After running the code, we should have an output like this:

C:\ Python CookBook\ Chapter 6 - GPU Programming with Python\Chapter 6 -
codes>python PyCudaInstallation.py

1 device(s) found.

Device #0: GeForce GT 240
Compute Capability: 1.2
Total Memory: 1048576 KB

The execution is pretty simple. In the first line of code, pycuda.driver is imported and then
initialized:

import pycuda.driver as drv
drv.init ()

The pycuda.driver module exposes the driver level to the programming interface of CUDA,
which is more flexible than the CUDA C "runtime-level" programming interface, and it has a few
features that are not present at runtime.

Then, it cycles into drv.Device.count (), and for each GPU card found, the name of the
cards and main characteristics (computing capability and total memory) are printed:

)

print "Device #%d: %s" % (ordinal, dev.name())

print " Compute Capability: %d.%d" % dev.compute capability ()
print " Total Memory: %s KB" % (dev.total memory()//(1024))

See also

» PyCUDA is developed by Andreas Kléckner (http://mathema.tician.de/
aboutme/). For any other information concerning PyCUDA, you can refer to
http://documen.tician.de/pycuda/.

206

www.it-ebooks.info

http://mathema.tician.de/aboutme/
http://mathema.tician.de/aboutme/
http://documen.tician.de/pycuda/
http://www.it-ebooks.info/

Chapter 6

How to build a PyCUDA application

The PyCUDA programming model is designed for the common execution of a program on a
CPU and GPU, so as to allow you to perform the sequential parts on the CPU and the numeric
parts, which are more intensive on the GPU. The phases to be performed in the sequential
mode are implemented and executed on the CPU (host), while the steps to be performed in
parallel are implemented and executed on the GPU (device). The functions to be performed in
parallel on the device are called kernels. The steps to execute a generic function kernel on the
device are as follows:
1. The first step is to allocate the memory on the device.
2. Then we need to transfer data from the host memory to that allocated on the device.
3. Next, we need to run the device:
1. Run the configuration.
2. Invoke the kernel function.
4. Then, we need to transfer the results from the memory on the device to the host
memory.

5. Finally, release the memory allocated on the device.

- Allocate Memory > CPU MEMORY
Transfer Transfer
Memory Memory
to GPU toCPU
ol > GPU MEMORY
Running Device

The PyCUDA programming model

How to do it...

To show the PyCUDA workflow, let's consider a 5x5 random array and the following procedure:

Create the 5x5 array on the CPU.

Transfer the array to the GPU.

Perform a task on the array in the GPU (double all the items in the array).
Transfer the array from the GPU to the CPU.

ok N PR

Print the results.

207

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

The code for this is as follows:

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule

import numpy

Q
1]

numpy . random. randn (5, 5)
a.astype (numpy.float32)

Q
1]

a_gpu = cuda.mem alloc(a.nbytes)
cuda.memcpy_htod(a_gpu, a)

mod = SourceModule ("""
__global void doubleMatrix(float *a)

{

int idx = threadIdx.x + threadIdx.y*4;
alidx] *= 2;

}

nn n)

func = mod.get function("doubleMatrix")
func(a_gpu, block=(5,5,1))

a_doubled = numpy.empty like(a)

cuda.memcpy_ dtoh(a_doubled, a_gpu)

print ("ORIGINAL MATRIX")

print a

print ("DOUBLED MATRIX AFTER PyCUDA EXECUTION")
print a_doubled

The example output should be like this:
C:\Python CookBook\Chapter 6 - GPU Programming with Python\ >python
PyCudaWorkflow.py
ORIGINAL MATRIX
[[-0.59975582 1.93627465 0.65337795 0.13205571 -0.46468592]
[0.01441949 1.40946579 0.5343408 -0.46614054 -0.31727529]
[-0.06868593 1.21149373 -0.6035406 -1.29117763 0.47762445]
[0.36176383 -1.443097 1.21592784 -1.04906416 -1.18935871]
[-0.06960868 -1.44647694 -1.22041082 1.17092752 0.3686313 1]

208

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

DOUBLED MATRIX AFTER PyCUDA EXECUTION

[[-1.19951165 3.8725493 1.3067559 0.26411143 -0.92937183]
[0.02883899 2.81893158 1.0686816 -0.93228108 -0.63455057]
[-0.13737187 2.42298746 -1.2070812 -2.58235526 0.95524889]
[0.72352767 -1.443097 1.21592784 -1.04906416 -1.18935871]
[-0.06960868 -1.44647694 -1.22041082 1.17092752 0.3686313 1]

The preceding code starts with the following imports:

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule

The import pycuda.autoinit statement automatically picks a GPU to run based on
its availability and number. It also creates a GPU context for the subsequent code to run.
If needed, both the chosen device and the created context are available from pycuda.
autoinit as importable symbols, whereas the SourceModule component is the object
where a C-like code for the GPU must be written.

The first step is to generate the input 5x5 matrix. Since most GPU computations involve large
arrays of data, the numpy module must be imported:

import numpy
a = numpy.random.randn (5,5)

Then, the items in the matrix are converted into a single precision mode, many NVIDIA cards
support only a single precision:

a = a.astype (numpy.float32)

The first operation that needs to be done in order to implement a GPU is to load the input
array from the host memory (CPU) to the device (GPU). This is done at the beginning of the
operation and consists of two steps that are performed by invoking the following two functions
provided PyCUDA:

» The memory allocation on the device is performed via the function cuda . mem__
alloc. The device and host memory may not ever communicate while performing a
function kernel. This means that, to run a function parallelly on the device, the data
related to it must be present in the memory of the device itself. Before you copy data
from the host memory to the device memory, you must allocate the memory required
on the device: a_gpu = cuda.mem _alloc (a.nbytes).

209

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

» Copy the matrix from the host memory to that of the device with the following
function:

call cuda.memcpy htod : cuda.memcpy htod(a gpu, a).

Also note that a_gpu is one-dimensional and on the device, we need to handle it as such.
All these operations do not require the invocation of a kernel and are made directly by the
main processor. The SourceModule entity serves to define the (C-like) kernel function
doubleMatrix that multiplies each array entry by 2:

mod = SourceModule ("""
__global__ void doubleMatrix(float *a)
{
int idx = threadIdx.x + threadIdx.y*4;
alidx] *= 2;

}

nn n)

The global qualifier directive indicates that the function doubleMatrix will be
processed on the device. Only the CUDA nvcc compiler will perform this task.

Let's take a look at the function's body:
int idx = threadIdx.x + threadIdx.y*4;

The idx parameter is the matrix index identified by the thread coordinates threadIdx.x
and threadIdx.y. Then, the element matrix with the index idx is multiplied by 2:

alidx] *= 2;

Note that this kernel function will be executed once in 16 different threads. Both the variables
threadIdx.x and threadIdx.y contain indices between 0 and 3 and the pair is different
for each thread. Threads scheduling is directly linked to the GPU architecture and its intrinsic
parallelism. A block of threads is assigned to a single Streaming Multiprocessor (SM), and
the threads are further divided into groups called warps. The size of a warp depends on the
architecture under consideration. The threads of the same warp are managed by the control
unit called the warp scheduler. To take full advantage of the inherent parallelism of SM,

the threads of the same warp must execute the same instruction. If this condition does not
occur, we speak of the divergence of threads. If the same warp threads execute different
instructions, the control unit cannot handle all the warps. It must follow the sequences of
instructions for every single thread (or for homogeneous subsets of threads) in a serial mode.
Let's observe how the thread block is divided into various warps, threads are divided by the
value of threadIdx.

The threadIdx structure consists of three fields: threadIdx.x, threadIdx.y, and
threadIdx. z.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

To,o | Ty0 | T20 | T30 | Ta0

Toa | Tya | Ton | T31 | Tan

To2 | Teo | To2 | T32 | Ta2

Tos | Ty3 | To3 | T3z | Tas

Toa | T1,4 | Toa | T3a | Taas

Too (00| T40 | Tor (00| Ta1 | To2 (00| T42 | To;3s |(00o| T13 | To,s |0 ©f Taa

Thread blocks subdivision: T(x,y) where x = threadldx.x and y = threadldx.y

We can see that the code in the kernel function will be automatically compiled by the nvcc
CUDA compiler. If there are no errors, the pointer of this compiled function will be created. In
fact, mod.get function ("doubleMatrix") returns an identifier to the func function
that we created:

func = mod.get function("doubleMatrix ")

To perform a function on the device, you must first configure the execution appropriately. This
means that you need to determine the size of the coordinates to identify and distinguish the
thread belonging to different blocks. This will be done using the block parameter inside the
func call:

func(a _gpu, block = (5, 5, 1))

The block = (5, 5, 1) function tells us that we are calling a kernel function with the a_
gpu linearized input matrix and a single thread block of the size 5 threads in the x direction,

5 threads in the y direction, and 1 thread in the z direction, 16 threads in total. This structure
is designed with the parallel implementation of the algorithm in mind. The division of the
workload results in an early form of parallelism that is sufficient and necessary to make use of
the computing resources provided by the GPU. Once you've configured the kernel's invocation,
you can invoke the kernel function that executes instructions parallelly on the device. Each
thread executes the same code kernel.

After the computation in the GPU device, we use an array to store the results:

a_doubled = numpy.empty like(a)
cuda.memcpy dtoh(a_doubled, a_ gpu)

This will be printed as follows:

print a
print a_ doubled

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

There's more...

A warp executes one common instruction at a time. So, to maximize the efficiency of the
structure all must agree with the same thread's path of execution. When more than one
thread block is assigned to a multiprocessor to run, they are partitioned into warps that are
scheduled by a component called the warp scheduler.

Understanding the PyCUDA memory model

with matrix manipulation

A PyCUDA program, to make the most of available resources, should respect the rules
dictated by the structure and the internal organization of the SM that imposes constraints on
the performance of the thread. In particular, the knowledge and correct use of the various
types of memory that the GPU makes available is fundamental in order to achieve maximum
efficiency in the programs. In the CUDA-capable GPU card, there are four types of memories,
which are defined, as follows:

» Registers: In this, a register is allocated for each thread. This can only access its
register but not the registers of other threads, even if they belong to the same block.

» The shared memory: Here, each block has its own shared memory between the
threads that belong to it. Even this memory is extremely fast.

» The constant memory: All threads in a grid have constant access to the memory,
but can be accessed only while reading. The data present in it persists for the entire
duration of the application.

» The global memory: All threads of all the grids (so all kernels) have access to the
global memory. The constant memory data present in it persists for the entire
duration of the application.

(DEVICE) GRID

BLOCK(0,0)

Registers I

Thread
0,0)

!

SHARED MEMORY

Registers

!

Thread
(1,0)

!

BLOCK(1,0)

SHARED MEMORY

I Registers

Thread
(0,0)

!

GLOBAL MEMORY

CONSTANT MEMORY

|

Registers

¢

Thread
1,0

!

|

The GPU memory model

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

One of the key points to understand how to make the PyCUDA programs with satisfactory
performance is that not all memory is the same, but you have to try to make the best of each
type of memory. The basic idea is to minimize the global memory access via the use of the
shared memory. The technique is usually used to divide the domain/codomain of the problem
in such a way so that we enable a block of threads to perform its elaborations in a closed
subset of data. In this way, the threads adhering to the concerned block will work together to
load the shared global memory area that is to be processed in the memory, to then proceed to
exploiting the higher speed of this memory zone.

