Applied Data
Science with
Python and Jupyter

Alex Galea

APPLIED DATA SCIENCE WITH PYTHON AND
JUPYTER

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be
reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written
permission of the publisher, except in the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book
to ensure the accuracy of the information presented.
However, the information contained in this book is sold
without warranty, either express or implied. Neither the
author, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or

alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark
information about all of the companies and products

mentioned in this book by the appropriate use of capitals.

However, Packt Publishing cannot guarantee the accuracy

of this information.

Author: Alex Galea

Reviewer: Elie Kawerk

Managing Editor: Mahesh Dhyani
Acquisitions Editor: Aditya Date
Production Editor: Samita Warang

Editorial Board: David Barnes, Ewan Buckingham, Simon
Cox, Manasa Kumar, Alex Mazonowicz, Douglas Paterson,
Dominic Pereira, Shiny Poojary, Saman Siddiqui, Erol
Staveley, Ankita Thakur, and Mohita Vyas

First Published: October 2018
Production Reference: 2051218

ISBN: 978-1-78995-817-1

Table of Contents

Preface

Jupyter Fundamentals
INTRODUCTION
BASIC FUNCTIONALITY AND FEATURES

WHAT ISAJUPYTER NOTEBOOKAND WHY IS IT
USEFUL?

NAVIGATING THE PLATFORM

EXERCISE 1: INTRODUCING JUPYTER
NOTEBOOKS

JUPYTER FEATURES

EXERCISE 2: IMPLEMENTING JUPYTER'S MOST
USEFUL FEATURES

CONVERTINGA JUPYTERNOTEBOOKTOA

PYTHON SCRIPT

PYTHON LIBRARIES

EXERCISE 3: IMPORTING THE EXTERNAL
LIBRARIES AND SETTING UP THE PLOTTING
ENVIRONMENT

OURFIRST ANALYSIS - THE BOSTON HOUSING
DATASET

LOADING THE DATAINTO JUPYTER USINGA
PANDAS DATAFRAME

EXERCISE 4: LOADING THE BOSTON HOUSING
DATASET

DATA EXPLORATION

EXERCISE 5: ANALYZING THE BOSTON HOUSING
DATASET

INTRODUCTION TO PREDICTIVE ANALYTICSWITH

JUPYTERNOTEBOOKS

EXERCISE 6: APPLYING LINEAR MODELS WITH
SEABORN AND SCIKIT-LEARN

ACTIVITY 1: BUILDING ATHIRD-ORDER
POLYNOMIAL MODEL

USING CATEGORICAL FEATURES FOR
SEGMENTATION ANALYSIS

EXERCISE 7: CREATING CATEGORICAL FIELDS
FROM CONTINUOUS VARIABLES AND MAKE
SEGMENTED VISUALIZATIONS

SUMMARY

Data Cleaning and Advanced
Machine Learning

INTRODUCTION

PREPARING TO TRAIN A PREDICTIVE MODEL

DETERMINING A PLAN FOR PREDICTIVE
ANALYTICS

EXERCISE 8: EXPLORE DATA PREPROCESSING
TOOLS AND METHODS

ACTIVITY 2: PREPARING TO TRAIN A PREDICTIVE
MODEL FOR THE EMPLOYEE-RETENTION
PROBLEM

TRAINING CLASSIFICATION MODELS

INTRODUCTION TO CLASSIFICATION
ALGORITHMS

EXERCISE 9: TRAINING TWO-FEATURE
CLASSIFICATION MODELS WITH SCIKIT-LEARN

THE PLOT_DECISION_REGIONS FUNCTION

EXERCISE 10: TRAINING K-NEAREST NEIGHBORS

FOR OUR MODEL
EXERCISE 11: TRAININGARANDOM FOREST

ASSESSING MODELS WITH K-FOLD CROSS-
VALIDATION AND VALIDATION CURVES

EXERCISE 12: USING K-FOLD CROSS VALIDATION
AND VALIDATION CURVES IN PYTHON WITH
SCIKIT-LEARN

DIMENSIONALITY REDUCTION TECHNIQUES

EXERCISE 13: TRAINING A PREDICTIVE MODEL
FORTHE EMPLOYEE RETENTION PROBLEM

SUMMARY

Web Scraping and Interactive
Visualizations

INTRODUCTION

SCRAPING WEB PAGE DATA

INTRODUCTION TO HTTP REQUESTS

MAKING HTTP REQUESTS IN THE JUPYTER
NOTEBOOK

EXERCISE 14: HANDLING HTTP REQUESTS WITH
PYTHON IN AJUPYTERNOTEBOOK

PARSING HTML IN THE JUPYTERNOTEBOOK

EXERCISE 15: PARSINGHTMLWITH PYTHONINA
JUPYTER NOTEBOOK

ACTIVITY 3: WEB SCRAPING WITH JUPYTER
NOTEBOOKS

INTERACTIVE VISUALIZATIONS

BUILDINGADATAFRAME TO STORE AND
ORGANIZE DATA

EXERCISE 16: BUILDING AND MERGING PANDAS
DATAFRAMES

INTRODUCTION TO BOKEH

EXERCISE 17: INTRODUCTION TO INTERACTIVE
VISUALIZATION WITH BOKEH

ACTIVITY 4: EXPLORING DATAWITH INTERACTIVE
VISUALIZATIONS

SUMMARY

Appendix A

Preface

About

This section briefly introduces the author, the coverage of
this book, the technical skills you'll need to get started,
and the hardware and software requirements required to

complete all of the included activities and exercises.

About the Book

Applied Data Science with Python and Jupyter teaches
you the skills you need for entry-level data science. You'll
learn about some of the most commonly used libraries
that are part of the Anaconda distribution, and then
explore machine learning models with real datasets to give
you the skills and exposure you need for the real world.
You'll finish up by learning how easy it can be to scrape

and gather your own data from the open web so that you

can apply your new skills in an actionable context.

ABOUT THEAUTHOR

Alex Galea has been doing data analysis professionally
since graduating with a master's in physics from the
University of Guelph in Canada. He developed a keen
interest in Python while researching quantum gases as
part of his graduate studies. More recently, Alex has been
doing web data analytics, where Python continues to play
a large part in his work. He frequently blogs about work
and personal projects, which are generally data-centric

and usually involve Python and Jupyter Notebooks.

OBJECTIVES

e Get up and running with the Jupyter ecosystem

« Identify potential areas of investigation and perform

exploratory data analysis

e Plan a machine learning classification strategy and

train classification models

o Use validation curves and dimensionality reduction to

tune and enhance your models

o Scrape tabular data from web pages and transform it

into Pandas DataFrames

o Create interactive, web-friendly visualizations to

clearly communicate your findings

AUDIENCE

Applied Data Science with Python and Jupyter is ideal for
professionals with a variety of job descriptions across a
large range of industries, given the rising popularity and
accessibility of data science. You'll need some prior
experience with Python, with any prior work with libraries
such as Pandas, Matplotlib, and Pandas providing you a

useful head start.

APPROACH

Applied Data Science with Python and Jupyter covers
every aspect of the standard data workflow process with a
perfect blend of theory, practical hands-on coding, and
relatable illustrations. Each module is designed to build
on the learnings of the previous chapter. The book
contains multiple activities that use real-life business
scenarios for you to practice and apply your new skills in a

highly relevant context.

MINIMUM HARDWARE REQUIREMENTS

The minimum hardware requirements are as follows:

Processor: Intel i5 (or equivalent)

Memory: 8 GB RAM

Hard disk: 10 GB

An internet connection

SOFTWARE REQUIREMENTS

You'll also need the following software installed in
advance:

e Python 3.5+

e Anaconda 4.3+

o Python libraries included with Anaconda installation:

o matplotlib 2.1.0+

e ipython 6.1.0+

e requests 2.18.4+

e beautifulsoup4 4.6.0+

e numpy 1.13.1+

e pandas 0.20.3+

e scikit-learn 0.19.0+

e seaborn 0.8.0+

bokeh 0.12.10+

Python libraries that require manual installation:

mlxtend

version_ information

ipython-sql

pdir2

graphviz

INSTALLATION AND SETUP

Before you start with this book, we'll install Anaconda
environment which consists of Python and Jupyter
Notebook.

INSTALLINGANACONDA

1. Visit https://www.anaconda.com/download/ in your

browser.

2. Click on Windows, Mac, or Linux, depending on the

OS you are working on.

3. Next, click on the Download option. Make sure you

download the latest version.

4. Open the installer after download.

5. Follow the steps in the installer and that's it! Your

Anaconda distribution is ready.

UPDATING JUPYTERAND INSTALLING
DEPENDENCIES

1. Search for Anaconda Prompt and open it.

2. Type the following commands to update conda and

Jupyter:

#Update conda

conda update conda
#Update Jupyter

conda update Jupyter
#install packages

conda install numpy
conda install pandas
conda install statsmodels

conda install matplotlib

conda install seaborn

3. To open Jupyter Notebook from Anaconda Prompt,

use the following command:

jupyter notebook

pip install -U scikit-learn

ADDITIONAL RESOURCES

The code bundle for this book is also hosted on GitHub at
https://github.com/TrainingByPackt/Applied-Data-
Science-with-Python-and-Jupyter.

We also have other code bundles from our rich catalog of
books and videos available at
https://github.com/PacktPublishing/. Check them out!

CONVENTIONS

Code words in text, database table names, folder names,
filenames, file extensions, path names, dummy URLs,

user input, and Twitter handles are shown as follows:

"The final figure is then saved as a high resolution PNG to
the £igures folder."

A block of code is set as follows:

y = df['MEDV'].copy()

del df'MEDV']

df = pd.concat((y, df), axis=1)

Any command-line input or output is written as follows:
jupyter notebook

New terms and important words are shown in bold.

Words that you see on the

screen, for example, in menus or dialog boxes, appear in
the text like this: "Click on New in the upper-right corner

and select a kernel from the drop-down menu."

Jupyter Fundamentals

Learning Objectives

By the end of this chapter, you will be able to:

Describe Jupyter Notebooks and how they are used for

data analysis

Describe the features of Jupyter Notebooks

Use Python data science libraries

Perform simple exploratory data analysis

In this chapter, you will learn and implement the fundamental
features of the Jupyter notebook by completing several hands-

on erxercises.

Introduction

Jupyter Notebooks are one of the most important tools for
data scientists using Python. This is because they're an ideal

environment for developing reproducible data analysis

pipelines. Data can be loaded, transformed, and modeled all
inside a single Notebook, where it's quick and easy to test out
code and explore ideas along the way. Furthermore, all of this
can be documented "inline" using formatted text, so you can

make notes for yourself or even produce a structured report.

Other comparable platforms - for example, RStudio or Spyder
- present the user with multiple windows, which promote
arduous tasks such as copy and pasting code around and
rerunning code that has already been executed. These tools

also tend to involve Read Eval Prompt Loops (REPLS)

where code is run in a terminal session that has saved
memory. This type of development environment is bad for
reproducibility and not ideal for development either. Jupyter
Notebooks solve all these issues by giving the user a single
window where code snippets are executed and outputs are
displayed inline. This lets users develop code efficiently and
allows them to look back at previous work for reference, or

even to make alterations.

We'll start the chapter by explaining exactly what Jupyter
Notebooks are and continue to discuss why they are so
popular among data scientists. Then, we'll open a Notebook
together and go through some exercises to learn how the
platform is used. Finally, we'll dive into our first analysis and

perform an exploratory analysis in

Basic Functionality and Features

In this section, we first demonstrate the usefulness of Jupyter
Notebooks with examples and through discussion. Then, in
order to cover the fundamentals of Jupyter Notebooks for
beginners, we'll see the basic usage of them in terms of
launching and interacting with the platform. For those who
have used Jupyter Notebooks before, this will be mostly a
review; however, you will certainly see new things in this topic

as well.

WHAT ISAJUPYTERNOTEBOOKAND WHY IS IT
USEFUL?

Jupyter Notebooks are locally run web applications which
contain live code, equations, figures, interactive apps, and
Markdown text. The standard language is Python, and that's
what we'll be using for this book; however, note that a variety
of alternatives are supported. This includes the other
dominant data science language, R:

s @ 77| | Q search mEeo 2

ﬂ Logout

| Python [cefault] O

c @

@ localhost:8889/notebooks/lesson-1-workb 110%

— Jupyter lesson-1-workbook (utosaved)

File Edit View Insert Cell Kernel Widgets Help Trusted

B+ = @B &+ N EC Makdown - = & @ O

In [25]: import pandas as pd
pd.DataFrame?
In [26]: # What does the data look like?
boston['data']
Out[26]: array([[6.32000000e-03, 1.80000000e+01, 2.31000000e+00, ...,
1.53000000e+01, 3.96900000e+02, 4.98000000e+00],
[2.73100000e-02, 0.00000000e+00, 7.07000000e+00, ...,
1.78000000e+01, 3.96900000e+02, 9.14000000e+00],
[2.72900000e-02, 0.00000000e+00, 7.07000000e+00, ...,
1.78000000e+01, 3.92830000e+02, 4.03000000e+00],
ey
[6.07600000e-02, 0.00000000e+00, 1.19300000e+01, ...,
2.10000000e+01, 3.96900000e+02, 5.64000000e+007],
[1.09590000e-01, 0.00000000e+00, 1.19300000e+01, ...,
2.10000000e+01, 3.93450000e+02, 6.48000000e+00],
[4.74100000e-02, 0.00000000e+00, 1.19300000e+01, ...,
2.10000000e+01, 3.96900000e+02, 7.88000000e+00717)
In [27]: boston|'data'].shape

Qut[27]:

(506, 13)

Figure 1.1: Jupyter Notebook sample workbook

Those familiar with R will know about R Markdown.
Markdown documents allow for Markdown-formatted text
to be combined with executable code. Markdown is a simple
language used for styling text on the web. For example, most
GitHub repositories have a README . md Markdown file. This
format is useful for basic text formatting. It's comparable to

HTML but allows for much less customization.

Commonly used symbols in Markdown include hashes (#)
to make text into a heading, square and round brackets to

insert hyperlinks, and stars to create italicized or bold text:

Markdown!

This is a basic [Markdown] Markdown!
(https://en.wikipedia.org/wiki/Markdown) document.

This is a basic Markdown document.
#i#t# Sub heading

It's *simple*, but **powerful**. Sub heading

It's simple, but powerful.

Figure 1.2: Sample Markdown document

Having seen the basics of Markdown, let's come back to R
Markdown, where Markdown text can be written alongside
executable code. Jupyter Notebooks offer the equivalent
functionality for Python, although, as we'll see, they function
quite differently than R Markdown documents. For
example, R Markdown assumes you are writing
Markdown unless otherwise specified, whereas Jupyter
Notebooks assume you are inputting code. This makes it more

appealing to use Jupyter Notebooks for rapid development

and testing.

From a data science perspective, there are two primary types
for a Jupyter Notebook depending on how they are used: lab-
style and deliverable.

Lab-style Notebooks are meant to serve as the programming
analog of research journals. These should contain all the work
you've done to load, process, analyze, and model the data. The
idea here is to document everything you've done for future
reference, so it's usually not advisable to delete or alter
previous lab-style Notebooks. It's also a good idea to
accumulate multiple date-stamped versions of the Notebook
as you progress through the analysis, in case you want to look

back at previous states.

Deliverable Notebooks are intended to be presentable and
should contain only select parts of the lab-style Notebooks.
For example, this could be an interesting discovery to share
with your colleagues, an in-depth report of your analysis for

a manager, or a summary of the key findings for stakeholders.

In either case, an important concept is reproducibility. If
you've been diligent in documenting your software versions,
anyone receiving the reports will be able to rerun the
Notebook and compute the same results as you did. In the
scientific community, where reproducibility is becoming

increasingly difficult, this is a breath of fresh air.

NAVIGATING THE PLATFORM

Now, we are going to open up a Jupyter Notebook and start to
learn the interface. Here, we will assume you have no prior

knowledge of the platform and go over the basic usage.

EXERCISE 1: INTRODUCING JUPYTER NOTEBOOKS

1. Navigate to the companion material directory in the

terminal

Note

Unix machines such as Mac or Linux, command-line
navigation can be done using 1s to display directory
contents and cd to change directories. On Windows
machines, use dir to display directory contents and use
cd to change directories instead. If, for example, you
want to change the drive from C: to D:, you should

execute d: to change drives.

2. Start a new local Notebook server here by typing the

following into the terminal:

jupyter notebook

A new window or tab of your default browser will open the
Notebook Dashboard to the working directory. Here, you

will see a list of folders and files contained therein.

3. Click on a folder to navigate to that particular path and
open a file by clicking on it. Although its main use is
editing IPYNB Notebook files, Jupyter functions as a

standard text editor as well.

. Reopen the terminal window used to launch the app. We
can see the NotebookApp being run on a local server. In

particular, you should see a line like this:

[120:03:01.045 NotebookApp] The Jupyter Notebook is
running at: http://localhost:8888/?
token=e915bb06866f19ce462d959a9193a94c7c088e81765f9d:

Going to that HTTP address will load the app in your
browser window, as was done automatically when starting
the app. Closing the window does not stop the app; this
should be done from the terminal by typing Ctrl + C.

. Close the app by typing Ctrl + C in the terminal. You may
also have to confirm by entering y. Close the web browser

window as well.

. Load the list of available options by running the following

code:

jupyter notebook --help

. Open the NotebookApp at local port 9000 by running
the following:

jupyter notebook --port 9000

. Click New in the upper-right corner of the Jupyter
Dashboard and select a kernel from the drop-down menu

(that is, select something in the Notebooks section):

Upload \W\ =

Text File
Folder

Terminal

Notebooks

Python [conda env:deep-learning]
Python [conda env:py2]

Python [conda root]

Python [default]

Figure 1.3: Selecting a kernel from the drop down menu

This is the primary method of creating a new Jupyter
Notebook.

Kernels provide programming language support for the
Notebook. If you have installed Python with Anaconda,
that version should be the default kernel. Conda virtual

environments will also be available here.

Note

Virtual environments are a great tool for managing
multiple projects on the same machine. Each virtual
environment may contain a different version of Python
and external libraries. Python has built-in virtual
environments; however, the Conda virtual environment
integrates better with Jupyter Notebooks and boasts
other nice features. The documentation is available at:
https://conda.io/docs/user-guide/tasks/manage-

environments.html.

0.

10.

11.

12.

With the newly created blank Notebook, click the top cell
and type print ('hello world'), or any other code

snippet that writes to the screen.

Click the cell and press Shift + Enter or select Run Cell in

the Cell menu.

Any stdout or stderr output from the code will be
displayed beneath as the cell runs. Furthermore, the
string representation of the object written in the final line
will be displayed as well. This is very handy, especially for
displaying tables, but sometimes we don't want the final
object to be displayed. In such cases, a semicolon (;) can
be added to the end of the line to suppress the display.
New cells expect and run code input by default; however,

they can be changed to render Markdown instead.

Click an empty cell and change it to accept the Markdown-
formatted text. This can be done from the drop-down
menu icon in the toolbar or by selecting Markdown from
the Cell menu. Write some text in here (any text will do),
making sure to utilize Markdown formatting symbols such

as #.

Scroll to the Play icon in the tool bar:

File Edit View Insert Cell Kernel Widgets Help

B+ < @ DB 2 v M B C cCode jCeIIToolbarDﬁD

Figure 1.4: Jupyter Notebook tool bar

This can be used to run cells. As we'll see later, however,
it's handier to use the keyboard shortcut Shift + Enter to

run cells.

Right next to this is a Stop icon, which can be used to
stop cells from running. This is useful, for example, if a

cell is taking too long to run:

Figure 1.5: Stop icon in Jupyter Notebooks

New cells can be manually added from the Insert menu:

(B = L R |

o ol Famia

Figure 1.6: Adding new cells from the Insert menu in Jupyter Notebooks

Cells can be copied, pasted, and deleted using icons or by

selecting options from the Edit menu:

Figure 1.7: Edit Menu in the Jupyter Notebooks

File Edit Wiew Insert {
+ CutCells]
Copy Cells

Paste Cells Above
Paste Cells Below
Paste Cells & Replace
Delete Cells

Undo Delete Cells 5

Figure 1.8: Cutting and copying cells in Jupyter Notebooks

Cells can also be moved up and down this way:

Figure 1.9: Moving cells up and down in Jupyter Notebooks

There are useful options under the Cell menu to run a

group of cells or the entire Notebook:

= Y

LN e - =

LR e e

Figure 1.10: Running cells in Jupyter Notebooks

Experiment with the toolbar options to move cells up and
down, insert new cells, and delete cells. An important
thing to understand about these Notebooks is the shared
memory between cells. It's quite simple: every cell existing
on the sheet has access to the global set of variables. So,
for example, a function defined in one cell could be called
from any other, and the same applies to variables. As one
would expect, anything within the scope of a function will
not be a global variable and can only be accessed from

within that specific function.

13.

14.

15.

16.

Open the Kernel menu to see the selections. The Kernel
menu is useful for stopping script executions and
restarting the Notebook if the kernel dies. Kernels can
also be swapped here at any time, but it is unadvisable to
use multiple kernels for a single Notebook due to

reproducibility concerns.

Open the File menu to see the selections. The File menu
contains options for downloading the Notebook in various
formats. In particular, it's recommended to save an HTML
version of your Notebook, where the content is rendered
statically and can be opened and viewed "as you would

expect" in web browsers.

The Notebook name will be displayed in the upper-left
corner. New Notebooks will automatically be named
Untitled.

Change the name of your IPYNB Notebook file by clicking
on the current name in the upper-left corner and typing

the new name. Then, save the file.

Close the current tab in your web browser (exiting the
Notebook) and go to the Jupyter Dashboard tab, which
should still be open. (If it's not open, then reload it by
copy and pasting the HTTP link from the terminal.)

Since we didn't shut down the Notebook, and we just
saved and exited, it will have a green book symbol next to
its name in the Files section of the Jupyter Dashboard
and will be listed as Running on the right side next to the

last modified date. Notebooks can be shut down from

here.

17. Quit the Notebook you have been working on by selecting
it (checkbox to the left of the name), and then click the

orange Shutdown button:

Note

Read through the basic keyboard shortcuts and test

them.
Files Running Clusters Conda
Duplicate n Upload | New - &
81 | ~ | I / Untitled Folder Name 4 Last Modified 4
5 seconds ago
~| & some-notebook.ipynb seconds ago
& Untitled.ipynb Aunning seconds ago
Figure 1.11: Shutting down the Jupyter notebook
Note

If you plan to spend a lot of time working with Jupyter
Notebooks, it's worthwhile to learn the keyboard shortcuts.
This will speed up your workflow considerably. Particularly
useful commands to learn are the shortcuts for manually
adding new cells and converting cells from code to
Markdown formatting. Click on Keyboard Shortcuts from

the Help menu to see how.

JUPYTER FEATURES

Jupyter has many appealing features that make for efficient
Python programming. These include an assortment of things,
from methods for viewing docstrings to executing Bash
commands. We will explore some of these features in this

section.

Note

The official IPython documentation can be found here:
http://ipython.readthedocs.io/en/stable/. It has details on

the features we will discuss here and others.

EXERCISE 2: IMPLEMENTING JUPYTER'S MOST
USEFUL FEATURES

1. Navigate to the 1lesson-1 directory from the Jupyter
Dashboard and open 1lesson-1-workbook . ipynb by

selecting it.

The standard file extension for Jupyter Notebooks is
. ipynb, which was introduced back when they were
called IPython Notebooks.

2. Scroll down to Subtopic C: Jupyter Featuresin
the Jupyter Notebook.

We start by reviewing the basic keyboard shortcuts. These
are especially helpful to avoid having to use the mouse so

often, which will greatly speed up the workflow.

You can get help by adding a question mark to the end of

any object and running the cell. Jupyter finds the
docstring for that object and returns it in a pop-out

window at the bottom of the app.

. Run the Getting Help cell and check how Jupyter
displays the docstrings at the bottom of the Notebook.
Add a cell in this section and get help on the object of your

.
choice:

L]

Getting Help
« add question mark to end of abject
In [3]: # Get the numpy arange docstring

import numpy as np
np.arange?

Deocstring:

arange([start,] stop|[, step,], dtype=Ncne)

Return evenly spaced values within a given interval.

Values are generated within the half-open interwval ~~ [start, stop) =
{(in other words, the interval including “start”™ but excluding “stop).
For integer arguments the function is equivalent to the Python built-in
“range <http://docs.python.org/lib/built-in-funcs.html>"_ function,

but returns an ndarray rather than a list.

Figure 1.12: Getting help in Jupyter Notebooks

Click an empty code cell in the Tab Completion section.
Type import (including the space after) and then press the
Tab key:

Tet Cormam

B i o dogm, o o car-pie. o rudass

r Al el L Sl e W
ARGl Ll =
Bl ballly LES-mdL 5Ll

B GOl JDE Ton e oo
B Rk

Figure 1.13: Tab completion in Jupyter Notebooks

The above action listed all the available modules for

import.

Tab completion can be used for the following: list
available modules when importing external
libraries; list available modules of imported
external libraries; function and variable
completion. This can be especially useful when you need
to know the available input arguments for a module, when
exploring a new library, to discover new modules, or
simply to speed up workflow. They will save time writing
out variable names or functions and reduce bugs from
typos. The tab completion works so well that you may

have difficulty coding Python in other editors after today!

. Scroll to the Jupyter Magic Functions section and run the
cells containing $1smagic and $matplotlib inline:

Jupyter Magic Functions

List of the available magic commands:

tlsmagic

Available line magics:

¥alias %alias_magic %autocall %automagic %auto
ist %dirs %doctest mode %ed %edit %env %gui
dpy %logoff %logon %logstart %logstate %logst
ock %page %pastebin %pdb %pdef %pdoc 3%pfile

ushd %pwd %pycat %pylab %gtconscle Squickref
trun %sawve %sc %set_env %store %sx %¥system

Figure 1.14: Jupyter Magic functions

The percent signs, % and %%, are one of the basic features
of Jupyter Notebook and are called magic commands.
Magics starting with $% will apply to the entire cell, and

magics starting with % will only apply to that line.

$1smagic lists the available options. We will discuss and

show examples of some of the most useful ones. The most

common magic command you will probably see is
$matplotlib inline, which allows matplotlib figures to
be displayed in the Notebook without having to explicitly
use plt.show().

The timing functions are very handy and come in two
varieties: a standard timer (%$time or $%time) and a
timer that measures the average runtime of many

iterations ($timeit and $%timeit).

Note

Notice how list comprehensions are quicker than loops in
Python. This can be seen by comparing the wall time for
the first and second cell, where the same calculation is

done significantly faster with the list comprehension.

6. Run the cells in the Timers section.

Note the difference between using one and two percent
signs. Even by using a Python kernel (as you are currently
doing), other languages can be invoked using magic
commands. The built-in options include JavaScript, R,
Pearl, Ruby, and Bash. Bash is particularly useful, as you
can use Unix commands to find out where you are
currently (pwd), what's in the directory (1s), make new

folders (mkdir), and write file contents

(cat/head/tail).

7. Run the first cell in the Using bash in the notebook

section.

This cell writes some text to a file in the working directory,
prints the directory contents, prints an empty line, and
then writes back the contents of the newly created file

before removing it:

Using bash in the notebook

In [9]: | $%bash
echo "using bash from inside Jupyter!” > test=-file.txt
1s
echo ""

cat test=file.txt
rm test-file.txt

Lesson 1

Lesson l.docx

Lesson l.pptx
lesgon=1-workbook.html
lesson=-1l-workbook.ipynb
test-file.txt

~%agon l.docx

using bash from inside Jupyter!

Figure 1.15: Using Bash in Jupyter Notebooks

8. Run the cells containing only 1s and pwd.

Note how we did not have to explicitly use the Bash magic
command for these to work. There are plenty of external
magic commands that can be installed. A popular one is

ipython-sql, which allows for SQL code to be executed

in cells.

9. Open a new terminal window and execute the following

code to install ipython-sql:

pip install ipython-sql

10.

11.

[NN | 7™ alex — -bash —

Last login: Mon Mar 5 11:32:46 on ttys@04
Alexs-MBP:~ alex$ pip install ipython-sqll

Figure 1.16: Installing ipython-sql using pip

Run the $1oad ext sql cell to load the external

command into the Notebook:

Figure 1.17: Loading sql in Jupyter Notebooks

This allows for connections to remote databases so that
queries can be executed (and thereby documented) right
inside the Notebook.

