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Preface

"Data analysis is Python's killer app."

- Unknown

Data analysis has a rich history in the natural, biomedical, and social sciences.
You may have heard of Big Data. Although, it's hard to give a precise definition
of Big Data, we should be aware of its impact on data analysis efforts. Currently,
we have the following trends associated with Big Data:

* The world's population continues to grow
e More and more data is collected and stored

* The number of transistors that can be put on a computer chip cannot
grow indefinitely

* Governments, scientists, industry, and individuals have a growing
need to learn from data

Data analysis has gained popularity lately due to the hype around Data Science.
Data analysis and Data Science attempt to extract information from data. For that
purpose, we use techniques from statistics, machine learning, signal processing,
natural language processing, and computer science.

A mind map visualizing Python software that can be used for data analysis can be
found at http://www.xmind.net/m/WwvEC/. The first thing that we should notice

is that the Python ecosystem is very mature. It includes famous packages such as
NumPy, SciPy, and matplotlib. This should not come as a surprise since Python
has been around since 1989. Python is easy to learn and use, less verbose than other
programming languages, and very readable. Even if you don't know Python, you
can pick up the basics within days, especially if you have experience in another
programming language. To enjoy this book, you don't need more than the basics.
There are plenty of books, courses, and online tutorials that teach Python.

www.it-ebooks.info
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Preface

What this book covers

This book starts as a tutorial on NumPy, SciPy, matplotlib, and pandas. These are
open source Python packages useful for numerical work, data wrangling, and
visualization. Combined, they can compete with MATLAB, Mathematica, and R.
The second half of the book teaches more advanced topics such as signal processing,
databases, text analysis, machine learning, interoperability, and performance tuning.

Chapter 1, Getting Started with Python Libraries, guides us to achieve a successful
installation of the numerical Python software and set it up step by step. Also,
we will create a small application.

Chapter 2, NumPy Arrays, introduces us to NumPy fundamentals and arrays.
By the end of this chapter, we will have basic understanding of NumPy arrays
and the associated functions.

Chapter 3, Statistics and Linear Algebra, gives a quick overview of linear algebra
and statistical functions.

Chapter 4, pandas Primer, provides a tutorial on basic pandas functionality where
we learn about pandas data structures and operations.

Chapter 5, Retrieving, Processing, and Storing Data, explains how to acquire data in
various formats and how to clean raw data and store it.

Chapter 6, Data Visualization, teaches how to plot data with matplotlib.

Chapter 7, Signal Processing and Time Series, contains time series and signal processing
examples using sunspot cycles data. The examples mostly use NumPy/SciPy, along
with statsmodels in at least one example.

Chapter 8, Working with Databases, provides information about various databases
(relational and NoSQL) and related APIs.

Chapter 9, Analyzing Textual Data and Social Media, analyzes texts for sentiment
analysis and topics extraction. A small example is also given of network analysis.

Chapter 10, Predictive Analytics and Machine Learning, explains artificial intelligence
with weather prediction as a running example and mostly uses scikit-learn.
However, some machine learning algorithms are not covered by scikit-learn,

so for those, we use other APIs.

Chapter 11, Environments Outside the Python Ecosystem and Cloud Computing,
gives various examples on how to integrate existing code not written in Python.
Also, setup in the Cloud will be demonstrated.

[2]
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Chapter 12, Performance Tuning, Profiling, and Concurrency, gives hints on
improving performance with profiling and Cythoning as key techniques.
For multicore, distributed systems, we discuss the relevant frameworks too.

Appendix A, Key Concepts, serves as a glossary containing short descriptions
of key concepts found throughout the book.

Appendix B, Useful Functions, gives an overview of functions used in the book.

Appendix C, Online Resources, lists links to documentation, forums, articles,
and other important information.

What you need for this book

The code examples in this book should work on most modern operating

systems. For all chapters, Python 2 and pip is required. To install Python, go to
https://wiki.python.org/moin/BeginnersGuide/Download. To install pip,

go to http://pip.readthedocs.org/en/latest/installing.html. Instructions
to install software are given throughout the chapters. Most of the time, we need to
run the following command with admin privileges:

$ pip install <some software>

The following is a list of software used for the examples and versions used for
testing purposes:

* NumPy1.8.1

e SciPy 0.14.0

* matplotlib 1.3.1

* [Python 2.0.0

* pandas Version 0.13.1
* tables3.1.1

* numexpr 2.4

* openpyxl 2.0.3

* XlsxWriter 0.5.5

* xIrd 0.9.3

» feedparser 5.1.3

* Beautiful Soup 4.3.2
* StatsModels 0.6.0

* SQLAIlchemy 0.9.6

[31]
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Pony 0.5.1
dataset 0.5.4
MongoDB 2.6.3
PyMongo 2.7.1
Redis server 2.8.12
Redis 2.10.1
Cassandra 2.0.9
Java 7

NLTK 2.0.4
scikit-learn 0.15.0
NetworkX 1.9
DEAP 1.0.1
theanets 0.2.0
Graphviz 2.36.0
pydot2 1.0.33
Octave 3.8.0
R3.1.1

rpy22.4.2

JPype 0.5.5.2
Java 7

SWIG 3.02

PCRE 8.35

Boost 1.56.0
gfortran 4.9.0
GAE for Python 2.7
gprof2dot 2014.08.05
line_profiler beta
Cython 0.20.0
cytoolz 0.7.0
Joblib 0.8.2
Bottleneck 0.8.0
Jug 0.9.3
MPI1.8.1
mpidpy 1.3.1

[4]
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Of course, it's not necessary for you to have the same version of the software.
Usually, the latest version available should work.

Some of the software listed are used for a single example;

therefore, please check first whether the example is relevant
e for you before installing the software.

To uninstall Python packages installed with pip, use the following command:

$ pip uninstall <some software>

Who this book is for

This book is for people with basic knowledge of Python and Mathematics who want
to learn how to use Python software to analyze data. We try to keep things simple,
but it's not possible to cover all the topics in great detail. It may be useful for you to
refresh your knowledge of Mathematics via Khan Academy, Coursera, or Wikipedia.

I would recommend the following books by Packt Publishing for further reading;:
*  Building Machine Learning Systems with Python, Willi Richert and Luis Pedro
Coelho (2013)
* Learning Cython Programming, Philip Herron (2013)
*  Learning NumPy Array, Ivan Idris (2014)

*  Learning scikit-learn: Machine Learning in Python, Raiil Garreta and
Guillermo Moncecchi (2013)

* Learning SciPy for Numerical and Scientific Computing,
Francisco |. Blanco-Silva (2013)

*  Matplotlib for Python Developers, Sandro Tosi (2009)

*  NumPy Beginner's Guide - Second Edition, Ivan Idris (2013)

*  NumPy Cookbook, Ivan Idris (2012)

*  Parallel Programming with Python, Jan Palach (2014)

*  Python Data Visualization Cookbook, Igor Milovanovi¢ (2013)

*  Python for Finance, Yuxing Yan (2014)

*  Python Text Processing with NLTK 2.0 Cookbook, Jacob Perkins (2010)

[51]
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Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Notice that numpysum () does not need a for loop."

A block of code is set as follows:

def pythonsum(n) :
= range (n)

range (n)

(]

a
b
c

for i in range(len(a)) :
afi]l] = i **x 2
b[i] = i ** 3
c.append(al[i] + b[i])

return c

Any command-line input or output is written as follows:

$ yum install python-numpy

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on the Next button."

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[6]
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Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[71
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Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[8]
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Getting Started with
Python Libraries

Let's get started. We can find a mind map describing software that can be used for
data analysis at http: //www.xmind.net /m/WvEc/. Obviously, we can't install all of
this software in this chapter. We will install NumPy, SciPy, matplotlib, and IPython
on different operating systems and have a look at some simple code that uses NumPy.

NumPy is a fundamental Python library that provides numerical arrays and functions.

SciPy is a scientific Python library, which supplements and slightly overlaps NumPy.
NumPy and SciPy historically shared their code base but were later separated.

matplotlib is a plotting library based on NumPy. You can read more about matplotlib
in Chapter 6, Data Visualization.

IPython provides an architecture for interactive computing. The most notable part of
this project is the IPython shell. We will cover the IPython shell later in this chapter.

Installation instructions for the other software we need will be given throughout
the book at the appropriate time. At the end of this chapter, you will find pointers
on how to find additional information online if you get stuck or are uncertain about
the best way to solve problems.

In this chapter, we will cover:

* Installing Python, SciPy, matplotlib, IPython, and NumPy on Windows,
Linux, and Macintosh

* Writing a simple application using NumPy arrays
*  Getting to know IPython
*  Online resources and help

www.it-ebooks.info
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Getting Started with Python Libraries

Software used in this book

The software used in this book is based on Python, so you are required to have Python
installed. On some operating systems, Python is already installed. You, however, need
to check whether the Python version is compatible with the software version you
want to install. There are many implementations of Python, including commercial
implementations and distributions. In this book, we will focus on the standard
CPython implementation, which is guaranteed to be compatible with NumPy.

You can download Python from https://www.python.org/
% download/. On this website, we can find installers for Windows and
T~ Mac OS X as well as source archives for Linux, Unix, and Mac OS X.

The software we will install in this chapter has binary installers for Windows,
various Linux distributions, and Mac OS X. There are also source distributions if you
prefer that. You need to have Python 2.4.x or above installed on your system. Python
2.7.x is currently the best Python version to have because most Scientific Python
libraries support it. Python 2.7 will be supported and maintained until 2020. After
that, we will have to switch to Python 3.

Installing software and setup

We will learn how to install and set up NumPy, SciPy, matplotlib, and IPython on
Windows, Linux and Mac OS X. Let's look at the process in detail.

On Windows

Installing on Windows is, fortunately, a straightforward task that we will cover in
detail. You only need to download an installer and a wizard will guide you through
the installation steps. We will give you steps to install NumPy here. The steps to
install the other libraries are similar. The actions we will take are as follows:

1. Download installers for Windows from the SourceForge website (refer to
the following table). The latest release versions may change, so just choose
the one that fits your setup best.

[10]
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Chapter 1

Library URL Latest
version

NumPy http://sourceforge.net/projects/numpy/files/ 1.8.1

SciPy http://sourceforge.net/projects/scipy/files/ 0.14.0

matplotlib | http: //sourceforge.net/projects/matplotlib/files/ | 1.3.1

[Python http://archive.ipython.org/release/ 2.0.0

2. Choose the appropriate version. In this example, we chose
numpy-1.8.1-win32-superpack-python2.7.exe.

3. Open the EXE installer by double-clicking on it.

Now, we can see a description of NumPy and its features. Click on the
Next button.

If you have Python installed, it should automatically be detected. If it is
not detected, maybe your path settings are wrong.

1
‘\Q At the end of this chapter, resources are listed just in case you have

problems installing NumPy.

5. (Click on the Next button if Python is found; otherwise, click on the Cancel
button and install Python (NumPy cannot be installed without Python).
Click on the Next button. This is the point of no return. Well, kind of, but
it is best to make sure that you are installing to the proper directory, and
so on and so forth. Now the real installation starts. This may take a while.

The situation around installers is rapidly evolving. Other alternatives
. exist in various stages of maturity (see http://www.scipy.org/
% install.html). It might be necessary to put the msvcp71.d11 file
L in your system32 directory located at C: \Windows\. You can get
it fromhttp://www.dll-files.com/dllindex/dl1l-files.
shtml?msvcp71.
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On Linux

Installing the recommended software on Linux depends on the distribution you
have. We will discuss how you would install NumPy from the command line;
you could probably use graphical installers depending on your distribution
(distro). The commands to install matplotlib, SciPy, and IPython are the same;
only the package names are different. Installing matplotlib, SciPy, and IPython
is recommended but optional.

Most Linux distributions have NumPy packages. We will go through the necessary
commands for some of the popular Linux distributions as follows:

* Run the following instructions from the command line to install NumPy
on Red Hat:

$ yum install python-numpy

* To install NumPy on Mandriva, run the following command-line instruction:
$ urpmi python-numpy

* To install NumPy on Gentoo, run the following command-line instruction:

$ sudo emerge numpy

* To install NumPy on Debian or Ubuntu, we need to type the following:
$ sudo apt-get install python-numpy

The following table gives an overview of the Linux distributions and corresponding
package names for NumPy, SciPy, matplotlib, and IPython:

Linux NumPy SciPy matplotlib IPython

distribution

Arch Linux python- python- python- Ipython
numpy scipy matplotlib

Debian python- python- python- Ipython
numpy scipy matplotlib

Fedora numpy python- python- Ipython

scipy matplotlib

Gentoo dev-python/ scipy matplotlib ipython
numpy

openSUSE python- python- python- ipython
numpy, scipy matplotlib
python-
numpy-devel

Slackware numpy scipy matplotlib ipython
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On Mac OS X

You can install NumPy, matplotlib, and SciPy on Mac OS X with a graphical installer
or from the command line with a port manager, such as MacPorts or Fink, depending
on your preference. The prerequisite is to install XCode, as it is not part of OS X
releases. We will install NumPy with a GUI installer using the following steps:

1.

2.

We can get a NumPy installer from the SourceForge website at
http://sourceforge.net/projects/numpy/files/. Similar files
exist for matplotlib and SciPy.

Just change numpy in the previous URL to scipy or matplotlib to get
installers of the respective libraries. IPython didn't have a GUI installer
at the time of writing this.

Download the appropriate DMG file; usually the latest one is the best.

Another alternative is SciPy Superpack
(https://github.com/fonnesbeck/ScipySuperpack).

Whichever option you choose, it is important to make sure that updates that impact
the system Python library don't negatively influence already-installed software

by not building against the Python library provided by Apple. Install NumPy,
matplotlib, and SciPy using the following steps:

1.

Open the DMG file (in this example, numpy-1.8.1-py2.7-python.org-
macosx10. 6 .dmg).

Double-click on the icon of the opened box —the one with a subscript
that ends with .mpkg. We will be presented with the welcome screen
of the installer.

Click on the Continue button to go to the Read Me screen, where we
will be presented with a short description of NumPy.

Click on the Continue button to go to the License screen.

Read the license, click on the Continue button, and then click on the
Accept button when prompted to accept the license. Continue through the
screens that follow from there, and click on the Finish button at the end.
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Alternatively, we can install the libraries through the MacPorts route, with Fink

or Homebrew. The following installation commands install all these packages.

We only need NumPYy for all the tutorials in this book, so please omit the packages
you are not interested in.

* To install with MacPorts, type in the following command:

$ sudo port install py-numpy py-scipy py-matplotlib py-ipython

* Fink also has packages for NumPy, such as scipy-core-py24, scipy-core-
py25, and scipy-core-py26. The SciPy packages are scipy-py24, scipy-
py25, and scipy-py26. We can install NumPy and other recommended
packages that we will be using in this book for Python 2.6 with the
following command:

$ fink install scipy-core-py26 scipy-py26 matplotlib-py26

Building NumPy, SciPy, matplotlib, and
IPython from source

As a last resort or if we want to have the latest code, we can build from source.

In practice, it shouldn't be that hard, although depending on your operating system,
you might run into problems. As operating systems and related software are rapidly
evolving, in such cases, the best you can do is search online or ask for help. In this
chapter, we give pointers on good places to look for help.

The source code can be retrieved with git or as an archive from GitHub. The steps
to install NumPy from source are straightforward and given here. We can retrieve
the source code for NumPy with git as follows:

$ git clone git://github.com/numpy/numpy.git numpy

B There are similar commands for SciPy, matplotlib, and IPython .

(refer to the table that follows after this piece of information). The
- IPython source code can be downloaded from https://github.

% com/ipython/ipython/releases as a source archive or ZIP
A

file. You can then unpack it with your favorite tool or with the
following command:

$ tar -xzf ipython.tar.gz -

[14]
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Please refer to the following table for the git commands and source archive/ zip links:

Library Git command Tarball/zip URL

NumPy git clone git://github.com/ https://github.com/numpy/
numpy/numpy.git numpy numpy/releases

SciPy git clone http://github.com/ | https://github.com/scipy/
scipy/scipy.git scipy scipy/releases

matplotlib | git clone git://github.com/ https://github.com/
matplotlib/matplotlib.git matplotlib/matplotlib/

releases
[Python git clone --recursive https://github.com/ipython/

https://github.com/ipython/ | ipython/releases
ipython.git

Install on /usr/local with the following command from the source code directory:

$ python setup.py build
$ sudo python setup.py install --prefix=/usr/local

To build, we need a C compiler such as GCC and the Python header files in the
python-dev or python-devel package.

Installing with setuptools

If you have setuptools or pip, you can install NumPy, SciPy, matplotlib, and IPython
with the following commands. For each library, we give two commands, one for
setuptools and one for pip. You only need to choose one command per pair:

$ easy install numpy
$ pip install numpy

$ easy install scipy
$ pip install scipy

$ easy install matplotlib
$ pip install matplotlib

$ easy install ipython
$ pip install ipython

It may be necessary to prepend sudo to these commands if your current user doesn't
have sufficient rights on your system.
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NumPy arrays

After going through the installation of NumPy, it's time to have a look at NumPy
arrays. NumPy arrays are more efficient than Python lists when it comes to numerical
operations. NumPy arrays are, in fact, specialized objects with extensive optimizations.
NumPy code requires less explicit loops than equivalent Python code. This is based

on vectorization.

If we go back to highschool mathematics, then we should remember the concepts

of scalars and vectors. The number 2, for instance, is a scalar. When we add 2 to 2,
we are performing scalar addition. We can form a vector out of a group of scalars.

In Python programming terms, we will then have a one-dimensional array. This
concept can, of course, be extended to higher dimensions. Performing an operation
on two arrays, such as addition, can be reduced to a group of scalar operations. In
straight Python, we will do that with loops going through each element in the first
array and adding it to the corresponding element in the second array. However, this
is more verbose than the way it is done in mathematics. In mathematics, we treat the
addition of two vectors as a single operation. That's the way NumPy arrays do it too,
and there are certain optimizations using low-level C routines, which make these
basic operations more efficient. We will cover NumPy arrays in more detail in the
following chapter, Chapter 2, NumPy Arrays.

A simple application

Imagine that we want to add two vectors called a and b. The word vector is used here
in the mathematical sense, which means a one-dimensional array. We will learn in
Chapter 3, Statistics and Linear Algebra, about specialized NumPy arrays that represent
matrices. The vector a holds the squares of integers 0 to n; for instance, if n is equal to
3, a contains 0, 1, or 4. The vector b holds the cubes of integers 0 to 7, so if n is equal to
3, then the vector b is equal to 0, 1, or 8. How would you do that using plain Python?
After we come up with a solution, we will compare it with the NumPy equivalent.

The following function solves the vector addition problem using pure Python
without NumPy:

def pythonsum(n) :
a = range (n)
b = range(n)

c =[]

for i in range(len(a)) :
ali] = 1 ** 2
b[i] = 1 **x 3
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c.append(ali] + bl[il])

return c

The following is a function that solves the vector addition problem with NumPy:

def numpysum(n) :
a = numpy.arange (n) ** 2
b = numpy.arange(n) ** 3
c=a+b
return c

Notice that numpysum () does not need a for loop. Also, we used the arange ()
function from NumPy, which creates a NumPy array for us with integers from
0 to n. The arange () function was imported; that is why it is prefixed with numpy.

Now comes the fun part. Remember that it was mentioned in the Preface that NumPy
is faster when it comes to array operations. How much faster is Numpy, though? The
following program will show us by measuring the elapsed time in microseconds for
the numpysum () and pythonsum () functions. It also prints the last two elements of
the vector sum. Let's check that we get the same answers using Python and NumPy:

#!/usr/bin/env/python

import sys
from datetime import datetime
import numpy as np

nmnn

This program demonstrates vector addition the Python way.
Run from the command line as follows

python vectorsum.py n
where n is an integer that specifies the size of the vectors.

The first vector to be added contains the squares of 0 up to n.
The second vector contains the cubes of 0 up to n.

The program prints the last 2 elements of the sum and the elapsed
time.

nmnn

def numpysum(n) :
a = np.arange(n) ** 2

[17]
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np.arange (n) ** 3
c=a+b

return c

def pythonsum(n) :
a = range(n)
b = range(n)

c =[]

for i in range(len(a)):
ali] = 1 ** 2
b[i] i *% 3
c.append(ali] + bl[il])

return c
size = int(sys.argv[1l])
start = datetime.now()

c = pythonsum(size)

delta = datetime.now() - start

print "The last 2 elements of the sum", c[-2:]

print "PythonSum elapsed time in microseconds", delta.microseconds

start = datetime.now/()

c = numpysum(size)

delta = datetime.now() - start

print "The last 2 elements of the sum", c[-2:]

print "NumPySum elapsed time in microseconds", delta.microseconds

The output of the program for 1000, 2000, and 3000 vector elements is as follows:

$ python vectorsum.py 1000

The last 2 elements of the sum [995007996, 998001000]
PythonSum elapsed time in microseconds 707

The last 2 elements of the sum [995007996 998001000]

NumPySum elapsed time in microseconds 171

$ python vectorsum.py 2000
The last 2 elements of the sum [7980015996, 7992002000]
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PythonSum elapsed time in microseconds 1420
The last 2 elements of the sum [7980015996 7992002000]

NumPySum elapsed time in microseconds 168

$ python vectorsum.py 4000

The last 2 elements of the sum [63920031996, 63968004000]
PythonSum elapsed time in microseconds 2829

The last 2 elements of the sum [63920031996 639680040001

NumPySum elapsed time in microseconds 274

Clearly, NumPy is much faster than the equivalent normal Python code. One thing
is certain; we get the same results whether we are using NumPy or not. However,
the result that is printed differs in representation. Notice that the result from the
numpysum () function does not have any commas. How come? Obviously, we are
not dealing with a Python list but with a NumPy array. We will learn more about
NumPy arrays in the next chapter, Chapter 2, NumPy Arrays.

Using IPython as a shell

Scientists, data analysts, and engineers are used to experimenting. IPython was
created by scientists with experimentation in mind. The interactive environment that
IPython provides is viewed by many as a direct answer to MATLAB, Mathematica,
and Maple.

The following is a list of features of the IPython shell:

* Tab completion, which helps you find a command
* History mechanism

* Inline editing

* Ability to call external Python scripts with $run

*  Access to system commands

* The pylab switch

*  Access to the Python debugger and profiler

The following list describes how to use the IPython shell:

* The pylab switch: The pylab switch automatically imports all the Scipy,
NumPy, and matplotlib packages. Without this switch, we would have to
import these packages ourselves.
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All we need to do is enter the following instruction on the command line:
$ ipython -pylab

Type "copyright", "credits" or "license" for more information.

IPython 2.0.0-dev -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.

%Squickref -> Quick reference.

help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra
details.

Welcome to pylab, a matplotlib-based Python environment
[backend: MacOSX].

For more information, type 'help(pylab)'.
In [1]: quit()

a1

~Q The quit () function or Ctrl + D quits the IPython shell.

* Saving a session: We might want to be able to go back to our experiments. In
[Python, it is easy to save a session for later use, with the following command:

In [1]: %logstart

Activating auto-logging. Current session state plus future
input saved.

Filename : ipython log.py
Mode : rotate

Output logging : False

Raw input log : False
Timestamping : False
State : active

Logging can be switched off as follows:

In [9]: %logoff
Switching logging OFF
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* Executing system shell command: Execute a system shell command in
the default IPython profile by prefixing the command with the ! symbol.
For instance, the following input will get the current date:

In [1]: !date

In fact, any line prefixed with ! is sent to the system shell. Also, we can store
the command output as shown here:

In [2]: thedate = !date
In [3]: thedate

* Displaying history: We can show the history of commands with the $hist
command, for example:

In [1]: a =2 + 2

In [2]: a
out[2]: 4

In [3]: %hist

a=2+ 2
a
%hist

This is a common feature in Command Line Interface (CLI) environments.
We can also search through the history with the -g switch as follows:
In [5]: %hist -g a = 2

l: a =2 + 2

Downloading the example code

W You can download the example code files for all the Packt
~ books you have purchased from your account at http://
Q www . packtpub. com. If you purchased this book elsewhere,
you can visit http: //www.packtpub.com/support and
register to have the files e-mailed directly to you.

We saw a number of so-called magic functions in action. These functions start with
the % character. If the magic function is used on a line by itself, the % prefix is optional.
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Reading manual pages

When we are in IPython's pylab mode ($ ipython -pylab), we can open manual
pages for NumPy functions with the help command. It is not necessary to know the
name of a function. We can type a few characters and then let tab completion do its
work. Let's, for instance, browse the available information for the arange () function.

We can browse the available information in either of the following two ways:

* Calling the help function: Call the help command. Type in a few characters
of the function and press the Tab key.

In [1]: help ar

arange arcsin arctan2 argmin around array_equal array_split
arccos arcsinh arctanh argsort array array_equiv  array_str
arccosh arctan argmax argwhere array2string array_repr arrow

* Querying with a question mark: Another option is to append a question
mark to the function name. You will then, of course, need to know the
function name, but you don't have to type help, for example:

In [3]: arange?

Tab completion is dependent on readline, so you need to make sure
that it is installed. It can be installed with setuptools with one of the
following commands:

$ easy install readline

$ pip install readline

The question mark gives you information from docstrings.

IPython notebooks

If you have browsed the Internet looking for information on Python, it is very likely
that you have seen IPython notebooks. These are web pages with text, charts, and
Python code in a special format. Have a look at these notebook collections at the
following links:

® https://github.com/ipython/ipython/wiki/A-gallery-of-
interesting-IPython-Notebooks

® http://nbviewer.ipython.org/github/ipython/ipython/tree/2.x/
examples/
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Often, the notebooks are used as an educational tool or to demonstrate Python
software. We can import or export notebooks either from plain Python code or using
the special notebook format. The notebooks can be run locally, or we can make them
available online by running a dedicated notebook server. Certain cloud computing
solutions, such as Wakari and PiCloud, allow you to run notebooks in the Cloud.
Cloud computing is one of the topics of Chapter 11, Environments Outside the Python
Ecosystem and Cloud Computing.

Where to find help and references

The main documentation website for NumPy and SciPy is at http://docs.scipy.
org/doc/. Through this web page, we can browse the NumPy reference guide at
http://docs.scipy.org/doc/numpy/reference/ and the user guide as well as
several tutorials.

The popular Stack Overflow software development forum has hundreds of questions
tagged numpy. To view them, go to http://stackoverflow.com/questions/
tagged/numpy.

This might be stating the obvious, but numpy can also be substituted with scipy,
ipython, or almost anything of interest. If you are really stuck with a problem or you
want to be kept informed of NumPy development, you can subscribe to the NumPy
discussion mailing list. The e-mail address is numpy-discussion@scipy.org. The
number of e-mails per day is not too high, and there is almost no spam to speak of.
Most importantly, developers actively involved with NumPy also answer questions
asked on the discussion group. The complete list can be found at http: //www.
scipy.org/Mailing Lists.

For IRC users, there is an IRC channel on irc://irc.freenode.net. The channel
is called #scipy, but you can also ask NumPy questions since SciPy users also have
knowledge of NumPy, as SciPy is based on NumPy. There are at least 50 members
on the SciPy channel at all times.

Summary

In this chapter, we installed NumPy, SciPy, matplotlib, and IPython that we will
be using in tutorials. We got a vector addition program working and convinced
ourselves that NumPy offers superior performance. In addition, we explored the
available documentation and online resources.

In the next chapter, Chapter 2, NumPy Arrays, we will take a look under the hood of
NumPy and explore some fundamental concepts including arrays and data types.
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After installing NumPy and other key Python-programming libraries and getting
some code to work, it's time to pass over NumPy arrays. This chapter acquaints you
with the fundamentals of NumPy and arrays. At the end of this chapter, you will
have a basic understanding of NumPy arrays and their related functions.

The topics we will address in this chapter are as follows:

* Data types

* Array types

* Type conversions

* Creating arrays

* Indexing

* Fancy indexing

* Slicing

* Manipulating shapes

The NumPy array object

NumPy has a multidimensional array object called ndarray. It consists of two parts,
which are as follows:

e The actual data

* Some metadata describing the data

The bulk of array procedures leaves the raw information unaffected; the sole facet
that varies is the metadata.
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We have already discovered in the preceding chapter how to produce an array by
applying the arange () function. Actually, we made a one-dimensional array that
held a set of numbers. The ndarray can have more than a single dimension.

The advantages of NumPy arrays

The NumPy array is, in general, homogeneous (there is a particular record array

type that is heterogeneous) — the items in the array have to be of the same type. The
advantage is that if we know that the items in an array are of the same type, it is easy
to ascertain the storage size needed for the array. NumPy arrays can execute vectorized
operations, processing a complete array, in contrast to Python lists, where you usually
have to loop through the list and execute the operation on each element. Also, NumPy
utilizes an optimized C API to make them particularly quick.

NumPy arrays are indexed just like in Python, commencing from 0. Data types are
represented by special objects. These objects will be discussed comprehensively
further in this chapter.

We will make an array with the arange () subroutine again (examine
arrayattributes.py from this book's code). In this chapter, you will see snippets
from IPython sessions where NumPy is already imported. Here's how to get the
data type of an array:

In: a = arange(5)
In: a.dtype
Out: dtype('intée4"')

The data type of the array a is int64 (at least on my computer), but you may get
int32 as the output if you are using 32-bit Python. In both the cases, we are dealing
with integers (64 bit or 32 bit). Besides the data type of an array, it is crucial to know
its shape. The example in Chapter 1, Getting Started with Python Libraries, demonstrated
how to create a vector (actually, a one-dimensional NumPy array). A vector is
commonly used in mathematics but most of the time we need higher-dimensional
objects. Let's find out the shape of the vector we produced a few minutes ago:

In: a

Out: array ([0, 1, 2, 3, 4])
In: a.shape

Out: (5,)

As you can see, the vector has five components with values ranging from o to 4.
The shape property of the array is a tuple; in this instance, a tuple of 1 element,
which holds the length in each dimension.
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Creating a multidimensional array

Now that we know how to create a vector, we are set to create a multidimensional
NumPy array. After we produce the matrix, we will again need to show its shape
(check arrayattributes.py from this book's code bundle), as demonstrated in the
following code snippets:

1. Create a multidimensional array as follows:

In: m = array([arange(2), arange(2)])
In: m
Out:
array([[0, 17,
(o, 111)

2. Show the array shape as follows:

In: m.shape
Out: (2, 2)

We made a 2 x 2 array with the arange () subroutine. The array () function creates
an array from an object that you pass to it. The object has to be an array, for example,
a Python list. In the previous example, we passed a list of arrays. The object is the
only required parameter of the array () function. NumPy functions tend to have

a heap of optional arguments with predefined default options.

Selecting NumPy array elements

From time to time, we will wish to select a specific constituent of an array. We will
take a look at how to do this, but to kick off, let's make a 2 x 2 matrix again (see the
elementselection.py file in this book's code bundle):

In: a = array([[1,2],1[3,4]11)
In: a

Out:

array([[1, 2],

[3, 411)

The matrix was made this time by giving the array () function a list of lists. We will
now choose each item of the matrix one at a time, as shown in the following code
snippet. Recall that the index numbers begin from o:

In: al0,0]
Out: 1
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In: al0,1]
Out: 2
In: all,0]
Out: 3
In: all,1]
Out: 4

As you can see, choosing elements of an array is fairly simple. For the array a, we
just employ the notation a [m, n], where m and n are the indices of the item in the
array. Have a look at the following figure for your reference:

[0.0]  [0.1]
1.0 0.1

NumPy numerical types

Python has an integer type, a float type, and complex type; nonetheless, this is not
sufficient for scientific calculations. In practice, we still demand more data types with
varying precisions and, consequently, different storage sizes of the type. For this
reason, NumPy has many more data types. The bulk of the NumPy mathematical
types ends with a number. This number designates the count of bits related to the type.
The following table (adapted from the NumPy user guide) presents an overview of
NumPy numerical types:

Type Description

bool Boolean (True or False) stored as a bit

inti Platform integer (normally either int32 or int64)

int8 Byte (-128 to 127)

intleé Integer (-32768 to 32767)

int32 Integer (-2 ** 31 to 2 ** 31 -1)

inté64 Integer (-2 ** 63 to 2 ** 63 -1)

uints Unsigned integer (0 to 255)

uintile Unsigned integer (0 to 65535)

uint32 Unsigned integer (0 to 2 ** 32 - 1)

uinté4 Unsigned integer (0 to 2 ** 64 - 1)

floatle Half precision float: sign bit, 5 bits exponent, and 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, and 23 bits mantissa

[28]
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Type Description

float64 or Double precision float: sign bit, 11 bits exponent, and 52 bits mantissa

float

complex64 Complex number, represented by two 32-bit floats (real and imaginary
components)

complex128 or Complex number, represented by two 64-bit floats (real and imaginary
complex components)

For each data type, there exists a matching conversion function (look at the
numericaltypes.py script of this book's code bundle):

In: floaté64 (42)

Out: 42.0
In: int8(42.0)
Out: 42

In: bool (42)
Out: True

In: bool(0)
Out: False

In: bool (42.0)
Out: True

In: float (True)

Out: 1.0
In: float (False)
Out: 0.0

Many functions have a data type argument, which is frequently optional:

In: arange (7, dtype=uintlé)
Out: array([0, 1, 2, 3, 4, 5, 6], dtype=uintlé)

It is important to be aware that you are not allowed to change a complex number
into an integer. Attempting to do that sparks off a TypeError:

In: float(42.0 + 1.3)
Traceback (most recent call last):
File "numericaltypes.py", line 45, in <module>
print float(42.0 + 1.3j)
TypeError: can't convert complex to float

The same goes for conversion of a complex number into a floating-point number.

By the way, the j component is the imaginary coefficient of a complex number.

Even so, you can convert a floating-point number to a complex number, for example,
complex (1.0). The real and imaginary pieces of a complex number can be pulled
out with the real () and imag () functions, respectively.

[29]
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Data type objects

Data type objects are instances of the numpy . dtype class. Once again, arrays have
a data type. To be exact, each element in a NumPy array has the same data type.
The data type object can tell you the size of the data in bytes. The size in bytes is
given by the itemsize property of the dtype class (refer to dtypeattributes.py):

In: a.dtype.itemsize
Out: 8

Character codes

Character codes are included for backward compatibility with Numeric. Numeric is
the predecessor of NumPy. Its use is not recommended, but the code is supplied here
because it pops up in various locations. You should use the dtype object instead. The
following table lists several different data types and character codes related to them:

Type Character code

integer i
Unsigned integer
Single precision float
Double precision float
bool

complex

string

unicode

Void

< C U o Qo rmhoge

Take a look at the following code to produce an array of single precision floats
(refer to charcodes.py in this book's code bundle):

In: arange(7, dtype='f"')
Out: array([ 0., 1., 2., 3., 4., 5., 6.1, dtype=float32)

Likewise, this creates an array of complex numbers:

In: arange(7, dtype='D"')
Out: array([ 0.40.j, 1.+40.j, 2.+0.j, 3.+0.j, 4.40.3, 5.+40.73,
6.+0.31)

[30]
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The dtype constructors

We have a variety of means to create data types. Take the case of floating-point data
(have a look at dtypeconstructors. py in this book's code bundle):

* We can use the general Python float, as shown in the following lines of code:

In: dtype(float)
Out: dtype('floate4d')

*  We can specify a single precision float with a character code:
In: dtype('f'")
Out: dtype('float32')

* We can use a double precision float with a character code:
In: dtype('d')
Out: dtype('floate4d')

*  We can pass the dtype constructor a two-character code. The first character
stands for the type; the second character is a number specifying the number
of bytes in the type (the numbers 2, 4, and 8 correspond to floats of 16, 32,
and 64 bits, respectively):
In: dtype('f8')
Out: dtype('floate4d')

A (truncated) list of all the full data type codes can be found by applying
sctypeDict.keys ():

In: sctypeDict.keys()
Out: [0, ..

li2]l

'int0']

The dtype attributes

The dtype class has a number of useful properties. For instance, we can get
information about the character code of a data type through the properties of
dtype (refer to dtypeattributes2.py in this book's code bundle):

In: t = dtype('Floaté4')
In: t.char
Out: '4d’

The type attribute corresponds to the type of object of the array elements:

In: t.type
Out: <type 'numpy.float64'>

[31]
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The str attribute of dtype gives a string representation of a data type. It begins

with a character representing endianness, if appropriate, then a character code,
succeeded by a number corresponding to the number of bytes that each array item
needs. Endianness, here, entails the way bytes are ordered inside a 32- or 64-bit
word. In the big-endian order, the most significant byte is stored first, indicated by >.
In the little-endian order, the least significant byte is stored first, indicated by <,

as exemplified in the following lines of code:

In: t.str
Out: '<f8'

One-dimensional slicing and indexing

Slicing of one-dimensional NumPy arrays works just like the slicing of standard
Python lists. Let's define an array containing the numbers 0, 1, 2, and so on up to
and including 8. We can select a part of the array from indexes 3 to 7, which extracts
the elements of the arrays 3 through 6 (have a look at s1icingld.py in this book's
code bundle):

In: a = arange(9)
In: al3:7]
Out: array([3, 4, 5, 6])

We can choose elements from indexes the 0 to 7 with an increment of 2:

In: al[:7:2]
out: array ([0, 2, 4, 6])

Just as in Python, we can use negative indices and reverse the array:

In: al::-1]
Out: array(I[8, 7, 6, 5, 4, 3, 2, 1, 0])

Manipulating array shapes

We have already learned about the reshape () function. Another repeating
chore is the flattening of arrays. Flattening in this setting entails transforming a
multidimensional array into a one-dimensional array. The code for this example
is in the shapemanipulation.py file in this book's code bundle.

import numpy as np

# Demonstrates multi dimensional arrays slicing.
#

# Run from the commandline with

[32]
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#

# python shapemanipulation.py

print "In: b = arange(24) .reshape(2,3,4)"
b = np.arange(24) .reshape(2,3,4)

print "In: b"

print b

#out :

#array ([[[ O, 1, 2, 3],
[ 4, 5, 6, 71,
[ 8 9, 10, 11]1],

[[12, 13, 14, 151,
[16, 17, 18, 19],
[20, 21, 22, 23111)

H oH H H H

print "In: b.ravel ()"

print b.ravel ()

#Out :

#array ([ O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16,

# 17, 18, 19, 20, 21, 22, 23])

print "In: b.flatten()"

print b.flatten()

#Out :

#array ([ O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16,

# 17, 18, 19, 20, 21, 22, 23])

print "In: b.shape = (6,4)"
b.shape = (6,4)

print "In: b"

print b

#out :

#array ([[ O, 1, 2, 3],
[ 4, 5, 6, 71,
[ 8, 9, 10, 111,
[12, 13, 14, 151,
[16, 17, 18, 191,
[20, 21, 22, 2311])

H H H H H*

print "In: b.transpose()"

[33]

www.it-ebooks.info


http://www.it-ebooks.info/

NumPy Arrays

print b.transpose ()

#out :

#array ([[ 0o, 4, 8, 12, 16,
# [ 1, 5, 9, 13, 17,
# [ 2, 6, 10, 14, 18,
# [ 3, 7, 11, 15, 19,

print "In: b.resize((2,12))"
b.resize((2,12))

print "In: b"

print b

#out :

#array([[ o, 1, 2, 3, 4,
# [12, 13, 14, 15, 16,

20],
217,
22],
2311)

9,
21,

10,
22,

11],
2311)

We can manipulate array shapes using the following functions:

* Ravel: We can accomplish this with the ravel () function as follows:

In: b
Out:
array([[[ o, 1, 2, 31,
[ 4, 5, 6, 71,
[ 8, 9, 10, 1111,
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]111)
In: b.ravel()
Out:
array([ o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])

* Flatten: The appropriately named function, flatten (), does the same

as ravel (). However, flatten () always allocates new memory, whereas
ravel might give back a view of the array. This means that we can directly
manipulate the array as follows:

In: b.flatten()
Out:
array ([ O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 231)
[34]
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Setting the shape with a tuple: Besides the reshape () function, we can also
define the shape straightaway with a tuple, which is exhibited as follows:

In: b.shape = (6,4)
In: b
Out:

array([[ o, 1, 2, 3],
[ 4, 5, 6, 71,
[ 8, 9, 10, 111,
[12, 13, 14, 151,
[16, 17, 18, 191,
[20, 21, 22, 2311)

As you can understand, the preceding code alters the array immediately.
Now, we have a 6 x 4 array.

