T
.....

Quick answers to common problems

Python Testing
Cookbook

Over 70 simple but incredibly effective recipes for taking control
of automated testing using powerful Python testing tools

Greg L. Turnquist [[[eEsi e e

PUBLISHING

Python Testing Cookbook

Over 70 simple but incredibly effective recipes for taking
control of automated testing using powerful Python
testing tools

Greg L. Turnquist

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

Python Testing Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: May 2011
Production Reference: 1100511

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849514-66-8
www . packtpub.com

Cover Image by Asher Wishkerman (a . wishkermanempic.de)

Credits

Author
Greg L. Turnquist

Reviewers
Matthew Closson

Chetan Giridhar
Sylvain Hellegouarch

Maurice HT Ling

Acquisition Editor
Tarun Singh

Development Editor
Hyacintha D'Souza

Technical Editors
Pallavi Kachare

Shreerang Deshpande

Copy Editor
Laxmi Subramanian

Project Coordinator
Srimoyee Ghoshal

Proofreader
Bernadette Watkins

Indexer
Hemangini Bari

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Greg L. Turnquist has worked in the software industry since 1997. He is an active
participant in the open source community, and has contributed patches to several projects
including MythTV, Spring Security, MediaWiki, and the TestNG Eclipse plugin. As a test-bitten
script junky, he has always sought the right tool for the job. He is a firm believer in agile
practices and automated testing. He has developed distributed systems, LAMP-based setups,
and supported mission-critical systems hosted on various platforms.

After graduating from Auburn University with a Master's in Computer Engineering, Greg
started working with Harris Corporation. He worked on many contracts utilizing many types
of technology. In 2006, he created the Spring Python project and went on to write Spring
Python 1.1 in 2010. He joined SpringSource, a division of VMware in 2010, as part of their
international software development team.

I would like to extend my thanks to Sylvain Hellegouarch, Matt Closson, as
well as my editors, for taking the time to technically review this book and
provide valuable feedback. | thank my one-year-old daughter for pulling me
away when | needed a break and my one-month-old son for giving me MANY
opportunities in the middle of the night to work on this book. | especially
thank my precious wife Sara for the support, encouragement, patience, and
most importantly for saying "l think we should strike while the iron is hot"
when | was offered this writing opportunity.

About the Reviewers

Matthew Closson is a creative technologist and entrepreneur at heart. He is currently
employed as a software engineer by Philips Healthcare. He is passionate about software
testing, systems integration, and web technologies. When not obsessing over Ruby and C#
code, this elusive developer is likely to be found reading at the local bookstore or relaxing on
the beach.

Chetan Giridhar has more than five years experience of working in the software services
industry, product companies, and research organizations. He has a string background of
C/C++, Java (certified Java professional) and has a good command of Perl, Python scripting
languages, using which he has developed useful tools and automation frameworks. His
articles on Code Reviews, Software Automation, and Agile methodologies have been
published in international magazines including TestingExperience and AgileRecord for which
he has received appreciation from other industry experts on his website—TechnoBeans.
Chetan has also co-authored a book on Design Patterns in Python that is listed at Python's
Official Website. He has given lectures on Python Programming to software professionals
and at educational institutes including the Indian Institute of Astrophysics, Bangalore. Chetan
holds a B.E. in Electrical Engineering from the University of Mumbai and feels that the world is

full of knowledge.

| take this opportunity to thank Rahul Verma, who has guided and inspired
me, Ashok Mallya and Rishi Ranjan, for their encouragement and for the
confidence they have shown in me. Special thanks to my parents Jayant and
Jyotsana Giridhar, and my wife Deepti, who have all been a constant support.

Sylvain Hellegouarch is a senior software engineer with several years experience in
development and performance testing in various companies, both in France and in the United
Kingdom. Passionate about open-source software, he has written several Python projects
around communication protocols such as HTTP, XMPP, and the Atom Publishing Protocol. He
has been part of the CherryPy team since 2004 and has also authored the CherryPy Essentials
book, published by Packt Publishing in 2007. Sylvain also reviewed Spring Python, published

by Packt Publishing in 2010. His current interests are set on the open-data movement and the
wave of innovation it brings to public services. When away from his computer, Sylvain plays the
guitar and the drums or spends his time with friends and family.

Maurice HT Ling completed his Ph.D. in Bioinformatics and B.Sc(Hons) in Molecular and
Cell Biology from The University of Melbourne where he worked on microarray analysis and
text mining for protein-protein interactions. He is currently a Senior Scientist (Bioinformatics)
in Life Technologies and an Honorary Fellow in The University of Melbourne, Australia.
Maurice holds several Chief Editorships including The Python Papers, Computational and
Mathematical Biology, and Methods and Cases in Computational, Mathematical, and
Statistical Biology. In Singapore, he co-founded the Python User Group (Singapore) and has
been the co-chair of PyCon Asia-Pacific since 2010. In his free time, Maurice likes to train in
the gym, read, and enjoy a good cup of coffee. He is also a Senior Fellow of the International
Fitness Association, USA. His personal website is: http://maurice.vodien.com.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www . Packt Pub . com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt Pub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

I@ PACKT! 5

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Using Unittest To Develop Basic Tests 5
Introduction 5
Asserting the basics 7
Setting up and tearing down a test harness 11
Running test cases from the command line with increased verbosity 14
Running a subset of test case methods 16
Chaining together a suite of tests 18
Defining test suites inside the test module 21
Retooling old test code to run inside unittest 25
Breaking down obscure tests into simple ones 29
Testing the edges 35
Testing corner cases by iteration 39
Chapter 2: Running Automated Test Suites with Nose 45
Introduction 45
Getting nosy with testing 46
Embedding nose inside Python 49
Writing a nose extension to pick tests based on regular expressions 52
Writing a nose extension to generate a CSV report 59
Writing a project-level script that lets you run different test suites 66
Chapter 3: Creating Testable Documentation with doctest 77
Introduction 77
Documenting the basics 78
Catching stack traces 82
Running doctests from the command line 85
Coding a test harness for doctest 88

Filtering out test noise 92

Table of Contents

Printing out all your documentation including a status report 96
Testing the edges 101
Testing corner cases by iteration 104
Getting nosy with doctest 107
Updating the project-level script to run this chapter's doctests 110
Chapter 4: Testing Customer Stories with Behavior
Driven Development 117
Introduction 117
Naming tests that sound like sentences and stories 120
Testing separate doctest documents 126
Writing a testable story with doctest 130
Writing a testable novel with doctest 136
Writing a testable story with Voidspace 142
Mock and nose 142
Writing a testable story with mockito and nose 147
Writing a testable story with Lettuce 150
Using Should DSL to write succinct assertions with Lettuce 158
Updating the project-level script to run this chapter's BDD tests 163
Chapter 5: High Level Customer Scenarios with Acceptance Testing 169
Introduction 170
Installing Pyccuracy 172
Testing the basics with Pyccuracy 176
Using Pyccuracy to verify web app security 179
Installing the Robot Framework 183
Creating a data-driven test suite with Robot 186
Writing a testable story with Robot 191
Tagging Robot tests and running a subset 197
Testing web basics with Robot 204
Using Robot to verify web app security 208
Creating a project-level script to verify this chapter's acceptance tests 212
Chapter 6: Integrating Automated Tests with Continuous Integration 217
Introduction 217
Generating a continuous integration report for Jenkins using NoseXUnit 220
Configuring Jenkins to run Python tests upon commit 222
Configuring Jenkins to run Python tests when scheduled 227
Generating a Cl report for TeamCity using teamcity-nose 231
Configuring TeamCity to run Python tests upon commit 234
Configuring TeamCity to run Python tests when scheduled 237

Table of Contents

Chapter 7: Measuring your Success with Test Coverage 241
Introduction 241
Building a network management application 243
Installing and running coverage on your test suite 251
Generating an HTML report using coverage 255
Generating an XML report using coverage 257
Getting nosy with coverage 259
Filtering out test noise from coverage 261
Letting Jenkins get nosy with coverage 264
Updating the project-level script to provide coverage reports 269

Chapter 8: Smoke/Load Testing—Testing Major Parts 275
Introduction 275
Defining a subset of test cases using import statements 277
Leaving out integration tests 281
Targeting end-to-end scenarios 285
Targeting the test server 290
Coding a data simulator 298
Recording and playing back live data in real time 303
Recording and playing back live data as fast as possible 311
Automating your management demo 319

Chapter 9: Good Test Habits for New and Legacy Systems 323
Introduction 324
Something is better than nothing 324
Coverage isn't everything 326
Be willing to invest in test fixtures 328
If you aren't convinced on the value of testing, your team
won't be either 330
Harvesting metrics 331
Capturing a bug in an automated test 332
Separating algorithms from concurrency 333
Pause to refactor when test suite takes too long to run 334
Cash in on your confidence 336
Be willing to throw away an entire day of changes 337
Instead of shooting for 100 percent coverage, try to have a steady growth 339
Randomly breaking your app can lead to better code 340

Index 343

Preface

Testing has always been a part of software development. For decades, comprehensive testing
was defined by complex manual test procedures backed by big budgets; but something
revolutionary happened in 1998. In his Guide to Better Smallitalk, Smalltalk guru Kent Beck
introduced an automated test framework called SUnit. This triggered an avalanche of test
frameworks including JUnit, PyUnit, and many others for different languages and various
platforms, dubbed the xUnit movement. Automated testing was made a cornerstone

of the agile movement when 17 top software experts signed the Agile Manifesto in 2001.

Testing includes many different styles including unit testing, integration testing, acceptance
testing, smoke testing, load testing, and countless others. This book digs in and explores
testing at all the important levels while using the nimble power of Python. It also shows many
tools.

This book is meant to expand your knowledge of testing from something you either heard
about or have practiced a little into something you can apply at any level to meet your needs
in improving software quality. | hope to give you the tools to reap huge rewards in better
software development and customer satisfaction.

What this book covers

Chapter 1, Using Unittest to Develop Basic Tests, gives you a quick introduction to the most
commonly used test framework in the Python community.

Chapter 2, Running Automated Tests with Nose, introduces the most ubiquitous Python test
tool and gets busy by showing how to write specialized plugins.

Chapter 3, Creating Testable Documentation with doctest, shows many different ways to use
Python's docstrings to build runnable doctests as well as writing custom test runners.

Chapter 4, Testing Customer Stories with Behavior Driven Development, dives into writing
easy-to-read testable customer stories using doctest, mocking, and Lettuce/Should DSL.

Preface

Chapter 5, High Level Customer Scenarios with Acceptance Testing, helps you get into the
mindset of the customer and write tests from their perspective using Pyccuracy and the
Robot Framework.

Chapter 6, Integrating Automated Tests with Continuous Integration, shows how to add
continuous integration to your development process with Jenkins and TeamCity.

Chapter 7, Measuring your Success with Test Coverage, explores how to create coverage
reports and interpret them correctly. It also digs in to see how to tie them in with your
continuous integration system.

Chapter 8, Smoke/Load Testing—Testing Major Parts, shows how to create smoke test suites
to get a pulse from the system. It also shows how to put the system under load to make sure
it can handle the current load as well as finding the next breaking point for future loads.

Chapter 9, Good Test Habits for New and Legacy Systems, shows many different lessons
learned from the author about what works when it comes to software testing.

What you need for this book

You will need Python 2.6 or above. The recipes in this book have NOT been tested against
Python 3+. This book uses many other Python test tools, but includes detailed steps to show
how to install and use them.

Who this book is for

This book is for Python developers who want to take testing to the next level. It covers different
styles of testing, giving any developer an expanded set of testing skills to help write better
systems. It also captures lessons learned from the author, explaining not only how to write
better tests but why.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Create a new file called recipel.py to store all of
this recipe's code."

A block of code is set as follows:

def test parsing millenia(self):
value = RomanNumeralConverter ("M")
self.assertEquals (1000, value.convert_to decimal())

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

if __name_ == "_main_ ":
unittest.main()

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The unittest module provides
a convenient way to find all the test methods in a TestClass".

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

(3 |-

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http: //www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that title. Any
existing errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Using Unittest To
Develop Basic Tests

In this chapter, we will cover:

» Asserting the basics

» Setting up and tearing down a test harness

» Running test cases from the command line

» Running a subset of test case methods

» Chaining together a suite of tests

» Defining test suites inside the test case

» Retooling old test code to run inside unittest
» Breaking down obscure tests into simple ones
» Testing the edges

» Testing corner cases by iteration

Introduction

Testing has always been a part of software development. However, the world was introduced to
a new concept called automated testing when Kent Beck and Erich Gamma introduced JUnit
for Java development (http://junit.org). It was based on Kent's earlier work with Smalltalk
and automated testing (http://www.xprogramming.com/testfram.htm). In this day and
age, automated testing has become a well-accepted concept in the software industry.

Using Unittest To Develop Basic Tests

A Python version, originally dubbed PyUnit, was created in 1999 and added to Python's
standard set of libraries later in 2001 in Python 2.1 (http://docs.python.org/
library/unittest.html). Since then, the Python community referred to it as unittest,
the name of the library imported into the test code.

Unittest is the foundation of automated testing in the Python world. In this chapter, we will
explore the basics of testing and asserting code functionality, building suites of tests, test
situations to avoid, and finally testing edges, and corner cases.

For all the recipes in this chapter, we will use virtualenv (http://pypi.python.org/
pypi/virtualenv) to create a controlled Python runtime environment. Unittest is part of
the standard library, which requires no extra installation steps. But, in later chapters, using
virtualenv will allow us to conveniently install other test tools without cluttering up our
default Python installation.

1. Toinstall virtualenv, either download it from the site mentioned previously, or if
you have easy install,justtype: easy install virtualenv.

For some systems, you may need to install it either as root or by
s using sudo

2. After installing virtualenv, use it to create a clean environment named ptc (an
abbreviation used for Python Testing Cookbook) by using - -no-site-packages.

3. Activate the virtual Python environment. This can vary, depending on which shell you
are using.

e i il Terminal — bash — 76x9

-mbp: A1 gturnguist® python recipel.py

4. Finally, verify that the environment is active by checking the path of pip.

sl
‘Q For more information on the usage and benefits of virtualenv, please read

http://iamzed.com/2009/05/07/a-primer-on-virtualenv.

—e1

Chapter 1

Asserting the basics

The basic concept of an automated unittest test case is to instantiate part of our code,
subject it to operations, and verify certain results using assertions.

» If the results are as expected, unittest counts it as a test success

» If the results don't match, an exception is thrown and unittest counts it as a
test failure

Getting ready

Unittest was added to Python's standard batteries included library suite and doesn't require
any extra installation.

How to do it...

With these steps, we will code a simple program and then write some automated tests
using unittest:

1. Create a new file called recipel.py in which to put all of this recipe's code. Pick a
class to test. This is known as the class under test. For this recipe, we'll pick a class
that uses a simplistic Roman numeral converter:

class RomanNumeralConverter (object) :

def init (self, roman numeral) :
self.roman numeral = roman numeral
self.digit map = {"M":1000, "D":500, "c":100, "L":50, "X":10,

nwyn.s, "I":l}

def convert to decimal (self):
val = 0
for char in self.roman numeral:
val += self.digit map[char]
return val

. This Roman numeral converter applies the simple rules of addition, but it
& doesn't have the special subtraction patterns such as XL mapping to 40. The
i purpose is not to have the best Roman numeral converter, but to observe the
various test assertions.

Using Unittest To Develop Basic Tests

2. Write a new class and give it the same name with Test appended to the end,
subclassing unittest.TestCase. Appending a test class with Test is a common
convention, but not a requirement. Extending unittest.TestCase is a requirement
needed to hook into unittest's standard test runner.

import unittest

class RomanNumeralConverterTest (unittest.TestCase) :

3. Create several methods whose names start with test, so they are automatically
picked up by the test number of unittest.

def test parsing millenia(self):
value = RomanNumeralConverter ("M")
self.assertEquals (1000, value.convert_to decimal())

def test parsing century(self):
value = RomanNumeralConverter ("C")
self.assertEquals (100, value.convert_to_decimal())

def test parsing half century(self):
value = RomanNumeralConverter ("L")
self.assertEquals (50, value.convert_to_decimal())

def test parsing decade (self):
value = RomanNumeralConverter ("X")
self.assertEquals (10, value.convert_to_decimal())

def test parsing half decade(self):
value = RomanNumeralConverter ("V")
self.assertEquals (5, value.convert_to_decimal())

def test parsing one (self) :
value = RomanNumeralConverter ("I")
self.assertEquals (1, value.convert_to_decimal())

def test empty roman numeral (self):
value = RomanNumeralConverter ("")
self.assertTrue (value.convert to decimal() ==
self.assertFalse(value.convert_to decimal() >

def test no roman numeral (self) :
value = RomanNumeralConverter (None)
self.assertRaises (TypeError, value.convert_to_decimal)

4. Make the entire script runnable and then use unittest's test runner.

if __name_ == "_main_ ":
unittest.main()

5. Run the file from the command line.

Chapter 1

A MM Terminal — bash — 76x89

In the first step, we picked a class to test. Next, we created a separate test class. By naming

the test class [class under test]Test, itis easy to tell which class is under test.

Each

test method name must start with test, so that unittest will automatically pick it up and run
it. To add more tests, just define more test methods. Each of these tests utilizes various

assertions.

» assertEquals(first, second[, msgl):Compares first and second

expressions; and fails, if they don't have the same value. We can optionally print a

special message if there is a failure.

» assertTrue (expression[, msg]): Tests the expression and fails if it is false.

We can optionally print a special message if there is a failure.

» assertFalse (expression[, msgl): Tests the expression and fails if it is true.

We can optionally print a special message if there is a failure.

» assertRaises(exception, callable, ..):Runsthe callable, with any
arguments, for the callable listed afterwards, and fails if it doesn't raise the
exception.

There's more...

Unittest provides many options for asserting, failing, and other convenient options. The following

sections show some recommendations on how to pick and choose from these options.

assertEquals is preferred over assertTrue and assertFalse

When an assertEquals fails, the first and second values are printed in the error report,
giving better feedback of what went wrong. assertTrue and assertFalse simply report

failure. Not all testable results fit this but, if possible, use assertEquals.

Bl

Using Unittest To Develop Basic Tests

It's important to understand the concept of equality. When comparing integers, strings, and
other scalars, it's very simple. It doesn't work as well with collections like dictionaries, lists,
and sets. Complex, custom-defined objects may carry custom definitions of equality. These
complex objects may require more fine-grained assertions. That is why it's probably a good
idea to also include some test methods that directly target equality and inequality when
working with custom objects.

self.fail([msg]) can usually be rewritten with assertions

Unittest hasa self.fail ([msg]) operation that unconditionally causes the test to fail,
along with an optional message. This was not shown earlier because it is not recommended
for use.

The fail method is often used to detect certain situations like exceptions. A common idiom
is as follows:

import unittest

class BadTest (unittest.TestCase) :
def test_no_roman_numeral (self) :
value = RomanNumeralConverter (None)
try:
value.convert_to_decimal ()
self.fail ("Expected a TypeError")
except TypeError, e:
pass

This tests the same behavior as the earlier test no_roman numeral. The problem with
this approach is that, when the code is working properly, the £ail method is never executed.
Code which is not executed regularly is at risk of becoming out of date and invalid. This will
also interfere with coverage reports. Instead, it is better to use assertRaises as we used in
the earlier examples. For other situations, look at rewriting the test using the other assertions.

Our version of Python can impact our options

Python's official documentation on unittest shows many other assertions, however, they
depend on the version of Python we are using. Some have been deprecated; others are only
available in later versions like Python 2.7.

If our code must support multiple versions of Python, then we must use the lowest common
denominator. This recipe shows core assertions available in all versions since Python 2.1.

A newer unittest2 (http://pypi.python.org/pypi/unittest2/)is
4 under development that backports several of these newer unittest features
into Python 2.4+. However, due to unittest2 being in the beta stage at the
’ time of writing and limitations to the size of this book, | decided to focus on
unittest.

]

Chapter 1

Setting up and tearing down a test harness

Unittest provides an easy mechanism to configure the state of the system when a piece of
code is put through a test. It also allows us to clean things up afterwards, if necessary. This is
commonly needed when a particular test case has repetitive steps used in every test method.

Barring any references to external variables or resources that carry state from one test
method to the next, each test method starts from the same state.

How to do it...

With the following steps, we will setup and teardown a test harness for each test method.

1.
2.

Create a new file called recipe2.py in which to put all our code for this recipe.

Pick a class to test. In this case, we will use a slightly altered version of our Roman
numeral converter, where the function, not the constructor, provides the input value
to convert.

class RomanNumeralConverter (object) :
def init (self):
self.digit map = {"M":1000, "D":500, "C":100, "L":50, "X":10,
nyni5, wIv:1}
def convert to decimal (self, roman numeral) :
val = 0
for char in roman numeral:
val += self.digit map [char]
return val

Create a test class using the same name as the class under test with Test appended
to the end.

import unittest
class RomanNumeralConverterTest (unittest.TestCase) :

Create a setUp method that creates an instance of the class under test.

def setUp(self):
print "Creating a new RomanNumeralConverter..."
self.cvt = RomanNumeralConverter ()

Create a tearDown method that destroys the instance of the class under test.

def tearDown (self) :
print "Destroying the RomanNumeralConverter..."
self.cvt = None

s

Using Unittest To Develop Basic Tests

6. Create all the test methods using self.converter.

def test_parsing millenia(self):
self.assertEquals (1000, \
self.cvt.convert to decimal ("M"))
def test parsing century(self):
self.assertEquals (100, \
self.cvt.convert to decimal ("C"))
def test parsing half century(self):
self.assertEquals (50, \
self.cvt.convert to decimal ("L"))
def test parsing decade (self):
self.assertEquals (10, \
self.cvt.convert to decimal ("X"))
def test parsing half decade(self):
self.assertEquals (5, self.cvt.convert to decimal ("V"))
def test parsing one (self) :
self.assertEquals (1, self.cvt.convert to decimal ("I"))
def test empty roman numeral (self):
self.assertTrue(self.cvt.convert to decimal("") ==
self.assertFalse(self.cvt.convert_to decimal("") >
def test_no_roman_numeral (self) :
self.assertRaises (TypeError, \
self.cvt.convert to decimal, None)

7. Make the entire script runnable and then use the test runner of unittest.
if _name_ == "_main_ ":
unittest.main ()

8. Run the file from the command line.

Chapter 1

o il Terminal — bash — 78x25

In the first step, we picked a class to test. Next, we created a separate test class. By naming
the test class [class under test]Test, itis easy to tell which class is under test.

Then, we defined a setUp method that unittest runs before every test method. Next,

we created a tearDown method that unittest runs after every test method. In this case,

we added a print statement in each of them to demonstrate unittest re-running these two
methods for every test method. In reality, it would probably add too much noise to our testing.

One deficiency of unittest is the lack of setUpClass/tearDownClass and setUpModule/
tearDownModule, providing the opportunity to run code in greater scopes than at the test
method level. This has been added to unittest2, and has been described by some as handy,
but won't be covered within the scope of this book.

Using Unittest To Develop Basic Tests

Each test case can have one setUp and one tearDown method

Our RomanNumeralConverter is pretty simple and fits easily into a

single test class. But the test class allows only one setUp method and one
tearDown method. If different combinations of setUp/tearDown methods
are needed for various test scenarios, then this is a cue to code more test

M classes.

Q Just because we write a setUp method doesn't mean we need a
tearDown method. In our case, we could have skipped destroying the
RomanNumeralConverter, because a new instance would be replacing
it for every test method. It was really for demonstration purposes only. What
are the other uses of those cases which need a tearDown method? Using a
library that requires some sort of c1lose operation is a prime candidate for
writing a tearDown method.

Running test cases from the command line

with increased verbosity

It is easy to adjust the test runner to print out every test method as it is run.

How to do i

In the following steps, we will run test cases with more detailed output, giving us better insight
to how things run:

1. Create a new file called recipe3 . py in which to store this recipe's code.

2. Pick a class to test. In this case, we will use our Roman numeral converter:

class RomanNumeralConverter (object) :
def init (self, roman numeral) :
self.roman numeral = roman numeral
self.digit map = {"M":1000, "D":500, "C":100, "L":50, "X":10,
nyn:s, nIv:1}
def convert to decimal (self):
val = 0
for char in self.roman numeral:
val += self.digit map [char]
return val

3. Create a test class using the same name as the class under test with Test appended
to the end.

import unittest

Chapter 1

class RomanNumeralConverterTest (unittest.TestCase)
4. Create several test methods. For this recipe, the tests have been deliberately

coded to fail.

def test parsing millenia(self):
value = RomanNumeralConverter ("M")
self.assertEquals (1000, value.convert to decimal())

def test parsing century(self):
"This test method is coded to fail for demo."

value = RomanNumeralConverter ("C")
self.assertEquals (10, value.convert to decimal())

5. Define a test suite that automatically loads all the test methods, and then runs
them with a higher level of verbosity.

if name == " main ":
unittest.TestlLoader () .loadTestsFromTestCase (\

suite =
RomanNumeralConverterTest)

unittest.TextTestRunner (verbosity=2) .run(suite)

6. Run the file from the command line. Notice how the test method that fails
prints out its Python docstring;:

Terminal — bash — B0x19

MAMNO

bash

4 =

]

Using Unittest To Develop Basic Tests

A key part of automated testing is organizing the tests. The base units are called test cases.
These can be combined together into test suites. Python's unittest module provides
TestLoader () .loadTestsFromTestCase to fetch all the test* methods automatically
into a test suite. This test suite is then run through unittest's Text TestRunner with an
increased level of verbosity.

TextTestRunner is unittest's only test runner. Later in this book, we will
look at other test tools that have different runners, including one that plugs
’ in a different unittest test runner.

The previous screenshot shows each method along with its module and class name, as well
as success/failure.

There's more...

This recipe not only demonstrates how to turn up the verbosity of running tests, but also
shows what happens when a test case fails. It renames the test method with the document
string embedded in the test method, and prints the details later after all the test methods
have been reported.

Running a subset of test case methods

Sometimes it's convenient to run only a subset of test methods in a given test case. This recipe
will show how to run either the whole test case, or pick a subset from the command line.

How to do it...

The following steps show how to code a command-line script to run subsets of tests:
1. Create a new file named recipe4 .py in which to put all the code for this recipe.
2. Pick a class to test. In this case, we will use our Roman numeral converter.

class RomanNumeralConverter (object) :
def init (self, roman numeral) :
self.roman numeral = roman numeral
self.digit map = {"M":1000, "D":500, "C":100, "L":50, "X":10,
"yM:5, "Iv:1}
def convert to decimal (self):
val = 0
for char in self.roman numeral:

Chapter 1

val += self.digit map[char]
return val

Create a test class using the same name as the class under test with Test appended
to the end.

import unittest
class RomanNumeralConverterTest (unittest.TestCase) :

Create several test methods.

def test parsing millenia(self) :
value = RomanNumeralConverter ("M")
self.assertEquals (1000, value.convert to decimal())

def test parsing century(self):
value = RomanNumeralConverter ("C")
self.assertEquals (100, value.convert to decimal())

Write a main runner that either runs the entire test case or accepts a variable
number of test methods.

if name == " main ":
import sys
suite = unittest.TestSuite ()
if len(sys.argv) == 1:
suite = unittest.TestLoader () .loadTestsFromTestCase (\
RomanNumeralConverterTest)
else:
for test name in sys.argv[l:]:
suite.addTest (\
RomanNumeralConverterTest (test name))

unittest.TextTestRunner (verbosity=2) .run(suite)

[}

Using Unittest To Develop Basic Tests

6. Run the recipe with no extra command-line arguments, and see it run all the tests.
Also run it with a test method name, and see it run only the specified test method.

8.6 Terminal — bash — 75x16

For this test case, we coded a couple of test methods. But instead of simply running all

the tests, or defining a fixed list, we used Python's sys library to parse the command-line
arguments. If there are no extra arguments, it runs the entire test case. If there are extra
arguments, then they are assumed to be test method names. It uses unittest's inbuilt ability
to specify test method names when instantiating RomanNumeralConverterTest.

Python 2.7 has this built in; Python 2.6 and earlier versions don't
s‘l Python 2.6 doesn't have this feature, which makes this recipe
useful. If we are using Python 2.7, there is a command-line version
we can use. If we need to support multiple versions of Python, this
recipe can be quite handy.

Chaining together a suite of tests

Unittest makes it easy to chain together test cases into a TestSuite. A TestSuite can be run
just like a TestCase, but it also provides additional functionality to add a single test, multiple
tests, and count them.

]

Chapter 1

Why do we need this? Chaining together tests into a suite gives us the ability to pull together
more than one module of test cases for a test run, as well as picking and choosing a subset
of test cases. Up until now, we have generally run all the test methods from a single class.
TestSuite gives us an alternative means to define a block of testing.

How to do it...

In the following steps, we will code multiple test case classes, and then load their test
methods into suites so we can run them.

1. Create a new file named recipe5.py in which to put our sample application and
test cases.

2. Pick a class to test. In this case, we will use our Roman numeral converter.

class RomanNumeralConverter (object) :
def init_ (self):
self.digit map = {"M":1000, "D":500, "C":100, "L":50, "X":10,
"y":5, "I":1}
def convert_to decimal (self, roman_numeral) :
val = 0
for char in roman numeral:
val += self.digit map[char]
return val

3. Create two test classes with various test methods spread between them.

import unittest

class RomanNumeralConverterTest (unittest.TestCase) :
def setUp(self):
self.cvt = RomanNumeralConverter ()

def test_parsing millenia(self):
self.assertEquals (1000, \
self.cvt.convert to decimal ("M"))

def test parsing century(self):
self.assertEquals (100, \
self.cvt.convert to decimal ("C"))

class RomanNumeralComboTest (unittest.TestCase) :
def setUp(self):
self.cvt = RomanNumeralConverter ()

def test_multi millenia(self):
self.assertEquals (4000, \
self.cvt.convert to decimal ("MMMM"))

def test multi add up(self):

Using Unittest To Develop Basic Tests

self.assertEquals (2010, \
self.cvt.convert to decimal ("MMX"))

4. Create atest runner in a separate file named recipe5 runner.py that pullsin
both test cases.

if mname == " main ":
import unittest
from recipe5 import *

suitel = unittest.TestLoader () .loadTestsFromTestCase (\
RomanNumeralConverterTest)

suite2 = unittest.TestLoader () .loadTestsFromTestCase (\
RomanNumeralComboTest)

suite = unittest.TestSuite([suitel, suite2])

unittest.TextTestRunner (verbosity=2) .run(suite)

5. Execute the test runner, and observe how tests are pulled in from both test cases.

ZHaNG Terminal — bash — 71x11

gturngu

The unittest module provides a convenient way to find all the test methods in a
TestClass and bundle them together as a suite using its 1loadTestsFromTestCase. TO
further the usage of test suites, we are able to combine these two suites together as a single
suite using unittest.TestSuite ([list...]).The TestSuite class is designed to

act like a TestCase class, even though it doesn't subclass TestClass, allowing us to run it
using TextTestRunner. This recipe shows the verbosity turned up, allowing us to see exactly
which test methods were run, and which test case they came from.

Chapter 1

There's more...

In this recipe, we ran the tests from a different file from where the test cases are defined.
This is different from the previous recipes where the runnable code and the test case were
contained in the same file. Since the runner is defining the tests we run, we can easily create
more runners that combine different suites of tests.

Name of the test case should be significant

In the previous recipes, it has been advised to name the test case as [class under test]
Test. This is to make it apparent to the reader that the class under test and the related test
share an important relationship. Now that we are introducing another test case, we need to
pick a different name. The name should explain clearly why these particular test methods are
split out into a separate class. For this recipe, the methods are split out to show more complex
combinations of Roman numerals.

Defining test suites inside the test module

Each test module can provide one or more methods that define a different test suite. One
method can exercise all the tests in a given module; another method can define a particular
subset.

How to do it...

With the following steps, we will create some methods that define test suites using
different means:

1. Create a new file called recipe6 .py in which to put our code for this recipe.
2. Pick a class to test. In this case, we will use our Roman numeral converter.

class RomanNumeralConverter (object) :
def init (self):
self.digit map = {"M":1000, "D":500, "C":100, "L":50, "X":10,
"yM:5, "I:1}
def convert to decimal (self, roman numeral) :
val = 0
for char in roman numeral:
val += self.digit map [char]
return val

3. Create a test class using the same name as the class under test with Test appended
to the end.

import unittest

s

Using Unittest To Develop Basic Tests

class RomanNumeralConverterTest (unittest.TestCase) :

4. Write a series of test methods, including a setUp method that creates a new
instance of the RomanNumeralConverter for each test method.

import unittest

class RomanNumeralConverterTest (unittest.TestCase) :
def setUp(self):
self.cvt = RomanNumeralConverter ()

def test_parsing millenia(self):
self.assertEquals (1000, \
self.cvt.convert to decimal ("M"))

def test parsing century(self):
self.assertEquals (100, \
self.cvt.convert to decimal ("C"))

def test parsing half century(self):
self.assertEquals (50, \
self.cvt.convert to decimal ("L"))

def test parsing decade (self):
self.assertEquals (10, \
self.cvt.convert to decimal ("X"))

def test parsing half decade(self):
self.assertEquals (5, self.cvt.convert to decimal ("V"))

def test parsing one (self):
self.assertEquals (1, self.cvt.convert to decimal ("I"))

def test empty roman numeral (self):
self.assertTrue(self.cvt.convert to decimal("") ==
self.assertFalse(self.cvt.convert_to decimal("") >

def test no roman numeral (self) :
self.assertRaises (TypeError, \
self.cvt.convert to decimal, None)

def test combol (self) :
self.assertEquals (4000, \
self.cvt.convert to decimal ("MMMM"))

def test combo2 (self) :
self.assertEquals (2010, \
self.cvt.convert to_decimal ("MMX"))

def test combo3 (self) :
self.assertEquals (4668, \
self.cvt.convert to decimal ("MMMMDCLXVIII"))
5. Create some methods in the recipe's module (but not in the test case) that define
different test suites.
def high and low() :
suite = unittest.TestSuite()
suite.addTest (\
RomanNumeralConverterTest ("test parsing millenia"))

Chapter 1

suite.addTest (\
RomanNumeralConverterTest ("test parsing one"))
return suite

def combos () :
return unittest.TestSuite (map (RomanNumeralConverterTest, \
["test combol", "test combo2", "test combo3"]))
def all():

return unittest.TestLoader () .loadTestsFromTestCase (\
RomanNumeralConverterTest)

Create a runner that will iterate over each of these test suites and run them through
unittest's TextTestRunner

if name == " main ":
for suite func in [high and low, combos, all]:
print "Running test suite '%s'" % suite func.func name
suite = suite func()

unittest.TextTestRunner (verbosity=2) .run(suite)

Run the combination of test suites, and see the results.

[2 NN Terminal — bash — 78x36

Using Unittest To Develop Basic Tests

We pick a class to test and define a number of test methods that check things out. Then we
define a few module-level methods such as, high and low, combos, and all, to define test
suites. Two of them contain fixed subsets of methods while a1l dynamically loads the test*
methods from the class. Finally, the main part of our module iterates over a listing of all these
functions that generate suites in order to smoothly create and run them.

There's more...

All of our test suites were run from the recipe's main runner. But this probably wouldn't be the
case for a real project. Instead, the idea is to define different suites, and code a mechanism to
pick which suite to run. Each suite is geared towards a different purpose, and it is necessary to
allow the developer to pick which suite to run. This can be done by coding a command-line script
using Python's optparse module to define command-line flags to pick one of these suites.

Test suite methods must be outside of the test class

If we make these suite-defining methods members of the test class, we would have to
instantiate the test class. Classes that extend unittest.TestCase have a specialized
init method that doesn't work well with an instance that is created just to call a non-test
method. That is why the methods are outside the test class. While these methods can be
in other modules, it is very convenient to define them inside the module containing the test
code, to keep things in proximity.

Why have different suites?

What if we started our project off by running all tests? Sounds like a good idea, right? But
what if the time to run the entire test suite grew to over an hour? There is a certain threshold
after which developers tend to stop running tests, and nothing is worse than an un-run test
suite. By defining subsets of tests, it is easy to run alternate suites during the day, and then
perhaps run the comprehensive test suite once a day.

» all is the comprehensive suite
» high and lowis an example of testing the edges
» combos is a random sampling of values used to show that things are generally

working

Defining our test suites is a judgment call. It's also worth it to re-evaluate each test suite
every so often. If one test suite is getting too costly to run, consider moving some of its more
expensive tests to another suite.

=

Chapter 1

optparse is being phased out and replaced by argparse

While optparse is a convenient way to add command-line flags to Python scripts, it won't be
available forever. Python 2.7 has deprecated this module and is continuing this development
in argparse.

Sometimes, we may have developed demo code to exercise our system. We don't have to
rewrite it to run it inside unittest. Instead, it is easy to hook it up to the test framework and run
it with some small changes.

How to do it...

With these steps, we will dive into capturing the test code that was written without using
unittest, and repurposing it with minimal effort to run inside unittest.

1. Create a file named recipe7.py in which to put our application code that we
will be testing.
2. Pick a class to test. In this case, we will use our Roman numeral converter.
class RomanNumeralConverter (object) :
def init (self):
Self.digit_map = {"M" 1000, "D":500, "C":100, "L":50, "X":10,
nwyn.s, "I":l}
def convert_to decimal (self, roman_numeral) :
val = 0
for char in roman numeral:
val += self.digit map [char]
return val

3. Create a new file named recipe7 legacy.py to contain test code that doesn't use
the unittest module.

4. Create a set of legacy tests that are coded, based on Python's assert function, not
with unittest, along with a runner.
from recipe7 import *
class RomanNumeralTester (object) :
def init (self):
self.cvt = RomanNumeralConverter ()
def simple test (self):

print "+++ Converting M to 1000"
assert self.cvt.convert to decimal ("M") == 1000

def combo testl (self):
print "+++ Converting MMX to 2010"

=]

Using Unittest To Develop Basic Tests

assert self.cvt.convert to decimal ("MMXX") == 2010

def combo test2(self):
print "+++ Converting MMMMDCLXVIII to 4668"
val = self.cvt.convert to decimal ("MMMMDCLXVII")
self.check(val, 4668)

def other test(self):
print "+++ Converting MMMM to 4000"
val = self.cvt.convert to decimal ("MMMM")
self.check(val, 4000)

def check(self, actual, expected):
if (actual != expected):

raise AssertionError ("%s doesn't equal %s" % \
(actual, expected))

def test the system(self):
self.simple test ()
self.combo testl ()
self.combo test2 ()
self.other test()

if mname == " main ":
tester = RomanNumeralTester ()
tester.test the system()

This set of legacy tests is meant to represent legacy test code that our team
i has developed to exercise things before unittest was an option.

5. Run the legacy tests. What is wrong with this situation? Did all the test methods run?
Have we caught all the bugs?

o N Terminal — bash — 61x12

turngquists

=]

Chapter 1

Create a new file called recipe7 pyunit.py.

Create a unittest set of tests, wrapping each legacy test method inside unittest's
FunctionTestCase.

from recipe7 import *
from recipe7 legacy import *
import unittest
if __name_ == "_main_ ":
tester = RomanNumeralTester ()
suite = unittest.TestSuite()
for test in [tester.simple_test, tester.combo_testl, \
tester.combo test2, tester.other test]:
testcase = unittest.FunctionTestCase (test)
suite.addTest (testcase)

unittest.TextTestRunner (verbosity=2) .run(suite)

Run the unittest test. Did all the tests run this time? Which test failed? Where is
the bug?

[o i N) Terminal — bash — 79x36

1ists p
imple_te

st.FunctionTes (combo_tes

FunctionTestC

Using Unittest To Develop Basic Tests

Python provides a convenient assert statement that tests a condition. When true, the
code continues. When false, it raises an AssertionError. In the first test runner, we
have several tests that check results using a mixture of assert statements or raising an
AssertionError

unittest provides a convenient class, unittest.FunctionTestCase, that wraps a bound
function as a unittest test case. If an AssertionError is thrown, FunctionTestCase
catches it, flags it as a test failure, and proceeds to the next test case. If any other type of
exception is thrown, it will be flagged as a test error. In the second test runner, we wrap each
of these legacy test methods with FunctionTestCase, and chain them together in a suite
for unittest to run.

As seen by running the second test run, there is a bug lurking in the third test method. We
were not aware of it, because the test suite was prematurely interrupted.

Another deficiency of Python's assert statement is shown by the first failure, as seen in the
previous screenshot. When an assert fails, there is little to no information about the values
that were compared. All we have is the line of code where it failed. The second assert in
that screenshot was more useful, because we coded a custom checker that threw a custom
AssertionError

Unittest does more than just run tests. It has a built-in mechanism to trap errors and failures,
and then it continues running as much of our test suite as possible. This helps, because

we can shake out more errors and fix more things within a given test run. This is especially
important when a test suite grows to the point of taking minutes or hours to run.

Where are the bugs?

They exist in the test methods, and fundamentally were made by making slight alterations in
the Roman numeral being converted.

def combo_ testl(self):
print "+++ Converting MMX to 2010"
assert self.cvt.convert to decimal ("MMXX") == 2010
def combo_ test2(self):
print "+++ Converting MMMMDCLXVIII to 4668"
val = self.cvt.convert to decimal ("MMMMDCLXVII")
self.check(val, 4668)

The combo_test1 test method prints out that it is converting MMX, but actually tries to
convert MMXX. The combo_test2 test method prints out that it is converting MMMMDCLXVIII,
but actually tries to convert MMMMDCLXVII.

=]

Chapter 1

This is a contrived example, but have you ever run into bugs just as small that drove you mad
trying to track them down? The point is, showing how easy or hard it can be to track them
down is based on how the values are checked. Python's assert statement isn't very effective
at telling us what values are compared where. The customized check method is much better
at pinpointing the problem with combo_test2.

' This highlights the problem with having comments or print statements
~ trying to reflect what the asserts do. They can easily get out of sync and the
Q developer may face some problems trying to track down bugs. Avoiding this
situation is known as the DRY principle (Don't Repeat Yourself).

FunctionTestCase is a temporary measure

The FunctionTestCase is a test case that provides an easy way to quickly migrate tests
based on Python's assert statement, so they can be run with unittest. But things shouldn't
stop there. If we take the time to convert RomanNumeralTester into a unittest TestCase,
then we gain access to other useful features like the various assert* methods that come
with TestCase. It's a good investment. The FunctionTestCase just lowers the bar to
migrate to unittest.

Breaking down obscure tests into simple

ones

Unittest provides the means to test the code through a series of assertions. | have often felt
the temptation to exercise many aspects of a particular piece of code within a single test
method. If any part fails, it becomes obscured as to which part failed. It is preferable to split
things up into several smaller test methods, so that when some part of the code under test
fails, it is obvious.

How to do it...

With these steps, we will investigate what happens when we put too much into a
single test method.

1. Create a new file named recipes8.py in which to put our application code for this
recipe.

2. Pick a class to test. In this case, we will use an alternative version of the Roman
numeral converter, which converts both ways.

class RomanNumeralConverter (object) :
def _ init (self):
self.digit_map = {"M":lOOO, "p":500, "C":100, "L":50, "X":10,
nwyn.s, "I":l}

s

Using Unittest To Develop Basic Tests

def convert to decimal (self, roman numeral) :
val = 0
for char in roman numeral:
val += self.digit map[char]
return val

def convert to roman(self, decimal) :
val = "n
while decimal > 1000:
val += "M"
decimal -= 1000
while decimal > 500:
val += "D"

decimal -= 500
while decimal > 100:

val += "C"

decimal -= 100
while decimal > 50:

val += "L"

decimal -= 50

while decimal > 10:
val += "X"
decimal -= 10

while decimal > 5:
val += "V"

decimal -= 5
while decimal > 1:

val += "I"

decimal -= 1

return val

Create a new file called recipe8 obscure.py in which to put some longer
test methods.

Create some test methods that combine several test assertions.

import unittest
from recipe8 import *

class RomanNumeralTest (unittest.TestCase) :
def setUp(self):
self.cvt = RomanNumeralConverter ()

def test convert to decimal (self) :
self.assertEquals (0, self.cvt.convert to decimal(""))
self.assertEquals (1, self.cvt.convert to decimal ("I"))
self.assertEquals (2010, \
self.cvt.convert to decimal ("MMX"))
self.assertEquals (4000, \
self.cvt.convert to decimal ("MMMM"))

NED

def test convert to roman (self) :

Chapter 1

self.assertEquals("", self.cvt.convert to roman(0))

self.assertEquals ("II", self.cvt.convert_to_roman(2))

self.assertEquals ("V", self.cvt.convert to roman(5))

self.assertEquals ("XII", \
self.cvt.convert_to roman(12))

self.assertEquals ("MMX", \
self.cvt.convert to roman(2010))

self.assertEquals ("MMMM", \
self.cvt.convert to roman(4000))

if __name_ == "_ main_ ":
unittest.main()

5. Run the obscure tests. Why did it fail? Where is the bug? It reports that 11 is not
equal to 1, so something appears to be off. If this the only bug?

[o il Terminal — bash — 70x15

6. Create another file called recipe8 clear.py to create a more fine-grained set of

test methods.

7. Split up the assertions into separate test methods to give a higher fidelity of output.

import unittest
from recipe8 import *

class RomanNumeralTest (unittest.TestCase) :
def setUp(self) :
self.cvt = RomanNumeralConverter ()

def test to decimall (self) :

self.assertEquals (0, self.cvt.convert to decimal(""))

Using Unittest To Develop Basic Tests

def test to decimal2 (self):
self.assertEquals (1, self.cvt.convert to decimal ("I"))

def test to decimal3 (self):
self.assertEquals (2010, \
self.cvt.convert to decimal ("MMX"))

def test to decimal4 (self) :
self.assertEquals (4000, \
self.cvt.convert to decimal ("MMMM"))

def test convert to romanl (self):
self.assertEquals("", self.cvt.convert to roman(0))

def test convert to roman2 (self):
self.assertEquals ("II", self.cvt.convert to roman(2))

def test convert to roman3 (self):
self.assertEquals ("V", self.cvt.convert to roman(5))

def test convert to roman4 (self):
self.assertEquals ("XII", \
self.cvt.convert to roman(12))

def test convert to romans (self):
self.assertEquals ("MMX", \
self.cvt.convert to roman(2010))

def test convert to romané (self) :
self.assertEquals ("MMMM", \
self.cvt.convert to roman(4000))
if mname == " main ":

unittest.main ()

8. Run the clearer test suite. Is it a bit clearer where the bug is? What did we trade in to
get this higher degree of test failure? Was it worth the effort?

=

Chapter 1

amnn Terminal — bash — 70x46

bash

In this case, we created a modified Roman numeral converter that converts both ways. We
then started creating test methods to exercise things. Since each of these tests were a simple,
one-line assertion, it was convenient to put them all in the same test method.

s

Using Unittest To Develop Basic Tests

In the second test case, we put each assertion into a separate test method. Running it
exposes the fact that there are multiple bugs in this Roman numeral converter.

There's more...

When we started off writing tests, it was very convenient to bundle all these assertions into
a single test method. After all, if everything is working, there is no harm, right? But what if
everything does not work, what do we have to deal with? An obscure error report!

Where is the bug?

The obscured test runner may not be clear. All we have to goon is IT != I. Not much. The
clue is that it is only off by one. The clear test runner gives more clues. We see thatv !=
IIII,XII !=XTI,andsome more. Each of these failures shows things being off by one.

The bug involves the various Boolean conditions in the while checks:

while decimal > 1000:
while decimal > 500:
while decimal > 100:
while decimal > 50:
while decimal > 10:
while decimal > 5:
while decimal > 1:

Instead of testing greater than, it should test for greater than or equal to. This causes it to
skip out of each Roman numeral before counting the last one.

What is the right size for a test method?

In this recipe, we broke things down to a single assertion per test. But | wouldn't advise
thinking along these lines.

If we look a little closer, each test method also involves a single usage of the Roman numeral
API. For the converter, there is only one result to examine when exercising the code. For
other systems, the output may be more complex. It is completely warranted to use several
assertions in the same test method to check the outcome by making that single call.

When we proceed to make more calls to the Roman numeral API, it should signal us to
consider splitting it off into a new test method.

This opens up the question: what is a unit of code? There has been much debate over what
defines a unit of code, and what makes a good unit test. There are many opinions. Hopefully,
reading this chapter and weighing it against the other test tactics covered throughout this
book will help you enhance your own opinion and ultimately improve your own testing talent.

S E

Chapter 1

Unittests versus integration tests

Unittest can easily help us write both unit tests as well as integration tests. Unit tests exercise
smaller blocks of code. When writing unit tests, it is best to keep the testing as small and fine
grained as possible.

When we move up to a higher level (such as integration testing), it makes sense to test
multiple steps in a single test method. But this is only recommended if there are adequate
low-level unit tests. This will shed some light on whether it is broken at the unit level, or
whether there is a sequence of steps that causes the error.

Integration tests often extend to things like external systems. For example, many argue that
unit testing should never connect to a database, talk to an LDAP server, or interact with other
systems.

R Just because we are using unittest, it doesn't mean the tests we are writing
~ are unit tests. Later in this book, we will visit the concept that unittest can be
Q used to write many types of tests including integration tests, smoke tests, and
other types of tests as well.

Testing the edges

When we write automated tests, we pick the inputs and assert the expected outputs. It is
important to test the limits of the inputs to make sure our code can handle good and bad
inputs. This is also known as testing corner cases.

How to do it...

As we dig into this recipe, we will look for good boundaries to test against.
1. Create a new file named recipe9.py in which to put all our code for this recipe.

2. Pick a class to test. In this recipe, we'll use another variation of our Roman numeral
converter. This one doesn't process values greater than 4000.

class RomanNumeralConverter (object) :
def init (self):
self.digit map = {"M":1000, "D":500, "C":100, "L":50, "X":10,
myn:s, nIv:1}
def convert to decimal (self, roman numeral) :
val = 0
for char in roman numeral:
val += self.digit map [char]
if val > 4000:

s

Using Unittest To Develop Basic Tests

raise Exception("We don't handle values over 4000")
return val

def convert to roman(self, decimal) :
if decimal > 4000:

raise Exception("We don't handle values over 4000")
val = "n

mappers = [(1000,"M"), (500,"D"), (100,"C"), (50,"L"),
(lOIIIXII)’ (5’IIVII)I (11"1")]

for (mapper dec, mapper rom) in mappers:
while decimal >= mapper dec:
val += mapper rom
decimal -= mapper dec
return val

3. Create a test case that sets up an instance of the Roman numeral converter.

import unittest

class RomanNumeralTest (unittest.TestCase) :
def setUp(self):

self.cvt = RomanNumeralConverter ()

4. Add several test methods that exercise the edges of converting to Roman numeral
notation.

def test to roman bottom(self) :

self.assertEquals("I", self.cvt.convert to roman(l))

def test to roman below bottom(self) :

self.assertEquals("", self.cvt.convert to roman(0))

def test to roman negative value (self):
self .assertEquals("", self.cvt.convert to roman(-1))

def test to roman top(self):
self.assertEquals ("MMMM", \
self.cvt.convert to roman(4000))

def test to roman above top(self):
self.assertRaises (Exception, \
self.cvt.convert to roman, 4001)

5. Add several test methods that exercise the edges of converting to decimal notation.
def test to decimal bottom(self) :
self.assertEquals (1, self.cvt.convert to decimal ("I"))

def test to decimal below bottom(self) :
self.assertEquals (0, self.cvt.convert to decimal(""))

def test to decimal top(self):

NEQ

8.