The basic steps to be performed for each thread will then be as follows:

1. Load data from the global memory to the shared memory.

2. Synchronize all the threads of the block so that everyone can read safety positions
shared memory filled by other threads.

3. Process the data of the shared memory.

4. Make a new synchronization as necessary to ensure that the shared memory has
been updated with the results.

5. Write the results in the global memory.

How to do it...

To better understand this technique, we'll present an example which will clarify this approach.
This example is based on the product of two matrices. The previous figure shows the product
of matrices in the standard way and the correspondent sequential code to calculate where
each element must be loaded from a row and a column of the matrix input:

void SequentialMatrixMultiplication(float*M,float *N,float *P, int
width)
{
for (int i=0; i< width; ++1i)
for(int j=0;j < width; ++3j) {
float sum = 0;
for (int k = 0 ; k < width; ++k) {
float a = M[I * width + k];
float b = N[k * width + j];
sum += a * b;
}

P[I * width + j] = sum;

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

If each thread was entrusted with the task of calculating an element of the matrix, the
memory accesses would dominate the execution time of the algorithm. What we can do is rely
on a block of threads for the task of calculating a submatrix of output so that it is possible to
reuse the data loaded from the global memory and to collaborate threads in order to minimize
the memory accesses for each of them.

The following example shows this technique:

import numpy as np
from pycuda import driver, compiler, gpuarray, tools

-- initialize the device
import pycuda.autoinit

kernel code_template = """
__global__ void MatrixMulKernel (float *a, float *b, float *c)
{
int tx = threadIdx.x;
int ty = threadIdx.y;
float Pvalue = 0;
for (int k = 0; k < % (MATRIX SIZE)s; ++k) {
float Aelement = alty * % (MATRIX SIZE)s + kJ];
float Belement = b[k * % (MATRIX SIZE)s + tx];
Pvalue += Aelement * Belement;

clty * %(MATRIX SIZE)s + tx] = Pvalue;

}

nnn

MATRIX SIZE = 5

a_cpu = np.random.randn (MATRIX SIZE, MATRIX SIZE) .astype(np.float32)
b cpu = np.random.randn(MATRIX SIZE, MATRIX SIZE) .astype(np.float32)
c_cpu = np.dot(a_cpu, b _cpu)

a_gpu = gpuarray.to gpu(a_cpu)

b gpu = gpuarray.to_gpu(b_cpu)

c_gpu = gpuarray.empty ((MATRIX SIZE, MATRIX SIZE), np.float32)

°

kernel code = kernel code template % {
'MATRIX SIZE': MATRIX SIZE

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

mod = compiler.SourceModule (kernel code)
matrixmul = mod.get function("MatrixMulKernel")

matrixmul (
a_gpu, b_gpu,
c_gpu,
block = (MATRIX SIZE, MATRIX SIZE, 1),
)

print the results
print "-" * 80

print "Matrix A (GPU) :"
print a gpu.get ()

print "-" * 80
print "Matrix B (GPU) :"
print b _gpu.get ()

print "-" * 80
print "Matrix C (GPU) :"
print c_gpu.get()

print "-" * 80
print "CPU-GPU difference:"
print ¢ _cpu - c_gpu.get()

np.allclose(c_cpu, c _gpu.get())
The example output will be as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\python
PyCudaMatrixManipulation.py

Matrix A (GPU):

[[0.90780383 -0.4782407 0.23222363 -0.63184392 1.05509627]
[-1.27266967 -1.02834761 -0.15528528 -0.09468858 1.037099 1]
[-0.18135822 -0.69884419 0.29881889 -1.15969539 1.21021318]
[0.20939326 -0.27155793 -0.57454145 0.1466181 1.84723163]
[1.33780348 -0.42343542 -0.50257754 -0.73388749 -1.883829 1]

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

Matrix B (GPU):

[[0.04523897 0.99969769 -1.04473436 1.28909719 1.10332143]
[-0.08900332 -1.3893919 0.06948703 -0.25977209 -0.49602833]
[-0.6463753 -1.4424541 -0.81715286 0.67685211 -0.94934392]
[0.4485206 -0.77086055 -0.16582981 0.08478995 1.26223004]
[-0.79841441 -0.16199949 -0.35969591 -0.46809086 0.20455229]1]

Matrix C (GPU):

[[-1.19226956 1.55315971 -1.44614291 0.90420711 0.43665022]
[-0.73617989 0.28546685 1.02769876 -1.97204924 -0.65403283]

[-1.62555301 1.05654192 -0.34626681 -0.51481217 -1.35338223]

[-1.0040834 1.00310731 -0.4568972 -0.90064859 1.47408712]

[1.59797418 3.52156591 -0.21708387 2.31396151 0.85150564]]

CPU-GPU difference:
[[0.00000000e+00 0.00000000e+00 0.00000000e+00 -5.96046448e-08

o

.00000000e+00]
.00000000e+00 5.96046448e-08 0.00000000e+00 0.00000000e+00
.96046448e-08]
.19209290e-07 2.38418579e-07 0.00000000e+00 -5.96046448e-08

—

—
1

.00000000e+00]
.00000000e+00 0.00000000e+00 -2.98023224e-08 -5.96046448e-08

—

.00000000e+00]

—

.19209290e-07 0.00000000e+00 0.00000000e+00 0.00000000e+00

o B O O o B u o

.00000000e+0011

Let's consider the PyCUDA programming workflow. First of all, we must prepare the input
matrix and the output matrix to store the results:

MATRIX SIZE = 2

a_cpu = np.random.randn (MATRIX SIZE, MATRIX SIZE) .astype(np.float32)
b cpu = np.random.randn (MATRIX SIZE, MATRIX SIZE) .astype(np.float32)
c_cpu = np.dot(a_cpu, b cpu)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Then, we transfer these matrixes in the GPU device with the PyCUDA function gpuarray.
to_gpul():

a_gpu = gpuarray.to gpu(a_cpu)
b gpu = gpuarray.to_gpu(b_cpu)
Cc_gpu = gpuarray.empty ((MATRIX SIZE, MATRIX SIZE), np.float32)

The core of the algorithm is the kernel function:

__global__ void MatrixMulKernel (float *a, float *b, float *c)

{

}

int tx = threadIdx.x;
int ty = threadIdx.y;
float Pvalue = 0;

for (int k = 0; k < % (MATRIX SIZE)s; ++k) {
float Aelement = alty * % (MATRIX SIZE)s + kJ];
float Belement = b[k * % (MATRIX SIZE)s + tx];
Pvalue += Aelement * Belement;

clty * %(MATRIX SIZE)s + tx] = Pvalue;

Note thatthe global keyword specifies that this function is a kernel function, and it
must be called from a host to generate the thread hierarchy on the device.

The threadIdx.x and threadIdy.y are the threads indexes in the grid. We also note
again that all these threads execute the same kernel code, so different threads will have
different values with different thread coordinates. In this parallel version, the loop variables i
and j of the sequential version (refer to the code in the How to do it section) are now replaced
with threadIdx.x and threadIdx.y. The loop iteration through these indexes is simply
replaced by these thread indexes, so in the parallel version, we have only one loop iteration.
When the kernel MatrixMulKernel is invoked, it is executed as a grid of the size 2x2 of
parallel threads:

mod

= compiler.SourceModule (kernel code)

matrixmul = mod.get function ("MatrixMulKernel")

matrixmul (

a_gpu, b _gpu,

c_gpu,

block = (MATRIX_SIZE, MATRIX SIZE, 1),
)

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

Each CUDA thread grid typically comprises of thousands to millions of lightweight GPU threads
per kernel invocation. Creating enough threads to fully utilize the hardware often requires

a large amount of data parallelism; for example, each element of a large array might be
computed in a separate thread.

Finally, we print out the results to verify that the computation is ok and report the differences
between the ¢_cpu and ¢_gpu matrix products:

print "-" * 80
print "CPU-GPU difference:"
print ¢ _cpu - c_gpu.get()

np.allclose(c_cpu, c_gpu.get())

Kernel invocations with GPUArray

In the previous recipe, we saw how to invoke a kernel function using the class:

pycuda.compiler.SourceModule (kernel source, nvcc="nvcc", options=None,
other options)

It creates a module from the CUDA source code called kernel source. Then, the NVIDIA
nvcc compiler is invoked with options to compile the code.

However, PyCUDA introduces the class pycuda . gpuarray.GPUArray that provides a high-
level interface to perform calculations with CUDA:

class pycuda.gpuarray.GPUArray (shape, dtype, *, allocator=None,
order="C")

This works in a similar way to numpy . ndarray, which stores its data and performs its
computations on the compute device. The shape and dtype arguments work exactly as in
NumpPy.

All the arithmetic methods in GPUArray support the broadcasting of scalars. The creation of
gpuarray is quite easy. One way is to create a NumPy array and convert it, as shown in the
following code:

>>> import pycuda.gpuarray as gpuarray

>>> from numpy.random import randn

>>> from numpy import float32, int32, array

>>> x = randn(5) .astype(float32)

>>> X gpu = gpuarray.to_ gpu(x)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6
You can print gpuarray as you do normally:

>>> xarray([-0.24655211, 0.00344609, 1.45805557, 0.22002029,
1.284386671)

>>> x gpuarray([-0.24655211, 0.00344609, 1.45805557, 0.22002029,
1.284386671)

How to do it...

The following example represents not only an easy introduction, but also a common use case
of GPU computations, perhaps in the form of an auxiliary step between other calculations. The
script for this is as follows:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit

import numpy

a_gpu = gpuarray.to_ gpu(numpy.random.randn(4,4) .astype (numpy.float32))
a_doubled = (2*a_gpu) .get ()

print a_doubled

print a_gpu

The output is (running the function from Python IDLE) as follows:

C \Python Parallel Programming INDEX\Chapter 6 - GPU Programming wit
h Python\python PyCudaGPUArray.py
ORIGINAL MATRIX
[[-0.60254627 1.16694951 1.48510635 -1.46718287 2.11878467]
[2.63159704 -3.6541729 2.44197178 -1.12101364 0.22178674]
[-0.87713826 -1.9803952 0.98741448 -2.83859134 -1.55612338]
[0.79552311 -0.25934356 -1.12207913 -0.21778747 -4.0459609]
[-1.74858582 1.34928024 -2.55908132 2.22259712 0.82242775]]

DOUBLED MATRIX AFTER PyCUDA EXECUTION USING GPUARRAY CALL
[[-0.30127314 0.58347476 0.74255317 -0.73359144 1.05939233]
[1.31579852 -1.82708645 1.22098589 -0.56050682 0.11089337]
0.43856913 -0.9901976 0.49370724 -1.41929567 -0.77806169]
0.39776155 -0.12967178 -0.56103957 -0.10889374 -2.02298045]
0.87429291 0.67464012 -1.27954066 1.11129856 0.41121387]]

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

Of course, we have to import all the required modules:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit

import numpy

The a_gpu input matrix contains all the items that are generated randomly. To perform the
computation in the GPU, (double all the items in the matrix) we have only one statement:

a_doubled = (2*a gpu) .get ()

The result is put in the a_doubled matrix (using the get () method). Finally, the result is
printed as follows:

print a doubled

There's more...