Transpose: In linear algebra, it is common to transpose matrices. Transposing
is a way to transform data. For a two-dimensional table, transposing means
that rows become columns and columns become rows. We can do this too

by using the following code:

In: b.transpose()
Out:

array([[ O 4, 8, 12, 16, 207,
1, 5, 9, 13, 17, 211,
2 6, 10, 14, 18, 227,
3 7

, 11, 15, 19, 2311)

Resize: The resize () method works just like the reshape () method,
but changes the array it works on:

In: b.resize((2,12))

In: b

Out:

array([[ O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2311)

Stacking arrays

Arrays can be stacked horizontally, depth wise, or vertically. We can use, for
this goal, the vstack (), dstack (), hstack (), column_stack (), row_stack(),
and concatenate () functions. To start with, let's set up some arrays (refer to
stacking.py in this book's code bundle):

In: a = arange(9) .reshape(3,3)
In: a

[35]
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Out:

array([[0, 1, 2],
[3, 4, 51,
[e, 7, 811)

In: b =2 * a

In: b

Out:

array([[ 0, 2, 41,
[ 6, 8, 101,
[12, 14, 16]1)

As mentioned previously, we can stack arrays using the following techniques:

* Horizontal stacking: Beginning with horizontal stacking, we will shape a
tuple of ndarrays and hand it to the hstack () function to stack the arrays.
This is shown as follows:

In: hstack((a, b))
Out:

array([[ 0o, 1, 2, o0, 2, 4],
[ 3, 4, 5, 6, 8, 1017,
[ 6

, 7, 8, 12, 14, 16]1)

We can attain the same thing with the concatenate () function, which is
shown as follows:

In: concatenate((a, b), axis=1l)
Out:

array([[ o, 1, 2, o, 2, 4],
[ 3, 4, 5, 6, 8, 1017,
[ 6

, 7, 8, 12, 14, 16]1)

The following diagram depicts horizontal stacking;:

S hstack
ac|
N or - A B
concatenate
axis=1
B |-

* Vertical stacking: With vertical stacking, a tuple is formed again.
This time it is given to the vstack () function to stack the arrays.
This can be seen as follows:

In: vstack((a, b))
Out:

[36]
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array([[ 0, 1, 21,
[ 3, 4, 57,
[e, 7, 81,
[ o, 2, 471,
[ 6, 8, 1071,
[

12, 14, 16]11])

The concatenate () function gives the same outcome with the axis
parameter fixed to 0. This is the default value for the axis parameter,
as portrayed in the following code:

In: concatenate((a, b), axis=0)

Out:

array([[ o, 1, 21,
[ 3, 4, 51,
[ e, 7, 81,
[ o, 2, 41,
[ 6, 8, 101,
[

12, 14, 161])

Refer to the following figure for vertical stacking;:

-~ stack
~, | vstac
* or - A
concatenate
. axis=0
B B

Depth stacking: To boot, there is the depth-wise stacking employing
dstack () and a tuple, of course. This entails stacking a list of arrays
along the third axis (depth). For example, we could stack 2D arrays
of image data on top of each other as follows:

In: dstack((a, b))
Out:

array ([ [I[

[

[

([

[

[

([

[

[

01,
2],
411,
61,
81,
1011,
12],
147,
lelll)

W J 0O Ul b W INEHE O
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Column stacking: The column_stack () function stacks 1D arrays
column-wise. This is shown as follows:
In: oned = arange(2)
In: oned
Out: array ([0, 11)
In: twice oned = 2 * oned
In: twice oned
Out: array ([0, 2])
In: column_ stack((oned, twice oned))
Out:
array([[0, 0],
(1, 211)

2D arrays are stacked the way the hstack () function stacks them,
as demonstrated in the following lines of code:

In: column stack((a, b))

Out:

array([[ o, 1, 2, o0, 2, 47,
[ 3, 4, 5, 6, 8, 101,
[ 6, 7, 8, 12, 14, 16]1])

In: column_stack((a, b)) == hstack((a, b))

Out:

array([[ True, True, True, True, True, True],
[ True, True, True, True, True, Truel]l,
[ True, True, True, True, True, Truell,

dtype=bool)

Yes, you guessed it right! We compared two arrays with the == operator.

Row stacking: NumPy, naturally, also has a function that does row-wise
stacking. It is named row_stack () and for 1D arrays, it just stacks the arrays
in rows into a 2D array:
In: row_stack((oned, twice oned))
Out:
array ([[0, 17,

(o, 211)

The row_stack () function results for 2D arrays are equal to the vstack ()
function results:

In: row_stack((a, b))
Out:

[38]
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array ([

O O O W O
[c I NN B

’

’

[12, 14,
In: row_stack((a,b))

Out:

array([[ True,
True,
True,
True,
True,

[
[
[
[
[
[

True,

2],
5],
81,
4],
107,
1611)

True,
True,
True,
True,
True,
True,

== vstack((a, b))

Truel ,
True]l ,
True]l ,
Truel ,
Truel ,
Truel]], dtype=bool)

Splitting NumPy arrays

Arrays can be split vertically, horizontally, or depth wise. The functions involved
are hsplit (), vsplit (), dsplit (), and split (). We can split arrays either into
arrays of the same shape or indicate the location after which the split should happen.
Let's look at each of the functions in detail:

* Horizontal splitting: The following code splits a 3 x 3 array on its horizontal
axis into three parts of the same size and shape (see splitting.py in this

book's code bundle):

In: a

Out:

array ([[0, 1, 2],
[3, 4, 5],
[6, 7, 811)

In: hsplit(a, 3)

Out:

larray ([[0],
(31,
[611),

array ([[1],
(41,
[711),

array ([[2],
(51,
[811)1

[39]
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Liken it with a call of the split () function, with an additional argument,
axis=1:

In: split(a, 3, axis=1)
Out:
larray ([[0],
[31,
[611),
array ([[1],
[41,
[711),
array ([[2],
[51,
[811)1

* Vertical splitting: vsplit () splits along the vertical axis:
In: vsplit(a, 3)

Out: [array([[0, 1, 2]1), array([[3, 4, 511), array([l6, 7,
811)1

The split () function, with axis=0, also splits along the vertical axis:

In: split(a, 3, axis=0)
Out: [array([[0, 1, 2]1), array([I[3, 4, 5]11), array([[e, 7,
811)1

* Depth-wise splitting: The dsplit () function, unsurprisingly, splits
depth-wise. We will require an array of rank 3 to begin with:

24, 25, 26111)
In: dsplit(c, 3)

Out:

l[array ([[[ 01,

In: ¢ = arange(27) .reshape(3, 3, 3)
In: c
Out:
array ([[[ O, 1, 2],
[ 3, 4, 51,
[ 6, 7, 811,
[[ 9, 10, 117,
[12, 13, 14],
[15, 16, 1711,
[[18, 19, 201,
[21, 22, 23],
[
i

[40]
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31,
611,
91,
12],
1511,
18],
2171,
24111),
[ 11,
4],
711,
101,
131,

[

[
[[
[
[
[
[
[
[
[
[
[
[
(1611,
[
[
[
[
[
[
[
[
[
[
[
[

[
array ([
[

[[191,
22],
25111),
[ 21,
51,
811,
1171,
14],
1711,
[[20],
23],

26111)1

array ([

[

NumPy array attributes

Let's learn more about the NumPy array attributes with the help of an example.
For this example, see arrayattributes2.py provided in the book's code bundle:

import numpy as np
Demonstrates ndarray attributes.

#

#

# Run from the commandline with
#

# python arrayattributes2.py

b

= np.arange (24) .reshape (2, 12)
print "In: b"
print b

[41]
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#Out :
#array([[ O, 1, 2, 3, 4, 5, 6, 7, 8, 9,
# [12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

print "In: b.ndim"
print b.ndim
#Out: 2

print "In: b.size"
print b.size
#Out: 24

print "In: b.itemsize"
print b.itemsize
#Out: 8

print "In: b.nbytes"
print b.nbytes
#Out: 192

print "In: b.size * b.itemsize"
print b.size * b.itemsize
#Out: 192

print "In: b.resize(6,4)"
print b.resize(6,4)

print "In: b"

print b

#out :

#array ([[ O, 1, 2, 3],
[ 4, 5, 6, 71,
[ 8, 9, 10, 111,
[12, 13, 14, 151,
[16, 17, 18, 191,
[20, 21, 22, 2311])

H oH H H H*

print "In: b.T"

print b.T

#Out :

#array([[ 0, 4, 8, 12, 16, 20],
# [1, 5, 9, 13, 17, 211,

11],
2311)

[42]
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print
print
#Out :

print

print
#Out :

print

, 6, 10, 14, 18, 22],
, 7, 11, 15, 19, 2311)

]
w N

"In: b.ndim"

b.ndim

1

"In: b.T"
b.T

array ([0, 1, 2, 3, 4])

"In: b = array([1.7 + 1, 2.3

b = np.array([1.F7 + 1, 2.3 + 31)

print
print
#Out :

print
print
#Out :

print
print
#Out :

print
print
#Out :

print

print
#Out :

print

"In: b"
b
array ([ 1.+41.3, 3.+2.3])

"In: b.real"
b.real
array ([ 1., 3.1)

"In: b.imag"
b.imag
array ([ 1., 2.1)

"In: b.dtype"
b.dtype
dtype ('complex128')

"In: b.dtype.str"
b.dtype.str
'<clée!

+ 31)"

"In: b = arange(4) .reshape(2,2)"

b = np.arange (4) .reshape(2,2)

print
print
#Out :

"In: b
b

[43]
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#array ([[0, 11,
# [2, 311)

print "In: £ = b.flat"
f = b.flat

print "In: £"
print £
#Out: <numpy.flatiter object at 0x103013e00>

print "In: for it in f: print it"
for it in f:
print it
#0
#1
#2
#3

print "In: b.flat[2]"
print b.flat[2]
#Out: 2

print "In: b.flat[[1,3]]"
print b.flat[[1,3]]
#out: array([1, 3])

print "In: b"

print b

#out :

#array ([[7, 71,
# [7, 711)

print "In: b.flat[[1,3]] = 1"
b.flat[[1,3]] =1

print "In: b"

print b

#out :

#array ([[7, 11,
# [7, 111)

[44]
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Besides the shape and dtype attributes, ndarray has a number of other properties,
as shown in the following list:

* ndim gives the number of dimensions, as shown in the following code snippet:
In: b
Out:
array([[ 0o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111,
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]1])
In: b.ndim
Qut: 2

* size holds the count of elements. This is shown as follows:

In: b.size
Out: 24

* itemsize returns the count of bytes for each element in the array,
as shown in the following code snippet:

In: b.itemsize
Out: 8

* If you require the full count of bytes the array needs, you can have a look
at nbytes. This is just a product of the itemsize and size properties:

In: b.nbytes

Out: 192
In: b.size * b.itemsize
Out: 192

* The T property has the same result as the transpose () function, which is
shown as follows:

In: b.resize(6,4)

In: b

Out:

array([[ o, 1, 2, 3],
[ 4, 5, 6, 71,
[ 8, 9, 10, 111,
[12, 13, 14, 1571,
[16, 17, 18, 191,
[20, 21, 22, 2311)

In: b.T

Out:

array([[ 0, 4, 8, 12, 16, 201,
[1, 5, 9, 13, 17, 211,
[ 2, 6, 10, 14, 18, 221,
[ 3, 7, 11, 15, 19, 2311)

[45]

www.it-ebooks.info


http://www.it-ebooks.info/

NumPy Arrays

If the array has a rank of less than 2, we will just get a view of the array:

In: b.ndim

Out: 1

In: b.T

Out: array([0, 1, 2, 3, 4])

Complex numbers in NumPy are represented by j. For instance, we can
produce an array with complex numbers as follows:

In: b = array([1.7 + 1, 2.7 + 31])

In: b

Out: array([ 1.+1.3, 3.+2.3])

The real property returns to us the real part of the array, or the array itself
if it only holds real numbers:

In: b.real
Out: array([ 1., 3.]1)

The imag property holds the imaginary part of the array:

In: b.imag
Out: array([ 1., 2.1)

If the array holds complex numbers, then the data type will automatically
be complex as well:

In: b.dtype

Out: dtype ('complexl128')
In: b.dtype.str

Out: '<cle'

The flat property gives back a numpy . flatiter object. This is the only
means to get a flatiter object; we do not have access toa flatiter
constructor. The £1at iterator enables us to loop through an array as

if it were a flat array, as shown in the following code snippet:

In: b = arange (4) .reshape(2,2)
In: b
Out:
array([[0, 1],
[2, 311)

In: = b.flat

f
In: £
Out: <numpy.flatiter object at 0x103013e00>
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In: for item in f: print item

w N B O

It is possible to straightaway obtain an element with the flatiter object:

In: b.flat[2]
Out: 2

Also, you can obtain multiple elements as follows:

In: b.flat[[1,3]]
Out: array([1, 3])

The flat property can be set. Setting the value of the £1at property leads
to overwriting the values of the entire array:

In: b.flat = 7

In: b

Out:

array ([[7, 7],
(7, 711)

We can also obtain selected elements as follows:
In: b.flat[[1,3]] =1
In: b
Out:
array([[7, 1],
[z, 111)

The next diagram illustrates various properties of ndarray:

itemsize | size | nbytes
|
[T
ndarray
ndim
‘ N flat
\
real _imag
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Converting arrays

We can convert a NumPy array to a Python list with the tolist () function (refer to
arrayconversion.py in this book's code bundle). The following is a brief explanation:

e Convert to a list:
In: b
Out: array ([ 1.+1.3, 3.+2.3])
In: b.tolist()
Out: [(1+137), (3+23)]

* The astype () function transforms the array to an array of the specified
data type:
In: b
Out: array ([ 1.+1.3, 3.+2.3])
In: b.astype(int)
/usr/local/bin/ipython:1: ComplexWarning: Casting complex
values to real discards the imaginary part
#!/usr/bin/python
Out: array([1, 31])
In: b.astype('complex')
Out: array ([ 1.+1.3, 3.+42.3])

We are dropping off the imaginary part when casting from the
%@‘\ complex type to int. The astype () function takes the name
g of a data type as a string too.

The preceding code won't display a warning this time because we used the right
data type.

Creating array views and copies

In the example about ravel (), views were brought up. Views should not be confused
with the construct of database views. Views in the NumPy universe are not read only
and you don't have the possibility to protect the underlying information. It is crucial
to know when we are handling a shared array view and when we have a replica of
the array data. A slice of an array, for example, will produce a view. This entails that
if you assign the slice to a variable and then alter the underlying array, the value of
this variable will change. We will create an array from the famed Lena picture, and
then create a view and alter it at the final stage. The Lena image array comes from

a SciPy function.
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1. Create a copy of the Lena array:

acopy = lena.copy()

2. Create a view of the array:

aview = lena.view ()

3. Set all the values in the view to 0 with a f1at iterator:

aview.flat = 0

The final outcome is that only one of the pictures depicts the model. The other ones
are censored altogether, as shown in the following screenshot:
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Refer to the following code of this tutorial (it is without comments to save space;
for the full code, have a look at copy_view.py), which shows the behavior of array
views and copies:

import scipy.misc
import matplotlib.pyplot as plt

lena = scipy.misc.lenaf()
acopy = lena.copy ()
aview = lena.view /()
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plt.subplot (221)
plt.imshow(lena)
plt.subplot (222)
plt.imshow (acopy)
plt.subplot (223)
plt.imshow (aview)
aview.flat = 0
plt.subplot (224)
plt.imshow (aview)
plt.show ()

As you can see, by altering the view at the end of the program, we modified the
original Lena array. This resulted in three blue (or black if you are reading the
print version of this book) pictures. The copied array was unchanged. It is crucial
to remember that views are not read only.

Fancy indexing

Fancy indexing is indexing that does not involve integers or slices, which is
conventional indexing. In this tutorial, we will practice fancy indexing to set the
diagonal values of the Lena photo to 0. This will draw black lines along the
diagonals, crossing through them.

The following is the code for this tutorial with comments taken away. The full
code is in fancy.py of this book's code bundle:

import scipy.misc
import matplotlib.pyplot as plt

lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]

lena [range (xmax), range(ymax)] = 0
lena[range (xmax-1,-1,-1), range(ymax)] = 0
plt.imshow(lena)

plt.show ()

The following is a brief explanation of the preceding code:

1. Set the values of the first diagonal to o.

To set the diagonal values to 0, we need to specify two different ranges
for the x and y values (coordinates in a Cartesian coordinate system):

lena [range (xmax), range(ymax)] = 0

[50]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

2. Set the values of the other diagonal to o.

To set the values of the other diagonal, we need a different set of ranges,
but the rules remain the same:

lena [range (xmax-1,-1,-1), range(ymax)] = 0

At the final stage, we produce the following picture with the diagonals
crossed out:
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We specified different ranges for the x values and y values. These ranges were used
to index the Lena array. Fancy indexing is done based on an internal NumPy iterator
object. The following three steps are performed:

1. The iterator object is created.

2. The iterator object gets bound to the array.

3. Array elements are accessed via the iterator.
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Indexing with a list of locations

Let's apply the ix_ () function to shuffle the Lena photo. The following is the code
for this example without comments. The finished code for the recipe can be found
in ix.py in this book's code bundle:

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

lena = scipy.misc.lenaf()
xmax = lena.shape[0]
ymax = lena.shape[1]

def shuffle indices(size):
arr = np.arange (size)
np.random.shuffle (arr)

return arr

xindices = shuffle indices (xmax)
np.testing.assert equal (len(xindices), xmax)
yindices = shuffle indices (ymax)
np.testing.assert equal (len(yindices), ymax)
plt.imshow(lena[np.ix (xindices, yindices)])
plt.show ()

This function produces a mesh from multiple sequences. We hand in parameters as
one-dimensional sequences and the function gives back a tuple of NumPy arrays,
for instance, as follows:

In : ix_([0,1], [2,3])
Out:
(array ([[0],[1]1]), array([[2, 311))

To index the NumPy array with a list of locations, execute the following steps:

1. Shuffle array indices.

Make an array with random index numbers with the shuffle () function
of the numpy . random subpackage. The function modifies the array in place.

def shuffle indices(size):
arr = np.arange (size)
np.random.shuffle (arr)

return arr
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2. Plot the shuffled indices, as shown in the following code:

plt.imshow(lena[np.ix (xindices, yindices)])

3. What we obtain is a totally scrambled Lena:

100

200

300

400

100 200 300 400 500

Indexing NumPy arrays with Booleans

Boolean indexing is indexing based on a Boolean array and falls in the family
of fancy indexing. Since Boolean indexing is a kind of fancy indexing, the way
it works is essentially the same.

The following is the code for this segment (refer to boolean indexing.py in this
book's code bundle):

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

lena = scipy.misc.lena ()

def get indices(size) :
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arr = np.arange (size)

)

return arr % 4 == 0

lenal = lena.copy ()

xindices = get indices(lena.shape[0])

yindices = get indices(lena.shape([1])

lenal [xindices, yindices] = 0
plt.subplot (211)
plt.imshow(lenal)

lena2 = lena.copy ()

lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] =0
plt.subplot (212)

plt.imshow(lena2)

plt.show ()

The preceding code implies that indexing occurs with the aid of a special iterator
object. The following steps will give you a brief explanation of the preceding code:

1.

Image with dots on the diagonal.

This is in some manner similar to the Fancy indexing section. This time
we choose modulo 4 points on the diagonal of the picture:
def get_indices(size):

arr = np.arange (size)

return arr % 4 ==

Then, we just use this selection and plot the points:

lenal = lena.copy ()

xindices = get indices(lena.shape[0])
yindices = get indices(lena.shape(1])
lenal [xindices, yindices] = 0
plt.subplot (211)

plt.imshow(lenal)

Set to 0 based on value.

Select array values between one quarter and three quarters of the maximum
value and set them to o:

lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] =
0
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3. The diagram with the two new pictures is presented as follows:
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Broadcasting NumPy arrays

NumPy attempts to execute a procedure even though the operands do not
have the same shape.

In this recipe, we will multiply an array and a scalar. The scalar is broadened
to the shape of the array operand and then the multiplication is executed.
The process described here is called broadcasting. The following is the entire
code for this recipe (refer to broadcasting.py in this book's code bundle):

import scipy.io.wavfile

import matplotlib.pyplot as plt
import urllib2

import numpy as np
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response =
urllib2.urlopen ('http://www.thesoundarchive.com/austinpowers/smash
ingbaby.wav')

print response.info ()

WAV _FILE = 'smashingbaby.wav'

filehandle = open(WAV_FILE, 'w')

filehandle.write (response.read())
filehandle.close ()

sample rate, data = scipy.io.wavfile.read(WAV_FILE)
print "Data type", data.dtype, "Shape", data.shape
plt.subplot (2, 1, 1)

plt.title("Original™")

plt.plot (data)

newdata = data * 0.2

newdata = newdata.astype (np.uint8)

print "Data type", newdata.dtype, "Shape", newdata.shape

scipy.io.wavfile.write ("quiet.wav",

sample rate, newdata)

plt.subplot (2, 1, 2)
plt.title("Quiet")
plt.plot (newdata)
plt.show ()

We will download a sound file and create a new version that is quieter:

1.

Reading a WAV file.

We will use standard Python code to download a sound file of Austin
Powers exclaiming Smashing, baby. SciPy has a wavfile subpackage, which
lets you load audio data or generate WAV files. If SciPy is installed, then we
should already have this subpackage. The read () function delivers a data
array and sample rate. In this exercise, we are only concerned about the data.

sample rate, data = scipy.io.wavfile.read(WAV_FILE)

Plot the original WAV data.
Plot the original WAV data with matplotlib and give the subplot the
title original:

plt.subplot (2, 1, 1)
plt.title("Original™")
plt.plot (data)
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Create a new array.

Now, we will use NumPy to produce a hushed sound sample. It is just a
matter of making a new array with smaller values by multiplying it with
a constant. This is where the trick of broadcasting happens. At the end,
we want to be certain that we have the same data type as in the original
array because of the WAV format.

newdata = data * 0.2

newdata = newdata.astype (np.uint8)

Write to a WAV file.

This new array can be saved in a new WAV file as follows:

scipy.io.wavfile.write ("quiet.wav",
sample rate, newdata)

Plot the new WAV data.

Plot the new data array with matplotlib as follows:

plt.subplot (2, 1, 2)
plt.title("Quiet™")
plt.plot (newdata)
plt.show ()

The result is a diagram of the original WAYV file data and a new array with
smaller values, as depicted in the following figure:
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Summary

In this chapter, we found out a heap about the NumPy basics: data types and arrays.
Arrays have various properties that describe them. You learned that one of these
properties is the data type, which, in NumPy, is represented by a full-fledged object.

NumPy arrays can be sliced and indexed in an effective way, compared to standard
Python lists. NumPy arrays have the extra ability to work with multiple dimensions.

The shape of an array can be modified in multiple ways, such as stacking, resizing,
reshaping, and splitting. A large number of convenience functions for shape
manipulation were presented in this chapter.

Having picked up the fundamentals, it's time to proceed to data analysis with the
commonly used functions in Chapter 3, Statistics and Linear Algebra. This includes
the usage of staple statistical and numerical functions.

[58]

www.it-ebooks.info


http://www.it-ebooks.info/

Statistics and Linear Algebra

Statistics and linear algebra are branches of mathematics that are especially useful for
data analysis. That's why we will focus on them in this chapter. Statistics is needed

to make inferences from raw data. For instance, we can compute that the data for a
variable has a certain arithmetic mean and standard deviation. From these numbers,
we can then infer a range and the expected value for this variable. Then, we can run
statistical tests to check how likely it is that we made the right conclusion.

Linear algebra concerns itself with systems of linear equations. These are easy to
solve with NumPy and SciPy using the 1inalg package. Linear algebra is useful,
for instance, to fit data to a model. We shall introduce other NumPy and SciPy
packages in this chapter for random number generation and masked arrays.

In this chapter, we will cover the following topics:

* Descriptive statistics

* The linalg package

* Polynomials

* Matrices as specialized ndarray subclasses
* Random numbers

* Continuous and discrete distributions

* Masked arrays

NumPy and SciPy modules

First, let's take a look at the NumPy and SciPy module documentation. What will
be described here is not a topic specific to data analysis, but more of a general
Python item.
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The following code prints the descriptions of subpackages for NumPy and SciPy:

import pkgutil as pu
import numpy as np
import matplotlib as mpl
import scipy as sp
import pydoc

print "NumPy version", np. version
print "SciPy version", sp._ version
print "Matplotlib version", mpl. version

def clean(astr):
= astr

s
# remove multiple spaces
s = ' '.join(s.split())

s

= s.replace('=','")
return s

def print desc(prefix, pkg path):
for pkg in pu.iter modules (path=pkg path) :

name = prefix + "." + pkg[1l]
if pkg([2] == True:
try:

docstr = pydoc.plain(pydoc.render doc (name))
docstr = clean (docstr)
start = docstr.find ("DESCRIPTION")
docstr = docstr[start: start + 140]
print name, docstr
except:
continue

print desc("numpy", np. path )
print
print
print
print desc("scipy", sp._path )

Using the standard Python modules pkgutil and pydoc, we can iterate through
subpackages in NumPy and SciPy and extract short descriptions of these subpackages.
We will also print the SciPy, matplotlib, and NumPy versions.
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The versions for the various software used in this chapter can be obtained from the
_ version__ attribute of the corresponding module as follows:

print "NumPy version", np. version
print "SciPy version", sp._ version
print "Matplotlib version", mpl. version

I have tested the code with the following versions (of course, you don't need to have
the exact same versions):

*  NumPy Version 1.9.0.dev-e886943
* SciPy Version 0.13.2
* matplotlib Version 1.4.x

We can iterate through subpackages given a path with the iter _modules () function
of pkgutil. The result of the function call is a list of tuples containing three elements
each. For us, only the second and third elements are interesting right now. The second
element contains the name of the subpackage and the third element is a Boolean
indicating a subpackage.

for pkg in pu.iter modules (path=pkg path) :

The pydoc.render_doc () function returns the documentation string for a given
subpackage or function. It returns a string that can contains non-printable characters,
so we use the pydoc.plain () function to get rid of them. From this string, we will
extract a part of the text, following the DESCRIPTION heading (not the whole text

to save space).

docstr = pydoc.plain(pydoc.render doc (name))

The preceding code should make it easy to find information for locally installed
Python modules. For NumPy, we get the following subpackage descriptions:

numpy .compat DESCRIPTION This module contains duplicated code from
Python itself or 3rd party extensions, which may be included for the
following reasons

numpy.core DESCRIPTION Functions - array - NumPy Array construction -
zeros - Return an array of all zeros - empty - Return an unitialized
array - shap

numpy.distutils

numpy .doc DESCRIPTION Topical documentation The following topics are

available: - basics - broadcasting - byteswapping - constants - creation
- gloss

numpy . £2py

numpy.fft DESCRIPTION Discrete Fourier Transform (:mod: numpy.fft~)
currentmodule:: numpy.fft Standard FFTs -------------
autosummary:: :toctre
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numpy.lib DESCRIPTION Basic functions used by several sub-packages
and useful to have in the main name-space. Type Handling ------------
- iscomplexo

numpy.linalg DESCRIPTION Core Linear Algebra Tools ------------------
——————— Linear algebra basics: - norm Vector or matrix norm - inv
Inverse of a squar

numpy .ma DESCRIPTION Masked Arrays Arrays sometimes contain invalid
or missing data. When doing operations on such arrays, we wish to
suppress inva

numpy .matrixlib

numpy.polynomial DESCRIPTION Within the documentation for this sub-
package, a "finite power series," i.e., a polynomial (also referred
to simply as a "series

numpy.random DESCRIPTION Random Number Generation Utility
functions random sample Uniformly distributed floats over ~~[0,
1) °°. random Alias for "ra

numpy.testing DESCRIPTION This single module should provide all the
common functionality for numpy tests in a single location, so that
test scripts can ju

For SciPy, we get the following subpackage descriptions:

scipy._build utils

scipy.cluster DESCRIPTION Clustering package (:mod: scipy.cluster™)
.. currentmodule:: scipy.cluster :mod: scipy.cluster.vqg  Clustering
algorithms are u

scipy.constants DESCRIPTION Constants (:mod: scipy.constants™) ..
currentmodule:: scipy.constants Physical and mathematical constants
and units. Mathemati

scipy.fftpack DESCRIPTION Discrete Fourier transforms
(:mod: “scipy.fftpack™) Fast Fourier Transforms (FFTs) ..
autosummary:: :toctree: generated/ fft -

scipy.integrate DESCRIPTION Integration and ODEs
(:mod: “scipy.integrate™) .. currentmodule:: scipy.integrate
Integrating functions, given function object

scipy.interpolate DESCRIPTION Interpolation
(:mod: “scipy.interpolate™) .. currentmodule:: scipy.interpolate Sub-
package for objects used in interpolation. A

scipy.io DESCRIPTION Input and output (:mod: scipy.io™) ..
currentmodule:: scipy.io SciPy has many modules, classes, and
functions available to rea

scipy.lib DESCRIPTION Python wrappers to external libraries - lapack
-- wrappers for “LAPACK/ATLAS <http://netlib.org/lapack/>"~_ 1libraries
- blas --

[62]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

scipy.linalg DESCRIPTION Linear algebra (:mod: scipy.linalg”™) ..
currentmodule:: scipy.linalg Linear algebra functions. .. seealso::
“numpy.linalg~ for

scipy.misc DESCRIPTION Miscellaneous routines (:mod: scipy.misc”)
.. currentmodule:: scipy.misc Various utilities that don't have
another home. Note

scipy.ndimage DESCRIPTION Multi-dimensional image processing
(:mod: “scipy.ndimage”) .. currentmodule:: scipy.ndimage This package
contains various funct

scipy.odr DESCRIPTION Orthogonal distance regression
(:mod: “scipy.odr”) .. currentmodule:: scipy.odr Package Content ..
autosummary:: :toctree: gen

scipy.optimize DESCRIPTION Optimization and root finding

(:mod: “scipy.optimize~) .. currentmodule:: scipy.optimize
Optimization General-purpose --------

scipy.signal DESCRIPTION Signal processing (:mod: scipy.signal”) ..

module:: scipy.signal Convolution .. autosummary:: :toctree:
generated/ convolve -

scipy.sparse DESCRIPTION Sparse matrices (:mod: scipy.sparse”) ..
currentmodule:: scipy.sparse SciPy 2-D sparse matrix package for
numeric data. Conten

scipy.spatial DESCRIPTION Spatial algorithms and data structures
(:mod: “scipy.spatial”) .. currentmodule:: scipy.spatial Nearest-
neighbor Queries .. au

scipy.special DESCRIPTION Special functions (:mod: scipy.special”)
.. module:: scipy.special Nearly all of the functions below are
universal functions a

scipy.stats DESCRIPTION Statistical functions (:mod: scipy.stats”)
.. module:: scipy.stats This module contains a large number of
probability distribu

scipy.weave DESCRIPTION C/C++ integration inline -- a function for
including C/C++ code within Python blitz -- a function for compiling
Numeric express

Basic descriptive statistics with NumPy

In this book, we will try to use as many varied datasets as possible. This depends
on the availability of the data. Unfortunately, this means that the subject of the
data might not exactly match your interests. Every dataset has its own quirks,
but the general skills you acquire in this book should transfer to your own field.
In this chapter, we will load a number of Comma-separated Value (CSV) files
into NumPy arrays in order to analyze the data.
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To load the data, we will use the NumPy loadtxt () function as follows:

The code for this example can be found inbasic stats.py
s

in the code bundle.

import numpy as np
from scipy.stats import scoreatpercentile

data = np.loadtxt ("mdrtb 2012.csv", delimiter=',', usecols=(1,),
skiprows=1, unpack=True)

print "Max method", data.max()
print "Max function", np.max(data)

print "Min method", data.min ()
print "Min function", np.min(data)

print "Mean method", data.mean()
print "Mean function", np.mean(data)

print "Std method", data.std()
print "Std function", np.std(data)

print "Median", np.median(data)
print "Score at percentile 50", scoreatpercentile(data, 50)

Next, we will compute the mean, median, maximum, minimum, and standard
deviations of a NumPy array.

_ If these terms sound unfamiliar to you, please take some
% time to learn about them from Wikipedia or any other source.
/~— As mentioned in the Preface, we will assume familiarity with

basic mathematical and statistical concepts.

The data comes from the mdrtb 2012.csv file, which can be found in the code
bundle. This is an edited version of the CSV file, which can be downloaded from

the WHO website at https://extranet.who.int/tme/generateCSV.asp?ds=mdr
estimates. It contains data about a type of tuberculosis. The file we are going to use
is a reduced version of the original file containing only two columns: the country
and percentage of new cases. Here are the first two lines of the file:

country,e new mdr pcnt
Afghanistan, 3.5
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Now, let's compute the mean, median, maximum, minimum, and standard
deviations of a NumPy array:

1. First, we will load the data with the following function call:

data = np.loadtxt ("mdrtb 2012.csv", delimiter=',"',
usecols=(1,), skiprows=1l, unpack=True)

In the preceding call, we specify a comma as a delimiter, the second
column to load data from, and that we want to skip the header. We
also specify the name of the file and assume that the file is in the
current directory; otherwise, we will have to specify the correct path.

2. The maximum of an array can be obtained via a method of the ndarray and
NumPy functions. The same goes for the minimum, mean, and standard
deviations. The following code snippet prints the various statistics:

print "Max method", data.max()
print "Max function", np.max(data)

print "Min method", data.min ()
print "Min function", np.min(data)

print "Mean method", data.mean()
print "Mean function", np.mean(data)

print "Std method", data.std()
print "Std function", np.std(data)

The output is as follows:

Max method 50.0

Max function 50.0

Min method 0.0

Min function 0.0

Mean method 3.2787037037
Mean function 3.2787037037
Std method 5.76332073654
Std function 5.76332073654

3. The median can be retrieved with a NumPy or SciPy function, which can
estimate the 50th percentile of the data with the following lines:

print "Median", np.median(data)
print "Score at percentile 50", scoreatpercentile(data, 50)

The following is printed:

Median 1.8
Score at percentile 50 1.8
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Linear algebra with NumPy

Linear algebra is an important subdivision of mathematics. We can use linear algebra,
for instance, to perform linear regression. The numpy . 1inalg subpackage holds linear
algebra routines. With this subpackage, you can invert matrices, compute eigenvalues,
solve linear equations, and find determinants among other matters. Matrices in
NumPy are represented by a subclass of ndarray.