Run the cell containing the SQL sample query:

$33gl sglite://
SELECT *
FROM |
SELECT 'Hello® as msg 1
} A JOIN (

SELECT 'World!' as msg_2
) Bp

Done.

msg 1 msg 2
Hello Werld!

Figure 1.18: Running a sample SQL query

Here, we first connect to the local sqlite source; however,
this line could instead point to a specific database on a
local or remote server. Then, we execute a simple SELECT
to show how the cell has been converted to run SQL code
instead of Python.

12. Install the version documentation tool now from the

13.

terminal using pip. Open up a new window and run the

following code:

pip install version_ information

Once installed, it can then be imported into any Notebook
using $load ext version information. Finally,

once loaded, it can be used to display the versions of each

piece of software in the Notebook.

The $version information commands helps
with documentation, but it does not come as standard

with Jupyter. Like the SQL example we just saw, it can be

installed from the command line with pip.

Run the cell that loads and calls the

version information command:

tload ext version_information
tversion_information requests, numpy, pandas, matplotlib, seaborn, sklearn

Software | Version

Python 3.5.4 64bit [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)]

IPython | 6.1.0

0s Darwin 16.5.0 x86_64 1386 64bit

requests |2.18.4

numpy 1.13.1

pandas |0.20.3

matplotiib | 2.0.2

seaborn |0.8.0

sklearn 0.19.0

Wed Oct 11 19:46:08 2017 PDT

Figure 1.19: Version Information in Jupyter

CONVERTINGA JUPYTERNOTEBOOKTOAPYTHON
SCRIPT

You can convert a Jupyter Notebook to a Python script. This is
equivalent to copying and pasting the contents of each code

cell into a single . py file. The Markdown sections are also

included as comments.

The conversion can be done from the NotebookApp or in the

command line as follows:

jupyter nbconvert --to=python lesson-1-notebook.ipynb

LN) [™ lesson-1 — -bash — B0x35

lesson-1 alex$ 1s
lesson-1-workbook.ipynb
< lesson-1 alex$|jupyter nbconvert --to python lesson-l-work
[NbConvertApp] Converting noteboOk 1essOn-1-wOIKDOOK.1lpynb to python
pp] Writing 121465 bytes to lesson-l-workbook.py
esson-1 alex$ cat lesson-1-workbook.py

book . ipynb

[NbConverth
1

coding: utf-8

lesson-1- lesson-1-
workbook.ipynb workbook.py

Figure 1.20: Converting a Jupyter Notebook into a Python Script

This is useful, for example, when you want to determine the
library requirements for a Notebook using a tool such as
pipregs. This tool determines the libraries used in a project
and exports them into a requirements. txt file (and it can

be installed by running pip install pipreqgs).

The command is called from outside the folder containing

your .py files. For example, if the . py files are inside a folder

called 1esson-1, you could do the following:

pipreqgs lesson-1/

@ ® 9 lesson-1— -bash — 80x35

Color-segmented pair plot

cols = ['RM', 'AGE' 'TAX! LSTAT!' 'MEDV', 'AGE_category']
{ sns palrplo (df[col 15 huo 'AGE_cat ogory

e_order=['Yo g 'Middle Jkg ed', 'Senior'l,
plo kws { alpha B 5}, diag kws (bins': 38})
plt.savefig(!' fflguro /lesson— 1 boston-housing-age-pairplot.png',
bbox_inchc:s:‘:igh:', dpi=388);

By

lesson-1- lesson-1- requirements.txt gianleal:

workbook.ipynb workbook.py
Look at LSTAT by segment in more detail

violinploti{x='LSTAT', y='AGE_category', data:df,
order=['Young', 'Middle Aged', 'Senior'l])
plt.xlim(-5, 4@)
plt.savefigl'../figures/lesson-1-boston-housing-lstat-violin.png',
bbox_inches='tight', dpi=388);

ilesson-1 alex$ ls
lesson-1-workbook. ipynD lesson-1-workbook.py
:le -1 alex$ cd

:le i alch pipreqs lesson-1
INFO: Succes fuJ.ly saved rcqulrorron fllo in lesson-1/reguirements
:lesson-1 alex$ cat les 1f equirements. txt
matplotlib= 2 9 2
numpy==1.13.1
pandas==8.208.3
requests==2.18.4
seaborn==8.8
beautifulsoupd==4.6.8
scikit_learn==0,19.8
:lesson-1 alex$ [

Figure 1.21: Determining library requirements using pipreqs

The resulting requirements. txt file for lesson-1-

workbook . ipynb looks like this:
cat lesson-1/requirements.txt
matplotlib==2.0.2 numpy==1.13.1
pandas==0.20.3
requests==2.18.4

seaborn==0.8

beautifulsoup4==4.6.0

scikit_learn==0.19.0

PYTHON LIBRARIES

Having now seen all the basics of Jupyter Notebooks, and
even some more advanced features, we'll shift our attention to
the Python libraries we'll be using in this book. Libraries, in
general, extend the default set of Python functions. Examples
of commonly used standard libraries are datetime, time,
and os. These are called standard libraries because they come

standard with every installation of Python.

For data science with Python, the most important libraries are
external, which means they do not come standard with
Python.

The external data science libraries we'll be using in this book
are NumPy, Pandas, Seaborn, matplotlib, scikit-learn,

Requests, and Bokeh.

Note

A word of caution: It's a good idea to import libraries using
industry standards, for example, import numpy as np; this
way, your code is more readable. Try to avoid doing things
such as from numpy import *, as you may unwittingly
overwrite functions. Furthermore, it's often nice to have
modules linked to the library via a dot (.) for code
readability.

Let's briefly introduce each.

o« NumPy offers multi-dimensional data structures (arrays)
on which operations can be performed far quicker than
standard Python data structures (for example, lists). This
is done in part by performing operations in the
background using C. NumPy also offers various

mathematical and data manipulation functions.

e Pandas is Python's answer to the R DataFrame. It stores
data in 2D tabular structures where columns represent
different variables and rows correspond to samples.
Pandas provides many handy tools for data wrangling
such as filling in NaN entries and computing statistical
descriptions of the data. Working with Pandas

DataFrames will be a big focus of this book.

e Matplotlib is a plotting tool inspired by the MATLAB
platform. Those familiar with R can think of it as Python's
version of ggplot. It's the most popular Python library for
plotting figures and allows for a high level of

customization.

e Seaborn works as an extension to matplotlib, where
various plotting tools useful for data science are included.
Generally speaking, this allows for analysis to be done
much faster than if you were to create the same things
manually with libraries such as matplotlib and scikit-

learn.

 scikit-learn is the most commonly used machine

learning library. It offers top-of-the-line algorithms and a

very elegant API where models are instantiated and then
fit with data. It also provides data processing modules and

other tools useful for predictive analytics.

e Requests is the go-to library for making HTTP requests.
It makes it straightforward to get HTML from web pages
and interface with APIs. For parsing the HTML, many
choose BeautifulSoup4, which we will also cover in this
book.

e Bokeh is an interactive visualization library. It functions
similar to matplotlib, but allows us to add hover, zoom,
click, and use other interactive tools to our plots. It also
allows us to render and play with the plots inside our
Jupyter Notebook.

Having introduced these libraries, let's go back to our
Notebook and load them, by running the import statements.
This will lead us into our first analysis, where we finally start

working with a dataset.

EXERCISE 3: IMPORTING THE EXTERNAL LIBRARIES
AND SETTING UP THE PLOTTING ENVIRONMENT

1. Open up the lesson 1 Jupyter Notebook and scroll to

the Subtopic D: Python Libraries section.

Just like for regular Python scripts, libraries can be
imported into the Notebook at any time. It's best practice
to put the majority of the packages you use at the top of

the file. Sometimes it makes sense to load things midway

through the Notebook and that is completely fine.

2. Run the cells to import the external libraries and set the

plotting options:
gl LEE
i peidnt ey el
sgesl FEREY S8 5P

oyl mhkleamic & ¢
B LR T LR
1T Sedd LN EeE iDL EECT

Figure 1.22: Importing Python libraries

For a nice Notebook setup, it's often useful to set various
options along with the imports at the top. For example, the
following can be run to change the figure appearance to
something more aesthetically pleasing than the matplotlib

and Seaborn defaults:

import matplotlib.pyplot as plt
%matplotlib inline import
seaborn as sns

See here for more options: https://matplotlib.org/users/

customizing.html

%config InlineBackend.figure_format='retina’

sns.set() # Revert to matplotlib defaults
plt.rcParams['figure.figsize'] = (9, 6)
plt.rcParams['axes.labelpad'] = 10 sns.set_style("darkgrid")

So far in this book, we've gone over the basics of using Jupyter
Notebooks for data science. We started by exploring the
platform and finding our way around the interface. Then, we
discussed the most useful features, which include tab
completion and magic functions. Finally, we introduced the

Python libraries we'll be using in this book.

The next section will be very interactive as we perform our

first analysis together using the Jupyter Notebook.

Our First Analysis - The Boston Housing
Dataset

So far, this chapter has focused on the features and basic
usage of Jupyter. Now, we'll put this into practice and do

some data exploration and analysis.

The dataset we'll look at in this section is the so-called Boston
housing dataset. It contains US census data concerning
houses in various areas around the city of Boston. Each
sample corresponds to a unique area and has about a dozen
measures. We should think of samples as rows and measures

as columns. The data was first published in 1978 and is quite

small, containing only about 500 samples.

Now that we know something about the context of the dataset,
let's decide on a rough plan for the exploration and analysis. If
applicable, this plan would accommodate the relevant

question(s) under study. In this case, the goal is not to answer
a question but to instead show Jupyter in action and illustrate

some basic data analysis methods.

Our general approach to this analysis will be to do the

following:

Load the data into Jupyter using a Pandas DataFrame

Quantitatively understand the features

Look for patterns and generate questions

Answer the questions to the problems

LOADING THE DATAINTO JUPYTER USING A PANDAS
DATAFRAME

Oftentimes, data is stored in tables, which means it can be

saved as a comma-separated variable (CSV) file. This

format, and many others, can be read into Python as a
DataFrame object, using the Pandas library. Other common
formats include tab-separated variable (TSV), SQL tables,
and JSON data structures. Indeed, Pandas has support for all

of these. In this example, however, we are not going to load
the data this way because the dataset is available directly

through scikit-learn.

Note

An important part after loading data for analysis is ensuring
that it's clean. For example, we would generally need to deal
with missing data and ensure that all columns have the
correct datatypes. The dataset we use in this section has
already been cleaned, so we will not need to worry about
this. However, we'll see messier data in the second chapter

and explore techniques for dealing with it.

EXERCISE 4: LOADING THE BOSTON HOUSING
DATASET

1. Scroll to Subtopic Aof Topic B: Our first
Analysis: the Boston Housing Datasetin

chapter 1 of the Jupyter Notebook.

The Boston housing dataset can be accessed from the

sklearn.datasets module using the load boston

method.

2. Run the first two cells in this section to load the Boston

dataset and see the datastructures type:

"rEE D LEATE LR Y T T
o RS | bnmmrem . loml s

LL B]

Figure 1.23: Loading the Boston dataset

The output of the second cell tells us that it's a scikit-learn

Bunch object. Let's get some more information about that

to understand what we are dealing with.

3. Run the next cell to import the base object from scikit-

learn utils and print the docstring in our Notebook:

Crem shlanin.oials bepwa Faaxl
e =,
T « o amd
- ey | -l_l:r— Tér dailpde-id
sy (B phleed Linl segessdsl 98 sepd ab el i e Dl

- Pl w2, k=i
e B

Figure 1.24: Importing base objects and printing the docstring

4. Print the field names (that is, the keys to the dictionary)
by running the next cell. We find these fields to be self-
explanatory: ['DESCR', 'target', 'data’,

'feature names'].

5. Run the next cell to print the dataset description
contained in boston['DESCR'].

Note that in this call, we explicitly want to print the field
value so that the Notebook renders the content in a more
readable format than the string representation (that is, if
we just type boston['DESCR'] without wrapping it in a
print statement). We then see the dataset information as

we've previously summarized:

Boston House Prices dataset

Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive
:Median Value (attribute 14) is usually the target
:Attribute Information (in order):

- CRIM per capita crime rate by town

- MEDV Median value of owner-occupied homes in

$1000's

:Missing Attribute Values: None

Note

Briefly read through the feature descriptions and/or
describe them yourself. For the purposes of this tutorial,
the most important fields to understand are RM, AGE,
LSTAT, and MEDV. Note down the important variables
that we will use in the dataset, such as RM, AGE,

LSTAT, and MEDV.

Of particular importance here are the feature descriptions
(under Attribute Information). We will use this as

reference during our analysis.

Note

For the complete code, refer to the following:
https://bit.ly/2EL11cW

Now, we are going to create a Pandas DataFrame that
contains the data. This is beneficial for a few reasons: all
of our data will be contained in one object, there are
useful and computationally efficient DataFrame methods
we can use, and other libraries such as Seaborn have tools

that integrate nicely with DataFrames.

In this case, we will create our DataFrame with the

standard constructor method.

Run the cell where Pandas is imported and the docstring

is retrieved for pd.DataFrame:

In [5]: impert pandas as pd
pd.DataFrame?

Init signature: pd.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
Docstring:

Two-dimensional size-mutable, potentially hetercgenecus tabular data

structure with labeled axes (rows and columns). Arithmetic cperations

align on both row and column labels. Can be thought of as a dict-like

container for Series objects. The primary pandas data structure

Parameters
data : numpy ndarray (structured or homogenecus), dict, or DataFrame
Diet can contain Series, arrays, constants, or list-like objects
index : Index or array-like
Index to use for resulting frame. Will default to np.arange(n) if
no indexing information part of input data and no index provided
columns : Index or array-like
Column labels to use for resulting frame. Will default to
np.arange(n) if no column labels are provided

Figure 1.25: Retrieving the docstring for pd.DataFrame

The docstring reveals the DataFrame input parameters.
We want to feed in boston|['data’] for the data and

use boston|['feature names'] for the headers.

7. Run the next few cells to print the data, its shape, and the

feature names:

What does the data look like?
boston['data’]

array([[

[

[

6
1
2
1
2
1
ey
6
2
1
2
4
2

boston['data’].shape

(506,

13)

boston['feature_names']

array(['CRIM',
'TAX',

dtype="'<07")

.32000000e-03, 1.80000000e+01,
.53000000e+01, 3.96900000e+02,
.73100000e-02, 0.00000000e+00,
.78000000e+01, 3.96900000e+02,
.72900000e-02, 0.00000000e+00,
.78000000e+01, 3.92830000e+02,
.07600000e-02, 0.00000000e+00,
.10000000e+01, 3.96900000e+02,
.09590000e-01, 0.00000000e+00,
.10000000e+01, 3.93450000e+02,
.74100000e-02, 0.00000000e+00,
.10000000e+01, 3.96900000e+02,
'ZN', 'INDUS', 'CHAS', 'NOX',
"PTRATIO', 'B', 'LSTAT'],

B0 BN

N)

"RM',

.31000000e+00, ...
.98000000e+001,
.07000000e+00,
.14000000e+007,
.07000000e+00, ...
.03000000e+001,

.19300000e+01, ...
.64000000e+001,
.19300000e+01,
.48000000e+00],
.19300000e+01, ...
.88000000e+00]1])

'AGE', 'DIS',

r

r

"RAD',

Figure 1.26: Printing data, shape, and feature names

Looking at the output, we see that our data is in a 2D

NumPy array. Running the command

boston['data'] .shape returns the length (number of

samples) and the number of features as the first and

second outputs, respectively.

following:

df = pd.DataFrame(data=boston['data'],

Load the data into a Pandas DataFrame df by running the

10.

11.

columns=boston['feature_names'])

In machine learning, the variable that is being modeled is
called the target variable; it's what you are trying to
predict given the features. For this dataset, the suggested
target is MEDV, the median house value in 1,000s of

dollars.

Run the next cell to see the shape of the target:

Still need to add the target variable
boston|['target’').shape

(506,)
Figure 1.27: Code for viewing the shape of the target

We see that it has the same length as the features, which is
what we expect. It can therefore be added as a new

column to the DataFrame.

Add the target variable to df by running the cell with the

following:

df'MEDV'] = boston['target']

Move the target variable to the front of df by running the

cell with the following code:

y = df[' MEDV'].copy()
del dff'MEDV']

df = pd.concat((y, df), axis=1)

12.

This is done to distinguish the target from our features by

storing it to the front of our DataFrame.

Here, we introduce a dummy variable y to hold a copy of
the target column before removing it from the DataFrame.
We then use the Pandas concatenation function to
combine it with the remaining DataFrame along the 1st

axis (as opposed to the oth axis, which combines rows).

Note

You will often see dot notation used to reference
DataFrame columns. For example, previously we could

have doney = df.MEDV.copy (). This does not work
for deleting columns, however; del df.MEDV would

raise an error.

Implement df .head () ordf. tail () to glimpse the
data and len (df) to verify that number of samples is
what we expect. Run the next few cells to see the head,
tail, and length of d£:

df . head()

MEDYV CRM IMN INDUS CHAS NOX HAM AGE 2MS RAD TAX PTRATIO B
0 240 0006832 180 M 00 053 6575 652 40000 1.0 2960 153 30690
1 216 0.0er31 o0 7.07 00 0468 6421 789 496M 2.0 2420 17.8 396.90
2 3.7 002728 0.0 1.o7 00 D488 7185 611 4867 2.0 2420 178 369283
3 234 003237 0D 2.18 00 0458 6998 458 BO0822 30 2220 187 30483
4 362 006005 00 2.8 00 0458 T.4T 542 60622 3.0 7220 187 39690

Figure 1.28: Printing the head of the data frame df

13.

14.

df.tail()

MEDV CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B
501 224 0.06263 0.0 11.93 0.0 0.573 6.593 69.1 24786 1.0 273.0 21.0 391.99
502 20.6 0.04527 0.0 11.93 0.0 0573 6.120 76.7 22875 1.0 273.0 21.0 396.90
503 239 0.06076 0.0 11.93 0.0 0.573 6976 91.0 2.1675 1.0 273.0 21.0 396.90
504 22.0 0.10959 0.0 11.93 0.0 0.573 6.794 89.3 2.3889 1.0 273.0 21.0 393.45
505 119 0.04741 0.0 11.93 0.0 0.573 6.030 80.8 2.5050 1.0 273.0 21.0 396.90

len(df)

506

Figure 1.29: Printing the tail of data frame df

Each row is labeled with an index value, as seen in bold on
the left side of the table. By default, these are a set of
integers starting at 0 and incrementing by one for each

row.

Printing df . dtypes will show the datatype contained
within each column. Run the next cell to see the datatypes
of each column. For this dataset, we see that every field is
a float and therefore most likely a continuous variable,
including the target. This means that predicting the target

variable is a regression problem.

Run df.isnull () to clean the dataset as Pandas
automatically sets missing data as NaN values. To get the
number of NaN values per column, we can do

df.isnull () .sum():

Identify and NaNs
df.isnull().sum()

MEDV 0
CRIM 0
ZN 0
INDUS 0
CHAS 0
NOX 0
RM 0
AGE 0
DIS 0
RAD 0
TAX 0
PTRATIO 0
B 0
LSTAT 0
dtype: inté64

Figure 1.30: Cleaning the dataset by identifying NaN values
df.isnull () returns a Boolean frame of the same

length as df.

For this dataset, we see there are no NaN values, which
means we have no immediate work to do in cleaning the

data and can move on.

15. Remove some columns by running the cell that contains

the following code:
for col in ['ZN', 'NOX', 'RAD', 'PTRATIO', 'B']:
del dff col]

This is done to simplify the analysis. We will focus on the

remaining columns in more detail.

DATA EXPLORATION

Since this is an entirely new dataset that we've never seen

before, the first goal here is to understand the data. We've

already seen the textual description of the data, which is
important for qualitative understanding. We'll now compute a

quantitative description.

EXERCISE 5: ANALYZING THE BOSTON HOUSING
DATASET

1. Navigate to Subtopic B: Data explorationin the
Jupyter Notebook and run the cell containing
df .describe():

df.describe().T

count mean std min 25% 50% 75% max

MEDV 506.0 22.532806 9.197104 5.00000 17.025000 21.20000 25.000000 50.0000
CRIM 506.0 3.593761 8.596783 0.00632 0.082045 0.25651 3.647423 88.9762
INDUS 506.0 11.136779 6.860353 0.46000 5.190000 9.69000 18.100000 27.7400
CHAS 506.0 0.069170 0.253994 0.00000 0.000000 0.00000 0.000000 1.0000
RM 506.0 6.284634 0.702617 3.56100 5.885500 6.20850 6.623500 8.7800
AGE 506.0 68.574901 28.148861 2.90000 45.025000 77.50000 94.075000 100.0000
DIS 506.0 3.795043 2.105710 1.12960 2.100175 3.20745 5.188425 12.1265
TAX 506.0 408.237154 168.537116 187.00000 279.000000 330.00000 666.000000 711.0000

LSTAT 506.0 12.653063 7.141062 1.73000 6.950000 11.36000 16.955000 37.9700

Figure 1.31: Computation and output of statistical properties

This computes various properties including the mean,
standard deviation, minimum, and maximum for each
column. This table gives a high-level idea of how
everything is distributed. Note that we have taken the
transform of the result by adding a . T to the output; this

swaps the rows and columns.

Going forward with the analysis, we will specify a set of

columns to focus on.

2. Run the cell where these "focus columns" are defined:
cols = ['[RM', 'AGE', 'TAX', 'LSTAT', MEDV']

3. Display the aforementioned subset of columns of the

DataFrame by running df [cols] .head():

df[cols].head()

RM AGE TAX LSTAT MEDV

0 6.575 65.2 296.0 498 24.0
1 6421 789 242.0 914 216
7.185 61.1 242.0 403 347

6.998 45.8 222.0 294 334

QN

7.147 542 222.0 5.33 36.2

Figure 1.32: Displaying focus columns

As a reminder, let's recall what each of these columns is.

From the dataset documentation, we have the following:
- RM average number of rooms per dwelling

- AGE proportion of owner-occupied units built prior
to 1940

- TAX full-value property-tax rate per $10,000
- LSTAT % lower status of the population

- MEDV Median value of owner-occupied homes in

$1000's

To look for patterns in this data, we can start by

calculating the pairwise correlations using

pd.DataFrame. corr.

. Calculate the pairwise correlations for our selected
columns by running the cell containing the following

code:

dff cols].corr()

=l AGE Tex LSEAT L

AM 1000000 -OuMOZEE 025048 -0UE1MEDR 0.565ME0
AGE <03oiWiS 10060 O050AcEA SAOXE o0 YIRREA

TAE, D02k O8RS 100000 QRLEGY o SERSTH

LSTAT <DE3ates O&S33 o0543Ad 1000000 -0.F30EED

MEDY OMESYS 03NS -0 46000 -0 PPN 1000000

Figure 1.33: Pairwise calculation of correlation

This resulting table shows the correlation score between
each set of values. Large positive scores indicate a strong
positive (that is, in the same direction) correlation. As

expected, we see maximum values of 1 on the diagonal.

By default, Pandas calculates the standard correlation
coefficient for each pair, which is also called the Pearson
coefficient. This is defined as the covariance between two
variables, divided by the product of their standard

deviations:

cov(X,Y
y - CovxY)
PxPy

The covariance, in turn, is defned as follows:
y=a,a+a b+a,ctad

Here, n is the number of samples, xi and yi are the
individual samples being summed over, and X and Y are

the means of each set.

Instead of straining our eyes to look at the preceding
table, it's nicer to visualize it with a heatmap. This can be

done easily with Seaborn.

. Run the next cell to initialize the plotting environment, as
discussed earlier in the chapter. Then, to create the

heatmap, run the cell containing the following code:

import matplotlib.pyplot as plt import seaborn as sns
%matplotlib inline

ax = sns.heatmap(dffcols].corr(),
cmap=sns.cubehelix_palette(20, light=0.95,
dark=0.15))

ax.xaxis.tick_top() # move labels to the top

plt.savefig('../figures/lesson-1-boston-housing-corr.png’,
bbox_inches="tight', dpi=300)

RM AGE TAX LSTAT MEDV

TAX AGE RM

LSTAT

MEDV

Figure 1.34: Plot of the heat map for all variables

We call sns.heatmap and pass the pairwise correlation
matrix as input. We use a custom color palette here to
override the Seaborn default. The function returns a
matplotlib.axes object which is referenced by the variable

ax.

The final figure is then saved as a high resolution PNG to the

figures folder.

For the final step in our dataset exploration exercise, we'll

visualize our data using Seaborn's pairplot function.

Visualize the DataFrame using Seaborn's pairplot function.

Run the cell containing the following code:
sns.pairplot(df]cols],
plot_kws={"alpha': 0.6},

diag_kws={'bins': 30})

¢
100 !.m 8 O3] ,!
% ool 3 .'o'~
.
» o8 g'_ \ o
8 S o oo
. 3
“ “ !. s f e
o 3 SRS, ©
20 A8 3. ‘t% .o
. 159 Y
6i -wo ~
600
é 500 —t
S ched o
300 4 - ag‘:zm
%3
00 —m e L
0 s
2 e
EY 3 o
gs
20 o .
10 . o0 i
o
50
a0 a
30
E
10
20)
MEDV

Figure 1.35: Data visualization using Seaborn

Note

Note that unsupervised learning techniques are outside the

scope of this book.

Looking at the histograms on the diagonal, we see the

following:

a: RM and MEDYV have the closest shape to normal

distributions.

b: AGE is skewed to the left and LSTAT is skewed to the
right (this mayseem counterintuitive but skew is defined in

terms of where the mean is positioned in relation to the max).

c: For TAX, we find a large amount of the distribution is

around 700. This is also evident from the scatter plots.

Taking a closer look at the MEDV histogram in the bottom
right, we actually see something similar to TAX where there is
a large upper-limit bin around $50,000. Recall when we did
df .describe (), the min and max of MDEV was 5k and
50Kk, respectively. This suggests that median house values in

the dataset were capped at 50Kk.

INTRODUCTION TO PREDICTIVE ANALYTICS WITH
JUPYTER NOTEBOOKS

Continuing our analysis of the Boston housing dataset, we can
see that it presents us with a regression problem where we
predict a continuous target variable given a set of features. In
particular, we'll be predicting the median house value
(MEDV).

We'll train models that take only one feature as input to make
this prediction. This way, the models will be conceptually
simple to understand and we can focus more on the technical
details of the scikit-learn API. Then, in the next chapter, you'll
be more comfortable dealing with the relatively complicated

models.

EXERCISE 6: APPLYING LINEAR MODELS WITH
SEABORN AND SCIKIT-LEARN

1. Scroll to Subtopic C: Introduction to
predictive analytics in the Jupyter Notebook and

look just above at the pairplot we created in the previous

section. In particular, look at the scatter plots in the

bottom-left corner:

Figure 1.36: Scatter plots for MEDV and LSTAT

Note how the number of rooms per house (RM) and the %
of the population that is lower class (LSTAT) are highly
correlated with the median house value (MDEV). Let's
pose the following question: how well can we predict
MDEYV given these variables?

To help answer this, let's first visualize the relationships
using Seaborn. We will draw the scatter plots along with

the line of best fit linear models.

. Draw scatter plots along with the linear models by

running the cell that contains the following:

fig, ax = plt.subplots(1, 2) sns.regplot('/RM', ' MEDV', df,

ax=ax[0],

scatter_kws={'alpha': 0.4})) sns.regplot('LSTAT', MEDV',

df, ax=ax[1],
scatter_kws={"alpha': 0.4}))

50 ®

40

MEDV
MEDV

4 5 6 7 8 9 0 10 20 30
RM LSTAT

Figure 1.37: Drawing scatter plots using linear models

The line of best fit is calculated by minimizing the
ordinary least squares error function, something Seaborn
does automatically when we call the regplot function.
Also note the shaded areas around the lines, which

represent 95% confidence intervals.

Note

These 95% confidence intervals are calculated by taking
the standard deviation of data in bins perpendicular to
the line of best fit, effectively determining the confidence
intervals at each point along the line of best fit. In
practice, this involves Seaborn bootstrapping the data, a
process where new data is created through random
sampling with replacement. The number of bootstrapped

samples is automatically determined based on the size of

the dataset, but can be manually set as well by passing

the n_boot argument.

