Mark Summerfield

Foreword by Doug Hellmann,
Senior Developer, DreamHost

Python

INn Practice

Create Better Programs Using
Concurrency, Libraries, and Patterns

Developer’s Library

S

http://www.it-ebooks.info/

Python in Practice

www.it-ebooks.info

http://www.it-ebooks.info/

Developer’s Library Series

-~
Sacand Ediion

~ -
Secona Edition

N . Development : -
Programmingiin Android with the Force.com e IIPhQrgekb .
Objective-C 2.0 wireless Appiication Platform SR NEEEHIES
2 f‘;""u“g'g"‘-w"'h‘;:f"DCS"‘)’(";:J"‘;f{‘:&:i‘fﬂmm Developm ent Building Business Applications in the Cloud iPhone 3.0 SDK

Developer's Library

vvAddison-Wesley

Visit developers-library.com for a complete list of available products

he Developer’s Library Series from Addison-Wesley provides
Tpraoticing programmers with unique, high-quality references and
tutorials on the latest programming languages and technologies they
use in their daily work. All books in the Developer’s Library are written by
expert technology practitioners who are exceptionally skilled at organizing
and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-
source programming languages and databases, Linux programming,
Microsoft, and Java, to Web development, social networking platforms,
Mac/iPhone programming, and Android programming.

PEARSON

“Addison-Wesley Cisco Press ExaMyeRAM IBM gue 3 PRENTICE gAMS | Safari®

Press. ee HALL &FRTRE 1 8 atonine

www.it-ebooks.info

http://www.it-ebooks.info/

Python in Practice

Create Better Programs Using
Concurrency, Libraries, and Patterns

Mark Summerfield

vvAddison-Wesley

Upper Saddle River, NJ - Boston - Indianapolis - San Francisco
New York - Toronto - Montreal - London - Munich - Paris - Madrid
Capetown - Sydney - Tokyo - Singapore - Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international @pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2013942956
Copyright © 2014 Qtrac Ltd.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-90563-5
ISBN-10: 0-321-90563-6

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, August 2013

www.it-ebooks.info

http://www.it-ebooks.info/

This book is dedicated to
free and open-source software contributors
everywhere—your generosity benefits us all.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Contents ix
Forewordo i e xiii
Introduction 1
Chapter 1. Creational Design Patterns in Python 5
Chapter 2. Structural Design Patternsin Python 29
Chapter 3. Behavioral Design Patterns in Python 73
Chapter 4. High-Level Concurrency in Python 141
Chapter 5. Extending Python 179
Chapter 6. High-Level Networking in Python 203

Chapter 7. Graphical User Interfaces with Python and Tkinter 231

Chapter 8. OpenGL 3D Graphicsin Python 263
Appendix A. Epilogue 283
Appendix B. Selected Bibliography 285
IndeX .. e 289

www.qtrac.eu/pipbook.html

www.it-ebooks.info

http://www.qtrac.eu/pipbook.html
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Forewordo o i xiii
Introduction e 1
Acknowledgments 3
Chapter 1. Creational Design Patterns in Python 5
1.1. Abstract Factory Pattern, 5
1.1.1. A Classic Abstract Factory 6
1.1.2. A More Pythonic Abstract Factory 9
1.2. BuilderPattern 11
1.3. Factory Method Pattern 17
1.4. Prototype Pattern 24
1.5. Singleton Pattern 26
Chapter 2. Structural Design Patterns in Python 29
2.1. Adapter Pattern 29
2.2. Bridge Pattern i 34
2.3. Composite Pattern 40
2.3.1. A Classic Composite/Noncomposite Hierarchy 41
2.3.2. A Single Class for Non)composites 45
2.4. Decorator Pattern i 48
2.4.1. Function and Method Decorators 48
2.4.2. ClassDecoratorsccoiuiiiiiiiiiiiiiennninennns 54
2.4.2.1. Using a Class Decorator to Add Properties 57
2.4.2.2. Using a Class Decorator Instead of Subclassing 58
2.5. Facade Pattern i 59
2.6. Flyweight Pattern i i i, 64
2.7. Proxy Pattern 67
Chapter 3. Behavioral Design Patterns in Python 73
3.1. Chain of Responsibility Pattern 74
3.1.1. A Conventional Chaincooee.... 74
3.1.2. A Coroutine-BasedChain 76
3.2. Command Pattern 79

ix

www.it-ebooks.info

http://www.it-ebooks.info/

3.3. Interpreter Pattern i 83

3.3.1. Expression Evaluation witheval()........................ 84
3.3.2. Code Evaluation withexec() 88
3.3.3. Code Evaluation Using a Subprocess 91
3.4. Tterator Pattern o 95
3.4.1. Sequence Protocol Iterators 95
3.4.2. Two-Argument iter() Function Iterators 96
3.4.3. Iterator Protocol Iterators 97
3.5. Mediator Pattern i 100
3.5.1. A Conventional Mediator 101
3.5.2. A Coroutine-Based Mediator 104
3.6. MementoPattern 106
3.7. Observer Pattern i 107
3.8. State Pattern i 111
3.8.1. Using State-Sensitive Methods 114
3.8.2. Using State-Specific Methods 115
3.9. Strategy Pattern 116
3.10. Template Method Pattern 119
3.11. Visitor Pattern i 123
3.12. Case Study: An Image Package 124
3.12.1. The Generic Image Module 125
3.12.2. An Overview of the Xpm Module 135
3.12.3. The PNG Wrapper Module 137
Chapter 4. High-Level Concurrency in Python 141
4.1. CPU-Bound Concurrencyoeeeeeeeeeeeeeennnnnnnnns 144
4.1.1. Using Queues and Multiprocessing 147
4.1.2. Using Futures and Multiprocessing 152
4.2. T/O-Bound Concurrencyceeeiimmneneeeneennnnnnnnns 155
4.2.1. Using Queues and Threading 156
4.2.2. Using Futures and Threading 161
4.3. Case Study: A Concurrent GUI Application 164
4.3.1. Creatingthe GUIL 165
4.3.2. The ImageScale Worker Module 173
4.3.3. How the GUI Handles Progress 175
4.3.4. How the GUI Handles Termination 177
X

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Extending Python
5.1. Accessing C Libraries with ctypes
5.2. Using Cython i

5.2.1. Accessing C Libraries with Cython
5.2.2. Writing Cython Modules for Greater Speed
5.3. Case Study: An Accelerated Image Package

Chapter 6. High-Level Networking in Python
6.1. Writing XML-RPC Applicationsccccovviiiiiiii...
6.1.1. AData Wrapperccoiuiiiiiiiimniiiiiiinnnnn..
6.1.2. Writing XML-RPC Serversccovviiiiiiiiinnnnn..
6.1.3. Writing XML-RPCClientsciiinnnn..
6.1.3.1. A Console XML-RPCClient
6.1.3.2. AGUIXML-RPCClientcccvvviuinannn.

6.2. Writing RPyC Applicationscccoiiiiiiiii...
6.2.1. A Thread-Safe Data Wrapper
6.2.1.1. A Simple Thread-Safe Dictionary
6.2.1.2. The Meter Dictionary Subclass

6.2.2. Writing RPyC Servers ...,
6.2.3. Writing RPyC Clientsccoiiiiiiiiiinn....
6.2.3.1. A Console RPyCClient
6.2.3.2. AGUIRPyCClientccviiiiieininnnnnnn.

Chapter 7. Graphical User Interfaces with Python and Tkinter
7.1. Introduction to Tkinter
7.2. Creating Dialogs with Tkintert

7.2.1. Creating a Dialog-Style Application
7.2.1.1. The Currency Application’s main() Function
7.2.1.2. The Currency Application’s Main.Window Class

7.2.2. Creating Application Dialogs
7.2.2.1. Creating Modal Dialogs
7.2.2.2. Creating Modeless Dialogs

7.3. Creating Main-Window Applications with Tkinter

7.3.1. Creatinga Main Windowccoovviiiiioi...

7.3.2. Creating Menusc.oviiiiiiiiiiiiiiieennnnnn.
7.3.2.1. CreatingaFileMenu
7.3.2.2. CreatingaHelpMenuoii.t.

7.3.3. Creating a Status Bar with Indicators

xi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. OpenGL 3D Graphicsin Python 263

8.1. A PerspectiveScenec.coiiiiiiiiiiiiiii 264
8.1.1. Creating a Cylinder with PyOpenGL 265

8.1.2. Creating a Cylinder with pyglet 270

8.2. An OrthographicGamecciiiiiiinneeeenni.. 272
8.2.1. Drawing the Board Scene 275

8.2.2. Handling Scene Object Selection 277

8.2.3. Handling User Interaction 280
Appendix A. Epilogue 283
Appendix B. Selected Bibliography 285
Index ... e 289

Xii

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword to Python in Practice

I have been building software with Python for 15 years in various application
areas. Over that time I have seen our community mature and grow consider-
ably. We are long past the days of having to “sell” Python to our managers in
order to be able to use it in work-related projects. Today’s job market for Python
programmers is strong. Attendance at Python-related conferences is at an all
time high, for regional conferences as well as the big national and international
events. Projects like OpenStack are pushing the language into new arenas and
attracting new talent to the community at the same time. As a result of the ro-
bust and expanding community, we have more and better options for books about
Python than ever before.

Mark Summerfield is well known in the Python community for his techni-
cal writing about Qt and Python. Another of Mark’s books, Programming in
Python 3, is at the top of my short list of recommendations for learning Python,
a question I am asked frequently as the organizer of the user group in Atlanta,
Georgia. This new book will also go on my list, but for a somewhat different
audience.

Most programming books fall at either end of a spectrum that ranges from basic
introductionsto a language (or programming in general) to more advanced books
on very focused topics like web development, GUI applications, or bioinformatics.
As I was writing The Python Standard Library by Example, I wanted to appeal
to readers who fall into the gap between those extremes—established program-
mers and generalists, both familiar with the language but who want to enhance
their skills by going beyond the basics without being restricted to a specific ap-
plication area. When my editor asked me to review the proposal for Mark’s book,
I was pleased to see that Python in Practice is designed for the same types of
readers.

It has been a long time since I have encountered an idea in a book that was im-
mediately applicable to one of my own projects, without it being tied to a specific
framework or library. For the past year I have been working on a system for me-
tering OpenStack cloud services. Along the way, the team realized that the data
we are collecting for billing could be useful for other purposes, like reporting and
monitoring, so we designed the system to send it to multiple consumers by pass-
ing the samples through a pipeline of reusable transformations and publishers.
At about the same time that the code for the pipeline was being finalized, I was
also involved in the technical review for this book. After reading the first few
sections of the draft for Chapter 3, it became clear that our pipeline implemen-
tation was much more complicated than necessary. The coroutine chaining tech-
nique Mark demonstratesis so much more elegant and easy to understand that

xiii

www.it-ebooks.info

http://www.it-ebooks.info/

Iimmediately added a task to our roadmap to change the design during the next
release cycle.

Python in Practice is full of similarly useful advice and examples to help you
improve your craft. Generalists like me will find introductions to several inter-
esting tools that may not have been encountered before. And whether you are
already an experienced programmer or are making the transition out of the
beginner phase of your career, this book will help you think about problems
from different perspectives and give you techniques to create more effective so-
lutions.

Doug Hellmann
Senior Developer, DreamHost
May 2013

Xiv

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Python in Practice

This book is aimed at Python programmers who want to broaden and deepen
their Python knowledge so that they can improve the quality, reliability, speed,
maintainability, and usability of their Python programs. The book presents
numerous practical examples and ideas for improved Python programming.

The book has four key themes: design patterns for coding elegance, improved
processing speeds using concurrency and compiled Python (Cython), high-level
networking, and graphics.

The book Design Patterns: Elements of Reusable Object-Oriented Software (see
the Selected Bibliography for details; » 285) was published way back in 1995,
yet still exerts a powerful influence over object-oriented programming practices.
Python in Practice looks at all of the design patterns in the context of Python,
providing Python examples of those that are useful, as well as explaining why
some are irrelevant to Python programmers. These patterns are covered in
Chapter 1, Chapter 2, and Chapter 3.

Python’s GIL (Global Interpreter Lock) prevents Python code from executing on
more than one processor core at a time.* This has led to the myth that Python
can’t do threading or take advantage of multi-core hardware. For CPU-bound
processing, concurrency can be done using the multiprocessing module, which
is not limited by the GIL and can take full advantage of all the available cores.
This can easily achieve the speedups we would expect (i.e., roughly proportional
to the number of cores). For I/O-bound processing we can also use the multipro-
cessing module—or we can use the threading module or the concurrent.futures
module. If we use threading for I/O-bound concurrency, the GIL's overhead is
usually dominated by network latency and so may not be an issue in practice.

Unfortunately, low- and medium-level approaches to concurrency are very error-
prone (in any language). We can avoid such problems by avoiding the use of ex-
plicit locks, and by making use of Python’s high-level queue and multiprocessing
modules’ queues, or the concurrent. futures module. We will see how to achieve
significant performance improvements using high-level concurrency in Chap-
ter 4.

Sometimes programmers use C, C++, or some other compiled language because
of another myth—that Python is slow. While Python is in general slower
than compiled languages, on modern hardware Python is often more than fast

*This limitation applies to CPython—the reference implementation that most Python programmers
use. Some Python implementations don’t have this constraint, most notably, Jython (Python
implemented in Java).

www.it-ebooks.info

http://www.it-ebooks.info/

2 Introduction

enough for most applications. And in those cases where Python really isn’t fast
enough, we can still enjoy the benefits of programming in Python—and at the
same time have our code run faster.

To speed up long-running programs we can use the PyPy Python interpreter
(pypy.org). PyPy has a just-in-time compiler that can deliver significant
speedups. Another way to increase performance is to use code that runs as fast
as compiled C; for CPU-bound processing this can comfortably give us 100x
speedups. The easiest way to achieve C-like speed is to use Python modules
that are already written in C under the hood: for example, use the standard
library’s array module or the third-party numpy module for incredibly fast and
memory-efficient array processing (including multi-dimensional arrays with
numpy). Another way is to profile using the standard library’s cProfile module
to discover where the bottlenecks are, and then write any speed-critical code in
Cython—this essentially provides an enhanced Python syntax that compiles
into pure C for maximum runtime speed.

Of course, sometimes the functionality we need is already available in a C or
C++ library, or a library in another language that uses the C calling convention.
In most such cases there will be a third-party Python module that provides ac-
cess to the library we require—these can be found on the Python Package In-
dex (PyPI; pypi.python.org). But in the uncommon case that such a module isn’t
available, the standard library’s ctypes module can be used to access C library
functionality—as can the third-party Cython package. Using preexisting C li-
braries can significantly reduce development times, as well as usually providing
very fast processing. Both ctypes and Cython are covered in Chapter 5.

The Python standard library provides a variety of modules for networking,
from the low-level socket module, to the mid-level socketserver module, up
to the high-level xmlrpclib module. Although low- and mid-level networking
makes sense when porting code from another language, if we are starting out in
Python we can often avoid the low-level detail and just focus on what we want
our networking applications to do by using high-level modules. In Chapter 6
we will see how to do this using the standard library’s xmlrpclib module and the
powerful and easy-to-use third-party RPyC module.

Almost every program must provide some kind of user interface so that the
program can determine what work it must do. Python programs can be writ-
ten to support command-line user interfaces, using the argparse module, and
full-terminal user interfaces (e.g., on Unix using the third-party urwid pack-
age; excess.org/urwid). There are also a great many web frameworks—from
the lightweight bottle (bottlepy.org) to heavyweights like Django (www.django-
project.com) and Pyramid (www.pylonsproject.org)—all of which can be used to
provide applications with a web interface. And, of course, Python can be used to
create GUI (graphical user interface) applications.

www.it-ebooks.info

http://www.djangoproject.com
http://www.djangoproject.com
http://www.pylonsproject.org
http://www.it-ebooks.info/

Introduction 3

The death of GUI applications in favor of web applications is often reported—
and still hasn’t happened. In fact, people seem to prefer GUI applications to
web applications. For example, when smartphonesbecame very popular early in
the twenty-first century, users invariably preferred to use a purpose-built “app”
rather than a web browser and web page for things they did regularly. There
are many ways to do GUI programming with Python using third-party packages.
However, in Chapter 7 we will see how to create modern-looking GUI applica-
tions using Tkinter, which is supplied as part of Python’s standard library.

Most modern computers—including laptops and even smartphones—come
equipped with powerful graphics facilities, often in the form of a separate GPU
(Graphics Processing Unit) that’s capable of impressive 2D and 3D graphics.
Most GPUs support the OpenGL API, and Python programmers can get access
to this API through third-party packages. In Chapter 8, we will see how to make
use of OpenGL to do 3D graphics.

The purpose of this book is to illustrate how to write better Python applications
that have good performance and maintainable code, and are easy to use. This
book assumes prior knowledge of Python programming and is intended to be the
kind of book people turn to once they’ve learned Python, whether from Python’s
documentation or from other books—such as Programming in Python 3, Second
Edition (see the Selected Bibliography for details; » 287). The book is designed
to provide ideas, inspiration, and practical techniques to help readers take their
Python programming to the next level.

All the book’s examples have been tested with Python 3.3 (and where possible
Python 3.2 and Python 3.1) on Linux, OS X (in most cases), and Windows (in
most cases). The examples are available from the book’s web site, www.gtrac.eu/
pipbook.html, and should work with all future Python 3.x versions.

Acknowledgments

As with all my other technical books, this book has greatly benefited from the
advice, help, and encouragement of others: I am very grateful to them all.

Nick Coghlan, a Python core developer since 2005, provided plenty of construc-
tive criticism, and backed this up with lots of ideas and code snippets to show
alternative and better ways to do things. Nick’s help was invaluable throughout
the book, and particularly improved the early chapters.

Doug Hellmann, an experienced Python developer and author, sent me lots of
useful comments, both on the initial proposal, and on every chapter of the book
itself. Doug gave me many ideas and was kind enough to write the foreword.

Two friends—dJasmin Blanchette and Trenton Schulz—are both experienced
programmers, and with their widely differing Python knowledge, they are
ideal representatives of many of the book’s intended readership. Jasmin and

www.it-ebooks.info

http://www.qtrac.eu/pipbook.html
http://www.qtrac.eu/pipbook.html
http://www.it-ebooks.info/

4 Introduction

Trenton’s feedback haslead to many improvements and clarificationsin the text
and in the examples.

I am glad to thank my commissioning editor, Debra Williams Cauley, who once
more provided support and practical help as the work progressed.

Thanks also to Elizabeth Ryan who managed the production process so well, and
to the proofreader, Anna V. Popick, who did such excellent work.

As always, I thank my wife, Andrea, for her love and support.

www.it-ebooks.info

http://www.it-ebooks.info/

Creational Design
Patterns in Python

§1.1. Abstract Factory Pattern » 5
§1.1.1. A Classic Abstract Factory » 6
§1.1.2. A More Pythonic Abstract Factory » 9
§1.2. Builder Pattern » 11
§1.3. Factory Method Pattern » 17
§1.4. Prototype Pattern » 24
§1.5. Singleton Pattern » 26

Creational design patterns are concerned with how objects are created. Nor-
mally we create objects by calling their constructor (i.e., calling their class ob-
ject with arguments), but sometimes we need more flexibility in how objects are
created—which is why the creational design patterns are useful.

For Python programmers, some of these patterns are fairly similar to each
other—and some of them, as we will note, aren’t really needed at all. This is be-
cause the original design patterns were primarily created for the C++ language
and needed to work around some of that language’s limitations. Python doesn’t
have those limitations.

1.1. Abstract Factory Pattern

The Abstract Factory Pattern is designed for situations where we want to create
complex objects that are composed of other objects and where the composed
objects are all of one particular “family”.

For example, in a GUI system we might have an abstract widget factory that
has three concrete subclass factories: MacWidgetFactory, XfceWidgetFactory, and
WindowsWidgetFactory, all of which provide methods for creating the same objects
(make_button(), make spinbox(), etc.), but that do so using the platform-appropri-
ate styling. This allowsusto create a generic create_dialog() function that takes
a factory instance as argument and produces a dialog with the OS X, Xfce, or
Windows look and feel, depending on which factory we pass it.

www.it-ebooks.info

http://www.it-ebooks.info/

6 Chapter 1. Creational Design Patterns in Python

1.1.1. A Classic Abstract Factory

To illustrate the Abstract Factory Pattern we will review a program that pro-
duces a simple diagram. Two factories will be used: one to produce plain text
output, and the other to produce SVG (Scalable Vector Graphics) output. Both
outputs are shown in Figure 1.1. The first version of the program we will look at,
diagraml.py, shows the patternin its pure form. The second version, diagram2.py,
takes advantage of some Python-specific features to make the code slightly
shorter and cleaner. Both versions produce identical output.*

Abstract Factory

|
I |
|%%Abstract Factory%%s| |
I I
|

Figure 1.1 The plain text and SVG diagrams

We will begin by looking at the code common to both versions, starting with the
main() function.

def main():

txtDiagram = create diagram(DiagramFactory()) @
txtDiagram.save(textFilename)

svgDiagram = create diagram(SvgDiagramFactory()) @
svgDiagram.save(svgFilename)

First we create a couple of filenames (not shown). Next, we create a diagram
using the plain text (default) factory (@), which we then save. Then, we create
and save the same diagram, only this time using an SVG factory (®).

def create diagram(factory):
diagram = factory.make diagram(30, 7)
rectangle = factory.make rectangle(4, 1, 22, 5, "yellow")
text = factory.make text(7, 3, "Abstract Factory")
diagram.add(rectangle)
diagram.add(text)
return diagram

* All the book’s examples are available for download from www.qtrac.eu/pipbook.html.

www.it-ebooks.info

http://www.qtrac.eu/pipbook.html
http://www.it-ebooks.info/

1.1. Abstract Factory Pattern 7

This function takes a diagram factory as its sole argument and uses it to create
the required diagram. The function doesn’t know or care what kind of factory
it receives so long as it supports our diagram factory interface. We will look at
the make ...() methods shortly.

Now that we have seen how the factories are used, we can turn to the factories
themselves. Here is the plain text diagram factory (which is also the factory
base class):

class DiagramFactory:

def make diagram(self, width, height):
return Diagram(width, height)

def make rectangle(self, x, y, width, height, fill="white",
stroke="black"):
return Rectangle(x, y, width, height, fill, stroke)

def make text(self, x, y, text, fontsize=12):
return Text(x, y, text, fontsize)

Despite the word “abstract” in the pattern’s name, it is usual for one class to
serve both as a base class that provides the interface (i.e., the abstraction), and
also as a concrete class in its own right. We have followed that approach here
with the DiagramFactory class.

Here are the first few lines of the SVG diagram factory:

class SvgDiagramFactory(DiagramFactory):

def make diagram(self, width, height):
return SvgDiagram(width, height)

The only difference between the two make diagram() methodsisthat the Diagram-
Factory.make diagram() method returnsa Diagramobject and the SvgDiagramFacto-
ry.make diagram() method returns an SvgDiagram object. This pattern applies to
the two other methods in the SvgDiagramFactory (which are not shown).

We will see in a moment that the implementations of the plain text Diagram,
Rectangle, and Text classes are radically different from those of the Svgbiagranm,
SvgRectangle, and SvgText classes—although every class provides the same inter-
face (i.e., both Diagram and SvgDiagram have the same methods). This means that
we can’t mix classes from different families (e.g., Rectangle and SvgText)—and
this is a constraint automatically applied by the factory classes.

Plain text Diagram objects hold their data as a list of lists of single character
strings where the character is a space or +, |, -, and so on. The plain text Rect-

www.it-ebooks.info

http://www.it-ebooks.info/

8 Chapter 1. Creational Design Patterns in Python

angle and Text and a list of lists of single character strings that are to replace
those in the overall diagram at their position (and working right and down as
necessary).

class Text:

def init (self, x, y, text, fontsize):
self.x = x
self.y =y
self.rows = [list(text)]

This is the complete Text class. For plain text we simply discard the fontsize.

class Diagram:

def add(self, component):
for y, row in enumerate(component.rows):
for x, char in enumerate(row):
self.diagram[y + component.y][x + component.x] = char

Here isthe Diagram.add() method. When we call it with a Rectangle or Text object
(the component), this method iterates over all the characters in the component’s
list of lists of single character strings (component. rows) and replaces correspond-
ing characters in the diagram. The Diagram. init () method (not shown) has
already ensured that its self.diagram is a list of lists of space characters (of the
given width and height) when Diagram(width, height) is called.

SVG _TEXT = """<text x="{x}" y="{y}" text-anchor="left" \
font-family="sans-serif" font-size="{fontsize}">{text}</text>

SVG_SCALE = 20

class SvgText:

def init (self, x, y, text, fontsize):
x *= SVG SCALE
y *= SVG_SCALE
fontsize *= SVG SCALE // 10
self.svg = SVG TEXT.format(**Llocals())

This is the complete SvgText class and the two constants it depends on.* Inciden-
tally, using **locals() saves us from having to write SVG_TEXT.format(x=x, y=y,
text=text, fontsize=fontsize). From Python 3.2 we could write SVG_TEXT.for-

* Our SVG output is rather crudely done—but it is sufficient to show this design pattern. Third-
party SVG modules are available from the Python Package Index (PyPI) at pypi.python.org.

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Abstract Factory Pattern 9

mat_map(locals()) instead, since the str.format _map() method does the mapping
unpacking for us. (See the “Sequence and Mapping Unpacking” sidebar, » 13.)

class SvgDiagram:

def add(self, component):
self.diagram.append(component.svg)

For the SvgDiagram class, each instance holds a list of strings in self.diagram,
each one of which is a piece of SVG text. This makes adding new components
(e.g., of type SvgRectangle or SvgText) really easy.

1.1.2. A More Pythonic Abstract Factory

The DiagramFactory and its SvgDiagramFactory subclass, and the classes they
make use of (Diagram, SvgDiagram, etc.), work perfectly well and exemplify the
design pattern.

Nonetheless, our implementation has some deficiencies. First, neither of the
factories needs any state of its own, so we don’t really need to create factory in-
stances. Second, the code for SvgDiagramFactory is almost identical to that of Di-
agramFactory—the only difference being that it returns SvgText rather than Text
instances, and so on—which seems like needless duplication. Third, our top-lev-
el namespace contains all of the classes: DiagramFactory, Diagram, Rectangle, Text,
and all the SVG equivalents. Yet we only really need to access the two factories.
Furthermore, we have been forced to prefix the SVG class names (e.g., using Svg-
Rectangle rather than Rectangle) to avoid name clashes, which is untidy. (One
solution for avoiding name conflicts would be to put each classin its own module.
However, this approach would not solve the problem of code duplication.)

In this subsection we will address all these deficiencies. (The code is in dia-
gram2.py.)

The first change we will make is to nest the Diagram, Rectangle, and Text classes
inside the DiagramFactory class. This means that these classes must now be
accessed as DiagramFactory.Diagram and so on. We can also nest the equivalent
classes inside the SvgDiagramFactory class, only now we can give them the same
names as the plain text classes since a name conflict is no longer possible—for
example, SvgDiagramFactory.Diagram. We have also nested the constants the
classes depend on, so our only top-level names are now main(), create _diagram(),
DiagramFactory, and SvgDiagramFactory.

class DiagramFactory:

@classmethod
def make diagram(Class, width, height):

www.it-ebooks.info

http://www.it-ebooks.info/

10 Chapter 1. Creational Design Patterns in Python

return Class.Diagram(width, height)

@classmethod
def make rectangle(Class, x, y, width, height, fill="white",
stroke="black"):
return Class.Rectangle(x, y, width, height, fill, stroke)

@classmethod
def make text(Class, x, y, text, fontsize=12):
return Class.Text(x, y, text, fontsize)

Here is the start of our new DiagramFactory class. Themake ...() methods are now
all class methods. This means that when they are called the class is passed as
their first argument (rather like self is passed for normal methods). So, in this
case a call to DiagramFactory.make text() will mean that DiagramFactory is passed
as the Class, and a DiagramFactory.Text object will be created and returned.

This change also means that the SvgDiagramFactory subclass that inherits from
DiagramFactory does not need any of the make ...() methods at all. If we call, say,
SvgDiagramFactory.make rectangle(), since SvgDiagramFactory doesn’t have that
method the base class DiagramFactory.make rectangle() method will be called
instead—but the Class passed will be SvgDiagramFactory. This will result in an
SvgDiagramFactory.Rectangle object being created and returned.

def main():
txtDiagram = create diagram(DiagramFactory)
txtDiagram.save(textFilename)
svgDiagram = create diagram(SvgDiagramFactory)
svgDiagram.save(svgFilename)
These changes also mean that we can simplify our main() function since we no
longer need to create factory instances.

The rest of the code is almost identical to before, the key difference being that
since the constants and non-factory classes are now nested inside the factories,
we must access them using the factory name.

class SvgDiagramFactory(DiagramFactory):

class Text:

def init (self, x, y, text, fontsize):
x *= SvgDiagramFactory.SVG_ SCALE
y *= SvgDiagramFactory.SVG_SCALE

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Abstract Factory Pattern 11

fontsize *= SvgDiagramFactory.SVG SCALE // 10
self.svg = SvgDiagramFactory.SVG TEXT.format (**locals())

Here is the SvgDiagramFactory’s nested Text class (equivalent to diagraml.py’s
SvgText class), which shows how the nested constants must be accessed.

1.2. Builder Pattern

The Builder Pattern is similar to the Abstract Factory Pattern in that both
patterns are designed for creating complex objects that are composed of other
objects. What makes the Builder Pattern distinct is that the builder not only pro-
vides the methods for building a complex object, it also holds the representation
of the entire complex object itself.

This pattern allows the same kind of compositionality as the Abstract Factory
Pattern (i.e., complex objects are built out of one or more simpler objects), but
is particularly suited to cases where the representation of the complex object
needs to be kept separate from the composition algorithms.

We will show an example of the Builder Pattern in a program that can produce
forms—either web forms using HTML, or GUI forms using Python and Tkinter.
Both forms work visually and support text entry; however, their buttons are
non-functional* The forms are shown in Figure 1.2; the source code is in
formbuilder.py.

(=5 =R
Login +
I 7% Login E=SEen =
filer///C:/tmpytest.html *J-Google 2| i B~
. Username: Mathan
Username: Rebecca Password: T
| Login | | Cancel |

Figure 1.2 The HTML and Tkinter forms on Windows

Let’s begin by looking at the code needed to build each form, starting with the
top-level calls.

htmlForm = create login form(HtmlFormBuilder())
with open(htmlFilename, "w", encoding="utf-8") as file:
file.write(htmlForm)

tkForm = create login form(TkFormBuilder())

* All the examples must strike a balance between realism and suitability for learning, and as a result
a few—as in this case—have only basic functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

12 Chapter 1. Creational Design Patterns in Python

with open(tkFilename, "w", encoding="utf-8") as file:
file.write(tkForm)

Here, we have created each form and written it out to an appropriate file.
In both cases we use the same form creation function (create login form()),
parameterized by an appropriate builder object.

def create login form(builder):
builder.add title("Login")

(
(
builder.add label("Username", 0, target="username")
(
(

0,
builder.add entry("username", 0, 1)
builder.add label("Password", 1, 0
builder.add entry("password", 1, 1
builder.add button("Login", 2, 0)
builder.add button("Cancel", 2, 1)

return builder.form()

target="password")
kind="password")

’
’

This function can create any arbitrary HTML or Tkinter form—or any other
kind of form for which we have a suitable builder. The builder.add title()
method is used to give the form a title. All the other methods are used to add a
widget to the form at a given row and column position.

Both HtmlFormBuilder and TkFormBuilder inherit from an abstract base class,
AbstractFormBuilder.

class AbstractFormBuilder(metaclass=abc.ABCMeta):

@abc.abstractmethod
def add title(self, title):
self.title = title

@abc.abstractmethod
def form(self):
pass

@abc.abstractmethod
def add label(self, text, row, column, **xkwargs):
pass

Any class that inherits this class must implement all the abstract methods. We
have elided the add entry() and add button() abstract methods because, apart
from their names, they are identical to the add label() method. Incidentally, we
are required to make the AbstractFormBuilder have a metaclass of abc.ABCMeta
to allow it to use the abc module’s @abstractmethod decorator. (See §2.4, » 48 for
more on decorators.)

www.it-ebooks.info

http://www.it-ebooks.info/

1.2. Builder Pattern 13

Sequence and Mapping Unpacking @

Unpacking means extracting all the items in a sequence or map individually.
One simple use case for sequence unpacking is to extract the first or first few
items, and then the rest. For example:

first, second, *rest = sequence

Here we are assuming that sequence has at least three items: first == se-
quence[0], second == sequence[1], and rest == sequence[2:].

Perhaps the most common uses of unpacking are related to function calls. If
we have a function that expects a certain number of positional arguments,
or particular keyword arguments, we can use unpacking to provide them.
For example:

args = (600, 900)
kwargs = dict(copies=2, collate=False)
print setup(*args, *xkwargs)

The print_setup() function requires two positional arguments (width and
height) and accepts up to two optional keyword arguments (copies and col-
late). Rather than passing the values directly, we have created an args tuple
and a kwargs dict, and used sequence unpacking (*args) and mapping unpack-
ing (xxkwargs) to pass in the arguments. The effect is exactly the same as if
we had written, print setup(600, 900, copies=2, collate=False).

The other use related to function calls is to create functions that can accept
any number of positional arguments, or any number of keyword arguments,
or any number of either. For example:

def print args(*xargs, **kwargs):
print(args. class . name , args,
kwargs. class . name , kwargs)

print args() # prints: tuple () dict {}
print args(l, 2, 3, a="A") # prints: tuple (1, 2, 3) dict {'a': 'A'}

The print_args() function accepts any number of positional or keyword ar-
guments. Inside the function, args is of type tuple, and kwargs is of type dict.
If we wanted to pass these on to a function called inside the print args()
function, we could, of course, use unpacking in the call (e.g., function(*args,
**kwargs)). Another common use of mapping unpacking is when calling the
str.format () method—for example,s.format (**locals())—rather than typing
all the key=value arguments manually (e.g., see SvgText. init ();8 <).

www.it-ebooks.info

http://www.it-ebooks.info/

14 Chapter 1. Creational Design Patterns in Python

Giving a class a metaclass of abc.ABCMeta means that the class cannot be in-
stantiated, and so must be used as an abstract base class. This makes partic-
ular sense for code being ported from, say, C++ or Java, but does incur a tiny
runtime overhead. However, many Python programmers use a more laid back
approach: they don’t use a metaclass at all, and simply document that the class
should be used as an abstract base class.

class HtmlFormBuilder(AbstractFormBuilder):

def init (self):
self.title = "HtmlFormBuilder"
self.items = {}

def add title(self, title):
super().add title(escape(title))

def add label(self, text, row, column, **xkwargs):
self.items[(row, column)] = ('<td><label for="{}">{}:</label></td>"
.format (kwargs["target"], escape(text)))

def add entry(self, variable, row, column, **kwargs):
html = """<td><input name="{}" type="{}" /></td>""".format(
variable, kwargs.get("kind", "text"))
self.items[(row, column)] = html

Here is the start of the HtmlFormBuilder class. We provide a default title in case
the form is built without one. All the form’s widgets are stored in an items dic-
tionary that uses row, column 2-tuple keys, and the widgets’ HTML as values.

We must reimplement the add title() method since it is abstract, but since the
abstract version has an implementation we can simply call that implementation.
In this case we must preprocess the title using the html.escape() function (or the
xml.sax.saxutil.escape() function in Python 3.2 or earlier).

The add button() method (not shown) is structurally similar to the other
add ...() methods.

def form(self):
html = ["<!doctype html>\n<html><head><title>{}</title></head>"
"<body>".format (self.title), '<form><table border="0">"]
thisRow = None
for key, value in sorted(self.items.items()):
row, column = key
if thisRow is None:
html.append(" <tr>")
elif thisRow != row:

www.it-ebooks.info

http://www.it-ebooks.info/

1.2. Builder Pattern 15

html.append(" </tr>\n <tr>")
thisRow = row
html.append(" " + value)
html.append(" </tr>\n</table></form></body></html>")
return "\n".join(html)

The HtmlFormBuilder.form() method creates an HTML page consisting of a
<form>, inside of which is a <table>, inside of which are rows and columns of
widgets. Once all the pieces have been added to the html list, the list is returned
as a single string (with newline separators to make it more human-readable).

class TkFormBuilder(AbstractFormBuilder):

def init (self):
self.title = "TkFormBuilder"
self.statements = []

def add title(self, title):
super().add title(title)

def add label(self, text, row, column, *xkwargs):
name = self. canonicalize(text)

create = """self.{}Label = ttk.Label(self, text="{}:")""".format(
name, text)
layout = """self.{}Label.grid(row={}, column={}, sticky=tk.W, \
padx="0.75m", pady="0.75m")""".format(name, row, column)

self.statements.extend((create, layout))

def form(self):
return TkFormBuilder.TEMPLATE.format(title=self.title,
name=self. canonicalize(self.title, False),
statements="\n ".join(self.statements))

This is an extract from the TkFormBuilder class. We store the form’s widgets as a
list of statements (i.e., as strings of Python code), two statements per widget.

The add_label() method’s structure is also used by the add entry() and add but-
ton() methods (neither of which is shown). These methods begin by getting a
canonicalized name for the widget and then make two strings: create, which has
the code to create the widget and layout, which has the code to lay out the widget
in the form. Finally, the methods add the two strings to the list of statements.

The form() method is very simple:it just returns a TEMPLATE string parameterized
by the title and the statements.

www.it-ebooks.info

http://www.it-ebooks.info/

16 Chapter 1. Creational Design Patterns in Python

TEMPLATE = """#!/usr/bin/env python3
import tkinter as tk
import tkinter.ttk as ttk

class {name}Form(tk.Toplevel): @

def init (self, master):
super(). init (master)
self.withdraw() # hide until ready to show
self.title("{title}") @A
{statements} ©
self.bind("<Escape>", lambda *args: self.destroy())
self.deiconify() # show when widgets are created and laid out
if self.winfo viewable():
self.transient(master)
self.wait visibility()
self.grab set()
self.wait window(self)

if name == " main
application = tk.Tk()
window = {name}Form(application) @
application.protocol("WM DELETE WINDOW", application.quit)
application.mainloop()

The form is given a unique class name based on the title (e.g., LoginForm, @; @).
The window title is set early on (e.g., “Login”, ®), and this is followed by all the
statements to create and lay out the form’s widgets (®).

The Python code produced by using the template can be run stand-alone thanks
tothe if name ... Dblock at the end.

def canonicalize(self, text, startLower=True):
text = re.sub(r"\W+", "", text)
if text[0].isdigit():
return " " + text
return text if not startLower else text[0].lower() + text[1:]

The code for the canonicalize() method is included for completeness. Inciden-
tally, although it looks as if we create a fresh regex every time the function is
called, in practice Python maintains a fairly large internal cache of compiled
regexes, so for the second and subsequent calls, Python just looks up the regex
rather than recompiling it.*

www.it-ebooks.info

http://www.it-ebooks.info/

1.3. Factory Method Pattern 17

1.3. Factory Method Pattern

The Factory Method Pattern is intended to be used when we want subclasses to
choose which classes they should instantiate when an object is requested. This
is useful in its own right, but can be taken further and used in cases where we
cannot know the class in advance (e.g., the class to use is based on what we read
from a file or depends on user input).

In this section we will review a program that can be used to create game boards
(e.g., a checkers or chess board). The program’s output is shown in Figure 1.3,
and the four variants of the source code are in the files gameboardl.py...game-
board4.py.®

We want to have an abstract board class that can be subclassed to create game-
specific boards. Each board subclass will populate itself with its initial layout of
pieces. And we want every unique kind of piece to belong to its own class (e.g.,
BlackDraught, WhiteDraught, BlackChessBishop, WhiteChessKnight, etc.). Inciden-
tally, for individual pieces, we have used class names like WhiteDraught rather
than, say, WhiteChecker, to match the names used in Unicode for the correspond-
ing characters.

Teeew® Wik g e g AN
L8 8 8 8 Aidddiri

B e 5 5 8

5 5 B 5 &
BEEERER AAARAAAR

55688 EoO\R e RS

Figure 1.3 The checkers and chess game boards on a Linux console

* This book assumes a basic knowledge of regexes and Python’s re module. Readers needing to
learn this can download a free PDF of “Chapter 13. Regular Expressions” from this author’s book
Programming in Python 3, Second Edition; see www.qtrac.eu/py3book.html.

®Unfortunately, Windows consoles’ UTF-8 support is rather poor, with many characters unavailable,
even if code page 65001 1is used. So, for Windows, the programs write their output to a temporary file
and print the filename they used. None of the standard Windows monospaced fonts seems to have
the checkers or chess piece characters, although most of the variable-width fonts have the chess
pieces. The free and open-source DejaVu Sans font has them all (dejavu-fonts.org).

www.it-ebooks.info

http://www.qtrac.eu/py3book.html
http://www.it-ebooks.info/

18 Chapter 1. Creational Design Patterns in Python

We will begin by reviewing the top-level code that instantiates and prints the
boards. Next, we will look at the board classes and some of the piece classes—
starting with hard-coded classes. Then we will review some variations that
allow us to avoid hard-coding classes and at the same time use fewer lines of
code.

def main():
checkers = CheckersBoard()
print(checkers)

chess = ChessBoard()
print(chess)

This function is common to all versions of the program. It simply creates each
type of board and prints it to the console, relying on the AbstractBoard’s _str_ ()
method to convert the board’s internal representation into a string.

BLACK, WHITE = ("BLACK", "WHITE")
class AbstractBoard:

def init (self, rows, columns):
self.board = [[None for _in range(columns)] for _ in range(rows)]
self.populate board()

def populate board(self):
raise NotImplementedError()

def str (self):
squares = []
for y, row in enumerate(self.board):
for x, piece in enumerate(row):
square = console(piece, BLACK if (y + x) % 2 else WHITE)
squares.append(square)
squares.append("\n")

return "".join(squares)

The BLACK and WHITE constants are used here to indicate each square’s back-
ground color. In later variants they are also used to indicate each piece’s color.
This class is quoted from gameboardl.py, but it is the same in all versions.

It would have been more conventional to specify the constants by writing: BLACK,
WHITE = range(2). However, using strings is much more helpful when it comes to
debugging error messages, and should be just as fast as using integers thanks
to Python’s smart interning and identity checks.

The board is represented by a list of rows of single-character strings—or None for
unoccupied squares. The console() function (not shown, but in the source code),

www.it-ebooks.info

http://www.it-ebooks.info/

1.3. Factory Method Pattern 19

returns a string representing the given piece on the given background color. (On
Unix-like systems this string includes escape codes to color the background.)

We could have made the AbstractBoard a formally abstract class by giving it a
metaclass of abc.ABCMeta (as we did for the AbstractFormBuilder class; 12 <). How-
ever, here we have chosen to use a different approach, and simply raise a NotIm-
plementedError exception for any methods we want subclasses to reimplement.

class CheckersBoard(AbstractBoard):

def init (self):
super(). init (10, 10)

def populate board(self):
for x in range(0, 9, 2):
for row in range(4):
column = x + ((row + 1) % 2)
self.board[row] [column] = BlackDraught()
self.board[row + 6][column] = WhiteDraught()

This subclass is used to create a representation of a 10 x 10 international
checkers board. This class’s populate board() method is not a factory method,
since it uses hard-coded classes; it is shown in this form as a step on the way to
making it into a factory method.

class ChessBoard(AbstractBoard):
def init (self):
super(). init (8, 8)

def populate board(self):
self.board[0][0] = BlackChessRook()
self.board[0][1] = BlackChessKnight()

self.board[7][7] = WhiteChessRook()

for column in range(8):
self.board[1][column]
self.board[6][column]

BlackChessPawn ()
WhiteChessPawn()

This version of the ChessBoard’s populate board() method—just like the Checkers-
Board’s one—is not a factory method, but it does illustrate how the chess board is
populated.

class Piece(str):

__slots__ = ()

www.it-ebooks.info

http://www.it-ebooks.info/

20 Chapter 1. Creational Design Patterns in Python

This class serves as a base class for pieces. We could have simply used str, but
that would not have allowed us to determine if an object is a piece (e.g., using
isinstance(x, Piece)). Using slots = () ensures that instances have no data,
a topic we’ll discuss later on (§2.6, » 65).

class BlackDraught(Piece):
__slots__ = ()

def new (Class):
return super(). new (Class, "\N{black draughts man}")

class WhiteChessKing(Piece):
__slots = ()

def new (Class):
return super(). new (Class, "\N{white chess king}")

These two classes are models for the pattern used for all the piece classes. Every
one is an immutable Piece subclass (itself a str subclass) that is initialized
with a one-character string holding the Unicode character that represents
the relevant piece. There are fourteen of these tiny subclasses in all, each one
differing only by its class name and the string it holds: clearly, it would be nice
to eliminate all this near-duplication.

def populate board(self):
for x in range(0, 9, 2):
for y in range(4):
column = x + ((y + 1) % 2)
for row, color in ((y, "black"), (y + 6, "white")):
self.board[row] [column] = create piece("draught",
color)

This new version of the CheckersBoard.populate board() method (quoted from
gameboard?2.py) is a factory method, since it depends on a new create piece() fac-
tory function rather than on hard-coded classes. The create piece() function
returns an object of the appropriate type (e.g., a BlackDraught or a WhiteDraught),
depending on its arguments. This version of the program has a similar Chess-
Board.populate board() method (not shown), which also uses string color and
piece names and the same create piece() function.

def create piece(kind, color):
if kind == "draught":
return eval("{}{}()".format(color.title(), kind.title()))
return eval("{}Chess{}()".format(color.title(), kind.title()))

www.it-ebooks.info

http://www.it-ebooks.info/

1.3. Factory Method Pattern 21

This factory function uses the built-in eval() function to create class instances.
For example, if the arguments are "knight" and "black", the string to be eval()’d
will be "BlackChessKnight ()". Although this works perfectly well, it is potentially
risky since pretty well anything could be eval()’d into existence—we will see a
solution, using the built-in type() function, shortly.

for code in itertools.chain((0x26C0, 0x26C2), range(0x2654, 0x2660)):
char = chr(code)
name = unicodedata.name(char).title().replace(" ", "")
if name.endswith("sMan"):
name = name[:-4]
exec("""\
class {}(Piece):

__slots = ()

def new (Class):
return super(). new (Class, "{}")""".format(name, char))

Instead of writing the code for fourteen very similar classes, here we create all
the classes we need with a single block of code.

The itertools.chain() function takes one or more iterables and returns a single
iterable that iterates over the first iterable it was passed, then the second, and
so on. Here, we have given it two iterables, the first a 2-tuple of the Unicode
code points for black and white checkers pieces, and the second a range-object (in
effect, a generator) for the black and white chess pieces.

For each code point we create a single character string (e.g., "4") and then
create a class name based on the character’s Unicode name (e.g., “black chess
knight” becomes BlackChessknight). Once we have the character and the name
we use exec() to create the class we need. This code block is a mere dozen
lines—compared with around a hundred lines for creating all the classes indi-
vidually.

Unfortunately, though, using exec() is potentially even more risky than using

eval(), so we must find a better way.

DRAUGHT, PAWN, ROOK, KNIGHT, BISHOP, KING, QUEEN = ("DRAUGHT", "PAWN",
"ROOK", "KNIGHT", "BISHOP", "KING", "QUEEN")

class CheckersBoard(AbstractBoard):

def populate board(self):
for x in range(0, 9, 2):
for y in range(4):
column = x + ((y + 1) % 2)

www.it-ebooks.info

http://www.it-ebooks.info/

22 Chapter 1. Creational Design Patterns in Python

for row, color in ((y, BLACK), (y + 6, WHITE)):
self.board[row][column] = self.create piece(DRAUGHT,
color)

This CheckersBoard.populate board() method is from gameboard3.py. It differs
from the previous version in that the piece and color are both specified using
constants rather than easy to mistype string literals. Also, it uses a new cre-
ate piece() factory to create each piece.

An alternative CheckersBoard.populate board() implementation is provided
in gameboard4.py (not shown)—this version uses a subtle combination of a list
comprehension and a couple of itertools functions.

class AbstractBoard:

__classForPiece = {(DRAUGHT, BLACK): BlackDraught,
(PAWN, BLACK): BlackChessPawn,

(QUEEN, WHITE): WhiteChessQueen}

def create piece(self, kind, color):
return AbstractBoard. classForPiece[kind, color]()

This version of the create piece() factory (also from gameboard3.py, of course)
is a method of the AbstractBoard that the CheckersBoard and ChessBoard classes
inherit. It takes two constants and looks them up in a static (i.e., class-level)
dictionary whose keys are (piece kind, color) 2-tuples, and whose values are class
objects. The looked-up value—a class—is immediately called (using the () call
operator), and the resulting piece instance is returned.

The classesin the dictionary could have been individually coded (as they were in
gameboardl.py) or created dynamically but riskily (as they were in gameboard2. py).
But for gameboard3.py, we have created them dynamically and safely, without
using eval() or exec().

for code in itertools.chain((0x26C0, 0x26C2), range(0x2654, 0x2660)):
char = chr(code)
name = unicodedata.name(char).title().replace(" ", "")
if name.endswith("sMan"):
name = name[:-4]
new = make new method(char)
Class = type(name, (Piece,), dict(slots =(), new =new))
setattr(sys.modules[name], name, Class) # Can be done better!

www.it-ebooks.info

http://www.it-ebooks.info/

1.3. Factory Method Pattern 23

This code has the same overall structure as the code shown earlier for creating
the fourteen piece subclasses that the program needs (21 <). Only this time
instead of using eval() and exec() we take a somewhat safer approach.

Once we have the character and name we create a new function (called new())
by calling a custom make new method() function. We then create a new class
using the built-in type() function. To create a class this way we must passin the
type’s name, a tuple of its base classes (in this case, there’s just one, Piece), and
a dictionary of the class’s attributes. Here, we have set the slots attribute
to an empty tuple (to stop the class’s instances having a private dict that
isn’t needed), and set the new method attribute to the new() function we have
just created.

Finally, we use the built-in setattr() function to add to the current module
(sys.modules[name])thenewly created class (Class) as an attribute called name
(e.g., "WhiteChessPawn"). In gameboard4.py, we have written the last line of this
code snippet in a nicer way:

globals()[name] = Class

Here, we have retrieved a reference to the dict of globals and added a new item
whose key is the name held in name, and whose value is our newly created Class.
This does exactly the same thing as the setattr() line used in gameboard3. py.

def make new method(char): # Needed to create a fresh method each time
def new(Class): # Can't use super() or super(Piece, Class)
return Piece. new (Class, char)
return new

This function is used to create a new() function (that will become a class’s
__new_ () method). We cannot use a super() call since at the time the new() func-
tion is created there is no class context for the super() function to access. Note
that the Piece class (19 <) doesn’t have a __new () method—but its base class
(str) does, so that is the method that will actually be called.

Incidentally, the earlier code block’s new = make new method(char) line and the
make new method() function just shown could both be deleted, so long as the line
that called the make new method() function was replaced with these:

new = (lambda char: lambda Class: Piece. new (Class, char))(char)
new. name =" new

Here, we create a function that creates a function and immediately calls the
outer function parameterized by char to return a new() function. (This code is
used in gameboard4.py.)

www.it-ebooks.info

http://www.it-ebooks.info/

24 Chapter 1. Creational Design Patterns in Python

All lambda functions are called "lambda", which isn’t very helpful for debugging.
So, here, we explicitly give the function the name it should have, once it is
created.

def populate board(self):
for row, color in ((0, BLACK), (7, WHITE)):
for columns, kind in (((0, 7), ROOK), ((1, 6), KNIGHT),
((2, 5), BISHOP), ((3,), QUEEN), ((4,), KING)):
for column in columns:
self.board[row][column] = self.create piece(kind,
color)
for column in range(8):
for row, color in ((1, BLACK), (6, WHITE)):
self.board[row][column] = self.create piece(PAWN, color)

For completeness, here is the ChessBoard.populate board() method from game-
board3.py (and gameboard4.py). It depends on color and piece constants (which
could be provided by a file or come from menu options, rather than being hard-
coded). In the gameboard3.py version, this uses the create piece() factory func-
tion shown earlier (22 «). But for gameboard4.py, we have used our final cre-
ate piece() variant.

def create piece(kind, color):
color = "White" if color == WHITE else "Black"
name = {DRAUGHT: "Draught", PAWN: "ChessPawn", ROOK: "ChessRook",
KNIGHT: "ChessKnight", BISHOP: "ChessBishop",
KING: "ChessKing", QUEEN: "ChessQueen"}[kind]
return globals()[color + name]()

This is the gameboard4.py version’s create piece() factory function. It uses the
same constants as gameboard3. py, but rather than keeping a dictionary of class
objects it dynamically finds the relevant class in the dictionary returned by the
built-in globals() function. The looked-up class object is immediately called and
the resulting piece instance is returned.

1.4. Prototype Pattern

The Prototype Pattern is used to create new objects by cloning an original object,
and then modifying the clone.

As we have already seen, especially in the previous section, Python supports
a wide variety of ways of creating new objects, even when their types are only
known at runtime—and even if we have only their types’ names.

www.it-ebooks.info

http://www.it-ebooks.info/

1.4. Prototype Pattern 25

class Point:
SlOtS = (”X”, ||y||)
def init (self, x, y):

self.x = x
self.y =y

Given this classic Point class, here are seven ways to create new points:

def make object(Class, *args, **kwargs):
return Class(xargs, **xkwargs)

pointl = Point(1, 2)

point2 = eval("{}({}, {})".format("Point", 2, 4)) # Risky
point3 = getattr(sys.modules[name], "Point")(3, 6)
point4 = globals()["Point"](4, 8)

point5 = make object(Point, 5, 10)

point6é = copy.deepcopy(point5)

point6.x = 6

point6.y = 12

point7 = pointl. class (7, 14) # Could have used any of pointl to point6

Point pointl is created conventionally (and statically) using the Point class ob-
ject as a constructor* All the other points are created dynamically, with point2,
point3, and point4 parameterized by the class name. As the creation of point3
(and point4) makes clear, there is no need to use a risky eval () to create instances
(as we did for point2). The creation of point4 works exactly the same way as for
point3, but using nicer syntax by relying on Python’s built-in globals() func-
tion. Point point5 is created using a generic make object() function that accepts
a class object and the relevant arguments. Point point6 is created using the
classic prototype approach: first, we clone an existing object, then we initialize
or configure it. Point point7 is created by using point point1l’s class object, plus
new arguments.

Point point6 shows that Python has built-in support for prototyping using the
copy.deepcopy() function. However, point7 shows that Python can do better than
prototyping: instead of needing to clone an existing object and modify the clone,
Python gives us access to any object’s class object, so that we can create a new
object directly and much more efficiently than by cloning.

* Strictly speaking, an __init () method is an initializer,and a _new () method is a constructor.
However, since we almost alwaysuse init () andrarelyuse new (), we will refer to them both
as “constructors” throughout the book.

www.it-ebooks.info

http://www.it-ebooks.info/

26 Chapter 1. Creational Design Patterns in Python

1.5. Singleton Pattern

The Singleton Pattern is used when we need a class that has only a single
instance that is the one and only instance accessed throughout the program.

For some object-oriented languages, creating a singleton can be surprisingly
tricky, but this isn’t the case for Python. The Python Cookbook (code.active-
state.com/recipes/langs/python/) provides an easy-to-use Singleton class that
any class can inherit to become a singleton—and a Borg class that achieves the
same end in a rather different way.

However, the easiest way to achieve singleton functionality in Python is to
create a module with the global state that’s needed kept in private variables
and access provided by public functions. For example, in Chapter 7’s currency
example (> 237), we need a function that will return a dictionary of currency
rates (name keys, conversion rate values). We may want to call the function
several times, but in most cases we want the rates fetched only once. We can
achieve this by using the Singleton Pattern.