Inverting matrices with NumPy

The inverse of a square and invertible matrix A in linear algebra is the matrix A-1,
which when multiplied with the original matrix is equal to the identity matrix I.
This can be written down as the following mathematical equation:

A A-1 =1

The inv () function in the numpy . 1inalg subpackage can do this for us. Let's invert
an example matrix. To invert matrices, follow the ensuing steps:

1. Create the example matrix.

We will create the demonstration matrix with the mat () function:

A = np.mat("2 4 6;4 2 6;10 -4 18")
print "A\n", A

The A matrix is printed as follows:

A

[[ 2 4 6]
[ 4 2 6]
[10 -4 18]1]

2. Invert the matrix.

Now, we can view the inv () subroutine in action:

inverse = np.linalg.inv(A)
print "inverse of A\n", inverse

The inverse matrix is displayed as follows:

inverse of A

[[-0.41666667 0.66666667 -0.08333333]
[ 0.08333333 0.16666667 -0.08333333]
[ 0.25 -0.33333333 0.08333333]]
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u If the matrix is singular, or not square, a LinAlgError is raised. If
~ you wish, you can check the solution manually. This is left as a drill for
Q you. The pinv () NumPy function performs a pseudo inversion, which
can be applied to any matrix, including matrices that are not square.

3. Check by multiplication.
Let's check what we get when we multiply the original matrix with the
result of the inv () function:

print "Check\n", A * inverse

The result is the identity matrix, as expected (ignoring small differences):

Check

[[ 1.00000000e+00 0.00000000e+00 -5.55111512e-17]
[ -2.22044605e-16 1.00000000e+00 -5.55111512e-17]
[ -8.88178420e-16 8.88178420e-16 1.00000000e+00]1]

By subtracting the 3 x 3 identity matrix from the previous result, we get the errors
of the inversion process:

print "Error\n", A * inverse - np.eye(3)

The errors should be negligible in general, but in some cases small errors could be
propagated with undesirable side effects:

[[ -1.11022302e-16 0.00000000e+00 -5.55111512e-17]

[ -2.22044605e-16 4.44089210e-16 -5.55111512e-17]

[ -8.88178420e-16 8.88178420e-16 -1.11022302e-16]]
In such cases, higher precision data types might help or switch to a superior
algorithm. We computed the inverse of a matrix with the inv () routine of the

numpy . linalg subpackage. We made certain, with matrix multiplication, whether
this is indeed the inverse matrix (see inversion.py in this book's code bundle):

import numpy as np

A =np.mat("2 4 6;4 2 6;10 -4 18")
print "A\n", A

inverse = np.linalg.inv(A)
print "inverse of A\n", inverse

print "Check\n", A * inverse
print "Error\n", A * inverse - np.eye(3)
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Solving linear systems with NumPy

A matrix transforms a vector into another vector in a linear fashion. This operation
numerically corresponds to a system of linear equations. The solve () subroutine
of numpy . 1inalg solves systems of linear equations of the form ax = b; here, Ais a
matrix, b can be a one-dimensional or two-dimensional array, and x is an unknown
quantity. We will witness the dot () subroutine in action. This function computes
the dot product of two floating-point numbers' arrays.

Let's solve an instance of a linear system. To solve a linear system, follow the
ensuing steps:

1. Create the matrix A and array b.

The following code will create A and b:
A = np.mat ("1l -2 1;0 2 -8;-4 5 9")
print "A\n", A

b = np.array ([0, 8, -9])

print "b\n", b

The matrix A and array (vector) b are defined as follows:

A

[[1-2 1]
[0 2 -8]
[-4 5 9]]
b

[0 8 -9]

2. Call the solve () function.

Solve this linear system with the solve () function:

X = np.linalg.solve (A, b)
print "Solution", x

The solution of the linear system is as follows:
Solution [ 29. 16. 3.1
3. Check with the dot () function.

Check whether the solution is correct with the dot () function:

print "Check\n", np.dot (A , x)
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The result is as expected:

Check
[[ 0. 8. -9.11

We solved a linear system by applying the solve () function from the 1inalg
subpackage of NumPy and checking the result with the dot () function
(please refer to solution.py in this book's code bundle):

import numpy as np

A = np.mat ("1l -2 1;0 2 -8;-4 5 9")
print "A\n", A

b = np.array ([0, 8, -91)
print "b\n", b

Xx = np.linalg.solve (A, b)

print "Solution", x

print "Check\n", np.dot (A , x)

Finding eigenvalues and eigenvectors
with NumPy

Eigenvalues are scalar solutions to the equation Ax = ax, where Aisa
two-dimensional matrix and x is a one-dimensional vector. Eigenvectors are
vectors corresponding to eigenvalues.

_ Eigenvalues and eigenvectors are fundamental in mathematics
% and are used in many important algorithms, such as Principal
%= Component Analysis (PCA). PCA can be used to simplify the
analysis of large datasets.

The eigvals () subroutine in the numpy.1linalg package computes eigenvalues.
The eig () function gives back a tuple holding eigenvalues and eigenvectors.

We will obtain the eigenvalues and eigenvectors of a matrix with the eigvals()
and eig () functions of the numpy . 1inalg subpackage. We will check the outcome
by applying the dot () function (see eigenvalues.py in this book's code):

import numpy as np

A = np.mat ("3 -2;1 0")
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print "A\n", A
print "Eigenvalues", np.linalg.eigvals(A)

eigenvalues, eigenvectors = np.linalg.eig(A)
print "First tuple of eig", eigenvalues
print "Second tuple of eig\n", eigenvectors

for i in range(len(eigenvalues)) :
print "Left", np.dot (A, eigenvectors[:,i])
print "Right", eigenvalues[i] * eigenvectors[:,i]
print

Let's calculate the eigenvalues of a matrix:

1. Create the matrix.

The following code will create a matrix:

A = np.mat ("3 -2;1 0")
print "A\n", A

The matrix we created looks like this:

A
[[ 3 -2]
[ 1 o]l
2. Calculate eigenvalues with the eig () function.

Apply the eig () subroutine:

print "Eigenvalues", np.linalg.eigvals(A)
The eigenvalues of the matrix are as follows:

Eigenvalues [ 2. 1.]

3. Get eigenvalues and eigenvectors with eig ().

Get the eigenvalues and eigenvectors with the eig () function. This routine
returns a tuple, where the first element holds eigenvalues and the second
element contains matching eigenvectors, set up column-wise:
eigenvalues, eigenvectors = np.linalg.eig(a)

print "First tuple of eig", eigenvalues

print "Second tuple of eig\n", eigenvectors

The eigenvalues and eigenvectors values will be:

First tuple of eig [ 2. 1.]
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Second tuple of eig
[[ 0.89442719 0.70710678]
[ 0.4472136 0.70710678]1

4. Check the result.

Check the answer with the dot () function by computing both sides of the
eigenvalues equation Ax = ax:

for i in range(len(eigenvalues)) :
print "Left", np.dot (A, eigenvectors([:,il])
print "Right", eigenvalues[i] * eigenvectors[:,il
print

The output is as follows:

Left [[ 1.78885438]
[ 0.89442719]1]

Right [[ 1.78885438]
[ 0.89442719]1]

Left [[ 0.70710678]
[ 0.70710678]1

Right [[ 0.70710678]
[ 0.70710678]1

NumPy random numbers

Random numbers are used in Monte Carlo methods, stochastic calculus, and
more. Real random numbers are difficult to produce, so in practice, we use
pseudo-random numbers. Pseudo-random numbers are sufficiently random
for most intents and purposes, except for some very exceptional instances,
such as very accurate simulations. The random-numbers-associated routines
can be located in the NumPy random subpackage.

The core random-number generator is based on the Mersenne

Twister algorithm (refer to https://en.wikipedia.org/

wiki/Mersenne twister).

Random numbers can be produced from discrete or continuous distributions.
The distribution functions have an optional size argument, which informs
NumPy how many numbers are to be created. You can specify either an integer
or a tuple as the size. This will lead to an array of appropriate shapes filled with
random numbers. Discrete distributions include the geometric, hypergeometric,
and binomial distributions. Continuous distributions include the normal and
lognormal distributions.
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Gambling with the binomial distribution
The binomial distribution models the number of successes in an integer number of

independent runs of an experiment, where the chance of success in each experiment
is a set number.

Envisage a 17th-century gambling house where you can wager on tossing pieces of
eight. Nine coins are flipped in a popular game. If less than five coins are heads, then
you lose one piece of eight; otherwise, you earn one. Let's simulate this, commencing
with one thousand coins in our possession. We will use the binomial () function
from the random module for this purpose:

If you want to follow the code, have a look at headortail . py in this
e book's code bundle.

import numpy as np
from matplotlib.pyplot import plot, show

cash = np.zeros(10000)
cash[0] = 1000
outcome = np.random.binomial(9, 0.5, size=len(cash))

for i in range(l, len(cash)):

if outcome[i] < 5:
cash[i] = cash[i - 1] - 1
elif outcome[i] < 10:
cash[i] = cash[i - 1] + 1
else:
raise AssertionError ("Unexpected outcome " + outcome)

print outcome.min(), outcome.max ()

plot (np.arange (len(cash)), cash)
show ()

In order to understand the binomial () function, take a look at the following steps:

1. Calling the binomial () function.

Initialize an array, which acts as the cash balance, to zero. Call the binomial ()
function with a size of 10000. This represents 10,000 coin flips in our casino:

cash = np.zeros(10000)
cash[0] = 1000
outcome = np.random.binomial(9, 0.5, size=len(cash))
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2. Updating the cash balance.

Go through the results of the coin tosses and update the cash array.
Display the highest and lowest value of the outcome array, just to
make certain we don't have any unusual outliers:
for i in range(l, len(cash)):
if outcomel[i] < 5:
cash[i] = cash[i - 1] -1
elif outcome[i] < 10:

cash[i] = cash[i - 1] + 1
else:
raise AssertionError ("Unexpected outcome " + outcome)

print outcome.min(), outcome.max ()
As expected, the values are between 0 and o:
09

3. Plotting the cash array with matplotlib:

plot (np.arange (len(cash)), cash)
show ()

You can determine in the following plot that our cash balance executes a random
walk (random movement not following a pattern):
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Of course, each time we execute the code, we will have a different random walk.
If you want to always receive the same results, you will want to hand a seed value
to the binomial () function from the NumPy random subpackage.

[73]

www.it-ebooks.info


http://www.it-ebooks.info/

Statistics and Linear Algebra

Sampling the normal distribution

Continuous distributions are modeled by the probability density functions (pdf).
The chance for a specified interval is found by integration of the probability density
function. The NumPy random module has a number of functions that represent
continuous distributions, such as beta, chisquare, exponential, f, gamma, gumbel,
laplace, lognormal, logistic, multivariate normal, noncentral chisquare,
noncentral f, normal, and others.

We will visualize the normal distribution by applying the normal () function from the
random NumPy subpackage. We will do this by drawing a bell curve and histogram of
randomly generated values (refer to normaldist.py in this book's code bundle):

import numpy as np
import matplotlib.pyplot as plt

N=10000

normal values = np.random.normal (size=N)

dummy, bins, dummy = plt.hist (normal values, np.sqgrt(N), normed=True,
lw=1)

sigma = 1

mu = 0

plt.plot (bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (bins -
mu) **2 / (2 * gigma**2) ),lw=2)

plt.show()

Random numbers can be produced from a normal distribution and their distribution
might be displayed with a histogram. To plot a normal distribution, follow the
ensuing steps:

1. Generate values.
Create random numbers for a certain sample size with the aid of the

normal () function from the random NumPy subpackage:

N=100.00
normal values = np.random.normal (size=N)

2. Draw the histogram and theoretical pdf.

Plot the histogram and theoretical pdf with a central value of 0 and a
standard deviation of 1. We will use matplotlib for this goal:
dummy, bins, dummy = plt.hist (normal values,
np.sqgrt (N) , normed=True, lw=1)
sigma = 1
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mu = 0
plt.plot (bins, 1/(sigma * np.sgrt(2 * np.pi))

* np.exp( - (bins - mu)**2 / (2 * gigma**2) ),lw=2)
plt.show ()

In the following plot, we see the famed bell curve:
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Performing a normality test with SciPy

The normal distribution is widely used in science and statistics. According to the
central limit theorem, a large, random sample with independent observations will
converge towards the normal distribution. The properties of the normal distribution
are well known and it is considered convenient to use. However, there are a number
of requirements that need to be met such as a sufficiently large number of data points,
and these data points must be independent. It is a good practice to check whether data
conforms to the normal distribution or not. A great number of normality tests exist,
some of which have been implemented in the scipy.stats package. We will apply
these tests in this section. As sample data, we will use flu trends data from https://
www .google.org/flutrends/data.txt. The original file has been reduced to include
only two columns: a date and values for Argentina. A few lines are given as follows:

Date,Argentina
29/12/02,
05/01/03,
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12/01/03,
19/01/03,
26/01/03,
02/02/03,136

The data can be found in the goog flutrends.csv file of the code bundle. We will
also sample data from the normal distribution as we did in the previous tutorial.
The resulting array will have the same size as the flu trends array and will serve

as the golden standard, which should pass the normality test with flying colors.

Refer tonormality test.py in the code bundle for the code.

import numpy as np

from scipy.stats import shapiro
from scipy.stats import anderson
from scipy.stats import normaltest

flutrends = np.loadtxt ("goog flutrends.csv", delimiter=',"',
usecols=(1,), skiprows=1l, converters = {1: lambda s: float (s or O)},
unpack=True)

N = len(flutrends)

normal values = np.random.normal (size=N)
zero _values = np.zeros (N)
print "Normal Values Shapiro", shapiro(normal values)

print "Zeroes Shapiro", shapiro(zero values)
print "Flu Shapiro", shapiro(flutrends)

print

print "Normal Values Anderson", anderson(normal values)
print "Zeroes Anderson", anderson(zero_ values)
print "Flu Anderson", anderson(flutrends)

print

print "Normal Values normaltest", normaltest (normal values)
print "Zeroes normaltest", normaltest (zero_values)
print "Flu normaltest", normaltest (flutrends)
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As a negative example, we will use an array of the same size as the two previously
mentioned arrays filled with zeros. In real life, we could get this kind of values if we
were dealing with a rare event (for instance, a pandemic outbreak).

In the data file, some cells are empty. Of course, these types of issues occur
frequently, so we have to get used to cleaning our data. We are going to assume that
the correct value should be 0. A converter can fill in those 0 values for us as follows:

flutrends = np.loadtxt ("goog flutrends.csv", delimiter=',"',
usecols=(1,), skiprows=1l, converters = {1: lambda s:
float (s or 0)}, unpack=True)

The Shapiro-Wilk test can check for normality. The corresponding SciPy function
returns a tuple of which the first number is a test statistic and the second number
is a p-value. It should be noted that the zeros-filled array caused a warning. In fact,
all the three functions used in this example had trouble with this array and gave
warnings. We get the following result:

Normal Values Shapiro (0.9967482686042786,
0.2774980068206787)

Zeroes Shapiro (1.0, 1.0)
Flu Shapiro (0.9351990818977356, 2.2945883254311397e-15)

The result for the zeros-filled array is a bit strange. Since we get a warning, it might
be advisable to even ignore it altogether. The p-values we get are similar to the
results of the third test later in this example. The analysis is basically the same.

The Anderson-Darling test can check for normality and also for other distributions
such as Exponential, Logistic, and Gumbel. The related SciPy function related a test
statistic and an array containing critical values for the 15, 10, 5, 2.5, and 1 percentage
significance levels. If the statistic is larger than the critical value at a significance
level, we can reject normality. We get the following values:

Normal Values Anderson (0.31201465602225653, array([ 0.572,
0.652, 0.782, 0.912, 1.085]), array([ 15. , 10. , 5.
, 2.5, 1. 1))

Zeroes Anderson (nan, array([ 0.572, 0.652, 0.782,
0.912, 1.085]), array([ 15. , 10. , 5. , 2.5, 1.
1))

Flu Anderson (8.258614154768793, array([ 0.572, 0.652,
0.782, 0.912, 1.085]), array([ 15. , 10. , 5. , 2.5,
1. 1))
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For the zeros-filled array, we cannot say anything sensible because the statistic
returned is not a number. We are not allowed to reject normality for our golden
standard array, as we would have expected. However, the statistic returned for
the flu trends data is larger than all the corresponding critical values. We can,
therefore, confidently reject normality. Out of the three test functions, this one
seems to be the easiest to use.

The D'Agostino and Pearson's test is also implemented in SciPy as the normaltest ()
function. This function returns a tuple with a statistic and p-value just like the

shapiro () function. The p-value is a two-sided Chi-squared probability. Chi-squared
is another well-known distribution. The test itself is based on z-scores of the skewness
and kurtosis tests. Skewness measures how symmetric a distribution is. The normal
distribution is symmetric and has zero skewness. Kurtosis tells us something about the
shape of the distribution (high peak, fat tail). The normal distribution has a kurtosis of
three (the excess kurtosis is zero). The following values are obtained by the test:

Normal Values normaltest (3.102791866779639, 0.21195189649335339)
Zeroes normaltest (1.0095473240349975, 0.60364218712103535)
Flu normaltest (99.643733363569538, 2.3048264115368721e-22)

Since we are dealing with a probability for the p-value, we want this probability

to be as high as possible and close to one. For the zeros-filled array, this has strange
consequences, but since we got warnings, the result for that particular array is not
reliable. Further, we can accept normality if the p-value is at least 0.5. For the golden
standard array, we get a lower value, which means that we probably need to have
more observations. It is left as an exercise for you to confirm this.

Creating a NumPy-masked array

Data is often messy and contains gaps or characters that we do not deal with often.
Masked arrays can be utilized to disregard absent or invalid data points. A masked
array from the numpy . ma subpackage is a subclass of ndarray with a mask. In this
section, we will use the Lena Soderberg photo as the data source and act as if some
of this data is corrupt. The following is the full code for the masked-array example
from the masked. py file in this book's code bundle:

import numpy
import scipy
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import matplotlib.pyplot as plt

lena = scipy.misc.lenaf()
random mask = numpy.random.randint (0, 2, size=lena.shape)

plt.subplot (221)
plt.title("Original™")
plt.imshow(lena)
plt.axis('off")

masked array = numpy.ma.array (lena, mask=random mask)
print masked array

plt.subplot (222)
plt.title ("Masked")
plt.imshow (masked array)
plt.axis('off")

plt.subplot (223)
plt.title("Log")
plt.imshow (numpy.log (lena))
plt.axis('off")

plt.subplot (224)

plt.title("Log Masked")

plt.imshow (numpy.log (masked array))
plt.axis('off")

plt.show ()

Finally, we will display the original picture, logarithm values of the original image,
the masked array, and logarithm values thereof:
1. Create a mask.

To produce a masked array, we have to stipulate a mask. Let's create a
random mask. This mask will have values that are either 0 or 1:

random mask = numpy.random.randint (0, 2, size=lena.shape)

2. Create a masked array.

By applying the mask in the former step, create a masked array:

masked array = numpy.ma.array (lena, mask=random mask)

[79]

www.it-ebooks.info


http://www.it-ebooks.info/

Statistics and Linear Algebra

The resulting pictures are exhibited as follows:

Original _ _ Masked

We applied a random mask to NumPy arrays. This resulted in disregarding the
data matching the mask. There is an entire range of masked-array procedures to
be discovered in the numpy . ma subpackage. In this tutorial, we only presented
how to produce a masked array.

Disregarding negative and extreme values

Masked arrays are useful when we desire to ignore negative values, for example,
when taking the logarithm of array values. A second use case for masked arrays is
rejecting outliers. This works based on a higher and lower limit for extreme values.
In this tutorial, we will apply these techniques to the salary data of players in the
MLB. The data comes originally from http://www.exploredata.net/Downloads/
Baseball-Data-Set. The data was edited to contain two columns: the player name
and salary. This resulted in MLB2008 . csv, which can be found in the code bundle.
The full script for this tutorial is in the masked_funcs.py file in this book's

code bundle:

import numpy as np
from matplotlib.finance import quotes historical yahoo
from datetime import date
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import sys
import matplotlib.pyplot as plt

salary = np.loadtxt ("MLB2008.csv", delimiter=',', usecols=(1,),
skiprows=1, unpack=True)

triples = np.arange(0, len(salary), 3)

print "Triples", triples[:10], "..."

signs = np.ones(len(salary))
print "Signs", signs[:10], "..."

signs[triples] = -1
print "Signs", signs[:10], "..."

ma_log = np.ma.log(salary * signs)
print "Masked logs", ma log[:10], "..."

dev

salary.std ()
avg

salary.mean ()
inside = np.ma.masked outside(salary, avg - dev, avg + dev)
print "Inside", inside[:10], "..."

plt.subplot (311)
plt.title("Original™")
plt.plot (salary)

plt.subplot (312)
plt.title("Log Masked")
plt.plot (np.exp(ma_log))

plt.subplot (313)
plt.title("Not Extreme")
plt.plot (inside)

plt.show ()
The following are the steps that will help you execute the aforementioned commands:

1. Taking the logarithm of negative numbers.

We will take the logarithm of an array that holds negative numbers.
Firstly, let's create an array holding numbers divisible by three:
triples = numpy.arange(0, len(salary), 3)

print "Triples", triples[:10], "..."
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Next, we will produce an array with ones that have the same size as the
salary data array:

signs = numpy.ones(len(salary))
print "Signs", signs[:10], "..."

We will set up each third array element to be negative with the aid of
indexing tricks we acquired in Chapter 2, NumPy Arrays:
signs[triples] = -1

print "Signs", signs[:10], "..."

In conclusion, we will take the logarithm of this array:

ma log = numpy.ma.log(salary * signs)
print "Masked logs", ma log[:10], "..."

This ought to print the following for the salary data:

Triples [ 0 3 6 9 12 15 18 21 24 27]

signs [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

signs [-1. 1. 1. -1. 1. 1. -1. 1. 1. -1.]

Masked logs [-- 14.970818190308929 15.830413578506539 --
13.458835614025542

15.319587954740548 -- 15.648092021712584
13.864300722133706 --1]

2. Ignoring extreme values.

Let's specify outliers as being one standard deviation below the mean or
one standard deviation above the mean (this is not necessarily a correct
definition that is given here because it is easy to compute). This definition
directs us to compose the following code, which will mask extreme points:

dev = salary.std()
avg = salary.mean/()

inside = numpy.ma.masked outside(salary, avg - dev, avg +
dev)

print "Inside", inside[:10], "..."

The following code displays the output for the initial 10 elements:
Inside [3750000.0 3175000.0 7500000.0 3000000.0 700000.0
4500000.0 3000000.0

6250000.0 1050000.0 4600000.0]

Let's plot the original salary data, the data after taking the logarithm and
the exponent back again, and finally the data after applying the standard
deviation-based mask.
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It will look something like this:
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Functions in the numpy . ma subpackage mask array elements, which we view as
invalid. For example, negative values are not allowed for the 1og () and sqrt ()
functions. A masked value is like a NULL value in relational databases and
programming. All operations with a masked value deliver a masked value.

Summary

In this chapter, you learned a lot about NumPy and SciPy subpackages. We went
over linear algebra, statistics, continuous and discrete distributions, masked arrays,
and random numbers.

In the next chapter, Chapter 4, pandas Primer, we will discover pandas, which is a
Python data analysis and manipulation library.
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pandas is named after panel data (an econometric term) and Python data analysis,
and is a popular open source Python project. This chapter is a tutorial on basic pandas
functionalities, where we will learn about pandas data structures and operations.

. The official pandas documentation insists on naming the project
% pandas in all lowercase letters. The other convention they insist on
i is this import statement: import pandas as pd. We will try to
follow these conventions as much as possible.

In this chapter, we will install and explore pandas. Then, we will acquaint ourselves
with the two central pandas data structures: DataFrame and Series. After this, you
will learn how to perform SQL-like operations on the data contained in these data
structures. pandas has statistical utilities including time-series routines, some of
which will be demonstrated. The topics we will pursue are as follows:

Installing and exploring pandas

DataFrame and Series data structures

Querying data in pandas

Statistics with pandas DataFrames

Data aggregation with pandas DataFrames
Concatenating, joining, and appending DataFrames
Handling missing values

Dealing with dates

Pivot tables

Remote data access
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Installing and exploring pandas

The minimal dependency set requirements for pandas is given as follows:

*  NumPy: This is the fundamental numerical array package that we
installed and covered extensively in the preceding chapters

* python-dateutil: This is a date-handling library

* pytz: This handles time zone definitions

This list is the bare minimum; a longer list of optional dependencies can be located
athttp://pandas.pydata.org/pandas-docs/stable/install.html. We can
install pandas via PyPI with pip or easy install, using a binary installer, with the
aid of our operating system package manager, or from the source by checking out
the code. The binary installers can be downloaded from http://pandas.pydata.
org/getpandas.html.

The command to install pandas with pip is as follows:

$ pip install pandas

You may have to prepend the preceding command with sudo if your user account
doesn't have sulfficient rights. For most, if not all, Linux distributions, the pandas
package name is python-pandas. Please refer to the manual pages of your package
manager for the correct command to install. These commands should be the same as
the ones summarized in Chapter 1, Getting Started with Python Libraries. To install from
the source, we need to execute the following commands from the command line:

$ git clone git://github.com/pydata/pandas.git
$ cd pandas
$ python setup.py install

This procedure requires the correct setup of the compiler and other dependencies;
therefore, it is recommended only if you really need the most up-to-date version
of pandas. Once we have installed pandas, we can explore it further by adding
pandas-related lines to our documentation-scanning script pkg_check. py of the
previous chapter. The program prints the following output:

pandas version 0.13.1

pandas.compat DESCRIPTION compat Cross-compatible functions for Python 2
and 3. Key items to import for 2/3 compatible code: * iterators: range(),
map () ,

pandas.computation

pandas.core
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pandas.io
pandas.rpy
pandas.sandbox
pandas.sparse
pandas.stats
pandas.tests
pandas.tools
pandas.tseries

pandas.util

Unfortunately, the documentation of the pandas subpackages lacks informative
descriptions; however, the subpackage names are descriptive enough to get an
idea of what they are about.

pandas DataFrames

A pandas DataFrame is a data structure, which is a labeled two-dimensional object
and is similar in spirit to an Excel worksheet or a relational database table. A similar
concept, by the way, was invented originally in the R programming language.

(For more information, refer to http://www.r-tutor.com/r-introduction/
data-frame.) A DataFrame can be created in the following ways:

¢ From another DataFrame.

* From a NumPy array or a composite of arrays that has a
two-dimensional shape.

* Likewise, we can create a DataFrame out of another pandas data structure
called series. We will learn about series in the following section.

* A DataFrame can also be produced from a file, such as a CSV file.

As an example, we will use data that can be retrieved from http://www.
exploredata.net/Downloads/WHO-Data-Set. The original datafile is quite big
and has many columns, so we will use an edited file instead, which only contains
the first nine columns and is called WHO first9cols.csv; the file is in the code
bundle of this book. These are the first two lines including the header:

Country, CountryID,Continent,Adolescent fertility rate (%) ,Adult
literacy rate (%),Gross national income per capita (PPP
international $),Net primary school enrolment ratio female (%), Net
primary school enrolment ratio male (%) ,Population (in thousands)
total

Afghanistan,1,1,151,28,,,,26088
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In the next steps, we will take a look at pandas DataFrames and its attributes:

1. To kick off, load the datafile into a DataFrame and print it on the screen:

from pandas.io.parsers import read csv

df = read csv("WHO first9cols.csv")
print "Dataframe", df

The printout is a summary of the DataFrame. It is too long to be displayed
entirely, so we will just grab the last few lines:

57 1340
58 81021
59 833

[202 rows x 9 columns]

2. The DataFrame has an attribute that holds its shape as a tuple, similar
to ndarray. Query the number of rows of a DataFrame as follows:
print "Shape", df.shape
print "Length", len(df)

The values we obtain comply with the printout of the preceding step:

Shape (202, 9)
Length 202

3. Check the column's header and data types with the other attributes:

print "Column Headers", df.columns
print "Data types", df.dtypes

We receive the column headers in a special data structure:

Column Headers Index([u'Country', u'CountryID',
u'Continent', u'Adolescent fertility rate (%)', u'Adult
literacy rate (%)', u'Gross national income per capita (PPP
international $)', u'Net primary school enrolment ratio
female (%)', u'Net primary school enrolment ratio male
(%)', u'Population (in thousands) total'], dtype='object!')
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The data types are printed as follows:

Data types Country object
CountryID into4
Continent int64
Adolescent fertility rate (%) float64
Adult literacy rate (%) floato4
Gross national income per capita (PPP international $) floato4
Net primary school enrolment ratio female (%) floato4
Net primary school enrolment ratio male (%) floate4
Population (in thousands) total floato4
4. The pandas DataFrame has an index, which is like the primary key of

relational database tables. We can either specify the index or have pandas
create it automatically. The index can be accessed with a corresponding
property as follows:

print "Index", df.index

An index helps us search for items quickly, just like the index in this book.
The index in this case is a wrapper around an array starting at 0, with an
increment of one for each row:

Index Int64Index([O0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,

88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...1,
dtype='int64')

Sometimes, we wish to iterate over the underlying data of a DataFrame.
Iterating over column values can be inefficient if we utilize the pandas
iterators. It's much better to extract the underlying NumPy arrays and
work with those. The pandas DataFrame has an attribute that can aid
with this as well:

print "Values", df.values
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Please note that some values are designated nan in the output, for not a
number. These values come from empty fields in the input datafile:

Values [['Afghanistan' 1 1 ..., nan nan 26088.0]
['Albania' 2 2 ..., 93.0 94.0 3172.0]
['Algeria' 3 3 ..., 94.0 96.0 33351.0]

['Yemen' 200 1 ..., 65.0 85.0 21732.0]
['Zambia' 201 3 ..., 94.0 90.0 11696.0]
['Zimbabwe' 202 3 ..., 88.0 87.0 13228.0]1

The code for the following example can be located in the df _demo. py file of this
book's code bundle:

from pandas.io.parsers import read csv

df = read_csv("WHO_first9cols.csv")
print "Dataframe", df

print "Shape", df.shape

print "Length", len(df)

print "Column Headers", df.columns
print "Data types", df.dtypes
print "Index", df.index

print "Values", df.values

pandas Series

The pandas series data structure is a one-dimensional heterogeneous array with
labels. We can create a pandas Series data structure as follows:

* From a Python dict
* From a NumPy array
* From a single scalar value

When creating a Series, we can hand the constructor a list of axis labels, which

is commonly referred to as the index. The index is an optional parameter. By

default, if we use a NumPy array as the input data, pandas will index values by
autoincrementing the index commencing from 0. If the data handed to the constructor
is a Python dict, the sorted dict keys will become the index. In the case of a scalar value
as the input data, we are required to supply the index. For each new value in the index,
the scalar input value will be reiterated. The pandas series and DataFrame interfaces
have features and behaviors borrowed from NumPy arrays and Python dictionaries,
such as slicing, lookup using a key, and vectorized operations. Performing a lookup on
a DataFrame column returns a Series. We will demonstrate this and other features of
Series by going back to the previous section and loading the CSV file again.
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We will start by selecting the country column, which happens to be the
first column in the datafile. Then, show the type of the object currently in
the local scope:

country col = df ["Country"]
print "Type df", type(df)
print "Type country col", type(country col)

We can now confirm that we get a Series when we select a column of a
data frame:

Type df <class 'pandas.core.frame.DataFrame'>
Type country col <class 'pandas.core.series.Series'>

. If you want, you can open a Python or IPython shell, import
& pandas, and view with the dir () function, a list of functions
% and attributes for the classes of the previous printout. However,
be aware that you will get a long list of functions in both cases.

The pandas Series data structure shares some of the attributes of DataFrame
and also has a name attribute. Explore these properties as follows:

print "Series shape", country col.shape

print "Series index", country col.index

print "Series values", country col.values

print "Series name", country col.name

The output (truncated to save space) is given as follows:

Series shape (202,)

Series index Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, ...], dtype='int64')

Series values ['Afghanistan' .. 'Vietnam' 'West Bank and
Gaza' 'Yemen' 'Zambia' 'Zimbabwe']

Series name Country

To demonstrate the slicing of a Series, select the last two countries of the
Country Series and print the type:

print "Last 2 countries", country col[-2:]
print "Last 2 countries type", type(country col[-2:])

Slicing yields another Series as demonstrated:

Last 2 countries 200 Zambia

201 Zimbabwe

Name: Country, dtype: object

Last 2 countries type <class 'pandas.core.series.Series'>
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4.

NumPy functions can operate on pandas DataFrame and Series. We can,
for instance, apply the NumPy sign () function, which yields the sign of a
number. 1 is returned for positive numbers, -1 for negative numbers, and
0 for zeros. Apply the function to the DataFrame and last column, which
happens to be the population for each country in the dataset:

print "df signs", np.sign(df)

last col = df.columns([-1]

print "Last df column signs", last col,
np.sign(df [last_col])

The output is truncated here to save space and is as follows:
df signs Country CountryID Continent Adolescent
fertility rate (%) \

0 1 1 1
1

[TRUNCATED]

59 1
1

[202 rows x 9 columns]

Last df column signs Population (in thousands) total 0
1

1 1
[TRUNCATED]
198 NaN
199 1
200 1
201 1

Name: Population (in thousands) total, Length: 202, dtype:
float64

Please note that the population value at index 198 is NaN.
% The matching record is given as follows:
A5

Y

West Bank and Gaza,199,1,,,.,.,.
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We can perform all sorts of numerical operations between DataFrames, Series,
and NumPy arrays. If we get the underlying NumPy array of a pandas Series
and subtract this array from the Series, we can reasonably expect the following
two outcomes:

* An array filled with zeros and at least one NaN (we saw one NaN in the
previous step)

* We can also expect to get only zeros

The rule for NumPy functions is to produce NaNs for most operations involving
NaNs, as illustrated by the following IPython session:

In: np.sum([0, np.nan])

Out: nan
Write the following code to perform the subtraction:
print np.sum(df [last_col] - df[last_col] .values)
The snippet yields the result predicted by the second option:
0.0
Please refer to the series demo.py file in the book's code bundle:

from pandas.io.parsers import read csv
import numpy as np

df = read csv("WHO first9cols.csv")

country col = df ["Country"]

print "Type df", type(df)

print "Type country col", type(country col)

print "Series shape", country col.shape
print "Series index", country col.index
print "Series values", country col.values
print "Series name", country col.name
print "Last 2 countries", country col[-2:]

print "Last 2 countries type", type(country col[-2:])

print "df signs", np.sign(df)
last _col = df.columns([-1]
print "Last df column signs", last col, np.sign(df[last col])

print np.sum(df [last col] - df[last col] .values)
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Querying data in pandas

Since a pandas DataFrame is structured similarly to a relational database, we can
view operations that read data from a DataFrame as a query. In this example, we
will retrieve the annual sunspot data from Quandl. We can either use the Quandl
API or download the data manually as a CSV file from http://www.quandl.com/
SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual. If you want to install the API, you
can do so by downloading installers from https://pypi.python.org/pypi/Quandl
or running the following command:

$ pip install Quandl

Using the APl is free, but is limited to 50 API calls per day. If you
require more API calls, you will have to request an authentication
»  key. The code in this tutorial is not using a key. It should be simple
%»\ to change the code to either use a key or read a downloaded CSV file.
g If you have difficulties, refer to the Where to find help and references
section in Chapter 1, Getting Started with Python Libraries, or search
through the Python docs at https://docs.python.org/2/.

Without further preamble, let's take a look at how to query data in a pandas
DataFrame:

1.

As a first step, we obviously have to download the data. After importing
the Quandl API, get the data as follows:

import Quandl

# Data from http://www.quandl.com/SIDC/SUNSPOTS A-Sunspot-
Numbers-Annual

# PyPi url https://pypi.python.org/pypi/Quandl
sunspots = Quandl.get ("SIDC/SUNSPOTS A")

The head () and tail () methods have a purpose similar to that of the
Unix commands with the same name. Select the first n and last n records
of a DataFrame, where 7 is an integer parameter:

print "Head 2", sunspots.head(2)
print "Tail 2", sunspots.tail(2)

This gives us the first two and last two rows of the sunspot data:

Head 2 Number
Year

1700-12-31 5
1701-12-31 11

[2 rows x 1 columns]
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Tail 2 Number
Year

2012-12-31 57.7
2013-12-31 64.9

[2 rows x 1 columns]

Please note that we only have one column holding the number of sunspots
per year. The dates are a part of the DataFrame index.

The following is the query for the last value using the last date:
last_date = sunspots.index[-1]

print "Last value", sunspots.loc[last date]

You can check the following output with the result from the previous step:

Last value Number 64.9
Name: 2013-12-31 00:00:00, dtype: floaté64

Query the date with date strings in the yYyyMMDD format as follows:

print "Values slice by date", sunspots["20020101":
"20131231"]

This gives the records from 2002 through 2013:

Values slice by date Number
Year

2002-12-31 104.0

[TRUNCATED]

2013-12-31 64.9

[12 rows x 1 columns]

A list of indices can be used to query as well:

print "Slice from a list of indices", sunspots.iloc[[2, 4,
-4, -211]

The preceding code selects the following rows:

Slice from a list of indices Number
Year

1702-12-31 16.
1704-12-31 36.
2010-12-31 16.
2012-12-31 57.

N O O o

[4 rows x 1 columns]
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6.

To select scalar values, we have two options. The second option given here
should be faster. Two integers are required, the first for the row and the
second for the column:

print "Scalar with Iloc", sunspots.iloc[0, 0]
print "Scalar with iat", sunspots.iat[l, 0]

This gives us the first and second values of the dataset as scalars:

Scalar with Iloc 5.0
Scalar with iat 11.0

Querying with Booleans works much like the where clause of SQL.