. Plot the residuals using Seaborn by running the cell

containing the following:

fig, ax = plt.subplots(1, 2)
ax[0] = sns.residplot('RM', ' MEDV', df, ax=ax[0],

scatter_kws={'alpha': 0.4}) ax[0].set_ylabel(MDEV
residuals $(y-\hat{y})$') ax[1] = sns.residplot('LSTAT",
'MEDV', df, ax=ax[1],

scatter_kws={'alpha': 0.4})

ax[1].set_ylabel(")

40 25
30

20

MDEV residuals (y —)

Figure 1.38: Plotting residuals using Seaborn

Each point on these residual plots is the difference
between that sample (y) and the linear model prediction
(¥). Residuals greater than zero are data points that would

be underestimated by the model. Likewise, residuals less

than zero are data points that would be overestimated by
the model.

Patterns in these plots can indicate suboptimal modeling.
In each preceding case, we see diagonally arranged scatter
points in the positive region. These are caused by the
$50,000 cap on MEDV. The RM data is clustered nicely
around 0, which indicates a good fit. On the other hand,
LSTAT appears to be clustered lower than o.

. Define a function using sci-kit learn that calculates the
line of best fit and mean squared error, by running the cell

that contains the following:

def get_mse(df, feature, target="MEDV"): # Get x, y to

model
y = dfftarget].values

x = dfffeature].values.reshape(-1,1)

error = mean_ squared_ error(y, y_pred) print('mse =
{:.2f}'.format(error)) print()
Note

For complete code, refer to the following:
https://bit.ly/2JgPZdU

In the get mse function, we first assign the variables y
and x to the target MDEV and the dependent feature,
respectively. These are cast as NumPy arrays by calling
the values attribute. The dependent features array is
reshaped to the format expected by scikit-learn; this is
only necessary when modeling a one-dimensional feature
space. The model is then instantiated and fitted on the
data. For linear regression, the fitting consists of
computing the model parameters using the ordinary least
squares method (minimizing the sum of squared errors
for each sample). Finally, after determining the
parameters, we predict the target variable and use the
results to calculate the MSE.

5. Call the get mse function for both RM and LSTAT, by

running the cell containing the following;:

get_mse(df, 'RM') get_mse(df, 'LSTAT")

get mae(df, "RM')
£t maa(df, "LSTAT'
get_

MEDV - RM
model: v = =34.671 + 9.102x
aae = 43,80

MEDY - LSTAT
e = 38,48

Figure 1.39: Calling the get_mse function for RM and LSTAT

Comparing the MSE, it turns out the error is slightly lower for

LSTAT. Looking back to the scatter plots, however, it appears
that we might have even better success using a polynomial
model for LSTAT. In the next activity, we will test this by

computing a third-order polynomial model with scikit-learn.

Forgetting about our Boston housing dataset for a minute,
consider another real-world situation where you might
employ polynomial regression. The following example is
modeling weather data. In the following plot, we see

temperatures (lines) and precipitations (bars) for Vancouver,
BC, Canada:

Temperature and Precipitation Graph for 1971 to 2000 Canadian Climate Normals
VANCOUVER HARBOUR CS

25.0 250
& Daily
205 I Maximum

. Temperature
20.0 i 200)
S ®* Daily
17.5 | Average
Temperature
15.0 15 (9
) = Daily
28 | |] Minimum

\\ Temperature
\ 1 100 ()

\ Precipitation
(mm)
\ 50
t Nov De:

t
o

»

10.0

Temperature (°C)
Precipitation (mm)

[4;]
o
&
“ \\
()
o

1
L1

P

-

Figure 1.40: Visualizing weather data for Vancouver, Canada

Any of these fields are likely to be fit quite well by a fourth-
order polynomial. This would be a very valuable model to
have, for example, if you were interested in predicting the

temperature or precipitation for a continuous range of dates.

Note

You can find the data source for this here:
http://climate.weather.gc.ca/climate_normals/results _e.html?
stnID=888.

ACTIVITY 1: BUILDING ATHIRD-ORDER POLYNOMIAL
MODEL

Shifting our attention back to the Boston housing dataset, we
would like to build a third-order polynomial model to
compare against the linear one. Recall the actual problem we
are trying to solve: predicting the median house value, given
the lower class population percentage. This model could
benefit a prospective Boston house purchaser who cares about

how much of their community would be lower class.

Our aim is to use scikit-learn to fit a polynomial regression
model to predict the median house value (MEDYV), given the
LSTAT values. We are hoping to build a model that has a
lower mean-squared error (MSE). In order to achieve this,

the following steps have to be executed:

1. Scroll to the empty cells at the bottom of Subtopic Cin
your Jupyter Notebook. These will be found beneath the
linear-model MSE calculation cell under the Activity

heading.

Note

You should fill these empty cells in with code as we

10.

11.

12.

13.

complete the activity. You may need to insert new cells as

these become filled up; please do so as needed.

. Pull out our dependent feature from and target variable

from df.

. Verify what x looks like by printing the first three

samples.

Transform x into "polynomial features" by importing the

appropriate transformation tool from scikit-

Transform the LSTAT feature (as stored in the variable
x) by running the fit transform method and build the

polynomial feature set.

Verify what x_poly looks like by printing the first few

samples.

Import the LinearRegression class and build our

linear classification model the same way as done while
calculating the MSE.

. Extract the coefficients and print the polynomial model.

Determine the predicted values for each sample and

calculate the residuals.

Print some of the residual values.

Print the MSE for the third-order polynomial model.
Plot the polynomial model along with the samples.

Plot the residuals.

Note

The detailed steps along with the solutions are presented

in the Appendix A (pg. no. 144).

Having successfully modeled the data using a polynomial
model, let's finish up this chapter by looking at categorical
features. In particular, we are going to build a set of
categorical features and use them to explore the dataset in

more detail.

USING CATEGORICAL FEATURES FOR
SEGMENTATION ANALYSIS

Often, we find datasets where there are a mix of continuous
and categorical fields. In such cases, we can learn about our
data and find patterns by segmenting the continuous variables

with the categorical fields.

As a specific example, imagine you are evaluating the return
on investment from an ad campaign. The data you have access

to contain measures of some calculated return on

investment (ROI) metric. These values were calculated and

recorded daily and you are analyzing data from the previous
year. You have been tasked with finding data-driven insights
on ways to improve the ad campaign. Looking at the ROI daily
time series, you see a weekly oscillation in the data.
Segmenting by day of the week, you find the following ROI
distributions (where 0 represents the first day of the week and

6 represents the last).

il

10

0 1 2 3 4 5 6

Figure 1.41: A sample violin plot for return on investment

Since we don't have any categorical fields in the Boston
housing dataset we are working with, we'll create one by
effectively discretizing a continuous field. In our case, this will
involve binning the data into "low", "medium", and "high"
categories. It's important to note that we are not simply
creating a categorical data field to illustrate the data analysis
concepts in this section. As will be seen, doing this can reveal
insights from the data that would otherwise be difficult to

notice or altogether unavailable.

EXERCISE 7: CREATING CATEGORICAL FIELDS FROM
CONTINUOUS VARIABLES AND MAKE SEGMENTED
VISUALIZATIONS

1. Scroll up to the pairplot in the Jupyter Notebook where
we compared MEDV, LSTAT, TAX, AGE, and RM:

Figure 1.42: A comparison of plots for MEDV, LSTAT, TAX, AGE, and RM

Take a look at the panels containing AGE. As a reminder,
this feature is defined as the proportion of owner-
occupied units built prior to 1940. We are going to
convert this feature to a categorical variable. Once it's
been converted, we'll be able to replot this figure with
each panel segmented by color according to the

age category.

. Scroll down to Subtopic D: Building and
exploring categorical features and click into
the first cell. Type and execute the following to plot the

AGE cumulative distribution:

sns.distplot(df.AGE.values, bins=100,

hist _kws={'cumulative': True}, kde_kws={'lw': 0})

plt.xlabel('AGE") plt.ylabel('CDF’) plt.axhline(0.33,
color='"red") plt.axhline(0.66, color="red')

plt.xlim(o, df. AGE.max());

0.8

0.6

CDF

0.4

0.2

0.0
0 20 40 60 80 100

AGE

Figure 1.43: Plot for cumulative distribution of AGE

Note that we set kde_kws={'1lw': 0} in order to bypass

plotting the kernel density estimate in the preceding

figure.

Looking at the plot, there are very few samples with low
AGE, whereas there are far more with a very large AGE.
This is indicated by the steepness of the distribution on
the far right-hand side.

The red lines indicate 1/3 and 2/3 points in the

distribution. Looking at the places where our distribution

intercepts these horizontal lines, we can see that only
about 33% of the samples have AGE less than 55 and 33%
of the samples have AGE greater than 90! In other words,
a third of the housing communities have less than 55% of
homes built prior to 1940. These would be considered
relatively new communities. On the other end of the
spectrum, another third of the housing communities have
over 90% of homes built prior to 1940. These would be
considered very old. We'll use the places where the red
horizontal lines intercept the distribution as a guide to
split the feature into categories: Relatively New,
Relatively Old, and Very Old.

. Create a new categorical feature and set the segmentation

points by running the following code:

def get_age_category(x): if x < 50:

return 'Relatively New' elif 50 <= x < 85:

return 'Relatively Old' else:

return 'Very Old'

df['AGE_ category'] = df. AGE.apply(get_age_ category)

Here, we are using the very handy Pandas method apply,
which applies a function to a given column or set of
columns. The function being applied, in this case

get age category, should take one argument

representing a row of data and return one value for the

new column. In this case, the row of data being passed is

just a single value, the AGE of the sample.

Note

The apply method is great because it can solve a variety
of problems and allows for easily readable code. Often
though, vectorized methods such as pd.Series.str can
accomplish the same thing much faster. Therefore, it's
advised to avoid using it if possible, especially when
working with large datasets. We'll see some examples of

vectorized methods in the upcoming chapter.

. Verify the number of samples we've grouped into each age
category by typing
df .groupby ('AGE category') .size () into a new

cell and running it:

Check the segmented counts
df.groupby('AGE category').size()

AGE category

Relatively New 147
Relatively 0Old 149
Very 0ld 210

dtype: inté64

Figure 1.44: Verifying the grouping of variables

Looking at the result, it can be seen that two class sizes
are fairly equal, and the Very Old group is about 40%
larger. We are interested in keeping the classes
comparable in size, so that each is well-represented and

it's straightforward to make inferences from the analysis.

Note

It may not always be possible to assign samples into
classes evenly, and in real-world situations, it's very
common to find highly imbalanced classes. In such cases,
it's important to keep in mind that it will be difficult to
make statistically significant claims with respect to the
under-represented class. Predictive analytics with
imbalanced classes can be particularly difficult. The
following blog post offers an excellent summary on
methods for handling imbalanced classes when doing
machine learning: https://svds.com/learning-

imbalanced-classes/ .

Let's see how the target variable is distributed when

segmented by our new feature AGE category.

. Construct a violin plot by running the following code:

sns.violinplot(x="MEDV', y="'AGE_ category', data=df,
order=['Relatively New', 'Relatively Old',

'Very Old']);

Relatively New ‘»

Relatively Old +
Very Old “

0 10 20 30 40 50
MEDV

gory

AGE_cate

Figure 1.45: Violin plot for AGE_category and MEDV

The violin plot shows a kernel density estimate of the
median house value distribution for each age category. We
see that they all resemble a normal distribution. The Very
Old group contains the lowest median house value
samples and has a relatively large width, whereas the
other groups are more tightly centered around their
average. The young group is skewed to the high end,
which is evident from the enlarged right half and position
of the white dot in the thick black line within the body of
the distribution.

This white dot represents the mean and the thick black
line spans roughly 50% of the population (it fills to the
first quantile on either side of the white dot). The thin
black line represents boxplot whiskers and spans 95% of
the population. This inner visualization can be modified to
show the individual data points instead by passing

inner='point' to sns.violinplot (). Let's do that

now.

6. Re-construct the violin plot adding the inner="point'

argument to the sns.violinplot call:

Relatively New

gory

Relatively Old

Very Old h

0 10 20 30 40 50
MEDV

AGE_cate

Figure 1.46: Violin plot for AGE_category and MEDV with the inner =

'point' argument

It's good to make plots like this for test purposes in order
to see how the underlying data connects to the visual. We
can see, for example, how there are no median house
values lower than roughly $16,000 for the Relatively
New segment, and therefore the distribution tail actually
contains no data. Due to the small size of our dataset (only

about 500 rows), we can see this is the case for each

segment.

7. Re-construct the pairplot from earlier, but now include
color labels for each AGE category. This is done by simply

passing the hue argument, as follows:

cols = ['[RM', 'AGE', 'TAX', 'LSTAT', MEDV', 'AGE__
category']

sns.pairplot(dffcols], hue="AGE_ category’,
hue_order=['Relatively New', 'Relatively Old',
'Very Old'],

plot_kws={"alpha': 0.5}, diag_kws={'bins":

30});

AGE_category
@ Relatively New
@ Relatively Old
@® VeryOld

LSTAT
N
8

MEDV
g8

RM AGE TAX LSTAT MEDV

Figure 1.47: Re-constructing pairplot for all variables using color labels
for AGE

Looking at the histograms, the underlying distributions of
each segment appear similar for RM and TAX. The
LSTAT distributions, on the other hand, look more
distinct. We can focus on them in more detail by again

using a violin plot.

8. Re-construct a violin plot comparing the LSTAT

distributions for each AGE category segment:

Relatively New

Relatively Old

AGE_category

Very Old

Figure 1.48: Re-constructed violin plots for comparing LSTAT distributions for

the AGE_category

Unlike the MEDYV violin plot, where each distribution had
roughly the same width, here we see the width increasing
along with AGE. Communities with primarily old houses (the
Very Old segment) contain anywhere from very few to many
lower class residents, whereas Relatively New communities
are much more likely to be predominantly higher class, with

over 95% of samples having less lower class percentages than

the Very Old communities. This makes sense, because

Relatively New neighborhoods would be more expensive.

Summary

In this chapter, you have seen the fundamentals of data
analysis in Jupyter. We began with usage instructions and
features of Jupyter such as magic functions and tab
completion. Then, transitioning to data-science-specific
material, we introduced the most important libraries for data

science with Python.

In the latter half of the chapter, we ran an exploratory analysis
in a live Jupyter Notebook. Here, we used visual assists such
as scatter plots, histograms, and violin plots to deepen our
understanding of the data. We also performed simple
predictive modeling, a topic which will be the focus of the

following chapter in this book.

In the next chapter, we will discuss how to approach
predictive analytics, what things to consider when preparing
the data for modeling, and how to implement and compare a

variety of models using Jupyter Notebooks.

Data Cleaning and Advanced
Machine Learning

Learning Objectives

By the end of this chapter, you will be able to:

e Plan a machine learning classification strategy

Preprocess data to prepare it for machine learning

Train classification models

Use validation curves to tune model parameters

Use dimensionality reduction to enhance model

performance

In this chapter you will learn data preprocessing and machine

learning by completing several practical exercises.

Introduction

Consider a small food-delivery business that is looking to
optimize their product. An analyst might look at the
appropriate data and determine what type of food people are
enjoying most. Perhaps they find a large amount of people are
ordering the spiciest food options, indicating the business
might be losing out on customers who desire something even
more spicy. This is quite basic, or as some might say,

"vanilla" analytics.

In a separate task, the analyst could employ predictive
analytics by modeling the order volumes over time. With
enough data, they could predict the future order volumes and
therefore guide the restaurant as to how many staff are
required each day. This model could take factors such as the
weather into account to make the best predictions. For
instance, a heavy rainstorm could be an indicator to staff
more delivery personnel to make up for slow travel times.
With historical weather data, that type of signal could be
encoded into the model. This prediction model would save a
business the time of having to consider these problems
manually, and money by keeping customers happy and

thereby increasing customer retention.

The goal of data analytics in general is to uncover actionable
insights that result in positive business outcomes. In the case
of predictive analytics, the aim is to do this by determining the
most likely future outcome of a target, based on previous

trends and patterns.

The benetfits of predictive analytics are not restricted to big
technology companies. Any business can find ways to benefit

from machine learning, given the right data.

Companies all around the world are collecting massive
amounts of data and using predictive analytics to cut costs
and increase profits. Some of the most prevalent examples of
this are from the technology giants Google, Facebook, and
Amazon, who utilize big data on a huge scale. For example,
Google and Facebook serve you personalized ads based on
predictive algorithms that guess what you are most likely to
click on. Similarly, Amazon recommends personalized
products that you are most likely to buy, given your previous

purchases.

Modern predictive analytics is done with machine learning,
where computer models are trained to learn patterns from
data. As we saw briefly in the previous chapter, software such
as scikit-learn can be used with Jupyter Notebooks to
efficiently build and test machine learning models. As we will
continue to see, Jupyter Notebooks are an ideal environment
for doing this type of work, as we can perform ad-hoc testing

and analysis, and easily save the results for reference later.

In this chapter, we will again take a hands-on approach by
running through various examples and activities in a Jupyter
Notebook. Where we saw a couple of examples of machine

learning in the previous chapter, here we'll take a much

slower and more thoughtful approach. Using an employee
retention problem as our overarching example for the chapter,
we will discuss how to approach predictive analytics, what
things to consider when preparing the data for modeling, and
how to implement and compare a variety of models using
Jupyter Notebooks.

Preparing to Train a Predictive Model

Here, we will cover the preparation required to train a
predictive model. Although not as technically glamorous as
training the models themselves, this step should not be taken
lightly. It's very important to ensure you have a good plan
before proceeding with the details of building and training a
reliable model. Furthermore, once you've decided on the right
plan, there are technical steps in preparing the data for

modeling that should not be overlooked.

Note

We must be careful not to go so deep into the weeds of
technical tasks that we lose sight of the goal. Technical tasks
include things that require programming skills, for example,
constructing visualizations, querying databases, and
validating predictive models. It's easy to spend hours trying
to implement a specific feature or get the plots looking just
right. Doing this sort of thing is certainly beneficial to our

programming skills, but we should not forget to ask

ourselves if it's really worth our time with respect to the

current project.

Also, keep in mind that Jupyter Notebooks are particularly
well-suited for this step, as we can use them to document our
plan, for example, by writing rough notes about the data or a
list of models we are interested in training. Before starting to
train models, its good practice to even take this a step further
and write out a well- structured plan to follow. Not only will
this help you stay on track as you build and test the models,
but it will allow others to understand what you're doing when

they see your work.

After discussing the preparation, we will also cover another
step in preparing to train the predictive model, which is
cleaning the dataset. This is another thing that Jupyter
Notebooks are well-suited for, as they offer an ideal testing
ground for performing dataset transformations and keeping
track of the exact changes. The data transformations required
for cleaning raw data can quickly become intricate and
convoluted; therefore, it's important to keep track of your
work. As discussed in the first chapter, tools other than
Jupyter Notebooks just don't offer very good options for doing
this efficiently.

Before we progress to the next section, let's pause and think

about these ideas in the context of a real-life example.

Consider the following situation:

You are hired by an online video game marketplace who want
to increase the conversion rate of people visiting their site.
They ask you to use predictive analytics to determine what
genre of game the user will like, so they can display
specialized content that will encourage the user to make a
purchase. They want to do this without having to ask the

customer their preference of game genre.

Is this a problem that can be solved? What type of data would

be required? What would be the business implications?

To address this challenge, we could consider making the
prediction based on users' browsing cookies. For example, if
they have a cookie from previously visiting a World of
Warcraft website, this would act as an indicator that they like

role playing games.

Another valuable piece of data would be a history of the games
that user has previously bought in the marketplace. This could
be the target variable in a machine learning algorithm, for
example, a model that could predict which games the user
would be interested in, based on the type of cookies in their
browsing session. An alternate target variable could be
constructed by setting up a survey in the marketplace to

collect data on user preferences.

In terms of the business implications, being able to accurately

predict the genre of game is very important to the success of
the campaign. In fact, getting the prediction wrong is doubly
problematic: not only do we miss out on the opportunity to
target users, but we may end up showing users content that
would be negatively perceived. This could lead to more people

leaving the site and fewer sales.

DETERMINING A PLAN FOR PREDICTIVE ANALYTICS

When formulating a plan for doing predictive modeling, one
should start by considering stakeholder needs. A perfect
model will be useless if it doesn't solve a relevant problem.
Planning a strategy around business needs ensures that a

successful model will lead to actionable insights.

Although it may be possible in principle to solve many
business problems, the ability to deliver the solution will
always depend on the availability of the necessary data.
Therefore, it's important to consider the business needs in the
context of the available data sources. When data is plentiful,
this will have little effect, but as the amount of available data
becomes smaller, so too does the scope of problems that can

be solved.

These ideas can be formed into a standard process for

determining a predictive analytics plan, which goes as follows:

1. Look at the available data to understand the range of

realistically solvable business problems. At this stage, it
might be too early to think about the exact problems that
can be solved. Make sure you understand the data fields

available and the timeframes they apply to.

2. Determine the business needs by speaking with key
stakeholders. Seek out a problem where the solution will

lead to actionable business decisions.

3. Assess the data for suitability by considering the
availability of a sufficiently diverse and large feature
space. Also, take into account the condition of the data:
are there large chunks of missing values for certain

variables or time ranges?

Steps 2 and 3 should be repeated until a realistic plan has
taken shape. At this point, you will already have a good idea of
what the model input will be and what you might expect as

output.

Once you've identified a problem that can be solved with
machine learning, along with the appropriate data sources, we
should answer the following questions to lay a framework for
the project. Doing this will help us determine which types of
machine learning models we can use to solve the problem.
The following image provides an overview of the choices

available depending on the type of data:

Is the training
data labeled

l Unsupervised .
Yess/No ——> No —> Learning —> Cluster analysis
Yes
Perform Supervised Labels are addigned
SR for nearest cluster
l for each sample
. Classification or - .
Regression D \ — Classification
Regression problem?
The target variable The target variable
is continuos is discrete

Figure 2.1: A flow chart for machine learning strategy based on the type of

data

The above image describes the path you can choose depending
of the type of data: labeled or unlabeled.

As can be seen, either one can chose supervised or
unsupervised learning. Supervised learning comprises either
classification or regression problem. In regression, variables
are continuous; for example, the amount of rainfall. In
regression, the variables are discrete and we predict class
labels. Simplest type of classification problem is binary; for

example, will it rain today? (yes/no)

For unsupervised learning, cluster analysis is a commonly
used method. Here, labels are assigned to the nearest cluster

for each sample.

However, not only the type but also the size and origin of data

sources would be a factor while deciding on machine learning

strategy. Specifically, following points should be note:

e The size of data in terms of the width (no. of columns) and
height (no. of rows) should be considered before apply a

machine learning algorithm.

o Certain algorithms are better at handling certain features
than the others.

o General, the larger the dataset, the better in terms of

accuracy. However, this can be time consuming

e One can reduce time by using dimensionality reduction

techniques.

e For multiple data sources, one can consider merging them

in a single table.

e If this cannot be done, we can train models for each and

consider an ensemble average for final prediction.

An example where we may want to do this is with various sets
of times series data on different scales. Consider we have the
following data sources: a table with the AAPL stock closing
prices on a daily time scale and iPhone sales data on a
monthly time scale. We could merge the data by adding the
monthly sales data to each sample in the daily time scale
table, or grouping the daily data by month, but it might be

better to build two models, one for each dataset, and use a

combination of the results from each in the final prediction

model.

Data preprocessing has a huge impact on machine learning.
Like the saying "you are what you eat," the model's
performance is a direct reflection of the data it's trained on.
Many models depend on the data being transformed so that
the continuous feature values have comparable limits.
Similarly, categorical features should be encoded into
numerical values. Although important, these steps are

relatively simple and do not take very long.

The aspect of preprocessing that usually takes the longest is
cleaning up messy data. Some estimates suggest that data
scientists spend around two thirds of their work time cleaning

and organizing datasets:

Figure 2.2: A pie chart distribution of the time spend on different data tasks

To know more about the preprocessing stage, refer to:

https://www.forbes.com/sites/gilpress/2016/03/23/data-

preparation-most-time-consuming-least-enjoyable-data-

science-task-survey-says/2/#17c66¢7e€1492.

Another thing to consider is the size of the datasets being used
by many data scientists. As the dataset size increases, the
prevalence of messy data increases as well, along with the

difficulty in cleaning it.

Simply dropping the missing data is usually not the best
option, because it's hard to justify throwing away samples
where most of the fields have values. In doing so, we could
lose valuable information that may hurt final model

performance.

Note

In this exercise, we practice preprocessing the data by
creating two DataFrames, and performing an inner merge
and outer merge on the DataFrames and remove the null
(NaN) values.

The steps involved in data preprocessing can be grouped as

follows:

« Merging data sets on common fields to bring all data

into a single table

« Feature engineering to improve the quality of data, for

example, the use of dimensionality reduction techniques

to build new features

e Cleaning the data by dealing with duplicate rows,

incorrect or missing values, and other issues that arise

e Building the training data sets by standardizing or
normalizing the required data and splitting it into training

and testing sets

Let's explore some of the tools and methods for doing the

preprocessing.

EXERCISE 8: EXPLORE DATA PREPROCESSING
TOOLS AND METHODS

1. Start the NotebookApp from the project directory by
executing jupyter notebook. Navigate to the Lesson-
2 directory and open up the lesson- 2-
workbook . ipynb file. Find the cell near the top where

the packages are loaded, and run it.

We are going to start by showing off some basic tools from
Pandas and sci-kit learn. Then, we'll take a deeper dive

into methods for rebuilding missing data.

2. Scroll down to Subtopic B: Preparing data for
machine learning and run the cell containing
pd.merge? to display the docstring for the merge

function in the notebook:

[4
Signature: pd.merge(left, right, how='inner', on=None, left on=None, right_on=None, left_
index=False, right_ index=False, sort=False, suffixes=(' x', ' ¥'), copy=True, indicator=F
alse)
Docstring:
Merge DataFrame objects by performing a database-style Jjoin operation by
columns or indexes.

If joining columns on columns, the DataFrame indexes *will be
ignored*. Otherwise if joining indexes on indexes or indexes on a column or
columns, the index will be passed on.

Parameters
left : DataFrame
right : DataFrame
how : {'left', 'right', 'cuter', 'inner'}, default 'inner'
* left: use only keys from left frame, similar to a SQL left outer join;
preserve key order
* right: use only keys from right frame, similar to a SQL right outer join;
preserve key order
* puter: use union of keys from both frames, similar to a SQL full outer
join; sort keys lexicographically
* inner: use intersection of keys from both frames, similar to a SQL inner
join; preserve the order of the left keys
on : label or list
Field names to join on. Must be found in both DataFrames. If on is
None and not merging on indexes, then it merges on the intersection of
the columns by default.
left on : label or list, or array-like
Field names to join on in left DataFrame. Can be a vector or list of
vectors of the length of the DataFrame to use a particular vector as
the join key instead of columns

Figure 2.3: Docstring for the merge function

As we can see, the function accepts a left and right
DataFrame to merge. You can specify one or more
columns to group on as well as how they are grouped, that
is, to use the left, right, outer, or inner sets of values. Let's

see an example of this in use.

Exit the help popup and run the cell containing the

following sample DataFrames:

df_1 = pd.DataFrame({'product’: ['red shirt', 'red shirt’,

'red shirt', 'white dress'],\n",
'price': [49.33, 49.33, 32.49,

199.99]1})\n",

df 2 = pd.DataFrame({'product': ['red shirt', 'blue pants',

'white tuxedo', 'white dress'],\n",
'In_stock': [True, True, False,
False]})

Here, we will build two simple DataFrames from scratch.
As can be seen, they contain a product column with

some shared entries.

4. Run the next cell to perform the inner merge:

@i = gad.mnigelseil=dE 3, iaghl=8 1, " ol y Dew=" Lk
dl

En T TTERMET 1 W

5 X e] .
i @kl Sl T
P =4 e ol o] rar®
B ik e e Vaws

Figure 2.3: Inner merge of columns

Note how only the shared items, red shirt and white
dress, are included. To include all entries from both
tables, we can do an outer merge instead. Let's do this

now.

5. Run the next cell to perform an outer merge:

F L

i = pa.meags|iafv=al i, rigvuvsdf J, o= prodecn , hows' s
dr
[T wdacl e eai
@ Wia W vt S
L] i - wrwrt o
g B = e Ty
3 HA e oen -
+ " [= F s .