_URL = "http://www.bankofcanada.ca/stats/assets/csv/fx-seven-day.csv"

def get(refresh=False):
if refresh:
get.rates = {}
if get.rates:
return get.rates
with urllib.request.urlopen(URL) as file:
for line in file:
line = line.rstrip().decode("utf-8")
if not line or line.startswith(("#", "Date")):
continue
name, currency, *rest = re.split(r"\s*,\s*", line)
key = "{} ({})".format(name, currency)
try:
get.rates[key] = float(rest[-1])
except ValueError as err:
print("error {}: {}".format(err, line))
return get.rates
get.rates = {}

This is the code for the currency/Rates.py module (as usual, excluding the
imports). Here, we create a rates dictionary as an attribute of the Rates.get()
function—this is our private value. When the public get() function is called for
the first time (or if it is called with refresh=True), we download the rates afresh;
otherwise, we simply return the rates we most recently downloaded. There is

www.it-ebooks.info

http://www.bankofcanada.ca/stats/assets/csv/fx-seven-day.csv
http://www.it-ebooks.info/

1.5. Singleton Pattern 27

no need for a class, yet we have still got a singleton data value—the rates—and
we could easily add more singleton values.

All of the creational design patterns are straightforward to implement in
Python. The Singleton Pattern can be implemented directly by using a module,
and the Prototype Pattern is redundant (although still doable using the copy
module), since Python provides dynamic access to class objects. The most use-
ful creational design patterns for Python are the Factory and Builder Patterns;
these can be implemented in a number of ways. Once we have created basic
objects, we often need to create more complex objects by composing or adapting
other objects. We'll look at how this is done in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Structural Design
Patterns in Python

§2.1. Adapter Pattern » 29

§2.2. Bridge Pattern » 34

§2.3. Composite Pattern » 40
§2.3.1. A Classic Composite/Noncomposite Hierarchy » 41
§2.3.2. A Single Class for (Non)composites » 45

§2.4. Decorator Pattern » 48
§2.4.1. Function and Method Decorators » 48
§2.4.2. Class Decorators » 54

§2.5. Fagade Pattern » 59

§2.6. Flyweight Pattern » 64

§2.7. Proxy Pattern » 67

The primary concern of structural design patterns is how objects are composed
together to form new, larger objects. Three themes stand out in structural design
patterns: adapting interfaces, adding functionality, and handling collections of
objects.

2.1. Adapter Pattern

The Adapter Pattern is a technique for adapting an interface so that one class
can make use of another class—that has an incompatible interface—without
changing either of the classes being used. This is useful, for example, when
we want to use a class that cannot be changed, in a context it wasn’t originally
designed for.

Let’s imagine that we have a simple Page class that can be used to render a page
given its title, paragraphs of body text, and an instance of a renderer class.
(This section’s code is all taken from the renderl.py example.)

class Page:

def init (self, title, renderer):

29

www.it-ebooks.info

http://www.it-ebooks.info/

30 Chapter 2. Structural Design Patternsin Python

if not isinstance(renderer, Renderer):
raise TypeError("Expected object of type Renderer, got {}".
format (type(renderer). name))
self.title = title
self.renderer = renderer
self.paragraphs = []

def add paragraph(self, paragraph):
self.paragraphs.append(paragraph)

def render(self):
self.renderer.header(self.title)
for paragraph in self.paragraphs:
self.renderer.paragraph(paragraph)
self.renderer.footer()

The Page class does not know or care what the renderer’s class is, only that it
provides the page renderer interface; that is, the three methods header(str),
paragraph(str), and footer().

We want to ensure that the renderer passed in is a Renderer instance. A simple
but poor solution is: assert isinstance(renderer, Renderer). This has two weak-
nesses. First, it raises an AssertionError rather than the expected and more
specific TypeError. Second, if the user runs the program with the -0 (“optimize”)
option, the assert will be ignored and the user will end up getting an Attribute-
Error raised later on, in the render() method. The if not isinstance(...) state-
ment used in the code correctly raises a TypeError and works regardless of the -0
option.

One apparent problem with this approach is that it would seem that we must
make all our renderers subclasses of a Renderer base class. Certainly, if we
were programming in C++, this would be the case; and we could indeed create
such a base class in Python. However, Python’s abc (abstract base class) module
provides us with an alternative and more flexible option that combines the
interface checkability benefit of an abstract base class with the flexibility of
duck typing. This means that we can create objects that are guaranteed to meet
a particular interface (i.e., to have a specified API) but need not be subclasses of
any particular base class.

class Renderer(metaclass=abc.ABCMeta):

@classmethod
def subclasshook (Class, Subclass):
if Class is Renderer:
attributes = collections.ChainMap(*(Superclass. dict
for Superclass in Subclass. mro_))

www.it-ebooks.info

http://www.it-ebooks.info/

2.1. Adapter Pattern 31

methods = ("header", "paragraph", "footer")
if all(method in attributes for method in methods):
return True
return NotImplemented

The Renderer class reimplements the subclasshook () special method. This
method is used by the built-in isinstance() function to determine if the object
it is given as its first argument is a subclass of the class (or any of the tuple of
classes) it is passed as its second argument.

The code is rather subtle—and Python 3.3-specific—because it uses the collec-
tions.ChainMap() class.* The code is explained next, but understanding it isn’t
important since all the hard work can be done by the @Qtrac.has methods class
decorator supplied with the book’s examples (and covered later; » 36).

The subclasshook () special method begins by checking to see if the class in-
stance it is being called on (Class) is Renderer; otherwise, we return NotImplement-
ed. This means that the subclasshook behavior is not inherited by subclasses.
We do this because we assume that a subclass is adding new criteria to the ab-
stract base class, rather than adding behavior. Naturally, we can still inherit
behavior if we wish, simply by calling Renderer. subclasshook () explicitly in
our _subclasshook () reimplementation.

If we returned True or False, the abstract base class machinery would be stopped
in its tracks and the bool returned. But by returning NotImplemented, we allow
the normal inheritance functionality to operate (subclasses, subclasses of
explicitly registered classes, subclasses of subclasses).

If the if statement’s condition is met, we iterate over every class inherited by
the Subclass (including itself), as returned by its __mro_ () special method, and
accessits private dictionary (__dict). Thisprovidesatupleof dict sthatwe
immediately unpack using sequence unpacking (x), so that all the dictionaries
get passed to the collections.ChainMap() function. This function takes any
number of mappings (such as dicts) as arguments, and returns a single map
view as if they were all in the same mapping. Now, we create a tuple of the
methods we want to check for. Finally, we iterate over all the methods and check
that each one is in the attributes mapping whose keys are the names of all the
methods and properties of the Subclass and all its Superclasses, and return True
if all the methods are present.

Note that we check only that the subclass (or any of its base classes) has at-
tributes whose names match the required methods—so even a property will
match. If we want to be certain of matching only methods, we could add to the

* The renderl.py example and the Qtrac.py module used by render2.py includes both Python 3.3-
specific code and code that works with earlier Python 3 versions.

www.it-ebooks.info

http://www.it-ebooks.info/

32 Chapter 2. Structural Design Patternsin Python

method in attributes test an additional and callable(method) clause; but in prac-
tice this is so rarely a problem that it isn’t worth doing.

Creating a class with a __subclasshook () to provide interface checking is very
useful, but writing ten lines of complex code for every such class when they
vary only in the base class and the supported methods is just the kind of code
duplication we want to avoid. In the next section (§2.2, » 34), we will create a
class decorator that means that we can create interface checking classes with
just a couple of unique lines of code each time. (The examples also include the
render2.py program that makes use of this decorator.)

class TextRenderer:

def init (self, width=80, file=sys.stdout):
self.width = width
self.file = file
self.previous = False

def header(self, title):
self.file.write("{0:"{2}}\n{1:"{2}}\n". format(title,
"=" x len(title), self.width))

Here is the start of a simple class that supports the page renderer interface.

The header() method writes the given title centered in the given width, and on
the next line writes an = character below every character in the title.

def paragraph(self, text):
if self.previous:
self.file.write("\n")
self.file.write(textwrap.fill(text, self.width))
self.file.write("\n")
self.previous = True

def footer(self):
pass

The paragraph() method uses the Python standard library’s textwrap mod-
ule to write the given paragraph, wrapped to the given width. We use the
self.previous Boolean to ensure that each paragraph is separated by a blank
line from the one before. The footer() method does nothing, but must be present
since it is part of the page renderer interface.

class HtmlWriter:

def init (self, file=sys.stdout):
self.file = file

www.it-ebooks.info

http://www.it-ebooks.info/

2.1. Adapter Pattern 33

def header(self):
self.file.write("<!doctype html>\n<html>\n")

def title(self, title):
self.file.write("<head><title>{}</title></head>\n".format (
escape(title)))

def start body(self):
self.file.write("<body>\n")

def body(self, text):
self.file.write("<p>{}</p>\n".format(escape(text)))

def end body(self):
self.file.write("</body>\n")

def footer(self):
self.file.write("</html>\n")

The HtmlWriter class can be used to write a simple HTML page, and it takes care
of escaping using the html.escape() function (or the xml.sax.saxutil.escape()
function in Python 3.2 or earlier).

Although this class has header() and footer() methods, they have different be-
haviors than those promised by the page renderer interface. So, unlike the Text-
Renderer, we cannot pass an HtmlWriter as a page renderer to a Page instance.

One solution would be to subclass HtmlWriter and provide the subclass with the
page renderer interface’s methods. Unfortunately, this is rather fragile, since
the resultant class will have a mixture of the HtmlWriter’s methods plus the page
renderer interface’s methods. A much nicer solution is to create an adapter: a
class that aggregates the class we need to use, that provides the required
interface, and that handles all the mediation for us. How such an adapter class
fits in is illustrated in Figure 2.1 > 34).

class HtmlRenderer:
def init (self, htmlWriter):
self.htmWriter = htmWWriter

def header(self, title):
self.htmWWriter.header()
self.htmWriter.title(title)
self.htmlWriter.start body()

def paragraph(self, text):
self.htmlWriter.body(text)

www.it-ebooks.info

http://www.it-ebooks.info/

34 Chapter 2. Structural Design Patternsin Python

Page

renderer 4—f—(Renderer interfaceJ

[]
TextRenderer HtmlRenderer Adapter
HtmlIWriter Adaptee

Figure 2.1 A page renderer adapter class in context

def footer(self):
self.htmlWriter.end body()
self.htmWriter.footer()

This is our adapter class. It takes an htmlWriter of type HtmlWriter at construc-
tion time, and it provides the page renderer interface’s methods. All the actual
work is delegated to the aggregated HtmlWriter, so the HtmlRenderer class is just
a wrapper providing a new interface for the existing HtmlWriter class.

textPage = Page(title, TextRenderer(22))
textPage.add paragraph(paragraphl)
textPage.add paragraph(paragraph2)
textPage. render()

htmlPage = Page(title, HtmlRenderer(HtmlWriter(file)))
htmlPage.add paragraph(paragraphl)

htmlPage.add paragraph(paragraph2)

htmlPage. render()

Here are a couple of examples showing how instances of the Page class are
created with their custom renderer. In this case we’ve given the TextRenderer
a default width of 22 characters. And we have given the HtmlWriter that’s used
by the HtmlRenderer adapter an open file to write to (whose creation isn’t shown)
that overrides the default of sys.stdout.

2.2. Bridge Pattern

The Bridge Pattern is used in situations where we want to separate an abstrac-
tion (e.g., an interface or an algorithm) from how it is implemented.

The conventional approach without using the Bridge Pattern would be to create
one or more abstract base classes and then provide two or more concrete imple-
mentations of each of the base classes. But with the Bridge Pattern the ap-
proach is to create two independent class hierarchies: the “abstract” one defining

www.it-ebooks.info

http://www.it-ebooks.info/

2.2. Bridge Pattern 35

the operations(e.g., the interface and high-level algorithms) and the concrete one
providing the implementations that the abstract operations will ultimately call.
The “abstract” class aggregates an instance of one of the concrete implementa-
tion classes—and this instance serves as a bridge between the abstract interface
and the concrete operations.

In the previous section’s Adapter Pattern, the HtmlRenderer class could be said
to have used the Bridge Pattern, since it aggregated an HtmlWriter to provide
its rendering.

For this section’s example, let’s suppose that we want to create a class for
drawing bar charts using a particular algorithm, but we want to leave the actual
rendering of the charts to other classes. We will look at a program that provides
this functionality and that uses the Bridge Pattern: barchartl.py.

class BarCharter:

def init (self, renderer):
if not isinstance(renderer, BarRenderer):
raise TypeError("Expected object of type BarRenderer, got {}".
format(type(renderer). name))
self. renderer = renderer

def render(self, caption, pairs):
maximum = max(value for , value in pairs)
self. renderer.initialize(len(pairs), maximum)
self. renderer.draw_caption(caption)
for name, value in pairs:
self. renderer.draw_bar(name, value)
self. renderer.finalize()

The BarCharter class implements a bar chart drawing algorithm (in its render()
method) that depends on the renderer implementation it is given meeting a
particular bar charting interface. The interface requires the initialize(int,
int),draw_caption(str),draw bar(str, int), and finalize() methods.

Just as we did in the previous section, we use an isinstance() test to ensure that
the passed-in renderer object supports the interface we require—and without
forcing bar renderers to have any particular base class. However, rather than
creating a ten-line class as we did before, we have created our interface-checking
class with just two lines of code.

@Qtrac.has _methods("initialize", "draw_caption", "draw_bar", "finalize")
class BarRenderer(metaclass=abc.ABCMeta): pass

This code creates a BarRenderer class that has the necessary metaclass for work-
ing with the abc module. This class is then passed to the Qtrac.has methods()

www.it-ebooks.info

http://www.it-ebooks.info/

36 Chapter 2. Structural Design Patternsin Python

function, which returns a class decorator. This decorator then adds a custom
__subclasshook () class method to the class. And this new method checks for
the given methods whenever a BarRenderer is passed as a type to an isinstance()
call. (Readersnot familiar with class decorators may find it helpful to skip ahead
and read §2.4, » 48, and especially §2.4.2, » 54, and then return here.)

def has_methods (*methods) :
def decorator(Base):
def subclasshook (Class, Subclass):
if Class is Base:
attributes = collections.ChainMap(*(Superclass. dict
for Superclass in Subclass. mro))
if all(method in attributes for method in methods):
return True
return NotImplemented
Base. subclasshook = classmethod(subclasshook)
return Base
return decorator

The Qtrac.py module’s has_methods() function captures the required methods
and creates a class decorator function, which it then returns. The decorator it-
self creates a _ subclasshook () function, and then adds it to the base class
as a class method using the built-in classmethod() function. The custom _ sub-
classhook () function’s code is essentially the same as we discussed before
(31 <), only this time, instead of using a hard-coded base class, we use the deco-
rated class (Base), and instead of a hard-coded set of method names, we use those
passed in to the class decorator (methods).

It is also possible to achieve the same kind of method checking functionality by
inheriting from a generic abstract base class. For example:

class BarRenderer(Qtrac.Requirer):
required methods = {"initialize", "draw caption", "draw bar",
"finalize"}

This code snippet is from barchart3.py. The Qtrac.Requirer class (not shown,
but in Qtrac.py) is an abstract base class that performs the same checks as the
@has_methods class decorator.

def main():
pairs = (("Mon", 16), ("Tue", 17), ("Wed", 19), ("Thu", 22),
("Fri", 24), ("Sat", 21), ("Sun", 19))
textBarCharter = BarCharter(TextBarRenderer())
textBarCharter.render("Forecast 6/8", pairs)

www.it-ebooks.info

http://www.it-ebooks.info/

2.2. Bridge Pattern 37

imageBarCharter = BarCharter(ImageBarRenderer())
imageBarCharter.render("Forecast 6/8", pairs)

This main() function sets up some data, creates two bar charters—each with
a different renderer implementation—and renders the data. The outputs are
shown in Figure 2.2, and the interface and classes are illustrated in Figure 2.3.

Forecast 6/8

sokokkkokkkkook Rk kokok kR Rkk - Mo
orkkkokkkkokook ok koo R Rk T @

Rk Rk ok kR kR ok kR kR Rk Rk e

sk ok kR ok kR Rk kR Rk ko Rk kR okkok ok Thy
rokokkokk ok kR ok ok Rk kot ok ok skok kot ok ok Rk F g
rokokskokR ok kokok ok kR R kot kok kR ok Rk kR Rk Gt
rokokkokR R kokok ok ook ok kR R ok Rk kR Gy

Figure 2.2 Examples of text and image bar charts

BarCharter

renderer 4—'—(Bar Charter interface]

[I)

TextBarRenderer ImageBarRenderer

Figure 2.3 The bar charter interface and classes

class TextBarRenderer:

def init (self, scaleFactor=40):
self.scaleFactor = scaleFactor

def initialize(self, bars, maximum):
assert bars > 0 and maximum > 0
self.scale = self.scaleFactor / maximum

def draw_caption(self, caption):
print("{0:~{2}}\n{1:7{2}}".format(caption, "=" * len(caption),

self.scaleFactor))

def draw bar(self, name, value):
print("{} {}".format("+" * int(value * self.scale), name))

www.it-ebooks.info

http://www.it-ebooks.info/

38 Chapter 2. Structural Design Patternsin Python

def finalize(self):
pass

This class implements the bar charter interface and renders its text to
sys.stdout. Naturally, it would be easy to make the output file user-definable,
and for Unix-like systems, to use Unicode box drawing characters and colors for
more attractive output.

Notice that although the TextBarRenderer’s finalize() method does nothing, it
must still be present to satisfy the bar charter interface.

Although Python’s standard library is very wide ranging (“batteries included”),
it has one surprisingly major omission: there is no package for reading and writ-
ing standard bitmap and vector images. One solution is to use a third-party
library—either a multi-format library like Pillow (github.com/python-imaging/
Pillow), or an image-format—specific library, or even a GUI toolkit library. An-
other solution is to create our own image handling library—something we will
look at later (§3.12, » 124). If we are willing to confine ourselves to GIF images
(plus PNG once Python ships with Tk/Tcl 8.6), we can use Tkinter*

In barchartl.py, the ImageBarRenderer class uses the cyImage module (or failing
that, the Image module). We will refer to them as the Image module when the
difference doesn’t matter. These modules are supplied with the book’s exam-
ples and are covered later (Image in §3.12, » 124; cyImage in §5.2.2, » 193). For
completeness, the examples also include barchart2.py, which is a version of bar-
chartl.py that uses Tkinter instead of cyImage or Image; we don’t show any of that
version’s code in the book, though.

Since the ImageBarRenderer is more complex than the TextBarRenderer, we will
separately review its static data and then each of its methods in turn.
class ImageBarRenderer:

COLORS = [Image.color for name(name) for name in ("red", "green",

"blue", "yellow", "magenta", "cyan")]

The Image module represents pixels using 32-bit unsigned integers into which
are encoded four color components: alpha (transparency), red, green, and blue.
The module provides the Image.color for name() function that accepts a color
name—either an X11 rgb.txt name (e.g., "sienna") or an HTML-style name (e.g.,
"#A0522D")—and returns the corresponding unsigned integer.

Here, we create a list of colors to be used for the bar chart’s bars.

*Note that image handling in Tkinter must be done in the main (i.e., GUI) thread. For concurrent
image handling we must use another approach, as we will see later (§4.1, » 144).

www.it-ebooks.info

http://www.it-ebooks.info/

2.2. Bridge Pattern 39

def init (self, stepHeight=10, barWidth=30, barGap=2):
self.stepHeight = stepHeight
self.barWidth = barWidth
self.barGap = barGap

This method allows the user to set up some preferences that influence how the
bar chart’s bars will be painted.

def initialize(self, bars, maximum):
assert bars > 0 and maximum > 0
self.index = 0
color = Image.color for name('white")
self.image = Image.Image(bars * (self.barWidth + self.barGap),
maximum * self.stepHeight, background=color)

This method (and the ones that follow), must be present since it is part of the
bar charter interface. Here, we create a new image whose size is proportional to
the number of bars and their width and maximum height, and which is initially
colored white.

The self.index variable is used to keep track of which bar we are up to (counting
from 0).

def draw _caption(self, caption):
self.filename = os.path.join(tempfile.gettempdir(),
re.sub(r"\w+", " ", caption) + ".xpm")

The Image module has no support for drawing text, so we use the given caption
as the basis for the image’s filename.

The Image module supports two image formats out of the box: XBM (.xbm) for
monochrome images and XPM (. xpm) for color images. (If the PyYPNG module is
installed—see pypi.python.org/pypi/pypng—the Image module will also support
PNG (.png) format.) Here, we have chosen the color XPM format, since our bar
chart is in color and this format is always supported.

def draw _bar(self, name, value):
color = ImageBarRenderer.COLORS[self.index %
len(ImageBarRenderer.COLORS)]
width, height = self.image.size
x0 = self.index * (self.barWidth + self.barGap)
x1 = x0 + self.barWidth
y0 = height - (value * self.stepHeight)
yl = height - 1
self.image.rectangle(x0, y0, x1, yl, fill=color)
self.index += 1

www.it-ebooks.info

http://www.it-ebooks.info/

40 Chapter 2. Structural Design Patternsin Python

This method chooses a color from the COLORS sequence (rotating through the
same colors if there are more bars than colors). It then calculates the current
(self.index) bar’s coordinates (top-left and bottom-right corners) and tells the
self.image instance (of type Image.Image) to draw a rectangle on itself using the
given coordinates and fill color. Then, the index is incremented ready for the
next bar.

def finalize(self):
self.image.save(self.filename)
print('wrote", self.filename)

Here, we simply save the image and report this fact to the user.

Clearly, the TextBarRenderer and the ImageBarRenderer have radically different
implementations. Yet, either can be used as a bridge to provide a concrete
bar-charting implementation for the BarCharter class.

2.3. Composite Pattern

The Composite Pattern is designed to support the uniform treatment of objects
in a hierarchy, whether they contain other objects (as part of the hierarchy)
or not. Such objects are called composite. In the classic approach, composite
objects have the same base class for both individual objects and for collections
of objects. Both composite and noncomposite objects normally have the same
core methods, with composite objects also having additional methods to support
adding, removing, and iterating their child objects.

This pattern is often used in drawing programs, such as Inkscape, to support
grouping and ungrouping. The pattern is useful in such cases because when the
user selects components to group or ungroup, some of the components might be
single items (e.g., a rectangle), while others might be composite (e.g., a face made
up of many different shapes).

To see an example in practice, let’s look at a main() function that creates some
individual items and some composite items, and then prints them all out. The
code is quoted from stationeryl.py, with the output shown after it.

def main():
pencil = Simpleltem("Pencil", 0.40)
ruler = SimpleItem("Ruler", 1.60)
eraser = SimpleItem("Eraser", 0.20)
pencilSet = CompositeItem("Pencil Set", pencil, ruler, eraser)
box = SimpleItem("Box", 1.00)
boxedPencilSet = CompositeItem("Boxed Pencil Set", box, pencilSet)
boxedPencilSet.add(pencil)
for item in (pencil, ruler, eraser, pencilSet, boxedPencilSet):

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Composite Pattern 41

item.print()

$0.40 Pencil
$1.60 Ruler
$0.20 Eraser
$2.20 Pencil Set
$0.40 Pencil
$1.60 Ruler
$0.20 Eraser
$3.60 Boxed Pencil Set
$1.00 Box
$2.20 Pencil Set
$0.40 Pencil
$1.60 Ruler
$0.20 Eraser
$0.40 Pencil

Every SimpleItem has a name and a price, while every CompositeItem has a name
and any number of contained SimpleItems—or CompositeItems—so composite
items can be nested without limit. The price of a composite item is the sum of
its contained items’ prices.

In this example, a pencil set consists of a pencil, ruler, and eraser. For the boxed
pencil set we begin by creating it with a box and a nested pencil set, and then
add an extra pencil. The boxed pencil set’s hierarchy is illustrated in Figure 2.4
> 42).

We will review two different implementations of the Composite Pattern, the first
using the classic approach, and the second using a single class for representing
both composites and noncomposites.

2.3.1. A Classic Composite/Noncomposite Hierarchy

The classic approach is based on having an abstract base class for all kinds of
items (i.e., whether composite or not) and an additional abstract base class for
composites. The class hierarchy is shown in Figure 2.5 (> 43). We will begin by
looking at the AbstractItem base class.

class AbstractItem(metaclass=abc.ABCMeta):

@abc.abstractproperty
def composite(self):
pass

def iter (self):
return iter([])

www.it-ebooks.info

http://www.it-ebooks.info/

42 Chapter 2. Structural Design Patternsin Python

Boxed Pencil Set

v v
Box Pencil Set Pencil
v v v
Pencil Ruler Eraser

Figure 2.4 A hierarchy of composite and noncomposite items

We want all subclasses to say whether or not they are composite. Also, we want
all subclasses to be iterable, with a default behavior of returning an iterator to
an empty sequence.

Since the AbstractItem class has at least one abstract method or property, we
cannot create AbstractItemobjects. (Incidentally,from Python 3.3 it is possible to
write @property @abstractmethod def method(...): ... instead of @abstractproperty
def method(...):)

class SimpleItem(AbstractItem):

def init (self, name, price=0.00):
self.name = name
self.price = price

@property
def composite(self):
return False

The SimpleItemclassisused for noncompositeitems. In thisexample,Simpleltems
have name and price properties.

Since SimpleItem inherits AbstractItem, it must reimplement all the abstract
properties and methods—in this case, just the composite property. Since the
AbstractItem’s iter () method is not abstract and we don’t reimplement it
here, we get the base class version that safely returns an iterator to an empty
sequence. This makes sense because SimpleItems are noncomposite, and yet this
still allows us to treat both SimpleItems and CompositeItems uniformly (at least
for iteration); for example, by passing a mixture of such items to a function like
itertools.chain().

def print(self, indent="", file=sys.stdout):
print("{}${:.2f} {}".format(indent, self.price, self.name),
file=file)

We have provided a print() method to facilitate the printing of composite and
noncomposite items, with nested items using successive levels of indentation.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Composite Pattern 43

Abstractltem

AbstractCompositeltem

f

Simpleltem Compositeltem

Figure 2.5 A composite and noncomposite class hierarchy

class AbstractCompositeItem(AbstractItem):

def init (self, xitems):
self.children = []
if items:
self.add(*xitems)

This class serves as the base class for CompositeItems and provides the machinery
for adding, removing, and iterating composites. Itisn’t possible toinstantiate Ab-
stractCompositeltems, because the class inherits the abstract composite property
but doesn’t provide an implementation for it.

def add(self, first, *items):
self.children.append(first)
if items:
self.children.extend(items)

This method accepts one or more items (both plain SimpleItems and CompositeIt-
ems) and adds them to this composite item’s list of children. We could not have
dropped the first parameter and just used *items, because that would have al-
lowed zero items to be added, which, although harmless here, would probably
be masking a logical error in the user’s code. (For more about unpacking—e.g.,
*xitems—see the “Sequence and Mapping Unpacking” sidebar, 13 <). Incidental-
ly, no checks are made to disallow circular references; for example, to prevent
adding a composite item to itself.

Later on, we’ll implement this method using a single line of code (> 46).

def remove(self, item):
self.children.remove(item)

For removing items, we have used a simple approach that allows us to remove

only one item at a time. Of course, a removed item might be composite, in which
case removing it will remove all its child items, their child items, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

44 Chapter 2. Structural Design Patternsin Python

def iter (self):
return iter(self.children)

By implementing the iter () special method we allow composite items’ child
items to be iterated over in for loops, comprehensions, and generators. In many
cases we would write the method’s body as for item in self.children: yield
item, but since self.children is a sequence (a list) we can use the built-in iter()
function to do the job for us.

class CompositeItem(AbstractCompositeItem):

def init (self, name, *items):
super(). init (*items)
self.name = name

@property
def composite(self):
return True

This class is used for concrete composite items. It has its own name property but
leaves all the composite-handling work (adding, removing, and iterating child
items) to the base class. Instances of CompositeItem can be created because the
class provides an implementation of the abstract composite property, and there
are no other abstract properties or methods.

@property
def price(self):
return sum(item.price for item in self)

This read-only property is slightly subtle. It calculates this composite item’s
price by accumulating the sum of its child items’ prices—and their child items’
prices, in the case of composite child items—recursively, using a generator
expression as argument to the built-in sum() function.

The for item in self expression causes Python to in effect call iter(self) to get
an iterator for self. This results in the iter () special method being called,
and this method returns an iterator to self.children.

def print(self, indent="", file=sys.stdout):
print("{}${:.2f} {}".format(indent, self.price, self.name),
file=file)
for child in self:
child.print(indent + " ")

Again we have provided a convenient print() method, although, unfortunately,
the first statement is just a copy of the SimpleItem.print() method’s body.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Composite Pattern 45

In this example, the SimpleItem and CompositeItem are designed to serve most use
cases. However, it is possible to subclass them—or their abstract base classes—
if a finer-grained hierarchy is desired.

The AbstractItem, SimpleItem, AbstractCompositeItem, and Compositeltem classes
shown here all work perfectly well. However, the code seems to be longer than
necessary and doesn’t have a uniform interface, since composites have methods
(add() and remove()) that noncomposites don’t have. We will address these issues
in the next subsection.

2.3.2. A Single Class for (Non)composites

The previous subsection’s four classes (two abstract, two concrete), seemed
like quite a lot of work. And they don’t provide a completely uniform interface
because only composites support the add() and remove() methods. If we are
willing to accept a small overhead—one empty list attribute per noncomposite
item, and one float per composite item—we can use a single class to represent
both composite and noncomposite items. This brings with it the benefit of a
completely uniform interface, since now we can call add() and remove() on any
item, not just on composites, and get sensible behavior.

In this subsection we will create a new Item class that can be either composite
or noncomposite, without needing any other class. The code quoted in this
subsubsection is from stationery2.py.

class Item:

def init (self, name, *items, price=0.00):
self.name = name
self.price = price
self.children = []
if items:
self.add(*xitems)

The init () method’s arguments aren’t very pretty, but this is fine since, as
we will see in a moment, we do not expect callers to call Item() to create items.

Each item must be given a name. Every item also has a price, for which we pro-
vide a default. In addition, an item may have zero or more child items (xitems),
which are stored in self.children—this is an empty list for noncomposites.

@classmethod
def create(Class, name, price):

return Item(name, price=price)

@classmethod

www.it-ebooks.info

http://www.it-ebooks.info/

46 Chapter 2. Structural Design Patternsin Python

def compose(Class, name, *items):
return Item(name, *items)

Instead of creating items by calling class objects, we have provided two conve-
nience factory class methods that take nicer arguments and return an Item. So,
now, instead of writing things like SimpleItem("Ruler", 1.60) and CompositeIt-
em("Pencil Set", pencil, ruler, eraser), we write I'tem.create("Ruler", 1.60) and
Item.compose("Pencil Set", pencil, ruler, eraser). And now, of course, all our
items are of the same type: Item. Naturally, users can still use Item() directly if
they prefer; for example, Item("Ruler", price=1.60) and Item("Pencil Set", pen-
cil, ruler, eraser).

def make item(name, price):
return Item(name, price=price)

def make composite(name, *items):
return Item(name, *items)

We have also provided two factory functions that do the same thing as the
class methods. Such functions are convenient when we are using modules.
For example, if our Item class was in the Item.py module we could replace, say,
Item.Item.create("Ruler", 1.60) with Item.make item("Ruler", 1.60).

@property
def composite(self):
return bool(self.children)

This property is different from before, since any item may or may not be
composite. For the Item class, a composite item is one whose self.children list
is nonempty.

def add(self, first, *items):
self.children.extend(itertools.chain((first,), items))

We have done the add() method slightly differently from before (43 <), using an
approach that should be more efficient. The itertools.chain() function accepts
any number of iterables and returns a single iterable that is effectively the
concatenation of all the iterables passed to it.

This method can be called on any item, whether or not it is composite. And in the
case of noncomposite items, the call causes the item to become composite.

One subtle side effect of changing a noncomposite item into a composite is that
the item’s own price is effectively hidden, since its price now becomes the sum of
its child items’ prices. Other design decisions—such as keeping the price—are
possible, of course.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Composite Pattern 47

def remove(self, item):
self.children.remove(item)

If a composite item’s last child is removed, the item simply becomes noncom-
posite. One subtle aspect of such a change is that the item’s price then be-
comes the value of its private self. price attribute, rather than the sum of its
(now nonexistent) childrens’ prices. We set an initial price for all items in the
__init () method to ensure that this always works (45 <).

def iter (self):
return iter(self.children)

This method returns an iterator to a composite’s list of children, or in the case
of a noncomposite, to an empty sequence.

@property
def price(self):
return (sum(item.price for item in self) if self.children else
self. price)

@price.setter
def price(self, price):
self. price = price

The price property must work for both composites (where it is the sum of the
child items’ prices) and for noncomposites (where it is the item’s price).

def print(self, indent="", file=sys.stdout):
print("{}${:.2f} {}".format(indent, self.price, self.name),
file=file)
for child in self:
child.print(indent + " ")

Again, this method must work for both composites and noncomposites, although
the code is identical to the previous section’s CompositeItem.print() method.
When we iterate over a noncomposite, it returns an iterator to an empty se-

quence, so there is no risk of infinite recursion when we iterate over an item’s
children.

Python’s flexibility makes it straightforward to create composite and noncom-
posite classes—either as separate classes to minimize storage overhead, or as a
single class to provide a completely uniform interface.

We will see a further variation of the Composite Pattern when we review the
Command Pattern (§3.2, » 79).

www.it-ebooks.info

http://www.it-ebooks.info/

48 Chapter 2. Structural Design Patternsin Python

2.4. Decorator Pattern

In general, a decorator is a function that takes a function as its sole argument
and returns a new function with the same name as the original function but
with enhanced functionality. Decorators are often used by frameworks (e.g.,
web frameworks) to make it easy to integrate our own functions within the
framework.

The Decorator Pattern is so useful that Python has built-in support for it. In
Python, decorators can be applied to both functions and methods. Furthermore,
Python also supports class decorators: functions that take a class as their sole
argument and that return a new class with the same name as the original class
but with additional functionality. Class decorators can sometimes be used as an
alternative to subclassing.

Python’s built-in property() function can be used as a decorator, as we have seen
already (e.g., the composite and price properties from the previous section; 46 <
and 47 <). And Python’s standard library includes some built-in decorators. For
example, the @functools.total ordering class decorator can be applied to a class
that implements the eq () and 1t () special methods (which provide the
== and < comparison operators). This will result in the class being replaced with
a new version of itself that includes all the other comparison special methods,
so that the decorated class supports the full range of comparison operators (i.e.,
<, <=, ==, 1=, => and >).

A decorator may accept only a single function, method, or class as its sole argu-
ment, so in theory it isn’t possible to parameterize decorators. Nonetheless, this
isn’t any limitation in practice, since, as we will see, we can create parameterized
decorator factories that can return a decorator function—which can in turn be
used to decorate a function, method, or class.

2.4.1. Function and Method Decorators

All function (and method) decorators have the same overall structure. First, they
create a wrapper function (which in this book we always call wrapper()). Inside
the wrapper we should call the original function. However, we are free to do
any preprocessing we like before the call; we are free to acquire the result and do
any postprocessing we like after the call; and we are free to return whatever we
like—the original result, a modified result, or anything else we choose. Finally,
we return the wrapper function as the decorator’s result—and this function
replaces the original function using the original function’s name.

A decoratoris applied to a function, method, or class by writing an @ (“at” symbol)
at the same level of indentation as the def or class statement, immediately fol-
lowed by the decorator’s name. It is perfectly possible to stack decorators—that
is, to apply a decorator to a decorated function, and so on—as illustrated in Fig-
ure 2.6; we will see an example shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

2.4. Decorator Pattern 49

| @decorator #3
@decorator #2
@decorator #1
(function, method, or classJ

Figure 2.6 Stacked decorators

@float_args and return

def mean(first, second, *rest):
numbers = (first, second) + rest
return sum(numbers) / len(numbers)

Here, we have used the @float _args and return decorator (shown in a moment)
to decorate the mean() function. The undecorated mean() function takes two or
more numeric arguments and returns their mean as a float. But the decorated
mean() function—which we call as mean() since it has replaced the original—can
accept two or more arguments of any kind that will convert to a float. Without
the decorator the call mean(5, "6", "7.5") would have raised a TypeError, because
we cannot add ints and strs, but this works fine with the decorated version,
since float("6") and float("7.5") produce valid numbers.

Incidentally, the decorator syntax is really just syntactic sugar. We could have
written the above as:

def mean(first, second, *rest):
numbers = (first, second) + rest
return sum(numbers) / len(numbers)

mean = float args and return(mean)

Here, we have created the function without a decorator and then replaced it
with a decorated version by calling the decorator ourselves. Although using
decorators is very convenient, sometimes it is necessary to call them directly.
We will see an example toward the end of this section when we call the built-in
@property decorator in the ensure() function (» 56). We also did this earlier
when we called the built-in @classmethod decorator in the has_methods() function
(36 «).

def float args and return(function):
def wrapper(*args, *xkwargs):
args = [float(arg) for arg in args]
return float(function(*args, **xkwargs))
return wrapper

www.it-ebooks.info

http://www.it-ebooks.info/

50 Chapter 2. Structural Design Patternsin Python

The float args and return() function is a function decorator, and so takes a
single function as its sole argument. It is conventional for wrapper functions to
take *args and *xkwargs; that is, any arguments at all. (See the “Sequence and
Mapping Unpacking” sidebar, 13 <.) Any constraints on the arguments will be
handled by the original (wrapped) function, so we must just ensure that all the
arguments are passed.

In this example, inside the wrapper function we replace the passed-in positional
arguments with a list of floating-point numbers. Then we call the original
function with the possibly modified *args and convert its result to a float, which
we then return.

Once the wrapper has been created, we return it as the decorator’s result.

Unfortunately, as written, the returned decorated function’s name attribute
is now set to "wrapper" instead of the original function’s name, and has no
docstring—even if the original function has a docstring. So the replacement
isn’t perfect. To address this deficiency, Python’s standard library includes the
@functools.wraps decorator, which can be used to decorate a wrapper function
inside a decorator and ensures that the wrapped function’s name and doc
attributes hold the original function’s name and docstring.

def float args and return(function):
@functools.wraps(function)
def wrapper(*args, **kwargs):
args = [float(arg) for arg in args]
return float(function(*args, **kwargs))
return wrapper

Here is another version of the decorator. This version uses the @functools.wraps
decorator to ensure that the wrapper() function created inside the decorator has
its name attribute correctly set to the passed-in function’s name (e.g., "mean")
and has the original function’s docstring (which is empty in this example). It is
best to always use @functools.wraps, since this will ensure that in tracebacks
decorated functions’ names will appear correctly (rather than all being called
"wrapper") and that we have access to the original functions’ docstrings.

@statically typed(str, str, return type=str)
def make tagged(text, tag):
return "<{0}>{1}</{0}>".format(tag, escape(text))

@statically typed(str, int, str) # Will accept any return type
def repeat(what, count, separator):
return ((what + separator) * count)[:-len(separator)]

www.it-ebooks.info

http://www.it-ebooks.info/

2.4. Decorator Pattern 51

The statically_typed() function used to decorate the make tagged() and repeat()
functions is a decorator factory; that is, a decorator-making function. It isn’t a
decorator because it doesn’t take a function, method, or class as its sole param-
eter. But here we need to parameterize the decorator, since we want to specify
the number and types of positional arguments that a decorated function may
accept (and optionally specify the type of its return value), and this will vary
from function to function. So we have created a statically typed() function that
takes the parameters we need—one type per positional argument and an option-
al keyword argument for specifying the return type—and returns a decorator.

So, when Python encounters @statically typed(...) in the code, it calls the func-
tion with the given arguments and then uses the function that is returned as a
decorator for the following function (in this example, make tagged() or repeat()).

Creating decorator factories follows a pattern. First, we create a decorator
function, and inside that function we create a wrapper function; the wrapper
follows the same pattern as before. As usual, at the end of the wrapper, the
(possibly modified or replaced) result of the original function is returned. And
at the end of the decorator function the wrapper is returned. Finally, at the end
of the decorator factory function, the decorator is returned.

def statically typed(*types, return type=None):
def decorator(function):
@functools.wraps(function)
def wrapper(*args, *xkwargs):
if len(args) > len(types):
raise ValueError("too many arguments")
elif len(args) < len(types):
raise ValueError("too few arguments")
for i, (arg, type) in enumerate(zip(args, types)):
if not isinstance(arg, type):
raise ValueError("argument {} must be of type {}"
.format(i, type . name))
result = function(*args, **xkwargs)
if (return_type is not None and
not isinstance(result, return type)):
raise ValueError("return value must be of type {}".format(
return_type. name))
return result
return wrapper
return decorator

Here we begin by creating a decorator function. We have called it decorator(),
but the name doesn’t matter. Inside the decorator function we create the
wrapper—just as we did before. In this particular case the wrapper is rather
involved, because it checks the number and types of all the positional arguments

www.it-ebooks.info

http://www.it-ebooks.info/

52 Chapter 2. Structural Design Patternsin Python

before calling the original function, and then it checks the type of the result if
a specific return type was specified. And at the end it returns the result.

Once the wrapper has been created, the decorator returns it. And then, at the
very end, the decorator itself is returned. So, when Python reaches, say, @stat-
ically typed(str, int, str) in the source code, it will call the statically typed()
function. This will return the decorator() function it has created—having cap-
tured the arguments passed to the statically typed() function. Now, back at
the @, Python executes the returned decorator() function, passing it the function
that follows—either a function created with a def statement or the function re-
turned by another decorator. In this case, the function is repeat (), so that func-
tion is passed as the sole argument to the decorator() function. The decorator()
function now creates a new wrapper() function parameterized by the captured
state (i.e., by the arguments that were given to the statically typed() function)
and returns the wrapper, which Python then uses to replace the original repeat()
function.

Notice that the wrapper() function created when the decorator() function created
by the statically typed() function is called has captured some of its surround-
ing state—in particular, the types tuple and the return_type keyword argument.
When a function or method captures state like this, it is said to be a closure.
Python’s support for closures is what makes it possible to create parameterized
factory functions, decorators, and decorator factories.

Using a decorator to enforce the static type checking of arguments, and optional-
ly of a function’s return value, may be appealing to those coming to Python from
a statically typed language (e.g., C, C++, or Java), but they add a runtime per-
formance penalty that isn’t paid by compiled languages. Furthermore, check-
ing types when we have a dynamically typed language isn’t very Pythonic, but
it does show how flexible Python is. (And if we really want compile-time static
typing, we can use Cython, as we will see in a later chapter; §5.2, » 187.) What
is probably more useful is parameter validation, something we will look at in the
following subsection.

Although it can take a bit of getting used to, the patterns for writing decorators
are straightforward. For an unparameterized function or method decorator, sim-
ply create a decorator function that creates and returns a wrapper. This pattern
is shown by the @float _args and return decorator we saw earlier (50 <) and by
the @Web.ensure logged in decorator that we will look at next. For a parameter-
ized decorator, create a decorator factory that creates a decorator (that in turn
creates a wrapper), following the pattern used for the statically typed() func-
tion (51 «).

@application.post("/mailinglists/add")
@Web.ensure logged in
def person add submit(username):

name = bottle.request.forms.get("name")

www.it-ebooks.info

http://www.it-ebooks.info/

2.4. Decorator Pattern 53

try:
id = Data.MailinglLists.add(name)
bottle.redirect("/mailinglists/view")
except Data.Sql.Error as err:
return bottle.mako template(“error", url="/mailinglists/add",
text="Add Mailinglist", message=str(err))

This code snippet is taken from a web application for managing mailing lists
that uses the lightweight bottle web framework (bottlepy.org). The @appli-
cation.post decorator is provided by the framework and is used to associate a
function with a URL. For this particular example, we only want users to access
the mailinglists/add page if they are logged in—and to be redirected to the lo-
gin page otherwise. Rather than putting in every function that produces a web
page the same code to check whether the user is logged in, we have created the
@eb.ensure logged in decorator, which handles this matter and means that
none of our functions needs to be cluttered up with login-related code.

def ensure logged in(function):
@functools.wraps(function)
def wrapper(*args, **kwargs):
username = bottle.request.get cookie(COOKIE,
secret=secret(bottle.request))
if username is not None:
kwargs["username"] = username
return function(*args, **kwargs)
bottle.redirect("/login")
return wrapper

When the user logs in to the web site, the code behind the login page verifies
their username and password, and if these are valid, sets a cookie in the user’s
browser that has a lifetime of a single session.

When the user requests a page whose associated function is protected by the
@ensure_logged in decorator, such as the mailinglists/add page’s person_add sub-
mit() function, the wrapper() function defined here gets called. The wrapper
begins by trying to retrieve the username from the cookie. If this fails, the user
isn’t logged in, so we redirect them to the web application’s login page. But if the
user is logged in, we add the username to the keyword arguments, and return
the result of calling the original function. This means that when the original
function is called, it can safely assume that the user is validly logged in, and it
has access to their username.

www.it-ebooks.info

http://www.it-ebooks.info/

54 Chapter 2. Structural Design Patternsin Python

2.4.2. Class Decorators

It is quite common to create classes that have lots of read-write properties. Such
classes often have a lot of duplicate or near-duplicate code for the getters and
setters. For example, imagine we had a Book class that held a book’s title, ISBN,
price, and quantity. We would need four @property decorators, all with basically
the same code (e.g., @property def title(self): return title). We would also
need four setter methods, each with its own validation—although the code for
validating the price and quantity properties would be identical apart from the
actual minimum and maximum amounts allowed. If we had a lot of classes like
this we could end up with a great deal of near-duplicate code.

Fortunately, Python’s support of class decorators makes it possible to eliminate
such duplication. For example, earlier in this chapter, we used a class decorator
to create custom interface-checking classes without the need to duplicate ten
lines of code each time (§2.2, 36 <). And here is another example, an implemen-
tation of a Book class that includes four fully validated properties (plus a read-
only computed property):

@ensure("title", is non empty str)
@ensure("isbn", is valid isbn)
@ensure("price", is in range(1l, 10000))
@ensure("quantity", is in range(0, 1000000))
class Book:

def init (self, title, isbn, price, quantity):
self.title = title
self.isbn = isbhn
self.price = price
self.quantity = quantity

@property
def value(self):
return self.price x self.quantity

The self.title, self.isbn, and so on are all properties, so the assignments that
take place in the init () method are all validated by the relevant property
setter. But instead of having to manually write the code for creating these
properties with their getters and setters, we have used a class decorator—four
times—to provide all of this functionality for us.

The ensure() function accepts two parameters—a property name and a validator
function—and returns a class decorator. The class decorator is then applied to
the following class.

So, here, the bare Book class is created, then the first (quantity) ensure() call is
made, after which the returned class decorator is applied. This results in the

www.it-ebooks.info

http://www.it-ebooks.info/

2.4. Decorator Pattern 55

Book class being augmented with a quantity property. Next, the (price) ensure()
call is made, and after the returned class decorator is applied, the Book class
is now augmented with both quantity and price properties. This process is
repeated twice more, until we end up with a final version of the Book class that
has all four properties.

Although the process sounds like it is happening backwards, here is effectively
what is going on:

ensure("title”, is non_empty str)(# Pseudo-code
ensure("isbn", is valid _isbn) (
ensure("price", is in range(1l, 10000)) (
ensure("quantity", is in range(0, 1000000))(class Book: ...))))

The class Book statement must be executed first since the resulting class object
is needed as the parameter to the (quantity) ensure() call’s call, and the class
object returned by this is needed by the one before, and so on.

Notice that both price and quantity use the same validator function, only with
different parameters. In fact, the is in range() function is a factory function
that makes and returns a new is_in range() function that has the given mini-
mum and maximum values hard-coded into it.

As we will see in a moment, the class decorator returned by the ensure() function
adds a property to the class. This property’s setter calls the validator function
for the given property and passes into the validator two arguments: the name
of the property and the new value for the property. The validator should do
nothing if the value is valid; otherwise it should raise an exception (e.g., a
ValueError). Before looking at ensure()’s implementation, let’s look at a couple of
validators.

def is non empty str(name, value):
if not isinstance(value, str):
raise ValueError("{} must be of type str".format(name))
if not bool(value):
raise ValueError("{} may not be empty".format(name))

This validator is used for a Book’s title property to ensure that the title is a
nonempty string. Asthe ValueErrors show, the name of the property is useful for
error messages.

def is in range(minimum=None, maximum=None):
assert minimum is not None or maximum is not None
def is in range(name, value):
if not isinstance(value, numbers.Number):
raise ValueError("{} must be a number".format(name))
if minimum is not None and value < minimum:

www.it-ebooks.info

http://www.it-ebooks.info/

56 Chapter 2. Structural Design Patternsin Python

raise ValueError("{} {} is too small".format(name, value))
if maximum is not None and value > maximum:
raise ValueError("{} {} is too big".format(name, value))
return is in range

This function is a factory function that creates a new validator function that
checks that the value it is given is a number (using the abstract base class
numbers.Number) and that the number is in range. Once the validator has been
created, it is returned.

def ensure(name, validate, doc=None):
def decorator(Class):
privateName = " " + name
def getter(self):
return getattr(self, privateName)
def setter(self, value):
validate(name, value)
setattr(self, privateName, value)
setattr(Class, name, property(getter, setter, doc=doc))
return Class
return decorator

The ensure() function creates a class decorator parameterized by a property
name, a validator function, and an optional docstring. So, each time a class dec-
orator returned by ensure() is used for a particular class, that classis augmented
by the addition of a new property.

The class decorator() function receives a class as its sole argument. The deco-
rator() function begins by creating a private name; the property’s value will be
stored in an attribute with this name. (Thus, in the Book example, the self.title
property’s value will be stored in the private self. title attribute.) Next,it cre-
ates a getter function that will return the value stored in the attribute with the
private name. The built-in getattr() function takes an object and an attribute
name and returns the attribute’s value—or raises an AttributeError. The func-
tion then creates a setter that calls the captured validate() function, and then
(assuming that validate() didn’t raise an exception) sets the value stored in the
attribute with the private name to the new value. The built-in setattr() func-
tion takes an object, an attribute name, and a value and sets the attribute’s value
to the given value, creating a new attribute if necessary.

Once the getter and setter have been created, they are used to create a new prop-
erty that is added as an attribute to the passed-in class, under the given (public)
property name, using the built-in setattr() function. The built-in property()
function takes a getter, and optionally a setter, deleter, and docstring, and re-
turns a property; it can also be used as a method decorator, as we have seen. The

www.it-ebooks.info

http://www.it-ebooks.info/

2.4. Decorator Pattern 57

modified class is then returned by the decorator() function, and the decorator()
function itself is returned by the ensure() class decorator factory function.

2.4.2.1. Using a Class Decorator to Add Properties

In the previous example (54 <), we had to use the @ensure class decorator for
every attribute we wanted to validate. Some Python programmers don’t like
stacking lots of class decorators like this and prefer combining a single class
decorator with attributes in a class’s body to produce more readable code.

@do_ensure
class Book:

title = Ensure(is non empty str)

isbn = Ensure(is valid isbn)

price = Ensure(is_in range(1l, 10000))
quantity = Ensure(is_in_range(0, 1000000))

def init (self, title, isbn, price, quantity):
self.title = title
self.isbn = isbn
self.price = price
self.quantity = quantity

@property
def value(self):
return self.price * self.quantity

This is a new version of the Book class that uses a @do_ensure class decorator
in conjunction with Ensure instances. Each Ensure takes a validation func-
tion, and the @do _ensure class decorator replaces each Ensure instance with a
validated property of the same name. Incidentally, the validation functions
(is_non_empty str() etc.) are the same as those shown earlier.

class Ensure:

def init (self, validate, doc=None):
self.validate = validate
self.doc = doc

This tiny class is used to store the validation function that will end up being
used in the property’s setter, and optionally, the property’s doc string. For exam-
ple, the Book class’s title attribute starts out as an Ensure instance, but once the
Book class has been created, the @do_ensure decorator replaces every Ensure with
a property. So, the title attribute ends up being a title property (whose setter
uses the original Ensure instance’s validation function).

www.it-ebooks.info

http://www.it-ebooks.info/

58 Chapter 2. Structural Design Patternsin Python

def do _ensure(Class):
def make property(name, attribute):
privateName = " " + name
def getter(self):
return getattr(self, privateName)
def setter(self, value):
attribute.validate(name, value)
setattr(self, privateName, value)
return property(getter, setter, doc=attribute.doc)
for name, attribute in Class. dict .items():
if isinstance(attribute, Ensure):
setattr(Class, name, make property(name, attribute))
return Class

This class decorator has three parts. In the first part we define a nested function
(make property()). The function takes a name (e.g., "title") and an attribute of
type Ensure, and creates and returns a property that stores its value in a private
attribute (e.g., " title"). Furthermore, when the property’s setter is accessed,
it calls the validation function. In the second part we iterate over all the class’s
attributes and replace any Ensures with a new property. In the third part we
return the modified class.

Once the decorator has finished, the decorated class has had every one of its
Ensure attributes replaced by a validated property of the same name.

In theory, we could have avoided the nested function and simply put that code
after the if isinstance() test. However, that doesn’t work in practice due to
problems with late binding, so having a separate function here is essential. This
issue isn’t uncommon when creating decorators or decorator factories, but using
a separate—possibly nested—function is usually a sufficient solution.

2.4.2.2. Using a Class Decorator Instead of Subclassing

Sometimes we create a base class with some methods or data purely so that we
can subclass this base class two or more times. This avoids having to duplicate
the methods or data and scales well if we create additional subclasses. However,
if the inherited methods or data are never modified in the subclasses, it is
possible to use a class decorator to achieve the same end.

For example, later on we will make use of a Mediated base class that provides a
self.mediator data attribute and an on_change () method (§3.5, » 100). This class
is inherited by two classes, Button and Text, which make use of the data and
method but don’t modify them.

class Mediated:

def init (self):

www.it-ebooks.info

http://www.it-ebooks.info/

2.4. Decorator Pattern 59

self.mediator = None

def on_change(self):
if self.mediator is not None:
self.mediator.on change(self)

This is the base class quoted from mediatorl.py. It is inherited using the usual
syntax;thatis, class Button(Mediated): ...and class Text(Mediated): But since
no subclass will ever need to modify the inherited on _change() method, we can
use a class decorator instead of subclassing.

def mediated(Class):
setattr(Class, "mediator", None)
def on change(self):
if self.mediator is not None:
self.mediator.on change(self)
setattr(Class, "on change", on_change)
return Class

This code is from mediatorld.py. The class decorator is applied like any other;
that is, @mediated class Button: ... and @mediated class Text: The decorated
classes have exactly the same behavior as the subclass versions.

Function and class decorators are a very powerful yet reasonably easy-to-use
Python feature. And as we have seen, class decorators can sometimes be used as
an alternative to subclassing. Creating decorators is a simple form of metapro-
gramming, and class decorators can often be used instead of more complex forms
of metaprogramming, such as metaclasses.

2.5. Facade Pattern

The Facade Pattern is used to present a simplified and uniform interface to a
subsystem whose interface is too complex or too low-level for convenient use.

Python’s standard library provides modules for handling gzip-compressed files,
tarballs, and zip files, but they all have different interfaces. Let’s imagine that
we would like to be able to access the names in an archive file, and extract its
files, using a simple uniform interface. One solution is to use the Facade Pattern
to provide a very simple high-level interface that defers most of the real work to
the standard library.