The following code queries for values larger than the arithmetic mean.
Notice that there is a difference when we perform the query on the whole
DataFrame and when we perform it on a single column:

print "Boolean selection", sunspots[sunspots >

sunspots.mean () ]

print "Boolean selection with column label",
sunspots [sunspots. Number > sunspots.Number.mean ()]

The notable difference is that the first query yields all the rows, with rows
not conforming to the condition that has a value of NaN. The second query
returns only the rows where the value is larger than the mean:

Boolean selection Number
Year

1700-12-31 NaN

[TRUNCATED]

1759-12-31 54.0

[314 rows x 1 columns]

Boolean selection with column label Number
Year

1705-12-31 58.0

[TRUNCATED]

1870-12-31 139.1

[127 rows x 1 columns]

The example code is in the query_demo. py file of this book's code bundle:

import Quandl

# Data from http://www.quandl.com/SIDC/SUNSPOTS A-Sunspot-Numbers-
Annual
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# PyPi url https://pypi.python.org/pypi/Quandl
sunspots = Quandl.get ("SIDC/SUNSPOTS A")

print "Head 2", sunspots.head(2)

print "Tail 2", sunspots.tail(2)

last date = sunspots.index[-1]

print "Last value", sunspots.loc[last date]

print "Values slice by date", sunspots["20020101": "20131231"]
print "Slice from a list of indices", sunspots.iloc[[2, 4, -4, -2]]
print "Scalar with Iloc", sunspots.iloc[0, 0]

print "Scalar with iat", sunspots.iat[l, 0]

print "Boolean selection", sunspots[sunspots > sunspots.mean ()]

print "Boolean selection with column label",
sunspots [sunspots.Number > sunspots.Number.mean ()]

Statistics with pandas DataFrames

The pandas DataFrame has a dozen statistical methods. The following table lists
these methods along with a short description:

Method Description

describe | This method returns a small table with descriptive statistics.

count This method returns the number of non-NaN items.
mad This method calculates the mean absolute deviation, which is a robust
measure similar to the standard deviation.
median This method returns the median. This is equivalent to the value at the
50th percentile.
min This method returns the lowest value.
max This method returns the highest value.
mode This method returns the mode, which is the most frequently occurring value.
std This method returns the standard deviation, which measures dispersion.
It is the square root of the variance.
var This method returns the variance.
skew This method returns skewness. Skewness is indicative of the
distribution symmetry.
kurt This method returns kurtosis. Kurtosis is indicative of the distribution shape.
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Using the same data as in the previous example, we will demonstrate these statistical
methods. The full script is in the stats_demo. py of this book's code bundle:

import Quandl

# Data from http://www.quandl.com/SIDC/SUNSPOTS A-Sunspot-Numbers-

Annual

# PyPi url https://pypi.python.org/pypi/Quandl
sunspots = Quandl.get ("SIDC/SUNSPOTS A")

print "Describe", sunspots.describe ()

print "Non NaN observations", sunspots.count ()
print "MAD", sunspots.mad ()

print "Median", sunspots.median ()

print "Min", sunspots.min()

print "Max", sunspots.max()

print "Mode", sunspots.mode ()

print "Standard Deviation", sunspots.std()
print "Variance", sunspots.var()

print "Skewness", sunspots.skew /()

print "Kurtosis", sunspots.kurt ()

The following is the output of the script:

Describe Number
count 314.000000
mean 49.528662
std 40.277766
min 0.000000
25% 16.000000
50% 40.000000
75% 69.275000
max 190.200000

[8 rows x 1 columns]

Non NaN observations Number 314
dtype: inté64

MAD Number 32.483184

dtype: floaté64

Median Number 40
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dtype: floaté64

Min Number 0
dtype: floaté64

Max Number 190.2
dtype: floaté64
Mode Number

0 47

[1 rows x 1 columns]

Standard Deviation Number 40.277766
dtype: floaté64

Variance Number 1622.298473

dtype: floaté64

Skewness Number 0.994262

dtype: floaté64

Kurtosis Number 0.469034

dtype: floaté64

Data aggregation with pandas
DataFrames

Data aggregation is a term known from relational databases. In a database query,

we can group data by the value in a column or columns. We can then perform various
operations on each of these groups. The pandas DataFrame has similar capabilities.
We will generate data held in a Python dict and then use this data to create a pandas
DataFrame. We will then practice the pandas aggregation features:

1. Seed the NumPy random generator to make sure that the generated data will
not differ between repeated program runs. The data will have four columns:
°  Weather (a string)
°  Food (also a string)
° price (arandom float)

°  Number (a random integer between one and nine)
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The use case is that we have the results for some sort of a consumer-purchase
research, combined with weather and market pricing, where we calculate the
average of prices and keep a track of the sample size and parameters:

import pandas as pd

from numpy.random import seed

from numpy.random import rand

from numpy.random import random integers
import numpy as np

seed (42)
df = pd.DataFrame ({'Weather' : ['cold', 'hot', 'cold', 'hot',
'cold', 'hot', 'cold'l],
'Food' : ['soup', 'soup', 'icecream', 'chocolate',
'icecream', 'icecream',6 'soup'],
'Price' : 10 * rand(7), 'Number' : random integers(l, 9,
size=(7,))})
print df

You should get an output similar to the following;:

Food Number Price Weather
0 soup 8 3.745401 cold
1 soup 5 9.507143 hot
2 icecream 4 7.319939 cold
3 chocolate 8 5.986585 hot
4 icecream 8 1.560186 cold
5 icecream 3 1.559945 hot
6 soup 6 0.580836 cold

[7 rows x 4 columns]

Please note that the column labels come from the lexically ordered keys
of the Python dict.

Lexical or lexicographical order is based on the alphabetic
= order of characters in a string.

2. Group the data by the weather column and then iterate through the
groups as follows:

weather group = df.groupby ('Weather"')
i=0

for name, group in weather group:
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i=1+1
print "Group", i,
print group

We have two types of weather, hot and cold, so we get two groups:

Group 1 cold
Food Number

0 soup 8
2 icecream 4
4 icecream 8
6 soup 6

[4 rows x 4 columns]
Group 2 hot
Food Number

1 soup 5
3 chocolate 8
5 icecream 3

[3 rows x 4 columns]

name

Price Weather

3.745401
7.319939
1.560186
0.580836

Price
9.507143
5.986585
1.559945

cold
cold
cold
cold

Weather
hot
hot
hot

The weather group variable is a special pandas object that we get as a
result of the groupby () method. This object has aggregation methods,
which are demonstrated as follows:

print "Weather group first\n", weather group.first()
print "Weather group last\n", weather group.last ()
print "Weather group mean\n", weather group.mean ()

The preceding code snippet prints the first row, last row, and mean of

each group:

Weather group first

Food Numbe
Weather
cold soup
hot soup

[2 rows x 3 columns]
Weather group last

r Price

8 3.74540
5 9.50714

Food Number

Weather
cold soup
hot icecream

[2 rows x 3 columns]
Weather group mean

1
3

Price

6 0.580836
3 1.559945
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Number Price
Weather
cold 6.500000 3.301591
hot 5.333333 5.684558

[2 rows x 2 columns]

4. Just as in a database query, we are allowed to group on multiple columns.
The groups attribute will then tell us the groups that are formed and the
rows in each group:
wf group = df.groupby (['Weather', 'Food'l])
print "WF Groups", wf group.groups

For each possible combination of weather and food values, a new group
is created. The membership of each row is indicated by their index values
as follows:

WF Groups {('hot', 'chocolate'): [3], ('cold', ‘'icecream'):
[2, 4], ('hot', 'icecream'): [5], ('hot', 'soup'): [1],
('cold', 'soup'): [0, 61}

5. Apply alist of NumPy functions on groups with the agg () method:
print "WF Aggregated\n", wf group.agg([np.mean, np.median])
Obviously, we could apply even more functions, but it would look
messier than the following output:

WF Aggregated

Number Price

mean median mean median

Weather Food
cold icecream 6 6 4.440063 4.440063
soup 7 7 2.163119 2.163119
hot chocolate 8 8 5.986585 5.986585
icecream 3 3 1.559945 1.559945
soup 5 5 9.507143 9.507143

[5 rows x 4 columns]

The full data aggregation example code is in the data_aggregation.py file,
which can be found in this book's code bundle:

import pandas as pd
from numpy.random import seed
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from numpy.random import rand
from numpy.random import random integers
import numpy as np

seed (42)
df = pd.DataFrame({'Weather' : ['cold', 'hot', 'cold', 'hot',
'cold', 'hot', 'cold'],
'"Food' : ['soup', 'soup', 'icecream', 'chocolate',
'icecream', 'icecream',6 'soup'l],
'Price' : 10 * rand(7), 'Number' : random integers(l, 9,
size=(7,))})
print df

weather group = df.groupby ('Weather"')

for name, group in weather group:
i=1+1
print "Group", i, name
print group

print "Weather group first\n", weather group.first()
print "Weather group last\n", weather group.last ()
print "Weather group mean\n", weather group.mean ()

wf group = df.groupby(['Weather', 'Food'l])
print "WF Groups", wf group.groups

print "WF Aggregated\n", wf group.agg([np.mean, np.median])

Concatenating and appending
DataFrames

The pandas DataFrame allows operations that are similar to the inner and outer
joins of database tables. We can append and concatenate rows as well. To practice
appending and concatenating of rows, we will reuse the DataFrame from the
previous section. Let's select the first three rows:

print "df :3\n", d4df[:3]
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Check that these are indeed the first three rows:

df :3
Food Number Price Weather
0 soup 8 3.745401 cold
soup 5 9.507143 hot
2 icecream 4 7.319939 cold

The concat () function concatenates DataFrames. For example, we can concatenate a
DataFrame that consists of three rows to the rest of the rows, in order to recreate the
original DataFrame:

print "Concat Back together\n", pd.concat ([df[:3], df[3:]1)
The concatenation output appears as follows:

Concat Back together

Food Number Price Weather
0 soup 8 3.745401 cold
1 soup 5 9.507143 hot
2 icecream 4 7.319939 cold
3 chocolate 8 5.986585 hot
4 icecream 8 1.560186 cold
5 icecream 3 1.559945 hot
6 soup 6 0.580836 cold

[7 rows x 4 columns]
To append rows, use the append () function:
print "Appending rows\n", df[:3].append(df[5:1)

The result is a DataFrame with the first three rows of the original DataFrame and the
last two rows appended to it:

Appending rows

Food Number Price Weather
0 soup 8 3.745401 cold
1 soup 5 9.507143 hot
2 icecream 4 7.319939 cold
5 icecream 3 1.559945 hot
6 soup 6 0.580836 cold

[5 rows x 4 columns]
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Joining DataFrames

To demonstrate joining, we will use two CSV files: dest.csv and tips.csv. The
use case behind it is that we are running a taxi company. Every time a passenger
is dropped off at his or her destination, we add a row to the dest . csv file with the
employee number of the driver and the destination:

EmpNr,Dest

5,The Hague
3,Amsterdam
9,Rotterdam

Sometimes drivers get a tip, so we want that registered in the tips. csv file (if this
doesn't seem realistic, please feel free to come up with your own story):

EmpNr, Amount
5,10

9,5

7,2.5

Database-like joins in pandas can be done with either the merge () function or the
join () DataFrame method. The join () method joins on indices by default, which
might not be what you want. In SQL — a relational database query language —we
have the inner join, left outer join, right outer join, and full outer join.

An inner join selects rows from two tables, if and only if values
match, for columns specified in the join condition. Outer joins
% do not require a match and can potentially return more rows.
Please refer to the following Wikipedia page on joins:
http://en.wikipedia.org/wiki/Join_ %28SQL%29.

All these join types are supported by pandas, but we will only take a look at inner
joins and full outer joins.

* Ajoin on the employee number with the merge () function is performed
as follows:

print "Merge () on key\n", pd.merge(dests, tips, on='EmpNr')

This gives an inner join as the outcome:

Merge () on key

EmpNr Dest Amount
0 5 The Hague 10
1 9 Rotterdam 5

[2 rows x 3 columns]
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Joining with the join () method requires providing suffixes for the left
and right operands:

print "Dests join() tips\n", dests.join(tips,

lsuffix='Dest', rsuffix='Tips"')

This method call joins index values so that the result is different from a
SQL inner join:

Dests join() tips

EmpNrDest Dest EmpNrTips Amount
0 5 The Hague 5 10.0
1 3 Amsterdam 9 5.0
2 9 Rotterdam 7 2.5

[3 rows x 4 columns]

An even more explicit way to execute an inner join with merge () is
as follows:

print "Inner join with merge()\n", pd.merge(dests, tips,

how="'inner')

The output is as follows:

Inner join with merge ()

EmpNr Dest Amount
0 5 The Hague 10
1 9 Rotterdam 5

[2 rows x 3 columns]

To make this a full outer join requires only a small change:

print "Outer join\n", pd.merge (dests, tips, how='outer')
The outer join adds rows with NaN values:

Outer join

EmpNr Dest Amount
0 The Hague 10.0
1 3 Amsterdam NaN
2 9 Rotterdam 5.0
3 7 NaN 2.5

[4 rows x 3 columns]
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In a relational database query, these values would have been set to NULL.
The demo code is in the join demo.py file of this book's code bundle:

import pandas as pd

from numpy.random import seed

from numpy.random import rand

from numpy.random import random integers
import numpy as np

seed (42)

df = pd.DataFrame({'Weather' : ['cold', 'hot', 'cold', 'hot',
'cold', 'hot', 'cold'],
'Food' : ['soup', 'soup', 'icecream', 'chocolate',
'icecream', 'icecream',6 'soup'],
'Price' : 10 * rand(7), 'Number' : random integers(1l, 9,

size=(7,))})

print "df :3\n", df[:3]
print "Concat Back together\n", pd.concat ([df[:3], df[3:]1)

print "Appending rows\n", df[:3].append(df[5:1)

dests = pd.read csv('dest.csv')
print "Dests\n", dests

tips = pd.read csv('tips.csv')
print "Tips\n", tips

print "Merge() on key\n", pd.merge(dests, tips, on='EmpNr')
print "Dests join() tips\n", dests.join(tips, lsuffix='Dest',
rsuffix="Tips"')

print "Inner join with merge()\n", pd.merge(dests, tips,
how="'inner')

print "Outer join\n", pd.merge (dests, tips, how='outer')

[107]

www.it-ebooks.info


http://www.it-ebooks.info/

pandas Primer

Handling missing values

We regularly encounter empty fields in data records. It's best that we accept this and
learn how to handle this kind of issue in a robust manner. Real data can not only
have gaps, it can also have wrong values because of faulty measuring equipment,
for example. In pandas, missing numerical values will be designated as NaN, objects
as None, and the datetime64 objects as NaT. The outcome of arithmetic operations
with NaN values is NaN as well. Descriptive statistics methods, such as summation
and average, behave differently. As we observed in an earlier example, in such a
case, NaN values are treated as zero values. However, if all the values are NaN during
summation, for example, the sum returned is still NaN. In aggregation operations,
NaN values in the column that we group are ignored. We will again load the wHO_
first9cols.csv file into a DataFrame. Recall that this file contains empty fields.
Let's only select the first three rows, including the headers of the country and Net
primary school enrolment ratio male (%) columns as follows:

df = df[['Country', df.columns[-2]]1][:2]
print "New df\n", df

We get a DataFrame with two NaN values:

New df

Country Net primary school enrolment ratio male (%)
0 Afghanistan NaN
1 Albania 94

[2 rows x 2 columns]

The pandas isnull () function checks for missing values as follows:

print "Null Values\n", pd.isnull (df)

The output for our DataFrame is as follows:

Null Values

Country Net primary school enrolment ratio male (%)
0 False True
1 False False

To count the number of NaN values for each column, we can sum the Boolean values
returned by isnull (). This works because during summation, True values are
considered as ones and False values are treated as zeros:

Total Null Values

Country 0
Net primary school enrolment ratio male (%) 1
dtype: inté64
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Likewise, we can check with the DataFrame notnull () method for any non-missing
values that are present:

print "Not Null Values\n", df.notnull()

The result of the notnull () method is the opposite of the isnull () function:

Not Null Values

Country Net primary school enrolment ratio male (%)
0 True False
1 True True

When we double values in a DataFrame that has NaN values, the product will still
contain NaN values, since doubling is an arithmetic operation:

print "Last Column Doubled\n", 2 * df[df.columns[-1]]

We double the last column, which contains numerical values (doubling string
values repeats the string):

Last Column Doubled

0 NaN

1 188

Name: Net primary school enrolment ratio male (%), dtype: float64

If we add a NaN value, however, the NaN value wins:

print "Last Column plus NaN\n", df[df.columns[-1]] + np.nan

As you can see, the NaN values declared total victory:

Last Column plus NaN

0 NaN

1 NaN

Name: Net primary school enrolment ratio male (%), dtype: float64

Replace the missing values by a scalar value, for example, 0 (we can't always
replace missing values with zeros, but sometimes this is good enough) with
the £illna () method:

print "Zero filled\n", df.fillna(0)

The effect of the preceding line is to replace the NaN value with 0:

Zero filled

Country Net primary school enrolment ratio male (%)
0 Afghanistan 0
1 Albania 94
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The code for this section is in the missing values.py file of this book's code bundle:

import pandas as pd
import numpy as np

df = pd.read csv('WHO first9cols.csv')
# Select first 3 rows of country and Net primary school enrolment

)

ratio male (%)

df = df[['Country', df.columns[-2]]1][:2]

print "New df\n", df

print "Null Values\n", pd.isnull (df)

print "Total Null Values\n", pd.isnull (df) .sum()

print "Not Null Values\n", df.notnull()

print "Last Column Doubled\n", 2 * df[df.columns[-1]]

print "Last Column plus NaN\n", df[df.columns[-1]] + np.nan
print "Zero filled\n", df.fillna(0)

Dealing with dates

Dates are complicated. Just think of the Y2K bug, the pending Year 2038 problem,
and time zones. It's a mess. We encounter dates naturally when dealing with the
time-series data. pandas can create date ranges, resample time-series data, and
perform date arithmetic operations.

Create a range of dates starting from January 1, 1900 with 42 days as follows:

print "Date range", pd.date range('1/1/1900', periods=42,
freg='D")

January has less than 42 days, so the end date falls in February as you can check
for yourself:

Date range <class 'pandas.tseries.index.DatetimeIndex'>
[1900-01-01, ..., 1900-02-11]
Length: 42, Freq: D, Timezone: None

The following table from the pandas official documentation (refer to http://pandas.
pydata.org/pandas-docs/stable/timeseries.html#offset-aliases) describes
frequencies used in pandas:

Short code Description
B Business day frequency
C Custom business day frequency (experimental)
D Calendar day frequency
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Short code Description

w Weekly frequency

M Month end frequency

BM Business month end frequency
MS Month start frequency

BMS Business month start frequency
Q Quarter end frequency

BQ Business quarter end frequency
QS Quarter start frequency

BQS Business quarter start frequency
A Year end frequency

BA Business year end frequency
AS Year start frequency

BAS Business year start frequency
H Hourly frequency

T Minutely frequency

S Secondly frequency

L Milliseconds

8} Microseconds

Date ranges have their limits in pandas. Timestamps in pandas (based on the
NumPy datetime64 data type) are represented by a 64-bit integer with nanosecond
resolution (a billionth of a second). This limits legal timestamps to dates in the
range approximately between the year 1677 and 2262 (not all dates in these years
are valid). The exact midpoint of this range is at January 1, 1970. For example,
January 1, 1677 cannot be defined with a pandas timestamp, while September 30,
1677 can, as demonstrated in the following code snippet:

try:

print "Date range", pd.date range('l1/1/1677', periods=4,
freg='D"'")
except:

etype, value, = sys.exc_info()

print "Error encountered", etype, value

The code snippet prints the following error message:

Date range Error encountered <class
'pandas.tslib.OutOfBoundsDatetime'> Out of bounds nanosecond
timestamp: 1677-01-01 00:00:00
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Given all the previous information, calculate the allowed date range with pandas
DateOffset as follows:

offset = DateOffset (seconds=2 ** 63/10 ** 9)
mid = pd.to datetime('1/1/1970"')

print "Start valid range", mid - offset
print "End valid range", mid + offset'

We get the following range values:

Start valid range 1677-09-21 00:12:44
End valid range 2262-04-11 23:47:16

We can convert a list of strings to dates with pandas. Of course, not all strings

can be converted. If pandas is unable to convert a string, an error is often reported.
Sometimes, ambiguities can arise due to differences in the way dates are defined
in different locales. Use a format string in this case, as follows:

print "With format", pd.to datetime(['19021112', '19031230'],
format='%Y%m%d')

The strings should be converted without an error occurring;:

With format [datetime.datetime (1902, 11, 12, 0, 0)
datetime.datetime (1903, 12, 30, 0, 0)]

If we try to convert a string, which is clearly not a date, by default the string is
not converted:

print "Illegal date", pd.to datetime(['1902-11-12', 'not a date'])
The second string in the list should not be converted:

Illegal date ['1902-11-12' 'not a date']

To force conversion, set the coerce parameter to True:

print "Illegal date coerced", pd.to datetime(['1902-11-12', 'not a
date'], coerce=True)

Obviously, the second string still cannot be converted to a date, so the only valid
value we can give it is NaT (not a time):

Illegal date coerced <class 'pandas.tseries.index.DatetimeIndex'>
[1902-11-12, NaT]
Length: 2, Freq: None, Timezone: None
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The code for this example is in date_handling.py of this book's code bundle:

import pandas as pd
import sys

print "Date range", pd.date range('1/1/1900', periods=42,

freg='D"')
try:
print "Date range", pd.date range('l1/1/1677', periods=4,
freg='D"')
except:
etype, value, = sys.exc_info()

print "Error encountered", etype, value
print pd.to_datetime(['1900/1/1', '1901.12.11'])

print "With format", pd.to datetime(['19021112', '19031230'],
format='%Y%m%d')

print "Illegal date", pd.to datetime(['1902-11-12', 'not a date'l])
print "Illegal date coerced", pd.to datetime(['1902-11-12', 'not a
date'], coerce=True)

Pivot tables

A pivot table, as known from Excel, summarizes data. The data in CSV files that we
have seen in this chapter so far has been in flat files. The pivot table aggregates data
from a flat file for certain columns and rows. The aggregating operation can be sum,
mean, standard deviations, and so on. We will reuse the data generating code from
data_aggregation.py. The pandas API has a top-level pivot_table () function
and corresponding DataFrame method. With the aggfunc parameter, we can specify
the aggregation function to use the NumPy sum () function, for instance. The cols
parameter tells pandas the column to be aggregated. Create a pivot table on the
Food column as follows:

print pd.pivot table(df, cols=['Food'], aggfunc=np.sum)

The pivot table we get contains totals for each food item:

Food chocolate icecream soup
Number 8.000000 15.000000 19.00000
Price 5.986585 10.440071 13.83338

[2 rows x 3 columns]
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The following code can be found in pivot_demo.py in this book's code bundle:

import pandas as pd

from numpy.random import seed

from numpy.random import rand

from numpy.random import random integers
import numpy as np

seed (42)
N =7
df = pd.DataFrame ({
'Weather' : ['cold', 'hot', 'cold', 'hot',
'cold', 'hot', 'cold'],
'Food' : ['soup', 'soup', 'icecream', 'chocolate',
'icecream', 'icecream',6 'soup'],
'Price' : 10 * rand(N), 'Number' : random integers(l, 9,
size=(N,))})

print "DataFrame\n", df
print pd.pivot table(df, cols=['Food'], aggfunc=np.sum)

Remote data access

The pandas module can retrieve econometric data from various websites on the
Internet. The types of data that can be downloaded varies from stock prices and
option prices to macroeconomic data. The websites in question are listed as follows:

* Yahoo! Finance at http://finance.yahoo.com/

* Google Finance at https://www.google.com/finance

e Federal Reserve Economic Data at http://research.stlouisfed.org/
fred2/

* Kenneth R. French - Data Library at http://mba. tuck.dartmouth. edu/
pages/faculty/ken.french/data library.html

*  World Bank Group at http: //www.worldbank.org/
It's quite possible that you are not interested in all of this econometric data; therefore,

in this section, we will only download option data from Yahoo! Finance with the
purpose of calculating the price of a straddle.
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Options are financial contracts that derive their price from other financial
instruments, for instance, stocks. The two fundamental types of options are
calls and puts. Calls give you the right to buy the underlying instrument,
for example, shares in IBM at a predetermined price called the strike price.
Puts give you the opposite right to sell at a given strike price.

Option contracts are also tied to an expiration date, after which the

contract is no longer valid. The rules related to expiration are too
complicated to explain fully here. For all the finance details, have a look

% at Python for Finance, Yuxing Yan, Packt Publishing, which is listed in the
L

Preface. A straddle is an option combination consisting of a put and a call
option with the same expiration date. For a straddle, these options are
typically chosen to be at-the-money, meaning that the strike price is close
to the current stock price. This option strategy is market neutral; it doesn't
matter whether the stock price goes up or down. However, to make profit,
the stock price has to move within the expiration period; more than the
price of the call and put options combined. In other words, the stock price
has to move more than the price of the straddle. The price of a straddle is,
therefore, equal to the price change the market currently expects to occur.

In the following example, we will ignore holidays. You can check manually for
holidays falling on a Friday using the tips from https://stackoverflow.com/
questions/9187215/datetime-python-next-business-day. The market is
closed on a couple of Fridays each year, such as Good Friday. To calculate the
price of the AAPL straddle, expiring next Friday, follow these steps:

1.

Import the pandas options class:

from pandas.io.data import Options

Define the following function to determine the next Friday starting from
today with the standard Python code:
def next friday():

today = datetime.date.today ()
return today + datetime.timedelta( (4-today.weekday()) % 7

)
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3. For a straddle, we need to get the call and put options, which are closest
to the current stock price. The AAPL option contracts are a bit problematic.
For reasons that are too technical to explain here, it might not be possible
to determine unique option contracts with the strike price closest to the
current stock price. To be on the safer side, we will select the most popular
options. By definition, these are the options with the highest open interest.
Define the following function that retrieves the price of an at-the-money
put or call as follows:
def get price(options, is call, is put):

fri = next friday()

option list = options.get near stock price(above below=1,
call=is call, put=is put, expiry=fri) [0]

option = option list[option list["Open Int"] == option_
list ["Open Int"] .max ()]

return option["Last"] .values[0]

Recall that an option can be either a put or call contract. Therefore, is_put
and is_call are Boolean variables. We use the pandas get_near stock_
price () method of the options class to get the options closest to the current
stock price. In the pandas DataFrame that we obtain, there is a column named
Open Int, which is indicative of how popular a given option contract is. We
select the most popular contract with the max () method. The Last column

in the DataFrame gives the last traded price. This is the price that we are
interested in and, therefore, return.

4. Create an Options object for AAPL that gets data from Yahoo! Finance:
options = Options ('AAPL', "yahoo")

The rest of the code is simple and self-explanatory. You can find the code in the
price_ straddle.py file in this book's code bundle:

from pandas.io.data import Options
import datetime

def next friday():
today = datetime.date.today ()
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return today + datetime.timedelta( (4-today.weekday()) % 7 )

def get price(options, is call, is put):

fri = next friday()

option list = options.get near stock price(above below=1, call=is
call, put=is put, expiry=fri) [0]

option = option list[option list["Open Int"] == option list["Open
Int"] .max ()]

return option["Last"] .values[0]

def get straddle() :
options = Options ('AAPL', "yahoo")
call = get price(options, True, False)
put = get price(options, False, True)

return call + put

if name == " main ":
print get straddle()

Summary

In this chapter, we focused on pandas —a Python data analysis library. This was an
introductory tutorial about the basic pandas features and data structures. We realized
that a lot of the pandas functionality mimics relational database tables, allowing us

to query, aggregate, and manipulate data efficiently. NumPy and pandas work well
together and make it possible to perform basic statistical analysis. At this point, you
might be tempted to think that pandas is all we need for data analysis. However,
there is more to data analysis than meets the eye.

The next chapter, Chapter 5, Retrieving, Processing, and Storing Data, will teach us skills
that are essential, though they may not be considered data analysis by some people.
We will go with a broader definition that considers anything conceivably related to
data analysis. Usually, when we analyze data, we don't have a whole team of assistants
to help us with retrieving and storing data. However, since these tasks are important
for a smooth data analysis flow, we will describe these activities in detail.
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Retrieving, Processing, and
Storing Data

Data can be found everywhere in all shapes and forms. We can get it from the Web,
by e-mail and FTP, or create it ourselves in a lab experiment or marketing poll. An
exhaustive overview of how to acquire data in various formats will require many
more pages than what we have available. Sometimes, we need to store data before
we can analyze it or after we are done with our analysis. We will also discuss storing
data in this chapter. Chapter 8, Working with Databases, gives information about various
databases (relational and NoSQL) and related APIs. The following is a list of the topics
that we are going to cover in this chapter:

*  Writing CSV files with NumPy and pandas

e The binary .npy and pickle formats

* Reading and writing to Excel with pandas

e JSON

* REST web services

* Parsing RSS feeds

* Scraping the Web

* Parsing HTML

* Storing data with PyTables

* HDF5 pandas I/O
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Writing CSV files with NumPy and
pandas

In the previous chapters, we learned about reading CSV files. Writing CSV files is
just as straightforward, but uses different functions and methods. Let's first generate
some data to be stored in the CSV format. Generate a 3 x 4 NumPy array after
seeding the random generator in the following code snippet.

Set one of the array values to NaN:

np.random. seed (42)

a = np.random.randn (3, 4)
al[2] [2] = np.nan
print a

This code will print the array as follows:

[[ 0.49671415 -0.1382643 0.64768854 1.52302986]
[-0.23415337 -0.23413696 1.57921282 0.76743473]
[-0.46947439 0.54256004 nan -0.46572975]1

The NumPy savetxt () function is the counterpart of the NumPy loadtxt ()
function and can save arrays in delimited file formats such as CSV. Save the
array we created with the following function call:

np.savetxt ('np.csv', a, fmt='%.2f', delimiter=',', header="
#1, #2, #3, #4")

In the preceding function call, we specified the name of the file to be saved, the array,
an optional format, a delimiter (the default is space), and an optional header.

library/string.html#format-specification-mini-language

[ The format parameter is documented at http://docs.python.org/2/ ]
s

View the np. csv file we created with the cat command (cat np.csv) or
an editor, such as Notepad on Windows. The contents of the file should be
displayed as follows:

# #1, #2, #3, #4
0.50,-0.14,0.65,1.52
-0.23,-0.23,1.58,0.77
-0.47,0.54,nan,-0.47
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Create a pandas DataFrame from the random values array:

df = pd.DataFrame (a)
print df

As you can observe, pandas automatically comes up with column names for
our data:

0 1 2 3
0 0.496714 -0.138264 0.647689 1.523030
1l -0.234153 -0.234137 1.579213 0.767435
2 -0.469474 0.542560NaN -0.465730

Write a DataFrame to a CSV file with the pandas to_csv () method as follows:

df.to csv('pd.csv', float format='%.2f', na rep="NAN!")

We gave this method the name of the file, an optional format string analogous to
the format parameter of the NumPy savetxt () function, and an optional string
that represents NaN. View the pd. csv file to see the following;:

,0,1,2,3
0,0.50,-0.14,0.65,1.52
1,-0.23,-0.23,1.58,0.77
2,-0.47,0.54,NAN!,-0.47

Take a look at the code in the writing csv.py file in this book's code bundle:

import numpy as np
import pandas as pd

np.random. seed (42)

a = np.random.randn (3, 4)

al[2] [2] = np.nan

print a

np.savetxt ('np.csv', a, fmt='%.2f', delimiter=',', header=" #1,
#2, #3, #4")

df = pd.DataFrame (a)

print df

df.to csv('pd.csv', float format='%.2f', na rep="NAN!")
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Comparing the NumPy .npy binary format
and pickling pandas DataFrames

Saving data in the CSV format is fine most of the time. It is easy to exchange CSV
files, since most programming languages and applications can handle this format.
However, it is not very efficient; CSV and other plaintext formats take up a lot of
space. Numerous file formats have been invented, which offer a high level of
compression such as zip, bzip, and gzip.

The following is the complete code for this storage comparison exercise, which
can also be found in the binary formats.py file of this book's code bundle:

import numpy as np

import pandas as pd

from tempfile import NamedTemporaryFile
from os.path import getsize

np.random. seed (42)
a = np.random.randn (365, 4)

tmpf = NamedTemporaryFile ()
np.savetxt (tmpf, a, delimiter=',"'")
print "Size CSV file", getsize (tmpf.name)

tmpf = NamedTemporaryFile ()

np.save (tmpf, a)

tmpf .seek (0)

loaded = np.load (tmpf)

print "Shape", loaded.shape

print "Size .npy file", getsize (tmpf.name)

df = pd.DataFrame (a)

df.to_pickle (tmpf.name)

print "Size pickled dataframe", getsize (tmpf.name)
print "DF from pickle\n", pd.read pickle (tmpf.name)

NumPy offers a NumPy-specific format called .npy, which can be used to store
NumPy arrays. Before demonstrating this format, we will generate a 365 x 4 NumPy
array filled with random values. This array simulates daily measurements for four
variables for a year (for instance, a weather data station with sensors measuring
temperature, humidity, precipitation, and atmospheric pressure). We will use a
standard Python NamedTemporaryFile to store the data. The temporary file should
be automatically deleted.
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Store the array in a CSV file and check its size as follows:

tmpf = NamedTemporaryFile ()
np.savetxt (tmpf, a, delimiter=',")
print "Size CSV file", getsize (tmpf.name)

The CSV file size is printed as follows:

Size CSV file 36864

Save the array in the NumPy . npy format, load the array, check its shape, and the
size of the .npy file:

tmpf = NamedTemporaryFile ()

np.save (tmpf, a)

tmpf .seek (0)

loaded = np.load (tmpf)

print "Shape", loaded.shape

print "Size .npy file", getsize (tmpf.name)

The call to the seek () method was needed to simulate closing and reopening the
temporary file. The shape should be printed with the file size:

Shape (365, 4)
Size .npy file 11760

The .npy file is roughly three times smaller than the CSV file, as expected. Python
lets us store data structures of practically arbitrary complexity. We can store a
pandas DataFrame or Series as a pickle as well.

The Python pickle is a format to store Python objects to disk or other
medium. This is called pickling. We can recreate the Python objects from
storage. This reverse process is called unpickling (refer to http://
docs.python.org/2/library/pickle.html). Pickling has evolved
% over the years, so as a result, various pickle protocols exist. Not all Python

T objects can be pickled; however, alternative implementations such as dill
exist, which allow more types of Python objects to be pickled. If possible,
use cPickle (included in the standard Python distribution) because it is
implemented in C and is, therefore, faster.

Create a DataFrame from the generated NumPy array, write it to a pickle with the
to_pickle () method, and retrieve it from the pickle with the read pickle () function:

df = pd.DataFrame (a)

df.to _pickle (tmpf.name)

print "Size pickled dataframe", getsize (tmpf.name)
print "DF from pickle\n", pd.read pickle (tmpf.name)
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The pickle of the DataFrame is slightly larger than the .npy file, as you can confirm
in the following printout:

Size pickled dataframe 14991
DF from pickle

0 1 2 3
0 0.496714 -0.138264 0.647689 1.523030
[TRUNCATED]
59 -2.025143 0.186454 -0.661786 0.852433

[365 rows x 4 columns]

Storing data with PyTables

Hierarchical Data Format (HDF) is a specification and technology for the storage
of big numerical data. HDF was created in the supercomputing community and is
now an open standard. The latest version of HDF is HDF5 and is the one we will be
using. HDF5 structures data in groups and datasets. Datasets are multidimensional
homogeneous arrays. Groups can contain other groups or datasets. Groups are like
directories in a hierarchical filesystem.

The two main HDF5 Python libraries are:

* hby
* PyTables

In this example, we will be using PyTables. PyTables has a number of dependencies:

*  NumPy: We installed NumPy in Chapter 1, Getting Started with
Python Libraries

* numexpr: This package claims that it evaluates multiple-operator
array expressions many times faster than NumPy can

* HDF5

The parallel version of HDF5 also requires MP1. HDFE5 can be installed
by obtaining a distribution from http://www.hdfgroup.org/HDF5/
release/obtain5.html and running the following commands
" (which could take a few minutes):
% $ gunzip < hdf5-X.Y.Z.tar.gz | tar xf -
$ cd hdf5-X.Y.Z
$ make
$

make install
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In all likelihood, your favorite package manager has a distribution for HDF5.
Please choose the latest stable version. At the time of writing this book, the most
recent version was 1.8.12.