Chapter 1

self.assertEquals (4000, \

self.cvt.convert to decimal ("MMMM"))

def test to decimal above top(self):
self.assertRaises (Exception, \
self.cvt.convert to decimal, "MMMMI")

Add some tests that exercise the tiers of converting decimals to Roman numerals.

def test to roman tierl (self):

self.assertEquals ("V", self.cvt.convert to roman(5))

def test to roman tier2(self):

self.assertEquals ("X", self.cvt.convert to roman(10))

def test to roman tier3(self):

self.assertEquals ("L", self.cvt.convert to roman(50))

def test to roman tier4 (self):

self.assertEquals("C", self.cvt.convert to roman(100))

def test to roman tier5(self):

self.assertEquals ("D", self.cvt.convert to roman(500))

def test to roman tieré6 (self):
self.assertEquals ("M", \
self.cvt.convert to roman(1000))

Add some tests that input unexpected values to the Roman numeral converter.

def test to roman bad inputs(self):
self.assertEquals("", self.cvt.convert to roman (None))
self.assertEquals("I", self.cvt.convert to roman(1l.2))

def test to decimal bad inputs(self):
self.assertRaises (TypeError, \
self.cvt.convert to decimal, None)
self.assertRaises (TypeError, \
self.cvt.convert to decimal, 1.2)

Add a unit test runner.

if name == " main ":
unittest.main ()

Eis

Using Unittest To Develop Basic Tests

9. Run the test case.

oM, Terminal — bash — 71x7

We have a specialized Roman numeral converter that only converts values up to MMMM or
4000. We have written several test methods to exercise it. The immediate edges we write
tests for are 1 and 4000. We also write some tests for one step past that: 0 and 4001. To
make things complete, we also test against -1.

There's more...

A key part of the algorithm involves handling the various tiers of Roman numerals (5, 10, 50,
100, 500, and 1000). These could be considered mini-edges, so we wrote tests to check that
the code handled those as well. Do you think we should test one past the mini-edges?

It's recommended that we should. Many bugs erupt due to coding greater than, when it
should be greater than or equal (or vice versa), and so on. Testing one past the boundary, in
both directions, is the perfect way to make sure that things are working exactly as expected.
We also need to check bad inputs, so we tried converting None and a float.

That previous statement raises an important question: how many invalid types should
we test against? Because Python is dynamic, we can expect a lot of input types. So what
is reasonable? If our code hinges on a dictionary lookup, like certain parts of our Roman
numeral API does, then confirming that we correctly handle a KeyError would probably be
adequate. We don't need to input lots of different types if they all result in a KeyError.

Identifying the edges is important

It's important to identify the edges of our system, because we need to know our software can
handle these boundaries. We also need to know it can handle both sides of these boundaries
that are good values and bad values. That is why we need to check 4000 and 4001, as well as
0 and 1. This is a common place where software breaks.

Chapter 1

Testing for unexpected conditions

Does this sound a little awkward? Expect the unexpected? Our code involves converting
integers and strings back and forth. By 'unexpected', we mean types of inputs passed in when
someone uses our library that doesn't understand the edges, or wires it to receive inputs that
are wider ranging types than we expected to receive.

A common occurrence of misuse is when a user of our API is working against a collection such
as a list and accidentally passes the entire list instead of a single value by iteration. Another
often seen situation is when a user of our API passes in None due to some other bug in their
code. It's good to know that our APl is resilient enough to handle this.

Testing corner cases by iteration

While developing code, new corner case inputs are often discovered. Being able to capture
these inputs in an iterable array makes it easy to add related test methods.

How to do it...

In this recipe, we will look at a different way to test corner cases.

1. Create a new file called recipel0.py in which to put all our code for this recipe.

2. Pick a class to test. In this recipe, we'll use another variation of our Roman numeral
converter. This one doesn't process values greater than 4000.

class RomanNumeralConverter (object) :
def init (self):
self.digit map = {"M":lOOO, "p":500, "C":100, "L":50, "X":10,
"w":5, "I":l}
def convert_to decimal (self, roman_numeral) :
val = 0
for char in roman numeral:
val += self.digit map [char]
if val > 4000:
raise Exception (\
"We don't handle values over 4000")
return val

def convert to roman(self, decimal) :
if decimal > 4000:
raise Exception (\
"We don't handle values over 4000")
val = "
mappers = [(1000,"M"), (500,"D"), (100,"C"), (50,"L"),
(ro,"x"), (5,"v"), (1,"I")]

Using Unittest To Develop Basic Tests

for (mapper dec, mapper rom) in mappers:
while decimal >= mapper dec:
val += mapper rom
decimal -= mapper dec
return val

3. Create a test class to exercise the Roman numeral converter.

import unittest

class RomanNumeralTest (unittest.TestCase) :
def setUp(self):
self.cvt = RomanNumeralConverter ()

4. Write a test method that exercises the edges of the Roman numeral converter.

def test edges(self):
r = self.cvt.convert to roman
d = self.cvt.convert to decimal

edges = [("equals", r, "I", 1),\
("equals", r, "", 0),\
("equals", r, "", -1),\
("equals", r, "MMMM", 4000),\
("raises", r, Exception, 4001),\
("equals", 4, 1, "1"),\
("equals", 0, "m),\

d,
("equals", d, 4000, "MMMM") , \
("raises", d, Exception, "MMMMI")

]
[self.checkout edge(edge) for edge in edges]

5. Create a test method that exercises the tiers converting from decimal to Roman
numerals.

def test tiers(self):

r = self.cvt.convert to roman

edges = [("equals", r, "V", 5),
("equals", r, "VIIII", 9),
("equals", r, "X", 10),\
("equals", r, "XI", 11),\
("equals", r, "XXXXVIIII", 49),\
("equals", r, "L", 50),\
("equals", r, "LI", 51),\
("equals", r, "LXXXXVIIII", 99),\
("equals", r, "C", 100),\
("equals", r, "CcI", 101),\
("equals", r, "CCCCLXXXXVIIII", 499),\

\
\

=)

Chapter 1

6.

7.

("equals", ¥, "D", 500),\
("equals", r, "DI", 501),\
("equals", r, "M", 1000)\

]
[self.checkout edge(edge) for edge in edges]

Create a test method that exercises a set of invalid inputs.

def test bad inputs(self):

r = self.cvt.convert to roman

d = self.cvt.convert to decimal

edges = [("equals", r, "", None),\
("equals", r, "I", 1.2),\
("raises", d, TypeError, None),\
("raises", d, TypeError, 1.2)\

1

[self.checkout edge(edge) for edge in edges]

Code a utility method that iterates over the edge cases and runs different assertions
based on each edge.

def checkout edge(self, edge):
if edge[0] == "equals":
f, output, input = edge[l], edgel2], edgel3]
print ("Converting %s to %s..." % (input, output))
self.assertEquals (output, f (input))
elif edge[0] == "raises":
f, exception, args = edgel[l], edge[2], edge[3:]
print ("Converting %s, expecting %s" % \
(args, exception))
self.assertRaises (exception, £, *args)

Make the script runnable by loading the test case into TextTestRunner.

if mname == " main ":
suite = unittest.TestLoader () .loadTestsFromTestCase (\
RomanNumeralTest)
unittest.TextTestRunner (verbosity=2) .run(suite)

@l

Using Unittest To Develop Basic Tests

9. Run the test case.

A MO Terminal — bash — 70x37

turnguist-mbp: 01 gturnquist$

We have a specialized Roman numeral converter that only converts values up to MMMM or
4000. The immediate edges which we write tests for are 1 and 4000. We also write some
tests for one step past that: 0 and 4001. To make things complete, we also test against - 1.

=

Chapter 1

But we've written the tests a little differently. Instead of writing each test input/output
combination as a separate test method, we capture the input and output values in a tuple
that is embedded in a list. We then feed it to our test iterator, checkout edge. Because we
need both assertEquals and assertRaises calls, the tuple also includes either equals
or raises to flag which assertion to use.

Finally, to make it flexibly handle the convertion of both Roman numerals and decimals, the
handles on the convert to roman and convert to decimal functions of our Roman
numeral APl is embedded in each tuple as well.

As shown in the following highlighted parts, we grab a handle on convert to roman, and
store it in r. Then we embed it in the third element of the highlighted tuple, allowing the
checkout edge function to call it when needed.

def test bad inputs(self):
r = self.cvt.convert to roman
d = self.cvt.convert to decimal
edges = [("equals", r, "", None),\
("equals", r, "I", 1.2),\
("raises", d, TypeError, None),\
("raises", d, TypeError, 1.2)\

1
[self.checkout edge(edge) for edge in edges]

There's more...

A key part of the algorithm involves handling the various tiers of Roman numerals (5, 10, 50,
100, 500, and 1000). These could be considered mini-edges, so we wrote a separate test
method that has a list of input/output values to check those out as well. In the recipe Testing
the edges, we didn't include testing before and after these mini-edges, for example 4 and 6
for 5. Now that it only takes one line of data to capture this test, we have it in this recipe. The
same was done for all the others (except 1000).

Finally, we need to check bad inputs, so we created one more test method where we try to
convert None and a float to and from Roman numeral.

Does this defy the recipe—Breaking down obscure tests into
simple ones?

In a way, it does. If something goes wrong in one of the test data entries, then that entire test
method will have failed. That is one reason why the other recipe split things up into three
test methods instead of one big test method to cover them all. This is a judgment call about
when it makes sense to view inputs and outputs as more data than test method. If you find
the same sequence of test steps occurring repeatedly, consider whether it makes sense to
capture the values in some sort of table structure, like the list used in this recipe.

&1

Using Unittest To Develop Basic Tests

How does this compare with the recipe—Testing the edges?

In case it wasn't obvious, these are the exact same tests used in the recipe Testing the edges.
The question is, which version do you find more readable? Both are perfectly acceptable.
Breaking things up into separate methods makes it more fine-grained and easier to spot if
something goes wrong. Collecting things together into a data structure, the way we did in this
recipe makes it more succinct, and could spur us on to write more test combinations as we
did for the conversion tiers.

In my opinion, when testing algorithmic functions that have simple inputs and outputs, it's
more suitable to use this recipe's mechanism to code an entire battery of test inputs in this
concise format, for example, a mathematical function, a sorting algorithm, or perhaps a
transform function.

When testing functions that are more logical and imperative, the other recipe may be more
useful. For example, functions that interact with a database, cause changes in the state of the
system, or other types of side effects that aren't encapsulated in the return value, would be
hard to capture using this recipe.

» Breaking down obscure tests into simple ones

» Testing the edges

Running Automated
Test Suites with Nose

In this chapter, we will cover:

» Getting nosy with testing

» Embedding nose inside Python

» Writing a nose extension to pick tests based on regular expressions
» Writing a nose extension to generate a CSV report

» Writing a project-level script that lets you run different test suites

Introduction

In the previous chapter, we looked at several ways to utilize unittest in creating automated
tests. Now, we will look at different ways to gather the tests together and run them. Nose

is a useful utility built to discover tests and run them. It is flexible, can be run from either
command-line or embedded inside scripts, and is extensible through plugin. Due to its
embeddable nature, higher level tools, such as project scripts, it can be built with testing as
an option.

What does nose offer that unittest does not? Key things include automatic test discovery

and a useful plugin API. There are many nose plugins that provide everything from specially
formatted test reports to integration with other tools. We will explore this in more detail in this
chapter and in the latter parts of this book.

Running Automated Test Suites with Nose

% For more information about nose refer to
i http://somethingaboutorange.com/mrl/projects/nose.
We need to activate our virtual environment and then install nose for these various recipes.

Create a virtual environment, activate it, and verify that the tools are working:

[T I Terminal — bash — 67x9

turngquist-mbp:~ gturnguisty pip install nose
ading/un e
b, tar.gz (7 1 FlE8kb downloaded
! z z_info for nose
no prey included directories Tound matching 'doc/ . build’
Installin H

Getting nosy with testing

Nose automatically discovers tests when fed with a package, a module, or a file.

How to do it...

With the following steps, we will explore how nose automatically finds test cases and
runs them:

1. Create a new file called recipell.py in which to put all our code for this recipe.

=)

Chapter 2

2. Create a class to test. For this recipe, we will use a shopping cart application that lets
us load items and then calculate the bill.

class ShoppingCart (object) :
def init (self):
self.items = []

def add(self, item, price):
self.items.append(Item(item, price))
return self

def item(self, index):
return self.items[index-1].item

def price(self, index):
return self.items[index-1] .price

def total(self, sales_tax):
sum _price = sum([item.price for item in self.items])
return sum price* (1.0 + sales_tax/100.0)

def len (self):

return len(self.items)

class Item(object):
def _ init_ (self, item, price):
self.item = item
self.price = price

3. Create a test case that exercises the various parts of the shopping cart application.

import unittest

class ShoppingCartTest (unittest.TestCase) :
def setUp(self):
self.cart = ShoppingCart () .add("tuna sandwich", 15.00)

def test length(self):
self.assertEquals (1, len(self.cart))

def test item(self):
self.assertEquals ("tuna sandwich", self.cart.item(1))

def test price(self):
self.assertEquals (15.00, self.cart.price(l))

def test total with sales tax(self):
self.assertAlmostEquals (16.39, \
self.cart.total(9.25), 2)

Running Automated Test Suites with Nose

4. Use the command-line nosetests tool to run this recipe by filename and also
by module.

[M N Terminal — bash — 70x13

turnguistd

We started off by creating a simple application that lets us load up a ShoppingCart with
Items. This application lets us look up each item and its price. Finally, we can calculate
the total billing amount including the sales tax.

Next, we coded some test methods to exercise all these features using unittest.

Finally, we used the command-line nosetests tool that discovers test cases and
automatically runs them. This saved us from handcoding any test runner to load test suites.

There's more...

What's so important about not writing the test runner? What do we gain by using nosetests?
After all, unittest gives us the ability to embed an auto-discovering test runner like this:

if name == " main ":
unittest.main ()

Would the same block of code work, if the tests spread across several modules? No, because
unittest.main () only looks in the current module. To grow into multiple modules, we need
to start loading tests using unittest's 1loadTestsFromTestCase method or other customized
suites. It doesn't matter how we assemble suites. When we are at risk of missing test cases,
nosetests conveniently lets us search for all tests, or a subset, as needed.

=

Chapter 2

A common situation on projects is to spread out test cases between lots of modules. Instead
of writing one big test case, we typically break things up into smaller test cases based on
various setups, scenarios, and other logical groupings. It's a common practice to split up test
cases based on which module is being tested. The point is that manually loading all the test
cases for a real world test suite can become labor intensive.

Nose is extensible

Auto-discovery of tests isn't the only reason to use nose. Later in this chapter, we will explore
how we can write a plugin to customize what it discovers and also the output of a test run.

Nose is embeddable

All the functionality which nose provides can be utilized either by command line, or from inside
a Python script. We will also explore this further in this chapter.

Asserting the basics section mentioned in Chapter 1

Embedding nose inside Python

It's very convenient to embed nose inside a Python script. This lets us create higher level test
tools besides letting the developer add testing to an existing tool.

How to do it...

With these steps, we will explore using nose's APl inside a Python script to run some tests:

1. Create a new file called recipel2.py to contain the code from this recipe.

2. Create a class to test. For this recipe, we will use a shopping cart application that lets
us load items and then calculate the bill.

class ShoppingCart (object) :

def

def

def

__init (self):

self.items = []

add (self, item, price):
self.items.append(Item(item, price))
return self

item(self, index):
return self.items[index-1].item

def price(self, index):

return self.items[index-1] .price

Running Automated Test Suites with Nose

def total(self, sales_tax):
sum _price = sum([item.price for item in self.items])
return sum price* (1.0 + sales_tax/100.0)

def len (self):

return len(self.items)
class Item(object) :
def init_(self, item, price):
self.item = item
self.price = price

3. Create a test case with several test methods.

import unittest

class ShoppingCartTest (unittest.TestCase) :
def setUp(self):
self.cart = ShoppingCart () .add("tuna sandwich", 15.00)

def test length(self):
self.assertEquals (1, len(self.cart))

def test item(self):
self.assertEquals ("tuna sandwich", self.cart.item(1))

def test price(self):
self.assertEquals (15.00, self.cart.price(l))
def test total with sales tax(self):
self.assertAlmostEquals (16.39, \
self.cart.total (9.25), 2)

4. Create a script named recipel2 nose.py to use nose's API to run tests.

5. Make the script runnable and use nose's run () method to run selected arguments.

if __name_ == "_ main_ ":
import nose
nose.run(argv=["", "recipel2", "--verbosity=2"])

6. Run the test script from the command line and see the verbose output.

Chapter 2

[M) Terminal — bash — 70x10

In the test-running code, we are using nose . run (). With no arguments, it simply picks up on
sys.argv and acts like the command-line nosetests. But in this recipe, we are plugging in
the name of the current module along with an increased verbosity.

There's more

Unittest has unittest.main (), which discovers and runs test cases as well. How is this
different? unittest .main () is geared to discover the test cases in the same module where
itis run. nose.run () is geared to let us pass in command-line arguments or load them
programmatically.

For example, look at the following steps which we must complete to turn up verbosity
with unittest:

if name == " main ":
import unittest
from recipel2 import *
suite = unittest.TestLoader () .loadTestsFromTestCase (\
ShoppingCartTest)
unittest.TextTestRunner (verbosity=2) .run(suite)

We had to import the test cases, use a test loader to create a test suite, and then run it
through the TextTestRunner.

To do the same thing with nose, this is all we need:

if name == " main ":
import nose
nose.run(argv=["", "recipel2", "--verbosity=2"])

i

Running Automated Test Suites with Nose

This is much more succinct. Any command-line options we could use with nosetests are
able to be used here. This comes in handy when we use nose plugin, which we will explore in
more detail in this chapter and through the rest of the book.

Writing a nose extension to pick tests

based on regular expressions

Out-of-the-box test tools like nose are very useful. But, eventually, we reach a point where the
options don't match our needs. Nose has the powerful ability to code custom plugins, that
gives us the ability to fine tune nose to meet our needs. This recipe will help us write a plugin
that allows us to selectively choose test methods by matching their method names using a
regular expression when we run nosetests.

Getting ready

We need to have easy install loaded in order to install the nose plugins which we are
about to create. If you don't already have it, please visit http: //pypi.python.org/pypi/
setuptools to download and install the package as indicated at the site.

If you just installed it now, then you will have to:

» Rebuild your virtualenv used for running code samples in this book

» Reinstall nose using pip

How to do it...

With the following steps, we will code a nose plugin that picks test methods to run by using a
regular expression.

1. Create a new file called recipel3.py to contain the code for this recipe.

2. Create a shopping cart application where we can build some tests around it.

class ShoppingCart (object) :
def init (self):
self.items = []
def add(self, item, price):

self.items.append(Item(item, price))
return self

def item(self, index):

return self.items[index-1].item
def price(self, index):

return self.items[index-1] .price

=

Chapter 2

def total(self, sales tax):
sum _price = sum([item.price for item in self.items])
return sum price* (1.0 + sales tax/100.0)

def len (self):

return len(self.items)

class Item(object) :
def init (self, item, price):
self.item = item
self.price = price

3. Create a test case that contains several test methods, including one that does not
start with the word test.

import unittest

class ShoppingCartTest (unittest.TestCase) :
def setUp(self):
self.cart = ShoppingCart () .add("tuna sandwich", 15.00)

def length(self) :
self.assertEquals (1, len(self.cart))

def test item(self):
self.assertEquals ("tuna sandwich", self.cart.item(1))

def test price(self):
self.assertEquals (15.00, self.cart.price(l))

def test total with sales tax(self):
self.assertAlmostEquals (16.39, \
self.cart.total (9.25), 2)

4. Run the module using nosetests from the command line, with verbosity turned
on. How many test methods get run? How many test methods did we define?

(2 NN Terminal — bash — 71x10

t-mbp: @

-

Running Automated Test Suites with Nose
5. Create a new file called recipel5 plugin.py to write a nose plugin for this recipe.
6. Capture a handle to sys.stderr to support debugging and verbose output.

import sys
err = sys.stderr

7. Create a nose plugin named RegexPicker by subclassing
nose.plugins.Plugin.

import nose
import re
from nose.plugins
import Plugin
class RegexPicker (Plugin) :
name = "regexpicker"
def _ init_ (self):
Plugin._ init__ (self)
self.verbose = False

Nose plugin requires a class level name. This is used to define the— with-<name>
command-line option.

8. Override Plugin.options and add an option to provide the pattern on the
command line.

def options(self, parser, env):
Plugin.options(self, parser, env)
parser.add option("--re-pattern",
dest="pattern", action="store",
default=env.get ("NOSE_REGEX PATTERN", "test.*"),

help=("Run test methods that have a method name
matching this regular expression"))

9. Override Plugin.configuration by having it fetch the pattern and verbosity level
from the options.

def configure(self, options, conf):
Plugin.configure (self, options, conf)
self.pattern = options.pattern
if options.verbosity >= 2:
self.verbose = True
if self.enabled:

err.write("Pattern for matching test methods is
$s\n" % self.pattern)

When we extend Plugin, we inherit some other features, like self .enabled, which
is switched on when -with--<name> is used with nose.

=

Chapter 2

10. Override Plugin.wantedMethod, so that it accepts test methods that match our
regular expression.

def wantMethod (self, method) :
wanted = \
re.match(self.pattern, method.func name) is not None
if self.verbose and wanted:
err.write("nose will run %s\n" % method.func name)
return wanted
Write a test runner that programmatically tests our plugin by
running the same test case that we ran earlier.

if __name_ == "_main_ ":
args = ["", "recipel3", "--with-regexpicker", \
"--re-pattern=test.*|length", "--verbosity=2"]

print "With verbosity..."

print "===================="
nose.run(argv=args, plugin=[RegexPicker()])
print "Without verbosity..."

print "===================="

args = args|[:-1]

nose.run(argv=args, plugin=[RegexPicker()])

11. Execute the test runner. Looking at the results in the following screenshot, how many
test methods run this time?

[= i) Terminal — bash — 70x25

Fun

e =]

s

Running Automated Test Suites with Nose

12. Create a setup.py script that allows us to install and register our plugin with
nosetests.

import sys
try:
import ez _setup
ez_setup.use_ setuptools ()
except ImportError:
pass

from setuptools import setup

setup (
name="RegexPicker plugin",
version="0.1",
author="Greg L. Turngquist",
author email="Greg.L.Turnquist@gmail.com",
description="Pick test methods based on a regular expression",
license="Apache Server License 2.0",
py _modules=["recipel3 plugin"],
entry points = {
'nose.plugins': [
'recipel3 plugin = recipel3 plugin:RegexPicker!'

]

)

13. Install our new plugin.

A, Terminal — bash — 65x13

14. Run nosetests using - -with-regexpicker from the command line.

5]

Chapter 2

[L) Terminal — bash — 82x17

turnguist-mbp: @82 gturnguistd

Writing a nose plugin has some requirements. First of all, we need the class level name
attribute. It is used in several places that also includes defining the command-line switch to
invoke our plugin, --with-<name>.

Next, we write opt ions. There is no requirement to override Plugin.options but, in this
case, we need a way to supply our plugin with the regular expression. To avoid destroying
the useful machinery of P1ugin.options, we call it first, and then add a line for our extra
parameter using parser.add_option.

» The first, unnamed arguments are string versions of the parameter, and we can
specify multiple ones. We could have had -rp and - -re-pattern if we wanted to.
» Dest: This is the name of the attribute that stores the results (see configure).

» Action: This is specifies what to do with the value of the parameter (store, append,
and so on.).

» Default: This is specifies what value to store when none is provided (notice we use
test.* to match standard unittest behavior).

» Help: Provides help information to print out on the command line.

Nose uses Python's optparse.OptionParser library to define options.

To find out more about Python's optparse.OptionParser please refer to:
S http://docs.python.org/library/optparse.html.

Running Automated Test Suites with Nose

Then, we write configure. There is also no requirement to override Plugin.configure.
Because we had an extra option, - -pattern, we need to harvest it. We also want to turn on
a flag driven by verbosity, a standard nose option.

There are many things we can do when writing a nose plugin. In our case, we wanted to zero
in on test selection. There are several ways to load tests, including by module, and filename.
After loading, they are then run through a method where they are voted in or out. These voters
are called the want * methods and they include wantModule, wantName, wantFunction,
and wantMethod, as well as some others. We implemented wantMethod where we tested if
method. func_name matches our pattern using Python's re module. want* methods. These
methods have three return value types:

» True: This test is wanted
» False: This test is not wanted (and will not be considered by another plugin)

» None: The plugin does not care. Another plugin (or nose) gets to choose. This can
succinctly be achieved by not returning anything from the want* method.

wantMethod only looks at functions defined inside classes. nosetests
R is geared to find tests by many different methods and is not confined to just
5 searching subclasses of unittest.TestCase. If tests are found in the
Q module, but not as class methods, then this pattern matching is not utilized.
For this plugin to be more robust, we would need a lot of different tests and
we would probably need to override the other want * test selectors.

There's more...

This recipe just scratches the surface on plugin functionality. It focuses on the test selection
process.

Later in this chapter, we will explore generating a specialized report. This involves using
other plugin hooks that gather information after each test is run, as well as generating the
report after the test suite is exhausted. Nose provides a robust set of hooks allowing detailed
customization to meet our changing needs.

Chapter 2

Plugins should subclass nose.plugins.Plugin

recommended means of developing a plugin. If you don't, you may have to
add on methods and attributes, which - you didn't realize - were needed by
nose and that come for free when you subclass.

.\‘Q There is a lot of valuable machinery built into P1ugin. Subclassing is the

It's a good rule of thumb to subclass the parts of the nose API that we are plugging into
instead of overriding.

Online documentation of the nose API is a little incomplete. It tends to assume too much
knowledge of the reader. If we override and our plugin doesn't work correctly, it may be
difficult to debug what is happening.

. Do not subclass nose.plugins.IPlugininterface
AY
“Q This class is used for documentation purposes only. It provides information

about each of the hooks our plugin can access. But it is not designed for
subclassing real plugins.

Writing a nose extension to generate a

CSV report

This recipe will help us write a plugin that generates a custom report listing successes and
failures in a CSV file. It is used to demonstrate how to gather information after each test
method completes.

Getting ready

We need to have easy install loaded in order to install the nose plugin we are about
to create. If you don't already have it, please visit http://pypi.python.org/pypi/
setuptools to download and install the package as indicated on the site.

If you just installed it now, then you will have to:

» Rebuild your virtualenv used for running code samples in this book

» Reinstall nose using easy install

Running Automated Test Suites with Nose

How to do it...

1.

2.

Create a new file named recipel4 .py to contain the code for this recipe.
Create a shopping cart application that we can build some tests around.

class ShoppingCart (object) :
def _ init_ (self):
self.items = []

def add(self, item, price):
self.items.append(Item(item, price))
return self

def item(self, index):
return self.items[index-1].item

def price(self, index):
return self.items[index-1] .price

def total(self, sales_tax):
sum_price = sum([item.price for item in self.items])
return sum price* (1.0 + sales_tax/100.0)

def len (self):

return len(self.items)

class Item(object):
def _ init_ (self, item, price):
self.item = item
self.price = price

Create a test case that contains several test methods, including the one deliberately
set to fail.

import unittest

class ShoppingCartTest (unittest.TestCase) :
def setUp(self):
self.cart = ShoppingCart () .add("tuna sandwich", 15.00)

def test length(self):
self.assertEquals (1, len(self.cart))

def test item(self):
self.assertEquals ("tuna sandwich", self.cart.item(1l))

def test price(self):
self.assertEquals (15.00, self.cart.price(1l))

def test total with sales_ tax(self):
self.assertAlmostEquals (16.39, \
self.cart.total(9.25), 2)

Chapter 2

def test assert failure(self):

self.fail ("You should see this failure message in the
report.")

4. Run the module using nosetests from the command line. Looking at the output in
the following screenshot, does it appear that a CSV report exists?

o I O Terminal — bash — 70x18

JFRgui

i rec

nqui

5. Create a new file called recipel4 plugin.py to contain our new nose plugin.
6. Create a nose plugin named CsvReport by subclassing nose .plugins.Plugin.

import nose
import re

from nose.plugins import Plugin

class CsvReport (Plugin) :
name = "csv-report"
def init (self):
Plugin. init (self)
self.results = []

Nose plugin requires a class level name. This is used to define the —~with--<name>
command-line option.

7. Override Plugin.options and add an option to provide the report's filename on the
command line.

def options(self, parser, env):

[ei-

Running Automated Test Suites with Nose

Plugin.options(self, parser, env)

parser.add option("--csv-file",
dest="filename", action="store",
default=env.get ("NOSE_CSV_FILE", "log.csv"),
help=("Name of the report"))

8. Override Plugin.configuration by having it fetch the filename from the options.

def configure(self, options, conf):
Plugin.configure (self, options, conf)
self.filename = options.filename

When we extend P1lugin, we inherit some other features, like self.enabled,
which is switched on when —with-<names> is used with nose.

9. Override addSuccess, addFailure, and addError to collect results in an internal
list.

def addSuccess(self, *args, **kwargs):
test = args[0]
self.results.append((test, "Success"))

def addError(self, *args, **kwargs):
test, error = args[0], argsll]
self.results.append((test, "Error", error))

def addFailure(self, *args, **kwargs):
test, error = args[0], argsll]
self.results.append((test, "Failure", error))

10. Override finalize to generate the CSV report.

def finalize(self, result):
report = open(self.filename, "w")
report.write ("Test, Success/Failure,Details\n")
for item in self.results:
if item[1] == "Success":
report.write ("%s,%s\n" % (item[0], item[1]))
else:
report.write("%s,%s,%s\n" % (item[0],item([1],\
item[2] [1]))

report.close ()

11. Write a test runner that programmatically tests our plugin by running the same test
case that we ran earlier.

if name == " main ":

args = ["", "recipeld4", "--with-csv-report", \

&

Chapter 2
"--csv-file=recipel4d.csv"]

nose.run(argv=args, plugin=[CsvReport()])

12. Execute the test runner. Looking at the output in the next screenshot, is there a test
report now?

ANO

Terminal — bash — 70x18

13. Open up and view the report using your favorite spreadsheet.

®MNn recipel4.csv - OpenOffice.org Calc
e B EE80 Y Kkae-¢ 9-0 @44 hy HEEEQ @
&) [Arial Bl (10 B B/U=s===" Lx¥hW s 0--4A-
(A1 Bl AZE = Test
A B C D -
1 [Test |Success/Failure Details m
2 test_assert_failure (recipe14.ShoppingCartTest) "Failure You should see this failure message in the report.
3 test item (recipe14.ShoppingCartTest) Success
4 test_length (recipe14.ShoppingCartTest) Success
5 test price (recipe14.ShoppingCartTest) Success
6 test_total_with_sales_tax (recipe14.ShoppingCartTest) Success i
7 v
C () sheer1 i] o |
Sheet 1/ 1 Default STD |* Sum=0 S} & @] 100%

14. Create a setup . py script that allows us to install and register our plugin with
nosetests.

import sys
try:

(&5}

Running Automated Test Suites with Nose

import ez setup

ez _setup.use setuptools()
except ImportError:

pass

from setuptools import setup

setup (
name="CSV report plugin",
version="0.1",
author="Greg L. Turngquist",
author email="Greg.L.Turnquist@gmail.com",
description="Generate CSV report",
license="Apache Server License 2.0",
py modules=["recipel4 plugin"],
entry points = {
'nose.plugins': [
'recipel4 plugin = recipel4 plugin:CsvReport'

]

)

15. Install our new plugin.

(o N) Terminal — bash — 68x13

16. Run nosetests using - -with-csv-report from the command line.

=

Chapter 2

e Terminal — bash — 81x19

In the previous screenshot, notice how we have the previous log file, recipel4.csv and the
new one, log.csv.

Writing a nose plugin has some requirements. First of all, we need the class level name
attribute. It is used in several places including defining the command-line switch to invoke
our plugin, - -with-<names>.

Next, we write opt ions. There is no requirement to override Plugin.options. But, in this
case, we need a way to supply our plugin with the name of the CSV report it will write. To avoid
destroying the useful machinery of Plugin.options, we call it first, and then add a line for
our extra parameter using parser.add option.

>

>

The first, unnamed arguments are string versions of the parameter

dest: This is the name of the attribute to store the results (see configure)
action: This tells what to do with the value of the parameter (store, append, etc.)
default: This tells what value to store when none is provided

help: This provides help information to print out on the command line

Nose uses Python's optparse.OptionParser library to define options.

To find out more about optparse.OptionParser
i visit http://docs.python.org/optparse.html.

Running Automated Test Suites with Nose

Then, we write configure. There is also no requirement to override Plugin.configure.
Because we had an extra option, - -csv-file, we need to harvest it.

In this recipe, we want to capture the test case as well as the error report whenever a test
method completes. To do this, we implement addSuccess, addFailure, and addError.
Because nose varies in what arguments are sent to these methods when called either
programmatically or by command-line, we must use Python's *args.

» The first slot of this tuple contains the test, an instance of nose.case.Test.
Simply printing it is sufficient for our needs.

» The second slot of this tuple contains the error, an instance of the 3-tuple for
sys.exc_info (). Itis only included for addFailure and addError

» No other slots of this tuple are documented on nose's website. We generally
ignore them.

There's more...

This recipe digs a little deeper into the plugin functionality. It focuses on processing done

after a test method succeeds, fails, or causes an error. In our case, we just gather the results
to put into a report. We could do other things, like capture stack traces, e-mail failures to the
development team, or send a page to the QA team letting them know a test suite is complete.

For more details about writing a nose plugin, read the recipe Writing a nose extension to pick
tests based on regular expressions.

Writing a project-level script that lets

you run different test suites

Python, with its multi-paradigm nature, makes it easy to build applications as well as provide
scripting support to things.

This recipe will help us explore building a project-level script that allows us to run different test
suites. We will also show some extra command-line options to create hooks for packaging,
publishing, registering, and writing automated documentation.

How to do it...

1. Create a script called recipel5.py that parses a set of options using Python's
getopt library.

import getopt
import glob
import logging

(&)

Chapter 2

import nose

import os

import os.path

import pydoc

import re

import sys

def

try:

usage () :

print

print "Usage: python recipel5.py [command]"
print

print "\t--help"

print "\t--test"

print "\t--suite [suite]"

print "\t--debug-level [info|debug]"
print "\t--package"

print "\t--publish"

print "\t--register"

print "\t--pydoc"

print

optlist, args = getopt.getopt(sys.argv[l:],

"htn,
[llhelpn’ lltestu’ "Suite=", \
"debug-level=", "package", \

"publish", "register", "pydoc"])

except getopt.GetoptError:

print help information and exit:
print "Invalid command found in %s" % sys.argv
usage ()

sys.exit (2)

Create a function that maps to -test.

def

test (test_suite, debug level):

logger = logging.getLogger ("recipel5")

loggingLevel = debug level

logger.setLevel (loggingLevel)

ch = logging.StreamHandler ()

ch.setLevel (loggingLevel)

formatter = logging.Formatter ("% (asctime)s - % (name)s -

% (levelname)s - % (message)s")

ch.setFormatter (formatter)
logger.addHandler (ch)

nose.run(argv=["", test suite, "--verbosity=2"])

&7}

Running Automated Test Suites with Nose

3.

Create stub functions that support package, publish, and register.

def package() :
print "This is where we can plug in code to run " + \
"setup.py to generate a bundle."

def publish() :
print "This is where we can plug in code to upload " + \
"our tarball to S3 or some other download site."

def register():
print "setup.py has a built in function to " + \
"'register' a release to PyPI. It's " + \
"convenient to put a hook in here."

°

os.system("%s setup.py register" % sys.executable)
Create a function to auto-generate docs using Python's pydoc module.

def create pydocs() :
print "It's useful to use pydoc to generate docs."
pydoc_dir = "pydoc"
module = "recipel5_all"
__import__ (module)

if not os.path.exists(pydoc dir):
os.mkdir (pydoc_dir)

cur = os.getcwd()

os.chdir (pydoc_dir)
pydoc.writedoc ("recipel5 all")
os.chdir (cur)

Add some code that defines debug levels and then parses options to allow users to
override.

debug_levels = {"info":logging.INFO, "debug":logging.DEBUG}
Default debug level is INFO
debug level = debug levels["info"]

for option in optlist:
if option[0] in ("--debug-level"):
Override with a user-supplied debug level
debug level = debug levels|[option[1]]

Add some code that scans the command-line options for -help, and if found, exits
the script.

Check for help requests, which cause all other
options to be ignored.
for option in optlist:

&)

Chapter 2

if option[0] in ("--help", "-h"):
usage ()
sys.exit (1)

Finish it by iterating through each of the command-line options, and invoking the
other functions based on which options are picked.

Parse the arguments, in order
for option in optlist:
if option[0] in ("--test"):
print "Running recipel5 checkin tests..."
test ("recipel5 checkin", debug level)

if option[0] in ("--suite"):
print "Running test suite %s..." % option[1]
test (option[1l], debug level)

if option[0] in ("--package"):
package ()

if option[0] in ("--publish"):
publish ()

if option[0] in ("--register"):
register ()

if option[0] in ("--pydoc"):

create pydocs ()

Run the recipel5. py script with -help.

(- N] Terminal — bash — 60x14

[inTo|debug]

[}

Running Automated Test Suites with Nose

9. Create a new file called recipel5 checkin.py to create a new test suite.

10. Reuse the test cases from the recipe Getting nosy with testing to define a check in
test suite.

import recipell

class RecipellTest (recipell.ShoppingCartTest) :
pass

11. Run the recipel5.py script, using -test -package -publish -register -
pydoc. In the following screenshot, do you notice how it exercises each option in the
same sequence as it was supplied on the command line?

MM e Terminal — bash — 90x19

- -puDn

12. Inspect the report generated in the pydoc directory.

[

Chapter 2

1200 oo moserecpessan

« 2> C K [(ﬁ} file:///Users/gturnquist/Dropbox/python_testi... 'if_'gl X,
D WMware Intranet ’ Bugzilla ﬁ Builds Site m Eng KE » E Other Bookmarks

recipei5_all

Modules

recipel 1 recipel2 recipel3 recipel4

recipe11.ShoppingCartTest(unittest. TestCase)

Recipe11Test
recipel2.ShoppingCartTest(unittest. TestCase)

Recipe12Test
recipe13.ShoppingCartTest(unittest. TestCase)

"""""""""" Yalrl

€

[a»

13. Create a new file named recipel5_all.py to define another new test suite.

14. Reuse the test code from the earlier recipes of this chapter to define an al1l test
suite.

import recipell
import recipel2
import recipel3
import recipel4

class RecipellTest (recipell.ShoppingCartTest) :
pass

class Recipel2Test (recipel2.ShoppingCartTest) :
pass

class Recipel3Test (recipel3.ShoppingCartTest) :

Running Automated Test Suites with Nose

pass

class Recipel4Test (recipel4d.ShoppingCartTest) :
pass

15. Run the recipel5.py script with —suite=recipel5 all.

~Yala

Terminal — bash — 74x33

an recipel g cipels all B

the

thie

This script uses Python's getopt library, which is modeled after the C programming
language's getopt () function. This means we use the API to define a set of commands,
and then we iterate over the options, calling corresponding functions.

=

Chapter 2

Visit http://docs.python.org/library/getopt .html for more
i details on the getopt library.

>

>

usage: This is a function to provide help to the user.
key: The option definitions are included in the following block:

optlist, args = getopt.getopt(sys.argv[l:],

llhtll’

[llhelpll’ lltestll’ llsuitezll’ \
"debug-level=", "package", \
"publish", "register", "pydoc"])

o We parse everything in the arguments except the first, being the executable
itself.

o "ht" defined the short options: -h and -t.

o The list defines long options. Those with "=" accept an argument. Those
without are flags.

o If an option is received that isn't in the list, an exception is thrown, we print
out usage (), and then exit.
test: This activates loggers, which can be very useful if our app uses Python's
logging library.

package: This generates tarballs. We created a stub, but it can be handy to provide
a shortcut by running setup.py sdist|bdist.

publish: Its function is to push tarballs to the deployment site. We created a stub,
but deploying it to an S3 site or somewhere else is useful.

register: This registers the module with PyPl. We created a stub, but it would be
handy to provide a shortcut to running setup.py register.

create pydocs: They are the auto-generated docs. Generating HTML files based
on code is very convenient.

With each of these functions defined, we can iterate over the options that were parsed. For
this script, there is a sequence as follows:

1.

Check if there is a debugging override. We default to Logging. INFO, but provide the
ability to switch to logging.DEBUG.

Check if -h or -help was called. If so, print out the usage () information and then
exit with no more parsing.

Finally, iterate over the options, and call their corresponding functions.

(75}

Running Automated Test Suites with Nose

To exercise things, we first called this script with the —-help option. That printed out the
command choices we had.

Then we called it with all the options to demonstrate the features. The script is coded to
exercise a check in suite when we use -test. This is a short test suite, which simulates
running a quicker test meant to tell if things look alright.

Finally, we called the script with ~suite=recipel5 all. This test suite simulates running
a more complete test suite that typically takes longer.

There's more

The features which this script provides could easily be handled by commands that are
already built. We looked at nosetests earlier in this chapter and saw how it can flexibly take
arguments to pick tests.

Using setup . py to generate tarballs and register releases is also a commonly used feature
in the Python community.

So why write this script? Because we can tap into all of these features with a single command
script, as setup . py contains a prebuilt set of commands that involve bundling and uploading
to the Python Project Index. Doing other tasks like generating pydocs, deploying to another
location like an Amazon S3 bucket, or any other system level task is not included. This script
demonstrates how easy it is to wire in other command-line options and link them with the
project management functions.

We can also conveniently embed the usage of pydoc. Basically, any Python library that serves
project management needs can be embedded as well.

On an existing project, | developed a script to provide a unified way to embed
version info into a templated setup . py as well as documentation generated
by pydoc, sphinx, and DocBook. The script saved me from having to
‘Q remember all the commands needed to manage the project.

Why didn't | extend distutils to create my own commands? It was
personally a matter of taste. | preferred using getopt and working outside
the framework of distutils instead of creating and registering new
subcommands.

7

Chapter 2

Why use getopt instead of optparse?

Python has several options to handle command-line option parsing. getopt is possibly
the simplest. It is meant to quickly allow defining short and long options, but it has limits. It
requires custom coding help output, as we did with the usage function.

It also requires custom handling of the arguments. optparse provides more sophisticated
options, such as better handling of arguments and auto-built help. But it also requires more
code to get functional. optparse is also targeted to be replaced by argparse in the future.

It is left as an exercise for you to write an alternative version of this script using optparse to
assess which one is a better solution.

Creating Testable
Documentation with
doctest

In this chapter, we will cover:

» Documenting the basics

» Catching stack traces

» Running doctests from the command line

» Coding a test harness for doctest

» Filtering out test noise

» Printing out all your documentation including a status report
» Testing the edges

» Testing corner cases by iteration

» Getting nosy with doctest

» Updating the project-level script to run this chapter's doctests

Introduction

Python provides the useful ability to embed comments inside functions that are accessible
from a Python shell. These are known as docstrings.

A docstring provides the ability to embed not only information, but also code samples that
are runnable.

Creating Testable Documentation with doctest

There is an old adage that comments aren't code. Comments don't undergo syntax checks
and are often not maintained, thus the information they carry can lose its value over time.
doctest counters this by turning comments into code which can serve many useful
purposes.

In this chapter, we will explore different ways to use doctest to develop testing,
documentation, and project support. No special setup is required, as doctest is part
of Python's standard libraries.

Documenting the basics

Python provides out-of-the-box capability to put comments in code known as docstrings.
Docstrings can be read when looking at the source and also when inspecting the code
interactively from a Python shell. In this recipe, we will demonstrate how these interactive
docstrings can be used as runnable tests.

What does this provide? It offers easy-to-read code samples for the users. Not only are the
code samples readable, they are also runnable, meaning we can ensure the documentation
stays up to date.

How to do it...

With the following steps, we will create an application combined with runnable docstring
comments, and see how to execute these tests:

1. Create a new file named recipel6 . py to contain all the code we write for this recipe.
2. Create a function that converts base-10 numbers to any other base using recursion.

def convert to basen(value, base):
import math

def convert(remaining value, base, exp):
def stringify(value) :
if value > 9:
return chr(value + ord('a')-10)
else:
return str(value)

if remaining value >= 0 and exp >= 0:
factor = int (math.pow(base, exp))
if factor <= remaining value:
multiple = remaining value / factor
return stringify (multiple) + \
_convert (remaining value-multiple*factor, \
base, exp-1)

@

Chapter 3

else:

else:

return "0" + \

_convert (remaining value, base,

return ""

return "%s/%s" % (_convert(value, base,

"""Convert a basel0 number to basen.edur
>>> convert

|1/2|

>>> convert

r10/2"

>>> convert

r11/2

>>> convert

1100/2°

>>> convert

r101/2°

>>> convert

r110/2°

>>> convert

'111/2°

>>> convert

'1/16"

>>> convert

'a/l6"

>>> convert

'f/16"

>>> convert

'10/16"

>>> convert

'1£/16°

>>> convert

120/16"

import math

)

int (math.log(value,

def convert to basen(value, base):

to_basen(1l, 2)
to_basen(2, 2)
to_basen(3, 2)
to_basen(4, 2)
to_basen(5, 2)
to_basen(6, 2)
to_basen(7, 2)
to_basen(1l, 16)
to basen(10, 16)
to_basen (15, 16)
to_basen (16, 16)
to basen (31, 16)

to basen (32, 16)

exp-1)

base)

Add a docstring just below the external function, as shown in the highlighted
section of the following code. This docstring declaration includes several examples
of using the function.

(7]

Creating Testable Documentation with doctest
4. Add a test runner block that invokes Python's doctest module.

if __name_ == "_main_ ":
import doctest
doctest.testmod ()

5. From an interactive Python shell, import the recipe and view its documentation.

&, MO Terminal — python — 70x36
python

6. Run the code from the command line. In the next screenshot, notice how nothing is
printed. This is what happens when all the tests pass.

Chapter 3

[M N) Terminal — bash — 64x5

7. Run the code from the command line with -v to increase verbosity. In the following
screenshot, we see a piece of the output, showing what was run and what was
expected. This can be useful when debugging doctest.

vert to basen

e g e
3 gturhgquisty

The doctest module looks for blocks of Python inside docstrings and runs it like real
code. >>> is the same prompt we see when we use the interactive Python shell. The following
line shows the expected output. doctest runs the statements it sees and then compares the
actual with the expected output.

Later in this chapter, we will see how to catch things like stack traces, errors, and also add
extra code that equates to a test fixture.

s

Creating Testable Documentation with doctest

There's more...

doctest is very picky when matching expected output with actual results.

» An extraneous space or tab can cause things to break.

» Structures like dictionaries are tricky to test, because Python doesn't guarantee the
order of items. On each test run, the items could be stored in a different order. Simply
printing out a dictionary is bound to break it.

» Itis strongly advised not to include object references in expected outputs. These
values also vary every time the test is run.

Catching stack traces

It's a common fallacy to write tests only for successful code paths. We also need to code
against error conditions including the ones that generate stack traces. With this recipe, we
will explore how stack traces are pattern-matched in doc testing that allows us to confirm
expected errors.

How to do it...

With the following steps, we will see how to use doctest to verify error conditions:
1. Create a new file called recipel7.py to write all our code for this recipe.

2. Create a function that converts base 10 numbers to any other base using recursion.

def convert to basen(value, base):
import math

def convert (remaining value, base, exp):
def stringify(value) :
if value > 9:
return chr(value + ord('a')-10)
else:
return str(value)

if remaining value >= 0 and exp >= 0:
factor = int (math.pow(base, exp))
if factor <= remaining value:
multiple = remaining value / factor
return stringify(multiple) + \
_convert (remaining value-multiple*factor, \
base, exp-1)
else:
return "0" + \

[

Chapter 3

_convert (remaining value, base,

else:
return ""

return "%s/%s" % (_convert(value, base, \

int (math.log(value, base))),

exp-1)

base)

3. Add a docstring just below the external function declaration that includes two

examples that are expected to generate stack traces.

def convert to basen(value, base):
"""Convert a basel0 number to basen.

>>> convert to basen(0, 2)
Traceback (most recent call last):

ValueError: math domain error

>>> convert to basen(-1, 2)
Traceback (most recent call last):

ValueError: math domain error

import math
4. Add a test runner block that invokes Python's doctest module.

if mname == " main ":
import doctest
doctest.testmod ()

5. Run the code from the command line. In the following screenshot, notice how nothing

is printed. This is what happens when all the tests pass.

[Ml M) Terminal — bash — 57x5

&)

Creating Testable Documentation with doctest

6. Run the code from the command line with -v to increase verbosity. In the next
screenshot, we can see that 0 and -1 generate math domain errors. This is due to
using math. log to find the starting exponent.

fAMNm Terminal — bash — 57x23

quist-mbp a < arn re = T vy - =

ert to _baseni

Fi: math domain errar

Letosbasemiinlyedl)

1 domain error

quist-mbp:iB3 gturnguists

The doctest module looks for blocks of Python inside docstrings and runs it like real
code. >>> is the same prompt we see when we use the interactive Python shell. The following
line shows the expected output. doctest runs the statements it sees and then compares the
actual output with the expected output.

With regard to stack traces, there is a lot of detailed information provided in the stack
trace. Pattern matching the entire trace is ineffective. By using the ellipsis, we are able to
skip the intermediate parts of the stack trace and just match on the distinguishing part:
ValueError: math domain error.

This is valuable, because our users can see not only the way it handles good values, but will
also observe what errors to expect when bad values are provided.

=

Chapter 3

Running doctests from the command line

We have seen how to develop tests by embedding runnable fragments of code in
docstrings. But for each of these tests we had to make the module runnable. What if we

wanted to run something other than our doctests from the command line? We would have to
get rid of the doctest . testmod () statements!

a1

The good news is that starting with Python 2.6, there is a command-line
option to run a specific module using doctest without coding a runner.

Q

Typing: python -m doctest -v example.py willimport example.py
and run it through doctest . testmod () . According to documentation, this
may fail if the module is part of a package and imports other submodules.

How to do it...

In the following steps, we will create a simple application. We will add some doctests and then
run them from the command line without writing a special test runner.

1.

2.

Create a new file called recipe18.py to store the code written for this recipe.

Create a function that converts base 10 numbers to any other base using recursion.

def convert to basen(value, base):
import math

def convert (remaining value, base, exp):
def stringify(value) :
if value > 9:
return chr(value + ord('a')-10)
else:
return str(value)

if remaining value >= 0 and exp >= 0:
factor = int (math.pow(base, exp))
if factor <= remaining value:
multiple = remaining value / factor
return stringify(multiple) + \
_convert (remaining value-multiple*factor,
base, exp-1)
else:
return "0" + \

\

_convert (remaining value, base, exp-1)

else:
return ""

Creating Testable Documentation with doctest

return "$s/%s" % (_convert (value, base, \
int (math.log(value, base))), base)

3. Add a docstring just below the external function declaration that includes some of
the tests.

def convert to basen(value, base):
"""Convert a basel0 number to basen.

