


APPLIED DATA SCIENCE WITH PYTHON AND
JUPYTER

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be

reproduced, stored in a retrieval system, or transmitted in

any form or by any means, without the prior written

permission of the publisher, except in the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book

to ensure the accuracy of the information presented.

However, the information contained in this book is sold

without warranty, either express or implied. Neither the

author, nor Packt Publishing, and its dealers and

distributors will be held liable for any damages caused or

alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark

information about all of the companies and products

mentioned in this book by the appropriate use of capitals.

Playlists

History

Topics

Tutorials

Offers & Deals

Highlights

Settings

Support

Sign Out

            



However, Packt Publishing cannot guarantee the accuracy

of this information.

Author: Alex Galea

Reviewer: Elie Kawerk

Managing Editor: Mahesh Dhyani

Acquisitions Editor: Aditya Date

Production Editor: Samita Warang

Editorial Board: David Barnes, Ewan Buckingham, Simon

Cox, Manasa Kumar, Alex Mazonowicz, Douglas Paterson,

Dominic Pereira, Shiny Poojary, Saman Siddiqui, Erol

Staveley, Ankita Thakur, and Mohita Vyas

First Published: October 2018

Production Reference: 2051218

ISBN: 978­1­78995­817­1

Table of Contents



Preface

Jupyter Fundamentals

INTRODUCTION

BASIC FUNCTIONALITY AND FEATURES

WHAT IS A JUPYTER NOTEBOOK AND WHY IS IT
USEFUL?

NAVIGATING THE PLATFORM

EXERCISE 1: INTRODUCING JUPYTER
NOTEBOOKS

JUPYTER FEATURES

EXERCISE 2: IMPLEMENTING JUPYTER'S MOST
USEFUL FEATURES

CONVERTING A JUPYTER NOTEBOOK TO A



PYTHON SCRIPT

PYTHON LIBRARIES

EXERCISE 3: IMPORTING THE EXTERNAL
LIBRARIES AND SETTING UP THE PLOTTING
ENVIRONMENT

OUR FIRST ANALYSIS - THE BOSTON HOUSING
DATASET

LOADING THE DATA INTO JUPYTER USING A
PANDAS DATAFRAME

EXERCISE 4: LOADING THE BOSTON HOUSING
DATASET

DATA EXPLORATION

EXERCISE 5: ANALYZING THE BOSTON HOUSING
DATASET

INTRODUCTION TO PREDICTIVE ANALYTICS WITH



JUPYTER NOTEBOOKS

EXERCISE 6: APPLYING LINEAR MODELS WITH
SEABORN AND SCIKIT-LEARN

ACTIVITY 1: BUILDING A THIRD-ORDER
POLYNOMIAL MODEL

USING CATEGORICAL FEATURES FOR
SEGMENTATION ANALYSIS

EXERCISE 7: CREATING CATEGORICAL FIELDS
FROM CONTINUOUS VARIABLES AND MAKE
SEGMENTED VISUALIZATIONS

SUMMARY

Data Cleaning and Advanced
Machine Learning

INTRODUCTION



PREPARING TO TRAIN A PREDICTIVE MODEL

DETERMINING A PLAN FOR PREDICTIVE
ANALYTICS

EXERCISE 8: EXPLORE DATA PREPROCESSING
TOOLS AND METHODS

ACTIVITY 2: PREPARING TO TRAIN A PREDICTIVE
MODEL FOR THE EMPLOYEE-RETENTION
PROBLEM

TRAINING CLASSIFICATION MODELS

INTRODUCTION TO CLASSIFICATION
ALGORITHMS

EXERCISE 9: TRAINING TWO-FEATURE
CLASSIFICATION MODELS WITH SCIKIT-LEARN

THE PLOT_DECISION_REGIONS FUNCTION

EXERCISE 10: TRAINING K-NEAREST NEIGHBORS



FOR OUR MODEL

EXERCISE 11: TRAINING A RANDOM FOREST

ASSESSING MODELS WITH K-FOLD CROSS-
VALIDATION AND VALIDATION CURVES

EXERCISE 12: USING K-FOLD CROSS VALIDATION
AND VALIDATION CURVES IN PYTHON WITH
SCIKIT-LEARN

DIMENSIONALITY REDUCTION TECHNIQUES

EXERCISE 13: TRAINING A PREDICTIVE MODEL
FOR THE EMPLOYEE RETENTION PROBLEM

SUMMARY

Web Scraping and Interactive
Visualizations

INTRODUCTION



SCRAPING WEB PAGE DATA

INTRODUCTION TO HTTP REQUESTS

MAKING HTTP REQUESTS IN THE JUPYTER
NOTEBOOK

EXERCISE 14: HANDLING HTTP REQUESTS WITH
PYTHON IN A JUPYTER NOTEBOOK

PARSING HTML IN THE JUPYTER NOTEBOOK

EXERCISE 15: PARSING HTML WITH PYTHON IN A
JUPYTER NOTEBOOK

ACTIVITY 3: WEB SCRAPING WITH JUPYTER
NOTEBOOKS

INTERACTIVE VISUALIZATIONS

BUILDING A DATAFRAME TO STORE AND
ORGANIZE DATA



EXERCISE 16: BUILDING AND MERGING PANDAS
DATAFRAMES

INTRODUCTION TO BOKEH

EXERCISE 17: INTRODUCTION TO INTERACTIVE
VISUALIZATION WITH BOKEH

ACTIVITY 4: EXPLORING DATA WITH INTERACTIVE
VISUALIZATIONS

SUMMARY

Appendix A



Preface

About
This section briefly introduces the author, the coverage of

this book, the technical skills you'll need to get started,

and the hardware and software requirements required to

complete all of the included activities and exercises.

About the Book
Applied Data Science with Python and Jupyter teaches

you the skills you need for entry­level data science. You'll

learn about some of the most commonly used libraries

that are part of the Anaconda distribution, and then

explore machine learning models with real datasets to give

you the skills and exposure you need for the real world.

You'll finish up by learning how easy it can be to scrape

and gather your own data from the open web so that you
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can apply your new skills in an actionable context.

ABOUT THE AUTHOR

Alex Galea has been doing data analysis professionally

since graduating with a master's in physics from the

University of Guelph in Canada. He developed a keen

interest in Python while researching quantum gases as

part of his graduate studies. More recently, Alex has been

doing web data analytics, where Python continues to play

a large part in his work. He frequently blogs about work

and personal projects, which are generally data­centric

and usually involve Python and Jupyter Notebooks.

OBJECTIVES
Get up and running with the Jupyter ecosystem

Identify potential areas of investigation and perform

exploratory data analysis

Plan a machine learning classification strategy and

train classification models

Use validation curves and dimensionality reduction to

tune and enhance your models

Scrape tabular data from web pages and transform it

into Pandas DataFrames



Create interactive, web­friendly visualizations to

clearly communicate your findings

AUDIENCE

Applied Data Science with Python and Jupyter is ideal for

professionals with a variety of job descriptions across a

large range of industries, given the rising popularity and

accessibility of data science. You'll need some prior

experience with Python, with any prior work with libraries

such as Pandas, Matplotlib, and Pandas providing you a

useful head start.

APPROACH

Applied Data Science with Python and Jupyter covers

every aspect of the standard data workflow process with a

perfect blend of theory, practical hands­on coding, and

relatable illustrations. Each module is designed to build

on the learnings of the previous chapter. The book

contains multiple activities that use real­life business

scenarios for you to practice and apply your new skills in a

highly relevant context.

MINIMUM HARDWARE REQUIREMENTS

The minimum hardware requirements are as follows:



Processor: Intel i5 (or equivalent)

Memory: 8 GB RAM

Hard disk: 10 GB

An internet connection

SOFTWARE REQUIREMENTS

You'll also need the following software installed in

advance:

Python 3.5+

Anaconda 4.3+

Python libraries included with Anaconda installation:

matplotlib 2.1.0+

ipython 6.1.0+

requests 2.18.4+

beautifulsoup4 4.6.0+

numpy 1.13.1+

pandas 0.20.3+

scikit­learn 0.19.0+

seaborn 0.8.0+



bokeh 0.12.10+

Python libraries that require manual installation:

mlxtend

version_information

ipython­sql

pdir2

graphviz

INSTALLATION AND SETUP

Before you start with this book, we'll install Anaconda

environment which consists of Python and Jupyter

Notebook.

INSTALLING ANACONDA
1.  Visit https://www.anaconda.com/download/ in your

browser.

2.  Click on Windows, Mac, or Linux, depending on the

OS you are working on.

3.  Next, click on the Download option. Make sure you

download the latest version.

4.  Open the installer after download.



5.  Follow the steps in the installer and that's it! Your

Anaconda distribution is ready.

UPDATING JUPYTER AND INSTALLING
DEPENDENCIES
1.  Search for Anaconda Prompt and open it.

2.  Type the following commands to update conda and

Jupyter:

#Update conda

conda update conda

#Update Jupyter

conda update Jupyter

#install packages

conda install numpy

conda install pandas

conda install statsmodels

conda install matplotlib



conda install seaborn

3.  To open Jupyter Notebook from Anaconda Prompt,

use the following command:

jupyter notebook

pip install ­U scikit­learn

ADDITIONAL RESOURCES

The code bundle for this book is also hosted on GitHub at

https://github.com/TrainingByPackt/Applied­Data­

Science­with­Python­and­Jupyter.

We also have other code bundles from our rich catalog of

books and videos available at

https://github.com/PacktPublishing/. Check them out!

CONVENTIONS

Code words in text, database table names, folder names,

filenames, file extensions, path names, dummy URLs,

user input, and Twitter handles are shown as follows:

"The final figure is then saved as a high resolution PNG to

the figures folder."



A block of code is set as follows:

y = df['MEDV'].copy()

del df['MEDV']

df = pd.concat((y, df), axis=1)

Any command­line input or output is written as follows:

jupyter notebook

New terms and important words are shown in bold.

Words that you see on the

screen, for example, in menus or dialog boxes, appear in

the text like this: "Click on New in the upper­right corner

and select a kernel from the drop­down menu."



Jupyter Fundamentals

Learning Objectives
By the end of this chapter, you will be able to:

Describe Jupyter Notebooks and how they are used for

data analysis

Describe the features of Jupyter Notebooks

Use Python data science libraries
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Perform simple exploratory data analysis

In this chapter, you will learn and implement the fundamental 

features of the Jupyter notebook by completing several hands­ 

on erxercises.

Introduct i o n
Jupyter Notebooks are one of the most important tools for 

data scientists using Python. This is because they're an ideal 

environment for developing reproducible data analysis



pipelines. Data can be loaded, transformed, and modeled all

inside a single Notebook, where it's quick and easy to test out

code and explore ideas along the way. Furthermore, all of this

can be documented "inline" using formatted text, so you can

make notes for yourself or even produce a structured report.

Other comparable platforms ­ for example, RStudio or Spyder

­ present the user with multiple windows, which promote

arduous tasks such as copy and pasting code around and

rerunning code that has already been executed. These tools

also tend to involve Read Eval Prompt Loops (REPLs)

where code is run in a terminal session that has saved

memory. This type of development environment is bad for

reproducibility and not ideal for development either. Jupyter

Notebooks solve all these issues by giving the user a single

window where code snippets are executed and outputs are

displayed inline. This lets users develop code efficiently and

allows them to look back at previous work for reference, or

even to make alterations.

We'll start the chapter by explaining exactly what Jupyter

Notebooks are and continue to discuss why they are so

popular among data scientists. Then, we'll open a Notebook

together and go through some exercises to learn how the

platform is used. Finally, we'll dive into our first analysis and

perform an exploratory analysis in

Basic Functionality and Features



In this section, we first demonstrate the usefulness of Jupyter

Notebooks with examples and through discussion. Then, in

order to cover the fundamentals of Jupyter Notebooks for

beginners, we'll see the basic usage of them in terms of

launching and interacting with the platform. For those who

have used Jupyter Notebooks before, this will be mostly a

review; however, you will certainly see new things in this topic

as well.

WHAT IS A JUPYTER NOTEBOOK AND WHY IS IT
USEFUL?

Jupyter Notebooks are locally run web applications which

contain live code, equations, figures, interactive apps, and

Markdown text. The standard language is Python, and that's

what we'll be using for this book; however, note that a variety

of alternatives are supported. This includes the other

dominant data science language, R:



Figure 1.1: Jupyter Notebook sample workbook

Those familiar with R will know about R Markdown.

Markdown documents allow for Markdown­formatted text

to be combined with executable code. Markdown is a simple

language used for styling text on the web. For example, most

GitHub repositories have a README.md Markdown file. This

format is useful for basic text formatting. It's comparable to

HTML but allows for much less customization.

Commonly used symbols in Markdown include hashes (#)

to make text into a heading, square and round brackets to

insert hyperlinks, and stars to create italicized or bold text:

Figure 1.2: Sample Markdown document

Having seen the basics of Markdown, let's come back to R

Markdown, where Markdown text can be written alongside

executable code. Jupyter Notebooks offer the equivalent

functionality for Python, although, as we'll see, they function

quite differently than R Markdown documents. For

example, R Markdown assumes you are writing

Markdown unless otherwise specified, whereas Jupyter

Notebooks assume you are inputting code. This makes it more

appealing to use Jupyter Notebooks for rapid development



and testing.

From a data science perspective, there are two primary types

for a Jupyter Notebook depending on how they are used: lab­

style and deliverable.

Lab­style Notebooks are meant to serve as the programming

analog of research journals. These should contain all the work

you've done to load, process, analyze, and model the data. The

idea here is to document everything you've done for future

reference, so it's usually not advisable to delete or alter

previous lab­style Notebooks. It's also a good idea to

accumulate multiple date­stamped versions of the Notebook

as you progress through the analysis, in case you want to look

back at previous states.

Deliverable Notebooks are intended to be presentable and

should contain only select parts of the lab­style Notebooks.

For example, this could be an interesting discovery to share

with your colleagues, an in­depth report of your analysis for

a manager, or a summary of the key findings for stakeholders.

In either case, an important concept is reproducibility. If

you've been diligent in documenting your software versions,

anyone receiving the reports will be able to rerun the

Notebook and compute the same results as you did. In the

scientific community, where reproducibility is becoming

increasingly difficult, this is a breath of fresh air.

NAVIGATING THE PLATFORM



Now, we are going to open up a Jupyter Notebook and start to

learn the interface. Here, we will assume you have no prior

knowledge of the platform and go over the basic usage.

EXERCISE 1: INTRODUCING JUPYTER NOTEBOOKS
1.  Navigate to the companion material directory in the

terminal

Note

Unix machines such as Mac or Linux, command­line

navigation can be done using ls to display directory

contents and cd to change directories. On Windows

machines, use dir to display directory contents and use

cd to change directories instead. If, for example, you

want to change the drive from C: to D:, you should

execute d: to change drives.

2.  Start a new local Notebook server here by typing the

following into the terminal:

jupyter notebook

A new window or tab of your default browser will open the

Notebook Dashboard to the working directory. Here, you

will see a list of folders and files contained therein.

3.  Click on a folder to navigate to that particular path and

open a file by clicking on it. Although its main use is

editing IPYNB Notebook files, Jupyter functions as a



standard text editor as well.

4.  Reopen the terminal window used to launch the app. We

can see the NotebookApp being run on a local server. In

particular, you should see a line like this:

[I 20:03:01.045 NotebookApp] The Jupyter Notebook is

running at: http://localhost:8888/?

token=e915bb06866f19ce462d959a9193a94c7c088e81765f9d8a

Going to that HTTP address will load the app in your

browser window, as was done automatically when starting

the app. Closing the window does not stop the app; this

should be done from the terminal by typing Ctrl + C.

5.  Close the app by typing Ctrl + C in the terminal. You may

also have to confirm by entering y. Close the web browser

window as well.

6.  Load the list of available options by running the following

code:

jupyter notebook ­­help

7.  Open the NotebookApp at local port 9000 by running

the following:

jupyter notebook ­­port 9000

8.  Click New in the upper­right corner of the Jupyter

Dashboard and select a kernel from the drop­down menu

(that is, select something in the Notebooks section):



Figure 1.3: Selecting a kernel from the drop down menu

This is the primary method of creating a new Jupyter

Notebook.

Kernels provide programming language support for the

Notebook. If you have installed Python with Anaconda,

that version should be the default kernel. Conda virtual

environments will also be available here.

Note

Virtual environments are a great tool for managing

multiple projects on the same machine. Each virtual

environment may contain a different version of Python

and external libraries. Python has built­in virtual

environments; however, the Conda virtual environment

integrates better with Jupyter Notebooks and boasts

other nice features. The documentation is available at:

https://conda.io/docs/user­guide/tasks/manage­

environments.html.



9.  With the newly created blank Notebook, click the top cell

and type print('hello world'), or any other code

snippet that writes to the screen.

10.  Click the cell and press Shift + Enter or select Run Cell in

the Cell menu.

Any stdout or stderr output from the code will be

displayed beneath as the cell runs. Furthermore, the

string representation of the object written in the final line

will be displayed as well. This is very handy, especially for

displaying tables, but sometimes we don't want the final

object to be displayed. In such cases, a semicolon (;) can

be added to the end of the line to suppress the display.

New cells expect and run code input by default; however,

they can be changed to render Markdown instead.

11.  Click an empty cell and change it to accept the Markdown­

formatted text. This can be done from the drop­down

menu icon in the toolbar or by selecting Markdown from

the Cell menu. Write some text in here (any text will do),

making sure to utilize Markdown formatting symbols such

as #.

12.  Scroll to the Play icon in the tool bar:

Figure 1.4: Jupyter Notebook tool bar

This can be used to run cells. As we'll see later, however,

it's handier to use the keyboard shortcut Shift + Enter to



run cells.

Right next to this is a Stop icon, which can be used to

stop cells from running. This is useful, for example, if a

cell is taking too long to run:

Figure 1.5: Stop icon in Jupyter Notebooks

New cells can be manually added from the Insert menu:

Figure 1.6: Adding new cells from the Insert menu in Jupyter Notebooks

Cells can be copied, pasted, and deleted using icons or by

selecting options from the Edit menu:

Figure 1.7: Edit Menu in the Jupyter Notebooks



Figure 1.8: Cutting and copying cells in Jupyter Notebooks

Cells can also be moved up and down this way:

Figure 1.9: Moving cells up and down in Jupyter Notebooks

There are useful options under the Cell menu to run a

group of cells or the entire Notebook:

Figure 1.10: Running cells in Jupyter Notebooks

Experiment with the toolbar options to move cells up and

down, insert new cells, and delete cells. An important

thing to understand about these Notebooks is the shared

memory between cells. It's quite simple: every cell existing

on the sheet has access to the global set of variables. So,

for example, a function defined in one cell could be called

from any other, and the same applies to variables. As one

would expect, anything within the scope of a function will

not be a global variable and can only be accessed from

within that specific function.



13.  Open the Kernel menu to see the selections. The Kernel

menu is useful for stopping script executions and

restarting the Notebook if the kernel dies. Kernels can

also be swapped here at any time, but it is unadvisable to

use multiple kernels for a single Notebook due to

reproducibility concerns.

14.  Open the File menu to see the selections. The File menu

contains options for downloading the Notebook in various

formats. In particular, it's recommended to save an HTML

version of your Notebook, where the content is rendered

statically and can be opened and viewed "as you would

expect" in web browsers.

The Notebook name will be displayed in the upper­left

corner. New Notebooks will automatically be named

Untitled.

15.  Change the name of your IPYNB Notebook file by clicking

on the current name in the upper­left corner and typing

the new name. Then, save the file.

16.  Close the current tab in your web browser (exiting the

Notebook) and go to the Jupyter Dashboard tab, which

should still be open. (If it's not open, then reload it by

copy and pasting the HTTP link from the terminal.)

Since we didn't shut down the Notebook, and we just

saved and exited, it will have a green book symbol next to

its name in the Files section of the Jupyter Dashboard

and will be listed as Running on the right side next to the

last modified date. Notebooks can be shut down from



here.

17.  Quit the Notebook you have been working on by selecting

it (checkbox to the left of the name), and then click the

orange Shutdown button:

Note

Read through the basic keyboard shortcuts and test

them.

Figure 1.11: Shutting down the Jupyter notebook

Note

If you plan to spend a lot of time working with Jupyter

Notebooks, it's worthwhile to learn the keyboard shortcuts.

This will speed up your workflow considerably. Particularly

useful commands to learn are the shortcuts for manually

adding new cells and converting cells from code to

Markdown formatting. Click on Keyboard Shortcuts from

the Help menu to see how.

JUPYTER FEATURES



Jupyter has many appealing features that make for efficient

Python programming. These include an assortment of things,

from methods for viewing docstrings to executing Bash

commands. We will explore some of these features in this

section.

Note

The official IPython documentation can be found here:

http://ipython.readthedocs.io/en/stable/. It has details on

the features we will discuss here and others.

EXERCISE 2: IMPLEMENTING JUPYTER'S MOST
USEFUL FEATURES
1.  Navigate to the lesson­1 directory from the Jupyter

Dashboard and open lesson­1­workbook.ipynb by

selecting it.

The standard file extension for Jupyter Notebooks is

.ipynb, which was introduced back when they were

called IPython Notebooks.

2.  Scroll down to Subtopic C: Jupyter Features in

the Jupyter Notebook.

We start by reviewing the basic keyboard shortcuts. These

are especially helpful to avoid having to use the mouse so

often, which will greatly speed up the workflow.

You can get help by adding a question mark to the end of



any object and running the cell. Jupyter finds the

docstring for that object and returns it in a pop­out

window at the bottom of the app.

3.  Run the Getting Help cell and check how Jupyter

displays the docstrings at the bottom of the Notebook.

Add a cell in this section and get help on the object of your

choice:

Figure 1.12: Getting help in Jupyter Notebooks

4.  Click an empty code cell in the Tab Completion section.

Type import (including the space after) and then press the

Tab key:

Figure 1.13: Tab completion in Jupyter Notebooks

The above action listed all the available modules for

import.



Tab completion can be used for the following: list

available modules when importing external

libraries; list available modules of imported

external libraries; function and variable

completion. This can be especially useful when you need

to know the available input arguments for a module, when

exploring a new library, to discover new modules, or

simply to speed up workflow. They will save time writing

out variable names or functions and reduce bugs from

typos. The tab completion works so well that you may

have difficulty coding Python in other editors after today!

5.  Scroll to the Jupyter Magic Functions section and run the

cells containing %lsmagic and %matplotlib inline:

Figure 1.14: Jupyter Magic functions

The percent signs, % and %%, are one of the basic features

of Jupyter Notebook and are called magic commands.

Magics starting with %% will apply to the entire cell, and

magics starting with % will only apply to that line.

%lsmagic lists the available options. We will discuss and

show examples of some of the most useful ones. The most



common magic command you will probably see is

%matplotlib inline, which allows matplotlib figures to

be displayed in the Notebook without having to explicitly

use plt.show().

The timing functions are very handy and come in two

varieties: a standard timer (%time or %%time) and a

timer that measures the average runtime of many

iterations (%timeit and %%timeit).