Figure 2.7 > 60) shows the interface we want to provide to users (a filename
property and names() and unpack() methods) and the interfaces that we are
providing a fagade for. An Archive instance will hold one archive file’s name, and

www.it-ebooks.info

http://www.it-ebooks.info/

60 Chapter 2. Structural Design Patternsin Python

Archive
filename
names()
unpack()
gzip tarfile.TarFile zipfile.ZipFile
open() getnames() namelist()
extractall() extractall()

Figure 2.7 The Archive facade

only when asked for the archive’s names or to unpack the archive will it actually
open the archive file. (The code quoted in this section is from Unpack. py.)

class Archive:

def init (self, filename):
self. names = None
self. unpack = None
self. file = None
self.filename = filename

The self. names variable is expected to hold a callable that will return a list
of the archive’s names. Similarly, the self. unpack variable is for holding a
callable that will extract all the archive’s files into the current directory. The
self. file is for holding a file object that has been opened on the archive. And
self.filename is a read-write property holding the archive file’s filename.

@property
def filename(self):
return self. filename

@filename.setter

def filename(self, name):
self.close()
self. filename = name

If the user changes the filename (e.g., using archive.filename = newname), the
current archive file is closed (if it is open). We do not immediately open the new
archive, though, since the Archive class uses lazy evaluation and so only opens
the archive when necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

2.5. Facade Pattern 61

def close(self):
if self. file is not None:
self. file.close()
self. names = self. unpack = self. file = None

In theory, users of the Archive class are expected to call the close() method when
they have finished with an instance. The method closes the file object (if one is
open) and sets the self. names, self. unpack, and self. file variables to None to
invalidate them.

We have made the Archive class a context manager (as we will see in a moment)
S0, 1n practice, users don’t need to call close() themselves, providing they use the
class in a with statement. For example:

with Archive(zipFilename) as archive:
print(archive.names())
archive.unpack()

Here we create an Archive for a zip file, print its names to the console, and then
extract all its files in the current directory. And because the archive is a context
manager, archive.close() is called automatically when the archive goes out of
the with statement’s scope.

def enter (self):
return self

def exit (self, exc type, exc value, traceback):
self.close()

These two methods are sufficient to make an Archive into a context manager.
The enter () method returns self (an Archive instance), which is assigned to
the with ... as statement’s variable. The exit () method closes the archive’s
file object (if one is open), and since it (implicitly) returns None, any exceptions
that have occurred will be propagated normally.

def names(self):
if self. file is None:
self. prepare()
return self. names()

This method returns a list of the archive’s filenames, opening the archive and

setting self. names and self. unpack to appropriate callables (using self. pre-
pare())if it isn’t open already.

www.it-ebooks.info

http://www.it-ebooks.info/

62 Chapter 2. Structural Design Patternsin Python

def unpack(self):
if self. file is None:
self. prepare()
self. unpack()

This method unpacks all the archive’s files, but as we will see, only if all of their
names are “safe”.

def prepare(self):
if self.filename.endswith((".tar.gz", ".tar.bz2", ".tar.xz",
".zip")):

self. prepare tarball or zip()

elif self.filename.endswith(".gz"):
self. prepare gzip()

else:
raise ValueError("unreadable: {}".format(self.filename))

This method delegates the preparation to suitable methods. For tarballs and
zip files the necessary code is very similar, so they are prepared in the same
method. But gzipped files are handled differently and so have their own sepa-
rate method.

The preparation methods must assign callables to the self. names and self. un-
pack variables, so that these can be called in the names() and unpack() methods
we have just seen.

def prepare tarball or zip(self):
def safe extractall():
unsafe = []
for name in self.names():
if not self.is safe(name):
unsafe.append(name)
if unsafe:
raise ValueError("unsafe to unpack: {}".format(unsafe))
self. file.extractall()
if self.filename.endswith(".zip"):
self. file = zipfile.ZipFile(self.filename)
self. names = self. file.namelist
self. unpack = safe extractall
else: # Ends with .tar.gz, .tar.bz2, or .tar.xz
suffix = os.path.splitext(self.filename)[1]
self. file = tarfile.open(self.filename, "r:" + suffix[1:])
self. names = self. file.getnames
self. unpack = safe extractall

www.it-ebooks.info

http://www.it-ebooks.info/

2.5. Facade Pattern 63

This method begins by creating a nested safe extractall() function that
checks all the archive’s names and raises a ValueError if there are any unsafe
names, as defined by the is safe() method. If all the names are safe the tar-
ball.TarFile.extractall() or zipfile.ZipFile.extractall() method is called.

Depending on the archive filename’s extension, we open a tarball.TarFile
or zipfile.ZipFile and assign it to self. file. We then set self. names to the
corresponding bound method (namelist() or getnames()), and self. unpack to the
safe extractall() function we just created. This function is a closure that has
captured self and so can access self. file and call the appropriate extractall()
method. (See the “Bound and Unbound Methods” sidebar.)

Bound and Unbound Methods @

A bound method is a method that is already associated with an instance of its
class. Let’simagine we have a Form class with an update ui() method. Now,if
we write bound = self.update_ui inside one of the Form class’s methods, bound is
assigned an object reference to the Form.update _ui() method thatisboundtoa
particular instance of the form (self). A bound method can be called directly;
for example, bound().

An unbound method is a method with no associated instance. For example,
if we write unbound = Form.update ui, unbound is assigned an object reference
to the Form.update ui() method, but with no binding to any particular in-
stance. This means that if we want to call the unbound method, we must
provide a suitable instance as its first argument; for example, form = Form();
unbound(form). (Strictly speaking, Python3 doesn’t actually have unbound
methods, so unbound is really the underlying function object, although this only
makes a difference in some metaprogramming corner cases.)

def is safe(self, filename):
return not (filename.startswith(("/", "\\")) or
(len(filename) > 1 and filename[l] == ":" and
filename[0] in string.ascii letter) or
re.search(r"[.][.1[/\\]", filename))

A maliciously created archive file that is unpacked could overwrite important
system files with nonfunctional or sinister replacements. In view of this, we
should never open archives that contain files with absolute paths or with rela-
tive path components, and we should always open archives as an unprivileged
user (i.e., never as root or Administrator).

This method returns False if the filename it is given starts with a forward slash
or a backslash (i.e., an absolute path), or contains ../ or ..\ (a relative path
that could lead anywhere), or starts with D: where D is a Windows drive letter.

www.it-ebooks.info

http://www.it-ebooks.info/

64 Chapter 2. Structural Design Patternsin Python

In other words, any filename that is absolute or that has relative components is
considered to be unsafe. For any other filename the method returns True.

def prepare gzip(self):
self. file = gzip.open(self.filename)
filename = self.filename[:-3]
self. names = lambda: [filename]
def extractall():
with open(filename, "wb") as file:
file.write(self. file.read())
self. unpack = extractall

This method provides an open file object for self. file and assigns suitable
callables to self. names and self. unpack.For the extractall() function, we have
to read and write the data ourselves.

The Facade Pattern can be very useful for creating simplified and convenient in-
terfaces. The upsideisthat we are insulated from low-level details; the downside
is that we may have to give up fine control. However, a facade doesn’t hide or do
away with the underlying functionality, so we can always use the facade most of
the time, and just drop down to lower-level classes if we need more control.

The Facade and Adapter Patterns have a superficial similarity. The difference
is that a facade provides a simple interface on top of a complicated interface,
whereas an adapter provides a standardized interface on top of another (not
necessarily complicated) interface. Both patterns can be used together. For ex-
ample, we might define an interface for handling archive files (tarballs, zip files,
Windows . cab files, and so on), use an adapter for each format, and layer a facade
on top so that users would not need to know or care about which particular file
format was being used.

2.6. Flyweight Pattern

The Flyweight Pattern is designed for handling large numbers of relatively
small objects, where many of the small objects are duplicates of each other. The
pattern is implemented by representing each unique object only once, and by
sharing this unique instance wherever it is needed.

Python takes a naturally flyweight approach because of its use of object
references. For example, if we had a long list of strings—many of which were
duplicates—so long as we stored object references (i.e., variables) rather than
literal strings, we would make significant memory savings.

red, green, blue = "red", "green", "blue"

x = (red, green, blue, red, green, blue, red, green)
y = ("red", "green", "blue", "red", "green", "blue", "red", "green")

www.it-ebooks.info

http://www.it-ebooks.info/

2.6. Flyweight Pattern 65

In the previous code snippet, the x tuple stores 3 strings using 8 object references.
The y tuple stores 8 strings using 8 object references, since what we have written
is in effect syntactic sugar for anonymous item@ = "red", ..., anonymous item7 =
"green"; y = (_anonymous item@, ... anonymous item7).

Probably the easiest way to take advantage of the Flyweight Pattern in Python
is to use a dict, with each unique object held as a value identified by a unique
key. For example, if we are creating lots of HTML pages with fonts specified by
CSS (Cascading Style Sheets), rather than creating a new font every time one is
needed, we could create the ones we need in advance (or as required) and keep
them in a dict. Then, whenever we required a font, we could take it from the
dict. This would ensure that each unique font would be created only once, no
matter how many times it was used.

In some situations we may have a large number of not necessarily small objects,
where all or most of them are unique. One easy way to reduce the memory
footprint in such casesistouse slots .
class Point:
7slotsi = (“X“’ Ilyll’ HZII' IICO'LO',.II)

def init (self, x=0, y=0, z=0, color=None):

self.x = x
self.y =y
self.z = z

self.color = color

Here is a simple Point class that holds a three-dimensional position and a
color. Thanks tothe slots ,noPoint hasitsown private dict (self. dict).
However, this also means that no arbitrary attributes can be added to individual
points. (This class is quoted from pointstorel.py.)

On one test machine it took around 2% seconds to create a tuple of one million of
these points, and the program (which did little else) occupied 183 MiB of RAM.
Without the slots, this program ran a fraction of a second faster but occupied
312 MiB of RAM.

By default, Python always sacrifices memory for the sake of speed, but we can
often reverse this trade-off if doing so suits us better.
class Point:

__slots__ = ()

__dbm = shelve.open(os.path.join(tempfile.gettempdir(), "point.db"))

Here is the beginning of our second Point class (quoted from pointstore2.py).
It uses a DBM (key—value) database that is stored in a file on disk to store its
data. An object reference to the DBM is stored in the static (i.e., class-level)

www.it-ebooks.info

http://www.it-ebooks.info/

66 Chapter 2. Structural Design Patternsin Python

Point. dbmvariable. All Points share the same underlying DBM file. We begin
by opening the DBM file ready for use. The shelve module’s default behavior is
to automatically create the DBM file if it doesn’t already exist. (We’ll see how
we ensure that the DBM file is properly closed later.)

The shelve module pickles the values we store and unpickles the values we
retrieve. (Python’s pickle format is inherently insecure because the unpickling
process in effect executes arbitrary Python code. In view of this we should
never use pickles from untrusted sources or for data to which untrusted access
is possible. Alternatively, if we want to use pickles in such circumstances, we
should apply our own security measures, such as checksums and encryption.)

def init (self, x=0, y=0, z=0, color=None):

self.x = x
self.y =y
self.z = z

self.color = color

This method is exactly the same as the one in pointstorel.py, but under the hood
the values are assigned into the underlying DBM file.

def key(self, name):
return "{:X}:{}".format(id(self), name)

This method provides the key string for any of the x, y, z, and color Point at-
tributes. The key is made up of the instance’s ID (a unique number returned by
the built-in id() function) in hexadecimal and the attribute name. For example,
if we had a Point with an ID of], say, 3954 827, its x attribute would be stored
using the key "3(588B:x", its y attribute using the key "3C588B:y", and so on.

def getattr (self, name):
return Point. dbm[self. key(name)]

This method is called whenever a Point attribute is accessed (e.g., x = point.x).

DBM databases’ keys and values must be bytes. Fortunately, Python’s DBM
modules will accept either str or bytes keys, converting the former to bytes using
the default encoding (UTF-8) under the hood. And if we use the shelve module
(as we have done here), we can store any pickleable values we like, relying on
the shelve module to convert to and from bytes as required.

So, here, we get the appropriate key and retrieve the corresponding value. And
thanks to the shelve module, the retrieved value is converted from (pickled)
bytes to the type originally set (e.g., to an int or None for a point color).

www.it-ebooks.info

http://www.it-ebooks.info/

2.6. Flyweight Pattern 67

def setattr (self, name, value):
Point. dbm[self. key(name)] = value

Whenever a Point attribute is set (e.g., point.y = y), this method is called. Here,
we get the appropriate key and set its value, relying on the shelve module to
convert the value to (pickled) bytes.

atexit.register(dbm.close)

At the end of Point class, we register the DBM’s close() method to be called
when the program terminates, using the atexit module’s register() function.

On the test machine, it took about a minute to create a database of a million
points, but the program only occupied 29 MiB of RAM (plus a 361 MiB disk file),
compared with 183 MiB of RAM for the first version. Although the time taken
to populate the DBM is considerable, once this is done, lookup speed should be
fast, since most operating systems will cache a disk file that’s frequently used.

2.7. Proxy Pattern

The Proxy Pattern is used when we want one object to stand in for another. Four
use cases are presented in the Design Patterns book. The first is a remote proxy
where a local object proxies a remote object. The RPyC library is a perfect exam-
ple of this: it allows us to create objects on a server and proxies for those objects
on one or more clients. (Thislibrary is introduced in Chapter 6;§6.2,» 219.) The
second is a virtual proxy that allows us to create lightweight objects instead of
heavyweight objects, only creating the heavyweight objects if they are actually
needed. We will review an example of this in this section. The third is a protec-
tion proxy that provides different levels of access depending on a client’s access
rights. And the fourth is a smart reference that “performs additional actions
when an object is accessed”. We can use the same coding approach for all proxies,
although the fourth use case’s behavior could also be achieved using a descriptor
(e.g., replacing an object with a property using the @property decorator).*

This pattern can also be used in unit testing. For example, if we need to test
some code that accesses a resource that isn’t always available, or a class that is
being developed but is incomplete, we could create a proxy for the resource or
class that provided the full interface, but with stubs for missing functionality.
This approach can be so useful that Python 3.3 includes the unittest.mock library
for creating mock objects and for adding stubs in place of missing methods. (See
docs.python.org/py3k/library/unittest.mock.html.)

* Descriptors are covered in Programming in Python 3, Second Edition (see the Selected Bibliog-
raphy for details; » 287), and in the online documentation: docs.python.org/3/reference/datamod-
el.html#descriptors.

www.it-ebooks.info

http://www.it-ebooks.info/

68 Chapter 2. Structural Design Patternsin Python

For this section’s example, we will assume that we need to create multiple
images speculatively, with only one of them actually used in the end. We have
an Image module and a faster near-equivalent cyImage module (covered in §3.12,
» 124 and §5.2.2, » 193), but these modules create their images in memory.
Since we will need only one of the speculatively created images, it would be
better if we created lightweight image proxies and only when we knew which
image we were really going to need go on to create an actual image.

The Image.Image class’s interface consists of ten methods in addition to the
constructor: load(), save(), pixel(), set pixel(), line(), rectangle(), ellipse(),
size(),subsample(),and scale().(This doesn’t include some additional static con-
venience methods that are also available as module functions, such as Image.Im-
age.color for name() and Image.color for name().)

Figure 2.8 A drawn image

For our proxy class we will only implement the subset of the Image.Image’s
methods that is sufficient for our needs. Let’s begin by looking at how the proxy
is used. The code is quoted from imageproxyl.py;the image produced is shown in
Figure 2.8.

YELLOW, CYAN, BLUE, RED, BLACK = (Image.color for name(color)
for color in ("yellow", "cyan", "blue", "red", "black"))

First, we create some color constants using the Image module’s color for name()
function.

image = ImageProxy(Image.Image, 300, 60)
image.rectangle(0, 0, 299, 59, fill=YELLOW)
image.ellipse(0, 0, 299, 59, fill=CYAN)
image.ellipse(60, 20, 120, 40, BLUE, RED)
image.ellipse(180, 20, 240, 40, BLUE, RED)
image.rectangle(180, 32, 240, 41, fill=CYAN)
image.line(181, 32, 239, 32, BLUE)
image.line(140, 50, 160, 50, BLACK)
image.save(filename)

Here, we create an image proxy, passing in the image class we want it to use.
Then we draw on it, and at the end we save the resultant image. This code
would work just as well had we created the image using Image.Image() rather
than ImageProxy(). However, by using an image proxy, the actual image is not

www.it-ebooks.info

http://www.it-ebooks.info/

2.7. Proxy Pattern 69

created until the save () method is called—so the cost of creating the image prior
to saving it is extremely low (both in memory and processing), and if we end up
discarding the image without saving it, we have lost very little. Compare this
with using an Image.Image where we pay a high price up front (i.e., by effectively
creating a width x height array of color values) and do expensive processing
when drawing (e.g., setting every pixel in a filled rectangle, as well as computing
which ones to set), even if we end up discarding the image.

class ImageProxy:

def init (self, ImageClass, width=None, height=None, filename=None):
assert (width is not None and height is not None) or \
filename is not None

self.Image = ImageClass
self.commands = []
if filename is not None:

self.load(filename)
else:

self.commands = [(self.Image, width, height)]

def load(self, filename):
self.commands = [(self.Image, None, None, filename)]

The ImageProxy class can stand in for an Image.Image (or any other image class
passed to it that supports the Image interface), providing that the incomplete
interface that the image proxy provides is sufficient. An ImageProxy does not
store an image; instead, it keeps a list of command tuples where the first item
in each tuple is a function or an unbound method and the remaining items are
the arguments to be passed when the function or method is called.

When an ImageProxy is created, it must be given a width and height (to create a
new image of the given size) or a filename. If it is given a filename, it stores the
same commands as when an ImageProxy.load() call is made: the Image.Image()
constructor, and, as arguments None and None for the width and height and the
filename. Notice that if ImageProxy.load() is called at any later time, all previous
commands are discarded and the load command becomes the first and only
command in self.commands. If a width and height are given, the Image.Image()
constructor is stored, along with the width and height as arguments.

If any unsupported method is called (e.g., pixel()), the method won’t be found
and Python will automatically do what we want: raise an AttributeError. An
alternative approach for handling methods that can’t be proxied is to create an
actual image as soon as one of these methods is called, and from then on, use the
actual image. (The examples’ imageproxy2.py program—not shown—takes this
approach.)

www.it-ebooks.info

http://www.it-ebooks.info/

70 Chapter 2. Structural Design Patternsin Python

def set pixel(self, x, y, color):
self.commands.append((self.Image.set pixel, x, y, color))

def line(self, x0, y0, x1, yl, color):
self.commands.append((self.Image.line, x0, y0, x1, yl, color))

def rectangle(self, x0, y0, x1, yl, outline=None, fill=None):
self.commands.append((self.Image.rectangle, x0, y0, x1, y1,
outline, fill))

def ellipse(self, x0, y0, x1, yl, outline=None, fill=None):
self.commands.append((self.Image.ellipse, x0, y0, x1, yl,
outline, fill))

The Image.Image class’s drawing interface consists of the four methods: line(),
rectangle(), ellipse(), and set _pixel().Our ImageProxy class fully supports this
interface, only instead of executing these commands, it simply adds them—
along with their arguments—to the self.commands list.

def save(self, filename=None):

command = self.commands.pop(0)

function, *args = command

image = function(*args)

for command in self.commands:
function, *args = command
function(image, *args)

image.save(filename)

return image

Only if we choose to save the image, do we have to actually create a real image
and pay the price in processing and memory consumption. The design of the
ImageProxy means that the first command is always one that creates a new image
(either one of a given width and height, or by loading one). So, we treat the
first command specially by saving its return value, which we know will be an
Image.Image (or a cyImage.Image). Then, we iterate over the remaining commands,
calling each one in turn, and passing in the image as the first (self) argument,
since they are really unbound method calls. And at the end, we save the image
using the Image.Image.save() method.

The Image.Image.save() method has no return value (although it can raise an
exception if an error occurs). However, we have modified its interface slightly
for the ImageProxy by returning the Image.Image that has been created, in case it
was needed for further processing. This should be a harmless change since if
the return value isignored (as it would be if we were calling Image.Image.save()),
it will be silently discarded. The imageproxy2.py program doesn’t require this

www.it-ebooks.info

http://www.it-ebooks.info/

2.7. Proxy Pattern 71

modification, since it has an image property of type Image.Image that forces the
image to be created (if it hasn’t been already) when it is accessed.

Storing up commands, as we have done here, has the potential for adaptation to
support do—undo; for more on that, see the Command Pattern (§3.2, » 79). See,
also, the State Pattern (§3.8,>» 111).

The structural design patterns can all be implemented in Python. The Adapter
and Facade Patterns make it straightforward to reuse classes in new contexts,
and the Bridge Pattern makes it possible to embed the sophisticated function-
ality of one class inside another. The Composite Pattern makes it easy to create
hierarchies of objects—although there is less need for this in Python, since us-
ing dicts is often sufficient for this purpose. The Decorator Pattern is so useful
that the Python language has direct support for it and even extends the idea to
classes. Python’s use of object references means that the language itself uses a
variation of the Flyweight Pattern. And the Proxy Pattern is particularly easy
to implement in Python. The design patterns go beyond the creation of basic
and complex objects and into the realms of behavior: how individual objects or
groups of objects can get things done. We will look at behavioral patternsin the
next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Behavioral Design
Patterns in Python

§3.1. Chain of Responsibility Pattern » 74
§3.1.1. A Conventional Chain » 74
§3.1.2. A Coroutine-Based Chain » 76
§3.2. Command Pattern » 79
§3.3. Interpreter Pattern » 83
§3.3.1. Expression Evaluation with eval() » 84
§3.3.2. Code Evaluation with exec() » 88
§3.3.3. Code Evaluation Using a Subprocess » 91
§3.4. Iterator Pattern » 95
§3.4.1. Sequence Protocol Iterators » 95
§3.4.2. Two-Argument iter() Function Iterators » 96
§3.4.3. Iterator Protocol Iterators » 97
§3.5. Mediator Pattern » 100
§3.5.1. A Conventional Mediator » 101
§3.5.2. A Coroutine-Based Mediator » 104
§3.6. Memento Pattern » 106
§3.7. Observer Pattern » 107
§3.8. State Pattern » 111
§3.8.1. Using State-Sensitive Methods » 114
§3.8.2. Using State-Specific Methods » 115
§3.9. Strategy Pattern » 116
§3.10. Template Method Pattern » 119
§3.11. Visitor Pattern » 123
§3.12. Case Study: An Image Package » 124
§3.12.1. The Generic Image Module » 125
§3.12.2. An Overview of the Xpm Module » 135
§3.12.3. The PNG Wrapper Module » 137

73

www.it-ebooks.info

http://www.it-ebooks.info/

74 Chapter 3. Behavioral Design Patternsin Python

The behavioral patterns are concerned with how things get done; that is, with al-
gorithms and object interactions. They provide powerful ways of thinking about
and organizing computations, and like a few of the patterns seen in the previous
two chapters, some of them are supported directly by built-in Python syntax.

The Perl programming language’s well-known motto is, “there’s more than one
way to do it”; whereas in Tim Peters’ Zen of Python, “there should be one—and
preferably only one—obvious way to do it”* Yet, like any programming lan-
guage, there are sometimes two or more ways to do things in Python, especially
since the introduction of comprehensions (use a comprehension or a for loop)
and generators (use a generator expression or a function with a yield state-
ment). And as we will see in this chapter, Python’s support for coroutines adds a
new way to do certain things.

3.1. Chain of Responsibility Pattern

The Chain of Responsibility Pattern is designed to decouple the sender of a
request from the recipient that processes the request. So, instead of one
function directly calling another, the first function sends a request to a chain of
receivers. The first receiver in the chain either can handle the request and stop
the chain (by not passing the request on) or can pass on the request to the next
receiver in the chain. The second receiver has the same choices, and so on, until
the last one is reached (which could choose to throw the request away or to raise
an exception).

Let’s imagine that we have a user interface that receives events to be handled.
Some of the events come from the user (e.g., mouse and key events), and some
come from the system (e.g., timer events). In the following two subsections we
will look at a conventional approach to creating an event-handling chain, and
then at a pipeline-based approach using coroutines.

3.1.1. A Conventional Chain

In this subsection we will review a conventional event-handling chain where
each event has a corresponding event-handling class.

handlerl = TimerHandler(KeyHandler (MouseHandler (NullHandler())))
Here is how the chain might be set up using four separate handler classes. The

chain is illustrated in Figure 3.1. Since we throw away unhandled events, we
could have just passed None—or nothing—as the MouseHandler’s argument.

*To see the Zen of Python, enter import this at an interactive Python prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

3.1. Chain of Responsibility Pattern 75

Figure 3.1 An event-handling chain

The order in which we create the handlers should not matter since each one
handles events only of the type it is designed for.

while True:
event = Event.next()
if event.kind == Event.TERMINATE:
break
handlerl.handle(event)

Events are normally handled in a loop. Here, we exit the loop and terminate
the application if there is a TERMINATE event; otherwise, we pass the event to the
event-handling chain.

handler2 = DebugHandler(handlerl)

Here we have created a new handler (although we could just as easily have
assigned back to handlerl). This handler must be first in the chain, since it is
used to eavesdrop on the events passing into the chain and to report them, but
not to handle them (so it passes on every event it receives).

We can now call handler2.handle(event) in our loop, and in addition to the normal
event handlers we will now have some debugging output to see the events that
are received.

class NullHandler:

def init (self, successor=None):
self. successor = successor

def handle(self, event):
if self. successor is not None:
self. successor.handle(event)

This class serves as the base class for our event handlers and provides the in-
frastructure for handling events. If an instance is created with a successor han-
dler, then when this instance is given an event, it simply passes the event down
the chain to the successor. However, if there is no successor, we have decided to
simply discard the event. This is the standard approach in GUI (graphical user
interface) programming, although we could easily log or raise an exception for
unhandled events (e.g., if our program was a server).

www.it-ebooks.info

http://www.it-ebooks.info/

76 Chapter 3. Behavioral Design Patternsin Python

class MouseHandler(NullHandler):

def handle(self, event):
if event.kind == Event.MOUSE:
print("Click: {}".format(event))
else:
super().handle(event)

Since we haven’t reimplemented the init () method, the base class one will
be used, so the self. successor variable will be correctly created.

This handler class handles only those events that it is interested in (i.e., of type
Event.MOUSE) and passes any other kind of event on to its successor in the chain
(if there is one).

The KeyHandler and TimerHandler classes (neither of which is shown) have exactly
the same structure as the MouseHandler. These other classes only differ in which
kind of event they respond to (e.g., Event.KEYPRESS and Event.TIMER) and the
handling they perform (i.e., they print out different messages).

class DebugHandler(NullHandler):

def init (self, successor=None, file=sys.stdout):
super(). init (successor)
self. file = file

def handle(self, event):
self. file.write("*DEBUG*: {}\n".format(event))
super().handle(event)

The DebugHandler class is different from the other handlers in that it never
handles any events, and it must be first in the chain. It takes a file or file-like
object to direct its reports to, and when an event occurs, it reports the event and
then passes it on.

3.1.2. A Coroutine-Based Chain

A generator is a function or method that has one or more yield expressions in-
stead of returns. Whenever a yield isreached,the value yielded is produced, and
the function or method is suspended with all its state intact. At this point the
function has yielded the processor (to the receiver of the value it has produced),
so although suspended, the function does not block. Then, when the function or
method is used again, execution resumes from the statement following the yield.
So, values are pulled from a generator by iterating over it (e.g., using for value
in generator:) or by calling next() on it.

www.it-ebooks.info

http://www.it-ebooks.info/

3.1. Chain of Responsibility Pattern 77

A coroutine uses the same yield expression as a generator but has different
behavior. A coroutine executes an infinite loop and starts out suspended at its
first (or only) yield expression, waiting for a value to be sent to it. If and when
a value is sent, the coroutine receives this as the value of its yield expression.
The coroutine can then do any processing it wants and when it has finished, it
loops and again becomes suspended waiting for a value to arrive at its next yield
expression. So, values are pushed into a coroutine by calling the coroutine’s
send() or throw() methods.

In Python, any function or method that contains a yield is a generator. However,
by using a @coroutine decorator, and by using an infinite loop, we can turn a
generator into a coroutine. (We discussed decorators and the @functools.wraps
decorator in the previous chapter; §2.4, 48 <.)

def coroutine(function):
@functools.wraps(function)
def wrapper(*args, **kwargs):
generator = function(*args, **kwargs)
next(generator)
return generator
return wrapper

The wrapper calls the generator function just once and captures the generator it
produces in the generator variable. This generator is really the original function
with its arguments and any local variables captured asits state. Next, the wrap-
per advances the generator—just once, using the built-in next() function—to
execute it up to its first yield expression. The generator—with its captured
state—is then returned. This returned generator function is a coroutine, ready
to receive a value at its first (or only) yield expression.

If we call a generator, it will resume execution where it left off (i.e., continue
after the last—or only—yield expression it executed). However, if we send a
value into a coroutine (using Python’s generator.send(value) syntax), this value
will be received inside the coroutine as the current yield expression’s result, and
execution will resume from that point.

Since we can both receive values from and send values to coroutines, they can
be used to create pipelines, including event-handling chains. Furthermore,
we don’t need to provide a successor infrastructure, since we can use Python’s
generator syntax instead.

pipeline = key handler(mouse handler(timer handler()))

Here, we create our chain (pipeline) using a bunch of nested function calls.
Every function called is a coroutine, and each one executes up to its first (or only)

www.it-ebooks.info

http://www.it-ebooks.info/

78 Chapter 3. Behavioral Design Patternsin Python

yield expression, here suspending execution, ready to be used again or sent a
value. So, the pipeline is created immediately, with no blocking.

Instead of having a null handler, we pass nothing to the last handler in the
chain. We will see how this works when we look at a typical handler coroutine
(key handler()).

while True:
event = Event.next()
if event.kind == Event.TERMINATE:
break
pipeline.send(event)

Just as with the conventional approach, once the chain is ready to handle events,
we handle them in a loop. Because each handler function is a coroutine (a
generator function),it has a send() method. So, here, each time we have an event
to handle, we send it into the pipeline. In this example, the value will first be
sent to the key handler() coroutine, which will either handle the event or pass it
on. As before, the order of the handlers often doesn’t matter.

pipeline = debug handler(pipeline)

This is the one case where it does matter which order we use for a handler. Since
the debug handler() coroutine is intended to spy on the events and simply pass
them on, it must be the first handler in the chain. With this new pipeline in
place, we can once again loop over events, sending each one to the pipeline in
turn using pipeline.send(event).

@coroutine
def key handler(successor=None):
while True:
event = (yield)
if event.kind == Event.KEYPRESS:
print("'Press: {}".format(event))
elif successor is not None:
successor.send(event)

This coroutine accepts a successor coroutine to send to (or None) and begins exe-
cuting an infinite loop. The @coroutine decorator ensures that the key handler()
is executed up to its yield expression, so when the pipeline chain is created, this
function has reached its yield expression and is blocked, waiting for the yield
to produce a (sent) value. (Of course, it is only the coroutine that is blocked, not
the program as a whole.)

Once a value is sent to this coroutine—either directly, or from another coroutine
in the pipeline—it is received as the event value. If the event is of a kind that

www.it-ebooks.info

http://www.it-ebooks.info/

3.1. Chain of Responsibility Pattern 79

this coroutine handles (i.e., of type Event.KEYPRESS), it is handled—in this exam-
ple, just printed—and not sent any further. However, if the event is not of the
right type for this coroutine, and providing that there is a successor coroutine, it
is sent on to its successor to handle. If there is no successor, and the event isn’t
handled here, it is simply discarded.

After handling, sending, or discarding an event, the coroutine returns to the top
of thewhile loop, and then, once again, waits for the yield to produce a value sent
into the pipeline.

The mouse_handler() and timer handler() coroutines (neither of which is shown),
have exactly the same structure as the key handler();the only differences being
the type of event they handle and the messages they print.

@coroutine
def debug handler(successor, file=sys.stdout):
while True:
event = (yield)
file.write("*DEBUG*: {}\n".format(event))
successor.send(event)

The debug_handler() waits to receive an event, prints the event’s details, and
then sends it on to the next coroutine to be handled.

Although coroutines use the same machinery as generators, they work in a very
different way. With a normal generator, we pull values out one at a time (e.g.,
for x in range(10) :). But with coroutines, we push values in one at a time using
send(). This versatility means that Python can express many different kinds of
algorithm in a very clean and natural way. For example, the coroutine-based
chain shown in this subsection was implemented using far less code than the
conventional chain shown in the previous subsection.

We will see coroutines in action again when we look at the Mediator Pattern
(8§3.5,>» 100).

The Chain of Responsibility Pattern can, of course, be applied in many other
contexts than those illustrated in this section. For example, we could use the
pattern to handle requests coming into a server.

3.2. Command Pattern

The Command Pattern is used to encapsulate commands as objects. This
makes it possible, for example, to build up a sequence of commands for deferred
execution or to create undoable commands. We have already seen a basic use of
the Command Pattern in the ImageProxy example (§2.7, 67 <), and in this section
we will go a step further and create classes for undoable individual commands
and for undoable macros (i.e., undoable sequences of commands).

www.it-ebooks.info

http://www.it-ebooks.info/

80 Chapter 3. Behavioral Design Patternsin Python

[(1) Empry [(2) Do Red Cells | [(3) Do Green Cell| [(4) Do Blue Squares

CECCCEEO O ER L CEC RO BB
L RO e L EEl [BEl
ARNENNENANNENNEN AN NN

[(5) Undo Left Blue Square | [(5) Undo Left Green Cell| [(7) Undo Right Blue Sguare | [(8) Undo Red Cells

HEREN SR EEEERCC NN AN
e BR[| [R BRI e
[T T T P e r e e e e e e e

Figure 3.2 A grid being done and undone

Let’s begin by seeing some code that uses the Command Pattern, and then we
will look at the classes it uses (UndoableGrid and Grid) and the Command module
that provides the do—undo and macro infrastructure.

grid = UndoableGrid(8, 3) # (1) Empty
redLeft = grid.create cell command(2, 1, "red")
redRight = grid.create cell command(5, 0, "red")

redLeft() # (2) Do Red Cells
redRight.do() # OR: redRight()

greenlLeft = grid.create cell command(2, 1, "lightgreen")
greenLeft() # (3) Do Green Cell

rectangleLeft = grid.create rectangle macro(1l, 1, 2, 2, "lightblue")
rectangleRight = grid.create rectangle macro(5, 0, 6, 1, "lightblue")

rectangleLeft() # (4) Do Blue Squares
rectangleRight.do() # OR: rectangleRight()
rectangleLeft.undo() # (5) Undo Left Blue Square
greenlLeft.undo() # (6) Undo Left Green Cell
rectangleRight.undo() # (7) Undo Right Blue Square
redLeft.undo() # (8) Undo Red Cells

redRight.undo()

Figure 3.2 shows the grid rendered as HTML eight different times. The first one
shows the grid after it has been created in the first place (i.e., when it is empty).
Then, each subsequent one shows the state of things after each command or
macro is created and then called (either directly or using its do() method) and
after every undo() call.

class Grid:

def init (self, width, height):
self. cells = [["white" for _ in range(height)]
for _ in range(width)]

def cell(self, x, y, color=None):
if color is None:

www.it-ebooks.info

http://www.it-ebooks.info/

3.2. Command Pattern 81

return self. cells[x][y]
self. cells[x][y] = color

@property
def rows(self):
return len(self. cells[0])

@property
def columns(self):
return len(self. cells)

This Grid class is a simple image-like class that holds a list of lists of color
names.

The cell() method serves as both a getter (when the color argument is None) and
a setter (when a color is given). The rows and columns read-only properties return
the grid’s dimensions.

class UndoableGrid(Grid):

def create cell command(self, x, y, color):
def undo():
self.cell(x, y, undo.color)
def do():
undo.color = self.cell(x, y) # Subtle!
self.cell(x, y, color)
return Command.Command(do, undo, "Cell")

To make the Grid support undoable commands, we have created a subclass that
adds two additional methods, the first of which is shown here.

Every command must be of type Command.Command or Command.Macro. The former
takes do and undo callables and an optional description. The latter has an
optional description and can have any number of Command.Commands added to it.

In the create cell command() method, we accept the position and color of the cell
to set and then create the two functions required to create a Command.Command.
Both commands simply set the given cell’s color.

Of course, at the time the do() and undo() functions are created, we cannot
know what the color of the cell will be immediately before the do() command is
applied, so we don’t know what color to undo it to. We have solved this problem
by retrieving the cell’s color inside the do() function—at the time the function is
called—and setting it as an attribute of the undo() function. Only then do we set
the new color. Note that this works because the do() function is a closure that
not only captures the x, y, and color parameters as part of its state, but also the
undo() function that has just been created.

www.it-ebooks.info

http://www.it-ebooks.info/

82 Chapter 3. Behavioral Design Patternsin Python

Once the do() and undo() functions have been created, we create a new Com-
mand.Command that incorporates them, plus a simple description, and return the
command to the caller.

def create rectangle macro(self, x0, y0, x1, yl, color):
macro = Command.Macro("Rectangle")
for x in range(x0, x1 + 1):
for y in range(y0, yl + 1):
macro.add(self.create cell command(x, y, color))
return macro

Thisis the second UndoableGrid method for creating doable—undoable commands.
This method creates a macro that will create a rectangle spanning the given co-
ordinates. For each cell to be colored, a cell command is created using the class’s
other method (create cell command()), and this command is added to the macro.
Once all the commands have been added, the macro is returned.

As we will see, both commands and macros support do() and undo() methods.
Since commands and macros support the same methods, and macros contain
commands, their relationship to each other is a variation of the Composite
Pattern (§2.3, 40 <.

class Command:

def init (self, do, undo, description=""):
assert callable(do) and callable(undo)
self.do = do
self.undo = undo
self.description = description

def call (self):
self.do()

A Command.Command expects two callables: the first is the “do” command, and
the second is the “undo” command. (The callable() function is a Python 3.3
built-in; for earlier versions an equivalent function can be created with: def
callable(function): return isinstance(function, collections.Callable).)

A Command.Command can be executed simply by calling it (thanks to our imple-
mentation of the call () special method) or equivalently by calling its do()
method. The command can be undone by calling its undo() method.

class Macro:

self.description = description
self._commands = []

www.it-ebooks.info

http://www.it-ebooks.info/

3.2. Command Pattern 83

def add(self, command):
if not isinstance(command, Command):
raise TypeError("Expected object of type Command, got {}".
format (type(command). name_))
self. commands.append(command)

def call (self):
for command in self. commands:
command ()

do = call

def undo(self):
for command in reversed(self. commands):
command.undo ()

The Command.Macro class is used to encapsulate a sequence of commands that
should all be done—or undone—as a single operation.* The Command.Macro offers
the same interface as Command.Commands: do() and undo() methods, and the ability
to be called directly. In addition, macros provide an add () method through which
Command. Commands can be added.

For macros, commands must be undone in reverse order. For example, suppose
we created a macro and added the commands A, B, and C. When we executed the
macro (i.e., called it or called its do() method), it would execute A, then B, and
then C. So when we call undo (), we must execute the undo() methods for C, then
B, and then A.

In Python, functions, bound methods, and other callables are first-class objects
that can be passed around and stored in data structures such as lists and dicts.
This makes Python an ideal language for implementations of the Command
Pattern. And the pattern itself can be used to great effect, as we have seen here,
in providing do—undo functionality, as well as being able to support macros and
deferred execution.

3.3. Interpreter Pattern

The Interpreter Pattern formalizes two common requirements: providing
some means by which users can enter nonstring values into applications, and
allowing users to program applications.

At the most basic level, an application will receive strings from the user—or
from other programs—that must be interpreted (and perhaps executed) appro-
priately. Suppose, for example, we receive a string from the user that is supposed

* Although we speak of macros executing in a single operation, this operation is not atomic from a
concurrency point of view, although it could be made atomic if we used appropriate locks.

www.it-ebooks.info

http://www.it-ebooks.info/

84 Chapter 3. Behavioral Design Patternsin Python

to represent an integer. An easy—and unwise—way to get the integer’s value
is like this: i = eval(userCount). This is dangerous, because although we hope
the string is something innocent like "1234", it could be "os.system('rmdir /s /q
G)™

In general, if we are given a string that is supposed to represent the value of a
specific data type, we can use Python to obtain the value directly and safely.

try:

count = int(userCount)

when = datetime.datetime.strptime(userDate, "%Y/%m/%d").date()
except ValueError as err:

print(err)

In this snippet, we get Python to safely try to parse two strings, one into an int
and the other into a datetime.date.

Sometimes, of course, we need to go beyond interpreting single strings into val-
ues. For example, we might want to provide an application with a calculator fa-
cility or allow users to create their own code snippets to be applied to application
data. One popular approach to these kinds of requirements is to create a DSL
(Domain Specific Language). Such languages can be created with Python out of
the box—for example, by writing a recursive descent parser. However, it is much
simpler to use a third-party parsing library such as PLY (www.dabeaz.com/ply),
PyParsing (pyparsing.wikispaces.com), or one of the many other libraries that are
available*

If we are in an environment where we can trust our applications’ users, we can
give them access to the Python interpreter itself. The IDLE IDE (Integrated
Development Environment) that is included with Python does exactly this,
although IDLE is smart enough to execute user code in a separate process, so
that if it crashes IDLE isn’t affected.

3.3.1. Expression Evaluation with eval()

The built-in eval() function evaluates a single string as an expression (with
access to any global or local context we give it) and returns the result. This is
sufficient to build the simple calculator.py application that we will review in
this subsection. Let’s begin by looking at some interaction.

$./calculator.py
Enter an expression (Ctrl+D to quit): 65
A=65

* Parsing, including using PLY and PyParsing, is introduced in this author’s book, Programming in
Python 3, Second Edition; see the Selected Bibliography for details (> 287).

www.it-ebooks.info

http://www.dabeaz.com/ply
http://www.it-ebooks.info/

3.3. Interpreter Pattern 85

ANS=65

Enter an expression (Ctrl+D to quit): 72

A=65, B=72

ANS=72

Enter an expression (Ctrl+D to quit): hypotenuse(A, B)
name 'hypotenuse' is not defined

Enter an expression (Ctrl+D to quit): hypot(A, B)
A=65, B=72, C=97.0

ANS=97.0

Enter an expression (Ctrl+D to quit): ”D

The user entered two sides of a right-angled triangle and then used the
math.hypot() function (after making a mistake) to calculate the hypotenuse. Af-
ter each expression is entered, the calculator.py program prints the variables
it has created so far (and that are accessible to the user) and the answer to the
current expression. (We have indicated user-entered text using bold—with Enter
or Return at the end of each line implied—and Ctrl+D with ~D.)

To make the calculator as convenient as possible, the result of each expression
entered is stored in a variable, starting with A, then B, and so on, and restart-
ing at A if Z is reached. Furthermore, we have imported all the math module’s
functions and constants (e.g., hypot(), e, pi, sin(), etc.) into the calculator’s
namespace so that the user can access them without qualifying them (e.g., cos()
rather than math.cos()).

If the user enters a string that cannot be evaluated, the calculator prints an
error message and then repeats the prompt, and all the existing context is kept
intact.

def main():
quit = "Ctrl+Z,Enter" if sys.platform.startswith("win") else "Ctrl+D"
prompt = "Enter an expression ({} to quit): ".format(quit)

current = types.SimpleNamespace(letter="A")
globalContext = global context()
localContext = collections.OrderedDict()
while True:
try:
expression = input(prompt)
if expression:
calculate(expression, globalContext, localContext, current)
except EOFError:
print()
break

www.it-ebooks.info

http://www.it-ebooks.info/

86 Chapter 3. Behavioral Design Patternsin Python

We have used EOF (End Of File) to signify that the user has finished. This
means that the calculator can be used in a shell pipeline, accepting input redi-
rected from a file, as well as for interactive user input.

We need to keep track of the name of the current variable (A or Bor ...) so that
we can update it each time a calculation is done. However, we can’t simply pass
it as a string, since strings are copied and cannot be changed. A poor solution is
to use a global variable. A better and much more common solution is to create a
one-item list; for example, current = ["A"]. This list can be passed as current and
its string can be read or changed by accessing it as current[0].

For this example, we have taken a more modern approach and created a tiny
namespace with a single attribute (letter) whose value is "A". We can freely
pass the current simple namespace instance around, and since it has a letter at-
tribute, we can read or change the attribute’s value using the nice current.letter
syntax.

The types.SimpleNamespace class was introduced in Python 3.3. For earlier ver-
sions an equivalent effect can be achieved by writing current = type(" ", (),
dict(letter="A"))(). This creates a new class called with a single attribute
called letter with an initial value of "A". The built-in type() function returns the
type of an object if called with one argument, or creates a new class if given a
class name, a tuple of base classes, and a dictionary of attributes. If we pass an
empty tuple, the base class will be object. Since we don’t need the class but only
an instance, having called type(), we immediately call the class itself—hence the
extra parentheses—to return the instance of it that we assign to current.

Python can supply the current global context using the built-in globals() func-
tion; this returns a dict that we can modify (e.g., add to, as we saw earlier; 23 <).
Python can also supply the local context using the built-in locals() function,
although the dict returned by this function must rnot be modified.

We want to provide a global context supplemented with the math module’s con-
stants and functions and an initially empty local context. Although the global
context must be a dict, the local context can be supplied as a dict—or as any oth-
er mapping object. Here, we have chosen to use a collections.0OrderedDict—an
insertion-ordered dictionary—as the locals context.

Since the calculator can be used interactively, we have created an event loop
that is terminated when EOF is encountered. Inside the loop we prompt the user
for input (also telling them how to quit), and if they enter any text, we call our
calculate() function to perform the calculation and to print the results.

import math

def global context():
globalContext = globals().copy()
for name in dir(math):

www.it-ebooks.info

http://www.it-ebooks.info/

3.3. Interpreter Pattern 87

if not name.startswith(" "):
globalContext[name] = getattr(math, name)
return globalContext

This helper function starts by creating a local (shallow-copied) dict of the
program’s global modules, functions, and variables. Then it iterates over all
the public constants and functions in the math module and, for each one, adds
its unqualified name to the globalContext dict and sets its value to be the actual
math module constant or function it refers to. So, for example, when the name is
"factorial”, this name is added as a key in the globalContext, and its value is set
to be the (i.e., a reference to the) math.factorial() function. This is what allows
the calculator’s users to use unqualified names.

A simpler approach would have been to do from math import * and then use
globals() directly, with no need for the globalContext dict. Such an approach is
probably okay for the math module, but the way we have done it here provides
finer control that might be more appropriate for other modules.

def calculate(expression, globalContext, localContext, current):
try:
result = eval(expression, globalContext, localContext)
update(localContext, result, current)
print(", ".join(["{}={}".format(variable, value)
for variable, value in localContext.items()]))
print("ANS={}".format(result))
except Exception as err:
print(err)

Thisis the function where we ask Python to evaluate the string expression using
the global and local context dictionaries that we have created. If the eval()
succeeds, we update the local context with the result and print the variables
and the result. And if an exception occurs, we safely print it. Since we used
a collections.OrderedDict for the local context, the items() method returns the
items in insertion order without the need for an explicit sort. (Had we used a
plain dict we would have needed to write sorted(localContext.items()).)

Although it is usually poor practice to use the Exception catch-all exception, it
seems reasonable in this case, because the user’s expression could raise any kind
of exception at all.

def update(localContext, result, current):
localContext[current.letter] = result
current.letter = chr(ord(current.letter) + 1)
if current.letter > "Z": # We only support 26 variables
current.letter = "A"

www.it-ebooks.info

http://www.it-ebooks.info/

88 Chapter 3. Behavioral Design Patternsin Python

This function assigns the result to the next variable in the cyclic sequence A ...
ZA...Z....This means that after the user has entered 26 expressions, the result
of the last one is set as Z’s value, and the result of the next one will overwrite A’s
value, and so on.

The eval() function will evaluate any Python expression. This is potentially dan-
gerous if the expression is received from an untrusted source. An alternative
is to use the standard library’s more restrictive—and safe—ast.literal eval()
function.

3.3.2. Code Evaluation with exec()

The built-in exec() function can be used to execute arbitrary pieces of Python
code. Unlike eval(), exec() is not restricted to a single expression and always
returns None. Context can be passed to exec() in the same way as for eval(), via
globals and locals dictionaries. Results can be retrieved from exec() through the
local context it is passed.

In this subsection, we will review the genomel.py program. This program creates
a genome variable (a string of random A, C, G, and T letters) and executes eight
pieces of user code with the genome in the code’s context.

context = dict(genome=genome, target="G[AC]{2}TT", replace="TCGA")
execute(code, context)

This code snippet shows the creation of the context dictionary with some data
for the user’s code to work on and the execution of a user’s Code object (code) with
the given context.

TRANSFORM, SUMMARIZE = ("TRANSFORM", "SUMMARIZE")

Code = collections.namedtuple("Code", "name code kind")

We expect user code to be provided in the form of Code named tuples, with a
descriptive name, the code itself (as a string), and a kind—either TRANSFORM or
SUMMARIZE. When executed, the user code should create either a result object
or an error object. If their code’s kind is TRANSFORM, the result is expected to be
a new genome string, and if the kind is SUMMARIZE, result is expected to be a
number. Naturally, we will try to make our code robust enough to cope with user
code that doesn’t meet these requirements.

def execute(code, context):
try:
exec(code.code, globals(), context)
result = context.get("result")
error = context.get("error")

www.it-ebooks.info

http://www.it-ebooks.info/

3.3. Interpreter Pattern 89

handle result(code, result, error)
except Exception as err:
print("'{}' raised an exception: {}\n".format(code.name, err))

This function performs the exec() call on the user’s code, using the program’s
own global context and the provided local context. It then tries to retrieve the
result and error objects, one of which the user code should have created, and
passes them on to the custom handle result() function.

Just as with the previous subsection’s eval() example, we have used the
(normally to be avoided) Exception exception, since the user code could raise any
kind of exception.

def handle result(code, result, error):

if error is not None:

print("'{}' error: {}".format(code.name, error))
elif result is None:

print("'{}' produced no result".format(code.name))
elif code.kind == TRANSFORM:

genome = result

try:

print(

{}' produced a genome of length {}".format(code.name,
len(genome)))

except TypeError as err:

print("'{}' error: expected a sequence result: {}".format(
code.name, err))

elif code.kind == SUMMARIZE:

print("'{}' produced a result of {}".format(code.name, result))
print()

If the error object is not None, it is printed. Otherwise, if the result is None, we
print a “produced no result” message. If we have a result and the user code’s
kind is TRANSFORM, we assign result to genome, and in this case we simply print the
genome’s new length. The try ... except block is designed to protect our program
from a user code error (e.g., returning a single value rather than a string or
other sequence for a TRANSFORM). If the result’s kind is SUMMARIZE, we just print a
summary line containing the result.

The genomel.py program has eight Code items: the first two (which we will see
shortly) produce legitimate results, the third has a syntax error, the fourth
reports an error, the fifth does nothing, the sixth has the wrong kind set, the
seventh calls sys.exit(), and the eighth is never reached because the seventh
terminates the program. Here is the program’s output.

www.it-ebooks.info

http://www.it-ebooks.info/

90 Chapter 3. Behavioral Design Patternsin Python

$./genomel.py
"Count' produced a result of 12

'Replace' produced a genome of length 2394

'Exception Test' raised an exception: invalid syntax (<string>, line 4)
'"Error Test' error: 'G[AC]{2}TT' not found

'No Result Test' produced no result

'"Wrong Kind Test' error: expected a sequence result: object of type 'int' has

no len()

As the output makes clear, because the user code is executing in the same inter-
preter as the program itself, the user code can terminate or crash the program.
(Note that the last line has been wrapped to fit on the page.)

Code("Count",

import re
matches = re.findall(target, genome)
if matches:
result = len(matches)
else:
error = "'{}' not found".format(target)
tt, SUMMARIZE)

This is the “Count” Code item. The item’s code does much more than is possible
in a single expression of the kind that eval() could handle. The target and
genome strings are taken from the context object that is passed as the exec()’s
local context—and it is this same context object that any new variables (such as
result and error) are implicitly stored in.

Code("Replace",
import re
result, count = re.subn(target, replace, genome)
if not count:
error = "no '{}' replacements made".format(target)
“t TRANSFORM)

The “Replace” Code item’s code performs a simple transformation on the genome
string, replacing nonoverlapping substrings that match the target regex with
the replace string.

The re.subn() function (and regex.subn() method) performs substitutions
exactly the same as re.sub() (and regex.sub()). However, whereas the sub()

www.it-ebooks.info

http://www.it-ebooks.info/

3.3. Interpreter Pattern 91

function (and method) returns a string where all the replacements have been
made, the subn() function (and method) returns both the string and a count of
how many replacements were made.

Although the genomel.py program’s execute() and handle result() functions are
easy to use and understand, in one respect the program is fragile: if the user
code crashes—or simply calls sys.exit()—our program will terminate. In the
next subsection we will explore a solution to this problem.

3.3.3. Code Evaluation Using a Subprocess

One possible answer to executing user code without compromising our appli-
cation is to execute it in a separate process. This subsection’s genome2.py and
genome3. py programs show how we can execute a Python interpreter in a subpro-
cess, feed the interpreter with a program to execute through its standard input,
and retrieve its results by reading its standard output.

We have given the genome2.py and genome3.py programs exactly the same eight
Code items as the genomel.py program. Here is genome2.py’s output (genome3.py’s
is identical):

$./genome2.py
'Count' produced a result of 12

'Replace' produced a genome of length 2394

'Exception Test' has an error on line 3
if genome[i] = "A":

N

SyntaxError: invalid syntax
'"Error Test' error: 'G[AC]{2}TT' not found
'No Result Test' produced no result

'Wrong Kind Test' error: expected a sequence result: object of type 'int' has
no len()

'Termination Test' produced no result

'Length' produced a result of 2406

Notice that even though the seventh Code item calls sys.exit(), the genome2.py
program continues afterward, merely reporting “produced no result” for that
piece of code, and then going on to execute the “Length” code. (The genomel.py
program was terminated by the sys.exit() call, so its last line of output was
“...error: expected a sequence...”.) Another point to note is that genome2.py
produces much better error reporting (e.g., the “Exception Test” code’s syntax
error).

www.it-ebooks.info

http://www.it-ebooks.info/

92 Chapter 3. Behavioral Design Patternsin Python

context = dict(genome=genome, target="G[AC]{2}TT", replace="TCGA")
execute(code, context)

The creation of the context and the execution of the user’s code with the context
is exactly the same as for the genomel.py program.

def execute(code, context):
module, offset = create module(code.code, context)
with subprocess.Popen([sys.executable, "-"], stdin=subprocess.PIPE,
stdout=subprocess.PIPE, stderr=subprocess.PIPE) as process:
communicate(process, code, module, offset)

This function begins by creating a string of code (module) containing the user’s
code plus some supporting code that we will see in a moment. The offset is the
number of lines we have added before the user’s code—this will help us to pro-
vide accurateline numbersin error messages. The function then starts a subpro-
cess in which it executes a new instance of the Python interpreter, whose name
isin sys.executable, and whose - (hyphen) argument means that the interpreter
will expect to execute Python code sent to its sys.stdin.* The interaction with
the process—including sending it the module code—is handled by our custom
communicate() function.

def create module(code, context):
lines = ["import json", "result = error = None"]
for key, value in context.items():
lines.append("{} = {!r}".format(key, value))
offset = len(lines) + 1
outputLine = "\nprint(json.dumps((result, error)))"
return "\n".join(lines) + "\n" + code + outputLine, offset

This function creates a list of lines that will form a new Python module to be
executed by a Python interpreter in a subprocess. The first line imports the json
module that we will use to return results to the initiating process (i.e., to the
genome2.py program). The second line initializes the result and error variables
to ensure that they exist. Then, we add a line for each of the context variables.
Finally, we store the result and error (which the user’s code might have changed)
inside a string using JSON (JavaScript Object Notation) that will be printed to
sys.stdout after the user’s code has been executed.