" il el E S

Figure 2.4: Outer merge of columns

This returns all of the data from each table where missing

values have been labeled with NaN.

a= fiosat(nan)

bool(a)

Truec

A== float{ ' nan')

Falaw

A& is Tloat{ nan)

Falee

np.isnan{a)

Irae

Figure 2.5: Code for using NumPy to test for quality

You may have noticed that our most recently merged table
has duplicated data in the first few rows. This will be

addressed in the next step.

6. Run the cell containing df . drop duplicates () to

return a version of the DataFrame with no duplicate rows:

al.AIeg dag.acdteug |

LR =0T A R
| | 42 13 - -l -
| Ls 80 Sl o
J ' =he e T =
4 N Dos cEde P
] we wfucd by | s

Figure 2.6: Table with dropped duplicate rows

This is the easiest and "standard" way to drop duplicate

rows. To apply these changes to d£, we can either set
inplace=True or do something like df =
df .drop duplicated (). Let's see another method,

which uses masking to select or drop duplicate rows.

7. Run the cell containing df .duplicated () to print the

True/False series, marking duplicate rows:
df dap. boanmlg

-] Tl [Aal

rEE
d Pl | am
]] v
4 Faliw
* ol | B
et i Deiwll

Figure 2.7: Printing True/False values for duplicate rows

8. Sum the result to determine how many rows have been

duplicated by running the following code:

Bl ffes Cdesd el

wl [l - sramd] ||

RN DL T
i &3 sistn T

Figure 2.8: Summing the result to check the number of duplicate rows

9. Run the following code and convince yourself the output

is the same as that from df .drop duplicates():

df[~df.duplicated()]

il | =i —dapd d putad] | |

EEw mmien i m pEw
A8 KD =5 st =
LR wd ¥t Ta

1ol o oY Famlrar

LT ELaw Ry T
[Lph wt e L
Figure 2.9: Output from the df.[~df.duplicated()] function

10. Run the cell containing the following code to drop

duplicates from a subset of the full DataFrame:

df[~df['product'].duplicated()]

L | e] gy b L[

e] odead A oskinll
R -_— [
a imn e e] Fnm
4 S e ol s Pl
| e abea Lamia L]

Figure 2.10: Output after dropping duplicates

Here, we are doing the following things:

creating a mask (a True/False series) for the product row,

where duplicates are marked with True;

using the tilde (~) to take the opposite of that mask, so
that duplicates are instead marked with False and

everything else is True;

using that mask to filter out the False rows of d£, which

correspond to the duplicated products.

As expected, we now see that only the first red shirt row
remains, as the duplicate product rows have been

removed.

In order to proceed with the exercise, let's replace df with
a deduplicated version of itself. This can be done by
running drop _duplicates and passing the parameter

inplace=True.

11.

12.

13.

Deduplicate the DataFrame and save the result by

running the cell containing the following code:

df.drop_ duplicates(inplace=True)

Continuing on to other preprocessing methods, let's
ignore the duplicated rows and first deal with the missing
data. This is necessary because models cannot be trained
on incomplete samples. Using the missing price data for
blue pants and white tuxedo as an example, let's show

some different options for handling NaN values.

Drop rows, especially if your NaN samples are missing

data, by running the cell containing df . dropna () :

g e | s e e T

df dropoed |

[TEp [)
h =9] b

P um e v

P N == o LS

Figure 2.11: Output after dropping incomplete rows

Drop entire columns that have most values missing for a
feature. Do this by running the cell containing the same
method as before, but this time with the axes parameter

passed to indicate columns instead of rows:

14.

a I L | e Y

mlomiepsal anas-17]

ewlal F e
E - wui T |
a - ey |

1 n" i e |
L] gl "™ TR -

L LT TS |

Figure 2.12: Output after dropping entire columns with missing values

for a feature

Simply dropping the NaN values is usually not the best
option, because losing data is never good, especially if
only a small fraction of the sample values is missing.
Pandas offers a method for filling in NaN entries in a
variety of different ways, some of which we'll illustrate

now.

Run the cell containing df . £il1lna? to print the
docstring for the Pandas NaN-£i11 method:

Signature: df.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downc
ast=None, **kwargs)

Docstring:

Fill NA/NaN values using the specified method

Parameters

value : scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a
dict/Series/DataFrame of wvalues specifying which walue to use for
each index (for a Series) or column (for a DataFrame). (values not
in the dict/Series/DataFrame will not be filled). This wvalue cannot
be a list.

method : {'backfill', 'bfill', 'pad', '£ffill', None}, default None
Method to use for filling holes in reindexed Series
pad / f£fill: propagate last valid observation forward to next valid
backfill / bfill: use NEXT valid observation to £ill gap

axig : {0 or 'index', 1 or 'columns'}

inplace : boolean, default False
If True, fill in place. Note: this will modify any
other views on this object, (e.g. a no-copy slice for a column in a
DataFrame).

Figure 2.13: Docstring for the NaN-fill method

Note the options for the value parameter; this could be,
for example, a single value or a dictionary/series type map
based on index. Alternatively, we can leave the value as

None and pass a £111 method instead. We'll see

examples of each in this chapter.

15. Fill in the missing data with the average product price by

running the cell containing the following code:

df.fillna(value=df.price.mean())

F Fi FACE ChBe vl d-Te

. TLo Lk [F < o=l . 7 O Bk] |

e mreharr - el

B &b N - T Teur
- | Ie R i [AF
i i EEET e mhr . F oo
d 5 e b o Teum
B OO " Ll R

Figure 2.14: Output after filling missing data with average product price

16. Fill in the missing data using the pad method by running

the cell containing the following code instead:

df.fillna(method="pad")

17.

Fill with the previosd viliesd [0 tSaF Soloms

df . TE1Ina [maghod="pad

] prusdact In ebock

a & Lol 5y]
3 =W ud gt e
3 R ahhe drem Faka
4 106N Bu ot Lf]
B OV el e Fakan

Figure 2.15: Output after filling data using the pad method

Notice how the white dress price was used to pad the

missing values below it.

To conclude this exercise, we will prepare our simple table
to be used for training a machine learning algorithm.
Don't worry, we won't actually try to train any models on
such a small dataset! We start this process by encoding

the class labels for the categorical data.

Run the first cell in the Building training data
sets section to add another column of data representing

the average product ratings before encoding the labels:

df = Al.filleafvalea=<df.prica.maEn|]l
FaRinge = |'fow’, "madiom xign” |
Fufs, Paiwldn® , S [)
df| “ratiing | = pp.candon.eheioeizaticgs, leniddi)
- H
[=] pradiasi In ek b L]
&3 Fxg =d ¥ T e
a0 Wl W T wesch
o

=]

'

¥ VRWID ety orete LF T

& e Sl [T To# g
B

IV AN alile uaele Lt R

18.

19.

Figure 2.16: Output after adding the rating column

Considering we want to use this table to train a predictive
model, we should first think about changing all the

variables to numeric types.

Convert the handle in_stock., which is a Boolean list, to
numeric values; for example, 0 and 1. This should be done
before using it to train a predictive model. This can be
done in many ways, for example, by running the cell

containing the following code:

df.in_stock = df.in_stock.map({False: 0, True: 1})

Caspmes dE gdgesl S h[aar .

di.im wtock = 4f_ iz scock.medd (Fales - Erwmn 1%)
at
JalelE T e W “ulin]
g &% 1man L 1 -
1 aravnom = 1 s
§ i s e | oo
[B SRS s] 1 g
i i s usEm i -

Figure 2.17: Output after converting in_stock to binary

Run the cell containing the following code to map class
labels to integers at a higher level. We use sci-kit learn's

LabelEncoder for this purpose:

from sklearn.preprocessing import LabelEncoder

rating encoder = LabelEncoder()

20.

_df = df.copy()

df.rating = rating encoder.fit_transform(df.rating)

_df

F Eroxe labuo.ls

from shlsaza.poprocessiog laport Labslfncodac
racieg ancodar = Lab-alEncoedar |}
_AF = @r. ooy)

_fl.rablleg = fallog wdoeder, [LL Liassiorsidl callisg)
de

prics FET N eI g

F e EEE) we I L)
I A0 WC W I 3
3 (Rl ahe e 1 1
LT B 2L [=
3 DRROEEET wMe tusedd J Qg

Figure 2.18: Output after mapping class labels to integers

This might bring to mind the preprocessing we did in the

previous chapter, when building the polynomial model.

Here, we instantiate a label encoder and then "train" it

and "transform" our data using the fit transform

method. We apply the result to a copy of our DataFrame,
df.

Re-convert the features using the class we reference with
the variable rating encoder, by running
rating encoder.inverse _

transform(df.rating):

21.

F Srsvers bask ¥ peodied

ra 1:.!.1_n1:ad::r- Lrwe rm_l.r.a.‘.:'l'ﬁ.rn: _d! ~FARIRG |

srcay(2ow , medlum ; lew"; "high' ; Righ']; deype—Sbieci)

Figure 2.19: Output after performing inverse transform

You may notice a problem here. We are working with a so-
called "ordinal" feature, where there's an inherent order to
the labels. In this case, we should expect that a rating of
"low" would be encoded with a 0 and a rating of "high"
would be encoded with a 2. However, this is not the result
we see. In order to achieve proper ordinal label encoding,
we should again use map, and build the dictionary

ourselves.

Encode the ordinal labels properly by running the cell

containing the following code:

ordinal_map = {rating: index for index, rating in

enumerate(['low', 'medium’, 'high'])}
print(ordinal _map)

df.rating = df.rating.map(ordinal_map)

¥ Encode ordicsal labels

ardital map = {ratiagr iadex for indan:. retlag in easmersta|['low’; 'sedius’; "high“"]13}]
printjasdical =ap)

df.ratirg = df.rating.mapiordinsl_map)
at

{"low'r 0, "Righ": 2, 'medium’'i L}

Trice praduct in wilock rating

© 4533000 1ed &Mt t g
2 EE400000 Pl ST

3 TERPEO00 wARh Sk 0 0
4 BLEMSET bige parts

5 BLEOMSET whia huueo o

Figure 2.20: Output after encoding ordinal labels

We first create the mapping dictionary. This is done using
a dictionary comprehension and enumeration, but looking
at the result, we see that it could just as easily be defined
manually instead. Then, as done earlier for the in_stock
column, we apply the dictionary mapping to the feature.
Looking at the result, we see that rating now makes more
sense than before, where 1ow is labeled with 0, medium

with 1, and high with 2.

Now that you've discussed ordinal features, let's touch on
another type called nominal features. These are fields with
no inherent order, and in our case, we see that product

is a perfect example.

Most scikit-learn models can be trained on data like this,
where we have strings instead of integer-encoded labels.
In this situation, the necessary conversions are done

under the hood. However, this may not be the case for all

22,

models in scikit-learn, or other machine learning and
deep learning libraries. Therefore, it's good practice to

encode these ourselves during preprocessing.

Convert the class labels from strings to numerical values

by running the cell containing the following code:

df = pd.get_dummies(df)
The final DataFrame then looks as follows:

o " LR el . T gt ¥ rooees

ravirg eacodar. lrverea wransfeam) di.raving|

Ereayil 5w , SWedilul , léw ; Elgh ; high], dtiypE=SbieEt]

Figure 2.21: Final DataFrame

Here, we see the result of one-hot encoding: the product
column has been split into 4, one for each unique value.
Within each column, we find either a 1 or 0 representing

whether that row contains the particular value or product.

Moving on and ignoring any data scaling (which should
usually be done), the final step is to split the data into
training and test sets to use for machine learning. This can
be done using scikit-learn's train test split. Let's
assume we are going to try to predict whether an item is in

stock, given the other feature values.

Note

23.

When we call the values attribute in the preceding code,
we are converting the Pandas series (that is, the
DataFrame column) into a NumPy array. This is good
practice because it strips out unnecessary information

from the series object, such as the index and name.

Split the data into training and test sets by running the

cell containing the following code:

features = ['price’, 'rating', 'product_blue pants’,
'‘product_red shirt', 'product_white dress', 'product_white

tuxedo']
X = dfffeatures].values target = 'In_stock’
y = dfftarget].values

from sklearn.model_ selection import train_ test_split

X_train, X_test, y_train, y_test =\

train_ test_split(X, y, test_size=0.3)

1

ik
priadi["E firakn ', K S5l kg
prist "B tasd E = puirs . i
pFrist] y_tralns _-_r_-hpl-.l-.l;-u
LAl T _LEEL . F_SE.. EDADE;

o A
g =1, . &
4, &)
F BRIl ¥,

(R TEL

(LY L ¥,

Figure 2.22: Splitting data intro training and test sets

Here, we are selecting subsets of the data and feeding them
into the train_test split function. This function has four
outputs, which are unpacked into the training and testing

splits for features (X) and the target (y).

Observe the shape of the output data, where the test set has
roughly 30% of the samples and the training set has roughly
70%.

We'll see similar code blocks later, when preparing real data

to use for training predictive models.

This concludes the training exercise on cleaning data for use
in machine learning applications. Let's take a minute to note
how effective our Jupyter Notebook was for testing various
methods of transforming the data, and ultimately
documenting the pipeline we decided upon. This could easily
be applied to an updated version of the data by altering only
specific cells of code, prior to processing. Also, should we
desire any changes to the processing, these can easily be
tested in the notebook, and specific cells may be changed to
accommodate the alterations. The best way to achieve this
would probably be to copy the notebook over to a new file, so
that we can always keep a copy of the original analysis for

reference.

Moving on to an activity, we'll now apply the concepts from

this section to a large dataset as we prepare it for use in

training predictive models.

ACTIVITY 2: PREPARING TO TRAIN A PREDICTIVE
MODEL FOR THE EMPLOYEE-RETENTION PROBLEM

Suppose you are hired to do freelance work for a company
who wants to find insights into why their employees are
leaving. They have compiled a set of data they think will be
helpful in this respect. It includes details on employee
satisfaction levels, evaluations, time spent at work,

department, and salary.

The company shares their data with you by sending you a file
called hr_data.csv and asking what you think can be done to

help stop employees from leaving.
Our aim is to

apply the concepts you've learned thus far to a real-life

problem. In particular, we seek to:

1. Determine a plan for using predictive analytics to provide

impactful business insights, given the available data.

2. Prepare the data for use in machine learning models.

Note

Starting with this activity and continuing through the

remainder of this chapter, we'll be using Human
Resources Analytics dataset, which is a Kaggle dataset.
The link to the dataset can be found here:
https://bit.ly/20XWFUs. The data is simulated, meaning
the samples are artificially generated and do not
represent real people. We'll ignore this fact as we analyze
and model the data. There is a small difference between
the dataset we use in this book and the online version.
Our human resource analytics data contains some NaN
values. These were manually removed from the online
version of the dataset, for the purposes of illustrating
data cleaning techniques. We have also added a column

of data called is_smoker, for the same purposes.

In order to achieve this, following steps have to be executed:

1. Scroll to the Activity A section of the lesson-2-

workbook . ipynb notebook file.

2. Check the head of the table to verify that it is in standard
CSV format.

3. Load the data with Pandas.

4. Inspect the columns by printing df . columns and make

sure the data has loaded as expected by printing the
DataFrame head and tail with df .head () and

df.tail():

5. Check the number of rows (including the header) in the

10.

11.

12.

13.

14.

15.

16.

17.

CSV file.

Compare this result to 1en (d£) to make sure we've
loaded all the data:

Assess the target variable and check the distribution and

number of missing entries.

. Print the data type of each feature.

Display the feature distributions.

Check how many NaN values are in each column by

running the following code:

Drop the is_smoker column as there is barely any

information in this metric.

Fill the NaN values in the time spend company

column.

Make a boxplot of average montly hours segmented

by number project.

Calculate the mean of each group by running the following

code:

Fill the NaN values in average montly hours.

Confirm that df has no more NaN values by running the

assertion test.

Transform the string and Boolean fields into integer

representations.

18. Print df . columns to show the fields

19. Save our preprocessed data.

Note

The detailed steps along with the solutions are presented

in the Appendix Aiste(pg. no. 150).

Again, we pause here to note how well the Jupyter Notebook
suited our needs when performing this initial data analysis
and clean-up. Imagine, for example, we left this project in its
current state for a few months. Upon returning to it, we would
probably not remember what exactly was going on when we
left it. Referring back to this notebook though, we would be
able to retrace our steps and quickly recall what we previously
learned about the data. Furthermore, we could update the
data source with any new data and re-run the notebook to
prepare the new set of data for use in our machine learning
algorithms. Recall that in this situation, it would be best to
make a copy of the notebook first, so as not to lose the initial

analysis.

To summarize, you've learned and applied methods for
preparing to train a machine learning model. We started by
discussing steps for identifying a problem that can be solved

with predictive analytics. This consisted of:

e Looking at the available data

e Determining the business needs

» Assessing the data for suitability

We also discussed how to identify supervised versus

unsupervised and regression versus classification problems.

After identifying our problem, we learned techniques for
using Jupyter Notebooks to build and test a data
transformation pipeline. These techniques included methods
and best practices for filling missing data, transforming

categorical features, and building train/test data sets.

In the remainder of this chapter, we will use this preprocessed
data to train a variety of classification models. To avoid
blindly applying algorithms we don't understand, we start by
introducing them and overviewing how they work. Then, we
use Jupyter to train and compare their predictive capabilities.
Here, we have the opportunity to discuss more advanced
topics in machine learning like overfitting, k-fold cross-

validation, and validation curves.

Training Classification Models

As you've already seen in the previous chapter, using libraries
such as scikit-learn and platforms such as Jupyter, predictive
models can be trained in just a few lines of code. This is

possible by abstracting away the difficult computations

involved with optimizing model parameters. In other words,
we deal with a black box where the internal operations are
hidden instead. With this simplicity also comes the danger of
misusing algorithms, for example, by overfitting during
training or failing to properly test on unseen data. We'll show
how to avoid these pitfalls while training classification models
and produce trustworthy results with the use of k-fold cross

validation and validation curves.

INTRODUCTION TO CLASSIFICATION ALGORITHMS

Recall the two types of supervised machine learning:
regression and classification. In regression, we predict a
continuous target variable. For example, recall the linear and
polynomial models from the first chapter. In this chapter, we
focus on the other type of supervised machine learning:
classification. Here, the goal is to predict the class of a sample

using the available metrics.

In the simplest case, there are only two possible classes, which
means we are doing binary classification. This is the case for
the example problem in this chapter, where we try to predict
whether an employee has left or not. If we have more than two

class labels instead, we are doing multi-class classification.

Although there is little difference between binary and multi-
class classification when training models with scikit-learn,

what's done inside the "black box" is notably different. In

particular, multi-class classification models often use the one-
versus-rest method. This works as follows for a case with
three class labels. When the model is "fit" with the data, three
models are trained, and each model predicts whether the
sample is part of an individual class or part of some other
class. This might bring to mind the one-hot encoding for
features that we did earlier. When a prediction is made for a
sample, the class label with the highest confidence level is

returned.

In this chapter, we'll train three types of classification models:
Support Vector Machines, Random Forests, and k-Nearest
Neighbors classifiers. Each of these algorithms are quite
different. As we will see, however, they are quite similar to
train and use for predictions thanks to scikit-learn. Before
swapping over to the Jupyter Notebook and implementing

these, we'll briefly see how they work.

SVMs attempt to find the best hyperplane to divide classes by.
This is done by maximizing the distance between the
hyperplane and the closest samples of each class, which are

called support vectors.

This linear method can also be used to model nonlinear
classes using the kernel trick. This method maps the features
into a higher-dimensional space in which the hyperplane is
determined. This hyperplane is also referred to as the decision

surface, and we'll visualize it when training our models.

K-Nearest Neighbors classification algorithms memorize the
training data and make predictions depending on the K
nearest samples in the feature space. With three features, this
can be visualized as a sphere surrounding the prediction
sample. Often, however, we are dealing with more than three
features and therefore hyperspheres are drawn to find the

closest K samples.

Random Forests are an ensemble of decision trees, where

each has been trained on different subsets of the training data.

A decision tree algorithm classifies a sample based on a series
of decisions. For example, the first decision might be "if
feature x_1 is less than or greater than 0." The data would
then be split on this condition and fed into descending
branches of the tree. Each step in the decision tree is decided
based on the feature split that maximizes the information
gain. Essentially, this term describes the mathematics that

attempts to pick the best possible split of the target variable.

Training a Random Forest consists of creating bootstrapped
(that is, randomly sampled data with replacement) datasets
for a set of decision trees. Predictions are then made based on
the majority vote. These have the benefit of less overfitting

and better generalizability.

Note

Decision trees can be used to model a mix of continuous and

categorical data, which make them very useful.
Furthermore, as we will see later in this chapter, the tree
depth can be limited to reduce overfitting. For a detailed (but
brief) look into the decision tree algorithm, check out this
popular StackOverflow answer:
https://stackoverflow.com/a/1859910/3511819. There, the
author shows a simple example and discusses concepts such

as node purity, information gain, and entropy.

EXERCISE 9: TRAINING TWO-FEATURE
CLASSIFICATION MODELS WITH SCIKIT-LEARN

We'll continue working on the employee retention problem
that we introduced in the first topic. We previously prepared a
dataset for training a classification model, in which we
predicted whether an employee has left or not. Now, we'll take

that data and use it to train classification models:

1. Start the NotebookApp and open the lesson-2-
workbook . ipynb file. Scroll down to Topic B:
Training classification models. Run the first

couple of cells to set the default figure size and load the
processed data that we previously saved to a CSV file. For
this example, we'll be training classification models on

two continuous features: satisfaction level and

1ast_evaluation.

2. Draw the bivariate and univariate graphs of the

continuous target variables by running the cell with the

following code:

sns.jointplot('satisfaction_level', 'last_evaluation’',
data=df, kind="hex')

1.0

- w
: pearsonl.1 %p =4.7e-38
|
0.9 ‘
4 ® @
2 "ol
0.8 y
@
5
S o7
®
F
o @
8 [

0.6

0‘5 "

0.4

0.2 0.4 0.6 0.8 1.0

satisfaction_level

Figure 2.23: Bivariate and univariate graphs for satisfaction_level and

last_evaluation

As you can see in the preceding image, there are some

very distinct patterns in the data.

. Re-plot the bivariate distribution, segmenting on the
target variable, by running the cell containing the

following code:

plot_args = dict(shade=True, shade_lowest=False) fori, c
in zip((0, 1), ('Reds', 'Blues')):

sns.kdeplot(df.loc[df.left==i, 'satisfaction_level'],

df.loc[df.left==i, 'last_evaluation'], cmap=c, **plot_args)

left=0 left=1

0.9
0.8

0.7

last_evaluation

0.6

0.4

03
0.0 02 0.4 0.6 0.8 1.0

satisfaction_level

Figure 2.24: Bivariate distribution for satisfaction_level and

last_evaluation

Now, we can see how the patterns are related to the target
variable. For the remainder of this exercise, we'll try to
exploit these patterns to train effective classification

models.

. Split the data into training and test sets by running the

cell containing the following code:

from sklearn.model_selection import train_ test_ split

features = ['satisfaction_level', 'last_evaluation'] X_train,

X_test,y_train, y_test = train_test_ split(

df[features].values, dff 'left'].values, test_size=0.3,

random_ state=1)

Our first two models, the Support Vector Machine and k-
Nearest Neighbors algorithm, are most effective when the
input data is scaled so that all of the features are on the
same order. We'll accomplish this with scikit-learn's
StandardScaler.

. Load StandardScaler and create a new instance, as
referenced by the scaler variable. Fit the scaler on the
training set and transform it. Then, transform the test set.

Run the cell containing the following code:

from sklearn.preprocessing import StandardScaler scaler
= StandardScaler()

X _train_std = scaler.fit transform(X train) X test std

= scaler.transform(X_test)

Note

An easy mistake to make when doing machine learning is
to "fit" the scaler on the whole dataset, when in fact it
should only be "fit" to the training data. For example,
scaling the data before splitting into training and testing
sets is a mistake. We don't want this because the model
training should not be influenced in any way by the test
data.

6. Import the scikit-learn support vector machine class and
fit the model on the training data by running the cell

containing the following code:

from sklearn.svm import SVC

svin = SVC(kernel="linear', C=1, random_ state=1)

svm.fit(X_train_std, y_train)

7. Compute the accuracy of this model on unseen data by

running the cell containing the following code:

from sklearn.metrics import accuracy_scorey_pred =
svm.predict(X_test_std)

acc = accuracy_score(y_test, y_pred) print(‘accuracy =
{:.1f}%'.format(acc*100))

>> accuracy = 75.9%

8. We predict the targets for our test samples and then use
scikit-learn's accuracy score function to determine
the accuracy. The result looks promising at ~75%! Not bad
for our first model. Recall, though, the target is
imbalanced. Let's see how accurate the predictions are for

each class.

9. Calculate the confusion matrix and then determine the
accuracy within each class by running the cell containing

the following code:

10.

from sklearn.metrics import confusion_matrix cmat =

confusion_matrix(y_test, y_pred)

scores = cmat.diagonal() / cmat.sum(axis=1) * 100

print('left = o : {:.2f}%'.format(scores[0]))
print('left = 1 : {:.2f}%'".format(scores[1]))
>> left = 0:100.00%

>>left =1:0.00%

It looks like the model is simply classifying every sample
as 0, which is clearly not helpful at all. Let's use a contour
plot to show the predicted class at each point in the
feature space. This is commonly known as the decision-

regions plot.

Plot the decision regions using a helpful function from the
mlxtend library. Run the cell containing the following

code:

from mlxtend.plotting import plot_decision_regions

N_samples = 200

X,y = X_train_std[:N_samples], y_train[:N_samples]

plot_decision_regions(X, y, clf=svm)

11.

R " u fl -
L] ‘-' - L]
. ‘I .',i‘. :.: - .l
i | ‘:'-F:- '-‘“'-
A “..'...r..- e
. - .l.‘.. '. e - .l'

Figure 2.25: Plot of the decision regions

The function plots decision regions along with a set of
samples passed as arguments. In order to see the decision
regions properly without too many samples obstructing
our view, we pass only a 200-sample subset of the test
data to the plot decision regions function. In this
case, of course, it does not matter. We see the result is
entirely red, indicating every point in the feature space

would be classified as o.

It shouldn't be surprising that a linear model can't do a
good job of describing these nonlinear patterns. Recall
earlier we mentioned the kernel trick for using SVMs to
classify nonlinear problems. Let's see if doing this can

improve the result.

Print the docstring for scikit-learn's SVM by running the

cell containing SVC. Scroll down and check out the

parameter descriptions. Notice the kernel option, which is

actually enabled by default as rb£. Use this kernel

option to train a new SVM by running the cell containing

the following code:

check_model_fit(svm, X_test_std, y_test)

oAl scTuzacy = £3.7%

precictions
L 1
scomi 0 1308 108
1 I T

percent accuracy scare per class:
laft = 0 @ 96.084%
lafe = 1 ¢ A7.340

Figure 2.26: Training a new SVM

last_evaluation

satisfaction_level

Figure 2.27: Enhanced results with non-linear patterns

The result is much better. Now, we are able to capture some of
the non-linear patterns in the data and correctly classify the

majority of the employees who have left.

THE PLOT_DECISION_REGIONS FUNCTION

The plot decision regions function is provided by
mlxtend, a Python library developed by Sebastian Raschka.
It's worth taking a peek at the source code (which is of course
written in Python) to understand how these plots are drawn.

It's really not too complicated.

In a Jupyter Notebook, import the function with £rom
mlxtend.plotting import plot decision regions
and then pull up the help with plot decision regions?
and scroll to the bottom to see the local file path:

In [152): from mlNtend.plotting imsport plot_decisioa_regions
plot decinicn reglomal

ax ¢ matplotlib.axes.ANes object
Fila: =fanacenda/lik/pyehen]. S/aito-packagen/aleeand/plotting/docision regions.py
fancticn

Figure 2.28: Local file path

Then, open up the file and read through it. For example, you

could run cat in the notebook:

In [153]: cat ~/anaconda/lib/python3.5/site-packages/mlxtend/plotting/decision_regions.py

def plot_decision regions(X, y, clf,

feature_index=None,
filler feature values=None,
filler feature ranges=None,
ax=None,
X _highlight=None,
res=0.02, legend=1,
hide_ spines=True,
markers='s oxv<>',
colors='red,blue,limegreen,gray,cyan'):

"""plot decision regions of a classifier.