Note

Notice how list comprehensions are quicker than loops in

Python. This can be seen by comparing the wall time for

the first and second cell, where the same calculation is

done significantly faster with the list comprehension.

6.  Run the cells in the Timers section.

Note the difference between using one and two percent

signs. Even by using a Python kernel (as you are currently

doing), other languages can be invoked using magic

commands. The built­in options include JavaScript, R,

Pearl, Ruby, and Bash. Bash is particularly useful, as you

can use Unix commands to find out where you are

currently (pwd), what's in the directory (ls), make new

folders (mkdir), and write file contents

(cat/head/tail).

7.  Run the first cell in the Using bash in the notebook



section.

This cell writes some text to a file in the working directory,

prints the directory contents, prints an empty line, and

then writes back the contents of the newly created file

before removing it:

Figure 1.15: Using Bash in Jupyter Notebooks

8.  Run the cells containing only ls and pwd.

Note how we did not have to explicitly use the Bash magic

command for these to work. There are plenty of external

magic commands that can be installed. A popular one is

ipython­sql, which allows for SQL code to be executed

in cells.

9.  Open a new terminal window and execute the following

code to install ipython­sql:

pip install ipython­sql



Figure 1.16: Installing ipython-sql using pip

10.  Run the %load_ext sql cell to load the external

command into the Notebook:

Figure 1.17: Loading sql in Jupyter Notebooks

This allows for connections to remote databases so that

queries can be executed (and thereby documented) right

inside the Notebook.

11.  Run the cell containing the SQL sample query:

Figure 1.18: Running a sample SQL query

Here, we first connect to the local sqlite source; however,

this line could instead point to a specific database on a

local or remote server. Then, we execute a simple SELECT

to show how the cell has been converted to run SQL code

instead of Python.



12.  Install the version documentation tool now from the

terminal using pip. Open up a new window and run the

following code:

pip install version_information

Once installed, it can then be imported into any Notebook

using %load_ext version_information. Finally,

once loaded, it can be used to display the versions of each

piece of software in the Notebook.

The %version_information commands helps

with documentation, but it does not come as standard

with Jupyter. Like the SQL example we just saw, it can be

installed from the command line with pip.

13.  Run the cell that loads and calls the

version_information command:

Figure 1.19: Version Information in Jupyter



CONVERTING A JUPYTER NOTEBOOK TO A PYTHON
SCRIPT

You can convert a Jupyter Notebook to a Python script. This is

equivalent to copying and pasting the contents of each code

cell into a single .py file. The Markdown sections are also

included as comments.

The conversion can be done from the NotebookApp or in the

command line as follows:

jupyter nbconvert ­­to=python lesson­1­notebook.ipynb

Figure 1.20: Converting a Jupyter Notebook into a Python Script

This is useful, for example, when you want to determine the

library requirements for a Notebook using a tool such as

pipreqs. This tool determines the libraries used in a project

and exports them into a requirements.txt file (and it can

be installed by running pip install pipreqs).

The command is called from outside the folder containing



your .py files. For example, if the .py files are inside a folder

called lesson­1, you could do the following:

pipreqs lesson­1/

Figure 1.21: Determining library requirements using pipreqs

The resulting requirements.txt file for lesson­1­

workbook.ipynb looks like this:

cat lesson­1/requirements.txt

matplotlib==2.0.2 numpy==1.13.1

pandas==0.20.3

requests==2.18.4

seaborn==0.8

beautifulsoup4==4.6.0



scikit_learn==0.19.0

PYTHON LIBRARIES

Having now seen all the basics of Jupyter Notebooks, and

even some more advanced features, we'll shift our attention to

the Python libraries we'll be using in this book. Libraries, in

general, extend the default set of Python functions. Examples

of commonly used standard libraries are datetime, time,

and os. These are called standard libraries because they come

standard with every installation of Python.

For data science with Python, the most important libraries are

external, which means they do not come standard with

Python.

The external data science libraries we'll be using in this book

are NumPy, Pandas, Seaborn, matplotlib, scikit­learn,

Requests, and Bokeh.

Note

A word of caution: It's a good idea to import libraries using

industry standards, for example, import numpy as np; this

way, your code is more readable. Try to avoid doing things

such as from numpy import *, as you may unwittingly

overwrite functions. Furthermore, it's often nice to have

modules linked to the library via a dot (.) for code

readability.



Let's briefly introduce each.

NumPy offers multi­dimensional data structures (arrays)

on which operations can be performed far quicker than

standard Python data structures (for example, lists). This

is done in part by performing operations in the

background using C. NumPy also offers various

mathematical and data manipulation functions.

Pandas is Python's answer to the R DataFrame. It stores

data in 2D tabular structures where columns represent

different variables and rows correspond to samples.

Pandas provides many handy tools for data wrangling

such as filling in NaN entries and computing statistical

descriptions of the data. Working with Pandas

DataFrames will be a big focus of this book.

Matplotlib is a plotting tool inspired by the MATLAB

platform. Those familiar with R can think of it as Python's

version of ggplot. It's the most popular Python library for

plotting figures and allows for a high level of

customization.

Seaborn works as an extension to matplotlib, where

various plotting tools useful for data science are included.

Generally speaking, this allows for analysis to be done

much faster than if you were to create the same things

manually with libraries such as matplotlib and scikit­

learn.

scikit­learn is the most commonly used machine

learning library. It offers top­of­the­line algorithms and a



very elegant API where models are instantiated and then

fit with data. It also provides data processing modules and

other tools useful for predictive analytics.

Requests is the go­to library for making HTTP requests.

It makes it straightforward to get HTML from web pages

and interface with APIs. For parsing the HTML, many

choose BeautifulSoup4, which we will also cover in this

book.

Bokeh is an interactive visualization library. It functions

similar to matplotlib, but allows us to add hover, zoom,

click, and use other interactive tools to our plots. It also

allows us to render and play with the plots inside our

Jupyter Notebook.

Having introduced these libraries, let's go back to our

Notebook and load them, by running the import statements.

This will lead us into our first analysis, where we finally start

working with a dataset.

EXERCISE 3: IMPORTING THE EXTERNAL LIBRARIES
AND SETTING UP THE PLOTTING ENVIRONMENT
1.  Open up the lesson 1 Jupyter Notebook and scroll to

the Subtopic D: Python Libraries section.

Just like for regular Python scripts, libraries can be

imported into the Notebook at any time. It's best practice

to put the majority of the packages you use at the top of

the file. Sometimes it makes sense to load things midway



through the Notebook and that is completely fine.

2.  Run the cells to import the external libraries and set the

plotting options:

Figure 1.22: Importing Python libraries

For a nice Notebook setup, it's often useful to set various

options along with the imports at the top. For example, the

following can be run to change the figure appearance to

something more aesthetically pleasing than the matplotlib

and Seaborn defaults:

import matplotlib.pyplot as plt

%matplotlib inline import

seaborn as sns

# See here for more options: https://matplotlib.org/users/

customizing.html

%config InlineBackend.figure_format='retina'



sns.set() # Revert to matplotlib defaults

plt.rcParams['figure.figsize'] = (9, 6)

plt.rcParams['axes.labelpad'] = 10 sns.set_style("darkgrid")

So far in this book, we've gone over the basics of using Jupyter

Notebooks for data science. We started by exploring the

platform and finding our way around the interface. Then, we

discussed the most useful features, which include tab

completion and magic functions. Finally, we introduced the

Python libraries we'll be using in this book.

The next section will be very interactive as we perform our

first analysis together using the Jupyter Notebook.

Our First Analysis - The Boston Housing
Dataset
So far, this chapter has focused on the features and basic

usage of Jupyter. Now, we'll put this into practice and do

some data exploration and analysis.

The dataset we'll look at in this section is the so­called Boston

housing dataset. It contains US census data concerning

houses in various areas around the city of Boston. Each

sample corresponds to a unique area and has about a dozen

measures. We should think of samples as rows and measures

as columns. The data was first published in 1978 and is quite



small, containing only about 500 samples.

Now that we know something about the context of the dataset,

let's decide on a rough plan for the exploration and analysis. If

applicable, this plan would accommodate the relevant

question(s) under study. In this case, the goal is not to answer

a question but to instead show Jupyter in action and illustrate

some basic data analysis methods.

Our general approach to this analysis will be to do the

following:

Load the data into Jupyter using a Pandas DataFrame

Quantitatively understand the features

Look for patterns and generate questions

Answer the questions to the problems

LOADING THE DATA INTO JUPYTER USING A PANDAS
DATAFRAME

Oftentimes, data is stored in tables, which means it can be

saved as a comma­separated variable (CSV) file. This

format, and many others, can be read into Python as a

DataFrame object, using the Pandas library. Other common

formats include tab­separated variable (TSV), SQL tables,

and JSON data structures. Indeed, Pandas has support for all

of these. In this example, however, we are not going to load

the data this way because the dataset is available directly

through scikit­learn.



Note

An important part after loading data for analysis is ensuring

that it's clean. For example, we would generally need to deal

with missing data and ensure that all columns have the

correct datatypes. The dataset we use in this section has

already been cleaned, so we will not need to worry about

this. However, we'll see messier data in the second chapter

and explore techniques for dealing with it.

EXERCISE 4: LOADING THE BOSTON HOUSING
DATASET
1.  Scroll to Subtopic A of Topic B: Our first

Analysis: the Boston Housing Dataset in

chapter 1 of the Jupyter Notebook.

The Boston housing dataset can be accessed from the

sklearn.datasets module using the load_boston

method.

2.  Run the first two cells in this section to load the Boston

dataset and see the datastructures type:

Figure 1.23: Loading the Boston dataset

The output of the second cell tells us that it's a scikit­learn

Bunch object. Let's get some more information about that



to understand what we are dealing with.

3.  Run the next cell to import the base object from scikit­

learn utils and print the docstring in our Notebook:

Figure 1.24: Importing base objects and printing the docstring

4.  Print the field names (that is, the keys to the dictionary)

by running the next cell. We find these fields to be self­

explanatory: ['DESCR', 'target', 'data',

'feature_names'].

5.  Run the next cell to print the dataset description

contained in boston['DESCR'].

Note that in this call, we explicitly want to print the field

value so that the Notebook renders the content in a more

readable format than the string representation (that is, if

we just type boston['DESCR'] without wrapping it in a

print statement). We then see the dataset information as

we've previously summarized:

Boston House Prices dataset

===========================



Notes

­­­­­­

Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive

:Median Value (attribute 14) is usually the target

:Attribute Information (in order):

­ CRIM per capita crime rate by town

…

…

­ MEDV Median value of owner­occupied homes in

$1000's

:Missing Attribute Values: None

Note

Briefly read through the feature descriptions and/or

describe them yourself. For the purposes of this tutorial,

the most important fields to understand are RM, AGE,

LSTAT, and MEDV. Note down the important variables

that we will use in the dataset, such as RM, AGE,



LSTAT, and MEDV.

Of particular importance here are the feature descriptions

(under Attribute Information). We will use this as

reference during our analysis.

Note

For the complete code, refer to the following:

https://bit.ly/2EL11cW

Now, we are going to create a Pandas DataFrame that

contains the data. This is beneficial for a few reasons: all

of our data will be contained in one object, there are

useful and computationally efficient DataFrame methods

we can use, and other libraries such as Seaborn have tools

that integrate nicely with DataFrames.

In this case, we will create our DataFrame with the

standard constructor method.

6.  Run the cell where Pandas is imported and the docstring

is retrieved for pd.DataFrame:



Figure 1.25: Retrieving the docstring for pd.DataFrame

The docstring reveals the DataFrame input parameters.

We want to feed in boston['data'] for the data and

use boston['feature_names'] for the headers.

7.  Run the next few cells to print the data, its shape, and the

feature names:

Figure 1.26: Printing data, shape, and feature names

Looking at the output, we see that our data is in a 2D

NumPy array. Running the command

boston['data'].shape returns the length (number of

samples) and the number of features as the first and

second outputs, respectively.

8.  Load the data into a Pandas DataFrame df by running the

following:

df = pd.DataFrame(data=boston['data'],



columns=boston['feature_names'])

In machine learning, the variable that is being modeled is

called the target variable; it's what you are trying to

predict given the features. For this dataset, the suggested

target is MEDV, the median house value in 1,000s of

dollars.

9.  Run the next cell to see the shape of the target:

Figure 1.27: Code for viewing the shape of the target

We see that it has the same length as the features, which is

what we expect. It can therefore be added as a new

column to the DataFrame.

10.  Add the target variable to df by running the cell with the

following:

df['MEDV'] = boston['target']

11.  Move the target variable to the front of df by running the

cell with the following code:

y = df['MEDV'].copy()

del df['MEDV']

df = pd.concat((y, df), axis=1)



This is done to distinguish the target from our features by

storing it to the front of our DataFrame.

Here, we introduce a dummy variable y to hold a copy of

the target column before removing it from the DataFrame.

We then use the Pandas concatenation function to

combine it with the remaining DataFrame along the 1st

axis (as opposed to the 0th axis, which combines rows).

Note

You will often see dot notation used to reference

DataFrame columns. For example, previously we could

have done y = df.MEDV.copy(). This does not work

for deleting columns, however; del df.MEDV would

raise an error.

12.  Implement df.head() or df.tail() to glimpse the

data and len(df) to verify that number of samples is

what we expect. Run the next few cells to see the head,

tail, and length of df:

Figure 1.28: Printing the head of the data frame df



Figure 1.29: Printing the tail of data frame df

Each row is labeled with an index value, as seen in bold on

the left side of the table. By default, these are a set of

integers starting at 0 and incrementing by one for each

row.

13.  Printing df.dtypes will show the datatype contained

within each column. Run the next cell to see the datatypes

of each column. For this dataset, we see that every field is

a float and therefore most likely a continuous variable,

including the target. This means that predicting the target

variable is a regression problem.

14.  Run df.isnull() to clean the dataset as Pandas

automatically sets missing data as NaN values. To get the

number of NaN values per column, we can do

df.isnull().sum():



Figure 1.30: Cleaning the dataset by identifying NaN values

df.isnull() returns a Boolean frame of the same

length as df.

For this dataset, we see there are no NaN values, which

means we have no immediate work to do in cleaning the

data and can move on.

15.  Remove some columns by running the cell that contains

the following code:

for col in ['ZN', 'NOX', 'RAD', 'PTRATIO', 'B']:

del df[col]

This is done to simplify the analysis. We will focus on the

remaining columns in more detail.

DATA EXPLORATION

Since this is an entirely new dataset that we've never seen

before, the first goal here is to understand the data. We've



already seen the textual description of the data, which is

important for qualitative understanding. We'll now compute a

quantitative description.

EXERCISE 5: ANALYZING THE BOSTON HOUSING
DATASET
1.  Navigate to Subtopic B: Data exploration in the

Jupyter Notebook and run the cell containing

df.describe():

Figure 1.31: Computation and output of statistical properties

This computes various properties including the mean,

standard deviation, minimum, and maximum for each

column. This table gives a high­level idea of how

everything is distributed. Note that we have taken the

transform of the result by adding a .T to the output; this

swaps the rows and columns.

Going forward with the analysis, we will specify a set of

columns to focus on.



2.  Run the cell where these "focus columns" are defined:

cols = ['RM', 'AGE', 'TAX', 'LSTAT', 'MEDV']

3.  Display the aforementioned subset of columns of the

DataFrame by running df[cols].head():

Figure 1.32: Displaying focus columns

As a reminder, let's recall what each of these columns is.

From the dataset documentation, we have the following:

­ RM average number of rooms per dwelling

        ­ AGE proportion of owner­occupied units built prior

to 1940

        ­ TAX full­value property­tax rate per $10,000

        ­ LSTAT % lower status of the population

        ­ MEDV Median value of owner­occupied homes in

$1000's

To look for patterns in this data, we can start by



calculating the pairwise correlations using

pd.DataFrame.corr.

4.  Calculate the pairwise correlations for our selected

columns by running the cell containing the following

code:

df[cols].corr()

Figure 1.33: Pairwise calculation of correlation

This resulting table shows the correlation score between

each set of values. Large positive scores indicate a strong

positive (that is, in the same direction) correlation. As

expected, we see maximum values of 1 on the diagonal.

By default, Pandas calculates the standard correlation

coefficient for each pair, which is also called the Pearson

coefficient. This is defined as the covariance between two

variables, divided by the product of their standard

deviations:



The covariance, in turn, is defned as follows:

Here, n is the number of samples, xi and yi are the

individual samples being summed over, and X and Y are

the means of each set.

Instead of straining our eyes to look at the preceding

table, it's nicer to visualize it with a heatmap. This can be

done easily with Seaborn.

5.  Run the next cell to initialize the plotting environment, as

discussed earlier in the chapter. Then, to create the

heatmap, run the cell containing the following code:

import matplotlib.pyplot as plt import seaborn as sns

%matplotlib inline

ax = sns.heatmap(df[cols].corr(),

cmap=sns.cubehelix_palette(20, light=0.95,

dark=0.15))

ax.xaxis.tick_top() # move labels to the top

plt.savefig('../figures/lesson­1­boston­housing­corr.png',

bbox_inches='tight', dpi=300)



Figure 1.34: Plot of the heat map for all variables

We call sns.heatmap and pass the pairwise correlation

matrix as input. We use a custom color palette here to

override the Seaborn default. The function returns a

matplotlib.axes object which is referenced by the variable

ax.

The final figure is then saved as a high resolution PNG to the

figures folder.

For the final step in our dataset exploration exercise, we'll

visualize our data using Seaborn's pairplot function.

Visualize the DataFrame using Seaborn's pairplot function.

Run the cell containing the following code:

sns.pairplot(df[cols],

plot_kws={'alpha': 0.6},

diag_kws={'bins': 30})



Figure 1.35: Data visualization using Seaborn

Note

Note that unsupervised learning techniques are outside the

scope of this book.

Looking at the histograms on the diagonal, we see the

following:

a: RM and MEDV have the closest shape to normal

distributions.

b: AGE is skewed to the left and LSTAT is skewed to the

right (this mayseem counterintuitive but skew is defined in

terms of where the mean is positioned in relation to the max).

c: For TAX, we find a large amount of the distribution is

around 700. This is also evident from the scatter plots.



Taking a closer look at the MEDV histogram in the bottom

right, we actually see something similar to TAX where there is

a large upper­limit bin around $50,000. Recall when we did

df.describe(), the min and max of MDEV was 5k and

50k, respectively. This suggests that median house values in

the dataset were capped at 50k.

INTRODUCTION TO PREDICTIVE ANALYTICS WITH
JUPYTER NOTEBOOKS

Continuing our analysis of the Boston housing dataset, we can

see that it presents us with a regression problem where we

predict a continuous target variable given a set of features. In

particular, we'll be predicting the median house value

(MEDV).

We'll train models that take only one feature as input to make

this prediction. This way, the models will be conceptually

simple to understand and we can focus more on the technical

details of the scikit­learn API. Then, in the next chapter, you'll

be more comfortable dealing with the relatively complicated

models.

EXERCISE 6: APPLYING LINEAR MODELS WITH
SEABORN AND SCIKIT-LEARN
1.  Scroll to Subtopic C: Introduction to

predictive analytics in the Jupyter Notebook and

look just above at the pairplot we created in the previous

section. In particular, look at the scatter plots in the



bottom­left corner:

Figure 1.36: Scatter plots for MEDV and LSTAT

Note how the number of rooms per house (RM) and the %

of the population that is lower class (LSTAT) are highly

correlated with the median house value (MDEV). Let's

pose the following question: how well can we predict

MDEV given these variables?

To help answer this, let's first visualize the relationships

using Seaborn. We will draw the scatter plots along with

the line of best fit linear models.

2.  Draw scatter plots along with the linear models by

running the cell that contains the following:

fig, ax = plt.subplots(1, 2) sns.regplot('RM', 'MEDV', df,

ax=ax[0],

scatter_kws={'alpha': 0.4})) sns.regplot('LSTAT', 'MEDV',



df, ax=ax[1],

scatter_kws={'alpha': 0.4}))

Figure 1.37: Drawing scatter plots using linear models

The line of best fit is calculated by minimizing the

ordinary least squares error function, something Seaborn

does automatically when we call the regplot function.

Also note the shaded areas around the lines, which

represent 95% confidence intervals.

Note

These 95% confidence intervals are calculated by taking

the standard deviation of data in bins perpendicular to

the line of best fit, effectively determining the confidence

intervals at each point along the line of best fit. In

practice, this involves Seaborn bootstrapping the data, a

process where new data is created through random

sampling with replacement. The number of bootstrapped

samples is automatically determined based on the size of



the dataset, but can be manually set as well by passing

the n_boot argument.

3.  Plot the residuals using Seaborn by running the cell

containing the following:

fig, ax = plt.subplots(1, 2)

ax[0] = sns.residplot('RM', 'MEDV', df, ax=ax[0],

scatter_kws={'alpha': 0.4}) ax[0].set_ylabel('MDEV

residuals $(y­\hat{y})$') ax[1] = sns.residplot('LSTAT',

'MEDV', df, ax=ax[1],

scatter_kws={'alpha': 0.4})

ax[1].set_ylabel('')

Figure 1.38: Plotting residuals using Seaborn

Each point on these residual plots is the difference

between that sample (y) and the linear model prediction

(ŷ). Residuals greater than zero are data points that would

be underestimated by the model. Likewise, residuals less



than zero are data points that would be overestimated by

the model.

Patterns in these plots can indicate suboptimal modeling.

In each preceding case, we see diagonally arranged scatter

points in the positive region. These are caused by the

$50,000 cap on MEDV. The RM data is clustered nicely

around 0, which indicates a good fit. On the other hand,

LSTAT appears to be clustered lower than 0.

4.  Define a function using sci­kit learn that calculates the

line of best fit and mean squared error, by running the cell

that contains the following:

def get_mse(df, feature, target='MEDV'): # Get x, y to

model

y = df[target].values

x = df[feature].values.reshape(­1,1)

...

...

error = mean_squared_error(y, y_pred) print('mse =

{:.2f}'.format(error)) print()

Note

For complete code, refer to the following:

https://bit.ly/2JgPZdU



In the get_mse function, we first assign the variables y

and x to the target MDEV and the dependent feature,

respectively. These are cast as NumPy arrays by calling

the values attribute. The dependent features array is

reshaped to the format expected by scikit­learn; this is

only necessary when modeling a one­dimensional feature

space. The model is then instantiated and fitted on the

data. For linear regression, the fitting consists of

computing the model parameters using the ordinary least

squares method (minimizing the sum of squared errors

for each sample). Finally, after determining the

parameters, we predict the target variable and use the

results to calculate the MSE.

5.  Call the get_mse function for both RM and LSTAT, by

running the cell containing the following:

get_mse(df, 'RM') get_mse(df, 'LSTAT')

Figure 1.39: Calling the get_mse function for RM and LSTAT

Comparing the MSE, it turns out the error is slightly lower for



LSTAT. Looking back to the scatter plots, however, it appears

that we might have even better success using a polynomial

model for LSTAT. In the next activity, we will test this by

computing a third­order polynomial model with scikit­learn.