>>> convert to basen(10, 2)
'1010/2"

>>> convert to basen(1l5, 16)
'f£/16"

>>> convert to basen(0, 2)
Traceback (most recent call last):

ValueError: math domain error

>>> convert to basen(-1, 2)
Traceback (most recent call last):

ValueError: math domain error

nnn

import math

4. Run the code from the command line using -m doctest. As shown in the following
screenshot, no output indicates that all the tests have passed.

&AM e Terminal — bash — 66x5

5. Run the code from the command line with -v to increase verbosity. What happens
if we forget to include -m doctest? Using the -v option helps us to avoid this by
giving us a warm fuzzy that our tests are working.

~[ee]

Chapter 3

Terminal — bash — 67x33

i

math domain error

2 e 2
t recent call last):

VYalueError: math domain error

In the previous chapters, we were usingthe main__ block of a module to run other test
suites. What if we wanted to do the same here? We would have to pick whether main
would be for unittest tests, doctests, or both! What if we didn't even want to run testing
through main_, butinstead run our application?

That is why Python added the option of invoking testing right from the command line using
-m doctest.

Creating Testable Documentation with doctest

Don't you want to know for sure if your tests are running or, whether they are
M working? Is the test suite really doing what it promised? With other tools, we
Q usually have to embed print statements, or deliberate failures, just to know
things are being trapped properly. Doesn't doctest's -v option provide a
convenient quick glance at what's happening?

Coding a test harness for doctest

The tests we have written so far are very simple, because the function we are testing is
simple. There are two inputs and one output with no side effects. No objects have to be
created. This isn't the most common use case for us. Often, we have objects that interact with
other objects.

The doctest module supports creating objects, invoking methods, and checking results.
With this recipe, we will explore this in more detail.

An important aspect of doctest is that it finds individual instances of docstrings,
and runs them in a local context. Variables declared in one docstring cannot be used
in another docstring.

How to do it...

1. Create a new file called recipel19.py to contain the code from this recipe.

2. Write a simple shopping cart application.

class ShoppingCart (object) :
def init (self):
self.items = []

def add(self, item, price):
self.items.append(Item(item, price))
return self

def item(self, index):
return self.items[index-1].item

def price(self, index):
return self.items[index-1] .price

def total(self, sales tax):
sum _price = sum([item.price for item in self.items])
return sum price* (1.0 + sales tax/100.0)

def len (self):

return len(self.items)

(e

Chapter 3

class Item(object) :
def init (self, item, price):
self.item = item
self.price = price

Insert a docstring at the top of the module, before the ShoppingCart class
declaration.

This is documentation for the this entire recipe.
With it, we can demonstrate usage of the code.

>>> cart = ShoppingCart () .add("tuna sandwich", 15.0)
>>> len(cart)

1

>>> cart.item(1)

'tuna sandwich'

>>> cart.price (1)

15.0

>>> print round(cart.total(9.25), 2)

16.39

class ShoppingCart (object) :

]

Creating Testable Documentation with doctest

4. Run the recipe using -m doctest and -v for verbosity.

(o NN) Terminal — bash — 67x41

ist-mbpi03 gturnguistd I

5. Copy all the code we just wrote from recipel9.py into a new file called
recipel9b.py.

6. Inside recipel9b.py add another docstring to item, which attempts to re-use
the cart variable defined at the top of the module.

def item(self, index):

nnn

>>> cart.item(1)
'tuna sandwich'

5]

Chapter 3

return self.items[index-1].item

7. Run this variant of the recipe. Why does it fail? Wasnit cart declared in the earlier
docstring?

[o N Terminal — bash — 70x19

*ywthon, frameworks/Yersio

1tem[B]*"

The doctest module looks for every docstring. For each docstring it finds, it creates

a shallow copy of the module's global variables and then runs the code and checks results.
Apart from that, every variable created is locally scoped and then cleaned up when the test is
complete. This means that our second docstring that was added later cannot see the cart
that was created in our first docstring. That is why the second run failed.

There is no equivalent to a setUp method as we used with some of the unittest recipes. If
there is no setUp option with doctest, then what value is this recipe? It highlights a key
limitation of doctest that all developers must understand before using it.

There's more...

The doctest module provides an incredibly convenient way to add testability to our
documentation. But this is not a substitute for a full-fledged testing framework, like unittest.
As noted earlier, there is no equivalent to a setUp. There is also no syntax checking of the
Python code embedded in the docstrings.

i

Creating Testable Documentation with doctest

Mixing the right level of doctests with unittest (or other testing framework we pick) is a
matter of judgment.

Filtering out test noise

Various options help doctest ignore noise, such as whitespace, in test cases. This can
be useful, because it allows us to structure the expected outcome in a better way, to ease
reading for the users.

We can also flag some tests that can be skipped. This can be used where we want to
document known issues, but haven't yet patched the system.

Both of these situations can easily be construed as noise, when we are trying to run
comprehensive testing, but are focused on other parts of the system. In this recipe, we will dig
in to ease the strict checking done by doctest. We will also look at how to ignore entire tests,
whether it's on a temporary or permanent basis.

How to do it...

With the following steps, we will experiment with filtering out test results and easing certain
restrictions of doctest.

1. Create a new file called recipe20.py to contain the code from this recipe.
2. Create a recursive function that converts base10 numbers into other bases.

def convert to basen(value, base):
import math

def convert(remaining value, base, exp):
def stringify(value) :
if value > 9:
return chr(value + ord('a')-10)
else:
return str(value)

if remaining value >= 0 and exp >= 0:
factor = int (math.pow(base, exp))
if factor <= remaining value:
multiple = remaining value / factor
return stringify (multiple) + \
_convert (remaining value-multiple*factor, \
base, exp-1)
else:
return "0" + \
_convert (remaining value, base, exp-1)

[

Chapter 3

else:
return ""

return "%s/%s" % (_convert(value, base, \
int (math.log(value, base))), base)

3. Add a docstring that includes a test to exercise a range of values as well as
documenting a future feature that is not yet implemented.

def convert to basen(value, base):

"""Convert a basel0 number to basen.

>>> [convert to_basen(i, 16) for i in range(1l,16)] #doctest:
+NORMALIZE WHITESPACE

[(+1/16', '2/16', '3/16', ‘'4/16', '5/16', '6/16', '7/16"',
'8/16"',

'9/16', 'a/lé6', 'b/l6', 'c/16', 'd/16', 'e/l6', 'f/l6']

FUTURE: Binary may support 2's complement in the future, but
not now.

>>> convert to basen(-10, 2) #doctest: +SKIP

'0110/2°

import math
4. Add a test runner.

if mname == " main ":
import doctest
doctest.testmod ()

5. Run the test case in verbose mode.

oo e Terminal — bash — 82x15

urngul s

Creating Testable Documentation with doctest

6. Copy the code from recipe20.py into a new file called recipe20b.py.
7. Edit recipe20b.py by updating the docstring to include another test exposing that
our function doesn't convert 0.
def convert to basen(value, base):
"""Convert a basel0 number to basen.
>>> [convert_to_basen(i, 16) for i in range(1,16)] #doctest:
+NORMALIZE WHITESPACE
[('1/16', '2/16', '3/16', '4/16', '5/1l6', '6/16', '7/1l6"',
'8/16",
'9/16", 'a/l6', 'b/lée', 'c¢/16', 'd/le', 'e/1l6', 'f/l6']
FUTURE: Binary may support 2's complement in the future, but
not now.
>>> convert to basen(-10, 2) #doctest: +SKIP
'0110/2"
BUG: Discovered that this algorithm doesn't handle 0. Need to
patch it.
TODO: Renable this when patched.
>>> convert to basen(0, 2)
1 0/2 1
mnn
import math
8. Run the test case. Notice what is different about this version of the recipe; and why
does it fail?

A mm Terminal — bash — 72x20

0 DO DR 200 DA O D

Chapter 3

10.

11.

Copy the code from recipe20b.py into a new file called recipe20c.py.

Edit recipe20c.py and update the docstring indicating that we will skip the test for
now.

def convert to basen(value, base):

"""Convert a basel0 number to basen.

>>> [convert_to_basen(i, 16) for i in range(1,16)] #doctest:
+NORMALIZE WHITESPACE

[('1/16', '2/16', '3/16', '4/16', '5/1l6', '6/16', '7/1l6"',
'8/16",

'9/16", 'a/le6', 'b/16', 'c/16', 'd/le6', 'e/le', 'f/16']

FUTURE: Binary may support 2's complement in the future, but
not now.

>>> convert to basen(-10, 2) #doctest: +SKIP

'0110/2"

BUG: Discovered that this algorithm doesn't handle 0. Need to
patch it.

TODO: Renable this when patched.

>>> convert_to_basen(0, 2) #doctest: +SKIP

|0/2|

wn

import math

Run the test case.

[M N s Terminal — bash — 56x5

In this recipe, we revisit the function for converting from base-10 to any base numbers. The
first test shows it being run over a range. Normally, Python would fit this array of results on
one line. To make it more readable, we spread the output across two lines. We also put some
arbitrary spaces between the values to make the columns line up better.

[55]-

Creating Testable Documentation with doctest

This is something that doctest definitely would not support, due to its strict pattern matching
nature. By using #doctest: +NORMALIZE WHITESPACE, we are able to ask doctest to
ease this restriction. There are still constraints. For example, the first value in the expected
array cannot have any whitespace in front of it. (Believe me, | tried for maximum readability!)
But wrapping the array to the next line no longer breaks the test.

We also have a test case that is really meant as documentation only. It indicates a future
requirement that shows how our function would handle negative binary values. By adding
#doctest: +SKIP, we are able to command doctest to skip this particular instance.

Finally, we see the scenario where we discover that our code doesn't handle 0. As the
algorithm gets the highest exponent by taking a logarithm, there is a math problem. We
capture this edge case with a test. We then confirm that the code fails in classic test driven
design (TDD) fashion. The final step would be to fix the code to handle this edge case. But we
decide, in a somewhat contrived fashion, that we don't have enough time in the current sprint
to fix the code. To avoid breaking our continuous integration (Cl) server, we mark the test
with a TO-DO statement and add #doctest: +SKIP.

There's more...

Both the situations that we have marked up with #doctest: +SKIP, are cases where
eventually we will want to remove the SKIP tag and have them run. There may be other
situations where we will never remove SKIP. Demonstrations of code that have big fluctuations
may not be readily testable without making them unreadable. For example, functions that return
dictionaries are harder to test, because the order of results varies. We can bend it to pass a test,
but we may lose the value of documentation to make it presentable to the reader.

Printing out all your documentation

including a status report

Since this chapter has been about both documentation and testing, let's build a script that
takes a set of modules and prints out a complete report, showing all documentation as well
as running any given tests.

This is a valuable recipe, because it shows us how to use Python's APIs to harvest a
code-driven runnable report. This means the documentation is accurate and up to date,
reflecting the current state of our code.

How to do it...

In the following steps, we will write an application and some doctests. Then we will build a
script to harvest a useful report.

5]

Chapter 3

1. Create a new file called recipe21 report.py to contain the script that harvests
our report.

2. Start creating a script by importing Python's inspect library as the basis for drilling
down into a module from inspect import*

3. Add a function that focuses on either printing out an item's _ doc__ string or prints
out no documentation found.

def print doc(name, item):
if item._ doc_

print "Documentation for %s" % name

print "--------"-"-"-"“"-"“"“""-— - "

print item._ doc

else:

o

print "Documentation for %s - None" % name

4. Add a function that prints out the documentation based on a given module. Make
sure this function looks for classes, methods, and functions, and prints out their
docs.

def print docstrings (m, prefix=""):
print doc(prefix + "module %s" % m._ name , m)

for (name, value) in getmembers(m, isclass):

if name == ' class__': continue

print docstrings(value, prefix=name + ".")
for (name, value) in getmembers(m, ismethod) :

print_doc("%s%s ()" % (prefix, name), value)
for (name, value) in getmembers(m, isfunction):

°

print _doc("%s%s ()" % (prefix, name), value)

5. Add a runner that parses the command-line string, and iterates over each provided
module.

if __name_ == "_main_ ":
import sys
import doctest

for arg in sys.argv[l:]:

if arg.startswith("-"): continue

print "==============================="
print "== Processing module %s" % arg
print "==============================="
m = _ import__ (arg)

print_docstrings (m)
print "Running doctests for %s" % arg

Creating Testable Documentation with doctest

doctest.testmod (m)

5. Create a new file called recipe21.py to contain an application with tests that we
will run the earlier script against.

6. Inrecipe21.py, create a shopping cart app and fill it with docstrings and
doctests.

"nmw This is documentation for the entire recipe.
With it, we can demonstrate usage of the code.

>>> cart = ShoppingCart () .add("tuna sandwich", 15.0)
>>> len(cart)

1

>>> cart.item(1)

'tuna sandwich'

>>> cart.price (1)

15.0

>>> print round(cart.total(9.25), 2)

16.39

class ShoppingCart (object) :
mnn
This object is used to store the goods.
It conveniently calculates total cost including
tax.

def init (self):
self.items = []

def add(self, item, price):
"Add an item to the internal list."
self.items.append(Item(item, price))
return self

def item(self, index):
"Look up the item. The cart is a 1l-based index."
return self.items[index-1].item

def price(self, index):
"Look up the price. The cart is a 1l-based index."
return self.items[index-1] .price

def total(self, sales tax):
"Add up all costs, and then apply a sales tax."
sum _price = sum([item.price for item in self.items])
return sum price* (1.0 + sales tax/100.0)

5]

def len (self):

"Support len(cart) operation."
return len(self.items)

class Item(object) :
def init (self, item, price):
self.item = item
self.price = price

Chapter 3

Run the report script against this module using -v, and look at the screen's output.

This is documentation for the this entire recipe.

With it, we can demonstrate usage of the code.

>>> cart = ShoppingCart().add("tuna sandwich", 15.0)
>>> len(cart)

1

>>> cart.item(1)

'tuna sandwich'

>>> cart.price(l)

15.0

>>> print round(cart.total(9.25), 2)

16.39

Documentation for Item.module Item - None
Documentation for Item. init () - Nomne

Documentation for ShoppingCart.module ShoppingCart

This object is used to store the goods.
It conveniently calculates total cost including

tax.

Running doctests for recipe2l

s

Creating Testable Documentation with doctest
Trying:
cart = ShoppingCart () .add("tuna sandwich", 15.0)
Expecting nothing
ok
Trying:
len(cart)
Expecting:
1
ok
5 tests in 10 items.
5 passed and 0 failed.

Test passed.

This script is tiny, yet harvests a lot of useful information.

By using Python's standard inspect module, we are able to drill down starting at the module
level. The reflective way to look up a docstring is by accessing the doc__ property of an
object. This is contained in modules, classes, methods, and functions. They exist in other
places, but we limited our focus for this recipe.

We ran it in verbose mode, to show that the tests were actually executed. We hand parsed
the command-line options, but doctest automatically looks for -v to decide whether or not
to turn on verbose output. To prevent our module processor from catching this and trying to
process it as another module, we added a line to skip any -xyz style flags.

if arg.startswith("-"): continue

There's more...

We could spend more time enhancing this script. For example, we could dump this out with an
HTML markup, making it viewable in a web browser. We could also find third party libraries to
export it in other ways.

We could also work on refining where it looks for docstrings and how it handles them. In

our case, we just printed them to the screen. A more reusable approach would be to return

some type of structure containing all the information. Then the caller can decide whether to
print to screen, encode it in HTML, or generate a PDF document.

This isn't necessary, however, because this recipe's focus is on seeing how to mix these
powerful out-of-the-box options which Python provides into a quick and useful tool.

100

Chapter 3

Testing the edges

Tests need to exercise the boundaries of our code up to and beyond the range limits. In this

recipe, we will dig into defining and testing edges with doctest.

How to do it...

With the following steps, we will see how to write code that tests the edges of our software.

1. Create a new file named recipe22.py and use it to store all of our code for

this recipe.

2. Create a function that converts base 10 numbers to anything between base 2 and

base 36.

def convert to basen(value, base):
if base < 2 or base > 36:
raise Exception("Only support bases 2-36")

import math

def _convert (remaining value, base, exp):
def stringify(value) :
if value > 9:
return chr(value + ord('a')-10)
else:
return str(value)

if remaining value >= 0 and exp >= 0:
factor = int (math.pow(base, exp))
if factor <= remaining value:
multiple = remaining value / factor
return stringify(multiple) + \

_convert (remaining value-multiple*factor,

base, exp-1)
else:
return "0" + \

__convert (remaining value, base,

else:

return ""

return "%s/%s" % (_convert(value, base, \

int (math.log(value, base))),

\

exp-1)

Creating Testable Documentation with doctest

3. Add a docstring just below our function declaration that includes tests showing base
2 edges, base 36 edges, and the invalid base 37.

def convert to basen(value, base):
"""Convert a basel0 number to basen.

These show the edges for base 2.
>>> convert to basen(l, 2)

|1/2|

>>> convert to basen(2, 2)

r10/2"

>>> convert to basen(0, 2)
Traceback (most recent call last):

oo

ValueError: math domain error

These show the edges for base 36.
>>> convert to basen(l, 36)

'1/36"

>>> convert to basen (35, 36)
'z/36"

>>> convert to basen(36, 36)
'10/36"

>>> convert to basen(0, 36)
Traceback (most recent call last):

oo

ValueError: math domain error

These show the edges for base 37.
>>> convert to basen(l, 37)
Traceback (most recent call last):
Exception: Only support bases 2-36
>>> convert to basen(36, 37)
Traceback (most recent call last):
Exception: Only support bases 2-36
>>> convert to basen(37, 37)
Traceback (most recent call last):
Exception: Only support bases 2-36
>>> convert to basen(0, 37)
Traceback (most recent call last):

oo

102

Chapter 3

Exception: Only support bases 2-36

if base < 2 or base > 36:
4. Add a test runner.

if name == " main ":
import doctest
doctest.testmod ()

5. Run the recipe.

= NN Terminal — bash — 55x5

This version has a limit of handling base 2 through base 36.

1
‘\Q For base 36, it uses a through z. This compared to base 16 using a through f.

35 in base 10 is represented as z in base 36.

We include several tests, including one for base 2 and base 36. We also test the maximum
value before rolling over, and the next value, to show the rollover. For base 2, this is 1 and 2.
For base 36, this is 35 and 36.

We have also included tests for O to show that our function doesn't handle this for any base.
We also test base 37, which is invalid as well.

It's important that our software works for valid inputs. It's just as important that our software
works as expected for invalid inputs. We have documentation that can be viewed by our users
when using our software that documents these edges. And thanks to Python's doctest
module, we can test it and make sure that our software performs correctly.

Creating Testable Documentation with doctest

Testing the edges section mentioned in Chapter 1

Testing corner cases by iteration

Corner cases will appear as we continue to develop our code. By capturing corner cases in an
iterable list, there is less code to write and capture another test scenario. This can increase
our efficiency at testing new scenarios.

How to do it...

1. Create a new file called recipe23.py and use it to store all our code for this recipe.

2. Create a function that converts base 10 to any other base.

def convert to basen(value, base):
import math

def convert (remaining value, base, exp):
def stringify(value) :
if value > 9:
return chr(value + ord('a')-10)
else:
return str(value)

if remaining value >= 0 and exp >= 0:
factor = int (math.pow(base, exp))
if factor <= remaining value:
multiple = remaining value / factor
return stringify(multiple) + \
_convert (remaining value-multiple*factor, \
base, exp-1)
else:
return "0" + \
__convert (remaining value, base, exp-1)
else:
return ""

°

return "%s/%s" % (_convert(value, base, \
int (math.log(value, base))), base)

104

Chapter 3

Add some doc tests that include an array of input values to generate an array of
expected outputs. Include one failure.

def convert to basen(value, base):
""nConvert a basel0 number to basen.

Base 2

>>> inputs = [(1,2,'1/2'), (2,2,'11/2")]

>>> for value,base,expected in inputs:

actual = convert to basen(value,base)

.. assert actual == expected, 'expected: %s actual: %s' %
(expected, actual)

>>> convert to basen(0, 2)

Traceback (most recent call last):

ValueError: math domain error

Base 36.
>>> inputs = [(1,36,'1/36'), (35,36,'z/36"'), (36,36,'10/36"')]
>>> for value,base,expected in inputs:

actual = convert to basen(value,base)

assert actual == expected, 'expected: %s actual: %s' %

(expected, value)

>>> convert to basen(0, 36)
Traceback (most recent call last):

ValueError: math domain error

nnn

import math
Add a test runner.

if __name_ == "_main_ ":
import doctest
doctest.testmod ()

Creating Testable Documentation with doctest

5. Run the recipe.

o NN Terminal — bash — 70x23

L

In the previous screenshot, the key information is on this line: AssertionError:
~ expected: 11/2 actual: 10/2. Is this test failure a bit contrived? Sure it is.
But seeing a test case shows useful output is not. It's important to verify that
our tests give us enough information to fix either the tests or the code.

We created an array with each entry containing both the input data as well as the expected
output. This provides us with an easy way to glance at a set of test cases.

Then, we iterate over each test case, calculate the actual value, and run it through a Python
assert. An important part that is needed is the custom message 'expected: %s
actual: %s'.Without it, we would never get the information to tell us which test case failed.

106

Chapter 3

What if one test case fails?

= If one of the tests in the array fails, then that code block exits and skips
over the rest of the tests. This is the trade off for having a more succinct
set of tests.

Does this type of test fit better into doctest or unittest?

Here are some criteria that are worth considering when deciding whether to put these tests in
doctest:

» Is the code easy to comprehend at a glance?

» Is this clear, succinct, useful information when users view the docstrings?

If there is little value in having this in the documentation, and if it clutters the code, then that
is a strong hint that this test block belongs to a separate test module.

Testing corner cases by iteration section of Chapter 1

Getting nosy with doctest

Up to this point, we have been either appending modules with a test runner, or we have typed
python -m doctest <modules> onthe command line to exercise our tests.

In the previous chapter, we introduced the powerful library nose (referto http://
somethingaboutorange.com/mrl/projects/nose for more details).

For a quick recap, nose:

» Provides us with the convenient test discovering tool nosetests
» Is pluggable, with a huge ecosystem of available plugins

» Includes a built-in plugin targeted at finding doctests and running them

Creating Testable Documentation with doctest

Getting ready

We need to activate our virtual environment (virtualenv) and then install nose for this recipe.

1. Create a virtual environment, activate it, and verify the tools are working.

o i Terminal — bash — 670

X

tar.zz
info for]
icluded dir ries ‘. build!

build!’
6 script t
ript ta /

This recipe assumes you have built all of the previous recipes in this chapter.
s If you have built only some of them, your results may appear different.

How to do it...

1. Runnosetests -with-doctest against all the modules in this folder. If you
notice, it prints a very short F.F...F, indicating that three tests have failed.

2. Runnosetests -with-doctest -vto geta more verbose output. In the following
screenshot, notice how the tests that failed are the same ones that failed for the
previous recipes in this chapter. It is also valuable to see the <module>. <method>

format with either ok or FAIL.

108

Chapter 3

3. Runnosetests -with-doctest against both the recipel9.py file as well as
the recipel9 module, in different combinations.

;MO Terminal — bash — 81x18

ecipel?® recipel?,py

nosetests is targeted at discovering test cases and then running them. With this plugin,
when it finds a docstring, it uses the doctest library to programmatically test it.

The doctest plugin is built around the assumption that doctests are not in the same
package as other tests, like unittest. This means it will only run doctests found from
non-test packages.

Creating Testable Documentation with doctest

There isn't a whole lot of complexity in the nosetests tool, and...that's the idea!. In this recipe,
we have seen how to use nosetests to get a hold of all the doctests we have built so far in
this chapter.

Getting nosy with testing section mentioned in Chapter 2

Updating the project-level script to

run this chapter's doctests

This recipe will help us explore building a project-level script that allows us to run different test
suites. We will also focus on how to run it in our doctests.

How to do it...

With the following steps, we will craft a command-line script to allow us to manage a project
including running doctests.

1. Create a new file called recipe25.py to contain all the code for this recipe.
2. Add code that parses a set of options using Python's getopt library.

import getopt
import glob
import logging
import nose
import os
import os.path
import re
import sys

def usage() :
print
print "Usage: python recipe25.py [command]"
print
print "\t--help"
print "\t--doctest"
print "\t--suite [suitel]™
print "\t--debug-level [info|debug]"
print "\t--package"
print "\t--publish"
print "\t--register"
print

Chapter 3

try:
optlist, args = getopt.getopt(sys.argv[l:],
"hr,
["help", "doctest", "suite=", \
"debug-level=", "package", \
"publish", "register"])

except getopt.GetoptError:
print help information and exit:
print "Invalid command found in %s" % sys.argv
usage ()

sys.exit (2)
Create a function that maps to -test.

def test(test suite, debug level):

logger = logging.getLogger ("recipe25")

loggingLevel = debug level

logger.setLevel (loggingLevel)

ch = logging.StreamHandler ()

ch.setLevel (loggingLevel)

formatter = logging.Formatter ("% (asctime)s - % (name)s -
% (levelname)s - % (message)s")

ch.setFormatter (formatter)

logger.addHandler (ch)

nose.run(argv=["", test suite, "--verbosity=2"])
Create a function that maps to -doctest.

def doctest (test suite=None) :

args = ["", "--with-doctest"]

if test suite is not None:
print "Running doctest suite %s" % test suite
args.extend(test suite.split(','))
nose.run(argv=args)

else:
nose.run(argv=args)

Create stub functions that support package, publish, and register.

def package() :
print "This is where we can plug in code to run " + \
"setup.py to generate a bundle."

def publish{() :
print "This is where we can plug in code to upload " + \
"our tarball to S3 or some other download site."

Creating Testable Documentation with doctest

def register():
print "setup.py has a built in function to " + \
"'register' a release to PyPI. It's " + \
"convenient to put a hook in here."

°

os.system("%s setup.py register" % sys.executable)

6. Add some code that detects if the option list is empty. If so, have it print out the help
menu and exit the script.

if len(optlist) == 0:
usage ()
sys.exit (1)

7. Add some code that defines debug levels and then parses options to allow the user to
override.

debug_levels = {"info":logging.INFO, "debug":logging.DEBUG}
Default debug level is INFO
debug level = debug levels["info"]

for option in optlist:
if option[0] in ("--debug-level"):
Override with a user-supplied debug level
debug level = debug levels|[option[1]]

8. Add some code that scans the command-line options for ~help, and, if found, exits
the script.

Check for help requests, which cause all other
options to be ignored.
for option in optlist:
if option[0] in ("--help", "-h"):
usage ()
sys.exit (1)

9. Add code that checks if ~-doctest has been picked. If so, have it specially scan
-suite and run it through method doctest (). Otherwise, run -suite through
method test ().

ran_doctests = False
for option in optlist:
If --doctest is picked, then --suite is a
suboption.
if option[0] in ("--doctest"):
suite = None
for suboption in optlist:
if suboption[0] in ("--suite"):

Chapter 3

suite = suboption[1]
print "Running doctests..."
doctest (suite)
ran_doctests = True

if not ran doctests:
for option in optlist:
if option[0] in ("--suite"):

print "Running test suite %s..." % option[1]
test (option[1l], debug level)

10. Finish it by iterating through each of the command-line options, and invoking the
other functions based on the options that are picked.

Parse the arguments, in order
for option in optlist:

if option[0] in ("--package"):
package ()

if option[0] in ("--publish"):
publish ()

if option[0] in ("--register"):
register ()

11. Run the script with —help.

A;MO Terminal — bash — 62x13

suite]

[info|de

Creating Testable Documentation with doctest

12. Run the script with —doctest. Notice the first few lines of output in the following
screenshot. It shows how the tests have passed and failed along with detailed output.

(o NN) Terminal — bash — 75x24

The output is much longer. It has been trimmed for the sake of brevity.

13. Run the script with —-doctest -suite=recipelé,recipel?.py.

(NN & Terminal — bash — 92x9

We deliberately used recipel6 .py and recipel7.py to demonstrate
i that it works with both module names and filenames.

114

Chapter 3

Just like the recipe in Writing a project-level script mentioned in Chapter 2, which lets you
run different test suites, this script uses Python's getopt library, which is modeled after the
C getopt () function (referto http://docs.python.org/library/getopt.html for
more details).

We have wired the following functions:

» Usage: This is a function to provide help to the user
» The key option definitions are included in the following block:
optlist, args = getopt.getopt (sys.argv[l:],
llhll ,
["help", "doctest", "suite=", \

"debug-level=", "package", \
"publish", "register"])

o We parse everything in the arguments except the first, being the executable
itself.
o "h" defined the short option: -h.

o The list defines long options. Those with "=" accept an argument. Those
without are flags.

o If an option is received that isn't in the list, an exception is thrown, we print
out usage (), and then exit.
» doctest: This runs modules through nose using -with-doctest
» package, publish, and register: These are just like the functions described
in the previous chapter's project-level script recipe

With each of these functions defined, we can now iterate over the options that were parsed.
For this script, there is a sequence:

1. Check if there is a debugging override. We default to 1ogging. INFO, but provide
the ability to switch to logging.DEBUG.

2. Check if -h or ~help was called. If so, print out the usage () information and
then exit with no more parsing.

3. Because -suite can be used either by itself to run unittest tests, or as a suboption
for -doctest, we have to parse through things and figure out whether or not -doctest
was used.

4. Finally, iterate over the options, and call their corresponding functions.

To exercise things, we first called this script with the -help option that printed out the
command choices we had.

Creating Testable Documentation with doctest

Then we called it with —doctest to see how it handled finding all the doctests in this folder.
In our case, we found all the recipes for this chapter including three test failures.

Finally, we called the script with -doctest -suite=recipel6,recipel?.py. This shows
how we can pick a subset of tests delineated by the comma. With this example, we see that
nose can process either by module name (recipe16) or by filename (recipel7).

The features this script provides could easily be handled by already built commands. We
looked at nosetests with doctest earlier in this chapter and saw how it can flexibly take
arguments to pick tests.

Using setup . py to generate tarballs and register releases is also a commonly used feature
in the Python community.

So why write this script? Because, we can exploit all these features with a single command.

There are more details that can be found in the previous chapter about project-level script
recipe, such as reasons for using getopt.

There are more details that can be found in the previous chapter such as reasons for
using getopt.

Testing Customer
Stories with Behavior
Driven Development

In this chapter, we will cover:

» Naming tests that sound like sentences and stories

» Testing separate doctest documents

» Writing a testable story with doctest

» Writing a testable novel with doctest

» Writing a testable story with Voidspace Mock and nose

» Writing a testable story with mockito and nose

» Writing a testable story with Lettuce

» Using Should DSL to write succinct assertions with Lettuce

» Updating the project-level script to run this chapter's BDD tests

Introduction

Behavior Driven Development (BDD) was created as a response to Test Driven Development
(TDD) by Dan North. It focuses on writing automated tests in a natural language that
non-programmers can read.

Programmers wanted to know where to start, what to test and what not to test, how
much to test in one go, what to call their tests, and how to understand why a test
fails.

Testing Customer Stories with Behavior Driven Development

The deeper | got into TDD, the more | felt that my own journey had been less

of a wax-on, wax-off process of gradual mastery than a series of blind alleys.

I remember thinking, 'If only someone had told me that!' far more often than |
thought, 'Wow, a door has opened.' | decided it must be possible to present TDD in
a way that gets straight to the good stuff and avoids all the pitfalls—Dan North.

To discover more about Dan North please visit: http://blog.dannorth.
i net/introducing-bdd.

The tests that we have written in prior unittest recipes had a style of testThis and
testThat. BDD takes the approach of getting out of speaking programmer-ese and
instead shifting to a more customer-oriented perspective.

Dan North goes on to point out how Chris Stevenson wrote a specialized test runner for Java's
JUnit that printed test results in a different way. Let's take a look at the following test code:

public class FooTest extends TestCase
public void testIsASingleton() {}
public void testAReallyLongNameIsAGoodThing () {}

}

This code when run through AgileDox (http://agiledox.sourceforge.net/) will print
out in the following format:

Foo
- is a singleton
- a really long name is a good thing

AgileDox does several things:

» Prints out the test name with the suffix Test dropped
» Strips out the test prefix from each test method

» Converts the remainder into a sentence

AgileDox is a Java tool, so we won't be exploring it in this chapter. But there are many Python
tools available, and we will look at some including doctest, voidspace mock, mockito, and
Lettuce. All of these tools give us the means to write tests in a more natural language and
empower customers, QA, and test teams to develop story-based tests.

All the tools and styles of BDD could easily fill up an entire book. This chapter

intends to introduce the philosophy of BDD along with some strong, stable
g tools used to effectively test our system's behavior.

Chapter 4

For this chapter, let's use the same shopping cart application for each recipe. Create a file
called cart .py and add the following code.

class ShoppingCart (object) :
def init_ (self):
self.items = []

def add(self, item, price):
for cart_item in self.items:
Since we found the item, we increment
instead of append
if cart_item.item == item:
cart_item.gq += 1
return self

If we didn't find, then we append
self.items.append(Item(item, price))
return self

def item(self, index):
return self.items[index-1].item

def price(self, index):
return self.items[index-1] .price * self.items[index-1].qg

def total(self, sales_tax):
sum _price = sum([item.price*item.q for item in self.items])
return sum price* (1.0 + sales_tax/100.0)

def len (self):

return sum([item.q for item in self.items])

class Item(object):
def init (self, item, price, g=1):
self.item = item
self.price = price
self.q = g

This shopping cart:

» s one-based, meaning the first item and price are at [1] not [0]
» Includes the ability to have multiples of the same item
» Will calculate total price and then add taxes
This application isn't complex. Instead, it provides us opportunities throughout this chapter

to test various customer stories and scenarios that aren't necessarily confined to simple
unit testing.

Testing Customer Stories with Behavior Driven Development

Naming tests that sound like sentences

and stories

Test methods should read like sentences and test cases should read like titles of chapters.
This is part of BDD's philosophy of making tests easy-to-read for non-programmers.

Getting ready

For this recipe, we will be using the shopping cart application shown at the beginning of
this chapter.

How to do it...

With the following steps, we will explore how to write a custom nose plugin that formats
results as a BDD-style report.

1. Create a file called recipe26 .py to contain our test cases.

2. Create a unittest test where the test case represents a cart with one item, and the
test methods read like sentences.

import unittest
from cart import =*

class CartWithOneItem(unittest.TestCase) :
def setUp(self):
self.cart = ShoppingCart () .add("tuna sandwich", 15.00)

def test when checking the size should be one based(self):
self.assertEquals (1, len(self.cart))

def test when looking into cart should be one based(self):
self.assertEquals ("tuna sandwich", self.cart.item(1l))
self.assertEquals (15.00, self.cart.price(l))

def test total should have in sales tax(self):
self.assertAlmostEquals (15.0*1.0925, \
self.cart.total(9.25), 2)

3. Add a unittest test where the test case represents a cart with two items, and the test
methods read like sentences.

class CartWithTwoItems (unittest.TestCase) :
def setUp(self):
self.cart = ShoppingCart () \
.add ("tuna sandwich", 15.00) \
.add ("rootbeer", 3.75)

120

Chapter 4

def test when checking size should be two(self):
self.assertEquals (2, len(self.cart))

def test items should be in same order as entered(self):

self.assertEquals ("tuna sandwich", self.cart.item(1))
self.assertAlmostEquals (15.00, self.cart.price(l), 2)
self.assertEquals ("rootbeer", self.cart.item(2))

self.assertAlmostEquals (3.75, self.cart.price(2), 2)

def test total price should have in sales tax(self):
self.assertAlmostEquals ((15.0+3.75)*1.0925, \
self.cart.total (9.25), 2)

4. Add a unittest test where the test case represents a cart with no items, and the test
methods read like sentences.

class CartWithNolItems (unittest.TestCase) :
def setUp(self):
self.cart = ShoppingCart ()

def test when checking size should be empty(self) :
self.assertEquals (0, len(self.cart))

def test finding item out of range should raise error(self):
self.assertRaises (IndexError, self.cart.item, 2)

def test finding price out of range should raise error(self):
self.assertRaises (IndexError, self.cart.price, 2)

def test when looking at total price should be zero(self):
self.assertAlmostEquals (0.0, self.cart.total(9.25), 2)

def test adding items returns back same cart (self):

empty cart = self.cart

cart_with one item = self.cart.add("tuna sandwich", \
15.00)

self.assertEquals (empty cart, cart with one item)

cart_with two items = self.cart.add("rootbeer", 3.75)

self.assertEquals (empty cart, cart with one item)

self.assertEquals(cart_with one item, \

cart _with two items)

BDD encourages using very descriptive sentences for method names. Several
i of these method names were shortened to fit the format of this book.

5. Create another file called recipe26 plugin.py to contain our customized
BDD runner.

Testing Customer Stories with Behavior Driven Development

6. Create a nose plugin that can be used as —with-bdd to print out results.

import sys
err = sys.stderr

import nose
import re
from nose.plugins import Plugin

class BddPrinter (Plugin) :
name = "bdd"

def init_ (self):
Plugin._ init__ (self)
self.current module = None

7. Create a handler that prints out either the module or the test method, with
extraneous information stripped out.

def beforeTest (self, test):
test name = test.address() [-1]
module, test method = test name.split(".")
if self.current module != module:
self.current module = module
fmt_mod = re.sub(r" ([A-Z]) ([a-z]+)", \
r"\1\2 ", module)
err.write("\nGiven %s" % fmt_mod[:-1].lower())
message = test method[len("test") :]
message = " ".join(message.split("_"))
err.write("\n- %s" % message)

8. Create a handler for success, failure, and error messages.

def addSuccess(self, *args, **kwargs):
test = argsl[0]
err.write (" : Ok")

def addError(self, *args, **kwargs):
test, error = args[0], args[l]
err.write (" : ERROR!\n")

def addFailure(self, *args, **kwargs):
test, error = args[0], args[l]
err.write(" : Failure!\n")

9. Create a new file called recipe26 runner.py to contain a test runner for
exercising this recipe.

122

Chapter 4

10. Create a test runner that pulls in the test cases and runs them through nose,
printing out results in an easy-to-read fashion.

if __name_ == "_main_ ":
import nose
from recipe26 plugin import *

nose.run(argv=["", "recipe26", "--with-bdd"l, \
plugins=[BddPrinter()])

11. Run the test runner.

[N Terminal — bash — 70x21

12. Introduce a couple of bugs in the test cases, and re-run the test runner to see how
this alters the output.

def test when checking the size should be one based(self):
self.assertEquals (2, len(self.cart))

def test items should be in same order as entered(self):
self.assertEquals ("tuna sandwich", self.cart.item(1l))
self.assertAlmostEquals(14.00, self.cart.price(l), 2)
self.assertEquals ("rootbeer", self.cart.item(2))
self.assertAlmostEquals(3.75, self.cart.price(2), 2)

Testing Customer Stories with Behavior Driven Development

13. Run the tests again.

A MNe Terminal — bash — 70x43

(ptcigturnquist-mbp: B4 gturngui

Chapter 4

The test cases are written as nouns, describing the object being tested. CartWithTwoItems
describes a series of test methods centered on a shopping cart that is pre-populated with two
items.

The test methods are written like sentences strung together with underscores instead of
spaces. They have to be prefixed with test_, so that unittest will pick them up. test__
items should be in same order as entered should represent "items should be
in same order as entered"

The idea is we should be able to quickly understand what is being tested by putting these two
together: Given a cart with two items, the items should be in the same order as entered.

While we could read through the test code with this thought process, mentally subtracting out
the cruft of underscores and the test prefix, this can become a real cognitive load for us. To
make it easier, we coded a quick nose plugin that split up the camel case tests and replaced
the underscores with spaces. This led to the useful report format.

Using this type of quick tool encourages us to write detailed test methods that will be easy to
read on output. The feedback not just to us but to our test team and customers can be very
effective at fostering communications, confidence in software, and help with generating new
test stories.

The example test methods shown here were deliberately shortened to fit the format of the
book. Don't try to make them as short as possible. Instead, try to descriptively describe the
expected output.

The plugin isn't installable

This plugin was coded to quickly generate a report. To make it reusable especially with
nosetests you may want to read Running automated test suites with nose mentioned
in Chapter 2 to get more details on creating a setup . py script to support the installation.

See also

Writing a nose extension to pick tests based on regular expressions; and Writing a nose
extension to generate a CSV report as discussed in Chapter 2

Testing Customer Stories with Behavior Driven Development

Testing separate doctest documents

BDD doesn't require that we use any particular tool. Instead, it's more focused on the
approach to testing. That is why it's possible to using Python doctests to write BDD test
scenarios. Doctests aren't restricted to the module's code. With this recipe, we will explore
creating independent text files to run through Python's doctest library.

If this is doctest, why wasn't it included in the previous chapter's recipes? Because the
context of writing up a set of tests in separate test document fits more naturally into the
philosophy of BDD than with testable docstrings that are available for introspection when
working with a library.

Getting ready

For this recipe, we will be using the shopping cart application shown at the beginning of
this chapter.

How to do it...

With the following steps, we will explore capturing various test scenarios in doctest files and
then running them.

1. Create afile called recipe27 scenariol.doctest that contains doctest-style
type tests to exercise the shopping cart.

This is a way to exercise the shopping cart
from a pure text file containing tests.

First, we need to import the modules

>>> from cart import *

Now, we can create an instance of a cart

>>> cart = ShoppingCart ()

Here we use the API to add an object. Because
it returns back the cart, we have to deal with

the output
>>> cart.add("tuna sandwich", 15.00) #doctest:+ELLIPSIS
<cart.ShoppingCart object at ...>

Now we can check some other outputs

>>> cart.item(1)
'tuna sandwich'

>>> cart.price (1)
15.0

>>> cart.total (0.0)
15.0

126

Chapter 4

Q Notice that there are no quotes surrounding the text.

Create another scenario in the file recipe27 scenario2.doctest that tests the
boundaries of the shopping cart.

This is a way to exercise the shopping cart
from a pure text file containing tests.

First, we need to import the modules
>>> from cart import *

Now, we can create an instance of a cart
>>> cart = ShoppingCart ()

Now we try to access an item out of range,
expecting an exception.

>>> cart.item(5)

Traceback (most recent call last):

IndexError: list index out of range

We also expect the price method to fail
in a similar way.

>>> cart.price(-2)

Traceback (most recent call last):

IndexError: list index out of range

Create a file called recipe27.py and put in the test runner code that finds files
ending in .doctest and runs them through doctest's testfile method.
if name == " main ":

import doctest

from glob import glob

for file in glob ("recipe27*.doctest") :

print "Running tests found in %s" % file
doctest.testfile(file)

Testing Customer Stories with Behavior Driven Development

4. Run the test suite.

5. Run the test suite with -v.

A MO Terminal — bash — 64x40
bash ||

128

Chapter 4

Doctest provides the convenient testfile function that will exercise a block of pure text
as if it were contained inside a docstring. This is why no quotations are needed compared to
when we had doctests inside docstrings. The text files aren't docstrings.

In fact, if we include triple quotes around the text, the tests won't work correctly. Let's take
the first scenario—put """ at the top and bottom of the file, and save it as recipe27 bad
scenario.txt. Then let's create a file called recipe27 bad.py and create an alternate
test runner that runs our bad scenario.

if name == "_ main_ ":
import doctest
doctest.testfile("recipe27 bad scenario.txt")

We get the following error message:

Ao Terminal — bash — 71x15

It has confused the tail end triple quotes as part of the expected output. It's best to just leave
them out.

There's more...

What is so great about moving docstrings into separate files? Isn't this the same thing that
we were doing in Creating testable documentation with doctest recipe discussed in Chapter
3? Yes and no. Yes, it's technically the same thing: doctest exercising blocks of code
embedded in test.

Testing Customer Stories with Behavior Driven Development

But BDD is more than simply a technical solution. It is driven by the philosophy of customer-
readable scenarios. BDD aims to test the behavior of the system. The behavior is often defined
by customer-oriented scenarios. Getting a hold of these scenarios is strongly encouraged when
our customer can easily understand the scenarios that we have captured. It is further enhanced
when the customer can see what passes and fails and, in turn, sees a realistic status of what
has been accomplished.

By decoupling our test scenarios from the code and putting them into separate files, we have
the key ingredient to making readable tests for our customers using doctest.

Doesn't this defy the usability of docstrings?

In Chapter 3 there are several recipes that show how convenient it is to embed examples of
code usage in docstrings. They are convenient, because we can read the docstrings
from an interactive Python shell. What do you think is different about pulling some of this out
of the code into separate scenario files? Do you think there are some doctests that would
be useful in docstrings and others that may serve us better in separate scenario files?

Writing a testable story with doctest

Capturing a succinct story in a doctest file is the key to BDD. Another aspect of BDD is
providing a readable report including the results.

Getting ready

For this recipe, we will be using the shopping cart application shown at the beginning of
this chapter.

How to do it...

With the following steps, we will see how to write a custom doctest runner to make our
own report.

1. Create a new file called recipe28 cart with no items.doctest to contain
our doctest scenario.

2. Create a doctest scenario that exercises the shopping cart.
This scenario demonstrates a testable story.

First, we need to import the modules
>>> from cart import *

>>> cart = ShoppingCart ()

#when we add an item
>>> cart.add("carton of milk", 2.50) #doctest:+ELLIPSIS
<cart.ShoppingCart object at ...>

130

Chapter 4

#ithe first item is a carton of milk
>>> cart.item(1)
'carton of milk'

#the first price is $2.50
>>> cart.price (1)

2.5

#there is only one item
>>> len(cart)

1

This shopping cart lets us grab more than one

of a particular item.

#when we add a second carton of milk

>>> cart.add("carton of milk", 2.50) #doctest:+ELLIPSIS
<cart.ShoppingCart object at ...>

#the first item is still a carton of milk
>>> cart.item(1)
'carton of milk'

#but the price is now $5.00
>>> cart.price (1)
5.0

#and the cart now has 2 items
>>> len(cart)
2

#for a total (with 10% taxes) of $5.50
>>> cart.total(10.0)
5.5

Create a new file called recipe28.py to contain our custom doctest runner.

Create a customer doctest runner by subclassing DocTestRunner.

import doctest.

class BddDocTestRunner (doctest.DocTestRunner) :
o
This is a customized test runner. It is meant
to run code examples like DocTestRunner,
but if a line preceeds the code example
starting with '#', then it prints that
comment .

If the line starts with '#when', it is printed
out like a sentence, but with no outcome.

If the line starts with '#', but not '#when'

Testing Customer Stories with Behavior Driven Development

it is printed out indented, and with the
outcome.

5. Add a report_start function that looks for comments starting with # before an
example.

def report start(self, out, test, example):
prior line = example.lineno-1
line before = test.docstring.splitlines() [prior line]
if line before.startswith("#"):
message = line before([l:]
if line before.startswith("#when") :
out ("* %s\n" % message)
example.silent = True
example.indent = False
else:

o°

out (" - %s: " message)

example.silent False

example.indent = True
else:
example.silent = True
example.indent = False
doctest .DocTestRunner (out, test, example)

6. Addareport_ success function that conditionally prints out ok.

def report success(self, out, test, example, got):
if not example.silent:
out ("ok\n")
if self. verbose:
if example.indent: out (" ")
out (">>> %s\n" % example.sourcel[:-1])

7. Add a report failure function that conditionally prints out FAIL.
def report failure(self, out, test, example, got):
if not example.silent:
out ("FAIL\n")
if self. verbose:
if example.indent: out (" ")
out (">>> %s\n" % example.sourcel[:-1])

8. Add a runner that replaces doctest .DocTestRunner with our customer runner,
and then looks for doctest files to run.
if mname == " main ":

from glob import glob

132

doctest.DocTestRunner = BddDocTestRunner

for file in glob("recipe28*.doctest"):
given = file[len("recipe28 ") :]
given = given[:-len(".doctest")]

given = " ".join(given.split("_"))

print "===================================
print "Given a %s..." % given

print "===================================

doctest.testfile(file)

9. Use the runner to exercise our scenario.

A MO Terminal — bash — 54x13

o i

Chapter 4

Testing Customer Stories with Behavior Driven Development

10. Use the runner to exercise our scenario with -v.

Terminal — bash — 57x29

11. Alter the test scenario so that one of the expected outcomes fails.
#there is only one item
>>> len(cart)
4668

Notice we have changed the expected outcome from 1 to 4668, to guarantee
s a failure.

12. Use the runner with -v again, and see the results.

Chapter 4

;MO Terminal — bash — 70x31

Doctest provides a convenient means to write a testable scenario. For starters, we wrote
up a series of behaviors we wanted the shopping cart application to prove. To polish things
up, we added lot of detailed comments, so that anyone reading this document can clearly

understand things.

This provides us with a testable scenario. However, it leaves us short of one key thing: a
succinct report.

Unfortunately, doctest won't print out all these detailed comments for us.

Testing Customer Stories with Behavior Driven Development

To make this usable from a BDD perspective, we need the ability to embed selective
comments that get printed out when the test sequence runs. To do that we will subclass
doctest .DocTestRunner and insert our version of handling of the docstring.

There's more...

DocTestRunner conveniently gives us a handle on the docstring as well as the exact line
number where the code example starts. We coded our BddDocTestRunner to look at the
line preceding it, and check to see if it started with #, our custom marker for a piece of text to
print out during a test run.

A #when comment is considered a cause. In other words, a when causes one or more effects.
While doctest will still verify the code involved with a when; for BDD purposes, we don't
really care about the outcome, so we silently ignore it.

Any other # comments are considered effects. For each of these, we strip out the # then print
the sentence indented, so we can easily see which when it is tied to. Finally, we print out
either ok or FAIL to indicate the results.

This means we can add all the detail we want to the documentation. But for blocks of tests,
we can add statements that will be printed as either causes (#when) or effects (#anything
else).

Writing a testable novel with doctest

Running a series of story tests showcases your code's expected behavior. We have previously
seen in the Writing a testable story with doctest recipe how to build a testable story and have
it generate a useful report.

With this recipe, we will see how to use this tactic to string together multiple testable stories to
form a testable novel.

Getting ready

For this recipe, we will be using the shopping cart application shown at the beginning of this
chapter.

We will also re-use the BddDocTestRunner defined in this chapter's Writing a testable story
with doctest recipe. But we will slightly alter it in the following steps.

136

Chapter 4

How to do it...

With the following steps,we will look at how to write a testable novel:

1.
2.

Create a new file called recipe29.py.

Copy the code containing the BddDocTestRunner from the Writing a testable story
with doctest recipe into recipe29.py.

Alterthe __main__ runnable to only search for this recipe's doctest scenarios.

if name == " main ":

from glob import glob
doctest.DocTestRunner = BddDocTestRunner

for file in glob("recipe29*.doctest"):
given = file[len("recipe29 "):]
given = given[:-len(".doctest")]

given = " ".join(given.split (" "))

print "==================================="
print "Given a %s..." % given

print "==================================="

doctest.testfile(file)

Create a new file called recipe29 cart we will load with identical
items.doctest.