Please note that this functions assumes that class labels are

labeled consecutively, e.q,. 0, 1, 2, 3, 4, and 5. If you have class
labels with integer labels > 4, you may want to provide additicnal colors
and/or markers as “colors” and “markers” arguments.

See http://matplotlib.org/examples/color/named colors.html for more
information.

Figure 2.29: Running cat in the notebook

This is okay, but not ideal as there's no color markup for the
code. It's better to copy it (so you don't accidentally alter the

original) and open it with your favorite text editor.

When drawing attention to the code responsible for mapping
the decision regions, we see a contour plot of predictions Z

over an array X _predict that spans the feature space.

XX, yy = np.meshgrid(np.arange(x_min, x_max, xres),
np.arange(y_min, y max, yres))

if dim = 1:
X_predict = np.array([xx.ravel()]).T

else:
X_grid = np.array([xx.ravel(), yy.ravel()]).T
X_predict = np.zeros((X_grid.shape[@], dim))
X_predict[:, x_index] = X_grid[:, 0]
X_predict[:, y index] = X_grid[:, 1]

dim > 2:
for feature_idx in filler_feature_values:
X predict[: i i feature_values [feature_idx]
Z = clf.predict(X_predict)
Z = Z.reshape(xx.shape)

ax.contourf(xx, yy, Z,
alpha=0.3,
colors=colors,
levels=np.arange(Z.max() + 2) - 0.5)

Figure 2.30: The screenshot of the code for mapping decision regions

Let's move to training our model on k-Nearest Neighbors.

EXERCISE 10: TRAINING K-NEAREST NEIGHBORS
FOROUR MODEL

1. Load the scikit-learn KNN classification model and print
the docstring by running the cell containing the following

code:

from sklearn.neighbors import KNeighborsClassifier
KNeighborsClassifier?

The n_neighbors parameter decides how many samples
to use when making a classification. If the weights
parameter is set to uniform, then class labels are decided
by majority vote. Another useful choice for the weights is

distance, where closer samples have a higher weight in the

voting. Like most model parameters, the best choice for

this depends on the particular dataset.

. Train the KNN classifier with n_neighbors=3, and then

compute the accuracy and decision regions. Run the cell

containing the following code:

knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train_std, y_train)

check_model_fit(knn, X_test_std, y_test)

total accuracy = 30.9%

predictions
0 1
sctual 0 3203 213
1 88 &GRS

percent accuracy score per class:
lafr = 0 : 93.764
lefr = 1 : 081.73%

Figure 2.31: Training the kNN classifier with n_negihbours=3

TN Yy
Ay (] ‘l :.'.‘ ‘l‘A I.'
1 A o l. PV
‘A - " AA. .AAI
A s m" o [
| mmn %m o
-é A{, - ™ f
5 (] A " " L
[/ b | [H
N [s = [q l-
% H
", Ny "’ - m
4 il _gE =
. T A Y m =
(] o]
A W"" g s ¥ =
m

Figure 2.32: Enhanced results after training

We see an increase in overall accuracy and a significant
improvement for class 1 in particular. However, the
decision region plot would indicate we are overfitting the
data. This is evident by the hard, "choppy" decision
boundary, and small pockets of blue everywhere. We can
soften the decision boundary and decrease overfitting by

increasing the number of nearest neighbors.

. Train a KNN model with n_neighbors=25 by running

the cell containing the following code:

knn = KNeighborsClassifier(n_neighbors=25)
knn.fit(X_train_std, y_train)

check_model_fit(knn, X_test_std, y_test)

total accuracy = 91.6%

predictions
] 1
actual 0 3280 126
1 264 AX0

percent accuracy score per class:
lofe = 0 1 96.31%
left = 1 : 76.57%

Figure 2.33: Training the kNN classifier with n_negihbours=25

o

last_evaluation

-3 -2 -1 0 1 2

satisfaction_level

Figure 2.34: Output after training with n_neighbours=25

As we can see, the decision boundaries are significantly less

choppy, and there are far less pockets of blue. The accuracy
for class 1 is slightly less, but we would need to use a more
comprehensive method such as k-fold cross validation to
decide if there's a significant difference between the two

models.

Note that increasing n_neighbors has no effect on training
time, as the model is simply memorizing the data. The

prediction time, however, will be greatly affected.

Note

When doing machine learning with real-world data, it's
important for the algorithms to run quick enough to serve
their purposes. For example, a script to predict tomorrow's
weather that takes longer than a day to run is completely
useless! Memory is also a consideration that should be taken

into account when dealing with substantial amounts of data.

We will now train a Random Forest.

EXERCISE 11: TRAINING ARANDOM FOREST

Note

Observe how similar it is to train and make predictions on

each model, despite them each being so different internally.

1. Train a Random Forest classification model composed of

50 decision trees, each with a max depth of 5. Run the cell

containing the following code:

from sklearn.ensemble import RandomForestClassifier

forest = RandomForestClassifier(n_ estimators=50,

max_ depth=5,
random_ state=1)

forest.fit(X_train, y_train) check_model_fit(forest,
X_test, y_test)

total accuracy = 92.0%

predetsog
L] 1
sowa B 331 43
1 T TeT

percemt accuracy score per classp
lafe = 0 1 98.68%
left = 1 1 70.7T6N

12

a2

Figure 2.35: Training a Random Forest with a max depth of 5

& =
Ay m Ly ol L
= A, Em =
A] Ol LY 1
A A A
4 " ATy]
A m " Am
. 08 = = mm n¥p o
2 & = -
g] Ha 2" I*‘ f.
¢ =y mg ® Ly
2] m = o n B -
E Iy =
06 ", | "l .]
7\ il gm []
Ah T m W LI
n]
AA
A, e g e
A

0.4 u]

0.2
0.0 02 04 0.6 0.8 1.0 12

Figure 2.36: Output after training with a max depth of 5

Note the distinctive axes-parallel decision boundaries

produced by decision tree machine learning algorithms.

We can access any of the individual decision trees used to
build the Random Forest. These trees are stored in the
estimators_attribute of the model. Let's draw one
of these decision trees to get a feel for what's going on.
Doing this requires the graphviz dependency, which can

sometimes be difficult to install.

. Draw one of the decision trees in the Jupyter Notebook by

running the cell containing the following code:

from sklearn.tree import export_ graphviz import

graphviz

dot_data = export_graphviz(

forest.estimators_[0], out_file=None,
feature_names=features, class_names=['no', 'yes'],

filled=True, rounded=True, special_characters=True)

graph = graphviz.Source(dot_data) graph

last_evaluation < 0.575
gini = 0.367
samples = 6687
value = [7960, 2539]

class = no
True False
(last_evaluation = 0.445) satisfaction_level < 0.115
gini = 0.472 gini = 0.302
samples = 1926 samples = 4761
value = [1857, 1149] value =[6103, 1390]
L class = no Y. class = no

Y
(last_evaluation < 0.475)
gini = 0.489
samples = 1718
value = [1544, 1149]
class =no

gini=0.0
samples = 208

value =[313, 0]
class = no

AN S

Y
(last_evaluation < 0.555)
gini=0.474
samples = 1496
value = [1435, 900]
| class =no)

gini = 0.479
samples = 1202

satisfaction_level < 0.465
value = [1130, 745]

gini = 0.447
samples = 294

satisfaction_level <0.465
value = [305, 155]

class =no o class = no
gini = 0.271 gini =0.035) gini = 0.333 gini =0.015 gini = 0.224
samples = 553 samples = 649 samples = 120 samples = 174 samples = 77
lue = [140, 727] value [990 18] value = [41, 153] value = [264 2] value [102, 15]
class = yes class=no | class = yes class = class = no

Figure 2.37: Decision tree obtained using graphviz

We can see that each path is limited to five nodes as a result of

setting max_ depth=5. The orange boxes represent predictions

of no (has not left the company), and the blue boxes represent

yes (has left the company).

The shade of each box (light, dark,

and so on) indicates the confidence level, which is related to

the gini value.

To summarize, we have accomplished two of the learning

objectives in this section:

e We gained a qualitative understanding of support vector
machines (SVMs), k-Nearest Neighbor classifiers (kNNs),

and Random Forest

« We are now able to train a variety of models using scikit-
learn and Jupyter Notebooks so that we can confidently

build and compare predictive models

In particular, we used the preprocessed data from our
employee retention problem to train classification models to
predict whether an employee has left the company or not. For
the purposes of keeping things simple and focusing on the
algorithms, we built models to predict this given only two
features: the satisfaction level and last evaluation value. This
two-dimensional feature space also allowed us to visualize the

decision boundaries and identify what overfitting looks like.

In the following section, we will introduce two important
topics in machine learning: k-fold cross-validation and

validation curves.

ASSESSING MODELS WITH K-FOLD CROSS-
VALIDATION AND VALIDATION CURVES

Thus far, we have trained models on a subset of the data and

then assessed performance on the unseen portion, called the
test set. This is good practice because the model performance
on training data is not a good indicator of its effectiveness as a
predictor. It's very easy to increase accuracy on a training
dataset by overfitting a model, which can result in poorer

performance on unseen data.

That said, simply training models on data split in this way is
not good enough. There is a natural variance in data that
causes accuracies to be different (if even slightly) depending
on the training and test splits. Furthermore, using only one
training/test split to compare models can introduce bias

towards certain models and lead to overfitting.

K-fold cross validation offers a solution to this problem
and allows the variance to be accounted for by way of an error
estimate on each accuracy calculation. This, in turn, naturally
leads to the use of validation curves for tuning model
parameters. These plot the accuracy as a function of a hyper
parameter such as the number of decision trees used in a

Random Forest or the max depth.

Note

This is our first time using the term hyperparameter. It
references a parameter that is defined when initializing a
model, for example, the C parameter of the SVM. This is in

contradistinction to a parameter of the trained model, such

as the equation of the decision boundary hyperplane for a
trained SVM.

The method is illustrated in the following diagram, where we

see how the k-folds can be selected from the dataset:

{——{ Training data I——)
|nm-on 1 Haoooiooooooooooooooo

m_, ooooooooo—Ooooo
m_, oooooooooooooo

All data |

Figure 2.38: Selecting k-folds from a data set

The k-fold cross validation algorithm goes as follows:

1. Split data into k "folds" of near-equal size.

2. Test and train k models on different fold combinations.
Each model will include k - 1 folds of training data and the
left-out fold is used for testing. In this method, each fold

ends up being used as the validation data exactly once.

3. Calculate the model accuracy by taking the mean of the k
values. The standard deviation is also calculated to

provide error bars on the value.

It's standard to set k = 10, but smaller values for k should be

considered if using a big data set.

This validation method can be used to reliably compare model
performance with different hyperparameters (for example, the
C parameter for an SVM or the number of nearest neighbors
in a KNN classifier). It's also suitable for comparing entirely

different models.

Once the best model has been identified, it should be re-
trained on the entirety of the dataset before being used to

predict actual classifications.

When implementing this with scikit-learn, it's common to use
a slightly improved variation of the normal k-fold algorithm
instead. This is called stratified k-fold. The improvement is
that stratified k-fold cross validation maintains roughly even
class label populations in the folds. As you can imagine, this
reduces the overall variance in the models and decreases the

likelihood of highly unbalanced models causing bias.

Validation curves are plots of a training and validation
metric as a function of some model parameter. They allow to
us to make good model parameter selections. In this book, we

will use the accuracy score as our metric for these plots.

Note

The documentation for plot validation curves is available
here: http://scikit-learn.org/stable/auto_examples/

model_selection/plot_validation_curve.html.

Consider this validation curve, where the accuracy score is

plotted as a function of the gamma SVM parameter:

Validation Curve with SVM

Training score
- Cross-validation score

1076 1075 1074 103 1072 1071
¥

Figure 2.39: Validation curve with SVM

Starting on the left side of the plot, we can see that both sets
of data are agreeing on the score, which is good. However, the
score is also quite low compared to other gamma values, so
therefore we say the model is underfitting the data. Increasing
the gamma, we can see a point where the error bars of these
two lines no longer overlap. From this point on, we see the
classifier overfitting the data as the models behave
increasingly well on the training set compared to the
validation set. The optimal value for the gamma parameter
can be found by looking for a high validation score with

overlapping error bars on the two lines.

Keep in mind that a learning curve for some parameter is only
valid while the other parameters remain constant. For

example, if training the SVM in this plot, we could decide to

pick gamma on the order of. However, we may want to

optimize the C parameter as well. With a different value for C,

the preceding plot would be different and our selection for

gamma may no longer be optimal.

EXERCISE 12: USING K-FOLD CROSS VALIDATION
AND VALIDATION CURVES IN PYTHON WITH SCIKIT-
LEARN

1. Start the NotebookApp and open the lesson-2-
workbook . ipynb file. Scroll down to Subtopic B: K-
fold cross-validation and wvalidation

curves.

The training data should already be in the notebook's
memory, but let's reload it as a reminder of what exactly

we're working with.

2. Load the data and select the satisfaction level and
last evaluation features for the training/validation

set. We will not use the train-test split this time because
we are going to use k-fold validation instead. Run the cell

containing the following code:

df = pd.read_csv('../data/hr-

analytics/hr_data_processed. csv')

features = ['satisfaction_level', 'last_evaluation']

X = dfffeatures].values y = df.left.values

. Instantiate a Random Forest model by running the cell

containing the following code:

clf = RandomForestClassifier(n_ estimators=100,

max_depth=5)

. To train the model with stratified k-fold cross validation,
we'll use themodel selection.cross val score

function.

Train 10 variations of our model ¢1£ using stratified k-

fold validation. Note that scikit-learn's
cross_val score does this type of validation by

default. Run the cell containing the following code:

from sklearn.model_selection import cross_val_score

np.random.seed(1)

scores = cross_val_score(
estimator=clf, X=X,

y=y, CVv=10)

print(‘'accuracy = {:.3f} +/- {:.3f}'.format(scores.mean(),
scores.std()))

>> accuracy = 0.923 +/- 0.005

Note how we use np . random. seed to set the seed for the
random number generator, therefore ensuring
reproducibility with respect to the randomly selected
samples for each fold and decision tree in the Random

Forest.

5. Calculate the accuracy as the average of each fold. We can
also see the individual accuracies for each fold by printing

scores. To see these, run print (scores):

>> array([0.93404397, 0.91533333, 0.92266667,

0.91866667, 0.92133333,

0.92866667, 0.91933333, 0.92 ,

0.92795197, 0.92128085])

Using cross_val score is very convenient, but it
doesn't tell us about the accuracies within each class. We
can do this manually with the model _
selection.StratifiedKFold class. This class takes
the number of folds as an initialization parameter, then
the split method is used to build randomly sampled
"masks" for the data. A mask is simply an array containing
indexes of items in another array, where the items can

then be returned by doing this: data[mask].

6. Define a custom class for calculating k-fold cross

validation class accuracies. Run the cell containing the

following code:

from sklearn.model_selection import StratifiedKFold

print(‘fold: {:d} accuracy: {:s}'.format(k+1,

str(class_acc)))

return class_accuracy

Note

For the complete code, refer to the following:
https://bit.ly/205uP3h.

. We can then calculate the class accuracies with code that's
very similar to step 4. Do this by running the cell

containing the following code:

from sklearn.model_selection import cross_val_score

np.random.seed(1)

>> fold: 10 accuracy: [0.98861646 0.70588235]

>> accuracy = [0.98722476 0.71715647] +/- [
0.00330026

0.02326823]

Note

For the complete code, refer to the following:
https://bit.ly/2EKK7Lp.

. Now we can see the class accuracies for each fold! Pretty

neat, right?

. Calculate a validation curve using
model selection.validation curve. This function
uses stratified k-fold cross validation to train models for

various values of a given parameter.

Do the calculations required to plot a validation curve by
training Random Forests over a range of max_depth

values. Run the cell containing the following code:
from sklearn.model_selection import validation_ curve

clf = RandomForestClassifier(n_ estimators=10)

max_ depths = np.arange(3, 16, 3)

train_ scores, test_scores = validation_ curve(

estimator=clf,

10.

X=X,

y=y, param_name='"max_depth',

param_range=max_ depths,
cv=10);

This will return arrays with the cross validation scores for
each model, where the models have different max depths.
In order to visualize the results, we'll leverage a function

provided in the scikit-learn documentation.

Run the cell in which plot wvalidation curveis

defined. Then, run the cell containing the following code

to draw the plot:

plot_validation_ curve(train_scores, test_scores,

max_ depths, xlabel="max_ depth')

0.90

Figure 2.40: Plot validation curve

Recall how setting the max depth for decision trees limits the
amount of overfitting. This is reflected in the validation curve,
where we see overfitting taking place for large max depth
values to the right. A good value for max depth appears to be
6, where we see the training and validation accuracies in
agreement. When max depth is equal to 3, we see the model
underfitting the data as training and validation accuracies are

lower.

To summarize, we have learned and implemented two
important techniques for building reliable predictive models.
The first such technique was k-foldcross-validation, which is
used to split the data into various train/test batches and
generate a set accuracy. From this set, we then calculated the
average accuracy and the standard deviation as a measure of
the error. This is important so that we have a gauge of the
variability of our model and we can produce trustworthy

accuracy.

We also learned about another such technique to ensure we
have trustworthy results: validation curves. These allow us to
visualize when our model is overfitting based on comparing
training and validation accuracies. By plotting the curve over
a range of our selected hyperparameter, we are able to identify

its optimal value.

In the final section of this chapter, we take everything we have

learned so far and put it together in order to build our final
predictive model for the employee retention problem. We seek
to improve the accuracy, compared to the models trained thus
far, by including all of the features from the dataset in our
model. We'll see now-familiar topics such as k-fold cross-
validation and validation curves, but we'll also introduce

something new: dimensionality reduction techniques.

DIMENSIONALITY REDUCTION TECHNIQUES

Dimensionality reduction can simply involve removing
unimportant features from the training data, but more exotic
methods exist, such as Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA). These

techniques allow for data compression, where the most

important information from a large group of features can be

encoded in just a few features.

In this subtopic, we'll focus on PCA. This technique
transforms the data by projecting it into a new subspace of
orthogonal "principal components," where the components
with the highest eigenvalues encode the most information for
training the model. Then, we can simply select a few of these
principal components in place of the original high-
dimensional dataset. For example, PCA could be used to
encode the information from every pixel in an image. In this
case, the original feature space would have dimensions equal

to the number of pixels in the image. This high-dimensional

space could then be reduced with PCA, where the majority of
useful information for training predictive models might be
reduced to just a few dimensions. Not only does this save time
when training and using models, it allows them to perform

better by removing noise in the dataset.

Like the models you've seen, it's not necessary to have a
detailed understanding of PCA in order to leverage the
benefits. However, we'll dig into the technical details of PCA
just a bit further so that we can conceptualize it better. The
key insight of PCA is to identify patterns between features
based on correlations, so the PCA algorithm calculates the
covariance matrix and then decomposes this into eigenvectors
and eigenvalues. The vectors are then used to transform the
data into a new subspace, from which a fixed number of

principal components can be selected.

In the following exercise, we'll see an example of how PCA can
be used to improve our Random Forest model for the
employee retention problem we have been working on. This
will be done after training a classification model on the full
feature space, to see how our accuracy is affected by

dimensionality reduction.

EXERCISE 13: TRAINING A PREDICTIVE MODEL FOR
THE EMPLOYEE RETENTION PROBLEM

We have already spent considerable effort planning a machine

learning strategy, preprocessing the data, and building
predictive models for the employee retention problem. Recall
that our business objective was to help the client prevent
employees from leaving. The strategy we decided upon was to
build a classification model that would predict the probability
of employees leaving. This way, the company can assess the
likelihood of current employees leaving and take action to

prevent it.

Given our strategy, we can summarize the type of predictive

modeling we are doing as follows:

e Supervised learning on labeled training data

e Classification problems with two class labels (binary)

In particular, we are training models to determine whether an
employee has left the company, given a set of continuous and
categorical features. After preparing the data for machine
learning in Activity 1, Preparing to Train a Predictive Model
for the Employee-Retention Problem, we went on to
implement SVM, k-Nearest Neighbors, and Random Forest
algorithms using just two features. These models were able to
make predictions with over 90% overall accuracy. When
looking at the specific class accuracies, however, we found

that employees who had left (class- label 1) could only

be predicted with 70-80% accuracy.

Let's see how much this can be improved by utilizing the full

feature space.

1. Scroll down to the code for this section in the lesson-2-
workbook . ipynb notebook. We should already have the
preprocessed data loaded from the previous exercises, but
this can be done again, if desired, by executing df =
pd.read csv('../data/hr-
analytics/hr data processed.csv'). Then, print

the DataFrame columns with print (df.columns).

2. Define a list of all the features by copy and pasting the

output from df . columns into a new list (making sure to
remove the target variable 1left). Then, define X and Y as

we have done before. This goes as follows:

features = ['satisfaction_level', 'last_evaluation',

'mumber_ project’,

'average_montly_hours', 'time_spend_company', 'work__

accident’,

X = dfffeatures].values y = df.left.values

Note

For the complete code, refer to the following:
https://bit.ly/2D3WO0OQ2.

Looking at the feature names, recall what the values look
like for each one. Scroll up to the set of histograms we
made in the first activity to help jog your memory. The
first two features are continuous; these are what we used
for training models in the previous two exercises. After
that, we have a few discrete features, such as

number project and time spend company, followed
by some binary fields such as work_accident and
promotion last 5years. We also have a bunch of
binary features, such as department IT and
department accounting, which were created by one-

hot encoding.

Given a mix of features like this, Random Forests are a
very attractive type of model. For one thing, they're
compatible with feature sets composed of both continuous
and categorical data, but this is not particularly special;
for instance, an SVM can be trained on mixed feature

types as well (given proper preprocessing).

Note

If you're interested in training an SVM or k-Nearest
Neighbors classifier on mixed-type input features, you

can use the data-scaling prescription from this

StackExchange answer:
https://stats.stackexchange.com/questions/82923/mixing-
continuous-and-binary-data-with-linear-
sum/83086#83086.

A simple approach would be to preprocess data as follows:

standardize continuous variables; one-hot-encode
categorical features; shift binary values to -1 and 1 instead
of 0 and 1. Finally, the mixed-feature data could be used

to train a variety of classification models.

. Tune the max depth hyperparameter using a validation
curve to figure out the best parameters for our Random
Forest model. Calculate the training and validation

accuracies by running the following code:

%%time np.random.seed(1)

clf = RandomForestClassifier(n_ estimators=20)

max_depths = [3, 4, 5, 6, 7,
9,12, 15, 18, 21]

train_ scores, test_scores = validation_ curve(

estimator=clf,
X=X,

y=y, param_name="max_depth’,

param_range=max_ depths,

cv=5);

We are testing 10 models with k-fold cross validation. By
setting k = 5, we produce five estimates of the accuracy for
each model, from which we extract the mean and
standard deviation to plot in the validation curve. In total,
we train 50 models, and since n_estimators is set to
20, we are training a total of 1,000 decision trees! All in

roughly 10 seconds!

. Plot the validation curve using our custom

plot validation curve function from the last

exercise. Run the following code:

plot_validation_ curve(train_scores, test_scores,

max_ depths, xlabel="max_depth');

—e— training accuracy

0.90

max_depth

Figure 2.41: Plot validation curve for different values of max_depths

For small max depths, we see the model underfitting the
data. Total accuracies dramatically increase by allowing
the decision trees to be deeper and encode more
complicated patterns in the data. As the max depth is
increased further and the accuracy approaches 100%, we
find the model overfits the data, causing the training and
validation accuracies to grow apart. Based on this figure,

let's select amax depth of 6 for our model.

We should really do the same for n_estimators, butin
the spirit of saving time, we'll skip it. You are welcome to
plot it on your own; you should find agreement between
training and validation sets for a large range of values.
Usually it's better to use more decision tree estimators in
the random forest, but this comes at the cost of increased
training times. We'll use 200 estimators to train our

model.

. Use cross_val class_score, the k-fold cross

validation by class function we created earlier, to test the

selected model, a Random Forest withmax depth = 6

andn_estimators = 200:

np.random.seed(1)

clf = RandomForestClassifier(n_estimators=200,

max_depth=6) scores = cross_val_class_score(clf, X, y)

print(‘accuracy = {} +/- {}'\
format(scores.mean(axis=0), scores.std(axis=0)))

>> accuracy = [0.99553722 0.85577359] +/- [
0.00172575

0.02614334]

The accuracies are way higher now that we're using the
full feature set, compared to before when we only had the

two continuous features!

. Visualize the accuracies with a boxplot by running the

following code:

fig = plt.figure(figsize=(5, 7))

sns.boxplot(data=pd.DataFrame(scores, columns=[o0, 1]),
palette=sns.color_palette('Set1')) plt.xlabel('Left'")

plt.ylabel('Accuracy’)

1.000

0975

0.950

0.925

0.900

Accuracy

0.875

0.850

0.825

Left

Figure 2.42: Visualizing the accuracy with a box plot

Random forests can provide an estimate of the feature

performances.

Note

The feature importance in scikit-learn is calculated based
on how the node impurity changes with respect to each
feature. For a more detailed explanation, take a look at
the following StackOverflow thread about how feature
importance is determined in Random Forest Classifier:

https://stackoverflow.com

. Plot the feature importance, as stored in the attribute

feature importances_, by running the following

code:

pd.Series(clf.feature_importances_, name="'Feature

importance’,
index=df[features].columns)\
.sort_values()\

.plot.barh() plt.xlabel('Feature importance')

satisfaction_leve! | I —
number_project [N—
time_spend_company [—
average_montly_hours NG
last_evaluation [NNEGEGGG
work_accident [l
salary_low [l
salary_high
salary_medium |
promotion_last_Syears |
department_RandD |
department_hr
department_technical
department_support
department_management
department_sales
department_accounting
department_IT
department_product_mng
department_marketing
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Feature importance

Figure 2.43: Plot of feature_importance

8. It doesn't look like we're getting much in the way of useful
contribution from the one-hot encoded variables:
department and salary. Also, the
promotion last Syears and work accident

features don't appear to be very useful.

Let's use PCA to condense all of these weak features into

just a few principal components.

9. Import the PCA class from scikit-learn and transform the

features. Run the following code

from sklearn.decomposition import PCA pca_features = \

pca = PCA(n_components=3)

X_pca = pca.fit_transform(X_reduce)

Note

For the complete code, refer to the following:
https://bit.ly/2D31KL2. View the string representation of
X pca by typing it alone and executing the cell:

>> array([[-0.67733089, 0.75837169, -0.10493685],
>> [0.73616575, 0.77155888, -0.11046422],

>> [0.73616575, 0.77155888, -0.11046422],

>> ...
>> [-0.67157059, -0.3337546 , 0.70975452],
>> [-0.67157059, -0.3337546 , 0.70975452],

>> [-0.67157059, -0.3337546 , 0.70975452]])

10.

11.

Since we asked for the top three components, we get three

vectors returned.

Add the new features to our DataFrame with the following

code:

dff'first_principle_component'] = X_pca.T[0]
df['second_ principle_component'] = X_pca.T[1]

dff'third_principle_component'] = X_pca.T[2]

Select our reduced-dimension feature set to train a new

Random Forest with. Run the following code:

features = ['satisfaction_level', number_project’,

'time_ spend_ company’,

'average_montly_hours', 'last_evaluation',
'first_principle_component’,
'second_ principle_component’,

'third_ principle_component']
X = dfffeatures].values y = df.left.values

Assess the new model's accuracy with k-fold cross
validation. This can be done by running the same code as
before, where X now points to different features. The code

1s as follows:

np.random.seed(1)

clf = RandomForestClassifier(n_ estimators=200,

max_depth=6) scores = cross_val_ class_score(clf, X, y)

print(‘accuracy = {} +/- {}'\
format(scores.mean(axis=0), scores.std(axis=0)))

>> accuracy = [0.99562463 0.90618594] +/- [
0.00166047

0.01363927]

12. Visualize the result in the same way as before, using a box

plot. The code is as follows:

fig = plt.figure(figsize=(5, 7))
sns.boxplot(data=pd.DataFrame(scores, columns=[o0, 1]),
palette=sns.color_palette('Set1')) plt.xlabel('Left")
plt.ylabel('Accuracy')

1.00
0.98
0.96
0.94

0.92

0.90

0.88

Left

13.

14.

15.