UTF8 = "utf-8"

def communicate(process, code, module, offset):

*The subprocess.Popen() function added support for context managers (i.e., the with statement) in
Python 3.2.

www.it-ebooks.info

http://www.it-ebooks.info/

3.3. Interpreter Pattern 93

stdout, stderr = process.communicate(module.encode(UTF8))

if stderr:
stderr = stderr.decode(UTF8).1lstrip().replace(", in <module>", ":")
stderr = re.sub(", line (\d+)",

lambda match: str(int(match.group(1l)) - offset), stderr)
print(re.sub(r'File."[*"]+?"', "'{}' has an error on line
.format(code.name), stderr))
return
if stdout:
result, error = json.loads(stdout.decode(UTF8))
handle result(code, result, error)
return
print("'{}' produced no result\n".format(code.name))

The communicate() function begins by sending the module code we created earlier
to the subprocess’s Python interpreter to execute, and then blocks waiting for
results to be produced. Once the interpreter finishes execution, its standard
output and standard error output are collected in our local stdout and stderr
variables. Note that all communication takes place using raw bytes—hence our
need to encode the module string into UTF-8-encoded bytes.

If there is any error output (i.e., if an exception was raised, or if anything is
written to sys.stderr), we replace the reported line number (which includes the
lines we added before the user’s code) with the actual line number in the user’s
code, and we replace the “File "<stdin>"" text with the Code object’s name. Then,
we print the error text as a string.

The re.sub() call matches—and captures—the line number’s digits with (\d+)
and replaces them with the result of the call to the lambda function given as its
second argument. (More commonly, we give a string as second argument, but
here we need to do some computation.) The lambda function converts the digits
into an integer and subtracts the offset, then returns the new line number as a
string to replace the original. This ensures that the error message’s line number
is correct for the user’s code, regardless of how many lines we put in front of it
when creating the module we sent to be interpreted.

If there was no error output, but there was standard output, we decode the
output’s bytes into a string (which we expect to be in JSON format) and parse
this into Python objects—in this case a 2-tuple of a result and an error. Then
we call our custom handle result() function. (This function is identical in
genomel.py, genome2.py, and genome3.py, and was shown earlier; 89 <)

The genome2.py program’s user code is identical to genomel.py’s, although for
genome2.py we provide some additional supporting code before and after the user
code. Using JSON format to return results is safe and convenient but limits the
data types we can return (e.g., result’s type) to dict, list, str, int, float, bool, or
None, and where a dict or list may only contain objects of these types.

www.it-ebooks.info

http://www.it-ebooks.info/

94 Chapter 3. Behavioral Design Patternsin Python

The genome3. py program is almost the same as genome2.py but returns its results
in a pickle. This means that most Python types can be used.

def create module(code, context):
lines = ["import pickle", "import sys", "result = error = None"]
for key, value in context.items():
lines.append("{} = {!r}".format(key, value))
offset = len(lines) + 1
outputLine = "\nsys.stdout.buffer.write(pickle.dumps((result, error)))"
return "\n".join(lines) + "\n" + code + outputLine, offset

This function is very similar to the genome2.py version. A minor difference is
that we must import sys. The major difference is that whereas the json module’s
loads () and dumps () methods work on strs, the pickle module’s equivalent func-
tions work on bytes. So, here, we must write the raw bytes directly to sys.stdout’s
underlying buffer to avoid the bytes being erroneously encoded.

def communicate(process, code, module, offset):
stdout, stderr = process.communicate(module.encode(UTF8))

if stdout:
result, error = pickle.loads(stdout)
handle result(code, result, error)
return

The genome3.py program’s communicate() method is the same as for genome2.py
(93 «) except for the line that has the loads() method call. For the JSON data
we had to decode the bytes into a UTF-8-encoded str, but here we work directly
on the raw bytes.

Using exec() to execute arbitrary pieces of Python code received from the user
or from other programs gives that code access to the full power of the Python
interpreter—and to its entire standard library. And by executing the user code
in a separate Python interpreter in a subprocess, we can protect our program
from being crashed or terminated by it. However, we cannot really stop the user
code from doing anything malicious. To execute untrusted code we would need
to use some kind of sandbox; for example, the one provided by the PyPy Python
interpreter (pypy.org).

For some programs, blocking while waiting for user code to finish execution
might be acceptable, but it does run the risk of waiting “forever” if the user code
has a bug (e.g., an infinite loop). One possible solution would be to create the sub-
process in a separate thread and use a timer in the main thread. If the timer
times out, we could then forcibly terminate the subprocess and report the prob-
lem to the user. Concurrent programming is introduced in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

3.4. Iterator Pattern 95

3.4. Iterator Pattern

The Iterator Pattern provides a way of sequentially accessing the items inside
a collection or an aggregate object without exposing any of the internals of the
collection or aggregate’s implementation. This pattern is so useful that Python
provides built-in support for it, as well as providing special methods that we can
implement in our own classes to make them seamlessly support iteration.

Iteration can be supported by satisfying the sequence protocol, or by using the
two-argument form of the built-in iter() function, or by satisfying the iterator
protocol. We will see examples of all these in the following subsections.

3.4.1. Sequence Protocol Iterators

One way to provide iterator support for our own classes is to make them support
the sequence protocol. This means that we must implement a _ getitem ()
special method that can accept an integer index argument that starts from 0
and that raises an IndexError exception if no further iteration is possible.

for letter in AtoZ():
print(letter, end="")
print()

for letter in iter(AtoZ()):
print(letter, end="")
print()

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

These two code snippets create an AtoZ() object and then iterate over it. The
object first returns the single character string "A", then "B", and so on, up to "Z".
The object could have been made iterable in a number of ways, although in this
case we've provided a __getitem () method, as we will see in a moment.

In the second loop we have used the built-in iter() function to obtain an iterator
to an instance of the AtoZ class. Clearly, this isn’t necessary in this case, but as
we will see in a moment (and elsewhere in the book), iter() does have its uses.

class AtoZ:

def getitem (self, index):
if 0 <= index < 26:
return chr(index + ord("A"))
raise IndexError()

www.it-ebooks.info

http://www.it-ebooks.info/

96 Chapter 3. Behavioral Design Patternsin Python

This is the complete AtoZ class. We have provided it witha getitem () method
that satisfies the sequence protocol. When an object of this class is iterated, on
the twenty-seventh iteration it will raise an IndexError. If this occurs inside a
for loop, the exception is discarded, the loop is cleanly terminated, and execution
resumes from the first statement after the loop.

3.4.2. Two-Argument iter() Function Iterators

Another way to provide iteration support is to use the built-in iter() function,
but passing it two arguments instead of one. When this form is used, the first
argument must be a callable (a function, a bound method, or any other callable
object), and the second argument must be a sentinel value. When this form is
used the callable is called at each iteration—with no arguments—and iteration
will stop only if the callable raises a StopIteration exception or if it returns the
sentinel value.

for president in iter(Presidents("George Bush"), None):
print(president, end=" * ")
print()

for president in iter(Presidents("George Bush"), "George W. Bush"):
print(president, end=" * ")
print()

George Bush x Bill Clinton * George W. Bush * Barack Obama *
George Bush x Bill Clinton *

The Presidents() call creates an instance of the Presidents class, and—thanks
to the implementation of the call () special method—such instances are
callable. So, here, we create a Presidents object that is a callable (as required by
the two-argument form of the built-in iter() function),and we provide a sentinel
of None. A sentinel must be provided, even if it is None, so that Python knows to
use the two-argument iter() function rather than the one-argument version.

The Presidents constructor creates a callable that will return each president
in turn, starting with George Washington or, optionally, from the president we
give it. In this case we told it to start from George Bush. Here, the first time
we iterate, we have used a sentinel of None to signify “go to the end”, which, at
the time of this writing, is Barack Obama. The second time we iterate we have
provided the name of a president as the sentinel; this means that the callable
will output each president from the first up to the one before the sentinel.

class Presidents:

__names = ("George Washington", "John Adams", "Thomas Jefferson",

www.it-ebooks.info

http://www.it-ebooks.info/

3.4. Iterator Pattern 97

"Bill Clinton", "George W. Bush", "Barack Obama")

def init (self, first=None):
self.index = (-1 if first is None else
Presidents. names.index(first) - 1)

def call (self):
self.index += 1
if self.index < len(Presidents. names):
return Presidents. names[self.index]
raise StopIteration()

The Presidents class keeps a static (that is, class-wide) names list with the
names of all the U.S. presidents. The init () method sets the initial index
to one less than either the first president in the list or the president the user
has specified.

The instances of any class that implements the call () special method are
callable. And when such an instance is called, it is this call () method that
is actually executed.*

In this class’s call () special method, we either return the name of the next
president in the list, or we raise a StopIteration exception. In the first iteration
where the sentinel was None, the sentinel was never reached (since call ()
never returns None), but iteration still stopped cleanly because once we ran out
of presidents, we raised the StopIteration exception. Butin the second iteration,
as soon as the sentinel president was returned to the built-in iter() function, the
function itself raised StopIteration to terminate the loop.

3.4.3. Iterator Protocol Iterators

Probably the easiest way to provide iterator support in our own classes is to
make them support the iterator protocol. This protocol requires that a class im-
plementsthe iter () special method and that this method returns an iterator
object. The iterator object must have its own _iter () method that returns
the iterator itself and a next () method that returns the next item—or that
raises a StopIteration exception if there are no more items. Python’s for loop
and in statement make use of this protocol under the hood. One simple way to
implementan iter () methodisto make it a generator—or to make it return
a generator, since generators satisfy the iterator protocol. (See §3.1.2, 76 <« for
more about generators.)

In this subsection we will create a simple bag class (also called a multiset). A
bag is a collection class that is like a set but which allows duplicate items. An

* In languages that don’t support functions as first-class objects, callable instances are called
functors.

www.it-ebooks.info

http://www.it-ebooks.info/

98 Chapter 3. Behavioral Design Patternsin Python

[Parie) , | Paris
| Helsinki ‘ h
h | New York

N

\\ Paris

London)

Figure 3.3 A bag is an unsorted collection of values with duplicates allowed

example bag isillustrated in Figure 3.3. Naturally, we will make the bag iterable
and show three ways to do so. All the code is quoted from Bagl.py except where
stated otherwise.

class Bag:

def init (self, items=None):
self. bag = {}
if items is not None:
for item in items:
self.add(item)

The bag’s data is stored in the private self. bag dictionary. The dictionary’s
keys are anything hashable (i.e., they are the bag’s items), and the values are
counts (i.e., how many of the item are in the bag). Users can add some initial
items to a newly created bag if they wish.

def add(self, item):
self. bag[item] = self. bag.get(item, 0) + 1

Since self. bag is not a collections.defaultdict, we must be careful to only
increment an item that already exists; otherwise, we would get a KeyError
exception. We use the dict.get() method to retrieve an existing item’s count,
or 0 if there isn’t such an item, and set the dictionary to have an item with this
number plus 1, creating the item if necessary.

def delitem (self, item):
if self. bag.get(item) is not None:
self. bag[item] -=1
if self. bag[item] <= 0:
del self. bag[item]
else:
raise KeyError(str(item))

www.it-ebooks.info

http://www.it-ebooks.info/

3.4. Iterator Pattern 99

If an attempt is made to delete an item that isn’t in the bag, we raise a KeyError
exception containing the item in string form. On the other hand, if the item is
in the bag, we begin by reducing its count. If this drops to zero or less, we delete
it from the bag.

We have not implemented the getitem () or setitem () special meth-
ods, because neither of them make sense for bags (since bags are unordered).
Instead, we use bag.add() to add items, del bag[item] to delete items, and
bag.count(item) to check how many of a particular item are in the bag.

def count(self, item):
return self. bag.get(item, 0)

This method simply returns how many occurrences of the given item are in
the bag—or zero if the item isn’t in the bag. A perfectly reasonable alterna-
tive would be to raise a KeyError for attempts to count an item that isn’t in
the bag. This could be done simply by changing the method’s body to return
self. bag[item].

def len (self):

return sum(count for count in self. bag.values())

This method is subtle since we must count all the duplicate items in the bag
separately. To do this, we iterate over all the bag’s values (i.e., its item counts)
and sum them using the built-in sum() function.

def contains_ (self, item):
return item in self. bag

This method returns True if the bag contains at least one of the given item (since
if an item is in the bag at all, its count is at least 1); otherwise, it returns False.

We have now seen all of the bag’s methods except for its iteration support. First,
we'll look at the Bagl.py module’sBag. iter () method.

def iter (self): # This needlessly creates a list of items!
items = []
for item, count in self. bag.items():
for _ in range(count):
items.append(item)
return iter(items)

This method is a first attempt. It builds up a list of items—as many of each as
its count indicates—and then returns an iterator for the list. For a large bag,
this could result in the creation of a very large list, which is rather inefficient,
so we will look at two better approaches.

www.it-ebooks.info

http://www.it-ebooks.info/

100 Chapter 3. Behavioral Design Patternsin Python

def iter (self):
for item, count in self. bag.items():
for _ in range(count):
yield item

This code is from the Bag2.py module and is the only method that is different
from Bagl.py’s Bag class.

Here, we iterate over the bag’s items, retrieving each item and its count, and
yielding each item count times. There is a tiny fixed overhead for making the
method a generator, but this is independent of the number of items, and of
course, no separate list needs to be created, so this method is much more efficient
than the Bagl.py version.

def iter (self):
return (item for item, count in self. bag.items()
for _ in range(count))

Here is the Bag3.py module’s version of the Bag. iter () method. It is
effectively the same as the Bag2.py module’s version, only instead of making the
method into a generator, it returns a generator expression.

Although the book’s bag implementations work perfectly well, keep in mind that
the standard library has its own bag implementation: collections.Counter.

3.5. Mediator Pattern

The Mediator Pattern provides a means of creating an object—the mediator
—that can encapsulate the interactions between other objects. This makes it
possible to achieve interactions between objects that have no direct knowledge
of each other. For example, if a button object is clicked, it need only tell the
mediator; then, it is up to the mediator to notify any objects that are interested
in the button click. A mediator for a form with some text and button widgets,
and a couple of associated methods, is illustrated in Figure 3.4.

This pattern is clearly of great utility in GUI programming. In fact, all of
the GUI toolkits available for Python (e.g., Tkinter, PyQt/PySide, PyGObject,
wxPython) provide some equivalent facility. We will see Tkinter examples of
this in Chapter 7 (> 231).

In this section’s two subsections, we will look at two approaches to implementing
a mediator. The first is quite conventional; the second uses coroutines. Both
make use of Form, Button, and Text classes (whose implementations we will see)
for a fictitious user interface toolkit.

www.it-ebooks.info

http://www.it-ebooks.info/

3.5. Mediator Pattern 101

Text #1
update_ui()
Text #2
S Mediator
Button #1
clicked()
Button #2

Figure 3.4 A form’s widget mediator

3.5.1. A Conventional Mediator

In this subsection we will create a conventional mediator—a class that will
orchestrate interactions—in this case, for a form. All the code shown here is
from the mediatorl.py program.

class Form:

def init (self):
self.create widgets()
self.create mediator()

Like most functions and methods shown in this book, this method has been
ruthlessly refactored, in this case to the point where it passes on all its work.

def create widgets(self):
self.nameText = Text()
self.emailText = Text()
self.okButton = Button("0K")
self.cancelButton = Button("Cancel")

This form has two text entry widgets for a user’s name and email address, and
two buttons, OK and Cancel. Naturally, in a real user interface we would have
to include label widgets, and then lay out the widgets, but here our example is
purely to show the Mediator Pattern, so we don’t do any of that. We will see the
Text and Button classes shortly.

def create mediator(self):
self.mediator = Mediator(((self.nameText, self.update ui),
(self.emailText, self.update ui),
(self.okButton, self.clicked),
(self.cancelButton, self.clicked)))
self.update ui()

www.it-ebooks.info

http://www.it-ebooks.info/

102 Chapter 3. Behavioral Design Patternsin Python

We create a single mediator object for the entire form. This object takes one or
more widget—callable pairs, which describe the relationships the mediator must
support. In this case all the callables are bound methods. (See the “Bound and
Unbound Methods” sidebar, 63 <.) Here, we are saying that if the text of one of
the text entry widgets changes, the Form.update ui() method should be called;
and that if one of the buttons is clicked, the Form.clicked() method should be
called. After creating the mediator, we call the update ui() method to initialize
the form.

def update ui(self, widget=None):
self.okButton.enabled = (bool(self.nameText.text) and
bool(self.emailText.text))

This method enables the OK button if both the text entry widgets have some text
in them; otherwise it disables the button. Clearly, this method should be called
whenever the text of one of the text entry widgets is changed.

def clicked(self, widget):
if widget == self.okButton:
print("0K")
elif widget == self.cancelButton:
print("“Cancel")

This method is designed to be called whenever a button is clicked. In a real
application it would do something more interesting than printing the button’s
text.

class Mediator:

def init (self, widgetCallablePairs):
self.callablesForWidget = collections.defaultdict(list)
for widget, caller in widgetCallablePairs:
self.callablesForWidget[widget].append(caller)
widget.mediator = self

This is the first of the Mediator class’s two methods. We want to create a dictio-
nary whose keys are widgets and whose values are lists of one or more callables.
This is achieved by using a default dictionary. When we access an item in a de-
fault dictionary, if the item is not present, it is created and added with the value
being created by the callable given to the dictionary in the first place. In this
case, we gave the dictionary a list object, which when called returns a new emp-
ty list. So, the first time a particular widget is looked up in the dictionary, a new
item is inserted with the widget as the key and an empty list as the value, and
we immediately append the caller to the list. And whenever a widget is looked
up subsequently, the caller is appended to the item’s existing list. We also set the
widget’s mediator attribute (creating it if necessary) to this mediator (self).

www.it-ebooks.info

http://www.it-ebooks.info/

3.5. Mediator Pattern 103

The method adds the bound methods in the order they appear in the pairs;if we
didn’t care about the order we could pass set instead of list when creating the
default dictionary, and use set.add() instead of list.append() to add the bound
methods.

def on_change(self, widget):
callables = self.callablesForWidget.get(widget)
if callables is not None:
for caller in callables:
caller(widget)
else:
raise AttributeError("No on change() method registered for {}"
.format(widget))

Whenever a mediated object—that is, any widget passed to a Mediator—has a
change of state, it is expected to call its mediator’s on_change() method. This
method then retrieves and calls every bound method associated with the
widget.

class Mediated:

def init (self):
self.mediator = None

def on change(self):
if self.mediator is not None:
self.mediator.on change(self)

This is a convenience class designed to be inherited by mediated classes. It
keeps a reference to the mediator object, and if its on_change() method is called,
it calls the mediator’s on_change() method, parameterized by this widget (i.e.,
self, the widget that has had a change of state).

Since this base class’s method is never modified in any of its subclasses, we could
replace the base class with a class decorator, as we saw earlier (§2.4.2.2, 58 «).

class Button(Mediated):

def init (self, text=""):
super(). init ()
self.enabled = True
self.text = text

def click(self):

if self.enabled:
self.on_change()

www.it-ebooks.info

http://www.it-ebooks.info/

104 Chapter 3. Behavioral Design Patternsin Python

This Button class inherits Mediated. This gives the button a self.mediator at-
tribute and an on_change() method that it is expected to call when it experiences
a change of state; for example, when it is clicked.

So, in this example, a call to Button.click() will result in a call to Button
.on_change() (inherited from Mediated), which will result in a call to the media-
tor’s on_change() method, which will then call whatever method or methods are
associated with this button—in this case, the Form.clicked() method, with the
button as the widget argument.

class Text(Mediated):

def init (self, text=""):
super(). init ()
self. text = text

@property
def text(self):
return self. text

@text.setter
def text(self, text):
if self.text != text:
self. text = text
self.on_change()

Structurally, the Text class is the same as the Button class and also inherits
Mediated.

For any widget (button, text entry, and so on), so long as we make them a Me-
diated subclass and call on_change() whenever they have a change of state, we
can leave it to the Mediator to take care of the interactions. Of course, when we
create the Mediator, we must also register the widgets and the associated meth-
ods we want called. This means that all of a form’s widgets are loosely coupled,
thereby avoiding direct—and potentially fragile—relationships.

3.5.2. A Coroutine-Based Mediator

A mediator can be viewed as a pipeline that receives messages (on_change()
calls) and passes these on to interested objects. As we have already seen (§3.1.2,
76 «), coroutines can be used to provide such facilities. All the code shown here
is from the mediator2.py program, and all the code not shown is identical to that
shown in the previous subsection from the mediatorl.py program.

The approach used in this subsection is different from that taken in the previous
subsection. There, we associated pairs of widgets and methods, and whenever
the widget notified it had changed, the mediator called the associated methods.

www.it-ebooks.info

http://www.it-ebooks.info/

3.5. Mediator Pattern 105

Here, every widget is given a mediator that is actually a pipeline of coroutines.
Whenever a widget has a change of state, it sends itself into the pipeline, and
it is up to the pipeline components (i.e., the coroutines) to decide whether they
want to perform any action in response to a change in the widget they are
sent.

def create mediator(self):
self.mediator = self. update ui mediator(self. clicked mediator())
for widget in (self.nameText, self.emailText, self.okButton,
self.cancelButton):
widget.mediator = self.mediator
self.mediator.send(None)

For the coroutine version we don’t need a separate mediator class. Instead, we
create a pipeline of coroutines;in this case, one with two components, self. up-
date ui mediator() and self. clicked mediator().(These are all Form methods.)

Once the pipeline is in place, we set each widget’s mediator attribute to the
pipeline. And at the end, we send None down the pipeline. Since no widget is
None, no widget-specific actions will be triggered, but any form-level actions
(such as enabling or disabling the OK button in update ui mediator()) will be
performed.

@coroutine
def update ui mediator(self, successor=None):
while True:
widget = (yield)
self.okButton.enabled = (bool(self.nameText.text) and
bool(self.emailText.text))
if successor is not None:
successor.send(widget)

This coroutine is part of the pipeline. (The @coroutine decorator was shown and
discussed earlier; 77 <.)

Whenever a widget reports a change, the widget is passed into the pipeline and
is returned by the yield expression into the widget variable. When it comes to
enabling or disabling the OK button, we do this regardless of which widget has
changed. (After all, it may be that no widget has changed, that widget is None,
and so the form is simply being initialized.) After dealing with the button the
coroutine passes on the changed widget to the next coroutine in the chain (if
there is one).

@coroutine

def clicked mediator(self, successor=None):
while True:

www.it-ebooks.info

http://www.it-ebooks.info/

106 Chapter 3. Behavioral Design Patternsin Python

widget = (yield)

if widget == self.okButton:
print("0K")

elif widget == self.cancelButton:
print("Cancel")

elif successor is not None:
successor.send(widget)

This pipeline coroutine is only concerned with OK and Cancel button clicks. If ei-
ther of these buttons is the changed widget, this coroutine handles it; otherwise,
it passes on the widget to the next coroutine, if any.

class Mediated:

def init (self):
self.mediator = None

def on_change(self):
if self.mediator is not None:
self.mediator.send(self)

The Button and Text classes are the same as for mediatorl.py, but the Mediated
class has one tiny change: if its on change() method is called, it sends the
changed widget (self) into the mediator pipeline.

As we mentioned in the previous subsection, the Mediated class could be replaced
with a class decorator. The book’s examples include a mediator2d.py version of
this example where this is done. (See §2.4.2.2, 58 <)

The Mediator Pattern can also be varied to provide multiplexing; that is, many-
to-many communications between objects. See, also, the Observer Pattern (§3.7,
» 107) and the State Pattern (§3.8,>» 111).

3.6. Memento Pattern

The Memento Pattern is a means of saving and restoring an object’s state
without violating encapsulation.

Python has support for this pattern out of the box: we can use the pickle mod-
ule to pickle and unpickle arbitrary Python objects (with a few constraints;e.g.,
we cannot pickle a file object). In fact, Python can pickle None, bools, bytearrays,
bytes, complexes, floats, ints,and strs,as well asdicts, lists, and tuples that con-
tain only pickleable objects (including collections), top-level functions, top-level
classes, and instances of custom top-level classes whose dict is pickleable;
that is, objects of most custom classes. It is also possible to achieve the same
effect using the json module, although this only supports Python’s basic types

www.it-ebooks.info

http://www.it-ebooks.info/

3.6. Memento Pattern 107

along with dictionaries and lists. (We saw examples of json and pickle use in
§3.3.3,91 «).

Even in the quite rare cases where we hit a limitation in what can be pickled, we
can always add our own custom pickling support; for example, by implementing
the getstate () and setstate () special methods, and possibly the get-
newargs_ () method. Similarly, if we want to use JSON format with our own
custom classes, we can extend the json module’s encoder and decoder.

We could also create our own format and protocols, but there is little point in
doing so, given Python’s rich support for this pattern.

Unpickling essentially involves executing arbitrary Python code, so it is poor
practice to unpickle pickles that are received from untrusted sources such as
physical media or over a network connection. In such cases JSON is safer, or we
can use checksums and encryption with pickling to ensure that the pickle hasn’t
been meddled with.

3.7. Observer Pattern

The Observer Pattern supports many-to-many dependency relationships
between objects, such that when one object changes state, all its related objects
are notified. Nowadays, probably the most common expression of this pattern
and its variantsis the model/view/controller (MVC) paradigm. In this paradigm,
a model represents data, one or more views visualize that data, and one or more
controllers mediate between input (e.g., user interaction) and the model. And
any changes to the model are automatically reflected in the associated views.

One popular simplification of the MVC approach is to use a model/view where
the views both visualize the data and mediate input to the model; that is, the
views and controllers are combined. In terms of the Observer Pattern, this
means that the views are observers of the model, and the model is the subject
being observed.

In this section we will create a model that represents a value with a minimum
and a maximum (such as a scrollbar or slider widget or a temperature monitor).
And we will create two separate observers (views) for the model: one to output
the model’s value whenever it changes (as a kind of progress bar using HTML),
and another to keep a history of the changes (their values and timestamps).
Here is a sample run of the observer.py program.

$./observer.py > /tmp/observer.html
0 2013-04-09 14:12:01.043437
7 2013-04-09 14:12:01.043527

23 2013-04-09 14:12:01.043587

37 2013-04-09 14:12:01.043647

www.it-ebooks.info

http://www.it-ebooks.info/

108 Chapter 3. Behavioral Design Patternsin Python

al OgX|
File Edit \iew Go Bookmarks Tools Tabs Help

|[€] file:/f/tmpfobserver.html | Go

L] 7
AENENRENERENNNRANNREEE 23
LU UL UL UL L] | R

[

Figure 3.5 The observer example’s HTML output as the model changes

The history data is sent to sys.stderr and the HTML to sys.stdout, which we
have redirected into an HTML file. The HTML page is shown in Figure 3.5. The
program outputs four one-row HTML tables, the first when the (empty) model is
first observed, and then each time the model is changed. Figure 3.6 illustrates
the example’s model/view architecture.

This section’s example, observer.py, uses an Observed base class to provide the
functionality for adding, removing, and notifying observers. The SliderModel
class provides a value with a minimum and maximum, and inherits the Observed
class so that it can support being observed. And then we have two views that ob-
serve the model, HistoryView and LiveView. Naturally, we will review all of these
classes, but first we will look at the program’smain() function to see how they are
used and how the output shown earlier and in Figure 3.5 was obtained.

def main():

historyView = HistoryView()
liveView = LiveView()
model = SliderModel(0, O, 40) # minimum, value, maximum
model.observers add(historyView, liveView) # liveView produces output
for value in (7, 23, 37):

model.value = value # liveView produces output
for value, timestamp in historyView.data:

print("{:3} {}".format(value, datetime.datetime.fromtimestamp(

timestamp)), file=sys.stderr)

We begin by creating the two views. Next we create a model with a minimum
of 0, a current value of 0, and a maximum of 40. Then we add the two views as
observers of the model. As soon as the LiveView is added as an observer it pro-
duces its first output, and as soon as the HistoryView is added it records its first
value and timestamp. We then update the model’s value three times, and at each
update the LiveView outputs a new one-row HTML table and the HistoryView
records the value and the timestamp.

www.it-ebooks.info

http://www.it-ebooks.info/

3.7. Observer Pattern 109

SliderModel

HistoryView LiveView

Figure 3.6 A model and two views

At the end we print out the entire history to sys.stderr (i.e., to the console). The
datetime.datetime.fromtimestamp() function accepts a timestamp (number of
seconds since the epoch as returned by time.time()) and returns an equivalent
datetime.datetime object. The str.format() method is smart enough to output
datetime.datetimes in ISO-8601 format.

class Observed:

def init (self):
self. observers = set()

def observers add(self, observer, *observers):
for observer in itertools.chain((observer,), observers):
self. observers.add(observer)
observer.update(self)

def observer discard(self, observer):
self. observers.discard(observer)

def observers notify(self):
for observer in self. observers:
observer.update(self)

This class is designed to be inherited by models or by any other class that
wants to support observation. The Observed class maintains a set of observing
objects. Whenever an object is added, its update() method is called to initialize
it with the model’s current state. Then, whenever the model changes state it is
expected to call its inherited observers notify() method, so that every observer’s
update() method can be called to ensure that every observer (i.e., every view) is
representing the model’s new state.

The observers_add() method is subtle. We want to accept one or more observers
to add, but using just *observers would allow zero or more. So, we require at
least one observer (observer) and accept zero or more in addition (xobservers). We
could have done this using tuple concatenation (e.g., for observer in (observer,)
+ observers:), but we have used the more efficient itertools.chain() function
instead. As noted earlier (46 <), this function accepts any number of iterables

www.it-ebooks.info

http://www.it-ebooks.info/

110 Chapter 3. Behavioral Design Patternsin Python

and returns a single iterable that is effectively the concatenation of all the
iterables passed to it.

class SliderModel (Observed):

def init (self, minimum, value, maximum):
super(). init ()
These must exist before using their property setters
self. minimum = self. value = self. maximum = None
self.minimum = minimum
self.value = value
self.maximum = maximum

@property
def value(self):
return self. value

@value.setter
def value(self, value):
if self. value != value:
self. value = value
self.observers notify()

This is the particular model class for this example, but of course, it could be
any kind of model. By inheriting Observed, the class gains a private set of ob-
servers (initially empty) and the observers add(), observer discard(), and ob-
servers_notify() methods. Whenever the model’s state changes—for example,
when its value is changed—it must call its observers notify() method so that
any observers can respond accordingly.

The class also has minimum and maximum properties whose code has been elided,;
they are structurally identical to the value property, and, of course, their setters
also call observers notify().

class HistoryView:
def init (self):
self.data = []

def update(self, model):
self.data.append((model.value, time.time()))

This view is an observer of the model since it provides an update() method that
accepts the observed model as its only argument besides self. Whenever the
update() method is called, it adds a value—timestamp 2-tuple to its self.data list,
thus preserving a history of all the changes that are applied to the model.

www.it-ebooks.info

http://www.it-ebooks.info/

3.7. Observer Pattern 111

class LiveView:

def init (self, length=40):
self.length = length

This is another view that observes the model. The length is the number of cells
used to represent the model’s value in a one-row HTML table.

def update(self, model):

tippingPoint = round(model.value * self.length /
(model.maximum - model.minimum))

td = '<td style="background-color: {}"> </td>'
html = ['<table style="font-family: monospace" border="0"><tr>']
html.extend(td.format("darkblue") * tippingPoint)
html.extend(td.format("cyan") * (self.length - tippingPoint))
html.append("<td>{}</td></tr></table>".format(model.value))
print("".join(html))

When the model is first observed, and whenever it is subsequently updated,
this method is called. It outputs a one-row HTML table with self.length cells to
represent the model, using cyan for empty cells and dark blue for filled cells. It
determines how many of which kind of cell there are by calculating the tipping
point between the filled cells (if there are any) and the empty cells.

The Observer Pattern is widely used in GUI programming and also has uses
in the context of other event-processing architectures, such as simulations and
servers. Examples include database triggers, Django’s signaling system, the
Qt GUI application framework’s signals and slots mechanism, and many uses
of WebSockets.

3.8. State Pattern

The State Pattern is intended to provide objects whose behavior changes when
their state changes; that is, objects that have modes.

To illustrate this design pattern we will create a multiplexer class that has
two states, and whose methods’ behavior changes depending on which state a
multiplexer instance is in. When the multiplexer is in its active state, it can
accept “connections”—that is, event name—callback pairs—where the callback is
any Python callable (e.g., a lambda, a function, a bound method, etc.). After the
connections have been made, whenever an event is sent to the multiplexer, the
associated callbacks are called (providing the multiplexer is in its active state).
If the multiplexer is dormant, calling its methods safely does nothing.

To show the multiplexer in use, we will create some callback functions that count
the number of events they receive and connect them to an active multiplexer.
Then we will send some random events to the multiplexer, and afterwards, print

www.it-ebooks.info

http://www.it-ebooks.info/

112 Chapter 3. Behavioral Design Patternsin Python

out the counts that the callbacks have accumulated. All the code isin the multi-
plexerl.py program, and the program’s output for a sample run is shown here:

$./multiplexerl.py

After 100 active events: cars=150 vans=42 trucks=14 total=206
After 100 dormant events: cars=150 vans=42 trucks=14 total=206
After 100 active events: cars=303 vans=83 trucks=30 total=416

After sending the active multiplexer one-hundred random events, we change the
multiplexer’s state to dormant, and then send it another hundred events—all
of which should be ignored. Then we set the multiplexer back to its active state
and send it more events; these it should respond to by calling the associated
callbacks.

We will begin by looking at how the multiplexer is constructed, how the connec-
tions are made, and how events are sent. Then we will look at the callback func-
tions and the event class. Finally, we will look at the multiplexer itself.

totalCounter = Counter()
carCounter = Counter("cars")
commercialCounter = Counter("vans", "trucks")

multiplexer = Multiplexer()
for eventName, callback in (("cars", carCounter),
("vans", commercialCounter), ("trucks", commercialCounter)):
multiplexer.connect(eventName, callback)
multiplexer.connect(eventName, totalCounter)

Here, we begin by creating some counters. Instances of these classes are
callable, so they can be used wherever a function (e.g., a callback) is required.
They maintain one independent count per name they are given, or if anonymous
(like totalCounter) they maintain a single count.

Then we create a new multiplexer (which starts out active by default). Next,
we connect callback functions to events. There are three event names we are
interested in: “cars”, “vans”, and “trucks”. The carCounter() function is connected
to the “cars” event; the commercialCounter() function is connected to the “vans”
and “trucks” events; and the totalCounter() function is connected to all three

events.

for event in generate random events(100):
multiplexer.send(event)
print("After 100 active events: cars={} vans={} trucks={} total={}"
.format(carCounter.cars, commercialCounter.vans,
commercialCounter.trucks, totalCounter.count))

www.it-ebooks.info

http://www.it-ebooks.info/

3.8. State Pattern 113

In this snippet, we generate one-hundred random events and send each one to
the multiplexer. If, for example, an event is a “cars” event, the multiplexer will
call the carCounter() and totalCounter() functions, passing the event as the sole
argument for each call. Similarly, if the event is a “vans” or “trucks” event, both
the commercialCounter() and totalCounter() functions are called.

class Counter:

def init (self, xnames):
self.anonymous = not bool(names)
if self.anonymous:
self.count = 0
else:
for name in names:
if not name.isidentifier():
raise ValueError("names must be valid identifiers")
setattr(self, name, 0)

If no names are given, an instance of an anonymous counter is created whose
count is kept in self.count. Otherwise, independent counts are created for the
name or names passed in using the built-in setattr() function. For example, the
carCounter instance is given a self.cars attribute, and the commercialCounter is
given self.vans and self.trucks attributes.

def call (self, event):
if self.anonymous:
self.count += event.count
else:
count = getattr(self, event.name)
setattr(self, event.name, count + event.count)

When a Counter instance is called, the call is passed to this special method. If
the counter is anonymous (e.g., totalCounter), the self.count is incremented.
Otherwise, we try to retrieve the counter attribute corresponding to the event
name. For example, if the event name is "trucks", we set count to be the value
of self.trucks. Then we update the attribute’s value with the old count plus the
new event count.

Since we haven’t provided a default value for the built-in getattr() function,
if the attribute doesn’t exist (e.g., "truck"), the method will correctly raise an
AttributeError. This also ensures that we don’t create a misnamed attribute by
mistake since in such cases the setattr() call is never reached.

class Event:

def init (self, name, count=1):
if not name.isidentifier():

www.it-ebooks.info

http://www.it-ebooks.info/

114 Chapter 3. Behavioral Design Patternsin Python

raise ValueError("names must be valid identifiers")
self.name = name
self.count = count

This is the entire Event class. It is very simple since we just need it as part
of the infrastructure for showing the State Pattern that’s exemplified by the
Multiplexer class. Incidentally,the Multiplexer is also an example of the Observ-
er Pattern (§3.7, 107 <.

3.8.1. Using State-Sensitive Methods

There are two main approaches that we can take to handling state within a
class. One approach is to use state-sensitive methods, as we will see in this
subsection. The other approach is to use state-specific methods, which we will
cover in the next subsection (§3.8.2, » 115).

class Multiplexer:
ACTIVE, DORMANT = ("ACTIVE", "DORMANT")

def init (self):
self.callbacksForEvent = collections.defaultdict(list)
self.state = Multiplexer.ACTIVE

The Multiplexer class has two states (or modes): ACTIVE and DORMANT. When a
Multiplexer instance is ACTIVE, its state-sensitive methods do useful work, but
when it is DORMANT, its state-sensitive methods do nothing. We ensure that when
anew Multiplexer is created, it starts off in the ACTIVE state.

The self.callbacksForEvent dictionary’s keys are event names and its values are
lists of callables.

def connect(self, eventName, callback):
if self.state == Multiplexer.ACTIVE:
self.callbacksForEvent[eventName].append(callback)

This method is used to create an association between a named event and a
callback. If the given event name isn’t already in the dictionary, the fact that
self.callbacksForEvent is a default dictionary will ensure that an item with the
event name as key is created with an empty list as its value, which it will then re-
turn. And if the event name is already in the dictionary, its list will be returned.
So, in either case, we get a list that we can then append the new callback to. (We
discussed default dictionaries earlier; 102 <.)

www.it-ebooks.info

http://www.it-ebooks.info/

3.8. State Pattern 115

def disconnect(self, eventName, callback=None):
if self.state == Multiplexer.ACTIVE:
if callback is None:
del self.callbacksForEvent[eventName]
else:
self.callbacksForEvent[eventName] . remove(callback)

If this method is called without specifying a callback, we interpret that to mean
that the user wants to disconnect all the callbacks associated with the given
event name. Otherwise, we remove only the specified callback from the given
event name’s list of callbacks.

def send(self, event):
if self.state == Multiplexer.ACTIVE:
for callback in self.callbacksForEvent.get(event.name, ()):
callback(event)

If an event is sent to the multiplexer, and if the multiplexer is active, this
method iterates over all the given event’s associated callbacks (of which there
might not be any), and for each one, calls it with the event as argument.

3.8.2. Using State-Specific Methods

The multiplexer2.py program is almost the same as multiplexerl.py, only its
Multiplexer class uses state-specific methods rather than the state-sensitive
methods shown in the previous subsection. The Multiplexer class has the same
two states and the same _init () method as before. However, the self.state
attribute is now a property.

@property
def state(self):
return (Multiplexer.ACTIVE if self.send == self. active send
else Multiplexer.DORMANT)

This version of the multiplexer doesn’t store the state as such. Instead, it
computes the state by checking if one of the public methods has been set to an
active or passive private method, as we’ll see next.

@state.setter
def state(self, state):
if state == Multiplexer.ACTIVE:
self.connect = self. active connect
self.disconnect = self. active disconnect
self.send = self. active send
else:

www.it-ebooks.info

http://www.it-ebooks.info/

116 Chapter 3. Behavioral Design Patternsin Python

self.connect = lambda *args: None
self.disconnect = lambda *args: None
self.send = lambda *args: None

Whenever the state is changed, the state property’s setter sets the multiplexer
to have a set of methods that are appropriate to the state. For example, if the
state is set to be DORMANT, the anonymous lambda versions of the methods are
assigned to the public methods.

def active connect(self, eventName, callback):
self.callbacksForEvent[eventName].append(callback)

Here, we have created a private active method: either this or an anonymous “do
nothing” lambda method is assigned to the corresponding public method at any
one time. We haven’t shown the private active disconnect or send methods, be-
cause they follow the same pattern. The key point to notice is that none of these
methods checks the instance’s state (since they are only ever called in the appro-
priate state), which slightly simplifies them and makes them minutely faster.

Naturally, it is easy to do a coroutine-based version of the Multiplexer, but
since we’ve already seen some coroutine examples, we won’t show another one
here. (However, the examples’ multiplexer3.py program shows one approach to
coroutine-based multiplexing.)

Although we have used the State Pattern for a multiplexer, having stateful (or
modal) objects is quite common in a wide range of contexts.

3.9. Strategy Pattern

The Strategy Pattern provides a means of encapsulating a set of algorithms
that can be used interchangeably, depending on the user’s needs.

For example, in this section we will create two different algorithms for arranging
a list containing an arbitrary number of items in a table with a specified num-
ber of rows. One algorithm will produce a snippet of HTML output; Figure 3.7
shows the results for tables with two, three, and four rows. The other algorithm
will produce plain text output, the results of which (for tables of four and five
rows) are shown here:

$./tabulator3.py

| Nikolai Andrianov | Matt Biondi | Bjgrn Dzhlie |

| Birgit Fischer | Sawao Kato | Larisa Latynina |
| Carl Lewis | Michael Phelps | Mark Spitz |

www.it-ebooks.info

http://www.it-ebooks.info/

3.9. Strategy Pattern 117

| Jenny Thompson |

Nikolai Andrianov | Matt Biondi

Bjgrn Dzhlie | Birgit Fischer
Sawao Kato | Larisa Latynina
Carl Lewis | Michael Phelps
Mark Spitz | Jenny Thompson

There are a number of approaches we could take to parameterizing by algo-
rithm. One obvious approach is to create a Layout class that accepts a Tabulator
instance, which performs the appropriate tabulated layout. The tabulatorl.py
program (not shown) takes this approach. A refinement,for tabulatorsthat don’t
need to maintain state, is to use static methods and to pass the tabulator class
rather than an instance to provide the algorithm. The tabulator2.py program
(again, not shown) does this.

ol ogx
File Edit Wiew Go Bookmarks Tools Tabs Help

|[@ file://ftrmp/tabulator3. html | Go

Nikolai Andrianov||Matt Biondi|Bjgrn Dashlie |Birgit Fischer|Sawao Kato

Larisa Latynina |[Carl Lewis ||Michael Phelps|Mark Spitz |Jenny Thompson

Nikolai Andrianov||Matt Biondi Bjorn Deehlie|Birgit Fischer
Sawao Kato Larisa Latynina |Carl Lewis [Michael Phelps
Mark Spitz Jenny Thompson

|Nik0|ai Andrian0v|Matt Biondi Bjorn Daehlie
Birgit Fischer Sawao Kato ||Larisa Latynina

Carl Lewis Michael Phelps|Mark Spitz

Jenny Thompson

=

Figure 3.7 The tabulator program’s HTML table output

In this section, we will show a simpler and even more refined technique: a
Layout class that accepts a tabulation function that implements the desired
algorithm.

WINNERS = ("Nikolai Andrianov", "Matt Biondi", "Bje@rn Dzhlie",

"Birgit Fischer", "Sawao Kato", "Larisa Latynina", "Carl Lewis",
"Michael Phelps", "Mark Spitz", "Jenny Thompson")

www.it-ebooks.info

http://www.it-ebooks.info/

118 Chapter 3. Behavioral Design Patternsin Python

def main():
htmlLayout = Layout(html tabulator)
for rows in range(2, 6):
print(htmlLayout.tabulate(rows, WINNERS))
textLayout = Layout(text tabulator)
for rows in range(2, 6):
print(textLayout.tabulate(rows, WINNERS))

In this function we create two Layout objects, each parameterized by a different
tabulator function. For each layout we print a table with two rows, with three
rows, with four rows, and with five rows.

class Layout:

def init (self, tabulator):
self.tabulator = tabulator

def tabulate(self, rows, items):
return self.tabulator(rows, items)

This class supports only one algorithm: tabulate. The function that implements
the algorithm is expected to accept a row count and a sequence of items and to
return the tabulated results.

In fact, we could reduce this class even more: here is the tabulator4.py version.

class Layout:

def init (self, tabulator):
self.tabulate = tabulator

Here, we have made the self.tabulate attribute a callable (the passed-in tabula-
tor function). The calls shown in main() work exactly the same for tabulator3.py’s
and tabulator4.py’s Layout classes.

Although the actual tabulation algorithms aren’t relevant to the design pattern
itself, we will very briefly review one of them for the sake of completeness.

def html tabulator(rows, items):
columns, remainder = divmod(len(items), rows)
if remainder:
columns += 1
column = 0
table = ['<table border="1">\n"']
for item in items:
if column ==
table.append("<tr>")

www.it-ebooks.info

http://www.it-ebooks.info/

3.9. Strategy Pattern 119

table.append("<td>{}</td>".format (escape(str(item))))
column += 1
if column == columns:
table.append("</tr>\n")
column %= columns
if table[-1][-1] !'= "\n":
table.append("</tr>\n")
table.append("</table>\n")
return "".join(table)

For both tabulator functions, we must calculate the number of columns needed
to put all the items in a table with the specified number of rows. Once we have
this number (columns), we can iterate over all the items while keeping track of
the current column in the current row.

The text tabulator() function (not shown) is slightly longer but uses essentially
the same approach.

In more realistic contexts we might use algorithms that are radically different
—both in terms of their code and their performance characteristics—so as
to allow users to choose the most appropriate trade-offs for their particular
uses. Plugging in different algorithms as callables—lambdas, functions, bound
methods—is straightforward because Python treats callables as first-class ob-
jects;that is, as objects that can be passed and stored in collections like any other
kind of object.

3.10. Template Method Pattern

The Template Method Pattern allows us to define the steps of an algorithm but
defer the execution of some of those steps to subclasses.

In this section we will create an AbstractWordCounter class that provides two
methods. The first, can_count(filename),is expected to return a Boolean indicat-
ing whether the class can count the words in the given file (based on the file’s
extension). The second, count (filename), is expected to return a word count. We
will also create two subclasses: one for word-counting plain text files and the
other for word-counting HTML files. Let’s start by seeing the classes in action
(with the code taken from wordcountl.py):

def count words(filename):
for wordCounter in (PlainTextWordCounter, HtmlWordCounter):
if wordCounter.can count(filename):
return wordCounter.count(filename)

We have made all the methods in all the classes static. This means that no
per-instance state can be maintained (because there are no instances as such)

www.it-ebooks.info

http://www.it-ebooks.info/

120 Chapter 3. Behavioral Design Patternsin Python

and that we can work directly on class objects rather than on instances. (It
would be easy to make the methods nonstatic and use instances if we did need
to maintain any state.)

Here, we iterate over our two word-counting subclasses’ class objects, and if
one of them is able to count the words in the given file, we perform and return
the count. If neither of them can, we (implicitly) return None to signify that we
couldn’t do a count at all.

class AbstractWordCounter: class AbstractWordCounter(

estaticmethod metaclass=abc.ABCMeta):
def can count(filename): @staticmethod

raise NotImplementedError() @abc.abstractmethod

def can _count(filename):

@staticmethod pass
def count(filename):

raise NotImplementedError() @staticmethod

@abc.abstractmethod
def count(filename):
pass

This purely abstract class provides the word-counter interface, whose methods
subclasses must reimplement. The left-hand code snippet, from wordcountl.py,
takes a more traditional approach. The right-hand code snippet, from word-
count2.py, takes a more modern approach using the abc (abstract base class)
module.

class PlainTextWordCounter(AbstractWordCounter):

@staticmethod
def can _count(filename):
return filename.lower().endswith(".txt")

@staticmethod
def count(filename):
if not PlainTextWordCounter.can count(filename):

return 0
regex = re.compile(r"\w+")
total = 0

with open(filename, encoding="utf-8") as file:
for line in file:
for in regex.finditer(line):
total += 1
return total

www.it-ebooks.info

http://www.it-ebooks.info/

3.10. Template Method Pattern 121

This subclass implements the word-counter interface using a very simplistic
notion of what constitutes a word, and assuming that all . txt files are encoded
using UTF-8 (or 7-bit ASCII, since that’s a subset of UTF-8).

class HtmlWWordCounter(AbstractWordCounter):

@staticmethod
def can _count(filename):
return filename.lower().endswith((".htm", ".html"))

@staticmethod
def count(filename):
if not HtmlWordCounter.can count(filename):
return 0
parser = HtmlWWordCounter. HtmlParser()
with open(filename, encoding="utf-8") as file:
parser.feed(file.read())
return parser.count

This subclass provides the word-counter interface for HTML files. It uses its
own private HTML parser (itself an html.parser.HTMLParser subclass embedded
inside the HtmlWordCounter class, which we will see in a moment). With the
private HTML parser in place, all we need to do to count the words in an HTML
file is create an instance of the parser and give it the HTML to parse. Once
parsing is complete, we return the word count that the parser has accumulated
for us.

For completeness, we will review the embedded HtmlWordCounter. HtmlParser
that does the actual counting. The Python standard library’s HTML parser
works rather like a SAX (Simple API for XML) parser, in that it iterates over the
text and calls particular methods when corresponding events (i.e., “start tag”,
“end tag”, etc.) occur. So, to make use of the parser we must subclass it and
reimplement those methods that correspond to the events we are interested in.

class _ HtmlParser(html.parser.HTMLParser):

def init (self):
super(). init ()
self.regex = re.compile(r"\w+")
self.inText = True
self.text = []
self.count = 0

We have made the embedded html.parser.HTMLParser subclass private and added
four items of data to it. The self.regex holds our simple definition of a “word”
(a sequence of one or more letters, digits, or underscores). The self.inText bool
indicates whether text we encounter is a piece of a value such as user-visible

www.it-ebooks.info

http://www.it-ebooks.info/

122 Chapter 3. Behavioral Design Patternsin Python

text (as opposed to being inside a <script> or <style> tag). The self. text will hold
the piece or pieces of text that make up the current value, and the self.count is
the word count.

def handle starttag(self, tag, attrs):
if tag in {"script", "style"}:
self.inText = False

This method’s name and signature (and that of all the handle ...() methods)
is determined by the base class. By default, handler methods do nothing, so,
naturally, we must reimplement any that we are interested in.

We do not want to count the words inside embedded scripts or style sheets, so if
we encounter their start tags, we switch off text accumulation.

def handle endtag(self, tag):
if tag in {"script", "style"}:
self.inText = True
else:
for _ in self.regex.finditer(
self.count += 1
self.text = []

.join(self.text)):

If we reach the end of a script or style sheet tag, we switch text accumulation
back on. In all other cases we iterate over the accumulated text and count the
words. Then we reset the accumulated text to be an empty list.

def handle data(self, text):
if self.inText:
text = text.rstrip()
if text:
self.text.append(text)

If we receive text and we are not inside a script or style sheet, we accumulate
the text.

Thanks to the power and flexibility of Python’s support for private nested
classes, and its library’s html.parser.HTMLParser, we can do fairly sophisticated
parsing while hiding all the details from users of the HtmlWordCounter class.

The Template Method Pattern is in some ways similar to the Bridge Pattern we
saw earlier (§2.2, 34 <).

www.it-ebooks.info

http://www.it-ebooks.info/

3.11. Visitor Pattern 123

3.11. Visitor Pattern

The Visitor Pattern is used to apply a function to every item in a collection or
aggregate object. This is different from a typical use of the Iterator Pattern
(§3.4, 95 €)—where we would iterate over a collection or aggregate and call
a method on each item—since with a “visitor”, we are applying an external
function rather than calling a method.

Python has built-in support for this pattern. For example, newList = map(func-
tion, oldSequence) will call the function() on every item in the oldSequence to
produce the newList. The same can be done using a list comprehension: newList
= [function(item) for item in oldSequence].

If we need to apply a function to every item in a collection or aggregate ob-
ject, then we can iterate over it using a for loop: for item in collection: func-
tion(item).If the items are of different types, we can use if statements and the
built-in isinstance() function to distinguish between them to choose the type-
appropriate code to execute inside the function().

Some of the behavioral patterns have direct support in the Python language;
those that don’t are simple to implement. The Chain of Responsibility, Mediator,
and Observer Patterns can all be implemented conventionally or using corou-
tines, and they all provide variations on the theme of decoupled inter-object
communication. The Command Pattern can be used to provide lazy evaluation
and do—undo facilities. Since Python is a (byte-code) interpreted language, we
can implement the Interpreter Pattern using Python itself and can even isolate
the interpreted code in a separate process. Support for the Iterator Pattern (and,
implicitly, the Visitor Pattern)is built in to Python. The Memento Pattern is well
supported by Python’s standard library (e.g., using the pickle or json modules).
The State, Strategy, and Template Method Patterns have no direct support, but
are all easy to implement.

Design patterns provide useful ways of thinking about, organizing, and imple-
menting code. Some of the patterns are only applicable to the object-oriented
programming paradigm, while others can be used for both procedural and object-
oriented programming. Since the publication of the original design patterns
book, there has been—and there continues to be—a great deal of research into
the subject. The best starting point for learning more is the educational, not-for-
profit Hillside Group’s web site (hillside.net).

In the next chapter, we will look at a different programming paradigm—concur-
rency—to try to achieve improved performance by taking advantage of modern
multi-core hardware. But before looking into concurrency, we will do our first
case study, developing an image-handling package that we will use and refer to
in various ways at several points throughout the book.

www.it-ebooks.info

http://www.it-ebooks.info/

124 Chapter 3. Behavioral Design Patternsin Python

3.12. Case Study: An Image Package

The Python standard library does not include any image processing modules,
as such. However, it is possible to create, load, and save images using Tkinter’s
tk.PhotoImage class. (The barchart2.py example shows how this can be done.)
Unfortunately, Tkinter can only read and write the unpopular GIF, PPM, and
PGM image formats, although once Python comes with Tcl/Tk 8.6, the popular
PNG format will be supported. Even so, the tk.PhotoImage class can only be used
in a single thread (the main GUI thread), so it is of no use if we want to handle
multiple images concurrently.

We could, of course, use a third-party image library like Pillow (github.com/
python-imaging/Pillow) or use another GUI toolkit* But we have decided to
implement our own image package to provide this case study and to serve as the
basis for another one later on.

We want our image package to store its image data efficiently and to be able
to work with Python out of the box. To this end, we will represent an image as
a linear array of colors. Each color (i.e., each pixel) will be represented by an
unsigned 32-bit integer whose four bytes represent the alpha (transparency),
red, green, and blue color components; this is sometimes called ARGB format.
Since we are using a one-dimensional array, the pixel at image coordinate x, y
is in array element (y x width) + x. This is illustrated in Figure 3.8, where the
highlighted pixel in an 8 x 8 image is at coordinate (5, 1); that is, index position
13 ((1 x 8) + 5) in the array.

The Python standard library provides the array module for one-dimensional,
type-specific arrays, and so is ideal for our purpose. However, the third-party
numpy module offers highly optimized code for handling arrays (of any number
of dimensions), so it would be good to take advantage of this module when
it is available. Therefore, we will design the Image package to use numpy when
possible, with array as a fallback. This means that Image will work in all cases
but won’t be able to take as much advantage of numpy as possible, because the
code must work interchangeably with both array.arrays and numpy.ndarrays.

We want to create and modify arbitrary images; however, we also want to be able
to load existing images and to save created or modified images. Since loading
and saving depends on the image format, we have designed the image package to
have one module for handling images generically and separate modules (one per
image format) for handling loading and saving. Furthermore, we will make the
package capable of automatically taking advantage of any new image format
modules that are added to the package—even after deployment—providing they
meet the image package’s interface requirements.