Forgetting about our Boston housing dataset for a minute,

consider another real­world situation where you might

employ polynomial regression. The following example is

modeling weather data. In the following plot, we see

temperatures (lines) and precipitations (bars) for Vancouver,

BC, Canada:

Figure 1.40: Visualizing weather data for Vancouver, Canada

Any of these fields are likely to be fit quite well by a fourth­

order polynomial. This would be a very valuable model to

have, for example, if you were interested in predicting the

temperature or precipitation for a continuous range of dates.



Note

You can find the data source for this here:

http://climate.weather.gc.ca/climate_normals/results_e.html?

stnID=888.

ACTIVITY 1: BUILDING A THIRD-ORDER POLYNOMIAL
MODEL

Shifting our attention back to the Boston housing dataset, we

would like to build a third­order polynomial model to

compare against the linear one. Recall the actual problem we

are trying to solve: predicting the median house value, given

the lower class population percentage. This model could

benefit a prospective Boston house purchaser who cares about

how much of their community would be lower class.

Our aim is to use scikit­learn to fit a polynomial regression

model to predict the median house value (MEDV), given the

LSTAT values. We are hoping to build a model that has a

lower mean­squared error (MSE). In order to achieve this,

the following steps have to be executed:

1.  Scroll to the empty cells at the bottom of Subtopic C in

your Jupyter Notebook. These will be found beneath the

linear­model MSE calculation cell under the Activity

heading.

Note

You should fill these empty cells in with code as we



complete the activity. You may need to insert new cells as

these become filled up; please do so as needed.

2.  Pull out our dependent feature from and target variable

from df.

3.  Verify what x looks like by printing the first three

samples.

4.  Transform x into "polynomial features" by importing the

appropriate transformation tool from scikit­

5.  Transform the LSTAT feature (as stored in the variable

x) by running the fit_transform method and build the

polynomial feature set.

6.  Verify what x_poly looks like by printing the first few

samples.

7.  Import the LinearRegression class and build our

linear classification model the same way as done while

calculating the MSE.

8.  Extract the coefficients and print the polynomial model.

9.  Determine the predicted values for each sample and

calculate the residuals.

10.  Print some of the residual values.

11.  Print the MSE for the third­order polynomial model.

12.  Plot the polynomial model along with the samples.

13.  Plot the residuals.



Note

The detailed steps along with the solutions are presented

in the Appendix A (pg. no. 144).

Having successfully modeled the data using a polynomial

model, let's finish up this chapter by looking at categorical

features. In particular, we are going to build a set of

categorical features and use them to explore the dataset in

more detail.

USING CATEGORICAL FEATURES FOR
SEGMENTATION ANALYSIS

Often, we find datasets where there are a mix of continuous

and categorical fields. In such cases, we can learn about our

data and find patterns by segmenting the continuous variables

with the categorical fields.

As a specific example, imagine you are evaluating the return

on investment from an ad campaign. The data you have access

to contain measures of some calculated return on

investment (ROI) metric. These values were calculated and

recorded daily and you are analyzing data from the previous

year. You have been tasked with finding data­driven insights

on ways to improve the ad campaign. Looking at the ROI daily

time series, you see a weekly oscillation in the data.

Segmenting by day of the week, you find the following ROI

distributions (where 0 represents the first day of the week and

6 represents the last).



Figure 1.41: A sample violin plot for return on investment

Since we don't have any categorical fields in the Boston

housing dataset we are working with, we'll create one by

effectively discretizing a continuous field. In our case, this will

involve binning the data into "low", "medium", and "high"

categories. It's important to note that we are not simply

creating a categorical data field to illustrate the data analysis

concepts in this section. As will be seen, doing this can reveal

insights from the data that would otherwise be difficult to

notice or altogether unavailable.

EXERCISE 7: CREATING CATEGORICAL FIELDS FROM
CONTINUOUS VARIABLES AND MAKE SEGMENTED
VISUALIZATIONS
1.  Scroll up to the pairplot in the Jupyter Notebook where

we compared MEDV, LSTAT, TAX, AGE, and RM:



Figure 1.42: A comparison of plots for MEDV, LSTAT, TAX, AGE, and RM

Take a look at the panels containing AGE. As a reminder,

this feature is defined as the proportion of owner­

occupied units built prior to 1940. We are going to

convert this feature to a categorical variable. Once it's

been converted, we'll be able to replot this figure with

each panel segmented by color according to the

age category.

2.  Scroll down to Subtopic D: Building and

exploring categorical features and click into

the first cell. Type and execute the following to plot the

AGE cumulative distribution:

sns.distplot(df.AGE.values, bins=100,

hist_kws={'cumulative': True}, kde_kws={'lw': 0})



plt.xlabel('AGE') plt.ylabel('CDF') plt.axhline(0.33,

color='red') plt.axhline(0.66, color='red')

plt.xlim(0, df.AGE.max());

Figure 1.43: Plot for cumulative distribution of AGE

Note that we set kde_kws={'lw': 0} in order to bypass

plotting the kernel density estimate in the preceding

figure.

Looking at the plot, there are very few samples with low

AGE, whereas there are far more with a very large AGE.

This is indicated by the steepness of the distribution on

the far right­hand side.

The red lines indicate 1/3 and 2/3 points in the

distribution. Looking at the places where our distribution



intercepts these horizontal lines, we can see that only

about 33% of the samples have AGE less than 55 and 33%

of the samples have AGE greater than 90! In other words,

a third of the housing communities have less than 55% of

homes built prior to 1940. These would be considered

relatively new communities. On the other end of the

spectrum, another third of the housing communities have

over 90% of homes built prior to 1940. These would be

considered very old. We'll use the places where the red

horizontal lines intercept the distribution as a guide to

split the feature into categories: Relatively New,

Relatively Old, and Very Old.

3.  Create a new categorical feature and set the segmentation

points by running the following code:

def get_age_category(x): if x < 50:

return 'Relatively New' elif 50 <= x < 85:

return 'Relatively Old' else:

return 'Very Old'

df['AGE_category'] = df.AGE.apply(get_age_category)

Here, we are using the very handy Pandas method apply,

which applies a function to a given column or set of

columns. The function being applied, in this case

get_age_category, should take one argument

representing a row of data and return one value for the



new column. In this case, the row of data being passed is

just a single value, the AGE of the sample.

Note

The apply method is great because it can solve a variety

of problems and allows for easily readable code. Often

though, vectorized methods such as pd.Series.str can

accomplish the same thing much faster. Therefore, it's

advised to avoid using it if possible, especially when

working with large datasets. We'll see some examples of

vectorized methods in the upcoming chapter.

4.  Verify the number of samples we've grouped into each age

category by typing

df.groupby('AGE_category').size() into a new

cell and running it:

Figure 1.44: Verifying the grouping of variables

Looking at the result, it can be seen that two class sizes

are fairly equal, and the Very Old group is about 40%

larger. We are interested in keeping the classes

comparable in size, so that each is well­represented and

it's straightforward to make inferences from the analysis.



Note

It may not always be possible to assign samples into

classes evenly, and in real­world situations, it's very

common to find highly imbalanced classes. In such cases,

it's important to keep in mind that it will be difficult to

make statistically significant claims with respect to the

under­represented class. Predictive analytics with

imbalanced classes can be particularly difficult. The

following blog post offers an excellent summary on

methods for handling imbalanced classes when doing

machine learning: https://svds.com/learning­

imbalanced­classes/.

Let's see how the target variable is distributed when

segmented by our new feature AGE_category.

5.  Construct a violin plot by running the following code:

sns.violinplot(x='MEDV', y='AGE_category', data=df,

order=['Relatively New', 'Relatively Old',

'Very Old']);



Figure 1.45: Violin plot for AGE_category and MEDV

The violin plot shows a kernel density estimate of the

median house value distribution for each age category. We

see that they all resemble a normal distribution. The Very

Old group contains the lowest median house value

samples and has a relatively large width, whereas the

other groups are more tightly centered around their

average. The young group is skewed to the high end,

which is evident from the enlarged right half and position

of the white dot in the thick black line within the body of

the distribution.

This white dot represents the mean and the thick black

line spans roughly 50% of the population (it fills to the

first quantile on either side of the white dot). The thin

black line represents boxplot whiskers and spans 95% of

the population. This inner visualization can be modified to

show the individual data points instead by passing

inner='point' to sns.violinplot(). Let's do that



now.

6.  Re­construct the violin plot adding the inner='point'

argument to the sns.violinplot call:

Figure 1.46: Violin plot for AGE_category and MEDV with the inner =

'point' argument

It's good to make plots like this for test purposes in order

to see how the underlying data connects to the visual. We

can see, for example, how there are no median house

values lower than roughly $16,000 for the Relatively

New segment, and therefore the distribution tail actually

contains no data. Due to the small size of our dataset (only

about 500 rows), we can see this is the case for each

segment.

7.  Re­construct the pairplot from earlier, but now include

color labels for each AGE category. This is done by simply

passing the hue argument, as follows:



cols = ['RM', 'AGE', 'TAX', 'LSTAT', 'MEDV', 'AGE_

category']

sns.pairplot(df[cols], hue='AGE_category',

hue_order=['Relatively New', 'Relatively Old',

'Very Old'],

plot_kws={'alpha': 0.5}, diag_kws={'bins':

30});

Figure 1.47: Re-constructing pairplot for all variables using color labels

for AGE



Looking at the histograms, the underlying distributions of

each segment appear similar for RM and TAX. The

LSTAT distributions, on the other hand, look more

distinct. We can focus on them in more detail by again

using a violin plot.

8.  Re­construct a violin plot comparing the LSTAT

distributions for each AGE_category segment:

Figure 1.48: Re-constructed violin plots for comparing LSTAT distributions for

the AGE_category

Unlike the MEDV violin plot, where each distribution had

roughly the same width, here we see the width increasing

along with AGE. Communities with primarily old houses (the

Very Old segment) contain anywhere from very few to many

lower class residents, whereas Relatively New communities

are much more likely to be predominantly higher class, with

over 95% of samples having less lower class percentages than



the Very Old communities. This makes sense, because

Relatively New neighborhoods would be more expensive.

Summary
In this chapter, you have seen the fundamentals of data

analysis in Jupyter. We began with usage instructions and

features of Jupyter such as magic functions and tab

completion. Then, transitioning to data­science­specific

material, we introduced the most important libraries for data

science with Python.

In the latter half of the chapter, we ran an exploratory analysis

in a live Jupyter Notebook. Here, we used visual assists such

as scatter plots, histograms, and violin plots to deepen our

understanding of the data. We also performed simple

predictive modeling, a topic which will be the focus of the

following chapter in this book.

In the next chapter, we will discuss how to approach

predictive analytics, what things to consider when preparing

the data for modeling, and how to implement and compare a

variety of models using Jupyter Notebooks.



Data Cleaning and Advanced
Machine Learning

Learning Objectives
By the end of this chapter, you will be able to:

Plan a machine learning classification strategy

Preprocess data to prepare it for machine learning

Train classification models

Use validation curves to tune model parameters

Use dimensionality reduction to enhance model

performance

In this chapter you will learn data preprocessing and machine

learning by completing several practical exercises.
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Consider a small food­delivery business that is looking to

optimize their product. An analyst might look at the

appropriate data and determine what type of food people are

enjoying most. Perhaps they find a large amount of people are

ordering the spiciest food options, indicating the business

might be losing out on customers who desire something even

more spicy. This is quite basic, or as some might say,

"vanilla" analytics.

In a separate task, the analyst could employ predictive

analytics by modeling the order volumes over time. With

enough data, they could predict the future order volumes and

therefore guide the restaurant as to how many staff are

required each day. This model could take factors such as the

weather into account to make the best predictions. For

instance, a heavy rainstorm could be an indicator to staff

more delivery personnel to make up for slow travel times.

With historical weather data, that type of signal could be

encoded into the model. This prediction model would save a

business the time of having to consider these problems

manually, and money by keeping customers happy and

thereby increasing customer retention.

The goal of data analytics in general is to uncover actionable

insights that result in positive business outcomes. In the case

of predictive analytics, the aim is to do this by determining the

most likely future outcome of a target, based on previous

trends and patterns.



The benefits of predictive analytics are not restricted to big

technology companies. Any business can find ways to benefit

from machine learning, given the right data.

Companies all around the world are collecting massive

amounts of data and using predictive analytics to cut costs

and increase profits. Some of the most prevalent examples of

this are from the technology giants Google, Facebook, and

Amazon, who utilize big data on a huge scale. For example,

Google and Facebook serve you personalized ads based on

predictive algorithms that guess what you are most likely to

click on. Similarly, Amazon recommends personalized

products that you are most likely to buy, given your previous

purchases.

Modern predictive analytics is done with machine learning,

where computer models are trained to learn patterns from

data. As we saw briefly in the previous chapter, software such

as scikit­learn can be used with Jupyter Notebooks to

efficiently build and test machine learning models. As we will

continue to see, Jupyter Notebooks are an ideal environment

for doing this type of work, as we can perform ad­hoc testing

and analysis, and easily save the results for reference later.

In this chapter, we will again take a hands­on approach by

running through various examples and activities in a Jupyter

Notebook. Where we saw a couple of examples of machine

learning in the previous chapter, here we'll take a much



slower and more thoughtful approach. Using an employee

retention problem as our overarching example for the chapter,

we will discuss how to approach predictive analytics, what

things to consider when preparing the data for modeling, and

how to implement and compare a variety of models using

Jupyter Notebooks.

Preparing to Train a Predictive Model
Here, we will cover the preparation required to train a

predictive model. Although not as technically glamorous as

training the models themselves, this step should not be taken

lightly. It's very important to ensure you have a good plan

before proceeding with the details of building and training a

reliable model. Furthermore, once you've decided on the right

plan, there are technical steps in preparing the data for

modeling that should not be overlooked.

Note

We must be careful not to go so deep into the weeds of

technical tasks that we lose sight of the goal. Technical tasks

include things that require programming skills, for example,

constructing visualizations, querying databases, and

validating predictive models. It's easy to spend hours trying

to implement a specific feature or get the plots looking just

right. Doing this sort of thing is certainly beneficial to our

programming skills, but we should not forget to ask



ourselves if it's really worth our time with respect to the

current project.

Also, keep in mind that Jupyter Notebooks are particularly

well­suited for this step, as we can use them to document our

plan, for example, by writing rough notes about the data or a

list of models we are interested in training. Before starting to

train models, its good practice to even take this a step further

and write out a well­ structured plan to follow. Not only will

this help you stay on track as you build and test the models,

but it will allow others to understand what you're doing when

they see your work.

After discussing the preparation, we will also cover another

step in preparing to train the predictive model, which is

cleaning the dataset. This is another thing that Jupyter

Notebooks are well­suited for, as they offer an ideal testing

ground for performing dataset transformations and keeping

track of the exact changes. The data transformations required

for cleaning raw data can quickly become intricate and

convoluted; therefore, it's important to keep track of your

work. As discussed in the first chapter, tools other than

Jupyter Notebooks just don't offer very good options for doing

this efficiently.

Before we progress to the next section, let's pause and think

about these ideas in the context of a real­life example.



Consider the following situation:

You are hired by an online video game marketplace who want

to increase the conversion rate of people visiting their site.

They ask you to use predictive analytics to determine what

genre of game the user will like, so they can display

specialized content that will encourage the user to make a

purchase. They want to do this without having to ask the

customer their preference of game genre.

Is this a problem that can be solved? What type of data would

be required? What would be the business implications?

To address this challenge, we could consider making the

prediction based on users' browsing cookies. For example, if

they have a cookie from previously visiting a World of

Warcraft website, this would act as an indicator that they like

role playing games.

Another valuable piece of data would be a history of the games

that user has previously bought in the marketplace. This could

be the target variable in a machine learning algorithm, for

example, a model that could predict which games the user

would be interested in, based on the type of cookies in their

browsing session. An alternate target variable could be

constructed by setting up a survey in the marketplace to

collect data on user preferences.

In terms of the business implications, being able to accurately



predict the genre of game is very important to the success of

the campaign. In fact, getting the prediction wrong is doubly

problematic: not only do we miss out on the opportunity to

target users, but we may end up showing users content that

would be negatively perceived. This could lead to more people

leaving the site and fewer sales.

DETERMINING A PLAN FOR PREDICTIVE ANALYTICS

When formulating a plan for doing predictive modeling, one

should start by considering stakeholder needs. A perfect

model will be useless if it doesn't solve a relevant problem.

Planning a strategy around business needs ensures that a

successful model will lead to actionable insights.

Although it may be possible in principle to solve many

business problems, the ability to deliver the solution will

always depend on the availability of the necessary data.

Therefore, it's important to consider the business needs in the

context of the available data sources. When data is plentiful,

this will have little effect, but as the amount of available data

becomes smaller, so too does the scope of problems that can

be solved.

These ideas can be formed into a standard process for

determining a predictive analytics plan, which goes as follows:

1.  Look at the available data to understand the range of



realistically solvable business problems. At this stage, it

might be too early to think about the exact problems that

can be solved. Make sure you understand the data fields

available and the timeframes they apply to.

2.  Determine the business needs by speaking with key

stakeholders. Seek out a problem where the solution will

lead to actionable business decisions.

3.  Assess the data for suitability by considering the

availability of a sufficiently diverse and large feature

space. Also, take into account the condition of the data:

are there large chunks of missing values for certain

variables or time ranges?

Steps 2 and 3 should be repeated until a realistic plan has

taken shape. At this point, you will already have a good idea of

what the model input will be and what you might expect as

output.

Once you've identified a problem that can be solved with

machine learning, along with the appropriate data sources, we

should answer the following questions to lay a framework for

the project. Doing this will help us determine which types of

machine learning models we can use to solve the problem.

The following image provides an overview of the choices

available depending on the type of data:



Figure 2.1: A flow chart for machine learning strategy based on the type of

data

The above image describes the path you can choose depending

of the type of data: labeled or unlabeled.

As can be seen, either one can chose supervised or

unsupervised learning. Supervised learning comprises either

classification or regression problem. In regression, variables

are continuous; for example, the amount of rainfall. In

regression, the variables are discrete and we predict class

labels. Simplest type of classification problem is binary; for

example, will it rain today? (yes/no)

For unsupervised learning, cluster analysis is a commonly

used method. Here, labels are assigned to the nearest cluster

for each sample.

However, not only the type but also the size and origin of data



sources would be a factor while deciding on machine learning

strategy. Specifically, following points should be note:

The size of data in terms of the width (no. of columns) and

height (no. of rows) should be considered before apply a

machine learning algorithm.

Certain algorithms are better at handling certain features

than the others.

General, the larger the dataset, the better in terms of

accuracy. However, this can be time consuming

One can reduce time by using dimensionality reduction

techniques.

For multiple data sources, one can consider merging them

in a single table.

If this cannot be done, we can train models for each and

consider an ensemble average for final prediction.

An example where we may want to do this is with various sets

of times series data on different scales. Consider we have the

following data sources: a table with the AAPL stock closing

prices on a daily time scale and iPhone sales data on a

monthly time scale. We could merge the data by adding the

monthly sales data to each sample in the daily time scale

table, or grouping the daily data by month, but it might be

better to build two models, one for each dataset, and use a



combination of the results from each in the final prediction

model.

Data preprocessing has a huge impact on machine learning.

Like the saying "you are what you eat," the model's

performance is a direct reflection of the data it's trained on.

Many models depend on the data being transformed so that

the continuous feature values have comparable limits.

Similarly, categorical features should be encoded into

numerical values. Although important, these steps are

relatively simple and do not take very long.

The aspect of preprocessing that usually takes the longest is

cleaning up messy data. Some estimates suggest that data

scientists spend around two thirds of their work time cleaning

and organizing datasets:

Figure 2.2: A pie chart distribution of the time spend on different data tasks

To know more about the preprocessing stage, refer to:

https://www.forbes.com/sites/gilpress/2016/03/23/data­



preparation­most­time­consuming­least­enjoyable­data­

science­task­survey­says/2/#17c66c7e1492.

Another thing to consider is the size of the datasets being used

by many data scientists. As the dataset size increases, the

prevalence of messy data increases as well, along with the

difficulty in cleaning it.

Simply dropping the missing data is usually not the best

option, because it's hard to justify throwing away samples

where most of the fields have values. In doing so, we could

lose valuable information that may hurt final model

performance.

Note

In this exercise, we practice preprocessing the data by

creating two DataFrames, and performing an inner merge

and outer merge on the DataFrames and remove the null

(NaN) values.

The steps involved in data preprocessing can be grouped as

follows:

Merging data sets on common fields to bring all data

into a single table

Feature engineering to improve the quality of data, for

example, the use of dimensionality reduction techniques



to build new features

Cleaning the data by dealing with duplicate rows,

incorrect or missing values, and other issues that arise

Building the training data sets by standardizing or

normalizing the required data and splitting it into training

and testing sets

Let's explore some of the tools and methods for doing the

preprocessing.

EXERCISE 8: EXPLORE DATA PREPROCESSING
TOOLS AND METHODS
1.  Start the NotebookApp from the project directory by

executing jupyter notebook. Navigate to the Lesson­

2 directory and open up the lesson­ 2­

workbook.ipynb file. Find the cell near the top where

the packages are loaded, and run it.

We are going to start by showing off some basic tools from

Pandas and sci­kit learn. Then, we'll take a deeper dive

into methods for rebuilding missing data.

2.  Scroll down to Subtopic B: Preparing data for

machine learning and run the cell containing

pd.merge? to display the docstring for the merge

function in the notebook:



Figure 2.3: Docstring for the merge function

As we can see, the function accepts a left and right

DataFrame to merge. You can specify one or more

columns to group on as well as how they are grouped, that

is, to use the left, right, outer, or inner sets of values. Let's

see an example of this in use.

3.  Exit the help popup and run the cell containing the

following sample DataFrames:

df_1 = pd.DataFrame({'product': ['red shirt', 'red shirt',

'red shirt', 'white dress'],\n",

'price': [49.33, 49.33, 32.49,

199.99]})\n",



df_2 = pd.DataFrame({'product': ['red shirt', 'blue pants',

'white tuxedo', 'white dress'],\n",

'in_stock': [True, True, False,

False]})

Here, we will build two simple DataFrames from scratch.

As can be seen, they contain a product column with

some shared entries.

4.  Run the next cell to perform the inner merge:

Figure 2.3: Inner merge of columns

Note how only the shared items, red shirt and white

dress, are included. To include all entries from both

tables, we can do an outer merge instead. Let's do this

now.

5.  Run the next cell to perform an outer merge:



Figure 2.4: Outer merge of columns

This returns all of the data from each table where missing

values have been labeled with NaN.

Figure 2.5: Code for using NumPy to test for quality

You may have noticed that our most recently merged table

has duplicated data in the first few rows. This will be

addressed in the next step.