Figure 2.44: Box plot to visualize accuracy

Comparing this to the previous result, we find an
improvement in the class 1 accuracy! Now, the majority of
the validation sets return an accuracy greater than 90%.
The average accuracy of 90.6% can be compared to the

accuracy of 85.6% prior to dimensionality reduction!

Let's select this as our final model. We'll need to re-train it

on the full sample space before using it in production.

Train the final predictive model by running the following

code:

np.random.seed(1)

clf = RandomForestClassifier(n_estimators=200,
max_ depth=6) clf.fit(X, y)

Save the trained model to a binary file using

externals. joblib.dump. Run the following code:

from sklearn.externals import joblib joblib.dump(clf,

'random-forest-trained.pkl')

Check that it's saved into the working directory, for

example, by running:

'1s *.pkl. Then, test that we can load the model from
the file by running the following code:

16.

clf = joblib.load('random-forest-trained.pkl')

Congratulations! You've trained the final predictive
model! Now, let's see an example of how it can be used to
provide business insights for the client. Say we have a
particular employee, who we'll call Sandra. Management
has noticed she is working very hard and reported low job
satisfaction in a recent survey. They would therefore like
to know how likely it is that she will quit. For the sake of
simplicity, let's take her feature values as a sample from
the training set (but pretend that this is unseen data

instead).

List the feature values for Sandra by running the following

code:

sandra = df.iloc[573]X = sandra[features]X
>> satisfaction_level 0.360000

>> number_project 2.000000

>> time_ spend_ company 3.000000

>> average_montly_hours 148.000000

>> last_evaluation 0.470000

>> first_principle_ component 0.742801

17.

18.

>> second_ principle_component -0.514568
>> third_ principle_component -0.677421

The next step is to ask the model which group it thinks she
should be in.

Predict the class label for Sandra by running the following

code:

clf.predict([X])
>> array([1])

The model classifies her as having already left the
company; not a good sign! We can take this a step further

and calculate the probabilities of each class label.

Use clf.predict proba to predict the probability of
our model predicting that Sandra has quit. Run the

following code:

clf.predict_proba([X])

>> array([[0.06576239, 0.93423761]])

We see the model predicting that she has quit with 93%
accuracy. Since this is clearly a red flag for management,
they decide on a plan to reduce her number of monthly

hours to 100 and the time spent at the company to 1.

19. Calculate the new probabilities with Sandra's newly

planned metrics. Run the following code:

X.average_montly_hours = 100
X.time_spend_company = 1 clf.predict_proba([X])
>> array([[0.61070329, 0.38929671]])

Excellent! We can now see that the model returns a mere
38% likelihood that she has quit! Instead, it now predicts

she will not have left the company.

Our model has allowed management to make a data-driven
decision. By reducing her amount of time with the company
by this particular amount, the model tells us that she will

most likely remain an employee at the company!

Summary

In this chapter, we have seen how predictive models can be

trained in Jupyter Notebooks.

To begin with, we talked about how to plan a machine
learning strategy. We thought about how to design a plan that
can lead to actionable business insights and stressed the
importance of using the data to help set realistic business

goals. We also explained machine learning terminology such

as supervised learning, unsupervised learning, classification,

and regression.

Next, we discussed methods for preprocessing data using
scikit-learn and pandas. This included lengthy discussions
and examples of a surprisingly time-consuming part of

machine learning: dealing with missing data.

In the latter half of the chapter, we trained predictive
classification models for our binary problem, comparing how
decision boundaries are drawn for various models such as the
SVM, k-Nearest Neighbors, and Random Forest. We then
showed how validation curves can be used to make good
parameter choices and how dimensionality reduction can
improve model performance. Finally, at the end of our
activity, we explored how the final model can be used in

practice to make data-driven decisions.

In the next chapter, we will focus on data acquisition.
Specifically, we will analyze HTTP requests, scrape tabular
data from a web page, build and transform Pandas

DataFrames, and finally create visualizations.

Web Scraping and Interactive
Visualizations

Learning Objectives

By the end of this chapter, you will be able to:

Describe how HTTP requests work

Scrape tabular data from a web page

Build and transform Pandas DataFrames

Create interactive visualizations

In this chapter, you will learn the fundamentals of HTTP
requests, scrape web page data, and then create interactive

visualizations using the Jupyter Notebook.

Introduction

So far in this book, we have focused on using Jupyter to build
reproducible data analysis pipelines and predictive models.
We'll continue to explore these topics in this chapter, but the
main focus here is data acquisition. In particular, we will show
you how data can be acquired from the web using HTTP
requests. This will involve scraping web pages by requesting
and parsing HTML. We will then wrap up this chapter by
using interactive visualization techniques to explore the data

we've collected.

The amount of data available online is huge and relatively
easy to acquire. It's also continuously growing and becoming
increasingly important. Part of this continual growth is the
result of an ongoing global shift from newspapers, magazines,
and TV to online content. With customized newsfeeds
available all the time on cell phones, and live-news sources
such as Facebook, Reddit, Twitter, and YouTube, it's difficult
to imagine the historical alternatives being relevant much
longer. Amazingly, this accounts for only some of the

increasingly massive amounts of data available online.

With this global shift toward consuming content using HTTP
services (blogs, news sites, Netflix, and so on), there are
plenty of opportunities to use data-driven analytics. For
example, Netflix looks at the movies a user watches and
predicts what they will like. This prediction is used to
determine the suggested movies that appear. In this chapter,
however, we won't be looking at "business-facing" data as
such, but instead we will see how the client can leverage the
internet as a database. Never before has this amount and
variety of data been so easily accessible. We'll use web-
scraping techniques to collect data, and then we'll explore it

with interactive visualizations in Jupyter.

Interactive visualization is a visual form of data
representation, which helps users understand the data using
graphs or charts. Interactive visualization helps a developer or
analyst present data in a simple form, which can be

understood by non-technical personnel too.

Scraping Web Page Data

In the spirit of leveraging the internet as a database, we can
think about acquiring data from web pages either by scraping
content or by interfacing with web APIs. Generally, scraping

content means getting the computer to read data that was

intended to be displayed in a human-readable format. This is
in contradistinction to web APIs, where data is delivered in

machine-readable formats—the most common being JSON.

In this topic, we will focus on web scraping. The exact process
for doing this will depend on the page and desired content.
However, as we will see, it's quite easy to scrape anything we
need from an HTML page so long as we have an
understanding of the underlying concepts and tools. In this
topic, we'll use Wikipedia as an example and scrape tabular
content from an article. Then, we'll apply the same techniques

to scrape

data from a page on an entirely separate domain. But first,

we'll take some time to introduce HTTP requests.

INTRODUCTION TO HTTP REQUESTS

The Hypertext Transfer Protocol, or HTTP for short, is the
foundation of data communication for the internet. It defines
how a page should be requested and how the response should
look. For example, a client can request an Amazon page of
laptops for sale, a Google search of local restaurants, or their
Facebook feed. Along with the URL, the request will contain
the user agent and available browsing cookies among the
contents of the request header. The user agent tells the server
what browser and device the client is using, which is usually
used to provide the most user-friendly version of the web
page's response. Perhaps they have recently logged in to the
web page; such information would be stored in a cookie that

might be used to automatically log the user in.

These details of HTTP requests and responses are taken care
of under the hood thanks to web browsers. Luckily for us,
today the same is true when making requests with high-level
languages such as Python. For many purposes, the contents of

request headers can be largely ignored. Unless otherwise

specified, these are automatically generated in Python when
requesting a URL. Still, for the purposes of troubleshooting
and understanding the responses yielded by our requests, it's

useful to have a foundational understanding of HTTP.

There are many types of HTTP methods, such as GET, HEAD,
POST, and PUT. The first two are used for requesting that
data be sent from the server to the client, whereas the last two

are used for sending data to the server.

Note

Take a look at this GET request example for the Profile page
on the site https://www.studytonight.com/. The exact page
that was requested contains parameters, which start after
the question mark (?) and are separated by the ampersands
(&). These are usually used to modify the page specified by
the path to source on the web server. In this case, the User-
Agent is Mozilla/5.0, which corresponds to a standard
desktop browser. Among other lines in the header, we note
the Accept and Accept-Language fields, which specify the

acceptable content types and language of the response.
These HTTP methods are summarized below:

e GET: Retrieves the information from the specified URL

e HEAD: Retrieves the meta information from the HTTP
header of the specified URL

o POST: Sends the attached information for appending to
the resource(s) at the specified URL

o PUT: Sends the attached information for replacing the
resource(s) at the specified URL

A GET request is sent each time we type a web page address
into our browser and press Enter. For web scraping, this is

usually the only HTTP method we are interested in, and it's

the only method we'll be using in this chapter.

Once the request has been sent, a variety of response types
can be returned from the server. These are labeled with 100-
level to 500-level codes, where the first digit in the code
represents the response class. These can be described as

follows:

» 1xx: Informational response, for example, server is

processing a request. It's uncommon to see this.
» 2xx: Success, for example, page has loaded properly.

e 3xx: Redirection, for example, the requested resource has

been moved and we were redirected to a new URL.

e 4xx: Client error, for example, the requested resource

does not exist.

o 5xx: Server error, for example, the website server is

receiving too much traffic and could not fulfill the request.

For the purposes of web scraping, we usually only care about
the response class, that is, the first digit of the response code.
However, there exist subcategories of responses within each
class that offer more granularity on what's going on. For
example, a 401 code indicates an unauthorized response,
whereas a 404 code indicates a page not found response. This
distinction is noteworthy because a 404 would indicate we've
requested a page that does not exist, whereas 401 tells us we

need to log in to view the particular resource.

Let's see how HTTP requests can be done in Python and

explore some of these topics using the Jupyter Notebook.

MAKING HTTP REQUESTS IN THE JUPYTER
NOTEBOOK

Now that we've talked about how HTTP requests work and

what type of responses we should expect, let's see how this can
be done in Python. We'll use a library called Requests, which
happens to be the most downloaded external library for
Python. It's possible to use Python's built-in tools, such as
urllib, for making HTTP requests, but Requests is far
more intuitive, and in fact it's recommended over urllib in

the official Python documentation.

Requests is a great choice for making simple and advanced
web requests. It allows for all sorts of customization with
respect to headers, cookies, and authorization. It tracks
redirects and provides methods for returning specific page
content such as JSON. Furthermore, there's an extensive suite
of advanced features. However, it does not allow JavaScript to

be rendered.

Oftentimes, servers return HTML with JavaScript code
snippets included, which are automatically run in the browser
on load time. When requesting content with Python using
Requests, this JavaScript code is visible, but it does not run.
Therefore, any elements that would be altered or created by
doing so are missing. Often, this does not affect the ability to
get the desired information, but in some cases we may need to
render the JavaScript in order to scrape the page properly.

For doing this, we could use a library like Selenium.

This has a similar API to the Requests library, but provides
support for rendering JavaScript using web drivers. It can
even run JavaScript commands on live pages, for example, to

change the text color or scroll to the bottom of the page.

Note

For more information, refer to: http://docs.python-
requests.org/en/master/user/advanced/ and
http://selenium-python.readthedocs.io/.

Let's dive into an exercise using the Requests library with

Python in a Jupyter Notebook.

EXERCISE 14: HANDLING HTTP REQUESTS WITH
PYTHON INAJUPYTERNOTEBOOK

1. Start the NotebookApp from the project directory by
executing jupyter notebook. Navigate to the lesson-3
directory and open up the lesson- 3-workbook. ipynb
file. Find the cell near the top where the packages are

loaded and run it.

We are going to request a web page and then examine the
response object. There are many different libraries for
making requests and many choices for exactly how to do
so with each. We'll only use the Requests library, as it
provides excellent documentation, advanced features, and

a simple API.

2. Scroll down to Subtopic A: Introduction to
HTTP requests and run the first cell in that section to
import the Requests library. Then, prepare a request by

running the cell containing the following code:
url = 'https://jupyter.org/’

req = requests.Request('GET', url) req.headers['User-
Agent'] = 'Mozilla/5.0'

req = req.prepare()

We use the Request class to prepare a GET request to the
jupyter.org homepage. By specifying the user agent as
Mozilla/5.0, we are asking for a response that would be
suitable for a standard desktop browser. Finally, we

prepare the request.

3. Print the docstring for the "prepared request” req, by

running the cell containing req?:

In [83]: reg?

PreparedRequest
form: <PreparedRequest [GET]>
~/anaconda/lib/pythonl.5/site-packages/requests/models.py

Do ng:
The fully mutable :class: PreparedRequest <PreparsdRequest>" object,
containing the exact bytes that will be sent to the server.

Generated from either a :class: Request <Reguest>" object or manually.
Usage::

>>> import reguests

>>> req = requests.Request('GET’', 'http://httpbin.org/get')
>>> r = req.prepare()

<PreparedRequest [GET]>

>>> § = reguests.Session()
>>> g.gend(r)
<Response [200]>

Figure 3.1: Printing the docstring for req

Looking at its usage, we see how the request can be sent
using a session. This is similar to opening a web browser

(starting a session) and then requesting a URL.

Make the request and store the response in a variable

named page, by running the following code:

with requests.Session() as sess: page = sess.send(req)

This code returns the HTTP response, as referenced by
the page variable. By using the with statement, we
initialize a session whose scope is limited to the indented
code block. This means we do not have to worry about

explicitly closing the session, as it is done automatically.

Run the next two cells in the notebook to investigate the
response. The string representation of page should
indicate a 200 status code response. This should agree

with the status_code attribute.

Save the response text to the page_html variable and
take a look at the head of the string with
page_html[:1000]:

page_html = page.text

page_html[:1000]

'<!DOCTYPE html>\n<html>\n\n <head>\n\n <meta charset="utf-8">\n <meta http-equiv="X-U
A-Compatible" content="IE=edge">\n <meta name="viewport' content="width=device-width, init
ial-scale=1">\n <meta name="description" content="">\n <meta name="author" content=""»\
n\n <title>Project Jupyter | Home</title>\n <meta property="og:title" content="Project
Jupyter" />\n <meta property="og:description" content="The Jupyter Notebook is a web-based
interactive computing platform. The notebook combines live code, equatiocns, narrative text, v
isualizations, interactive dashboards and other media.\n">\n <meta property="og:url" conte
nt="http://www.jupyter.org" />\n <meta property="og:image" content="http://jupyter.org/ass
ets/homepage.png” />\n <1-- Bootstrap Core CS5 -->\n <script src="/cdn-cgi/apps/head/Mu
II114I_IvFkxldavulmdWee9as.]js"></script><link rel="stylesheet" href="/css/bootstrap.min.css">\
n <link rel="stylesheet" href="/css/logo-nav.css">\n <link rel="stylesheet" href="/c'

Figure 3.2: The HTML response text

As expected, the response is HTML. We can format this
output better with the help of BeautifulSoup, a library
which will be used extensively for HTML parsing later in

this section.

. Print the head of the formatted HTML by running the

following;:

from bs4 import BeautifulSoup

print(BeautifulSoup(page_html, 'html.parser').prettify()
[:1000])

We import BeautifulSoup and then print the output,
where newlines are indented depending on their hierarchy
in the HTML structure.

. We can take this a step further and actually display the
HTML in Jupyter by using the IPython display module.
Do this by running the following code:

from IPython.display import HTML
HTML(page_html)Here, we see the HTML rendered as
well as possible, given that no JavaScript code has been
run and no external resources have loaded. For example,
the images that are hosted on the jupyter.org server are
not rendered and we instead see the alt text: circle of

programming icons, Jupyter logo, and so on.

circle of programming language icons
circle of programming language icons
circle of programming language icons
jupyter logo

white background

Project Jupyter exists to develop open-source software, open-standards, and services for
interactive computing across dozens of programming languages.

Ready to get started?
Try it in vour browser Install the Notebook

Figure 3.3: The output obtained when no images are loaded

0.

10.

11.

Let's compare this to the live website, which can be
opened in Jupyter using an IFrame. Do this by running

the following code:

from IPython.display import IFrame IFrame(src=url,
height=800, width=800)

Jupyter Install About Us Communi ty Documen tation NBViewer Widgets Blog

jupyter

Project Jupyter exists to develop open-source software, open-standards, and
services for interactive computing across dozens of programming languages.

Figure 3.4: Rendering of the entire Jupyter website

Here, we see the full site rendered, including JavaScript
and external resources. In fact, we can even click on the
hyperlinks and load those pages in the IFrame, just like a

regular browsing session.

It's good practice to close the IFrame after using it. This
prevents it from eating up memory and processing power.
It can be closed by selecting the cell and clicking Current
Outputs | Clear from the Cell menu in the Jupyter
Notebook.

Recall how we used a prepared request and session to
request this content as a string in Python. This is often
done using a shorthand method instead. The drawback is
that we do not have as much customization of the request

header, but that's usually fine.

Make a request to http://www.python.org/ by running the

following code:

url = 'http://www.python.org/' page = requests.get(url)

page
<Response [200]>

The string representation of the page (as displayed
beneath the cell) should indicate a 200 status code,

indicating a successful response.

12. Run the next two cells. Here, we print the url and history

attributes of our page.

The URL returned is not what we input; notice the
difference? We were redirected from the input URL,
http://www.python.org/, to the secured version of that
page, https://www.python.org/. The difference is
indicated by an additional s at the start of the URL, in the
protocol. Any redirects are stored in the history attribute;
in this case, we find one page in here with status code 301
(permanent redirect), corresponding to the original URL

requested.

Now that we're comfortable making requests, we'll turn our
attention to parsing the HTML. This can be something of an
art, as there are usually multiple ways to approach it, and the
best method often depends on the details of the specific
HTML in question.

PARSING HTML IN THE JUPYTER NOTEBOOK

When scraping data from a web page, after making the
request, we must extract the data from the response content.
If the content is HTML, then the easiest way to do this is with
a high-level parsing library such as Beautiful Soup. This is not
to say it's the only way; in principle, it would be possible to
pick out the data using regular expressions or Python string

methods such as split, but pursuing either of these options

would be an inefficient use of time and could easily lead to
errors. Therefore, it's generally frowned upon and instead, the

use of a trustworthy parsing tool is recommended.

In order to understand how content can be extracted from
HTML, it's important to know the fundamentals of HTML.
For starters, HTML stands for Hyper Text Markup Language.
Like Markdown or XML (eXtensible Markup Language), it's
simply a language for marking up text. In HTML, the display
text is contained within the content section of HTML
elements, where element attributes specify how that element

should appear on the page.

Element

Start tag End tag
‘ ” : ‘
<p lang="en-us’>content</p>
Element

oo

Attribute Attribute
name value

Attribute

Figure 3.5: Fundamental blocks of HTML

Looking at the anatomy of an HTML element, as seen in the
preceding picture, we see the content enclosed between start
and end tags. In this example, the tags are <p> for paragraph;
other common tag types are <div> (text block), <table>
(data table),

<h1> (heading), (image), and <a> (hyperlinks). Tags
have attributes, which can hold important metadata. Most
commonly, this metadata is used to specify how the element
text should appear on the page. This is where CSS files come
into play. The attributes can store other useful information,
such as the hyperlink href in an <a> tag, which specifies a
URL link, or the alternate alt label in an tag, which

specifies the text to display if the image resource cannot be
loaded.

Now, let's turn our attention back to the Jupyter Notebook
and parse some HTML! Although not necessary when
following along with this exercise, it's very helpful in real-
world situations to use the developer tools in Chrome or
Firefox to help identify the HTML elements of interest. We'll
include instructions for doing this with Chrome in the

following exercise.

EXERCISE 15: PARSINGHTMLWITH PYTHON INA
JUPYTERNOTEBOOK

1. In lesson-3-workbook. ipynb file, scroll to the top of
Subtopic B: Parsing HTML with Python.

In this exercise, we'll scrape the central bank interest rates
for each country, as reported by Wikipedia. Before diving
into the code, let's first open up the web page containing
this data.

2. Goto
https://en.wikipedia.org/wiki/List_of countries_by_central_bank_int
in a web browser. Use Chrome, if possible, as later in this
exercise we'll show you how to view and search the HTML

using Chrome's developer tools.

Looking at the page, we see very little content other than a
big list of countries and their interest rates. This is the

table we'll be scraping.

3. Return to the Jupyter Notebook and load the HTML as a
Beautiful Soup object so that it can be parsed. Do this by

running the following code:

from bs4 import BeautifulSoup
soup = BeautifulSoup(page.content, 'html.parser')

We use Python's default html.parser as the parser, but

third-party parsers such as 1xml may be used instead, if

desired. Usually, when working with a new object like this
Beautiful Soup one, it's a good idea to pull up the
docstring by doing soup?. However, in this case, the
docstring is not particularly informative. Another tool for
exploring Python objects is pdir, which lists all of an
object's attributes and methods (this can be installed with
pip install pdir2). It's basically a formatted version of

Python's built-in dir function.

. Display the attributes and methods for the BeautifulSoup
object by running the following code. This will run,
regardless of whether or not the pdir external library is

installed:

try:

import pdir dir = pdir
except:

print('You can install pdir with:\npip install pdir2")
dir(soup)

Here, we see a list of methods and attributes that can be
called on soup. The most commonly used function is
probably £ind all, which returns a list of elements that

match the given criteria.

. Get the h1 heading for the page with the following code:
h1 = soup.find_all('h1") h1
>> [<h1 class="firstHeading" id="firstHeading"

lang="en">List of countries by central bank interest

rates</h1>]

Usually, pages only have one H1 (top-level heading)

element, so it's no surprise that we only find one here.

6. Run the next couple of cells. We redefine H1 to the first
(and only) list element with h1 = h1[0], and then print
out the HTML element attributes with hl.attrs:

We see the class and ID of this element, which can both be
referenced by CSS code to define the style of this element.

7. Get the HTML element content (that is, the visible text) by
printing hl. text.

8. Get all the images on the page by running the following

code:

imgs = soup.find_ all('img') len(imgs)
>> 01

There are lots of images on the page. Most of these are for

the country flags.

9. Print the source of each image by running the following

code:

[element.attrs['src'] for element in imgs if 'src' in

element.attrs.keys()]

We use a list comprehension to iterate through the

elements, selecting the src attribute of each (so long as

that attribute is actually available).

Now, let's scrape the table. We'll use Chrome's developer

tools to hunt down the element this is contained within.

['//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Flag_of_Albania.svg/21px-Flag_of_Albania.svg.png’',
' //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Flag_cf_Angola.svg/23px-Flag_of_Angcla.svg.png',
' //upload.wikimedia.org/wikipedia/commons/thumb/1/1la/Flag_of_Argentina.svg/23px-Flag_of_Argentina.svg.png',
' //upload.wikimedia.org/wikipedia/commons/thumb/2/2£/Flag_of_Armenia.svg/23px-Flag_of_ Armenia.svg.png',
' //upload.wikimedia.org/wikipedia/en/thumb/b/b9/Flag_of_ Australia.svg/23px-Flag_of Australia.svg.png',
' f/upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Flag of Azerbaijan.svg/23px-Flag of Azerbaijan.svg.png',
' f/upload.wikimedia.org/wikipedia/commons/thumb/9/93/Flag of the Bahamas.svg/23px-Flag_of the Bahamas.svg.png',
' //upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Flag_of_ Bahrain.svg/23px-Flag of Bahrain.svg.png',
' //upload.wikimedia.org/wikipedia/commons/thumb/f/£9/Flag_of_ Bangladesh.svg/23px-Flag_of_Bangladesh.svg.png',
'//upload.wikimedia.org/wikipedia/commens/thumb/e/ef/Flag_cf_ Barbados.svg/23px-Flag_of_Barbados.svg.png',
'//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Flag_cf_Belarus.svg/23px-Flag_of_Belarus.svg.png',
'//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Flag_of_Botswana.svg/23px-Flag_of_Botswana.svg.png',
'//upload.wikimedia.org/wikipedia/en/thumb/0/05/Flag_of_Brazil.svg/22px-Flag_of_Brazil.svg.png',
'//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Flag_of_Bulgaria.svg/23px-Flag_of_Bulgaria.svg.png’',

Figure 3.6: Scraping the table on the target web page

10. If not already done, open the Wikipedia page we're
looking at in Chrome. Then, in the browser, select
Developer Tools from the View menu. A sidebar will
open. The HTML is available to look at from the

Elements tab in Developer Tools.

11. Select the little arrow in the top left of the tools sidebar.
This allows us to hover over the page and see where the
HTML element is located, in the Elements section of the

sidebar:

= |4 Elements Console Sources

¥ <body class="m iki Ltr sitedir-
ns—subject page-—
List_of_countries_by c al_bank_int
List_of_countries_by_centr®g bank_int
directionality skin-wvector action-vie
div id="mw-page-base" class="nop
div id="mw-head-base" class="nop

Figure 3.7: Arrow Icon for locating the HTML element

12. Hover over the body to see how the table is contained
within the div that has id="bodyContent":

[(] | Eements GConsole Sources Network > HERS

List of countries by central bank

From Wikipedia, the free encyclopedia

This is a list of countries by annualized interest rate set by the
central bank for charging commercial, depository banks for loans to
meet temporary shortages of funds.

.
.
ot
List fedt] \ LT
i

Central bank

Country or + interestrate + Date of last +
currency union (%) change
Il Albania 1.25 4 May 2016l")
Bl Angola 16.00 30 June 2016l
Argentina 26.25 11 April 2017111
== Armenia 6.00 14 February 201711
B Australia 1.50 2 August 20161
B Azerbaijan 15.00 9 September 2016(']
= Bahamas 4.00 22 December 2016 1
W Rahrain 180 14.1ne 2017[01]

Figure 3.8: HTML code for table on the target web page

13. Select that div by running the following code:

body_ content = soup.find('div', {"'id": 'bodyContent'})

We can now seek out the table within this subset of the
full HTML. Usually, tables are organized into headers
<th>, rows <tr>, and data entries <td>.

14.

15.

16.

Get the table headers by running the following code:

table_headers = body_ content.find_all('th")[:3]
table headers

>>> [<th>Country or

currency union</th>, <th>Central bank
 interest
rate (%)</th>, <th>Date of last
 change</th>]

Here, we see three headers. In the content of each is a
break element
, which will make the text a bit more

difficult to cleanly parse.

Get the text by running the following code:

o

table_headers = [element.get_ text().replace('\n',
for element in table_headers]
table headers

>> ['Country or currency union', 'Central bank interest
rate (%), 'Date of last change']

Here, we get the content with the get text method, and
then run the replace string method to remove the newline

resulting from the
 element.

To get the data, we'll first perform some tests and then

scrape all the data in a single cell.

Get the data for each cell in the second <tr> (row)

element by running the following code:

row_number = 2
d1, d2, d3 = body_ content.find_ all('tr")[row_number]\

find_ all('td")

17.

18.

19.

20.

21.

We find all the row elements, pick out the third one, and
then find the three data elements inside that.

Let's look at the resulting data and see how to parse the

text from each row.

Run the next couple of cells to print d1 and its text

attribute:

dl

<td align="left"><img alt="" class="thumbborder" data-file-height="300
" data-file-width="450" height="15" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/
Flag_of_angola.svg/23px-Flag_of_ Angola.svg.png" sreset="//upload.wikimedia.org/wikipedia/comm
ons/thumb/9/9d/Flag_of_ Angola.svg/35px-Flag of Angola.svg.png 1.5x, //upload.wikimedia.org/wi
kipedia/commons/thumb/9/9d/Flag_of Angola.svg/45px-Flag of Angola.svg.png 2Zx" width="23"/> </
span><a href="/wiki/Angola" title="Angola'=Angola</td>

dl.text

‘\xalAngola'

Figure 3.9: Printing d1 and its text attribute

We're getting some undesirable characters at the front.
This can be solved by searching for only the text of the
<a> tag.

Rundl.find('a') .text to return the properly
cleaned data for that cell.

Run the next couple of cells to print d2 and its text. This

data appears to be clean enough to convert directly into a
float.

Run the next couple of cells to print d3 and its text:

d3

<td»000000002016-06-30-000030 June 2016<sup class="reference" id="cite ref-CentralBank
News_l-1">[l]</sup></td>

d3.text

'000000002016-06-30-000030 June 2016[1]"'

Figure 3.10: Printing d3 and its text attribute

Similar to d1, we see that it would be better to get only the

span element's text.

Properly parse the date for this table entry by running the

following code:

d3.find_all('span')[1].text

22,

23.