The pycuda.gpuarray.GPUArray supports all arithmetic operators and a number
of methods and functions, all patterned after the corresponding functionality in NumPy.
In addition to this, many special functions are available in pycuda . cumath. The arrays
of approximately uniformly distributed random numbers may be generated using the
functionality in pycuda . curandom.

Evaluating element-wise expressions with

PyCUDA

The PyCuda.elementwise.ElementwiseKernel function allows us to execute the kernel
on complex expressions that are made of one or more operands into a single computational
step, which is as follows:

ElementwiseKernel (arguments, operation,name,optional parameters)

Here, we note that:

» arguments: This is a C argument list of all the parameters that are involved in the
kernel's execution.

» operation: This is the operation that is to be executed on the specified arguments.
If the argument is a vector, each operation will be performed for each entry.

» name: This is the kernel's name.

» optional parameters: These are the compilation directives that are not used in
the following example.

220

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

In this example, we'll show you the typical use of the ElementwiseKernel call. We have two
vectors of 50 elements, input_vector_a and input vector b, thatare builtin a random
way. The task here is to evaluate their linear combination.

The code for this is as follows:

import pycuda.autoinit

import numpy

from pycuda.curandom import rand as curand

from pycuda.elementwise import ElementwiseKernel
import numpy.linalg as la

input vector a = curand((50,))
input vector b = curand((50,))
mult coefficient a = 2
mult coefficient b = 5

linear combination = ElementwiseKernel (
"float a, float *x, float b, float *y, float *c",
"ce[i]l = a*x[i] + b*y[i]",
"linear combination")

linear combination result = gpuarray.empty like (input vector a)
linear combination (mult coefficient a, input vector_a,\

mult coefficient b, input vector b, \

linear combination result)

print ("INPUT VECTOR A =")
print (input vector_ a)

print ("INPUT VECTOR B = ")
print (input vector b)

print ("RESULTING VECTOR C = ")
print linear combination result

print ("CHECKING THE RESULT EVALUATING THE DIFFERENCE VECTOR BETWEEN C
AND THE LINEAR COMBINATION OF A AND B")
print ("C - (%sA + %sB) = "% (mult coefficient a,mult coefficient b))

221

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

(mult coefficient a*input vector a\

+ mult coefficient b*input

print (linear combination result -
vector b))
assert la.norm((linear combination result - \

(mult_coefficient a*input vector a +\

mult coefficient b*input vector b)) .get())

The output for this from Command Prompt is as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with

PyCudaElementWise.py
INPUT VECTOR A =

[

0.

0.73191601
75579387

0.35208538

.04270195

0.15690483

.45646626

0.35608584

.33111155

0.18454118

.4575595

0.55539894

.13928016

0.18071586

.55373788

0.07541087

.65380263

0.93845034

INPUT VECTOR

[

0.

222

0.29464501
0588627

0.99216938

.73907417

0.06841258

.90884209

0.39139062

.13706622

0.62038481

.99894243

0.28288943

.011460096

0.45902726

.42909116

0.2633251

.26024994

0.61452144

0.7004351

0.97497243

0.39899695

0.01598917

0.83971804

0.23285247

0.8029055

0.55443048

0.27472526]

B =

0.21645674

0.879906

0.1816148

0.97678316

0.22524452

0.55505407

0.03561942

0.07679776

0.46388686]

0.87159222

0.36948711

0.2927697

0.75943208

0.01466237

0.14676388

0.05551658

0.19723719

0.93407696

0.07517455

0.53327322

0.41284555

0.67131585

0.14323047

0.78358203

0.80823648

0.49621502

0.34328628

0.36201504

0.49343511

0.77959627

0.72028935

0.49400434

0.72457349

0.48678038

0.84360296

0.30980903

0.17893282

0.06617502

0.54854101

0.32014725

0.57373965

< le-5

Python\ s>python

.19640177

.06811771

.09503061

.79146844

.54659295

.87861985

.40941685

.46491891

.71135205

.57358545

.96774238

.47421032

.02492006

.2742492

.13187674

.40740359

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

RESULTING VECTOR C =

[2.93705702
1.80590129

5.6650176
3.78077483

0.65587258
5.45714283

2.6691246
1.34755421

3.47100639
5.90983152

2.52524495
0.33586511

2.65656805
3.25293159

1.46744728
2.60885501

4.94950771

2.48315382 6.41356945 3.42633176 3.94956398

6.34947491 1.11484694 4.90458727 3.00416279

1.70606792 3.25190544 2.2730751 5.02877283

4.91589403 3.58309197 1.88153434 3.95398855

2.80565882 3.38590407 1.89006758 1.21778619

3.24097538 1.00968003 4.18328381 3.12848568

1.78390813 4.02894306 2.58874488 1.47821736

1.49284983 4.43565702 4.31784534 2.96685553

2.86888456]

CHECKING THE RESULT EVALUATING THE DIFFERENCE VECTOR BETWEEN C AND THE
LINEAR COMBINATION OF A AND B

C - (2A + 5B)
[0. 0. oO.
0.

0 0. 0
0.

0 0. 0

After the usual import,

from pycuda.el

we note:

ementwise import ElementwiseKernel

We must build all the elements that are to be manipulated. Let's remember that the task to

be done is to evaluate
vector_b. These two

a linear combination of two vectors input vector aand input
vectors are initialized using the PyCUDA curandom library, which is

used for the generation of pseudorandom numbers:

To import the library, use the following code:

from pycuda.curandom import rand as curand

To define the random vector (50 elements), use:

input vector a
input vector b

= curand((50,))
= curand((50,))

223

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

We defined the two coefficients of multiplication that are to be used in the calculation of the
linear combination of these two vectors:

mult_coefficient_a

mult_coefficient_b 5

The core example is the kernel invocation for which we use the PyCUDA
ElementwiseKernel construct, shown as follows:

linear combination = ElementwiseKernel (
"float a, float *x, float b, float *y, float *c",
"e[i] = a*x[i] + b*y[il",
"linear combination")

The first line of the argument list (in a C-style definition) defines all the parameters to be
inserted for the calculation:

"float a, float *x, float b, float *y, float *c",

The second line defines how to manipulate the arguments list. For each value of the index i,
a sum of these components must be evaluated:

"cli]l = a*x[i] + b*yl[il",
The last line gives the 1inear combination hame to ElementwiseKernel.

After the kernel, the resulting vector is defined. It is an empty vector of the same dimension
as of the input vector:

linear combination result = gpuarray.empty like (input_ vector a)
Finally evaluate the kernel:
linear combination (mult coefficient a, input vector_a,\

mult coefficient b, input vector b,\

linear combination_ result)

You can check the results using the following code:

assert la.norm((linear combination result - \
(mult_coefficient a*input vector a +\
mult coefficient b*input vector b)) .get()) < le-5

The assert function tests the result and triggers an error if the condition is false.

In addition to the curand library, derived from the CUDA library, PyCUDA provides other math
libraries, so you can take a look at the libraries listed at http://documen.tician.de/
pycuda.

224

www.it-ebooks.info

http://documen.tician.de/pycuda
http://documen.tician.de/pycuda
http://www.it-ebooks.info/

Chapter 6

The MapReduce operation with PyCUDA

PyCUDA provides a functionality to perform reduction operations on the GPU. This is possible
with the pycuda.reduction.ReductionKernel method

ReductionKernel (dtype out, arguments, map expr ,reduce expr,
name,optional parameters)

Here, we note that:

» dtype_ out: This is the output's data type. It must be specified by the numpy . dtype
data type.

» arguments: This is a C argument list of all the parameters involved in the reduction's
operation.

» map_ expr: This is a string that represents the mapping operation. Each vector in this
expression must be referenced with the variable 1.

» reduce_expr: This is a string that represents the reduction operation. The operands
in this expression are indicated by lowercase letters, suchasa, b, c, ..., z.

» name: This is the name associated with ReductionKernel, with which the kernel is
compiled.

» optional parameters: These are notimportant in this recipe as they are the
compiler's directives.

The method executes a kernel on vector arguments (at least one), performs map_expr on
each entry of the vector argument, and then performs reduce_expr on its outcome.

How to do it...

This example shows the implementation of a dot product of two vectors (500 elements) through
an instantiation of the ReductionKernel class. The dot product, or scalar product, is an
algebraic operation that takes two equal length sequences of numbers (usually coordinate
vectors) and returns a single number that is the sum of the products of the corresponding
entries of the two sequences of numbers. This is a typical MapReduce operation, where the Map
operation is an index-by-index product and the reduction operation is the sum of all the products.

The PyCUDA code for this task is very short:

import pycuda.gpuarray as gpuarray

import pycuda.autoinit

import numpy

from pycuda.reduction import ReductionKernel

vector_ length = 400

225

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

input vector a =

input vector b =

dot_ product =

dot product

gpuarray.arange (vector length, dtype=numpy.int)

gpuarray.arange (vector length, dtype=numpy.int)

ReductionKernel (numpy.int,

dot product

arguments="int *x,

int *y",

map expr="x[i]*y[i]",

reduce expr="a+b", neutral="0")

print ("INPUT VECTOR A")
print input vector a

print ("INPUT VECTOR B")
print input vector b

(input_vector a,

print ("RESULT DOT PRODUCT OF A * B")

print dot product

input_vector b) .get ()

Running the code from Command Prompt, you will have an output like this:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python

PyCudaReductionKernel.py

INPUT VECTOR A

[o
18
36
54
72
90

108

126

144

162

180

198

216

234

252

226

1
19
37
55
73
91

109
127
145
163
181
199
217
235
253

2
20
38
56
74
92

110
128
146
164
182
200
218
236
254

3
21
39
57
75
93

111
129
147
165
183
201
219
237
255

4
22
40
58
76
94

112
130
148
166
184
202
220
238
256

5
23
41
59
77
95

113
131
149
167
185
203
221
239
257

6
24
42
60
78
96

114
132
150
168
186
204
222
240
258

7
25
43
61
79
97

115
133
151
169
187
205
223
241
259

8
26
44
62
80
98

116
134
152
170
188
206
224
242
260

9
27
45
63
81
99

117
135
153
171
189
207
225
243
261

10
28
46
64
82
100
118
136
154
172
190
208
226
244
262

11
29
47
65
83
101
119
137
155
173
191
209
227
245
263

12
30
48
66
84
102
120
138
156
174
192
210
228
246
264

13
31
49
67
85
103
121
139
157
175
193
211
229
247
265

14
32
50
68
86
104
122
140
158
176
194
212
230
248
266

15
33
51
69
87
105
123
141
159
177
195
213
231
249
267

16
34
52
70
88
106
124
142
160
178
196
214
232
250
268

17
35
53
71
89
107
125
143
161
179
197
215
233
251
269

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
396 397 398 399]

INPUT VECTOR B
[o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 178 79 80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
396 397 398 399]

RESULT DOT PRODUCT OF A * B
21253400

227

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

In this script, the input vectors input vector a and input vector b are integer
vectors. Each of them, as you can see from the preceding output result, ranges from 0 to 399
elements (400 elements in total):

vector length = 400

input vector a = gpuarray.arange (vector length, dtype=numpy.int)
input vector b = gpuarray.arange(vector length, dtype=numpy.int)

After the definition of the inputs, we can define the MapReduce operation by calling the
ReductionKernel PyCUDA function:

dot product = ReductionKernel (numpy.int,
arguments="int *x, int *y",
map expr="x[i]*y[i]",
reduce expr="a+b", neutral="0")

This kernel operation is defined as follows:

» The first entry in the argument list tells us that the output will be an integer

» The second entry defines the data types for the inputs (array of integers) in a C-like
notation

» The third entry is the map operation, which is the product of the ith element of the
two vectors

» The fourth operation is the reduction operation, which is the sum of all the products

Observe that the end result of calling the ReductionKernel instance is a GPUArray scalar
that still resides in the GPU. It can be brought to the CPU by a call to its get method or can be
used in place of the GPU.