Add a scenario to it that tests the cart by adding two instances of the same object.
>>> from cart import *
>>> cart = ShoppingCart ()

#when we add an item
>>> cart.add("carton of milk", 2.50) #doctest:+ELLIPSIS
<cart.ShoppingCart object at ...>

#the first item is a carton of milk
>>> cart.item(1)
'carton of milk'

#ithe first price is $2.50
>>> cart.price (1)
2.5

#ithere is only one item
>>> len(cart)
1

This shopping cart let's us grab more than one
of a particular item.
#when we add a second carton of milk

Testing Customer Stories with Behavior Driven Development

138

>>> cart.add("carton of milk", 2.50) #doctest:+ELLIPSIS
<cart.ShoppingCart object at ...>

#the first item is still a carton of milk
>>> cart.item(1)
'carton of milk'

#but the price is now $5.00
>>> cart.price (1)
5.0

#and the cart now has 2 items
>>> len(cart)
2

#for a total (with 10% taxes) of $5.50
>>> cart.total(10.0)
5.5

Create another file called recipe29 cart we will load with two
different items.docstest

In that file, create another scenario that tests the cart by adding two different
instances.

>>> from cart import *
>>> cart = ShoppingCart ()

#when we add a carton of milk...
>>> cart.add("carton of milk", 2.50) #doctest:+ELLIPSIS
<cart.ShoppingCart object at ...>

#when we add a frozen pizza...
>>> cart.add("frozen pizza", 3.00) #doctest:+ELLIPSIS
<cart.ShoppingCart object at ...>

#the first item is the carton of milk
>>> cart.item(1)
'carton of milk'

#ithe second item is the frozen pizza
>>> cart.item(2)
'frozen pizza'

#the first price is $2.50
>>> cart.price (1)
2.5

#the second price is $3.00
>>> cart.price(2)
3.0

#the total with no tax is $5.50

>>> cart.total(0.0)
5.5

#the total with 10% tax is $6.05
>>> print round(cart.total(10.0), 2)
6.05

Chapter 4

Create a new file called recipe29 cart that we intend to keep empty.

doctest.

In that file, create a third scenario that tests the cart by adding nothing and yet tries

to access values outside the range.
>>> from cart import *

#when we create an empty shopping cart
>>> cart = ShoppingCart ()

#accessing an item out of range generates an exception
>>> cart.item(5)
Traceback (most recent call last):

IndexError: list index out of range

#taccessing a price with a negative index causes an exception
>>> cart.price(-2)
Traceback (most recent call last):

IndexError: list index out of range

#calculating a price with no tax results in $0.00
>>> cart.total(0.0)
0.0

#calculating a price with a tax results in $0.00
>>> cart.total(10.0)
0.0

Testing Customer Stories with Behavior Driven Development

10. Use the runner to execute our scenarios.

(o M) Terminal — bash — 67x33

We reuse the test runner developed in the previous recipe. The key is extending the scenarios
to ensure that we have complete coverage of the expected scenarios.

We need to be sure that we can handle:

» A cart with two identical items
» A cart with two different items
» The degenerate situation of an empty shopping cart

140

Chapter 4

There's more...

A valuable part of writing tests is picking useful names. In our situation, each testable story
started with an empty cart. However, if we named each scenario 'given an empty cart' would
cause an overlap and not result in a very effective report.

So instead, we named them based on our story's intention:

recipe29 cart we will load with identical items.doctest
recipe29 cart we will load with two different items.doctest

recipe29 cart that we intend to keep empty.doctest
This leads to:

» Given a cart we will load with identical items
» Given a cart we will load with two different items

» Given a cart that we intend to keep empty
The purpose of these scenarios is much clearer.

Naming scenarios are much like certain aspects of software development that are more a
craft than a science. Tuning the performance tends to be more scientific, because it involves
an iterative process of measurement and adjustment. But naming scenarios along with
their causes and effects tends to be more of a craft. It involves communicating with all the
stakeholders including QA and customers, so everyone can read and understand the stories.

Don't be intimidated. Be ready to embrace change

Start writing your stories. Make them work. Then share them with your
stakeholders. Feedback is important, and that is the purpose of using
story-based testing.

~ Be ready for criticism and suggested changes. Be ready for more story
requests. In fact, don't be surprised if some of your customers or QA
want to write their own stories. That is a positive sign.

If you are new to this type of customer interaction, don't worry. You will
develop valuable communication skills and build a solid professional
relationship with your stakeholders. And at the same time, your code
quality will certainly improve.

Testing Customer Stories with Behavior Driven Development

Writing a testable story with Voidspace

Mock and nose

When our code interacts with other classes through methods and attributes, these are
referred to as collaborators. Mocking out collaborators using Voidspace Mock (http://www.
voidspace.org.uk/python/mock, created by Michael Foord) provides a key tool for BDD.
Mocks provide a way for provided canned behavior compared to stubs, which provide canned
state. While mocks by themselves don't define BDD, their usage keenly overlaps the ideas of
BDD.

To further demonstrate the behavioral nature of the tests, we will also use the spec nose
plugin found in the Pinocchio project (http://darcs.idyll.org/~t/projects/
pinocchio/doc).

As stated on the project's website, Voidspace Mock is experimental. This
book was written using version 0.7.0 beta 3. There is the risk that more API

changes will occur before reaching a stable 1.0 version. Given this project's
’ high quality, excellent documentation, and many articles in the blogosphere, |
strongly feel it deserves a place in this book.

Getting ready

For this recipe, we will be using the shopping cart application shown at the beginning of this
chapter with some slight modifications.

1. Create a new file called recipe30_ cart.py and copy all the code from cart.py
created in the introduction of this chapter.
2. Alter init toadd an extra storer attribute used for persistence.

class ShoppingCart (object) :
def init (self, storer=None) :
self.items = []
self.storer = storer

3. Add a store method that uses the storer to save the cart.

def store(self):
return self.storer.store cart (self)

4. Add a retrieve method that updates the internal items by using the storer.

def restore(self, id):
self.items = self.storer.retrieve cart (id).items
return self

142

Chapter 4

The specifics of the API of the storer will be given further down in this
A

recipe.

We need to activate our virtual environment and then install Voidspace Mock for this recipe.

1.

Create a virtual environment, activate it, and verify the tools are working.

[P Terminal — bash — 67x9

Install voidspace mock by typing pip install mock.

Install the latest version of pinocchio by typing pip install http://darcs.
idyll.org/~t/projects/pinocchio-latest.tar.gz.

This version of pinocchio raises some warnings. To prevent them, we also need to
install figleaf by typing pip install figleaf.

How to do it...

With the following steps, we will explore how to use mock to write a testable story:

1.

In recipe30_cart.py, create a DataAccess class with empty methods for storing
and retrieving shopping carts.

class DataAccess (object) :
def store cart(self, cart):
pass

def retrieve cart(self, id):
pass

Create a new file called recipe30.py to write test code.

Testing Customer Stories with Behavior Driven Development

3. Create an automated unittest that exercises the cart by mocking out the methods of
DataAccess.

import unittest

from copy import deepcopy
from recipe30_ cart import *
from mock import Mock

class CartThatWeWillSaveAndRestoreUsingVoidspaceMock (unittest.
TestCase) :

def test fill up a cart then save it and restore it (self):
Create an empty shopping cart
cart = ShoppingCart (DataAccess())

Add a couple of items
cart.add("carton of milk", 2.50)
cart.add("frozen pizza", 3.00)

self.assertEquals (2, len(cart))

Create a clone of the cart for mocking
purposes.
original cart = deepcopy (cart)

Save the cart at this point in time into a database
using a mock

cart.storer.store cart = Mock()
cart.storer.store_cart.return value = 1
cart.storer.retrieve_cart = Mock()
cart.storer.retrieve_cart.return_value = original_cart
id = cart.store()

self.assertEquals (1, id)

Add more items to cart

cart.add("cookie dough", 1.75)

cart.add("ginger ale", 3.25)

self.assertEquals (4, len(cart))

Restore the cart to the last point in time
cart.restore (id)

self.assertEquals (2, len(cart))

cart.storer.store cart.assert called with(cart)
cart.storer.retrieve_cart.assert_called with(1)

4. Run the test using nosetests with the spec plugin.

Chapter 4

A MO Terminal — bash — 70x11

Mocks are test doubles that confirm method calls, which is the 'behavior'. This is different
from stubs, which provide canned data, allowing us to confirm state.

Many mocking libraries are based on the record/replay pattern. They first require the test
case to record every behavior the mock will be subjected to when used. Then we plug the
mock into our code, allowing our code to invoke calls against it. Finally, we execute replay,
and the Mock library compares the method calls we expected with the ones that actually

happened.

A common issue with record/replay mocking is that, if we miss a single method call, our test
fails. Capturing all the method calls can become very challenging when trying to mock out
third-party systems, or dealing with variable calls that may be tied to complex system states.

The Voidspace Mock library differs by using the action/assert pattern. We first generate a
mock and define how we want it to react to certain actions. Then, we plug it into our code,
allowing our code to operate against it. Finally, we assert what happened to the mock, only
picking the operations we care about. There is no requirement to assert every behavior
experienced by the mock.

Why is this important? Record/replay requires that we record the method calls that are made
by our code, third-party system, and all the other layers in the call chain. Frankly, we may not
need this level of confirmation of behavior. Often, we are primarily interested in the top layer
of interaction. Action/assert lets us cut back on the behavior calls we care about. We can set
up our mock to generate the necessary top level actions and essentially ignore the lower level
calls, which a record/replay mock would force us to record.

Testing Customer Stories with Behavior Driven Development

In this recipe, we mocked the DataAccess operations store_cart and retrieve cart.
We defined their return value and at the end of the test, we asserted that they were
called.

cart.storer.store cart.assert called with(cart)
cart.storer.retrieve_cart.assert_called with(1)

cart.storer was the internal attribute that we injected with our mock.

Mocking a method: This means replacing a call to a real method with
M one to a mock object.
Q Stubbing a method: This means replacing a call to a real method with
one to a stub.

There's more...

Because this test case focuses on storing and retrieving from the cart's perspective, we
didn't have to define the real DataaAccess calls. That is why we simply put pass in their
method definitions.

This conveniently lets us work on the behavior of persistence without forcing us to choose
whether the cart would be stored in a relational database, a NoSQL database, a flat file,
or any other file format. This shows that our shopping cart and data persistence are nicely
decoupled.

Tell me more about the spec nose plugin!

We quickly skimmed over the useful spec plugin for nose. It provides the same essential
functionality that we coded by hand in the Naming tests so they sound like sentences and
stories section. It converts test case names and test method names into readable results. It
gives us a runnable spec. This plugin works with unittest and doesn't care whether or not we
were using Voidspace Mock.

Why didn't we reuse the plugin from the recipe ‘'Naming tests so
they sound like sentences and stories'?

Another way to phrase this question is, 'Why did we write that recipe's plugin in the first place?
An important point of using test tools is to understand how they work, and how to write our
own extensions. The Naming tests so they sound like sentences and stories section not only
discussed the philosophy of haming tests, but also explored ways to write nose plugins to
support this need. In this recipe, our focus was on using Voidspace Mock to verify certain
behaviors, and not on coding nose plugins. Producing a nice BDD report was easily served by
the existing spec plugin.

146

Chapter 4

Writing a testable story with mockito and nose

Writing a testable story with mockito

and nose

When our code interacts with other classes through methods and attributes, these are
referred to as collaborators. Mocking out collaborators using mockito (http://code.
google.com/p/mockito and http://code.google.com/p/mockito-python)
provides a key tool for BDD. Mocks provide a way for providing canned behavior compared to
stubs, which provide canned state. While mocks by themselves don't define BDD, their usage
keenly overlaps the ideas of BDD.

To further demonstrate the behavioral nature of the tests, we will also use the spec nose
plugin found in the pinocchio project (http://darcs.idyll.org/~t/projects/
pinocchio/doc).

Getting ready

For this recipe, we will be using the shopping cart application shown at the beginning of this
chapter with some slight modifications.

1. Create a new file called recipe31 cart.py and copy all the code from cart.py
created in the introduction of this chapter.

2. Alter __init toadd an extra storer attribute used for persistence.

class ShoppingCart (object) :
def init (self, storer=None):
self.items = []
self.storer = storer

3. Add a store method that uses the storer to save the cart.

def store(self):
return self.storer.store cart (self)

4. Add a retrieve method that updates the internal items by using the storer.

def restore(self, id):
self.items = self.storer.retrieve cart (id).items
return self

Testing Customer Stories with Behavior Driven Development

The specifics of the API of the storer will be given further down in this recipe.
We need to activate our virtual environment and then install mockito for this recipe.

1. Create a virtual environment, activate it, and verify the tools are working:

;MM Terminal — bash — 67x9

2. Install mockito by typing pip install mockito

Install pinocchio and figleaf using the same steps from the Writing a testable story with
Voidspace Mock and nose recipe.

How to do it...

With the following steps, we will explore how to use mocking to write a testable story:

1. Inrecipe3l cart.py, create a DataAccess class with empty methods for storing
and retrieving shopping carts.

class DataAccess (object) :
def store cart(self, cart):
pass

def retrieve cart(self, id):
pass

2. Create a new file called recipe31.py for writing test code.

Create an automated unit test that exercises the cart by mocking out the methods of
DataAccess.

import unittest

from copy import deepcopy
from recipe3l cart import *
from mockito import *

class CartThatWeWillSaveAndRestoreUsingMockito (unittest.TestCase) :
def test fill up a cart then save it and restore it (self):
Create an empty shopping cart

148

Chapter 4

cart = ShoppingCart (DataAccess())

Add a couple of items
cart.add ("carton of milk", 2.50)
cart.add("frozen pizza", 3.00)

self.assertEquals (2, len(cart))

Create a clone of the cart for mocking
purposes.
original cart = deepcopy (cart)

Save the cart at this point in time into a database
using a mock
cart.storer = mock ()

when (cart.storer) .store cart (cart) .thenReturn (1)
when (cart.storer) .retrieve cart(1l). \
thenReturn(original cart)

id = cart.store()
self.assertEquals (1, id)

Add more items to cart
cart.add("cookie dough", 1.75)
cart.add("ginger ale", 3.25)

self.assertEquals (4, len(cart))

Restore the cart to the last point in time
cart.restore (id)

self.assertEquals (2, len(cart))

verify(cart.storer) .store cart (cart)
verify(cart.storer) .retrieve cart (1)

4. Run the test using nosetests with the spec plugin.

Testing Customer Stories with Behavior Driven Development

This recipe is very similar to the earlier recipe Writing a testable story with voidspace mock
and nose. For details about mocking and the benefits with regards to BDD, it is very useful to
read that recipe.

Let's compare the syntax of Voidspace Mock with mockito to get a feel for the differences.
Look at the following voidspace mock block of code.

cart.storer.store cart = Mock()
cart.storer.store_cart.return value = 1
cart.storer.retrieve_cart = Mock()
cart.storer.retrieve_cart.return_value = original_cart

It shows the function store cart being mocked.

cart.storer = mock()

when (cart.storer) .store_ cart (cart) .thenReturn (1)
when (cart.storer) .retrieve cart(1l). \
thenReturn(original cart)

Mockito approaches this by mocking out the entire storer object. Mockito originated as a
Java mocking tool, which explains its Java-ish APIs like thenReturn compared with voidspace
mock's Pythonic style of return_value.

Some find this influence from Java on Python's implementation of mockito distasteful. Frankly,
| believe that is insufficient reason to discard a library. In the previous example, mockito
records the desired behavior in a more succinct fashion, something that would definitely
offset the Java-like API.

See also

Writing a testable story with voidspace mock and nose

Writing a testable story with Lettuce

Lettuce (http://lettuce.it)is a Cucumber-like BDD tool built for Python.

Cucumber (http://cukes. info) was developed by the Ruby community and provides a
way to write scenarios in a textual style. By letting our stakeholders read the stories, they can
easily discern what the software is expected to do.

This recipe shows how to install Lettuce, write a test story, and then wire it into our shopping
cart application to exercise our code.

150

Chapter 4

Getting ready

For this recipe, we will be using the shopping cart application shown at the beginning of this
chapter. We also need to install Lettuce and its dependencies.

Install lettuce by typing pip install lettuce.

How to do it...

In the following steps, we will explore creating some testable stories with Lettuce, and wiring it
to runnable Python code:

1. Create a new folder called recipe32 to contain all the files in this recipe.

2. Create a file named recipe32. feature to capture our story. Write the top-level
description of our new feature, based on our shopping cart.

Feature: Shopping cart
As a shopper
I want to load up items in my cart
So that I can check out and pay for them

3. Let's first create a scenario that captures the behavior of the cart when it's empty.

Scenario: Empty cart
Given an empty cart
Then looking up the fifth item causes an error
And looking up a negative price causes an error
And the price with no taxes is $0.00
And the price with taxes is $0.00

4. Add another scenario that shows what happens when we add cartons of milk.

Scenario: Cart getting loaded with multiple of the same
Given an empty cart
When I add a carton of milk for $2.50
And I add another carton of milk for $2.50
Then the first item is a carton of milk
And the price is $5.00
And the cart has 2 items
And the total cost with 10% taxes is $5.50

5. Add a third scenario that shows what happens when we combine a carton of milk
and a frozen pizza.

Scenario: Cart getting loaded with different items
Given an empty cart
When I add a carton of milk
And I add a frozen pizza

Testing Customer Stories with Behavior Driven Development

Then the first item is a carton of milk
And the second item is a frozen pizza
And the first price is $2.50

And the second price is $3.00

And the total cost with no taxes is $5.50
And the total cost with 10% taes is $6.05

6. Let's run the story through Lettuce to see what the outcome is, considering we
haven't linked this story to any Python code. In the following screenshot, it's
impossible to discern the color of the outputs. The feature and scenario declarations
are white. Given, When, and Then are undefined and colored yellow. This shows that
we haven't tied the steps to any code yet.

[« NN Terminal — bash — 88x38
bash

152

Chapter 4

7. Create a new file in recipe32 called steps.py to implement the steps needed to
support the Givens.

8. Add some code to steps.py to implement the first Given.

from lettuce import *
from cart import =*

@step ("an empty cart")
def an_empty cart (step):
world.cart = ShoppingCart ()

9. To run the steps, we need to make sure the current path that contains the cart .py
module is part of our PYTHONPATH.

For Linux and Mac OSX systems, type export PYTHONPATH=/path/to/
A\l cart.py.

Q For Windows, go to Control Panel | System | Advanced, click Environment
Variables, and either edit the existing PYTHONPATH variable or add a new
one, pointing to the folder that contains cart . py.

10. Run the stories again. It's hard to see in the following screenshot, but Given an
empty cart is now green.

anon

(ptcigturnguist-mbp: 04 zturnguist$d lettuce recip

Feature: Shopping cart
Az a shopper
I want to load up items in my cart
S50 that I can check out and pay for them

Scenario: Empty cart

Then looking up the Tifth item caus an error
bnd looking up a negati A an error
bnd the price with no

And the price with

While this screenshot only focuses on the first scenario, all three scenarios
s have the same Givens. The code we wrote satisfied all three Givens.

Testing Customer Stories with Behavior Driven Development

11. Add code to steps.py that implements support for the first scenario's Thens.

@step("looking up the fifth item causes an error")
def looking up fifth item(step):
try:
world.cart.item(5)
raise AssertionError ("Expected IndexError")
except IndexError, e:
pass

@step ("looking up a negative price causes an error")
def looking up negative price(step) :
try:
world.cart.price(-2)
raise AssertionError ("Expected IndexError")
except IndexError, e:
pass

@step ("the price with no taxes is (.*)")
def price with no taxes(step, total):
assert world.cart.total(0.0) == float (total)

@step ("the price with taxes is (.*)")
def price with taxes(step, total):
assert world.cart.total(10.0) == float (total)

12. Run the stories again and notice how the first scenario is completely passing.

(o N Né)

(ptclgturnguist-mbp:@4 gturnguistd lettuce recipe

Feature: Shopping cart
A= a shopper
I want to load up items in my cart
50 that I can check out and pay for them

S5cenario: Empty cart

13. Now add code to steps.py to implement the steps needed for the second scenario.
@step ("I add a carton of milk for (.*)")
def add _a carton of milk(step, price):
world.cart.add ("carton of milk", float (price))

Chapter 4

14.

@step ("I add another carton of milk for (.*)")
def add another carton of milk(step, price):
world.cart.add("carton of milk", float (price))

@step("the first item is a carton of milk")
def check first item(step):
assert world.cart.item(l) == "carton of milk"

@step ("the price is (.*)")
def check first price(step, price):
assert world.cart.price(l) == float (price)

@step ("the cart has (.*) items")
def check size of cart(step, num items):
assert len(world.cart) == float (num items)

@step ("the total cost with (.*)% taxes is (.*)")
def check total cost(step, tax rate, total):
assert world.cart.total (float (tax rate)) == float(total)

Finally, add code to steps . py to implement the steps needed for the last scenario.

@step ("I add a carton of milk")
def add a carton of milk(step):
world.cart.add("carton of milk", 2.50)

@step ("I add a frozen pizza")
def add a frozen pizza(step):
world.cart.add("frozen pizza", 3.00)

@step ("the second item is a frozen pizza")
def check the second item(step) :
assert world.cart.item(2) == "frozen pizza"

@step ("the first price is (.*)")
def check the first price(step, price):
assert world.cart.price(l) == float (price)

@step ("the second price is (.*)")
def check the second price(step, price):
assert world.cart.price(2) == float (price)

@step ("the total cost with no taxes is (.*)")
def check total cost with no taxes(step, total):
assert world.cart.total (0.0) == float (total)

@step ("the total cost with (.*)% taxes is (.*)")
def check total cost with taxes(step, tax rate, total):
assert round(world.cart.total (float (tax_rate)),2) == \
float (total)

Testing Customer Stories with Behavior Driven Development

15. Run the story by typing 1lettuce recipe32 and see how they are all now passing.
In the next screenshot, we have all the tests passing and everything is green.

;e Terminal — bash — 88x38

bash

(ptclzturnguist-mbp: 04 gturnguistd lettuce recipe3?

Feature: Shopping cart
A= a shopper
I want to load up items in my cart
50 that I can check out and pay for them

Scenario: Empty cart

S5cenario: Cart getting loaded with multiple of the same

Scenario: Cart getting loaded with different items

1 Teature [
3 =cenarios [
21 steps (

Lettuce uses the popular Given/When/Then style of BDD story telling.

» Givens: It involves setting up a scenario. This often includes creating objects. For
each of our scenarios, we created an instance of the ShoppingCart. This is very
similar to unittest's setup method.

156

Chapter 4

» Thens: It acts on the Givens. These are the operations we want to exercise in a
scenario. We can exercise more than one Then.

» Whens: It involves testing the final results of the Thens. In our code, we mostly used
Python asserts. In a couple of cases, where we needed to detect an exception, we
wrapped the call with a try-catch block with a throw if the expected exception
didn't occur.

It doesn't matter in what order we put the Given/Then/When. Lettuce will record everything
so that all the Givens are listed first, followed by all the Whens, and then all the Thens. Lettuce
puts on the final polish by translating successive Given/When/Then into And for better
readability.

There's more...

If you look closely at some of the steps, you will notice some wildcards.

@step ("the total cost with (.*)% taxes is (.*)")
def check total cost(step, tax rate, total):
assert world.cart.total(float (tax rate)) == float(total)

The estep string lets us dynamically grab parts of the string as variables by using pattern
matchers.

» Thefirst (. *) is a pattern to capture the tax_rate
» The second (. *) is a pattern to capture the total

The method definition shows these two extra variables added in. We can name them
anything we want. This gives us the ability to actually drive the tests, data and all, from
recipe32.feature and only use steps.py to link things together in a generalized way.

M It's important to point out that actual values stored in tax_rate and total
Q are Unicode strings. Because the test involves floating point numbers, we
have to convert the variables or the assert fails.

How complex should a story be?

In this recipe, we fit everything into a single story. Our story involved all the various shopping
cart operations. As we write more scenarios, we may expand this into multiple stories. This
goes back to the concept discussed in the Breaking down obscure tests into simple ones
section of Chapter 1. If we overload a single scenario with too many steps, it may get too
complex. It is better if we can visualize a single thread of execution that is easy to verify at
the end.

Testing Customer Stories with Behavior Driven Development

Don't mix wiring code with application code

The project's website shows a sample building a factorial function. It has both the factorial
function as well as the wiring in a single file. For demo purposes this is alright. But for actual
production use, it is best to decouple the application from the Lettuce wiring. This encourages
a clean interface and demonstrates usability.

Lettuce works great using folders

Lettuce, by default, will look for a features folder wherever we run it, and discover any files
ending in . feature. That way it can automatically find all of our stories and run them.

It is possible to override the features directory with -s or —-scenarios.

Breaking down obscure tests into simple ones section from Chapter 1

Using Should DSL to write succinct

assertions with Lettuce

Lettuce (http://lettuce.it)is a BDD tool built for Python.

The Should DSL (http://www.should-dsl.info) provides a simpler way to write
assertions for Thens.

This recipe shows how to install Lettuce and Should DSL. Then, we will write a test story.
Finally, we will wire it into our shopping cart application using the Should DSL to exercise
our code.

Getting ready

For this recipe, we will be using the shopping cart application shown at the beginning of this
chapter. We also need to install Lettuce and its dependencies:

» Install lettuce by typing pip install lettuce
» Install Should DSL by typing pip install should dsl

How to do it...

With the following steps, we will use the Should DSL to write more succinct assertions in our
test stories:

1. Create a new directory called recipe33 to contain all the files for this recipe.

158

Chapter 4

Create a new file in recipe33 called recipe33.feature to contain our test
scenarios.

Create a story in recipe33.feature with several scenarios to exercise our
shopping cart.

Feature: Shopping cart
As a shopper
I want to load up items in my cart
So that I can check out and pay for them

Scenario: Empty cart
Given an empty cart
Then looking up the fifth item causes an error
And looking up a negative price causes an error
And the price with no taxes is 0.0
And the price with taxes is 0.0

Scenario: Cart getting loaded with multiple of the same
Given an empty cart
When I add a carton of milk for 2.50
And I add another carton of milk for 2.50
Then the first item is a carton of milk
And the price is 5.00
And the cart has 2 items
And the total cost with 10% taxes is 5.50

Scenario: Cart getting loaded with different items
Given an empty cart
When I add a carton of milk
And I add a frozen pizza
Then the first item is a carton of milk
And the second item is a frozen pizza
And the first price is 2.50
And the second price is 3.00
And the total cost with no taxes is 5.50
And the total cost with 10% taxes is 6.05

Write a set of assertions using Should DSL.

from lettuce import *
from should_dsl import should, should not
from cart import =*

@step ("an empty cart")
def an_empty cart(step):
world.cart = ShoppingCart ()

@step("looking up the fifth item causes an error")
def looking up fifth item(step):
(world.cart.item, 5) |should| throw (IndexError)

Testing Customer Stories with Behavior Driven Development

@step ("looking up a negative price causes an error")
def looking up negative price(step) :
(world.cart.price, -2) |should| throw(IndexError)

@step ("the price with no taxes is (.*)")
def price with no taxes(step, total):
world.cart.total (0.0) |should| equal to(float(total))

@step ("the price with taxes is (.*)")
def price with taxes(step, total):
world.cart.total (10.0) |should| equal to(float (total))

@step ("I add a carton of milk for 2.50")
def add a carton of milk(step):
world.cart.add("carton of milk", 2.50)

@step ("I add another carton of milk for 2.50")
def add another carton of milk(step) :
world.cart.add("carton of milk", 2.50)

@step("the first item is a carton of milk")
def check first item(step):
world.cart.item(1l) |should| equal to("carton of milk")

@step ("the price is 5.00")
def check first price(step):
world.cart.price(1l) |should| equal to(5.0)

@step ("the cart has 2 items")
def check size of cart(step):
len(world.cart) |should| equal to(2)

@step ("the total cost with 10% taxes is 5.50")
def check total cost(step):
world.cart.total (10.0) |should| equal to(5.5)

@step ("I add a carton of milk")
def add a carton of milk(step):
world.cart.add("carton of milk", 2.50)

@step ("I add a frozen pizza")
def add a frozen pizza(step):
world.cart.add("frozen pizza", 3.00)

@step ("the second item is a frozen pizza")
def check the second item(step) :
world.cart.item(2) |should| equal to("frozen pizza")

@step ("the first price is 2.50")
def check the first price(step):
world.cart.price(1l) |should| equal to(2.5)

@step ("the second price is 3.00")

160

def check the second price(step) :
world.cart.price(2) |should| equal to(3.0)

@step ("the total cost with no taxes is 5.50")
def check total cost with no taxes(step):
world.cart.total (0.0) |should| equal to(5.5)

@step ("the total cost with 10% taxes is (.*)")
def check total cost with taxes(step, total):

world.cart.total (10.0) |should| close to(float (total), \

delta=0.1)

Run the story.

[i N) Terminal — bash — 94x38

Feature: Shopping cart
A=z a shopper
I want to load up items in my cart
50 that I can check out and pay for them

Scenario: Empty cart

Scenario: Cart getting loaded with multiple of the same

Scenario: Cart getting loaded with different 1items

1 Tfeature [

3 scenarios (i

21 steps [)]

(pt turnguist-mbp: 04 gturnguistd I

Chapter 4

Testing Customer Stories with Behavior Driven Development

The previous recipe (Writing a testable story with Lettuce), shows more details on how Lettuce
works. This recipe demonstrates how to use the Should DSL to make useful assertions.

Why do we need Should DSL? The simplest checks we write involve testing values to confirm
the behavior of the shopping cart application. In the previous recipe, we mostly used Python
assertions.

assert len(context.cart) == 2
This is pretty easy to understand. Should DSL offers a simple alternative.
len (context.cart) |should| equal to(2)

Does this look like much of a difference? Some say yes, others say no. It is wordier, and for
some this is easier to read. For others, it isn't.

So why are we visiting this? Because, Should DSL has more than just equal to. There are
many more:
» Dbe: check identity
» contain, include, be into: verify if an object is contained or contains another
» be kind of:check types
» Dbe like:checks using a regular expression
» be thrown by, throws: check that an exception is thrown
» close_to:check if value is close, given a delta
» end with: check if a string ends with a given suffix
» equal_ to:check value equality
» respond_to: check if an object has a given attribute or method
» start_ with: check if a string starts with a given prefix
There are other alternatives as well, but this provides a diverse set of comparisons. If we

imagine the code needed to write assertions that check the same things, then things get
more complex.

For example, let's think about confirming expected exceptions. In the previous recipe, we
needed to confirm that an IndexError is thrown when accessing an item outside the
boundaries of our cart. A simple Python assert didn't work, so instead we coded this pattern.

try:

world.cart.price(-2)

raise AssertionError ("Expected an IndexError")
except IndexError, e:

pass

162

Chapter 4

This is clunky and ugly. Now, imagine a more complex, more realistic system, and the idea
of having to use this pattern for lots of test situations where we want to verify that proper
exception is thrown. This can quickly become an expensive coding task.

Thankfully, Should DSL turns this pattern of exception assertion into a one-liner.
(world.cart.price, -2) |should| throw(IndexError)

This is clear and concise. We can instantly understand that invoking this method with these
arguments should throw a certain exception. If no exception is raised, or a different one is
raised, it will fail and give us clear feedback.

M If you notice, Should DSL requires the method call to be split up into a tuple,
Q with the first element of the tuple being the method handle, and the rest
being the arguments for the method.

There's more...

In the sample code listed in this chapter, we used | should|. But Should DSL also comes
with | should not|. Sometimes, the condition we want to express is best captured with
a | should not |. Combined with all the matchers listed earlier, we have a plethora of
opportunities to test things, positive or negative.

But don't forget, we can still use Python's plain old assert if it is easier to read. The idea
is to have plenty of ways to express the same verification of behavior.

See also

Writing a testable story with Lettuce

Updating the project-level script to run

this chapter's BDD tests

In this chapter, we have developed several tactics to write and exercise BDD tests. This should
help us in developing new projects. An invaluable tool for any project is having a top-level
script used to manage things like packaging, bundling, and testing.

This recipe shows how to create a command-line project script that will run all the tests we
created in this chapter using the various runners.

Testing Customer Stories with Behavior Driven Development

Getting ready

For this recipe, we need to have coded all the recipes from this chapter.

How to do it...

With the following steps, we will create a project-level script that will run all the test recipes
from this chapter.

1. Create a new file called recipe34.py.
2. Add code that uses the getopt library for parsing command-line arguments.

import getopt

import logging

import nose

import os

import os.path

import re

import sys

import lettuce

import doctest

from glob import glob

def usage() :
print
print "Usage: python recipe34.py [command]"
print
print "\t--help"
print "\t--test"
print "\t--package"
print "\t--publish"
print "\t--register"

print
try:
optlist, args = getopt.getopt(sys.argv[l:],
llhll ,
["help", "test", "package", "publish", "register"])

except getopt.GetoptError:
print help information and exit:
print "Invalid command found in %$s" % sys.argv
usage ()

sys.exit (2)

164

3. Add a test function that uses our custom nose plugin BddPrinter.

def test with bdd() :
from recipe26 plugin import BddPrinter
suite = ["recipe26", "recipe3O0", "recipe3l"]
print ("Running suite %s" % suite)
args = [""]
args.extend (suite)
args.extend (["--with-bdd"])
nose.run(argv=args, plugins=[BddPrinter()])

4. Add a test function that exercises file-based doctests.

def test plain old doctest():
for extension in ["doctest", "txt"]:

°

for doc in glob("recipe27*.%s" % extension):

print ("Testing %s" % doc)
doctest.testfile (doc)

Chapter 4

5. Add a test function that exercises doctests using a customized doctest runner.

def test customized doctests():
from recipe28 import BddDocTestRunner

old doctest runner = doctest.DocTestRunner
doctest .DocTestRunner = BddDocTestRunner

for recipe in ["recipe28", "recipe29"]:
for file in glob("%s*.doctest" % recipe):
given = file[len("%s_" % recipe):]
given = given[:-len(".doctest")]
given = " ".join(given.split("_"))
print ("s==================================")
print ("%$s: Given a %s..." % (recipe, given))
print ("===================================")
doctest.testfile(file)
print
doctest .DocTestRunner = old_doctest_runner
6. Add a test function that exercises lettuce tests.
def test lettuce_ scenarios():
print ("Running suite recipe32")
lettuce.Runner (os.path.abspath("recipe32"), verbosity=3) .run()
print
print ("Running suite recipe33")
lettuce.Runner (os.path.abspath("recipe33"), verbosity=3) .run|()

print

Testing Customer Stories with Behavior Driven Development

7.

Add a top-level test function that runs all of our test functions and can be wired to the
command-line option.

def test():
test with bdd ()
test plain old doctest()
test customized doctests()
test lettuce scenarios()

Add some extra stub functions that represent packaging, publishing, and registration
options.

def package() :
print "This is where we can plug in code to run " + \
"setup.py to generate a bundle."

def publish() :
print "This is where we can plug in code to upload " + \
"our tarball to S3 or some other download site."

def register():
print "setup.py has a built in function to " + \
"'register' a release to PyPI. It's " + \
"convenient to put a hook in here."

°

os.system("%s setup.py register" % sys.executable)

Add code to parse the command-line options.

if len(optlist) == 0:
usage ()
sys.exit (1)
Check for help requests, which cause all other
options to be ignored.
for option in optlist:
if option[0] in ("--help", "-h"):
usage ()
sys.exit (1)

Parse the arguments, in order
for option in optlist:

if option[0] in ("--test"):
test ()

if option[0] in ("--package"):
package ()

if option[0] in ("--publish"):
publish ()

if option[0] in ("--register"):
register ()

10. Run the script with no options.

166

Funning suite recipe

F L ping cart

them

with multiple of the

fo
of milk for 2
arton of milk

5. 50

ien the first item i
1d th d item i

11. Run the script with -test.

o

o o o o H

.
-
=
ot
=
=
o
=

HHoH oo H o oH

Chapter 4

(ptc) gturnquist-mbp:04 gturnquist$ python recipe34.py --test

Running suite ['recipe26', 'recipe30',

Scenario: Cart getting loaded with different items

recipe33/recipe33.feature:22

Given an empty cart
recipe33/steps.py:6

When I add a carton of milk
recipe33/steps.py:50

And I add a frozen pizza
recipe33/steps.py:54

'recipe3l']

Then the first item is a carton of milk

recipe33/steps.py:34

And the second item is a frozen pizza

recipe33/steps.py:58

Testing Customer Stories with Behavior Driven Development
And the first price is 2.50 #
recipe32/steps.py:69

And the second price is 3.00 #
recipe33/steps.py:66

And the total cost with no taxes is 5.50 #
recipe33/steps.py:70

And the total cost with 10% taxes is 6.05 #
recipe33/steps.py:74

1 feature (1 passed)
3 scenarios (3 passed)
21 steps (21 passed)
12. Run the script using —-package -publish -register

® N O Terminal — bash — 84x7

This script uses Python's getopt library.

See also

For more details about how and why to use getopt, reasons to write a project-level script,
and why we are using getopt instead of optparse, see the Writing a project-level script
that lets you run different test suites section from Chapter 2.

168

High Level Customer
Scenarios with
Acceptance Testing

In this chapter, we will cover:

» Installing Pyccuracy

» Testing the basics with Pyccuracy

» Using Pyccuracy to verify web app security
» Installing the Robot Framework

» Creating a data-driven test suite with Robot
» Writing a testable story using Robot

» Tagging Robot tests and running a subset
» Testing web basics with Robot

» Using Robot to verify web app security

» Creating a project-level script to run this chapter's acceptance tests

High Level Customer Scenarios with Acceptance Testing

Introduction

Acceptance testing involves writing tests to prove our code is, well, acceptable! But what does
this mean? The context implies acceptable from a customer's perspective. Customers are
usually more interested in what the software does, not how it does it. This means that tests
are aimed at inputs and outputs and tend to be at a higher level than unit testing. This has
sometimes been called black box testing, and is usually more system oriented. At the end of
the day, it is often associated with testing that asserts whether or not the customer will accept
the software.

There is an assumption amongst some developers that acceptance testing involves verifying
the front end of web applications. In fact, several testing tools, including Pyccuracy, are built
on the sole premise of testing web applications. When viewed from the perspective of whether
or not a customer will accept the software, this would quite literally fit into acceptable from a
customer's perspective.

But web testing isn't the only form of acceptance testing. Not all systems are web-based. If
a subsystem is to be built by one team, and handed off to another team that plans to build
another layer on top of it, an acceptance test may be required before the second team will
accept it.

In this chapter, we will dig into some recipes that involve both web and non-web application
acceptance testing.

To create an e-store web application for testing, follow these steps.

1. Make sure you have mercurial installed on your system.
o For Mac, use either mac ports or home brew
a For Ubuntu/Debian, use sudo apt-get install mercurial
o For other systems, you will heed to do extra research in installing
mercurial.
2. This also requires having compilable tools installed, like gcc.
o For Ubuntu, use sudo apt-get install build-essential
o For other systems, you will heed to do extra research in installing
gcc.
3. Install satchmo, an e-commerce website builder, by typing the following commands:

pip install -r http://bitbucket.org/gturnquist/satchmo/raw/tip/
scripts/requirements. txt

170

Chapter 5

pip install -e hg+http://bitbucket.org/gturnquist/
satchmo/#egg=satchmo

Install Python's PIL library for image processing: pip install PIL.

5. Edit <virtualenv roots>/lib/python2.6/site-packages/django/
contrib/admin/templates/admin/login.html to add id="1login" to the
Log in <input> tag. This allows Pyccuracy to grab the Log in button and 'click’ it.

Run the satchmo script to create a store application: clonesatchmo. py.
When prompted about creating a super-user, say yes.

When prompted, enter a username.

© ® N O

When prompted, enter an e-mail address.
10. When prompted, enter a password.
11. Go into the store directory: cd store.

12. Startup store app: python manage.py runserver

M If you have issues installing sat chmo with these steps, visit the project site
Q athttp://www.satchmoproject .com and possibly their support group
athttp://groups.google.com/group/satchmo-users.

To create a non-web shopping cart application for testing, create cart . py with the
following code:

class ShoppingCart (object) :
def init_ (self):
self.items = []

def add(self, item, price):
for cart_item in self.items:
Since we found the item, we increment
instead of append
if cart_item.item == item:
cart_item.gq += 1
return self
If we didn't find, then we append

self.items.append(Item(item, price))
return self

def item(self, index):
return self.items[index-1].item

def price(self, index):
return self.items[index-1] .price * self.items[index-1].qg

High Level Customer Scenarios with Acceptance Testing

def total(self, sales tax):
sum _price = sum([item.price*item.qg for item in self.items])
return sum price* (1.0 + sales tax/100.0)

def len (self):

return sum([item.qg for item in self.items])

class Item(object) :
def init (self, item, price, g=1):
self.item = item
self.price = price
self.qg = g

This shopping cart:

» Is 1-based, meaning the first item and price are at [1] not [0]
» Includes the ability to have multiples of the same item
» Will calculate total price and then add taxes

This application isn't complex. Maybe it doesn't look exactly at a system level, but it does
provide an easy application to write acceptance tests against.

Installing Pyccuracy

Pyccuracy is a useful tool for writing web acceptance tests using a BDD style language. This
recipe shows all the steps needed to install and set it up for later recipes.

How to do it...

With these steps, we will install Pyccuracy and all the tools needed to run the scenarios later
in this chapter.
1. Install Pyccuracy by typing pip install pyccuracy

2. Download selenium-server.jar fromhttp://github.com/heynemann/
pyccuracy/raw/master/lib/selenium-server.jar

3. Startitup by typing java -jar selenium-server.jar. Note thatif you don't
have Java installed, you definitely need to download and install it as well.

Install 1xml by typing pip install lxml.
5. Create a simple test file called recipe35.acc and enter the following code:

As a Yahoo User
I want to search Yahoo

So that I can test my installation of Pyccuracy

Scenario 1 - Searching for Python Testing Cookbook

172

Chapter 5

Given
I go to "http://yahoo.com"
When
I £fi11 "p" textbox with "Python Testing Cookbook"
And I click "search-submit" button and wait
Then
I see "Python Testing Cookbook - Yahoo! Search Results" title

6. Runit by typing pyccuracy console -p test.acc. The following screenshot
shows it being run with Firefox (default for this system).

T minute

7. Run it again, using a different web browser like Safari by typing pyccuracy
console -p test.acc -b safari.

High Level Customer Scenarios with Acceptance Testing

% At the time of writing, Selenium supported Firefox, Safari, Opera, and IE 7+,
i but not Chrome.

I go to "http:
When
sting
button and w
Then
Fesults" title

per minute

8. Inthe folder where we ran the test, there should now be a report . html file.
Open it up using a browser to view the results. Then click on Expand All.

Chapter 5

y D Pyccuracy - Tests Run Repor \\. +

& = C M) file:///Users/gturnquist/Dropbox/python_testing_cook... 57 <X

D WMware Intranet ’ Bugzilla m Builds Site m Eng KB » I:I Other Bookmarks

Pyccuracy - Tests Run Report - 08/11/2010 23:19:28
Test run succeeded!

| Summary: |
| Total Stories: 1]
| Total Scenarios: 1]

| Scenaros Succeeded: 1 (100.00%)
| Scenaros Failed: O [0.00%)

Stories [Collapse/Expand All]

Story 1: [Collapse/Expand]
fUsers/gturnguist/Dropboxipython_testing_cookbook/code/5/recipeds.ace
As a Yahoo User

| want to search Yahoo

So that | can test my installation of Pyccuracy

Scenario 1: Searching for Python Testing Cookbook
Marrative:

Given

1 go o " httpiyahoo, com” [Mon Mov B 23:19:28 2010]
When

11ill "p" textbox with " Python Testing Cookbook” [Man Mov B 23:18:28 2010]

And | click "search-submit” button and walt [Mon Mov B 23:19:28 2010]
Thizn

| see "Pythen Testing Cookbook - Yahoo! Search .
Results” title [Mon Mov 8 23:19:28 2010]

Total Scenario Time: 0.00 seconds [Mon Mov 8 23:19:28 2010]

Pycouracy - Version 1.2.48 - hitto: e, Dy courecy. ofg

Pyccuracy uses Selenium, a popular browser-driving application tester to run its scenarios.
Pyccuracy provides an out-of-the-box Domain Specific Language (DSL) to write tests. The DSL
provides the means to send commands to a test browser and also check the results, verifying
web application behavior.

Later on in this chapter, there are several recipes which show more details of Pyccuracy.

High Level Customer Scenarios with Acceptance Testing

» Testing the basics with Pyccuracy

» Using Pyccuracy to verify web app security

Testing the basics with Pyccuracy

Pyccuracy provides an easy-to-read set of operations to drive the front end of a web
application. This recipe shows how to use it to drive a shopping cart application and verify
application functionality.

Getting ready

1. Ifitisn't already running, start up the selenium server in another shell or window by
typing: java -jar selenium-server. jar.

INFO

2. If the satchmo store application isn't already running, start it up in another shell or
window by typing: python manage .py runserver.

Q NOTE: This must run inside the virtualenv environment.

How to do it...

With these steps, we will explore the basics of writing a Pyccuracy test.

1. Create a new file called recipe36.acc.

176

Chapter 5

Create a story for loading items into the shopping cart.

As a store customer

I want to put things into my cart

So that I can verify the store's functionality.

Add a scenario where the empty cart is looked at in detail, with a confirmed
balance of $0.00.

Scenario 1 - Inspect empty cart in detail
Given

I go to "http://localhost:8000"
When

I click "Cart" link and wait
Then
I see that current page contains "Your cart is empty"

And I see that current page contains "0 - $0.00"

Add another scenario where a book is selected, and two of them are added to
the cart.

Scenario 2 - Load up a cart with 2 of the same
Given

I go to "http://localhost:8000"
When

I click "Science Fiction" link
And I click "Robots Attack!" link and wait
And I fill "quantity" textbox with "2"
And I click "addcart" button and wait
And I click "Cart" link and wait
Then
I see that current page contains "Robots Attack!"
And I see "quantity" textbox contains "2"

And I see that current page contains "<td
align="center">3$7.99</td>"

And I see that current page contains "<td
align="center">$15.98</td>"

And I see that current page contains "<td>$15.98</td>"

High Level Customer Scenarios with Acceptance Testing

5. Run the story by typing pyccuracy console -p recipe3é6.acc.

[(ptolgturnguist-mbp: @5 gturnguistd pyccuracy console -p recipe

1 of 2 i, [- Inspect empty cart in deftail

When

Then

- Load up a cart with 2 of the same

When

Then

narios per minute

Pyccuracy has a lot of built-in actions based on driving the browser or reading the page.
These actions are patterns used to parse the story file, and generate commands sent to the
selenium server, which in turn drives the browser, and then reads the results of the page.

The key is picking the right text to identify the element being actioned or read.

1
‘Q Web apps that are missing ID tags are much harder to

look at.

178

Chapter 5

There's more...

The key is picking the right identifier and element type. With good identifiers, it is easy to do
things like: I click on Cart link. Did you notice the issue we had with drilling into the shopping
cart table? The HTML <table> tag had no identifier, which made it impossible for us to pick.
Instead, we had to look at the whole page, and do a global search for some markup.

This makes it harder to read the test. A good solution is to alter the web app to include an ID
in the <table> tag. Then we narrow down our acceptance criteria to just the table. With this
application it was okay, but with complex web applications it will surely be much harder to find
the exact bit of text we are looking for without good IDs.

This raises an interesting question: should an application be amended to support a test?
Simply put, yes. It isn't a major upheaval to add some good identifiers to key HTML elements
to support testing. It didn't involve major design changes to the application. The net result was
easier to read test cases and better automated testing.

This begs another question: what if making the application more testable DID involve
major design changes? This could be viewed as a major interruption in work. Or maybe
it's a strong hint that our design has components that are too tightly coupled or not
cohesive enough.

In software development, coupling and cohesiveness are subjective terms that aren't very
measurable. What can be said is that applications that don't lend themselves to testing are
often monolithic, hard to maintain, and probably have circular dependencies, which implies
that it will be much harder for us to make changes (as developers) to meet needs without
impacting the entire system.

Of course, all of this would be a big leap from our recipe's situation, where we simply lack an
identifier for an HTML table. However, it's important to think what if we need more changes
than something so small.

Installing Pyccuracy

Using Pyccuracy to verify web app security

Applications often have login screens. Testing a secured web application requires us to
capture the login process as a custom action. That way, we can re-use it repeatedly for as
many scenarios as we need.

High Level Customer Scenarios with Acceptance Testing

Getting ready

1.

If it isn't already running, start up the selenium server in another shell or window by
typing: java -jar selenium-server.jar.

If the satchmo store application isn't already running, start it up in another shell or
window by typing: python manage . py runserver.

1
é@ NOTE: This must run inside the virtualenv

environment.

How to do it...

With the following steps, we will exercise a web application's security and then see how to
extend Pyccuracy by creating a custom action that does the same:

1.
2.

180

Create a new file called recipe37.acc to contain this recipe's scenario.
Create a story for exercising Django's admin application.
As a system administrator

I want to login to Django's admin page
So that I can check the product catalog.

Add a scenario that logs in to the admin application.

Scenario 1 - Logging in to the admin page
Given
I go to "http://localhost:8000/admin"
When
I £fi11 "username" textbox with "gturnquist"
And I fill "password" textbox with "password"
And I click "login" button and wait
Then
I see that current page contains "<a href="product/
product/">Products"

Add a scenario that inspects the product catalog, using the custom login action.

Scenario 2 - Check product catalog
Given

I am logged in with username "gturnquist" and password
"password"

When
I click "Products" link and wait
Then

I see that current page contains "robot-attack"

Chapter 5

Create a matching file called recipe37.py containing a custom defined action.
Code the custom action of logging in to admin action.

from pyccuracy.actions import ActionBase

from pyccuracy.errors import *

class LoggedInAction (ActionBase) :

regex = r' (And)?I am logged in with username [\"]
(?P<username>.+) [\"] and password [\"] (?P<password>.+) [\"]$'

def execute(self, context, username, password) :

self.execute action(u'l go to "http://localhost:8000/
admin"', context)

logged in = False
try:
self.execute_action(\

u'And I see that current page contains "id
username"', context)

except ActionFailedError:

logged in = True

if not logged in:
self.execute action(u'And I £ill "username" textbox
with "%$s"' % username, context)
self.execute_action(u'And I fill "password" textbox
with "%s"' % password, context)

self.execute action(u'And I click "login" button',
context)

High Level Customer Scenarios with Acceptance Testing

7. Run the story by typing pyccuracy console -p recipe37.acc.

onsole

Then
: product c

When

Then

narios per minute

The first scenario shows the simple steps needed to exercise the login screen. After having
proven the login screen works, it becomes cumbersome to repeat this procedure for more
scenarios.

To handle this, we create a custom action in Python by extending ActionBase. Custom
actions require a regular expression to define the DSL text. Next, we define an execute
method to include a combination of application logic and Pyccuracy steps to execute.
Essentially, we can define a set of steps to automatically execute actions and dynamically
handle different situations.

In our situation, we coded it to handle whether or not the user was already logged in. With this
custom action, we built the second scenario, and handled logging in with a single statement,
allowing us to move on and test the core part of our scenario.

182

Chapter 5

Installing Pyccuracy

Installing the Robot Framework

The Robot Framework is a useful framework for writing acceptance tests using the keyword
approach. Keywords are short-hand commands that are provided by various libraries and

can also be user defined. This easily supports BDD-style Given-When-Then keywords. It also
opens the door to third-party libraries defining custom keywords to integrate with other test
tools, such as Selenium. It also means acceptance tests written using Robot Framework aren't
confined to web applications.