6.  Run the cell containing df.drop_duplicates() to



return a version of the DataFrame with no duplicate rows:

Figure 2.6: Table with dropped duplicate rows

This is the easiest and "standard" way to drop duplicate

rows. To apply these changes to df, we can either set

inplace=True or do something like df =

df.drop_duplicated(). Let's see another method,

which uses masking to select or drop duplicate rows.

7.  Run the cell containing df.duplicated() to print the

True/False series, marking duplicate rows:

Figure 2.7: Printing True/False values for duplicate rows

8.  Sum the result to determine how many rows have been

duplicated by running the following code:



Figure 2.8: Summing the result to check the number of duplicate rows

9.  Run the following code and convince yourself the output

is the same as that from df.drop_duplicates():

df[~df.duplicated()]

Figure 2.9: Output from the df.[~df.duplicated()] function

10.  Run the cell containing the following code to drop

duplicates from a subset of the full DataFrame:

df[~df['product'].duplicated()]



Figure 2.10: Output after dropping duplicates

Here, we are doing the following things:

creating a mask (a True/False series) for the product row,

where duplicates are marked with True;

using the tilde (~) to take the opposite of that mask, so

that duplicates are instead marked with False and

everything else is True;

using that mask to filter out the False rows of df, which

correspond to the duplicated products.

As expected, we now see that only the first red shirt row

remains, as the duplicate product rows have been

removed.

In order to proceed with the exercise, let's replace df with

a deduplicated version of itself. This can be done by

running drop_duplicates and passing the parameter

inplace=True.



11.  Deduplicate the DataFrame and save the result by

running the cell containing the following code:

df.drop_duplicates(inplace=True)

Continuing on to other preprocessing methods, let's

ignore the duplicated rows and first deal with the missing

data. This is necessary because models cannot be trained

on incomplete samples. Using the missing price data for

blue pants and white tuxedo as an example, let's show

some different options for handling NaN values.

12.  Drop rows, especially if your NaN samples are missing

data, by running the cell containing df.dropna():

Figure 2.11: Output after dropping incomplete rows

13.  Drop entire columns that have most values missing for a

feature. Do this by running the cell containing the same

method as before, but this time with the axes parameter

passed to indicate columns instead of rows:



Figure 2.12: Output after dropping entire columns with missing values

for a feature

Simply dropping the NaN values is usually not the best

option, because losing data is never good, especially if

only a small fraction of the sample values is missing.

Pandas offers a method for filling in NaN entries in a

variety of different ways, some of which we'll illustrate

now.

14.  Run the cell containing df.fillna? to print the

docstring for the Pandas NaN­fill method:

Figure 2.13: Docstring for the NaN-fill method



Note the options for the value parameter; this could be,

for example, a single value or a dictionary/series type map

based on index. Alternatively, we can leave the value as

None and pass a fill method instead. We'll see

examples of each in this chapter.

15.  Fill in the missing data with the average product price by

running the cell containing the following code:

df.fillna(value=df.price.mean())

Figure 2.14: Output after filling missing data with average product price

16.  Fill in the missing data using the pad method by running

the cell containing the following code instead:

df.fillna(method='pad')



Figure 2.15: Output after filling data using the pad method

Notice how the white dress price was used to pad the

missing values below it.

To conclude this exercise, we will prepare our simple table

to be used for training a machine learning algorithm.

Don't worry, we won't actually try to train any models on

such a small dataset! We start this process by encoding

the class labels for the categorical data.

17.  Run the first cell in the Building training data

sets section to add another column of data representing

the average product ratings before encoding the labels:



Figure 2.16: Output after adding the rating column

Considering we want to use this table to train a predictive

model, we should first think about changing all the

variables to numeric types.

18.  Convert the handle in_stock., which is a Boolean list, to

numeric values; for example, 0 and 1. This should be done

before using it to train a predictive model. This can be

done in many ways, for example, by running the cell

containing the following code:

df.in_stock = df.in_stock.map({False: 0, True: 1})

Figure 2.17: Output after converting in_stock to binary

19.  Run the cell containing the following code to map class

labels to integers at a higher level. We use sci­kit learn's

LabelEncoder for this purpose:

from sklearn.preprocessing import LabelEncoder

rating_encoder = LabelEncoder()



_df = df.copy()

_df.rating = rating_encoder.fit_transform(df.rating)

_df

Figure 2.18: Output after mapping class labels to integers

This might bring to mind the preprocessing we did in the

previous chapter, when building the polynomial model.

Here, we instantiate a label encoder and then "train" it

and "transform" our data using the fit_transform

method. We apply the result to a copy of our DataFrame,

_df.

20.  Re­convert the features using the class we reference with

the variable rating_encoder, by running

rating_encoder.inverse_

transform(df.rating):



Figure 2.19: Output after performing inverse transform

You may notice a problem here. We are working with a so­

called "ordinal" feature, where there's an inherent order to

the labels. In this case, we should expect that a rating of

"low" would be encoded with a 0 and a rating of "high"

would be encoded with a 2. However, this is not the result

we see. In order to achieve proper ordinal label encoding,

we should again use map, and build the dictionary

ourselves.

21.  Encode the ordinal labels properly by running the cell

containing the following code:

ordinal_map = {rating: index for index, rating in

enumerate(['low', 'medium', 'high'])}

print(ordinal_map)

df.rating = df.rating.map(ordinal_map)



Figure 2.20: Output after encoding ordinal labels

We first create the mapping dictionary. This is done using

a dictionary comprehension and enumeration, but looking

at the result, we see that it could just as easily be defined

manually instead. Then, as done earlier for the in_stock

column, we apply the dictionary mapping to the feature.

Looking at the result, we see that rating now makes more

sense than before, where low is labeled with 0, medium

with 1, and high with 2.

Now that you've discussed ordinal features, let's touch on

another type called nominal features. These are fields with

no inherent order, and in our case, we see that product

is a perfect example.

Most scikit­learn models can be trained on data like this,

where we have strings instead of integer­encoded labels.

In this situation, the necessary conversions are done

under the hood. However, this may not be the case for all



models in scikit­learn, or other machine learning and

deep learning libraries. Therefore, it's good practice to

encode these ourselves during preprocessing.

22.  Convert the class labels from strings to numerical values

by running the cell containing the following code:

df = pd.get_dummies(df)

The final DataFrame then looks as follows:

Figure 2.21: Final DataFrame

Here, we see the result of one­hot encoding: the product

column has been split into 4, one for each unique value.

Within each column, we find either a 1 or 0 representing

whether that row contains the particular value or product.

Moving on and ignoring any data scaling (which should

usually be done), the final step is to split the data into

training and test sets to use for machine learning. This can

be done using scikit­learn's train_test_split. Let's

assume we are going to try to predict whether an item is in

stock, given the other feature values.

Note



When we call the values attribute in the preceding code,

we are converting the Pandas series (that is, the

DataFrame column) into a NumPy array. This is good

practice because it strips out unnecessary information

from the series object, such as the index and name.

23.  Split the data into training and test sets by running the

cell containing the following code:

features = ['price', 'rating', 'product_blue pants',

'product_red shirt', 'product_white dress', 'product_white

tuxedo']

X = df[features].values target = 'in_stock'

y = df[target].values

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size=0.3)



Figure 2.22: Splitting data intro training and test sets

Here, we are selecting subsets of the data and feeding them

into the train_test_split function. This function has four

outputs, which are unpacked into the training and testing

splits for features (X) and the target (y).

Observe the shape of the output data, where the test set has

roughly 30% of the samples and the training set has roughly

70%.

We'll see similar code blocks later, when preparing real data

to use for training predictive models.

This concludes the training exercise on cleaning data for use

in machine learning applications. Let's take a minute to note

how effective our Jupyter Notebook was for testing various

methods of transforming the data, and ultimately

documenting the pipeline we decided upon. This could easily

be applied to an updated version of the data by altering only

specific cells of code, prior to processing. Also, should we

desire any changes to the processing, these can easily be

tested in the notebook, and specific cells may be changed to

accommodate the alterations. The best way to achieve this

would probably be to copy the notebook over to a new file, so

that we can always keep a copy of the original analysis for

reference.

Moving on to an activity, we'll now apply the concepts from



this section to a large dataset as we prepare it for use in

training predictive models.

ACTIVITY 2: PREPARING TO TRAIN A PREDICTIVE
MODEL FOR THE EMPLOYEE-RETENTION PROBLEM

Suppose you are hired to do freelance work for a company

who wants to find insights into why their employees are

leaving. They have compiled a set of data they think will be

helpful in this respect. It includes details on employee

satisfaction levels, evaluations, time spent at work,

department, and salary.

The company shares their data with you by sending you a file

called hr_data.csv and asking what you think can be done to

help stop employees from leaving.

Our aim is to

apply the concepts you've learned thus far to a real­life

problem. In particular, we seek to:

1.  Determine a plan for using predictive analytics to provide

impactful business insights, given the available data.

2.  Prepare the data for use in machine learning models.

Note

Starting with this activity and continuing through the



remainder of this chapter, we'll be using Human

Resources Analytics dataset, which is a Kaggle dataset.

The link to the dataset can be found here:

https://bit.ly/2OXWFUs. The data is simulated, meaning

the samples are artificially generated and do not

represent real people. We'll ignore this fact as we analyze

and model the data. There is a small difference between

the dataset we use in this book and the online version.

Our human resource analytics data contains some NaN

values. These were manually removed from the online

version of the dataset, for the purposes of illustrating

data cleaning techniques. We have also added a column

of data called is_smoker, for the same purposes.

In order to achieve this, following steps have to be executed:

1.  Scroll to the Activity A section of the lesson­2­

workbook.ipynb notebook file.

2.  Check the head of the table to verify that it is in standard

CSV format.

3.  Load the data with Pandas.

4.  Inspect the columns by printing df.columns and make

sure the data has loaded as expected by printing the

DataFrame head and tail with df.head() and

df.tail():

5.  Check the number of rows (including the header) in the



CSV file.

6.  Compare this result to len(df) to make sure we've

loaded all the data:

7.  Assess the target variable and check the distribution and

number of missing entries.

8.  Print the data type of each feature.

9.  Display the feature distributions.

10.  Check how many NaN values are in each column by

running the following code:

11.  Drop the is_smoker column as there is barely any

information in this metric.

12.  Fill the NaN values in the time_spend_company

column.

13.  Make a boxplot of average_montly_hours segmented

by number_project.

14.  Calculate the mean of each group by running the following

code:

15.  Fill the NaN values in average_montly_hours.

16.  Confirm that df has no more NaN values by running the

assertion test.

17.  Transform the string and Boolean fields into integer

representations.



18.  Print df.columns to show the fields

19.  Save our preprocessed data.

Note

The detailed steps along with the solutions are presented

in the Appendix A (pg. no. 150).

Again, we pause here to note how well the Jupyter Notebook

suited our needs when performing this initial data analysis

and clean­up. Imagine, for example, we left this project in its

current state for a few months. Upon returning to it, we would

probably not remember what exactly was going on when we

left it. Referring back to this notebook though, we would be

able to retrace our steps and quickly recall what we previously

learned about the data. Furthermore, we could update the

data source with any new data and re­run the notebook to

prepare the new set of data for use in our machine learning

algorithms. Recall that in this situation, it would be best to

make a copy of the notebook first, so as not to lose the initial

analysis.

To summarize, you've learned and applied methods for

preparing to train a machine learning model. We started by

discussing steps for identifying a problem that can be solved

with predictive analytics. This consisted of:

Looking at the available data



Determining the business needs

Assessing the data for suitability

We also discussed how to identify supervised versus

unsupervised and regression versus classification problems.

After identifying our problem, we learned techniques for

using Jupyter Notebooks to build and test a data

transformation pipeline. These techniques included methods

and best practices for filling missing data, transforming

categorical features, and building train/test data sets.

In the remainder of this chapter, we will use this preprocessed

data to train a variety of classification models. To avoid

blindly applying algorithms we don't understand, we start by

introducing them and overviewing how they work. Then, we

use Jupyter to train and compare their predictive capabilities.

Here, we have the opportunity to discuss more advanced

topics in machine learning like overfitting, k­fold cross­

validation, and validation curves.

Training Classification Models
As you've already seen in the previous chapter, using libraries

such as scikit­learn and platforms such as Jupyter, predictive

models can be trained in just a few lines of code. This is

possible by abstracting away the difficult computations



involved with optimizing model parameters. In other words,

we deal with a black box where the internal operations are

hidden instead. With this simplicity also comes the danger of

misusing algorithms, for example, by overfitting during

training or failing to properly test on unseen data. We'll show

how to avoid these pitfalls while training classification models

and produce trustworthy results with the use of k­fold cross

validation and validation curves.

INTRODUCTION TO CLASSIFICATION ALGORITHMS

Recall the two types of supervised machine learning:

regression and classification. In regression, we predict a

continuous target variable. For example, recall the linear and

polynomial models from the first chapter. In this chapter, we

focus on the other type of supervised machine learning:

classification. Here, the goal is to predict the class of a sample

using the available metrics.

In the simplest case, there are only two possible classes, which

means we are doing binary classification. This is the case for

the example problem in this chapter, where we try to predict

whether an employee has left or not. If we have more than two

class labels instead, we are doing multi­class classification.

Although there is little difference between binary and multi­

class classification when training models with scikit­learn,

what's done inside the "black box" is notably different. In



particular, multi­class classification models often use the one­

versus­rest method. This works as follows for a case with

three class labels. When the model is "fit" with the data, three

models are trained, and each model predicts whether the

sample is part of an individual class or part of some other

class. This might bring to mind the one­hot encoding for

features that we did earlier. When a prediction is made for a

sample, the class label with the highest confidence level is

returned.

In this chapter, we'll train three types of classification models:

Support Vector Machines, Random Forests, and k­Nearest

Neighbors classifiers. Each of these algorithms are quite

different. As we will see, however, they are quite similar to

train and use for predictions thanks to scikit­learn. Before

swapping over to the Jupyter Notebook and implementing

these, we'll briefly see how they work.

SVMs attempt to find the best hyperplane to divide classes by.

This is done by maximizing the distance between the

hyperplane and the closest samples of each class, which are

called support vectors.

This linear method can also be used to model nonlinear

classes using the kernel trick. This method maps the features

into a higher­dimensional space in which the hyperplane is

determined. This hyperplane is also referred to as the decision

surface, and we'll visualize it when training our models.



K­Nearest Neighbors classification algorithms memorize the

training data and make predictions depending on the K

nearest samples in the feature space. With three features, this

can be visualized as a sphere surrounding the prediction

sample. Often, however, we are dealing with more than three

features and therefore hyperspheres are drawn to find the

closest K samples.

Random Forests are an ensemble of decision trees, where

each has been trained on different subsets of the training data.

A decision tree algorithm classifies a sample based on a series

of decisions. For example, the first decision might be "if

feature x_1 is less than or greater than 0." The data would

then be split on this condition and fed into descending

branches of the tree. Each step in the decision tree is decided

based on the feature split that maximizes the information

gain. Essentially, this term describes the mathematics that

attempts to pick the best possible split of the target variable.

Training a Random Forest consists of creating bootstrapped

(that is, randomly sampled data with replacement) datasets

for a set of decision trees. Predictions are then made based on

the majority vote. These have the benefit of less overfitting

and better generalizability.

Note

Decision trees can be used to model a mix of continuous and



categorical data, which make them very useful.

Furthermore, as we will see later in this chapter, the tree

depth can be limited to reduce overfitting. For a detailed (but

brief) look into the decision tree algorithm, check out this

popular StackOverflow answer:

https://stackoverflow.com/a/1859910/3511819. There, the

author shows a simple example and discusses concepts such

as node purity, information gain, and entropy.

EXERCISE 9: TRAINING TWO-FEATURE
CLASSIFICATION MODELS WITH SCIKIT-LEARN

We'll continue working on the employee retention problem

that we introduced in the first topic. We previously prepared a

dataset for training a classification model, in which we

predicted whether an employee has left or not. Now, we'll take

that data and use it to train classification models:

1.  Start the NotebookApp and open the lesson­2­

workbook.ipynb file. Scroll down to Topic B:

Training classification models. Run the first

couple of cells to set the default figure size and load the

processed data that we previously saved to a CSV file. For

this example, we'll be training classification models on

two continuous features: satisfaction_level and

last_evaluation.

2.  Draw the bivariate and univariate graphs of the



continuous target variables by running the cell with the

following code:

sns.jointplot('satisfaction_level', 'last_evaluation',

data=df, kind='hex')

Figure 2.23: Bivariate and univariate graphs for satisfaction_level and

last_evaluation

As you can see in the preceding image, there are some

very distinct patterns in the data.

3.  Re­plot the bivariate distribution, segmenting on the

target variable, by running the cell containing the

following code:

plot_args = dict(shade=True, shade_lowest=False) for i, c

in zip((0, 1), ('Reds', 'Blues')):



sns.kdeplot(df.loc[df.left==i, 'satisfaction_level'],

df.loc[df.left==i, 'last_evaluation'], cmap=c, **plot_args)

Figure 2.24: Bivariate distribution for satisfaction_level and

last_evaluation

Now, we can see how the patterns are related to the target

variable. For the remainder of this exercise, we'll try to

exploit these patterns to train effective classification

models.

4.  Split the data into training and test sets by running the

cell containing the following code:

from sklearn.model_selection import train_test_split

features = ['satisfaction_level', 'last_evaluation'] X_train,

X_test, y_train, y_test = train_test_split(

df[features].values, df['left'].values, test_size=0.3,



random_state=1)

Our first two models, the Support Vector Machine and k­

Nearest Neighbors algorithm, are most effective when the

input data is scaled so that all of the features are on the

same order. We'll accomplish this with scikit­learn's

StandardScaler.

5.  Load StandardScaler and create a new instance, as

referenced by the scaler variable. Fit the scaler on the

training set and transform it. Then, transform the test set.

Run the cell containing the following code:

from sklearn.preprocessing import StandardScaler scaler

= StandardScaler()

X_train_std = scaler.fit_transform(X_train) X_test_std

= scaler.transform(X_test)

Note

An easy mistake to make when doing machine learning is

to "fit" the scaler on the whole dataset, when in fact it

should only be "fit" to the training data. For example,

scaling the data before splitting into training and testing

sets is a mistake. We don't want this because the model

training should not be influenced in any way by the test

data.



6.  Import the scikit­learn support vector machine class and

fit the model on the training data by running the cell

containing the following code:

from sklearn.svm import SVC

svm = SVC(kernel='linear', C=1, random_state=1)

svm.fit(X_train_std, y_train)

7.  Compute the accuracy of this model on unseen data by

running the cell containing the following code:

from sklearn.metrics import accuracy_score y_pred =

svm.predict(X_test_std)

acc = accuracy_score(y_test, y_pred) print('accuracy =

{:.1f}%'.format(acc*100))

>> accuracy = 75.9%

8.  We predict the targets for our test samples and then use

scikit­learn's accuracy_score function to determine

the accuracy. The result looks promising at ~75%! Not bad

for our first model. Recall, though, the target is

imbalanced. Let's see how accurate the predictions are for

each class.

9.  Calculate the confusion matrix and then determine the

accuracy within each class by running the cell containing

the following code:



from sklearn.metrics import confusion_matrix cmat =

confusion_matrix(y_test, y_pred)

scores = cmat.diagonal() / cmat.sum(axis=1) * 100

print('left = 0 : {:.2f}%'.format(scores[0]))

print('left = 1 : {:.2f}%'.format(scores[1]))

>> left = 0 : 100.00%

>> left = 1 : 0.00%

It looks like the model is simply classifying every sample

as 0, which is clearly not helpful at all. Let's use a contour

plot to show the predicted class at each point in the

feature space. This is commonly known as the decision­

regions plot.

10.  Plot the decision regions using a helpful function from the

mlxtend library. Run the cell containing the following

code:

from mlxtend.plotting import plot_decision_regions

N_samples = 200

X, y = X_train_std[:N_samples], y_train[:N_samples]

plot_decision_regions(X, y, clf=svm)



Figure 2.25: Plot of the decision regions

The function plots decision regions along with a set of

samples passed as arguments. In order to see the decision

regions properly without too many samples obstructing

our view, we pass only a 200­sample subset of the test

data to the plot_decision_regions function. In this

case, of course, it does not matter. We see the result is

entirely red, indicating every point in the feature space

would be classified as 0.

It shouldn't be surprising that a linear model can't do a

good job of describing these nonlinear patterns. Recall

earlier we mentioned the kernel trick for using SVMs to

classify nonlinear problems. Let's see if doing this can

improve the result.

11.  Print the docstring for scikit­learn's SVM by running the

cell containing SVC. Scroll down and check out the



parameter descriptions. Notice the kernel option, which is

actually enabled by default as rbf. Use this kernel

option to train a new SVM by running the cell containing

the following code:

check_model_fit(svm, X_test_std, y_test)

Figure 2.26: Training a new SVM



Figure 2.27: Enhanced results with non-linear patterns

The result is much better. Now, we are able to capture some of

the non­linear patterns in the data and correctly classify the

majority of the employees who have left.

THE PLOT_DECISION_REGIONS FUNCTION

The plot_decision_regions function is provided by

mlxtend, a Python library developed by Sebastian Raschka.

It's worth taking a peek at the source code (which is of course

written in Python) to understand how these plots are drawn.

It's really not too complicated.

In a Jupyter Notebook, import the function with from

mlxtend.plotting import plot_decision_regions

and then pull up the help with plot_decision_regions?

and scroll to the bottom to see the local file path:



Figure 2.28: Local file path

Then, open up the file and read through it. For example, you

could run cat in the notebook:

Figure 2.29: Running cat in the notebook

This is okay, but not ideal as there's no color markup for the

code. It's better to copy it (so you don't accidentally alter the

original) and open it with your favorite text editor.

When drawing attention to the code responsible for mapping

the decision regions, we see a contour plot of predictions Z

over an array X_predict that spans the feature space.



Figure 2.30: The screenshot of the code for mapping decision regions

Let's move to training our model on k­Nearest Neighbors.

EXERCISE 10: TRAINING K-NEAREST NEIGHBORS
FOR OUR MODEL
1.  Load the scikit­learn KNN classification model and print

the docstring by running the cell containing the following

code:

from sklearn.neighbors import KNeighborsClassifier

KNeighborsClassifier?

The n_neighbors parameter decides how many samples

to use when making a classification. If the weights

parameter is set to uniform, then class labels are decided

by majority vote. Another useful choice for the weights is

distance, where closer samples have a higher weight in the



voting. Like most model parameters, the best choice for

this depends on the particular dataset.

2.  Train the KNN classifier with n_neighbors=3, and then

compute the accuracy and decision regions. Run the cell

containing the following code:

knn = KNeighborsClassifier(n_neighbors=3)

knn.fit(X_train_std, y_train)

check_model_fit(knn, X_test_std, y_test)

Figure 2.31: Training the kNN classifier with n_negihbours=3



Figure 2.32: Enhanced results after training

We see an increase in overall accuracy and a significant

improvement for class 1 in particular. However, the

decision region plot would indicate we are overfitting the

data. This is evident by the hard, "choppy" decision

boundary, and small pockets of blue everywhere. We can

soften the decision boundary and decrease overfitting by

increasing the number of nearest neighbors.