>> '30 June 2016’

Now, we're ready to perform the full scrape by iterating

over the row elements <th>. Run the following code:

data =[]

for i, row in enumerate(body_ content.find_ all('tr")):

>> Ignoring row 101 because len(data) != 3

>> Ignoring row 102 because len(data) != 3

Note

For the complete code, refer to the following:
https://bit.ly/2EKMNbV.

We iterate over the rows, ignoring any that contain more
than three data elements. These rows will not correspond
to data in the table we are interested in. Rows that do have
three data elements are assumed to be in the table, and we

parse the text from these as identified during the testing.

The text parsing is done inside a try/except statement,
which will catch any errors and allow this row to be
skipped without stopping the iteration. Any rows that
raise errors due to this statement should be looked at. The
data for these could be recorded manually or accounted
for by altering the scraping loop and re-running it. In this

case, we'll ignore any errors for the sake of time.

Print the head of the scraped data list by running
print (data[:10]):

>> [['Albania’, 1.25, '4 May 2016'],

['Angola’, 16.0, '30 June 2016'],
['Argentina’, 26.25, '11 April 2017'],
['Armenia’, 6.0, '14 February 2017'],
['Australia’, 1.5, '2 August 2016'],
['Azerbaijan’, 15.0, '9 September 2016'],
['Bahamas', 4.0, '22 December 2016'],
['Bahrain’, 1.5, '14 June 2017'],
['Bangladesh’, 6.75, '14 January 2016'],
['Belarus', 12.0, '28 June 2017']]

24. We'll visualize this data later in the chapter. For now, save

the data to a CSV file by running the following code:

f_path ='../data/countries/interest-rates.csv' with

open(f_path, 'w') as f:
fowrite('{};{};{}\n".format(*table_headers)) for d in data:
fowrite('{};{};{}\n".format(*d))

Note that we are using semicolons to separate the fields.

ACTIVITY 3: WEB SCRAPING WITH JUPYTER
NOTEBOOKS

You should have completed the previous exercise in this

chapter.

In this activity, we are going to get the population of each
country. Then, in the next topic, this will be visualized along

with the interest rate data scraped in the previous exercise.

The page we look at in this activity is available here:
http://www.worldometers.info/world-

population/population-by-country/.

Our aim is to apply the basic of web scrapping to a new web

page and scrape some more data.

Note

This page may have changed since this document was

created. If this URL no longer leads to a table of country

populations, please use this Wikipedia page instead:
https://en.wikipedia.org/wiki/List_of countries_by_population(United_

In order to do this, the following steps have to be executed:

1. Scrape the data from the web page.

2. Inthe lesson-3-workbook. ipynb Jupyter Notebook,
scrollto Activity A: Web scraping with Python.

3. Set the url variable and load an IFrame of our page in the

notebook.

4. Close the IFrame by selecting the cell and clicking
Current OQutputs | Clear from the Cell menu in the
Jupyter Notebook.

5. Request the page and load it as a BeautifulSoup object.
6. Print the H1 for the page.

7. Get and print the table headings.

8. Select first three columns and parse the text.

9. Get the data for a sample row.

10. How many columns of data do we have? Print the length

of row_data.
11. Print the first elements of the row.

12. Select the data elements di1, d2, and d3.

13. Looking at the row_data output, we can find out how to
correctly parse the data. Select the content of the <a>

element in the first data element, and then simply get the

text from the others.
14. Scrape and parse the table data.
15. Print the head of the scraped data.

16. Finally, save the data to a CSV file for later use.

Note

The detailed steps along with the solutions are presented

in the Appendix Aisti(pg. no. 160).

To summarize, we've seen how Jupyter Notebooks can be
used for web scraping. We started this chapter by learning
about HTTP methods and status codes. Then, we used the
Requests library to actually perform HTTP requests with
Python and saw how the Beautiful Soup library can be used to
parse the HTML responses.

Our Jupyter Notebook turned out to be a great tool for this
type of work. We were able to explore the results of our web
requests and experiment with various HTML parsing
techniques. We were also able to render the HTML and even

load a live version of the web page inside the notebook!

In the next topic of this chapter, we shift to a completely new
topic: interactive visualizations. We'll see how to create and
display interactive charts right inside the notebook, and use
these charts as a way to explore the data we have just

collected.

Interactive Visualizations

Visualizations are quite useful as a means of extracting

information from a dataset. For example, with a bar graph it's
very easy to distinguish the value distribution, compared to
looking at the values in a table. Of course, as we have seen
earlier in this book, they can be used to study patterns in the
dataset that would otherwise be quite difficult to identify.
Furthermore, they can be used to help explain a dataset to an
unfamiliar party. If included in a blog post, for example, they
can boost reader interest levels and be used to break up blocks

of text.

When thinking about interactive visualizations, the benefits
are similar to static visualizations, but enhanced because they
allow for active exploration on the viewer's part. Not only do
they allow the viewer to answer questions they may have
about the data, they also think of new questions while
exploring. This can benefit a separate party such as a blog
reader or co-worker, but also a creator, as it allows for easy ad
hoc exploration of the data in detail, without having to change

any code.

In this topic, we'll discuss and show how to use Bokeh to build
interactive visualizations in Jupyter. Prior to this, however,
we'll briefly revisit pandas DataFrames, which play an

important role in doing data visualization with Python.

BUILDING ADATAFRAME TO STORE AND ORGANIZE
DATA

As we've seen time and time again in this book, pandas is an
integral part of doing data science with Python and Jupyter
Notebooks. DataFrames offer a way to organize and store
labeled data, but more importantly, pandas provides time
saving methods for transforming data within a DataFrame.
Examples we have seen in this book include dropping
duplicates, mapping dictionaries to columns, applying

functions over columns, and filling in missing values.

With respect to visualizations, DataFrames offer methods for
creating all sorts of matplotlib graphs, including

df .plot.barh(),df.plot.hist (), and more. The
interactive visualization library Bokeh previously relied on
pandas DataFrames for their high-level charts. These worked
similar to Seaborn, as we saw earlier in the previous chapter,
where a DataFrame is passed to the plotting function along
with the specific columns to plot. The most recent version of
Bokeh, however, has dropped support for this behavior.
Instead, plots are now created in much the same way as
matplotlib, where the data can be stored in simple lists or
NumPy arrays. The point of this discussion is that
DataFrames are not entirely necessary, but still very helpful
for organizing and manipulating the data prior to

visualization.

EXERCISE 16: BUILDING AND MERGING PANDAS
DATAFRAMES

Let's dive right into an exercise, where we'll continue working
on the country data we scraped earlier. Recall that we
extracted the central bank interest rates and populations of
each country, and saved the results in CSV files. We'll load the
data from these files and merge them into a DataFrame,
which will then be used as the data source for the interactive

visualizations to follow.

1. In the lesson-3-workbook. ipynb of the Jupyter
Notebook, scroll to the Subtopic A: Building a
DataFrame to store and organize data

subsection in the Topic B section.

We are first going to load the data from the CSV files, so
that it's back to the state it was in after scraping. This will
allow us to practice building DataFrames from Python

objects, as opposed to using the pd. read csv function.

Note

When using pd . read_csv, the datatype for each column
will be inferred from the string input. On the other hand,
when using pd.DataFrame as we do here, the datatype
is instead taken as the type of the input variables. In our
case, as will be seen, we read the file and do not bother
converting the variables to numeric or date-time until

after instantiating the DataFrame.

. Load the CSV files into lists by running the following

code:

with open('../data/countries/interest-rates.csv', 'r') as f:
int_rates_ col_names = next(f).split(',")
int_rates = [line.split(',") for line in f.read(). splitlines()]

with open('../data/countries/populations.csv', 'r') as f:

populations_ col_names = next(f).split(',")

populations = [line.split(',") for line in f.read().

splitlines()]

. Check what the resulting lists look like by running the
next two cells. We should see an output similar to the

following:

print(int_rates_col_names) int_rates[:5]

>> ['Country or currency union', 'Central bank interest ...

['Indonesia’, '263', '991', '379', '1.10 %'],
['Brazil', '209', '288', '278', '0.79 %']]

Now, the data is in a standard Python list structure, just as

it was after scraping from the web pages in the previous
sections. We're now going to create two DataFrames and
merge them, so that all of the data is organized within one

object.

. Use the standard DataFrame constructor to create the two

DataFrames by running the following code:

df_int_rates = pd.DataFrame(int_rates,

columns=int_rates_ col_names)

df_populations = pd.DataFrame(populations,

columns=populations_col_names)

This isn't the first time we've used this function in this
book. Here, we pass the lists of data (as seen previously)
and the corresponding column names. The input data can
also be of dictionary type, which can be useful when each

column is contained in a separate list.

Next, we're going to clean up each DataFrame. Starting
with the interest rates one, let's print the head and tail,

and list the data types.

. When displaying the entire DataFrame, the default
maximum number of rows is 60 (for version 0.18.1). Let's

reduce this to 10 by running the following code:

pd.options.display.max_rows = 10

. Display the head and tail of the interest rates DataFrame

by running the following code:

df int rates

Country or currency union Central bank interest rate (%) Date of last change

Albania 1.25 4 May 2016
Angola 16.0 30 June 2016
Argentina 26.25 11 April 2017
Armenia 6.0 14 February 2017

Australia 1.5 2 August 2016

L -

84 United States 1.25 14 June 2017
B85 Uzbekistan a.0 1 January 2015
86 Vietnam 8.25 7 July 2017
;18 West African States 3.5 16 September 2013

88 Zambia 12.5 17 May 2017

89 rows x 3 columns

Figure 3.11: Table for interest rates by country

7. Print the data types by running;:

df_int_rates.dtypes

>> Country or currency union object
>> Central bank interest rate (%) object
>> Date of last change object

>> dtype: object

Pandas has assigned each column as a string datatype,
which makes sense because the input variables were all
strings. We'll want to change these to string, float, and

datetime, respectively.

8. Convert to the proper datatypes by running the following

code:

df_int_rates['Central bank interest rate (%)'] = \
df_int_rates['Central bank interest rate (%)']\

.astype(float, copy=False)

df_int_rates['Date of last change'] = \
pd.to_datetime(df_int_rates['Date of last change'])

We use astype to cast the Interest Rate values as floats,

setting copy=False to save memory. Since the date

10.

values are given in such an easy-to-read format, these can

be converted simply by using pd. to_datetime.

Check the new datatypes of each column by running the

following code:

df_int_rates.dtypes

>> Country or currency union object

>> Central bank interest rate (%) float64

>> Date of last change datetime64[ns]

>> dtype: object

As can be seen, everything is now in the proper format.

Let's apply the same procedure to the other DataFrame.
Run the next few cells to repeat the preceding steps for

df populations:

df_population

Country (or dependency) Population {2017) Yearly Change

China 1,409,517 397 0.43 %
India 1,339,180,127 113 %
us. 324,459,463 0.71 %

Indonesia 263,991,379 1.10 %

oW M = O

Brazil 209,288,278 0.79 %
228 Saint Helena 4,049 0.35 %
229 Falkland Islands 2910 0.00 %
230 Niue 1,618 -0.37 %

23 Tokelau 1,300 1.40 %

23z Holy See 782 -2 %

Figure 3.12: Table for population by country

Then, run this code:

df_populations['Population (2017)'] =
df_populations['Population (2017)']\

str.replace(’,', ")\

11.

12.

.astype(float, copy=False)

df_populations['Yearly Change'] = df_populations['Yearly
Change']\

str.rstrip('%")\
.astype(float, copy=False)

To cast the numeric columns as a float, we had to first
apply some modifications to the strings in this case. We
stripped away any commas from the populations and
removed the percent sign from the Yearly Change column,

using string methods.

Now, we're going to merge the DataFrames on the country
name for each row. Keep in mind that these are still the
raw country names as scraped from the web, so there

might be some work involved with matching the strings.

Merge the DataFrames by running the following code:

df_merge = pd.merge(df_populations,
df int rates,

left_on="Country (or dependency)', right_on='Country or

currency union', how='outer'
df_merge

We pass the population data in the left DataFrame and the
interest rates in the right one, performing an outer match
on the country columns. This will result in NaN values

where the two do not overlap.

For the sake of time, let's just look at the most populated
countries to see whether we missed matching any. Ideally,

we would want to check everything. Look at the most

13.

14.

populous countries by running the following code:

df_merge.sort_values('Population (2017)',

ascending=False)\

.head(10)

Country (or Population Yearly Country or Central bank Date of last
dependency) (2017) Change currency union interest rate (%) change

0 China 1.409517e+09 0.43 China 1.75 2015-10-23
1 India 1.339180e+09 1.13 India 6.00 2017-08-02
2 U.S. 3.244595e+08 0.71 NaN NaN NaT
3 Indonesia 2.639914e+08 1.10 Indonesia 4.75 2016-10-20
4 Brazil 2.092883e+08 0.79 Brazil 7.25 2017-07-26
5 Pakistan 1.970160e+08 1.97 Pakistan 5.75 2016-05-21
6 Nigeria 1.908863e+08 2.63 Nigeria 14.00 2016-07-26
7 Bangladesh 1.646698e+08 1.05 Bangladesh 6.75 2016-01-14
8 Russia 1.439898e+08 0.02 Russia 9.00 2017-06-16
9 Mexico 1.291633e+08 1.27 Mexico 7.00 2017-06-22

Figure 3.13: The table for most populous countries

It looks like U.S. didn't match up. This is because it's
listed as United States in the interest rates data. Let's

remedy this.

Fix the label for U.S. in the populations table by running

the following code:

col = 'Country (or dependency)'

df_populations.loc[df_populations[col] == "'U.S."] =
'United States'

We rename the country for the populations DataFrame

with the use of the 1oc method to locate that row.

Now, let's merge the DataFrames properly.

Re-merge the DataFrames on the country names, but this

time use an inner merge to remove the NaN values:

df _merge = pd.merge(df_populations,

df int_ rates,

left_on="'Country (or dependency)', right_on="'Country or

currency union',
how='"inner")

15. We are left with two identical columns in the merged
DataFrame. Drop one of them by running the following

code:

del df merge['Country or currency union']

16. Rename the columns by running the following code:

name_map = {'Country (or dependency)': 'Country’,

'Population (2017)": 'Population’,

'Central bank interest rate (%)": 'Interest

rate'}

df_merge = df_merge.rename(columns=name_map)

We are left with the following merged and cleaned

DataFrame:

Country Population Yearly Change Interestrate Date of last change

0 China 1.409517e+09 0.43 1.75 2015-10-23

1 India 1.339180e+09 1.13 6.00 2017-08-02
2 United States 3.244595e+08 0.71 1.25 2017-06-14
3 Indonesia 2.639914e+08 1.10 4.75 2016-10-20
4 Brazil 2.092883e+08 0.79 7.25 2017-07-26
76 Mauritius 1.265138e+06 0.24 4.00 2016-07-20
77 Fiji 9.055020e+05 0.75 0.50 2011-11-02
78 Bahamas 3.953610e+05 1.06 4.00 2016-12-22
79 Iceland 3.350250e+05 0.77 4.50 2017-06-14
80 Samoa 1.9684400e+05 0.67 0.14 2016-07-01

81 rows x 5 columns

Figure 3.14: Ouput after cleaning and merging tables

17. Now that we have all the data in a nicely organized table,
we can move on to the fun part: visualizing it. Let's save
this table to a CSV file for later use, and then move on to

discuss how visualizations can be created with Bokeh.

Write the merged data to a CSV file for later use with the

following code:

df_merge.to_csv('../data/countries/merged.csv’,

index=False)

INTRODUCTION TO BOKEH

Bokeh is an interactive visualization library for Python. Its
goal is to provide similar functionality to D3, the popular
interactive visualization library for JavaScript. Bokeh
functions very differently than D3, which is not surprising
given the differences between Python and JavaScript. Overall,
it's much simpler and it doesn't allow nearly as much
customization as D3 does. This works to its advantage though,
as it's much easier to use, and it still boasts an excellent suite

of features that we'll explore in this section.

Let's dive right into a quick exercise with the Jupyter

Notebook and introduce Bokeh by example.

Note

There is good documentation online for Bokeh, but much of it
is outdated. Searching something like Bokeh bar plot in
Google still tends to turn up documentation for legacy
modules that no longer exist, for example, the high-level
plotting tools that used to be available through
bokeh.charts (prior to version 0.12.0). These are the ones
that take pandas DataFrames as input in much the same
way that Seaborn plotting functions do. Removing the high-
level plotting tools module has simplified Bokeh, and will
allow for more focused development going forward. Now,
the plotting tools are largely grouped into the
bokeh.plotting module, as will be seen in the next

exercise and following activity.

EXERCISE 17: INTRODUCTION TO INTERACTIVE
VISUALIZATION WITH BOKEH

We'll load the required Bokeh modules and show some simple
interactive plots that can be made with Bokeh. Please note
that the examples in this book have been designed using

version 0.12.10 of Bokeh.

1. Inthe lesson-3-workbook . ipynb Jupyter notebook,
scroll to Subtopic B: Introduction to Bokeh.

2. Like scikit-learn, Bokeh modules are usually loaded in
pieces (unlike pandas, for example, where the whole
library is loaded at once). Import some basic plotting

modules by running the following code:

from bokeh.plotting import figure, show,

output_notebook output_notebook()

We need to run output_notebook () in order to render

the interactive visuals within the Jupyter notebook.

3. Generate random data to plot by running the following

code:

np.random.seed(30)

data = pd.Series(np.random.randn(200),
index=list(range(200)))\

.cumsum() x = data.index

y = data.values

The random data is generated using the cumulative sum
of a random set of numbers that are distributed about
zero. The effect is a trend that looks similar to a stock

price time series, for example.

4. Plot the data with a line plot in Bokeh by running the
following code:

p = figure(title="Example plot', x_axis_label="x', y_axis_

label="y")p.line(x, y, legend='"Random trend') show(p)

O

— Random trend
.

\,‘\ }V‘N il \v‘ﬂ

|
| Lk

Figure 3.15: An example data plot

We instantiate the figure, as referenced by the variable p,
and then plot a line. Running this in Jupyter yields an

interactive figure with various options along the right-
hand side.

The top three options (as of version 0.12.10) are Pan,
Box Zoom, and Wheel Zoom. Play around with these

and experiment with how they work. Use the reset option
to re-load the default plot limits.

. Other plots can be created with the alternative methods of
figure. Draw a scatter plot by running the following

code, where we replace 1ine in the preceding code with
circle:

size = np.random.rand(200) * 5

p = figure(title="Example plot', x_axis_label="x', y_axis_
label="y")

p.circle(x, y, radius=size, alpha=0.5, legend='Random

dots')

show(p)

Example plot

o

Random dots |

vy 2 X

¢ ®
R G S, 2
°: s

Figure 3.16: An example scatter plot

Here, we've specified the size of each circle using a
random set of numbers. A very enticing feature of
interactive visualizations is the tooltip. This is a hover tool
that allows the user to get information about a point by

hovering over it.

. In order to add this tool, we're going to use a slightly
different method for creating the plot. This will require us
to import a couple of new libraries. Run the following

code:

from bokeh.plotting import ColumnDataSource from

bokeh.models import HoverTool

This time, we'll create a data source to pass to the plotting
method. This can contain metadata, which can be

included in the visualization via the hover tool.

. Create random labels and plot the interactive visualization

with a hover tool by running the following code:

source = ColumnDataSource(data=dict(x=x,

Y=y,

source=source,
legend="Random dots")

show(p)

Note

For the complete code, refer to the following:

https://bit.ly/2RhpUir.
Example plot - o
] ‘v_l’] anon.'l’os |
50 ® .
e ?lo ‘!ﬁ(X
L My o b ’
&
S Label: C (X o‘
@, Sie:3.387 D,
bol:B ;,:2:':\ e
-10 4 5_‘7 ﬁ
»

Figure 3.17: Arandom scatter plot with labels

We define a data source for the plot by passing a
dictionary of key/value pairs to the ColumnDataSource
constructor. This source includes the x location, y
location, and size of each point, along with the random
letter A, B, or C for each point. These random letters are
assigned as labels for the hover tool, which will also
display the size of each point. The Hover Tool is then
added to the figure, and the data is retrieved from each

element through the specific plotting method, which is

circle in this case. The result is that we are now able to
hover over the points and see the data we've selected for
the Hover Tool! We notice, by looking at the toolbar to
the right of the plot, that by explicitly including the
Hover Tool, the others have disappeared. These can be
included by manually adding them to the list of tool
objects that gets passed to bokeh.plotting. figure.

8. Add pan, zoom, and reset tools to the plot by running the
following code:

from bokeh.models import PanTool, BoxZoomTool,
WheelZoomTool, ResetTool

legend="Random dots")
show(p)

This code is identical to what was previously shown except
for the tools variable, which now references several new

tools we've imported from the Bokeh library.

We'll stop the introductory exercise here, but we'll continue

creating and exploring plots in the following activity.

ACTIVITY 4: EXPLORING DATAWITH INTERACTIVE
VISUALIZATIONS

You should have completed the previous exercise in order to

complete this activity.

We'll pick up using Bokeh right where we left off with the
previous exercise, except instead of using the randomly

generated data seen there, we'll instead use the data we

scraped from the web in the first part of this chapter. Our aim

is to use Bokeh to create interactive visualizations of our

scraped data.

In order to do so, we need to execute the following steps:

10.

In the lesson-3-workbook. ipynb file, scroll to the
Activity B: Interactive visualizations

with Bokeh section.

Load the previously scraped, merged, and cleaned web

page data

. Recall what the data looks like by displaying the

DataFrame.

Draw a scatter plot of the population as a function of the

interest rate.

In the data, we see some clear outliers with high
populations. Hover over these to see what they are. Select
the Box Zoom tool and alter the viewing window to better

see the majority of the data.

Some of the lower population countries appear to have
negative interest rates. Select the Wheel Zoom tool and
use it to zoom in on this region. Use the Pan tool to re-
center the plot, if needed, so that the negative interest rate
samples are in view. Hover over some of these and see

what countries they correspond to.

Add a Year of last change column to the DataFrame
and add a color based on the date of last interest rate

change

. Create a map to group the last change date into color

categories.
Create the colored visualization.

Looking for patterns, zoom in on the lower population

countries.

11. Plot the interest rate as a function of the year-over-year

population change by running the following code.

12. Determine the line of best fit for the previously plotted

relationship.

13. Re-plot the output obtained in the preceding step and add

a line of best fit.

14. Explore the plot by using the zoom tools and hovering

over interesting samples.

Note

The detailed steps along with the solutions are presented

in the Appendix Astsi(pg. no. 163).

Summary

In this chapter, we scraped web page tables and then used

interactive visualizations to study the data.

We started by looking at how HTTP requests work, focusing
on GET requests and their response status codes. Then, we
went into the Jupyter Notebook and made HTTP requests
with Python using the Requests library. We saw how Jupyter
can be used to render HTML in the notebook, along with
actual web pages that can be interacted with. After making
requests, we saw how Beautiful Soup can be used to parse text

from the HTML, and used this library to scrape tabular data.

After scraping two tables of data, we stored them in pandas
DataFrames. The first table contained the central bank
interest rates for each country and the second table contained
the populations. We combined these into a single table that

was then used to create interactive visualizations.

Finally, we used Bokeh to render interactive visualizations in

Jupyter. We saw how to use the Bokeh API to create various

customized plots and made scatter plots with specific
interactive abilities such as zoom, pan, and hover. In terms of
customization, we explicitly showed how to set the point

radius and color for each data sample.

Furthermore, when using Bokeh to explore the scraped
population data, the tooltip was utilized to show country

names and associated data when hovering over the points.

Congratulations for completing this introductory course on
data science using Jupyter Notebooks! Regardless of your
experience with Jupyter and Python coming into the book,
you've learned some useful and applicable skills for practical

data science!

Before finishing up, let's quickly recap the topics we've

covered in this book.

The first chapter was an introduction to the Jupyter Notebook
platform, where we covered all of the fundamentals. We
learned about the interface and how to use and install magic
functions. Then, we introduced the Python libraries we'll be
using and walked through an exploratory analysis of the

Boston housing dataset.

In the second chapter, we focused on doing machine learning
with Jupyter. We first discussed the steps for developing a
predictive analytics plan, and then looked at a few different
types of models including SVM, a KNN classifier, and

Random Forests.

Working with an employee retention dataset, we applied data
cleaning methods and then trained models to predict whether
an employee has left or not. We also explored more advanced
topics such as overfitting, k-fold cross-validation, and

validation curves.

Finally, in the third chapter, we shifted briefly from data

analysis to data collection using web scraping and saw how to
make HTTP requests and parse the HTML responses in
Jupyter. Then, we finished up the book by using interactive

visualizations to explore our collected data.

Appendix A

About

This section is included to assist the students to perform
the activities present in the book. It includes detailed
steps that are to be performed by the students to complete

and achieve the objectives of the activity.

Chapter 1: Jupyter Fundamentals

ACTIVITY 1: BUILDING ATHIRD-ORDER
POLYNOMIAL MODEL

1. Scroll to the empty cells at the bottom of Subtopic C
in your Jupyter Notebook.

2. These will be found beneath the linear-model MSE

calculation cell under the Activity heading.

Note

You should fill these empty cells in with code as we
complete the activity. You may need to insert new
cells as these become filled up; please do so as

needed.

3. We will first pull out our dependent feature from and

target variable from d£ . using the following:

y = df[' MEDV'].values
x = df['LSTAT"].values.reshape(-1,1)

This 1s identical to what we did earlier for the linear

model.

4. Verify what x looks like by printing the first few
samples with print (x[:3]):

print('x ='")
print(xj:13], '...0tc')
x =

[[4.98]

[9.14]

[4.03]] ...etc

Figure 1.49: Printing first three values of x using print()

Notice how each element in the array is itself an array

with length 1. This is what reshape (-1,1) does, and

it is the form expected by scikit-learn.

5. Transform x into "polynomial features" by importing

the appropriate transformation tool from scikit-learn
and instantiating the third-degree polynomial feature

transformer:

from sklearn.preprocessing import
PolynomialFeatures poly =

PolynomialFeatures(degree=3)

The rationale for this step may not be immediately

obvious but will be explained shortly.

6. Transform the LSTAT feature (as stored in the
variable x) by running the £it transform method.
Build the polynomial feature set by running the

following code:

X_poly = poly.fit_transform(x)

Here, we have used the instance of the transformer
feature to transform the LSTAT variable.

7. Verify what x_poly looks like by printing the first few
samples with print (x_poly[:3]).

print('x poly =")

print(x poly[:3], '...etc')
X_poly =
[[1. 4,98 24.8004 123.505992]
[l. 9.14 83.5396 763.551944]
[1 4.03 16.2409 65.450827)] ...etc

Figure 1.50: Printing first three values of x_poly using print()

Unlike x, the arrays in each row now have length 4,
where the values have been calculated as x©, x1, x2

and x3.

We are now going to use this data to fit a linear model.
Labeling the features as a, b, ¢, and d, we will calculate
the coefficients a,, a1, a2, and a3 and of the linear

model:;

Yy =aga+ahb+ayc+ azd

We can plug in the definitions of a, b, ¢, and d, to get
the following polynomial model, where the

coefficients are the same as the previous ones:
y=ay+ a1 x + ayx? + agx’

. Import the LinearRegression class and build our

linear classification model the same way as done while

calculating the MSE. Run the following;:

from sklearn.linear _model import LinearRegression
clf =

10.

LinearRegression()

clf.fit(x_poly, y)

. Extract the coefficients and print the polynomial

model using the following code:

a_o0 = clf.intercept_ + clf.coef_[0] # intercept a_1,

a_2,a_3 =clf.coef [1:] # other coefficients

msg = 'model: y = {:.3f} + {:.3f}x + {:.3f}x"2 +
{:.3f}x"3"\ .format(a_o0,a_1,a_2,a_3)print(msg)

msg = 'model: y = {:.3f} + {:.3f}x + {:.3F}x"2 + {:.3£}x"3'\
.format(x_0, x 1, x 2, x_3)
print(msgqg)

model: y = 48.650 + -3.866x + 0.149x"2 + -0.002x"3

Figure 1.51: Extracting coefficients and printing the polynomial

model

To get the actual model intercept, we have to add the

intercept and coef

[0] attributes. The higher-order coefficients are then

given by the remaining values of coef .

Determine the predicted values for each sample and

calculate the residuals by running the following code:

y_pred = clf.predict(x_poly) resid_ MEDV =y -

11.