This recipe shows all the steps needed to install the Robot Framework as well as the third
party Robot Framework Selenium Library for use by later recipes.

How to do it...

1. Be sure to activate your virtualenv sandbox.

2. Install by typing: easy install robotframework.

At the time of writing, Robot Framework was not able to be
s installed using pip.

3. Using any type of window navigator, go t0 <virtualenv root>/build/
robotframework/doc/quickstart and open quickstart.html with your
favorite browser. This is not only a guide but also a runnable test suite.

4. Switch to your virtualenv's build directory for Robot Framework: cd <virtualenv
root>/build/robotframework/doc/quickstart.

High Level Customer Scenarios with Acceptance Testing

5. Run the Quick Start manual through pybot to verify installation: pybot
quickstart.html.
[o i M Terminal — bash — 78x32

10.
11.
12.
13.

184

2/ docd qu -t/ outpu nl

Inspect the generated report .html, log.html, and output .xml files generated
by the test run.

Install the Robot Framework Selenium library to allow integration with Selenium by
first downloading: http://robotframework-seleniumlibrary.googlecode.
com/files/robotframework-seleniumlibrary-2.5.tar.gz.

Unpack the tarball.

Switch to the directory: cd robotframework-seleniumlibrary-2.5.
Install the package: python setup.py install.

Switch to the demo directory: cd demo.

Start up the demo web app: python rundemo.py demoapp start.

Start up the Selenium server: python rundemo.py selenium start.

Chapter 5

14. Run the demo tests: pybot login tests.

- Tals) Terminal — java — 90x37

java

urnguist-mbp:demo gt

leniumli
niumli

15. Shutdown the demo web app: python rundemo . py demoapp stop.
16. Shutdown the Selenium server: python rundemo.py selenium stop.

17. Inspect the generated report .html, log.html, output .xml, and
selenium log.txt files generated by the test run.

With this recipe, we have installed the Robot Framework and one third-party library that
integrates Robot with Selenium.

High Level Customer Scenarios with Acceptance Testing

There are many more third-party libraries that provide enhanced functionality to the Robot
Framework. The options have enough potential to fill an entire book. So we must narrow our
focus to some of the core features provided by Robot Framework, including both web and
non-web testing.

Creating a data-driven test suite with Robot

Robot Framework uses keywords to define tests, test steps, variables, and other testing
components. Keywords are short-hand commands that are provided by various libraries and
can also be custom defined. This allows many different ways of writing and organizing tests.

In this recipe, we'll explore how to run the same test procedure with varying inputs and
outputs. These can be described as data-driven tests.

Getting ready

1. We first need to activate our virtualenv setup.
2. For this recipe, we will use the shopping cart application.

3. Next, we need to install Robot Framework, as shown in the previous recipe.

How to do it...

The following steps will show us how to write a simple acceptance test using HTML tables.

1. Create a new file called recipe39.html to capture the tests and configurations.

2. Add an HTML paragraph and table that contains a set of data-driven test cases, as
shown in the following browser screenshot.

This file shows a set of test cases based on varying parameters.

Test Case | Ttem1 |Pricel] Item2 |[Price 2|[Tax Rate|Total
\Adding two items of the same kind with no sales tax||Adding items to cm‘l”frozcn pizza||2.50 ||frozen pizza [[2.50 ||0.0 5.00 |
\Adding two items of the same kind with sales tax ||Adding items to cm‘l”froz.cn pizza||2.50 ||frozen pizza |[2.50 ||10.0 5.50 |
\Adding two different items with no sales tax Adding items to cm‘l”frozcn pizza||2.50 ||[carton of milk||3.50 |[0.0 6.00 |
\Adding two different items with sales tax Adding items to can”frnzcn pizza||2.50 ||carton of milk|[3.50 ||10.0 6.60 |

3. Add another HTML paragraph and table defining the custom keywords Adding items
to cart and Add item.

186

Chapter 5

This table requires some custom keywords to implement these tests.

Keyword || Action Argument Argument |Argument|| Argument|| Argument |Argument
Adding items to cart||[Arguments] ${item1} ${pricel} |${item2} |(|S{price2} ||S{tax} ${total}
Add item ${iteml} ${pricel}
Add item ${item2} ${price2}
${calculated total}=||Get total ${tax}
Should Be Equal ||${calculated total}||S{total}
Add item [Arguments] ${description} ${price}
| [Add item to cart |[S{description} |[${price} |

4. Create a new file called recipe39.py to contain Python code that is wired into our

rt ()

def add_item_to_cart (self, description, price):

custom keywords.
5.
the scenarios.
from cart import *
class recipe39:
def init (self):
self.cart = ShoppingCa
self.cart.add(description,
def get total(self, tax):
él@
6.

float (price))

return format (self.cart.total (float(tax)),

||_2f||)

Create an old style Python class that implements the custom keywords needed for

It's important to define the class old style. If we define it as new style by
subclassing object, Robot Framework's runner, pybot, won't find the
methods and associate them with our HTML keywords.

item to cart and Get total.

|Setting|| Value ‘

|[Library|recipe39.py|

Now let's link in some Python code that wires in the cart.

Add a third HTML paragraph and table that loads our Python code to implement Add

High Level Customer Scenarios with Acceptance Testing

7. View the HTML file in your favorite browser.

This file shows a set of test cases based on varying parameters.

Setting|| Value

Library |recipe39.py

MNow let's link in some Python code that wires in the cart.

Test Case | Hem1 [Price1] Item2 |Price 2[Tax Rate|[Total
Adding two items of the same kind with no sales tax|Adding items to cmt"fmz.cn pizza|2.50 |frozen pizza |2.50 (00 5.00
Adding two items of the same kind with sales tax |Adding items to cm‘t"ﬂ'oz.cn pizza|2.50 |frozen pizza 250 (100 5.50
Adding two different items with no sales tax Adding items to c:m"fmz,cn pizza|(2.50 |lcarton of milk|3.50 |00 6.00
Adding two different items with sales tax Adding items to c:m"ﬁ'oz,cn pizza|2.50 |lcarton of milk|3.50 (100 6.60
This table requires some custom key words to implement these tests.

Keyword Action Argument Argument|Arg umem"Argumem"A:gu.mem Arg u.mem|

Adding items to cart|[Arguments] ${iteml} ${pricel} [${item2} [${priced} [$ftax} [${total} |

Add item S{item]} S{pricel}

Add item {item2} ${price2}

${calculated total }=|Get total ${tax}

Should Be Equal ${calculated total}||${total}
Add item [Arguments] S{description} ${price}

Add item to cart ${description} ${price}

8. Run the HTML file through pybot to exercise the tests by typing pybot recipe39.

html.

Yala)

==y

turngui

188

Terminal — bash — 78x20

U1sT/
turng

47

html

Chapter 5

9. You can inspect report.html and log.html using your favorite browser for more
details about the results.

Robot Framework uses HTML tables to define test components. The header row of the table
identifies what type of component the table defines.

The first table we created was a set of test cases. Robot Framework spots this by seeing Test
Case in the first cell of the header row. The rest of the header cells aren't parsed, which
leaves us free to put in descriptive text. In this recipe, each of our test cases is defined with
one-line. The second column has Adding items to cart on every row, which is a custom
keyword defined in the second table. The rest of the columns are arguments for this custom

keyword.

The second table we wrote is used to define custom keywords. Robot Framework figures this
out by seeing Keyword in the first cell of the header row. Our table defines two keywords.

» Adding items to cart:

[m]

The first line defines the arguments by starting with [Arguments]
and six input variables: ${item1}, ${pricel}, ${item2},
${price2}, ${tax},and s{total}.

The next set of lines are actions.

Lines two and three use another custom keyword: Add item with
two arguments.

Line four defines a new variable, ${calculated total}, which
is assigned the results of another keyword, Get total with one
argument, ${tax} that is defined in our Python module.

The last line uses a built-in keyword, Should Be Equal, to confirm
the output of Get total matches the original ${total}.

» Additem:

[m]

The first line defines arguments by starting with [Arguments] and
two input variables: ${description} and ${price}.

The second line uses another keyword, Add item to cart, that
is defined in our Python module, with two named arguments,
${description} and ${price}.

The third table we made contains settings. This is identified by seeing Setting in the first cell
of the header row. This table is used to import Python code that contains the final keywords by
using the built-in keyword Library.

High Level Customer Scenarios with Acceptance Testing

There's more...

Robot Framework maps our keywords to our Python code by a very simple convention:

» Get total ${tax} mapstoget total (self, tax).

» Additemtocart ${description} ${price} mapstoadd item to
cart (self, description, price).

The reason we need add_item to_ cart, and couldn't have just written
add_itemto tie in to keyword Add item is because Robot Framework uses
% named arguments when connecting to Python code. Since each usage of
it Add item in our tables had a different variable name, we needed a separate
keyword with distinct arguments.

Do | have to write HTML tables?

Robot Framework is driven by HTML tables, but it doesn't matter how the tables are
generated. Many projects use tools like reStructuredText (http://docutils.
sourceforge.net/rst.html) to write tables in a less verbose way, and then have a parser
that converts it into HTML. A useful tool for converting . rst to HTML is docutils (http://
docutils.sourceforge.net/). It provides a convenient rst2html . py script that will
convert all the . rst tables into HTML.

Unfortunately, the format of this book makes it hard to present . rst as either code or with a
screenshot. To see a good example, visit http://robotframework.googlecode.com/
svn/tags/robotframework-2.5.4/doc/quickstart/quickstart.rst, the source
for the online Quick Start HTML guide.

What are the best ways to write the code that implements our
custom keywords?

We wrote a chunk of Python code to tie in our custom keywords with the ShoppingCart
application. It is important to make this as light as possible. Why? Because when we deploy
the actual application, this bridge shouldn't be a part of it. It may be tempting to use this
bridge as an opportunity to bundle things up, or to transform things, but this should be
avoided.

Instead, it is better to include these functions in the software application itself. Then this
extra functionality becomes a part of the tested, deployed software functionality.

If we don't invest too heavily in the bridging code, it helps us to avoid making the software
dependent on the test framework. For some reason, if we ever decided to switch to something
other than Robot Framework, we wouldn't be tied into that particular tool due to having too
much invested in the bridging code.

190

Chapter 5

Robot Framework variables are unicode

Another critical factor in making our Python code work is recognizing that the input values
are Unicode strings. Since the ShoppingCart is based on floating point values, we had to
use Python's float (input) function to convert inputs, and format (output, ".2£f") to
convert outputs.

Does this contradict the previous section where we discussed keeping this bridge as light

as possible? It doesn't. By using pure, built-in Python functions that have no side effects,

we aren't getting in deep and instead are only messaging the formats to line things up. If we
started manipulating containers, or converting strings to lists, and vice versa, or even defining
new classes, then that would definitely be getting too heavy for this bridge.

See also

Installing the Robot Framework

Writing a testable story with Robot

As discussed earlier in this chapter, Robot Framework lets us use defined custom keywords.

This gives us the ability to structure keywords in any style. In this recipe, we will define custom
keywords that implement the BDD Given-When-Then style of specification.

Getting ready

1. We first need to activate our virtualenv setup.
2. For this recipe, we will use the shopping cart application.

3. Next, we need to install Robot Framework, as shown in the previous sections
of this chapter.

How to do it...
The following steps will explore how to write a BDD Given-When-Then style acceptance test.

1. Create a new file called recipe40.html to contain our HTML tables.

High Level Customer Scenarios with Acceptance Testing

2. Create a story file in HTML with an opening statement.

As a shopper

Featre: Shopping cart

I want to load up items in my cart
S0 that I can check out and pay for them

3. Add a table with several scenarios used to exercise the Shopping Cart application
with a series of Given-When-Then keywords.

Test Case Steps
Scenario: Seeing that an empty cart behaves correctly Given an empty cart
Then item 5 isa [ErRROR
And price 2 is [ERROR
And the cart has 0 items
And the total cost with||0 % taxes is|0.00
And the total cost with||10 % taxes 1s|0.00
Scenario: Secing a cart getting loaded with multiple of the same |Given an empty cart
When [add a carton of milk||for 2.50
And [add a carton of milk||for 2.50
Then item 1 isa carton of milk
And price 1 is 500
And the cart has 2 items
And the total cost with||10 % taxes is|5.50
Scenario: Seeing a cart getting loaded with different items Given an empty cart
When I add a carton of milk||for 2.50
And [add a frozen pizza ||for 300
Then item 1 isa carton of milk
And item 2 isa frozen pizza
And price 1 is 2.50
And price 2 is 300
And the total cost with||0 % taxes is|5.50
And the total cost with||10 % taxes is|6.05

4. Add a second table that defines all of our custom Given-When-Then keywords.

192

Chapter 5

Here is where we define the actions in the Given-When-Then test cases.

| Keyword || Action || Argument || Argument || Argument |
|Givcn an empty cart ||c1'catc empty cart |

[Then item [[Arguments] [${index} ||${noop} |[${description}|
| [${fetched item}=|Lookup item |[${index} |

| [Should Be Equal|[${description}|[${fetched item}|

|And item [[Arguments] [[${index} ||${noop} |[${description}|
| |Then item |${index} |${noop} |${description}|
[And price [[Arguments] [[${index} |${noop} |${price} |
| [${calc price}= [Lookup price [[${index} |

| |Should Be Equal [${calc price} |${price} |

[When I add a |[Arguments] [[${description}||${noop} |${price} |
| [add item [S{description}|[${price} |

|AndIadd a [[Arguments] [[${description}|${noop} [${price} |
| |add item |${description}||${price} |

|And the cart has ||[Argumcms] ||${num} ||${noop} |

| [${size of cart}= Size of cart |

|And the total cost with [Arguments] [[${tax} |${noop} ||${total} |
| [${calc total}=__frotal [8{tax} |

| [Should Be Equal [${calc total} |[${total} |

Create a new file called recipe40.py to contain Python code that links the custom

keywords to the ShoppingCart application.

from cart import *

class recipe40:
def init (self):
self.cart = None

def create empty cart (self):

self.cart = ShoppingCart ()

def lookup item(self, index):
try:

return self.cart.item(int (index))
except IndexError:

return "ERROR"

def lookup price(self, index):

try:

High Level Customer Scenarios with Acceptance Testing

return format (self.cart.price(int (index)), ".2f")
except IndexError:
return "ERROR"

def add item(self, description, price):

self.cart.add (description, float (price))

def size of cart(self):

return len(self.cart)

def total(self, tax):

return format (self.cart.total (float(tax)), ".2f")

- ltis critical that this class is implemented old-style. If implemented

new-style by extending object, Robot Framework will NOT link the
g keywords.

6. Add a third table to our recipe40.html file to import our Python module.

Finally, we need to link in some wiring to the ShoppingCart app.

|Setting ‘ Value
|L ibrary ‘reciperﬂf[) Py

7. Run the story by typing pybot recipe40.html.

(o M) Terminal — bash — 78x18

getting

gturnquists

Chapter 5

Robot Framework uses HTML tables to define test components. The header row of the table
identifies what type of component the table defines.

The first table we created was a set of test cases. Robot Framework spots this by seeing
Test Case in the first cell of the header row. The rest of the header cells aren't parsed,
which leaves us free to put in descriptive text.

In this recipe, each of our test cases comprised several custom keywords using the
Given-When-Then style familiar to BDD testers. Many of these keywords have one or
more arguments.

The second table we wrote is used to define our custom Given-When-Then keywords.
Robot Framework figures this out by seeing Keyword in the first cell of the header row.

The third table we made contains settings. This is identified by seeing Setting in the first cell
of the header row. This table is used to import Python code that contains the final keywords by
using the built-in keyword Library.

An important aspect of our custom keywords, in this recipe, is that we wrote them in a natural
flowing language.

When I add a carton of milk for 2.50

This is broken up into four HTML cells in order to parameterize the inputs and make the
keywords reusable for several test steps.

]| L
 [WhenTadd a [carton of milk[for 250 |

Robot Framework sees this as a custom keyword, When I add a, with three arguments:
carton of milk, for, and 2.50.

Later on, we fill in the actual steps involved with this keyword. In doing so, we are really only
concerned with using carton of milk and 2.50. But we still have to treat for like an input
variable. We do this by using a place holder variable, ${noop}, which we will simply not use in
any following keyword steps.

_Inthis recipe, we call the throwaway variable $ {noop }. We could have
% called it anything. We can also reuse it if we have more than one throwaway
s argument in the same keyword. This is because Robot Framework doesn't

engage in strong type checks.

High Level Customer Scenarios with Acceptance Testing

There's more...

This entire chunk of HTML that we had to write starts to feel a bit heavy. As mentioned in
the earlier recipe Creating a data-driven test suite with Robot, . rst is a great alternative.
Unfortunately, writing this recipe using . rst is too wide for the format of this book. Please see
that recipe for more details about writing . rst and getting the tools to convert . rst to HTML.

Given-When-Then results in duplicate rules

It's true that we had to define both Then item and Add item, which are basically the same,
in order to support two different test scenarios. In other BDD tools, these would have been
automatically spotted as the same clause. Robot Framework doesn't directly provide a BDD
domain specific language, so we had to fill this in for ourselves.

The most efficient way to handle this was to define Then item in detail with all the steps
needed, and then code And itemto just call Then item.

In contrast, When I add a and And I add a were implemented by both calling add item.
Since this clause was a simpler pass-through to our Python module, it wasn't necessary to
chain them together like the previous example.

Another option would be to investigate coding our own BDD plugin library to simplify all of this.

Do the try-except blocks violate the idea of keeping things light?

In the recipe Creating a data-driven test suite with Robot, we saw that the code that bridges
the HTML tables with the ShoppingCart application should be kept as light as possible, and
avoid transformations and other manipulations.

It is quite possible to view trapping of an expected exception and returning a string as crossing
this line. In our case, the solution was to define a single clause that could handle errors and
legitimate values. The clause takes whatever is returned and verifies it using the built-in
keyword Should Be Equal.

If this wasn't the case, it may have been smoother to not have the try-expect block, and
instead use the built-in keyword Run Keyword And Expect Error linked to another custom
Python keyword. But in this situation, | think the goal of keeping things light was satisfied.

» Installing the Robot Framework

» Creating a data-driven test suite with Robot

196

Chapter 5

Tagging Robot tests and running a subset

Robot Framework provides a comprehensive way to capture test scenarios using
table-driven structures. This includes the ability to add metadata in the form of tagging
as well as documentation.

Tagging allows including or excluding tags for testing. Documentation appears on the
command line and also in the outcome reports. This recipe will demonstrate both of
these keen features.

Finally, HTML tables aren't the only way to define data tables with Robot Framework. In
this recipe, we will explore using double-space-separated entries. While this isn't the only
non-HTML way to write stories, it is the easiest non-HTML way to demonstrate that still fits
within the font size limits of this book in printed form.

Getting ready

We first need to activate our virtualenv setup.

Create a new file called cart41.py to contain an alternate version of the
shopping cart application.

3. Type in the following code that stores the cart to a database.
class ShoppingCart (object) :
def init (self):
self.items = []

def add(self, item, price):
for cart item in self.items:
Since we found the item, we increment
instead of append
if cart item.item == item:
cart_item.gq += 1

return self

If we didn't find, then we append
self.items.append(Item(item, price))

return self

def item(self, index):

return self.items[index-1].item

def price(self, index):

return self.items[index-1] .price * self.items[index-1].qg

def total(self, sales tax):

High Level Customer Scenarios with Acceptance Testing

Y

sum _price = sum([item.price*item.q for item in self.
items])

return sum price* (1.0 + sales tax/100.0)

def store(self) :
This simulates a DB being created.
f = open("cart.db", "w")

f.close()

def retrieve(self, id):
This simulates a DB being read.
f = open("cart.db")
f.close()

def len (self):

return sum([item.q for item in self.items])

class Item(object):
def init (self, item, price, g=1):
self.item = item
self.price = price

self.qg = g

This version of the shopping cart has two extra methods: store and
retrieve. They don't actually talk to a database, but instead create an

%j%“ empty file cart . db. Why? The purpose is to simulate interaction with a

database. Later in the recipe, we will show how to tag test cases that involve
this operation and easily exclude them from test runs.

4. Next, we need to install Robot Framework, as shown in the earlier sections of this

chapter.

How to do it...

The following steps will show how to write scenarios in a format other than HTML tables, and
also how to tag tests to allow picking and choosing which tests are run on the command line.

1.

198

Create a new file called recipe41 . txt using plain text and space separated entries
that has a couple of test cases—one simple one and another more complex one with
documentation and tags.
Tegst Cases
Simple check of adding one item

Given an empty cart

When I add a carton of milk for 2.50

Chapter 5

Then the total with
And the total with

0
10

More complex by storing cart

[Documentation] This test
be excluded. This is in case
database system installed to

[Tags] database
Given an empty cart
When I add a
And I add a

And I store the cart

carton of mi

frozen pizza

And I retrieve the cart

Then there are 2 items

It's important to note that two spaces are the minimum required to identify
breaks between one cell and the next. The line with When I add a carton
of milk for 2.50 actually has four cells of information: | When I add a |
cartonof milk | for | 2.50 |. There is actually a fifth, empty cell that
prefixes this row indicated by the two-space indentation. It is necessary to
mark this row as a step in test case Simple check of adding one item

rather than another test case.

2.50
2.75

tax is

tax is

to database

case has special tagging, so it can
the developer doesn't have the right
interact properly.cart.db

1k 2.50

3.50

for

for

Add a table for custom keyword definitions using plain text and space

separated values.

Keywords
Given an empty cart

create empty cart

When I add a

[Arguments] ${description} ${noop} ${price}
add item ${description} ${price}
And I add a
[Arguments] ${description} ${noop} ${price}
add item ${description} ${price}
Then the total with
[Arguments] ${tax} ${noop} ${total}
${calc total}= total ${tax}
Should Be Equal ${calc total} ${total}
And the total with
[Arguments] ${tax} ${noop} ${total}
Then the total with ${tax} ${noop} ${total}

High Level Customer Scenarios with Acceptance Testing

And I store the cart

Set Test Variable ${cart id} store cart

And I retrieve the cart

retrieve cart ${cart id}

Then there are
[Arguments] ${size} ${noop}
${calc size}= Size of cart

Should Be Equal As Numbers ${calc size} ${size}

3. Create a new file called recipe41.py that contains Python code that bridges some
of the keywords with the shopping cart application.

from cart4l import *

class recipe4l:
def init (self):

self.cart = None

def create empty cart (self):

self.cart = ShoppingCart ()

def lookup item(self, index):
try:
return self.cart.item(int (index))
except IndexError:
return "ERROR"

def lookup price(self, index):
try:
return format (self.cart.price(int (index)), ".2f")
except IndexError:
return "ERROR"

def add item(self, description, price):

self.cart.add (description, float (price))

def size of cart(self):

return len(self.cart)

def total(self, tax):

return format (self.cart.total (float(tax)), ".2f")

def store cart (self):

return self.cart.store()

def retrieve cart(self, id):

self.cart.retrieve (id)

200

Chapter 5

def size of cart(self):

return len(self.cart)
4. Add a last table to recipe41l. txt that imports our Python code as a library to
provide the last set of needed keywords.
*x*Settings***
Library recipe4l.py

5. Run the test scenario as if we were on a machine that had database support by
typing pybot recipe4l.txt.

e I I Terminal — bash — 78x16

B5/report.html
html

6. Run the test scenario, excluding tests that were tagged database by typing pybot
-exclude database recipe4l.txt.

A MM Terminal — bash — 78x14

O failed
fmiled

201

High Level Customer Scenarios with Acceptance Testing

7. Run the test scenario, including tests that were tagged database by typing pybot -
include database recipe4dl. txt.

[i Terminal — bash — 78x14

utput,
cepor

8. Look at report.html, and observe where the extra [Documentation] text
appears, as well as our database tag.

Test Details by Suite

Name Documentation Metadata / Tags

Recipedi

This test case has special tagging, so it can be excluded. This is in case the
developer doesn't have the right database system installed to interact database
properly.cart.db

More complex by storing
cart to database

Test Details by Tag

Name D tati Tags
database /A
Recipedt . More complex by | This test case ha§ special tagging, so itlcan be exclluded. This is in case the developer database
storing cart to database doesn't have the right database system installed to interact properly.cart.db

In this recipe, we added an extra section to the second test case, including both
documentation and a tag.

More complex by storing cart to database

[Documentation] This test case has special tagging, so it can
be excluded. This is in case the developer doesn't have the right
database system installed to interact properly.cart.db

[Tags] database
Given an empty cart

202

Chapter 5

When I add a carton of milk for 2.50
And I add a frozen pizza for 3.50
And I store the cart

And I retrieve the cart

Then there are 2 items

Tags are usable on the command line, as shown in the previous example. They provide a
useful way to organize test cases. Test cases can have as many tags as needed.

We showed earlier that this provides a convenient command-line option to include or exclude
based on tags. Tags also provide useful documentation, and the previous screenshot of
report .html shows that test results are also subtotaled by tag:

» Tags can be used to identify different layers of testing like smoke, integration,
customer-facing, and so on

» Tags can also be used to mark subsystems like database, invoicing, customer
service, billing, and so on

There's more...

This recipe demonstrates plain text formatting. Triple asterisks are used to surround header
cells and two spaces are used to designate a break between two cells.

It is debatable whether this is harder to read than HTML. It may not be as
4 crisp as reading the HTML markup, but | personally preferred this to angle
tax of reading HTML. It's possible to add more spaces, so the table's cells are
i clearer, but | didn't because the font sizes of this book don't work very well
with it.

What about documentation?

We also added a little bit of documentation for demonstration purposes. A piece of the text
appears when pybot runs, and it also appears in the resulting artifacts.

See also

» Installing the Robot Framework
» Creating a data-driven test suite with Robot
» Writing a testable story using Robot

203

High Level Customer Scenarios with Acceptance Testing

Testing web basics with Robot

Web testing is a common style of acceptance testing, because the customer wants to know if
the system is acceptable, and this is a perfect way to demonstrate it.

In previous recipes, we have explored writing tests against non-web applications. In this
recipe, let's see how to use a third-party Robot Framework plugin to use Selenium to test a
shopping cart web application.

Getting ready

1. We first need to activate our virtualenv setup.

2. For this recipe, we are using the satchmo shopping cart web application. To start it,
switch to the store directory and type python manage . py runserver. You can
explore it by visiting http://localhost :8000.

3. Next, install the Robot Framework and the third-party Selenium plugin, as shown in
the recipe Installing the Robot Framework.

How to do it...

With the following steps, we will see how to get going with using some of the basic Robot
commands for driving a web application.

1. Create a plain text story file called recipe42 . txt, with an opening description of
the story.
As a store customer
I want to put things into my cart
So that I can verify the store's functionality.
2. Create a section for test cases, and add a scenario that verifies there is an empty
shopping cart and captures a screenshot.
Test Cases
Inspect empty cart in detail
Click link Cart
Page Should Contain Your cart is empty
Page Should Contain 0 - $0.00
Capture Page Screenshot recipe42-scenariol-1.png
3. Add another scenario that picks a book, adds two copies of the cart, and confirms
the total cart value.

Load up a cart with 2 of the same

Click link Science Fiction don't wait

204

Chapter 5

Capture Page Screenshot recipe42-scenario2-1.png
Click link Robots Attack!

Capture Page Screenshot recipe42-scenario2-2.png
Input text quantity 2

Capture Page Screenshot recipe42-scenario2-3.png
Click button Add to cart

Click link Cart

Capture Page Screenshot recipe42-scenario2-4.png
Textfield Value Should Be gquantity 2

Page Should Contain Robots Attack! (Hard cover)
Html Should Contain <td align="center">$7.99</td>
Html Should Contain <td align="center">3$15.98</td>
Html Should Contain <td>$15.98</td>

Add a section of keywords and define a keyword for inspecting the raw HTML
of the page.
Keywords
Html Should Contain
[Arguments] ${expected}
${html}= Get Source
Should Contain ${html} ${expected}

Startup
Start Selenium Server

Sleep 3s

Get Source is a Selenium Library keyword that fetches the raw HTML of the
entire page. Start Selenium Server is another keyword to launch the
% selenium server. A built-in S1eep call is included to avoid startup/shutdown
T~ timing issues, if this test happens before or after another selenium-based test
suite.

Add a section that imports the Selenium Library, and also defines a setup and
teardown process for launching and shutting down the browser for each test case.

k*Settings*
Library SeleniumLibrary
Test Setup Open Browser http://localhost:8000

Test Teardown Close All Browsers

Suite Setup Startup

Suite Teardown Stop Selenium Server

205

High Level Customer Scenarios with Acceptance Testing

Test Setup is a built-in keyword that defines steps
executed before each test case. In this case, it uses the
Selenium Library keyword Open Browser to launch
a browser pointed at the sat chmo application. Test
% Teardown is a built-in keyword that executes at the end of
L each test and closes the browsers launched by this test.

Suite Setup is a built-in keyword that is only run before
any tests are executed, and Suite Teardown is only run
after all the tests in this suite. In this case, we use it to start
and stop the Selenium library.

6. Run the test suite by typing pybot recipe42.txt.

[Ml Terminal — bash — 79x16

7. Open log.html, and observe the details including the captured screenshots in each
scenario. The following screenshot is just one of the many captured screenshots. Feel
free to inspect the rest of the screenshots as well as the logs.

Your Cart
Quantity Item Price Total
| Remowe) 2 [update amount | Robots Attack! (Hard cover) $7.99 §15.98
Cart Total: $15.98
Check out

206

Chapter 5

Robot Framework provides a powerful environment to define tests through keywords. The
Selenium plugin interfaces with selenium and provides a whole set of keywords that are
focused on manipulating web applications and reading and confirming their outputs.

An important part of web application testing is getting hold of an element to manipulate it or
test values. The most common way of doing this is by checking key attributes of the element
like 1d, name, or href. For example, in our scenario, there is a button we need to click to add
the book to the cart. It can be identified by either the ID addcart or the displayed text Add to
cart.

There's more...

While Robot Framework is free compared to other commercial front end test solutions, it is
important to realize that the effort in writing automated tests isn't free and effortless. It takes
effort to make this an active part of front end design.

Incorporating tools like Robot and SeleniumLibrary early in the process of screen design will
encourage good practices like tagging frames and elements, so that they'll be testable early
on. This is no different than attempting to write automated tests for a backend server system
after it's already built. Both situations are much more costly if they are introduced later.
Making automated testing a part of backend systems early on encourages similar coding to
support testability.

In case we are looking at embracing acceptance testing late in our development cycle, or
perhaps trying to test a system we inherited from another team, we need to include time

to make changes to the web interface in order to add tags and identifiers to support writing
the tests.

Learn about timing configurations—they may be important!

While the satchmo shopping cart application didn't have any significant delays in the tests
we wrote, it doesn't mean other applications won't. If your web application has certain

parts that are noticeably slower, it is valuable to read the online documentation (http://
robotframework-seleniumlibrary.googlecode.com/hg/doc/SeleniumLibrary.
html?r=2.5) about configuring how long Selenium should wait for a response from your
application.

» Installing the Robot Framework
» Creating a data-driven test suite with Robot

» Writing a testable story using Robot

207

High Level Customer Scenarios with Acceptance Testing

Using Robot to verify web app security

Web applications often have some sort of security in place. This is often in the form of a login
page. A well written test case should start a new browser session at the beginning and close it
at the end. This results in the user logging in repeatedly for every test case.

In this recipe, we will explore writing code to login in satchmo's admin page, as provided by
Django. Then we will show how to capture this entire login procedure into a single keyword,
allowing us to smoothly write a test that visits the product catalog without getting encumbered

by logging in.

Getting ready

1. We first need to activate our virtualenv setup.

2. For this recipe, we are using the satchmo shopping cart web application. To start it,
switch to the store directory and type python manage.py runserver. YOU can
explore it by visiting http://localhost :8000.

3. Next, install the Robot Framework and the third-party Selenium plugin, as shown in
the recipe Installing the Robot Framework.

How to do it...

The following steps will highlight how to capture login steps and then encapsulate them in a
single custom keyword.

1. Create a new file called recipe43 . txt, and write a test story for exercising Django's
admin interface.
As a system administrator
I want to login to Django's admin page
So that I can check the product catalog.

2. Add a section for test cases, and write a test case that exercises the login page.
xTest Cases
Logging in to the admin page
Open Browser http://localhost:8000/admin
Input text wusername gturnquist
Input text password password
Submit form
Page Should Contain Link Products

Close All Browsers

208

Chapter 5

3. Add another test case that inspects the product catalog and verifies a particular row
of the table.
Check product catalog
Given that I am logged in
Click link Products
Capture Page Screenshot recipe43-scenario2-1.png
Table Should Contain result list Robots Attack!
Table Row Should Contain result list 4 Robots Attack!
Table Row Should Contain result list 4 7.99
Close All Browsers

4. Create a keyword section that captures the login procedure as a single keyword.
***Keywords* **
Given that I am logged in
Open Browser http://localhost:8000/admin/
Input text wusername gturnquist
Input text password password

Submit form

Startup
Start Selenium Server

Sleep 3s

X For your own testing, put in the username and password
% you used when installing satchmo. Start Selenium
i Server is another keyword to launch the selenium

Server.

5. Finally, add a settings section that imports the SeleniumLibrary and also starts and
stops the Selenium server at the beginning and end of the test suite.
k*Settings*

Library SeleniumLibrary
Suite Setup Startup

Suite Teardown Stop Selenium Server

209

High Level Customer Scenarios with Acceptance Testing

6. Run the test suite by typing pybot recipe43.txt.

[M Terminal — bash — 79x16

The first test case shows how we input username and password data and then submit the
form. SeleniumLibrary allows us to pick a form by name, but in the event we don't identify it,
it picks the first HTML form it finds. Since there is only one form on the login page, this works
fine for us.

With the second test case, we want to navigate to the product catalog. Since it runs with a
clean browser session, we are forced to deal with the login screen again. This means we need
to include the same steps to login again. For more comprehensive testing, we would probably
write lots of test cases. Why should we avoid copying and pasting the same login steps for
every test case? Because it violates the DRY (Don't Repeat Yourself) principle. If the login page
is modified, we might have to alter every instance.

Instead, we captured the login steps with keyword Given that I am logged in. This gives
us a useful clause for many test cases, and lets us focus on the admin page.

There's more...

In this recipe, we are using some of SeleniumLibrary's table testing operations. We verified
that a particular book exists both at the table level as well as the row level. We also verified
the price of the book in that row.

Finally, we captured a screenshot of the product catalog. This screenshot gives us a quick,
visual glance which we can use to either manually confirm the product catalog, or use to plan
our next test step.

210

Chapter 5

Why not use a ‘remember me’ option?

Lots of websites include a 'remember me' checkbox in order to save login credentials in a
client-side cookie. The Django admin page doesn't have one, so why is this relevant? Because
many websites do and we may be tempted to incorporate it into our tests to avoid logging in
every time. Even if this option existed for the web app we want to test, it is not a good idea to
use it. It creates a persistent state that can propagate from one test to the next. Different user
accounts may have different roles, impacting what is visible. We may not know in what order
test cases run, and therefore, have to add extra code to identify what user we are logged in as.

Instead, it is much easier and cleaner to not keep this information. Instead, explicitly logging
in through a single keyword provides a clearer intent. This doesn't mean we shouldn't test and
confirm the remember checkbox of our particular web application. On the contrary, we should
actually test both good and bad accounts to make sure the login screen works as expected.
But beyond that, it is best to not confuse future test cases with the stored results of the
current test case.

Shouldn't we refactor the first test scenario to use the keyword?

To uphold the DRY principle, we should have the login procedure in only one place inside our
test story. But for demonstration purposes, we coded it at the top, and then later copied the
same code into a keyword. The best solution would be to encapsulate it into a single keyword
that can be reused in either a test case or to define other custom keywords like Given I am
logged in.

Would arguments make the login keyword more flexible?

Absolutely. In this test story, we hardcoded the username as well as the password. But good
testing of the login page would involve a data-driven table with lots of combinations of good
and bad accounts, along with valid and invalid passwords. This drives the need for some sort
of login keyword that would accept username and password as arguments.

» Installing the Robot Framework
» Using Pyccuracy to verify web app security

» Creating a data-driven test suite with Robot

High Level Customer Scenarios with Acceptance Testing

Creating a project-level script to verify

this chapter's acceptance tests

We have used pyccuracy console and pybot to run various test recipes. But
management of a Python project involves more than just running tests. Things like packaging,
registering with the Python Project Index, and pushing to deployment sites are important
procedures to manage.

Building a command-line script to encapsulate all of this is very convenient. With this recipe,
we will run a script that runs ALL of the tests covered in this chapter.

Getting ready

We first need to activate our virtualenv setup.

For this recipe, we are using the satchmo shopping cart web application. To start
it, switch to the store directory and type python manage . py runserver. YOU can
explore it by visiting http://localhost :8000.

3. Next, install the Robot Framework and the third-party Selenium plugin, as shown in
the earlier recipe Installing the Robot Framework.

4. This recipe assumes that all of the various recipes from this chapter have been
coded.

How to do it...

With these steps, we will see how to programmatically run all the tests in this chapter.

1. Create a new file called recipe44 .py to contain the code for this recipe.
2. Create a command-line script that defines several options.

import getopt

import logging

import os

import os.path

import re

import sys

from glob import glob

def usage() :
print
print "Usage: python recipe44.py [command]"
print

print "\t--help"

Chapter 5

try:

print "\t--test"
print "\t--package"
print "\t--publish"
print "\t--register"

print

optlist, args = getopt.getopt(sys.argv[l:],
llhll ,
["help", "test", "package", "publish", "register"])

except getopt.GetoptError:

print help information and exit:
print "Invalid command found in %s" % sys.argv
usage ()

sys.exit (2)

Add a method that starts Selenium, runs the Pyccuracy-based tests, and then shuts
down Selenium.

def

test with pyccuracy() :
from SeleniumLibrary import start selenium server
from SeleniumLibrary import shut down selenium server

from time import sleep

f = open("recipe44 selenium log.txt", "w")
start selenium server (logfile=f)

sleep(10)

import subprocess

subprocess.call (["pyccuracy console"])

shut down_selenium_ server ()
sleep(5)
f.close()

Add a method that runs the Robot Framework tests.

def

test _with robot () :
from robot import run

run(".")

Add a method to run both of these test methods.

def

test () :
test with pyccuracy()
test _with robot ()

High Level Customer Scenarios with Acceptance Testing

6. Add some stubbed out methods for the other project functions.
def package() :
print "This is where we can plug in code to run " + \

"setup.py to generate a bundle."

def publish():
print "This is where we can plug in code to upload " + \

"our tarball to S3 or some other download site."

def register():
print "setup.py has a built in function to " + \
"'register' a release to PyPI. It's " + \
"convenient to put a hook in here."

os.system("%s setup.py register" % sys.executable)

7. Add some code that parses the options.
if len(optlist) == 0:
usage ()

sys.exit (1)

Check for help requests, which cause all other
options to be ignored.
for option in optlist:
if option[0] in ("--help", "-h"):
usage ()

sys.exit (1)

Parse the arguments, in order

for option in optlist:

if option[0] in ("--test"):
test ()

if option[0] in ("--package"):
package ()

if option[0] in ("--publish"):
publish ()

if option[0] in ("--register"):
register ()

8. Run the script with the testing flag by typing python recipe44 -test.Inthe
following screenshot, we can see that all the Pyccuracy tests passed:

214

Chapter 5

enarios per minute

We use Python's getopt module to define command-line options.
optlist, args = getopt.getopt(sys.argv[l:],
llhll ,
["help", "test", "package", "publish", "register"])

This maps:

» "h":-h

» ‘"help": --help

» "test™ --test

» "package": - -package
» "publish": --publish
» 'register": --register

We scan the list of received arguments and call the appropriate functions. For our test
functions, we used Python's subprocess module to call pyccuracy console. We could
have done the same to call pybot, but Robot Framework provides a convenient API to call it
directly.

from robot import run

run(".")

High Level Customer Scenarios with Acceptance Testing

This lets us use it inside our code.

There's more...

To run these tests, we need Selenium running. Our Robot Framework tests are built to run
Selenium on their own. Pyccuracy doesn't have such a feature, so it needed another means.
In those recipes, we used java -jar selenium-server.jar. We could try to manage this,
but it is easier to use SeleniumLibrary's API to start and stop Selenium.

This is where writing code in pure Python gives us the most options. We are able to empower
Pyccuracy with parts of another library that was never intended to work with it.

Can we only use getopt?

Python 2.7 introduces argparse as an alternative. Current documentation has no indication
that getopt is deprecated, so it's safe to use it as we have just done. The getopt module is
a nice, easy-to-use command-line parser.

What's wrong with using the various command-line tools?

There is nothing wrong with using tools like pyccuracy console, pybot, nosetests, and
many other tools that come with the Python libraries. The purpose of this recipe is to offer a
convenient, alternative approach that brings all these tools into one central script. By investing
a little bit of time in this script, we don't have to remember how to use all these features, but
instead can develop our script to support the development workflow of our project.

Integrating
Automated Tests
with Continuous
Integration

In this chapter, we will cover:

Generating a continuous integration report for Jenkins with NoseXUnit
Configuring Jenkins to run Python tests upon commit

Configuring Jenkins to run Python tests when scheduled

Generating a continuous integration report for TeamCity using teamcity-nose
Configuring TeamCity to run Python tests upon commit

Configuring TeamCity to run Python tests when scheduled

Introduction

The classic software development process known as the waterfall model involves the
following stages:

1.

2.
3.
4

Requirements are collected and defined.
Designs are drafted to satisfy the requirements.
An implementation strategy is written to meet the design.

Coding is done.

Integrating Automated Tests with Continuous Integration

5. The coded implementation is tested.
6. The system is integrated with other systems as well as future versions of this system.

In the waterfall model, these steps are often spread across several months of work. What this
means is that the final step of integration with external systems is done after several months
and often takes a lot of effort.

Continuous integration (Cl) remedies the deficiencies of the waterfall model by introducing
the concept of writing tests that exercise these points of integration and having them run
automatically whenever the code is checked into the system. Teams that adopt continuous
integration often adopt a corresponding policy of immediately fixing the baseline if the test
suite fails.

This forces the team to continuously keep their code working and integrated, thus making
this final step relatively cost free.

Teams that adopt a more agile approach work in much shorter cycles. Teams may work
anywhere from weekly to monthly coding sprints. Again, by having integrating test suites run
with every check in, the baseline is always kept functional; thus, ready for delivery at any time.

This prevents the system from being in a non-working state that is only brought into the
working state at the end of a sprint or at the end of a waterfall cycle. It opens the door to more
code demonstrations with either the customer or management, in which feedback can be
garnered and more proactively fed into development.

This chapter is more focused on integrating automated tests with Cl systems rather than
writing the tests. For that reason, we will re-use the following Shopping Cart application.
Create a new file called cart . py and enter the following code into it:

class ShoppingCart (object) :
def init_ (self):
self.items = []

def add(self, item, price):
for cart_item in self.items:
Since we found the item, we increment
instead of append
if cart_item.item == item:
cart_item.gq += 1
return self

If we didn't find, then we append
self.items.append(Item(item, price))
return self

def item(self, index):
return self.items[index-1].item

def price(self, index):

Chapter 6

return self.items[index-1] .price * self.items[index-1].qg

def total(self, sales tax):
sum _price = sum([item.price*item.qg for item in self.items])
return sum price* (1.0 + sales tax/100.0)

def len (self):

return sum([item.q for item in self.items])

class Item(object) :
def init (self, item, price, g=1):
self.item = item
self.price = price
self.qg = g

To exercise this simple application, the following set of unit tests will be used by various
recipes in this chapter to demonstrate continuous integration. Create another file called
tests.py and enter the following test code into it:

from cart import *
import unittest

class ShoppingCartTest (unittest.TestCase) :
def setUp(self):
self.cart = ShoppingCart () .add("tuna sandwich", 15.00)

def test length(self):
self.assertEquals (1, len(self.cart))

def test item(self):
self.assertEquals ("tuna sandwich", self.cart.item(1))

def test price(self):
self.assertEquals (15.00, self.cart.price(l))

def test total with sales tax(self):
self.assertAlmostEquals (16.39, \
self.cart.total (9.25), 2)

This simple set of tests doesn't look very impressive, does it? In fact, it isn't really integration
testing like we were talking about earlier, but instead it appears to be some basic unit tests,
right?

Absolutely! This chapter isn't focusing on writing test code. So, if this book is about code
recipes, why are we focusing on tools? Because there is more to making automated testing
work with your team than writing tests. It's important to become aware of tools that take the
concepts of automating tests and leveraging them into our development cycles.

Continuous integration products are a valuable tool, and we need to see how to link them with
our test code, in turn allowing the whole team to come on board and make testing a first class
citizen of our development process.

Integrating Automated Tests with Continuous Integration
This chapter explores two powerful Cl products: Jenkins and TeamCity.

Jenkins (http://jenkins-ci.org/) is an open source product that was led by a developer
originally from SUN Microsystems, who left after its acquisition by Oracle. It has a strong
developer community with many people providing patches, plugins, and improvements. It was
originally called Hudson, but the development community voted to rename it to avoid legal
entanglements. There is more history to the entire Hudson/Jenkins naming that can be read
online, but it's not relevant to the recipes in this book.

TeamCity (http://www.jetbrains.com/teamcity/) is a product created by Jet Brains,
the same company that produces commercial products such as IntelliJ IDE, ReSharper, and
PyCharm IDE. The Professional Edition is a free version that will be used in this chapter to
show another Cl system. It has an enterprise, commercial upgrade, which you can evaluate for
yourself.

Generating a continuous integration

report for Jenkins using NoseXUnit

JUnit (http://junit.org) is a software industry leader in automated testing. It provides
the ability to generate XML report files that are consumed by many tools. This extends to
continuous tools like Jenkins.

NoseXUnit (http://nosexunit.sourceforge.net/)is a Nose plugin that generates XML
reports with Python test results in the same format. It works like JUnit with XML reporting but
for unittest. Even though we aren't building Java code, there is no requirement that states our
Cl server can't be a Java-based system. As long as we can generate the right reports, those
tools are candidates for usage. Considering that one of the most popular and well-supported CI
systems is Jenkins, this type of plugin is very useful.

With this recipe, we will explore generating consumable reports from simple Python testing.

Getting ready

The following steps are needed to have all the components installed for this chapter.

1. Install Nose as shown in Chapter 2.

2. Install NoseXUnit (http://nosexunit.sourceforge.net/) by typing pip
install nosexunit.

How to do it...

The following steps will show how to use the NoseXUnit plugin to generate an XML reportin a
Jenkins-compatible format:

220

Chapter 6

1. Test the shopping cart application using nosetests and the NoseXUnit plugin by typing
nosetests tests.py --with-nosexunit.

;OO springpython@web35:~ — bash — 71x7

springpytho

2. Open the report found in target /NoseXUnit/core/TEST-tests.xml using
an XML or text editor. The following screenshot shows the report displayed in
SpringSource Tool Suite (http://www.springsource.com/developer/sts),
an Eclipse derivative. (This is by no means a recommendation. Many modern IDEs
have built-in XML support as do other editors like emacs, textpad, and so on).

% TEST-tests.xm| 28

<?xml version="1.0" encoding="UTF-8"7=

<testsuite nome="tests"” tests="4" errors="@" failures="@" time="@.081">
<testcose classnome="tests. ShoppingCartTest” name="test_item"” Ltime="8. 000" =
<testcase classname="tests.ShoppingCartTest” name="test_length"” time="8.008"/>
<testcase classnome="tests.ShoppinglartTest” name="test_price” time="0.008"/=
<testcase classnome="tests.ShoppingCartTest” name="test_total_with_sales_tax" time="8.808"/ =
<system-out>

<! [COATA[]]>

</system-out>
<system-err>

! [CoATAD]=
</system-err>
</testsuites

NoseXUnit collects the outcome of each test and generates an XML report that has the same
format as JUnit. The XML file isn't designed to be human consumable, but it's not too hard to
discern the results. When we ran nosetests earlier, how many test cases passed? What were
the test method names?

221

Integrating Automated Tests with Continuous Integration

In this XML file, we can see the names of the four test cases. In fact, if this file is opened
inside certain tools like the SpringSource Tool Suite, it displays itself as a test outcome.

S ¥ =0

U JUnit &3 BE] e f

&=

tests

Runs: 4/ B Errors: B Failures:

7 A tests (0.001 s) = Failure Trace o

gEitest_item (0.000 s)
FE! test_length (0.000
EEltest_price (0.000 s)
pEitest_total_with_sale

| e | <>

We don't have to use STS to do any of this. In fact, STS is a bit heavyweight for this simple
task. Your favorite XML or text editor is fine to inspect the report. | just wanted to demonstrate
how the output of this plugin neatly works with existing tools.

By typing nosetests-help, we can see all the options that nose has from all the installed
plugins. This includes:

» --core-target=CORE_ TARGET: Output folder for test reports (defaults to
target/NoseXUnit/core)

» --with-nosexunit: Runs it through the plugin

Configuring Jenkins to run Python

tests upon commit

Jenkins can be configured to invoke our test suite upon commit. This is very useful, because
we can gear it to track our changes. Teams that use Cl systems usually adopt an attitude of
addressing Cl failures immediately in order to keep the baseline functional.

Jenkins offers an almost unlimited number of features, such as retrieving the latest source from
version control, packaging a release, running tests, and even analyzing source code. This recipe
shows how to configure Jenkins to run our test suite against our shopping cart application.

222

Chapter 6

Getting read

1. Download Jenkins from http://mirrors.jenkins-ci.org/war/latest/
jenkins.war.

2. Startitup by running java -jar jenkins.war. It's important that no other
applications are listening on port 8080.

jon from war file
ins found at: § r. hal
k dingFilter in
initialized. DISABLE_| i false FORJ
FCHMMP sk

9,18 runi
1, model.
1. model 35 onbdttained
.model . Hud 35 onbkttained
S H AM hudson.model,Hudson$s ondttained

all plugins
4154 zotn. model . Hudson®s onbttained

1 4;54:88 . .Hudson$s onbttained
Loaded all job

1 4:54: M h i .Hudson%s onittained
Completed in

i

INFO: IMLP

223

Integrating Automated Tests with Continuous Integration

3.

O N o o k&

10.
11.

12.

13.

224

Open the console to confirm Jenkins is working.

e 0 ﬁ__ &Dashbuard [lenkins] =

€ 5 C ff O localhost:8080 A

Glycemic Index Foo » D Other Bookmarks
‘ I - » search

Jenkins ENABLE AUTO REFRESH

= New lob [#fadd description

Welcome to Jenkins! Please create new

p. Manage Jenkins jobs to get started.

& Peaple

= Build Histor

Build Queue

Mo builds in the queue.

Build Executor Status
Status

1 Idle

2 Idle

S.c4 A

Page generated: Apr 9, 2011 4:57:54 AM lenkins wer. 1.405

Click on Manage Jenkins.
Click on Manage Plugins.
Click on the Available tab.
Find the Git Plugin and click the checkbox next to it.

At the bottom of the page, click on the Install button. Verify that the plugin has
successfully installed.

Navigate back to the dashboard screen.
Shutdown Jenkins and start it back up again.