The second dependency, numexpr, claims to be able to perform certain operations
faster than NumPy. It supports multithreading and has its own virtual machine
implemented in C. Numexpr and PyTables are available on PyPi, so we can
install these with pip as follows:

$ pip install numexpr

$ pip install tables

Check the installed versions with the following command:

$ pip freeze|grep tables
tables==3.1.1

$ pip freeze|grep numexpr
numexpr==2.4

Again, we will generate random values and fill a NumPy array with those random
values. Create an HDF5 file and attach the NumPy array to the root node with the
following code:

tmpf = NamedTemporaryFile ()

h5file = tables.openFile (tmpf.name, mode='w', title="NumPy Array")
root = h5file.root

h5file.createArray (root, "array", a)

h5file.close ()

Read the HDF?5 file and print its file size:

h5file = tables.openFile (tmpf.name, "r")
print getsize (tmpf.name)

The value that we get for the file size is 13824. Once we read an HDF5 file and obtain
a handle for it, we would normally traverse it to find the data we need. Since we
only have one dataset, traversing is pretty simple. Call the iterNodes () and read ()
methods to get the NumPy array back:

for node in h5file.iterNodes (h5file.root) :
b = node.read()
print type(b), b.shape

The type and shape of the dataset corresponds to our expectations:

<type 'numpy.ndarray'> (365, 4)
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The following code can be found in the hfSstorage. py file in this book's code bundle:

import numpy as np

import tables

from tempfile import NamedTemporaryFile
from os.path import getsize

np.random.seed (42)
a = np.random.randn (365, 4)

tmpf = NamedTemporaryFile ()

h5file = tables.openFile (tmpf.name, mode='w', title="NumPy Array")
root = h5file.root

h5file.createArray (root, "array", a)

h5file.close ()

h5file = tables.openFile (tmpf.name, "r")
print getsize (tmpf.name)

for node in h5file.iterNodes (h5file.root) :
b = node.read()
print type(b), b.shape

h5file.close ()

Reading and writing pandas DataFrames
to HDFS5 stores

The HDFStore class is the pandas abstraction responsible for dealing with HDF5
data. Using random data and temporary files, we will demonstrate this functionality.
These are the steps to do so:

Give the HDFStore constructor the path to a temporary file and create a store:

store = pd.io.pytables.HDFStore (tmpf .name)
print store

The preceding code snippet will print the file path to the store and its contents,
which is empty at the moment:

<class 'pandas.io.pytables.HDFStore'>

File path:

/var/folders/k_/xx xz6xj0hx627654s3v1d440000gn/T/tmpfmwPPB
Empty
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HDFStore has a dict-like interface, meaning that we can store values, for instance, a
pandas DataFrame with a corresponding lookup key. Store a DataFrame containing
random data in HDFStore as follows:

store['df'] = df
print store

Now the store contains data as illustrated in the following output:

<class 'pandas.io.pytables.HDFStore'>

File path:
/var/folders/k_/xx xz6xjO0hx627654s3v1d440000gn/T/tmpfwyLIN
/4f frame (shape->[365,4])

We can access the DataFrame in three ways: with the get () method, a dict-like lookup,
or dotted access. So let's try this out:

print "Get", store.get('df') .shape
print "Lookup", store['df'].shape
print "Dotted", store.df.shape

The shape of the DataFrame is the same for all three access methods:

Get (365, 4)
Lookup (365, 4)
Dotted (365, 4)

We can delete an item in the store by calling the remove () method or with the del
operator. Obviously, we can remove an item only once. Delete the DataFrame from
the store:

del store['df']
print "After del\n", store

The store is now empty again:

After del

<class 'pandas.io.pytables.HDFStore'>

File path:

/var/folders/k_/xx xz6xj0hx627654s3v1d440000gn/T/tmpR6]j K5
Empty

The is_open attribute indicates whether the store is open or not. The store can be
closed with the close () method. Close the store and check that it is closed:

print "Before close", store.is_ open

store.close ()

print "After close", store.is open
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Once closed, the store is no longer open as confirmed by the following;:

Before close True
After close False

pandas also provides a DataFrame to_hdf () method and a top-level read_hdf ()
function to read and write HDF data. Call the to_hdf () method and read the data:

df.to_hdf (tmpf.name, 'data', format='table')
print pd.read hdf (tmpf.name, 'data',6 where=['index>363"'])

The arguments of the reading and writing API are a file path, an identifier for the
group in the store, and an optional format string. The format can either be fixed or
table. The fixed format is faster, but you cannot append or search. The table format
corresponds to a PyTables Table structure and allows searching and selection. We
get the following values for the query on the DataFrame:

0 1 2 3
364 0.753342 0.381158 1.289753 0.673181

[1 rows x 4 columns]

The pd_hdf . py file in this book's code bundle contains the following code:

import numpy as np
import pandas as pd
from tempfile import NamedTemporaryFile

np.random.seed (42)
a = np.random.randn (365, 4)

tmpf = NamedTemporaryFile ()
store = pd.io.pytables.HDFStore (tmpf .name)
print store

df = pd.DataFrame (a)
store['df'] = df
print store

print "Get", store.get('df') .shape
print "Lookup", store['df'].shape

print "Dotted", store.df.shape

del store['df']
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print "After del\n", store

print "Before close", store.is open
store.close()
print "After close", store.is open

df.to_hdf (tmpf.name, 'data', format='table')
print pd.read hdf (tmpf.name, 'data',6 where=['index>363'])

Reading and writing to Excel with pandas

Excel files contain a lot of important data. Of course, we can export that data in other
more portable formats such as CSV. However, it is more convenient to read and
write Excel files with Python. As is common in the Python world, there is more than
one project with the goal of providing Excel I/O capabilities. The modules that we
will need to install to get Excel I/O to work with pandas are somewhat obscurely
documented. The reason is that the projects that pandas depends on are independent
and rapidly developing. The pandas package is picky about the files it accepts as
Excel files. These files must have the .x1s or .x1sx suffix; otherwise, we get the
following error:

ValueError: No engine for filetype: '!'

This is easy to fix. For instance, if we create a temporary file, we just give it
the proper suffix. If you don't install anything, you will get the following
error message:

ImportError: No module named openpyxl.workbook

The following command gets rid of the error by installing openpyxl:
$ pip install openpyxl

Check the version with the following command:

$ pip freeze|grep openpyxl
openpyxl==2.0.3

The openpyx] module is a port of PHPExcel and supports the reading and writing
of .x1sx files.

M If for some reason the pip install method didn't work
Q for you, you can find alternative installation instructions at
http://pythonhosted.org/openpyxl/.
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Even after installing openpyxl, you might get the following error:

ImportError: No module named style

Fix this by installing xIsxwriter:

$ pip install xlsxwriter

Also, we can check the xIsxwriter version again. I have installed version 0.5.5.
The xlIsxwriter module is also needed to read the .x1sx files. At this point,
you will most likely get the following error:

ImportError: No module named xlrd

This module can be installed with pip as well:

$ pip install xlrd
$ pip freeze|grep xlrd
x1lrd==0.9.3

The xlrd module is able to extract data from the .x1s and .x1sx files. Let's generate
random values to populate a pandas DataFrame, create an Excel file from the
DataFrame, recreate the DataFrame from the Excel file, and apply the mean () method
to it. For the sheet of the Excel file, we can either specify a zero-based index or name.

Refer to the pd_x1s.py file in the book's code bundle, which will contain the
following code:

import numpy as np
import pandas as pd
from tempfile import NamedTemporaryFile

np.random. seed (42)
a = np.random.randn (365, 4)

tmpf = NamedTemporaryFile(suffix="'.xlsx")

df = pd.DataFrame (a)

print tmpf.name

df.to_excel (tmpf.name, sheet name='Random Data')

print "Means\n", pd.read excel (tmpf.name, 'Random Data') .mean ()

Create an Excel file with the to_excel () method:

df.to_excel (tmpf.name, sheet name='Random Data')
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Recreate the DataFrame with the top-level read_excel () function:
print "Means\n", pd.read excel (tmpf.name, 'Random Data') .mean()
The means are printed as follows:

/var/folders/k_/xx xz6xjO0hx627654s3v1d440000gn/T/tmpeBEfnO.xlsx

Means

0 0.037860
1 0.024483
2 0.059836
3 0.058417

dtype: floaté64

Using REST web services and JSON

Representational State Transfer (REST) web services use the REST-architectural
style (for more information refer to http://en.wikipedia.org/wiki/
Representational_ state_transfer). In the usual context of the HTTP(S) protocol,
we have the GET, POST, PUT, and DELETE methods. These methods can be aligned
with common operations on the data to create, request, update, or delete data items.

In a RESTful AP], data items are identified by URIs such as http://example.com/
resources Or http://example.com/resources/item42. REST is not an official
standard but is so widespread that we need to know about it. Web services often

use JavaScript Object Notation (JSON) (for more information refer to http://
en.wikipedia.org/wiki/JSON) to exchange data. In this format, data is written
using the JavaScript notation. The notation is similar to the syntax for Python lists

and dicts. In JSON, we can define arbitrarily complex data consisting of a combination
of lists and dicts. To illustrate this, we will use a very simple JSON string that
corresponds to a dictionary, which gives geographical information for a particular

IP address:

{“country“ :"Netherlands","dma code":"0", "timezone":"Europe\/Amsterdam
","area code":"0","ip":"46.19.37.108","asn":"AS196752", "continent cod
ell s IIEUII ’ llispll s llTilaa

V.O.F.","longitude":5.75,"latitude":52.5, "country code":"NL", "country
_code3":"NLD"}

You can get this data from
S http://www.telize.com/geoip/46.19.37.108.
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The following is the code for the json_demo. py file:

import json

json_str = '{"country":"Netherlands", "dma_

code":"0", "timezone": "Europe\/Amsterdam", "area code":"0","ip":"46.1
9.37.108","asn":"AS196752", "continent_code" :"EU","isp":"Tilaa V.O.

F.","longitude":5.75, "latitude":52.5, "country code":"NL", "country

code3": "NLD"} "

data = json.loads(json_str)
print "Country", data["country"]
data["country"] = "Brazil"
print json.dumps (data)

Python has a standard JSON API that is really easy to use. Parse a JSON string
with the loads () function:

data = json.loads(json_str)
Access the country value with the following code:
print "Country", data["country"]
The previous line should print the following;:
Country Netherlands

Overwrite the country value and create a string from the new JSON data:

data["country"] = "Brazil"
printjson.dumps (data)

The result is JSON with a new country value. The order is not preserved as it
usually happens for dicts:

{"longitude": 5.75, "ip": "46.19.37.108", "isp": "Tilaa V.O.F.",
"area code": "0", "dma code": "0", "country code3": "NLD",
"continent code": "EU", "country code": "NL", "country": "Brazil",
"latitude": 52.5, "timezone": "Europe/Amsterdam", "asn": “A8196752"}

Reading and writing JSON with pandas

We can easily create a pandas series from the JSON string in the previous example.
The pandas read_json () function can create a pandas Series or pandas DataFrame.
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The following example code can be found in pd_json.py of this book's code bundle:

import pandas as pd

json_str = '{"country":"Netherlands", "dma_

code":"0", "timezone": "Europe\/Amsterdam", "area code":"0","ip":"46.1
9.37.108","asn":"AS196752", "continent_code" :"EU","isp":"Tilaa V.O.

F.","longitude":5.75, "latitude":52.5, "country code":"NL", "country

code3": "NLD"} "

data = pd.read json(json_str, typ='series')
print "Series\n", data

data["country"] = "Brazil"
print "New Series\n", data.to_json()

We can either specify a JSON string or the path of a JSON file. Call the read_json ()
function to create a pandas series from the JSON string in the previous example:

data = pd.read json(json_str, typ='series')
print "Series\n", data

In the resulting Series, the keys are ordered in alphabetical order:

Series

area_ code 0
asn AS196752
continent code EU
country Netherlands
country code NL
country code3 NLD
dma code 0
ip 46.19.37.108
ispTilaa V.O.F.

latitude 52.5
longitude 5.75
timezone Europe/Amsterdam

dtype: object

Change the country value again and convert the pandas series to a JSON string
with the to json () method:

data["country"] = "Brazil"
print "New Series\n", data.to_ Jjson()
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In the new JSON string, the key order is preserved, but we also have a different
country value:

New Series

{"area code":"0","asn":"AS196752", "continent code":"EU", "country":"Br
azil","country code":"NL", "country code3":"NLD","dma code":"O", "ip":"
46.19.37.108","isp":"Tilaa
V.0.F.","latitude":52.5,"longitude":5.75, "timezone" : "Europe\/Amsterda
mll

Parsing RSS and Atom feeds

Really Simple Syndication (RSS) and Atom feeds (refer to http://en.wikipedia.
org/wiki/RSS) are often used for blogs and news. These type of feeds follow the
publish/subscribe model. For instance, Packt Publishing has an RSS feed with article
and book announcements. We can subscribe to the feed to get timely updates. The
Python feedparser module allows us to parse RSS and Atom feeds easily without
dealing with a lot of technical details. The feedparser module can be installed with
pip as follows:

$ sudo pip install feedparser
$ pip freeze|grep feedparser
feedparser==5.1.3

After parsing an RSS file, we can access the underlying data using a dotted notation.
Parse the Packt Publishing RSS feed and print the number of entries:

import feedparser as fp
rss = fp.parse("http://www.packtpub.com/rss.xml")

print "# Entries", len(rss.entries)

The number of entries is printed (the number may vary for each program run):

# Entries 50

Print entry titles and summaries if the entry contains the word Python with the
following code:

for i, entry in enumerate(rss.entries):
if "Python" in entry.summary:
print i, entry.title

print entry.summary
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On this particular run, the following was printed (if you try it for yourself, you may
get something else or nothing at all if the filter is too restrictive):

42 Create interactive plots with matplotlib using Pack&#039;t new
book and eBook

About the author: Alexandre Devert is a scientist. He is an
enthusiastic Python coder as well and never gets enough of it! He
used to teach data mining, software engineering, and research in
numerical optimization.

Matplotlib is part of the Scientific Python modules collection. It
provides a large library of customizable plots and a comprehensive
set of backends. It tries to make easy things easy and make hard
things possible. It can help users generate plots, add dimensions to
plots, and also make plots interactive with just a few lines of code.
Also, matplotlib integrates well with all common GUI modules.

The following code can be found in the rss.py file of this book's code bundle:

import feedparser as fp
rss = fp.parse("http://www.packtpub.com/rss.xml")
print "# Entries", len(rss.entries)

for i, entry in enumerate(rss.entries):
if "Python" in entry.summary:
print i, entry.title
print entry.summary

Parsing HTML with Beautiful Soup

Hypertext Markup Language (HTML) is the fundamental technology used to

create web pages. HTML is composed of HTML elements that consist of so-called
tags enveloped in slanted brackets (for example, <htmls). Often, tags are paired
with a starting and closing tag in a hierarchical tree-like structure. An HTML-related
draft specification was first published by Berners-Lee in 1991. Initially, there were
only 18 HTML elements. The formal HTML definition was published by the Internet
Engineering Task Force (IETF) in 1993. The IETF completed the HTML 2.0 standard
in 1995. Around 2013, the latest HTML version, HTML5, was specified. HTML is not
a very strict standard if compared to XHTML and XML.
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Modern browsers tolerate a lot of violations of the standard, making web pages a
form of unstructured data. We can treat HTML as a big string and perform string
operations on it with regular expressions, for example. This approach works only
for simple projects.

I have worked on web scraping projects in a professional setting; so from personal
experience, I can tell you that we need more sophisticated methods. In a real world
scenario, it may be necessary to submit HTML forms programmatically, for instance,
to log in, navigate through pages, and manage cookies robustly. The problem with
scraping data from the Web is that if we don't have full control of the web pages that
we are scraping, we may have to change our code quite often. Also, programmatic
access may be actively blocked by the website owner, or may even be illegal. For these
reasons, you should always try to use other alternatives first, such as a REST API.

In the event that you must retrieve the data by scraping, it is recommended to
use the Python Beautiful Soup API. This API can extract data from both HTML
and XML files. New projects should use Beautiful Soup 4, since Beautiful Soup 3
is no longer developed. We can install Beautiful Soup 4 with the following
command (similar to easy install):

$ pip install beautifulsoup4
$ pip freeze|grep beautifulsoup

beautifulsoup4==4.3.2

On Debian and Ubuntu, the package name is python-bs4. We
. can also download the source from http://www.crummy.com/
% software/BeautifulSoup/download/4 .x/. After unpacking
L the source, we can install Beautiful Soup from the source directory
with the following command:
$ python setup.py install

If this doesn't work, you are allowed to simply package Beautiful Soup along with
your own code. To demonstrate parsing HTML, I have generated the loremIpsum.
html file in this book's code bundle with the generator from http://loripsum.
net/. Then, I edited the file a bit. The content of the file is a first century BC text

in Latin by Cicero, which is a traditional way to create mock-ups of websites.
Refer to the following screenshot for the top part of the web page:
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. . . . . . <himbB><head>
Ne in odium veniam, si amicum destitero. <titlesGenerated Lorem Ipsum<itles
* ‘\\ </head>
tllel'l . B <body=>
“a<hl=Ne in odium veniam, si amicum destitero tueri </h1>
Generated with the generator from loripsum.net — — —
T <p>Generated with the generator from <a href="http:/loripsum.net
Versions —— . {"=loripsum net</a>
Development —++ </p=<h3=Versions</hi>
B —_— <div class="tile">
0.10.1 - July 2014 —
July —1—=<hd=Development</hd=>
. 0.10.1 - July 2014<br=
Official Release — dive

0.10.0 June 2014 <div class="tile" id="official">

T <h4>Official Release</hd>
Previous Release — i 0.10.0 June 2014<br>
T <fdiv>
0.09.1 June 2013

. . T <div class="notile">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duo Reges: constructio interrete: T T—+<hd>Previous Release</hds>

Neque solum ea communia, verum etiam paria esse dixerunt. Qui convenir? Fatebuntur Stoici 0.00.1 June 2013<br>
haee omnia dicta esse pracclare, neque cam causam Zenoni desciscendi fuisse, Est enim tanti <fdiv>

In this example, we will be using Beautiful Soup 4 and the standard Python
regular expression library:

Import these libraries with the following lines:

from bs4 import BeautifulSoup
import re

Open the HTML file and create a BeautifulSoup object with the following line:

soup = BeautifulSoup (open('loremIpsum.html'))

Using a dotted notation, we can access the first <div> element. The <div> HTML
element is used to organize and style elements. Access the first div element as follows:

print "First div\n", soup.div

The resulting output is an HTML snippet with the first <div> tag and all the tags
it contains:

First div
<div class="tile">
<h4>Development</h4>

0.10.1 - July 2014<br/>
</div>
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This particular div element has a class attribute with the value tile.
The class attribute pertains to the CSS style that is to be applied to
. this div element. Cascading Style Sheets (CSS) is a language used
% to style elements of a web page. CSS is a widespread specification
L that handles the look and feel of web pages through CSS classes. CSS

aids in separating content and presentation by defining colors, fonts,
and the layout of elements. The separation leads to a simpler and
cleaner design.

Attributes of a tag can be accessed in a dict-like fashion. Print the class attribute value
of the <div> tag as follows:

print "First div class", soup.div['class']
First div class ['tile']

The dotted notation allows us to access elements at an arbitrary depth. For instance,
print the text of the first <dfn> tag as follows:

print "First dfn text", soup.dl.dt.dfn.text

A line with Latin text is printed (Solisten, I pray):

First dfn text Quareattende, quaeso.

Sometimes, we are only interested in the hyperlinks of an HTML document. For
instance, we may only want to know which document links to which other documents.
In HTML, links are specified with the <a> tag. The href attribute of this tag holds the
URL the link points to. The BeautifulSoup class has a handy £ind_all () method,
which we will use a lot. Locate all the hyperlinks with the £ind_all () method:

for link in soup.find all('a'):
print "Link text", link.string, "URL", link.get ('href')

There are three links in the document with the same URL, but with three different texts:

Link text loripsum.net URL http://loripsum.net/
Link text Potera tautem inpune; URL http://loripsum.net/
Link text Is es profecto tu. URL http://loripsum.net/

We can omit the find_all () method as a shortcut. Access the contents of all the <div>
tags as follows:

for i, div in enumerate(soup('div')):
print i, div.contents
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The contents attribute holds a list with HTML elements:

0 [u'\n', <h4>Development</h4>, u'\n 0.10.1 - July
2014', <br/>, u'\n'l

1 [u'\n', <h4>0fficial Release</h4>, u'\n 0.10.0 June
2014', <br/>, u'\n'l

2 [u'\n', <h4>Previous Release</h4>, u'\n 0.09.1 June

2013', <br/>, u'\n'l

A tag with a unique ID is easy to find. Select the <div> element with the official
ID and print the third element:

official div = soup.find all("div", id="official")
print "Official Version",
official div[0].contents[2].strip()

Many web pages are created on the fly based on visitor input or external data. This
is how most content from online shopping websites is served. If we are dealing with
a dynamic website, we have to remember that any tag attribute value can change

in a moment's notice. Typically, in a large website, IDs are automatically generated
resulting in long alphanumeric strings. It's best to not look for exact matches but use
regular expressions instead. We will see an example of a match based on a pattern
later. The previous code snippet prints a version number and month as you might
find on a website for a software product:

Official Version 0.10.0 June 2014

As you know, class is a Python keyword. To query the class attribute in a tag, we
match it with class_. Get the number of <div> tags with a defined class attribute:

print "# elements with class",
len(soup.find all (class_=True))

We find three tags as expected:
# elements with class 3
Find the number of <div> tags with the class "tile":

tile class = soup.find all("div", class ="tile")
print "# Tile classes", len(tile class)

There are two <div> tags with class tile and one <div> tag with class notile:

# Tile classes 2
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Define a regular expression that will match all the <div> tags:

print "# Divs with class containing tile",
len(soup.find all("div", class =re.compile("tile")))

Again, three occurrences are found:

# Divs with class containing tile 3

In CSS, we can define patterns in order to match elements. These patterns are
called CSS selectors and are documented at http://www.w3.org/TR/selectors/.
We can select elements with the CSS selector from the BeautifulSoup class too.
Use the select () method to match the <div> element with class notile:

print "Using CSS selector\n", soup.select('div.notile')

The following is printed on the screen:

Using CSS selector

[<div class="notile">

<h4>Previous Release</h4>
0.09.1 June 2013<br/>

</div>]

An HTML-ordered list looks like a numbered list of bullets. The ordered list consists
of an <ol> tag and several <1i> tags for each list item. The result from the select ()
method can be sliced as any Python list. Refer to the following screenshot of the
ordered list:

1. Cur id non ita fit? - - B <nl>

2. In qua si nihil est praeter rationem. sit in una virtute finis bonorum; - — —+ <li=Cur id non ita fit?<li=

3. Num igitur utiliorem tibi hunc Triarium putas esse posse. quam si tua sint Putealis_—i>In qua si nihil est praeter rationem, sit in una virute finis bonorum;
N -

ora . |

gitur, quo modo hae tantae commendationes a natura profectae subito a sapienti T s liorem tibi hune

arium pulas esse posse, quam si tua
relictae sint.
5. Eadem nunc mea adversum te oratio est

S igitur, quo modo hae tantae commendationes a natura
6. Qui enim voluptatem ipsam contemnunt, iis licet dicere S&aCupenserem macnac non i

entia relictae sint.</1i>
tio est.</li>

anteponere.

voluptatem ipsam contemnunt, iis lcet dicere se

Ego autem existimo, si b tum esse aliquid ! quaod

A . . scupenserem maenae non anteponere.</li
sit ipsum vi sua propter seque expetendum, jacere vestra

<lol=

Select the first two list items in the ordered list:

print "Selecting ordered list list items\n",
soup.select ("ol> 1i") [:2]

The following two list items are shown:

Selecting ordered list list items

[<li>Cur id non ita fit?</li>, <li>In qua

si nihil est praeter rationem, sit in una virtute finis
bonorum;</1i>]
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In the CSS selector mini language, we start counting from 1. Select the second list
item as follows:

print "Second list item in ordered list",
soup.select ("ol>1li:nth-of-type(2)")

The second list item can be translated in English as In which, if there is nothing contrary
to reason, let him be the power of the end of the good things in one:

Second list item in ordered list [<1li>In qua
si nihil est praeter rationem, sit in una virtute finis
bonorum;</1i>]

If we are looking at a web page in a browser, we may decide to retrieve the text
nodes that match a certain regular expression. Find all the text nodes containing
the string 2014 with the text attribute:

print "Searching for text string",
soup.find all (text=re.compile("2014"))

This prints the following text nodes:

Searching for text string [u'\n 0.10.1 - July 2014°',
u'\n 0.10.0 June 2014']

This was just a brief overview of what the BeautifulSoup class can do for us.
Beautiful Soup can also be used to modify HTML or XML documents. It has
utilities to troubleshoot, pretty print, and deal with different character sets.
Please refer to soup request .py for the code:

from bs4 import BeautifulSoup
import re

soup = BeautifulSoup (open('loremIpsum.html'))

print "First div\n", soup.div
print "First div class", soup.div['class']

print "First dfn text", soup.dl.dt.dfn.text

for link in soup.find all('a'):
print "Link text", link.string, "URL", link.get('href')

# Omitting find all
for i, div in enumerate (soup('div')):
print i, div.contents

#Div with id=official
official div = soup.find all("div", id="official")
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print "Official Version", official div([0].contents[2].strip()

print "# elements with class", len(soup.find _all(class_=True))

tile class = soup.find all("div", class ="tile")

print "# Tile classes", len(tile class)

print "# Divs with class containing tile", len(soup.find all("div",

class_=re.compile("tile")))

print "Using CSS selector\n", soup.select('div.notile')

print "Selecting ordered list list items\n", soup.select("ol>
1iv) [:2]

print "Second list item in ordered list", soup.select("ols>li:nth-
of-type(2)")

print "Searching for text string", soup.find all (text=re.
compile ("2014™"))

Summary

In this chapter, we learned about retrieving, processing, and storing data in
different formats. The formats include the CSV, NumPy .npy format, Python
pickle, JSON, RSS, and HTML. We used the NumPy pandas, json, feedparser,
and Beautiful Soup libraries.

The next chapter Chapter 6, Data Visualization, is about the important topic of
visualizing data with Python. Visualization is something we often do when we
start analyzing data. It helps to display relations between variables in the data.
By visualizing the data, we can also get an idea about its statistical properties.
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One of the first steps in data analysis is visualization. Even when looking at a table of
values, we can form a mental image of what the data might look like when graphed.
Data visualization calls for the conception and analysis of the visual representation of
information, signifying data that has been abstracted in some formal pattern, including
properties or quantities for units of measurements of the data. Data visualization is
tightly associated with scientific visualization and statistical graphics. The Python
matplotlib (all lowercase) library is a well-known plotting library based on NumPy,
which we will be using in this chapter. It has an object-oriented and a procedural
MATLAB-like API, which can be used in parallel. A gallery with matplotlib examples
can be found at http://matplotlib.org/gallery.html. The following is a list of
topics that will be covered in this chapter:

* Basic matplotlib plots

* Logarithmic plots

* Scatter plots

* Legends and annotations
* Three-dimensional plots
* Plotting in pandas

* Lag plots

* Autocorrelation plots

* Plotly
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matplotlib subpackages

If we pick up our pkg_check.py file provided in the code bundle and change the
code to list the matplotlib subpackages, we get the following result:

matplotlib version 1.3.1
matplotlib.axes
matplotlib.backends
matplotlib.compat

matplotlib.delaunay DESCRIPTION :Author: Robert Kern
<robert.kern@gmail.com> :Copyright: Copyright 2005 Robert Kern.
:License: BSD-style license. See LICENSE.tx

matplotlib.projections
matplotlib.sphinxext
matplotlib.style
matplotlib.testing
matplotlib.tests
matplotlib.tri

The subpackage names are pretty self-explanatory. Backends refers to the way
the end result is output. This can be one of several file formats or on the screen
in a graphical user interface. For completeness, refer to the following snippet
with the changed lines in pkg_check.py:

import matplotlib as mpl
print "matplotlib version", mpl. version

print desc("matplotlib", mpl. path )

Basic matplotlib plots

We installed matplotlib and IPython in Chapter 1, Getting Started with Python Libraries.
Please go back to that chapter if you need to. The procedural MATLAB-like matplotlib
APl is considered by many as simpler to use than the object-oriented API, so we will
demonstrate this procedural API first. To create a very basic plot in matplotlib, we
need to invoke the plot () function in the matplotlib.pyplot subpackage. This
function produces a two-dimensional plot for a single list or multiple lists of points
with known x and y coordinates.
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Optionally, we can pass a format parameter, for instance, to specify a dashed line
style. The list of format options and parameters for the plot () function is pretty
long, but easy to look up with the following commands:

$ ipython -pylab
In [1]: help(plot)

In this example, we will plot two lines: one with a solid line style (the default) and
the other with a dashed line style.

The following demo code is in the basic_plot.py file in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np

X = np.linspace (0, 20)

plt.plot (%, .5 + x)
plt.plot(x, 1 + 2 * x, '--")
plt.show ()

Please follow the ensuing steps to plot the aforementioned lines:

1. First, we will specify the x coordinates with the NumPy linspace ()
function. Specify a start value of 0 and an end value of 20:

X = np.linspace (0, 20)

2. Plot the lines as follows:

plt.plot (%, .5 + x)
plt.plot(x, 1 + 2 * x, '--")

3. At this juncture, we can either save the plot to a file with the savefig()
function or show the plot on the screen with the show () function.
Show the plot on the screen as follows:

plt.show ()
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Refer to the following plot for the end result:

45

Logarithmic plots

Logarithmic plots (or log plots) are plots that use a logarithmic scale.

A logarithmic scale shows the value of a variable which uses intervals that
match orders of magnitude, instead of a regular linear scale. There are two types
of logarithmic plots. The log-log plot employs logarithmic scaling on both axes
and is represented in matplotlib by the matplotlib.pyplot.loglog () function.
The semi-log plots use linear scaling on one axis and logarithmic scaling on the
other axis. These plots are represented in the matplotlib API by the semilogx ()
and semilogy () functions. On log-log plots, power laws appear as straight lines.
On semi-log plots, straight lines represent exponential laws.

Moore's law is such a law. It's not a physical, but more of an empirical observation.
Gordon Moore discovered a trend of the number of transistors in integrated circuits
doubling every two years. On http://en.wikipedia.org/wiki/Transistor_
count#Microprocessors, a table can be found with transistor counts for various
microprocessors and the corresponding year of introduction.
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From the table, I have prepared a CSV file, transcount . csv, containing only the
transistor count and year. We still need to average the transistor counts for each year.
Averaging and loading can be done with pandas. If you need to, refer to Chapter 4,
pandas Primer, for tips. Once we have the average transistor count for each year in
the table, we can try to fit a straight line to the log of the counts versus the years.

The NumPy polyfit () function allows to fit data to a polynomial.

Refer to the 1og_plots.py file in this book's code bundle for the following code:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read csv('transcount.csv')

df = df.groupby('year') .aggregate (np.mean)

years = df.index.values

counts = df ['trans count'] .values

poly = np.polyfit(years, np.log(counts), deg=1)
print "Poly", poly

plt.semilogy (years, counts, 'o')

plt.semilogy (years, np.exp (np.polyval (poly, years)))
plt.show ()

The following steps will explain the preceding code:

1. Fit the data as follows:

poly = np.polyfit(years, np.log(counts), deg=1)
print "Poly", poly

2. The result of the fit is a Polynomial object (see http://docs.scipy.org/
doc/numpy/reference/generated/numpy.polynomial .polynomial.
Polynomial.html#numpy.polynomial.polynomial.Polynomial).The
string representation of this object gives the polynomial coefficients with
a descending order of degrees, so the highest degree coefficient comes first.
For our data, we obtain the following polynomial coefficients:

Poly [ 3.61559210e-01 -7.05783195e+02]

3. The NumPy polyval () function enables us to evaluate the polynomial we
just obtained. Plot the data and fit with the semilogy () function:

plt.semilogy (years, counts, 'o')
plt.semilogy (years, np.exp (np.polyval (poly, years)))
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The trend line is drawn as a solid line and the data points as filled circles. Refer to the
following plot for the end result:
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Scatter plots

A scatter plot shows the relationship between two variables in a Cartesian
coordinate system. The position of each data point is determined by the values of
these two variables. The scatter plot can provide hints for any correlation between
the variables under study. An upward trending pattern suggests positive correlation.
A bubble chart is an extension of the scatter plot. In a bubble chart, the value of a
third variable is relatively represented by the size of the bubble surrounding a data
point, hence the name.

Onhttp://en.wikipedia.org/wiki/Transistor count#GPUs, there is also a table
with transistor counts for Graphical Processor Units (GPUs).
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GPUs are specialized circuits used to display graphics efficiently. Because of the
way modern display hardware works, GPUs can process data with highly parallel
operations. GPUs are a new development in computing. In the gpu_transcount.csv
file in this book's code bundle, you will notice that we don't have many data points.
Dealing with missing data is a recurring bubble chart issue. We will define a default
bubble size for missing values. Again, we will load and average the data annually.
Then, we will merge the transistor counts for the CPUs and GPUs DataFrame

on the year indices with an outer join. The NaN values will be set to 0 (works for

this example, but sometimes it's not a good idea to set NaN values to 0). All the
functionality described in the preceding text was covered in Chapter 4, pandas Primer;
therefore, please refer to that chapter if needed. The matplotlib API provides the
scatter () function for scatter plots and bubble charts. We can view documentation
for this function with the following commands:

$ ipython -pylab
In [1]: help(scatter)

In this example, we will specify the s parameter, which is related to the size of the
bubble. The ¢ parameter specifies colors. Unfortunately, you will not be able to see
colors in this book, so you will have to run the examples yourself to see different
colors. The alpha parameter determines how transparent the bubbles on the plot
will be. This value varies between o (fully transparent) and 1 (opaque). Create a
bubble chart as follows:

plt.scatter(years, cnt log, c= 200 * years, s=20 + 200 *
gpu_counts/gpu_counts.max (), alpha=0.5)

The following code for this example can also be found in the scatter_plot.py file
in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read csv('transcount.csv')

df df .groupby ('year') .aggregate (np.mean)

gpu = pd.read csv('gpu transcount.csv')
gpu = gpu.groupby ('year') .aggregate (np.mean)

df
df

pd.merge (df, gpu, how='outer', left index=True, right index=True)
df .replace (np.nan, 0)
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print df
years = df
counts =

gpu_counts

.index.values

df ['trans_count'] .values

= df ['gpu_trans count'].values

cnt _log = np.log(counts)

plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 * gpu counts/
gpu_counts.max (), alpha=0.5)

plt.show ()

Refer to the following plot for the end result:
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Legends and annotations

Legends and annotations are effective tools to display information required to
comprehend a plot in a glance. A typical plot will have the following additional
information elements:

* Alegend describing the various data series in the plot. This is provided by
invoking the matplotlib 1egend () function and supplying the labels for each
data series.
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* Annotations for important points in the plot. The matplotlib annotate ()
function can be used for this purpose. A matplotlib annotation consists of a
label and an arrow. This function has many parameters describing the label
and arrow style and position, so you may need to call help (annotate) for
a detailed description.

* Labels on the horizontal and vertical axes. These labels can be drawn by
the xlabel () and ylabel () functions. We need to give these functions the
text of the labels as a string and optional parameters such as the font size
of the label.

* A descriptive title for the graph with the matplotlib title () function.
Typically, we will only give this function a string representing the title.

* A grid is also nice to have in order to localize points easily. The matplotlib
grid () function turns the plot grid on and off.

We will modify the bubble chart code from the previous example and add the
straight line fit from the second example in this chapter. In this setup, add a label
to the data series as follows:

plt.plot (years, np.polyval (poly, years), label='Fit')
plt.scatter(years, cnt log, c= 200 * years, s=20 + 200 *
gpu_counts/gpu_counts.max (), alpha=0.5, label="Scatter Plot")

Let's annotate the first GPU in our dataset. To do this, get a hold of the relevant point,
define the label of the annotation, specify the style of the arrow (the arrowprops
argument), and make sure that the annotation hovers above the point in question:

gpu_start = gpu.index.values.min()

y_ann = np.log(df.at[gpu start, 'trans count'])
ann_str = "First GPU\n %d" % gpu start
plt.annotate(ann str, xy=(gpu start, y ann),
arrowprops=dict (arrowstyle="->"), xytext=(-30, +70),
textcoords="'offset points')

The complete code example is in the legend_annotations. py file in this book's
code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read csv('transcount.csv')
daf

df .groupby ('year') .aggregate (np.mean)
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gpu = pd.read csv('gpu transcount.csv')

gpu = gpu.groupby ('year') .aggregate (np.mean)

df = pd.merge(df, gpu, how='outer', left index=True, right index=True)
df = df.replace(np.nan, 0)

years = df.index.values

counts = df ['trans count'].values
gpu_counts = df ['gpu trans count'].values

poly = np.polyfit(years, np.log(counts), deg=1)
plt.plot (years, np.polyval (poly, years), label='Fit')

gpu_start = gpu.index.values.min()

y _ann = np.log(df.at[gpu start, 'trans count'])

ann_str = "First GPU\n %d" % gpu_start

plt.annotate(ann str, xy=(gpu start, y ann), arrowprops=dict (arrowsty
le="->"), xytext=(-30, +70), textcoords='offset points')

cnt _log = np.log(counts)
plt.scatter(years, cnt_log, c= 200 * years, s=20 + 200 * gpu counts/

gpu_counts.max (), alpha=0.5, label="Scatter Plot")
plt.legend(loc="upper left')
plt.grid()

plt.xlabel ("Year")

plt.ylabel ("Log Transistor Counts", fontsize=16)
plt.title("Moore's Law & Transistor Counts")
plt.show ()

Refer to the following plot for the end result:

Moore's Law & Transistor Counts
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Three-dimensional plots

Two-dimensional plots are the bread and butter of data visualization. However, if
you want to show off, nothing beats a good three-dimensional plot. I was in charge
of a software package that could draw contour plots and three-dimensional plots.
The software could even draw plots that when viewed with special glasses would
pop right in front of you.

The matplotlib API has the Axes3D class for three-dimensional plots. By demonstrating
how this class works, we will also show how the object-oriented matplotlib API works.
The matplotlib Figure class is a top-level container for chart elements:

1.