Then, the kernel function is invocated, as shown:
dot product = dot product (input vector a, input vector b).get ()
The input vectors and the resulting dot product are printed out:

print input vector a
print input vector b
print dot product

228

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

GPU programming with NumbaPro

NumbaPro is a Python compiler that provides a CUDA-based API to write CUDA programs.
It is designed for array-oriented computing tasks, much like the widely used NumPy library.
The data parallelism in array-oriented computing tasks is a natural fit for accelerators such
as GPUs. NumbaPro understands NumPy array types and uses them to generate efficient
compiled code for execution on GPUs or multicore CPUs.

The compiler works by allowing you to specify type signatures for Python functions, which
enable compilation at runtime (called the JIT compilation).

The most important decorators are:

» numbapro.jit: This allows a developer to write CUDA-like functions. When
encountered, the compiler translates the code under the decorator into the pseudo
assembly PTX language to be executed in the GPU.

» numbapro.autojit: This annotates a function for a deferred compilation
procedure. This means that each function with this signature is compiled exactly
once.

» numbapro.vectorize: This creates a so-called ufunc object (the Numpy universal
function) that takes a function and executes it parallelly in vector arguments.

» guvectorize: This creates a so-called gufunc object (the NumPy generalized
universal function). A gufunc object may operate on entire subarrays (refer to
http://docs.continuum.io/numbapro/generalizedufuncs.html for more
references.)

All these decorators have a compiler directive called a target that selects the code generation
target. The NumbaPro compiler supports the parallel and GPU targets. The parallel target is
available to vectorize the operations, while the GPU directive offloads the computation to a
NVIDIA CUDA GPU.

Getting ready

NumbaPro is part of Anaconda Accelerate, which is a commercially licensed product
(NumbaPro is also available under a free license for academic users) from Continuum
Analytics. It is built on top of the BSD-licensed, open source Numba project, which itself relies
heavily on the capabilities of the LLVM compiler. The GPU backend of NumbaPro utilizes the
LLVM-based NVIDIA Compiler SDK.

229

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

To get started with NumbaPro, the first step is to download and install the Anaconda Python
distribution (http://continuum. io/downloads), which is a completely free, enterprise-
ready Python distribution for large-scale data processing, predictive analytics, and scientific
computing. It includes many popular packages (Numpy, Scipy, Matplotlib, iPython, and so on)
and conda, which is a powerful package manager.

Once you have Anaconda installed, you must type the following instructions from Anaconda's
Command Prompt:

> conda update conda

> conda install accelerate

> conda install numbapro

NumbaPro does not ship the CUDA driver. It is the user's responsibility to ensure that their
systems are using the latest drivers. After the installation, it's possible to perform the detection
of the CUDA library and GPU, so let's open Python from the Anaconda console and type:

import numbapro
numbapro.check cuda ()

The output of these two lines of code should be as follows (we used a 64-bit Anaconda distro):

C:\Users\Giancarlo\Anaconda>python

Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 16:44:52)
[MSC v.1500 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.

Please check out: http://continuum.io/thanks and https://binstar.org
>>> import numbapro

Vendor: Continuum Analytics, Inc.

Package: mkl

Message: trial mode expires in 30 days

Vendor: Continuum Analytics, Inc.

Package: mkl

Message: trial mode expires in 30 days

Vendor: Continuum Analytics, Inc.

Package: numbapro

Message: trial mode expires in 30 days

>>> numbapro.check cuda()

230

www.it-ebooks.info

http://continuum.io/downloads
http://www.it-ebooks.info/

Finding

Finding

Finding

Finding

Finding

Found 1
id 0

Summary:

PASSED
True

>>>

Chapter 6

cublas

located at C:\Users\Giancarlo\Anaconda\DLLs\cublas64 60.dl1l
trying to open library... ok

cusparse

located at C:\Users\Giancarlo\Anaconda\DLLs\cusparse64 60.d11l
trying to open library... ok

cufft

located at C:\Users\Giancarlo\Anaconda\DLLs\cufft64 60.d1l1l
trying to open library... ok

curand

located at C:\Users\Giancarlo\Anaconda\DLLs\curand64 60.dl1l
trying to open library... ok

nvvm

located at C:\Users\Giancarlo\Anaconda\DLLs\nvvm64 20 0.dl1l

trying to open library... ok

finding libdevice for compute 20... ok
finding libdevice for compute 30... ok
finding libdevice for compute 35... ok

CUDA devices
GeForce 840M [SUPPORTED]
compute capability:

pci device id:

o o u

pci bus id:

1/1 devices are supported

231

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

How to do it...

In this example, we give a demonstration of the NumbaPro compiler using the annotation
@guvectorize. In the following task, we try to execute a matrix multiplication using the
Numbapro module:

from numbapro import guvectorize
import numpy as np

@guvectorize (['void(int64[:,:], inte64[:,:], inte4[:,:])'],
'(m,n), (n,p)->(m,p) ")
def matmul (A, B, C):
m, n = A.shape
n, p = B.shape
for i in range(m) :
for j in range(p) :
cli, jl =0
for k in range(n) :
cli, jl += A[i, k] * B[k, jl

dim = 10
A = np.random.randint (dim, size=(dim, dim))
B = np.random.randint (dim, size=(dim, dim))

C = matmul (A, B)

print ("INPUT MATRIX A")

print (":\n%s" % A)

print ("INPUT MATRIX B")

print (":\n%s" % B)

print ("RESULT MATRIX C = A*B")

)

print (":\n%s" % C)
After running the code (using the Anaconda console), we should have an output like this:

INPUT MATRIX A

[[7

78585195 9]
[35546 76531]
[7168 7 903 3 3]
[7 44378121 2]
[4 77 13556 7 6]
[50158444 4 9]

232

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[1 32073723 4]
[02 9075974 7]
[73 7 6564227]
[2 19710357 3]]
INPUT MATRIX B

[[2 98423973 1]
[9 1338076 3 5]
[74 96 65976 6]
[6 83 15447 7 5]
[6 251286 05 8]
[4 45760113 8]
[2 78619841 6]
[2 29836147 4]
[9 96 933324 9]
[8 46 78886 7 81]
RESULT MATRIX C = A*B

[[368 284 402 331 304 295 361 291 327 378]
[231 207 278 226 188 199 236 177 193 273]
[248 247 280 217 208 190 243 198 232 279]
[201 181 232 175 173 149 218 156 170 225]
[297 239 331 301 239 225 290 225 229 315]
[235 229 270 222 181 248 246 175 219 280]
[174 142 201 166 124 185 192 108 129 217]
[267 213 348 297 212 292 289 194 233 334]
[266 254 305 239 228 230 303 234 232 288]
[227 219 255 215 166 189 214 196 204 229]]

The @guvectorize annotation works on array arguments. This decorator takes an extra
argument to specify the gufunc signature. The arguments are explained, as follows:

>

The first three arguments specify the types of data to be managed, which are the
array of integers: 'void (int64([:,:]1, int64([:,:]1, inté64[:,:])"

The last argument of @guvectorize specifies how to manipulate the matrix
dimensions: ' (m,n), (n,p)->(m,p) "’

@guvectorize(['void(int64[:,:], inté64[:,:], inte4[:,:])'],
'(m,n), (n,p)->(m,p)")

233

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

In the subsequent code, we define the matmul (A, B, C) operation. It accepts the two input
matrix A and B and produces a C output matrix. According to the gufunc signature, we should
have:

A(m,n)* B(n,p) = C(m,p) where m,n,p are the matrix dimensions.
The matrix product is simply performed via three for loops along with the matrix indices:

for i in range (m) :
for j in range(p) :
Ccli, j1 =0
for k in range(n):
Cl[i, jl += A[i, k] * B[k, 7jl

The Numpy's function randint is used to build integers from random matrices:

dim = 10
A = np.random.randint (dim, size=(dim, dim))
B = np.random.randint (dim, size=(dim, dim))

Finally, the matmul function is called with these matrices with arguments, and the resultant
matrix is printed out:

C = matmul (A, B)
print ("RESULT MATRIX C = A*B")

)

print (":\n%s" % C)

Using GPU-accelerated libraries with

NumbaPro

NumbaPro provides a Python wrap for CUDA libraries for numerical computing. Each code
using these libraries will get a significant speedup without writing any GPU-specific code. The
libraries are explained as follows:

» cuBLAS: This is a library developed by NVIDIA that provides the main functions of
linear algebra to run on a GPU. Like the Basic Linear Algebra Subprograms (BLAS)
library that implements the functions of linear algebra on the CPU, the cuBLAS library
classifies its functions into three levels:

o Level 1: Vector operations
o Level 2: Transactions between a matrix and vector

o Level 3: Operations between matrices

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The division of these functions in the three levels is based on the number of nested
loops that are needed to perform the selected operation. More precisely, the
operations of the level are essential cycles that are geared to complete the execution
of the selected function.

» cuFFT: This provides a simple interface to calculate the Fast Fourier Transform (FFT)
in a distributed manner on an NVIDIA GPU, enabling you to exploit the parallelism of
the GPU without having to develop your own implementation of the FFT.

» cuRAND: This library provides the creation of quasirandom numbers. A quasirandom
number is a random number generated by a deterministic algorithm.

» cuSPArse: This provides a set of functions for the management of sparse matrices.
Unlike the previous case, its functions are classified into four levels:

o Level 1: These are operations between a vector that is stored in a shed and
a vector that is stored in a dense format.

o Level 2: These are the transactions between a matrix format stored in a shed
and a vector stored in the dense format.

o Level 3: These are the operations in a matrix format that are stored in a
shed and set of vectors that are stored in a dense format (this set can be
considered as one large dense matrix.)

o Conversion: These are operations that allow the conversion between
different storage formats.

How to do it...

In this example, we present an implementation of GEneral Matrix Multiply (GEMM), which is
a routine to perform matrix-matrix multiplication on NVIDIA GPUs. The sequential version using
the NumPy Python module and the parallel version using the cuBLAS library will be reported.
Also, a comparison of the execution time will be made between the two algorithms.