Install git source code control on your machine. You can visit http://git-scm.
com/ to find downloadable packages. It is also possible that your system may include
package installation options like mac ports or homebrew for Macs, yum for Redhat-
based Linux distributions, and apt-get for Debian/Ubuntu systems.

Create an empty folder for this recipe:

gturnquist$ mkdir /tmp/recipe4é6

Initialize the folder for source code maintenance:

gturnquist$ git init /tmp/recipe46

Initialized empty Git repository in /private/tmp/recipe46/.git/

Chapter 6

14. Copy the shopping cart application into the folder, add it, and commit the changes.

gturnquist$ cp cart.py /tmp/recipe46/
gturnquist$ cd /tmp/recipe46/
gturnquist$ git add cart.py

gturnquist$ git commit -m "Added shopping cart application to
setup this recipe."

[master (root-commit) 057d936] Added shopping cart application to
setup this recipe.

1 files changed, 35 insertions(+), 0 deletions(-)

create mode 100644 cart.py

How to do it...

The following steps will show how to put our code under control and then run the test suite
when we make any changes and commit them:

o r N PR

Open the Jenkins console.

Click on New Job.

Enter recipe46 as the Job name and pick build a free-style software project.
Click on a.

In the Source Code Management section, pick Git. For URL, enter /tmp/
recipedé6/.

In the Build Triggers section, pick Poll SCM and enter * * * * * into the schedule
box, to trigger a poll once every minute.

In the Build section, select Execute shell and enter the following adhoc script that
loads the virtualenv and runs the test suite.

/Users/gturnquist/ptc/bin/activate
nosetests tests.py -with-nosexunit
You need to substitute the command to activate your own virtualenv, whether this is

on Windows, Linux, or Mac, and then follow it with the command used to run the tests
just like we did earlier in this chapter.

In the Post-build Actions section, pick Publish JUnit test result report and enter
target/NoseXUnit/core/*.xml, so that the test results are collected by Jenkins.

Click on Save to store all the job settings.

225

Integrating Automated Tests with Continuous Integration

10. Click on Enable Auto Refresh. We should expect the first run to fail, because we
haven't added any tests yet.

@3 Build History (trend) permalinks

g #1 Dec 7, 2010 5:07:32 PM

) & Last build (#13, 1 min 13 sec ago
F:Jfar all f_:!forfallures « Last failed build (#1), 1 min 13 sec ago
o Last unsuccessful build {#1), 1 min 13 sec ago

11. Copy the test suite into the controlled source folder, add it, and commit it.
gturnquist$ cp tests.py /tmp/recipe46/
gturnquist$ cd /tmp/recipe46/
gturnquist$ git add tests.py
gturnquist$ git commit -m "Added tests for the recipe."
[master 0f6ef56] Added tests for the recipe.
1 files changed, 20 insertions(+), 0 deletions(-)

create mode 100644 tests.py

12. Watch to verify whether Jenkins launches a successful test run.

% Build History (trend) Permalinks
W #2 Dec 7, 2010 5:15:32 PM
s Last build (#2), 20 sec ago
@ #1 Dec?, 2010 5:07:32 PM s Last stable build {#2), 20 sec ago
. e Last successful build {(#2), 20 sec ago
F:!fcnr all F:!fcnr failures & Last failed build (#1), 8 min 20 sec ago
¢ Last unsuccessful build (#1), 8 min 20 sec ago

13. Navigate to the test results page, where we can see that four of our tests were run.

Jenkins provides a powerful, flexible way to configure continuous integration jobs. In this
recipe, we configured it to poll our software confirmation management system once a minute.
When it detects a change, it pulls a fresh copy of the software and runs our test script.

By using the NoseXUnit plugin, we generated an artifact that was easy to harvest with Jenkins.
With a handful of steps, we were able to configure a web page that monitors our source code.

226

Chapter 6

There's more...

Jenkins has lots of options. If you examine the web interface, you can drill into output logs to
see what actually happened. It also collects trends showing how long we have had success,
when the last build failed, and more.

Do | have to use git for source code management?

The answer is No. We used it in this recipe to quickly show how to install a Jenkins plugin from
inside the web interface. To apply the plugin, we had to restart Jenkins.

Subversion and CVS are supported out of the box. Jenkins also has plugins supporting every
major source code control system out there, so it should be easy to meet your needs.

In fact, there is support for social coding sites like GitHub and BitKeeper. Instead of using the
Git plugin, we could configure our Jenkins installation to watch a certain GitHub account for
updates.

What is the format of polling?
We configured the polling with * * * x *_ which means once a minute. This is based on

the format used to configure crontab files. The columns from left to right are:
» MINUTE—Minutes within the hour (0-59)
» HOUR-—The hour of the day (0-23)
» DOM-The day of the month (1-31)
» MONTH-The month (1-12)
» DOW-The day of the week (0-7) where 0 and 7 are Sunday

» Generating a continuous integration report for Jenkins using NoseXUnit

Configuring Jenkins to run Python

tests when scheduled

We just explored how to configure Jenkins to run our test suite when we commit the code
changes. Jenkins can also be configured to invoke our test suite at scheduled intervals. This is
very useful, because we can gear it to make scheduled releases. Daily or weekly releases can
provide potential customers with a nice cadence of release.

227

Integrating Automated Tests with Continuous Integration

Cl releases are usually understood to not necessarily be final, but instead provide bleeding
edge support in case new features need to be investigated early and integrated by the
customer.

Getting ready

The following steps are used to set up Jenkins as well as a copy of our tests, so we can poll it
at a scheduled interval:

1.

Set up Jenkins as shown in the earlier recipe Configuring Jenkins to run Python tests
upon commit. This should include having setup the Git plugin.

Create an empty folder for this recipe.
gturnquist$ mkdir /tmp/recipe4?

Initialize the folder for source code maintenance.

gturnquist$ git init /tmp/recipe4?

Initialized empty Git repository in /private/tmp/recipe47/.git/
Copy the shopping cart application into the folder, add it, and commit the changes.
gturnquist$ cp cart.py /tmp/reciped7/

gturnquist$ cd /tmp/recipe47/

gturnquist$ git add cart.py

gturnquist$ git commit -m "Added shopping cart application to
setup this recipe."

[master (root-commit) 057d936] Added shopping cart application to
setup this recipe.

1 files changed, 35 insertions(+), 0 deletions(-)

create mode 100644 cart.py

How to do it...

The following steps will let us explore creating a Jenkins job to periodically run our automated
test suite:

1.

o 0N

228

Open the Jenkins console.

Click on New Job.

Enter recipe47 as the Job name and pick Build a free-style software project.
Click on Ok.

In the Source Code Management section, pick Git. For URL, enter /tmp/
reciped7/.

Chapter 6

6. Inthe Build Triggers section, pick Build periodically and enter some time in the
future. While writing this recipe for the book, the job was created around 6:10 p.m.,
so entering 15 18 * * * into the schedule box schedules the job five minutes into
the future at 6:15 p.m.

7. In the Build section, select Execute shell and enter the following adhoc script that
loads the virtualenv and runs the test suite.

/Users/gturnquist/ptc/bin/activate

nosetests tests.py -with-nosexunit

You need to replace this with the command used to activate your virtualenv followed
by the step to run the tests.

8. In the Post-build Actions section, pick Publish JUnit test result report and enter
target/NoseXUnit/core/*.xml, so that test results are collected by Jenkins.
9. Click on Save to store all the job settings.
10. Click on Enable Auto Refresh.
11. Copy the test suite into the controlled source folder, add it, and commit it.
gturnquist$ cp tests.py /tmp/recipe47/
gturnquist$ cd /tmp/recipe47/
gturnquist$ git add tests.py
gturnquist$ git commit -m "Added tests for the recipe."
[master 0f6ef56] Added tests for the recipe.
1 files changed, 20 insertions(+), 0 deletions(-)

create mode 100644 tests.py

12. Watch to verify whether Jenkins launches a successful test run.

! —T
Latest Test Result (no failures)
Build History (trend) E

W #1 Dec 7, 2010 6:16:06 PM

Permalinks

[a [:
o for all o for failures

Last build {#1), 23 sec ago
» Last stable build {#1), 23 sec ago
o Last successful build {#1), 23 sec ago

13. Navigate to test results, and we can see that four of our tests were run.

229

Integrating Automated Tests with Continuous Integration

This is very similar to the previous recipe, only this time we configured a polling interval for
running our test suite instead of polling the version control system. It is useful to run a build
once a day to make sure things are stable and working.

Jenkins has lots of options. If you examine the web interface, you can drill into output logs to
see what actually happened. It also collects trends showing how long we have had success,
when the last build failed, and more.

To be honest, Jenkins has so many plugins and options that an entire book could be devoted
to exploring its features. This half of the chapter is merely an introduction to using it with
some common jobs that are test-oriented.

Jenkins versus TeamCity

So far, we have explored using Jenkins. Later in this chapter, we will visit TeamCity. What are
the differences? Why should we pick one or the other?

Feature-wise, they both offer powerful choices. That is why they are both covered in this book.
The key thing both provide is setting up jobs to run tests as well as other things like packaging.

A key difference is that Jenkins is an open source product and TeamCity is commercial. You or
your company may prefer to have a paid company associated with the product (http://www.
jetbrains.com/), which is what TeamCity offers. This doesn't make the decision crystal
clear, because the principal developer of Jenkins currently works for CloudBees (http://
www . cloudbees . com/), which invests effort in Jenkins as well as products surrounding it.

If commercial support isn't imperative, you may find the pace of development of Jenkins is
faster and the number of plugins more diverse. The bottom line is that choosing the product
that meets your Cl needs requires a detailed analysis and simply can't be answered here.

» Generating a continuous integration report for Jenkins using NoseXUnit

230

Chapter 6

Generating a Cl report for TeamCity

using teamcity-nose

There is a Nose plugin that automatically detects when tests are being run from inside the
TeamCity. This conveniently captures test results and communicates them with TeamCity. With
this recipe, we will explore how to setup a Cl job inside TeamCity that runs our tests and then
manually invokes that job.

Getting ready

The following steps are needed to get us prepared to run a TeamCity Cl job:

12.

13.

Install nosetests as shown in Chapter 2.
Install teamcity-nose by typing pip install teamcity-nose.

Download TeamCity using wget http://download. jetbrains.com/teamcity/
TeamCity-6.0.tar.gz.

Unpack the download.

Switch to TeamCity/bin directory.

Startitup: ./runAll.sh start.

Open a browser to http://localhost:8111.

If this is the first time you are starting TeamCity, accept the license agreement.
Create an administrator account by picking a username and password.

. Install git source code control on your machine.
. Create an empty folder for this recipe.

gturnquist$ mkdir /tmp/recipe48

Initialize the folder for source code maintenance.

gturnquist$ git init /tmp/recipe48

Initialized empty Git repository in /private/tmp/recipe48/.git/
Copy the shopping cart application and tests into the folder, add it, and commit the
changes.

gturnquist$ cp cart.py /tmp/recipe48/

gturnquist$ cp tests.py /tmp/recipe48/

gturnquist$ cd /tmp/recipe48/

gturnquist$ git add cart.py tests.py

gturnquist$ git commit -m "Added shopping cart and tests to setup
this recipe."

231

Integrating Automated Tests with Continuous Integration

[master (root-commit) ccc7155] Added shopping cart and tests to
setup this recipe.
2 files changed, 55 insertions(+), 0 deletions(-)

create mode 100644 cart.py
create mode 100644 tests.py

How to do it...

The following steps will show us how to configure a Cl job in TeamCity:

1. Login to TeamCity console.

2. Underneath Projects tab, click Create project.

3. Type in recipe48, and then click Create.

4. Click Add a build configuration for this project.

5. Enter nose testing for the name and then click VCS settings.

6. Click on Create and attach new VCS root.

7. Enter recipe48 in VCS root name.

8. Select Git as the Type of VCS.

9. Enter /tmp/recipe48 as the Fetch URL.

10. Click on Test Connection to confirm the settings and then click Save.
11. Click on Add Build Step.

12. Select Command Line for Runner type.

13. Select Custom script for Run type and enter the following script:

. /Users/gturnquist/ptc/bin/activate

nosetests tests.py
You need to customize this with the command needed to activate your virtualenv.

14. Click on Save.
15. Go back to the project, and manually run it.

232

Chapter 6

e | et

recipeqﬂ

Overview Change Log Statistics Current

= 4 nose testing -

#3 v Tests passed: 4 -

This plugin is designed not to be used in the classic style of being invoked by a command-line
argument. Instead, it is automatically run whenever nosetests is executed, and it checks if
there is a TeamCity-specific environment variable set. If so, it kicks in by printing out viewable
results as well as sending back useful information to TeamCity.

Overview

[23:01:25]:
[23:01:25]:
[23:01:25]:
[23:01:25]:
[23:01:25]:
[23:01:25]:
[23:01:25]:
[23:01:25]:
[23:01:25]:
[23:01:25]:
[23:01:25]:

Changes (0) Tests | Build Log Build Parameters

Important messages | Tail | All messages | Tree view

tests
[tests] tests.ShoppingCartTest
[tests.S5hoppingCartTest] test_item (tests.ShoppingCartTest)
[test_item (tests.ShoppingCartTest)] ok
[tests.S5hoppingCartTest] test_length (tests.ShoppingCartTest)
[test_length (tests.ShoppingCartTest)] ok
[tests.S5hoppingCartTest] test_price (tests.ShoppingCartTest)
[test_price (tests.ShoppingCartTest)] ok
[tests.S5hoppingCartTest] test_total with sales tax (tests.ShoppingCartTest)
[test_total with sales_tax (tests.ShoppingCartTest)] ok
Build finished

233

Integrating Automated Tests with Continuous Integration

Otherwise, the plugin lets itself be bypassed and does nothing. If the plugin was NOT installed,
the following screenshot would be the output:

recipe48
Overview Change Log Statistics

¥ nose testing -

g W Success -

In turn, drilling into the details shows the following output with little detail. There are four
periods, one for each test method, but we don't know much more than that.

Crverview Changes (1) Build Log Biuily

Important messages | Tail | All messages | T

[23:51:220]¢

[23:51220]%f ~————mmcmmmmmmmemcm—————a—
[23:51:20]: Ran 4 tests in 0.001s
[23:51:20]: oK

[23:51:20]: Build finished

This means no extra arguments are needed to use the TeamCity plugin, but running it from
the command line, outside of TeamCity, causes no changes.

Configuring TeamCity to run Python

tests upon commit

TeamCity can be configured to invoke your test suite upon commit.

Getting ready

The following steps will help us prep are TeamCity to run our test suite when the code changes
are committed:

1. Set up TeamCity like the previous recipe, and have it started up. You also need to
have git installed, as mentioned earlier in this chapter.

Chapter 6

Create an empty folder for this recipe.
gturnquist$ mkdir /tmp/recipe49

Initialize the folder for source code maintenance.
gturnquist$ git init /tmp/recipe49
Initialized empty Git repository in /private/tmp/recipe49/.git/

Copy the shopping cart application into the folder, add it, and commit the changes.
gturnquist$ cp cart.py /tmp/recipe49/

gturnquist$ cd /tmp/recipe49/

gturnquist$ git add cart.py

gturnquist$ git commit -m "Added shopping cart application to
setup this recipe."

[master (root-commit) 057d936] Added shopping cart application to
setup this recipe.

1 files changed, 35 insertions(+), 0 deletions(-)

create mode 100644 cart.py

How to do it...

These steps will show us how to create a TeamCity job that polls version control to detect a
change and then run a test suite.

=

© ® N o ok~ wD

[S
W N B O

Login to TeamCity console.

Underneath Projects tab, click Create project.

Type in recipe49, and then click Create.

Click Add a build configuration for this project.

Enter nose testing for the name and then click VCS settings.
Click on Create and attach new VCS root.

Enter recipe49 in VCS root name.

Select Git as the Type of VCS.

Enter /tmp/recipe49 as the Fetch URL.

. Click on Test Connection to confirm settings and then click Save.
. Click on Add Build Step.
. Select Command Line for Runner type.

. Select Custom script for Run type and enter the following script:

/Users/gturnquist/ptc/bin/activate

nosetests tests.py

235

Integrating Automated Tests with Continuous Integration

14.
15.
16.
17.
18.

19.
20.

21.

22,

236

You must replace this with the command to activate your own virtualenv and invoke
nosetests.

Click on Save.

Click on Build Triggering.

Click on Add New Trigger.

Pick VCS Trigger from Trigger Type.

At the top, it should display VCS Trigger will add build to the queue if VCS check-in
is detected. Click Save.

Navigate back to Projects. There should be no jobs scheduled or results displayed.
Click on Run. It should fail, because we haven't added the tests to the repository.

Collapse All | Expand All 0 build(s) running.
& nosetesting -

#1 @ Failure -

From the command line, copy the test file into the repository. Then add it and
commit it.

gturnquist$ cp tests.py /tmp/recipe49/
gturnquist$ cd /tmp/recipe49/
gturnquist$ git add tests.py
gturnquist$ git commit -m "Adding tests."
[master 4c3c418] Adding tests.
1 files changed, 20 insertions(+), 0 deletions(-)
create mode 100644 tests.py

Go back to the browser. It may take a minute for TeamCity to detect the change in the
code and start another build job. It should automatically update the screen.

¥ nose testing -

#2 ¥ Tests passed: 4 -

Chapter 6

In this recipe, we configured TeamCity to do a job for us tied to a specific trigger. The trigger
is: whenever a check in is done to the software baseline. We had to take several steps to
configure this, but it demonstrates the flexible power TeamCity offers.

We also installed the teamcity-nose plugin, which gave us more details on the results.

There's more...

TeamCity calls our nose testing job a build job. That is because running tests isn't the only
thing TeamCity is used for. Instead, it's geared to build packages, deploy to sites, and any
other action we may want it to do anytime a commit happens. This is why Cl servers are
sometimes called build servers.

But if we start with simple jobs like testing the baseline, we are well on our way to discovering
the other useful features TeamCity has to offer.

What did teamcity-nose give us?

This is a nose plugin that provided us with more detailed output. We didn't go into much
detail in this recipe.

» Generating a Cl report for TeamCity using teamcity-nose

» Configuring Jenkins to run Python tests upon commit

Configuring TeamCity to run Python tests

when scheduled

TeamCity can be configured to invoke our test suite and collect results in a scheduled interval.

Getting ready

These steps will prepare us for this recipe by starting up TeamCity and having some code
ready for testing:

1. Set up TeamCity like we did earlier in this chapter, and have it up and running.
2. Create an empty folder for this recipe.

gturnquist$ mkdir /tmp/recipe50

237

Integrating Automated Tests with Continuous Integration

3.

Initialize the folder for source code maintenance.
gturnquist$ git init /tmp/recipe50
Initialized empty Git repository in /private/tmp/recipe50/.git/

Copy the shopping cart application into the folder, add it, and commit the changes.
gturnquist$ cp cart.py /tmp/recipe50/

gturnquist$ cp tests.py /tmp/recipe50/

gturnquist$ cd /tmp/recipe50/

gturnquist$ git add cart.py tests.py

gturnquist$ git commit -m "Adding shopping cart and tests for this
recipe."

[master (root-commit) 0lcd72a] Adding shopping cart and tests for
this recipe.

2 files changed, 55 insertions(+), 0 deletions(-)
create mode 100644 cart.py
create mode 100644 tests.py

How to do it...

These steps show the details of configuring TeamCity to run our test suite on a scheduled

basis:

© ® N o 0~ wDd

I
w N P O

Login to TeamCity console.

Underneath Projects tab, click Create project.

Type in recipe50, and then click Create.

Click Add a build configuration for this project.

Enter nose testing for the name and then click VCS settings.
Click on Create and attach new VCS root.

Enter recipe50 in VCS root name.

Select Git as the Type of VCS.

Enter /tmp/recipe50 as the Fetch URL.

. Click on Test Connection to confirm settings and then click Save.
. Click on Add Build Step.
. Select Command Line for Runner type.

. Select Custom script for Run type and enter the following script:

/Users/gturnquist/ptc/bin/activate

nosetests tests.py

238

Chapter 6

Replace this with your own steps to activate your virtualenv and then run the tests
using nosetests.

14. Click on Save.

15. Click on Build Triggering.

16. Click on Add New Trigger.

17. Select Schedule Trigger from Trigger Type.

18. Pick daily for frequency, and pick a time of about five minutes into the future.

19. Deselect the option to Trigger build only if there are pending changes.

20. Click Save.

21. Navigate back to Projects. There should be no jobs scheduled or results displayed.

22. Wait for the scheduled time to occur. The following screenshot shows the job when it
is activated:

Collapse All | Expand All 1 build(s) running.

Z) nose testing -

#1 *® Running -

The following screenshot shows the results summarized with our tests having passed:

Collapse All | Expand All O build(s) running.

¥) nose testing -

#1 v Tests passed: 4 -

Doesn't this look suspiciously similar to the previous recipe? Of course! We varied it a bit by
creating a time-based trigger instead of a source-based trigger. The time trigger we picked is
a daily, scheduled build at a set time. The point is showing a commonly used trigger rule. By
seeing what is the same and what's different, we can start seeing how to bend TeamCity to
serve our needs.

239

Integrating Automated Tests with Continuous Integration

TeamCity has other triggers that are very useful, like triggering one job when another one
completes. This lets us build lots of small, simple jobs, and chain them together.

We also installed the teamcity-nose plugin, which gave us more details on the results.

See also

» Generating a Cl report for TeamCity using teamcity-nose
» Configuring Jenkins to run Python tests when scheduled

240

Measuring your
Success with Test
Coverage

In this chapter, we will cover:

» Building a network management application

» Installing and running coverage on your test suite
» Generating an HTML report using coverage

» Generating an XML report using coverage

» Getting nosy with coverage

» Filtering out test noise from coverage

» Letting Jenkins get nosy with coverage

» Updating the project-level script to provide coverage reports

Introduction

Coverage analysis is measuring which lines in a program are run and which lines aren't.
This is type of analysis is also known as 'code coverage', or more simply 'coverage'.

A coverage analyzer can be used while running a system in production, but what are the
pros and cons, if we used it this way? What about using a coverage analyzer when running
test suites? What benefits would this approach provide compared to checking systems in
production?

Measuring your Success with Test Coverage

Coverage helps us to see if we are adequately testing our system. But it must be performed
with a certain amount of skepticism. This is because, even if we achieve 100 percent
coverage, meaning every line of our system was exercised, in no way does this guarantee

us having no bugs. A quick example involves a code we write and what it processes is the
return value from a system call. What if there are three possible values, but we only handle
two of them? We may write two test cases covering our handling of it, and this could certainly
achieve 100 percent statement coverage. However, it doesn't mean we have handled the third
possible return value; thus, leaving us with a potentially undiscovered bug. 100 percent code
coverage can also be obtained by condition coverage but may not be achieved with statement
coverage. The kind of coverage we are planning to target should be clear.

Another key point is that not all testing is aimed at bug fixing. Another key purpose is to make
sure that the application meets our customer's needs. This means that, even if we have 100
percent code coverage, we can't guarantee that we are covering all the scenarios expected by
our users. This is the difference between 'building it right' and 'building the right thing'.

In this chapter, we will explore various recipes to build a network management application,
run coverage tools, and harvest the results. We will discuss how coverage can introduce noise,
and show us more than we need to know, as well as introduce performance issues when it
instruments our code. We will also see how to trim out information we don't need to get a
concise, targeted view of things.

This chapter uses several third-party tools in many recipes.

» Spring Python (http://springpython.webfactional .com)contains many
useful abstractions. The one used in this chapter is its DatabaseTemplate, which
offers easy ways to write SQL queries and updates without having to deal with
Python's verbose API. Install it by typing pip install springpython.

ok zturnquist$d pip install springpythaon

v 104kb downloaded

» Install the coverage tool by typing pip install coverage. This may fail because
other plugins may install an older version of coverage. If so, uninstall coverage by
typing pip uninstall coverage, and then install it again with pip install
coverage.

» Nose is a useful test runner covered in Chapter 2, Running automated testsuites
with Nose. Refer to that chapter for steps to install Nose.

242

Chapter 7

Building a network management application

For this chapter, we will build a very simple network management application, and then write
different types of tests and check their coverage. This network management application is
focused on digesting alarms, also referred to as network events. This is different from certain
other network management tools that focus on gathering SNMP alarms from devices.

For reasons of simplicity, this correlation engine doesn't contain complex rules, but instead
contains simple mapping of network events onto equipment and customer service inventory.
We'll explore this in the next few paragraphs as we dig through the code.

How to do it...

With the following steps, we will build a simple network management application.

1. Create a file called network . py to store the network application.
2. Create a class definition to represent a network event.

class Event (object) :
def init (self, hostname, condition, severity, event time):
self.hostname = hostname
self.condition = condition
self.severity = severity
self.id = -1

def str (self) :

)

return " (ID:%s) %s:%s - %s" % (self.id, self.hostname,
self.condition, self.severity)

o hostname: It is assumed that all network alarms originate from pieces of
equipment that have a hostname.

o condition: Indicates the type of alarm being generated. Two different
alarming conditions can come from the same device.

o severity: 1l indicates a clear, green status; and 5 indicates a faulty, red
status.

o id: The primary key value used when the event is stored in a database.

3. Create a new file called network. sgl to contain the SQL code.

4. Create a SQL script that sets up the database and adds the definition for storing
network events.

CREATE TABLE EVENTS (
ID INTEGER PRIMARY KEY,
HOST NAME TEXT,
SEVERITY INTEGER,

243

Measuring your Success with Test Coverage

EVENT_ CONDITION TEXT
)i

5. Code a high-level algorithm where events are assessed for impact to equipment and
customer services and add it to network. py.

from springpython.database.core import*

class EventCorrelator (object) :
def init (self, factory):
self.dt = DatabaseTemplate (factory)

def del (self):
del (self.dt)

def process(self, event):
stored event, is active = self.store event (event)

affected services, affected equip = self.impact (event)

updated services = [
self .update service(service, event)
for service in affected services]
updated equipment = [
self .update equipment (equip, event)
for equip in affected equip]
return (stored event, is active, updated services,
updated equipment)

The _ init__ method contains some setup code to create a
* DatabaseTemplate. This is a Spring Python utility class used for database
% operations. See http://static.springsource.org/spring-
it python/1.2.x/sphinx/html/dao.html for more details. We are also
using sqlite3 as our database engine, since it is a standard part of Python.

The process method contains some simple steps to process an incoming event.

o We first need to store the event in the EVENTS table. This includes evaluating
whether or not it is an active event, meaning that it is actively impacting a
piece of equipment.

a Then we determine what equipment and what services the event impacts.

o Next, we update the affected services by determining whether it causes any
service outages or restorations.

o Then we update the affected equipment by determining whether it fails or
clears a device.

Chapter 7

6.

o Finally, we return a tuple containing all the affected assets to support any
screen interfaces that could be developed on top of this.

Implement the store event algorithm.

def store_event (self, event):
try:
max id = self.dt.query for_ int("""select max(ID)
from EVENTS""")
except DataAccessException, e:
max _id = 0
event.id = max id+1

self.dt.update("""insert into EVENTS
(ID, HOST NAME, SEVERITY,
EVENT_CONDITION)
values
(9,9,'),')) nnn,
(event.id, event.hostname,
event.severity, event.condition))
is active = \
self.add or remove from active events (event)
return (event, is_active)
This method stores every event that is processed. This supports many things

including data mining and post mortem analysis of outages. It is also the
authoritative place where other event-related data can point back using a foreign key.

o The store event method looks up the maximum primary key value from
the EVENTS table.

o [Itincrements it by one.

o Itassignsitto event.id.

o Ittheninserts it into the EVENTS table.

o Next, it calls a method to evaluate whether or not the event should be added
to the list of active events, or if it clears out existing active events. Active

events are events that are actively causing a piece of equipment to be
unclear.

o Finally, it returns a tuple containing the event and whether or not it was
classified as an active event.

245

Measuring your Success with Test Coverage

. Fora more sophisticated system, some sort of partitioning solution needs to
& be implemented. Querying against a table containing millions of rows is very
i inefficient. However, this is for demonstration purposes only, so we will skip

scaling as well as performance and security.

7. Implement the method to evaluate whether to add or remove active events.

def add or remove from active events(self, event):
""rActive events are current ones that cause equipment
and/or services to be down."""

if event.severity ==
self.dt.update("""delete from ACTIVE EVENTS
where EVENT FK in (
select ID
from EVENTS
where HOST NAME = ?
and EVENT CONDITION = ?)""",
(event .hostname, event.condition))
return False

else:
self.dt.execute ("""insert into ACTIVE_EVENTS
(EVENT_FK) values (?)""",
(event.id,))

return True

When a device fails, it sends a severity 5 event. This is an active event and in this
method, a row is inserted into the ACTIVE_EVENTS table, with a foreign key pointing
back to the EVENTS table. Then we return back True, indicating this is an active
event.

8. Add the table definition for ACTIVE_EVENTS to the SQL script.

CREATE TABLE ACTIVE EVENTS (
ID INTEGER PRIMARY KEY,
EVENT FK,
FOREIGN KEY (EVENT FK) REFERENCES EVENTS (ID)
) ;

This table makes it easy to query what events are currently causing equipment
failures.

Later, when the failing condition on the device clears, it sends a severity 1 event.
This means that severity 1 events are never active, since they aren't contributing
to a piece of equipment being down. In our previous method, we search for any active
events that have the same hostname and condition, and delete them. Then we return
False, indicating this is not an active event.

246

Chapter 7

9. Write the method that evaluates the services and pieces of equipment that are
affected by the network event.

def impact (self, event):
"""Took up this event has impact on either equipment
or services."""

affected equipment = self.dt.query(\
""rgelect * from EQUIPMENT
where HOST NAME = ?""",
(event .hostname,) ,
rowhandler=DictionaryRowMapper ())

affected services = self.dt.query(\
"""select SERVICE. *

from SERVICE
join SERVICE MAPPING SM
on (SERVICE.ID = SM.SERVICE_FK)
join EQUIPMENT
on (SM.EQUIPMENT_FK = EQUIPMENT.ID)
where EQUIPMENT.HOST NAME = ?""",
(event .hostname,),
rowhandler=DictionaryRowMapper ())

return (affected services, affected equipment)

o We first query the EQUIPMENT table to see if event . hostname matches
anything.
o Next, we join the SERVICE table to the EQUIPMENT table through a many-to-

many relationship tracked by the SERVICE_MAPPING table. Any service that
is related to the equipment that the event was reported on is captured.

o Finally, we return a tuple containing both the list of equipment and list of
services that are potentially impacted.

. Spring Python provides a convenient query operation that returns a list of
% objects mapped to every row of the query. It also provides an out-of-the-box
s DictionaryRowMapper that converts each row into a Python dictionary,
with the keys matching the column names.

10. Add the table definitions to the SQL script for EQUIPMENT, SERVICE, and
SERVICE MAPPING.

CREATE TABLE EQUIPMENT (

ID INTEGER PRIMARY KEY,
HOST NAME TEXT UNIQUE,
STATUS INTEGER

)i

247

Measuring your Success with Test Coverage

CREATE TABLE SERVICE (
ID INTEGER PRIMARY KEY,
NAME TEXT UNIQUE,
STATUS TEXT
)i
CREATE TABLE SERVICE_ MAPPING (
ID INTEGER PRIMARY KEY,
SERVICE FK,
EQUIPMENT_FK,
FOREIGN KEY(SERVICE_FK) REFERENCES SERVICE(ID),
FOREIGN KEY(EQUIPMENT_FK) REFERENCES EQUIPMENT (ID)
)i

11. Write the update service method that stores or clears service-related events,
and then updates the service's status based on the remaining active events.

def update service(self, service, event):
if event.severity == 1:
self.dt.update("""delete from SERVICE EVENTS
where EVENT FK in (
select ID
from EVENTS
where HOST NAME = ?
and EVENT CONDITION = ?)""",
(event .hostname, event.condition))

else:
self.dt.execute("""insert into SERVICE_ EVENTS
(EVENT_FK, SERVICE FK)
values (?,?2)""",
(event.id, service["ID"]))
try:

max = self.dt.query for int(\

"mirselect max (EVENTS.SEVERITY)
from SERVICE EVENTS SE
join EVENTS
on (EVENTS.ID = SE.EVENT_ FK)
join SERVICE
on (SERVICE.ID = SE.SERVICE FK)
where SERVICE.NAME = ?""",

(service ["NAME"],))

except DataAccessException, e:

max = 1
if max > 1 and service["STATUS"] == "Operational":
service ["STATUS"] = "Outage"

248

Chapter 7

self.dt.update ("""update SERVICE
set STATUS = ?
where ID = 2?""",
(service ["STATUS"], service["ID"]))
if max == 1 and service["STATUS"] == "Outage":
service ["STATUS"] = "Operational"
self.dt.update ("""update SERVICE
set STATUS = ?
where ID = 2""",
(service ["STATUS"], service["ID"]))
if event.severity == 1:
return {"service":service, "is active":False}
else:
return {"service":service, "is active":True}

Service-related events are active events related to a service. A single event can be
related to many services. For example, what if we were monitoring a wireless router
that provided Internet service to a lot of users, and it reported a critical error? This
one event would be mapped as an impact to all the end users. When a new active
event is processed, it is stored in SERVICE _EVENTS for each related service.

Then, when a clearing event is processed, the previous service event must be deleted

12.

from the SERVICE EVENTS table.

Add the table definition for SERVICE EVENTS to the SQL script.

CREATE TABLE SERVICE_EVENTS (
ID INTEGER PRIMARY KEY,
SERVICE FK,
EVENT_FK,
FOREIGN KEY(SERVICE_FK) REFERENCES SERVICE (ID),
FOREIGN KEY(EVENT_FK) REFERENCES EVENTS (ID)
) ;

It is important to recognize that deleting an entry from SERVICE EVENTS

‘Q doesn't mean that we delete the original event from the EVENTS table.

13.

Instead, we are merely indicating that the original active event is no longer
active and it does not impact the related service.

Prepend the entire SQL script with drop statements, making it possible to run the

script for several recipes.

DROP TABLE IF EXISTS SERVICE MAPPING;
DROP TABLE IF EXISTS SERVICE EVENTS;
DROP TABLE IF EXISTS ACTIVE EVENTS;
DROP TABLE IF EXISTS EQUIPMENT;

Measuring your Success with Test Coverage

DROP TABLE IF EXISTS SERVICE;
DROP TABLE IF EXISTS EVENTS;

14. Append the SQL script used for database setup with inserts to preload some
equipment and services.

INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (1,
'pyhostl', 1);
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (2,
'pyhost2', 1);
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (3,
'pyhost3', 1);

INSERT into SERVICE (ID, NAME, STATUS) values (1, 'service-abc',

'Operational') ;

INSERT into SERVICE (ID, NAME, STATUS) values (2, 'service-xyz',
'Outage') ;

INSERT into SERVICE MAPPING (SERVICE FK, EQUIPMENT FK) values
(1,1);

INSERT into SERVICE MAPPING (SERVICE FK, EQUIPMENT FK) values
(1,2);

INSERT into SERVICE MAPPING (SERVICE FK, EQUIPMENT FK) values
(2,1);

INSERT into SERVICE MAPPING (SERVICE FK, EQUIPMENT FK) values
(2,3);

15. Finally, write the method that updates equipment status based on the current active
events.

def update equipment (self, equip, event):
try:
max = self.dt.query for int(\
"trselect max (EVENTS.SEVERITY)
from ACTIVE EVENTS AE
join EVENTS
on (EVENTS.ID = AE.EVENT_ FK)
where EVENTS.HOST NAME = ?2""",
(event .hostname,))
except DataAccessException:

max = 1

if max != equip["STATUS"]:
equip ["STATUS"] = max
self.dt.update ("""update EQUIPMENT

set STATUS = ?""",
(equip ["STATUS"],))

return equip

250

Chapter 7

Here, we need to find the maximum severity from the list of active events for a given host
name. If there are no active events, then Spring Python raises a DataAccessException
and we translate that to a severity of 1.

We check if this is different from the existing device's status. If so, we issue a SQL update.
Finally, we return the record for the device, with its status updated appropriately.

This application uses a database-backed mechanism to process incoming network events,
and checks them against the inventory of equipment and services to evaluate failures and
restorations. Our application doesn't handle specialized devices or unusual types of services.
This real-world complexity has been traded in for a relatively simple application, which can be
used to write various test recipes.

Events typically map to a single piece of equipment and to zero or more
X services. A service can be thought of as a string of equipment used to provide
% a type of service to the customer. New failing events are considered active
i until a clearing event arrives. Active events, when aggregated against a piece
of equipment, define its current status. Active events, when aggregated
against a service, defines the service's current status.

Installing and running coverage on your

test suite

Install the coverage tool and run it against your test suite. Then you can view a report showing
what lines were covered by the test suite.

How to do it...

With the following steps, we will build some unit tests and then run them through the
coverage tool.

1. Create a new file called recipe52.py to contain our test code for this recipe.
2. Write a simple unit test that injects a single, alarming event into the system.

from network import *

import unittest

from springpython.database.factory import *
from springpython.database.core import *

class EventCorrelationTest (unittest.TestCase) :
def setUp(self):

251

Measuring your Success with Test Coverage

db name = "recipe52.db"
factory = Sglite3ConnectionFactory(db name)
self.correlator = EventCorrelator (factory)

dt = DatabaseTemplate (factory)
sgl = open("network.sqgl") .read() .split(";")
for statement in sqgl:

dt .execute (statement + ";")

def test process events(self):
evtl = Event ("pyhostl", "serverRestart", 5)
stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (evtl)

print "Stored event: %$s" % stored event
if is active:
print "This event was an active event."

)

print "Updated services: %s" % updated services

print "Updated equipment: %$s" % updated equipment
if mname == " main ":
unittest.main ()
3. Clear out any existing coverage report data using coverage -e.
4. Run the test suite using the coverage tool.
gturnquist$ coverage -x recipe52.py
Stored event: (ID:1) pyhostl:serverRestart - 5
This event was an active event.

Updated services: [{'is active': True, 'service': {'STATUS':
'Outage', 'ID': 1, 'NAME': u'service-abc'}}, {'is _active': True,
'service': {'STATUS': u'Outage', 'ID': 2, 'NAME': u'service-
xyz'}}]

Updated equipment: [{'STATUS': 5, 'ID': 1, 'HOST NAME':
u'pyhostl'}]

Ran 1 test in 0.211s
OK

252

Chapter 7

5. Print out the report captured by the previous command by typing coverage -r. If
the report shows several other modules listed from Python's standard libraries, it's a
hint that you have an older version of the coverage tool installed. If so, uninstall the
old version by typing pip uninstall coverage followed by reinstalling with pip
install coverage.

6. Create another file called recipe52b.py to contain a different test suite.
7. Write another test suite that generates two faults and then clears them out.

from network import *

import unittest

from springpython.database.factory import *
from springpython.database.core import *

class EventCorrelationTest (unittest.TestCase) :
def setUp(self):

db name = "recipeb52b.db"
factory = Sglite3ConnectionFactory (db=db name)
self.correlator = EventCorrelator (factory)
dt = DatabaseTemplate (factory)
sgl = open("network.sqgl") .read() .split(";")
for statement in sqgl:

dt .execute (statement + ";")

def test process events(self):

evtl = Event ("pyhostl", "serverRestart", 5)
evt2 = Event ("pyhost2", "lineStatus", 5)
evt3 = Event ("pyhost2", "lineStatus", 1)
evt4 = Event ("pyhostl", "serverRestart", 1)

for event in [evtl, evt2, evt3, evt4]:
stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (event)

)

print "Stored event: %s" % stored event
if is _active:
print "This event was an active event."

253

Measuring your Success with Test Coverage

)

print "Updated services: %s" % updated services
print "Updated equipment: %$s" % updated equipment
print M------mm e "

if name == " main ":

unittest.main ()

8. Run this test suite through the coverage tool using coverage -x recipe52b.py.

9. Print out the report by typing coverage -r.

The first test suite only injects a single alarm. We expect it to cause a service outage as well
as taking its related piece of equipment down. Since this would not exercise any of the event
clearing logic, we certainly don't expect 100 percent code coverage.

In the report, we can see it scoring network . py as having 65 statements, and having
executed 55 of them, resulting in 85 percent coverage. We also see that recipe52.py had
23 statements and executed all of them. This means all of our test code ran.

At this point, we realize that we are only testing the alarming part of the event correlator.
To make this more effective, we should inject another alarm followed by a couple of clears
to make sure that everything clears out and the services return to operational status. This
should result in 100 percent coverage in our simple application.

The second screenshot indeed shows that we have reached full coverage of network. py.

There's more...

We also see Spring Python reported as well. If we had used any other third-party libraries, then
they would also appear. Is this right? It depends. The previous comments seem to indicate
that we don't really care about coverage of Spring Python but, in other situations, we may be
very interested. And how can the coverage tool know where to draw the line?

In later recipes, we will look into how to be more selective of what to measure so we can filter
out noise.

Chapter 7

Why are there no asserts in the unit test?

It is true that the unit test isn't adequate with regard to testing the outcome. To draw up this
recipe, | visually inspected the output to see whether the network management application

was performing as expected. But this is incomplete. A real production grade unit test needs
to finish this with a set of assertions so that visual scanning is not needed.

So why didn't we code any? Because the focus of this recipe was on how to generate a
coverage report and then use that information to enhance the testing. We covered both of
those. By thinking about what was and wasn't tested, we wrote a comprehensive test that
shows services going into outage and back to operational status. We just didn't put the
finishing touch of confirming this automatically.

Generating an HTML report using coverage

Using the coverage tool, generate an HTML visual coverage report. This is useful because we
can drill into the source code and see what lines were not exercised in the test procedures.

Reading a coverage report without reading the source code is not very useful. It may be
tempting to compare two different projects based on the coverage percentages. But unless
the actual code is analyzed, this type of comparison can lead to faulty conclusions about the
quality of software.

How to do it...

With these steps, we will explore creating a nicely viewable HTML coverage report.

1. Generate coverage metrics by following the steps in Installing and running coverage
on your test suite recipe and only running the first test suite (which has resulted in
less than 100 percent coverage).

2. Generate an HTML report by typing: coverage . html.

255

Measuring your Success with Test Coverage

3. Open htmlcov/index.html using your favorite browser and inspect the overall
report.

0ee - \
® 0/ D Coverage report » \7

&« 5 C A (O file/f/Users/gturnquist/Dropbox/python_testing_cookbook/code/07 /htmlcov/index.html 5% | W

D VMware Intranet ’ Bugzilla m Builds Site m Eng KB D Share on Posterous D Helpzilla » In_—l Other Bookmarks
l

Coverage report: 70%
Module statements missing excluded coverage
[/Users/gturnquist/pte/lib/python2.6/site- 0 o o 100%
packages/springpython/__init_
[/ Users/gturnquist/pte/lib/python2.6/site- 13 5 o 62%
packages/springpython/database/__ init_
[Users/gturnquist,/pte/lib/python2.6/site- 123 34 o] 72%
packages/springpython/database/core
[Users/gturnquist/pte/lib/python2.6/site- 99 48 o 52%
packages/springpython/database/factory
network 65 10 o 85%
recipe52 23 o o 100%
Total 323 97 o 70%]

A

coverage. py v3.4

4. Click on network, and scroll down to see where the event clearing logic wasn't
exercised due to no clearing events being processed.

eano
'),-' | | Coverage for network: 85% _
« > C K () file:f//Users/gturnquist/Dropbox/python_testing_co... 97 <K
D VMware Intranet ’ Bugzilla @ Builds Site m Eng KB » [:I Other Bookmarks
54 I daf add or remove from actiwve eventa{self, event):
"""Active events are current cnes that cause eguipment
56 and/or services to be down."""

if event.sewverity == 1l:
self.dt.update ("""delete from ACTIVE EVENTS

&0 where EVENT FK = | m
61 select ID

62 from EVENTS

63 where HOST NAME = ?

64 and CONMDITICN = 2)""",

B5 {event .hoatname, event.condition))

&6 | return False

67 else:

t-!:l self.dt.execute ("""insert into ACTIVE EVENTS

(s} (EVENT FK) walues (2)""",

{event.id,))

-

return True

b+
4

=) 4 »

™

256

Chapter 7

The coverage tool has a built-in feature to generate an HTML report. This provides a powerful
way to visually inspect the source code and see what lines were not executed.

By looking at this report, we can clearly see that the lines not executed involve the lack of
clearing network events that are being processed. This can tip us off about another test case
which involves clearing events that need to be drafted.

Generating an XML report using coverage

The coverage tool can generate an XML coverage report in Cobertura format (http://
cobertura.sourceforge.net/). This is useful if we want to process the coverage
information in another tool. In this recipe, we will see how to use the coverage command-line
tool, and then view the XML report by hand.

It's important to understand that reading a coverage report without reading the source code
is not very useful. It may be tempting to compare two different projects based on the coverage
percentages. But unless the actual code is analyzed, this type of comparison can lead to
faulty conclusions about the quality of the software.

For example, a project with 85 percent coverage may appear, on the surface, to be better
tested than one with 60 percent. However, if the 60 percent application has much more
thoroughly exhaustive scenarios - as they are only covering the core parts of the system
that are in heavy use - then it may be much more stable than the 85 percent application.

M Coverage analysis serves a useful purpose when comparing test results
Q between iterations, and using it to decide which scenarios need to be added
to our testing repertoire.

How to do it...

With these steps, we will discover how to create an XML report using the coverage tool,
consumable by other tools:

1. Generate coverage metrics by following the steps in Installing and running coverage
on your test suite recipe (mentioned in Chapter 1, Using Unittest to Develop Basic
Tests) and only running the first test suite (which has resulted in less than 100
percent coverage).

2. Generate an XML report by typing: coverage xml.

257

Measuring your Success with Test Coverage

3. Open coverage.xml using your favorite text or XML editor. The format of the XML is
the same as Cobertura—a Java code coverage analyzer. This means that many tools,
like Jenkins, can parse the results.

<?xml version="1.8" 73
<1DOCTYPE coverage
SYSTEM "http://cobertura.sourceforge.net/xml/coverage-983.dtd">
= =coverage branch-rate="8" line-rote="@.6997" timestamp="1293777896667" version="3.4"=
=!-- Generated by coverage.py: http://nedbatchelder.com/code/coverage --=
= <packogess
= <package branch-rate="8" complexity="8" line-rate="8.8864" name=". ">
= <classes=
= <class branch-rate="8" complexity="8" filename="network.py" line-rote="8.8462" name="network"s
<methods/>
@ <liness[]
</class=>
= <class branch-rate="8" complexity="8" filename="recipe5Z.py"” line-rate="1" name="recipe52"=
<methods/>
=+ <'l'ines:‘|:|
</class=>
</classes>
</package>

The coverage tool has a built-in feature to generate an XML report. This provides a powerful
way to parse the output using some type of external tool.

R In the previous screenshot, | opened it using SpringSource Tool Suite (you can
~ download it from http://www. springsource.com/developer/sts),
Q partly because | happen to use STS every day, but you can use any text or XML
editor you like.

What use is an XML report?

XML is not the best way to communicate coverage information to users. Generating an HTML
report with coverage is a more practical recipe when it comes to human users.

What if we want to capture a coverage report and publish it inside a continuous integration
system like Jenkins? All we need to do is install the Cobertura plugin (refer https://wiki.
jenkins-ci.org/display/JENKINS/Cobertura+Plugin), and this report becomes
traceable. Jenkins can nicely monitor trends in coverage and give us more feedback as we
develop our system.

258

Chapter 7

See also

» Letting Jenkins get nosy with coverage
» Generating an HTML report with coverage

Getting nosy with coverage

Install the coverage nose plugin, and run your test suite using nose. This provides a quick
and convenient report using the ubiquitous nosetests tool. This recipe assumes you have
already created the network management application as described in the Building a network
management application section.

How to do it...

With these steps, we will see how to combine the coverage tool with nose.

1. Create a new file called recipe55.py to store our test code.
2. Create a test case that injects a faulting alarm.

from network import *

import unittest

from springpython.database.factory import *
from springpython.database.core import *

class EventCorrelationTest (unittest.TestCase) :
def setUp(self):
db name = "recipe55.db"
factory = Sglite3ConnectionFactory (db=db name)
self.correlator = EventCorrelator (factory)

dt = DatabaseTemplate (factory)
sgql = open("network.sqgl") .read() .split(";")
for statement in sqgl:

dt.execute (statement + ";")

def test process events(self):
evtl = Event ("pyhostl", "serverRestart", 5)

stored_event, is active, \
updated services, updated equipment = \
self.correlator.process (evtl)

°

print "Stored event: %s" % stored event
if is_active:
print "This event was an active event."

°

print "Updated services: %s" % updated services

259

Measuring your Success with Test Coverage

)

print "Updated equipment: %$s" % updated equipment

3. Run the test module using the coverage plugin by typing nosetests recipe55 -
with-coverage.

Jgturngquist-mbp: @7

gturnquist]

The nose plugin for coverage invokes the coverage tool and provides a formatted report.
For each module, it displays:

» Total number of statements

» Number of missed statements

» Percentage of covered statements

» Line numbers for the missed statements

A common behavior of nose is to alter stdout, disabling the print statements embedded in
the test case.

Why use the nose plugin instead of the coverage tool directly?

The coverage tool works fine by itself, as was demonstrated in other recipes in this chapter,
however, nose is a ubiquitous testing tool used by many developers. Providing a plugin makes
it easy to support this vast community by empowering them to run the exact set of test plugins
they want, with coverage being part of that test complement.

260

Chapter 7

Why are sqlite3 and springpython included?

Sqlite3 is a relational database library that is included with Python. It is file based which
means that no separate processes are required to create and use a database. Details about
Spring Python can be found in the earlier sections of this chapter.

The purpose of this recipe was to measure coverage of our network management application
and the corresponding test case. So why are these third-party libraries included? The
coverage tool has no way of automatically knowing what we want and the things we don't want
to see from a coverage perspective. To delve into this, refer to the next section Filtering out
test noise from coverage.

Filtering out test noise m coverage

Using command-line options, you can filter out counted lines. This recipe assumes you have
already created the network management application as described in the Building a network
management application section.

How to do it...

With these steps, we will see how to filter out certain modules from being counted in our
coverage report.

1. Create a test suite that exercises all the code functionality.

from network import *

import unittest

from springpython.database.factory import *
from springpython.database.core import *

class EventCorrelationTest (unittest.TestCase) :
def setUp(self):

db name = "recipe56.db"
factory = Sglite3ConnectionFactory (db=db name)
self.correlator = EventCorrelator (factory)
dt = DatabaseTemplate (factory)
sgl = open("network.sqgl") .read() .split(";")
for statement in sqgl:

dt .execute (statement + ";")

def test process events (self):

evtl = Event ("pyhostl", "serverRestart", 5)
evt2 = Event ("pyhost2", "lineStatus", 5)
evt3 = Event ("pyhost2", "lineStatus", 1)
evt4d = Event ("pyhostl", "serverRestart", 1)

for event in [evtl, evt2, evt3, evt4]:

261

Measuring your Success with Test Coverage

stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (event)

)

print "Stored event: %s" % stored event
if is active:
print "This event was an active event."

print "Updated services: %s" % updated services
print "Updated equipment: %$s" % updated equipment

if name == " main ":
unittest.main ()

2. Clear out any previous coverage data by running coverage -e.

3. Runitusing coverage -x recipe56.py.

4. Generate a console report using coverage -r. In the following screenshot,
observe how Spring Python is included in the report and reduces the total metric
to 73 percent.