3.  Train a KNN model with n_neighbors=25 by running

the cell containing the following code:

knn = KNeighborsClassifier(n_neighbors=25)

knn.fit(X_train_std, y_train)

check_model_fit(knn, X_test_std, y_test)



Figure 2.33: Training the kNN classifier with n_negihbours=25

Figure 2.34: Output after training with n_neighbours=25

As we can see, the decision boundaries are significantly less



choppy, and there are far less pockets of blue. The accuracy

for class 1 is slightly less, but we would need to use a more

comprehensive method such as k­fold cross validation to

decide if there's a significant difference between the two

models.

Note that increasing n_neighbors has no effect on training

time, as the model is simply memorizing the data. The

prediction time, however, will be greatly affected.

Note

When doing machine learning with real­world data, it's

important for the algorithms to run quick enough to serve

their purposes. For example, a script to predict tomorrow's

weather that takes longer than a day to run is completely

useless! Memory is also a consideration that should be taken

into account when dealing with substantial amounts of data.

We will now train a Random Forest.

EXERCISE 11: TRAINING A RANDOM FOREST

Note

Observe how similar it is to train and make predictions on

each model, despite them each being so different internally.

1.  Train a Random Forest classification model composed of



50 decision trees, each with a max depth of 5. Run the cell

containing the following code:

from sklearn.ensemble import RandomForestClassifier

forest = RandomForestClassifier(n_estimators=50,

max_depth=5,

random_state=1)

forest.fit(X_train, y_train) check_model_fit(forest,

X_test, y_test)

Figure 2.35: Training a Random Forest with a max depth of 5



Figure 2.36: Output after training with a max depth of 5

Note the distinctive axes­parallel decision boundaries

produced by decision tree machine learning algorithms.

We can access any of the individual decision trees used to

build the Random Forest. These trees are stored in the

estimators_attribute of the model. Let's draw one

of these decision trees to get a feel for what's going on.

Doing this requires the graphviz dependency, which can

sometimes be difficult to install.

2.  Draw one of the decision trees in the Jupyter Notebook by

running the cell containing the following code:

from sklearn.tree import export_graphviz import

graphviz

dot_data = export_graphviz(



forest.estimators_[0], out_file=None,

feature_names=features, class_names=['no', 'yes'],

filled=True, rounded=True, special_characters=True)

graph = graphviz.Source(dot_data) graph

Figure 2.37: Decision tree obtained using graphviz

We can see that each path is limited to five nodes as a result of

setting max_depth=5. The orange boxes represent predictions

of no (has not left the company), and the blue boxes represent

yes (has left the company). The shade of each box (light, dark,

and so on) indicates the confidence level, which is related to

the gini value.



To summarize, we have accomplished two of the learning

objectives in this section:

We gained a qualitative understanding of support vector

machines (SVMs), k­Nearest Neighbor classifiers (kNNs),

and Random Forest

We are now able to train a variety of models using scikit­

learn and Jupyter Notebooks so that we can confidently

build and compare predictive models

In particular, we used the preprocessed data from our

employee retention problem to train classification models to

predict whether an employee has left the company or not. For

the purposes of keeping things simple and focusing on the

algorithms, we built models to predict this given only two

features: the satisfaction level and last evaluation value. This

two­dimensional feature space also allowed us to visualize the

decision boundaries and identify what overfitting looks like.

In the following section, we will introduce two important

topics in machine learning: k­fold cross­validation and

validation curves.

ASSESSING MODELS WITH K-FOLD CROSS-
VALIDATION AND VALIDATION CURVES

Thus far, we have trained models on a subset of the data and



then assessed performance on the unseen portion, called the

test set. This is good practice because the model performance

on training data is not a good indicator of its effectiveness as a

predictor. It's very easy to increase accuracy on a training

dataset by overfitting a model, which can result in poorer

performance on unseen data.

That said, simply training models on data split in this way is

not good enough. There is a natural variance in data that

causes accuracies to be different (if even slightly) depending

on the training and test splits. Furthermore, using only one

training/test split to compare models can introduce bias

towards certain models and lead to overfitting.

K­fold cross validation offers a solution to this problem

and allows the variance to be accounted for by way of an error

estimate on each accuracy calculation. This, in turn, naturally

leads to the use of validation curves for tuning model

parameters. These plot the accuracy as a function of a hyper

parameter such as the number of decision trees used in a

Random Forest or the max depth.

Note

This is our first time using the term hyperparameter. It

references a parameter that is defined when initializing a

model, for example, the C parameter of the SVM. This is in

contradistinction to a parameter of the trained model, such



as the equation of the decision boundary hyperplane for a

trained SVM.

The method is illustrated in the following diagram, where we

see how the k­folds can be selected from the dataset:

Figure 2.38: Selecting k-folds from a data set

The k­fold cross validation algorithm goes as follows:

1.  Split data into k "folds" of near­equal size.

2.  Test and train k models on different fold combinations.

Each model will include k ­ 1 folds of training data and the

left­out fold is used for testing. In this method, each fold

ends up being used as the validation data exactly once.

3.  Calculate the model accuracy by taking the mean of the k

values. The standard deviation is also calculated to

provide error bars on the value.

It's standard to set k = 10, but smaller values for k should be

considered if using a big data set.



This validation method can be used to reliably compare model

performance with different hyperparameters (for example, the

C parameter for an SVM or the number of nearest neighbors

in a KNN classifier). It's also suitable for comparing entirely

different models.

Once the best model has been identified, it should be re­

trained on the entirety of the dataset before being used to

predict actual classifications.

When implementing this with scikit­learn, it's common to use

a slightly improved variation of the normal k­fold algorithm

instead. This is called stratified k­fold. The improvement is

that stratified k­fold cross validation maintains roughly even

class label populations in the folds. As you can imagine, this

reduces the overall variance in the models and decreases the

likelihood of highly unbalanced models causing bias.

Validation curves are plots of a training and validation

metric as a function of some model parameter. They allow to

us to make good model parameter selections. In this book, we

will use the accuracy score as our metric for these plots.

Note

The documentation for plot validation curves is available

here: http://scikit­learn.org/stable/auto_examples/

model_selection/plot_validation_curve.html.



Consider this validation curve, where the accuracy score is

plotted as a function of the gamma SVM parameter:

Figure 2.39: Validation curve with SVM

Starting on the left side of the plot, we can see that both sets

of data are agreeing on the score, which is good. However, the

score is also quite low compared to other gamma values, so

therefore we say the model is underfitting the data. Increasing

the gamma, we can see a point where the error bars of these

two lines no longer overlap. From this point on, we see the

classifier overfitting the data as the models behave

increasingly well on the training set compared to the

validation set. The optimal value for the gamma parameter

can be found by looking for a high validation score with

overlapping error bars on the two lines.

Keep in mind that a learning curve for some parameter is only

valid while the other parameters remain constant. For

example, if training the SVM in this plot, we could decide to



pick gamma on the order of. However, we may want to

optimize the C parameter as well. With a different value for C,

the preceding plot would be different and our selection for

gamma may no longer be optimal.

EXERCISE 12: USING K-FOLD CROSS VALIDATION
AND VALIDATION CURVES IN PYTHON WITH SCIKIT-
LEARN
1.  Start the NotebookApp and open the lesson­2­

workbook.ipynb file. Scroll down to Subtopic B: K­

fold cross­validation and validation

curves.

The training data should already be in the notebook's

memory, but let's reload it as a reminder of what exactly

we're working with.

2.  Load the data and select the satisfaction_level and

last_evaluation features for the training/validation

set. We will not use the train­test split this time because

we are going to use k­fold validation instead. Run the cell

containing the following code:

df = pd.read_csv('../data/hr­

analytics/hr_data_processed. csv')

features = ['satisfaction_level', 'last_evaluation']



X = df[features].values y = df.left.values

3.  Instantiate a Random Forest model by running the cell

containing the following code:

clf = RandomForestClassifier(n_estimators=100,

max_depth=5)

4.  To train the model with stratified k­fold cross validation,

we'll use the model_ selection.cross_val_score

function.

Train 10 variations of our model clf using stratified k­

fold validation. Note that scikit­learn's

cross_val_score does this type of validation by

default. Run the cell containing the following code:

from sklearn.model_selection import cross_val_score

np.random.seed(1)

scores = cross_val_score(

estimator=clf, X=X,

y=y, cv=10)

print('accuracy = {:.3f} +/­ {:.3f}'.format(scores.mean(),

scores.std()))

>> accuracy = 0.923 +/­ 0.005



Note how we use np.random.seed to set the seed for the

random number generator, therefore ensuring

reproducibility with respect to the randomly selected

samples for each fold and decision tree in the Random

Forest.

5.  Calculate the accuracy as the average of each fold. We can

also see the individual accuracies for each fold by printing

scores. To see these, run print(scores):

>> array([ 0.93404397, 0.91533333, 0.92266667,

0.91866667, 0.92133333,

0.92866667, 0.91933333, 0.92 ,

0.92795197, 0.92128085])

Using cross_val_score is very convenient, but it

doesn't tell us about the accuracies within each class. We

can do this manually with the model_

selection.StratifiedKFold class. This class takes

the number of folds as an initialization parameter, then

the split method is used to build randomly sampled

"masks" for the data. A mask is simply an array containing

indexes of items in another array, where the items can

then be returned by doing this: data[mask].

6.  Define a custom class for calculating k­fold cross



validation class accuracies. Run the cell containing the

following code:

from sklearn.model_selection import StratifiedKFold

…

…

print('fold: {:d} accuracy: {:s}'.format(k+1,

str(class_acc)))

return class_accuracy

Note

For the complete code, refer to the following:

https://bit.ly/2O5uP3h.

7.  We can then calculate the class accuracies with code that's

very similar to step 4. Do this by running the cell

containing the following code:

from sklearn.model_selection import cross_val_score

np.random.seed(1)

…

…

>> fold: 10 accuracy: [ 0.98861646 0.70588235]



>> accuracy = [ 0.98722476 0.71715647] +/­ [

0.00330026

0.02326823]

Note

For the complete code, refer to the following:

https://bit.ly/2EKK7Lp.

8.  Now we can see the class accuracies for each fold! Pretty

neat, right?

9.  Calculate a validation curve using

model_selection.validation_curve. This function

uses stratified k­fold cross validation to train models for

various values of a given parameter.

Do the calculations required to plot a validation curve by

training Random Forests over a range of max_depth

values. Run the cell containing the following code:

from sklearn.model_selection import validation_curve

clf = RandomForestClassifier(n_estimators=10)

max_depths = np.arange(3, 16, 3)

train_scores, test_scores = validation_curve(

estimator=clf,



X=X,

y=y, param_name='max_depth',

param_range=max_depths,

cv=10);

This will return arrays with the cross validation scores for

each model, where the models have different max depths.

In order to visualize the results, we'll leverage a function

provided in the scikit­learn documentation.

10.  Run the cell in which plot_validation_curve is

defined. Then, run the cell containing the following code

to draw the plot:

plot_validation_curve(train_scores, test_scores,

max_depths, xlabel='max_depth')



Figure 2.40: Plot validation curve

Recall how setting the max depth for decision trees limits the

amount of overfitting. This is reflected in the validation curve,

where we see overfitting taking place for large max depth

values to the right. A good value for max_depth appears to be

6, where we see the training and validation accuracies in

agreement. When max_depth is equal to 3, we see the model

underfitting the data as training and validation accuracies are

lower.

To summarize, we have learned and implemented two

important techniques for building reliable predictive models.

The first such technique was k­foldcross­validation, which is

used to split the data into various train/test batches and

generate a set accuracy. From this set, we then calculated the

average accuracy and the standard deviation as a measure of

the error. This is important so that we have a gauge of the

variability of our model and we can produce trustworthy

accuracy.

We also learned about another such technique to ensure we

have trustworthy results: validation curves. These allow us to

visualize when our model is overfitting based on comparing

training and validation accuracies. By plotting the curve over

a range of our selected hyperparameter, we are able to identify

its optimal value.

In the final section of this chapter, we take everything we have



learned so far and put it together in order to build our final

predictive model for the employee retention problem. We seek

to improve the accuracy, compared to the models trained thus

far, by including all of the features from the dataset in our

model. We'll see now­familiar topics such as k­fold cross­

validation and validation curves, but we'll also introduce

something new: dimensionality reduction techniques.

DIMENSIONALITY REDUCTION TECHNIQUES

Dimensionality reduction can simply involve removing

unimportant features from the training data, but more exotic

methods exist, such as Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA). These

techniques allow for data compression, where the most

important information from a large group of features can be

encoded in just a few features.

In this subtopic, we'll focus on PCA. This technique

transforms the data by projecting it into a new subspace of

orthogonal "principal components," where the components

with the highest eigenvalues encode the most information for

training the model. Then, we can simply select a few of these

principal components in place of the original high­

dimensional dataset. For example, PCA could be used to

encode the information from every pixel in an image. In this

case, the original feature space would have dimensions equal

to the number of pixels in the image. This high­dimensional



space could then be reduced with PCA, where the majority of

useful information for training predictive models might be

reduced to just a few dimensions. Not only does this save time

when training and using models, it allows them to perform

better by removing noise in the dataset.

Like the models you've seen, it's not necessary to have a

detailed understanding of PCA in order to leverage the

benefits. However, we'll dig into the technical details of PCA

just a bit further so that we can conceptualize it better. The

key insight of PCA is to identify patterns between features

based on correlations, so the PCA algorithm calculates the

covariance matrix and then decomposes this into eigenvectors

and eigenvalues. The vectors are then used to transform the

data into a new subspace, from which a fixed number of

principal components can be selected.

In the following exercise, we'll see an example of how PCA can

be used to improve our Random Forest model for the

employee retention problem we have been working on. This

will be done after training a classification model on the full

feature space, to see how our accuracy is affected by

dimensionality reduction.

EXERCISE 13: TRAINING A PREDICTIVE MODEL FOR
THE EMPLOYEE RETENTION PROBLEM

We have already spent considerable effort planning a machine



learning strategy, preprocessing the data, and building

predictive models for the employee retention problem. Recall

that our business objective was to help the client prevent

employees from leaving. The strategy we decided upon was to

build a classification model that would predict the probability

of employees leaving. This way, the company can assess the

likelihood of current employees leaving and take action to

prevent it.

Given our strategy, we can summarize the type of predictive

modeling we are doing as follows:

Supervised learning on labeled training data

Classification problems with two class labels (binary)

In particular, we are training models to determine whether an

employee has left the company, given a set of continuous and

categorical features. After preparing the data for machine

learning in Activity 1, Preparing to Train a Predictive Model

for the Employee­Retention Problem, we went on to

implement SVM, k­Nearest Neighbors, and Random Forest

algorithms using just two features. These models were able to

make predictions with over 90% overall accuracy. When

looking at the specific class accuracies, however, we found

that employees who had left (class­ label 1) could only

be predicted with 70­80% accuracy.



Let's see how much this can be improved by utilizing the full

feature space.

1.  Scroll down to the code for this section in the lesson­2­

workbook.ipynb notebook. We should already have the

preprocessed data loaded from the previous exercises, but

this can be done again, if desired, by executing df =

pd.read_csv('../data/hr­

analytics/hr_data_processed.csv'). Then, print

the DataFrame columns with print(df.columns).

2.  Define a list of all the features by copy and pasting the

output from df.columns into a new list (making sure to

remove the target variable left). Then, define X and Y as

we have done before. This goes as follows:

features = ['satisfaction_level', 'last_evaluation',

'number_project',

'average_montly_hours', 'time_spend_company', 'work_

accident',

…

…

X = df[features].values y = df.left.values

Note



For the complete code, refer to the following:

https://bit.ly/2D3WOQ2.

Looking at the feature names, recall what the values look

like for each one. Scroll up to the set of histograms we

made in the first activity to help jog your memory. The

first two features are continuous; these are what we used

for training models in the previous two exercises. After

that, we have a few discrete features, such as

number_project and time_spend_company, followed

by some binary fields such as work_accident and

promotion_last_5years. We also have a bunch of

binary features, such as department_ IT and

department_accounting, which were created by one­

hot encoding.

Given a mix of features like this, Random Forests are a

very attractive type of model. For one thing, they're

compatible with feature sets composed of both continuous

and categorical data, but this is not particularly special;

for instance, an SVM can be trained on mixed feature

types as well (given proper preprocessing).

Note

If you're interested in training an SVM or k­Nearest

Neighbors classifier on mixed­type input features, you

can use the data­scaling prescription from this



StackExchange answer:

https://stats.stackexchange.com/questions/82923/mixing­

continuous­and­binary­data­with­linear­

svm/83086#83086.

A simple approach would be to preprocess data as follows:

standardize continuous variables; one­hot­encode

categorical features; shift binary values to ­1 and 1 instead

of 0 and 1. Finally, the mixed­feature data could be used

to train a variety of classification models.

3.  Tune the max_depth hyperparameter using a validation

curve to figure out the best parameters for our Random

Forest model. Calculate the training and validation

accuracies by running the following code:

%%time np.random.seed(1)

clf = RandomForestClassifier(n_estimators=20)

max_depths = [3, 4, 5, 6, 7,

9, 12, 15, 18, 21]

train_scores, test_scores = validation_curve(

estimator=clf,

X=X,

y=y, param_name='max_depth',



param_range=max_depths,

cv=5);

We are testing 10 models with k­fold cross validation. By

setting k = 5, we produce five estimates of the accuracy for

each model, from which we extract the mean and

standard deviation to plot in the validation curve. In total,

we train 50 models, and since n_estimators is set to

20, we are training a total of 1,000 decision trees! All in

roughly 10 seconds!

4.  Plot the validation curve using our custom

plot_validation_curve function from the last

exercise. Run the following code:

plot_validation_curve(train_scores, test_scores,

max_depths, xlabel='max_depth');



Figure 2.41: Plot validation curve for different values of max_depths

For small max depths, we see the model underfitting the

data. Total accuracies dramatically increase by allowing

the decision trees to be deeper and encode more

complicated patterns in the data. As the max depth is

increased further and the accuracy approaches 100%, we

find the model overfits the data, causing the training and

validation accuracies to grow apart. Based on this figure,

let's select a max_depth of 6 for our model.

We should really do the same for n_estimators, but in

the spirit of saving time, we'll skip it. You are welcome to

plot it on your own; you should find agreement between

training and validation sets for a large range of values.

Usually it's better to use more decision tree estimators in

the random forest, but this comes at the cost of increased

training times. We'll use 200 estimators to train our

model.

5.  Use cross_val_class_score, the k­fold cross

validation by class function we created earlier, to test the

selected model, a Random Forest with max_ depth = 6

and n_estimators = 200:

np.random.seed(1)

clf = RandomForestClassifier(n_estimators=200,

max_depth=6) scores = cross_val_class_score(clf, X, y)



print('accuracy = {} +/­ {}'\

.format(scores.mean(axis=0), scores.std(axis=0)))

>> accuracy = [ 0.99553722 0.85577359] +/­ [

0.00172575

0.02614334]

The accuracies are way higher now that we're using the

full feature set, compared to before when we only had the

two continuous features!

6.  Visualize the accuracies with a boxplot by running the

following code:

fig = plt.figure(figsize=(5, 7))

sns.boxplot(data=pd.DataFrame(scores, columns=[0, 1]),

palette=sns.color_palette('Set1')) plt.xlabel('Left')

plt.ylabel('Accuracy')



Figure 2.42: Visualizing the accuracy with a box plot

Random forests can provide an estimate of the feature

performances.

Note

The feature importance in scikit­learn is calculated based

on how the node impurity changes with respect to each

feature. For a more detailed explanation, take a look at

the following StackOverflow thread about how feature

importance is determined in Random Forest Classifier:

https://stackoverflow.com

7.  Plot the feature importance, as stored in the attribute

feature_importances_, by running the following

code:

pd.Series(clf.feature_importances_, name='Feature



importance',

index=df[features].columns)\

.sort_values()\

.plot.barh() plt.xlabel('Feature importance')

Figure 2.43: Plot of feature_importance

8.  It doesn't look like we're getting much in the way of useful

contribution from the one­hot encoded variables:

department and salary. Also, the

promotion_last_5years and work_accident

features don't appear to be very useful.

Let's use PCA to condense all of these weak features into

just a few principal components.

9.  Import the PCA class from scikit­learn and transform the



features. Run the following code

from sklearn.decomposition import PCA pca_features = \

…

…

pca = PCA(n_components=3)

X_pca = pca.fit_transform(X_reduce)

Note

For the complete code, refer to the following:

https://bit.ly/2D3iKL2. View the string representation of

X_pca by typing it alone and executing the cell:

>> array([[­0.67733089, 0.75837169, ­0.10493685],

>> [ 0.73616575, 0.77155888, ­0.11046422],

>> [ 0.73616575, 0.77155888, ­0.11046422],

>> ...,

>> [­0.67157059, ­0.3337546 , 0.70975452],

>> [­0.67157059, ­0.3337546 , 0.70975452],

>> [­0.67157059, ­0.3337546 , 0.70975452]])



Since we asked for the top three components, we get three

vectors returned.

10.  Add the new features to our DataFrame with the following

code:

df['first_principle_component'] = X_pca.T[0]

df['second_principle_component'] = X_pca.T[1]

df['third_principle_component'] = X_pca.T[2]

Select our reduced­dimension feature set to train a new

Random Forest with. Run the following code:

features = ['satisfaction_level', 'number_project',

'time_spend_company',

'average_montly_hours', 'last_evaluation',

'first_principle_component',

'second_principle_component',

'third_principle_component']

X = df[features].values y = df.left.values

11.  Assess the new model's accuracy with k­fold cross

validation. This can be done by running the same code as

before, where X now points to different features. The code

is as follows:

np.random.seed(1)



clf = RandomForestClassifier(n_estimators=200,

max_depth=6) scores = cross_val_class_score(clf, X, y)

print('accuracy = {} +/­ {}'\

.format(scores.mean(axis=0), scores.std(axis=0)))

>> accuracy = [ 0.99562463 0.90618594] +/­ [

0.00166047

0.01363927]

12.  Visualize the result in the same way as before, using a box

plot. The code is as follows:

fig = plt.figure(figsize=(5, 7))

sns.boxplot(data=pd.DataFrame(scores, columns=[0, 1]),

palette=sns.color_palette('Set1')) plt.xlabel('Left')

plt.ylabel('Accuracy')



Figure 2.44: Box plot to visualize accuracy

Comparing this to the previous result, we find an

improvement in the class 1 accuracy! Now, the majority of

the validation sets return an accuracy greater than 90%.

The average accuracy of 90.6% can be compared to the

accuracy of 85.6% prior to dimensionality reduction!

Let's select this as our final model. We'll need to re­train it

on the full sample space before using it in production.