The code for this is as follows:

import numbapro.cudalib.cublas as cublas
import numpy as np
from timeit import default timer as timer

dim = 10

def gemm() :
print ("Version 2".center (80, '='))

A
B

np.random.rand (dim, dim)

np.random.rand (dim, dim)

235

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

D = np.zeros_like(A, order='F')

print ("MATRIX A :")
print A
print ("VECTOR B :")
print B

NumPy

start = timer ()

E = np.dot (A, B)

numpy time = timer() - start

)

print ("Numpy took %f seconds" % numpy time)

cuBLAS
blas = cublas.Blas()

start = timer ()

blas.gemm('T', 'T', dim, dim, dim, 1.0, A, B, 1.0, D)
cuda_time = timer() - start

print ("RESULT MATRIX EVALUATED WITH CUBLAS")

print D

print ("CUBLAS took %f seconds" % cuda time)
diff = np.abs(D - E)
print ("Maximum error %f" % np.max(diff))

def main() :
gemm ()
if name == ' main ':
main ()

The output obtained for this will be as follows:

MATRIX A :
[[0.79582178 0.95671563 0.69251157 0.85600979 0.32826726 0.72861569
0.20724061 0.55065641 0.2257875 0.90146437]
[0.6742022 0.43449657 0.04862685 0.9023226 0.87598306 0.20774405
0.15774015 0.2847742 0.81601615 0.34114773]
[0.61500219 0.65982283 0.73493152 0.21913261 0.80862566 0.73982082
0.84005388 0.38745489 0.676947 0.31530397]
236

www.it-ebooks.info

http://www.it-ebooks.info/

O O O O O O o o o o o o o

.60694411
.9064746

.60166404
.2912572

.32192297
.88491826
.21512101
.0586854

.77378663
.25423268
.77808301
.63316824
.97122802
.53542786

VECTOR B

(L

O O O O O O 0O O O o O O O o o o o o o

.17084153
.00681474
.81913609
.75033104
.10071768
.23255164
.84163163
.02367708
.90406949
.16257016
.62989968
.16352136
.44608094
.18330497
.37860881
.72063491
.42135462
.71826696
.08020851
.0407631

O O O O O O o o o o o o o o

O O O O O O O O O o o O O O o o o o o o

.65138528
.93419845
.41423776
.81481984
.30244072
.98290063
.64731098
.48812094
.43994483
.06869655
.47386303
.58479485
.53723365
.83478941

.44546677
.01126972
.97583768
.41878918
.3090773

.96166165
.59296382
.65485736
.03424157
.81357471
.47944669
.42323191
.19969488
.76095336
.33079438
.42698316
.89413827
.9748898

.47789158
.41811299

O O O O O O o o o o o o o o

O O O O O O O O O o o O O 0o o o o o o o

.63773284
.14609622
.09938464
.65222424
.865952009
.62965353
.4079146

.3625991

.5620805

.13642323
.54323866
.45141828
.68688748
.27459888

.21551063
.13769525
.52579565
.96892428
.94185921
.65615938
.12281989
.79834789
.01519989
.58567631
.86860435
.46907905
.01035155
.12880003
.19275564
.53811423
.00620849
.9086774

.45538401
.2539022

O O O O O O O o o o o o o o

O O O O O O O O O o o O O 0o o o o o o o

.06589098 0.
.28317855]
.19315303 0.
.0670377 1
.37701833 0.
.38323725]
.8371392 0.
.58142603]
.70350504 O.
.00221422]
.42010733 0.
.46231481]
.54315409 oO.
.2102463911

.39731923 0.
.63437229]
.20179695 0.
.54358419]
.70550442 0.
.16991118]
.32851275 0.
.76747705]
.5011444 0.
.24503327]
.94086568 0.
.977720971
.69528549 0.
.24301603]
.58316669 0.
.83682958]
.63770542 0.
.7084634 1]
.26468263 0.
.7334670611

49177294

07374789

79095644

01398673

60589009

80652762

00883411

00102686

24066758

10651627

78716318

63175281

24312278

07219375

35753971

29376823

84960276

Chapter 6

.02029247

.45335697

.11518194

.85945652

.09605428

.05903843

.9855186

.81069924

.18154282

.62659408

.02568872

.17705116

.13450463

.91454669

.63697732

.68415057

.1108932

237

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

Numpy took 1.167435 seconds

RESULT MATRIX EVALUATED WITH

[r 2.

1.
.70759988
.37381915
.93301949
.8600905
.05665894
.68187918
.68553937
.54050405
.55782414
.92525406
.27705425
.39131705
.94662205
.79113948
.42686338
.51847658
.44854528
1.

,,
N BN O R B NMHEHNMKHEHKREREREBDNDRDNDIERDND

93393517
71083261

65043895

3.
.20145366
.42236864
.80760808
.70921232
.70096673
.92477247
.6942483

.98030198
.8876191

.2600454

.76932667
.53777179
.43879465
.62822264
.08449619
.22641127
.05078902
.69315101
2.

N W NN KHE DD WD EHE R DR WDDDDDD W

22653293

79595207

CUBLAS took 0.004226 seconds

Maximum error 0.000000

CUBLAS

2.58999843
3.4654546
0.94108333
2.87826551
2.08465713
3.21368161
1.42646422
2.30742661
1.05436088
2.04514196
1.
3
1
2
1
2
1
2
2
2

57942935

.03618471
.98218876
.75148098
.12425671
.05742732
.3762425

.68199133
.3255071

.82714486

W W D N HEH FE WD DD WD DNDDNDDND W WD DND WD

.97688025
.9246803 1
.20715685
.88739456]
.39447429
.20257798]
.45288009
.35163885]
.03107385
.49719893]
.11991574
.87628333]
.30511984
.149945641]
.72230283
.825365941]
.57727754
.72340269]
.17886105
.5848929611]

2.

2.

1.

40723642

06739391

.76684939

.27576149

.98066787

.91570669

.85547257

.21131853

.80747335

47260987

The result obtained confirms the effectiveness of the cuBLAS library.

In order to make a comparison between a NumPy and cuBLAS implementation of a matrix
product, we import all the required libraries:

import numbapro.cudalib.cublas as cublas

import numpy as np

Also, we define the matrix dimension:

dim = 10

238

.22561846

.78390442

.84034554

.65682509

.94328559

.93236718

.36423334

.56748417

.53040609

.69597578

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The core algorithm is the gemm () function. First, we define the input matrices:

A = np.random.rand(dim,dim)
B = np.random.rand(dim,dim)

Here, D will contain the output of the cuBLAS implementation:
D = np.zeros_like(A, order='F')

In this example, we compare the calculation done with NumPy and cuBLAS. The NumPy
evaluationis: E = np.dot (A, B), where the matrix E will contain the dot product.

Finally, the cuBLAS implementation is as follows:

blas = cublas.Blas()
start = timer ()
blas.gemm('T', 'T', dim, dim, dim, 1.0, A, B, 1.0, D)
cuda_time = timer() - start

The gemm () function is a cuBLAS level 3 function:

numbapro.cudalib.cublas.Blas.gemm(transa, transb, m, n, k, alpha,
A, B,beta, C)

It realizes a matrix-matrix multiplication in the following form:
C = alpha * op(A) * op(B) + beta * C where op is transpose or not.

At the end of the function, we compare the two results and report the execution time (cuda__
time):

print ("CUBLAS took %f seconds" % cuda_ time)

diff = np.abs(D - E)
print ("Maximum error %$f" % np.max(diff))

In this example, we saw an application of the cuBLAS library. For more complete references,
referto http://docs.nvidia.com/cuda/cublas/index.html and http://docs.
continuum. io/numbapro/cudalib for a complete list of CUDA function libraries wrapped
with NumbaPro.

239

www.it-ebooks.info

http://docs.continuum.io/numbapro/cudalib
http://docs.continuum.io/numbapro/cudalib
http://www.it-ebooks.info/

GPU Programming with Python

Using the PyOpenCL module

Open Computing Language (OpenCL) is a framework used to develop programs that work
across heterogeneous platforms, which can be made either by the CPU or GPU that are
produced by different manufacturers. This platform was created by Apple, but has been
developed and maintained by a non-profit consortium called the Khronos Group. This
framework is the main alternative for the CUDA execution of software on a GPU, but has a
point of view that is diametrically opposed. However, CUDA makes specialization its strong
point (produced, developed, and compatible with NVIDIA), ensuring excellent performance at
the expense of portability. OpenCL offers a solution compatible with nearly all devices on the
market. Software written in OpenCL can run on processor products from all major industries,
such as Intel, NVIDIA, IBM, and AMD. OpenCL includes a language to write kernels based on
C99 (with some restrictions), allowing you to use the hardware available directly in the same
way as with CUDA-C-Fortran or CUDA. OpenCL provides functions to run highly parallel and
synchronization primitives, such as indicators for regions of memory and control mechanisms
for the different platforms of execution. The portability of OpenCL programs, however, is limited
to the ability to run the same code on different devices, and this ensures that the performance
is equally reliable. To get the best performance possible, it is fundamental that you refer to

the execution platform, optimizing the code based on the characteristics of the device. In the
following recipes, we'll examine the Python implementation of OpenCL called PyOpenCL.

Getting ready

PyOpenCL is to OpenCL what PyCUDA is to CUDA: a Python wrapper to those GPGPU platforms
(PyOpenCL can run alternatively on both NVIDIA and the AMD GPU card.) It is developed

and maintained by Andreas Kldckner. Installing PyOpenCL on Windows is easy when using
the binary package provided by Christoph Gohlke. His webpage contains Windows binary
installers for the most recent versions of hundreds of Python packages. It is of invaluable help
for those Python users that use Windows.

With these instructions, you will build a 32-bit PyOpenCL library for a Python 2.7 distro on a
Windows 7 machine with a NVIDIA GPU card:

1. Gotohttp://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopencl and
download the file from pyopencl-2015.1-cp27-none-win32.whl (and the
relative dependencies if required).

2. Download and install the Win32 OpenCL driver (from Intel) from http://
registrationcenter.intel.com/irc nas/5198/opencl runtime 15.1
x86_ setup.msi.

3. Finally, install the pyOpencL file from Command Prompt with the command:

pip install pyopencl-2015.1-cp27-none-win32.whl

240

www.it-ebooks.info

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopencl
pyopencl2015.1cp27nonewin32.whl
http://registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_x86_setup.msi
http://registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_x86_setup.msi
http://registrationcenter.intel.com/irc_nas/5198/opencl_runtime_15.1_x86_setup.msi
http://www.it-ebooks.info/

Chapter 6

How to do it...

In this first example, we verify that the PyOpenCL environment is correctly installed.