Create a Figure object as follows:

fig = plt.figure()

Create an Axes3D object from the Figure object:

ax = Axes3D(fig)

The years and CPU transistor counts will be our x and y axes. It is required to
create coordinate matrices from the years and CPU transistor counts arrays.
Create the coordinate matrices with the NumPy meshgrid () function:

X, Y = np.meshgrid(X, Y)

Plot the data with the plot_surface () method of the Axes3D class:
ax.plot surface(X, Y, Z)

The naming convention of the object-oriented API methods is to start with
set_ and end with the procedural counterpart function name, as shown in
the following code snippet:

ax.set xlabel ('Year')

ax.set_ylabel ('Log CPU transistor counts')
ax.set_zlabel ('Log GPU transistor counts')
ax.set _title("Moore's Law & Transistor Counts")

You can also have a look at the following code in the three_dimensional.py file in
this book's code bundle:

from mpl toolkits.mplot3d.axes3d import Axes3D
import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

daf
daf

pd.read csv('transcount.csv')
df .groupby ('year') .aggregate (np.mean)
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gpu = pd.read csv('gpu transcount.csv')

gpu = gpu.groupby ('year') .aggregate (np.mean)

df right index=True)
df

pd.merge (df, gpu, how='outer', left index=True,

df .replace (np.nan, 0)

fig = plt.figure()
ax = Axes3D(fig)
= df.index.values
= np.log(df ['trans count'].values)
Y = np.meshgrid (X, Y)
= np.log(df ['gpu trans count'].values)

N X < X

ax.plot surface(X, Y, Z)

ax.set xlabel ('Year')

ax.set ylabel ('Log CPU transistor counts')
ax.set zlabel ('Log GPU transistor counts')
ax.set title("Moore's Law & Transistor Counts")

plt.show ()

Refer to the following plot for the end result:

Moore's Law & Transistor Counts

Log GPU transistor counts
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Plotting in pandas

The plot () method in the pandas Series and DataFrame classes wraps around
the related matplotlib functions. In its most basic form without any arguments,
the plot () method displays the following plot for the dataset we have been using
throughout this chapter:

7le9

— trans_count : : : : :
| — gputranscount| |

0 ; ; ; ; i = i
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
year

To create a semi-log plot, add the 1ogy parameter:

df .plot (logy=True)
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This results in the following plot for our data:
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To create a scatter plot, specify the kind parameter to be scatter. We also need to
specify two columns. Set the 1oglog parameter to True to produce a log-log graph
(we need at least pandas 0.13.0 for this code):

df [df ['gpu_trans count'] > 0] .plot (kind='scatter’',
x='trans count', y='gpu trans count', loglog=True)
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Refer to the following plot for the end result:
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The following program is in the pd_plotting.py file in this book's code bundle:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df
df

pd.read csv('transcount.csv')
df .groupby ('year') .aggregate (np.mean)

gpu = pd.read csv('gpu transcount.csv')
gpu gpu.groupby ('year') .aggregate (np.mean)

df = pd.merge(df, gpu, how='outer', left index=True,
right index=True)
df = df.replace(np.nan, 0)
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df .plot ()

df .plot (logy=True)

df [df ['gpu_trans count'] > 0] .plot (kind='scatter’',
x='trans count', y='gpu trans count', loglog=True)
plt.show ()

Lag plots

A lag plot is a scatter plot for a time series and the same data lagged. With such a
plot, we can check whether there is a possible correlation between CPU transistor
counts this year and the previous year, for instance. The 1ag_plot () pandas
function in pandas.tools.plotting can draw a lag plot. Draw a lag plot with
the default lag of 1 for the CPU transistor counts, as follows:

lag plot(np.log(df['trans count']))

Refer to the following plot for the end result:
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The following code for the lag plot example can also be found in the 1ag_plot.py
file in this book's code bundle:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from pandas.tools.plotting import lag plot

df = pd.read csv('transcount.csv')
df = df.groupby('year') .aggregate (np.mean)

gpu = pd.read csv('gpu transcount.csv')
gpu = gpu.groupby ('year') .aggregate (np.mean)

df = pd.merge(df, gpu, how='outer', left index=True, right index=True)
df = df.replace(np.nan, 0)

lag plot (np.log(df['trans_count']))

plt.show ()

Autocorrelation plots

Autocorrelation plots graph autocorrelations of time series data for different lags.
Autocorrelation is the correlation of a time series with the same time series lagged.
The autocorrelation plot () pandas function in pandas. tools.plotting can
draw an autocorrelation plot.

The following is the code from the autocorr_plot.py file in this book's code bundle:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from pandas.tools.plotting import autocorrelation plot

df = pd.read csv('transcount.csv')
df = df.groupby('year') .aggregate (np.mean)

gpu = pd.read csv('gpu transcount.csv')
gpu = gpu.groupby ('year') .aggregate (np.mean)

df = pd.merge(df, gpu, how='outer', left index=True, right index=True)
df = df.replace(np.nan, 0)
autocorrelation plot (np.log(df['trans count']))

plt.show ()
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Draw an autocorrelation plot for the CPU transistor counts as follows:

autocorrelation plot (np.log(df['trans count']))

Refer to the following plot for the end result. As we can see in the following plot,
more recent values (smaller lags) are stronger correlated with the current value than
older values (larger lags), and at extremely large lags, the correlation decays to 0:

Autocorrelation

Lag

Plot.ly

Plot.ly is a website currently in the beta stage, which provides online data
visualization tools and a related Python library to be used on a user's machine.
We can import and analyze data via the web interface or work entirely in a local
environment and publish the end result on the Plot.ly website. Plots can be easily
shared on the website within a team, allowing for collaboration, which is really
the point of the website in the first place. In this section, we will give an example
of how to plot a box plot with the Python APIL
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A box plot is a special way of visualizing a dataset using quartiles. If we split a sorted
dataset into four equal parts, the first quartile will be the largest value of the part

with the smallest numbers. The second quartile will be the value in the middle of the
dataset, which is also called the median. The third quartile will be the value in the
middle between the median and the highest value. The bottom and the top of the box
plot are formed by the first and third quartiles. The line through the box is the median.
The whiskers on both ends of the box are usually the minimum and maximum of the
dataset. At the end of this section, we will see an annotated box plot, which will clarify
matters. Install the Plot.ly API with the following commands:

$ sudo pip install plotly
$ pip freeze|grep plotly
plotly==1.0.26

After installing the API, sign up to get an API key. The following code snippet signs
you in after supplying a valid key:

api _key = getpass()

# Change the user to your own username
py.sign in('username', api key)

Create the box plots with the Plot.ly API as follows:

data = Data([Box(y=counts), Box(y=gpu counts)])
plot url = py.plot(data, filename='moore-law-scatter')

Please refer to the following code from the plot_1ly.py file in this book's code bundle:

import plotly.plotly as py
from plotly.graph objs import *
from getpass import getpass
import numpy as np

import pandas as pd

df = pd.read csv('transcount.csv')

df df .groupby ('year') .aggregate (np.mean)

gpu = pd.read csv('gpu transcount.csv')
gpu = gpu.groupby ('year') .aggregate (np.mean)
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df

df df .replace (np.nan, 0)

apl key = getpass()

# Change the user to your own username
py.sign in('username', api key)

counts = np.log(df['trans count'].values)
gpu_counts = np.log(df ['gpu trans count'].values)

data = Data([Box(y=counts), Box(y=gpu counts)])

plot url = py.plot(data, filename='moore-law-scatter')

print plot url

Also, refer to the following plot for the end result:

pd.merge (df, gpu, how='outer', left index=True, right index=True)

—  .maximum~——— |

minimum

trace 0 trace 1

@ trace 0
[ trace 1
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Summary

In this chapter, we discussed visualizing data with Python by plotting. We used
matplotlib, pandas, and Plot.ly. We covered box plots, scatter plots, bubble charts,
logarithmic plots, autocorrelation plots, lag plots, three-dimensional plots, legends,
and annotations.

Logarithmic plots (or log plots) are plots that use a logarithmic scale. The semi-log plots
use linear scaling on one axis and logarithmic scaling on the other axis. Scatter plots
plot two variables against each other. A bubble chart is a special type of scatter plot. In
a bubble chart, the value of a third variable is relatively represented by the size of the
bubble surrounding a data point. Autocorrelation plots graph autocorrelations of time
series data for different lags. A box plot visualizes data based on the data's quartiles.

The next chapter, Chapter 7, Signal Processing and Time Series is about a special type
of data: time series. Time series are ordered data points that have been timestamped.
A lot of the physical world data that we measure is in the form of a time series and
can be considered a signal, for instance, sound, light, or electrical signals. You will
learn how to filter signals and model time series.
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Signal Processing
and Time Series

Signal processing is a field of engineering and applied mathematics that analyzes
analog and digital signals, corresponding to variables that vary with time. One of

the categories of signal processing techniques is time series analysis. A time series

is an ordered list of data points starting with the oldest measurements first. The data
points are usually equidistant, for instance, consistent with daily or annual sampling.
In time series analysis, the order of the values is important. It's common to try to
derive a relation between a value and another data point or combination of data
points a fixed number of periods in the past, in the same time series.

The time series examples in this chapter use annual sunspot cycles data. This data is
provided by the statsmodels package (an open source Python project). The examples
use NumPy /SciPy, pandas, and also statsmodels.

We will cover the following topics in this chapter:

* Moving averages

*  Window functions

* Cointegration

* Autocorrelation

* Autoregressive models

* ARMA models

* Generating periodic signals
* Fourier analysis

* Spectral analysis

* Filtering
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statsmodels subpackages

To install statsmodels, execute the following command:

$ pip install statsmodels
$ pip freeze|grep stat
statsmodels==0.6.0

Open the pkg_check. py file provided in the code bundle, and change the code to
list the statsmodels subpackages to get the following result:

statmodels version 0.6.0.dev-3303360
statsmodels.base
statsmodels.compatnp
statsmodels.datasets
statsmodels.discrete
statsmodels.distributions
statsmodels.emplike
statsmodels. formula
statsmodels.genmod
statsmodels.graphics
statsmodels.interface
statsmodels.iolib
statsmodels.miscmodels

statsmodels.nonparametric DESCRIPTION For an overview of this module,
see docs/source/nonparametric.rst PACKAGE CONTENTS _kernel base
_smoothers lowess api bandwidths

statsmodels.regression
statsmodels.resampling
statsmodels.robust
statsmodels.sandbox
statsmodels.stats
statsmodels. tests
statsmodels. tools

statsmodels. tsa
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Moving averages

Moving averages are frequently used to analyze time series. A moving average
specifies a window of data that is previously seen, which is averaged each time
the window slides forward by one period:

a,+a, +-+a, .,

SMA =
n

The different types of moving averages differ essentially in the weights used
for averaging. The exponential moving average, for instance, has exponentially
decreasing weights with time:

EMA, =EMA, ,+a(p,—EMA, )

This means that older values have less influence than newer values, which is
sometimes desirable.

The following code from the moving_average.py file in this book's code bundle
plots the simple moving average for the 11- and 22-year sunspots cycles:

import matplotlib.pyplot as plt
import statsmodels.api as sm
from pandas.stats.moments import rolling mean

data loader = sm.datasets.sunspots.load pandas ()

df = data loader.data

year range = df ["YEAR"] .values

plt.plot (year range, df["SUNACTIVITY"].values, label="Original")
plt.plot (year range, rolling mean(df, 11) ["SUNACTIVITY"].values,
label="SMA 11")

plt.plot (year range, rolling mean(df, 22) ["SUNACTIVITY"].values,
label="SMA 22")

plt.legend()
plt.show()

We can express an exponential decreasing weight strategy for the exponential
moving average, as shown in the following NumPy code:

weights = np.exp(np.linspace(-1., 0., N))
weights /= weights.sum()
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A simple moving average uses equal weights, which in code looks as follows:

def sma(arr, n):

weights = np.ones(n) / n

return np.convolve (weights, arr) [n-1:-n+1]

Since we can load the data into a pandas DataFrame, it is more convenient to use
the pandas rolling mean () function. Load the data as follows using statsmodels:

data loader = sm.datasets.sunspots.load pandas ()
df = data loader.data

Refer to the following plot for the end result:
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Window functions

NumPy has a number of window routines that can compute weights in a rolling
window as we did in the previous section.

A window function is a function that is defined within an interval (the window)
or is otherwise zero valued. We can use window functions for spectral analysis and
filter design (for more background information, refer to http://en.wikipedia.org/

wiki/Window_function). The boxcar window is a rectangular window with the
following formula:

w(n) =1
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The triangular window is shaped like a triangle and has the following formula:

_N-1

" 2
W(n):1—|T|
2

In the preceding formula, L. can be equal to N, N+1, or N-1. In the last case, the window
function is called the Bartlett window. The Blackman window is bell shaped and
defined as follows:

The Hanning window is also bell shaped and defined as follows:

)

In the pandas AP, the rolling window () function provides the same functionality
with different values of the win_type string parameter corresponding to different
window functions. The other parameter is the size of the window, which will be

set to 22 for the middle cycle of the sunspots data (according to research, there are
three cycles of 11, 22, and 100 years). The code is straightforward and given in the
window_functions.py file in this book's code bundle (the data here is limited to
the last 150 years only for easier comparison in the plots):

w(n)=0.5(1—cos(

import matplotlib.pyplot as plt

import statsmodels.api as sm

from pandas.stats.moments import rolling window
import pandas as pd

data loader = sm.datasets.sunspots.load pandas ()

df = data loader.data.tail(150)

df = pd.DataFrame ({'SUNACTIVITY':df['SUNACTIVITY'].values},
index=df ['YEAR'])

ax = df.plot ()

def plot window(win_ type) :
df2 = rolling window(df, 22, win type)
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df2.columns = [win typel]
df2.plot (ax=ax)

plot window ('boxcar"')
plot window('triang"')
plot window('blackman')
plot window ('hanning')
plot window('bartlett"')
plt.show ()

Refer to the following plot for the end result:
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Defining cointegration

Cointegration is similar to correlation but is viewed by many as a superior metric
to define the relatedness of two time series. Two time series x (t) and y (t) are
cointegrated if a linear combination of them is stationary. In such a case, the
following equation should be stationary:

y(t) - a x(t)
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Consider a drunk man and his dog out on a walk. Correlation tells us whether they
are going in the same direction. Cointegration tells us something about the distance
over time between the man and his dog. We will show cointegration using randomly
generated time series and real data. The Augmented Dickey-Fuller (ADF) test (see
http://en.wikipedia.org/wiki/Augmented Dickey%E2%80%93Fuller test)
tests for a unit root in a time series and can be used to determine the cointegration

of time series.

For the following code, have a look at the cointegration.py file in this book's
code bundle:

import statsmodels.api as sm

from pandas.stats.moments import rolling window
import pandas as pd

import statsmodels.tsa.stattools as ts

import numpy as np

def calc _adf(x, y):
result = sm.OLS(x, y).fit()
return ts.adfuller (result.resid)

data loader = sm.datasets.sunspots.load pandas ()
data = data_ loader.data.values
N len (data)

t = np.linspace(-2 * np.pi, 2 * np.pi, N)
sine = np.sin(np.sin(t))
print "Self ADF", calc_adf (sine, sine)

noise = np.random.normal (0, .01, N)
print "ADF sine with noise", calc_adf(sine, sine + noise)

cosine = 100 * np.cos(t) + 10
print "ADF sine vs cosine with noise", calc_adf (sine, cosine +
noise)

print "Sine vs sunspots", calc_adf (sine, data)
Let's get started with the cointegration demo:

1. Define the following function to calculate the ADF statistic:

def calc_adf(x, y):
result = stat.OLS(x, y).fit()
return ts.adfuller (result.resid)
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2.

Load the sunspots data into a NumPy array:

data loader = sm.datasets.sunspots.load pandas ()
data = data_ loader.data.values
N = len(data)

Generate a sine and calculate the cointegration of the sine with itself:
t = np.linspace(-2 * np.pi, 2 * np.pi, N)

sine = np.sin(np.sin(t))

print "Self ADF", calc_adf (sine, sine)

The code should print the following:

Self ADF (-5.0383000037165746e-16, 0.95853208606005591, O,
308, {'5%': -2.8709700936076912, '1%': -3.4517611601803702,
'10%': -2.5717944160060719}, -21533.113655477719)

The first value in the printout is the ADF metric and the second value is the
p-value. As you can see, the p-value is very high. The following values are
the lag and sample size. The dictionary at the end gives the t-distribution
values for this exact sample size.

Now, add noise to the sine to demonstrate how noise will influence the signal:

noise = np.random.normal (0, .01, N)
print "ADF sine with noise", calc_adf(sine, sine + noise)

With the noise, we get the following results:

ADF sine with noise (-7.4535502402193075,
5.5885761455106898e-11, 3, 305, {'5%': -2.8710633193086648,
"1%': -3.4519735736206991, '10%': -2.5718441306100512}, -
1855.0243977703672)

The p-value has gone down considerably. The ADF metric -7.45 here
is lower than all the critical values in the dictionary. All these are strong
arguments to reject cointegration.

Let's generate a cosine of a larger magnitude and offset. Again, let's add
noise to it:

cosine = 100 * np.cos(t) + 10
print "ADF sine vs cosine with noise", calc_adf (sine,
cosine + noise)

The following values get printed:

ADF sine vs cosine with noise (-17.927224617871534,
2.8918612252729532e-30, 16, 292, {'5%': -2.8714895534256861,
"1%': -3.4529449243622383, '10%': -2.5720714378870331}, -
11017.837238220782)
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Similarly, we have strong arguments to reject cointegration. Checking for
cointegration between the sine and sunspots gives the following output:

Sine vs sunspots (-6.7242691810701016, 3.4210811915549028e-09, 16,
292, {'5%': -2.8714895534256861, '1%': -3.4529449243622383, '10%': -
2.5720714378870331}, -1102.5867415291168)

The confidence levels are roughly the same for the pairs used here because they are
dependent on the number of data points, which don't vary much. The outcome is
summarized in the following table:

Pair Statistic p-value 5% 1% 10% Reject
Sine with self -5.03E-16 0.95 -2.87 -3.45 257 No
Sine versus sine -7.45 5.58E-11 -2.87 -3.45 -2.57 Yes
with noise

Sine versus cosine -17.92 2.89E-30 -2.87 -3.45 -2.57 Yes
with noise

Sine versus -6.72 3.42E-09 -2.87 -3.45 -2.57 Yes
sunspots

Autocorrelation

Autocorrelation is correlation within a dataset and can indicate a trend.

For a given time series, with known mean and standard deviations,
we can define the autocorrelation for times s and t using the
expected value operator as follows:

E[(X,—,u,)(xs—,us)]

0,0,

This is, in essence, the formula for correlation applied to a time series
and the same time series lagged.

For example, if we have a lag of one period, we can check if the previous value
influences the current value. For that to be true, the autocorrelation value has to
be pretty high.
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In the previous chapter, Chapter 6, Data Visualization, we already used a pandas
function that plots autocorrelation. In this example, we will use the NumPy
correlate () function to calculate the actual autocorrelation values for the
sunspots cycle. At the end, we need to normalize the values we receive.

Apply the NumPy correlate () function as follows:

y = data - np.mean(data)
norm = np.sum(y ** 2)
correlated = np.correlate(y, y, mode='full') /norm

We are also interested in the indices corresponding to the highest correlations.
These indices can be found with the NumPy argsort () function, which returns
the indices that would sort an array:

print np.argsort (res) [-5:]
These are the indices found for the largest autocorrelations:
[ 91110 1 o]

The largest autocorrelation is by definition for zero lag, that is, the correlation
of a signal with itself. The next largest values are for a lag of one and ten years.
Check the autocorrelation.py file in this book's code bundle:

import numpy as np

import pandas as pd

import statsmodels.api as sm

import matplotlib.pyplot as plt

from pandas.tools.plotting import autocorrelation plot

data loader = sm.datasets.sunspots.load pandas ()
data = data loader.data["SUNACTIVITY"] .values
y = data - np.mean(data)

norm = np.sum(y ** 2)

correlated = np.correlate(y, y, mode='full')/norm
res = correlated[len(correlated)/2:]

print np.argsort (res) [-5:]

plt.plot (res)

plt.grid(True)

plt.xlabel ("Lag")

plt.ylabel ("Autocorrelation")
plt.show ()
autocorrelation plot (data)
plt.show ()
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Refer to the following plot for the end result:
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Autoregressive models

An autoregressive model can be used to represent a time series with the goal of
forecasting future values. In such a model, a variable is assumed to depend on its
previous values. The relation is also assumed to be linear and we are required to
fit the data in order to find the parameters of the data.

The mathematical formula for the autoregressive
model is as follows:

y4
% X, :c+2al.xtﬂ.+ €,
i i=1
In the preceding formula, c is a constant and the
last term is a random component also known as
white noise.

This presents us with the very common problem of linear regression. For practical
reasons, it's important to keep the model simple and only involve necessary lagged
components. In machine learning jargon, these are called features. For regression
problems, the Python machine learning scikit-learn library is a good, if not the
best, choice. We will work with this API in Chapter 10, Predictive Analytics and
Machine Learning.

In regression setups, we frequently encounter the problem of overfitting — this issue
arises when we have a perfect fit for a sample, which performs poorly when we
introduce new data points. The standard solution is to apply cross-validation (or use
algorithms that avoid overfitting). In this method, we estimate model parameters on a
part of the sample. The rest of the data is used to test and evaluate the model. This is
actually a simplified explanation. There are more complex cross-validation schemes,

a lot of which are supported by scikit-learn. To evaluate the model, we can compute
appropriate evaluation metrics. As you can imagine, there are many metrics, and these
metrics can have varying definitions due to constant tweaking by practitioners. We can
look up these definitions in books or Wikipedia. The important thing to remember is
that the evaluation of a forecast or fit is not an exact science. The fact that there are so
many metrics only confirms that.
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We will set up the model with the scipy.optimize.leastsq() function using

the first two lagged components we found in the previous section. We could have
chosen a linear algebra function instead. However, the 1eastsq () function is more
flexible and lets us specify practically any type of model. Set up the model as follows:

def model (p, x1, x10):

pl, pl0 =p
return pl * x1 + pl0 * x10

def error(p, data, x1, x10):
return data - model (p, x1, x10)

To fit the model, initialize the parameter list and pass it to the leastsq () function
as follows:

def fit(data):
p0 = [.5, 0.5]

params = leastsqg(error, pO, args=(data[l0:], datal[9:-1], datal:-
10])) [0]

return params

Train the model on a part of the data:

cutoff = .9 * len(sunspots)
params = fit (sunspots[:cutoff])
print "Params", params

The following are the parameters we get:

Params [ 0.67172672 0.33626295]

With these parameters, we will plot predicted values and compute various metrics.
The following are the values we obtain for the metrics:

Root mean square error 22.8148122613

Mean absolute error 17.6515446503

Mean absolute percentage error 60.7817800736

Symmetric Mean absolute percentage error 34.9843386176

Coefficient of determination 0.799940292779
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Refer to the following graph for the end result:
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It seems that we have many predictions that are almost spot-on, but also a bunch

of predictions that are pretty far off. Overall, we don't have a perfect fit; however

it's not a complete disaster. It's somewhere in the middle.

The following code is in the ar . py file in this book's code bundle:

from scipy.optimize import leastsqg
import statsmodels.api as sm
import matplotlib.pyplot as plt
import numpy as np

def model (p, x1, x10):

pl, pl0 =p
return pl * x1 + pl0 * x10

def error(p, data, x1, x10):
return data - model (p, x1, x10)

def fit(data):
p0 = [.5, 0.5]

4
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params = leastsqg(error, pO, args=(data[l0:], datal[9:-11,
datal[:-10]1)) [0]
return params

data loader = sm.datasets.sunspots.load pandas ()
sunspots = data loader.data["SUNACTIVITY"].values

cutoff
params = fit (sunspots[:cutoff])

.9 * len(sunspots)

print "Params", params

pred = params[0] * sunspots[cutoff-1:-1] + params[1l] *

sunspots [cutoff-10:-10]

actual = sunspots[cutoff:]

print "Root mean square error", np.sgrt (np.mean((actual - pred) **
2))

print "Mean absolute error", np.mean (np.abs(actual - pred))

print "Mean absolute percentage error", 100 *

np.mean (np.abs (actual - pred) /actual)

mid = (actual + pred)/2

print "Symmetric Mean absolute percentage error", 100 *
np.mean (np.abs (actual - pred) /mid)

print "Coefficient of determination", 1 - ((actual - pred) **
2) .sum()/ ((actual - actual.mean()) ** 2).sum()

year range = data loader.data["YEAR"] .values[cutoff:]
plt.plot (year range, actual, 'o', label="Sunspots")
plt.plot (year range, pred, 'x', label="Prediction")
plt.grid(True)

plt.xlabel ("YEAR")

plt.ylabel ("SUNACTIVITY")

plt.legend ()

plt.show ()

ARMA models

ARMA models are often used to forecast a time series. These models combine
autoregressive and moving average models (see http://en.wikipedia.org/wiki/
Autoregressive$E2%80%93moving-average model). In moving average models,
we assume that a variable is the sum of the mean of the time series and a linear
combination of noise components.
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The autoregressive and moving average models can have
different orders. In general, we can define an ARMA model
with p autoregressive terms and g moving average terms
as follows:

’ p q
%ﬁ“ X, :c+zi=1aixH +Zi=1bl.gt7i+ €,

Y

In the preceding formula, just like in the autoregressive
model formula, we have a constant and a white noise
component; however, we try to fit the lagged noise
components as well.

Fortunately, it's possible to use the statsmodelssm.tsa.ARMA () routine for this
analysis. Fit the data to an ARMA (10, 1) model as follows:

model = sm.tsa.ARMA(df, (10,1)).fit()

Perform a forecast (statsmodels uses strings a lot):

prediction = model.predict ('1975', str(years[-1]), dynamic=True)

Refer to the following plot for the end result:
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The fit is poor because frankly, we overfit the data. The simpler model in the
previous section worked much better. The example code can be found in the
arma.py file in this book's code bundle:

import pandas as pd

import matplotlib.pyplot as plt
import statsmodels.api as sm
import datetime

data loader = sm.datasets.sunspots.load pandas ()

df = data loader.data

years = df ["YEAR"] .values.astype (int)

df .index = pd.Index(sm.tsa.datetools.dates from range (str(years[0]),
str(years[-1]1)))

del df ["YEAR"]

model = sm.tsa.ARMA(df, (10,1)).fit()

prediction = model.predict ('1975', str(years[-1]), dynamic=True)
df['1975':] .plot ()

prediction.plot (style='--', label='Prediction')

plt.legend()

plt.show ()

Generating periodic signals

Many natural phenomena are regular and trustworthy like an accurate clock.

Some phenomena exhibit patterns that seem regular. A group of scientists found
three cycles in the sunspot activity with the Hilbert-Huang transform (see http://
en.wikipedia.org/wiki/Hilbert%E2%80%93Huang transform). The cycles have

a duration of 11, 22, and 100 years approximately. Normally, we would simulate a
periodic signal using trigonometric functions such as a sine function. You probably
remember a bit of trigonometry from high school. That's all we need for this example.
Since we have three cycles, it seems reasonable to create a model, which is a linear
combination of three sine functions. This just requires a tiny adjustment of the code for
the autoregressive model. Refer to the periodic.py file in this book's code bundle for
the following code:

from scipy.optimize import leastsqg
import statsmodels.api as sm
import matplotlib.pyplot as plt
import numpy as np
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def model (p, t):

c, pl, f1, phil , p2, f2, phi2, p3, £3, phi3 = p

return C + pl * np.sin(fl * t + phil) + p2 * np.sin(f2 * t +
phi2) +p3 * np.sin(f3 * t + phi3)

def error(p, y, t):
return y - model (p, t)

def fit(y, t):

p0 = [y.mean(), O, 2 * np.pi/11, 0, 0, 2 * np.pi/22, 0, 0, 2 *
np.pi/100, 0]
params = leastsqg(error, p0, args=(y, t)) [0]

return params

data loader = sm.datasets.sunspots.load pandas ()
sunspots = data loader.data["SUNACTIVITY"].values
years = data_loader.data["YEAR"] .values

cutoff = .9 * len(sunspots)
params = fit (sunspots[:cutoff], years[:cutoff])
print "Params", params

pred = model (params, years[cutoff:])
actual = sunspots[cutoff:]
print "Root mean square error", np.sgrt (np.mean((actual - pred) **

2))

print "Mean absolute error", np.mean (np.abs(actual - pred))

print "Mean absolute percentage error", 100 *

np.mean (np.abs (actual - pred) /actual)

mid = (actual + pred)/2

print "Symmetric Mean absolute percentage error", 100 *
np.mean (np.abs (actual - pred) /mid)

print "Coefficient of determination", 1 - ((actual - pred) **
2) .sum()/ ((actual - actual.mean()) ** 2).sum()

year range = data loader.data["YEAR"] .values[cutoff:]
plt.plot (year range, actual, 'o', label="Sunspots")
plt.plot (year range, pred, 'x', label="Prediction")
plt.grid(True)

plt.xlabel ("YEAR")

plt.ylabel ("SUNACTIVITY")

plt.legend()

plt.show ()

[182]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

We get the following output:
Params [ 47.18800285 28.89947419 0.56827284 6.51168446
4.55214999

0.29372077 -14.30926648 -18.16524041 0.06574835 -4.37789602]
Root mean square error 59.5619175499
Mean absolute error 44.5814573306
Mean absolute percentage error 65.1639657495
Symmetric Mean absolute percentage error 78.4477263927
Coefficient of determination -0.363525210982

The first line displays the coefficients of the model we attempted. We have a mean
absolute error of 44, which means that we are off by that amount in either direction
on average. We also want the coefficient of determination to be as close to one as
possible to have a good fit. Instead, we get a negative value, which is undesirable.
Refer to the following graph for the end result:
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Fourier analysis

Fourier analysis is based on the Fourier series named after the mathematician
Joseph Fourier. The Fourier series is a mathematical method used to represent
functions as an infinite series of sine and cosine terms. The functions in question
can be real or complex valued:

> xle™

The most efficient algorithm for Fourier analysis is the Fast Fourier Transform (FFT).
This algorithm is implemented in SciPy and NumPy. When applied to the time series
data, the Fourier analysis transforms maps onto the frequency domain, producing a
frequency spectrum. The frequency spectrum displays harmonics as distinct spikes
at certain frequencies. Music, for example, is composed from different frequencies
with the note A at 440 Hz. The note A can be produced by a pitch fork. We can
produce this and other notes with musical instruments such as a piano. White noise
is a signal consisting of many frequencies, which are represented equally. White
light is a mix of all the visible frequencies of light, also represented equally.

In the following example, we will import two functions (refer to fourier. py):

from scipy.fftpack import rfft
from scipy.fftpack import fftshift

The rfft () function performs FFT on real-valued data. We could also have used the
££t () function, but it gives a warning on this particular dataset. The fftshift ()
function shifts the zero-frequency component (the mean of the data) to the middle
of the spectrum, for better visualization. We will also have a look at a sine wave
because that is easy to understand. Create a sine wave and apply the FFT to it:

t = np.linspace(-2 * np.pi, 2 * np.pi, len(sunspots))
mid = np.ptp(sunspots) /2
sine = mid + mid * np.sin(np.sin(t))

sine fft = np.abs(fftshift (rfft(sine)))
print "Index of max sine FFT", np.argsort(sine fft) [-5:]

The following is the output that shows the indices corresponding to
maximum amplitudes:

Index of max sine FFT [160 157 166 158 154]
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Perform FFT on the sunspots data:

transformed np.abs (fftshift (rfft (sunspots)))

print "Indices of max sunspots FFT", np.argsort (transformed) [-5:]

The five largest peaks in the spectrum can be found at the following indices:

Indices of max sunspots FFT [205 212 215 209 154]

The largest peak is situated at 154 too. Refer to the following plot for the end result:
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The complete code is located in the fourier.py file in this book's code bundle:

import numpy as np

import statsmodels.api as sm
import matplotlib.pyplot as plt
from scipy.fftpack import rfft
from scipy.fftpack import fftshift

data loader sm.datasets.sunspots.load pandas ()

sunspots = data loader.data ["SUNACTIVITY"] .values
t = np.linspace(-2 * np.pi, 2 * np.pi, len(sunspots))
mid = np.ptp (sunspots) /2
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sine = mid + mid * np.sin(np.sin(t))

sine fft = np.abs(fftshift (rfft(sine)))
print "Index of max sine FFT", np.argsort(sine fft) [-5:]

transformed = np.abs(fftshift (rfft (sunspots)))
print "Indices of max sunspots FFT", np.argsort (transformed) [-5:]

plt.subplot (311)

plt.plot (sunspots, label="Sunspots")

plt.plot (sine, lw=2, label="Sine")

plt.grid(True)

plt.legend()

plt.subplot (312)

plt.plot (transformed, label="Transformed Sunspots")
plt.grid(True)

plt.legend()

plt.subplot (313)

plt.plot(sine fft, lw=2, label="Transformed Sine")
plt.grid(True)

plt.legend()

plt.show ()

Spectral analysis

In the previous section, we charted the amplitude spectrum of the dataset.
The power spectrum of a physical signal visualizes the energy distribution
of the signal. We can modify the code easily to plot the power spectrum,
just by squaring the values as follows:

plt.plot (transformed ** 2, label="Power Spectrum")

The phase spectrum visualizes the phase (the initial angle of a sine function)
and can be plotted as follows:

plt.plot (np.angle (transformed), label="Phase Spectrum")
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Refer to the following graph for the end result:
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Please refer to the spectrum. py file in this book's code bundle for the complete code.

Filtering

Filtering is a type of signal processing, which involves removing or suppressing a
part of the signal. After applying FFT, we can filter high or low frequencies, or we
can try to remove the white noise. White noise is a random signal with a constant
power spectrum and as such doesn't contain any useful information. The scipy.
signal package has a number of utilities for filtering. In this example, we will
demonstrate a small sample of these routines:

* The median filter calculates the median in a rolling window
(see http://en.wikipedia.org/wiki/Median_filter). It's implemented
by the medfilt () function, which has an optional window size parameter.

* The Wiener filter removes noise using statistics (see http://en.wikipedia.
org/wiki/Wiener filter). For afilter g(t) and signal s (t), the output
is calculated with the convolution (g * [s + n]) (t). It's implemented
by the wiener () function. This function also has an optional window
size parameter.
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e The detrend filter removes a trend. This can be a linear or constant trend.
It's implemented by the detrend () function.

Please refer to the filtering.py file in this book's code bundle for the following code:

import statsmodels.api as sm
import matplotlib.pyplot as plt
from scipy.signal import medfilt
from scipy.signal import wiener
from scipy.signal import detrend

data loader = sm.datasets.sunspots.load pandas ()
sunspots = data loader.data["SUNACTIVITY"].values
years = data_loader.data["YEAR"] .values

plt.plot (years, sunspots, label="SUNACTIVITY")

plt.plot (years, medfilt (sunspots, 11), 1lw=2, label="Median")
plt.plot (years, wiener (sunspots, 11), '--', lw=2, label="Wiener")
plt.plot (years, detrend(sunspots), lw=3, label="Detrend")
plt.xlabel ("YEAR")

plt.grid(True)

plt.legend()

plt.show()

Refer to the following graph for the end result:
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Summary

In this chapter, the time series examples used annual sunspot cycles data.

You learned that it's common to try to derive a relationship between a value and
another data point or combination of data points a fixed number of periods in the
past, in the same time series.

A moving average specifies a window of previously seen data, which is averaged
each time the window slides forward by one period. In the pandas AP]I, the rolling
window () function provides the window functions functionality with different values
of the win_type string parameter corresponding to different window functions.

Cointegration is similar to correlation and is a metric to define the relatedness of two
time series. In regression setups, we frequently encounter the problem of overfitting.
This issue arises when we have a perfect fit for a sample, which performs poorly when
we introduce new data points. To evaluate a model, we can compute appropriate
evaluation metrics.

Databases are an important tool for data analysis. Relational databases have been
around since the 1970s. Recently, NoSQL databases have become a viable alternative.
The next chapter, Chapter 8, Working with Databases, contains information about the
various databases (relational and NoSQL) and related APIs.
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If you work with data, sooner or later, you will come into contact with databases.
This chapter introduces various databases (relational and NoSQL) and related APIs.
A relational database is a database that has a collection of tables containing data
organized by the relations between data items. A relationship can be set up between
each row in the table and a row in another table. A relational database does not just
pertain to relationships between tables; firstly, it has to do with the relationship
between columns inside a table (obviously, columns within a table have to be related,
for instance, a name column and an address column in a customer table); secondly,

it relates to connections between tables.