5. Clean out coverage data by running coverage -e.

6. Run the test again using coverage run —source network.py,recipe56.py
recipe56.py.

7. Generate another console report using coverage -r. Notice in the next screenshot,
how Spring Python is no longer listed, bringing our total coverage back up to 100
percent.

| u] e
Name

TOTAL

8. Clean out coverage data by running coverage -e.

262

Chapter 7

9. Run the test using coverage -x recipe56.py.

10. Generate a console report using coverage -r recipe56.py network.py.

gturnquistd coverag © recipebte.py network.py

Coverage provides the ability to decide what files will be analyzed and what files will be
reported. The steps in the previous section gather metrics several times, either running it with
a restricted set of source files (in order to filter out Spring Python), or by requesting an explicit
set of modules in the report.

One question which arises from all this is what's the best choice? For our test scenario, the
two choices were equivalent. With approximately the same amount of typing, we filtered out
Spring Python and got a report showing network.py and recipe56 .py with 100 percent
coverage either way. However, a real project with a lot of modules and possibly different teams
working in different areas would probably do better by gathering all the metric data available
and filtering at the report level.

This way, different reports on subsystems can be run as needed without having to keep
recapturing metric data, and an overall report can still be run for whole system coverage,
all from the same gathered data.

There's more...

The options used in the previous section were inclusive. We picked what was to be included.
The coverage tool also comes with an —omit option. The challenge is that it's a file-based
option, not module based. It doesn't work to —omit springpython. Instead, every file must
be specified, and in this case, that would have required four complete files to exclude it all.

To further complicate this, the full path of the Spring Python files needs to be included.
This results in a very lengthy command, not providing much benefit over the ways we
demonstrated.

In other situations, if the file to be excluded is local to where coverage is being run, then it
might be more practical.

The coverage tool has other options not covered in this chapter, such as measuring branch
coverage instead of statement coverage, excluding lines, and the ability to run in parallel to
manage collecting metrics from multiple processes.

263

Measuring your Success with Test Coverage

As mentioned previously, the coverage tool has the ability to filter out individual lines. In my
opinion, this sounds very much like trying to get the coverage report to meet some mandated
percentage. The coverage tool is best used to work towards writing more comprehensive tests,
fixing bugs, and improving development, and not towards building a better report.

Building a network management application recipe mentioned in the earlier sections of
the chapter

Letting Jenkins get nosy with coverage

Configure Jenkins to run a test suite using nose, generating a coverage report. This recipe
assumes you have already created the network management application as described in the
Building a network management application section.

Getting ready

1. If you have already downloaded Jenkins and used it for previous recipes, look for a
. jenkins folder in your home directory and delete it, to avoid unexpected variances
caused by this recipe.

2. Install Jenkins as explained in Chapter 6: Configuring Jenkins to run Python tests
upon commit.

3. Open the console to confirm that Jenkins is working.

264

P Manage Hudson to get started.

a People

...:; Build History

Build Queue

No builds in the queue.

Build Executor Status
Status
1 Idle
2 | Idle

8 O 0/]’ o, Dashboard [Hudson] x \\;

€ =2 C fi @ localhost:8080 rd &
D WMware Intranet , Bugzilla » E] Other Bookmarks
Hudson ©)
Hudsaon DISABLE AUTO REFRESH
=+ New Job [#add description

Welcome to Hudson! Please create new jobs

Page generated: Jan 3, 2011 11:59:28 AM Hudson ver. 1.386

Click on Manage Jenkins.
Click on Manage Plugins.

Find the Cobertura Plugin and click the checkbox next to it.

4

5

6. Click on the Available tab.

7

8. Findthe Git Plugin and click the checkbox next to it.
9. At the bottom of the page, click on the Install button.
10. Navigate back to the dashboard screen.

11. Shutdown Jenkins and start it again.

Chapter 7

12. Install git source code control on your machine. Refer to Chapter 6, Configuring
Jenkins to run Python tests upon commit for links on installing git.

13. Create an empty folder for this recipe.
gturnquist$ mkdir /tmp/recipe57

14. Initialize the folder for source code maintenance.
gturnquist$ git init /tmp/recipe57

265

Measuring your Success with Test Coverage

15. Copy the network application and SQL script into the folder, add it, and commit
the changes.

gturnquist$ cp network.py /tmp/recipe57/
gturnquist$ cp network.sql /tmp/recipe57/
gturnquist$ cd /tmp/recipe57/
gturnquist$ git add network.py network.sql
gturnquist$ git commit -m "Add network app"
[master (root-commit) 7£78d46] Add network app
2 files changed, 221 insertions(+), 0 deletions(-)
create mode 100644 network.py
create mode 100644 network.sql

How to do it...

With these steps, we will explore how to configure Jenkins to build a coverage report and
serve it through Jenkins' interface.

1. Create a new file called recipe57.py to contain our test code for this recipe.
2. Write a test case that partially exercises the network management application.

from network import *

import unittest

from springpython.database.factory import *
from springpython.database.core import *

class EventCorrelationTest (unittest.TestCase) :
def setUp(self):
db _name = "recipe57.db"
factory = Sglite3ConnectionFactory (db=db_name)
self.correlator = EventCorrelator (factory)

dt = DatabaseTemplate (factory)
sgql = open("network.sqgl") .read() .split(";")
for statement in sqgl:

dt.execute (statement + ";")

def test process_events(self):
evtl = Event ("pyhostl", "serverRestart", 5)

stored_event, is_active, \
updated services, updated equipment = \
self.correlator.process (evtl)

°

print "Stored event: %s" % stored event
if is_active:

266

Chapter 7

© N o ok

10.

11.
12.
13.
14.
15.

print "This event was an active event."

)

print "Updated services: %s" % updated services

)

print "Updated equipment: %$s" % updated equipment

Copy it into the source code repository. Add it and commit the changes.
gturnquist$ cp recipe57.py /tmp/recipe57/
gturnquist$ cd /tmp/recipe57/
gturnquist$ git add recipe57.py
gturnquist$ git commit -m "Added tests."
[master 0bf1761] Added tests.
1 files changed, 37 insertions(+), 0 deletions(-)

create mode 100644 recipe57.py

Open the Jenkins console.

Click on New Job.

Enter recipe57 as the Job Name and pick Build a free-style software project.
Click on Ok.

In the Source Code Management section, pick Git. For URL enter /tmp/
recipe57/.

In the Build Triggers section, pick Poll SCM and enter * * * * * into the schedule
box, to trigger a poll once a minute.

In the Build section, select Execute Shell and enter the following adhoc script that
loads virtualenv and runs the test suite.

/Users/gturnquist/ptc/bin/activate
coverage -e
coverage run /Users/gturnquist/ptc/bin/nosetests recipe57.py
coverage xml --include=network.py,recipe57.py

1
‘Q You need to include the step to activate your virtualenv and then run

the coverage tool as shown in the following steps.

In the Post-build Actions section, pick Publish Cobertura Coverage Report.
Enter coverage . xml for Cobertura xml report pattern.

Click on Save to store all job settings.

Navigate back to the dashboard.

Click on Enable Auto Refresh.

267

Measuring your Success with Test Coverage

16. Wait about a minute for the build job to run.

All |+

- w Job I Last Success
g recipe57 3 min 0 sec (#1)
Icon: S ML

17. Click on results (#1 in the previous screenshot).

18. Click on Coverage Report. Observe the next screenshot where it reports

89 percent coverage.

Code Coverage

Cobertura Coverage Report

Trend
Classes 100%
Conditionals 100%
Files 100%
Lines B0%
Packages 100%

Project Coverage summary

Name Classes Conditionals

Cobertura Coverage Report| 100% [272 || 100% 1
Coverage Breakdown by Package

Name Classes Conditionals

. to0% [22] N/A 1004

268

Chapter 7

19. Click on module . (dot) to see network.py and recipe57.py.

20. Click on recipe57.py to see which lines were covered and which ones were
missed.

The coverage tool generates a useful XML file that the Jenkins Cobertura plugin can harvest.
It's possible to just generate the HTML report and serve it up through Jenkins, but the XML file
allows Jenkins to nicely chart the trend of coverage. It also provides the means to drill down
and view the source code along with lines covered and missed.

We also integrated it with source control so that, as changes are committed to the repository,
new jobs will be run.

There's more...

It's important not to get too wrapped up in the coverage report. The coverage tool is useful to
track testing, but working purely to increase coverage doesn't guarantee building better code.
It should be used as a tool to illuminate what test scenarios are missing instead of thinking
about testing the missing line of code.

Nose doesn't directly support coverage's XML option

The nose plugin for the coverage tool doesn't include the ability to generate XML files. This
is because the coverage plugin is part of nose and NOT part of the coverage project. It is not
up-to-date with the latest features including the XML report.

| asked Ned Batchelder, the creator of the coverage project, about this lack
of XML support from nose. He gave me the tip to run nosetests inside

N coverage, as shown previously in the Jenkins job. It generates the same

~ .coverage trace data file. It is easy to then execute coverage xml with

Q needed arguments to get our desired report. In fact, we can use any reporting
feature of coverage at this stage. Unfortunately, the coverage tool needs the
explicit path to nosetests, and running inside Jenkins requires the path to
be spelled out.

Updating the project-level script to provide

coverage reports

Update the project-level script to generate HTML, XML, and console coverage reports as
runnable options.

269

Measuring your Success with Test Coverage

Getting ready

» Install coverage by typing pip install coverage.

» Create the network management application as described in the Building a network
management application section.

How to do it...

With these steps, we will explore how to use coverage programmatically in a project
management script.

1. Create a new file called recipe58.py to store this command-line script.
2. Create a script that uses getopt to parse command-line arguments.

import getopt

import logging

import nose

import os

import os.path

import re

import sys

from glob import glob

def usage() :
print
print "Usage: python recipe58.py [command]"
print
print "\t--help"
print "\t--test"
print "\t--package"
print "\t--publish"
print "\t--register"

print
try:
optlist, args = getopt.getopt(sys.argv([l:],
llhll s
["help", "test", "package", "publish", "register"])

except getopt.GetoptError:
print help information and exit:
print "Invalid command found in %s" % sys.argv
usage ()
sys.exit (2)

270

Chapter 7

Add a test function that uses coverage's API to gather metrics and then generate a
console report, an HTML report, and an XML report while also using nose's API to run
the tests.
def test():

from coverage import coverage

cov = coverage ()

cov.start ()

suite = ["recipe52", "recipe52b", "recipe55", "recipe56",
"recipe57"]

print ("Running suite %s" % suite)

args = [""]

args.extend (suite)

nose.run(argv=args)

cov.stop ()

modules to report = [module + ".py" for module in suite]
modules to report.append ("network.py")

cov.report (morfs=modules_to_report)
cov.html report (morfs=modules to report, \
directory="recipe58")
cov.xml report (morfs=modules to report, \
outfile="recipe58.xml")

Add some other stubbed out functions to simulate packaging, publishing, and
registering this project.
def package() :
print "This is where we can plug in code to run " + \
"setup.py to generate a bundle."

def publish() :
print "This is where we can plug in code to upload " + \
"our tarball to S3 or some other download site."

def register():
print "setup.py has a built in function to " + \
"'register' a release to PyPI. It's " + \
"convenient to put a hook in here."
os.system("%s setup.py register" % sys.executable)

Add code that processes the command-line arguments and calls the functions
defined earlier.

if len(optlist) == 0:
usage ()
sys.exit (1)

Check for help requests, which cause all other

271

Measuring your Success with Test Coverage

options to be ignored.
for option in optlist:
if option[0] in ("--help", "-h"):
usage ()
sys.exit (1)

Parse the arguments, in order
for option in optlist:

if option[0] in ("--test"):
test ()

if option[0] in ("--package"):
package ()

if option[0] in ("--publish"):
publish ()

if option[0] in ("--register"):
register ()

6. Run the script using the - -test option.

= e

e

.

7. Open the HTML report using your favorite browser.

272

Chapter 7

T e rmmm— k_

&« = C M O file:///Users/gturnquist/Dropbox/python_testing... 57 | W

[] wMware Intranet % Bugzilla [0 Builds site (I Eng KB » [] Other Bookmarks
Coverage report: 98%
Module statements missing excluded coverage
network 65 0 0 100%
recipe52 24 1 0 g6%
recipe52b 28 1 0 96%
recipess 22 0 0 100%
recipes56 28 1 0 g6%
recipes7 24 1 0 96%
Total 191 4 (4] 08%

8. Inspect recipe58.xml.

The coverage API is easy to use as shown in the following steps:

1. Inthe test method, we create a coverage () instance.

from coverage import coverage

cov = coverage ()

2. We need to call the start method to begin tracing.

cov.start ()

3. Next, we need to exercise the main code. In this case, we are using the nose API.

We will use it to run the various recipes coded in this chapter.

suite = ["recipe52", "recipe52b", "recipe55", "recipe56",
"recipe57"]

print ("Running suite %s" % suite)

args = [""]

args.extend (suite)

nose.run (argv=args)

273

Measuring your Success with Test Coverage

4. Then we need to stop coverage from tracing.

cov.stop ()

5. Now that we have gathered metrics, we can generate a console report, an HTML
report, and an XML report.

modules to report = [module + ".py" for module in suite]
modules to report.append ("network.py")

cov.report (morfs=modules_to_report)
cov.html report (morfs=modules to report, \
directory="recipe58")
cov.xml report (morfs=modules to report, \
outfile="recipe58.xml")

The first report is a console report. The second report is an HTML report written into the
subdirectory recipe58. The third report is an XML report in Cobertura format written to
recipe58.xml.

There's more...

There are many more options to fine tune the gathering as well as reporting. Just visit the
online documentation at http://nedbatchelder.com/code/coverage/api.html for
more details.

Can we only use getopt?

Python 2.7 introduces argparse as an alternative. Current documentation gives no
indication that getopt is deprecated, so it's safe to use as we have just done. The getopt
module is a nice, easy-to-use command-line parser.

What's wrong with using the various command-line tools?

There is nothing wrong with using tools like nosetests, the coverage tool, setup.

py, and the many other tools that come with the Python libraries. The purpose of this recipe

is to offer a convenient, alternative approach that brings all these tools into one central script.
By investing a little bit of time in this script, we don't have to remember how to use all these
features, but instead can develop our script to support the development workflow of our project.

274

Smoke/Load Testing—
Testing Major Parts

In this chapter, we will cover:

» Defining a subset of test cases using import statements
» Leaving out integration tests

» Targeting end-to-end scenarios

» Targeting the test server

» Coding a data simulator

» Recording and playing back live data in real time

» Recording and playing back live data as fast as possible

» Automating your management demo

Introduction

Smoke testing is something less commonly embraced by teams that write automated tests.
Writing tests to verify things are working, or to expose bugs, is a commonly adopted practice,
and many teams pick up the idea of acceptance testing to verify whether their applications
are meeting customer demands.

But smoke testing is a little different. One of the key ideas with smoke testing is to see if the
system has a pulse. What does this mean? It's similar to when a doctor first sees a patient.
The first thing they do is check the patient's pulse along with other vital signs. No pulse;
critical issue! So what exactly, in software, constitutes a pulse? That is what we'll explore in
the recipes in this chapter.

Smoke/Load Testing—Testing Major Parts

Instead of thinking about comprehensive test suites that make sure every corner of the
system has been checked, smoke testing takes a much broader perspective. A set of smoke
tests is meant to make sure the system is up and alive. It's almost like a ping check. Compare
it with sanity tests. Sanity tests are used to prove a small set of situations actually work.
Smoke testing, which is similar in the sense that it is quick and shallow, is meant to see if the
system is in an adequate state to proceed with more extensive testing.

If you imagine an application built to ingest invoices, a set of smoke tests could include:

» Verify the test file has been consumed
» Verify the number of lines parsed
» Verify the grand total of the bill

Does this sound like a small set of tests? Is it incomplete? Yes it is. And that's the idea.
Instead of verifying our software parsed everything correctly, we are verifying just a few key
areas that MUST be working. If it fails to read one file, then there is a major issue that needs
to be addressed. If the grand total of the bill is incorrect, again, something big must be taken
care of.

A key side effect of smoke testing is that these tests should be quick to run.
. What if we altered the function that handles files? If our test suite involves
% parsing lots of different file types, it could take a long time to verify we didn't
s break anything. Instead of spending 30 minutes to run a comprehensive test
suite, wouldn't it be better to run a one minute quick test and then spend the
other 29 minutes working on the software?

Smoke tests are also good to use when preparing for a customer demo. With the tension
turned up, it's good to run tests more often to make sure we haven't broken anything.
Before launching a demo, one last pulse check to know the system is alive may be needed.

This chapter also dives into load testing. Load testing is crucial to verify whether our
applications can handle the strain of real-world situations. This often involves collecting
real-world data and playing it back through our software for a reproducible environment.
While we need to know our system can handle today's load, how likely is it that tomorrow's
load will be the same? Not much.

It is very useful to seek out the next bottleneck in our application. That way, we can work
towards eliminating it before we hit that load in production. One way to stress the system
is to play back real-world data as fast as possible.

276

Chapter 8

In this chapter, we will look at some recipes involving both smoke testing and load testing the
network management application we developed in the previous chapter with the recipe from
Chapter 7, Building a network management application. The types of loads we will be placing
on the application could also be described as soak testing and stress testing. Soak testing is
described as putting a significant load on the system over a significant period of time. Stress
testing is described as loading down a system until it breaks.

In my opinion, soak testing and stress testing are different sides of the same

coin of load testing. That is why this chapter simply uses the term load testing
’ when the various recipes can easily extend to these types of testing.

The code in this chapter also uses several utilities provided by Spring Python (http://
springpython.webfactional.com). You can read more details about its use and
functionality, as well as how to install it, in Chapter 7.

Many of the recipes in this chapter interact with a MySQL database. Install the Python
MySQLdb library by typing: pip install mysgl-python.

Several of the recipes in this chapter use Python Remote Objects or Pyro (http://www.
xs4all.nl/~irmen/pyro3/). It is a Remote Procedure Call (RPC) library that supports
communicating between threads and processes. Install Pyro by typing: pip install pyro.

Defining a subset of test cases using

import statements

Create a Python module that selectively imports what test cases to run.

How to do it...

With these steps, we will explore selectively picking a smaller set of tests to facilitate a
faster test run.

1. Create a test module called recipe59 test.py for writing some tests against our
network application.
import logging
from network import *
import unittest
from springpython.database.factory import *
from springpython.database.core import *

277

Smoke/Load Testing—Testing Major Parts

2. Create a test case that removes the database connection and stubs out the data
access functions.

class EventCorrelatorUnitTests (unittest.TestCase) :
def setUp(self):
db _name = "recipe59.db"
factory = Sglite3ConnectionFactory (db=db_name)
self.correlator = EventCorrelator (factory)

We "unplug" the DatabaseTemplate so that
we don't talk to a real database.
self.correlator.dt = None

Instead, we create a dictionary of
canned data to return back
self.return values = {}

For each sub-function of the network app,
we replace them with stubs which return our
canned data.

def stub_store_ event (event) :

event.id = self.return values(["id"]

return event, self.return values["active"]
self.correlator.store_event = stub_store_event

def stub_impact (event) :
return (self.return values["services"],
self.return values["equipment"])
self.correlator.impact = stub_ impact

def stub_update service(service, event):
return service + " updated"
self.correlator.update service = stub update_ service

def stub_update_ equip(equip, event):
return equip + " updated"
self.correlator.update equipment = stub_update_ equip

3. Create a test method that creates a set of canned data values, invokes the
application's process method, and then verifies the values.

def test process_events(self):
For this test case, we can preload the canned data,
and verify that our process function is working
as expected without touching the database.

self.return values|["id"] = 4668
self.return values|["active"] = True
self.return values|["services"] = ["servicel",

"service2"]

278

Chapter 8

self.return values|["equipment"] = ["devicel"]
evtl = Event ("pyhostl", "serverRestart", 5)

stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (evtl)

self.assertEquals (4668, stored event.id)
self.assertTrue(is_active)

self.assertEquals (2, len(updated services))
self.assertEquals (1, len(updated equipment))

4. Create another test case that preloads the database using a SQL script (see
Chapter 7, Building a network management application for details about the
SQL script).
class EventCorrelatorIntegrationTests (unittest.TestCase) :

def setUp(self):
db_name = "recipe59.db"
factory = Sglite3ConnectionFactory (db=db name)
self.correlator = EventCorrelator (factory)
dt = DatabaseTemplate (factory)
sgql = open("network.sqgl") .read() .split(";")
for statement in sqgl:
dt .execute (statement + ";")

5. Write a test method that calls the network application's process method, and then
prints out the results.

def test_process_events(self):
evtl = Event ("pyhostl", "serverRestart", 5)

stored_event, 1is active, \
updated_services, updated equipment = \
self.correlator.process (evtl)

°

print "Stored event: %s" % stored event
if is_active:

print "This event was an active event."
print "Updated services: %s" % updated services

o

print "Updated equipment: %s" % updated equipment

6. Create a new file called recipe59.py that only imports the SQL-based test case.
from recipe59 test import EventCorrelatorIntegrationTests
if name == "_ main_ ":
import unittest
unittest.main ()

279

Smoke/Load Testing—Testing Major Parts

7. Run the test module.

, , : abc'}
U O " HAME '
ed equipment: i

We need to write various test cases to cover the different levels of testing we need. By
separating the test runner from the test case, we were able to decide to only run the test
that integrated with the database.

Why would we do this? In our situation, we only have one unit test and it runs pretty quickly.
Do you think that a real-world application with months or years of development and a
corresponding test suite will run as quickly? Of course not!

Some of the tests may be complex. They may involve talking to real systems, parsing huge
sample data files, and other time consuming tasks. This could realistically take minutes or
hours to run.

When we are about to make a presentation to a customer, we don't need a long running
test suite. Instead, we need to be able to run a quick subset of these tests that gives us
the confidence that things are working. Using Python's import statements makes this easy
to define.

Some suites we may want to think about include:
» pulse.py: Import a set of test cases that provide broad, yet shallow testing of the

application, to verify the system "has a pulse"

» checkin.py: Import a set of test cases that are currently functioning and provide
enough confidence that code is ready to be committed

» integration.py:Import a set of test cases that startup, interact, and then
shutdown external systems like LDAP, databases, or other subsystems

» security.py:Import a set of test cases that are focused on various security
scenarios, confirming both good and bad credential handling

» all.py:Import all test cases to make sure everything is working

280

Chapter 8

This is just a sample of the types of test modules we could define. It's possible to define a
module for each subsystem we handle. But since we are talking about smoke testing, we may
want to think more broadly, and instead pick some key tests from each subsystem and tie
them together to give us a sense that the application is working.

Security, checking, and integration aren't smoke tests!

That is absolutely right. The previous list shows that using Python import statements isn't
confined to defining smoke test suites. It can be used to bundle together test cases that
serve differing needs. So why bring this up since we are talking about smoke tests? | wanted
to convey how useful this mechanism is to organizing tests and that it extends beyond smoke
testing.

What provides good flexibility?

In order to have good flexibility in being able to pick test classes, we should avoid making
the test classes too big. But putting each test method inside a different class is probably
too much.

» Chapter 7, Building a network management application

» Leaving out integration tests

Leaving out integration tests

A fast test suite avoids connecting to remote systems, like databases, LDAP, etc. Just verifying
the core units and avoiding external systems can result in a faster running test suite with more
coverage. This can lead to a useful smoke test that provides developers with confidence in the
system without running all the tests.

How to do it...

With these steps, we will see how to cut out test cases that interact with external systems.

1. Create a test module called recipe60_test .py for writing some tests against our
network application.
import logging
from network import *
import unittest
from springpython.database.factory import *
from springpython.database.core import *

281

Smoke/Load Testing—Testing Major Parts

2. Create a test case that removes the database connection and stubs out the data
access functions.

class EventCorrelatorUnitTests (unittest.TestCase) :
def setUp(self):
db name = "recipe60.db"
factory = Sglite3ConnectionFactory (db=db_name)
self.correlator = EventCorrelator (factory)

We "unplug" the DatabaseTemplate so that
we don't talk to a real database.
self.correlator.dt = None

Instead, we create a dictionary of
canned data to return back
self.return values = {}

For each sub-function of the network app,
we replace them with stubs which return our
canned data.

def stub_store_ event (event) :

event.id = self.return values(["id"]

return event, self.return values["active"]
self.correlator.store_event = stub_store_event

def stub_impact (event) :
return (self.return values["services"],
self.return values["equipment"])
self.correlator.impact = stub_ impact

def stub_update service(service, event):
return service + " updated"
self.correlator.update service = stub update_ service

def stub_update_ equip(equip, event):
return equip + " updated"
self.correlator.update equipment = stub_update_ equip

3. Create a test method that creates a set of canned data values, invokes the
applications process method, and then verifies the values.

def test process_events(self):
For this test case, we can preload the canned data,
and verify that our process function is working
as expected without touching the database.

self.return values|["id"] = 4668
self.return values|["active"] = True
self.return values|["services"] = ["servicel",

"service2"]

282

Chapter 8

self.return values|["equipment"] = ["devicel"]
evtl = Event ("pyhostl", "serverRestart", 5)

stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (evtl)

self.assertEquals (4668, stored event.id)
self.assertTrue(is_active)

self.assertEquals (2, len(updated services))
self.assertEquals (1, len(updated equipment))

4. Create another test case that preloads the database using a SQL script (see
Chapter 7, Building a network management application for details about the
SQL script).
class EventCorrelatorIntegrationTests (unittest.TestCase) :

def setUp(self):
db_name = "recipe60.db"
factory = Sglite3ConnectionFactory (db=db name)
self.correlator = EventCorrelator (factory)

dt = DatabaseTemplate (factory)
sgql = open("network.sqgl") .read() .split(";")
for statement in sqgl:

dt .execute (statement + ";")

5. Write a test method that calls the network application's process method, and then
prints out the results.

def test_process_events (self):
evtl = Event ("pyhostl", "serverRestart", 5)

stored_event, 1is active, \
updated_services, updated equipment = \
self.correlator.process (evtl)

°

print "Stored event: %s" % stored event
if is_active:
print "This event was an active event."
print "Updated services: %s" % updated services
print "Updated equipment: %s" % updated equipment

6. Create a module called recipe60.py that only imports the unit test that avoids
making SQL calls.

from recipe60 test import EventCorrelatorUnitTests
if name == "_ main_":

283

Smoke/Load Testing—Testing Major Parts

import unittest
unittest.main ()

7. Run the test module.

(ptocigturnquist-mbp: A& gzturnguistf python recipedd. py

Ok

This test suite exercises the unit tests and avoids running the test case that integrates with a
live database. It uses Python import statements to decide what test cases to include.

In our contrived scenario, there is little gained performance. But with a real project, there are
probably a lot more computer cycles spent on integration testing due to the extra costs of
talking to external systems.

The idea is to create a subset of tests that verify to some degree that our application works
by covering a big chunk of it in a smaller amount of time.

The trick with smoke testing is deciding what is a good enough test. Automated testing
cannot completely confirm that our application has no bugs. We are foiled by the fact that
either a particular bug doesn't exist, or we haven't written a test case that exposes such a
bug. To engage in smoke testing, we are deciding to use a subset of these tests for a quick
pulse read. Again, deciding what subset gives us a good enough pulse may be more art than
science.

This recipe focuses on the idea that unit tests will probably run quicker, and that cutting out
the integration tests will remove the slower test cases. If all the unit tests pass, then there is
some confidence that our application is in good shape.

There's more...

I must point out that test cases don't just easily fall into the category of unit test or
integration test. It is more of a continuum. In this recipe's sample code, we wrote one unit
test and one integration test, and picked the unit test for our smoke test suite.

Does this appear arbitrary and perhaps contrived? Sure it does. That is why smoke testing
isn't cut and dry, but instead requires some analysis and judgment about what to pick. And
as development proceeds, there is room for fine tuning.

284

Chapter 8

I once developed a system that ingested invoices from different suppliers.

| wrote unit tests that setup empty database tables, ingested files of many

formats, and then examined the contents of the database to verify processing.

The test suite took over 45 minutes to run. This pressured me to not run the

= test suite as often as desired. | crafted a smoke test suite that involved only
running the unit tests that did NOT talk to the database (since they were
quick) combined with ingesting one supplier invoice. It ran in less than five
minutes, and provided a quicker means to assure myself that fundamental
changes to the code did not break the entire system. | could run this many
times during the day, and only run the comprehensive suite about once a day.

Should a smoke test include integration or unit tests?

Does this code appear very similar to that shown in the recipe Defining a subset of test
cases using import statements? Yes it does. So why include it in this recipe? Because what
is picked for the smoke test suite is just as critical as the tactics used to make it happen. The
other recipe decided to pick up an integration test while cutting out the unit tests to create a
smaller, faster running test suite.

This recipe shows that another possibility is to cut out the lengthier integration tests and
instead run as many unit tests as possible, considering they are probably faster.

As stated earlier, smoke testing isn't cut and dry. It involves picking the best representation
of tests without taking up too much time in running them. It is quite possible that all the tests
written up to this point don't precisely target the idea of capturing the pulse of the system. A
good smoke test suite may involve mixing together a subset of unit and integration tests.

» Chapter 7, Building a network management application
» Defining a subset of test cases using import statements

Targeting end-to-end scenarios

Pick a complement of tests that exercises enough parts to define a thread of execution. This
is sometimes referred to as thread testing. Not because we are using software threading,
but instead, because we are focusing on a story thread. Often, our threads either come from
customer scenarios or are at least inspired by them. Other threads can involve other groups
of operations.

For example, a network management system may push out customer-affecting alarms, but the
internal operations team that has to solve the network problems may have a totally different
perspective. Both of these situations demonstrate valid end-to-end threads that are good
places to invest in automated testing.

285

Smoke/Load Testing—Testing Major Parts

4 If the different teams are viewed as different types of customers, then the

concepts of acceptance testing certainly apply. And it's also possible to

overlap this with the concepts of BDD.

Getting ready

1.

Copy the SQL script from Chapter 7, Creating a network management application

into a new file called recipe61 network.sgl and replace the insert statements at

the bottom with the following:

INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (1,
'pyhostl', 1);
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (2,
'pyhost2', 1);
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (3,
'pyhost3', 1);

INSERT into SERVICE (ID, NAME, STATUS) values (1, 'service-abc',
'Operational') ;

INSERT into SERVICE_MAPPING (SERVICE_FK, EQUIPMENT_FK) values
(1,1);

INSERT into SERVICE_MAPPING (SERVICE_FK, EQUIPMENT_FK) values
(1,2);

In this set of test data, pyhost1 and pyhost2 map into service-abc. However,
pyhost3 doesn't map into any service.

How to do it...

With these steps, we will build up an end-to-end test scenario.

1.
2.

286

Create a test module called recipeé6l test.py.
Create a test case where each test method captures a different thread of execution.
import logging
from network import *
import unittest

from springpython.database.factory import *
from springpython.database.core import *

class EventCorrelatorEquipmentThreadTests (unittest.TestCase) :
def setUp(self):
db name = "recipeé6l.db"
factory = Sglite3ConnectionFactory (db=db name)
self.correlator = EventCorrelator (factory)

Chapter 8

dt = DatabaseTemplate (factory)
sgql = open("recipe6l network.sql") .read() .split(";")
for statement in sqgl:

dt .execute (statement + ";")

def tearDown (self) :
self.correlator = None

3. Create a test method that captures the thread of failing and recovering a piece of
equipment.

def test equipment failing(self):
This alarm maps to a device
but doesn't map to any service.

4. Have the test method inject a single, faulting alarm and then confirm that a related
piece of equipment has failed.

evtl = Event ("pyhost3", "serverRestart", 5)

stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (evtl)

self.assertTrue(is_active)

self.assertEquals (len(updated services), 0)
self.assertEquals (len(updated equipment), 1)
self.assertEquals (updated equipment [0] ["HOST NAME"],
"pyhost3")
5 is the value for a failed piece of equipment
self.assertEquals (updated equipment [0] ["STATUS"], 5)

5. Inthe same test method, add code that injects a single, clearing alarm and confirms
that the equipment has recovered.

evt2 = Event ("pyhost3", "serverRestart", 1)

stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (evt2)

self .assertFalse(is_active)

self.assertEquals (len(updated services), 0)
self.assertEquals (len(updated equipment), 1)
self.assertEquals (updated equipment [0] ["HOST NAME"],
"pyhost3")
1 is the value for a clear piece of equipment
self .assertEquals (updated equipment [0] ["STATUS"], 1)

287

Smoke/Load Testing—Testing Major Parts

6. Create another test method that captures the thread of failing and clearing a service.

def test_service_failing(self):
This alarm maps to a service.

7. Write a test method that injects a single, faulting alarm and confirms that both a
piece of equipment and a related service fails.

evtl = Event ("pyhostl", "serverRestart", 5)

stored_event, is_active, \
updated services, updated equipment = \
self.correlator.process (evtl)

self .assertEquals (len(updated services), 1)
self.assertEquals ("service-abc",
updated_services[0] ["service"] ["NAME"])
self.assertEquals ("Outage",
updated_services[0] ["service"] ["STATUS"])

8. Inthe same test method, add code that injects a single, clearing alarm and confirms
that both the equipment and the service have recovered.

evt2 = Event ("pyhostl", "serverRestart", 1)
stored_event, is_active, \
updated services, updated equipment = \
self.correlator.process (evt2)
self .assertEquals(len(updated services), 1)
self.assertEquals ("service-abc",
updated_services[0] ["service"] ["NAME"])
self.assertEquals ("Operational™",
updated_services[0] ["service"] ["STATUS"])

9. Create a test runner called recipe61 .py that imports both of these thread tests.

from recipe6l test import *

if _name_ == "_main_ ":
import unittest
unittest.main()

10. Run the test suite.

(ptcigturnguist-mbp zturnguist} python recipesl.py

288

Chapter 8

In this recipe we coded two end-to-end test scenarios:

» The first scenario tested how our application processes a fault followed by a clear
that only impacts a piece of equipment

» The second scenario tested how our application processes a fault followed by a
clear that impacts a service

We injected a fault and then checked the results to confirm the proper piece of inventory
failed. Then we injected a clear and again confirmed that the proper piece of inventory
recovered.

Both of these scenarios show how our application processes different types of events from
the beginning to the end.

In a more complex, realistic version of this application, what other systems do you think would
be involved in an end-to-end thread? What about security? Transactions? Publishing results to
an external interface?

This is where we need to define where the ends are. Imagine that our application was grown
to the point where incoming events are received by a web request and equipment and service
updates are pushed out as JSON data to be received by a web page.

A good end-to-end test would include these parts as well. For the JSON output, we can use
Python's JSON library to decode the output and then confirm the results. For the incoming
web request, we can use many different techniques including acceptance testing tools like
the Robot Framework.

How does this define smoke tests?

If the time to run all the end-to-end tests is too long, we should pick a subset of them that
cover some key parts. For example, we could skip the equipment-based thread but keep the
service-based one.

» Chapter 5, Testing web basics with the Robot Framework

» Chapter 5, Using Robot to verify web application security

289

Smoke/Load Testing—Testing Major Parts

Targeting the test server

Does your test server have all the parts? If not, then define an alternative set of tests.

This recipe assumes that the production server is installed with an enterprise grade MySQL
database system while the developer's workstation is not. We will explore writing some tests
that use the MySQL database. But when we need to run them in the development lab, we will
make adjustments so they run on SQLite, which comes bundled with Python.

Are you wondering why MySQL isn't on the developer's workstation? It is
R true that MySQL is easy to install and not a huge performance load. But
~ this scenario applies just the same if the production server was Oracle
Q and management deemed it too costly for our developers to be granted an
individual license. Due to the cost of setting up a commercial database, this
recipe is demonstrated using MySQL and SQLite rather than Oracle and SQLite.

Getting ready

1. Make sure the MySQL production database server is up and running.

MySQL Server Status

~ . The MySQL Database Server is started and ready for client connections.
! To shut the Server down, use the "Stop MySOL Server” button.
< G, _'J .
The MySQL Server Instance is :i Stop MySQL Server :

If you stop the server, you and your applications will not
be able to use My50QL and all current connections will be closed.

| Automatically Start MySQL Server on Startup

You may select to have the MySQL server start L \
automatically whenewver your computer starts up. ey
LAY [

Open a command line MySQL client shell as the root user.

Create a database for this recipe called recipe62 as well as a user with permission
to access it.

4. Exit the shell. Contrary to what is shown in the following screenshot, never, ever, EVER
create a live production database with passwords stored in the clear. This database is
for demonstration purposes only.

290

Chapter 8

How to do it...

In these steps, we will see how to build tests that are aimed at different servers.

1. Create an alternate version of the SQL script called recipe62 network.mysgl
used in earlier recipes that use MySQL conventions.

DROP TABLE IF EXISTS SERVICE MAPPING;
DROP TABLE IF EXISTS SERVICE EVENTS;
DROP TABLE IF EXISTS ACTIVE EVENTS;
DROP TABLE IF EXISTS EQUIPMENT;

DROP TABLE IF EXISTS SERVICE;

DROP TABLE IF EXISTS EVENTS;

CREATE TABLE EQUIPMENT (

ID SMALLINT PRIMARY KEY AUTO INCREMENT,
HOST NAME TEXT,
STATUS SMALLINT

)i
CREATE TABLE SERVICE (
ID SMALLINT PRIMARY KEY AUTO INCREMENT,
NAME TEXT,
STATUS TEXT
)i
CREATE TABLE SERVICE MAPPING (
ID SMALLINT PRIMARY KEY AUTO INCREMENT,
SERVICE FK SMALLINT,
EQUIPMENT FK SMALLINT
)i
CREATE TABLE EVENTS (

291

Smoke/Load Testing—Testing Major Parts

292

ID SMALLINT PRIMARY KEY AUTO_INCREMENT,

HOST NAME TEXT,

SEVERITY SMALLINT,

EVENT_ CONDITION TEXT

) ;
CREATE TABLE SERVICE EVENTS (

ID SMALLINT PRIMARY KEY AUTO_INCREMENT,

SERVICE_FK SMALLINT,

EVENT_FK SMALLINT

) ;
CREATE TABLE ACTIVE EVENTS (

ID SMALLINT PRIMARY KEY AUTO_INCREMENT,

EVENT_FK SMALLINT

) ;
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (1,
'pyhostl', 1);
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (2,
'pyhost2', 1);
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (3,
'pyhost3', 1);

INSERT into SERVICE (ID, NAME, STATUS) values (1, 'service-abc',
'Operational') ;

INSERT into SERVICE_MAPPING (SERVICE_FK, EQUIPMENT_FK) values
(1,1);

INSERT into SERVICE MAPPING (SERVICE FK, EQUIPMENT FK) values
(1,2)

\ You might not have noticed, but this schema definition has no
5 foreign key constraints. In a real world SQL script, those should
Q definitely be included. They were left out in this case to reduce
complexity.

Create a new module called recipe62 test.py to store our test code.

Create an abstract test case that has one test method verifying event-to-service
correlation.

import logging

from network import *

import unittest

from springpython.database.factory import *

from springpython.database.core import *

class AbstractEventCorrelatorTests (unittest.TestCase) :
def tearDown (self) :

Chapter 8

self.correlator = None

def test service failing(self):
This alarm maps to a service.
evtl = Event ("pyhostl", "serverRestart", 5)

stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (evtl)

self.assertEquals(len(updated services), 1)
self.assertEquals ("service-abc",

updated services[0] ["service"] ["NAME"])
self.assertEquals ("Outage",

updated services[0] ["service"] ["STATUS"])

evt2 = Event ("pyhostl", "serverRestart", 1)

stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (evt2)

self.assertEquals (len(updated services), 1)
self.assertEquals ("service-abc",

updated services[0] ["service"] ["NAME"])
self.assertEquals ("Operational™",

updated services[0] ["service"] ["STATUS"])

4. Create a concrete subclass that connects to the MySQL database and uses the
MySQL script.
class MySQLEventCorrelatorTests (AbstractEventCorrelatorTests) :
def setUp(self):
factory = MySQLConnectionFactory ("user", "password",
"localhost", "recipe62")
self.correlator = EventCorrelator (factory)

dt = DatabaseTemplate (factory)
sgql = open("recipe62 network.mysqgl") .read() .split(";")
for statement in sqgl:

dt .execute (statement + ";")

5. Create a corresponding production test runner called recipe62 production.py.

from recipe62 test import MySQLEventCorrelatorTests

if mname == " main ":
import unittest
unittest.main()

293

Smoke/Load Testing—Testing Major Parts

Run it and verify if it connects with the production database.

urngquist-mbp:

test in 0O

Now create a SQLite version of the SQL script called recipe62 network.sql.

DROP TABLE IF EXISTS SERVICE MAPPING;
DROP TABLE IF EXISTS SERVICE_ EVENTS;
DROP TABLE IF EXISTS ACTIVE EVENTS;
DROP TABLE IF EXISTS EQUIPMENT;

DROP TABLE IF EXISTS SERVICE;

DROP TABLE IF EXISTS EVENTS;

CREATE TABLE EQUIPMENT (

ID INTEGER PRIMARY KEY,
HOST NAME TEXT UNIQUE,
STATUS INTEGER

)i

CREATE TABLE SERVICE (
ID INTEGER PRIMARY KEY,
NAME TEXT UNIQUE,
STATUS TEXT
)i

CREATE TABLE SERVICE_MAPPING (
ID INTEGER PRIMARY KEY,
SERVICE FK,
EQUIPMENT_FK,
FOREIGN KEY(SERVICE_FK) REFERENCES SERVICE(ID),
FOREIGN KEY(EQUIPMENT_FK) REFERENCES EQUIPMENT (ID)
)i

CREATE TABLE EVENTS (
ID INTEGER PRIMARY KEY,
HOST NAME TEXT,
SEVERITY INTEGER,
EVENT_ CONDITION TEXT
)i

CREATE TABLE SERVICE_EVENTS (
ID INTEGER PRIMARY KEY,
SERVICE FK,
EVENT_FK,

Chapter 8

FOREIGN KEY (SERVICE FK) REFERENCES SERVICE (ID),
FOREIGN KEY (EVENT FK) REFERENCES EVENTS (ID)
)
CREATE TABLE ACTIVE EVENTS (
ID INTEGER PRIMARY KEY,
EVENT_FK,
FOREIGN KEY (EVENT FK) REFERENCES EVENTS (ID)
)
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (1,
'pyhostl', 1);
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (2,
'pyhost2', 1);
INSERT into EQUIPMENT (ID, HOST NAME, STATUS) values (3,
'pyhost3', 1);

INSERT into SERVICE (ID, NAME, STATUS) values (1, 'service-abc',
'Operational') ;

INSERT into SERVICE_MAPPING (SERVICE_FK, EQUIPMENT_FK) values
(1,1);

INSERT into SERVICE_MAPPING (SERVICE_FK, EQUIPMENT_FK) values
(1,2);

Create another concrete subclass of the abstract test case, only have it connect as
SQLite using the SQLite script and add it to recipe62 test.py.

class Sglite3EventCorrelatorTests (AbstractEventCorrelatorTests) :
def setUp(self):
factory = Sglite3ConnectionFactory ("recipe62.db")
self.correlator = EventCorrelator (factory)

dt = DatabaseTemplate (factory)
sgql = open("recipe62 network.sql") .read() .split(";")
for statement in sqgl:

dt .execute (statement + ";")

Create a corresponding development workstation test runner called
recipe62 dev.py.
from recipe62 test import Sglite3EventCorrelatorTests

if name == " main ":
import unittest
unittest.main()

295

Smoke/Load Testing—Testing Major Parts

9. Run it and verify if it connects with the development database.

It is not uncommon to have a production environment with full-fledged servers and software
installed while at the same time having a smaller development environment. Some shops
even have a test bed that is somewhere in between these configurations.

Our network application handles this situation by allowing database connection information
to get injected into it. In each test case, we used the exact same application, but with different
database systems.

We wrote a test case that used the production MySQL database, and we wrote a test case
that used the development SQLite database. Of course MySQL, even though used in many
production environments, doesn't sound like something which is unavailable to developers.
But it provides an easy-to-see example of having to switch database systems.

There's more...

In this recipe, we showed the need to switch database systems. This isn't the only type of
external system that may require alternate configurations for test purposes. Other things like
LDAP servers, third-party web services, and separate subsystems may have totally different
configurations.

I have worked on several contracts and often seen management cut
development lab resources to save costs. They seem to conclude that the cost
M of maintaining multiple configurations and handling non-reproducible bugs is
Q less than the cost of having the exact same complement of equipment and
software. | feel this conclusion is faulty, because at some time in the future,
they end up buying more hardware and upgrade things due to increasing
issues involving platform variance.

This means we can't always write tests that target the production environment. Writing our
software so that it has maximum flexibility, like injecting database configuration as we did
earlier, is a minimum.

296

Chapter 8

It's important that we write as many tests as possible that work on the developer's platform.
When developers have to start sharing server-side resources, then we run into resource
collisions. For example, two developers sharing a single database server will have to do one
of these:

» Have separate schemas so they can empty and load test data
» Coordinate times when they each have access to the same schema
» Have different servers set up for each developer

The third option is highly unlikely given that we are talking about a development lab with a
smaller footprint than the production one.

A positive note is that developers are getting faster and more powerful machines. Compared
to 10 years ago, a commonly seen workstation far exceeds old server machines. But even
though we may each be able to run the entire software stack on our machine, it doesn't mean
management will pay for all the necessary licensing.

Unfortunately, this limitation may never change. Hence, we have to be ready to write tests for
alternate configurations and manage the discrepancies with the production environment.

How likely is it that a dev versus production environment would
use two different database systems?

Admittedly, it is unlikely to have something as big as switching between SQLite and MySQL.
That alone required slightly different dialects of SQL in order to define the schema. Some
would immediately consider this too difficult to manage. But there are smaller differences in
environments that can still yield the same need for reduced testing.

| worked on a system for many years where the production system used
Oracle 9i RAC while the development lab just had Oracle 9i. RAC required
extra hardware and we were never allocated the resources for it. To top it off,
Oracle 9i was too big to install on the relatively lightweight PCs we developed
M with. While everything spoke Oracle's dialect of SQL, the uptime differences
between RAC and non-RAC generated a fair number of bugs that we couldn't
reproduce in the dev lab. It really did qualify as two different database
systems. Given that we couldn't work in the production environment, we
tested as much as we could in the dev lab and then scheduled time in the test
lab where an RAC instance existed. Since many people needed access to that
lab, we confined our usage to RAC-specific issues to avoid schedule delays.

This isn't just confined to database systems

As stated earlier, this isn't just about database systems. We have discussed MySQL, SQLite,
and Oracle, but this also involves any sort of system we work with or depend on that varies
between production and development environments.

297

Smoke/Load Testing—Testing Major Parts

Being able to code subsets of tests to achieve confidence can help cut down on the actual
issues we will inevitably have to deal with.

Coding a data simulator

Coding a simulator that spits out data at a defined rate can help simulate real load.

This recipe assumes that the reader's machine is installed with MySQL.

Getting ready

Make sure the MySQL production database server is up and running.
Open a command line MySQL client shell as the root user.

Create a database for this recipe called recipe63 as well as a user with
permission to access it.

4. Exit the shell.

Commands end with

Server [GFL)

for help. Type '“C' fto clear the current input statement.

'User'@'localhost' identified by 'pas

How to do it...

With these steps, we will explore coding a test simulator:

1. Create a test generator script called recipe63 . py that uses various Python
libraries.

import getopt

import random

import sys

import time

from network import *

from springpython.remoting.pyro import *

298

Chapter 8

Create a usage method that prints out command-line options.

def usage() :
print "Usage"

print "====="

print "-h, --help read this help"

print "-r, --rate [arg] number of events per second"
print "-d, --demo demo by printing events"

Use Python's getopt library to parse command-line arguments.
try:
opts, args = getopt.getopt(sys.argv[l:], "hr:d", ["help",
"rate=", "demo"])
except getopt.GetoptError, err:
print str(err)
usage ()
sys.exit (1)

rate = 10
demo_mode = False

for o, a in opts:

if o in ("-h", "--help"):
usage ()
sys.exit (1)

elif o in ("-r", "--rate"):
rate = a

elif o in ("-d", "--demo"):

demo_mode = True

Add a switch so when NOT in demo mode, it uses Spring Python's
PyroProxyFactory to connect to a server instance of the network management
application defined in Chapter 7, Building a network management application.

if not demo mode:
print "Sending events to live network app. Ctrl+C to exit..."
proxy = PyroProxyFactory ()
proxy.service url = "PYROLOC://127.0.0.1:7766/network"

Code an infinite loop that creates a random event.

while True:
hostname = random.choice (["pyhostl", "pyhost2", "pyhost3"])
condition = random.choice(["serverRestart", "lineStatus"])
severity = random.choice([1,5])

evt = Event (hostname, condition, severity)

299

Smoke/Load Testing—Testing Major Parts

6. Ifin demo mode, print out the event.

if demo_mode:
now = time.strftime("%a, %d %$b %Y %$H:%M:%S +0000",
time.localtime())

) °

print "%s: Sending out %s" % (now, evt)

7. If notin demo mode, make a remote call through the proxy to the network app's
process method.

else:
stored_event, is_active, updated services, \
updated_equipment = proxy.process (evt)

°

print "Stored event: %s" % stored event

print "Active? %s" % is_active

print "Services updated: %s" % updated services
°

print "Equipment updated; %s" % updated equipment
print "s================"

8. Sleep a certain amount of time before repeating the loop.
time.sleep(l.0/float (rate))
9. Run the generator script. In the following screenshot, notice there is an error because

we haven't started the server process yet. This can also happen if the client and
server have mismatched URLs.

Ctrl+C to

10. Create a server script called recipe63 server.py that will run our network
management app connected to MySQL using SQL script recipe62 network.sqgl
from Targeting the test server.

from springpython.database.factory import *
from springpython.database.core import *
from springpython.remoting.pyro import *

from network import *

import logging

300

Chapter 8

logger = logging.getLogger ("springpython")

loggingLevel = logging.DEBUG

logger.setLevel (loggingLevel)

ch = logging.StreamHandler ()

ch.setLevel (loggingLevel)

formatter = logging.Formatter ("% (asctime)s - % (name)s -
% (levelname)s - % (message)s")

ch.setFormatter (formatter)

logger.addHandler (ch)

Initialize the database
factory = MySQLConnectionFactory ("user", "password",
"localhost", "recipe63")
dt = DatabaseTemplate (factory)
sgql = open("recipe62 network.mysqgl") .read() .split(";")
for statement in sqgl:
dt .execute (statement + ";")

11. Add code to expose the app using Pyro.

Create an instance of the network management app
target service = EventCorrelator (factory)

Expose the network app as a Pyro service
exporter = PyroServiceExporter ()
exporter.service name = "network"
exporter.service = target service
exporter.after properties set ()

12. Run the server script in a different shell.

d Exporter - DEBUG ®porting nety
gpy thon ., remo : o, emonHolder - DEEUG - R ering nety

a ¢ thon ., re ro.FyroDaenonHolder - DEBUG - F thread =1
2011-01- Slze - ¢ thon . remo ro.FyrobaemonHolder. FyroThread - DEBUG - Starting up Fy

301

Smoke/Load Testing—Testing Major Parts

13. The default rate is 10 events/second. Run the generator script with a rate of one
event/second. In the following screenshot, notice how the script generated a clear,
fault, and then another fault. The service started at Operational, moved to Outage,
and stayed there.