*If we wanted to plot 2D data, we could use the third-party matplotlib package (natplotlib.org).

www.it-ebooks.info

http://www.it-ebooks.info/

3.12. Case Study: An Image Package 125

row O row 1 row 7
ANEEEEEE BN | EEE]]|
OXFF OxBA 0x55 0xD3 unsigned 32-bit integer

alphabyte redbyte greenbyte blue byte

Figure 3.8 An array of Image color values for an 8 x 8 image

The Image package consists of four modules. The Image/ init .py module
provides all the generic functionality. The other three modules provide format-
specific loading and saving code. These are Image/Xbm.py for XBM (. xbm) format
monochrome bitmaps, Image/Xpm.py for XPM (.xpm) format color pixmaps, and
Image/Png.py for PNG (.png) format. The PNG format is very complicated, and
there is already a Python module that supports it—PyPNG (github.com/drj11/
pypng)—so our Png.py module will simply provide a thin wrapper (using the
Adapter Pattern; §2.1, 29 <) around PyPNG, if it is available.

We will begin by looking at the generic image module (Image/ init .py). Then
we will review the Image/Xpm.py module, skipping the low-level details. Finally,
we will look at the complete Image/Png.py wrapper module.

3.12.1. The Generic Image Module

The Image module provides the Image class plus a number of convenience
functions and constants to support image processing.

try:
import numpy
except ImportError:
numpy = None
import array

One key issue is whether the image data is represented using an array.array or
a numpy.ndarray, so after the normal imports, we try to import numpy. If the import
fails, we fall back to importing the standard library’s array module to provide the
necessary functionality, and create a numpy variable with value None for those few
places where the difference between array and numpy matters.

We want our users to be able to access the image module with a simple import
Image statement. And when they do this, we want all the available image-
format—specific modules that provide load and save functions to be automatical-
ly available. This means that the user should be able to create and save a red
64 x 64 square using code like this:

www.it-ebooks.info

http://www.it-ebooks.info/

126 Chapter 3. Behavioral Design Patternsin Python

import Image
image = Image.Image.create(64, 64, Image.color for name("red"))
image.save("red 64x64.xpm")

We want this to work even though the user hasn’t explicitly imported the
Image/Xpm.py module. And, of course, we want this to work with any other image
format modules that happen to be in the Image directory, even if they are added
after the image package is initially deployed.

To support this functionality, we have included code in Image/ init .py that
automatically tries to load image format modules.

_Modules = []
for name in os.listdir(os.path.dirname(file)):
if not name.startswith(" ") and name.endswith(".py"):
name = "." + os.path.splitext(name)[0]
try:
module = importlib.import module(name, "Image")
_Modules.append(module)
except ImportError as err:
warnings.warn("failed to load Image module: {}".format(err))
del name, module

This code populates the private Modules list with any modules that are found
and imported from the Image directory, except for init .py (or any other
module whose name begins with an underscore).

The code works by iterating over the files in the Image directory (wherever it
happens to be in the file system). For each suitable . py file, we obtain the module
name based on the filename. We must be careful to precede the module’s name
with . since we want to import the module relative to the Image package. When
using a relative import like this we must provide the package name as the
importlib.import module() function’s second argument. If the import succeeds,
we add the corresponding Python module object to the list of modules; we’ll see
how they are used shortly.

To avoid cluttering up the Image namespace, we have deleted the name and module
variables once they are no longer needed.

The plugin approach used here is easy to use and understand and works well
in most cases. However, it does suffer from a limitation: it won’t work if the
Image package is put inside a .zip file. (Recall that Python can import modules
that are inside .zip files: we just have to insert the .zip file into the sys.path
list and then import as if the .zip file were a normal module; see docs.python.
org/dev/library/zipimport.html.) A solution to this problem is to use the stan-
dard library’s pkgutil.walk packages() function (instead of os.listdir(), and
adapting the code accordingly), since this function can work both with normal

www.it-ebooks.info

http://www.it-ebooks.info/

3.12. Case Study: An Image Package 127

packages and with those inside . zip files; it can also cope with implementations
provided as C extensions and precompiled byte code files (.pyc and . pyo).

class Image:

def init (self, width=None, height=None, filename=None,
background=None, pixels=None):
assert (width is not None and (height is not None or
pixels is not None) or (filename is not None))
if filename is not None: # From file
self.load(filename)
elif pixels is not None: # From data
self.width = width
self.height = len(pixels) // width
self.filename = filename
self.meta = {}
self.pixels = pixels
else: # Empty
self.width = width
self.height = height
self.filename = filename
self.meta = {}
self.pixels = create array(width, height, background)

The image’s _init () method has a rather complicated signature, but this
doesn’t matter, because we will encourage our users to use much simpler con-
venience class methods to create images instead (for example, the Image.Image.
create() method we saw earlier; 126 <).

@classmethod
def from file(Class, filename):
return Class(filename=filename)

@classmethod
def create(Class, width, height, background=None):
return Class(width=width, height=height, background=background)

@classmethod
def from data(Class, width, pixels):
return Class(width=width, pixels=pixels)

Here are the three image-creating factory class methods. These methods can be
called on the classitself (e.g., image = Image.Image.create (200, 400)) and will work
correctly for Image subclasses.

www.it-ebooks.info

http://www.it-ebooks.info/

128 Chapter 3. Behavioral Design Patternsin Python

The from_file() method creates an image from a filename. The create() method
creates an empty image with the given background color (or with a transparent
background, if no color is specified). The from_data() method creates an image of
the given width and with the pixels (i.e., colors) from the one-dimensional pixels
array (of type array.array or numpy.ndarray).

def create array(width, height, background=None):
if numpy is not None:
if background is None:
return numpy.zeros(width * height, dtype=numpy.uint32)
else:
iterable = (background for _ in range(width * height))
return numpy.fromiter(iterable, numpy.uint32)
else:
typecode = "I" if array.array("I").itemsize >= 4 else "L"
background = (background if background is not None else
ColorForName["transparent"])
return array.array(typecode, [background] * width * height)

This function creates a one-dimensional array of 32-bit unsigned integers (see
Figure 3.8; 125 «). If numpy is present and the background is transparent, we
can use the numpy.zeros () factory function to create the array with every integer
set to zero (i.e., to 0x00000000). Any number with a zero alpha component is fully
transparent. If a background color hasbeen given, we create a generator expres-
sion that will produce width x height values (all of which are the same: back-
ground) and pass this iterator to the numpy. fromiter() factory function.

If numpy is not available, we must create an array.array. Unlike numpy, this
module does not allow us to specify the exact size of the integers we want it to
hold, so we do the best we can. We use the "I" type specifier (unsigned integer,
minimum size two bytes) if it is actually four or more bytes; otherwise, we use
the "L" type specifier (unsigned integer, minimum size four bytes). This is to
ensure that we use the smallest-sized integer that can hold four bytes, even on
64-bit machines where an unsigned integer would normally occupy eight bytes.
We then create an array to hold items of the type specifier’s type and populate
it with width x height background values. (We discuss the ColorForName default
dictionary further on; » 134.)

class Error(Exception): pass
This class provides us with an Image.Error exception type. We could have simply
used one of the built-in exceptions (e.g., ValueError), but this makes it easier

for Image users to catch image-specific exceptions without risking masking any
other exceptions.

www.it-ebooks.info

http://www.it-ebooks.info/

3.12. Case Study: An Image Package 129

def load(self, filename):

module = Image. choose module("can load", filename)

if module is not None:
self.width = self.height = None
self.meta = {}
module.load(self, filename)
self.filename = filename

else:
raise Error("no Image module can load files of type {}".format(

os.path.splitext(filename)([1]))

The Image. init .py module hasno knowledge of image file formats. However,
the image-specific modules do have such knowledge, and they were loaded
earlier when we populated the Modules list (126 <). The image-specific modules
could be considered variations of the Template Method Pattern (§3.10, 119 <)
or of the Strategy Pattern (§3.9, 116 <.

Here, we try to retrieve a module that can load the given filename. If we get a
suitable module, we initialize some of the image’s instance variables and tell the
module to load the file. If the module’s load() method succeeds, it will populate
self.pixels with an array of color values and set self.width and self.height ap-
propriately; otherwise, it will raise an exception. (We’ll see examples of format-
specific load() methods in subsections §3.12.2, » 136, and §3.12.3, » 138.)

@staticmethod
def choose module(actionName, filename):
bestRating = 0
bestModule = None
for module in Modules:
action = getattr(module, actionName, None)
if action is not None:
rating = action(filename)
if rating > bestRating:
bestRating = rating
bestModule = module
return bestModule

This static method is used to find a module in the private Modules list that can
perform the action (actionName) on the file (filename). It iterates over all the
loaded modules and for each one tries to retrieve the actionName function (e.g.,
can_load() or can_save()) using the built-in getattr() function. For each action
function found, the method calls the function with the given filename.

The action function is expected to return an integer of value 0 if it cannot per-
form the action at all, 100 if it can perform the action perfectly, or somewhere in
between if it can perform the action imperfectly. For example, the Image/Xbm.py

www.it-ebooks.info

http://www.it-ebooks.info/

130 Chapter 3. Behavioral Design Patternsin Python

module returns 100 for files with the .xbm extension, since the module fully sup-
ports the format, but returns 0 for all other extensions. However, the Image/
Xpm. py module returns only 80 for .xpm files, because it does not support the full
XPM specification (although it works perfectly on all the .xpnm files it has been
tested on).

At the end, the module with the highest rating is returned, or if there is no
suitable module None is returned.

def save(self, filename=None):
filename = filename if filename is not None else self.filename
if not filename:
raise Error("can't save without a filename")
module = Image. choose module("can save", filename)
if module is not None:
module.save(self, filename)
self.filename = filename
else:
raise Error("no Image module can save files of type {}".format(
os.path.splitext(filename)([1]))

This method is very similar to the load() method in that it tries to get a module
that can save a file with the given filename (i.e., one that can save in the format
indicated by the file’s extension) and performs the save.

def pixel(self, x, y):
return self.pixels[(y * self.width) + x]

The pixel() method returns the color at the given position as an ARGB value
(i.e., an unsigned 32-bit integer).

def set pixel(self, x, y, color):
self.pixels[(y * self.width) + x] = color

The set pixel() method sets the given pixel to the given ARGB value if the x
and y coordinates are in range; otherwise, it raises an IndexError exception.

The Image module provides some basic drawing methods including line(),
ellipse(), and rectangle(). We will just show one representative method here.

def line(self, x0, y0, x1, yl, color):
Ax = abs(x1 - x0)
Ay = abs(yl - y0)
xInc = 1 if x0 < x1 else -1
yInc = 1 if y0 < yl else -1
6 =M - Ny

www.it-ebooks.info

http://www.it-ebooks.info/

3.12. Case Study: An Image Package 131

while True:
self.set pixel(x0, y@, color)
if x0 == x1 and y0 == yl:
break
62 =2x*0
if 62 > -Ay:
6 —= Ny
X0 += xInc
if 62 < Ax:
b6 += Ax
y0 += yInc

This method uses Bresenham’s line algorithm (which requires only inte-
ger arithmetic) to draw a line from point (x0, y0) to point (x1, y1).* Thanks to
Python 3’s Unicode support, we are able to use variable names that are natural
for this context; for example, Ax and Ay to represent differences in x and y coor-
dinate values, and 6 and 62 for the error values.

def scale(self, ratio):
assert 0 < ratio < 1
rows = round(self.height * ratio)
columns = round(self.width * ratio)
pixels = create array(columns, rows)
yStep = self.height / rows
xStep = self.width / columns
index = 0
for row in range(rows):
y0 = round(row * yStep)
yl = round(y0 + yStep)
for column in range(columns):
x0 = round(column * xStep)
x1 = round(x0 + xStep)
pixels[index] = self. mean(x0, y@, x1, yl)
index += 1
return self.from data(columns, pixels)

This method creates and returns a new image that is a scaled-down version
of this image. The ratio should be in the interval (0.0, 1.0), with a ratio of 0.75
producing an image with its width and height 34 their original sizes, and a ratio
of 0.5 producing an image % of the original size, that is, with half the width
and height. Each pixel (i.e., each color) in the resultant image is the average
(mean) of the colors in the rectangle of the source image that the pixel must
represent.

*This algorithm is explained at en.wikipedia.org/wiki/Bresenham's line algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

132

Chapter 3. Behavioral Design Patternsin Python

g
|

Figure 3.9 Scaling a 4 x4 image by 0.5

The image’s x, y coordinates are integers, but to avoid inaccuracies we must use
floating-point arithmetic (e.g., using / rather than //) as we step through the
pixel data. So, we use the built-in round() function whenever we need integers.
And at the end, we use the Image.Image.from data() convenience factory class
method to create a new image based on the computed number of columns and
using the pixels array we have created and populated with colors.

def mean(self, x0, y0, x1, yl):
oTotal, redTotal, greenTotal, blueTotal, count =0, 0, 0, 0, 0
for y in range(y0, yl):

o 5 R

if y >= self.height:

break

offset = y * self.width
for x in range(x0, x1):

if x >= self.width:
break
a, r, g, b =self.argh for color(self.pixels[offset + x])
oTotal += «
redTotal += r
greenTotal += g
blueTotal += b
count += 1

round(oTotal / count)
round(redTotal / count)
round(greenTotal / count)
round (blueTotal / count)

return self.color for argb(a, r, g, b)

This private method accumulates the sums of the alpha, red, green, and blue
components of all the pixels in the rectangle specified by the x0, yo, x1, yl
coordinates. Each of these sums is then divided by the number of pixels that

www.it-ebooks.info

http://www.it-ebooks.info/

3.12. Case Study: An Image Package 133

were examined to produce a color that is the average of them all. This process
is illustrated in Figure 3.9.

MAX_ARGB = OXFFFFFFFF
MAX_COMPONENT = OxFF

The minimum 32-bit ARGB value is 0x0 (i.e., 0x00000000, transparent—strictly
speaking, transparent black). These two Image module constants specify the
maximum ARGB value (solid white) and the maximum value of any color
component (255).

@staticmethod
def argb for color(color):
if numpy is not None:
if isinstance(color, numpy.uint32):
color = int(color)
if isinstance(color, str):
color = color for name(color)
elif not isinstance(color, int) or not (0 <= color <= MAX ARGB):
raise Error("invalid color {}".format(color))
(color >> 24) & MAX_COMPONENT
(color >> 16) & MAX COMPONENT
(color >> 8) & MAX COMPONENT
(color & MAX COMPONENT)
return a, r, g, b

o 5 QR
m n n

This static method (and module function) returns the four color components
(each in the range 0 to 255) for a given color. The color passed in can be an int,
a numpy.uint32, or a str color name. The individual color components (bytes) of
the int that represents the color are then extracted (as ints) using bitwise shifts
(>>) and bitwise and-ing (&).

@staticmethod
def color for name(name):
if name is None:
return ColorForName["transparent"]
if name.startswith("#"):
name = name[1:]
if len(name) == 3: # add solid alpha
name = "F" + name # now has 4 hex digits
if len(name) == 6: # add solid alpha
name = "FF" + name # now has the full 8 hex digits
if len(name) == 4: # originally #FFF or #FFFF
components = []
for h in name:

www.it-ebooks.info

http://www.it-ebooks.info/

134 Chapter 3. Behavioral Design Patternsin Python

components.extend([h, h])
name = "".join(components) # now has the full 8 hex digits
return int(name, 16)
return ColorForName[name. lower()]

This static method (and module function) returns a 32-bit ARGB value for a
given str color. If the color passed is None, the method returns transparent. If
the string begins with #, it is assumed to be an HTML-style color of one of the
forms "#HHH", "#HHHH", "#HHHHHH", or "#HHHHHHHH", where H is a hexadecimal digit.
If the number of digits supplied is only sufficient for an RGB value, we prefix it
with two "F"s to make the color have an opaque alpha channel. Otherwise, we
return the color from the ColorForName dictionary; this always succeeds because
ColorForName is a default dictionary.

ColorForName = collections.defaultdict(lambda: OxFFO00000, {
“transparent": 0x00000000, "aliceblue": OXFFFOFSFF,

"yellow4": OxFF8B8BOO, "yellowgreen": OxFF9ACD32})

The ColorForName is a collections.defaultdict that returns a 32-bit unsigned
integer that encodes the given named color’s alpha, red, green, and blue color
components or, if the name isn’t in the dictionary, silently returns solid black
(0xFF000000). Although Image users are free to use this dictionary, the color
for name() function is more convenient and versatile. The color names are taken
from the rgb.txt file supplied with X11, with the addition of transparent.

The collections.defaultdict() function accepts a factory function as its first
argument, followed by any arguments that a plain dict accepts. The factory
function is used to produce the value for any item that is brought into existence
when a missing key is accessed. Here, we have used a lambda that always returns
the same value (solid black). Although it is possible to pass keyword arguments
(e.g., transparent=0x00000000), we have more colors than Python’s limit of 255
arguments, so we initialize the default dictionary with a normal dictionary
created using the {key: value} syntax, which has no such limit.

argb for color = Image.argb for color
rgb_for color = Image.rgb for color
color for argb = Image.color for argb
color_for _rgb = Image.color for rgb
color for name = Image.color for name

After the Image class we have created some convenience functions based on some
of the class’s static methods. This means, for example, that after doing import
Image, the user can call Image.color for name() or, if they have an Image.Image
instance, image.color_for name().

www.it-ebooks.info

http://www.it-ebooks.info/

3.12. Case Study: An Image Package 135

We have now completed our review of the core Image module (in Image/
__init _.py). We have omitted a couple of less interesting constants, a few Im-
age.Image methods (rectangle(), ellipse(), and subsample()), the size property
(which just returns a width and height 2-tuple), and various color manipulating
static methods. The module is sufficient for creating, loading, drawing on, and
saving image files using the XBM and XPM formats, and if the PyPNG module
is installed, the PNG format.

Now we will look at two image-format—specific modules that the Image module
relies on. We will omit coverage of the Image/Xbm.py module, though, since apart
from the low-level details of the XBM format covering it would not teach us
any more than we can learn from the Image/Xpm.py module that we will look
at next.

3.12.2. An Overview of the Xpm Module

Every image-format—specific module is expected to provide four functions. Two
of these are can_load() and can_save().Both of these functions should return 0 to
indicate they can’t, 100 to indicate they can, or some value in between if they can
imperfectly. The module is also expected to provide load() and save() functions,
and these may assume that they will only ever be called with a filename for
which the corresponding can load() or can save() function returned a nonzero
value.

def can_load(filename):
return 80 if os.path.splitext(filename)[1].lower() == ".xpm" else 0

def can _save(filename):
return can_load(filename)

The Image/Xpm.py module implements most of the XPM specification, leaving out
some rarely used features. In view of this, it reports a rating of 80 (i.e.,less than
perfect), both for loading and saving.* This means that if a new XPM-handling
module was added—say as Image/Xpm2.py—providing it reports a rating greater
than 80, the new module will be used instead of this one. (We discussed this
when we covered the Image. choose module() method; 129 <)

(_WANT XPM, WANT NAME, WANT VALUES, WANT COLOR, WANT PIXELS,
_DONE) = ("WANT XPM", "WANT NAME", "WANT VALUES", "WANT COLOR",
"WANT PIXELS", "DONE")
_CODES = "".join((chr(x) for x in range(32, 127) if chr(x) not in '\\"'))

* An alternative to checking a file’s type by extension is to read its first few bytes—its “magic”
number. For example, XPM files begin with the bytes 0x2F 0x2A 0x20 0x58 0x50 0x4D 0x20 0x2A 0x2F ("/*
XPM /") and PNG files with 0x89 0x50 0x4E 0x47 0x0D 0x0A 0x1A Ox0A (" -PNG: - --").

www.it-ebooks.info

http://www.it-ebooks.info/

136 Chapter 3. Behavioral Design Patternsin Python

The XPM format is a plain text (7-bit ASCII) format that must be parsed to
extract its data. The format consists of some metadata (width, height, number
of colors, and so on), a color table, and pixel data that identifies each pixel by
reference to the color table. The details would take us too far from Python to go
into further; however, we use a simple, hand-coded parser, and these constants
provide the parser’s states.

def load(image, filename):
colors = cpp = count = None
state = WANT XPM
palette = {}
index = 0
with open(filename, "rt", encoding="ascii") as file:
for lino, line in enumerate(file, start=1):
line = line.strip()

This is the start of the module’s load() function. The image passed in is of type
Image.Image, and inside the function (but not shown), the image’s pixels, width,
and height attributes are all set directly. The pixels array is created using the
Image.create array() function so that the Xpm.py module doesn’t have to know or
care whether the array is an array.array or a numpy.ndarray, so long as the array
is one dimensional and of length width x height. This does mean, though, that
we must only access the pixels array using methods that are common to both

types.

def save(image, filename):
name = Image.sanitized name(filename)
palette, cpp = palette and cpp(image.pixels)
with open(filename, "w+t", encoding="ascii") as file:
_write header(image, file, name, cpp, len(palette))
_write palette(file, palette)
_write pixels(image, file, palette)

Both XBM and XPM formats include a name in the actual file that is based
on their filename but which must be a valid identifier in the C language. We
obtain this name using the Image.sanitized name() function. Almost all of the
saving work is passed on to private helper functions, none of which is of intrinsic
interest, and so they aren’t shown.

def sanitized name(name):
name = re.sub(r"\W+", "", os.path.basename(os.path.splitext(name)[0]))
if not name or name[0].isdigit():

name = "z" + name
return name

www.it-ebooks.info

http://www.it-ebooks.info/

3.12. Case Study: An Image Package 137

The Image.sanitized name() function takes a filename and produces a name
based on it that includes only unaccented Latin letters, digits, and underscores,
and that starts with a letter or underscore. In the regex, \W+ matches one or
more non-word characters (i.e., characters that are not valid in C identifiers).

Support for any other image format can be added to the Image module by creat-
ing a suitable module to go in the Image directory, which has the four required
functions: can_load(), can_save(), load(), and save(), where the first two return
appropriate integers for the filenames they are given. One very popular image
format is PNG format, but it is pretty complicated. Fortunately, we can adapt
the existing PyPNG module to take advantage of it with minimal effort, as we
will see in the next subsection.

3.12.3. The PNG Wrapper Module

The PyPNG module (github.com/drj11/pypng) provides good support for the PNG
image format. However, it doesn’t have the interface that the Image module
requires for an image-specific format module. So, in this subsection we will
create the Image/Png.py module, which will use the Adapter Pattern (§2.1, 29 <)
to add support for PNG images to the Image module. And unlike the previous
subsection, where we only showed a small sample of the code, here we will see
all of the Image/Png.py module’s code.

try:
import png
except ImportError:
png = None

We begin by attempting to import PyPNG’s png module. If this fails we create a
png variable of value None that we can check later.

def can load(filename):
return (80 if png is not None and
0s.path.splitext(filename)[1].lower() == ".png" else 0)

def can _save(filename):
return can_load(filename)

If the png module was successfully imported, we return a rating of 80 (slightly
imperfect) as our indication of this module’s PNG support. We use 80 rather
than 100 to allow for another module to supercede this one. Just as for the XPM
format, we return the same rating for both loading and saving; however, it is
perfectly acceptable to return different ratings.

def load(image, filename):
reader = png.Reader(filename=filename)

www.it-ebooks.info

http://www.it-ebooks.info/

138 Chapter 3. Behavioral Design Patternsin Python

image.width, image.height, pixels, _ = reader.asRGBA8()
image.pixels = Image.create array(image.width, image.height)
index = 0

for row in pixels:
for r, g, b, a in zip(row[::4], row[1::4], row[2::4], row[3::4]):
image.pixels[index] = Image.color for argb(a, r, g, b)
index += 1

We begin by creating a png.Reader, giving it the filename we have been given:
this will result in the PNG file being loaded into the reader instance. Then we
extract the image’s width, height, and pixels and discard the metadata.

The PyPNG module uses RGBA format, whereas our Image module uses ARGB
format, so we must account for this difference. This is done by extracting the
pixels using the png.Reader.asRGBA8 () method, which returns a two-dimensional
array of rows of color component values. For example, the pixels for an image
whose first row began with a solid red pixel followed by a solid blue pixel would
have for its first row a list of values that starts like this: 0xFF, 0x00, 0x00, OxFF,
0x00, 6x00, OxFF, OXFF.

Once we have the RGBA pixels, we create a new array of the right size and
with all the pixels set as transparent. We then iterate over each row of color
components and use slicing to extract each kind of component. For example,
the red components are at row positions 0, 4, 8, 12, ..., the green at positions 1,
5,9,13, ..., the blue at 2, 6, 10, 14, ..., and the alpha at 3, 7, 11, 15, We then
use the built-in zip() function to produce color component 4-tuples. So, the first
4-tuple is from the first row at index positions (0, 1, 2, 3), the second 4-tuple is
from index positions (4, 5, 6, 7), and so on. For each tuple, we create an ARGB
color value and insert it into our image’s one-dimensional array of pixels.

def save(image, filename):
with open(filename, "wb") as file:
writer = png.Writer(width=image.width, height=image.height,
alpha=True)
writer.write array(file, list(rgba for pixels(image.pixels)))

The save() function delegates most of its work to the png module. It begins by
creating a png.Writer with some appropriate metadata, and then it writes all the
pixels to it. Since Image uses ARGB values and png uses RGBA values, we have
used a private helper function to convert from one to the other.

def rgba for pixels(pixels):
for color in pixels:
a, r, g, b = Image.argb for color(color)
for component in (r, g, b, a):
yield component

www.it-ebooks.info

http://www.it-ebooks.info/

3.12. Case Study: An Image Package 139

This function iterates over the array it is given (i.e., image.pixels) and separates
out each color’s color components. It then yields each of these components (in
RGBA order) to its caller.

The code shown in this subsection is complete, because all the hard work is done
by PyPNG’s png module.

The Image module provides a useful interface for drawing (set pixel(), line(),
rectangle(), ellipse()), and support for loading and saving in XBM, XPM, and
(if PyPNG is installed) PNG formats. It also provides a subsample() method (for
fast rough scaling) and a scale() method (for smooth scaling), as well as some
convenience color manipulation functions and static methods.

The Image module can be used in concurrent contexts—for example, to create,
load, draw on, and save images in multiple threads or processes—making it
more convenient than, say, Tkinter, which can only handle images in the main
(GUI) thread. Unfortunately, though, the scaling is rather slow. One way to
improve scaling speed—providing we have a multi-core machine and have
multiple images to scale at the same time—is to use concurrency, as we will see
in the next chapter. However, scaling is CPU-bound, so the best speedups we
can hope for using concurrency are proportional to the number of processors;for
example, on a four core machine the best we could achieve would be slightly less
than a 4 x speedup. So,in Chapter 5 (§5.3,>» 198), we will see how to use Cython
to achieve more dramatic speedups.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

High-Level
Concurrency in
Python

§4.1. CPU-Bound Concurrency » 144
§4.1.1. Using Queues and Multiprocessing » 147
§4.1.2. Using Futures and Multiprocessing » 152
§4.2.I/0-Bound Concurrency » 155
§4.2.1. Using Queues and Threading » 156
§4.2.2. Using Futures and Threading » 161
§4.3. Case Study: A Concurrent GUI Application » 164
§4.3.1. Creating the GUI » 165
§4.3.2. The ImageScale Worker Module » 173
§4.3.3. How the GUI Handles Progress » 175
§4.3.4. How the GUI Handles Termination » 177

Interest in concurrent programming has been growing rapidly since the
turn of the millennium. This has been accelerated by Java, which has made
concurrency much more mainstream; by the near ubiquity of multi-core ma-
chines; and by the availability of support for concurrent programming in most
modern programming languages.

Writing and maintaining concurrent programs is harder (sometimes much
harder) than writing and maintaining nonconcurrent programs. Furthermore,
concurrent programs can sometimes have worse performance (sometimes much
worse) than equivalent nonconcurrent programs. Nonetheless, if done well, it is
possible to write concurrent programs whose performance compared with their
nonconcurrent cousins is so much better as to outweigh the additional effort.

Most modern languages (including C++ and Java) support concurrency directly
in the language itself and usually have additional higher-level functionality
in their standard libraries. Concurrency can be implemented in a number of
ways, with the most important difference being whether shared data is ac-
cessed directly (e.g., using shared memory) or indirectly (e.g., using inter-process
communication—IPC). Threaded concurrency is where separate concurrent
threads of execution operate within the same system process. These threads
typically access shared data using serialized access to shared memory, with the

141

www.it-ebooks.info

http://www.it-ebooks.info/

142 Chapter 4. High-Level Concurrency in Python

serialization enforced by the programmer using some kind of locking mecha-
nism. Process-based concurrency (multiprocessing)is where separate processes
executeindependently. Concurrent processestypically access shared data using
IPC, although they could also use shared memory if the language or its library
supported it. Another kind of concurrency is based on “concurrent waiting”
rather than concurrent execution; this is the approach taken by implementa-
tions of asynchronous I/O.

Python has some low-level support for asynchronous I/O (the asyncore and
asynchat modules). High-level support is provided as part of the third-party
Twisted framework (twistedmatrix.com). Support for high-level asynchronous
I/O—including event loops—is scheduled to be added to Python’s standard li-
brary with Python 3.4 (www.python.org/dev/peps/pep-3156).

As for the more traditional thread-based and process-based concurrency, Python
supportsboth approaches. Python’s threading supportis quite conventional,but
the multiprocessing support is much higher level than that provided by most
other languages or libraries. Furthermore, Python’s multiprocessing support
uses the same abstractions as threading to make it easy to switch between the
two approaches, at least when shared memory isn’t used.

Due to the GIL (Global Interpreter Lock), the Python interpreter itself can only
execute on one processor core at any one time.* C code can acquire and release
the GIL and so doesn’t have the same constraint, and much of Python—and
quite a bit of its standard library—is written in C. Even so, this means that
doing concurrency using threading may not provide the speedups we would
hope for.

In general, for CPU-bound processing, using threading can easily lead to worse
performance than not using concurrency at all. One solution to this is to write
the code in Cython (§5.2, » 187), which is essentially Python with some extra
syntax that gets compiled into pure C. This can result in 100x speedups—far
more than is likely to be achieved using any kind of concurrency, where the per-
formance improvement will be proportional to the number of processor cores.
However, if concurrency is the right approach to take, then for CPU-bound pro-
cessing it is best to avoid the GIL altogether by using the multiprocessing mod-
ule. If we use multiprocessing, instead of using separate threads of execution
in the same process (and therefore contending for the GIL), we have separate
processes each using its own independent instance of the Python interpreter, so
there is no contention.

For 1I/0-bound processing (e.g., networking), using concurrency can produce
dramatic speedups. In these cases, network latency is often such a dominant
factor that whether the concurrency is done using threading or multiprocessing
may not matter.

* This limitation doesn’t apply to Jython and some other Python interpreters. None of the book’s
concurrent examples rely on the presence or absence of the GIL.

www.it-ebooks.info

http://www.python.org/dev/peps/pep-3156
http://www.it-ebooks.info/

4.1. CPU-Bound Concurrency 143

We recommend that a nonconcurrent program be written first, wherever possi-
ble. This will be simpler and quicker to write than a concurrent program, and
easier to test. Once the nonconcurrent program is deemed correct, it may turn
out to be fast enough as it is. And if it isn’t fast enough, we can use it to com-
pare with a concurrent version both in terms of results (i.e., correctness) and in
terms of performance. As for what kind of concurrency, we recommend multi-
processing for CPU-bound programs, and either multiprocessing or threading
for I/O-bound programs. It isn’t only the kind of concurrency that matters, but
also the level.

In this book we define three levels of concurrency:

* Low-Level Concurrency: This is concurrency that makes explicit use of
atomic operations. This kind of concurrency is for library writers rather
than for application developers, since it is very easy to get wrong and can
be extremely difficult to debug. Python doesn’t support this kind of concur-
rency, although implementations of Python concurrency are typically built
using low-level operations.

¢ Mid-Level Concurrency: This is concurrency that does not use any
explicit atomic operations but does use explicit locks. This is the level of
concurrency that most languages support. Python provides support for con-
current programming at this level with such classes as threading.Semaphore,
threading.Lock, and multiprocessing.Lock. This level of concurrency support
is commonly used by application programmers, since it is often all that is
available.

¢ High-Level Concurrency: Thisis concurrency where there are no explicit
atomic operations and no explicit locks. (Locking and atomic operations
may well occur under the hood, but we don’t have to concern ourselves
with them.) Some modern languages are beginning to support high-level
concurrency. Python provides the concurrent.futures module (Python 3.2),
and the queue.Queue and multiprocessing queue collection classes, to support
high-level concurrency.

Using mid-level approaches to concurrency is easy to do, but it is very error
prone. Such approaches are especially vulnerable to subtle, hard-to-track-down
problems, as well as to both spectacular crashes and frozen programs, all occur-
ring without any discernable pattern.

The key problem is sharing data. Mutable shared data must be protected by
locks to ensure that all accesses to it are serialized (i.e., only one thread or pro-
cess can access the shared data at a time). Furthermore, when multiple threads
or processes are all trying to access the same shared data, then all but one of
them will be blocked (that is, idle). This means that while a lock is in force our
application could be using only a single thread or process (i.e., as if it were non-
concurrent), with all the others waiting. So, we must be careful to lock as infre-
quently as possible and for as short a time as possible. The simplest solution is

www.it-ebooks.info

http://www.it-ebooks.info/

144 Chapter 4. High-Level Concurrency in Python

to not share any mutable data at all. Then we don’t need explicit locks, and most
of the problems of concurrency simply melt away.

Sometimes, of course, multiple concurrent threads or processes need to access
the same data, but we can solve this without (explicit) locking. One solution is
to use a data structure that supports concurrent access. The queue module pro-
vides several thread-safe queues, and for multiprocessing-based concurrency,
we can use the multiprocessing.JoinableQueue and multiprocessing.Queue classes.
We can use such queues to provide a single source of jobs for all our concurrent
threads or processes and as a single destination for results, leaving all the lock-
ing to the data structure itself.

If we have data that we want used concurrently for which a concurrency-
supporting queue isn’t suitable, then the best way to do this without locking is
to pass immutable data (e.g., numbers or strings) or to pass mutable data that
is only ever read. If mutable data must be used, the safest approach is to deep
copy it. Deep copying avoids the overheads and risks of using locks, at the ex-
pense of the processing and memory required for the copying itself. Alternative-
ly, for multiprocessing, we can use data types that support concurrent access—in
particular multiprocessing.Value for a single mutable value or multiprocess-
ing.Array for an array of mutable values—providing that they are created by a
multiprocessing.Manager, as we will see later in the chapter.

In this chapter’s first two sections, we will explore concurrency using two
applications, one CPU-bound and the other I/O-bound. In both cases we will use
Python’s high-level concurrency facilities, both the long-established thread-safe
queues and the new (Python 3.2) concurrent. futures module. The chapter’s third
section provides a case study showing how to do concurrent processing in a GUI
(graphical user interface) application, while retaining a responsive GUI that
reports progress and supports cancellation.

4.1. CPU-Bound Concurrency

In Chapter 3’s Image case study (§3.12, 124 <) we showed some code for smooth-
scaling an image and commented that the scaling wasrather slow. Let’simagine
that we want to smooth scale a whole bunch of images, and want to do so as fast
as possible by taking advantage of multiple cores.

Scaling images is CPU-bound, so we would expect multiprocessing to deliver
the best performance, and this is borne out by the timings in Table 4.1.* (In
Chapter 5’s case study, we will combine multiprocessing with Cython to achieve
much bigger speedups; §5.3, » 198.)

*The timings were made on a lightly loaded quad-core AMD64 3 GHz machine processing 56 images
ranging in size from 1 MiB to 12MiB, totaling 316 MiB, and resulting in 67 MiB of output.

www.it-ebooks.info

http://www.it-ebooks.info/

4.1. CPU-Bound Concurrency 145

Table 4.1 Image scaling speed comparisons

Program Concurrency Seconds Speedup
imagescale-s.py None 784 Baseline
imagescale-c.py 4 coroutines 781 1.00x
imagescale-t.py 4 threads using a thread pool 1339 0.59x
imagescale-q-m.py 4 processes using a queue 206 3.81x
imagescale-m.py 4 processes using a process pool 201 3.90x

The results for the imagescale-t.py program using four threads clearly illus-
trates that using threading for CPU-bound processing produces worse perfor-
mance than a nonconcurrent program. This is because all the processing was
done in Python on the same core, and in addition to the scaling, Python had to
keep context switching between four separate threads, which added a massive
amount of overhead. Contrast this with the multiprocessing versions, both of
which were able to spread their work over all the machine’s cores. The differ-
ence between the multiprocessing queue and process pool versions is not signifi-
cant, and both delivered the kind of speedup we’'d expect (that is, in direct pro-
portion to the number of cores).*

All the image-scaling programs accept command-line arguments parsed with
argparse. For all versions, the arguments include the size to scale the images
down to, whether to use smooth scaling (all our timings do), and the source and
target image directories. Images that are less than the given size are copied
rather than scaled; all those used for timings needed scaling. For concurrent
versions, it is also possible to specify the concurrency (i.e., how many threads or
processes to use); this is purely for debugging and timing. For CPU-bound pro-
grams, we would normally use as many threads or processes as there are cores.
For I/O-bound programs, we would use some multiple of the number of cores
(2%, 3%, 4 x, or more) depending on the network’s bandwidth. For completeness,
here is the handle_commandline() function used in the concurrent image scale pro-
grams.

def handle commandline():
parser = argparse.ArgumentParser()
parser.add argument("-c", "--concurrency", type=int,
default=multiprocessing.cpu_count(),
help="specify the concurrency (for debugging and "
"timing) [default: %(default)d]")
parser.add argument('-s", "--size", default=400, type=int,

* Starting new processes is far more expensive on Windows than on most other operating systems.
Fortunately, Python’s queues and pools use persistent process pools behind the scenes so as to avoid
repeatedly incurring these process startup costs.

www.it-ebooks.info

http://www.it-ebooks.info/

146 Chapter 4. High-Level Concurrency in Python

help="make a scaled image that fits the given dimension
"[default: %(default)d]")
parser.add argument("-S", "--smooth", action="store true",
help="use smooth scaling (slow but good for text)")
parser.add argument(“source",
help="the directory containing the original .xpm images")
parser.add argument(“target",
help="the directory for the scaled .xpm images")
args = parser.parse args()
source = os.path.abspath(args.source)
target = os.path.abspath(args.target)
if source == target:
args.error("source and target must be different")
if not os.path.exists(args.target):
os.makedirs(target)
return args.size, args.smooth, source, target, args.concurrency

Normally, we would not offer a concurrency option to users, but it can be useful
for debugging, timing, and testing, so we have included it. The multiprocess-
ing.cpu_count() function returns the number of cores the machine has (e.g., 2
for a machine with a dual-core processor, 8 for a machine with dual quad-core
processors).

The argparse module takes a declarative approach to creating a command line
parser. Once the parser is created, we parse the command-line and retrieve the
arguments. We perform some basic sanity checks (e.g., to stop the user from
writing scaled images over the originals), and we create the target directory if
it doesn’t already exist. The os.makedirs() function is similar to the os.mkdir()
function, except the former can create intermediate directories rather than just
a single subdirectory.

Just before we dive into the code, note the following important rules that apply
to any Python file that uses the multiprocessing module:

® The file must be an importable module. For example, my-mod. py is a legiti-
mate name for a Python program but not for a module (since import my-mod
is a syntax error); my mod.py or MyMod.py are both fine, though.

¢ The file should have an entry-point function (e.g., main()) and finish with a
call to the entry point. For example: if name ==" main_ ": main().

¢ On Windows, the Python file and the Python interpreter (python.exe or
pythonw.exe) should be on the same drive (e.g., C:).

The following subsections will look at the two multiprocessing versions of the
image scale program, imagescale-g-m.py and imagescale-m.py. Both programs
report progress (i.e., print the name of each image they scale) and support
cancellation (e.g., if the user presses Ctrl+C).

www.it-ebooks.info

http://www.it-ebooks.info/

4.1. CPU-Bound Concurrency 147

4.1.1. Using Queues and Multiprocessing

The imagescale-g-m.py program creates a queue of jobs to be done (i.e., images to
scale) and a queue of results.

Result = collections.namedtuple("Result", "copied scaled name")
Summary = collections.namedtuple("Summary", "todo copied scaled canceled")

The Result named tuple is used to store one result. This is a count of how many
images were copied and how many scaled—always 1 and 0 or 0 and 1—and
the name of the resultant image. The Summary named tuple is used to store a
summary of all the results.

def main():
size, smooth, source, target, concurrency = handle commandline()
Qtrac.report("starting...")
summary = scale(size, smooth, source, target, concurrency)
summarize(summary, concurrency)

This main() function is the same for all the image scale programs. It begins by
reading the command line using the custom handle commandline() function we
discussed earlier (146 <). This returns the size that the images must be scaled
to, a Boolean indicating whether smooth scaling should be used, the source
directory to read images from, the target directory to write scaled images to,
and (for concurrent versions) the number of threads or processes to use (which
defaults to the number of cores).

The program reports to the user that it has started and then executes the scale()
function where all the work is done. When the scale() function eventually re-
turns its summary of results, we print the summary using the summarize() func-
tion.

def report(message="", error=False):
if len(message) >= 70 and not error:
message = message[:67] + "..."
sys.stdout.write("\r{:70}{}".format(message, "\n" if error else ""))
sys.stdout.flush()

For convenience, this function isin the Qtrac.py module, since it is used by all the
console concurrency examples in this chapter. The function overwrites the cur-
rent line on the console with the given message (truncating it to 70 characters if
necessary) and flushes the output so that it is printed immediately. If the mes-
sage is to indicate an error, a newline is printed so that the error message isn’t
overwritten by the next message, and no truncation is done.

www.it-ebooks.info

http://www.it-ebooks.info/

148 Chapter 4. High-Level Concurrency in Python

def scale(size, smooth, source, target, concurrency):

canceled = False

jobs = multiprocessing.JoinableQueue()

results = multiprocessing.Queue()

create processes(size, smooth, jobs, results, concurrency)

todo = add_jobs(source, target, jobs)

try:
jobs.join()

except KeyboardInterrupt: # May not work on Windows
Qtrac.report("canceling...")
canceled = True

copied = scaled = 0

while not results.empty(): # Safe because all jobs have finished
result = results.get nowait()
copied += result.copied
scaled += result.scaled

return Summary(todo, copied, scaled, canceled)

This function is the heart of the multiprocessing queue-based concurrent image
scaling program, and its work is illustrated in Figure 4.1. The function begins
by creating a joinable queue of jobs to be done. A joinable queue is one that
can be waited for (i.e., until it is empty). It then creates a nonjoinable queue of
results. Next, it creates the processes to do the work: they will all be ready to
work but blocked, since we haven’t put any work on the jobs queue yet. Then,
the add jobs() function is called to populate the jobs queue.

process #1
task_done()
process #2
summarize()
process #3
process #4

Figure 4.1 Handling concurrent jobs and results with queues

With all the jobs in the jobs queue, we wait for the jobs queue to become empty
using the multiprocessing.JoinableQueue.join() method. This is done inside a
try ... except block so that if the user cancels (e.g., by pressing Ctrl+C on Unix),
we can cleanly handle the cancellation.

When the jobs have all been done (or the program has been canceled), we iterate
over the results queue. Normally, using the empty() method on a concurrent
queue is unreliable, but here it works fine, since all the worker processes have

www.it-ebooks.info

http://www.it-ebooks.info/

4.1. CPU-Bound Concurrency 149

finished and the queue is no longer being updated. This is why we can also use
the nonblocking multiprocessing.Queue.get nowait() method, rather than the
usual blocking multiprocessing.Queue.get () method, to retrieve the results.

Once all the results have been accumulated, we return a Summary named tuple
with the details. For a normal run, the todo value will be zero, and canceled will
be False, but for a canceled run, todo will probably be nonzero, and canceled will
be True.

Although this function is called scale(), it is really a fairly generic “do concur-
rent work” function that provides jobs to processes and accumulates results. It
could easily be adapted to other situations.

def create processes(size, smooth, jobs, results, concurrency):
for _ in range(concurrency):
process = multiprocessing.Process(target=worker, args=(size,
smooth, jobs, results))
process.daemon = True
process.start()

This function creates multiprocessing processes to do the work. Each process
is given the same worker() function (since they all do the same work), and the
details of the work they must do. This includes the shared-jobs queue and the
shared results queue. Naturally, we don’t have to worry about locking these
shared queues since the queues take care of their own synchronization. Once
a process is created, we make it a deemon: when the main process terminates,
it cleanly terminates all of its deemon processes (whereas non-deemon’s are left
running, and on Unix, become zombies).

After creating each process and deemonizing it, we tell it to start executing the
function it was given. It will immediately block, of course, since we haven’t yet
added any jobs to the jobs queue. This doesn’t matter, though, since the blocking
is taking place in a separate process and doesn’t block the main process. Conse-
quently, all the multiprocessing processes are quickly created, after which this
function returns. Then,in the caller, we add jobs to the jobs queue for the blocked
processes to work on.

def worker(size, smooth, jobs, results):
while True:
try:

sourceImage, targetImage = jobs.get()

try:
result = scale one(size, smooth, sourceImage, targetImage)
Qtrac.report("{} {}".format("copied" if result.copied else

"scaled", os.path.basename(result.name)))

results.put(result)

www.it-ebooks.info

http://www.it-ebooks.info/

150 Chapter 4. High-Level Concurrency in Python

except Image.Error as err:
Qtrac.report(str(err), True)
finally:
jobs.task done()

It is possible to create a multiprocessing.Process subclass (or a threading.Thread
subclass) to do concurrent work. But here we have taken a slightly simpler
approach and created a function that is passed in as the multiprocessing.Pro-
cess’s target argument. (Exactly the same thing can be done with threading
.Threads.)

The worker executes an infinite loop, and in each iteration it tries to retrieve a
job of work to do from the shared-jobs queue. It is safe to use an infinite loop,
because the process is a deemon and will therefore be terminated when the
program has finished. The multiprocessing.Queue.get () method blocks until it is
able to return a job, which in this example is a 2-tuple of the source and target
image names.

Once a job is retrieved, we scale (or copy) it using the scale one() function and
report what we did. We also put the result object (of type Result) onto the shared
results queue.

It is essential when using a joinable queue that, for every job we get, we exe-
cute multiprocessing.JoinableQueue.task done(). This is how the multiprocess-
ing.JoinableQueue.join() method knows when the queue can be joined (i.e., is
empty with no more jobs to be done).

def add jobs(source, target, jobs):
for todo, name in enumerate(os.listdir(source), start=1):
sourceImage = os.path.join(source, name)
targetImage = os.path.join(target, name)
jobs.put((sourceImage, targetImage))
return todo

Once the processes have been created and started, they are all blocked trying to
get jobs from the shared-jobs queue.

For every image to be processed, this function creates two strings: sourceImage
that has the full path to a source image, and targetImage with the full path to a
target image. Each pair of these paths are added as a 2-tuple to the shared-jobs
queue. And at the end, the function returns the total number of jobs that need
to be done.

As soon as the first job is added to the jobs queue, one of the blocked worker
processes will retrieve it and start working on it, just as for the second job that’s
added, and the third, until all the worker processes have a job to do. Thereafter,
the jobs queue is likely to acquire more jobs while the worker processes are work-

www.it-ebooks.info

http://www.it-ebooks.info/

4.1. CPU-Bound Concurrency 151

ing, with a job being retrieved whenever a worker finishes a job. Eventually, all
the jobs will have been retrieved, at which point all the worker processes will be
blocked waiting for more work, and they will be terminated when the program
finishes.

def scale one(size, smooth, sourceImage, targetImage):
oldImage = Image.from file(sourceImage)
if oldImage.width <= size and oldImage.height <= size:
oldImage.save(targetImage)
return Result(1l, 0, targetImage)
else:
if smooth:
scale = min(size / oldImage.width, size / oldImage.height)
newImage = oldImage.scale(scale)
else:
stride = int(math.ceil(max(oldImage.width / size,
oldImage.height / size)))
newImage = oldImage.subsample(stride)
newImage.save(targetImage)
return Result(0, 1, targetImage)

This function is where the actual scaling (or copying) takes place. It uses the
cyImage module (see §5.3, » 198) or falls back to the Image module (see §3.12,
124 «) if cyImage isn’t available. If the image is already smaller than the given
size, it is simply saved to the target and a Result is returned that says that one
image was copied, that none were scaled, and the name of the target image.
Otherwise, the image is smooth scaled or subsampled with the resultant image
being saved. In this case, the returned Result says that no image was copied,
that one was scaled, and again the name of the target image.

def summarize(summary, concurrency):
message = "copied {} scaled {} ".format(summary.copied, summary.scaled)
difference = summary.todo — (summary.copied + summary.scaled)
if difference:
message += "skipped {} ".format(difference)
message += "using {} processes".format(concurrency)
if summary.canceled:

message += " [canceled]"
Qtrac.report(message)
print()

Once all the images have been processed (i.e., once the jobs queue has been
joined), the Summary is created (in the scale() function; 148 <) and passed to this
function. A typical run with the summary produced by this function shown on
the second line might look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

152 Chapter 4. High-Level Concurrency in Python

$./imagescale-m.py -S /tmp/images /tmp/scaled
copied 0 scaled 56 using 4 processes

For timings on Linux, simply precede the command with time. On Windows,
there is no built-in command for this, but there are solutions.* (Doing timings
inside programs that use multiprocessing doesn’t seem to work. In our exper-
iments, we found that timings reported the runtime of the main process but
excluded that of the worker processes. Note that Python 3.3’s time module has
several new functions to support accurate timing.)

The three-second timing difference between imagescale-g-m.py and imagescale-
m.py is insignificant and could easily be reversed on a different run. So, in effect,
these two versions are equivalent.

4.1.2. Using Futures and Multiprocessing

Python 3.2 introduced the concurrent.futures module that offers a nice, high-
level way to do concurrency with Python using multiple threads and multiple
processes. In this subsection, we will review three functions from the imagescale-
m.py program (all the rest being the same as those in the imagescale-g-m.py pro-
gram we reviewed in the previous subsection). The imagescale-m.py program
uses futures. According to the documentation, a concurrent.futures.Future is
an object that “encapsulates the asynchronous execution of a callable” (see
docs.python.org/dev/library/concurrent. futures.html#future-objects). Futures
are created by calling the concurrent.futures.Executor.submit() method, and
they can report their state (canceled, running, done) and the result or exception
they produced.

The concurrent. futures.Executor class cannot be used directly, because it is an
abstract base class. Instead, one of its two concrete subclasses must be used.
The concurrent. futures.ProcessPoolExecutor() achieves concurrency by using
multiple processes. Using a process pool means that any Future used with it may
only execute or return pickleable objects, which includes nonnested functions, of
course. This restriction does not apply to the concurrent.futures.ThreadPoolEx-
ecutor, which provides concurrency using multiple threads.

Conceptually, using a thread or process pool is simpler than using queues, as
Figure 4.2 illustrates.

executor(submit(...)) ..as_completed()
ProcessPoolExecutor >

A

Figure 4.2 Handling concurrent jobs and results with a pool executor

* See, for example, stackoverflow.com/questions/673523/how-to-measure-execution-time-of-command-
in-windows-command-line.

www.it-ebooks.info

http://www.it-ebooks.info/

4.1. CPU-Bound Concurrency 153

def scale(size, smooth, source, target, concurrency):
futures = set()
with concurrent.futures.ProcessPoolExecutor(
max_workers=concurrency) as executor:
for sourceImage, targetImage in get jobs(source, target):
future = executor.submit(scale one, size, smooth, sourcelImage,
targetImage)
futures.add(future)
summary = wait for(futures)
if summary.canceled:
executor.shutdown()
return summary

This function has the same signature, and does the same work, as the same
function in the imagescale-g-m.py program, but it works in a radically different
way. We begin by creating an empty set of futures. Then we create a process
pool executor. Behind the scenes, this will create a number of worker processes.
The exact number is determined by a heuristic, but here we have overridden this
to specify the number ourselves, purely for debugging and timing convenience.

Once we have a process pool executor, we iterate over the jobs returned by
the get _jobs() function and submit each one to the pool. The concurrent.fu-
tures.ProcessPoolExecutor.submit() method accepts a worker function and op-
tional arguments and returns a Future object. We add each future to our set of
futures. The pool starts work as soon as it has at least one future to work on.
When all the futures have been created, we call a custom wait for() function,
passing it the set of futures. This function will block until all the futures have
been done (or until the user cancels). If the user cancels, we manually shutdown
the process pool executor.

def get jobs(source, target):
for name in os.listdir(source):
yield os.path.join(source, name), os.path.join(target, name)

This function performs the same service as the previous subsection’s add_jobs ()
function, only instead of adding jobs to a queue, it is a generator function that
yields jobs on demand.

def wait for(futures):
canceled = False
copied = scaled = 0
try:
for future in concurrent.futures.as completed(futures):
err = future.exception()
if err is None:

www.it-ebooks.info

http://www.it-ebooks.info/

154 Chapter 4. High-Level Concurrency in Python

result = future.result()
copied += result.copied
scaled += result.scaled
Qtrac.report("{} {}".format("copied" if result.copied else
"scaled", os.path.basename(result.name)))
elif isinstance(err, Image.Error):
Qtrac.report(str(err), True)
else:
raise err # Unanticipated
except KeyboardInterrupt:
Qtrac.report("canceling...")
canceled = True
for future in futures:
future.cancel()
return Summary(len(futures), copied, scaled, canceled)

Once all the futures have been created, we call this function to wait for the fu-
tures to complete. The concurrent.futures.as completed() function blocks un-
til a future has finished (or been canceled) and then returns that future. If the
worker callable that the future executed raised an exception, the Future.excep-
tion() method will return it; otherwise, it returns None. If no exception occurred,
we retrieve the future’s result and report progress to the user. If an exception oc-
curred of a kind we might reasonably expect (i.e., from the Image module), again,
we report it to the user. But if we get an unexpected exception, we raise it since
it either means we have a logical error in our program or the user canceled with
Ctrl+C.

If the user cancels by pressing Ctrl+C, we iterate over all the futures and cancel
each one. At the end, we return a summary of the work that was done.

Using concurrent.futures is clearer and more robust than using queues, al-
though either approach is far easier and better than one that involves the use of
explicit locks when using multithreading. It is also easy to switch between using
multithreading and multiprocessing: we just have to use a concurrent. futures
.ThreadPoolExecutor instead of a concurrent.futures.ProcessPoolExecutor. When
using multithreading of any kind, if we need to access shared data, we must
use immutable types or deep copy (e.g., for read-only access), or use locks (e.g.,
to serialize read-write accesses), or use a thread-safe type (e.g., a queue.Queue).
Similarly, when using multiprocessing, to access shared data we must use im-
mutable types or deep copy, and for read-write access we must use managed
multiprocessing.Values or multiprocessing.Arrays, or use multiprocessing.Queues.
Ideally, we should avoid using any shared data at all. Failing that, we should
only share read-only data (e.g., by using immutable types or by deep copying) or
use concurrency-safe queues, so that no explicit locks are required, and our code
is straightforward to understand and maintain.

www.it-ebooks.info

http://www.it-ebooks.info/

4.2. 1/0O-Bound Concurrency 155

4.2. 1/0-Bound Concurrency

A common requirement is to download a bunch of files or web pages from the
Internet. Due to network latency, it is usually possible to do many downloads
concurrently and thereby finish much more quickly than would be the case if
we downloaded each file one at a time.