12.

y_pred

Print some of the residual values by running

print (resid MEDV[:10]):

print?'residuals =')
print(resid MEDV[:10], '...etc')

residuals =
[-8.84025736 -2.61360313 -0.65577837 -5.11949581 4.23191217
-3.56387056 3.16728909 12.00336372 4.03348935 2.87915437] ...etc

Figure 1.52: Printing residual values

We'll plot these soon to compare with the linear model

residuals, but first we will calculate the MSE.

Run the following code to print the MSE for the third-

order polynomial model:

from sklearn.metrics import mean_squared_ error
error = mean_squared_ error(y, y_pred) print('mse =

{:.2f} .format(error))

error = meanmsquaredmer;or(y, ym;réd)
print('mse = {:.2f}'.format(error))

mse = 28.88

Figure 1.53: Calculating the mean squared error

As can be seen, the MSE is significantly less for the
polynomial model compared to the linear model
(which was 38.5). This error metric can be converted
to an average error in dollars by taking the square

root. Doing this for the polynomial model, we find the

13.

average error for the median house value is only

$5,300.

Now, we'll visualize the model by plotting the
polynomial line of best fit along with the data.

Plot the polynomial model along with the samples by

running the following:

fig, ax = plt.subplots() # Plot the samples
ax.scatter(x.flatten(), y, alpha=0.6)
Plot the polynomial model

x_ = np.linspace(2, 38, 50).reshape(-1, 1) x_poly =
poly .fit_transform(x_)

y_ = clf.predict(x_poly)

ax.plot(x_, y_, color="red’, alpha=0.8)
ax.set_xlabel('LSTAT"); ax.set_ylabel(MEDV");

14.

50 ® @0 &

40

30

MEDV

20

10

0 5 10 15 20 25 30 35

Figure 1.54: Plotting the polynomial model for MEDV and LSTAT

Here, we are plotting the red curve by calculating the
polynomial model predictions on an array of x values.
The array of x values was created using
np.linspace, resulting in 50 values arranged evenly

between 2 and 38.

Now, we'll plot the corresponding residuals. Whereas
we used Seaborn for this earlier, we'll have to do it
manually to show results for a scikit-learn model.
Since we already calculated the residuals earlier, as

reference by the resid MEDV variable, we simply

need to plot this list of values on a scatter chart.

Plot the residuals by running the following:

fig, ax = plt.subplots(figsize=(5, 7)) ax.scatter(x,

resid_MEDV, alpha=0.6) ax.set_xlabel('LSTAT")

ax.set_ylabel('MEDYV Residual $(y-\hat{y})$")
plt.axhline(o, color="black’, Is='dotted");

20

MEDV Residual (y — y)

LSTAT

Figure 1.55: Plotting the residuals for LSTAT and MEDV

Compared to the linear model LSTAT residual plot, the
polynomial model residuals appear to be more closely
clustered around y - ¥ = 0. Note that y is the sample
MEDYV and ¥ is the predicted value. There are still clear

patterns, such as the cluster near x = 7and y = -7 that

indicates suboptimal modeling.

Having successfully modeled the data using a polynomial
model, let's finish up this chapter by looking at categorical
features. In particular, we are going to build a set of
categorical features and use them to explore the dataset in

more detail.

Chapter 2: Data Cleaning and
Advanced Machine

ACTIVITY 2: PREPARING TO TRAIN A PREDICTIVE
MODEL FOR THE EMPLOYEE-RETENTION
PROBLEM

1. Scroll to the Activity A section ofthe lesson-2-

workbook . ipynb notebook file.

2. Check the head of the table by running the following

code:

%%bash
head ../data/hr-analytics/hr_data.csv

Judging by the output, convince yourself that it looks
to be in standard CSV format. For CSV files, we should
be able to simply load the data with pd.read_ csv.

3. Load the data with Pandas by running df =
pd.read csv('../data/hr-
analytics/hr _data.csv'). Write it out yourself

and use tab completion to help type the file path.

4. Inspect the columns by printing df . columns and

make sure the data has loaded as expected by printing
the DataFrame head and tail with df.head () and
df.tail():

df .columns

Index(['satisfaction_level', 'last_evaluation', 'number project',
'average_montly hours', 'time_spend company', 'work_ accident', 'left',
'promotion last Syears', 'is_smoker', 'department', 'salary'],

dtype="'object"')

df .head()
ion_level last_¢ ion number_project average_montly_hours time_spend_ work_acci left p

0 0.38 0.53 2 157.0 3.0 0 yes

1 0.80 0.86 5 262.0 6.0 0 yes

2 0.11 0.88 i7 272.0 4.0 0 vyes

3 0.72 0.87 5 223.0 5.0 0 vyes

4 0.37 0.52 24 NaN NaN 0 yes
df.tail()

satisfaction_level last_evaluation number_project average montly hours time_spend company work accident left pron

14994 0.40 0.57 2 151.0 3.0 0 yes
14995 0.37 0.48 2 160.0 3.0 0 vyes
14996 0.37 0.53 2 143.0 3.0 0 yes
14997 0.11 0.96 6 280.0 4.0 0 yes
14998 0.37 0.52 2 158.0 3.0 0 yes

Figure 2.45: Output for inspecting head and tail of columns

We can see that it appears to have loaded correctly.
Based on the tail index values, there are nearly 15,000

rows; let's make sure we didn't miss any.

5. Check the number of rows (including the header) in
the CSV file with the following code:

with open('../data/hr-analytics/hr_data.csv') as f:
print(len(f.read().splitlines()))

¥ Bow many lisae ia cthe OSV finzleding haadea

wikh apaal JcJdatavhr-atalytlos/ by dats.eavy] &k i
priaseflen| f.rebl]] . spllelired|))]

1§00

Figure 2.46: Output after checking for number of rows

6. Compare this result to 1en (d£f) to make sure you've
loaded all the data:

sany samples dld we foad into Python?
lac(df)

14955

Figure 2.47: Output after checking for number of sample uploaded

Now that our client's data has been properly loaded,
let's think about how we can use predictive analytics

to find insights into why their employees are leaving.

Let's run through the first steps for creating a

predictive analytics plan:

Look at the available data: You've already done this by
looking at the columns, datatypes, and the number of

samples.

Determine the business needs: The client has clearly

expressed their needs: reduce the number of

employees who leave.

Assess the data for suitability: Let's try to determine a
plan that can help satisfy the client's needs, given the
provided data

Recall, as mentioned earlier, that effective analytics
techniques lead to impactful business decisions. With
that in mind, if we were able to predict how likely an
employee is to quit, the business could selectively
target those employees for special treatment. For
example, their salary could be raised or their number
of projects reduced. Furthermore, the impact of these

changes could be estimated using the model!

To assess the validity of this plan, let's think about our
data. Each row represents an employee who either
works for the company or has left, as labeled by the
column named left. We can therefore train a model to

predict this target, given a set of features.

. Assess the target variable. Check the distribution and
number of missing entries by running the following

code:

df.left.value_ counts().plot('barh")
print(df.left.isnull().sum()

P Pow da S diesrisotedt

Elg: ai = pli.salpleta{llgmioe=di. 5p)
dislédt. vhlue OEtE |).plot] bach §j

‘n-
; _

L LT L XY

Figure 2.48: Distribution of the target variables

Here's the output of the second code line:

¥ N B "R BIAdiE] Ol
i

i bl bk [=

Figure 2.49: Output to check missing data points

About three-quarters of the samples are employees
who have not left. The group that has left make up the
other quarter of the samples. This tells us we are
dealing with an imbalanced classification problem,
which means we'll have to take special measures to
account for each class when calculating accuracies. We
also see that none of the target variables are missing

(no NaN values).

Now, we'll assess the features:

8. Print the datatype of each by executing df . dtypes.
Observe how we have a mix of continuous and discrete

features:

o r Sl & o |

i mkrpes

[(SENT N LRV s iy G ER
vddf. wralasllas $ ol L
[=~ G T TSENN
Lapora Bl o B i ¥ feprd L
wimw_iperd_company Howvki
Lo R B Y (THEY
IR Ll |
P oA o Leen Spaard imran
8 B AW (S5 !
[SRk SN [

B ey [y
g b AL

Figure 2.50: Printing data types for verification

9. Display the feature distributions by running the

following code:

for fin df.columns: try:

fig = plt.figure()

print('-'*30)

Note

For the complete code, refer to the following:

https://bit.ly/2D31KL2.

This code snippet is a little complicated, but it's very
useful for showing an overview of both the continuous
and discrete features in our dataset. Essentially, it
assumes each feature is continuous and attempts to
plot its distribution, and reverts to simply plotting the

value counts if the feature turns out to be discrete.

The result is as follows:

Figure 2.51: Distribution of all features: satisfaction_level and

last_evaluation

wvseage_monty_hows

. § ¥ 8 8 E 8

. ¥ 8 8 8 &

Figure 2.52: Distribution of all remaining features

Figure 2.53: Distribution for the variable promotion_last_5years

For many features, we see a wide distribution over the
possible values, indicating a good variety in the

feature spaces. This is encouraging; features that are

10.

strongly grouped around a small range of values may
not be very informative for the model. This is the case
for promotion last Syears, where we see that

the vast majority of samples are 0.

The next thing we need to do is remove any NaN

values from the dataset.

Check how many NaN values are in each column by

running the following code:

df.isnull().sum() / len(df) * 100

F ROW EANY NANE;

df . lanull{p-munf] #/ leajdLp @

satiniaction lewe. 0. E20000
dast swaiLuation 0. E20000
sIbaE pTeiecht R.E20300
METAge BEatly Bouge E 450457
ELE) gpEsd OCOEpARY La®3% 724
WTE RO Ldsne 0. =XN00
Isn G.=3300
aromotica last Sywars Q.00
ia mEciceT 0. 43022%
Sesasupeat R 8HI00
i lasy R EXI00

dJrypal flcatéd

Figure 2.54: Verification for the number of NaN values

We can see there are about 2.5% missing for
average montly hours, 1% missing for

time spend company, and 98% missing for
is_smoker! Let's use a couple of different strategies

that you've learned to handle these.

11.

12.

13.

Drop the is_smoker column as there is barely any
information in this metric. Do this by running: del

df['is smoker'].

Fill the NaN values in the time spend company

column. This can be done with the following code:

fill_value = df.time_spend_company.median()

df.time_spend_company =

df.time_spend_ company.fillna(fill_ value)

The final column to deal with is

average montly hours. We could do something
similar and use the median or rounded mean as the
integer fill value. Instead though, let's try to take
advantage of its relationship with another variable.
This may allow us to fill the missing data more

accurately.

Make a boxplot of average montly hours

segmented by number project. This can be done by

running the following code:

sns.boxplot(x="number_project’,

y='average_montly hours', data=df)

14.

300

250

average_montly_hours

150

Figure 2.55: Boxplot for average_monthly_hours and

number_project

We can see how the number of projects is correlated
with average monthly hours, aresult that is
hardly surprising. We'll exploit this relationship by
filling in the NaN values of average montly hours

differently, depending on the number of projects for

that sample.
Specifically, we'll use the mean of each group.

Calculate the mean of each group by running the

following code:

mean_ per_project = df.groupby('number_project’)\

.average_montly_hours.mean() mean_per_project =

dict(mean_per_project) print(mean_per_project)

15.

16.

¥ Caldd-mile TRl e bied SO arediage skl ly Eadsogs

naan par prodecss = diLgrecgly| rambeT prectest)
ravarsge morile Bowre meani)

FtdS fobf pAAEAE &)5S piekaE el SFO YR

P& [T proiect

o P86, RN ILE YRR,
B IOV ATEEIRIIIGATNE,
Hz FIS.ATRERNLSTE0EA
42 FU1. PP RINIBNIITA.
di FIN, BRI 0,
TR P ELT R Y BT Y

Figure 2.56: Calculation of mean values for average_monthly_hours

We can then map this onto the number project
column and pass the resulting series object as the

argument to £illna.

Fill the NaN values in average montly hours by

executing the following code:

fill values =

df.number_project.map(mean_per_project)

df.average_montly hours =

df.average_montly_hours. fillna(fill_values)

Confirm that df has no more NaN values by running
the following assertion test. If it does not raise an
error, then you have successfully removed the NaNs

from the table:

assert df.isnull().sum().sum() ==

Note

We pass index=False so that the index is not
written to file. In this case, the index is a set of
integers spanning from o to the DataFrame length,

and it therefore tells us nothing important.

17. Transform the string and Boolean fields into integer
representations. In particular, we'll manually convert

the target variable left from yes and noto 1 and 0

and build the one-hot encoded features. Do this by

running the following code:

df.left = df.left. map({'no": o, 'yes': 1}) df =
pd.get_dummies(df)

18. Print df.columns to show the fields:

df .onlmmne

Indox(| satigfaction_level’', "last_ svaluastion’, "sasbar projast,

'average montly hours’, "time spend company’ , work accident”, ‘left’,
‘promction last Syears’, ‘departmant IT', "departmant RandD",
‘department _acromnting ., ‘department_hr' . “department managemssct
'department marketing’, ‘department product meg -, ‘departmect sales”,
'SEPATTHENT BUPPOST ', "SOpAITEMNE Eechnical’, ‘Salasy high'
'salary low'., 'salary medium').

deypes"object’)

Figure 2.57: A screenshot of the different fields in the dataframe

We can see that department and salary have been split

into various binary features.

The final step to prepare our data for machine
learning is scaling the features, but for various reasons
(for example, some models do not require scaling),
we'll do it as part of the model-training workflow in

the next activity.

19. We have completed the data preprocessing and are
ready to move on to training models! Let's save our

preprocessed data by running the following code:

df.to_csv('../data/hr-

analytics/hr_data_processed.csv', index=False)

Chapter 3: Web Scraping and
Interactive Visualizations

ACTIVITY 3: WEB SCRAPING WITH JUPYTER
NOTEBOOKS

1. For this page, the data can be scraped using the

following code snippet:

data =[]

for i, row in enumerate(soup.find_all('tr')): row_data
= row.find_ all('td")

try:

di, d2, d3 = row_data[1], row_data[5], row_data[6]
d1 = d1.find('a").text

d2 = float(d2.text)

d3 = d3.find_all('span')[1].text.replace('+", ")
data.append([d1, d2, d3])

except:
print('Ignoring row {}'.format(i)

. Inthe lesson-3-workbook. ipynb Jupyter
Notebook, scroll to Activity A: Web scraping
with Python.

. Set the url variable and load an IFrame of our page

in the notebook by running the following code:

url = 'http://www.worldometers.info/world-

population/ population-by-country/’
IFrame(url, height=300, width=800)

The page should load in the notebook. Scrolling down,
we can see the Countries in the world by

population heading and the table of values beneath

it. We'll scrape the first three columns from this table
to get the countries, populations, and yearly

population changes.

. Close the IFrame by selecting the cell and clicking
Current Outputs | Clear from the Cell menu in the
Jupyter Notebook.

. Request the page and load it as a BeautifulSoup

object by running the following code:

page = requests.get(url)
soup = BeautifulSoup(page.content, 'html.parser’)

We feed the page content to the BeautifulSoup

constructor. Recall that previously, we used

page . text here instead. The difference is that
page . content returns the raw binary response
content, whereas page . text returns the UTF-8

decoded content. It's usually best practice to pass the

bytes object and let BeautifulSoup decode it, rather
than doing it with Requests using page . text.

. Print the H1 for the page by running the following

code:

soup.find_all("h1")

>> [<h1>Countries in the world by population (2017)
</h1>]

We'll scrape the table by searching for <th>, <tr>,

and <td> elements, as in the previous exercise.

. Get and print the table headings by running the

following code:

table_headers = soup.find_ all('th") table_headers
>> [<th>#</th>,

<th>Country (or dependency)</th>,
<th>Population
 (2017)</th>,
<th>Yearly
 Change</th>,

<th>Net
 Change</th>,

<th>Density
 (P/Km2)</th>,

<th>Land Area
 (Km2)</th>,
<th>Migrants
 (net)</th>,

<th>Fert.
 Rate</th>,

<th>Med.
 Age</th>,
<th>Urban
 Pop %</th>,
<th>World
 Share</th>]

. We are only interested in the first three columns.
Select these and parse the text with the following

code:

table headers = table _headers[1:4] table headers =
[t.text.replace('\n', ") for t in table_ headers]

After selecting the subset of table headers we want, we
parse the text content from each and remove any

newline characters.

Now, we'll get the data. Following the same
prescription as the previous exercise, we'll test how to

parse the data for a sample row.

. Get the data for a sample row by running the following

code:

row_number = 2
row_data = soup.find_ all('tr")[row_number]\

find_ all('td")

10.

11.

12.

13.

How many columns of data do we have? Print the
length of row _data by running

print (len(row_data)).

Print the first elements by running

print (row _data[:4]):

>> [<td>2</td>,

<td style="font-weight: bold; font-size:15px; text-
align:left"><a href="/world-population/india-

population/">India</td>,
<td style="font-weight: bold;">1,339,180,127</td>,
<td>1.13 %< /td>]

It's pretty obvious that we want to select list indices 1,
2. and 3. The first data value can be ignored, as it's

simply the index.

Select the data elements we're interested in parsing by

running the following code:
di, d2, d3 = row_datal1:4]

Looking at the row_data output, we can find out how

to correctly parse the data. We'll want to select the

content of the <a> element in the first data element,

14.

and then simply get the text from the others. Test

these assumptions by running the following code:

print(di.find('a").text) print(d2.text) print(d3.text)
>> India

>>1,339,180,127

>>1.13 %

Excellent! This looks to be working well. Now, we're

ready to scrape the entire table.

Scrape and parse the table data by running the

following code:

data =[]
for i, row in enumerate(soup.find_ all('tr')): try:

di, d2, d3 = row.find_ all('td")[1:4] d1 =
di.find('a'").text

d2 = da.text d3 = d3.text
data.append([d1, d2, d3]) except:

print('Error parsing row {}'.format(i))

15.

>> Error parsing row o

This is quite similar to before, where we try to parse

the text and skip the row if there's some error.

Print the head of the scraped data by running
print (data[:10]):

>> [['China’, '1,409,517,397', '0.43 %'l
['India’, '1,339,180,127', '1.13 %'],
['U.S., 324,459,463, '0.71 %],
['Indonesia’, '263,991,379', '1.10 %'],
['Brazil', '209,288,278', '0.79 %'],
['Pakistan’, '197,015,955', '1.97 %'],
['Nigeria', '190,886,311', '2.63 %'],
['Bangladesh’, '164,669,751', '1.05 %'],
['Russia’, '143,989,754', '0.02 %'],
['Mexico', '129,163,276', '1.27 %']]

It looks like we have managed to scrape the data!

16.

Notice how similar the process was for this table
compared to the Wikipedia one, even though this web
page is completely different. Of course, it will not
always be the case that data is contained within a

table, but regardless, we can usually use £ind all as

the primary method for parsing.

Finally, save the data to a CSV file for later use. Do

this by running the following code:

f_path ="../data/countries/populations.csv' with

open(f_path, 'w') as f:

f.write('{};{};{}\n'.format(*table_headers)) for d in
data:

fowrite('{};{};{}\n'.format(*d))

ACTIVITY 4: EXPLORING DATAWITH INTERACTIVE
VISUALIZATIONS

1. Inthe lesson-3-workbook. ipynb file, scroll to the

Activity B: Interactive visualizations

with Bokeh section.

2. Load the previously scraped, merged, and cleaned web

page data by running the following code:

df = pd.read_csv('../data/countries/merged.csv')

df['Date of last change'] = pd.to_ datetime(df['Date of
last change'])

3. Recall what the data looks like by displaying the

DataFrame:

Country Population Yearly Change Interestrate Date of last change

0 China 1.409517e+09 0.43 1.75 2015-10-23
1 India 1.339180e+09 1.13 6.00 2017-08-02
2 United States 3.244595e+08 0.71 1.25 2017-06-14
3 Indonesia 2.639914e+08 1.10 4.75 2016-10-20
4 Brazil 2.092883e+08 0.79 7.25 2017-07-26
76 Mauritius 1.265138e+06 0.24 4.00 2016-07-20
77 Fiji 9.055020e+05 0.75 0.50 2011-11-02
78 Bahamas 3.953610e+05 1.06 4.00 2016-12-22
79 Iceland 3.350250e+05 0.77 4.50 2017-06-14
80 Samoa 1.964400e+05 0.67 0.14 2016-07-01

81 rows x 5 columns

Figure 3.18: Output of the data within DataFrame

Whereas in the previous exercise we were interested
in learning how Bokeh worked, now we are interested
in what this data looks like. In order to explore this

dataset, we are going to use interactive visualizations.

4. Draw a scatter plot of the population as a function of

the interest rate by running the following code:

source = ColumnDataSource(data=dict(x=df['Interest

rate'], y=df['Population'], desc=df['Country'],

)

hover = HoverTool(tooltips=[('Country', '@desc'),
('Interest Rate (%), '@x"), ('Population’, '@y")

D

tools = [hover, PanTool(), BoxZoomTool(),
WheelZoomTool(), ResetTool()]

p = figure(tools=tools,

x_axis_label='Interest Rate (%)',

y_axis_label="Population')

p.circle('x', 'y', size=10, alpha=0.5, source=source)

show(p)

L&)

0.0008+0 | “%‘Q‘”. L [t

Figure 3.19: Scatter plot of population and interest rate

This is quite similar to the final examples we looked at
when introducing Bokeh in the previous exercise. We
set up a customized data source with the x and y
coordinates for each point, along with the country
name. This country name is passed to the Hover Tool,
so that it's visible when hovering the mouse over the
dot. We pass this tool to the figure, along with a set of

other useful tools.

. In the data, we see some clear outliers with high

populations. Hover over these to see what they are:

1.400e+9 - L Country: India
| nterest Rate (%): 6
Population: 1339180127

1.200e49

Figure 3.20: Labels obtained by hovering over data points

We see they belong to India and China. These
countries have fairly average interest rates. Let's focus
on the rest of the points by using the Box Zoom tool to

modify the view window size.

. Select the Box Zoom tool and alter the viewing

window to better see the majority of the data:

Box Zoom

Figure 3.21: The Box Zoom tool

o
|

Popuiation

--

..

10 15
Interest Rate (%)

Figure 3.22: Scatter plot with majority of the data points within the

box

Explore the points and see how the interest rates
compare for various countries. What are the countries

with the highest interest rates?:

5]
Country: Argentina
Interest Rate (%). 26.250 3
O o) Population: 44271041
e D
' T T T T | T T T T l T T T T |
10 15 20 25

Interest Rate (%)

Figure 3.23: Hovering over data points to view detailed data

7. Some of the lower population countries appear to have
negative interest rates. Select the Wheel Zoom tool
and use it to zoom in on this region. Use the Pan tool
to re-center the plot, if needed, so that the negative
interest rate samples are in view. Hover over some of

these and see what countries they correspond to:
I

Wheel Zoom |

Figure 3.24: Screen shot of the Wheel Zoom tool

1.000e+7 -
i Country: Denmark

nterest Rate (%): -0.650
Population: 5733551)

0.000e+0

] T T L T 1 T T T 1]
-1 0 1 2

Interest Rate (%)

Figure 3.25: Data points of negative interest rates countries

Let's re-plot this, adding a color based on the date of
last interest rate change. This will be useful to search
for relations between the date of last change and the

interest rate or population size.

8. Add a Year of last change column to the

DataFrame by running the following code:

def get_year(x):

year = x.strftime('%Y")

if year in ['2018', '2017', '2016']:
return year else: return 'Other’

df['Year of last change'] = df]'Date of last change'].
apply(get_year)

9. Create a map to group the last change date into color

categories by running the following code:

year_to_color = { '2018": 'black’,
'2017": 'blue’,
'2016': 'orange’,

'Other':'red’

Once mapped to the Year of last change column,

this will assign values to colors based on the available

10.

categories: 2018, 2017, 2016, and Other. The colors
here are standard strings, but they could alternatively

by represented by hexadecimal codes.

Create the colored visualization by running the

following code:

source = ColumnDataSource(data=dict(x=df['Interest

rate'],

fill_ color='colors', line_ color="black’, legend="label")

show(p)

Note

For the complete code, refer to the following:
https://bit.ly/2S513K04

11.

1.400049 [@ Other |
| ©) e 2017
1 o 2016
1.200e+9 -7
1.000e+49 |
’Q: B,oove+a—
5
3
8]
6.000e+8 -1
4.000e+8 =
O
] O
2.000e+8 o @ o
1 (@]
[J
1 (<] °®) °
] e ¢ ° o
1 @ @
0.000e+0 - @@ﬁ]weo @ & 08 @ ,°
e ———r T
0 5

t —t . ——
10 15 20 25
Interest Rate (%)

Figure 3.26: Visualization obtained after assigning values to colors

There are some technical details that are important
here. First of all, we add the colors and labels for each
point to the ColumnDataSource. These are then
referenced when plotting the circles by setting the

fill color and legend arguments.

Looking for patterns, zoom in on the lower population
countries:
@
b o @ Other
@ 2017
O @ O 2016
@
@
g © o 0
'e) @
‘;@ oe o o &e
Co . e o ®
® . o ©e
| @)%C:)O ee © o)

12.

Figure 3.27: A zoomed in view of the lower population countries

We can see how the dark dots are more prevalent to
the right-hand side of the plot. This indicates that
countries that have higher interest rates are more

likely to have been recently updated.

The one data column we have not yet looked at is the
year-over-year change in population. Let's visualize
this compared to the interest rate and see if there is
any trend. We'll also enhance the plot by setting the

circle size based on the country population.

Plot the interest rate as a function of the year-over-

year population change by running the following code:

source = ColumnDataSource(data=dict(x=df[Yearly

Change'],

p.circle('x', 'y', size=10, alpha=0.5, source=source,

radius="radii')

show(p)

L &)

2
YoY Population Change

Figure 3.28: Plotting interest rate as a function of YoY population

change

Here, we use the square root of the population for the
radii, making sure to also scale down the result to a

good size for the visualization.

We see a strong correlation between the year-over-
year population change and the interest rate. This
correlation is especially strong when we take the
population sizes into account, by looking primarily at
the bigger circles. Let's add a line of best fit to the plot

to illustrate this correlation.

We'll use scikit-learn to create the line of best fit,
using the country populations (as visualized in the

preceding plot) as weights.

13. Determine the line of best fit for the previously plotted

relationship by running the following code:

from sklearn.linear_model import LinearRegression

X = df['Yearly Change'].values.reshape(-1, 1)
y = df['Interest rate'].values

weights = np.sqrt(df['Population'])/1e5

Im = LinearRegression()

Im.fit(X, y, sample_weight=weights)

Im_x = np.linspace(X.flatten().min(),
X.flatten().max(), 50)

Im_y = Im.predict(lm_x.reshape(-1, 1))

The scikit-learn code should be familiar from earlier
in this book. As promised, we are using the
transformed populations, as seen in the previous plot,
as the weights. The line of best fit is then calculated by
predicting the linear model values for a range of x

values.

To plot the line, we can reuse the preceding code,
adding an extra call to the 1ine module in Bokeh.

We'll also have to set a new data source for this line.

14. Re-plot the preceding figure, adding a line of best fit,

by running the following code:

source = ColumnDataSource(data=dict(x=df[Yearly

Change'], y=df['Interest rate'],

[P B |

p.line('x', 'y', line_width=2, line_ color="red’,

source=Ilm_source)

show(p)

Interest Rate

2
YoY Population Change

Figure 3.29: Adding a best fit line to the plot of YoY population

change and interest rates

For the line source, 1m_source, we include N/A as

the country name and population, as these are not
applicable values for the line of best fit. As can be seen
by hovering over the line, they indeed appear in the

tooltip.

The interactive nature of this visualization gives us a
unique opportunity to explore outliers in this dataset,

for example, the tiny dot in the lower-right corner.

15. Explore the plot by using the zoom tools and hovering

over interesting samples. Note the following:

Ukraine has an unusually high interest rate, given the

low year-over-year population change:

Interest Rate

Figure 3.30: Using the Zoom tool to explore the data for Ukraine

The small country of Bahrain has an unusually low

interest rate, given the high year-over-year population

change:

. CS)
L}
I L]
G
§
E O
]
Country: Bahrain
Population (millions): 1.493
@
Yo Population Change: 4.730
Interest Rate (%): 1.500
L
[
L
‘] @
L
Tt t 1 1 t
0 1 2 3 4

YoY Population Change

Figure 3.31: Using the Zoom tool to explore the data for Bahrain

	1
	2
	3
	Appendix