So, a simple script that can enumerate all major hardware features using the OpenCL library
is presented as:

import pyopencl as cl

def print device info()

print ('\n' + '=' * 60 + '\nOpenCL Platforms and Devices')
for platform in cl.get platforms():
print ('=' * 60)
print ('Platform - Name: ' + platform.name)
print ('Platform - Vendor: ' + platform.vendor)
print ('Platform - Version: ' + platform.version)
print ('Platform - Profile: ' + platform.profile)

for device in platform.get devices():

print (' '+ '-' * 56)

print (' Device - Name: ' \
+ device.name)

print (' Device - Type: ' \
+ cl.device type.to string(device.type))

print (' Device - Max Clock Speed: {0} Mhz'\
.format (device.max clock frequency))

print (! Device - Compute Units: {0}'\
.format (device.max compute units))
print (' Device - Local Memory: {0:.0f} KB'\
.format (device.local mem size/1024.0))
print (' Device - Constant Memory: {0:.0f} KB'\
.format (device.max_constant buffer size/1024.0))
print (! Device - Global Memory: {0:.0f} GB'\
.format (device.global mem size/1073741824.0))
print (! Device - Max Buffer/Image Size: {0:.0f} MB'\

.format (device.max_mem alloc size/1048576.0))
print (' Device - Max Work Group Size: {0:.0f}'\
.format (device.max work group size))
print ('\n")

if name == " main ":

print device info()

241

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

The output that shows the main characteristics of the CPU and GPU card that is installed
should be like this:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python
PyOpenCLDeviceInfo.py

Platform - Name: NVIDIA CUDA
Platform - Vendor: NVIDIA Corporation
Platform - Version: OpenCL 1.1 CUDA 6.0.1
Platform - Profile: FULL PROFILE

Device - Name: GeForce GT 240

Device - Type: GPU

Device - Max Clock Speed: 1340 Mhz

Device - Compute Units: 12

Device - Local Memory: 16 KB

Device - Constant Memory: 64 KB

Device - Global Memory: 1 GB

Platform - Name: Intel(R) OpenCL
Platform - Vendor: Intel(R) Corporation
Platform - Version: OpenCL 1.2
Platform - Profile: FULL PROFILE
Device - Name: Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz
Device - Type: CPU
Device - Max Clock Speed: 2330 Mhz
Device - Compute Units: 2
Device - Local Memory: 32 KB
Device - Constant Memory: 128 KB

Device - Global Memory: 2 GB

242

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The code is very simple. In the first line, we import the pyopencl module:

import pyopencl as cl

Then, the platform.get devices () method is used to get a list of devices. For each
device, the set of its main features are printed on the screen:

» The name and device type

» Max clock speed

» Compute units

» Local/constant/global memory

How to build a PyOpenCL application

As for programming with PyCUDA, the first step to build a program for PyOpenCL is the
encoding of the host application. In fact, it is performed on the host computer (typically,
the user's PC) and then it dispatches the kernel application on the connected devices (GPU
cards).

The host application must contain five data structures:

» Device: This identifies the hardware where the kernel code must be executed. A
PyOpenCL application can be executed on CPU and GPU cards but also in embedded
devices, such as Field Programmable Gate Array (FPGA).

» Program: This is a group of kernels. A program selects the kernel that must be
executed on the device.

» Kernel: This is the code to be executed on the device. A kernel is essentially a C-like
function that enables it to be compiled for execution on any device that supports
OpenCL drivers. A kernel is the only way the host can call a function that will run on a
device. When the host invokes a kernel, many work items start running on the device.
Each work item runs the code of the kernel, but works on a different part of the
dataset.

» Command queue: Here, each device receives kernels through this data structure. A
command queue orders the execution of kernels on the device.

243

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

» Context: This is a group of devices. A context allows devices to receive kernels and
transfer data.

Program

context

a

Kernels
PN

A B0 CO D()

Device O Device 1 Device 2 Device 3

PyOpenCL programming

The preceding figure shows how these data structures can work in a host application. Note
that a program can contain multiple functions to be executed on the device, and each kernel
encapsulates only a single function from the program.

How to do it...

In this example, we show you the basic steps to build a PyOpenCL program. The task here is to
execute the parallel sum of two vectors. In order to maintain a readable output, let's consider
two vectors each from the 100 elements. The resulting vector will be for each ith element,
which is the sum of the ith element vector a and vector_b.

Of course, to be able to appreciate the parallel execution of this code, you can also increase
some orders whose magnitude is of the size of the vector_ dimension input:

import numpy as np
import pyopencl as cl
import numpy.linalg as la

vector dimension = 100

vector a = np.random.randint (vector dimension, size=vector dimension)
vector b = np.random.randint (vector dimension, size=vector dimension)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

platform = cl.get platforms () [0]
device = platform.get devices() [0]

context = cl.Context ([devicel])
queue = cl.CommandQueue (context)

mf = cl.mem flags
a g = cl.Buffer(context, mf.READ ONLY | mf.COPY HOST PTR,
hostbuf=vector_a)
b g = cl.Buffer (context, mf.READ ONLY | mf.COPY HOST PTR,
hostbuf=vector_ b)

program = cl.Program(context, """
__kernel void vectorSum(_global const int *a g, = global const int
*b g, _global int *res g) {
int gid = get_global id(0) ;
res_glgid]l = a_glgid]l + b_glgidl;
}

nn ll) bulld()

res g = cl.Buffer(context, mf.WRITE ONLY, vector a.nbytes)
program.vectorSum(queue, vector a.shape, None, a g, b g, res g)

res np = np.empty like(vector a)
cl.enqueue_copy (queue, res np, res_g)
print ("PyOPENCL SUM OF TWO VECTORS")
print ("Platform Selected = %s" %$platform.name)
print ("VECTOR LENGTH = %s" %$vector dimension)
"INPUT VECTOR A")

print vector_a

print ("INPUT VECTOR B")

print vector b

print ("OUTPUT VECTOR RESULT A + B ")

print res np

(
(
print ("Device Selected = %s" %device.name)
(
(

print

assert (la.norm(res np - (vector a + vector b))) < le-5
The output from Command Prompt should be like this:

C:\Python CookBook\ Chapter 6 - GPU Programming with Python\Chapter 6 -
codes>python PyOpenCLParallellSum.py

245

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

Platform Selected = NVIDIA CUDA
Device Selected = GeForce GT 240

VECTOR LENGTH = 100
INPUT VECTOR A

[0 29 88 46 68 93 81 3 58 44 95 20 81 69 85 25 89 39 47 29 47 48 20 86
59 99 3 26 68 62 16 13 63 28 77 57 59 45 52 89 16 6 18 95 30 66 19 29

31 18 42 34 70 21 28 0 42 96 23 86 64 88 20 26 96 45 28 53 75 53 39 83

85 99 49 93 23 39 1 89 39 87 62 29 51 66 5 66 48 53 66 8 51 3 29 96

67 38 22 88]

INPUT VECTOR B

[98 43 16 28 63 1 83 18 6 58 47 86 59 29 60 68 19 51 37 46 99 27 4 94
5 22 3 96 18 84 29 34 27 31 37 94 13 89 3 90 57 85 66 63 8 74 21 18 34
93 17 26 9 88 38 28 14 68 88 90 18 6 40 30 70 93 75 0 45 86 15 10 29
84 47 74 22 72 69 33 81 31 45 62 81 66 69 14 71 96 91 51 35 4 63 36 28
65 10 41]

OUTPUT VECTOR RESULT A + B
[98 72 104 74 131 94 164 21 64 102 142 106 140 98 145 93 108 90
84 75 146 75 24 180 64 121 6 122 86 146 45 47 90 59 114 151
72 134 55 179 73 91 84 158 38 140 40 47 65 111 59 60 79 109
66 28 56 164 111 176 82 94 60 56 166 138 103 53 120 139 54 93
114 183 96 167 45 111 70 122 120 118 107 91 132 132 74 80 119 149
157 59 86 7 92 132 95 103 32 129]

In the first line of the code after the required module import, we defined the input vectors:

vector dimension = 100
vector a = np.random.randint (vector dimension, size= vector dimension)
vector b = np.random.randint (vector dimension, size= vector dimension)

Each vector contains 100 integers items that are randomly selected thought the NumPy
function np.random.randint (max integer , size of the vector).

Then, we must select the device to run the kernel code. To do this, we must first select the
platform using the PyOpenCL's get platform()statement:

platform = cl.get platforms() [0]

246

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This platform, as you can see from the output, corresponds to the NVIDIA CUDA platform.
Then, we must select the device using the platform's get device () method:

device = platform.get devices() [0]

In the following code, the context and queue are defined. PyOpenCL provides the method
context (device selected) and queue (context selected):

context = cl.Context ([devicel])
queue = cl.CommandQueue (context)

To perform the computation in the device, the input vector must be transferred to the device's
memory. So, two input buffers in the device memory must be created:

mf = cl.mem flags

a g = cl.Buffer(context, mf.READ ONLY | mf.COPY HOST_PTR,
hostbuf=vector_a)

b g = cl.Buffer(context, mf.READ ONLY | mf.COPY HOST PTR,
hostbuf=vector_b)

Also, we prepare the buffer for the resulting vector:
res_g = cl.Buffer(context, mf.WRITE ONLY, vector a.nbytes)
Finally, the core of the script, that is, the kernel code is defined inside program:

program = cl.Program(context, """
__kernel void vectorSum(__global const int *a_g, _ global const int
*b g, _global int *res g) {

int gid = get _global id(0) ;

res_gl[gid]l = a glgid] + b_glgid];

}

nn n) bulld()

The kernel's name is vectorSum, while the parameter list defines the data types of the input
arguments (vectors of integers) and output data type (a vector of the integer).

In the body of the kernel function, the sum of two vectors is defined as follows:

» Initialize the vector index: int gid = get global id(0)

» Sum up the vector's components: res_glgid] = a _glgid] + b_glgid];

In OpenCL and PyOpenCL, buffers are attached to a context and are only moved to a device
once the buffer is used on that device. Finally, we execute vectorSum in the device:

program.vectorSum(queue, vector_a.shape, None, a_g, b_g, res_g)

247

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

To visualize the results, an empty vector is built:
res np = np.empty like(vector_a)
Then, the result is copied into this vector:
cl.enqueue_ copy (queue, res_np, res g)
Finally, the results are displayed:

print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")

print vector_a

print ("INPUT VECTOR B")

print vector_b

print ("OUTPUT VECTOR RESULT A + B ")

print res np

To check the result, we use the assert statement. It tests the result and triggers an error if
the condition is false:

assert (la.norm(res np - (vector_a + vector b))) < le-5

Evaluating element-wise expressions with

PyOpenCli

Similar to PyCUDA, PyOpenCL provides the functionality in the pyopencl.elementwise
class that allows us to evaluate the complicated expressions in a single computational pass.
The method that realized this is:

ElementwiseKernel (context, argument, operation, name,",",",
optional parameters)

Here:
» context: This is the device or the group of devices on which the element-wise

operation will be executed

» argument: This is a C-like argument list of all the parameters involved in the
computation

» operation: This is a string that represents the operation that is to be performed
on the argument list

» name: This is the kernel name associated with ElementwiseKernel

» optional parameters: These are not important for this recipe.

248

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

In this example, we will again consider the task of adding two integer vectors of 100 elements.
The achievement, of course, changes because we use the ElementwiseKernel class, as
shown:

import pyopencl as cl
import pyopencl.array as cl array
import numpy as np

context = cl.create some context ()
queue = cl.CommandQueue (context)

vector dimension = 100

vector a = cl array.to device(queue, np.random.randint (vector
dimension, size=vector dimension))

vector b = cl array.to device(queue, np.random.randint (vector
dimension, size=vector dimension))

result vector = cl array.empty like (vector a)

elementwiseSum = cl.elementwise.ElementwiseKernel (context, "int *a,
int *b, int *c¢", "c[i] = ali] + bI[i]l", "sum")
elementwiseSum(vector a, vector b, result vector)

print ("PyOpenCL ELEMENTWISE SUM OF TWO VECTORS")
print ("VECTOR LENGTH = %s" %$vector dimension)
print ("INPUT VECTOR A")

print vector_a

print ("INPUT VECTOR B")

print vector b

print ("OUTPUT VECTOR RESULT A + B ")

print result vector

The output of this code is as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python
PyOpenCLElementwise.py

Choose platform:

[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x2cc6c40>
[1] <pyopencl.Platform 'Intel (R) OpenCL' at 0x3cf440>
Choice [0]:0

Set the environment variable PYOPENCL CTX='0' to avoid being asked again.