In this section, we will review the whatsnew-q.py and whatsnew-t.py programs.
These programs download RSS feeds: small XML documents summarizing tech-
nology news stories. The feeds come from various web sites, and the program
uses them to produce a single HTML page with links to all the stories. Figure 4.3
shows part of a “what’s new”-generated HTML page. Table 4.2 (» 156) shows
the timings for various versions of the program.* Although the “what’snew” pro-
grams’ speedups look proportional to the number of cores, this is a coincidence;

the cores were all underutilized, and most of the time was spent waiting for net-
work I/0.

il goax
File Edit View Go Bookmarks Tools Tabs Help

| 1@ file:fiftrnp/whatsnew. htrml Go
ln
Free Software Foundation

Activists trick-or-treat for free software at Windows 8 launch event

» The Free Software Foundation opens nominations for the 15th Annual Free Software
Awards

ESF rallies support for GNU MediaGoblin to make media publishing free "as in freedom"
LulzBot AO-100 3D printer now FSF-certified to respect your freedom

FSF announces winner of Restricted Boot webcomic contest

ESF publishes whitepaper with recommendations for free operating system distributions
considering Secure Boot [

Figure 4.3 Some technology news links from an RSS feed

The table also shows timings for versions of a gigapixel program (not shown
in the book). These programs access the www.gigapan.org web site and retrieve
nearly 500 JSON-format files, totaling 1.9 MiB, that contain metadata about
gigapixel images. The code for the versions of this program mirrors that of the
“what’s new” programs, although the gigapixel programs achieve much greater
speedups. The better performance is because the gigapixel programs access a
single high-bandwidth site, whereas the “what’s new” programs must access lots
of different sites with varying bandwidths.

Because network latency varies so much, the speedups could easily change,
with concurrent versions achieving improvements from as little as 2x to as
much as 10x, or even better, depending on the sites accessed, the amount of

* The timings were made on a lightly loaded quad-core AMD64 3 GHz machine, downloading from
almost 200 web sites on a domestic broadband connection.

www.it-ebooks.info

http://www.gigapan.org
http://www.it-ebooks.info/

156 Chapter 4. High-Level Concurrency in Python

Table 4.2 Download speed comparisons

Program Concurrency Seconds Speedup
whatsnew.py None 172 Baseline
whatsnew-c.py 16 coroutines 180 0.96 x
whatsnew-g-m.py 16 processes using a queue 45 3.82x
whatsnew-m. py 16 processes using a process pool 50 3.44 %
whatsnew-q.py 16 threads using a queue 50 3.44 x
whatsnew-t.py 16 threads using a thread pool 48 3.58%
gigapixel.py None 238 Baseline
gigapixel-g-m.py 16 processes using a queue 35 6.80 %
gigapixel-m.py 16 processes using a process pool 42 5.67x%
gigapixel-q.py 16 threads using a queue 37 6.43x
gigapixel-t.py 16 threads using a thread pool 37 6.43x

data downloaded, and the bandwidth of the network connection. In view of this,
the differences between the multiprocessing and multithreading versions are
insignificant and could easily be reversed on a different run.

The key thing to remember from Table 4.2 is that we will achieve much faster
downloading using a concurrent approach, although the actual speedup will
vary from run to run and is sensitive to circumstances.

4.2.1. Using Queues and Threading

We will begin by looking at the whatsnew-q.py program, which uses multiple
threads and two thread-safe queues. One queue is a jobs queue, where each job
to dois a URL. The other queue is a results queue, where each result is a 2-tuple
holding either True and an HTML fragment to go into the HTML page being
built up, or False and an error message.

def main():
limit, concurrency = handle _commandline()
Qtrac.report("starting...")
filename = os.path.join(os.path.dirname(file), "whatsnew.dat")
jobs = queue.Queue()
results = queue.Queue()
create threads(limit, jobs, results, concurrency)
todo = add _jobs(filename, jobs)
process(todo, jobs, results, concurrency)

www.it-ebooks.info

http://www.it-ebooks.info/

4.2. 1/0O-Bound Concurrency 157

The main() function orchestrates all the work. It begins by processing the
command line and getting a limit (the maximum number of news items to
read from a given URL) and a concurrency level for debugging and timing. The
program then reports to the user that it has started and gets the filename with
the full path of the data file that holds the URLs and their one-line titles.

Next, the function creates the two thread-safe queues and the worker threads.
Once all the worker threads have been started (and, of course, they are all
blocked because there is no work yet), we add all the jobs to the job queue. Final-
ly, in the process() function, we wait for the jobs to be done and then output the
results. The program’s overall concurrency structure is illustrated in Figure 4.4
(> 158).

Incidentally, if we had a lot of jobs to add, or if adding each job was time-
consuming, we might be better off adding the jobs in a separate thread (or pro-
cess if using multiprocessing).

def handle commandline():

parser = argparse.ArgumentParser()

parser.add argument("'-1", "—-limit", type=int, default=0,
help="the maximum items per feed [default: unlimited]")

parser.add argument("-c", "--concurrency", type=int,
default=multiprocessing.cpu_count() * 4,
help="specify the concurrency (for debugging and "

"timing) [default: %(default)d]")
args = parser.parse_args()
return args.limit, args.concurrency

Since the “what’s new” programs are I/O-bound, we give them a default concur-
rency level that is a multiple of the number of cores—in this case, 4 x.*

def create threads(limit, jobs, results, concurrency):
for _ in range(concurrency):
thread = threading.Thread(target=worker, args=(limit, jobs,
results))
thread.daemon = True
thread.start()

This function creates as many worker threads as the concurrency variable
specifies and gives each one a worker function to execute and the arguments the
function must be called with.

Just as with the processes we saw in the previous section, we deemonize each
thread to ensure that it will be terminated when the program finishes. We start

*This multiple was chosen because it worked best in our tests. We recommend experimenting, since
setups differ.

www.it-ebooks.info

http://www.it-ebooks.info/

158 Chapter 4. High-Level Concurrency in Python

thread #1
task_done()
thread #2 results | process()
queue
thread #3
thread #4

Figure 4.4 Handling concurrent jobs and results with queues

each thread, and it is immediately blocked because there are no jobs to do, but
it is only the worker threads that are blocked, not the program’s main thread.

def worker(limit, jobs, results):
while True:
try:
feed = jobs.get()
ok, result = Feed.read(feed, limit)
if not ok:
Qtrac.report(result, True)
elif result is not None:
Qtrac.report("read {}".format(result[0][4:-6]))
results.put(result)
finally:
jobs.task done()

We have made the worker function execute an infinite loop, since it is a deemon,
and therefore it will be terminated by the program when the program has
finished.

The function blocks waiting to get a job from the jobs queue. As soon as it gets
a job it uses the custom Feed.py module’s Feed.read() function to read the file
identified by the URL. All the “what’s new” programs rely on a custom Feed.py
module to provide an iterator for the jobs file and a reader for each RSS feed.
If the read fails, ok is False and we print the result (which is an error message).
Otherwise, providing we got a result (a list of HTML strings), we print the first
item (stripping off the HTML tags) and add the result to the results queue.

For queues that we plan to join, it is essential that for every queue.Queue.get()
call, we have a corresponding queue.Queue.task done() call. We have ensured
that this will happen by using a try ... finally block.*

* Note that although the queue.Queue class is a thread-safe joinable queue, the multiprocessing
equivalent is the multiprocessing.JoinableQueue class, not the multiprocessing.Queue class.

www.it-ebooks.info

http://www.it-ebooks.info/

4.2. 1/0O-Bound Concurrency 159

def read(feed, limit, timeout=10):
try:
with urllib.request.urlopen(feed.url, None, timeout) as file:
data = file.read()
body = parse(data, limit)
if body:
body = ["<h2>{}</h2>\n".format(escape(feed.title))] + body
return True, body
return True, None
except (ValueError, urllib.error.HTTPError, urllib.error.URLError,
etree.ParseError, socket.timeout) as err:
return False, "Error: {}: {}".format(feed.url, err)

The Feed. read() function reads a given URL (feed) and attempts to parse it. If
the parse is successful, it returns True and a list of HTML fragments (a title and
one or more links); otherwise, it returns False and None or an error message.

def parse(data, limit):
output = []
feed = feedparser.parse(data) # Atom + RSS
for entry in feed["entries"]:
title = entry.get("title")
link = entry.get("link")
if title:
if link:
output.append('{}</1i>".format(
link, escape(title)))
else:
output.append('{}</1li>"'.format(escape(title)))
if limit and len(output) == limit:
break
if output:
return [""] + output + [""]

The Feed.py module contains two versions of the private parse() function. The
one shown here uses the third-party feedparser module (pypi.python.org/pypi/
feedparser), which can handle both Atom and RSS format news feeds. The other
one (not shown) is a fallback if feedparser isn’t available and can handle only
RSS format feeds.

The feedparser.parse() function does all the hard work of parsing the news feed.
We just need to iterate over the entries it produces and retrieve the title and link
for each news story, building up an HTML list to represent them.

www.it-ebooks.info

http://www.it-ebooks.info/

160 Chapter 4. High-Level Concurrency in Python

def add jobs(filename, jobs):
for todo, feed in enumerate(Feed.iter(filename), start=1):
jobs.put(feed)
return todo

Each feed is returned by the Feed.iter() function as a (title, url) 2-tuple that
is added to the jobs queue. And at the end, the total number of jobs to do
is returned.

In this case, we could have safely returned jobs.qsize() rather than kept track
of the total to do ourselves. However, if we were to execute add jobs() in its
own thread, using queue.Queue.qsize() would not be reliable, since jobs would be
taken off at the same time as they were added.

Feed = collections.namedtuple("Feed", "title url")

def iter(filename):
name = None
with open(filename, "rt", encoding="utf-8") as file:
for line in file:
line = line.rstrip()
if not line or line.startswith("#"):
continue
if name is None:
name = line
else:
yield Feed(name, line)
name = None

This is the Feed.py module’s Feed.iter() function. The whatsnew.dat file is ex-
pected to be a UTF-8-encoded plain-text file that contains two lines per feed: a
title line (e.g., The Guardian - Technology) and, on the next line, the URL (e.g.,
http://feeds.pinboard.in/rss/u:guardiantech/). Blank lines and comment lines
(i.e., lines starting with #) are ignored.

def process(todo, jobs, results, concurrency):
canceled = False
try:
jobs.join() # Wait for all the work to be done
except KeyboardInterrupt: # May not work on Windows
Qtrac.report("canceling...")
canceled = True
if canceled:
done = results.qgsize()
else:
done, filename = output(results)

www.it-ebooks.info

http://feeds.pinboard.in/rss/u:guardiantech/
http://www.it-ebooks.info/

4.2. 1/0O-Bound Concurrency 161

Qtrac.report("read {}/{} feeds using {} threads{}".format(done, todo,
concurrency, " [canceled]" if canceled else ""))
print()
if not canceled:
webbrowser.open(filename)

Once all the threads have been created and the jobs added, this function is
called. It calls queue.Queue.join(), which blocks until the queue is empty (i.e.,
when all the jobs are done) or until the user cancels. If the user did not cancel,
the output() function is called to write the HTML file with all the lists of links,
and then a summary is printed. Finally, the webbrowser module’s open() function
is called on the HTML file to open it in the user’s default web browser (see
Figure 4.3; 155 <.

def output(results):
done = 0
filename = os.path.join(tempfile.gettempdir(), "whatsnew.html")
with open(filename, "wt", encoding="utf-8") as file:
file.write("<!doctype html>\n")
file.write("<html><head><title>What's New</title></head>\n")
file.write("<body><h1>What's New</h1>\n")
while not results.empty(): # Safe because all jobs have finished
result = results.get nowait()
done += 1
for item in result:
file.write(item)
file.write("</body></html>\n")
return done, filename

After all the jobs are done, this function is called with the results queue. Each
result contains a list of HTML fragments (a title followed by one or more links).
This function creates a new whatsnew. html file and populates it with all the news
feed titles and their links. At the end, the function returns the number of results
(i.e., the count of those jobs that were successfully done) and the name of the
HTML file it wrote. This information is used by the process() function to print
its summary and to open the HTML file in the user’s web browser.

4.2.2. Using Futures and Threading

If we are using Python 3.2 or later, we can take advantage of the concurrent. fu-
tures module to implement this program without the need for queues (or explic-
it locks). In this subsection, we will review the whatsnew-t.py program, which
makes use of this module, although we will omit those functions that are iden-
tical to those we saw in the previous subsection (e.g., handle_commandline() and
the Feed.py module’s functions).

www.it-ebooks.info

http://www.it-ebooks.info/

162 Chapter 4. High-Level Concurrency in Python

def main():
limit, concurrency = handle commandline()
Qtrac.report("starting...")
filename = os.path.join(os.path.dirname(file), "whatsnew.dat")
futures = set()
with concurrent.futures.ThreadPoolExecutor(
max_workers=concurrency) as executor:
for feed in Feed.iter(filename):
future = executor.submit(Feed.read, feed, limit)
futures.add(future)
done, filename, canceled = process(futures)
if canceled:
executor.shutdown ()
Qtrac.report("read {}/{} feeds using {} threads{}".format(done,
len(futures), concurrency, " [canceled]" if canceled else ""))
print()
if not canceled:
webbrowser.open(filename)

This function creates an initially empty set of futures and then creates a thread
pool executor that works just the same as a process pool executor, except that it
uses separate threads rather than separate processes. Within the context of the
executor, we iterate over the data file, and for each feed, we create a new future
(using the concurrent.futures.ThreadPoolExecutor.submit() method) that will
execute the Feed. read() function on the given feed URL, returning at most limit
links. We then add the future to the set of futures.

Once all the futures have been created, we call a custom process() function that
will wait until all the futures have finished (or until the user cancels). Then,
a summary of results is printed, and if the user didn’t cancel, the generated
HTML page is opened in the user’s web browser.

def process(futures):
canceled = False
done = 0
filename = os.path.join(tempfile.gettempdir(), "whatsnew.html")
with open(filename, "wt", encoding="utf-8") as file:
file.write("<!doctype html>\n")
file.write("<html><head><title>What's New</title></head>\n")
file.write("<body><h1>What's New</h1>\n")
canceled, results = wait for(futures)
if not canceled:
for result in (result for ok, result in results if ok and
result is not None):
done += 1

www.it-ebooks.info

http://www.it-ebooks.info/

4.2. 1/0O-Bound Concurrency 163

for item in result:
file.write(item)
else:
done = sum(1 for ok, result in results if ok and result is not
None)
file.write("</body></html>\n")
return done, filename, canceled

This function writes the start of the HTML file and then calls a custom
wait for() function to wait for all the work to be done. If the user didn’t cancel,
the function iterates over the results (which are True, list or False, str or False,
None 2-tuples), and for those with lists (which consist of a title followed by one or
more links), the items are written to the HTML file.

If the user canceled, we simply calculate how many feeds were successfully
read. In either case, we return the number of feeds read, the HTML file’s
filename, and whether the user canceled.

def wait for(futures):
canceled = False
results = []
try:
for future in concurrent.futures.as completed(futures):
err = future.exception()
if err is None:
ok, result = future.result()
if not ok:
Qtrac.report(result, True)
elif result is not None:
Qtrac.report("read {}".format(result[0][4:-6]))
results.append((ok, result))
else:
raise err # Unanticipated
except KeyboardInterrupt:
Qtrac.report("canceling...")
canceled = True
for future in futures:
future.cancel()
return canceled, results

This function iterates over the futures, blocking until one is finished or canceled.
Once a future is received, the function reports an error or a successfully read
feed as appropriate, and in either case appends the Boolean and the result (a list
of strings or an error string) to a list of results.

www.it-ebooks.info

http://www.it-ebooks.info/

164 Chapter 4. High-Level Concurrency in Python

If the user cancels (by pressing Ctrl+C), we cancel all of the futures. At the end,
we return whether the user canceled and the list of results.

Using concurrent. futures is just as convenient when using multiple threads as
when using multiple processes. And in terms of performance, it is clear that
when used in the right circumstances—I/O-based rather than CPU-based
processing—and with due care, multithreading provides the improved perfor-
mance that we would expect.

4.3. Case Study: A Concurrent GUI Application

Writing concurrent GUI (graphical user interface) applications can be tricky,
especially using Tkinter, Python’s standard GUI toolkit. A short introduction
to GUI programming with Tkinter is given in Chapter 7 (> 231); readers with
no Tkinter experience are recommended to read that chapter first and then
return here.

One obvious approach to achieving concurrency in a GUI application is to
use multithreading, but in practice this can lead to a slow or even frozen GUI
when lots of processing is taking place; after all, GUls are CPU-bound. An
alternative approach is to use multiprocessing, but this can still result in very
poor GUI responsiveness.

In this section, we will review the ImageScale application (in the example’s
imagescale directory). The application is shown in Figure 4.5. This application
takes a sophisticated approach that combines concurrent processing with a
responsive GUI that reports progress and supports cancellation.

AsFigure 4.6illustrates, the application combines multithreading and multipro-
cessing. It has two threads of execution—the main GUI thread and a worker
thread—and the worker thread hands off its work to a pool of processes. This ar-
chitecture produces a GUI that is always responsive, because the GUI gets most
of the processor time for the core shared by the two threads, with the worker
(which does almost no work itself) getting the rest. And the worker’s processes
end up executing on their own cores (on a multi-core machine), so they don’t con-
tend with the GUI at all.

A comparable console program, imagescale-m.py, is around 130 lines of code.
(We reviewed this earlier; §4.1, 144 <«.) By comparison, the ImageScale GUI
application is spread over five files (see Figure 4.7, » 166), amounting to nearly
500 lines of code. The image scaling code is only around 60 lines; most of the
rest is GUI code.

In this section’s subsections we will review the code that is most relevant to
concurrent GUI programming and some of the other code to provide sufficient
context for understanding.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Case Study: A Concurrent GUI Application 165

. ImageScale E = @
Source Folder: | | Source... |
Target Folder: | Target... |
Max. Dimension: 250 - | Help | Scale
Choose or enter folders, then click Scale... | About | | Quit |
L ImageScale ’E‘ (5] @
Source Folder Chmarkiimages Source

Target Folder:

M. Dimension: | 250 ~ [mep |

Scaled evenmore.xpm [About |[gut |
L ImageScale =] @ (==
Source Folder. CAmarkimages [source.. |
TargetFolder Citmp [Torget.. |
Mazx. Dimension: 250 - | Help || <
Copied 0 Scaled 17 [About |[qut |

Figure 4.5 The ImageScale application before, during, and after scaling some images

A

main (GUI) thread

> worker thread

A

N process #1

N process #2

N process #3

NN process #4

Figure 4.6 The ImageScale application’s concurrency model (arrows indicate communication)
4.3.1. Creating the GUI

In this subsection we will review the most important code relating to the cre-
ation of the GUI and the GUTI’s concurrency support, quoting from the image-
scale/imagescale.pyw and imagescale/Main.py files.

import tkinter as tk

import tkinter.ttk as ttk

import tkinter.filedialog as filedialog
import tkinter.messagebox as messagebox

www.it-ebooks.info

http://www.it-ebooks.info/

166 Chapter 4. High-Level Concurrency in Python

These are the GUI-related imports in the Main.py module. Some Tkinter users
import using from tkinter import *, but we prefer these imports both to keep the
GUI names in their own namespaces and to make those namespaces convenient
—hence tk rather than tkinter.

imagescale.pyw

f

ImageScale.py > Main.py

f

About.py

_J J)

Globals.py

Figure 4.7 The ImageScale application’s files in context (arrows indicate imports)

def main():
application = tk.Tk()
application.withdraw() # hide until ready to show
window = Main.Window(application)
application.protocol("WM DELETE WINDOW", window.close)
application.deiconify() # show
application.mainloop()

This is the application’s entry point in imagescale.pyw. The actual function has
some additional code that isn’t shown, concerned with user preferences and
setting the application’s icon.

The key points to note here are that we must always create a top-level, normally
invisible tkinter.Tk object (the ultimate parent). Then we create an instance of
a window (in this case a custom tkinter.ttk.Frame subclass), and finally, we start
off the Tkinter event loop.

To avoid flicker or the appearance of an incomplete window, we hide the
application as soon as it is created (so the user never sees it at this point), and
only when the window has been fully created do we show it.

The tkinter.Tk.protocol() call is used to tell Tkinter that if the user clicks
the window’s X close button, the custom Main.Window.close() method should be
called.* This method is discussed later (§4.3.4, » 177).

*On OS X, the close button is usually a circular red button, with a black dot in the center if the
application has unsaved changes.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Case Study: A Concurrent GUI Application 167

GUI programs have a similar processing structure to some server programs, in
that once started, they simply wait for events to occur, to which they then re-
spond. In a server, the events might be network connections and communica-
tions, but in a GUI application, the events are either user-generated (such as key
presses and mouse clicks) or system-generated (such as a timer timing out or
a message saying that the window has been shown; for example, after another
application’s window that was on top of it is moved or closed). The GUI event
loopisillustrated in Figure 4.8. We saw examples of event handling in Chapter 3

(§3.1,74 <)
‘ Invoke]
Start Event Loop
NO Y
, A«t to
Process?)
Yes [Process j
equest to No
Terminate?
7 ™
\ Terminate J
Figure 4.8 A classic GUI event loop
PAD = "0.75m"

WORKING, CANCELED, TERMINATING, IDLE = ("WORKING", "CANCELED",
"TERMINATING", "IDLE")

class Canceled(Exception): pass
Here are some of the constants that are imported by ImageScale’s GUI modules
using from Globals import *. The PAD is a padding distance of 0.75mm used for
laying out the widgets (and for which the code isn’t shown). The other constants
are just enumerations identifying what state the application is in: WORKING,

CANCELED, TERMINATING, or IDLE. We will see how the Canceled exception is used
later on.

class Window(ttk.Frame):

def init (self, master):

www.it-ebooks.info

http://www.it-ebooks.info/

168 Chapter 4. High-Level Concurrency in Python

super(). init (master, padding=PAD)
self.create variables()
self.create ui()
self.sourceEntry.focus()

When a Window is created, it must call its base class’s init () method. Here,
we also create the variables that the program will use and the user interface
itself. At the end, we give the keyboard focus to the text entry box for the source
directory. This means that the user can type in the directory immediately, or
they could, of course, click the Source button to invoke a directory chooser dialog,
and set it that way.

We won’t show the create ui() method, nor the create widgets(), layout wid-
gets(), and create _bindings() methods that it calls, since they are concerned
only with creating the GUI and have nothing to do with concurrent program-
ming. (Of course, we will see examples of creating GUIs in Chapter 7 when we
introduce Tkinter programming.)

def create variables(self):
self.sourceText = tk.StringVar()
self.targetText = tk.StringVar()
self.statusText = tk.StringVar()
self.statusText.set("Choose or enter folders, then click Scale...")
self.dimensionText = tk.StringVar()
self.total = self.copied = self.scaled = 0
self.worker = None
self.state = multiprocessing.Manager().Value("i", IDLE)

We have shown only the most relevant lines of this method. The tkinter.String-
Var variables hold strings that are associated with user interface widgets. The
total, copied, and scaled variables are used to keep counts. The worker, initial-
ly None, is set to be a second thread once the user requests some processing to
be done.

If the user cancels (i.e., by clicking the Cancel button), as we will see later, the
scale or cancel() method is invoked. This method sets the application’s state
(which can be WORKING, CANCELED, TERMINATING, or IDLE). Similarly, if the user quits
the application (i.e., by clicking the Quit button), the close() method is called.
Naturally, if the user cancels the scaling or terminates the application in
the middle of scaling, we want to respond as quickly as possible. This means
changing the Cancel button’s text to Canceling... and disabling the button, and
stopping the worker thread’s processes from doing any more work. Once work
has stopped, the Scale button must be reenabled. This means that both threads
and all the worker processes must be able to regularly check the application’s
state to see if the user has canceled or quit.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Case Study: A Concurrent GUI Application 169

One way to make the application’s state accessible would be to use a state
variable and a lock. But this would mean that we would have to acquire the
lock before every access to the state variable and then release the lock. This
isn’t difficult using a context manager, but it is easy to forget to use the lock.
Fortunately, the multiprocessing module provides the multiprocessing.Value
class, which can hold a single value of a specific type that can be safely accessed
because it does its own locking (just like the thread-safe queues do). To create
a Value, we must pass it a type identifier—here, we have used "i" to signify an
int—and an initial value, in this case the IDLE constant since the application
begins in the IDLE state.

One point to notice is that instead of creating a multiprocessing.Value directly,
we created a multiprocessing.Manager and got that to create a Value for us. This
is essential for the correct working of the Value. (If we had more than one Value
or Array, we would create a multiprocessing.Manager instance and use it for each
one, but there was no need in this example.)

def create bindings(self):
if not TkUtil.mac():
self.master.bind("<Alt-a>", lambda *args:
self.targetEntry.focus())
self.master.bind("<Alt-b>", self.about)
self.master.bind("<Alt-c>", self.scale or cancel)

self.sourceEntry.bind("<KeyRelease>", self.update ui)
self.targetEntry.bind("<KeyRelease>", self.update ui)
self.master.bind("<Return>", self.scale or cancel)

When we create a tkinter.ttk.Button, we can associate a command (i.e., a func-
tion or method) that Tkinter should execute when the button is clicked. Thishas
been done in the create widgets() method (which isn’t shown). We also want to
provide support for keyboard users. So, for example, if the user clicks the Scale
button, or—on non-OS X platforms—presses Alt+C or Enter, the scale or cancel()
method will be invoked.

When the application starts up, the Scale button is initially disabled since
there is no source or target folder. But once these folders have been set—either
typed in or set via a directory chooser dialog invoked by the Source and Target
buttons—the Scale button must be enabled. To achieve this, we have an up-
date ui() method that enables or disables widgets depending on the situation,
and we call this method whenever the user types in the source or target text
entry boxes.

The TkUtil module is provided with the book’s examples. It contains various
utility functions—such as TkUtil.mac(), which reports whether the operating

www.it-ebooks.info

http://www.it-ebooks.info/

170 Chapter 4. High-Level Concurrency in Python

system is OS X—plus generic support for about boxes and modal dialogs, and
some other helpful functionality*

def update ui(self, *args):
guiState = self.state.value
if guiState == WORKING:
text = "Cancel"
underline = 0 if not TkUtil.mac() else -1
state = "!" + tk.DISABLED
elif guiState in {CANCELED, TERMINATING}:
text = "Canceling..."
underline = -1
state = tk.DISABLED
elif guiState == IDLE:
text = "Scale"
underline = 1 if not TkUtil.mac() else -1
state = ("!" + tk.DISABLED if self.sourceText.get() and
self.targetText.get() else tk.DISABLED)
self.scaleButton.state((state,))
self.scaleButton.config(text=text, underline=underline)
state = tk.DISABLED if guiState != IDLE else "!" + tk.DISABLED
for widget in (self.sourceEntry, self.sourceButton,
self.targetEntry, self.targetButton):
widget.state((state,))
self.master.update() # Make sure the GUI refreshes

This method is called whenever a change occurs that might affect the user
interface. It could be invoked directly or in response to an event—a key press
or button click that has been bound to it—in which case one or more additional
arguments are passed, which we ignore.

We begin by retrieving the GUI’s state (WORKING, CANCELED, TERMINATING, or IDLE).
Instead of creating a variable, we could have used self.state.value directly in
each if statement, but under the hood this must lock, so we are better off calling
it once to minimize the amount of time it is locked. It doesn’t matter if the state
changes during the course of this method’s execution, because such a change
would result in this method being reinvoked anyway.

If the application is working, then we want the scale button’s text to be Cancel
(since we are using this button as a start and a stop button), and to enable
it. On most platforms, an underlined letter indicates a keyboard accelerator
(e.g., the Cancel button can be invoked by pressing Alt+C), but this functionality

* Tkinter—or rather, the underlying Tcl/Tk 8.5—does account for some of the cross-platform
differences between Linux, OS X, and Windows. However, we are still left to handle many of the
differences—especially for OS X—ourselves.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Case Study: A Concurrent GUI Application 171

isn’t supported on OS X, so on that platform we set underlining off by using an
invalid index position.

Once we know the application’s state, we update the scale button’s text and
underline, and enable or disable some of the widgets as appropriate. And at the
end, we call the update() method to force Tkinter to repaint the window to reflect
any changes that we have made.

def scale or cancel(self, event=None):

if self.scaleButton.instate((tk.DISABLED,)):
return

if self.scaleButton.cget("text") == "Cancel":
self.state.value = CANCELED
self.update ui()

else:
self.state.value = WORKING
self.update ui()
self.scale()

The scale button is used to start scaling, or to cancel scaling since we change its
text depending on the application’s state. If the user presses Alt+C (on non-OS X
platforms) or Enter, or clicks the Scale or Cancel button (i.e., the scale button), this
method is called.

If the button is disabled, we safely do nothing and return. (A disabled button
cannot be clicked, of course, but the user could still invoke this method if they
used a keyboard accelerator such as Alt+C.)

If the button is enabled and its text is Cancel, we change the application’s state
to CANCELED and update the user interface. In particular, the scale button will be
disabled and its text changed to Canceling.... As we will see, during processing
we regularly check to see if the application’s state has changed, so we will soon
detect the cancellation and stop any further processing. When the cancel is com-
plete, the scale button will be enabled and have its text set to Scale. Figure 4.5
(165 <) shows the application before, during, and after scaling some images.
Figure 4.9 > 172) shows the application before, during, and after canceling.

If the button’s text is Scale, we set the state to WORKING, update the user interface
(so now the button’s text is Cancel), and start scaling.

def scale(self):
self.total = self.copied = self.scaled = 0
self.configure(cursor="watch")
self.statusText.set("Scaling...")
self.master.update() # Make sure the GUI refreshes
target = self.targetText.get()
if not os.path.exists(target):

www.it-ebooks.info

http://www.it-ebooks.info/

172 Chapter 4. High-Level Concurrency in Python

0s.makedirs(target)
self.worker = threading.Thread(target=ImageScale.scale, args=(
int(self.dimensionText.get()), self.sourceText.get(),
target, self.report progress, self.state,
self.when finished))
self.worker.daemon = True
self.worker.start() # returns immediately

We begin by setting all the counts to zero and changing the application’s cursor
to be a “busy” indicator. Then we update the status label and refresh the GUI so
that the user can see that scaling hasbegun. Next, we create the target directory
if it doesn’t already exist, including any missing intermediate directories.

With everything prepared, we now create a new worker thread. (Any previous
worker thread is no longer referenced so is available for garbage collection.)
We create the worker thread using the threading.Thread() function, passing
it the function we want it to execute in the thread and the arguments to pass
to the function. The arguments are the maximum dimension of the scaled
images; the source and target directories; a callable (in this case the bound self
.report_progress() method) to be called when each job is done; the application’s
state Value so that worker processes can regularly check to see if the user has
canceled; and a callable (here, the bound self.when finished() method) to call
when processing has finished (or been canceled).

"L ImageScale
Source Folder:

Target Folder:

Max. Dimension: 400

Scaled boosterxpm

. ImageScale

Source Folder C:\mark\images Source
Target Folder:

Max. Dimension: 400 - | Help |

Scaled boosterxpm | About | | Quit |

. ImageScale
Source Folder Chimarkiimages

Target Folder: Citmp

Max. Dimension: 400 - | Help || T

Copicd 2 Scaled 7 | About || Quit

Figure 4.9 The ImageScale application before, during, and after canceling

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Case Study: A Concurrent GUI Application 173

Once the thread has been created, we make it a deemon to ensure that it is
cleanly terminated if the user quits the application, and we start it running.

Aswe will see, the worker thread itself does almost no work so as to give the GUI
thread as much time on the core they share as possible. The ImageScale.scale()
function delegates all the worker’s work to multiple processes to execute on
other cores (on a multi-core machine) and leave the GUI responsive (although
with this architecture the GUI is still responsive, even on a single-core machine,
because the GUI thread still gets as much CPU time as the worker thread).

4.3.2. The ImageScale Worker Module

We have separated out the functions called by the worker thread into their own
module, imagescale/ImageScale.py, from which this subsection’s code quotes are
taken. This is not just a matter of organizational convenience but a necessity,
since we want these functions to be usable by the multiprocessing module, and
this means that they must be importable and any module data must be pickle-
able. Modules that contain GUI widgets or widget subclasses may not—and cer-
tainly should not—be imported in this way, since doing so can confuse the win-
dowing system.

The module has three functions, the first of which, ImageScale.scale(),is the one
executed by the worker thread.

def scale(size, source, target, report progress, state, when finished):
futures = set()
with concurrent.futures.ProcessPoolExecutor(
max_workers=multiprocessing.cpu_count()) as executor:
for sourceImage, targetImage in get jobs(source, target):
future = executor.submit(scale one, size, sourcelmage,
targetImage, state)
future.add done callback(report progress)
futures.add(future)
if state.value in {CANCELED, TERMINATING}:
executor.shutdown()
for future in futures:
future.cancel()
break
concurrent. futures.wait(futures) # Keep working until finished
if state.value '= TERMINATING:
when finished()

This function is executed by the self.worker thread created in the Main.Window.

scale() method. It uses a process pool (i.e., multiprocessing rather than mul-
tithreading) of processes to do the actual work. This ensures that the worker

www.it-ebooks.info

http://www.it-ebooks.info/

174 Chapter 4. High-Level Concurrency in Python

thread only has to call this function, while all the actual work is delegated to
separate processes.

For each source and target image retrieved from the ImageScale.get jobs()
function, a future is created to execute the ImageScale.scale one() function
with the maximum dimension (size), the source and the target images, and the
application’s state Value.

In the previous section, we waited for futures to finish using the concurrent. fu-
tures.as_completed() function, but here we add a callback function to each future
(the Main.Window.report progress() method) and use concurrent.futures.wait()
instead.

After each future is added we check to see if the user has canceled or quit, and if
they have we shut down the process pool and cancel all the futures. By default,
the concurrent.futures.Executor.shutdown() function returns immediately and
will only take effect once all the futures are finished or canceled.

Once all the futures have been created, this function blocks (the worker thread,
not the GUI thread) at the concurrent.futures.wait() call. This means that if
the user cancels after the futures have been created, we must now check for
cancellation when executing each future’s callable (i.e., inside the ImageScale.
scale one() function).

Once the processing has been finished or canceled, and so long as we aren’t
quitting, we call the when finished() callback that was passed in. Once the end
of the scale() method is reached, the thread is finished.

def get jobs(source, target):
for name in os.listdir(source):
yield os.path.join(source, name), os.path.join(target, name)

This little generator function yields 2-tuples of source and target image names
with full paths.

Result = collections.namedtuple(“Result", "name copied scaled")

def scale one(size, sourceImage, targetImage, state):

if state.value in {CANCELED, TERMINATING}:
raise Canceled()

oldImage = Image.Image.from file(sourceImage)

if state.value in {CANCELED, TERMINATING}:
raise Canceled()

if oldImage.width <= size and oldImage.height <= size:
oldImage.save(targetImage)
return Result(targetImage, 1, 0)

else:
scale = min(size / oldImage.width, size / oldImage.height)

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Case Study: A Concurrent GUI Application 175

newImage = oldImage.scale(scale)

if state.value in {CANCELED, TERMINATING}:
raise Canceled()

newImage.save(targetImage)

return Result(targetImage, 0, 1)

This is the function that does the actual scaling (or copying); it uses the cyImage
module (see §5.3, » 198) or falls back to the Image module (see §3.12, 124 <).
For each job, it returns a Result named tuple, or it raises the custom Canceled
exception if the user has canceled or quit.

If the user cancels or quits in the middle of loading, scaling, or saving, the
function won’t stop until the loading, scaling, or saving has finished. This means
that when the user cancels or quits, they might have to wait for n images to
complete loading, scaling, or saving, where n is the number of processes in the
process pool, before the cancellation will take effect. Checking for cancellation
or termination before each expensive non-cancelable computation (loading the
source image, scaling, saving) is the best we can do to make the application as
responsive as possible.

Whenever a result is returned (or a Canceled exception raised), the associ-
ated future finishes. And because we associated a callable with each future,
that callable is called, which in this case is the Main.Window.report progress()
method.

4.3.3. How the GUI Handles Progress

In this subsection, we will review the GUI methods that report progress to the
user. These methods are in imagescale/Main.py.

Since we have multiple processes executing futures, it is possible that two or
more might call report progress() at the same time. In fact, this should never
happen, because the callable associated with a future is called in the thread in
which the association was created—in this case, the worker thread—and since
we have only one such thread, in theory the method cannot be called more than
once at the same time. However, this is an implementation detail, and as such,
it would be poor practice to rely on it. So, much as we want to do high-level
concurrency and avoid mid-level features like locks, in this case we have no real
choice. Therefore, we have created a lock to ensure that the report progress()
method’s work is always serialized.

ReportLock = threading.Lock()

The lock is in Main.py, and it is used only in a single method.

www.it-ebooks.info

http://www.it-ebooks.info/

176 Chapter 4. High-Level Concurrency in Python

def report progress(self, future):
if self.state.value in {CANCELED, TERMINATING}:
return
with ReportLock: # Serializes calls to Window.report progress()
self.total += 1 # and accesses to self.total, etc.
if future.exception() is None:
result = future.result()
self.copied += result.copied
self.scaled += result.scaled
name = 0s.path.basename(result.name)
self.statusText.set("{} {}".format(
"Copied" if result.copied else "Scaled", name))
self.master.update() # Make sure the GUI refreshes

This method is called whenever a future finishes, whether normally or by raising
an exception. If the user has canceled, we bail out, since the user interface will
be updated by the when finished() method anyway. And if the user has quit,
there is no point in updating the user interface, since it will go away when the
application terminates.

Most of the method’s body is serialized by a lock, so if two or more futures finish
at the same time, only one will get to execute this part of the method at any
one time; the others will be blocked until the lock is released. (We don’t have
to worry about the self.state Value, since it is a synchronized type.) Since we
are in the context of a lock, we want to do as little work as possible to minimize
any blocking.

We begin by incrementing the total count of jobs. If the future raised an excep-
tion (e.g., Canceled), we do nothing more. Otherwise, we increment the copied
and scaled counts (by 0 and 1 or 1 and 0) and update the GUT’s status label. It
is very important that we do the GUI updates in the context of the lock. This is
to avoid the risk of the undefined behavior that might occur if two or more GUI
updates are made concurrently.

def when finished(self):
self.state.value = IDLE
self.configure(cursor="arrow")
self.update ui()
result = "Copied {} Scaled {}".format(self.copied, self.scaled)
difference = self.total - (self.copied + self.scaled)
if difference: # This will kick in if the user canceled
result += " Skipped {}".format(difference)
self.statusText.set(result)
self.master.update() # Make sure the GUI refreshes

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Case Study: A Concurrent GUI Application 177

This method is called by the worker thread once it has finished, whether by com-
pleting the processing or due to cancellation, but not in the case of termination.
Since this method is called only when the worker and its processes are finished,
there is no need to use the ReportLock. The method sets the application’s state
back to IDLE, restores the normal arrow cursor, and sets the status label’s text to
show the work done and whether the user canceled.

4.3.4. How the GUI Handles Termination

Terminating a concurrent GUI program isn’t simply a matter of quitting. We
must first attempt to stop any worker threads—and especially processes—so
that we terminate cleanly and don’t leave any zombie processes that tie up
resources (e.g., memory).

We handle termination in the imagescale/Main.py module’s close() method.
def close(self, event=None):

if self.worker is not None and self.worker.is alive():
self.state.value = TERMINATING
self.update ui()
self.worker.join() # Wait for worker to finish
self.quit()

If the user clicks the Quit button or the window’s X close button (or presses Alt+Q
on non-OS X platforms), this method is called. It saves some user settings (not
shown) and then checks to see if the worker thread is still working (i.e., if the
user has quit while scaling is in progress). If this is the case, the method sets
the application’s state to TERMINATING and updates the user interface so that
the user can see that the processing is being canceled. The change of state will
be detected by the worker thread’s processes (since they regularly check the
state Value), and as soon as they detect termination, they stop work. The call to
threading.Thread.join() blocks until the worker thread (and its processes) are
finished. If we didn’t wait, we might leave some zombie processes behind (i.e.,
processes that consume memory but are not doing anything useful). At the end,
we call tkinter.ttk.Frame.quit() to terminate the application.

The ImageScale application shows that it is possible to combine multithreading
and multiprocessing to produce a GUI application that does its work concur-
rently, while still remaining responsive to the user. Furthermore, the applica-
tion’s architecture supports progress reporting and cancelation.

Writing concurrent programs using high-level concurrency features such as
thread-safe queues and futures—and avoiding mid-level features such as locks
—is much easier than using low- and mid-level features. Nonetheless, we must

www.it-ebooks.info

http://www.it-ebooks.info/

178 Chapter 4. High-Level Concurrency in Python

be careful to make sure that our concurrent program actually outperforms
a nonconcurrent equivalent. For example, in Python, we should avoid using
multithreading for CPU-bound processing.

We must also be sure that we don’t accidentally mutable shared data. So, we
must always pass immutable data (e.g., numbers and strings), or pass mutable
data that is only ever read (e.g., it was written before the concurrency began),
or deep copy mutable data. However, as the ImageScale case study showed,
sometimes we really do need to share data. Fortunately, by using a managed
multiprocessing.Value (or multiprocessing.Array), we are able to do this without
explicit locking. Alternatively, we can create our own thread-safe classes. We
will see an example of this in Chapter 6 (§6.2.1.1, » 221).

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Python

§5.1. Accessing C Libraries with ctypes » 180
§5.2. Using Cython » 187

§5.2.1. Accessing C Libraries with Cython » 188

§5.2.2. Writing Cython Modules for Greater Speed » 193
§5.3. Case Study: An Accelerated Image Package » 198

Python is fast enough for the vast majority of programs. And in those cases
where it isn’t, we can often achieve sufficient speedups by using concurrency,
as we saw in the previous chapter. Sometimes, though, we really do need to do
faster processing. There are three key ways we can make our Python programs
run faster: we can use PyPy (pypy.org), which has a built-in JIT (Just in Time
compiler); we can use C or C++ code for time-critical processing; or we can
compile our Python (or Cython) code into C using Cython.*

Once PyPy is installed, we can execute our Python programs using the PyPy
interpreter rather than the standard CPython interpreter. This will give us
a significant speedup for long-running programs, since the cost of the JIT
compiling will be outweighed by the reduced runtime, but might produce slower
execution for programs with very short runtimes.

To use C or C++, whether our own code or third-party libraries, we must
make the code available to our Python program so that it can benefit from
the C or C++ code’s fast execution. For those who want to write their own
C or C++ code, a sensible approach is to make direct use of the Python C in-
terface (docs.python.org/3/extending). For those who want to make use of ex-
isting C or C++ code, there are several possible approaches. One option is to
use a wrapper that will take the C or C++ and produce a Python interface for
it. Two popular tools for this are SWIG (www.swig.org) and SIP (www.riverbank-
computing.co.uk/software/sip). Another option for C++ is to use boost::python
(www.boost.org/libs/python/doc/). A newer entry into this field is CFFI (C For-
eign Function Interface for Python), which despite its newness is being used by
the well-established PyPy (bitbucket.org/cffi/cffi).

*New Python compilers are becoming available; for example, Numba (humba.pydata.org) and Nuitka
(nuitka.net).

179

www.it-ebooks.info

http://www.swig.org
http://www.riverbankcomputing.co.uk/software/sip
http://www.riverbankcomputing.co.uk/software/sip
http://www.boost.org/libs/python/doc/
http://www.it-ebooks.info/

180 Chapter 5. Extending Python

Extending Python on OS X and Windows A

Although the examples in this chapter have been tested only on Linux,
they should all work fine on both OS X and Windows. (For many ctypes and
Cython programmers, these are their primary development platforms.) How-
ever, some platform-specific tweaks may be necessary. This is because where-
as most Linux systems use a packaged GCC compiler and system-wide li-
braries with the appropriate word size for the machine they are running on,
the situation for OS X and Windows systems is usually more complicated, or
at least a bit different.

On OS X and Windows, it is generally necessary to match the compiler and
word size (32- or 64-bit) used to build Python with that used for any external
shared libraries (.dylib or .DLL files) or to build Cython code. On OS X, the
compiler might be GCC but nowadays is most likely to be Clang; on Windows
it could be some form of GCC or a commercial compiler such as those sold
by Microsoft. Furthermore, OS X and Windows often have shared libraries
in application directories rather than system wide, and header files may
need to be obtained separately. So, rather than giving lots of platform- and
compiler-specific configuration information (which might quickly become
outdated with new compiler and operating system versions), we focus instead
on how to use ctypes and Cython, leaving readers on non-Linux systems to
determine their own system’s particular requirements when they are ready
to use these technologies.

All of the possibilities described so far are worth exploring, but in this chapter
we will focus on two other technologies: the ctypes package that comes as part of
Python’s standard library (docs.python.org/3/1library/ctypes.html) and Cython
(cython.org). Both of these can be used to provide Python interfaces for our own
or for third-party C and C++ code, and Cython can also be used to compile both
Python and Cython code into C to improve its performance—sometimes with
dramatic results.

5.1. Accessing C Libraries with ctypes

The standard library’s ctypes package provides access to our own or third-party
functionality written in C or C++ (or indeed any compiled language that uses
the C calling convention) and that has been compiled into a stand-alone shared
library (.so on Linux, .dylib on OS X, or .DLL on Windows).

For this section, and for the following section’s first subsection (§5.2.1, » 188),
we will create a module that provides Python access to some C functions in a
shared library. The library we will use is libhyphen.so, or, on some systems,
libhyphen.uno.so. (See the “Extending Python on OS X and Windows” sidebar.)
This library usually comes with OpenOffice.org or LibreOffice and provides a

www.it-ebooks.info

http://www.it-ebooks.info/

5.1. Accessing C Libraries with ctypes 181

function that, when given a word, produces a copy of the word with hyphens
inserted wherever they are valid. Although the function does what sounds like
a simple task, the function’s signature is quite complicated (which makes it ideal
as a ctypes example). And, in fact, there are three functions that we will need to
use: one for loading in a hyphenation dictionary, one for doing the hyphenation,
and one for freeing up resources when we have finished.

A typical pattern of use for ctypes is to load the library into memory, take
references to the functions we want to use, then call the functions as required.
The Hyphenatel.py module follows this pattern. First, let’s see how the module is
used. Here is an interactive session done at a Python prompt (e.g., in IDLE):

>>> import o0s

>>> import Hyphenatel as Hyphenate

>>>

>>> # Locate your hyphx.dic files

>>> path = "/usr/share/hyph dic"

>>> if not os.path.exists(path): path = os.path.dirname(file)
>>> usHyphDic = os.path.join(path, "hyph en US.dic")

>>> deHyphDic = os.path.join(path, "hyph de DE.dic")

>>>

>>> # (Create wrappers so you don't have to keep specifying the dictionary
>>> hyphenate = lambda word: Hyphenate.hyphenate(word, usHyphDic)
>>> hyphenate de = lambda word: Hyphenate.hyphenate(word, deHyphDic)
>>>

>>> # Use your wrappers

>>> print(hyphenate("extraordinary"))

ex-traor-di-nary

>>> print(hyphenate de("aufergewchnlich"))

aulerge-wohn-1lich

The only function we use outside the module is Hyphenatel.hyphenate(), which
uses the library’s hyphenation function. Inside the module there are a couple of
private functions that access another couple of functions from the library. Inci-
dentally, the hyphenation dictionaries are in the format used by the open-source
TEX typesetting system.

All the code is in the Hyphenatel.py module. The three functions we need from
the library are:

HyphenDict *hnj hyphen load(const char *filename);

void hnj hyphen free(HyphenDict *hdict);

int hnj_hyphen_hyphenate2(HyphenDict *hdict, const char *word,
int word size, char *hyphens, char *hyphenated word, char ***rep,
int **pos, int **cut);

www.it-ebooks.info

http://www.it-ebooks.info/

182 Chapter 5. Extending Python

These signatures are taken from the hyphen.h header file. A * in C and C++
signifies a pointer. A pointer holds the memory address of a block of memory;
that is, of a contiguous block of bytes. The block may be as small as a single
byte but could be of any size; for example, 8 bytes for a 64-bit integer. Strings
typically take between 1 and 4 bytes per character (depending on the in-memory
encoding) plus some fixed overhead.

The first function, hnj _hyphen load(), takes a filename passed as a pointer to a
block of chars (bytes). This file must be a hyphenation dictionary in TgX format.
The hnj_hyphen load() function returns a pointer to a HyphenDict struct—a
complex aggregate object (rather like a Python class instance). Fortunately, we
don’t need to know anything about the internals of a HyphenDict, since we only
ever need to pass around pointers to them.

In C, functions that accept C-strings—that is, pointers to blocks of characters
or bytes—normally take one of two approaches: either they require just a
pointer, in which case they expect the last byte to be 0x00 ('\0') (that is, for the
C-string to be null-terminated), or they take a pointer and a byte count. The
hnj_hyphen load() function takes only a pointer, so the given C-string must be
null terminated. As we will see, if the ctypes.create string buffer() function is
passed a str, it returns an equivalent null-terminated C-string.

For every hyphenation dictionary that we load, we must eventually free it. (If
we don’t do this, the hyphenation library will stay in memory needlessly.) The
second function, hnj hyphen free(), takes a HyphenDict pointer and frees the
resources associated with it. The function has no return value. Once freed, such
a pointer must never be reused, just as we would never use a variable after it
has been deleted with del in Python.

The third function, hnj _hyphen hyphenate2(), is the one that performs the hy-
phenation service. The hdict argument is a pointer to a HyphenDict that has
been returned by the hnj_hyphen load() function (and that has not yet been freed
with the hnj_hyphen free() function). The word is the word we want to hyphenate
provided as a pointer to a block of UTF-8-encoded bytes. The word size is the
number of bytes in the block. The hyphens is a pointer to a block of bytes that we
don’t want to use, but we must still pass a valid pointer for it for the function to
work correctly. The hyphenated word is a pointer to a block of bytes long enough
to hold the original UTF-8-encoded word with hyphens inserted. (The library
actually inserts = characters as hyphens.) Initially, this block should hold all
0x00 bytes. The rep is a pointer to a pointer to a pointer to a block of bytes; we
don’t need this, but we must still pass a valid pointer for it. Similarly, pos and
cut are pointers to pointers to ints that we aren’t interested in, but we must still
pass valid pointers for them. The function’s return value is a Boolean flag, with
1 signifying failure and 0 signifying success.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1. Accessing C Libraries with ctypes 183

Now that we know what we want to wrap, we will review the Hyphenatel.py
module’s code (as usual, omitting the imports), starting with finding and loading
the hyphenation shared library.

class Error(Exception): pass

_libraryName = ctypes.util.find library("hyphen")
if libraryName is None:

_libraryName = ctypes.util.find library("hyphen.uno")
if libraryName is None:

raise Error("cannot find hyphenation library")

_LibHyphen = ctypes.CDLL(libraryName)

We begin by creating an exception class, Hyphenatel.Error, so that users of our
module can distinguish between module-specific exceptions and more general
ones like ValueError. The ctypes.util.find library() function looks for a shared
library. On Linux it will prefix the given name with lib and add an extension of
.50, so the first call will look for libhyphen.so in various standard locations. On
0SX, it will look for hyphen.dylib, and on Windows, for hyphen.dl1. This library is
sometimes called libhyphen.uno.so, so we search for this if it wasn’t found under
the original name. And if we can’t find it, we give up by raising an exception.

If the library is found, we load it into memory using the ctypes.(DLL() func-
tion and set the private LibHyphen variable to refer to it. For those wanting
to write Windows-only programs that access Windows-specific interfaces, the
ctypes.0leDLL() and ctypes.WinDLL() functions can be used to load Windows API
libraries.

Once the library is loaded, we can create Python wrappers for the library func-
tions we are interested in. A common pattern for this is to assign a library
function to a Python variable, and then specify the types of the arguments (as
a list of ctypes types) and the return type (as a single ctypes type) that the func-
tion uses.

If we specify the wrong number or types of arguments, or the wrong return type,
our program will crash! The CFFI package (bitbucket.org/cffi/cffi) is more
robust in this respect and also works much better with the PyPy interpreter
(pypy.org) than ctypes.

_load = LibHyphen.hnj hyphen load
_load.argtypes = [ctypes.c char p] # const char *filename
_load.restype = ctypes.c void p # HyphenDict *

Here, we have created a private module function, load(), that when called will

actually call the underlying hyphenation library’s hnj hyphen load() function.
Once we have a reference to the library function, we must specify its argument

www.it-ebooks.info

http://www.it-ebooks.info/

184 Chapter 5. Extending Python

and return types. Here, there is just one argument (of C type const char *),
which we can represent directly with ctypes.c char p (“C character pointer”).
The function returns a pointer to a HyphenDict struct. One way to handle this
would be to create a class that inherits ctypes.Structure to represent the type.
However, since we only ever have to pass this pointer around and never access
what it points to ourselves, we can simply declare that the function returns a
ctypes.c void p (“C void pointer”), which can point to any type at all.

These three lines (in addition to finding and loading the library in the first
place) are all we need to provide a load() method that will load a hyphenation
dictionary.

_unload = LibHyphen.hnj hyphen free
_unload.argtypes = [ctypes.c void p] # HyphenDict *hdict
_unload.restype = None

The code here follows the same pattern as before. The hnj hyphen free()
function takes a single argument, a pointer to a HyphenDict struct, but since we
only ever pass such pointers, we can safely specify a void pointer—providing we
always actually pass in a HyphenDict struct pointer. This function has no return
value; this is signified by setting its restype to None. (If we don’t specify a restype,
it is assumed that the function returns an int.)

_int p = ctypes.POINTER(ctypes.c_int)
_char_p p = ctypes.POINTER(ctypes.c char p)

_hyphenate = LibHyphen.hnj hyphen hyphenate2

_hyphenate.argtypes = [
ctypes.c_void p,
ctypes.c_char p,
ctypes.c_int, int word size
ctypes.c_char p, char *hyphens [not needed]

HyphenDict *hdict
#
#
#
ctypes.c_char p, # char *hyphenated word
#
#
#
C

const char *word

_char_p p, char xxxrep [not needed]

_int p, int *%pos [not needed]

_int p] int *xcut [not needed]
_hyphenate.restype = ctypes.c_int # int
This is the most complicated function we need to wrap. The hdict argument
is a pointer to a HyphenDict struct, which we specify as a C void pointer. Then
we have the word to be hyphenated, passed as a pointer to a block of bytes for
which we use a C character pointer. This is followed by the word size, a count
of the bytes that we specify as an integer (ctypes.c_int). Next, we have the
hyphens buffer that we don’t need, then the hyphenated word, again specified as
a C character pointer. There is no built-in ctypes type for a pointer to a pointer
to a character (byte), so we have created our own type, char p p, specifying it

www.it-ebooks.info

http://www.it-ebooks.info/

5.1. Accessing C Libraries with ctypes 185

as a pointer to a C character pointer. We have done a similar thing for the two
pointers to pointer to integers.

Strictly speaking, we don’t have to specify a restype, since the function’s return
type is an integer, but we prefer to be explicit.

We have created private wrapper functions for the hyphenation library’s func-
tions, since we want to insulate users of our module from the low-level details.
To this end, we will provide a single public function, hyphenate(), which will ac-
cept a word to be hyphenated, a hyphenation dictionary to use, and the hyphen-
ation character to use. For efficiency, we will only ever load any particular hy-
phenation dictionary once. And, of course, we will make sure that all hyphen-
ation dictionaries that have been loaded are freed at program termination.

def hyphenate(word, filename, hyphen="-"):
originalWord = word
hdict = get hdict(filename)
word = word.encode("utf-8")
word size = ctypes.c_int(len(word))
word = ctypes.create string buffer(word)
hyphens = ctypes.create string buffer(len(word) + 5)
hyphenated word = ctypes.create string buffer(len(word) * 2)
rep = char p p(ctypes.c char p(None))
pos = int p(ctypes.c_int(0))
cut = int p(ctypes.c_int(0))
if hyphenate(hdict, word, word size, hyphens, hyphenated word, rep,

pos, cut):
raise Error("hyphenation failed for '{}'".format(originalWord))
return hyphenated word.value.decode("utf-8").replace("=", hyphen)

The function begins by storing a reference to the word passed in to be hyphenat-
ed so that we can use it in an error message, if necessary. Then, we get the hy-
phenation dictionary: the private get hdict() function returns a pointer to the
HyphenDict struct that corresponds to the given filename. If the dictionary has
already been loaded, the pointer created at that time is returned; otherwise, the
dictionary is loaded for the first and only time, its pointer stored for later use,
and returned.