13.  Train the final predictive model by running the following

code:

np.random.seed(1)

clf = RandomForestClassifier(n_estimators=200,

max_depth=6) clf.fit(X, y)

14.  Save the trained model to a binary file using

externals.joblib.dump. Run the following code:

from sklearn.externals import joblib joblib.dump(clf,

'random­forest­trained.pkl')

15.  Check that it's saved into the working directory, for

example, by running:

!ls *.pkl. Then, test that we can load the model from

the file by running the following code:



clf = joblib.load('random­forest­trained.pkl')

Congratulations! You've trained the final predictive

model! Now, let's see an example of how it can be used to

provide business insights for the client. Say we have a

particular employee, who we'll call Sandra. Management

has noticed she is working very hard and reported low job

satisfaction in a recent survey. They would therefore like

to know how likely it is that she will quit. For the sake of

simplicity, let's take her feature values as a sample from

the training set (but pretend that this is unseen data

instead).

16.  List the feature values for Sandra by running the following

code:

sandra = df.iloc[573]X = sandra[features]X

>> satisfaction_level 0.360000

>> number_project 2.000000

>> time_spend_company 3.000000

>> average_montly_hours 148.000000

>> last_evaluation 0.470000

>> first_principle_component 0.742801



>> second_principle_component ­0.514568

>> third_principle_component ­0.677421

The next step is to ask the model which group it thinks she

should be in.

17.  Predict the class label for Sandra by running the following

code:

clf.predict([X])

>> array([1])

The model classifies her as having already left the

company; not a good sign! We can take this a step further

and calculate the probabilities of each class label.

18.  Use clf.predict_proba to predict the probability of

our model predicting that Sandra has quit. Run the

following code:

clf.predict_proba([X])

>> array([[ 0.06576239, 0.93423761]])

We see the model predicting that she has quit with 93%

accuracy. Since this is clearly a red flag for management,

they decide on a plan to reduce her number of monthly

hours to 100 and the time spent at the company to 1.



19.  Calculate the new probabilities with Sandra's newly

planned metrics. Run the following code:

X.average_montly_hours = 100

X.time_spend_company = 1 clf.predict_proba([X])

>> array([[ 0.61070329, 0.38929671]])

Excellent! We can now see that the model returns a mere

38% likelihood that she has quit! Instead, it now predicts

she will not have left the company.

Our model has allowed management to make a data­driven

decision. By reducing her amount of time with the company

by this particular amount, the model tells us that she will

most likely remain an employee at the company!

Summary
In this chapter, we have seen how predictive models can be

trained in Jupyter Notebooks.

To begin with, we talked about how to plan a machine

learning strategy. We thought about how to design a plan that

can lead to actionable business insights and stressed the

importance of using the data to help set realistic business

goals. We also explained machine learning terminology such



as supervised learning, unsupervised learning, classification,

and regression.

Next, we discussed methods for preprocessing data using

scikit­learn and pandas. This included lengthy discussions

and examples of a surprisingly time­consuming part of

machine learning: dealing with missing data.

In the latter half of the chapter, we trained predictive

classification models for our binary problem, comparing how

decision boundaries are drawn for various models such as the

SVM, k­Nearest Neighbors, and Random Forest. We then

showed how validation curves can be used to make good

parameter choices and how dimensionality reduction can

improve model performance. Finally, at the end of our

activity, we explored how the final model can be used in

practice to make data­driven decisions.

In the next chapter, we will focus on data acquisition.

Specifically, we will analyze HTTP requests, scrape tabular

data from a web page, build and transform Pandas

DataFrames, and finally create visualizations.



Web Scraping and Interactive
Visualizations

Learning Objectives
By the end of this chapter, you will be able to:

Describe how HTTP requests work

Scrape tabular data from a web page

Build and transform Pandas DataFrames

Create interactive visualizations

In this chapter, you will learn the fundamentals of HTTP

requests, scrape web page data, and then create interactive

visualizations using the Jupyter Notebook.

Introduction
So far in this book, we have focused on using Jupyter to build

reproducible data analysis pipelines and predictive models.

We'll continue to explore these topics in this chapter, but the

main focus here is data acquisition. In particular, we will show

you how data can be acquired from the web using HTTP

requests. This will involve scraping web pages by requesting

and parsing HTML. We will then wrap up this chapter by

using interactive visualization techniques to explore the data

we've collected.
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The amount of data available online is huge and relatively

easy to acquire. It's also continuously growing and becoming

increasingly important. Part of this continual growth is the

result of an ongoing global shift from newspapers, magazines,

and TV to online content. With customized newsfeeds

available all the time on cell phones, and live­news sources

such as Facebook, Reddit, Twitter, and YouTube, it's difficult

to imagine the historical alternatives being relevant much

longer. Amazingly, this accounts for only some of the

increasingly massive amounts of data available online.

With this global shift toward consuming content using HTTP

services (blogs, news sites, Netflix, and so on), there are

plenty of opportunities to use data­driven analytics. For

example, Netflix looks at the movies a user watches and

predicts what they will like. This prediction is used to

determine the suggested movies that appear. In this chapter,

however, we won't be looking at "business­facing" data as

such, but instead we will see how the client can leverage the

internet as a database. Never before has this amount and

variety of data been so easily accessible. We'll use web­

scraping techniques to collect data, and then we'll explore it

with interactive visualizations in Jupyter.

Interactive visualization is a visual form of data

representation, which helps users understand the data using

graphs or charts. Interactive visualization helps a developer or

analyst present data in a simple form, which can be

understood by non­technical personnel too.

Scraping Web Page Data
In the spirit of leveraging the internet as a database, we can

think about acquiring data from web pages either by scraping

content or by interfacing with web APIs. Generally, scraping

content means getting the computer to read data that was



intended to be displayed in a human­readable format. This is

in contradistinction to web APIs, where data is delivered in

machine­readable formats—the most common being JSON.

In this topic, we will focus on web scraping. The exact process

for doing this will depend on the page and desired content.

However, as we will see, it's quite easy to scrape anything we

need from an HTML page so long as we have an

understanding of the underlying concepts and tools. In this

topic, we'll use Wikipedia as an example and scrape tabular

content from an article. Then, we'll apply the same techniques

to scrape

data from a page on an entirely separate domain. But first,

we'll take some time to introduce HTTP requests.

INTRODUCTION TO HTTP REQUESTS

The Hypertext Transfer Protocol, or HTTP for short, is the

foundation of data communication for the internet. It defines

how a page should be requested and how the response should

look. For example, a client can request an Amazon page of

laptops for sale, a Google search of local restaurants, or their

Facebook feed. Along with the URL, the request will contain

the user agent and available browsing cookies among the

contents of the request header. The user agent tells the server

what browser and device the client is using, which is usually

used to provide the most user­friendly version of the web

page's response. Perhaps they have recently logged in to the

web page; such information would be stored in a cookie that

might be used to automatically log the user in.

These details of HTTP requests and responses are taken care

of under the hood thanks to web browsers. Luckily for us,

today the same is true when making requests with high­level

languages such as Python. For many purposes, the contents of

request headers can be largely ignored. Unless otherwise



specified, these are automatically generated in Python when

requesting a URL. Still, for the purposes of troubleshooting

and understanding the responses yielded by our requests, it's

useful to have a foundational understanding of HTTP.

There are many types of HTTP methods, such as GET, HEAD,

POST, and PUT. The first two are used for requesting that

data be sent from the server to the client, whereas the last two

are used for sending data to the server.

Note

Take a look at this GET request example for the Profile page

on the site https://www.studytonight.com/. The exact page

that was requested contains parameters, which start after

the question mark (?) and are separated by the ampersands

(&). These are usually used to modify the page specified by

the path to source on the web server. In this case, the User­

Agent is Mozilla/5.0, which corresponds to a standard

desktop browser. Among other lines in the header, we note

the Accept and Accept­Language fields, which specify the

acceptable content types and language of the response.

These HTTP methods are summarized below:

GET: Retrieves the information from the specified URL

HEAD: Retrieves the meta information from the HTTP

header of the specified URL

POST: Sends the attached information for appending to

the resource(s) at the specified URL

PUT: Sends the attached information for replacing the

resource(s) at the specified URL

A GET request is sent each time we type a web page address

into our browser and press Enter. For web scraping, this is

usually the only HTTP method we are interested in, and it's



the only method we'll be using in this chapter.

Once the request has been sent, a variety of response types

can be returned from the server. These are labeled with 100­

level to 500­level codes, where the first digit in the code

represents the response class. These can be described as

follows:

1xx: Informational response, for example, server is

processing a request. It's uncommon to see this.

2xx: Success, for example, page has loaded properly.

3xx: Redirection, for example, the requested resource has

been moved and we were redirected to a new URL.

4xx: Client error, for example, the requested resource

does not exist.

5xx: Server error, for example, the website server is

receiving too much traffic and could not fulfill the request.

For the purposes of web scraping, we usually only care about

the response class, that is, the first digit of the response code.

However, there exist subcategories of responses within each

class that offer more granularity on what's going on. For

example, a 401 code indicates an unauthorized response,

whereas a 404 code indicates a page not found response. This

distinction is noteworthy because a 404 would indicate we've

requested a page that does not exist, whereas 401 tells us we

need to log in to view the particular resource.

Let's see how HTTP requests can be done in Python and

explore some of these topics using the Jupyter Notebook.

MAKING HTTP REQUESTS IN THE JUPYTER
NOTEBOOK

Now that we've talked about how HTTP requests work and



what type of responses we should expect, let's see how this can

be done in Python. We'll use a library called Requests, which

happens to be the most downloaded external library for

Python. It's possible to use Python's built­in tools, such as

urllib, for making HTTP requests, but Requests is far

more intuitive, and in fact it's recommended over urllib in

the official Python documentation.

Requests is a great choice for making simple and advanced

web requests. It allows for all sorts of customization with

respect to headers, cookies, and authorization. It tracks

redirects and provides methods for returning specific page

content such as JSON. Furthermore, there's an extensive suite

of advanced features. However, it does not allow JavaScript to

be rendered.

Oftentimes, servers return HTML with JavaScript code

snippets included, which are automatically run in the browser

on load time. When requesting content with Python using

Requests, this JavaScript code is visible, but it does not run.

Therefore, any elements that would be altered or created by

doing so are missing. Often, this does not affect the ability to

get the desired information, but in some cases we may need to

render the JavaScript in order to scrape the page properly.

For doing this, we could use a library like Selenium.

This has a similar API to the Requests library, but provides

support for rendering JavaScript using web drivers. It can

even run JavaScript commands on live pages, for example, to

change the text color or scroll to the bottom of the page.

Note

For more information, refer to: http://docs.python­

requests.org/en/master/user/advanced/ and

http://selenium­python.readthedocs.io/.

Let's dive into an exercise using the Requests library with



Python in a Jupyter Notebook.

EXERCISE 14: HANDLING HTTP REQUESTS WITH
PYTHON IN A JUPYTER NOTEBOOK
1.  Start the NotebookApp from the project directory by

executing jupyter notebook. Navigate to the lesson­3

directory and open up the lesson­ 3­workbook.ipynb

file. Find the cell near the top where the packages are

loaded and run it.

We are going to request a web page and then examine the

response object. There are many different libraries for

making requests and many choices for exactly how to do

so with each. We'll only use the Requests library, as it

provides excellent documentation, advanced features, and

a simple API.

2.  Scroll down to Subtopic A: Introduction to

HTTP requests and run the first cell in that section to

import the Requests library. Then, prepare a request by

running the cell containing the following code:

url = 'https://jupyter.org/'

req = requests.Request('GET', url) req.headers['User­

Agent'] = 'Mozilla/5.0'

req = req.prepare()

We use the Request class to prepare a GET request to the

jupyter.org homepage. By specifying the user agent as

Mozilla/5.0, we are asking for a response that would be

suitable for a standard desktop browser. Finally, we

prepare the request.

3.  Print the docstring for the "prepared request" req, by

running the cell containing req?:



Figure 3.1: Printing the docstring for req

Looking at its usage, we see how the request can be sent

using a session. This is similar to opening a web browser

(starting a session) and then requesting a URL.

4.  Make the request and store the response in a variable

named page, by running the following code:

with requests.Session() as sess: page = sess.send(req)

This code returns the HTTP response, as referenced by

the page variable. By using the with statement, we

initialize a session whose scope is limited to the indented

code block. This means we do not have to worry about

explicitly closing the session, as it is done automatically.

5.  Run the next two cells in the notebook to investigate the

response. The string representation of page should

indicate a 200 status code response. This should agree

with the status_code attribute.

6.  Save the response text to the page_html variable and

take a look at the head of the string with

page_html[:1000]:



Figure 3.2: The HTML response text

As expected, the response is HTML. We can format this

output better with the help of BeautifulSoup, a library

which will be used extensively for HTML parsing later in

this section.

7.  Print the head of the formatted HTML by running the

following:

from bs4 import BeautifulSoup

print(BeautifulSoup(page_html, 'html.parser').prettify()

[:1000])

We import BeautifulSoup and then print the output,

where newlines are indented depending on their hierarchy

in the HTML structure.

8.  We can take this a step further and actually display the

HTML in Jupyter by using the IPython display module.

Do this by running the following code:

from IPython.display import HTML

HTML(page_html)Here, we see the HTML rendered as

well as possible, given that no JavaScript code has been

run and no external resources have loaded. For example,

the images that are hosted on the jupyter.org server are

not rendered and we instead see the alt text: circle of

programming icons, Jupyter logo, and so on.

Figure 3.3: The output obtained when no images are loaded



9.  Let's compare this to the live website, which can be

opened in Jupyter using an IFrame. Do this by running

the following code:

from IPython.display import IFrame IFrame(src=url,

height=800, width=800)

Figure 3.4: Rendering of the entire Jupyter website

Here, we see the full site rendered, including JavaScript

and external resources. In fact, we can even click on the

hyperlinks and load those pages in the IFrame, just like a

regular browsing session.

10.  It's good practice to close the IFrame after using it. This

prevents it from eating up memory and processing power.

It can be closed by selecting the cell and clicking Current

Outputs | Clear from the Cell menu in the Jupyter

Notebook.

Recall how we used a prepared request and session to

request this content as a string in Python. This is often

done using a shorthand method instead. The drawback is

that we do not have as much customization of the request

header, but that's usually fine.

11.  Make a request to http://www.python.org/ by running the

following code:



url = 'http://www.python.org/' page = requests.get(url)

page

<Response [200]>

The string representation of the page (as displayed

beneath the cell) should indicate a 200 status code,

indicating a successful response.

12.  Run the next two cells. Here, we print the url and history

attributes of our page.

The URL returned is not what we input; notice the

difference? We were redirected from the input URL,

http://www.python.org/, to the secured version of that

page, https://www.python.org/. The difference is

indicated by an additional s at the start of the URL, in the

protocol. Any redirects are stored in the history attribute;

in this case, we find one page in here with status code 301

(permanent redirect), corresponding to the original URL

requested.

Now that we're comfortable making requests, we'll turn our

attention to parsing the HTML. This can be something of an

art, as there are usually multiple ways to approach it, and the

best method often depends on the details of the specific

HTML in question.

PARSING HTML IN THE JUPYTER NOTEBOOK

When scraping data from a web page, after making the

request, we must extract the data from the response content.

If the content is HTML, then the easiest way to do this is with

a high­level parsing library such as Beautiful Soup. This is not

to say it's the only way; in principle, it would be possible to

pick out the data using regular expressions or Python string

methods such as split, but pursuing either of these options



would be an inefficient use of time and could easily lead to

errors. Therefore, it's generally frowned upon and instead, the

use of a trustworthy parsing tool is recommended.

In order to understand how content can be extracted from

HTML, it's important to know the fundamentals of HTML.

For starters, HTML stands for Hyper Text Markup Language.

Like Markdown or XML (eXtensible Markup Language), it's

simply a language for marking up text. In HTML, the display

text is contained within the content section of HTML

elements, where element attributes specify how that element

should appear on the page.

Figure 3.5: Fundamental blocks of HTML

Looking at the anatomy of an HTML element, as seen in the

preceding picture, we see the content enclosed between start

and end tags. In this example, the tags are <p> for paragraph;

other common tag types are <div> (text block), <table>

(data table),

<h1> (heading), <img> (image), and <a> (hyperlinks). Tags

have attributes, which can hold important metadata. Most

commonly, this metadata is used to specify how the element

text should appear on the page. This is where CSS files come

into play. The attributes can store other useful information,

such as the hyperlink href in an <a> tag, which specifies a

URL link, or the alternate alt label in an <img> tag, which

specifies the text to display if the image resource cannot be

loaded.



Now, let's turn our attention back to the Jupyter Notebook

and parse some HTML! Although not necessary when

following along with this exercise, it's very helpful in real­

world situations to use the developer tools in Chrome or

Firefox to help identify the HTML elements of interest. We'll

include instructions for doing this with Chrome in the

following exercise.

EXERCISE 15: PARSING HTML WITH PYTHON IN A
JUPYTER NOTEBOOK
1.  In lesson­3­workbook.ipynb file, scroll to the top of

Subtopic B: Parsing HTML with Python.

In this exercise, we'll scrape the central bank interest rates

for each country, as reported by Wikipedia. Before diving

into the code, let's first open up the web page containing

this data.

2.  Go to

https://en.wikipedia.org/wiki/List_of_countries_by_central_bank_interest_rates

in a web browser. Use Chrome, if possible, as later in this

exercise we'll show you how to view and search the HTML

using Chrome's developer tools.

Looking at the page, we see very little content other than a

big list of countries and their interest rates. This is the

table we'll be scraping.

3.  Return to the Jupyter Notebook and load the HTML as a

Beautiful Soup object so that it can be parsed. Do this by

running the following code:

from bs4 import BeautifulSoup

soup = BeautifulSoup(page.content, 'html.parser')

We use Python's default html.parser as the parser, but

third­party parsers such as lxml may be used instead, if



desired. Usually, when working with a new object like this

Beautiful Soup one, it's a good idea to pull up the

docstring by doing soup?. However, in this case, the

docstring is not particularly informative. Another tool for

exploring Python objects is pdir, which lists all of an

object's attributes and methods (this can be installed with

pip install pdir2). It's basically a formatted version of

Python's built­in dir function.

4.  Display the attributes and methods for the BeautifulSoup

object by running the following code. This will run,

regardless of whether or not the pdir external library is

installed:

try:

import pdir dir = pdir

except:

print('You can install pdir with:\npip install pdir2')

dir(soup)

Here, we see a list of methods and attributes that can be

called on soup. The most commonly used function is

probably find_all, which returns a list of elements that

match the given criteria.

5.  Get the h1 heading for the page with the following code:

h1 = soup.find_all('h1') h1

>> [<h1 class="firstHeading" id="firstHeading"

lang="en">List of countries by central bank interest

rates</h1>]

Usually, pages only have one H1 (top­level heading)

element, so it's no surprise that we only find one here.



6.  Run the next couple of cells. We redefine H1 to the first

(and only) list element with h1 = h1[0], and then print

out the HTML element attributes with h1.attrs:

We see the class and ID of this element, which can both be

referenced by CSS code to define the style of this element.

7.  Get the HTML element content (that is, the visible text) by

printing h1.text.

8.  Get all the images on the page by running the following

code:

imgs = soup.find_all('img') len(imgs)

>> 91

There are lots of images on the page. Most of these are for

the country flags.

9.  Print the source of each image by running the following

code:

[element.attrs['src'] for element in imgs if 'src' in

element.attrs.keys()]

We use a list comprehension to iterate through the

elements, selecting the src attribute of each (so long as

that attribute is actually available).

Now, let's scrape the table. We'll use Chrome's developer

tools to hunt down the element this is contained within.

Figure 3.6: Scraping the table on the target web page



10.  If not already done, open the Wikipedia page we're

looking at in Chrome. Then, in the browser, select

Developer Tools from the View menu. A sidebar will

open. The HTML is available to look at from the

Elements tab in Developer Tools.

11.  Select the little arrow in the top left of the tools sidebar.

This allows us to hover over the page and see where the

HTML element is located, in the Elements section of the

sidebar:

Figure 3.7: Arrow Icon for locating the HTML element

12.  Hover over the body to see how the table is contained

within the div that has id="bodyContent":

Figure 3.8: HTML code for table on the target web page

13.  Select that div by running the following code:

body_content = soup.find('div', {'id': 'bodyContent'})

We can now seek out the table within this subset of the

full HTML. Usually, tables are organized into headers

<th>, rows <tr>, and data entries <td>.



14.  Get the table headers by running the following code:

table_headers = body_content.find_all('th')[:3]

table_headers

>>> [<th>Country or<br/>

currency union</th>, <th>Central bank<br/> interest

rate (%)</th>, <th>Date of last<br/> change</th>]

Here, we see three headers. In the content of each is a

break element <br/>, which will make the text a bit more

difficult to cleanly parse.

15.  Get the text by running the following code:

table_headers = [element.get_text().replace('\n', ' ')

for element in table_headers]

table_headers

>> ['Country or currency union', 'Central bank interest

rate (%)', 'Date of last change']

Here, we get the content with the get_text method, and

then run the replace string method to remove the newline

resulting from the <br/> element.

To get the data, we'll first perform some tests and then

scrape all the data in a single cell.

16.  Get the data for each cell in the second <tr> (row)

element by running the following code:

row_number = 2

d1, d2, d3 = body_content.find_all('tr')[row_number]\

.find_all('td')



We find all the row elements, pick out the third one, and

then find the three data elements inside that.

Let's look at the resulting data and see how to parse the

text from each row.

17.  Run the next couple of cells to print d1 and its text

attribute:

Figure 3.9: Printing d1 and its text attribute

We're getting some undesirable characters at the front.

This can be solved by searching for only the text of the

<a> tag.

18.  Run d1.find('a').text to return the properly

cleaned data for that cell.

19.  Run the next couple of cells to print d2 and its text. This

data appears to be clean enough to convert directly into a

float.

20.  Run the next couple of cells to print d3 and its text:

Figure 3.10: Printing d3 and its text attribute

Similar to d1, we see that it would be better to get only the

span element's text.

21.  Properly parse the date for this table entry by running the

following code:

d3.find_all('span')[1].text



>> '30 June 2016'

22.  Now, we're ready to perform the full scrape by iterating

over the row elements <th>. Run the following code:

data = []

for i, row in enumerate(body_content.find_all('tr')):

...

...

>> Ignoring row 101 because len(data) != 3

>> Ignoring row 102 because len(data) != 3

Note

For the complete code, refer to the following:

https://bit.ly/2EKMNbV.

We iterate over the rows, ignoring any that contain more

than three data elements. These rows will not correspond

to data in the table we are interested in. Rows that do have

three data elements are assumed to be in the table, and we

parse the text from these as identified during the testing.

The text parsing is done inside a try/except statement,

which will catch any errors and allow this row to be

skipped without stopping the iteration. Any rows that

raise errors due to this statement should be looked at. The

data for these could be recorded manually or accounted

for by altering the scraping loop and re­running it. In this

case, we'll ignore any errors for the sake of time.