249

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

PyOpenCL ELEMENTWISE SUM OF TWO VECTORS
VECTOR LENGTH = 100
INPUT VECTOR A

[70 95 47 53 71 52 15 10 95 5 76 40 55 87 7 18 44 72 2 42 47 86 58 87
64 79 44 94 5 54 92 21 60 67 43 92 38 49 97 14 17 35 87 94 3 17 87 24
50 43 39 71 84 7 64 60 29 74 65 82 42 35 96 80 94 57 21 56 94 8 3 94
30 64 44 34 79 5 88 80 98 88 5 2 77 57 7 93 49 42 56 19 81 36 19 24
27 18 1 40]

INPUT VECTOR B

[82 32 72 9 29 29 92 2 20 44 31 91 63 97 86 37 39 41 19 78 60 30 21 69
29 38 56 49 97 18 44 84 27 73 73 14 67 43 17 58 81 52 89 84 80 96 58 80
20 91 20 61 92 46 34 98 21 82 52 34 81 45 35 28 23 59 21 89 47 75 49 43
92 91 84 59 35 61 42 12 69 15 98 85 12 36 64 89 76 29 8 81 62 5 58 13
46 82 12 66]

OUTPUT VECTOR RESULT A + B
[152 127 119 62 100 81 107 12 115 49 107 131 118 184 93 55 83 113
21 120 107 116 79 156 93 117 100 143 102 72 136 105 87 140 116 106
105 92 114 72 98 87 176 178 83 113 145 104 70 134 59 132 176 53
98 158 50 156 117 116 123 80 131 108 117 116 42 145 141 83 52 137
122 155 128 93 114 66 130 92 167 103 103 87 89 93 71 182 125 171
64 100 143 41 77 37 73 100 13 106]

In the first line of the script, we import all the requested modules:

import pyopencl as cl
import pyopencl.array as cl array
import numpy

To initialize the context, we use the cl.create some context () method. It asks the user
which context must be used to perform the calculation:

Choose platform:
[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x2ccé6c40>
[1] <pyopencl.Platform 'Intel(R) OpenCL' at 0x3cf440>

Then, we instantiate the queue that will receive ElementwiseKernel:

queue = cl.CommandQueue (context)

250

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6
The input vectors and the result vector are instantiated:

vector_dimension = 100

vector a = cl array.to_device(queue, np.random.randint (vector
dimension, size=vector dimension))

vector b = cl array.to_device(queue, np.random.randint (vector
dimension, size=vector dimension))

result vector = cl_array.empty like (vector a)

The input vectors vector a and vector_b are integer vectors of random values that are
obtained using the NumPy's random. radint function. The inputs vectors are defined and
copied into the device using the PyOpenCL statement:

cl.array to_device(queue,array)

Finally, the ElementwiseKernel object is created:

elementwiseSum = cl.elementwise.ElementwiseKernel (context, "int *a,
int *b, int *c¢", "c[i] = ali] + b[i]l", "sum")
In this code:

» All the arguments are in the form of a string formatted as a C argument list (they are
all integers)

» Asnippet of C carries out the operation, which is the sum of the vector components
» The function's name is used to compile the kernel *s

Then, we can call the elementwiseSum function with the arguments defined previously:
elementwiseSum(vector a, vector b, result vector)
The example ends by printing the input vectors and the result is obtained:

print vector_a
print vector_b
print result vector

In this chapter, we comparatively tested the performance between a CPU and GPU. Before you
begin the study of the performance of algorithms, it is important to keep in mind the platform
of execution on which the tests were conducted. In fact, the specific characteristics of these
systems interfere with the computational time and they represent an aspect of primary
importance.

251

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

To perform the tests, we used the following machines

» GPU: GeForce GT 240
» CPU: Intel Core2 Duo 2.33 Ghz
» RAM: DDR2 4 Gb

How to do it...

In this test, the computation time of a simple mathematical operation, that is, the sum of two
vectors with elements expressed in a floating point will be evaluated and compared. To make
a comparison, the same operation was implemented in two separate functions.

The first one uses only the CPU, while the second is written using PyOpenCL and makes use
of the GPU for calculation. The test is performed on vectors of a dimension equal to 10,000
elements.

The code for this is as follows:

from time import time # Import time tools

import pyopencl as cl

import numpy as np

import PyOpeClDeviceInfo as device info
import numpy.linalg as la

#input vectors
a = np.random.rand (10000) .astype (np.float32)
b = np.random.rand(10000) .astype (np.float32)

def test cpu vector sum(a, b):
c_cpu = np.empty like(a)
cpu_start _time = time ()
for i in range(10000) :
for j in range(10000) :
c_cpuli]l = al[i]l + b[i]
cpu_end time = time ()
print ("CPU Time: {0} s".format(cpu end time - cpu start time))
return c_cpu

def test gpu vector sum(a, b):
#define the PyOpenCL Context
platform = cl.get platforms () [0]
device = platform.get devices() [0]
context = cl.Context ([devicel])

252

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

queue = cl.CommandQueue (context, \

properties=cl.command gqueue properties.PROFILING
ENABLE)

#iprepare the data structure
cl.Buffer\

(context, \

cl.mem_flags.READ ONLY \

| cl.mem flags.COPY HOST PTR, hostbuf=a)
b buffer = cl.Buffer)\

(context, \

cl.mem_flags.READ ONLY \

| cl.mem flags.COPY HOST PTR, hostbuf=b)
cl.Buffer\

(context, \

cl.mem flags.WRITE ONLY, b.nbytes)
program = cl.Program(context, """

a_buffer

c_buffer

__kernel void sum(_global const float *a,
__global const float *b,
__global float *c)

int i = get global id(0);

int j;
for(§ = 0; j§ < 10000; j++)
{
clil = alil + blil;
}
}""").build()

#start the gpu test
gpu_start time = time()
event = program.sum(queue, a.shape, None, \

a_buffer, b buffer, c buffer)
event.wait ()
elapsed = le-9* (event.profile.end - event.profile.start)
print ("GPU Kernel evaluation Time: {0} s".format (elapsed))
c_gpu = np.empty like(a)
cl.enqueue read buffer(queue, c buffer, c gpu).wait()
gpu_end time = time()
print ("GPU Time: {0} s".format(gpu end time - gpu start time))
return c_gpu

#start the test
if name == " main ":

#print the device info

253

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

device info.print device info()
#call the test on the cpu

cpu_result = test cpu vector sum(a, b)

#call the test on the gpu

gpu_result = test gpu vector sum(a, b)

#

assert (la.norm(cpu result - gpu result)) < le-5

The output of the test is as follows, where the device information with the execution time is
printed out:

C:\Python Cook\Chapter 6 - GPU Programming with Python\Chapter 6 -
codes>python PyOpenCLTestApplication.py

Platform - Name: NVIDIA CUDA
Platform - Vendor: NVIDIA Corporation
Platform - Version: OpenCL 1.1 CUDA 6.0.1
Platform - Profile: FULL PROFILE
Device - Name: GeForce GT 240
Device - Type: GPU
Device - Max Clock Speed: 1340 Mhz
Device - Compute Units: 12
Device - Local Memory: 16 KB
Device - Constant Memory: 64 KB
Device - Global Memory: 1 GB
Device - Max Buffer/Image Size: 256 MB
Device - Max Work Group Size: 512

Platform - Name: Intel(R) OpenCL

Platform - Vendor: Intel(R) Corporation

Platform - Version: OpenCL 1.2

Platform - Profile: FULL PROFILE
Device - Name: Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz
Device - Type: CPU

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Device - Max Clock Speed: 2330 Mhz
Device - Compute Units: 2

Device - Local Memory: 32 KB

Device - Constant Memory: 128 KB
Device - Global Memory: 2 GB

Device - Max Buffer/Image Size: 512 MB

Device - Max Work Group Size: 8192

CPU Time: 71.9769999981 s
GPU Kernel Time: 0.075756608 s
GPU Time: 0.0809998512268 s

Even if the test is not computationally expansive, it provides useful indications of the potential
of a GPU card.

As explained in the preceding section, the test consists of two parts. The code that runs on
the CPU and the code that runs on the GPU. Both were taken to the execution time.

Regarding the test on the CPU, the test cpu_vector sumfunction has been implemented.
It consists of two loops on 10,000 vectors elements:

cpu_start time = time()
for i in range(10000) :
for j in range(10000) :
c_cpulil = alil + bl[il]
cpu_end time = time()

The sum operation of the ith vector components is executed 1,000,000,000 times, and it will
be computationally expensive.

The total CPU time will have the following difference:
CPU Time = cpu end time - cpu start time

To test the GPU time, we implemented the regular definition schema of an application for
PyOpenCL:

» We established the definition of the device and context

» We set up the queue for execution

255

www.it-ebooks.info

http://www.it-ebooks.info/

GPU Programming with Python

» We created memory areas to perform the computation on the device (three buffers
defined as a_buffer,b buffer, c_buffer)

» We built the kernel
» We evaluated the kernel call and GPU time:

gpu_start_time = time()
event = program.sum(queue, a.shape, None, \
a_buffer, b buffer, c_ buffer)

cl.enqueue read buffer(queue, c_buffer, c_gpu).wait ()
gpu_end time = time()

Here, GPU Time = gpu end time - gpu start time.

Finally, in the main program we call the testing function and print device info () that we
defined previously:

if __name_ == "_main_ ":
device info.print device info()
cpu_result = test cpu vector sum(a, b)
gpu_result = test gpu vector sum(a, b)
assert (la.norm(cpu result - gpu result)) < le-5

To check the result, we used the assert statement that verifies the result and triggers an
error if the condition is false.