‘Operational’, 'ID': 1, 'MAHM
host1'}]

ic ipda A | i ; e, i 1 ;. aty 1, 'MAME': 's
quipment upd :

1, "NaME': !

Python's random. choice method makes it easy to create a range of random events. By
using the time . sleep method, we can control the rate at which the events are created.

We used Pyro to connect the test generator to the network management application. This isn't
the only way to connect things together. We could have exposed the application through other
means, such as REST, JSON, or perhaps by communicating through a database table. That's
not important. What is important is that we built an independent tool that fed data into our
application as if it came from a live network.

There's more...

We built a test generator. It's easy to run multiple copies of it in different shells, at different
rates. We have an easy way to simulate different subnets producing different volumes
of traffic.

We could also add more command-line options to fine tune the events. For example, we
could make the event condition a parameter, and emulate different rates for different
types of events.

Why does the server script initialize the database?

A production version of the server wouldn't do this. For demonstration purposes of this recipe,
it is convenient to put it there. Every time we stop and start the server script, it relaunches the
database.

302

Chapter 8

Why MySQL instead of SQLite?

SQLite has some limitations when it comes to multithreading. Pyro uses multithreading and
SQLite can't pass objects across threads. SQLite is also relatively lightweight and probably not
well suited for a real network management application.

» Targeting the test server

» Chapter 7, Building a network management application

Recording and playing back live data in
real time

Nothing beats live production data. With this recipe, we will write some code to record the live
data. Then we will play it back with delays added to simulate playing back the live data stream.

Getting ready

1. Make sure the MySQL production database server is up and running.

Open a command-line MySQL client shell as the root user.

3. Create a database for this recipe called recipe64 as well as a user with
permission to access it.

4. Exit the shell.
jst-mbp:@8 gturnguist} mysql -u root -p
Commands end with
Community Serwver [GFLY

“o' to clear the current input statement.

calhost' didentified by 'pa

Foguits

Jgturnguist-mbp: 08 gturnguistd I

303

Smoke/Load Testing—Testing Major Parts

How to do it...

With these steps, we will see how to record and play back data at a real-time pace.

1. Write a script called recipe64 livedata.py that simulates live data being sent
every one to ten seconds.

import random

import sys

import time

from network import *

from springpython.remoting.pyro import *

print "Sending events to live network app. Ctrl+C to exit..."
proxy = PyroProxyFactory ()
proxy.service url = "PYROLOC://127.0.0.1:7766/network_advised"

while True:
hostname = random.choice(["pyhostl", "pyhost2", "pyhost3"])
condition = random.choice (["serverRestart", "lineStatus"])
severity = random.choice([1,5])

evt = Event (hostname, condition, severity)

stored_event, is_active, updated services, \
updated_equipment = proxy.process (evt)

°

print "Stored event: %$s" % stored event

°

print "Active? %s" % is_active

°

print "Services updated: %s" % updated services

print "Equipment updated; %s" % updated equipment
print "s==============="

time.sleep (random.choice (range(1,10)))

2. Write a server script called recipe64 server.py thatinitializes the database
using the SQL script recipe62 network.mysqgl from Targeting the test server.

from springpython.database.factory import *
from springpython.database.core import *
from springpython.remoting.pyro import *
from springpython.aop import *

from network import *

from datetime import datetime

import os

import os.path

import pickle

import logging

logger = logging.getLogger ("springpython.remoting")
loggingLevel = logging.DEBUG

Chapter 8

logger.setLevel (loggingLevel)

ch = logging.StreamHandler ()

ch.setLevel (loggingLevel)

formatter = logging.Formatter ("% (asctime)s - % (name)s -
% (levelname)s - % (message)s")

ch.setFormatter (formatter)

logger.addHandler (ch)

Initialize the database
factory = MySQLConnectionFactory ("user", "password",
"localhost", "recipe64")
dt = DatabaseTemplate (factory)
sgql = open("recipe62 network.mysqgl") .read() .split(";")
for statement in sqgl:
dt .execute (statement + ";")

Add some code that creates an instance of the network management application and
advertises it using Pyro and Spring Python.

Create an instance of the network management app
target service = EventCorrelator (factory)

Expose the original network app as a Pyro service
unadvised service = PyroServiceExporter()

unadvised service.service name = "network"
unadvised service.service = target service
unadvised service.after properties set ()

Add some more code that defines an interceptor that captures incoming event data
along with a time stamp to disk.
class Recorder (MethodInterceptor) :
An interceptor that catches each event,
write it to disk, then proceeds to the
network management app.
def init (self):
self.filename = "recipe64 data.txt"
self.special char = "&&&"
if os.path.exists(self.filename) :
os.remove (self.filename)

def invoke(self, invocation) :
Write data to disk
with open(self.filename, "a") as f:
evt = invocation.args[0]
now = datetime.now/()

305

Smoke/Load Testing—Testing Major Parts

output = (evt, now)
print "Recording %s" % evt
f.write(pickle.dumps (output) .replace (

"\l’l", n&&&n) + n\nn)

Now call the advised service
return invocation.proceed ()

5. Add some code that wraps the network management application with the interceptor
and advertises it using Pyro.

Wrap the network app with an interceptor
advisor = ProxyFactoryObject ()
advisor.target = target service
advisor.interceptors = [Recorder ()]

Expose the advised network app as a Pyro service
advised service = PyroServiceExporter ()

advised service.service name = "network advised"
advised service.service = advisor

advised service.after properties set ()

6. Start up the server app by typing python recipeé64 server.py. Notice in the
following screenshot that there is both a network service and a network advised
service registered with Pyro.

9+
1 -
1 -
5-5

un

-sprin

7. Run the live data simulator by typing python recipe64 livedata.py untilit
generates a few events, and then hit Ctr/+C to break out of it.

306

Chapter 8

ATUS

Jilinestatus

ID': 3, 'HOST_NAME': 'pyhost3

upt
-mbp 08 gturnguistd D

9. Inspectthe recipe64 data.txt data file, noting how each line represents a
separate event and time stamp. While it's hard to decipher the data stored in a
pickled format, it's possible to spot bits and pieces.

10. Create a script called recipe64 playback.py that de-pickles each line of the
data file.

from springpython.remoting.pyro import *
from datetime import datetime

import pickle

import time

with open("recipe64 data.txt") as f:
lines = f.readlines()
events = [pickle.loads(line.replace("&&&", "\n"))
for line in lines]

307

Smoke/Load Testing—Testing Major Parts

11. Add a function that finds the time interval between the current event and the
previous one.

def calc_offset(evt, time it happened, previous_time) :
if previous_time is None:
return time_it_happened - time_it_happened
else:
return time it happened - previous_time

12. Define a client proxy to connect to the unadvised interface of our network
management application.

print "Sending events to live network app. Ctrl+C to exit..."
proxy = PyroProxyFactory ()
proxy.service url = "PYROLOC://127.0.0.1:7766/network"

13. Add code that iterates over each event, calculating the difference, and then delaying
the next event by that many seconds.

previous_time = None
for (e, time_it_happened) in events:
diff = calc_offset (e, time it happened, previous time)

print "Original: %s Now: %s" % (time_ it happened, datetime.
now ())

stored_event, is_active, updated services, \
updated_equipment = proxy.process (e)

print "Stored event: %s" % stored event

print "Active? %s" % is_active

print "Services updated: %s" % updated services

)

print "Equipment updated; %s" % updated equipment

print "Next event in %s seconds" % diff.seconds
print "s================"
time.sleep(diff.seconds)
previous time = time_ it happened
14. Run the playback script by typing python recipeé4 playback.py and observe
how it has the same delays as the original live data simulator.

308

Chapter 8

=t4
app.

Equipment k) i - k=1 ST _HAME': !
t

Normally, we would be recording data coming in from the live network. In this situation, we
need a simulator that generates random data. The simulator we coded in this recipe is very
similar to the one shown in the Coding a data simulator recipe.

To capture the data, we coded an interceptor that is embedded between Pyro and the network
management application. Every event published to the network advised Pyro service
name seamlessly passes through this interceptor:

» Each event that comes in is appended to the data file that was initialized when the
interceptor was first created

» The eventis also stored with a copy of datetime.now () in order to capture a time
stamp

» The event and time stamp are combined into a tuple, and pickled, making it easy to
write and later read back from disk

» The data is pickled to make it easy to transfer to and from disk

309

Smoke/Load Testing—Testing Major Parts

» After writing it to disk, the interceptor calls the target service and passes the results
back to the original caller

Finally, we have a playback script that reads in the data file, one event per line. It de-pickles
each line into the tuple format it was originally stored in, and builds a list of events.

The list of events is then scanned, one at a time. By comparing the current event's time
stamp with the previous one, a difference in seconds is calculated in order to use Python's
time.sleep () method to play the events back at the same rate they were recorded.

The playback script uses Pyro to send the events into the network management application.
But it talks to a different exposure point. This is to avoid re-recording the same event.

There's more...

The code in this recipe uses Pyro as the mechanism connecting clients and servers
communicate in a publish/subscribe paradigm. This isn't the only way to build such a service.
Python has XML-RPC built in as well. It just isn't as flexible as Pyro. A more thorough analysis
of real traffic is needed to determine if this interface is good enough. Alternatives include
pushing events through a database EVENT table, where the client inserts rows, and the server
polls the table for new rows, and then removes them as they are consumed.

This recipe also makes heavy use of Spring Python for its Aspect Oriented Programming
features to insert the data recording code (http://static.springsource.org/
spring-python/1.1.x/reference/html/aop.html). This provides a clean way to add
the extra layer of functionality we need to sniff and record network traffic without having to
touch the already built network management code.

I thought this recipe was about live data!

Well, the recipe is more about recording the live data and controlling the speed of playback.
To capture this concept in a reusable recipe requires that we simulate the live system. But the
fundamental concept of inserting a tap point in front of the network management processor,
as we have done, is just as valid.

Is opening and closing a file for every event a good idea?

The recipe was coded to ensure that stopping the recording would have minimal risk of losing
captured data not yet written to disk. Analysis of production data is required to determine the
most efficient way of storing data. For example, it may take less |/0 intensity to write data in

batches of 10, or perhaps 100 events. But the risk is that data can be lost in similar bundles.

If the volume of traffic is low enough, writing each event one-by-one, as shown in this recipe,
may not be a problem at all.

Chapter 8

What about offloading the storage of data?

It is not uncommon to have the actual logic of opening the file, appending the data, and
then closing the file contained in a separate class. This utility could then be injected into the
interceptor we built. This may become important if some more elaborate means to storing or
piping the data is needed. For example, another Pyro service may exist in another location
that wants a copy of the live data feed.

Injecting the data consumer into the aspect we coded would give us more flexibility. In
this recipe, we don't have such requirements, but it's not hard to imagine making such
adjustments as new requirements arrive.

» Writing a data simulator
» Chapter 7, Building a network management application

» Recording and playing back live data as fast as possible

Recording and playing back live data as

fast as possible

Replaying production data as fast as possible (instead of in real time) can give you insight into
where your bottlenecks are.

Getting ready

1. Make sure the MySQL production database server is up and running.

Open a command-line MySQL client shell as the root user.

3. Create a database for this recipe called recipe65 as well as a user with permission
to access it.

Smoke/Load Testing—Testing Major Parts

4. Exit the shell.

z end wWith

(GPL

to clear the current input statement.

In these steps, we will write some code that lets us put a big load on our system.

1. Write a script called recipe65 livedata.py that simulates live data being sent
every one to ten seconds.

import random

import sys

import time

from network import *

from springpython.remoting.pyro import *

print "Sending events to live network app. Ctrl+C to exit..."
proxy = PyroProxyFactory ()
proxy.service url = "PYROLOC://127.0.0.1:7766/network advised"

while True:
hostname = random.choice (["pyhostl", "pyhost2", "pyhost3"])
condition = random.choice(["serverRestart", "lineStatus"])
severity = random.choice([1,5])

evt = Event (hostname, condition, severity)

stored_event, is_active, updated services, \
updated equipment = proxy.process (evt)

°

print "Stored event: %s" % stored event
print "Active? %s" % is_active
°

print "Services updated: %s" % updated services
print "Equipment updated; %s" % updated equipment
print "e——————========="

time.sleep (random.choice (range(1,10)))

Chapter 8

Write a server script called recipe65 server.py thatinitializes the database
using the SQL script recipe62 network.mysqgl from Targeting the test server.

from springpython.database.factory import *
from springpython.database.core import *
from springpython.remoting.pyro import *
from springpython.aop import *

from network import *

from datetime import datetime
import os

import os.path

import pickle

import logging

logger = logging.getLogger ("springpython.remoting")
loggingLevel = logging.DEBUG

logger.setLevel (loggingLevel)

ch = logging.StreamHandler ()

ch.setLevel (loggingLevel)

formatter = logging.Formatter ("% (asctime)s - % (name)s -
% (levelname)s - % (message)s")

ch.setFormatter (formatter)

logger.addHandler (ch)

Initialize the database
factory = MySQLConnectionFactory ("user", "password",
"localhost", "recipe65")
dt = DatabaseTemplate (factory)
sql = open("recipe62 network.mysqgl") .read() .split(";")
for statement in sqgl:
dt.execute (statement + ";")

Add some code that creates an instance of the network management application and
advertises it using Pyro and Spring Python.

Create an instance of the network management app
target_ service = EventCorrelator (factory)

Expose the original network app as a Pyro service
unadvised service = PyroServiceExporter ()
unadvised_service.service_name = "network"
unadvised_service.service = target_service
unadvised service.after properties_set ()

Add some more code that defines an interceptor that captures incoming event data
along with a time stamp to disk.

class Recorder (MethodInterceptor) :

nnn

Smoke/Load Testing—Testing Major Parts

An interceptor that catches each event,
write it to disk, then proceeds to the
network management app.
wn
def init (self):
self.filename = "recipe65 data.txt"
self.special char = "&&&"
if os.path.exists(self.filename) :
os.remove (self.filename)

def invoke(self, invocation) :

Write data to disk

with open(self.filename, "a") as f:
evt = invocation.args[0]
now = datetime.now/()
output = (evt, now)
print "Recording %s" % evt
f.write(pickle.dumps (output) .replace (

"\l’l", n&&&n) + ll\nll)

Now call the advised service
return invocation.proceed ()

5. Add some code that wraps the network management application with the interceptor
and advertises it using Pyro.

Wrap the network app with an interceptor
advisor = ProxyFactoryObject ()
advisor.target = target service
advisor.interceptors = [Recorder ()]

Expose the advised network app as a Pyro service
advised service = PyroServiceExporter ()

advised service.service name = "network advised"
advised service.service = advisor

advised service.after properties set ()

6. Start up the server app by typing python recipe65 server.py. In the following
screenshot, notice that there is both a network service and a network advised
service registered with Pyro:

7. Run the live data simulator by typing python recipe65 livedata.py and watch
it run until it generates a few events, and then hit Ctr/+C to break out of it.

314

Chapter 8

'thon recipet
o e g e

=

E livedata.py

3, 'HOST_MAME': ‘py

{eEMATWS yenSprglRaved s pHASTSMARE s * py

pyhostl:lineStatus -

HOST _NAME': ‘pyhas

3, 'HOST_MAME': 'pyhaost3'}]

1 =module >

ecarding

ording ﬁID:

9. Inspectthe recipe65 data.txt data file, noting how each line represents a
separate event and time stamp. While it's hard to decipher the data stored in a
pickled format, it's possible to spot bits and pieces.

10. Create a playback script called recipe65 playback.py that de-pickles each line
of the data file.

from springpython.remoting.pyro import *
from datetime import datetime
import pickle
import time
with open("recipe65 data.txt") as f:

lines = f.readlines()
events = [pickle.loads(line.replace("&&&", "\n"))

for line in lines]

Smoke/Load Testing—Testing Major Parts

11. Define a client proxy to connect to the unadvised interface of our network
management application.
print "Sending events to live network app. Ctrl+C to exit...
proxy = PyroProxyFactory ()

proxy.service url = "PYROLOC://127.0.0.1:7766/network"

12. Add code that iterates over each event, playing back the events as fast as possible.

for (e, time_it_happened) in events:
stored_event, is_active, updated services, \
updated equipment = proxy.process(e))
print "Stored event: %s" % stored event
print "Active? %s" % is_active
print "Services updated: %s" % updated services
print "Equipment updated; %s" % updated equipment

print "s================"

13. Run the playback script by typing python recipeé5 playback.py, observing
how it doesn't delay events but instead plays them back as fast as possible.

]
[EpETAMESEn, Srz! IRYen3{ s4HOSTSHAME! &

1187 pyhos werRestart - 1
'IBYen3s atiHOSTEINAME ! |

True
ervic updated:
Equipn ed;]) fUSersIBturbg

pyhost

ATUS': 5, 'ID': 3, 'HOST_MWAME':

Chapter 8

Normally, we would be recording data coming in from the live network. In this situation, we
need a simulator that generates random data. The simulator we coded in this recipe is very
similar to the one shown in the Coding a data simulator recipe.

To capture the data, we coded an interceptor that is embedded between Pyro and the network
management application. Every event published to the network advised Pyro service
name seamlessly passes through this interceptor:

» Each event that comes in is appended to the data file that was initialized when the
interceptor was first created

» The event is also stored with a copy of datetime.now () in order to capture a time
stamp

» The event and time stamp are combined into a tuple, and pickled, making it easy to
write and later read back from disk

» The data is pickled to make it easy to transfer to and from disk

» After writing it to disk, the interceptor calls the target service and passes the results
back to the original caller

Finally, we have a playback script that reads in the data file, one event per line. It de-pickles
each line into the tuple format it was originally stored in, and builds a list of events.

The list of events is then scanned, one at a time. Instead of evaluating the time stamps to
figure out how long to delay playing back the events, they are injected immediately into the
network management application.

The playback script uses Pyro to send the events in to the network management application,
but it talks to a different exposure point. This is to avoid re-recording the same event.

There's more...

The code in this recipe uses Pyro as the mechanism connecting clients and servers and
communicates in a publish/subscribe paradigm. This isn't the only way to build such a service.
Python has XML-RPC built in as well. It just isn't as flexible as Pyro. A more thorough analysis
of real traffic is needed to determine if this interface is good enough. Alternatives include
pushing events through a database EVENT table, where the client inserts rows, and the server
polls the table for new rows, and then removes them as they are consumed.

This recipe also makes heavy use of Spring Python for its Aspect Oriented Programming
features to insert the data recording code (http://static.springsource.org/
spring-python/1.1.x/reference/html/aop.html). This provides a clean way to add
the extra layer of functionality we need to sniff and record network traffic without having to
touch the already built network management code.

Smoke/Load Testing—Testing Major Parts

What is the difference between this and playing back in real
time?

Real time playback is useful to see how the system handles production load. But this doesn't
answer the question of where the system is expected to break. Traffic flow is never steady.
Instead, it often has bursts that are not expected. That is when playing back live data at an
accelerated rate will help expose the system's next break points.

Preemptively addressing some of these concerns will make our system more resilient.

Where are the breaking points of this application?

Admittedly, this recipe didn't break when we played back four events as fast as possible.
Would this be the same result in production? Things break in different ways. We may not
get a real exception or error message, but instead discover that certain parts of the system
become backlogged.

That is where this recipe reaches its limit. While we have demonstrated how to overload
the system with a large volume of traffic, we are NOT showing how to monitor where the
bottlenecks are.

If the application under load uses database tables to queue up work, then we would need to
write the code that monitors them all and report back which one is:

» the longest
» getting longer and showing no sign of catching up

» earliest in the pipeline of activity

In systems with stages of processing, there is often one bottleneck that makes itself known.
When that bottleneck is fixed, it is rarely the only bottleneck. It was simply either the most
critical one or the first one in a chain.

Also, this recipe cannot solve your bottleneck. The purpose of this recipe is to find it.

| once built a network load tester very much like this one. The code could
handle processing lots of traffic in parallel, but events from the same
device had to be processed in order. Replaying a day's worth of events

s“ all at once exposed the fact that too many events from the same device
caused the entire queue system to become overloaded and starve out
handling other devices. After improving the service update algorithm, we
were able to replay the same load test and verify it could keep up. This
helped avoid non-reproducible outages that happened after hours or on
weekends.

Chapter 8

What amount of live data should be collected?

It is useful to capture things like a 24-hour block of traffic to allow playing back an entire day
of events. Another possibility is an entire week. Live systems may be apt to have different
loads on weekends rather than weekdays and a week of data will allow better investigation.

The problem with this much data is that it is hard to pick out a window to investigate. This is
why 24 hours of data from the weekend and 24 hours of data during the week may be more
practical.

If there is some sort of network instability where huge outages are occurring and causing
a huge flow of traffic, it may be useful to turn on the collector and wait for another similar
outage to occur. After such an outage occurs, it may be useful to shift through the data file
and trim it down to where the uptick in traffic occurred.

These types of captured scenarios are invaluable in load testing new releases, because it
confirms that new patches either improve performance as expected, or at least don't reduce
performance when fixing non-performance issues.

» Writing a data simulator
» Chapter 7, Building a network management application

» Recording and playing back live data in real time

Automating your management demo

Got a demo coming? Write automated tests that simulate the steps you'll be taking. Then print
out your test suite, and use it like a script.

How to do it...

With these steps, we will see how to write our management demo script in a runnable fashion.
1. Create a new file called recipeé66 .py to store the test code for our management
demo.
Create a unittest test scenario to capture your demo.

3. Write a series of operations as if you were driving the application from this automated
test.

4. Include asserts at every point where you will vocally point out something during the
demo.

import unittest
from network import *

Smoke/Load Testing—Testing Major Parts

from springpython.database.factory import *

class ManagementDemo (unittest.TestCase) :
def setUp(self):
factory = MySQLConnectionFactory ("user", "password",
"localhost", "recipe62")
self.correlator = EventCorrelator (factory)

dt = DatabaseTemplate (factory)
sgql = open("recipe62 network.mysqgl") .read() .split(";")
for statement in sqgl:

dt .execute (statement + ";")

def test processing a service affecting event (self):
Define a service-affecting event
evtl = Event ("pyhostl", "serverRestart", 5)

Inject it into the system
stored_event, is_active, \
updated_services, updated equipment = \
self.correlator.process (evtl)

These are the values I plan to call
attention to during my demo
self.assertEquals (len(updated services), 1)
self.assertEquals ("service-abc",

updated services[0] ["service"] ["NAME"])
self.assertEquals ("Outage",

updated services[0] ["service"] ["STATUS"])

if name == " main ":
unittest.main ()

5. Run the test suite by typing python recipeé66.py.

Fan 1 test in ©.9

0k

This recipe is more philosophical and less code based. While the concept of this recipe is
valuable, it is hard to capture in a single nugget of reusable code.

320

Chapter 8

In this test case, | inject an event, process it, and then confirm what it impacts. This test
case is headless, but our demo probably won't be. So far in this chapter, we haven't built any
user screens. As we develop user screens, we need to ensure they call the same APIs as this
automated test.

Given this, we are setup to use the screens to define the same event shown in the test. After
the event is digested, another screen will probably exist that shows current service status. We
would expect it to reflect the update to Outage.

During our management demo, we will then point out/zoom in to this part of the screen and
show how service-abec switched from Operational to Outage.

If the screens are built to delegate to this underlying logic, then the screen logic is little more
than components put together to display information. The core logic being tested maintains
its headless and easy-to-test nature.

Our code sample isn't complete, and wouldn't amount to more than a one minute demo. But
the concept is sound. By capturing the steps we plan to execute in our demo in a runnable
form, our management demo should go off without a hitch.

Did | say without a hitch? Well, demos rarely work that well. Doesn't
something about management appearances cause things to break? At one

Ql time, | began prepping for a senior management demo a month in advance
using this recipe. | uncovered and subsequently fixed several bugs, such that
my demo worked flawlessly. Management was impressed. No promises, but
sincerely making your demo 100 percent runnable will greatly increase your
odds.

There's more...

What is the secret to this recipe? It seems to be a bit short on code. While it's important to
make the demo 100 percent runnable, the key is then printing out the test and using it like
a script. That way, the only steps you are taking have already been proven to work.

What if my manager likes to take detours?

If your manager likes to ask lots of what-if questions that pulls you off script, then you are
sailing into uncharted territory. Your odds for a successful demo may drop quickly.

You can politely dodge this by capturing their what-ifs for a future demo and try to keep
the current one on track. If you take the plunge to try other things out, realize the risk you
are taking.

321

Smoke/Load Testing—Testing Major Parts

Don't be afraid to promise a future demo where you will travel down the path
requested instead of risking it in this demo. Managers are actually pretty open
to accepting a response like: "l haven't tested that yet. How about another

~\| demo next month where we cover that?". Failed demos leave a bad taste with
management and put your reputation in jeopardy. Successful ones have an
equally positive effect to your reputation as a developer. Management tends
to have a more optimistic view of seeing 70 percent of the system succeed
100 percent rather than viewing 100 percent of the system succeed 70
percent. i

This is where the line between engineer and manager needs to be observed. While managers
want to see what's available, it is our job to show them what is currently working and give an
accurate status on what is and isn't available. Asking to see something we haven't tested yet
definitely warrants pushing back and telling them such a demo isn't ready yet.

322

Good Test Habits
for New and Legacy
Systems

In this chapter, we will cover:

Something is better than nothing

Coverage isn't everything

Be willing to invest in test fixtures

If you aren't convinced on the value of testing, your team won't be either
Harvesting metrics

Capturing a bug in an automated test

Separating algorithms from concurrency

Pause to refactor when test suite takes too long to run

Cash in on your confidence

Be willing to throw away an entire day of changes

Instead of shooting for 100 percent coverage, try to have a steady growth

Randomly breaking your app can lead to better code

Good Test Habits for New and Legacy Systems

Introduction

I hope you have enjoyed the previous chapters of this book. Up to this point, we have explored
a lot of areas of automated testing:

» Unit testing

» Nose testing

» Doctest testing

» Behavior Driven Development

» Acceptance testing

» Continuous integration

» Smoke and Load testing
In this chapter, we will do something different. Instead of providing lots of code samples

for various tips and tricks, | want to share some ideas | have picked up in my career as a
software engineer.

All of the previous recipes in this book had very detailed steps on how to write the code, run
it, and review its results. Hopefully, you have been able to take those ideas, expand, and
improvise, and ultimately apply them to your own problems.

In this chapter, let's explore some of the bigger ideas behind testing and how they can
empower our development of quality systems.

Something is better than nothing

Don't get caught up in the purity of total isolation or worry about obscure test methods.
First thing, start testing.

How to do it...

You have just been handed an application that was developed by others no longer with your
company. Been there before? We all have. Probably on several occasions. Can we predict
some of the common symptoms?

» Few (if any) automated tests

» Little documentation

» Chunks of code that are commented out

» Either no comments in the code, or comments that were written ages ago and
are no longer correct

Chapter 9

And here is the fun part: we don't know all of these issues up front. We are basically told
where to check out the source tree, and to get cracking. For example, it's only when we run
into an issue and seek out documentation that we discover what does (or does not) exist.

Maybe | didn't catch everything you have encountered in that list, but | bet | hit a fair number. |
don't want to sound like an embittered software developer, because I'm not. Not every project
is like this. But I'm sure we have all had to deal with this at one time or another. So what do
we do? We start testing.

But the devil is in the details. Do we write a unit test? What about a thread test or an
integration test? You know what? It doesn't matter what type of test we write. In fact,
it doesn't matter if we use the right name.

When it's just you and the code sitting in a cubicle, terminology doesn't matter. Writing a test
is what matters. If you can pick out one small unit of code and write a test, then go for it! But
what if you picked up a jumbled piece of spaghetti code that doesn't come with nicely isolated
units?

Consider a system where the smallest unit you can get hold of is a module that parses an
electronic file and then stores the parsed results in a database. The parsed results aren't
handed back through the API. They just silently, mysteriously end up in the database. How
do we automate that?

1. Write a test that starts by emptying all the tables relevant to the application.

2. Find one of your users who has one of these files and get a copy of it.

3. Add code to the test that invokes the top-level API to ingest the file.

4. Add some more code that pulls data out of the database and checks the results.
(You may have to grab that user to make sure it is working correctly.)

Congratulations, you just wrote an automated test! It probably didn't qualify as a unit test. In
fact, it may look kind of ugly to you. But so what? Maybe it took five minutes to run, but isn't
that better than no test at all?

Since the database is the place where we can assert results, we need to have a cleaned out
version before every run of our test. This is definitely going to require coordination if other
developers are using some of the same tables. We may need our own schema allocated to us,
so that we can empty tables at will.

The modules probably suffer from a lack of cohesion and too much tight coupling. While we
can try to identify why the code is bad, it doesn't advance our cause of building automated
tests.

325

Good Test Habits for New and Legacy Systems

Instead, we must recognize that if we try to jump immediately into unit level testing, we would
have to refactor the modules to support us. With little or no safety net, the risk is incredibly
high, and we can feel it! If we try to stick to textbook unit testing, then we will probably give up
and deem automated testing as an impossibility.

So we have to take the first step and write the expensive, end-to-end automated test to build
the first link in a chain. That test may take a long time to run and not be very comprehensive
in what we can assert. But it's a start. And that is what's important. Hopefully, after steady
progress in writing more tests like this, we will build up enough of a safety net to go back and
refactor this code.

That can't be everything!

Does "just write the test" sound a little too simple? Well the concept is simple. The work is
going to be hard. Very hard.

You will be forced to crawl through lots of APIs and find out exactly how they work. And guess
what? You probably won't be handed lots of intermediate results to assert. Understanding the
APl is just so that you can track down where the data travels to.

When | described the data of our situation as "mysteriously ending up in the database", | was
referring to the likelihood that the APIs you have probably weren't designed with lots of return
values aimed at testability.

Just don't let anyone tell you that you are wasting your time building a long-running test
case. An automated test suite that takes an hour to run and is exercised at least once a day
probably instills more confidence than clicking through the screens manually. Something is
better than nothing.

» Cash in on your confidence

Coverage isn't everything

You've figured out how to run coverage reports. But don't assume that more coverage is
automatically better. Sacrificing test quality in the name of coverage is a recipe for failure.

How to do it...

Coverage reports provide good feedback. They tell us what is getting exercised and what
is not. But just because a line of code is exercised doesn't mean it is doing everything it is
meant to do.

326

Chapter 9

Are you ever tempted to brag about coverage percentage scores in the break room? Taking
pride in good coverage isn't unwarranted, but when it leads to comparing different projects
using these statistics, we are wandering into risky territory.

Coverage reports are meant to be read in the context of the code they were run against. The
reports show us what was covered and what was not, but this isn't where things stop. Instead,
it's where they begin. We need to look at what was covered, and analyze how well the tests
exercised the system.

It's obvious that O percent coverage of a module indicates we have work to do. But what does
it mean when we have 70 percent coverage? Do we need to code tests that go after the other
30 percent? Sure we do! But there are two different schools of thought on how to approach
this. One is right and one is wrong;:

» The first approach is to write the new tests specifically targeting the uncovered parts
while trying to avoid overlapping the original 70 percent. Redundantly, testing code
already covered in another test is an inefficient use of resources.

» The second approach is to write the new tests so they target scenarios the code is
expected to handle, but which we haven't tackled yet. What was not covered should
give us a hint about what scenarios haven't been tested yet.

The right approach is the second one. Okay, | admit | wrote that in a leading fashion. But the
point is that it's very easy to look at what wasn't hit, and write a test that shoots to close the
gap as fast as possible.

Python gives us incredible power to monkey patch, inject alternate methods, and do other
tricks to exercise the uncovered code. But doesn't this sound a little suspicious? Here are
some of the risks we are setting ourselves up for:

» The new tests may be more brittle when they aren't based on sound scenarios.

» A major change to our algorithms may require us to totally rewrite these tests.

» Ever written mock-based tests? It's possible to mock the target system out of
existence and end up just testing the mocks.

327

Good Test Habits for New and Legacy Systems

» Even though some (or even most) of our tests may have good quality, the low quality
ones will cast our entire test suite as low quality.

The coverage tool may not let us "get away" with some of these tactics if we do things that
interfere with the line counting mechanisms. But whether or not the coverage tool counts the
code should not be the gauge by which we determine the quality of tests.

Instead, we need to look at our tests and see if they are trying to exercise real use cases we
should be handling. When we are merely looking for ways to get more coverage percentage,
we stop thinking about how our code is meant to operate, and that is not good.

Are we not supposed to increase coverage?

We are supposed to increase coverage by improving our tests, covering more scenarios, and
by removing code no longer supported. These things all lead us towards overall better quality.

Increasing coverage for the sake of coverage doesn't lend itself to improving the quality of
our system.

But | want to brag about the coverage of my system!

I think it's alright to celebrate good coverage. Sharing a coverage report with your manager
is alright. But don't let it consume you.

If you start to post weekly coverage reports, double check your motives. Same goes if your
manager requests postings as well.

If you find yourself comparing the coverage of your system against another system, then watch
out! Unless you are familiar with the code of both systems and really know more than the
bottom line of the reports, you are probably wandering into risky territory. You may be headed
into faulty competition that could drive your team to write brittle tests.

Be willing to invest in test fixtures

Spend time working on some test fixtures. You may not get a lot of tests written at first, but
this investment will pay off.

How to do it...

When we start building a new green field project, it's a lot easier to write test-oriented
modules. But when dealing with legacy systems, it may take more time to build a working
test fixture. This may be tough to go through, but it's a valuable investment.

As an example, in Something is better than nothing, we talked about a system that scanned
electronic files and put the parsed results in database tables. What steps would our test
fixture require?

328

Chapter 9

» Setup steps to clean out the appropriate tables

» Quite possibly, we may need to use code or a script to create a new database
schema to avoid collisions with other developers

» It may be necessary to stage the file in a certain location so the parser can find it

These are all steps that take time in order to build a working test case. More complex legacy
systems may require even more steps to gear up for a test run.

All of this can become intimidating, and may push us to drop automated testing and just
continue with clicking through the screens to verify things. But taking the time to invest in
coding this fixture will begin to pay off as we write more test cases that use our fixture.

Have you ever built a test fixture and had to alter it for certain scenarios? After having
developed enough test cases using our fixture, we will probably encounter another use case
we need to test that exceeds the limits of our fixture. Since we are now familiar with it, it is
probably easier to create another fixture.

This is another way that coding the first fixture pays off. Future fixtures have
a good chance of being easier to code. This isn't a cut-and-dried guarantee of
g improvement. Often, the first variation of our test fixture is a simple one.

We will probably run into the situation where we need another test fixture that is totally
different from what we've built. At this point, investing in the first test fixture doesn't have the
same payoff. But by this time, we will have become more seasoned test writers and have a
better handle on what works and what doesn't when it comes to testing the system.

All the work done up to this point will have sharpened our skill set and that, in and of itself,
is a great payoff for investing in the test fixture.

Is this just about setting up a database?

Not at all. If our system interacts extensively with an LDAP server, we may need to code a
fixture that cleans out the directory structure and loads it up with test data.

If the legacy system is flexible enough, we can put this whole test structure into some subnode
in the hierarchy. But it's just as likely that it expects the data to exist at a certain location. In
that situation, we may have to develop a script that spins up a separate, empty LDAP server,
and then shuts it down after the test is complete.

329

Good Test Habits for New and Legacy Systems

Setting up and tearing down an LDAP server may not be the fastest, nor the most efficient test
fixture. But if we invest the time to build this fixture to empower ourselves to write automated
tests, we will eventually be able to refactor the original system to decouple it from a live LDAP
server. And this whole process will sharpen our skill set. That is why creating the original test
fixture truly is an investment.

If you aren't convinced on the value of

testing, your team won't be either

Test bitten developers exhibit zeal. They are excited to run their test suite, and see things
complete with 100 percent success. This sort of emotion and pride tends to rub off on fellow
developers.

But the reverse is also true. If you aren't excited by all this and don't spread the word, none of
your team mates will realize it either. The idea of adding automated tests to your system will
die a sad death.

This isn't just confined to my own personal experience. At the devLink conference in 2010,

| attended an open space discussion about testing, and saw this sort of reaction among a
dozen other developers | don't work with (pythontestingcookbook.posterous.com/
greetings-programs). The testers showed a certain type of excitement as they relayed
their experiences with testing. The ones that were on the fence about embracing automated
testing were listening with glee in their eyes, drinking it in. Those not interested simply weren't
there for the discussion.

If you are reading this book (which of course you are), there is a fair chance you are the only
person on your team seriously interested in automated testing. Your team mates may have
heard of it, but aren't as bitten by the idea as you. To add it to your system will require a lot of
investment by you. But don't confine yourself to just sharing the code:

» Demonstrate the excitement you feel as you make progress and tackle thorny issues

» Share your test results by posting them on your walls where others can see

» Talk about your accomplishments while chatting with co-workers in the break room
Testing isn't a cold, mechanical process. It's an exciting, fiery area of development. Test
bitten developers can't wait to share it with others. If you look for ways to spread the fire of

automated testing, eventually others will warm up to it and you will find yourself talking about
new testing techniques together.

330

Chapter 9

Harvesting metrics

Start a spreadsheet that shows lines code, number of tests, total test execution time, and
number of bugs, and track this with every release. The numbers will defend your investment.

How to do it...

These high level steps show how to capture metrics over time:

1. Create a spreadsheet to track number of test cases, time to run test suite, date of
test run, bugs, and average time per test.

2. Check the spreadsheet into your code base as another controlled artifact.
Add some graphs to show the curve of test time versus test quantity.

4. Add a new row of data at least every time you do a release. If you can capture data
more often, like once/week or even once/day, that is better.

As you write more tests, the test suite will take longer to run. But you will also find that the
number of bugs tend to decrease. The more testing you do, and the more often you do it leads
to overall code quality. Capturing the metrics of your testing can act as hard evidence that the
time spent writing and running tests is a well-placed investment.

There's more...

Why do | need this document? Don't | already know that testing works? Think of it as a
backup for your assertion of quality. Months down the road, you may be challenged by the
management to speed things up. Maybe they need something faster, and they think you are
simply spending too much time on this "testing stuff".

If you can pull out your spreadsheet and show how bugs decreased with testing effort, they
will have little to argue with. But if you don't have this, and simply argue that "testing makes
things better", you may lose the argument.

Metrics aren't just for defending yourself to management

| personally enjoyed seeing the tests grow and the bugs decline. It was a personal way to
track myself and keep a handle on how much progress was made. And to be honest, my last
manager gave me full support for automated testing. He had his own metrics of success, so |
never had to pull out mine.

331

Good Test Habits for New and Legacy Systems

Capturing a bug in an automated test

Before you fix that one line bug you spotted, write an automated test instead, and make sure
it's repeatable. This helps to build up insulation from our system regressing back into failures
we fixed in the past.

How to do it...

These high level steps capture the workflow of capturing bugs in automated tests before
we fix them:

1. When a new bug is discovered, write a test case that recreates it. It doesn't matter
if the test case is long running, complex, or integrates with lots of components. The
critical thing is to reproduce the bug.

2. Add it to your suite of tests.
Fix the bug.
4. Verify the test suite passes before checking in your changes.

The simplest way to introduce automated testing to an application that never had it before is
to test one bug at a time. This method ensures that newly discovered bugs won't sneak back
into the system later on.

The tests may have a loose knit feel instead of a comprehensive one, but that doesn't matter.
What does matter is that over time, you will slowly develop a solid safety net of test cases that
verify the system performs as expected.

There's more...

| didn't say this would be easy. Writing an automated test for software that wasn't built with
testability in mind is hard work. As mentioned in the recipe Something is better than nothing,
the first test case is probably the hardest. But over time, as you develop more tests, you will
gain the confidence to go back and refactor things. You will definitely feel empowered by
knowing that you can't break things without knowing it.

When the time comes to add a completely new module, you will
be ready for it

This approach of capturing a bug with a test case is useful, but slow. But that's okay, because
slowly adding testing will give you time to grow your testing skills at a comfortable pace.

332

Chapter 9

Where does this pay off? Well, eventually, you will need to add some new module to your
system. Doesn't this always happen? By that time, your investment in testing and test fixtures
should already be paying you dividends in improvement of the quality of existing code. But you
will also have a head start on testing the new module:

» You will not just know, but really understand the meaning of "test-oriented code".

» You will be able to write both the code and its tests at the same time in a very
effective way.

» The new module will have a head start of higher quality and not require as much
effort to "catch up" as did the legacy parts of your system.

Don't give in to the temptation to skip testing

As | stated earlier, the first test case will be very hard to write. And the next few after that
won't be much easier. This makes it very tempting to throw up your hands and skip automated
testing. But if you stick with it and write something that works, then you can continue building
off that successful bit of effort.

This may sound like a cliché, but if you stick with it for about a month, you will start to see
some results of your work. This is also a great time to start Harvesting metrics. Capturing
your progress and being able to reflect on it can provide positive encouragement.

Separating algorithms from concurrency

Concurrency is very hard to test, but most algorithms are not, when decoupled.

How to do it...

Herb Sutter wrote an article in 2005 entitled The Free Lunch Is Over, where he points out how
microprocessors are approaching a physical limitation in serial processing that will be forcing
developers to turn towards concurrent solutions (http://www.gotw.ca/publications/
concurrency-ddj . htm).

Newer processors come with multiple cores. To build scalable applications, we can no longer
just wait for a faster chip. Instead, we must use alternate, concurrent techniques. This issue
is being played out in a whole host of languages. Erlang was one of the first languages on the
scene that allowed a telecommunications system to be built with nine 9's of availability, which
means about 1 second of downtime every 30 years.

One of its key features is the use of immutable data sent between actors. This provides a
nice isolation and allows multiple units to run across the CPU cores. Python has libraries that
provide a similar style of decoupled, asynchronous message passing. The two most common
ones are Twisted and Kamaelia.

333

Good Test Habits for New and Legacy Systems

But before you dive into using either of these frameworks, there is something important to
keep in mind: it's very hard to test concurrency while also testing algorithms. To use these
libraries, you will register code that issues messages and also register handlers to process
messages.

It's important to decouple the algorithms from the machinery of whatever concurrency
library you pick. This will make it much easier to test the algorithms. It doesn't mean that you
shouldn't conduct load tests or try to overload your system with live data playback scenarios.

What it means is that starting with large volume test scenarios is the wrong priority. Your
system needs to correctly handle one event in an automated test case before it can handle
a thousand events.

Research test options provided by your concurrency frameworks

A good concurrency library should provide sound testing options. Seek them out and try to use
them to their fullest. But don't forget to verify that your custom algorithms work in a simple,
serial fashion as well. Testing both sides will give you great confidence that the system is
performing as expected under light and heavy loads.

Pause to refactor when test suite takes

too long to run

As you start to build a test suite, you may notice the runtime getting quite long. If it's so long
that you aren't willing to run it at least once a day, you need to stop coding and focus on
speeding up the tests, whether it involves the tests themselves or the code under test.

How to do it...

This assumes you have started to build a test suite using some of the following practices:

» Something is better than nothing
» Be willing to invest in test fixtures

» Capturing a bug in an automated test

These are slow starting steps to start adding tests to a system that was originally built without
any automated testing. One of the trade offs to get moving on automated testing involves
writing relatively expensive tests. For instance, if one of your key algorithms is not adequately
decoupled from the database, you will be forced to write a test case that involves setting up
some tables, processing the input data, and then making queries against the state of the
database afterwards.

Chapter 9

As you write more tests, the time to run the test suite will certainly grow. At some point, you
feel less inclined to spend the time waiting for your test suite to run. Since a test suite is only
good when used, you must pause development and pursue refactoring either the code or the
test cases themselves in order to speed things up.

This is a problem | ran into. My test suite initially took about 15 minutes to run. It eventually
grew to take one-and-a-half hours to run all the tests. | reached a point where | would only run
it once a day and even skipped some days. One day | tried to do a massive code edit. When
most of the test cases failed, | realized that | had not run the test suite often enough to detect
which step broke things. | was forced to throw away all the code edits and start over. Before
proceeding further, | spent a few days refactoring the code as well as the tests, bringing the
run time of the test suite back down to a tolerable 30 minutes.

That is the key measurement: when you feel hesitant to run the test suite more than once
a day, this may be a sign that things need to be cleaned up. Test suites are meant to be run
multiple times a day.

This is because we have competing interests: writing code and running tests. It's important
to recognize this:

» To run the tests, we must suspend our coding efforts
» To write more code, we must suspend testing efforts

When testing takes a big chunk of our daily schedule, we must start choosing which is more
important. We tend to migrate towards writing more code, and this is probably the key reason
people abandon automated testing and consider it unsuitable for their situation.

It's tough, but if we can resist taking the easy way out, and instead do some refactoring of
either the code or our tests, we will be encouraged to run the tests more often.

It's less science and more voodoo exactly what to refactor. It's important to seek out
opportunities that give us a good yield. It's important to understand this can be either
our test code, or production code, or some combination of both that needs to be refactored:

» Performance analysis can show us where the hotspots are. Refactoring or rewriting
these chunks can improve the tests.

» Tight coupling often forces us to pull in more parts of the system than we want, such
as database usage. If we can look for ways to decouple the code from the database
and replace it with mocks or stubs, that sets us up to update the relevant tests to
come up with a faster running test suite.

335

Good Test Habits for New and Legacy Systems

Coverage obtained from tests can help. All of these approaches have positive consequences
for our code's quality. More efficient algorithms lead to better performance and looser
coupling helps to keep our long-term maintenance costs down.

» Be willing to throw away an entire day of changes

Cash in on your confidence

After building up enough tests, you will feel a new confidence to rewrite some big chunk of
code, or conduct shotgun surgery that touches almost every file. Go for it!

How to do it...

As you build more tests and run them several times a day, you will start to get a feel for what
you know and don't know about the system. Even more so, when you've written enough
expensive, long running tests about a particular part of the system, you will feel a strong
desire to rewrite that module.

What are you waiting for? This is the point of building a runnable safety net of tests.
Understanding the ins and outs of a module gives you the knowledge to attack it. You might
rewrite it, better decouple its parts, or whatever else is needed to make it work better as well
as better support tests.

While you may feel a strong desire to attack the code, there may be an equal and opposing
feeling to resist making such changes. This is risk aversion, and we all have to deal with it. We
want to avoid diving in head first to a situation that could have drastic consequences.

Assuming we have built an adequate safety net, it's time to engage the code and start
cleaning it up. If we run the test suite frequently while making these changes, we can safely
move through the changes we need to make. This will improve the quality of the code and
possibly speed up the run time of the test suite.

336

Chapter 9

While making changes, we don't have to go "all in"

Cashing in on our confidence means we move in and make changes
M to the code base, but it doesn't mean we go into areas of code where
Q the tests are shallow and inadequate. There may be several areas we
want to clean up, but we should only go after the parts we are most
confident about. There will be future opportunities to get the other
parts as we add more tests in the future.

Be willing to throw away an entire day

of changes

Work for a whole day making changes and now half the tests fail because you forgot the test
suite more often? Be ready to throw away the changes. This is what automated testing lets us
do...back up to when everything ran perfectly. It will hurt, but next time you will remember to
run the test suite more often.

How to do it...

This recipe assumes you are using version control and are making regular commits. This idea
is no good if you haven't made a commit for two weeks.

If you run your test suite at least once a day, and when it passes, you commit the changes you
have made, then it becomes easy to back up to some previous point, such as the beginning of
the day.

| have done this many times. The first time was the hardest. It was a new idea to me, but |
realized the real value of software was now resting on my automated test suite. In the middle
of the afternoon, | ran the test suite for the first time that day after having edited half the
system. Over half of the tests failed.

| tried to dig in and fix the issue. The trouble was, | couldn't figure out where the issue
stemmed from. | spent a couple of hours trying to track it down. It began to dawn on me
that | wasn't going to figure it out without wasting loads of time.

But | remembered that everything had passed with flying colors the previous day. | finally
decided to throw away my changes, run the test suite verifying everything passed, and then
grudgingly go home for the day.

337

Good Test Habits for New and Legacy Systems

The next day, | attacked the problem again. Only this time | ran the tests more often. | was
able to get it coded successfully. Looking back at the situation, | realized that this issue only
cost me one lost day. If | had tried to ride it out, | could have spent a week and STILL probably
ended up throwing things away.

Depending on how your organization manages source control, you may have to:

» Simply do it yourself by deleting a branch or canceling your checkouts
» Contact your CM team to delete the branch or the commits you made for the day

This isn't really a technical issue. The source control system makes it easy to do this
regardless of who is in charge of branch management. The hard part is making the decision
to throw away the changes. We often feel the desire to fix what is broken. The more our efforts
cause it to break further, the more we want to fix it. At some point, we must realize that it is
more costly to move forward rather than to back up and start again.

There is an axis of agility that stretches from classic waterfall software production to heavily
agile processes. Agile teams tend to work in smaller sprints and commit in smaller chunks.
This makes it more palatable to throw away a day of work. The bigger the task and longer the
release cycle, the greater the odds are that your changes haven't been checked in since you
started a task two weeks ago.

Believe me; throwing away two weeks of work is totally different than throwing away one day.
I would never advocate throwing out two weeks of work.

The core idea is to NOT go home without your test suite passing. If that means you have to
throw away things to make it happen, then that is what you must do. It really drives the point
home of code a little/test a little until a new feature is ready for release.

We also need to reflect on why didn't we run the test suite often enough. It may be because
the test suite is taking too long to run, and you are hesitating to use up that time. It may be
time to Pause to refactor when test suite takes too long to run. The time | really learned this
lesson was when my test suite took one-and-a-half hours to run. After | got through this whole
issue, | realized that | needed to speed things up and spent probably a week or two cutting it
down to a tolerable 30 minutes.

338

Chapter 9

How does this mesh with "Something is better than nothing”

Earlier in this chapter, we talked about writing a test case that may be quite expensive to run
in order to get some automated testing in action. What if our testing becomes too expensive
that it is time prohibitive? After all, couldn't what we just said lead to the situation we are
dealing with?

Code a little/test a little may seem to be a very slow way to proceed. This is probably the
reason many legacy systems never embrace automated testing. The hill we must climb is
steep. But if we can hang in there, start building the tests, make sure they run at the end of
the day, and then eventually pause to refactor our code and tests, we can eventually reach a
happy balance of better code quality and system confidence.

» Something is better than nothing

» Pause to refactor when test suite takes too long

Instead of shooting for 100 percent

coverage, try to have a steady growth

You won't know how you're doing without coverage analysis. However, don't aim too high.
Instead, focus on a gradual increase. You will find your code gets better over time, maybe
even drops in volume, while quality and coverage steadily improve.

How to do it...

If you start with a system that has no tests, don't get focused on a ridiculously high number.
| worked on a system that had 16 percent coverage when | picked it up. A year later, | had
worked it up to 65 percent. This was nowhere near 100 percent, but the quality of the
system had grown by leaps and bounds due to Capturing a bug in an automated test and
Harvesting metrics.

At one time | was discussing the quality of my code with my manager, and he showed me a
report he had developed on his own. He had run a code counting tool on every release of
every application he was overseeing. He said my code counts had a unique