NoSQL (Not Only SQL) databases are undergoing substantial growth in Big Data
and web applications. NoSQL systems may in fact permit SQL-like query languages
to be employed. The main theme of NoSQL databases is allowing data to be stored
in a more flexible manner than the relational model permits. This may mean not
having a database schema or a flexible database schema. Of course, the flexibility
and speed may come at a price such as limited support for consistent transactions.
NoSQL databases can store data using a dictionary style, in a column-oriented way,
as documents, objects, graphs, tuples, or a combination thereof. The topics of this
chapter are listed as follows:

* Lightweight access with sqlite3

* Accessing databases from pandas

* Installing and setting up SQLAlchemy

* Populating a database with SQLAlchemy
* Querying the database with SQLAlchemy
* Pony ORM

* Dataset—databases for lazy people

* PyMongo and MongoDB

* Storing data in Redis

* Apache Cassandra
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Lightweight access with sqlite3

SQLite is a very popular relational database. It's very lightweight and used by many
applications, for instance, web browsers such as Mozilla Firefox. The sgqlite3 module
in the standard Python distribution can be used to work with a SQLite database. With
sqlite3, we can either store the database in a file or keep it in RAM. For this example,
we will do the latter. Import sqlite3 as follows:

import sqglite3

A connection to the database is needed to proceed. If we wanted to store the database
in a file, we would provide a filename. Instead, do the following;:

with sglite3.connect (":memory:") as con:

The with statement is standard Python and relies on the presence ofa __exit__ ()
method in a special context manager class. With this statement, we don't need to
explicitly close the connection. The closing of the connection is done automatically
by the context manager. After connecting to a database, we need a cursor. That's
generally how it works with databases by the way. A database cursor is similar to a
cursor in a text editor, in concept at least. We are required to close the cursor as well.
Create the cursor as follows:

c = con.cursor ()

We can now immediately create a table. Usually, you have to create a database first or
have it created for you by a database specialist. In this chapter, you not only need to
know Python, but SQL too. SQL is a specialized language for database querying and
manipulating. We don't have enough space to describe SQL completely. However,
basic SQL should be easy for you to pick up (for example, go through http: //www.
w3schools.com/sql/). To create a table, we pass a SQL string to the cursor as follows:

c.execute ('''CREATE TABLE sensors

(date text, city text, code text, sensor id real,
temperature real)''')

This should create a table with several columns called sensors. In this string, text
and real are data types corresponding to string and numerical values. We could
trust the table creation to have worked properly. If something goes wrong, we will
get an error. Listing the tables in a database is database dependent. There is usually
a special table or set of tables containing metadata about user tables. List the SQLite
tables as follows:

for table in c.execute ("SELECT name FROM sglite master WHERE type
= 'table'"):

print "Table", tablel[0]

[192]

www.it-ebooks.info


http://www.w3schools.com/sql/
http://www.w3schools.com/sql/
http://www.it-ebooks.info/

Chapter 8

As expected, we get the following output:

Table sensors

Let's insert and query some random data as follows:

c.execute ("INSERT INTO sensors VALUES ('2016-11-
05', 'Utrecht', 'Red"',42,15.14) ")

c.execute ("SELECT * FROM sensors")

print c.fetchone()

The record we inserted should be printed as follows:
(u'2016-11-05', u'Utrecht', u'Red', 42.0, 15.14)

When we don't need a table anymore, we can drop it. This is dangerous, so you have
to be absolutely sure you don't need the table. Once a table is dropped, it cannot be
recovered unless it was backed up. Drop the table and show the number of tables
after dropping it as follows:

con.execute ("DROP TABLE sensors")

print "# of tables", c.execute("SELECT COUNT(*) FROM sglite master
WHERE type = 'table'").fetchone () [0]

We get the following output:
# of tables 0
Refer to the sqlite demo.py file in this book's code bundle for the following code:

import sglite3

with sglite3.connect (":memory:") as con:
c = con.cursor ()
c.execute ('''CREATE TABLE sensors

(date text, city text, code text, sensor id real,
temperature real)''')

for table in c.execute ("SELECT name FROM sglite master WHERE
type = 'table'"):
print "Table", tablel[0]

c.execute ("INSERT INTO sensors VALUES ('2016-11-
05', 'Utrecht', 'Red"',42,15.14)")

c.execute ("SELECT * FROM sensors")

print c.fetchone ()
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con.execute ("DROP TABLE sensors")

print "# of tables", c.execute ("SELECT COUNT (*) FROM

sglite master WHERE type = 'table'").fetchone/() [0]

c.close ()

Accessing databases from pandas

We can give pandas a database connection such as the one in the previous example
or a SQLAlchemy connection. We will cover the latter in the later sections of this
chapter. We will load the statsmodels sunactivity data, just like in the previous
chapter, Chapter 7, Signal Processing and Time Series:

1.

Create a list of tuples to form the pandas DataFrame:

rows = [tuple(x) for x in df.values]

Contrary to the previous example, create a table without specifying data types:

con.execute ("CREATE TABLE sunspots (year, sunactivity)")

The executemany () method executes multiple statements; in this case,
we will be inserting records from a list of tuples. Insert all the rows into
the table and show the row count as follows:

con.executemany ("INSERT INTO sunspots(year, sunactivity)
VALUES (?, ?)", rows)

c.execute ("SELECT COUNT (*) FROM sunspots")

print c.fetchone ()

The number of rows in the table is printed as follows:
(309,)

The rowcount attribute of the result of an execute () call gives the number
of affected rows. This attribute is somewhat quirky and depends on your
SQLite version. A SQL query, as shown in the previous code snippet, on the
other hand is unambiguous. Delete the records where the number of events
is more than 20:

print "Deleted", con.execute ("DELETE FROM sunspots where
sunactivity > 20") .rowcount, "rows"

The following should be printed:
Deleted 217 rows
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4. If we hand the database connection to pandas, we can execute a query and
return a pandas DataFrame with the read_sql () function. Select the records

until 1732 as follows:
print read sql ("SELECT * FROM sunspots where year < 1732",
con)

The end result is the following pandas DataFrame:

year sunactivity

0 1700 5
1 1701 11
2 1702 16
3 1707 20
4 1708 10
5 1709 8
6 1710 3
7 1711 0
8 1712 0
9 1713 2
10 1714 11
11 1723 11

[12 rows x 2 columns]

Refer to the panda_access. py file in this book's code bundle for the following code:

import statsmodels.api as sm
from pandas.io.sqgl import read sql
import sglite3

with sglite3.connect (":memory:") as con:

c = con.cursor ()

data loader = sm.datasets.sunspots.load pandas ()
df = data loader.data
rows = [tuple(x) for x in df.values]

con.execute ("CREATE TABLE sunspots(year, sunactivity)")

con.executemany ("INSERT INTO sunspots(year, sunactivity)
VALUES (?, ?)", rows)
c.execute ("SELECT COUNT (*) FROM sunspots")
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print c.fetchone ()

print "Deleted", con.execute ("DELETE FROM sunspots where
sunactivity > 20") .rowcount, "rows"

print read sqgl ("SELECT * FROM sunspots where year < 1732",
con)

con.execute ("DROP TABLE sunspots")

c.close()

SQLAIchemy

SQLAIchemy is renowned for its object-relational mapping (ORM) based on a design
pattern, where Python classes are mapped to database tables. In practice, this means
that an extra abstraction layer is added, so we use the SQLAlchemy API to talk to the
database instead of issuing SQL commands. SQLAlchemy takes care of the details
behind the scene. The drawback is that you have to learn the API and may have to pay
a small performance penalty. In this section, you will learn how to set up SQLAlchemy,
and populate and query databases with SQLAlchemy.

Installing and setting up SQLAIchemy

The following is the command to install SQLAlchemy:

$ pip install sglalchemy

The latest version of SQLAlchemy at the time of writing was 0.9.6. The download
page for SQLAlchemy is available at http: //www.sglalchemy.org/download.html
with links to installers and code repositories.

SQLAIchemy also has a support page available at http://www.sglalchemy.
org/support .html. After modifying the pkg_check. py script, we can display
the modules of SQLAlchemy:

sqlalchemy version 0.9.6

sqlalchemy.connectors DESCRIPTION # connectors/ init .py #
Copyright (C) 2005-2014 the SQLAlchemy authors and contributors <see
AUTHORS file> # # This module is

sqlalchemy.databases DESCRIPTION Include imports from the
sqlalchemy.dialects package for backwards compatibility with pre 0.6
versions. PACKAGE CONTENTS DATA

sqglalchemy.dialects DESCRIPTION # dialects/ init .py # Copyright
(C) 2005-2014 the SQLAlchemy authors and contributors <see AUTHORS
file> # # This module is p
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sqlalchemy.engine DESCRIPTION The engine package defines the basic
components used to interface DB-API modules with higher-level
statement construction, conne

sqglalchemy.event DESCRIPTION # event/ init .py # Copyright (C)
2005-2014 the SQLAlchemy authors and contributors <see AUTHORS file>
# # This module is part

sqglalchemy.ext DESCRIPTION # ext/ init .py # Copyright (C) 2005-
2014 the SQLAlchemy authors and contributors <see AUTHORS file> # #
This module is part o

sqlalchemy.orm DESCRIPTION See the SQLAlchemy object relational
tutorial and mapper configuration documentation for an overview of
how this module is used.

sqglalchemy.sql DESCRIPTION # sql/ init .py # Copyright (C) 2005-
2014 the SQLAlchemy authors and contributors <see AUTHORS file> # #
This module is part o

sqglalchemy.testing DESCRIPTION # testing/ init .py # Copyright (C)
2005-2014 the SQLAlchemy authors and contributors <see AUTHORS file>
# # This module is pa

sqglalchemy.util DESCRIPTION # util/ init .py # Copyright (C) 2005-
2014 the SQLAlchemy authors and contributors <see AUTHORS file> # #
This module is part

SQLAIchemy requires us to define a superclass as follows:

from sglalchemy.ext.declarative import declarative base
Base = declarative base()

In this and the following sections, we will make use of a small database with two
tables. The first table defines an observation station. The second table represents
sensors in the stations. Each station has zero, one, or many sensors. A station is
identified by an integer ID, which is automatically generated by the database.
Also, a station is identified by a name, which is unique and mandatory.

A sensor has an integer ID as well. We keep track of the last value measured by
the sensor. This value can have a multiplier related to it. The setup described in
this section is expressed in the alchemy entities.py file in this book's code
bundle (you don't have to run this script, but it is used by another script):

from sglalchemy import Column, ForeignKey, Integer, String, Float
from sglalchemy.ext.declarative import declarative base

from sglalchemy.orm import relationship

from sglalchemy import create engine

from sglalchemy import UniqueConstraint

Base = declarative base()
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class Station (Base) :

__tablename = 'station'
id = Column(Integer, primary key=True)
name = Column (String(14), nullable=False, unique=True)

def repr (self):
return "Id=%d name=%s" % (self.id, self.name)

class Sensor (Base) :
_ _tablename = 'sensor'
id = Column(Integer, primary key=True)
last = Column (Integer)
multiplier = Column(Float)
station id = Column(Integer, ForeignKey('station.id'))
station = relationship(Station)

def repr (self):
return "Id=%d last=%d multiplier=%.1f station id=%d"
% (self.id, self.last, self.multiplier, self.station id)

if name == " main ":
print "This script is used by another script. Run python
alchemy query.py"

Populating a database with SQLAIchemy

Creating the tables will be deferred to the next section. In this section, we will
prepare a script, which will populate the database (you don't have to run this;
it is used by a script in a later section). With a DBSession object, we can insert
data into the tables. An engine is needed too, but creating the engine will also
be deferred until the next section.

1. Create the DBSession object as follows:

Base.metadata.bind = engine

DBSession = sessionmaker (bind=engine)
session = DBSession/()

2. Let's create two stations:

de bilt = Station(name='De Bilt')
session.add(de bilt)
session.add (Station (name='Utrecht'))
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session.commit ()
print "Station", de bilt

The rows are not inserted until we commit the session. The following is
printed for the first station:

Station Id=1 name=De Bilt

3. Similarly, insert a sensor record as follows:
temp sensor = Sensor(last=20, multiplier=.1,
station=de_bilt)
session.add (temp_ sensor)
session.commit ()
print "Sensor", temp sensor

The sensor is in the first station; therefore, we get the following printout:

Sensor Id=1 last=20 multiplier=0.1 station id=1

The database population code can be found in the populate_db.py file in this book's
code bundle (again you don't need to run this code; it's used by another script):

from sglalchemy import create engine
from sglalchemy.orm import sessionmaker

from alchemy entities import Base, Sensor, Station

def populate (engine) :
Base.metadata.bind = engine

DBSession = sessionmaker (bind=engine)
session = DBSession()

de bilt Station(name='De Bilt')
session.add(de bilt)
session.add(Station (name='Utrecht'))
session.commit ()

print "Station", de bilt

temp sensor = Sensor(last=20, multiplier=.1, station=de bilt)
session.add (temp sensor)

session.commit ()

print "Sensor", temp sensor

if name == " main ":
print "This script is used by another script. Run python
alchemy query.py"
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Querying the database with SQLAIchemy

An engine is created from a URI as follows:
engine = create engine('sglite:///demo.db"')

In this URI, we specified that we are using SQLite and the data is stored in the file
demo. db. Create the station and sensor tables with the engine we just created:

Base.metadata.create_all (engine)

For SQLAlchemy queries, we need a DBSession object again, as shown in the
previous section.

Select the first row in the station table:
station = session.query(Station) .first ()
Select all the stations as follows:
print "Query 1", session.query(Station).all()
The following will be the output:
Query 1 [Id=1 name=De Bilt, Id=2 name=Utrecht]
Select all the sensors as follows:
print "Query 2", session.query(Sensor) .all()
The following will be the output:
Query 2 [Id=1 last=20 multiplier=0.1 station id=1]
Select the first sensor, which belongs to the first station:
print "Query 3",
session.query (Sensor) .filter (Sensor.station ==
station) .one ()
The following will be the output:
Query 3 Id=1 last=20 multiplier=0.1 station id=1
We can again query with the pandas read_sql () method:

print read sqgl ("SELECT * FROM station",
engine.raw_connection())
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You will get the following output:

id name
0 1 De Bilt
1 2 Utrecht

[2 rows x 2 columns]

Inspect the alchemy query.py file in this book's code bundle:

from alchemy entities import Base, Sensor, Station
from populate db import populate

from sglalchemy import create engine

from sglalchemy.orm import sessionmaker

import os

from pandas.io.sqgl import read sql

engine = create engine('sglite:///demo.db"')
Base.metadata.create all (engine)

populate (engine)

Base.metadata.bind = engine

DBSession = sessionmaker ()

DBSession.bind = engine

session = DBSession()

station = session.query(Station).first ()

print "Query 1", session.query(Station).all()
print "Query 2", session.query(Sensor) .all()
print "Query 3", session.query(Sensor).filter (Sensor.station ==

station) .one ()
print read sqgl ("SELECT * FROM station", engine.raw connection())

try:
os.remove ('demo.db')
print "Deleted demo.db"
except OSError:
pass

Pony ORM

Pony ORM is another Python ORM package. Pony ORM is written in pure Python
and has automatic query optimization and a GUI database schema editor. It also
supports automatic transaction management, automatic caching, and composite
keys. Pony ORM uses Python generator expressions, which are translated in SQL.
Install it as follows:

$ sudo pip install pony
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$ pip freeze|grep pony
pony==0.5.1

Import the packages we will need in this example. Refer to the pony ride.py
file in this book's code bundle:

from pony.orm import Database, db session
from pandas.io.sql import write frame
import statsmodels.api as sm

Create an in-memory SQLite database:
db = Database('sglite', ':memory:')

Load the sunspots data and write it to the database with the pandas
write frame () function:

with db_session:
data loader = sm.datasets.sunspots.load pandas ()
df = data_ loader.data
write frame (df, "sunspots", db.get connection())
print db.select ("count (*) FROM sunspots")

The number of rows in the sunspots table is printed as follows:

[309]

Dataset — databases for lazy people

Dataset is a Python library, which is basically a wrapper around SQLAlchemy.
It claims to be so easy to use that even lazy people like it.

Install dataset as follows:

$ sudo pip install dataset
$ pip freeze|grep dataset
dataset==0.5.4

Create a SQLite in-memory database and connect to it:

import dataset
db = dataset.connect ('sglite:///:memory:")

Create a table called books:

table = db["books"]
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Actually, the table in the database isn't created yet, since we haven't specified any
columns. We only created a related object. The table schema is created automatically
from calls to the insert () method. Give the insert () method dictionaries with
book titles:

table.insert (dict (title="NumPy Beginner's Guide",
author='Ivan Idris'))

table.insert (dict (title="NumPy Cookbook", author='Ivan
Idris'))

table.insert (dict (title="Learning NumPy", author='Ivan
Idris'))

These are all excellent books, of course! The read_sql () pandas function can query
this table too:

print read sql ('SELECT * FROM books',
db.executable.raw_connection())

The following is the output:

id author title
0 1 Ivan Idris NumPy Beginner's Guide
1 2 Ivan Idris NumPy Cookbook
2 3 Ivan Idris Learning NumPy

[3 rows x 3 columns]

Load the sunspots data and show the first five rows as follows:

write frame (df, "sunspots", db.executable.raw connection())
table = db['sunspots']

for row in table.find( limit=5):

print row

The following will be printed:

OrderedDict ([ (u'YEAR', 1700.0), (u'SUNACTIVITY', 5.0)])
OrderedDict ([ (u'YEAR', 1701.0), (u'SUNACTIVITY', 11.0)])
OrderedDict ([ (u'YEAR', 1702.0), (u'SUNACTIVITY', 16.0)])
OrderedDict ([ (u'YEAR', 1703.0), (u'SUNACTIVITY', 23.0)])
OrderedDict ([ (u'YEAR', 1704.0), (u'SUNACTIVITY', 36.0)])

We can easily show the tables in the database with the following line:

print "Tables", db.tables

The following is the output of the preceding code:

Tables [u'books', 'sunspots']
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The following is the content of the dataset_demo. py file in this book's code bundle:

import dataset

from pandas.io.sqgl import read sql
from pandas.io.sql import write frame
import statsmodels.api as sm

db = dataset.connect ('sglite:///:memory:"')

table = db["books"]

table.insert (dict (title="NumPy Beginner's Guide", author='Ivan
Idris'))

table.insert (dict (title="NumPy Cookbook", author='Ivan Idris'))
table.insert (dict (title="Learning NumPy", author='Ivan Idris'))

print read sqgl ('SELECT * FROM books', db.executable.raw connection())

data loader = sm.datasets.sunspots.load pandas ()

df = data loader.data

write frame (df, "sunspots", db.executable.raw connection())
table = db['sunspots']

for row in table.find( limit=5):
print row

print "Tables", db.tables

PyMongo and MongoDB

MongoDB (humongous) is a NoSQL document-oriented database. The documents

are stored in the BSON format, which is JSON like. You can download a MongoDB
distribution from http: //www.mongodb . org/downloads. Installing should be just

a matter of unpacking a compressed archive. The version at the time of writing was
2.6.3. In the bin directory of the distribution, we will find the mongod file, which starts
the server. MongoDB expects to find a /data/db directory. This is the directory where
data is stored. We can specify another directory from the command line as follows:

$ mkdir /tmp/db

Start the database from the directory containing its binary executables:
./mongod --dbpath /tmp/db

We need to keep this process running to be able to query the database.

PyMongo is a Python driver for MongoDB. Install PyMongo as follows:

$ sudo pip install pymongo
$ pip freeze|grep pymongo
pymongo==2.7.1
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Connect to the MongoDB test database:

from pymongo import MongoClient
client = MongoClient ()
db = client.test database

Recall that we can create JSON from a pandas DataFrame. Create the JSON and store
it in MongoDB:

data loader = sm.datasets.sunspots.load pandas ()
df = data loader.data

rows = json.loads(df.T.to json()) .values()
db.sunspots.insert (rows)

Query the document we just created:

cursor = db['sunspots'].find({})
df = pd.DataFrame (list (cursor))
print df

This prints the entire pandas DataFrame. Refer to the mongo_demo. py file in this
book's code bundle:

from pymongo import MongoClient
import statsmodels.api as sm
import json

import pandas as pd

client = MongoClient ()
db = client.test database

data loader = sm.datasets.sunspots.load pandas ()
df = data_loader.data

rows = json.loads(df.T.to_json()) .values()
db.sunspots.insert (rows)

cursor = db['sunspots'].find({})
df = pd.DataFrame (list (cursor))

print df

db.drop collection('sunspots')
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Storing data in Redis

Redis (REmote DIctionary Server) is an in-memory, key-value database, written in
C. In the in-memory mode, Redis is extremely fast, with writing and reading being
almost equally fast. Redis follows the publish/subscribe model and uses Lua scripts
as stored procedures. Publish/subscribe makes use of channels to which a client can
subscribe in order to receive messages. The most recent Redis version at the time of
writing was 2.8.12. Redis can be downloaded from the home page at http://redis.
io/. After unpacking the Redis distribution, issue the following command to compile
the code and create all the binaries:

$ make

Run the server as follows:

$ src/redis-server

Now let's install a Python driver:

$ sudo pip install redis
$ pip freeze|grep redis
redis==2.10.1

It's pretty easy to use Redis when you realize it's a giant dictionary. However, Redis
does have its limitations. Sometimes, it's just convenient to store a complex object
as a JSON string (or other format). That's what we are going to do with a pandas
DataFrame. Connect to Redis as follows:

r = redis.StrictRedis ()

Create a key-value pair with a JSON string:
r.set ('sunspots', data)

Retrieve the data with the following line:
blob = r.get ('sunspots"')

The code is straightforward and given in the redis_demo. py file in this book's
code bundle:

import redis
import statsmodels.api as sm
import pandas as pd

r = redis.StrictRedis ()
data loader = sm.datasets.sunspots.load pandas ()
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df = data_loader.data
data = df.T.to_json()
r.set ('sunspots', data)
blob = r.get('sunspots')
print pd.read json(blob)

Apache Cassandra

Apache Cassandra mixes features of key-value and traditional relational databases.
In a conventional relational database, the columns of a table are fixed. In Cassandra,
however, rows within the same table can have different columns. Cassandra is
therefore column oriented, since it allows a flexible schema for each row. Columns are
organized in so-called column families, which are equivalent to tables in relational
databases. Joins and subqueries are not possible with Cassandra. Cassandra can be
downloaded from http://cassandra.apache.org/download/. The latest version at
the time of writing was 2.0.9. Please refer to http://wiki.apache.org/cassandra/
GettingStarted to get started.

Run the server from the command line as follows:

$ bin/cassandra -f

If you run the previous command, you may get the following error message:

Cassandra 2.0 and later require Java 7 or later.

Java in this context is a high-level programming language such as Python. Java 7
refers to version 1.7 (it's a marketing ploy). If you have Java installed, you can check
its version as follows:

$ java -version
java version "1.7.0 60"

For most operating systems, except Mac OS X, you can download Java
from http://www.oracle.com/technetwork/java/javase/
downloads/index.html.

% Instructions for installing Java on Mac are given at http://docs.
~ oracle.com/javase/7/docs/webnotes/install /mac/mac-
jdk.html. Since this is a Python book, we will not dwell too long
on the details of installing Java. A quick web search should give you
more than enough information.
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Create the directories listed in conf/cassandra.yaml or tweak them
as follows:

data file directories:

/tmp/lib/cassandra/data

commitlog directory: /tmp/lib/cassandra/commitlog
saved_caches directory: /tmp/lib/cassandra/saved caches

The following commands make sense if you don't want to keep the data:

$ mkdir -p /tmp/lib/cassandra/data
$ mkdir -p /tmp/lib/cassandra/commitlog
$ mkdir -p /tmp/lib/cassandra/saved caches

Install a Python driver with the following command:

$ sudo pip install cassandra-driver
$ pip freeze|grep cassandra-driver
cassandra-driver==2.0.2

You might get the following error message:

The required version of setuptools (>=0.9.6) is not
available,

and can't be installed while this script is running.
Please

install a more recent version first, using
'easy install -U setuptools'.

This seems pretty self-explanatory.

Now it's time for the code. Connect to a cluster and create a session as follows:

cluster = Cluster()
session = cluster.connect ()

Cassandra has the concept of keyspace. A keyspace holds tables. Cassandra has its
own query language called Cassandra Query Language (CQL). CQL is very similar
to SQL. Create the keyspace and set the session to use it:

session.execute ("CREATE KEYSPACE IF NOT EXISTS mykeyspace
WITH REPLICATION = { 'class' : 'SimpleStrategy’,
'replication_ factor' : 1 };")
session.set keyspace ('mykeyspace')

Now, create a table for the sunspots data:

session.execute ("CREATE TABLE IF NOT EXISTS sunspots (year
decimal PRIMARY KEY, sunactivity decimal) ;")
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1. Create a statement that we will use in a loop to insert rows of the data
as tuples:

query = SimpleStatement (

"INSERT INTO sunspots (year, sunactivity) VALUES (%s,
$s) ",

consistency level=ConsistencyLevel.QUORUM)

2. The following line inserts the data:

for row in rows:
session.execute (query, row)

3. Get the count of the rows in the table:

print session.execute ("SELECT COUNT (*) FROM sunspots")

This prints the row count as follows:
[Row (count=309) ]

4. Drop the keyspace and shut down the cluster:

session.execute ('DROP KEYSPACE mykeyspace')
cluster.shutdown ()

Refer to the cassandra demo.py file in this book's code bundle:

from cassandra import ConsistencyLevel

from cassandra.cluster import Cluster

from cassandra.query import SimpleStatement
import statsmodels.api as sm

cluster = Cluster()

session = cluster.connect ()

session.execute ("CREATE KEYSPACE IF NOT EXISTS mykeyspace WITH
REPLICATION = { 'class' : 'SimpleStrategy', 'replication factor'
1M

session.set keyspace ('mykeyspace')

session.execute ("CREATE TABLE IF NOT EXISTS sunspots (year decimal
PRIMARY KEY, sunactivity decimal) ;")

query = SimpleStatement (
"INSERT INTO sunspots (year, sunactivity) VALUES (%s, %s)",
consistency level=ConsistencyLevel.QUORUM)

data loader = sm.datasets.sunspots.load pandas ()
df = data loader.data
rows = [tuple(x) for x in df.values]
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for row in rows:
session.execute (query, row)

print session.execute ("SELECT COUNT (*) FROM sunspots")

session.execute ('DROP KEYSPACE mykeyspace')
cluster.shutdown ()

Summary

We stored annual sunspots cycles data in different relational and NoSQL databases.

The term relational here does not just pertain to relationships between tables; firstly,
it has to do with the relationship between columns inside a table; secondly, it relates
to connections between tables.

The sqlite3 module in the standard Python distribution can be used to work
with a SQLite database. We can give pandas a SQLite database connection or
a SQLAIchemy connection.

SQLAIchemy is renowned for its ORM, based on a design pattern, where Python
classes are mapped to database tables. The ORM pattern is a general architectural
pattern applicable to other object-oriented programming languages. SQLAlchemy
abstracts away the technical details of working with databases including writing SQL.

MongoDB is a document-based store, which can hold a huge amount of data.

In the in-memory mode, Redis is extremely fast, with writing and reading being almost
equally fast. Redis is a key-value store that functions similarly to a Python dictionary.

Apache Cassandra mixes features of key-value and traditional relational databases.
It is column oriented and its columns are organized into families, which are the
equivalent of tables in relational databases. Rows in Apache Cassandra are not

tied to a particular set of columns.

The next chapter, Chapter 9, Analyzing Textual Data and Social Media, describes analysis
techniques for plain text data. Plain text data is found in many organizations and on
the Internet. Generally, plain text data is very unstructured and requires a different
approach than data that has been tabulated and cleaned. For the analysis, we will use
NLTK —an open source Python package. NLTK is very comprehensive and comes
with its own datasets.

[210]

www.it-ebooks.info


http://www.it-ebooks.info/

Analyzing Textual Data
and Social Media

In the previous chapters, we focused on the analysis of structured data, mostly
in tabular format. In reality, plain text is the most predominant form of data
available today. Text analysis applies analysis of word frequency distributions,
pattern recognition, tagging, link and association analysis, sentiment analysis, and
visualization. We will analyze text with the Python Natural Language Toolkit
(NLTK) library. NLTK comes with a collection of sample texts called corpora.
A small example of network analysis will also be covered. The following topics
will be discussed in this chapter:

* Installing NLTK

* Filtering out stopwords, names, and numbers

* The bag-of-words model

* Analyzing word frequencies

* Naive Bayes classification

* Sentiment analysis

* Creating word clouds

* Social network analysis
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Installing NLTK

NLTK is a Python API for the analysis of texts written in natural languages, such as
English. NLTK was created in 2001 and was originally intended as a teaching tool.
Install NLTK with the following command:

$ sudo pip install nltk
$ pip freeze|grep nltk
nltk==2.0.4

As usual, we will check the installation with a new version of the pkg_check.py file.
The following import statement is required:

import nltk

If everything works, we should get a result similar to the following:

nltk version 2.0.4

nltk.app DESCRIPTION chartparser: Chart Parser chunkparser: Regular-
Expression Chunk Parser collocations: Find collocations in text
concordance: Part

nltk.ccg DESCRIPTION For more information see
nltk/doc/contrib/ccg/ccg.pdf PACKAGE CONTENTS api chart combinator
lexicon DATA BackwardApplication<n

nltk.chat DESCRIPTION A class for simple chatbots. These perform
simple pattern matching on sentences typed by users, and respond with
automatically g

nltk.chunk DESCRIPTION Classes and interfaces for identifying non-
overlapping linguistic groups (such as base noun phrases) in
unrestricted text. This

nltk.classify DESCRIPTION Classes and interfaces for labeling tokens
with category labels (or "class labels"). Typically, labels are
represented with stri

nltk.cluster DESCRIPTION This module contains a number of basic
clustering algorithms. Clustering describes the task of discovering
groups of similar ite

nltk.corpus

nltk.draw DESCRIPTION # Natural Language Toolkit: graphical
representations package # # Copyright (C) 2001-2012 NLTK Project #
Author: Edward Loper<e

nltk.examples

nltk.inference

nltk.metrics DESCRIPTION Classes and methods for scoring processing
modules. PACKAGE CONTENTS agreement association confusionmatrix
distance scores segme
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nltk.misc DESCRIPTION # Natural Language Toolkit: Miscellaneous
modules # # Copyright (C) 2001-2012 NLTK Project # Author: Steven
Bird <sb@csse.unimel

nltk.model DESCRIPTION # Natural Language Toolkit: Language Models #
# Copyright (C) 2001-2012 NLTK Project # Author: Steven Bird
<sb@csse.unimelb.edu.

nltk.parse DESCRIPTION Classes and interfaces for producing tree
structures that represent the internal organization of a text. This
task is known as "

nltk.sem DESCRIPTION This package contains classes for representing
semantic structure in formulas of first-order logic and for
evaluating such formu

nltk.stem DESCRIPTION Interfaces used to remove morphological affixes
from words, leaving only the word stem. Stemming algorithms aim to
remove those

nltk.tag DESCRIPTION This package contains classes and interfaces for
part-of-speech tagging, or simply "tagging". A "tag" is a case-
sensitive string

nltk.test DESCRIPTION Unit tests for the NLTK modules. These tests

are intended to ensure that changes that we make to NLTK's code don't
accidentally

nltk.tokenize DESCRIPTION Tokenizers divide strings into lists of
substrings. For example, tokenizers can be used to find the list of
sentences or words i

However, we are not done yet; we still need to download the NLTK corpora.
The download is relatively large (about 1.8 GB); however, we only have to
download it once. Unless you know exactly which corpora you require, it's
best to download all the available corpora. Download the corpora from the
Python shell as follows:

$ python
>>> import nltk
>>> nltk.download()

A GUI application should appear, where you can specify a destination and what
to download. If you are new to NLTK, it's most convenient to choose the default
options and download everything. In this chapter, we will need the stopwords,
movie reviews, names, and Gutenberg corpora.
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Filtering out stopwords, names,
and numbers

It's a common requirement in text analysis to get rid of stopwords (common words
with low information value). NLTK has a stopwords corpora for a number of
languages. Load the English stopwords corpus and print some of the words:

sw = set (nltk.corpus.stopwords.words ('english'))
print "Stop words", list (sw) [:7]

The following common words are printed:

Stop words ['all', 'just', 'being', 'over', 'both', 'through',
'yourselves']

Notice that all the words in this corpus are in lowercase.

NLTK also has a Gutenberg corpus. The Gutenberg project is a digital library of
books mostly with expired copyright, which are available for free on the Internet
(see http://www.gutenberg.org/).

Load the Gutenberg corpus and print some of its filenames:

gb = nltk.corpus.gutenberg
print "Gutenberg files", gb.fileids() [-5:]

Some of the titles printed may be familiar to you:

Gutenberg files ['milton-paradise.txt', 'shakespeare-caesar.txt',
'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-
leaves.txt']

Extract the first couple of sentences from the milton-paradise.txt file that we
will filter later:

text sent = gb.sents("milton-paradise.txt") [:2]
print "Unfiltered", text sent

The following sentences are printed:

Unfiltered [['[', 'Paradise', 'Lost', 'by', 'John', 'Milton',
'1667', '1'1, ['Book', 'I'l]

Now, filter out the stopwords as follows:

for sent in text sent:
filtered = [w for w in sent if w.lower () not in sw]
print "Filtered", filtered
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For the first sentence, we get the following output:
Filtered ['[', 'Paradise', 'Lost', 'John', 'Milton', '1667', ']1']

If we compare with the previous snippet, we notice that the word by has been
filtered out as it was found in the stopwords corpus. Sometimes, we want to remove
numbers and names too. We can remove words based on Part of Speech (POS) tags.
In this tagging scheme, numbers correspond to the Cardinal Number (CD) tag.
Names correspond to the proper noun singular (NNP) tag. Tagging is an inexact
process based on heuristics. It's a big topic that deserves an entire book (see the
Preface). Tag the filtered text with the pos_tag () function:

tagged = nltk.pos_tag(filtered)
print "Tagged", tagged

For our text, we get the following tags:

Tagged [('[', 'NN'), ('Paradise', 'NNP'), ('Lost', 'NNP'), ('John’',
'NNP'), ('Milton', 'NNP'), ('1l667', 'CD'), ('l1', 'CD')]

The pos_tag () function returns a list of tuples, where the second element in each
tuple is the tag. As you can see, some of the words are tagged as NNP, although they
probably shouldn't be. The heuristic here is to tag words as NNP if the first character
of a word is uppercase. If we set all the words to be lowercase, we will get a different
result. This is left as an exercise for the reader. It's easy to remove the words in the
list with the NNP and CD tags. Have a look at the filtering.py file in this book's
code bundle:

import nltk

sw = set (nltk.corpus.stopwords.words ('english'))
print "Stop words", list(sw) [:7]

gb = nltk.corpus.gutenberg

print "Gutenberg files", gb.fileids() [-5:]

text sent = gb.sents("milton-paradise.txt") [:2]
print "Unfiltered", text sent

for sent in text sent:
filtered = [w for w in sent if w.lower () not in sw]
print "Filtered", filtered
tagged = nltk.pos_tag(filtered)
print "Tagged", tagged

words= []
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for word in tagged:
if word[1l] != 'NNP' and word[1l] != 'CD':
words . append (word [0])

print words

The bag-of-words model

In the bag-of-words model, we create from a document a bag containing words
found in the document. In this model, we don't care about the word order. For each
word in the document, we count the number of occurrences. With these word counts,
we can do statistical analysis, for instance, to identify spam in e-mail messages.

If we have a group of documents, we can view each unique word in the corpus as a
feature; here, "feature" means parameter or variable. Using all the word counts, we
can build a feature vector for each document; "vector" is used here in the mathematical
sense. If a word is present in the corpus but not in the document, the value of this
feature will be 0. Surprisingly, NLTK doesn't have a handy utility currently to create a
feature vector. However, the machine learning Python library, scikit-learn, does have
a CountVectorizer class that we can use. In the next chapter, Chapter 10, Predictive
Analytics and Machine Learning, we will do more with scikit-learn.

First, install scikit-learn as follows:

$ pip scikit-learn
$ pip freeze|grep learn
scikit-learn==0.15.0

Load two text documents from the NLTK Gutenberg corpus:

hamlet = gb.raw("shakespeare-hamlet.txt")
macbeth = gb.raw("shakespeare-macbeth.txt")

Create the feature vector by omitting English stopwords:

cv = CountVectorizer (stop words='english')
print "Feature vector", cv.fit transform([hamlet,
macbeth] ) .toarray ()

These are the feature vectors for the two documents:

Feature vector [[ 1 0 1 ..., 14 0 1]
[0o 1 o0 ..., 1 1 0]]
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Print a small selection of the features (unique words) we found:

print "Features", cv.get feature names () [:5]

The features are given in alphabetical order:

Features [u'l599', u'l603', u'abhominably', u'abhorred', u'abide']
The code is contained in bag_words . py file in this book's code bundle:

import nltk
from sklearn.feature extraction.text import CountVectorizer

gb = nltk.corpus.gutenberg
hamlet = gb.raw("shakespeare-hamlet.txt")
macbeth = gb.raw("shakespeare-macbeth.txt")

cv = CountVectorizer (stop words='english')
print "Feature vector", cv.fit transform([hamlet, macbeth]) .toarray()
print "Features", cv.get feature names () [:5]

Analyzing word frequencies

The NLTK FregDist class encapsulates a dictionary of words and counts for a
given list of words. Load the Gutenberg text of Julius Caesar by William Shakespeare.
Let's filter out stopwords and punctuation:

punctuation = set (string.punctuation)
filtered = [w.lower() for w in words if w.lower () not in sw and
w.lower () not in punctuation]

Create a FregDist object and print associated keys and values with highest frequency:

fd = nltk.FregDist (filtered)
print "Words", fd.keys() [:5]
print "Counts", fd.values() [:5]

The keys and values are printed as follows:

Words ['d', 'caesar', 'brutus', 'bru', 'haue’'l]
Counts [215, 190, 161, 153, 148]
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The first word in this list is of course not an English word, so we may need to add the
heuristic that words have a minimum of two characters. The NLTK FreqgbDist class
allows dictionary-like access, but it also has convenience methods. Get the word with
the most frequent word and the related count:

print "Max", fd.max/()
print "Count", fd['d'l]

The following result shouldn't be a surprise:

Max d
Count 215

The analysis until this point concerned single words, but we can extend the analysis
to word pairs and triplets. These are also called bigrams and trigrams. We can find
them with the bigrams () and trigrams () functions. Repeat the analysis, but this
time for bigrams:

fd = nltk.FregDist (nltk.bigrams (filtered))
print "Bigrams", fd.keys() [:5]

print "Counts", fd.values() [:5]

print "Bigram Max", fd.max()

print "Bigram count", fd[('let', 'vs')]

The following output should be printed:

Bigrams [('let', 'vs'), ('wee', '1l'), ('mark', 'antony'), ('marke’',
'antony'), ('st', 'thou')]

Counts [16, 15, 13, 12, 12]

Bigram Max ('let', 'vs!')