256

www.it-ebooks.info

http://www.it-ebooks.info/

A

Advanced Message Queuing Protocol
(AMQP) 153
agglomeration 17
Alltoall
about 116
types 116
used, for collective communication 116-118
Amdahl's law 20
Anaconda Python distribution
URL 230
Asyncio
coroutines, handling with 138-143
used, for dealing Futures 147-150
used, for managing event loop 134-138
used, for tasks manipulation 143-146

B
Basic Linear Algebra Subprograms (BLAS)
library 234
broadcast
used, for collective communication 108-110
C
cache only memory access (COMA) 9
Celery
about 152

reference link 156

used, for creating task 154-158

used, for distributing task 152-154
client-server application

developing, with Pyro4 177-183

Index

cluster of workstations
about 12
fail-over cluster 12
high-performance computing cluster 12
load balancing cluster 12
collective communication
about 108
with Alltoall 116-118
with broadcast 108-110
with gather function 114, 115
with scatter 110-113
communication
optimizing 120-125
Compute Unified Device Architecture
(CUDA)
about 201
URL 204
concurrent.futures Python modules
process pool, dealing with 129
thread pool, dealing with 129
using 128-133
coroutines
about 134
handling, with Asyncio 138-143
CPython 26
cuBLAS library
about 234
URL 239
cuFFT library 235
cuRAND library 235
current thread
determining 37-39
cuSPArse library 235

251

www.it-ebooks.info

http://www.it-ebooks.info/

D Field Programmable Gate Array (FPGA) 243
finite state automaton (FSA) 139

data parallel model 16 Flower
data structures, host application URL 153
command queue 243 Futures
context 244 about 134, 158
device 243 dealing, with Asyncio 147-150
kernel 243
program 243 G
deadlock problems
avoiding 104-107 gather function
Disco used, for collective communication 114, 115
about 190 GEneral Matrix Multiply (GEMM) 235
URL 191 general-purpose computing on graphics
used, for MapReduce 190-195 processing units (GP-GPU) 201
distributed computing Global Interpreter Lock (GIL) 29
about 151 GPU-accelerated libraries
problems 152 CUBLAS 234
distributed memory CUFFT 235
about 10 CURAND 235
cluster of workstations 12 CuSPArse 235
features 11 URL 239
heterogeneous architecture 13 using, with NumbaPro 234-239
Distributed Shared Memory Systems (DSM) 9 GPUArray
dynamic mapping used, for kernel invocations 218-220
about 18 graphics processing unit (GPU)
decentralize 19 about 200
hierarchical manager/worker 19 application, testing with PyOpenCL 251-256
manager/worker 18 programming, with NumbaPro 229-233
gufunc object
E about 229
URL 229
element-wise expressions Gustafson's law 21
evaluating, with PyCUDA 220-224
evaluating, with PyOpenCL 248-251 H
Erlang
URL 153 heterogeneous architecture 13
event high-performance computing cluster 12
used, for thread synchronization 55-58 hybrid programming model 202
event loop
about 134 |
managing, with Asyncio 134-138 IDLE
F URL 22
Integrated Development Environment
fail-over cluster 12 (IDE) 22

Fast Fourier Transform (FFT) 235

258

www.it-ebooks.info

http://www.it-ebooks.info/

J

Just-in-time (JIT) compiler 202

K

kernel
about 203
invoking, with GPUArray 218-220

L

load balancing cluster 12
lock
used, for thread synchronization 41-45

map functions
handling, with SCOOP 163-166
mapping
about 18
dynamic mapping 18
MapReduce
Map 190
operation, performing with PyCUDA 225-228
Reduce 190
used, with Disco 190-195
memory access
cache only memory access (COMA) 9
non-uniform memory access (NUMA) 9
no remote memory access (NORMA) 9
uniform memory access (UMA) 9
memory architecture
about 3
multiple instruction, multiple data (MIMD) 6
multiple instruction, single data (MISD) 5
single instruction, multiple data (SIMD) 5
single instruction, single data (SISD) 3, 4
memory organization
about 6, 7
distributed memory 10, 11
shared memory 8, 9
message passing model 15
mpi4py Python module
URL 98
using 97-100

multithread applications
performance, evaluating 66-72

multithreaded programming 34

multithread model 15

non-uniform memory access (NUMA) 9
no remote memory access (NORMA) 9
NumbaPro
about 229
GPU-accelerated libraries, using 234-239
used, for GPU programming 229-233
NVIDIA CUDA Development Driver
URL 204
NVIDIA GPU Computing SDK
URL 204

0

objects
chaining, with Pyro4 171-177
exchanging, between process 84
exchanging, pipes used 88-90
exchanging, queue used 84-87

@MQ package 158

Open Computing Language (OpenCL) 240

Open Telecom Platform (OTP) 153

P

parallel computing
memory architecture 3
parallel program
agglomeration 17
designing 16
mapping 18
performance, evaluating 19
task assignment 17
task decomposition 17
parallel programming models
about 14
data parallel model 16
message passing model 15
multithread model 15
shared memory model 14

259

www.it-ebooks.info

http://www.it-ebooks.info/

parallel program, performance indexes
Amdabhl's law 20
efficiency 20
Gustafson's law 21
scaling 20
speedup 19
pip
URL 99
pipes
used, for exchanging objects 88-90
point to point communication
about 101
enabling 101-104
process
about 26
naming 77-79
objects, exchanging between 84
running, in background 79, 80
spawning 75, 76
state, managing between 93-95
synchronizing 90-92
terminating 81, 82
using, in subclass 82, 83
working with, in Python 27-29
process pool
about 129
using 95-97
PyCharm
URL 22
PyCSP
URL 184
used, for communicating sequential
processes 184-189
PyCUDA
about 201
application, building 207-212
element-wise expressions,
evaluating 220-224
hybrid programming model 202
installing 203, 204
kernel 203

MapReduce operation, performing 225-228

memory model 212, 213
memory model, example 213-217
reference link 206

threads 203

260

URL 203
using 201-206
PyCUDA, memory model
constant memory 212
global memory 212
registers 212
shared memory 212
PyOpenCL
about 240
application, building 243-248
element-wise expressions,
evaluating 248-251

used, for testing GPU application 251-256

using 240-243

Python
about 21
examples 23-25
features 21
for parallel programming 26
process, working with 27-29
threads, working with 29-32
URL 22

Python bytecode 26

Python Remote Objects (Pyro4)
about 167
example 168-171
installing 168
URL 168
used, for chaining objects 171-177
used, for developing client-server

application 177-183

Q

queue
used, for exchanging objects 84-87
used, for thread synchronization 62-66

RabbitMQ
URL 153
reduction operation
defining 118-120
Remote Method Invocation (RMI)
about 167
with Pyro4 167

www.it-ebooks.info

http://www.it-ebooks.info/

remote procedure call (RPC) 167
Remote Python Call (RPyC)

about 195

features 195

URL 196

used, for remote procedure call

(RPC) 195-197

RLock

used, for thread synchronization 45-47

S

Scalable Concurrent Operations in Python
(SCOOP)

about 158

URL 159

used, for handling map functions 163-166

used, for scientific computing 158-162
scatter

used, for collective communication 110-113
scientific computing

with SCOOP 158-162
semaphores

used, for thread synchronization 48-51
sequential processes

communicating, with PyCSP 184-189
shaders 200
shared memory

about 8,9

features 9

memory access 9
shared memory model 14
single instruction, multiple data

(SIMD) 5, 201

single instruction, single data (SISD)

about 3,4

central memory unit 4

CPU 4

1/0 system 4
Streaming Multiprocessor (SM) 200, 210
Stream Processors (SP) 201
subclass

process, using 82, 83

thread, using 39-41

Sublime Text
URL 22
symmetric multiprocessor (SMP) 9

T

task
creating, Celery used 154-157
distributing, Celery used 152-154
manipulating, with Asyncio 143-146
task decomposition
about 17
domain decomposition 17
functional decomposition 17
thread
about 26, 34, 203
defining 35-37
using, in subclass 39-41
working with, in Python 29-32
threading module
components 35
using 35
thread pool 129
thread synchronization
with condition 52-55
with event 55-58
with lock 41-45
with queue 62-66
with RLock 45-47
with semaphores 48-51

U

uniform memory access (UMA) 9

w

warps 210
warp scheduler 210
Win32 OpenCL driver
URL 240
with statement
using 59-61

261

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1 open source

community experience distilled

F—

PUBLISHING

Thank you for buying
Python Parallel Programming Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home

to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

'i open source
community experience distilled

PUBLISHING ™
Parallel Programming with
Python

ISBN: 978-1-78328-839-7 Paperback: 128 pages

Develop efficient parallel systems using the robust
Python environment

1. Demonstrates the concepts of Python parallel
programming.

Parallel Programming 2. Boosts your Python computing capabilities

with Python ')

3. Contains easy-to-understand explanations and
plenty of examples.

Python High Performance
Programming
ISBN: 978-1-78328-845-8 Paperback: 108 pages

Boost the performance of your Python programs using
advanced techniques

1. Identify the bottlenecks in your applications and
solve them using the best profiling techniques.

Python High Performance
Programming Cython.

2. Write efficient numerical code in NumPy and

3. Adapt your programs to run on multiple processors
with parallel programming.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Python Testing Cookbook

ISBN: 978-1-84951-466-8 Paperback: 364 pages

Over 70 simple but incredibly effective recipes for taking
control of automated testing using powerful Python
testing tools

1. Learn to write tests at every level using a variety of
Python testing tools.

Python TeStll’lg 2. The first book to include detailed screenshots and

Cookbook recipes for using Jenkins continuous integration
server (formerly known as Hudson).

3. Explore innovative ways to introduce automated
testing to legacy systems.

4. Written by Greg L. Turnquist - senior software
engineer and author of Spring Python 1.1.

Mastering Python [Video]

ISBN: 978-1-78398-896-9 Duration: 02:35 hours

Get to grips with Python best practices and advanced
tools to design, distribute, and test your programs

1. Explore the immense Python libraries to write
efficient, reusable code.

o 2. Create adaptable programs that run on multiple
processors with parallel programming.

3. Become a Python expert with the help of detailed
discussions, illustrated with concrete examples.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Parallel Computing
and Python
	Introduction
	The parallel computing memory architecture
	Memory organization
	Parallel programming models
	How to design a parallel program
	How to evaluate the performance of a parallel program
	Introducing Python
	Python in a parallel world
	Introducing processes and threads
	Start working with processes in Python
	Start working with threads in Python

	Chapter 2: Thread-based Parallelism
	Introduction
	Using the Python threading module
	How to define a thread
	How to determine the current thread
	How to use a thread in a subclass
	Thread synchronization with Lock and RLock
	Thread synchronization with RLock
	Thread synchronization with semaphores
	Thread synchronization with a condition
	Threads synchronization with an event
	Using the with statement
	Thread communication using a queue
	Evaluating the performance of multithread applications

	Chapter 3: Process-based Parallelism
	Introduction
	How to spawn a process
	How to name a process
	How to run a process in the background
	How to kill a process
	How to use process in a subclass
	How to exchange objects between processes
	How to synchronize processes
	How to manage a state between processes
	How to use a process pool
	Using the mpi4py Python module
	Point-to-point communication
	Avoiding deadlock problems
	Collective communication using broadcast
	Collective communication using scatter
	Collective communication using gather
	Collective communication using Alltoall
	The reduction operation
	How to optimize the communication

	Chapter 4: Asynchronous Programming
	Introduction
	Using the concurrent.futures Python modules
	Event loop management with Asyncio
	Handling coroutines with Asyncio
	Task manipulation with Asyncio
	Dealing with Asyncio and Futures

	Chapter 5: Distributed Python
	Introduction
	Using Celery to distribute tasks
	How to create a task with Celery
	Scientific computing with SCOOP
	Handling map functions with SCOOP
	Remote Method Invocation with Pyro4
	Chaining objects with Pyro4
	Developing a client-server application with Pyro4
	Communicating sequential processes with PyCSP
	Using MapReduce with Disco
	A remote procedure call with RPyC

	Chapter 6: GPU Programming
with Python
	Introduction
	Using the PyCUDA module
	How to build a PyCUDA application
	Understanding the PyCuda memory model with matrix manipulation
	Kernel invocations with GPUArray
	Evaluating element-wise expressions with PyCUDA
	The MapReduce operation with PyCuda
	GPU programming with NumbaPro
	Using GPU-accelerated libraries with NumbaPro
	Using the PyOpenCL module
	How to build a PyOpenCL application
	Evaluating element-wise expressions with PyOpenCl
	Testing your GPU application with PyOpenCL

	Index