23.  Print the head of the scraped data list by running

print(data[:10]):

>> [['Albania', 1.25, '4 May 2016'],



['Angola', 16.0, '30 June 2016'],

['Argentina', 26.25, '11 April 2017'],

['Armenia', 6.0, '14 February 2017'],

['Australia', 1.5, '2 August 2016'],

['Azerbaijan', 15.0, '9 September 2016'],

['Bahamas', 4.0, '22 December 2016'],

['Bahrain', 1.5, '14 June 2017'],

['Bangladesh', 6.75, '14 January 2016'],

['Belarus', 12.0, '28 June 2017']]

24.  We'll visualize this data later in the chapter. For now, save

the data to a CSV file by running the following code:

f_path = '../data/countries/interest­rates.csv' with

open(f_path, 'w') as f:

f.write('{};{};{}\n'.format(*table_headers)) for d in data:

f.write('{};{};{}\n'.format(*d))

Note that we are using semicolons to separate the fields.

ACTIVITY 3: WEB SCRAPING WITH JUPYTER
NOTEBOOKS

You should have completed the previous exercise in this

chapter.

In this activity, we are going to get the population of each

country. Then, in the next topic, this will be visualized along

with the interest rate data scraped in the previous exercise.



The page we look at in this activity is available here:

http://www.worldometers.info/world­

population/population­by­country/.

Our aim is to apply the basic of web scrapping to a new web

page and scrape some more data.

Note

This page may have changed since this document was

created. If this URL no longer leads to a table of country

populations, please use this Wikipedia page instead:

https://en.wikipedia.org/wiki/List_of_countries_by_population(United_Nations)

In order to do this, the following steps have to be executed:

1.  Scrape the data from the web page.

2.  In the lesson­3­workbook.ipynb Jupyter Notebook,

scroll to Activity A: Web scraping with Python.

3.  Set the url variable and load an IFrame of our page in the

notebook.

4.  Close the IFrame by selecting the cell and clicking

Current Outputs | Clear from the Cell menu in the

Jupyter Notebook.

5.  Request the page and load it as a BeautifulSoup object.

6.  Print the H1 for the page.

7.  Get and print the table headings.

8.  Select first three columns and parse the text.

9.  Get the data for a sample row.

10.  How many columns of data do we have? Print the length

of row_data.

11.  Print the first elements of the row.

12.  Select the data elements d1, d2, and d3.



13.  Looking at the row_data output, we can find out how to

correctly parse the data. Select the content of the <a>

element in the first data element, and then simply get the

text from the others.

14.  Scrape and parse the table data.

15.  Print the head of the scraped data.

16.  Finally, save the data to a CSV file for later use.

Note

The detailed steps along with the solutions are presented

in the Appendix A (pg. no. 160).

To summarize, we've seen how Jupyter Notebooks can be

used for web scraping. We started this chapter by learning

about HTTP methods and status codes. Then, we used the

Requests library to actually perform HTTP requests with

Python and saw how the Beautiful Soup library can be used to

parse the HTML responses.

Our Jupyter Notebook turned out to be a great tool for this

type of work. We were able to explore the results of our web

requests and experiment with various HTML parsing

techniques. We were also able to render the HTML and even

load a live version of the web page inside the notebook!

In the next topic of this chapter, we shift to a completely new

topic: interactive visualizations. We'll see how to create and

display interactive charts right inside the notebook, and use

these charts as a way to explore the data we have just

collected.

Interactive Visualizations
Visualizations are quite useful as a means of extracting



information from a dataset. For example, with a bar graph it's

very easy to distinguish the value distribution, compared to

looking at the values in a table. Of course, as we have seen

earlier in this book, they can be used to study patterns in the

dataset that would otherwise be quite difficult to identify.

Furthermore, they can be used to help explain a dataset to an

unfamiliar party. If included in a blog post, for example, they

can boost reader interest levels and be used to break up blocks

of text.

When thinking about interactive visualizations, the benefits

are similar to static visualizations, but enhanced because they

allow for active exploration on the viewer's part. Not only do

they allow the viewer to answer questions they may have

about the data, they also think of new questions while

exploring. This can benefit a separate party such as a blog

reader or co­worker, but also a creator, as it allows for easy ad

hoc exploration of the data in detail, without having to change

any code.

In this topic, we'll discuss and show how to use Bokeh to build

interactive visualizations in Jupyter. Prior to this, however,

we'll briefly revisit pandas DataFrames, which play an

important role in doing data visualization with Python.

BUILDING A DATAFRAME TO STORE AND ORGANIZE
DATA

As we've seen time and time again in this book, pandas is an

integral part of doing data science with Python and Jupyter

Notebooks. DataFrames offer a way to organize and store

labeled data, but more importantly, pandas provides time

saving methods for transforming data within a DataFrame.

Examples we have seen in this book include dropping

duplicates, mapping dictionaries to columns, applying

functions over columns, and filling in missing values.



With respect to visualizations, DataFrames offer methods for

creating all sorts of matplotlib graphs, including

df.plot.barh(), df.plot.hist(), and more. The

interactive visualization library Bokeh previously relied on

pandas DataFrames for their high­level charts. These worked

similar to Seaborn, as we saw earlier in the previous chapter,

where a DataFrame is passed to the plotting function along

with the specific columns to plot. The most recent version of

Bokeh, however, has dropped support for this behavior.

Instead, plots are now created in much the same way as

matplotlib, where the data can be stored in simple lists or

NumPy arrays. The point of this discussion is that

DataFrames are not entirely necessary, but still very helpful

for organizing and manipulating the data prior to

visualization.

EXERCISE 16: BUILDING AND MERGING PANDAS
DATAFRAMES

Let's dive right into an exercise, where we'll continue working

on the country data we scraped earlier. Recall that we

extracted the central bank interest rates and populations of

each country, and saved the results in CSV files. We'll load the

data from these files and merge them into a DataFrame,

which will then be used as the data source for the interactive

visualizations to follow.

1.  In the lesson­3­workbook.ipynb of the Jupyter

Notebook, scroll to the Subtopic A: Building a

DataFrame to store and organize data

subsection in the Topic B section.

We are first going to load the data from the CSV files, so

that it's back to the state it was in after scraping. This will

allow us to practice building DataFrames from Python

objects, as opposed to using the pd.read_csv function.



Note

When using pd.read_csv, the datatype for each column

will be inferred from the string input. On the other hand,

when using pd.DataFrame as we do here, the datatype

is instead taken as the type of the input variables. In our

case, as will be seen, we read the file and do not bother

converting the variables to numeric or date­time until

after instantiating the DataFrame.

2.  Load the CSV files into lists by running the following

code:

with open('../data/countries/interest­rates.csv', 'r') as f:

int_rates_col_names = next(f).split(',')

int_rates = [line.split(',') for line in f.read(). splitlines()]

with open('../data/countries/populations.csv', 'r') as f:

populations_col_names = next(f).split(',')

populations = [line.split(',') for line in f.read().

splitlines()]

3.  Check what the resulting lists look like by running the

next two cells. We should see an output similar to the

following:

print(int_rates_col_names) int_rates[:5]

>> ['Country or currency union', 'Central bank interest ...

...

['Indonesia', '263', '991', '379', '1.10 %'],

['Brazil', '209', '288', '278', '0.79 %']]

Now, the data is in a standard Python list structure, just as



it was after scraping from the web pages in the previous

sections. We're now going to create two DataFrames and

merge them, so that all of the data is organized within one

object.

4.  Use the standard DataFrame constructor to create the two

DataFrames by running the following code:

df_int_rates = pd.DataFrame(int_rates,

columns=int_rates_ col_names)

df_populations = pd.DataFrame(populations,

columns=populations_col_names)

This isn't the first time we've used this function in this

book. Here, we pass the lists of data (as seen previously)

and the corresponding column names. The input data can

also be of dictionary type, which can be useful when each

column is contained in a separate list.

Next, we're going to clean up each DataFrame. Starting

with the interest rates one, let's print the head and tail,

and list the data types.

5.  When displaying the entire DataFrame, the default

maximum number of rows is 60 (for version 0.18.1). Let's

reduce this to 10 by running the following code:

pd.options.display.max_rows = 10

6.  Display the head and tail of the interest rates DataFrame

by running the following code:

df_int_rates



Figure 3.11: Table for interest rates by country

7.  Print the data types by running:

df_int_rates.dtypes

>> Country or currency union object

>> Central bank interest rate (%) object

>> Date of last change object

>> dtype: object

Pandas has assigned each column as a string datatype,

which makes sense because the input variables were all

strings. We'll want to change these to string, float, and

datetime, respectively.

8.  Convert to the proper datatypes by running the following

code:

df_int_rates['Central bank interest rate (%)'] = \

df_int_rates['Central bank interest rate (%)']\

.astype(float, copy=False)

df_int_rates['Date of last change'] = \

pd.to_datetime(df_int_rates['Date of last change'])

We use astype to cast the Interest Rate values as floats,

setting copy=False to save memory. Since the date



values are given in such an easy­to­read format, these can

be converted simply by using pd.to_datetime.

9.  Check the new datatypes of each column by running the

following code:

df_int_rates.dtypes

>> Country or currency union object

>> Central bank interest rate (%) float64

>> Date of last change datetime64[ns]

>> dtype: object

As can be seen, everything is now in the proper format.

10.  Let's apply the same procedure to the other DataFrame.

Run the next few cells to repeat the preceding steps for

df_populations:

df_population

Figure 3.12: Table for population by country

Then, run this code:

df_populations['Population (2017)'] =

df_populations['Population (2017)']\

.str.replace(',', '')\



.astype(float, copy=False)

df_populations['Yearly Change'] = df_populations['Yearly

Change']\

.str.rstrip('%')\

.astype(float, copy=False)

To cast the numeric columns as a float, we had to first

apply some modifications to the strings in this case. We

stripped away any commas from the populations and

removed the percent sign from the Yearly Change column,

using string methods.

Now, we're going to merge the DataFrames on the country

name for each row. Keep in mind that these are still the

raw country names as scraped from the web, so there

might be some work involved with matching the strings.

11.  Merge the DataFrames by running the following code:

df_merge = pd.merge(df_populations,

df_int_rates,

left_on='Country (or dependency)', right_on='Country or

currency union', how='outer'

df_merge

We pass the population data in the left DataFrame and the

interest rates in the right one, performing an outer match

on the country columns. This will result in NaN values

where the two do not overlap.

12.  For the sake of time, let's just look at the most populated

countries to see whether we missed matching any. Ideally,

we would want to check everything. Look at the most



populous countries by running the following code:

df_merge.sort_values('Population (2017)',

ascending=False)\

.head(10)

Figure 3.13: The table for most populous countries

It looks like U.S. didn't match up. This is because it's

listed as United States in the interest rates data. Let's

remedy this.

13.  Fix the label for U.S. in the populations table by running

the following code:

col = 'Country (or dependency)'

df_populations.loc[df_populations[col] == 'U.S.'] =

'United States'

We rename the country for the populations DataFrame

with the use of the loc method to locate that row.

Now, let's merge the DataFrames properly.

14.  Re­merge the DataFrames on the country names, but this

time use an inner merge to remove the NaN values:

df_merge = pd.merge(df_populations,

df_int_rates,



left_on='Country (or dependency)', right_on='Country or

currency union',

how='inner')

15.  We are left with two identical columns in the merged

DataFrame. Drop one of them by running the following

code:

del df_merge['Country or currency union']

16.  Rename the columns by running the following code:

name_map = {'Country (or dependency)': 'Country',

'Population (2017)': 'Population',

'Central bank interest rate (%)': 'Interest

rate'}

df_merge = df_merge.rename(columns=name_map)

We are left with the following merged and cleaned

DataFrame:

Figure 3.14: Ouput after cleaning and merging tables

17.  Now that we have all the data in a nicely organized table,

we can move on to the fun part: visualizing it. Let's save

this table to a CSV file for later use, and then move on to

discuss how visualizations can be created with Bokeh.



Write the merged data to a CSV file for later use with the

following code:

df_merge.to_csv('../data/countries/merged.csv',

index=False)

INTRODUCTION TO BOKEH

Bokeh is an interactive visualization library for Python. Its

goal is to provide similar functionality to D3, the popular

interactive visualization library for JavaScript. Bokeh

functions very differently than D3, which is not surprising

given the differences between Python and JavaScript. Overall,

it's much simpler and it doesn't allow nearly as much

customization as D3 does. This works to its advantage though,

as it's much easier to use, and it still boasts an excellent suite

of features that we'll explore in this section.

Let's dive right into a quick exercise with the Jupyter

Notebook and introduce Bokeh by example.

Note

There is good documentation online for Bokeh, but much of it

is outdated. Searching something like Bokeh bar plot in

Google still tends to turn up documentation for legacy

modules that no longer exist, for example, the high­level

plotting tools that used to be available through

bokeh.charts (prior to version 0.12.0). These are the ones

that take pandas DataFrames as input in much the same

way that Seaborn plotting functions do. Removing the high­

level plotting tools module has simplified Bokeh, and will

allow for more focused development going forward. Now,

the plotting tools are largely grouped into the

bokeh.plotting module, as will be seen in the next

exercise and following activity.



EXERCISE 17: INTRODUCTION TO INTERACTIVE
VISUALIZATION WITH BOKEH

We'll load the required Bokeh modules and show some simple

interactive plots that can be made with Bokeh. Please note

that the examples in this book have been designed using

version 0.12.10 of Bokeh.

1.  In the lesson­3­workbook.ipynb Jupyter notebook,

scroll to Subtopic B: Introduction to Bokeh.

2.  Like scikit­learn, Bokeh modules are usually loaded in

pieces (unlike pandas, for example, where the whole

library is loaded at once). Import some basic plotting

modules by running the following code:

from bokeh.plotting import figure, show,

output_notebook output_notebook()

We need to run output_notebook() in order to render

the interactive visuals within the Jupyter notebook.

3.  Generate random data to plot by running the following

code:

np.random.seed(30)

data = pd.Series(np.random.randn(200),

index=list(range(200)))\

.cumsum() x = data.index

y = data.values

The random data is generated using the cumulative sum

of a random set of numbers that are distributed about

zero. The effect is a trend that looks similar to a stock

price time series, for example.



4.  Plot the data with a line plot in Bokeh by running the

following code:

p = figure(title='Example plot', x_axis_label='x', y_axis_

label='y')p.line(x, y, legend='Random trend') show(p)

Figure 3.15: An example data plot

We instantiate the figure, as referenced by the variable p,

and then plot a line. Running this in Jupyter yields an

interactive figure with various options along the right­

hand side.

The top three options (as of version 0.12.10) are Pan,

Box Zoom, and Wheel Zoom. Play around with these

and experiment with how they work. Use the reset option

to re­load the default plot limits.

5.  Other plots can be created with the alternative methods of

figure. Draw a scatter plot by running the following

code, where we replace line in the preceding code with

circle:

size = np.random.rand(200) * 5

p = figure(title='Example plot', x_axis_label='x', y_axis_

label='y')

p.circle(x, y, radius=size, alpha=0.5, legend='Random



dots')

show(p)

Figure 3.16: An example scatter plot

Here, we've specified the size of each circle using a

random set of numbers. A very enticing feature of

interactive visualizations is the tooltip. This is a hover tool

that allows the user to get information about a point by

hovering over it.

6.  In order to add this tool, we're going to use a slightly

different method for creating the plot. This will require us

to import a couple of new libraries. Run the following

code:

from bokeh.plotting import ColumnDataSource from

bokeh.models import HoverTool

This time, we'll create a data source to pass to the plotting

method. This can contain metadata, which can be

included in the visualization via the hover tool.

7.  Create random labels and plot the interactive visualization

with a hover tool by running the following code:

source = ColumnDataSource(data=dict( x=x,



y=y,

...

...

source=source,

legend='Random dots')

show(p)

Note

For the complete code, refer to the following:

https://bit.ly/2RhpU1r.

Figure 3.17: A random scatter plot with labels

We define a data source for the plot by passing a

dictionary of key/value pairs to the ColumnDataSource

constructor. This source includes the x location, y

location, and size of each point, along with the random

letter A, B, or C for each point. These random letters are

assigned as labels for the hover tool, which will also

display the size of each point. The Hover Tool is then

added to the figure, and the data is retrieved from each

element through the specific plotting method, which is



circle in this case. The result is that we are now able to

hover over the points and see the data we've selected for

the Hover Tool! We notice, by looking at the toolbar to

the right of the plot, that by explicitly including the

Hover Tool, the others have disappeared. These can be

included by manually adding them to the list of tool

objects that gets passed to bokeh.plotting.figure.

8.  Add pan, zoom, and reset tools to the plot by running the

following code:

from bokeh.models import PanTool, BoxZoomTool,

WheelZoomTool, ResetTool

...

...

legend='Random dots')

show(p)

This code is identical to what was previously shown except

for the tools variable, which now references several new

tools we've imported from the Bokeh library.

We'll stop the introductory exercise here, but we'll continue

creating and exploring plots in the following activity.

ACTIVITY 4: EXPLORING DATA WITH INTERACTIVE
VISUALIZATIONS

You should have completed the previous exercise in order to

complete this activity.

We'll pick up using Bokeh right where we left off with the

previous exercise, except instead of using the randomly

generated data seen there, we'll instead use the data we



scraped from the web in the first part of this chapter. Our aim

is to use Bokeh to create interactive visualizations of our

scraped data.

In order to do so, we need to execute the following steps:

1.  In the lesson­3­workbook.ipynb file, scroll to the

Activity B: Interactive visualizations

with Bokeh section.

2.  Load the previously scraped, merged, and cleaned web

page data

3.  Recall what the data looks like by displaying the

DataFrame.

4.  Draw a scatter plot of the population as a function of the

interest rate.

5.  In the data, we see some clear outliers with high

populations. Hover over these to see what they are. Select

the Box Zoom tool and alter the viewing window to better

see the majority of the data.

6.  Some of the lower population countries appear to have

negative interest rates. Select the Wheel Zoom tool and

use it to zoom in on this region. Use the Pan tool to re­

center the plot, if needed, so that the negative interest rate

samples are in view. Hover over some of these and see

what countries they correspond to.

7.  Add a Year of last change column to the DataFrame

and add a color based on the date of last interest rate

change

8.  Create a map to group the last change date into color

categories.

9.  Create the colored visualization.

10.  Looking for patterns, zoom in on the lower population

countries.



11.  Plot the interest rate as a function of the year­over­year

population change by running the following code.

12.  Determine the line of best fit for the previously plotted

relationship.

13.  Re­plot the output obtained in the preceding step and add

a line of best fit.

14.  Explore the plot by using the zoom tools and hovering

over interesting samples.

Note

The detailed steps along with the solutions are presented

in the Appendix A (pg. no. 163).

Summary
In this chapter, we scraped web page tables and then used

interactive visualizations to study the data.

We started by looking at how HTTP requests work, focusing

on GET requests and their response status codes. Then, we

went into the Jupyter Notebook and made HTTP requests

with Python using the Requests library. We saw how Jupyter

can be used to render HTML in the notebook, along with

actual web pages that can be interacted with. After making

requests, we saw how Beautiful Soup can be used to parse text

from the HTML, and used this library to scrape tabular data.

After scraping two tables of data, we stored them in pandas

DataFrames. The first table contained the central bank

interest rates for each country and the second table contained

the populations. We combined these into a single table that

was then used to create interactive visualizations.

Finally, we used Bokeh to render interactive visualizations in

Jupyter. We saw how to use the Bokeh API to create various



customized plots and made scatter plots with specific

interactive abilities such as zoom, pan, and hover. In terms of

customization, we explicitly showed how to set the point

radius and color for each data sample.

Furthermore, when using Bokeh to explore the scraped

population data, the tooltip was utilized to show country

names and associated data when hovering over the points.

Congratulations for completing this introductory course on

data science using Jupyter Notebooks! Regardless of your

experience with Jupyter and Python coming into the book,

you've learned some useful and applicable skills for practical

data science!

Before finishing up, let's quickly recap the topics we've

covered in this book.

The first chapter was an introduction to the Jupyter Notebook

platform, where we covered all of the fundamentals. We

learned about the interface and how to use and install magic

functions. Then, we introduced the Python libraries we'll be

using and walked through an exploratory analysis of the

Boston housing dataset.

In the second chapter, we focused on doing machine learning

with Jupyter. We first discussed the steps for developing a

predictive analytics plan, and then looked at a few different

types of models including SVM, a KNN classifier, and

Random Forests.

Working with an employee retention dataset, we applied data

cleaning methods and then trained models to predict whether

an employee has left or not. We also explored more advanced

topics such as overfitting, k­fold cross­validation, and

validation curves.

Finally, in the third chapter, we shifted briefly from data



analysis to data collection using web scraping and saw how to

make HTTP requests and parse the HTML responses in

Jupyter. Then, we finished up the book by using interactive

visualizations to explore our collected data.



Appendix A

About
This section is included to assist the students to perform

the activities present in the book. It includes detailed

steps that are to be performed by the students to complete

and achieve the objectives of the activity.

Chapter 1: Jupyter Fundamentals

ACTIVITY 1: BUILDING A THIRD-ORDER
POLYNOMIAL MODEL
1.  Scroll to the empty cells at the bottom of Subtopic C

in your Jupyter Notebook.

2.  These will be found beneath the linear­model MSE

calculation cell under the Activity heading.

History

Topics

Tutorials

Offers & Deals

Highlights

Settings

Support

Sign Out

            



Note

You should fill these empty cells in with code as we

complete the activity. You may need to insert new

cells as these become filled up; please do so as

needed.

3.  We will first pull out our dependent feature from and

target variable from df. using the following:

y = df['MEDV'].values

x = df['LSTAT'].values.reshape(­1,1)

This is identical to what we did earlier for the linear

model.

4.  Verify what x looks like by printing the first few

samples with print(x[:3]):

Figure 1.49: Printing first three values of x using print()

Notice how each element in the array is itself an array

with length 1. This is what reshape(­1,1) does, and



it is the form expected by scikit­learn.

5.  Transform x into "polynomial features" by importing

the appropriate transformation tool from scikit­learn

and instantiating the third­degree polynomial feature

transformer:

from sklearn.preprocessing import

PolynomialFeatures poly =

PolynomialFeatures(degree=3)

The rationale for this step may not be immediately

obvious but will be explained shortly.

6.  Transform the LSTAT feature (as stored in the

variable x) by running the fit_transform method.

Build the polynomial feature set by running the

following code:

x_poly = poly.fit_transform(x)

Here, we have used the instance of the transformer

feature to transform the LSTAT variable.

7.  Verify what x_poly looks like by printing the first few

samples with print(x_poly[:3]).



Figure 1.50: Printing first three values of x_poly using print()

Unlike x, the arrays in each row now have length 4,

where the values have been calculated as xº, x¹, x²

and x³.

We are now going to use this data to fit a linear model.