The word must be passed to the hyphenation function as a block of UTF-8-
encoded bytes, which is easily achieved using the str.encode() method. We
also need to pass the number of bytes the word occupies: we compute this and
convert the Python int into a C int. We can’t pass a raw Python bytes object to a
C function, so we create a string buffer (really a block of C chars) that contains
the word’s bytes. The ctypes.create string buffer() creates a block of C chars
based on a bytes object or of the given size. Although we don’t want to use the
hyphens argument, we must still properly prepare it,and the documentation says

www.it-ebooks.info

http://www.it-ebooks.info/

186 Chapter 5. Extending Python

that it must be a pointer to a block of C chars whose length is five more than
the length of the word (in bytes). So, we create a suitable block of chars. The
hyphenated word will be put into a block of C charsthatis passed to the function,
so we must make a block of sufficient size. The documentation recommends a
size twice that of the word’s size.

We don’t want to use the rep, pos, or cut arguments, but we must pass correct
values for them or the function won’t work. The rep is a pointer to a pointer to
a pointer to a block of C chars, so we have created a pointer to an empty block
(a null pointer in C, i.e., a pointer that points to nothing) and then assigned
a pointer to a pointer to this pointer to the rep variable. For the pos and cut
arguments, we have created pointers to pointers to integers of value 0.

Once all the arguments have been set up, we call the private hyphenate()
function (under the hood, we are really calling the hyphenation library’s
hnj hyphen hyphenate2() function) and raise an error if the function returns a
nonzero (i.e., failure) result. Otherwise, we extract the raw bytes from the hy-
phenated word using the value property (which returns a null-terminated bytes,
i.e., one whose last byte is 0x00). Then we decode the bytes using the UTF-8 en-
coding into a str and replace the hyphenation library’s = hyphens with the user’s
preferred hyphen (which defaults to -). This string is then returned as the hy-
phenate() function’s result.

Note that for C functions that use char * and sizes rather than null-terminated
strings, we can access the bytes using the raw property rather than the value
property.

_hdictForFilename = {}

def get hdict(filename):
if filename not in hdictForFilename:
hdict = load(ctypes.create string buffer(
filename.encode("utf-8")))
if hdict is None:
raise Error("failed to load '{}'".format(filename))
_hdictForFilename[filename] = hdict
hdict = hdictForFilename.get(filename)
if hdict is None:
raise Error("failed to load '{}'".format(filename))
return hdict

This private helper function returns a pointer to a HyphenDict struct, reusing
pointers to dictionaries that have already been loaded.

If the filename is not in the hdictForFilename dict, it is a new hyphenation
dictionary and must be loaded. Because the filename is passed as a C const
char * (i.e., is immutable), we can create and pass it as a ctypes string buffer

www.it-ebooks.info

http://www.it-ebooks.info/

5.1. Accessing C Libraries with ctypes 187

directly. If the load() function returns None the loading failed, and we report
this by raising an exception. Otherwise, we store the pointer for later use.

At the end, whether or not we loaded the hyphenation dictionary on this occa-
sion, we try to retrieve the corresponding pointer to it, which we then return.

def cleanup():
for hyphens in hdictForFilename.values():
_unload(hyphens)

atexit.register(cleanup)

The hdictForFilename dict holds pointers to all the hyphenation dictionaries
that we have loaded as its values. We must be sure to free all these before our
program terminates. We do this by creating a private cleanup() function that
calls our private unload() function for every hyphenation dictionary pointer
(and which itself calls the hyphenation library’s hnj hyphen free() function
under the hood). We don’t bother to clear the hdictForFilename dict at the end,
since cleanup() is only ever called on program termination (so the dict will be
deleted anyway). We ensure that cleanup() is called by registering it as an “at
exit” function using the standard library’s atexit module’s register() function.

We have now reviewed all the code needed to provide a hyphenate() function in
a module that accesses the hyphen library’s functions. Using ctypes takes some
care (e.g., setting argument types and initializing arguments) but opens up the
world of C and C++ functionality to our Python programs. One practical use of
ctypes is when we want to write some speed-critical code in C or C++ that we also
want to be in a shared library, so that it can be used both by Python (via ctypes)
and directly in our own C and C++ programs. The other main use is to access
C and C++ functionality in third-party shared libraries, although in most cases
we should be able to find a standard library or third-party module that already
wraps the shared library we are interested in.

The ctypes module offers a lot more sophistication and functionality than
we have the space to present here. And although it is harder to use than
CFFI or Cython, it may prove to be more convenient, since it comes standard
with Python.

5.2. Using Cython

Cython (cython.org) is described on its web site as a programming language
“that makes writing C extensions for the Python language as easy as Python
itself”. Cython can be used in three different ways. The first way is to use it to
wrap C or C++ code, just like ctypes, although arguably using Cython is easier,
especially for those familiar with C or C++. The second way is to compile our
Python code into fast C. This can be done in essence by changing a module’s

www.it-ebooks.info

http://www.it-ebooks.info/

188 Chapter 5. Extending Python

extension from .py to .pyx and compiling it. This alone should be sufficient to
achieve a 2x speedup for CPU-bound code. The third way is like the second,
only instead of leaving the code as is in the .pyx file, we Cythonize it; that is, we
take advantage of the language extensions offered by Cython so that it compiles
down to much more efficient C code. This can deliver 100 x or better speedups
for CPU-bound processing.

5.2.1. Accessing C Libraries with Cython

In this subsection, we will create the Hyphenate2 module, which provides exactly
the same functionality as the Hyphenatel.py module created in the previous
section, only this time we will use Cython rather than ctypes. The ctypes version
used a single file, Hyphenatel. py, but for Cython we need to create a directory into
which we will put four files.

The first file we need is Hyphenate2/setup.py. This tiny infrastructure file con-
tains a single statement that tells Cython where to find the hyphenation library
and what to build. The second file is Hyphenate2/ init .py. This file is an op-
tional convenience that contains a single statement that exports the public Hy-
phenate2.hyphenate() function and the Hyphenate2.Error exception. The third file
is Hyphenate2/chyphenate. pxd. This very small file is used to tell Cython about the
hyphenation library and the functions within it we wish to access. The fourth
file is Hyphenate2/Hyphenate.pyx. This is a Cython module that we will use to im-
plement the public hyphenate() function and its private helper functions. We will
review each of these files in turn.

distutils.core.setup(name="Hyphenate2",
cmdclass={"build ext": Cython.Distutils.build ext},
ext modules=[distutils.extension.Extension("Hyphenate",
["Hyphenate.pyx"], libraries=["hyphen"])])

Here is the content of the Hyphenate2/setup.py file, excluding the imports. It
makes use of Python’s distutils package* The name is optional. The cmdclass
must be given as shown. The first string given to the Extension() is the name we
want our compiled module to have (e.g., Hyphenate.so). This is followed by a list
of .pyx files that contain the code to compile and, optionally, a list of external C
or C++ libraries. For this example, the hyphen library is required, of course.

To build the extension, execute the following in the directory containing all the
files (e.g., Hyphenate2):

* It is probably best to install the Python distribute package > 0.6.28 or, better still, the setuptools
package > 0.7 (python-packaging-user-guide.readthedocs.org). A modern package tool is needed to
install many third-party packages, including some of those used in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

5.2. Using Cython 189

$ cd pipeg/Hyphenate2

$ python3 setup.py build_ext --inplace
running build ext

cythoning Hyphenate.pyx to Hyphenate.c
building 'Hyphenate' extension
creating build

creating build/temp.linux-x86 64-3.3

If we have multiple Python interpretersinstalled, we should give the full path to
the particular one we want to use. For Python 3.1, this will produce Hyphenate. so,
but for later versions a version-specific shared library will be created; for
example, Hyphenate. cpython-33m. so for Python 3.3.

from Hyphenate2.Hyphenate import hyphenate, Error

This is the complete Hyphenate2/ init .py file. We provide it as a small con-
venience to the user so that they can write, say, import Hyphenate2 as Hyphenate,
and then call Hyphenate.hyphenate(). Otherwise, the import would be, say, import
Hyphenate2.Hyphenate as Hyphenate.

cdef extern from "hyphen.h":
ctypedef struct HyphenDict:
pass

HyphenDict *hnj hyphen load(char *filename)

void hnj hyphen free(HyphenDict *hdict)

int hnj_hyphen_hyphenate2(HyphenDict *hdict, char *word,
int word size, char *hyphens, char *hyphenated word,
char *xxrep, int **pos, int **cut)

This is the Hyphenate2/chyphenate.pxd file. A .pxd file is required whenever we
want to access external shared C or C++ libraries inside Cython code.

The first line declares the name of the C or C++ header file that contains the
declarations of the functions and types we want to access. Then the body de-
clares these functions and types. Cython provides a convenient way to refer to a
C or C++ struct without having to declare all of its details. This is only allowed
if we only ever pass pointers to the struct and never access its fields directly
ourselves; this is commonly the case and certainly applies to the hyphenation
library. The function declarations are essentially just copied from the C or C++
header file, although we should drop the statement-terminating semicolons
from the end of each declaration.

Cython uses this .pxd file to create a bridge of C code between our compiled
Cython and the external library to which the .pxd file refers.

www.it-ebooks.info

http://www.it-ebooks.info/

190 Chapter 5. Extending Python

Now that we have created the setup.py file,the init .py file, and the chyphen-
ate.pxd file, we are ready to create the last file: Hyphenate.pyx. This file contains
Cython code; that is, Python with Cython extensions. We will start with the im-
ports and then look at each of the functions in turn.

import atexit
cimport chyphenate
cimport cpython.pycapsule as pycapsule

We need the standard library’s atexit module to ensure that loaded hyphenation
dictionaries are freed when the program terminates.

Cython files can import normal Python modules using import and, also, Cython
.pxd files (i.e., wrappers for external C libraries) using cimport. So, here, we
import chyphenate.pxd as the chyphenate module, and this provides us with the
chyphenate.HyphenDict type and the three functions in the hyphenation library.

We want to create a Python dict whose keys are hyphenation dictionary file-
names and whose values are pointers to chyphenate.HyphenDicts. However,
Python dicts can’t store pointers (they aren’t a Python type). Fortunately,
Cython provides us with a solution: pycapsule. This Cython module can encapsu-
late a pointer in a Python object, and the encapsulating object can, of course, be
stored in any Python collection. As we will see, pycapsule also provides a way of
extracting the pointer from the Python object.

def hyphenate(str word, str filename, str hyphen="-"):
cdef chyphenate.HyphenDict *hdict = get hdict(filename)
cdef bytes bword = word.encode("utf-8")
cdef int word size = len(bword)
cdef bytes hyphens = b"\x00" * (word size + 5)
cdef bytes hyphenated word = b"\x00" * (word size * 2)
cdef char xxrep = NULL
cdef int *pos = NULL
cdef int *cut = NULL
cdef int failed = chyphenate.hnj hyphen hyphenate2(hdict, bword,
word size, hyphens, hyphenated word, &rep, &pos, &cut)
if failed:
raise Error("hyphenation failed for '{}'".format(word))
end = hyphenated word.find(b"\x00")
return hyphenated word[:end].decode("utf-8").replace("=", hyphen)

This function is structurally the same as the ctypes version we created in the pre-
vious section (185 «). The most obvious difference is that we give explicit types
to all the arguments and to all the variables. This isn’t required by Cython, but
it does allow Cython to perform some optimizations to improve performance.

www.it-ebooks.info

http://www.it-ebooks.info/

5.2. Using Cython 191

The hdict is a pointer to a HyphenDict struct, and bword holds the UTF-8-encoded
bytes of the word we want to hyphenate. The word size int is easily created.
For the hyphens that we don’t actually use, we must still create a buffer (i.e., a
block of C chars) sufficiently large, and we do so very naturally by multiplying
a null byte by the required size. We use the same technique to create the
hyphenated word buffer.

We don’t use the rep, pos, or cut arguments, but it is essential that they are
passed correctly, or the function won’t work. In all three cases, we create them
using C pointer syntax (i.e., cdef char **xrep) using one less level of indirection
(one less pointer, i.e., one less *) than is actually needed. Then, in the call to the
function, we use the C address of operator (&) to pass their address, and this gives
us the one extra level of indirection. We can’t just pass a C null pointer (NULL) for
these arguments, because all of them are expected to be non-null pointers, even
if what they ultimately point to is null. Recall that, in C, NULL is a pointer that
points to nothing.

With all the arguments properly initialized, we call the function that is exported
by the Cython chyphenate module (in effect, from the chyphenate.pxd file). If the
hyphenation fails, we raise a normal Python exception. If the hyphenation suc-
ceeds, we return the hyphenated word. To do this, we must slice the hyphenat-
ed_word buffer up to the first null byte, then decode the sliced bytes as UTF-8 into
a str, and finally, replace the hyphenation library’s = hyphens with the hyphen
character the user specified (or the default of -).

_hdictForFilename = {}

cdef chyphenate.HyphenDict * get hdict(
str filename) except <chyphenate.HyphenDict*>NULL:
cdef bytes bfilename = filename.encode("utf-8")
cdef chyphenate.HyphenDict *hdict = NULL
if bfilename not in hdictForFilename:
hdict = chyphenate.hnj hyphen load(bfilename)
if hdict == NULL:
raise Error("failed to load '{}'".format(filename))
_hdictForFilename[bfilename] = pycapsule.PyCapsule New(
<void*>hdict, NULL, NULL)
capsule = hdictForFilename.get(bfilename)
if not pycapsule.PyCapsule IsValid(capsule, NULL):
raise Error("failed to load '{}'".format(filename))
return <chyphenate.HyphenDict*>pycapsule.PyCapsule GetPointer(capsule,
NULL)

This private function is defined using cdef rather than def; this means it is a

Cython function, not a Python function. After the cdef we specify the function’s
return type, in this case a pointer to a chyphenate.HyphenDict. Then we give the

www.it-ebooks.info

http://www.it-ebooks.info/

192 Chapter 5. Extending Python

name of the function as usual, followed by its arguments, usually with their
types. In this case there is just one string argument, the filename.

Since the return type is a pointer rather than a Python object (i.e., object),
it would not normally be possible to report exceptions to the caller. In fact,
any exception would simply result in a warning message being printed, but
otherwise the exception would be ignored. But we would like this function to be
able to raise Python exceptions. We have done this by specifying a return value
that indicates when an exception has occurred; in this case, a null pointer to a
chyphenate.HyphenDict.

The function begins by declaring a pointer to a chyphenate.HyphenDict whose
value is null (i.e., it safely points to nothing). We then see if the hyphenation
dictionary’s filename is in the hdictForFilename dict. If it isn’t, we must load
in a new hyphenation dictionary using the hyphen library’s hnj _hyphen load()
function that is available via our chyphenate module. If the load succeeds, a non-
null chyphenate.HyphenDict pointer is returned, and we cast this pointer to be a
void pointer (which can point to anything) and create a new pycapsule.PyCapsule
to store it in. The <type> Cython syntax is used to cast a value of one type to a
different C type in Cython. For example, the Cython <int>(x) converts an x val-
ue (which must be a number or a C char) to a C int. This is similar to Python’s
int(x) syntax, except that in Python the x could be a Python int or float—or a
str that held an integer (e.g., "123")—and returns a Python int.

The second argument to pycapsule.PyCapsule New() is a name to give to the
encapsulated pointer (as a C char *), and the third argument is a pointer to a
destructor function. We don’t want to set either, so we pass null pointers for both
of them. We then store the encapsulated pointer in the dict with the filename
as its key.

At the end, whether or not we loaded the hyphenation dictionary in this call,
we try to retrieve the capsule that contains a pointer to it. We must check
that the capsule contains a valid (i.e., not-null) pointer by passing the capsule
and its associated name to pycapsule.PyCapsule IsValid(). We pass null for the
name, because we didn’t name any of our capsules. If the capsule is valid, we
extract the pointer using the pycapsule.PyCapsule GetPointer() function—again,
passing the capsule and null for its name—and cast the pointer from a void
pointer back to being a chyphenate.HyphenDict pointer, which we then return.

def cleanup():
cdef chyphenate.HyphenDict *hdict = NULL
for capsule in _hdictForFilename.values():
if pycapsule.PyCapsule IsValid(capsule, NULL):
hdict = (<chyphenate.HyphenDictx>
pycapsule.PyCapsule GetPointer(capsule, NULL))
if hdict != NULL:
chyphenate.hnj hyphen free(hdict)

www.it-ebooks.info

http://www.it-ebooks.info/

5.2. Using Cython 193

atexit.register(cleanup)

When the program terminates, all functions registered with the atexit.regis-
ter() function are called. In this case, the function calls our module’s private
_cleanup() function. This function begins by declaring a pointer to a chyphen-
ate.HyphenDict whose value is null. Then it iterates over all the hdictForFile-
name dict’s values, each of which is a capsule containing a pointer to an unnamed
chyphenate.HyphenDict. For each valid capsule that has a not-null pointer, the
chyphenate.hnj _hyphen free() function is called.

The Cython wrapper for the hyphenation shared library is very similar to the
ctypes version, except that it needs its own directory and three tiny supporting
files. If we are only interested in providing Python access to existing C and
C++ libraries, ctypes alone is sufficient, although some programmers may find
Cython (or CFFI) easier to use. However, Cython also offers another facility: the
ability to write Cython—that is, Python with extentions—which can be com-
piled into fast-executing C. We’ll look at this in the next subsection.

5.2.2. Writing Cython Modules for Greater Speed

Most of the time, Python code executes as fast as we need it to, or its speed is lim-
ited by external factors (e.g., network latency) that no amount of code tweaking
can work around. However, for CPU-bound processing, it is possible to get the
speed of compiled C code while using Python syntax plus Cython extensions.

Before embarking on any kind of optimization, it is essential to profile the
code. Most programs spend most of their execution time in a small portion
of their code, so, no matter how much we optimize, if the optimization isn’t in
that part of the code, all the effort is in vain. Profiling lets us see exactly where
the bottlenecks are and makes it easy to target our optimizations to the code
that really needs them. It also makes it possible to measure the effects of our
optimizations by comparing the before and after profiles.

We noted in the Image module’s case study (§3.12, 124 <) that the smooth scaling
scale() method (131 <) wasn’t very fast. In this subsection, we will try to
optimize this method.

Scaling using Image.scale()...
18875915 function calls in 21.587 seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 21.587 21.587 <string>:1(<module>)
1 1.441 1.441 21.587 21.587 _init .py:305(scale)
786432 7.335 0.000 19.187 0.000 init .py:333(mean)
3145728 6.945 0.000 8.860 0.000 init .py:370(argb for color)
786432 1.185 0.000 1.185 0.000 init .py:399(color for _argb)
1 0.000 0.000 0.000 0.000 init .py:461(<lambda>)

www.it-ebooks.info

http://www.it-ebooks.info/

194 Chapter 5. Extending Python

1 0.000 0.000 0.002 0.002 init .py:479(create array)
1 0.000 0.000 0.000 0.000 init .py:75(init)

This is a profile of the method (excluding built-in functions that we can’t opti-
mize) as produced by the standard library’s cProfile module. (See the example’s
benchmark Scale.py program.) Over 21 seconds to scale a 2048 x 1536 (3145728
pixels) color photograph certainly isn’t fast, and it is easy to see where the time is
going: the mean() method and the static argh_for color() and color for argb()
methods.

We want to get a true speed comparison with Cython, so as a first step we copied
the scale() method and its helpers (_mean(), etc.) into the Scale/Slow.py module
and turned them into functions. We then profiled the result.

Scaling using Scale.scale slow()...
9438727 function calls in 14.397 seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 14.396 14.396 <string>:1(<module>)
1 1.358 1.358 14.396 14.396 Slow.py:18(scale)
786432 6.573 0.000 12.109 0.000 Slow.py:46(mean)
3145728 3.071 0.000 3.071 0.000 Slow.py:69(argb for color)
786432 0.671 0.000 0.671 0.000 Slow.py:77(color for argb)

Without the object-orientation overheads, the scale() function does half the
calls (nine million versus eighteen million), yet only achieves a 1.5x speedup.
Nonetheless, now that we have isolated the relevant functions, we are in a
position to produce an optimized Cython version to see how it compares.

We put the Cython code in the Scale/Fast.pyx module and used cProfile to
profile it scaling the same photograph as the previous two versions.

Scaling using Scale.scale fast()...
4 function calls in 0.114 seconds

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.114 0.114 <string>:1(<module>)
1 0.113 0.113 0.113 0.113 Scale.Fast.scale

The cProfile module can’t analyze the Scale.Fast.scale() method, because it
isn’t Python: it has been compiled into C. But no matter, since it produces a 189 x
speedup! Of course, scaling a single image might not be representative, but
tests on a wide range of images consistently produced speedups that were never
less than 130 x faster than the original method.

These impressive speedups were achieved as the result of many kinds of
optimization, some of which are specific to the scale() function and its helpers,

www.it-ebooks.info

http://www.it-ebooks.info/

5.2. Using Cython 195

and some of which are more generally applicable. Here are the most important
contributions to the Cython scale() function’s improved performance:

¢ Copying the original Python file (e.g.,Slow. py) to a Cython file (e.g., Fast.pyx)
produced a 2 x speedup.

¢ Changing all the private Python functions into Cython C functions pro-
duced an additional 3 x speedup.

* Using the C libc library’s round() function rather than the built-in Python
round() function resulted in an additional 4 x speedup.*

* Passing memory views rather than arrays produced an additional
3 x speedup.

Further smaller speed improvements were achieved by using specific types for
all variables, passing a struct rather than a Python object, making small func-
tions inline, and doing some conventional optimizations such as precomputing
offsets.

Now that we have seen the kind of difference Cython can make, let’s review the
faster code; that is, the Fast.pyx module, and in particular, the Cythonized ver-
sions of the scale() function and its helper functions mean(), argb for color()
and color for argb().

The original Image.scale() method was discussed earlier (131 <), although the
function shown here is a Cython version of the Slow.py module’s Scale.Slow.
scale() function. Exactly the same applies to the mean() function (132 <) and
the argb for color() function (133 <). The code in the methods and functions is
almost identical. The only differences between them is that the methods access
the pixel data via self and call other methods, while the functions pass the pixel
data explicitly and call other functions.

We will begin with the Scale/Fast.pyx file’s imports and supporting declara-
tions.

from libc.math cimport round
import numpy

cimport numpy

cimport cython

We begin by importing the C libc library’s round() function to replace the built-
in Python round() function. We could, of course, have done cimport libc.math
and then used libc.math.round() for the C function and round() for the Python
function, if we wanted both. Then we import NumPy plus the numpy.pxd module
supplied with Cython, which gives Cython access to NumPy at the C level. For

*These two functions are not always interchangeable, since they have different behavior. However,
they behave the same as used in the scale() and mean() functions.

www.it-ebooks.info

http://www.it-ebooks.info/

196 Chapter 5. Extending Python

the Cython scale() function we have decided to require NumPy, since this makes
sense if we want fast array processing. We also import the Cython cython.pxd
module for some of the decorators it provides.

_DTYPE = numpy.uint32
ctypedef numpy.uint32 t DTYPE t

cdef struct Argb:
int alpha
int red
int green
int blue

DEF MAX_COMPONENT = OxFF

The first two lines here are used to create two types—the Python DTYPE and
the C _DTYPE t—both of which are aliases for NumPy unsigned 32-bit integers.
Then we create a C struct called Argb, which consists of four named integers.
(This is the C equivalent of Argb = collections.namedtuple("Argbh", "alpha red
green blue")). We also create a C constant using a Cython DEF statement.

@cython.boundscheck(False)
def scale(DTYPE t[:] pixels, int width, int height, double ratio):
assert 0 < ratio < 1
cdef int rows = <int>round(height * ratio)
cdef int columns = <int>round(width * ratio)
cdef DTYPE t[:] newPixels = numpy.zeros(rows * columns, dtype= DTYPE)
cdef double yStep = height / rows
cdef double xStep = width / columns
cdef int index = 0
cdef int row, column, y0, yl, x0, x1
for row in range(rows):
y0 = <int>round(row * yStep)
yl = <int>round(y0 + yStep)
for column in range(columns):
x0 = <int>round(column * xStep)
x1 = <int>round(x0 + xStep)
newPixels[index] = mean(pixels, width, height, x0, y@, x1, yl)
index += 1
return columns, newPixels

The scale() function uses the same algorithm as Image.scale(), only it takes a
one-dimensional array of pixels as its first argument, followed by the image’s di-
mensions and the scaling ratio. We have switched off bounds checking, although
doing so didn’t improve performance in this case. The pixels array is passed as
a memory view; this is more efficient than passing numpy.ndarrays and incurs

www.it-ebooks.info

http://www.it-ebooks.info/

5.2. Using Cython 197

no Python-level overhead. Of course, there are other optimizations possible for
graphics programming—for example, ensuring that memory is aligned at spe-
cific byte boundaries—but our focus here is on Cython in general rather than
graphics in particular.

As we mentioned earlier, the <type> syntax is used to cast one type to another
in Cython. The creation of the variables is essentially the same as for the
Image.scale() method, only here we use C data types (int for integers and double
for floating-point numbers). We can still use our normal Python syntax; for
example, for ... in loops.

@cython.cdivision(True)

@cython.boundscheck(False)

cdef DTYPE t mean(DTYPE t[:] pixels, int width, int height, int x@,
int yo, int x1, int y1):

cdef int alphaTotal = 0
cdef int redTotal = 0
cdef int greenTotal = 0

cdef int blueTotal = 0
cdef int count = 0
cdef int y, x, offset
cdef Argb argb
for y in range(y0, yl):
if y >= height:
break
offset = y * width
for x in range(x0, x1):
if x >= width:
break
argb = argb for color(pixels[offset + x])
alphaTotal += argb.alpha
redTotal += argb.red
greenTotal += argb.green
blueTotal += argb.blue
count += 1
cdef int a = <int>round(alphaTotal / count)
cdef int r = <int>round(redTotal / count)
(
(

cdef int g = <int>round(greenTotal / count)
cdef int b = <int>round(blueTotal / count)
return color for argb(a, r, g, b)

The color components for each pixel in the scaled image are the average of the

color components of the pixels in the original image that the pixel must repre-
sent. The original pixels are efficiently passed as a memory view, followed by

www.it-ebooks.info

http://www.it-ebooks.info/

198 Chapter 5. Extending Python

the original image’s dimensions and the corners of a rectangular region whose
pixels’ color components must be averaged.

Rather than performing the calculation (y x width) + x for every pixel, we
compute the first part (as offset) once per row.

Incidentally, by using the @cython.cdivision decorator, we told Cython to use C’s
/ operator rather than Python’s, to make the function slightly faster.

cdef inline Argb argb for color(DTYPE t color):
return Argb((color >> 24) & MAX COMPONENT,
(color >> 16) & MAX_COMPONENT, (color >> 8) & MAX COMPONENT,
(color & MAX_ COMPONENT))

This function is inlined, which means that instead of the overhead of a function
call, its body will be inserted at the place it is called (in the mean() function) to
make it as fast as possible.

cdef inline DTYPE t color for argb(int a, int r, int g, int b):
return (((a & MAX COMPONENT) << 24) | ((r & MAX COMPONENT) << 16) |
((g & MAX COMPONENT) << 8) | (b & MAX COMPONENT))

This function is also inlined to improve performance, since it is called once per
scaled pixel.

The Cython inline directive is a request that is normally honored only for
small simple functions like those used here. Note, also, that although inlining
improved performance in this example, sometimes it can degrade performance.
This can happen if the inlined code uses up too much of the processor’s cache.
As always, we should profile before and after applying each optimization on the
machine or machines we plan to deploy on so that we can make an informed
decision about whether to keep the optimization.

Cython has far more features than were needed for this example and has exten-
sive documentation. Cython’s main disadvantage is that it requires a compiler
and supporting tool chain on every platform that we wish to build our Cython
modules on. But once the tools are in place, Cython can deliver incredible
speedups for CPU-bound code.

5.3. Case Study: An Accelerated Image Package

In Chapter 3, we did a case study of the pure Python Image module (§3.12,
124 «). In this section, we will very briefly review the cyImage module, a Cython
module that offers most of the functionality of the Image module but which
executes much faster.

www.it-ebooks.info

http://www.it-ebooks.info/

5.3. Case Study: An Accelerated Image Package 199

Table 5.1 Cython image scaling speed comparisons

Program Concurrency Cython Secs Speedup
imagescale-s.py None No 780 Baseline
imagescale-cy.py None Yes 88 8.86x
imagescale-m.py 4 processes in a process pool No 206 3.79%
imagescale.py 4 processes in a process pool Yes 23 3391x

The two key differences between Image and cyImage are, first, that the former
automatically imports whatever image-format-specific modules are available,
whereas the latter has a fixed set of format-specific modules, and second, that
cyImage requires NumPy, whereas Image will use NumPy if it is available and
will fall back to array if it isn’t.

Table 5.1 shows how using the Cython cyImage module compares with using the
Python Image module in the image-scale programs. But why does using Cython
only deliver an 8 x speedup (per core), rather than the 130x speedup that the
Cython scale() function delivers? Essentially, once we use Cython for scaling,
the scaling takes almost no time at all, but the original images still have to be
loaded and the scaled images saved. Cython doesn’t deliver much speedup for
file handling, because Python’s file handling (since Python 3.1) is already done
in fast C. So, we have changed the performance profile from one where scaling
was a bottleneck to one where loading and saving are bottlenecks, and ones we
can’t do much about.

To create the cyImage module, the first step is to create a cyImage directory and
copy the Image directory’s modules into it. The second step is to rename those
modules that we want to Cythonize: in this case, init .py to Image.pyx, Xbm.py
to Xbm. pyx, and Xpm. py to Xpm.pyx. We also need to create anew init .py anda
setup.py file.

Experimentation showed that replacing the body of the Image.Image.scale()
method with the Scale.Fast.scale() function’s code, and similarly Image.Image.
_mean() with Scale.Fast. mean(), resulted in a very disappointing speedup.
The problem seems to be that Cython can speed up functions a lot more than
methods. In view of this, we copied the Scale.Fast.pyx module into the cyImage
directory and renamed it as Scale.pyx. Then we deleted the Image.Image. mean()
method and changed the Image.Image.scale() method so that it passes on all of
its work to the Scale.scale() function. This produced the 130x speedup we
were expecting, although, of course, the overall speedup was much less, as noted
earlier.

try:
import cyImage as Image

www.it-ebooks.info

http://www.it-ebooks.info/

200 Chapter 5. Extending Python

except ImportError:
import Image

Although cyImage isn’t a complete replacement for Image (it has no PNG support
and requires NumPy), for those cases where it is sufficient, we can use this
import pattern to use it where possible.

distutils.core.setup(name="cyImage",
include dirs=[numpy.get include()],
ext modules=Cython.Build.cythonize("*.pyx"))

This is the body of the cyImage/setup.py file, excluding the imports. It tells
Cython where to find the NumPy header files and to build all the .pyx files it
finds in the cyImage directory.

from cyImage.cyImage.Image import (Error, Image, argb for color,
rgb_for color, color for argbh, color for rgb, color for name)

In the Image module, we put all the generic functionality into Image/ init .py,
but for cyImage, we have put this functionality into cyImage/Image.pyx and created
this one-statement cyImage/ init .py file. All this file does is import various
compiled objects—an exception, a class, and some functions—and make them
available directly as, say, cyImage.Image.from file(), cyImage.color for name(),
and so on. Because we use an as clause when importing, we end up being able to
write Image.Image.from file(), Image.Image.Image(), etc.

We won'’t review the .pyx files, since we have seen in the previous subsection
how Python code can be turned into Cython code. However, we will review the
imports used by the cyImage/Image.pyx file and the new cyImage.Image.scale()
method.

import sys

from libc.math cimport round

from libc.stdlib cimport abs

import numpy

cimport numpy

cimport cython

import cyImage.cyImage.Xbm as Xbm
import cyImage.cyImage.Xpm as Xpm
import cyImage.cyImage. Scale as Scale
from cyImage.Globals import *

We have chosen to use the C round() and abs () functions rather than the Python

versions. And rather than doing dynamic imports, as we did for the Image
module, here we directly import the image-format-specific modules (i.e., cyIm-

www.it-ebooks.info

http://www.it-ebooks.info/

5.3. Case Study: An Accelerated Image Package 201

age/Xbm.pyx and cyImage/Xpm.pyx or, really, the shared C libraries that Cython
compiles them into).

def scale(self, double ratio):
assert 0 < ratio <1
cdef int columns
cdef DTYPE t[:] pixels
columns, pixels = Scale.scale(self.pixels, self.width, self.height,
ratio)
return self.from data(columns, pixels)

This is the complete cyImage.Image.scale() method. It is tiny because it passes
all the work onto the cyImage. Scale.scale() function (which is a copy of the
Scale.Fast.scale() function we saw in the previous subsection; §5.2.2, 193 «.)

Using Cython isn’t as convenient as using pure Python, so to justify the extra
work, we should begin by profiling our Python code to see where the bottlenecks
are. If the hotspots are for file I/O or due to network latency, Cython is unlikely
to help much (and we could consider using concurrency). But if the hotspots are
for CPU-bound code, we might achieve worthwhile speedups with Cython, so we
should begin by installing Cython and setting up our compiler tool chain.

Having profiled and identified what we want to optimize, it is best to separate
out the slow code into its own module and profile the program again to make sure
we have correctly isolated the problem code. Next, we should copy and rename
the module we want to Cythonize (i.e., from . py to . pyx) and create a suitable set-
up.py file (and possibly a convenience _init .py file). Again, we should profile,
this time to see if Cython is able to produce the expected 2x speedup. Now we
can go through repeated cycles of Cythonizing the code and profiling it: declar-
ing types, using memory views, and replacing the bodies of slow methods with
calls to Cythonized functions. After each optimization cycle, we can roll back
useless changes and keep those that improve performance, until we achieve the
level of performance we need or run out of optimizations to try.

Donald Knuth said, “We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil” (“Structured Program-
ming with go to Statements”, ACM Journal Computing Surveys Vol.6, N°4,
December 1974, p.268). Furthermore, no amount of optimization will overcome
the use of the wrong algorithm. But, if we have used the right algorithms, and
profiling has revealed bottlenecks, ctypes and Cython are good examples of tools
that can speed up CPU-bound processing.

Accessing functionality in libraries that use the C calling convention via ctypes
or Cython allows us to write high-level Python programs that make use of fast,
low-level code. Furthermore, we can write our own C or C++ code and access
it using ctypes, Cython, or directly with the Python C interface. If we want

www.it-ebooks.info

http://www.it-ebooks.info/

202 Chapter 5. Extending Python

to improve CPU-bound performance, using concurrency will, at best, give us
speedups proportional to the number of cores. But using fast compiled C may
produce 100 x speedups compared with pure Python. Cython gives us the best of
both Python and C: Python’s convenience and syntax with C’s speed and access
to C libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

High-Level
Networking in
Python

§6.1. Writing XML-RPC Applications » 204
§6.1.1. A Data Wrapper » 205
§6.1.2. Writing XML-RPC Servers » 208
§6.1.3. Writing XML-RPC Clients » 210
§6.2. Writing RPyC Applications » 219
§6.2.1. A Thread-Safe Data Wrapper » 220
§6.2.2. Writing RPyC Servers » 225
§6.2.3. Writing RPyC Clients » 227

The Python standard library has excellent support for networking all the
way from low to high level. Low-level support is provided by modules such as
socket, ssl, asyncore, and asynchat, and mid-level support by, for example, the
socketserver module. Higher-level support is provided by the many modules
that support various Internet protocols, including, most notably, the http and
urllib modules.

There are also a number of third-party modules that support networking,
including Pyro4 (Python remote objects; packages.python.org/Pyro4), PyZMQ
(Python bindings for the C-based 0MQ library; zeromq.github.com/pyzmg), and
Twisted (twistedmatrix.com). For those interested only in HTTP and HTTPS, the
third-party requests package (python-requests.org) should be easy to use.

In this chapter, we will look at two modules that provide support for high-
level networking: the xmlrpc module from the standard library (XML Re-
mote Procedure Call) and the third-party RPyC module (Remote Python Call;
rpyc.sourceforge.net). Both of these modules insulate us from a lot of low- and
mid-level details, and are powerful yet convenient to use.

This chapter presents one server, and two clients, for both xmlrpc and RPyC. The
servers and clients do essentially the same jobs, so that we can easily compare
the two approaches. The servers are concerned with managing meter readings
(e.g., for utility meters), and the clients are used by human meter readers to
request meters to read and to provide readings or reasons why a reading could
not be taken.

203

www.it-ebooks.info

http://www.it-ebooks.info/

204 Chapter 6. High-Level Networking in Python

The most important difference between the examples is that the xmlrpc server
is nonconcurrent, whereas the RPyC server is concurrent. As we will see, these
implementation differences have a significant impact on how we manage the
data for which the servers are responsible.

To keep the servers as simple as possible, we have separated out the manage-
ment of meter readings into a separate module (the nonconcurrent Meter.py and
the concurrency-supporting MeterMT.py). Another advantage of this separation
is that it makes it easy to see how to replace the meter module with a custom
module that manages quite different data, and therefore makes the clients and
servers much easier to adapt for other purposes.

6.1. Writing XML-RPC Applications

Doing network communications using low-level protocols means that for each
piece of data we want to pass, we must package up the data, send it, unpack it at
the other end, and finally perform some operation in response to the sent data.
This process can quickly become tedious and error-prone. One solution is to use
a remote procedure call (RPC) library. This allows us to simply send a function
name and arguments (e.g., strings, numbers, dates) and leaves the burden of
packing, sending, unpacking, and performing the operation (i.e., calling the
function) to the RPC library. A popular standardized RPC protocol is XML-RPC.
Libraries that implement this protocol encode the data (i.e., function names and
their arguments) in XML format and use HT'TP as a transport mechanism.

Python’s standard library includes the xmlrpc.server and xmlrpc.client mod-
ules, which provide support for the protocol. The protocol itself is programming-
language neutral, so even if we write an XML-RPC server in Python, it will be
accessible to XML-RPC clients written in any language that supports the proto-
col. It is also possible to write XML-RPC clients in Python that connect to XML-
RPC servers written in other languages.

The xmlrpc module allows us to use some Python-specific extensions—for
example, to pass Python objects—but doing so means that only Python clients
and servers can be used. This section’s example does not take advantage of
this feature.

A lighter-weight alternative to XML-RPC is JSON-RPC. This provides the same
broad functionality but uses a much leaner data format (i.e., it usually has far
fewer bytes of overhead that need to be sent over the network). Python’s library
includes the json module for encoding and decoding Python data into or from
JSON but does not provide JSON-RPC client or server modules. However, there
are many third-party Python JSON-RPC modules available (en.wikipedia.org/
wiki/JSON-RPC). Another alternative, for when we have only Python clients and
servers, is to use RPyC, as we will see in the next section (§6.2, » 219).

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Writing XML-RPC Applications 205

6.1.1. A Data Wrapper

The data that we want the clients and servers to handle is encapsulated by
the Meter.py module. This module provides a Manager class that stores meter
readings and provides methods for meter readers to login, acquire jobs, and
submit results. This module could easily be substituted with another one to
manage entirely different data.

class Manager:

Sessionld = 0
UsernameForSessionId = {}
ReadingForMeter = {}

The SessionID is used to provide every successful login with a unique ses-
sion ID.

The class also keeps two static dictionaries: one with session ID keys and user-
name values, the other with meter number keys and meter reading values.

None of this static data needs to be thread-safe, because the xmlrpc server is not
concurrent. The MeterMT.py version of this module supports concurrency, and
we will review how it differs from Meter.py in the next section’s first subsection
(§6.2.1, » 220).

In a more realistic context, the data is likely to be stored in a DBM file or
in a database, either of which could easily be substituted for the meter data
dictionary used here.

def login(self, username, password):

name = name_for credentials(username, password)
if name is None:

raise Error("Invalid username or password")
Manager.SessionId += 1
sessionld = Manager.SessionId
Manager.UsernameForSessionId[sessionId] = username
return sessionId, name

We want meter readers to login with a username and password before we allow
them to acquire jobs or submit results.

If the username and password are correct, we return a unique session ID for the
user and the user’s real name (e.g., to display in the user interface). Each suc-
cessful login is given a unique session ID and added to the UsernameForSessionId
dictionary. All the other methods require a valid session ID.

_User = collections.namedtuple(“User", "username sha256")

www.it-ebooks.info

http://www.it-ebooks.info/

206 Chapter 6. High-Level Networking in Python

def name for credentials(username, password):
sha = hashlib.sha256()
sha.update(password.encode("utf-8"))
user = User(username, sha.hexdigest())
return Users.get(user)

When this function is called, it computes the SHA-256 hash of the given pass-
word, and if the username and the hash match an entry in the module’s private
_Users dictionary (not shown), it returns the corresponding actual name; other-
wise, it returns None.

The Users dictionary has User keys consisting of a username (e.g., carol), an
SHA-256 hash of the user’s password, and real name values (e.g., “Carol Dent”).
This means that no actual passwords are stored.*

def get job(self, sessionId):
self. username for sessionid(sessionId)
while True: # Create fake meter
kind = random.choice("GE")
meter = "{}{}".format(kind, random.randint (40000,
99999 if kind == "G" else 999999))
if meter not in Manager.ReadingForMeter:
Manager.ReadingForMeter[meter] = None
return meter

Once the meter reader has logged in, they can call this method to get the
number of a meter for them to read. The method begins by checking that the
session ID is valid; if it isn’t, the username for sessionid() method will raise a
Meter.Error exception.

We don’t actually have a database of meters to read, so instead we create a
fake meter whenever a meter reader asks for a job. We do this by creating
a meter number (e.g., “E350718” or “G72168”) and then inserting it into the
ReadingForMeter dictionary with a reading of None as soon as we create a fake
meter that isn’t already in the dictionary.

def username for sessionid(self, sessionld):
try:
return Manager.UsernameForSessionId[sessionId]
except KeyError:
raise Error("Invalid session ID")

*The approach used here is still not secure. To make it secure we would need to add a unique “salt”
text to each password so that identical passwords didn’t produce the same hash value. A better
alternative is to use the third-party passlib package (code.google.com/p/passlib).

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Writing XML-RPC Applications 207

This method either returns the username for the given session ID or, in effect,
converts a generic KeyError for an invalid session ID into a custom Meter.Error.

It is often better to use a custom exception rather than a built-in one, because
then we can catch those exceptions we expect to get and not accidentally catch
more generic ones that, had they not been caught, would have revealed errorsin
our code’s logic.

def submit reading(self, sessionld, meter, when, reading, reason=""):
if isinstance(when, xmlrpc.client.DateTime):
when = datetime.datetime.strptime(when.value,
"o Y%m%dT%H : %M : %S ")
if (not isinstance(reading, int) or reading < 0) and not reason:
raise Error("Invalid reading")
if meter not in Manager.ReadingForMeter:
raise Error("Invalid meter ID")
username = self. username for sessionid(sessionId)
reading = Reading(when, reading, reason, username)
Manager.ReadingForMeter[meter] = reading
return True

This method accepts a session ID, a meter number (e.g., “G72168”), the date and
time when the reading took place, the reading value (a positive integer or -1if no
reading was obtained), and the reason why a reading couldn’t be taken (which
is a nonempty string for unsuccessful readings).

We can set the XML-RPC server to use built-in Python types, but this isn’t
done by default (and we haven’t done it), because the XML-RPC protocol is lan-
guage neutral. This means that our XML-RPC server could serve clients that
are written in any language that supports XML-RPC, not just Python clients.
The downside of not using Python types is that date/time objects get passed
as xmlrpc.client.DateTimes rather than as datetime.datetimes, so we must con-
vert these to datetime.datetimes. (An alternative would be to pass them as ISO-
8601-format date/time strings.)

Once we have prepared and checked the data, we retrieve the username for
the meter reader whose session ID was passed in, and use this to create a
Meter.Reading object. This is simply a named tuple:

Reading = collections.namedtuple("Reading”, "when reading reason username")
At the end, we set the meter’s reading. We return True (rather than the default
of None), since, by default, the xmlrpc.server module doesn’t support None, and

we want to keep our server language neutral. (RPyC can cope with any Python
return value.)

www.it-ebooks.info

http://www.it-ebooks.info/

208 Chapter 6. High-Level Networking in Python

def get status(self, sessionId):
username = self. username for sessionid(sessionId)
count = total = 0
for reading in Manager.ReadingForMeter.values():
if reading is not None:

total += 1
if reading.username == username:
count += 1

return count, total

After a meter reader has submitted a reading, they might want to know what
their status is; that is, how many readings they have made and the total number
of readings the server has handled since it started. This method calculates
these numbers and returns them.

def dump(file=sys.stdout):
for meter, reading in sorted(Manager.ReadingForMeter.items()):
if reading is not None:
print("{}={}e{}[{}]1{}".format(meter, reading.reading,
reading.when.isoformat()[:16], reading.reason,
reading.username), file=file)

This method is provided purely for debugging so that we can check that all the
meter readings we have done were actually stored correctly.

The features that the Meter.Manager provides—a login() method, and methods
to get and set data—are typical of a data-wrapping class that a server might
use. It should be straightforward to replace this class with one for completely
different data, while still using basically the same clients and servers shown in
this chapter. The only caveat is that if we were to use concurrent servers, we
must use locks or thread-safe classes for any shared data, as we will see later
(8§6.2.1, » 220).

6.1.2. Writing XML-RPC Servers

Thanks to the xmlrpc.server module, writing custom XML-RPC servers is very
easy. The code in this subsection is quoted from meterserver-rpc.py.

def main():
host, port, notify = handle_commandline()
manager, server = setup(host, port)
print("Meter server startup at {} on {}:{}{}".format(
datetime.datetime.now().isoformat()[:19], host, port, PATH))
try:
if notify:

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Writing XML-RPC Applications 209

with open(notify, "wb") as file:
file.write(b"\n")
server.serve forever()
except KeyboardInterrupt:
print("\rMeter server shutdown at {}".format(
datetime.datetime.now().isoformat()[:19]))
manager. dump()

This function gets the hostname and port number, creates a Meter.Manager and
an xmlrpc.server.SimpleXMLRPCServer, and starts serving.

If the notify variable holds a filename, the server creates the file and writes a
single newline to it. The notify filename is not used when the server is started
manually, but as we will see later on (§6.1.3.2, » 214), if the server is started by
a GUI client, the client passes the server a notify filename. The GUI client then
waits until the file has been created—at which point the client knows that the
server is up and running—and then the client deletes the file and commences
communication with the server.

The server can be stopped by entering Ctrl+C or by sending it an INT signal (e.g.,
kill -2 pid on Linux), which the Python interpreter transforms into a Keyboard-
Interrupt. If the server is stopped in this way, we make the manager dump its
readings for inspection. (Thisis the only reason this function needs access to the
manager instance.)

HOST
PORT

"localhost"
11002

def handle commandline():
parser = argparse.ArgumentParser(conflict handler="resolve")

parser.add argument("-h", "--host", default=HOST,
help="hostname [default %(default)s]")
parser.add argument('-p", "--port", default=PORT, type=int,

help="port number [default %(default)d]")
parser.add argument("--notify", help="specify a notification file")
args = parser.parse_args()
return args.host, args.port, args.notify

This function is only quoted because it uses -h (and --host) as options for setting
the hostname. By default, the argparse module reserves the -h (and --help)
options to tell it to display the command-line help and then terminate. We
want to take over the use of -h (but leave —-help), and we do this by setting the
argument parser’s conflict handler.

Unfortunately, when argparse was ported to Python 3, the old Python 2—style
% formatting was retained rather than being replaced with Python 3’s
str.format() braces. In view of this, when we want to include default values in

www.it-ebooks.info

http://www.it-ebooks.info/

210 Chapter 6. High-Level Networking in Python

help text, we must write %(default)t where t is the value’s type (d for decimal
integer, f for floating-point, s for string).

def setup(host, port):

manager = Meter.Manager()

server = xmlrpc.server.SimpleXMLRPCServer((host, port),
requestHandler=RequestHandler, logRequests=False)

server.register introspection functions()

for method in (manager.login, manager.get job, manager.submit reading,
manager.get status):

server.register function(method)
return manager, server

This function is used to create the data (i.e., meter) manager and the server.
The resister introspection functions() method makes three introspection
functions available to clients: system.listMethods(), system.methodHelp(), and
system.methodSignature(). (These aren’t used by the meter XML-RPC clients but
might be needed for debugging more complex clients.) Each of the manager
methods we want clients to have access to must be registered with the server,
and this is easily accomplished using the register function() method. (See the
“Bound and Unbound Methods” sidebar, 63 <.)

PATH = "/meter"

class RequestHandler(xmlrpc.server.SimpleXMLRPCRequestHandler):
rpc_paths = (PATH,)

The meter server doesn’t need to do any special request handling, so we
have created the most basic request handler possible: one that inherits xml-
rpc.server.SimpleXMLRPCRequestHandler and that has a unique path to identify
meter server requests.

Now that we have created a server, we can create clients to access it.

6.1.3. Writing XML-RPC Clients

In this subsection, we will review two different clients: one console based that
assumes that the server is already running, and the other a GUI client that will
use a running server or will start up its own server if there isn’t one running
already.

6.1.3.1. A Console XML-RPC Client

Before we dive into the code, let’s look at a typical interactive console session.
The meterserver-rpc.py server must have been started before this interaction
took place.

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Writing XML-RPC Applications 211

$./meterclient-rpc.py

Username [carol]:

Password:

Welcome, Carol Dent, to Meter RPC

Reading for meter G5248: 5983

Accepted: you have read 1 out of 18 readings
Reading for meter G72168: 2980q

Invalid reading

Reading for meter G72168: 29801

Accepted: you have read 2 out of 21 readings
Reading for meter E445691:

Reason for meter E445691: Couldn't find the meter
Accepted: you have read 3 out of 26 readings
Reading for meter E432365: 87712

Accepted: you have read 4 out of 28 readings
Reading for meter G40447:

Reason for meter G40447:

$

User Carol starts up a meter client. She’s prompted to enter her username
or press Enter to accept the default (shown in square brackets), so she presses
Enter. She is then prompted to enter her password, which she does without any
echo. The server recognizes her and welcomes her giving her full name. The
client then asks the server for a meter to read and prompts Carol to enter a
reading. If she enters a number, it is passed to the server and will normally be
accepted. If she makes a mistake (as she does with the second reading), or if the
reading is invalid for some other reason, she is notified and prompted to enter
the reading again. Whenever a reading (or reason) is accepted, she is told how
many readings she has made this session and how many readings have been
made in total this session (i.e., including the readings made by other people who
are using the server at the same time). If she presses Enter without entering a
reading, she is prompted to type in a reason why she can’t give a reading. And
if she doesn’t enter a reading or a reason, the client terminates.

def main():
host, port = handle commandline()
username, password = login()
if username is not None:
try:
manager = xmlrpc.client.ServerProxy(.format (
host, port, PATH))
sessionId, name = manager.login(username, password)
print(.format (name))
interact(manager, sessionld)

www.it-ebooks.info

http://www.it-ebooks.info/

212 Chapter 6. High-Level Networking in Python

except xmlrpc.client.Fault as err:
print(err)
except ConnectionError as err:
print("Error: Is the meter server running? {}".format(err))

This function begins by getting the server’s host name and port number (or their
defaults) and then obtains the user’s username and password. It then creates a
proxy (manager) for the Meter.Manager instance used by the server. (We discussed
the Proxy Pattern earlier; §2.7, 67 <.)

Once the proxy manager has been created, we use the proxy to login and
then begin interacting with the server. If no server is running, we will get a
ConnectionError exception (or a socket.error prior to Python 3.3).

def login():
loginName = getpass.getuser()
username = input("Username [{}]: ".format(loginName))
if not username:
username = loginName
password = getpass.getpass()
if not password:
return None, None
return username, password

The getpass module’s getuser() function returns the username for the currently
logged-in user, and we use this as the default username. The getpass() func-
tion prompts for a password and does not echo the reply. Both input() and get-
pass.getpass() return strings without trailing newlines.

def interact(manager, sessionlId):
accepted = True
while True:
if accepted:
meter = manager.get job(sessionId)
if not meter:
print("All jobs done")
break
accepted, reading, reason = get reading(meter)
if not accepted:
continue
if (not reading or reading == -1) and not reason:
break
accepted = submit(manager, sessionId, meter, reading, reason)

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Writing XML-RPC Applications 213

If the login is successful, this function is called to handle the client—server
interaction. This consists of repeatedly acquiring a job from the server (i.e., a
meter to read), getting a reading or reason from the user, and submitting the
data to the server, until the user enters neither a reading nor a reason.

def get reading(meter):
reading = input("Reading for meter {}: ".format(meter))
if reading:
try:
return True, int(reading), ""
except ValueError:
print("Invalid reading")
return False, 0, ""
else:
return True, -1, input("Reason for meter {}: ".format(meter))

This function must handle three cases: the user enters a valid (i.e., integer) read-
ing, or the user enters an invalid reading, or the user doesn’t enter a reading at
all. If no reading is entered, the user either enters a reason or no reason (in the
latter case signifying that they have finished).

def submit(manager, sessionld, meter, reading, reason):

try:
now = datetime.datetime.now()
manager.submit reading(sessionld, meter, now, reading, reason)
count, total = manager.get status(sessionId)
print("Accepted: you have read {} out of {} readings".format(

count, total))

return True

except (xmlrpc.client.Fault, ConnectionError) as err:
print(err)
return False

Whenever a reading or reason has been obtained, this function is used to submit
it to the server via the proxied manager. Once the reading or reason has been
submitted, the function asks for the status (i.e., how many readings has this
user submitted; how many readings have been submitted in total since the
server started).

The client code is longer than the server code but very straightforward. And
since we are using XML-RPC, the client could be written in any language that
supports the protocol. It is also possible to write clients that use different user
interface technologies, such as Urwid (excess.org/urwid) for Unix console user
interfaces or a GUI toolkit like Tkinter.

www.it-ebooks.info

http://www.it-ebooks.info/

214 Chapter 6. High-Level Networking in Python

6.1.3.2. A GUI XML-RPC Client

Tkinter GUI programming is introduced in Chapter 7, so those unfamiliar with
Tkinter might prefer to read that chapter first and then return here. In this
subsubsection, we will focus on only those aspects of the GUI meter-rpc. pyw pro-
gram that are concerned with interacting with the meter server. The program
is shown in Figure 6.1.

4 Meter—Carol Dent | = | @ (w234

% Meter—Login+~ | = || & |3 Meter ED82601

Username: carol Reading: -1 i‘

Dassword:] Reason:
ok || cance | | submit | [guit |

Accepted 87145 for E536874 | Read 4/23

Figure 6.1 The Meter XML-RPC GUI application’s login and main windows on Windows

class Window(ttk.Frame):

def init (self, master):
super(). init (master, padding=PAD)
self.serverPid = None
self.create variables()
self.create ui()
self.statusText.set("Ready...")
self.countsText.set("Read 0/0")
self.master.after(100, self.login)

When the main window is created, we set a server PID (Process ID) of None
and call the login() method 100 milliseconds after the main window has been
constructed. This allows Tkinter time to paint the main window, and before
the user has a chance to interact with it, an application modal login window
is created. An application modal window is the only window that the user can
interact with for a given application. This means that although the user can
see the main window, they cannot use it until they have logged in and the modal
login window has gone away.

class Result:

def init (self):
self.username = None
self.password = None
self.ok = False

This tiny class (from MeterLogin.py) is used to hold the results of the user’s
interaction with the modal login dialog window. By passing a reference to a

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Writing XML-RPC Applications 215

Result instance to the dialog, we can ensure that we are able to access what the
user entered even after the dialog has been closed and deleted.

def login(self):
result = MeterLogin.Result()
dialog = MeterLogin.Window(self, result)
if result.ok and self.connect(result.username, result.password):
self.get job()
else:
self.close()

This method creates a result object and then creates an application modal
login dialog window. The MeterLogin.Window() call shows the login window and
blocks until the window is closed. As long as this window is shown, the user
cannot interact with any other application window, so they must either enter a
username and password and click OK or cancel by clicking Cancel.