Labeling the features as a, b, c, and d, we will calculate

the coefficients αₒ, α1, α2, and α3 and of the linear
model:

We can plug in the definitions of a, b, c, and d, to get

the following polynomial model, where the

coefficients are the same as the previous ones:

8.  Import the LinearRegression class and build our

linear classification model the same way as done while

calculating the MSE. Run the following:

from sklearn.linear_model import LinearRegression

clf =



LinearRegression()

clf.fit(x_poly, y)

9.  Extract the coefficients and print the polynomial

model using the following code:

a_0 = clf.intercept_ + clf.coef_[0] # intercept a_1,

a_2, a_3 = clf.coef_[1:] # other coefficients

msg = 'model: y = {:.3f} + {:.3f}x + {:.3f}x^2 +

{:.3f}x^3'\ .format(a_0, a_1, a_2, a_3)print(msg)

Figure 1.51: Extracting coefficients and printing the polynomial

model

To get the actual model intercept, we have to add the

intercept_ and coef_

[0] attributes. The higher­order coefficients are then

given by the remaining values of coef_.

10.  Determine the predicted values for each sample and

calculate the residuals by running the following code:

y_pred = clf.predict(x_poly) resid_MEDV = y ­



y_pred

11.  Print some of the residual values by running

print(resid_MEDV[:10]):

Figure 1.52: Printing residual values

We'll plot these soon to compare with the linear model

residuals, but first we will calculate the MSE.

12.  Run the following code to print the MSE for the third­

order polynomial model:

from sklearn.metrics import mean_squared_error

error = mean_squared_error(y, y_pred) print('mse =

{:.2f}'.format(error))

Figure 1.53: Calculating the mean squared error

As can be seen, the MSE is significantly less for the

polynomial model compared to the linear model

(which was 38.5). This error metric can be converted

to an average error in dollars by taking the square

root. Doing this for the polynomial model, we find the



average error for the median house value is only

$5,300.

Now, we'll visualize the model by plotting the

polynomial line of best fit along with the data.

13.  Plot the polynomial model along with the samples by

running the following:

fig, ax = plt.subplots() # Plot the samples

ax.scatter(x.flatten(), y, alpha=0.6)

# Plot the polynomial model

x_ = np.linspace(2, 38, 50).reshape(­1, 1) x_poly =

poly.fit_transform(x_)

y_ = clf.predict(x_poly)

ax.plot(x_, y_, color='red', alpha=0.8)

ax.set_xlabel('LSTAT'); ax.set_ylabel('MEDV');



Figure 1.54: Plotting the polynomial model for MEDV and LSTAT

Here, we are plotting the red curve by calculating the

polynomial model predictions on an array of x values.

The array of x values was created using

np.linspace, resulting in 50 values arranged evenly

between 2 and 38.

Now, we'll plot the corresponding residuals. Whereas

we used Seaborn for this earlier, we'll have to do it

manually to show results for a scikit­learn model.

Since we already calculated the residuals earlier, as

reference by the resid_MEDV variable, we simply

need to plot this list of values on a scatter chart.

14.  Plot the residuals by running the following:

fig, ax = plt.subplots(figsize=(5, 7)) ax.scatter(x,



resid_MEDV, alpha=0.6) ax.set_xlabel('LSTAT')

ax.set_ylabel('MEDV Residual $(y­\hat{y})$')

plt.axhline(0, color='black', ls='dotted');

Figure 1.55: Plotting the residuals for LSTAT and MEDV

Compared to the linear model LSTAT residual plot, the

polynomial model residuals appear to be more closely

clustered around y ­ ŷ = 0. Note that y is the sample

MEDV and ŷ is the predicted value. There are still clear

patterns, such as the cluster near x = 7 and y = ­7 that

indicates suboptimal modeling.



Having successfully modeled the data using a polynomial

model, let's finish up this chapter by looking at categorical

features. In particular, we are going to build a set of

categorical features and use them to explore the dataset in

more detail.

Chapter 2: Data Cleaning and
Advanced Machine

ACTIVITY 2: PREPARING TO TRAIN A PREDICTIVE
MODEL FOR THE EMPLOYEE-RETENTION
PROBLEM
1.  Scroll to the Activity A section of the lesson­2­

workbook.ipynb notebook file.

2.  Check the head of the table by running the following

code:

%%bash

head ../data/hr­analytics/hr_data.csv

Judging by the output, convince yourself that it looks

to be in standard CSV format. For CSV files, we should

be able to simply load the data with pd.read_csv.



3.  Load the data with Pandas by running df =

pd.read_csv('../data/hr­

analytics/hr_data.csv'). Write it out yourself

and use tab completion to help type the file path.

4.  Inspect the columns by printing df.columns and

make sure the data has loaded as expected by printing

the DataFrame head and tail with df.head() and

df.tail():

Figure 2.45: Output for inspecting head and tail of columns

We can see that it appears to have loaded correctly.

Based on the tail index values, there are nearly 15,000

rows; let's make sure we didn't miss any.

5.  Check the number of rows (including the header) in

the CSV file with the following code:



with open('../data/hr­analytics/hr_data.csv') as f:

print(len(f.read().splitlines()))

Figure 2.46: Output after checking for number of rows

6.  Compare this result to len(df) to make sure you've

loaded all the data:

Figure 2.47: Output after checking for number of sample uploaded

Now that our client's data has been properly loaded,

let's think about how we can use predictive analytics

to find insights into why their employees are leaving.

Let's run through the first steps for creating a

predictive analytics plan:

Look at the available data: You've already done this by

looking at the columns, datatypes, and the number of

samples.

Determine the business needs: The client has clearly

expressed their needs: reduce the number of



employees who leave.

Assess the data for suitability: Let's try to determine a

plan that can help satisfy the client's needs, given the

provided data

Recall, as mentioned earlier, that effective analytics

techniques lead to impactful business decisions. With

that in mind, if we were able to predict how likely an

employee is to quit, the business could selectively

target those employees for special treatment. For

example, their salary could be raised or their number

of projects reduced. Furthermore, the impact of these

changes could be estimated using the model!

To assess the validity of this plan, let's think about our

data. Each row represents an employee who either

works for the company or has left, as labeled by the

column named left. We can therefore train a model to

predict this target, given a set of features.

7.  Assess the target variable. Check the distribution and

number of missing entries by running the following

code:

df.left.value_counts().plot('barh')

print(df.left.isnull().sum()



Figure 2.48: Distribution of the target variables

Here's the output of the second code line:

Figure 2.49: Output to check missing data points

About three­quarters of the samples are employees

who have not left. The group that has left make up the

other quarter of the samples. This tells us we are

dealing with an imbalanced classification problem,

which means we'll have to take special measures to

account for each class when calculating accuracies. We

also see that none of the target variables are missing

(no NaN values).

Now, we'll assess the features:



8.  Print the datatype of each by executing df.dtypes.

Observe how we have a mix of continuous and discrete

features:

Figure 2.50: Printing data types for verification

9.  Display the feature distributions by running the

following code:

for f in df.columns: try:

fig = plt.figure()

…

…

print('­'*30)

Note

For the complete code, refer to the following:



https://bit.ly/2D3iKL2.

This code snippet is a little complicated, but it's very

useful for showing an overview of both the continuous

and discrete features in our dataset. Essentially, it

assumes each feature is continuous and attempts to

plot its distribution, and reverts to simply plotting the

value counts if the feature turns out to be discrete.

The result is as follows:

Figure 2.51: Distribution of all features: satisfaction_level and

last_evaluation



Figure 2.52: Distribution of all remaining features

Figure 2.53: Distribution for the variable promotion_last_5years

For many features, we see a wide distribution over the

possible values, indicating a good variety in the

feature spaces. This is encouraging; features that are



strongly grouped around a small range of values may

not be very informative for the model. This is the case

for promotion_last_5years, where we see that

the vast majority of samples are 0.

The next thing we need to do is remove any NaN

values from the dataset.

10.  Check how many NaN values are in each column by

running the following code:

df.isnull().sum() / len(df) * 100

Figure 2.54: Verification for the number of NaN values

We can see there are about 2.5% missing for

average_montly_hours, 1% missing for

time_spend_company, and 98% missing for

is_smoker! Let's use a couple of different strategies

that you've learned to handle these.



11.  Drop the is_smoker column as there is barely any

information in this metric. Do this by running: del

df['is_smoker'].

12.  Fill the NaN values in the time_spend_company

column. This can be done with the following code:

fill_value = df.time_spend_company.median()

df.time_spend_company =

df.time_spend_company.fillna(fill_ value)

The final column to deal with is

average_montly_hours. We could do something

similar and use the median or rounded mean as the

integer fill value. Instead though, let's try to take

advantage of its relationship with another variable.

This may allow us to fill the missing data more

accurately.

13.  Make a boxplot of average_montly_hours

segmented by number_project. This can be done by

running the following code:

sns.boxplot(x='number_project',

y='average_montly_hours', data=df)



Figure 2.55: Boxplot for average_monthly_hours and

number_project

We can see how the number of projects is correlated

with average_ monthly_hours, a result that is

hardly surprising. We'll exploit this relationship by

filling in the NaN values of average_montly_hours

differently, depending on the number of projects for

that sample.

Specifically, we'll use the mean of each group.

14.  Calculate the mean of each group by running the

following code:

mean_per_project = df.groupby('number_project')\

.average_montly_hours.mean() mean_per_project =

dict(mean_per_project) print(mean_per_project)



Figure 2.56: Calculation of mean values for average_monthly_hours

We can then map this onto the number_project

column and pass the resulting series object as the

argument to fillna.

15.  Fill the NaN values in average_montly_hours by

executing the following code:

fill_values =

df.number_project.map(mean_per_project)

df.average_montly_hours =

df.average_montly_hours. fillna(fill_values)

16.  Confirm that df has no more NaN values by running

the following assertion test. If it does not raise an

error, then you have successfully removed the NaNs

from the table:



assert df.isnull().sum().sum() == 0

Note

We pass index=False so that the index is not

written to file. In this case, the index is a set of

integers spanning from 0 to the DataFrame length,

and it therefore tells us nothing important.

17.  Transform the string and Boolean fields into integer

representations. In particular, we'll manually convert

the target variable left from yes and no to 1 and 0

and build the one­hot encoded features. Do this by

running the following code:

df.left = df.left.map({'no': 0, 'yes': 1}) df =

pd.get_dummies(df)

18.  Print df.columns to show the fields:

Figure 2.57: A screenshot of the different fields in the dataframe

We can see that department and salary have been split

into various binary features.



The final step to prepare our data for machine

learning is scaling the features, but for various reasons

(for example, some models do not require scaling),

we'll do it as part of the model­training workflow in

the next activity.

19.  We have completed the data preprocessing and are

ready to move on to training models! Let's save our

preprocessed data by running the following code:

df.to_csv('../data/hr­

analytics/hr_data_processed.csv', index=False)

Chapter 3: Web Scraping and
Interactive Visualizations

ACTIVITY 3: WEB SCRAPING WITH JUPYTER
NOTEBOOKS
1.  For this page, the data can be scraped using the

following code snippet:

data = []

for i, row in enumerate(soup.find_all('tr')): row_data

= row.find_all('td')



try:

d1, d2, d3 = row_data[1], row_data[5], row_data[6]

d1 = d1.find('a').text

d2 = float(d2.text)

d3 = d3.find_all('span')[1].text.replace('+', '')

data.append([d1, d2, d3])

except:

print('Ignoring row {}'.format(i)

2.  In the lesson­3­workbook.ipynb Jupyter

Notebook, scroll to Activity A: Web scraping

with Python.

3.  Set the url variable and load an IFrame of our page

in the notebook by running the following code:

url = 'http://www.worldometers.info/world­

population/ population­by­country/'

IFrame(url, height=300, width=800)

The page should load in the notebook. Scrolling down,

we can see the Countries in the world by

population heading and the table of values beneath



it. We'll scrape the first three columns from this table

to get the countries, populations, and yearly

population changes.

4.  Close the IFrame by selecting the cell and clicking

Current Outputs | Clear from the Cell menu in the

Jupyter Notebook.

5.  Request the page and load it as a BeautifulSoup

object by running the following code:

page = requests.get(url)

soup = BeautifulSoup(page.content, 'html.parser')

We feed the page content to the BeautifulSoup

constructor. Recall that previously, we used

page.text here instead. The difference is that

page.content returns the raw binary response

content, whereas page.text returns the UTF­8

decoded content. It's usually best practice to pass the

bytes object and let BeautifulSoup decode it, rather

than doing it with Requests using page.text.

6.  Print the H1 for the page by running the following

code:

soup.find_all('h1')



>> [<h1>Countries in the world by population (2017)

</h1>]

We'll scrape the table by searching for <th>, <tr>,

and <td> elements, as in the previous exercise.

7.  Get and print the table headings by running the

following code:

table_headers = soup.find_all('th') table_headers

>> [<th>#</th>,

<th>Country (or dependency)</th>,

<th>Population<br/> (2017)</th>,

<th>Yearly<br/> Change</th>,

<th>Net<br/> Change</th>,

<th>Density<br/> (P/Km²)</th>,

<th>Land Area<br/> (Km²)</th>,

<th>Migrants<br/> (net)</th>,

<th>Fert.<br/> Rate</th>,



<th>Med.<br/> Age</th>,

<th>Urban<br/> Pop %</th>,

<th>World<br/> Share</th>]

8.  We are only interested in the first three columns.

Select these and parse the text with the following

code:

table_headers = table_headers[1:4] table_headers =

[t.text.replace('\n', '') for t in table_ headers]

After selecting the subset of table headers we want, we

parse the text content from each and remove any

newline characters.

Now, we'll get the data. Following the same

prescription as the previous exercise, we'll test how to

parse the data for a sample row.

9.  Get the data for a sample row by running the following

code:

row_number = 2

row_data = soup.find_all('tr')[row_number]\

.find_all('td')



10.  How many columns of data do we have? Print the

length of row_data by running

print(len(row_data)).

11.  Print the first elements by running

print(row_data[:4]):

>> [<td>2</td>,

<td style="font­weight: bold; font­size:15px; text­

align:left"><a href="/world­population/india­

population/">India</a></td>,

<td style="font­weight: bold;">1,339,180,127</td>,

<td>1.13 %</td>]

It's pretty obvious that we want to select list indices 1,

2, and 3. The first data value can be ignored, as it's

simply the index.

12.  Select the data elements we're interested in parsing by

running the following code:

d1, d2, d3 = row_data[1:4]

13.  Looking at the row_data output, we can find out how

to correctly parse the data. We'll want to select the

content of the <a> element in the first data element,



and then simply get the text from the others. Test

these assumptions by running the following code:

print(d1.find('a').text) print(d2.text) print(d3.text)

>> India

>> 1,339,180,127

>> 1.13 %

Excellent! This looks to be working well. Now, we're

ready to scrape the entire table.

14.  Scrape and parse the table data by running the

following code:

data = []

for i, row in enumerate(soup.find_all('tr')): try:

d1, d2, d3 = row.find_all('td')[1:4] d1 =

d1.find('a').text

d2 = d2.text d3 = d3.text

data.append([d1, d2, d3]) except:

print('Error parsing row {}'.format(i))



>> Error parsing row 0

This is quite similar to before, where we try to parse

the text and skip the row if there's some error.

15.  Print the head of the scraped data by running

print(data[:10]):

>> [['China', '1,409,517,397', '0.43 %'],

['India', '1,339,180,127', '1.13 %'],

['U.S.', '324,459,463', '0.71 %'],

['Indonesia', '263,991,379', '1.10 %'],

['Brazil', '209,288,278', '0.79 %'],

['Pakistan', '197,015,955', '1.97 %'],

['Nigeria', '190,886,311', '2.63 %'],

['Bangladesh', '164,669,751', '1.05 %'],

['Russia', '143,989,754', '0.02 %'],

['Mexico', '129,163,276', '1.27 %']]

It looks like we have managed to scrape the data!



Notice how similar the process was for this table

compared to the Wikipedia one, even though this web

page is completely different. Of course, it will not

always be the case that data is contained within a

table, but regardless, we can usually use find_all as

the primary method for parsing.

16.  Finally, save the data to a CSV file for later use. Do

this by running the following code:

f_path = '../data/countries/populations.csv' with

open(f_path, 'w') as f:

f.write('{};{};{}\n'.format(*table_headers)) for d in

data:

f.write('{};{};{}\n'.format(*d))

ACTIVITY 4: EXPLORING DATA WITH INTERACTIVE
VISUALIZATIONS
1.  In the lesson­3­workbook.ipynb file, scroll to the

Activity B: Interactive visualizations

with Bokeh section.

2.  Load the previously scraped, merged, and cleaned web

page data by running the following code:



df = pd.read_csv('../data/countries/merged.csv')

df['Date of last change'] = pd.to_datetime(df['Date of

last change'])

3.  Recall what the data looks like by displaying the

DataFrame:

Figure 3.18: Output of the data within DataFrame

Whereas in the previous exercise we were interested

in learning how Bokeh worked, now we are interested

in what this data looks like. In order to explore this

dataset, we are going to use interactive visualizations.

4.  Draw a scatter plot of the population as a function of

the interest rate by running the following code:

source = ColumnDataSource(data=dict( x=df['Interest

rate'], y=df['Population'], desc=df['Country'],



))

hover = HoverTool(tooltips=[ ('Country', '@desc'),

('Interest Rate (%)', '@x'), ('Population', '@y')

])

tools = [hover, PanTool(), BoxZoomTool(),

WheelZoomTool(), ResetTool()]

p = figure(tools=tools,

x_axis_label='Interest Rate (%)',

y_axis_label='Population')

p.circle('x', 'y', size=10, alpha=0.5, source=source)

show(p)



Figure 3.19: Scatter plot of population and interest rate

This is quite similar to the final examples we looked at

when introducing Bokeh in the previous exercise. We

set up a customized data source with the x and y

coordinates for each point, along with the country

name. This country name is passed to the Hover Tool,

so that it's visible when hovering the mouse over the

dot. We pass this tool to the figure, along with a set of

other useful tools.

5.  In the data, we see some clear outliers with high

populations. Hover over these to see what they are:

Figure 3.20: Labels obtained by hovering over data points

We see they belong to India and China. These

countries have fairly average interest rates. Let's focus

on the rest of the points by using the Box Zoom tool to

modify the view window size.

6.  Select the Box Zoom tool and alter the viewing

window to better see the majority of the data:



Figure 3.21: The Box Zoom tool

Figure 3.22: Scatter plot with majority of the data points within the

box

Explore the points and see how the interest rates

compare for various countries. What are the countries

with the highest interest rates?:



Figure 3.23: Hovering over data points to view detailed data

7.  Some of the lower population countries appear to have

negative interest rates. Select the Wheel Zoom tool

and use it to zoom in on this region. Use the Pan tool

to re­center the plot, if needed, so that the negative

interest rate samples are in view. Hover over some of

these and see what countries they correspond to:

Figure 3.24: Screen shot of the Wheel Zoom tool

Figure 3.25: Data points of negative interest rates countries

Let's re­plot this, adding a color based on the date of

last interest rate change. This will be useful to search

for relations between the date of last change and the

interest rate or population size.



8.  Add a Year of last change column to the

DataFrame by running the following code:

def get_year(x):

year = x.strftime('%Y')

if year in ['2018', '2017', '2016']:

return year else: return 'Other'

df['Year of last change'] = df['Date of last change'].

apply(get_year)

9.  Create a map to group the last change date into color

categories by running the following code:

year_to_color = { '2018': 'black',

'2017': 'blue',

'2016': 'orange',

'Other':'red'

}

Once mapped to the Year of last change column,

this will assign values to colors based on the available



categories: 2018, 2017, 2016, and Other. The colors

here are standard strings, but they could alternatively

by represented by hexadecimal codes.

10.  Create the colored visualization by running the

following code:

source = ColumnDataSource(data=dict( x=df['Interest

rate'],

...

...

fill_color='colors', line_color='black', legend='label')

show(p)

Note

For the complete code, refer to the following:

https://bit.ly/2Si3K04



Figure 3.26: Visualization obtained after assigning values to colors

There are some technical details that are important

here. First of all, we add the colors and labels for each

point to the ColumnDataSource. These are then

referenced when plotting the circles by setting the

fill_color and legend arguments.

11.  Looking for patterns, zoom in on the lower population

countries:



Figure 3.27: A zoomed in view of the lower population countries

We can see how the dark dots are more prevalent to

the right­hand side of the plot. This indicates that

countries that have higher interest rates are more

likely to have been recently updated.

The one data column we have not yet looked at is the

year­over­year change in population. Let's visualize

this compared to the interest rate and see if there is

any trend. We'll also enhance the plot by setting the

circle size based on the country population.

12.  Plot the interest rate as a function of the year­over­

year population change by running the following code:

source = ColumnDataSource(data=dict( x=df['Yearly

Change'],

...

...

p.circle('x', 'y', size=10, alpha=0.5, source=source,

radius='radii')

show(p)



Figure 3.28: Plotting interest rate as a function of YoY population

change

Here, we use the square root of the population for the

radii, making sure to also scale down the result to a

good size for the visualization.

We see a strong correlation between the year­over­

year population change and the interest rate. This

correlation is especially strong when we take the

population sizes into account, by looking primarily at

the bigger circles. Let's add a line of best fit to the plot

to illustrate this correlation.

We'll use scikit­learn to create the line of best fit,

using the country populations (as visualized in the

preceding plot) as weights.

13.  Determine the line of best fit for the previously plotted



relationship by running the following code:

from sklearn.linear_model import LinearRegression

X = df['Yearly Change'].values.reshape(­1, 1)

y = df['Interest rate'].values

weights = np.sqrt(df['Population'])/1e5

lm = LinearRegression()

lm.fit(X, y, sample_weight=weights)

lm_x = np.linspace(X.flatten().min(),

X.flatten().max(), 50)

lm_y = lm.predict(lm_x.reshape(­1, 1))

The scikit­learn code should be familiar from earlier

in this book. As promised, we are using the

transformed populations, as seen in the previous plot,

as the weights. The line of best fit is then calculated by

predicting the linear model values for a range of x

values.

To plot the line, we can reuse the preceding code,

adding an extra call to the line module in Bokeh.

We'll also have to set a new data source for this line.



14.  Re­plot the preceding figure, adding a line of best fit,

by running the following code:

source = ColumnDataSource(data=dict( x=df['Yearly

Change'], y=df['Interest rate'],

...

...

p.line('x', 'y', line_width=2, line_color='red',

source=lm_source)

show(p)

Figure 3.29: Adding a best fit line to the plot of YoY population

change and interest rates

For the line source, lm_source, we include N/A as



the country name and population, as these are not

applicable values for the line of best fit. As can be seen

by hovering over the line, they indeed appear in the

tooltip.

The interactive nature of this visualization gives us a

unique opportunity to explore outliers in this dataset,

for example, the tiny dot in the lower­right corner.

15.  Explore the plot by using the zoom tools and hovering

over interesting samples. Note the following:

Ukraine has an unusually high interest rate, given the

low year­over­year population change:

Figure 3.30: Using the Zoom tool to explore the data for Ukraine

The small country of Bahrain has an unusually low

interest rate, given the high year­over­year population



change:

Figure 3.31: Using the Zoom tool to explore the data for Bahrain
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