Once the user has clicked one of the buttons, the window is closed (and deleted).
If the user clicked OK (which is only possible if they entered a nonempty user-
name and a nonempty password), an attempt to connect to the server is made
and the first job obtained. If the user canceled the login or the connection failed,
the main window is closed (and deleted), and the application is terminated.

def connect(self, username, password):

try:

self.manager = xmlrpc.client.ServerProxy("http://{}:{}{}"
.format (HOST, PORT, PATH))

name = self.login to server(username, password)
self.master.title("Meter \u2014 {}".format(name))
return True

except (ConnectionError, xmlrpc.client.Fault) as err:
self.handle error(err)
return False

As soon as the user has entered their username and password, this method
is called. It begins by creating a proxy to the server’s Meter.Manager instance
and then attempts to login. After this, it changes the application’s title to the
application’s name, an em-dash (—, Unicode code point U+2014), and the user’s
name, and returns True.

If an error occurs, a message box is popped up with the error text and False is
returned.

def login to server(self, username, password):
try:
self.sessionId, name = self.manager.login(username, password)

www.it-ebooks.info

http://www.it-ebooks.info/

216 Chapter 6. High-Level Networking in Python

except ConnectionError:

self.start server()

self.sessionId, name = self.manager.login(username, password)
return name

If a meter server is already running, the initial connection attempt will succeed
and the session ID and user’s name will be obtained. However, if the attempt to
login fails due to a ConnectionError, the application assumes that the server isn’t
running and tries to start it, and then tries to login a second time. If the second
attempt fails, the ConnectionError is propagated to the caller (self.login()),
which catches it and presents the user with an error message box, after which
the application terminates.

SERVER = os.path.join(os.path.dirname(os.path.realpath(file)),
"meterserver-rpc.py")

This constant sets the server’s name with its full path. It assumes that the
server is in the same directory as the GUI client. Of course, it is more common
for a client to be on one machine and a server on another. However, some
applications are created in two separate parts—a server and a client—that are
expected to be on the same machine.

The two-part application design is useful when we want to completely isolate
an application’s functionality from its user interface. This approach has the
downsides that two executables must be supplied rather than one, and there is
some networking overhead, but this shouldn’t be noticeable by the user if the
client and server are on the same machine. The upsides are that the client and
server can be developed independently, and that it is much easier to port such
applications to new platforms, since the server can be written using platform-
independent code, and the porting work can focus almost entirely on the client.
It also means that new user-interface technologies can be taken advantage of
(e.g., a new GUI toolkit) purely by porting the client. Another potential benefit
is for finer-grained security; for example, the server can be made to run with spe-
cific and limited permissions, while the client can be run with the user’s permis-
sions.

def start server(self):

filename = os.path.join(tempfile.gettempdir(),
"M{}.$$$".format (random.randint (1000, 9999)))

self.serverPid = subprocess.Popen([sys.executable, SERVER,
"——host", HOST, "-—port", str(PORT), "——notify",
filename]) .pid

print("Starting the server...")

self.wait for server(filename)

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Writing XML-RPC Applications 217

The server is started using the subprocess.Popen() function. This particular
usage means that the subprocess (i.e., the server) is started without blocking.

If we were executing a normal program (i.e., a subprocess) that we expected to
terminate, we could wait for it to finish. But here we must start a server that
won’t terminate until our client does, so waiting isn’t possible. Furthermore, we
need to give the server a chance to start up, since we can’t attempt to login until
it is running. Our solution here is simple: we create a pseudo-random filename
and start the server, passing the filename as its notify argument. We can then
wait for the server to start up and create the notify file to let the client know that
the server is ready.

def wait for server(self, filename):
tries = 100
while tries:
if os.path.exists(filename):
0s.remove(filename)
break
time.sleep(0.1) # Give the server a chance to start
tries =1
else:
self.handle error("Failed to start the RPC Meter Server")

This method blocks (i.e., freezes) the user interface for up to ten seconds (100
tries x 0.1 seconds), although in practice the wait is almost always a fraction of
a second. As soon as the server creates the notify file, the client deletes the file
and resumes event processing; in this case, attempting to log the user in using
the credentials they gave, and then showing the main window ready for them
to enter meter readings. If the server fails to start, the while loop will finish
without a break, and its else clause will be executed.

Polling is not ideal, especially in a GUI application, but since we want a cross-
platform solution and the application cannot work without the server being
available, this represents the simplest reasonable approach we can take.

def get job(self):
try:
meter = self.manager.get job(self.sessionld)
if not meter:
messagebox.showinfo("Meter \u2014 Finished",
"All jobs done", parent=self)
self.close()
self.meter.set(meter)
self.readingSpinbox.focus()
except (xmlrpc.client.Fault, ConnectionError) as err:
self.handle error(err)

www.it-ebooks.info

http://www.it-ebooks.info/

218 Chapter 6. High-Level Networking in Python

Once the login to the server has succeeded (with the server started by the
application, if necessary, as part of this process), this method is called to get the
first job. The self.meter variable is of type tkinter.StringVar and is associated
with the label that shows the meter number.

def submit(self, event=None):
if self.submitButton.instate((tk.DISABLED,)):
return
meter = self.meter.get()
reading = self.reading.get()
reading = int(reading) if reading else -1
reason = self.reason.get()
if reading > -1 or (reading == -1 and reason and reason != "Read"):
try:
self.manager.submit reading(self.sessionId, meter,
datetime.datetime.now(), reading, reason)
self.after submit(meter, reading, reason)
except (xmlrpc.client.Fault, ConnectionError) as err:
self.handle error(err)

This method is called whenever the user clicks the Submit button—something
that the application allows only if the reading is nonzero or the reason
nonempty. The meter, reading (as an int), and reason are all obtained from the
user interface widgets and then submitted to the server via the proxied manager.
If the submitted reading is accepted, the after submit() method is called; other-
wise, the error is passed to the handle error() method.

def after submit(self, meter, reading, reason):
count, total = self.manager.get status(self.sessionId)
self.statusText.set("Accepted {} for {}".format(

reading if reading != -1 else reason, meter))

self.countsText.set("Read {}/{}".format(count, total))
self.reading.set(-1)
self.reason.set("")
self.get job()

This method asks the proxied manager for the current status and updates the
status and counts labels. It also resets the reading and reason and asks the
manager for the next job.

def handle error(self, err):

if isinstance(err, xmlrpc.client.Fault):
err = err.faultString

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Writing XML-RPC Applications 219

messagebox.showinfo("Meter \u2014 Error",
"{}\nIs the server still running?\n"
"“Try Quitting and restarting.".format(err), parent=self)

If an error occurs, this method is called. It displays the error in an application
modal message box with a single OK button.

def close(self, event=None):
if self.serverPid is not None:
print("Stopping the server...")
0s.kill(self.serverPid, signal.SIGINT)
self.serverPid = None
self.quit()

When the user closes the application, we check whether the application started
the meter server itself or used an already running server. In the former case,
the application cleanly terminates the server by sending it an interrupt (which
Python will turn into a KeyboardInterrupt exception).

The os.kill() function sends a signal (one of the signal module’s constants) to
the program with the given process ID. The function is Unix-only for Python 3.1
but works on both Unix and Windows from Python 3.2.

The console client, meterclient-rpc.py, is around 100 lines. The GUI client,
meter-rpc.pyw, is around 250 lines (plus about another 100 for the MeterLogin.py
login dialog window). Both are easy to use and highly portable, and, thanks
to Tkinter’s theme support, the GUI client looks native on both OS X and
Windows.

6.2. Writing RPyC Applications

If we are writing Python servers and Python clients, instead of using a verbose
protocol like XML-RPC, we can use a Python-specific protocol. There are many
packages that offer Python-to-Python remote procedure call, but for this sec-
tion we will use RPyC (rpyc.sourceforge.net). This module offers two modes of
use: the older “classic” and the newer “service-based”. We will use the service-
based approach.

By default, RPyC servers are concurrent, so we cannot use the nonconcurrent
data wrapper (Meter.py) from the previous section (§6.1.1, 205 <). Instead, we
will use a new MeterMT.py module. This introduces two new classes, ThreadSafe-
Dict and MeterDict, and has a modified Manager class that makes use of these
dictionaries rather than standard dicts.

www.it-ebooks.info

http://www.it-ebooks.info/

220 Chapter 6. High-Level Networking in Python

6.2.1. A Thread-Safe Data Wrapper

The MeterMT module contains a concurrency-supporting Manager class as well
as two thread-safe dictionaries. We will begin by looking at the Manager class’s
static data and the methods where it differs from the original Meter.Manager class
we saw in the previous section.

class Manager:

Sessionld = 0

SessionIdLock = threading.Lock()
UsernameForSessionId = ThreadSafeDict()
ReadingForMeter = MeterDict()

To support concurrency, the MeterMT.Manager class must use locks to serialize
access to its static data. For session IDs we use a lock directly, but for the two
dictionaries we use custom thread-safe dictionaries that we will review shortly.

def login(self, username, password):

name = name_for credentials(username, password)
if name is None:

raise Error("Invalid username or password")
with Manager.SessionIdLock:

Manager.SessionId += 1

sessionId = Manager.SessionId
Manager.UsernameForSessionId[sessionId] = username
return sessionId, name

This method differs from the original only in that we increment and assign the
static session ID within the context of alock. Without the lock, it would be possi-
ble for, say, thread A to increment the session ID, then for thread B to increment
it, and then for threads A and B to both read the same double-incremented value,
rather than each getting a unique session ID.

def get status(self, sessionld):
username = self. username for sessionid(sessionId)
return Manager.ReadingForMeter.status(username)

This method now passes almost all of its work onto a custom MeterDict.status()
method, which we will review further on.

def get job(self, sessionld):
self. username for sessionid(sessionId)
while True: # Create fake meter
kind = random.choice("GE")

www.it-ebooks.info

http://www.it-ebooks.info/

6.2. Writing RPyC Applications 221

meter = "{}{}".format(kind, random.randint (40000,
99999 if kind == "G" else 999999))
if Manager.ReadingForMeter.insert if missing(meter):
return meter

It is the last couple of lines of this method that differ from before. We want to
check if the fake meter is in the dictionary, and if it isn’t, we want to insert it
into the dictionary with an initial reading value of None. This will ensure that
it cannot be reused. Before, we did the check and insertion as two separate
statements, but we cannot do that in a concurrent context, because it is possible
that one or more other threads will execute between the two statements. So,
now, we pass on the work to a custom MeterDict.insert if missing() method
that returns whether the insertion took place.

def submit reading(self, sessionld, meter, when, reading,

reason=""):

if (not isinstance(reading, int) or reading < 0) and not reason:
raise Error("Invalid reading")

if meter not in Manager.ReadingForMeter:
raise Error("Invalid meter ID")

username = self. username for sessionid(sessionId)

reading = Reading(when, reading, reason, username)

Manager.ReadingForMeter[meter] = reading

This is very similar to the XML-RPC version, only now we don’t have to convert
the when date/time value, and we don’t need to return True, since an implicit
return of None is perfectly acceptable to RPyC.

6.2.1.1. A Simple Thread-Safe Dictionary

If we are using CPython (the standard version of Python implemented in C), in
theory, the GIL (Global Interpreter Lock) makes dicts seem thread-safe, because
the Python interpreter can only execute on one thread at a time (no matter how
many cores we have), soindividual method calls execute as atomic actions. How-
ever, this doesn’t help when we need to call two or more dict methods as a single
atomic action. And in any case, we should not rely on this implementation de-
tail; after all, other Python implementations (e.g., Jython and IronPython) don’t
have a GIL, so their dict methods cannot be assumed to execute atomically.

If we want a genuinely thread-safe dictionary, we must use a third-party one or
create one ourselves. Creating one isn’t difficult, since we can take an existing
dict and provide access to it via our own thread-safe methods. In this subsec-
tion, we will review the ThreadSafeDict, a thread-safe dictionary that provides a
subset of the dict interface that is sufficient to provide meter dictionaries.

www.it-ebooks.info

http://www.it-ebooks.info/

222 Chapter 6. High-Level Networking in Python

class ThreadSafeDict:

def init (self, *args, *xkwargs):
self. dict = dict(*args, *xkwargs)
self. lock = threading.Lock()

The ThreadSafeDict aggregates a dict and a threading.Lock. We didn’t want to
inherit dict, since we want to mediate all accesses to self. dict so that they are
always serialized (i.e., so that only one thread can ever access the self. dict at
a time).

def copy(self):
with self. lock:
return self. class (**xself. dict)

Python locks support the context manager protocol, so locking is simply a
matter of using a with statement, confident that the lock will be released when
it isn’t needed, even in the face of exceptions.

The with self. lock statement will block if any other thread holds the lock and
will only continue into the body of the block once the lock has been acquired;
that is, when no other threads hold the lock. This is why it is important to do as
little as possible as quickly as possible in the context of a lock. In this particular
case, the operation is expensive, but there isn’t any nice solution.

If a class implements a copy() method, the method is expected to return a copy
of the instance it is called on. We could not return self. dict.copy(), since
that produces a plain dict. Returning ThreadSafeDict (x*self. dict) would have
worked, except that it always returns a ThreadSafeDict, even from a subclass
instance (unless the subclass reimplemented the copy() method). The code
we have used here works both for ThreadSafeDicts and for subclasses. (See the
“Sequence and Mapping Unpacking” sidebar, 13 <.)

def get(self, key, default=None):
with self. lock:
return self. dict.get(key, default)

This method provides a faithful thread-safe implementation of the dict.get()
method.

def getitem (self, key):

with self. lock:
return self. dict[key]

This special method provides support for accessing dictionary values by key;
that is, value = d[key].

www.it-ebooks.info

http://www.it-ebooks.info/

6.2. Writing RPyC Applications 223

def setitem (self, key, value):
with self. lock:
self. dict[key] = value

This special method provides support for inserting items into the dictionary or
changing an existing item’s value using the syntax, d[key] = value.

def delitem (self, key):
with self. lock:
del self. dict[key]

Here is the special method that supports the del statement; that is, del d[key].

def contains_ (self, key):
with self. lock:
return key in self. dict

This special method returns True if the dictionary has an item with the given
key; otherwise, it returns False. It is used via the in keyword; for example, if k
ind:

def len (self):
with self. lock:
return len(self. dict)

This special method returns the number of items in the dictionary. It supports
the built-in len() function; for example, count = len(d).

The ThreadSafeDict does not provide the dict methods clear(), fromkeys(),
items(), keys(), pop(), popitem(), setdefault(), update(), and values(). Most of
these methods should be straightforward to implement. However, for the meth-
ods that return views (e.g., items (), keys (), and values()) special care is required.
The simplest and safest approach is not to implement them at all. An alterna-
tive is to have them return a copy of their data as a list (e.g., keys() could be im-
plemented with a body of with self. lock: return list(self. dict.keys())). For
large dictionaries, this could use a lot of memory, and, of course, such a method
would block other threads from accessing the dictionary while it is executing.

Another approach to creating a thread-safe dictionary would be to create a
plain dictionary in one thread. If we were careful to write to this dictionary
only in the thread in which it was created (or to use a lock and only write to it
in threads that held its lock), we could then provide read-only (i.e., thread-safe)
views of this dictionary to other threads using the types.MappingProxyType class
introduced in Python 3.3.

www.it-ebooks.info

http://www.it-ebooks.info/

224 Chapter 6. High-Level Networking in Python

6.2.1.2. The Meter Dictionary Subclass

Rather than using a plain ThreadSafeDict for the meter readings dictionary
(meter number keys, reading values), we have created a private MeterDict
subclass that adds two new methods.

class MeterDict(ThreadSafeDict):

def insert if missing(self, key, value=None):
with self. lock:
if key not in self. dict:
self. dict[key] = value
return True
return False

This method inserts the given key and value into the dictionary and returns
True, or, if the key (i.e., the fake meter number) is already in the dictionary, does
nothing and returns False. This is to make sure that every job request is for a
new and unique meter.

The code that the insert if missing() method executes is essentially:

if meter not in ReadingForMeter: # WRONG!
ReadingForMeter[key] = None

The ReadingForMeter is a MeterDict instance and so inherits all the Thread-
SafeDict class’s functionality. Even though the ReadingForMeter. contains ()
method (for in) and the ReadingForMeter. setitem () method (for []) are both
thread-safe, the code shown here is not thread-safe. This is because a different
thread could access the ReadingForMeter dictionary after the if statement but
before the assignment. The solution is to execute both operations in the context
of the same lock, and this is exactly what the insert if missing() method does.

def status(self, username):
count = total = 0
with self. lock:
for reading in self. dict.values():
if reading is not None:

total += 1
if reading.username == username:
count += 1

return count, total
This is a potentially expensive method, since it iterates over all the underlying

dictionary’s values within the context of a lock. An alternative would be to have
just one statement inside the context—values = self. dict.values()—and to do

www.it-ebooks.info

http://www.it-ebooks.info/

6.2. Writing RPyC Applications 225

theiteration afterwards (i.e., outside the context of the lock). Whether it is faster
to copy the items inside a lock and then process the copied items without a lock,
or to process the items inside a lock, depends on circumstances. The only way to
know for sure, of course, is to profile both approaches in realistic contexts.

6.2.2. Writing RPyC Servers

We saw earlier that it is easy to create an XML-RPC server using the xmlr-
pc.server module (§6.1.2, 208 «). It is just as easy—although different—to cre-
ate an RPyC server.

import datetime
import threading
import rpyc
import sys
import MeterMT

PORT = 11003

Manager = MeterMT.Manager()

Here is the start of meterserver-rpyc.py. We import a couple of standard library
modules, then the rpyc module, and then our thread-safe MeterMT module. We
have set a fixed port number, although this could easily be changed by using a
command-line option and the argparse module as we did for the XML-RPC ver-
sion. And we have created a single instance of a MeterMT.Manager. This instance
will be shared by the RPyC server’s threads.

if name == main
import rpyc.utils.server
print("Meter server startup at {}".format(
datetime.datetime.now().isoformat()[:19]))
server = rpyc.utils.server.ThreadedServer(MeterService, port=PORT)
thread = threading.Thread(target=server.start)
thread.start()
try:
if len(sys.argv) > 1: # Notify if called by a GUI client
with open(sys.argv[1l], "wb") as file:
file.write(b"\n")
thread.join()
except KeyboardInterrupt:
pass
server.close()
print("\rMeter server shutdown at {}".format(
datetime.datetime.now().isoformat()[:19]))
MeterMT.Manager. dump()

www.it-ebooks.info

http://www.it-ebooks.info/

226 Chapter 6. High-Level Networking in Python

This is the end of the server program. We import the RPyC server module and
announce the startup. Then we create an instance of a threaded server and pass
it a MeterService class. The server will create instances of this class as needed,;
we will review the class in a moment.

Once the server has been created, we could then simply write server.start() and
finish there. This would start the server and leave it to run “forever”. However,
we want the user to be able to stop the server with Ctrl+C (or an INT signal) and
for the server to print out the meter readings when it is stopped.

To achieve this, we start the server in its own thread—from which it will create
a thread pool to manage incoming connections—and then block waiting for the
server’s thread to finish (by using thread. join()). If the server is interrupted, we
catch and ignore the exception and close the server. The close() call will block
until every server thread has finished its current connection. Then we announce
the server’s shutdown and print the meter readings that were submitted to
the server.

If the server is started by a GUI client, we expect the client to pass a notify
filename as the server’s sole argument. If a notify argument is present, we
create the file and write a newline to it to notify the client that the server is up
and running.

When using service mode, an RPyC server takes an rpyc.Service subclass that
it can then use as a class factory to produce instances of the service. (Factories
were discussed in Chapter 1; §1.1, 5 <, and §1.3, 17 <.) We have created the
MeterService class as a thin wrapper around the MeterMT.Manager instance
created at the start of the program.

class MeterService(rpyc.Service):

def on_connect(self):
pass

def on disconnect(self):
pass

Whenever a connection is made to a service, the service’s on_connect () method is
called. And, similarly, when a connection finishes, the on disconnect () method is
called. We don’t need to do anything in either of these cases, so we have created
them as “do nothing” methods. It is perfectly acceptable not to implement these
methods at all if they aren’t needed; they are included here purely to show their
signatures.

exposed login = Manager.login

exposed get status = Manager.get status
exposed get job = Manager.get job

www.it-ebooks.info

http://www.it-ebooks.info/

6.2. Writing RPyC Applications 227

A service can expose methods (or classes and other objects) to clients. Any class
or method whose name begins with exposed is available for clients to access, and
in the case of methods they can call the method with or without this prefix. For
example, a meter RPyC client could call exposed login() or login().

For the exposed login(), exposed get status(), and exposed get job() methods,
we simply set them to the corresponding methods in the program’s meter-
manager instance.

def exposed submit reading(self, sessionld, meter, when, reading,
reason=""):
when = datetime.datetime.strptime(str(when)[:19],
"oY-%m-%d %H:%M:%S")
Manager.submit reading(sessionld, meter, when, reading, reason)

For this method, we have provided a thin wrapper over the meter-manager
method. The reason is that the when variable is passed as an RPyC netref-
wrapped datetime.datetime rather than as a pure datetime.datetime. In most
cases this wouldn’t matter, but here we want to store actual datetime.datetimes
in the meter dictionary rather than references to remote (i.e., client-side) date-
time.datetimes. So, we convert the wrapped date/time to an ISO 8601 date/time
string and parse that into a server-side datetime.datetime, which we then pass
to the MeterMT.Manager.submit reading() method.

The code shown in this subsection is the complete RPyC meter server and
would be a few lines shorter if we dropped the on_connect() and on_disconnect()
methods.

6.2.3. Writing RPyC Clients

Creating RPyC clients is very similar to creating XML-RPC clients, so in this
subsection, we will only review the differences between the two kinds.

6.2.3.1. A Console RPyC Client

Just like the XML-RPC client, the RPyC client requires that the server is started
and stopped separately and will only work when a server is running.

The code for the meterclient-rpyc.py program is almost the same as that for the
meterclient-rpc.py client we saw earlier (§6.1.3.1, 210 <). Only the main() and
submit() functions are different.

def main():
username, password = login()
if username is not None:
try:
service = rpyc.connect (HOST, PORT)

www.it-ebooks.info

http://www.it-ebooks.info/

228 Chapter 6. High-Level Networking in Python

manager = service.root
sessionId, name = manager.login(username, password)
print("Welcome, {}, to Meter RPYC".format(name))
interact(manager, sessionld)

except ConnectionError as err:
print("Error: Is the meter server running? {}".format(err))

The first difference is that we have used a hard-coded hostname and port
number. Naturally, we could easily make these configurable, as we did with the
XML-RPC client. The second difference is that instead of creating a proxied
manager and then connecting, we begin by connecting to a service-providing
server. In this case, the server provides only one service (MeterService), and this
we can use as a meter-manager proxy. All the other code—the meter-manager
login, getting jobs, submitting readings, and getting status—uses the same code
as before, with one exception: the submit () function catches different exceptions
from those caught by the XML-RPC client.

Synchronizing hostnames and port numbers can be tedious, especially if a
conflict forces us to use a different port number from the one we normally use.
This problem can be avoided by using a registry server. This requires us to run
the registry server.py server that is supplied with RPyC somewhere on our
network. RPyC servers automatically look for this server when they start up,
and if they find it, they register their services with it. Then, instead of clients
using rpyc.connect(host, port), they can use rpyc.connect by service(service);
for example, rpyc.connect by service("Meter").

6.2.3.2. A GUI RPyC Client

The GUI RPyC client, meter-rpyc.pyw, is shown in Figure 6.2. In fact, the RPyC
and XML-RPyC GUI clients are visually indistinguishable when run on the
same platform.

80 Meter — Eric Fawn
fa.00 Meter — Login Meter C487229
Username: eric Reading: 52843| T
Password: ssss| Reason: E]
o) (Cancel) Cswbmit) (que)

Accepted Refused entry for E536874 | Read 3/15

Figure 6.2 The Meter RPyC GUI application’s login and main windows on OS X

Creating a GUI RPyC client that uses Tkinter and will automatically use an ex-
isting meter server, or will start up a server if necessary, can be done with almost
the same code as we used for the GUI XML-RPC client. In fact, the difference

www.it-ebooks.info

http://www.it-ebooks.info/

6.2. Writing RPyC Applications 229

only amounts to a couple of changed methods, a different import, some slightly
changed constants, and some different exceptions in except clauses.

def connect(self, username, password):
try:
self.service = rpyc.connect(HOST, PORT)
except ConnectionError:
filename = os.path.join(tempfile.gettempdir(),
"M{}.$$$".format (random.randint (1000, 9999)))
self.serverPid = subprocess.Popen([sys.executable, SERVER,
filename]).pid
self.wait for server(filename)
try:
self.service = rpyc.connect(HOST, PORT)
except ConnectionError:
self.handle error("Failed to start the RPYC Meter server")
return False
self.manager = self.service.root
return self.login to server(username, password)

Once the login dialog window has been used to obtain the user’s username and
password, this method is called to connect to the server and log the user in with
the meter manager.

If the connection fails, we assume that the server isn’t running and try to start
it, passing it a notify filename. The server is started without blocking (i.e.,
asynchronously), but we must wait until the server is running before trying to
connect to it. The wait for server() method is almost identical to the one we
saw earlier (217 <), except that this version raises a ConnectionError rather than
calling handle error() itself. If the connection is made, we acquire a proxied
meter manager and try to log the user into the meter server.

def login to server(self, username, password):

try:
self.sessionId, name = self.manager.login(username, password)
self.master.title("Meter \u2014 {}".format(name))
return True

except rpyc.core.vinegar.GenericException as err:
self.handle error(err)
return False

If the user’s credentials are acceptable, we set the session ID and put their
name in the application’s title bar. If the login fails, we return False, and this
will result in the application terminating (and terminating the server too, if the
server was started by the GUI application).

www.it-ebooks.info

http://www.it-ebooks.info/

230 Chapter 6. High-Level Networking in Python

None of the examples in this chapter use encryption, so eavesdroppers could
potentially read the client—server network traffic. This may not matter at all
for applications that don’t transfer private data, or that execute both client and
server on the same machine, or where clients and server are safely behind a
firewall, or where encrypted network connections are used. But if encryption is
required, it is perfectly possible to achieve. For XML-RPC, one approach is to use
the third-party PyCrypto package (www.dlitz.net/software/pycrypto) to encrypt
all data that is sent over the network. Another approach is to use Transport
Layer Security (“secure sockets”), which is supported by Python’s ss1l module.
For RPyC, it is much easier to achieve security, since support for it is built in.
RPyC can use SSL with keys and certificates, or a much simpler SSH (Secure
Shell) tunneling approach.

Python’s excellent networking support covers everything from low to high level.
The standard library includes modules for all the most popular high-level proto-
cols, including FTP for file transfers; POP3, IMAP4, and SMTP for email; HTTP
and HTTPS for web traffic; and, of course, TCP/IP and other low-level socket
protocols. Python’s mid-level socketserver module can be used as the basis for
creating servers, although support for higher-level servers is also provided; for
example, the smtpd module for creating email servers, the http.server module
for web servers, and the xmlrpc.server module we saw in this chapter for XML-
RPC servers.

Many third-party networking modules are also available, particularly for web
frameworks that support Python’s Web Server Gateway Interface (WSGI; see
www . python.org/dev/peps/pep-3333). For more about third-party Python web
frameworks see wiki.python.org/moin/WebFrameworks, and for more about web
servers see wiki.python.org/moin/WebServers.

www.it-ebooks.info

http://www.dlitz.net/software/pycrypto
http://www.python.org/dev/peps/pep-3333
http://www.it-ebooks.info/

Graphical User
Interfaces with
Python and Tkinter

§7.1. Introduction to Tkinter » 233
§7.2. Creating Dialogs with Tkinter » 235
§7.2.1. Creating a Dialog-Style Application » 237
§7.2.2. Creating Application Dialogs » 244
§7.3. Creating Main-Window Applications with Tkinter » 253
§7.3.1. Creating a Main Window » 255
§7.3.2. Creating Menus » 257
§7.3.3. Creating a Status Bar with Indicators » 260

Well-designed graphical user interface (GUI) applications can present users
with the most attractive, innovative, and easy-to-use interfaces. And the more
sophisticated the application, the more it can benefit from a custom GUI, espe-
cially if the GUI includes application-specific custom widgets.* By comparison,
web applications can be very confusing, with the browser’s menus and toolbarsin
addition to the web application’s widgets. And until the HTML5 canvasis widely
available, web applications have very limited means of presenting custom wid-
gets. Furthermore, web applications cannot compete with native applications
for performance.

Smartphone users are increasingly able to interact with their apps using voice
control, but for desktops, laptops, and tablets, the choices are still primarily be-
tween conventional GUI applications controlled by mouse and keyboard or voice,
and touch-controlled applications. At the time of this writing, almost every
touch-controlled device uses proprietary libraries and requires the use of spe-
cific languages and tools. Fortunately, the third-party, open-source Kivy library
(kivy.org) is designed to provide Python support for developing cross-platform,
touch-based applications to address this problem. Of course, this doesn’t change
the fact that most touch-based interfaces are designed for machines with limited
processing power and small screens, and which may allow the user to see only
one application at a time.

*Windows GUI programmers often use the terms “control”, “container”, or “form” when describing
a GUI object. In this book, we use the generic term widget, adopted from Unix GUI programming.

231

www.it-ebooks.info

http://www.it-ebooks.info/

232 Chapter 7. Graphical User Interfaces with Python and Tkinter

Desktop and power users want to take full advantage of their big screens and
powerful processors, and this is still best done with conventional GUI applica-
tions. Furthermore, voice control—as provided by modern versions of Windows,
for example—is designed to work with existing GUI applications. And just as
Python command-line programs can be used cross-platform, so can Python GUI
programs, providing we use an appropriate GUI toolkit. There are several such
toolkits to choose from. Here is a brief overview of the four main ones, all of
which have been ported to Python 3 and work at the very least on Linux, OS X,
and Windows, with native look and feel.

* PyGtk and PyGObject: PyGtk (www.pygtk.org) is stable and successful.
However, development ceased in 2011 in favor of a successor technology
called PyGObject (live. gnome.org/PyGObject). Unfortunately, at the time of
this writing, PyGObject cannot be considered cross-platform, since all the
development effort appears to be confined to Unix-based systems.

* PyQt4 and PySide: PyQt4 (www.riverbankcomputing.co.uk) provides
Pythonic bindings for the Qt 4 GUI application development framework (qt-
project.org). PySide (www.pyside.org) is a more recent project that is highly
compatible with PyQt4 and has a more liberal license. PyQt4 is probably
the most stable and mature cross-platform Python GUI toolkit available.*
(Both PyQt and PySide are expected to have versions that support Qt 5
in 2013.)

¢ Tkinter: Tkinter provides bindings to the Tcl/Tk GUI toolkit (www.tcl.tk).
Python 3 is normally supplied with Tcl/Tk 8.5, although this should change
to Tcl/ Tk 8.6 with Python 3.4 or a later Python version. Unlike the other
toolkits mentioned here, Tkinter is very basic, with no built-in support for
toolbars, dock windows, or status bars (although all of these can be creat-
ed). Also, while the other toolkits automatically work with many platform-
specific features—such as OS X’s universal menu bar—Tkinter (at least
with Tcl/Tk 8.5) requires programmers to account for many platform dif-
ferences themselves. Tkinter’s chief virtues are that it is supplied with
Python as standard, and that it is a very small package compared to the
other toolkits.

¢ wxPython: wxPython (www.wxpython.org) provides bindings to the wxWid-
gets toolkit (www.wxwidgets.org). Although wxPython has been around
for many years, a significant rewrite has been undertaken for the port
to Python 3, and the results should be available by the time this book is
published.

Except for PyGObject, the toolkits listed above provide all that is necessary to
create cross-platform GUI applications with Python. If we care about only a

* Disclosure: the author was once Qt’s documentation manager and has written a book about
PyQt4 programming: Rapid GUI Programming with Python and Qt (see the Selected Bibliography,
> 287).

www.it-ebooks.info

http://www.pygtk.org
http://www.riverbankcomputing.co.uk
http://www.pyside.org
http://www.tcl.tk
http://www.wxpython.org
http://www.wxwidgets.org
http://www.it-ebooks.info/

7.1. Introduction to Tkinter 233

specific platform, there are almost certainly Python bindings available to the
platform-specific GUI libraries (see wiki.python.org/moin/GuiProgramming), or we
can use a platform-specific Python interpreter such as Jython or IronPython. If
we want to do 3D graphics, we can usually do so within one of the GUI toolkits.
Alternatively, we can use PyGame (www.pygame.org), or, if our needs are simpler,
we can use one of the Python OpenGL bindings directly—as we will see in the
next chapter.

Since Tkinter is supplied as standard, we can create GUI applications that we
can easily deploy (even bundling Python and Tcl/Tk with the application itself
if necessary; see, for example, cx-freeze.sourceforge.net). Such applications are
more attractive and easier to use than command-line programs and are often
more acceptable to users, particularly on OS X and Windows.

This chapter presents three example applications: a tiny “hello world” appli-
cation, a small currency converter, and the more substantial Gravitate game.
Gravitate can be thought of as a TileFall/SameGame variant where the tiles
gravitate to the center to fill empty space rather than falling and shifting left.
The Gravitate application illustrates how to create a main-window—style Tkin-
ter application with some of the modern accoutrements, such as menus, dialogs,
and a status bar. We will review a couple of Gravitate’s dialogsin §7.2.2 > 244),
and we will review Gravitate’s main-window infrastructure in §7.3 > 253).

7.1. Introduction to Tkinter

GUI programming is no more difficult than any other specialized kind of
programming and has the potential reward of producing applications that look
professional and that people enjoy using.

IOEx ®OO0H 7 = o
Hello Tkinter! Hello Tkinter! Hello Tkinter!
Quit (" Quit

[quit |

Figure 7.1 The dialog-style Hello application on Linux, OS X, and Windows

Note, though, that the subject of GUI programming is so substantive that we
cannot explore it in any real depth in a single chapter; it would need at least
an entire book for that. What we can do, however, is review some of the key
aspects of writing GUI programs and, in particular, how to fill some of the gaps
in Tkinter’s facilities. First, though, we will begin with the classic “hello world”
program, in this case hello.pyw, shown running in Figure 7.1.

import tkinter as tk
import tkinter.ttk as ttk

www.it-ebooks.info

http://www.pygame.org
http://www.it-ebooks.info/

234 Chapter 7. Graphical User Interfaces with Python and Tkinter

class Window(ttk.Frame):

def init (self, master=None):
super(). init (master) # Creates self.master
helloLabel = ttk.Label(self, text="Hello Tkinter!")
quitButton = ttk.Button(self, text="Quit", command=self.quit)
helloLabel.pack()
quitButton.pack()
self.pack()

window = Window() # Implicitly creates tk.Tk object
window.master.title("Hello")
window.master.mainloop()

The code quoted above is the entire hello.pyw application’s code. Many Tkinter
programmers import all the Tkinter names (e.g., from tkinter import *), but we
prefer to use namespaces (albeit the shortened ones, tk and ttk) so that we are
clear about where everything comes from. (Incidentally, the ttk module is a
wrapper around the official Ttk “Tile” Tcl/Tk extension.) We could have simply
done the first import and used a tkinter.Frame rather than tkinter.ttk.Frame,
and so on, but the tkinter.ttk versions provide support for themes, so using
these is preferable, especially on OS X and Windows.

Most of the plain tkinter widgets also have themed tkinter.ttk versions.
The plain and themed widgets don’t always have the same interfaces, and
there are some contexts where only a plain widget can be used, so it is im-
portant to read the documentation. (We recommend the documentation at
www . tcl.tk for those who can understand Tcl/Tk code; otherwise, we recommend
www . tkdocs . com, which shows examples in Python and some other languages, and
also infohost.nmt.edu/tcc/help/pubs/tkinter/web, which provides a useful Tkin-
ter tutorial/reference.) There are also several tkinter.ttk-themed widgets for
which there are no plain equivalents; for example, tkinter.ttk.Combobox, tkin-
ter.ttk.Notebook, and tkinter.ttk.Treeview.

The style of GUI programming we use in this book is to create one class per win-
dow, normally in its own module. For a top-level window (i.e., an application’s
main window), it is usual to inherit from tkinter.Toplevel or tkinter.ttk.Frame,
as we have done here. Tkinter maintains an ownership hierarchy of parent
and child widgets (sometimes called masters and slaves). By and large we don’t
have to worry about this, so long as we call the built-in super() function in the
__init () method of any class we create that inherits a widget.

Creating most GUI applications follows a standard pattern: create one or more
window classes, one of which is the application’s main window. For each window
class, create the window’s variables (there are none in hello.pyw), create the
widgets, lay out the widgets, and specify methods to be called in response to
events (e.g., mouse clicks, key presses, timeouts). In this case, we associate the

www.it-ebooks.info

http://www.tcl.tk
http://www.tkdocs.com
http://www.it-ebooks.info/

7.1. Introduction to Tkinter 235

user clicking the quitButton with the inherited tkinter.ttk.Frame.quit() method
that will close the window, and since this is the application’s only top-level
window, this will then cleanly terminate the application. Once all the window
classes are ready, the final step is to create an application object (done implicitly
in this example) and start off the GUI event loop. The event loop was illustrated
in an earlier chapter (Figure 4.8; 167 <).

Naturally, most GUI applications are much longer and more complicated than
hello.pyw. However, their window classes normally follow the same pattern
as described here, only they usually create far more widgets and associate far
more events.

It is common in most modern GUI toolkits to use layouts rather than hard-coded
sizes and positions for widgets. This makes it possible for widgets to automati-
cally expand or shrink to most neatly accommodate their contents (e.g.,a label or
button’s text), even if the contents change, while keeping their position relative
to all the other widgets. Using layouts also saves programmers from having to
do lots of tedious calculations.

Tkinter provides three layout managers: place (hard-coded positions; rarely
used), pack (position widgets around a notional central cavity),and grid (arrange
widgets in a grid of rows and columns; the most popular). In this example, we
packed the label and the button one after the other and then packed the entire
window. Packing is fine for very simple windows like this one, but grid is the
easiest to use, as we will see in later examples.

GUI applications fall into two broad camps: dialog style and main-window style.
The former are windows that have no menus or toolbars, instead being con-
trolled through buttons, comboboxes, and the like. Using dialog style is ideal for
applicationsthat need only a simple user interface, such as small utilities, media
players, and some games. Main-window—style applications usually have menus
and toolbars above a central area, and a status bar at the bottom. They may also
have dock windows. Main windows are ideal for more complex applications and
often have menu options or toolbar buttons that result in dialogs being popped
up. We will look at both kinds of application, starting with dialog style, since
almost everything we learn about them also applies to the dialogs used by main-
window—style applications.

7.2. Creating Dialogs with Tkinter

Dialogs have four possible modalities and varying levels of intelligence. Here is
a brief summary of the modalities, after which we discuss intelligence.

¢ Global Modal: A global modal window is one that blocks the entire user
interface—including all other applications—and only allows interactions
with itself. Users cannot switch applications or do anything except interact
with the window. The two common use cases are the dialog for logging into

www.it-ebooks.info

http://www.it-ebooks.info/

236 Chapter 7. Graphical User Interfaces with Python and Tkinter

a computer at start up and the dialog for unlocking a password-protected
screensaver. Application programmers should never use global modal win-
dows because a bug could result in the entire machine becoming unusable.

¢ Application Modal: Application modal windows prevent users from inter-
acting with any other window in the application. But users can still context
switch to other applications. Modal windows are easier to program than
modeless windows, since the user can’t change the application’s state behind
the programmer’s back. However, some users find them inconvenient.

* Window Modal: Window modal windows are very similar to application
modal windows, except that rather than preventing interaction with any
other application window, they prevent interaction with any other appli-
cation window in the same window hierarchy. This is useful, for example,
if the user opens two top-level document windows, since we wouldn’t want
their use of a dialog in one of those windows to prevent them from interact-
ing with the other window.

* Modeless: Modeless dialogs do not block interaction with any other window
either in their application or any other application. Modeless dialogs are
potentially much more challenging for programmers to create than modal
dialogs. Thisis because a modeless dialog must be able to cope with the user
interacting with other application windows and possibly changing the state
that the modeless dialog depends on.

Global modal windows are said to have global grab in Tcl/Tk terminology. Appli-
cation and window modal windows (commonly simply called “modal windows”)
are said to have local grab. In Tkinter on OS X, some modal windows appear
as sheets.

A dumb dialog is typically one that presents some widgets to the user and
provides what the user entered back to the application. Such dialogs have no
application-specific knowledge. A typical example is an application-login dialog
that just accepts a username and password that it then passes to the application.
(We saw an example of such a dialog being used in the previous chapter;§6.1.3.2,
214 «. The code is in MeterLogin.py.)

A smart dialog is one that embodies some level of knowledge of the application
and may even be passed references to application variables or data structures
so that it can work directly on the application’s data.

Modal dialogs can be dumb or smart, or somewhere on the continuum between.
A fairly smart modal dialog is typically one that understands enough about the
application to provide validation, not just per data item it presents for editing,
but for combinations of data items. For example, a reasonably intelligent dialog
for entering a start and end date would not accept an end date that was earlier
than the start date.

www.it-ebooks.info

http://www.it-ebooks.info/

7.2. Creating Dialogs with Tkinter 237

Modeless dialogs are almost always smart. They typically come in two fla-
vors: apply/close and live. Apply/close dialogs allow users to interact with wid-
gets and then click an Apply button to see the results in the application’s main
window. Live dialogs apply changes as the user interacts with the dialog’s wid-
gets; these are quite common on OS X. Smarter modeless dialogs offer undo/redo
or a Default button (to reset the widgets to the application’s default values) and
maybe a Revert button (to reset the widgets to the values they held when the di-
alog was first invoked). Modeless dialogs can be dumb if they just provide infor-
mation, such as a Help dialog. These typically just have a Close button.

Modeless dialogs are particularly useful when changing colors, fonts, formats, or
templates, since they allow us to see the effects of each change and to then make
another change, and another. Using a modal dialog in such cases means that
we must open the dialog, do our changes, accept the dialog, and then repeat this
cycle for every change until we were happy with the results.

A dialog-style application’s main window is essentially a modeless dialog.
Main-window—style applications usually have both modal and modeless dialogs
that pop up in response to the user choosing particular menu options or clicking
particular toolbar buttons.

7.2.1. Creating a Dialog-Style Application

In this subsection, we will review a very simple, yet useful, dialog-style applica-
tion that does currency conversions. The source code is in the currency directory,
and the application is shown in Figure 7.2.

SO0 Currency %€ Currency |?||€|@
U.S. dollar (USD) *| 5000.00 = U.S. dollar (USD) ~ 5000 el
European Euro (EUR) ﬁ 3,822.19 UK. pound sterling (GBP) ~ 310646

Figure 7.2 The dialog-style Currency application on OS X and Windows

The application has two comboboxes listing currency names (and currency
identifiers), a spinbox for entering an amount, and a label that shows the value
of the amount converted from the top currency to the bottom currency.

The application’s code is distributed over three Python files: currency.pyw, which
is the program we execute; Main.py, which provides the Main.Window class; and
Rates.py, which provides the Rates.get() function that was discussed in an
earlier chapter (§1.5, 26 <). In addition, there are two icons, currency/images/
icon 16x16.g9if and currency/images/icon 32x32.gif, which provide icons for the
application on Linux and Windows.

Python GUI applications can use the standard .py extension, but on OS X and
Windows the .pyw extension is often associated with a different Python inter-
preter (e.g., pythonw.exe rather than python.exe). This interpreter allows the ap-

www.it-ebooks.info

http://www.it-ebooks.info/

238 Chapter 7. Graphical User Interfaces with Python and Tkinter

plication to be run without starting up a console window, and so is much nicer for
users. For programmers, though, it is best to execute Python GUTI applications
from inside a console using the standard Python interpreter, since this will allow
any sys.stdout and sys.stderr output to be visible as an aid to debugging.

7.2.1.1. The Currency Application’s main() Function

Especially for large programs, it is best to have a very small “executable” module
and for all the rest of the code to be in separate .py module files (no matter how
big or small they are). On fast modern machines this may appear to make no
difference the first time the program is run, but on that first run all the .py
module files (except for the “executable” one) are byte-compiled into .pyc files.
The second and subsequent times the program is run, Python will use the .pyc
files (except where a .py file has changed), so startup times will be faster than
the first time.

The currency application’s executable currency.pyw file contains one small
function, main().

def main():
application = tk.Tk()
application.title("Currency")
TkUtil.set application icons(application, os.path.join(
os.path.dirname(os.path.realpath(file)), "images"))
Main.Window(application)
application.mainloop()

The function begins by creating the Tkinter “application object”. This is really
a normally invisible top-level window that serves as the application’s ultimate
parent (or master or root) widget. In the hello.pyw application, we implicitly
let Tkinter create this for us, but it is normally best to create it ourselves so
that we can then apply application-wide settings. Here, for example, we set the
application’s title to “Currency”.

The book’s examples are supplied with the TkUtil module, which includes some
built-in convenience functions to support Tkinter programming, plus some
modules that we will discuss as we encounter them. Here, we use the TkUtil.
set_application_icons() function.

With the title and icons set (although the icons are ignored on OS X), we cre-
ate an instance of the application’s main window, passing it the application ob-
ject as parent (or master), and then start the GUI event loop. The application
will terminate when the event loop terminates; for example, if we call tkin-
ter.Tk.quit().

www.it-ebooks.info

http://www.it-ebooks.info/

7.2. Creating Dialogs with Tkinter 239

def set application icons(application, path):
icon32 = tk.PhotoImage(file=os.path.join(path, "icon 32x32.gif"))
iconl6 = tk.PhotoImage(file=os.path.join(path, "icon 16x16.gif"))
application.tk.call("wm", "iconphoto", application, "-default", icon32,
iconl6)

For completeness, here is the TkUtil.set application icons() function. The
tk.PhotoImage class can load a pixmap image in PGM, PPM, or GIF format.
(Support for PNG format is expected to be added in Tcl/Tk 8.6.) Having created
the two images, we call the tkinter.Tk.tk.call() function and in effect send it
a Tcl/Tk command. Going this low-level should be avoided if possible, but is
sometimes necessary where Tkinter doesn’t bind the functionality we need.

7.2.1.2. The Currency Application’s Main.Window Class

The currency application’s main window follows the pattern we described ear-
lier, and this pattern is clearly visible in the calls made in the class’s init ()
method. All this subsubsection’s code is quoted from currency/Main.py.

class Window(ttk.Frame):

def init (self, master=None):
super(). init (master, padding=2)
self.create variables()
self.create widgets()
self.create layout()
self.create bindings()
self.currencyFromCombobox.focus()
self.after(10, self.get rates)

It is essential to call the built-in super() function when we initialize a class
that inherits a widget. Here, we not only pass in the master (i.e., the tk.Tk
“application object” from the application’s main() function), but also a padding
value of 2 pixels. This padding provides a margin between the application win-
dow’s inner border and the widgets laid out inside it.

Next, we create the window’s (i.e., the application’s) variables and widgets, and
lay out the widgets. Then, we create the event bindings, after which we give
the keyboard focus to the top combobox ready for the user to change the initial
currency. Finally, we call the inherited Tkinter after() method, which takes
a time in milliseconds and a callable that it will call after at least that many
milliseconds have passed.

Since we download the rates from the Internet, they might take several seconds
to arrive. But we want to ensure that the application is visible straight away
(otherwise the user might think it didn’t start and may try to start it again). So,

www.it-ebooks.info

http://www.it-ebooks.info/

240 Chapter 7. Graphical User Interfaces with Python and Tkinter

we defer getting the rates until the application has had enough time to display
itself.

def create variables(self):
self.currencyFrom = tk.StringVar()
self.currencyTo = tk.StringVar()
self.amount = tk.StringVar()
self.rates = {}

The tkinter.StringVars are variables that hold strings and that can be associ-
ated with widgets. Thus, when a StringVar’s string is changed, that change is
automatically reflected in any associated widget, and vice versa. We could have
made the self.amount a tkinter.IntVar, but since Tcl/Tk operates almost entirely
in terms of strings internally, it is often more convenient to use strings when
working with it, even for numbers. The rates is a dict with currency name keys
and conversion rate values.

Spinbox = ttk.Spinbox if hasattr(ttk, "Spinbox") else tk.Spinbox

The tkinter.ttk.Spinbox widget was not added to Python 3’s Tkinter but will
hopefully arrive with Python 3.4. This snippet of code allows us to take advan-
tage of it if it is available, with the fallback of a non-themed spinbox. Their in-
terfaces are not the same, so care must be taken to use only those features that
are common to both.

def create widgets(self):

self.currencyFromCombobox = ttk.Combobox(self,
textvariable=self.currencyFrom)

self.currencyToCombobox = ttk.Combobox(self,
textvariable=self.currencyTo)

self.amountSpinbox = Spinbox(self, textvariable=self.amount,
from =1.0, to=10e6, validate="all", format="%0.2f",
width=8)

self.amountSpinbox.config(validatecommand=(
self.amountSpinbox.register(self.validate), "%P"))

self.resultLabel = ttk.Label(self)

Every widget should be created with a parent (or master), except for the tk.Tk
object, which is usually the window or frame that the widget will be laid out
inside. Here, we create two comboboxes and associate each one with its own
StringVar.

We also create a spinbox, also associated with a StringVar, with a minimum and
maximum set. The spinbox’s width is in characters; the format uses old-style
Python 2 % formatting (equivalent to a str.format() format string of "{:0.2f}");
and the validate argument says to validate whenever the spinbox’s value is

www.it-ebooks.info

http://www.it-ebooks.info/

7.2. Creating Dialogs with Tkinter 241

changed, whether by the user entering numbers or using the spin buttons. Once
the spinbox has been created, we register a validation callable. This callable
will be called with an argument that corresponds to the given format ("%P"); this
is a Tcl/Tk format string, not a Python one. Incidentally, the spinbox’s value is
automatically set toits minimum (from) value (in this case, 1.0) if no other value
is explicitly set.

Finally, we create the label that will display the calculated amount. We don’t
give it any initial text.

def validate(self, number):
return TkUtil.validate spinbox float(self.amountSpinbox, number)

This is the validation callable we registered with the spinbox. In this context,
the Tcl/Tk "%P" format signifies the spinbox’s text. So, whenever the spinbox’s
value is changed, this method is called with the spinbox’s text. The actual
validation is passed on to a generic convenience function in the TkUtil module.

def validate spinbox float(spinbox, number=None):
if number is None:
number = spinbox.get()
if number == "":
return True
try:
x = float(number)
if float(spinbox.cget("from")) <= x <= float(spinbox.cget("to")):
return True
except ValueError:
pass
return False

This function expects to be passed a spinbox and a number value (as a string
or None). If no value is passed, the function gets the spinbox’s text itself. It
returns True (i.e., “valid”) for an empty spinbox to allow the user to delete the
spinbox’s value and start typing a new number from scratch. Otherwise, it
tries to convert the text into a floating-point number and checks that it is in the
spinbox’s range.

All Tkinter widgets have a config() method that takes one or more key=value ar-
guments to set widget attributes, and a cget () method that takes a key argument
and returns the associated attribute value. They also have a configure() method
that is just an alias for config().

def create layout(self):

padWE = dict(sticky=(tk.W, tk.E), padx="0.5m", pady="0.5m")
self.currencyFromCombobox.grid(row=0, column=0, **padWE)

www.it-ebooks.info

http://www.it-ebooks.info/

242 Chapter 7. Graphical User Interfaces with Python and Tkinter

self.amountSpinbox.grid(row=0, column=1, **padWE)
self.currencyToCombobox.grid(row=1, column=0, **padWE)
self.resultlLabel.grid(row=1, column=1, **padWE)
self.grid(row=0, column=0, sticky=(tk.N, tk.S, tk.E, tk.W))
self.columnconfigure (0, weight=2)

self.columnconfigure(l, weight=1)
self.master.columnconfigure(0, weight=1)
self.master.rowconfigure(0, weight=1)
self.master.minsize (150, 40)

This method creates the layout shown in Figure 7.3. Each widget is put in a spe-
cific grid position and made “sticky” in the West and East directions, meaning
that it will stretch or shrink horizontally as the window is resized but will not
change height. The widgets are also padded by 0.5 mm (millimeters) in the x and
y directions, so each widget is surrounded by 0.5mm of empty space. (See the
“Sequence and Mapping Unpacking” sidebar, 13 <.)

(0,0) currencyFromCombobox | (0,1) amountSpinbox

(1,0) currencyToCombobox (1,1) resultLabel

Figure 7.3 The Currency application’s main window’s layout

Once the widgets have been laid out, the window itself is laid out in a grid con-
sisting of a single cell that will shrink or stretch in all directions (North, South,
East, West). Then, the columns are configured with weights: these are stretch
factors. So, in this case, if the window is expanded horizontally, for every extra
pixel of width given to the spinbox and label, the comboboxes will get an extra
two pixels of width. Nonzero weights are also given to the window’s single grid
cell itself; this makes the window’s contents resizable. And, finally, the window
is given a sensible minimum size; otherwise, the user would be able to shrink it
down to almost nothing.

def create bindings(self):
self.currencyFromCombobox.bind("<<ComboboxSelected>>",
self.calculate)
self.currencyToCombobox.bind("<<ComboboxSelected>>",
self.calculate)
self.amountSpinbox.bind("<Return>", self.calculate)
self.master.bind("<Escape>", lambda event: self.quit())

This method is used to bind events to actions. Here, we are concerned with two
kinds of events: “virtual events”, which are custom events that some widgets
produce, and “real events”, which represent things happening in the user inter-
face, such as a key press or the window being resized. Virtual events are sig-

www.it-ebooks.info

http://www.it-ebooks.info/

7.2. Creating Dialogs with Tkinter 243

nified by giving their name in double angle brackets, and real events by giving
their name in single angle brackets.

Whenever a combobox’s selected value changes, it adds a <<ComboboxSelected>>
virtual event to the event loop’s queue of events. For both comboboxes, we have
chosen to bind this event to a self.calculate() method that will recalculate the
currency conversion. For the spinbox, we only force a recalculation if the user
presses Enter or Return. And if the user presses Esc, we terminate the application
by calling the inherited tkinter.ttk.Frame.quit() method.

def calculate(self, event=None):
fromCurrency = self.currencyFrom.get()
toCurrency = self.currencyTo.get()
amount = self.amount.get()
if fromCurrency and toCurrency and amount:
amount = ((self.rates[fromCurrency] / self.rates[toCurrency]) x
float(amount))
self.resultlLabel.config(text="{:,.2f}".format(amount))

This method obtains the two currencies to be used and the amount to convert
and then performs the conversion. At the end, it sets the result label’s text to
the converted amount using commas as a thousands separator, and showing two
digits after the decimal point.

def get rates(self):

try:
self.rates = Rates.get()
self.populate comboboxes()

except urllib.error.URLError as err:
messagebox.showerror("Currency \u2014 Error", str(err),

parent=self)

self.quit()

This method is called using a timer to give the window a chance to paint itself.
It gets a dictionary of rates (currency name keys, conversion factor values) and
populates the comboboxes accordingly. If the rates could not be obtained, an
error message box is popped up, and after the user closes the message box (e.g.,
by clicking OK), the application is terminated.

The tkinter.messagebox.showerror() function takes a window-title text, a mes-
sage text, and optionally a parent (which if given, the message box will center
itself over). Since Python 3 files use UTF-8 encoding, we could have used a literal
em dash (—), but the book’s monospaced font doesn’t have this character, so we
have used the Unicode escape instead.

www.it-ebooks