Bigram count 16

Have a peek at the frequencies. py file in this book's code bundle:

import nltk
import string

gb = nltk.corpus.gutenberg
words = gb.words ("shakespeare-caesar.txt")

sw = set (nltk.corpus.stopwords.words ('english'))
punctuation = set (string.punctuation)

filtered = [w.lower() for w in words if w.lower () not in sw and
w.lower () not in punctuation]
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fd = nltk.FregDist (filtered)
print "Words", fd.keys() [:5]
print "Counts", fd.values() [:5]
print "Max", fd.max()

print "Count", fd['d']

fd = nltk.FregDist (nltk.bigrams (filtered))
print "Bigrams", fd.keys() [:5]

print "Counts", fd.values() [:5]

print "Bigram Max", fd.max()

print "Bigram count", fd[('let', 'vs')]

Naive Bayes classification

Classification algorithms are a type of machine learning algorithm that involve
determining the class (category or type) of a given item. For instance, we could try
to determine the genre of a movie based on some features. In this case, the genre
is the class to be predicted. In the next chapter, Chapter 10, Predictive Analytics and
Machine Learning, we will continue with an overview of machine learning. In the
meantime, we will discuss a popular algorithm called Naive Bayes classification,
which is frequently used to analyze text documents.

Naive Bayes classification is a probabilistic algorithm based on the Bayes theorem
from probability theory and statistics. The Bayes theorem formulates how to
discount the probability of an event based on new evidence. For example, imagine
that we have a bag with pieces of chocolate and other items we can't see. We will
call the probability of drawing a piece of dark chocolate P(D). We will denote the
probability of drawing a piece of chocolate as P(C). Of course, the total probability
is always 1, so P(D) and P(C) can be at most 1. The Bayes theorem states that the
posterior probability is proportional to the prior probability times likelihood:

P(D|C)P(D)
P(C)

P(D|C)=

P (D|C) in the preceding notation means the probability of event D given c. When we
haven't drawn any items yet, P (D) = 0.5 because we don't have any information
yet. To actually apply the formula, we need to know p (c|D) and p (C) or we have

to determine those indirectly.
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Naive Bayes Classification is called naive because it makes the simplifying assumption
of independence between features. In practice, the results are usually pretty good, so
this assumption is often warranted to a certain level. Recently, it was found that there
are theoretical reasons why the assumption makes sense. However, since machine
learning is a rapidly evolving field, algorithms have been invented with (slightly)
better performance.

Let's try to classify words as stopwords or punctuation. As a feature, we will use the
word length, since stopwords and punctuation tend to be short.

This setup leads us to define the following functions:

def word features (word) :
return {'len': len (word) }

def isStopword (word) :
return word in sw or word in punctuation

Label the words in the Gutenberg shakespeare-caesar.txt as being a stopword
or not:

labeled words ([ (word.lower (), isStopword(word.lower())) for

word in words])
random.seed (42)
random. shuffle (labeled words)
print labeled words[:5]

Five labeled words will appear as follows:

[('was', True), ('greeke', False), ('cause', False), ('but', True),
('house', False)]

For each word, determine its length:

featuresets = [(word features(n), word) for (n, word) in
labeled words]

In previous chapters, we mentioned overfitting and how to avoid this with
cross-validation by having a train and a test dataset. We will train a Naive
Bayes classifier on 90 percent of the words and test on the remaining

10 percent. Create the train set and test set and train the data:

cutoff = int (.9 * len(featuresets))
train set, test set = featuresets[:cutoff], featuresets[cutoff:]
classifier = nltk.NaiveBayesClassifier.train(train set)
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We can now check what the classifier gives for some words:

classifier = nltk.NaiveBayesClassifier.train(train set)

print "'behold' class",
classifier.classify(word features('behold'))

print "'the' class", classifier.classify(word features('the'))

Fortunately, the words are properly classified:

'behold' class False
'the' class True

Determine the classifier accuracy on the test set as follows:
print "Accuracy", nltk.classify.accuracy(classifier, test set)

We get a high accuracy for this classifier of around 85 percent. Print an overview
of the most informative features:

print classifier.show most informative features(5)

The overview shows the word lengths that are most useful for the
classification process:

en =7 False : True = 62.7 : 1.0
len = 6 False : True = 49.1 : 1.0
len = 1 True : False = 12.0 : 1.0
len = 2 True : False = 10.7 : 1.0
len = 5 False : True = 10.4 : 1.0

The code is in the naive classification.py file in this book's code bundle:

import nltk
import string
import random

sw = set (nltk.corpus.stopwords.words ('english'))
punctuation = set (string.punctuation)

def word features (word) :
return {'len': len(word) }

def isStopword (word) :
return word in sw or word in punctuation
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gb = nltk.corpus.gutenberg

words = gb.words ("shakespeare-caesar.txt")
labeled words = ([(word.lower(), isStopword(word.lower())) for
word in words])

random. seed (42)
random.shuffle (labeled words)
print labeled words[:5]

featuresets = [(word features(n), word) for (n, word) in
labeled words]

cutoff = int (.9 * len(featuresets))

train set, test set = featuresets[:cutoff], featuresets[cutoff:]

classifier = nltk.NaiveBayesClassifier.train(train set)

print "'behold' class",

classifier.classify(word features('behold'))

print "'the' class", classifier.classify(word features('the'))

print "Accuracy", nltk.classify.accuracy(classifier, test set)
print classifier.show most informative features(5)

Sentiment analysis

Opinion mining or sentiment analysis is a hot, new research field dedicated to

the automatic evaluation of opinions as expressed on social media, product review
websites, or other forums. Often, we want to know whether an opinion is positive,
neutral, or negative. This is, of course, a form of classification as seen in the previous
section. As such, we can apply any number of classification algorithms. Another
approach is to semiautomatically (with some manual editing) compose a list of
words with an associated numerical sentiment score (the word "good" can have a
score of 5 and the word "bad" a score of -5). If we have such a list, we can look up all
words in a text document and, for example, sum up all the found sentiment scores.
The number of classes can be more than three, like a five-star rating scheme.

We will apply Naive Bayes classification to the NLTK movie reviews corpus with the
goal of classifying movie reviews as either positive or negative. First, we will load
the corpus and filter out stopwords and punctuation. These steps will be omitted,
since we have performed them before. You may consider more elaborate filtering
schemes, but keep in mind that excessive filtering may hurt accuracy. Label the
movie reviews documents using the categories () method:

labeled docs = [(list(movie reviews.words (fid)), cat)
for cat in movie reviews.categories ()
for fid in movie reviews.fileids(cat)]
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The complete corpus has tens of thousands of unique words that we can use as
features. However, using all these words might be inefficient. Select the top five
percent of the most frequent words:

words = FreqgDist (filtered)
N = int (.05 * len(words.keys()))
word features = words.keys () [:N]

For each document, we can extract features using a number of methods including
the following:

*  Check whether the given document has a word or not
* Determine the number of occurrences of a word for a given document

¢ Normalize word counts so that the maximum normalized word count will
be less than or equal to 1

* Take the logarithm of counts plus one (to avoid taking the logarithm of zero)

* Combine all the previous points into one metric

As the saying goes, all roads lead to Rome. Of course, some roads are safer and will
bring you to Rome faster. Define the following function, which uses raw word
counts as a metric:

def doc_ features (doc) :
doc_words = FregDist (w for w in doc if not isStopWord (w))
features = {}
for word in word features:

features['count (%s)' % word] = (doc_words.get (word, 0))
return features

We can now train our classifier just as we did in the previous example. An accuracy

of 78 percent is reached, which is decent and comes close to what is possible with
sentiment analysis. Research has found that even humans don't always agree on the
sentiment of a given document (see http://mashable.com/2010/04/19/sentiment-
analysis/). Therefore, we can't have a hundred percent perfect accuracy with
sentiment analysis software.
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The most informative features are printed as follows:

count (wonderful) = 2 pos : neg = 14.7 : 1.0
count (outstanding) =1 pos : neg = 11.2 : 1.0
count (bad) =5 neg : pos = 10.8 : 1.0

count (stupid) = 2 neg : pos = 10.8 : 1.0
count (boring) = 2 nheg : pos = 10.4 : 1.0
count (nhature) = 2 pos : neg = 8.5 : 1.0
count (different) = 2 pos : neg = 8.3 :1.0
count (bad) = 6 neg : pos = 8.2 : 1.0

count (apparently) = 2 neg : pos = 8.0 : 1.0
count (life) =5 pos : neg = 7.6 : 1.0

If we go through this list, we find obvious positive words such as "wonderful" and
"outstanding". The words "bad", "stupid", and "boring" are the obvious negative
words. It would be interesting to analyze the remaining features. This is left as an
exercise for the reader. Refer to the sentiment .py file in this book's code bundle:

import random

from nltk.corpus import movie reviews
from nltk.corpus import stopwords
from nltk import FregDist

from nltk import NaiveBayesClassifier
from nltk.classify import accuracy
import string

labeled_docs = [(list(movie_reviews.words(fid)), cat)
for cat in movie reviews.categories ()
for fid in movie_reviews.fileids (cat)]
random.seed (42)
random.shuffle (labeled docs)

review_words = movie_reviews.words ()
print "# Review Words", len(review words)

sw = set (stopwords.words ('english'))
punctuation = set (string.punctuation)

def isStopWord (word) :
return word in sw or word in punctuation

filtered = [w.lower() for w in review words if not isStopWord (w.
lower () )]
print "# After filter", len(filtered)
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words = FregDist (filtered)
N = int (.05 * len(words.keys()))
word features = words.keys () [:N]

def doc_ features (doc) :
doc_words = FregDist (w for w in doc if not isStopWord (w))
features = {}
for word in word features:

)

features['count (%s)' % word] = (doc_words.get (word, 0))

return features
featuresets = [(doc_features(d), c) for (d,c) in labeled docs]
train set, test set = featuresets[200:], featuresets[:200]
classifier = NaiveBayesClassifier.train(train set)

print "Accuracy", accuracy(classifier, test_ set)

print classifier.show most informative features()

Creating word clouds

You may have seen word clouds produced by Wordle or others before. If not,

you will see them soon enough in this chapter. A couple of Python libraries

can create word clouds; however, these libraries don't seem to beat the quality
produced by Wordle yet. We can create a word cloud via the Wordle web page

onhttp://www.wordle.net/advanced. Wordle requires a list of words and
weights in the following format:

Wordl : weight
Word2 : weight

Modify the code from the previous example to print the word list. As a metric,
we will use the word frequency and select the top percent. We don't need anything

new and the final code is in the cloud. py file in this book's code bundle:

from nltk.corpus import movie reviews
from nltk.corpus import stopwords
from nltk import FregDist

import string

sw = set (stopwords.words ('english'))
punctuation = set(string.punctuation)

def isStopWord (word) :
return word in sw or word in punctuation
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review words = movie reviews.words ()
filtered = [w.lower() for w in review words if not isStopWord (w.
lower ())]

words = FreqgDist (filtered)
N = int (.01 * len(words.keys()))
tags = words.keys () [:N]

for tag in tags:
print tag, ':', words[tag]

Copy and paste the output into the Wordle web page and generate the following
word cloud:
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If we analyze the word cloud, it may occur to us that the result is far from
perfect, so we may want to try something better. For instance, we can try
to do the following things:

* Filter more: We should get rid of words that contain numeric characters
and names. NLTK has a names corpus we can use. Also, words that only
occur once in the whole corpus are good to ignore, since they probably
don't add enough information value.

* Use a better metric: The term frequency-inverse document frequency
(tf-idf) seems a good candidate.
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The tf-idf metric can give us ranking weights for words in our corpus. Its value

is proportional to the number of occurrences of a word (corresponds to term
frequency) in a particular document. However, it's also inversely proportional to the
number of documents in the corpus (corresponds to inverse document frequency),
where the word occurs. The tf-idf value is the product of term frequency and inverse
document frequency. If we need to implement tf-idf ourselves, we have to consider
logarithmic scaling as well. Luckily, we don't have to concern ourselves with the
implementation details, since scikit-learn has a TfidfVectorizer class with an
efficient implementation. This class produces a sparse SciPy matrix. This is a term-
document matrix with tf-idf values for each combination of available words and
documents. So, for a corpus with 2,000 documents and 25,000 unique words, we get
a 2,000 x 25,000 matrix. A lot of the matrix values will be zero, which is where the
sparseness comes in handy. The final rank weights can be found by summing all

the tf-idf values for each word.

Improve filtering by using the isalpha () method and names corpus:

all names = set([name.lower () for name in names.words()])

def isStopWord (word) :

return (word in sw or word in punctuation) or not
word.isalpha() or word in all names

We will again create a NLTK FregDist to be able to ignore words that occur
only once. The TfidfVectorizer class needs a list of strings representing
each document in the corpus.

Create the list as follows:

for fid in movie reviews.fileids():

texts.append (" ".join([w.lower() for w in movie reviews.words (fid)
if not isStopWord(w.lower()) and words([w.lower()] > 1]))

Create the vectorizer; to be safe, let it ignore stopwords:
vectorizer = TfidfVectorizer (stop words='english')
Create the sparse term-document matrix:
matrix = vectorizer.fit transform(texts)
Sum the tf-idf values for each word and store it in a NumPy array:

sums = np.array(matrix.sum(axis=0)) .ravel ()
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Now, create a pandas DataFrame with the word rank weights and sort it:

(1

ranks

sums) :

for word, val in itertools.izip(vectorizer.get feature names(),

ranks.append ( (word, val))

"tfidf"])

= ["term" ,

columns

pd.DataFrame (ranks,

df

df .sort (['tfidf'])

print df.head()

df

The lowest ranking values are printed as follows and can be considered for filtering:

tfidf

term
8742
2793
2408
19977
14022

0.03035
0.03035
0.03035
0.03035
0.03035

greys

cannibalize

briefer

superintendent

ology

Now, it's a matter of printing the top ranking words and presenting them to Wordle

in order to create the following cloud:
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Unfortunately, you have to run the code yourself to see the difference in color with
the previous word cloud. The tf-idf metric allows for more variation than the mere
word frequency, so we get more varied colors. Also, the words in the cloud seem
more relevant. Refer to cloud2 . py file in this book's code bundle:

from nltk.corpus import movie reviews

from nltk.corpus import stopwords

from nltk.corpus import names

from nltk import FregDist

from sklearn.feature_extraction.text import TfidfVectorizer
import itertools

import pandas as pd

import numpy as np

import string

sw = set (stopwords.words ('english'))
punctuation = set (string.punctuation)
all names = set([name.lower() for name in names.words()])

def isStopWord (word) :
return (word in sw or word in punctuation) or not word.isalpha ()
or word in all names

review_words = movie_reviews.words ()
filtered = [w.lower() for w in review words if not isStopWord (w.
lower ())]

words = FregDist (filtered)
texts = []
for fid in movie reviews.fileids():
texts.append (" ".join([w.lower() for w in movie reviews.words (fid)

if not isStopWord(w.lower()) and words|[w.lower ()] > 1]1))

vectorizer = TfidfVectorizer (stop words='english')

matrix = vectorizer.fit transform(texts)
sums = np.array(matrix.sum(axis=0)) .ravel ()
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ranks = []

for word, val in itertools.izip(vectorizer.get feature names(), sums):

ranks.append ( (word, val))

df = pd.DataFrame (ranks, columns=["term", "tfidf"])
daf df .sort (['tfidf'])
print df.head()

N = int (.01 * len(df))
df = df.tail(N)

for term, tfidf in itertools.izip(df["term"] .values, df["tfidf"].
values) :
print term, ":", tfidf

Social network analysis

Social network analysis studies social relations using network theory. Nodes
represent participants in a network. Lines between nodes represent relationships.
Formally, this is called a graph. Due to the constraints of this book, we will only
have a quick look at a simple graph that comes with the popular NetworkX
Python library. matplotlib will help with the visualization of the graph.

Install NetworkX with the following commands:

$ pip install networkx
$ pip freeze|grep networkx
networkx==1.9

The import convention for NetworkX is as follows:
import networkx as nx
NetworkX provides a number of sample graphs, which can be listed as follows:

print [s for s in dir(nx) if s.endswith('graph')]
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Load the Davis Southern women graph and plot a histogram of the degree
of connections:

G = nx.davis_southern women graph ()
plt.figure (1)
plt.hist (nx.degree (G) .values())

The resulting histogram is shown as follows:

Draw the graph with node labels as follows:

plt.figure(2)

pos = nx.spring layout (G)
nx.draw (G, node size=9)
nx.draw_networkx labels(G, pos)
plt.show ()
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We get the following graph:

Charlotte McDoEvdd

E3
Brenda Rag

El E5
E\.'erTr|11 Ferﬁsé?'s%ﬂ

HelendbiMedina Rogers
Myra Liddel

E13
E10

This was a short example, but it should be enough to give you a taste of what is
possible. We can use NetworkX to explore, visualize, and analyze social media
networks such as Twitter, Facebook, and LinkedIn. The subject matter doesn't
even have to be a social network, it can be anything that resembles a graph and
NetworkX understands.

Summary

This was a chapter about textual analysis. We learned that it's a best practice in text
analysis to get rid of stopwords.

In the bag-of-words model, we created from a document a bag containing words
found in the document. Using all the word counts, we can build a feature vector
for each document.

Classification algorithms are a type of machine learning algorithm, which involve
determining the class of a given item. Naive Bayes classification is a probabilistic
algorithm based on the Bayes theorem from probability theory and statistics. The
Bayes theorem states that the posterior probability is proportional to the prior
probability multiplied by the likelihood.

The next chapter will describe machine learning in more detail. Machine learning
is a research field that shows a lot of promise. One day, it may even replace human
labor completely. We will explore what we can do with scikit-learn, the Python
machine learning package, using weather data as an example.
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Predictive Analytics and
Machine Learning

Predictive analytics and machine learning are hot, new research fields. They are
new compared to other fields and, without a doubt, we can expect a lot of rapid
growth. It is even predicted that machine learning will accelerate so fast that within
mere decades human labor will be replaced by intelligent machines (see http://
en.wikipedia.org/wiki/Technological singularity). The current state of art is
far from that utopia. A lot of computing power and data is still needed to make even
simple decisions, such as determining whether pictures on the Internet contain dogs
or cats. Predictive analytics uses a variety of techniques, including machine learning
to make useful predictions, for instance, to determine whether a customer can repay
his or her loans or identify female customers who are pregnant (see http: //www.
forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-
teen-girl-was-pregnant-before-her-father-did/).

To make these predictions, features are extracted from huge volumes of data.

We mentioned features before — they are also called predictors. Features are input
variables that can be used to make predictions. In essence, we have features found

in our data and we are looking for a function that maps the features to a target,
which may or may not be known. Finding the appropriate function can be hard;
often, different algorithms and models are grouped together in so called ensembles.
The output of an ensemble can be a majority vote or an average of a group of models,
but we can also use a more advanced algorithm to produce the final result. We will
not be using ensembles in this chapter, but it is something to keep in mind.
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In the previous chapter, we got a taste of machine learning algorithms — the
Naive Bayes classification algorithm. We can divide machine learning into the

following categories:

We will use weather prediction as a running example. In this chapter, we will
mostly use the Python scikit-learn library. This library has clustering, regression,
and classification algorithms. However, some machine learning algorithms are not
covered by scikit-learn so, for those, we will be using other APIs. The topics of this

Supervised learning: This requires us to label training data. For instance,
if we want to classify spam, we need to provide examples of spam and

normal e-mail messages.

Unsupervised learning: This doesn't require human input. This type of
learning can discover patterns such as clusters in large datasets.

Reinforcement learning: This is learning without a tutor, but with some sort
of feedback. For example, a computer can play chess against itself or if you
remember the War Games movie from 1983 (see http://en.wikipedia.org/
wiki/WarGames), think of tic-tac-toe and thermonuclear warfare.

chapter are as follows:

A tour of scikit-learn

Preprocessing

Classification with logistic regression
Classification with support vector machines
Regression with ElasticNetCV

Support vector regression

Clustering with affinity propagation

Mean Shift

Genetic algorithms

Neural networks

Decision trees
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A tour of scikit-learn

In the previous chapter, Chapter 9, Analyzing Textual Data and Social Media,
we installed scikit-learn. With the pkg_check.py file in this book's code bundle,
we can print the following scikit-learn module descriptions:

sklearn version 0.15.0

sklearn. check build DESCRIPTION Module to give helpful messages to the
user that did not compile the scikit properly. PACKAGE CONTENTS check
build setup FUNCTI

sklearn.cluster DESCRIPTION The :mod: sklearn.cluster” module gathers
popular unsupervised clustering algorithms. PACKAGE CONTENTS feature
agglomeration h

sklearn.covariance DESCRIPTION The :mod: sklearn.covariance™ module
includes methods and algorithms to robustly estimate the covariance of
features given a set

sklearn.cross_ decomposition

sklearn.datasets DESCRIPTION The :mod: sklearn.datasets™ module includes
utilities to load datasets, including methods to load and fetch popular
reference da

sklearn.decomposition DESCRIPTION The :mod:  sklearn.decomposition™ module
includes matrix decomposition algorithms, including among others PCA, NMF
or ICA. Most o

sklearn.ensemble DESCRIPTION The :mod: sklearn.ensemble” module includes
ensemble-based methods for classification and regression. PACKAGE
CONTENTS _gradient

sklearn.externals

sklearn.feature_ extraction DESCRIPTION The :mod: sklearn.feature_
extraction™ module deals with feature extraction from raw data. It
currently includes methods to extra

sklearn.feature_ selection DESCRIPTION The :mod: sklearn.feature
selection™ module implements feature selection algorithms. It currently
includes univariate filter sel

sklearn.gaussian process DESCRIPTION The :mod: sklearn.gaussian process”
module implements scalar Gaussian Process based predictions. PACKAGE
CONTENTS correlation mo

sklearn.linear model DESCRIPTION The :mod: sklearn.linear model” module
implements generalized linear models. It includes Ridge regression,
Bayesian Regression,

sklearn.manifold

sklearn.metrics DESCRIPTION The :mod: sklearn.metrics”™ module includes
score functions, performance metrics and pairwise metrics and distance
computations.

sklearn.mixture

sklearn.neighbors DESCRIPTION The :mod: sklearn.neighbors™ module
implements the k-nearest neighbors algorithm. PACKAGE CONTENTS ball tree
base classification

[235]

www.it-ebooks.info


http://www.it-ebooks.info/

Predictive Analytics and Machine Learning

sklearn.neural network DESCRIPTION The :mod: sklearn.neural network™
module includes models based on neural networks. PACKAGE CONTENTS rbm
CLASSES sklearn.base.Bas

sklearn.preprocessing DESCRIPTION The :mod: sklearn.preprocessing ™ module
includes scaling, centering, normalization, binarization and imputation
methods. PACKAGE

sklearn.semi_ supervised DESCRIPTION The :mod: sklearn.semi supervised~
module implements semi-supervised learning algorithms. These algorithms
utilized small amount

sklearn.svm

sklearn.tests

sklearn.tree DESCRIPTION The :mod: sklearn.tree~ module includes decision
tree-based models for classification and regression. PACKAGE CONTENTS
_tree _ut

sklearn.utils

The neural networks module is not very well supported at this moment, so it is
recommended to use another library for neural networks. Note that there is a
preprocessing module, which is the topic of the next section.

Preprocessing

In the previous chapter, we did a form of data preprocessing by filtering out
stopwords. Some machine learning algorithms have trouble with data that is

not distributed as a Gaussian with a mean of 0 and variance of 1. The sklearn.
preprocessing module takes care of this issue. We will be demonstrating it in this
section. We will preprocess the meteorological data from the Dutch KNMI institute
(original data for De Bilt weather station from http://www.knmi.nl/climatology/
daily data/datafiles3/260/etmgeg_260.zip). The data is just one column of
the original datafile and contains daily rainfall values. It is stored in the .npy format
discussed in Chapter 5, Retrieving, Processing, and Storing Data. We can load the data
into a NumPy array. The values are integers that we have to multiply by 0.1 to get
the daily precipitation amounts in mm.

The data has the somewhat quirky feature that values below 0.05 mm are quoted

as -1. We will set those values equal to 0.025 (0.05 divided by 2). Values are missing
for some days in the original data. We will completely ignore the missing data. We
can do that because we have a lot of data points as it is. Data is missing for about a
year at the beginning of the century and for a couple of days later in the century. The
preprocessing module has an Imputer class with default strategies to deal with
missing values. Those strategies, however, seem inappropriate in this case. Data
analysis is about looking through data as if it is a window —window to knowledge.
Data cleaning and imputing are activities that can make our window nicer to look at.
However, we should be careful not to distort the original data too much.
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The main feature for the machine learning examples will be an array of day-of-the-year
values (1 to 366). This should help explain any seasonal effects.

The mean, variance, and output from the Anderson-Darling test (see Chapter 3,
Statistics and Linear Algebra) are printed as follows:

Rain mean 2.17919594267
Rain variance 18.803443919

Anderson rain (inf, array([ 0.576, 0.656, 0.787, 0.918, 1.092]),
array([ 15. , 10. , 5. , 2.5, 1. 1))

We can safely conclude that the data doesn't have a 0 mean and variance of 1,
and it does not conform to a normal distribution. The data has a large percentage
of 0 values corresponding to days on which it didn't rain. Large amounts of rain
are increasingly rare (which is a good thing). However, the data distribution is
completely asymmetric and therefore not Gaussian. We can easily arrange for

a 0 mean and variance of 1. Scale the data with the scale () function:

scaled = preprocessing.scale(rain)

We now get the required values for the mean and variance, but the data distribution
remains asymmetric:

Scaled mean 3.41301602808e-17
Scaled variance 1.0

Anderson scaled (inf, array([ 0.576, 0.656, 0.787, 0.918,
1.092]1), array([ 15. , 10. , 5. , 2.5, 1. 1))

Sometimes, we want to convert numerical feature values into Boolean values. This is
often used in text analysis in order to simplify computation. Perform the conversion
with the binarize () function:

binarized = preprocessing.binarize (rain)
print np.unique (binarized), binarized.sum()

By default, a new array is created; we could have also chosen to perform the
operation in-place. The default threshold is at zero, meaning that positive
values are replaced by 1 and negative values by 0:

[ 0. 1.] 2459%4.0

The LabelBinarizer class can label integers as classes (in the context of classification):

1lb = preprocessing.LabelBinarizer ()
1b.fit (rain.astype (int))
print lb.classes
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The output is a list of integers from 0 to 62. Refer to the preproc. py file in this book's
code bundle:

import numpy as np
from sklearn import preprocessing
from scipy.stats import anderson

rain = np.load('rain.npy')

rain = .1 * rain

rain[rain < 0] = .05/2

print "Rain mean", rain.mean ()

print "Rain variance", rain.var ()
print "Anderson rain", anderson (rain)

scaled = preprocessing.scale (rain)

print "Scaled mean", scaled.mean ()

print "Scaled variance", scaled.var ()
print "Anderson scaled", anderson(scaled)

binarized = preprocessing.binarize (rain)

print np.unique (binarized), binarized.sum()

lb = preprocessing.LabelBinarizer ()
lb.fit (rain.astype (int))
print lb.classes

Classification with logistic regression

Logistic regression is a type of a classification algorithm (see http://en.wikipedia.
org/wiki/Logistic_regression). This algorithm can be used to predict probabilities
associated with a class or an event occurring. A classification problem with multiple
classes can be reduced to a binary classification problem. In this simplest case, a high
probability for one class, means a low probability for another class. Logistic regression
is based on the logistic function, which has values in the range between 0 and 1 —just
like for probabilities. The logistic function can therefore be used to transform arbitrary
values into probabilities.

We can define a function that performs classification with logistic regression.
Create a classifier object as follows:

clf = LogisticRegression(random state=12)

[238]

www.it-ebooks.info


http://en.wikipedia.org/wiki/Logistic_regression
http://en.wikipedia.org/wiki/Logistic_regression
http://www.it-ebooks.info/

Chapter 10

The random_state parameter acts like a seed for a pseudorandom generator.

We touched upon the importance of cross-validation earlier in this book as a technique
to avoid overfitting. The k-fold cross-validation is a form of cross-validation involving
k (a small integer number) random data partitions called folds. In k iterations, each fold
is used once for validation and the rest of the data is used for training. The classes in
scikit-learn have a default k value of 3, but typically we may want to set it to a higher
value such as 5 or 10. The results of the iterations can be combined at the end. The
scikit-learn has a utility KFold class for k-fold cross-validation. Create a KFold object
with 10 folds as follows:

kf = KFold(len(y), n_folds=10)
Train the data with the £it () method, as follows:

clf.fit(x[train], yltrainl])

The score () method measures classification accuracy:

scores.append (clf.score(x[test], yl[test]))

In this example, we will use the day-of-the-year and previous day rain amount as
features. Construct an array with features, as follows:

x = np.vstack((dates[:-1], rain[:-11))

As classes, define first rainless days with 0 amount of rain; second, low amount of
rain corresponding to -1 in our data and third, rainy days. These three classes can
be linked to the sign of values in our data:

y = np.sign(rain[1l:])

Using this setup, we get an average accuracy of 57 percent. For the scikit-learn sample
iris dataset, we get an average accuracy of 41 percent (refer to log_regress.py file in
this book's code bundle):

from sklearn.linear model import LogisticRegression
from sklearn.cross validation import KFold

from sklearn import datasets

import numpy as np

def classify(x, vy):
clf = LogisticRegression(random state=12)
scores = []
kf = KFold(len(y), n_ folds=10)
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for train,test in kf:
clf.fit(x[train], yltrainl])
scores.append (clf.score(x[test], yltest]))

print np.mean(scores)

rain = np.load('rain.npy')
dates = np.load('doy.npy')

b'4 np.vstack((dates[:-1], rain[:-11))

Y
classify(x.T, y)

np.sign(rain(1:])

#iris example

iris = datasets.load iris()
x = iris.datal:, :2]

y = iris.target

classify(x, vy)

Classification with support vector
machines

Support vector machines (SVM) can be used for regression — support vector
regression (SVR) —and classification (SVC). The algorithm was invented by Vladimir
Vapnik in 1993 (see http://en.wikipedia.org/wiki/Support_vector_machine).
SVM maps data points to points in multidimensional space. The mapping is performed
by a so-called kernel function. The kernel function can be linear or nonlinear. The
classification problem is then reduced to finding a hyperplane or hyperplanes that
best separate the points into classes. It can be hard to perform the separation with
hyperplanes, which lead to the emergence of the concept of soft margin. The soft
margin measures the tolerance for misclassification and is governed by a constant
commonly denoted with C. Another important parameter is the type of the kernel
function, which can be:

e A linear function
* A polynomial function
e A radial basis function

* A sigmoid function
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A grid search can find the proper parameters for a problem. This is a systematic
method that tries all possible parameter combinations. We will perform a grid search
with the scikit-learn Gridsearchcv class. We give this class a classifier or regressor
type object with a dictionary. The keys of the dictionary are parameters we want to
tweak. The values of the dictionary are the corresponding lists of parameter values to
try. The scikit-learn API has a number of classes that add cross-validation functionality
to a counterpart class. Cross-validation is turned off by default. Create a Gridsearchcv
object as follows:

clf = GridSearchCV (SVC(random state=42, max iter=100), {'kernel':
['linear', 'poly', 'rbf']l, 'C':[1, 10]H

In this line, we specified the number of maximum iterations to not test our patience
too much. Cross-validation was turned off also to speed up the process. Furthermore,
we varied the types of kernels and the soft margin parameter.

The preceding code snippet created a grid of two by three for the possible parameter
variations. If we had more time, we could have created a bigger grid with more
possible values. We would also set the cv parameter of GridsearchCv to the number
of folds we want, such as 5 or 10. The maximum iterations should be set to a higher
value as well. The different kernels can vary wildly in time required to fit. We can
print more information such as execution time for each combination of parameter
values with the verbose parameter set to a non-zero integer value. Typically, we
want to vary the soft-margin parameter by orders of magnitude, for instance,

from 1 to 10,000. We can achieve this with the NumPy logspace () function.

Applying this classifier, we obtain an accuracy of 56 percent for the weather data
and an accuracy of 82 percent for the iris sample dataset. The grid_scores_ field of
GridSearchCV contains scores resulting from the grid search. For the weather data,
the scores are as follows:

[mean: 0.42879, std: 0.11308, params: {'kernel': 'linear', 'C': 1},
mean: 0.55570, std: 0.00559, params: {'kernel': 'poly', 'C': 1},
mean: 0.36939, std: 0.00169, params: {'kernel': 'rbf', 'C': 1},
mean: 0.30658, std: 0.03034, params: {'kernel': 'linear', 'C': 10},
mean: 0.41673, std: 0.20214, params: {'kernel': 'poly', 'C': 10},
mean: 0.49195, std: 0.08911, params: {'kernel': 'rbf', 'C': 10}]

For the iris sample data, we get the following scores:

[mean: 0.80000, std: 0.03949, params: {'kernel': 'linear', 'C': 1},

mean: 0.58667, std: 0.12603, params: {'kernel': 'poly', 'C': 1},

mean: 0.80000, std: 0.03254, params: {'kernel': 'rbf', 'C': 1},

mean: 0.74667, std: 0.07391, params: {'kernel': 'linear', 'C': 10},

mean: 0.56667, std: 0.13132, params: {'kernel': 'poly', 'C': 10},

mean: 0.79333, std: 0.03467, params: {'kernel': 'rbf', 'C': 10}]
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Refer to the svm_class.py file in this book's code bundle:

from sklearn.svm import SVC

from sklearn.grid search import GridSearchCVv
from sklearn import datasets

import numpy as np

from pprint import PrettyPrinter

def classify(x, vy):
clf = GridSearchCV (SVC(random state=42, max iter=100), {'kernel':
['linear', 'poly', 'rbf']l, 'C':[1, 10]})

clf.fit(x, vy)
print "Score", clf.score(x, V)
PrettyPrinter () .pprint (clf.grid scores )

rain = np.load('rain.npy')
dates = np.load('doy.npy')

X = np.vstack((dates[:-1], rain[:-11))
y np.sign(rainfl:])
classify(x.T, vy)

#iris example

iris = datasets.load iris()
X = iris.datal[:, :2]

y = iris.target

classify(x, vy)

Regression with ElasticNetCV

Elastic net regularization is a method that reduces the danger of overfitting in

the context of regression (see http://en.wikipedia.org/wiki/Elastic_net_
regularization). The elastic net regularization combines linearly the least absolute
shrinkage and selection operator (LASSO) and ridge methods. LASSO limits the
so-called L1 norm or Manhattan distance. This norm measures for a points pair the sum
of absolute coordinates differences. The ridge method uses a penalty, which is the L1
norm squared. For regression problems, the goodness-of-fit is often determined with
the coefficient of determination also called R squared (see http://en.wikipedia.
org/wiki/Coefficient of_ determination). Unfortunately, there are several
definitions of R squared. Also, the name is a bit misleading, since negative values

are possible. A perfect fit would have a coefficient of determination of one. Since the
definitions allow for a wide range of acceptable values, we should aim for a score that
is as close to one as possible.
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Let's use a 10-fold cross-validation. Define an ElasticNetCV object, as follows:

clf = ElasticNetCV(max iter=200, cv=10, 11 ratio = [.1, .5, .7,
.9, .95, .99, 11)

The ElasticNetcCV class has an 11_ratio argument with values between 0 and 1.
If the value is 0, we have only ridge regression; if it is one, we have only LASSO
regression. Otherwise, we have a mixture. We can either specify a single number
or a list of numbers to choose from. For the rain data, we get the following score:

Score 0.0527838760942

This score suggests that we are underfitting the data. This can occur for several
reasons, such as we are not using enough features or the model is wrong. For the
Boston house price data, with all the present features we get:

Score 0.683143903455

The predict () method gives prediction for new data. We will visualize the quality
of the predictions with a scatter plot. For the rain data, we obtain the following plot:

18 Scatter plot of prediction and rain data

Target

70

Prediction
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The plot in the previous figure confirms that we have a bad fit (underfitting).
A straight diagonal line through the origin would indicate a perfect fit. That's
almost what we get for the Boston house price data:

60 Scatter plot of prediction and Boston house prices
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Refer to the encv. py file in this book's code bundle:

from sklearn.linear model import ElasticNetCV
import numpy as np

from sklearn import datasets

import matplotlib.pyplot as plt

def regress(x, y, title):
clf = ElasticNetCV(max iter=200, cv=10, 11 ratio = [.1, .5,
.7, .9, .95, .99, 11)

clf.fit(x, y)
print "Score", clf.score(x, y)

pred = clf.predict (x)

plt.title("Scatter plot of prediction and " + title)
plt.xlabel ("Prediction")

plt.ylabel ("Target")

plt.scatter (y, pred)
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# Show perfect fit line

if "Boston" in title:
plt.plot(y, y, label="Perfect Fit")
plt.legend()

plt.grid(True)

plt.show ()
rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2

dates = np.load('doy.npy')

X

Yy
regress (x.T, y, "rain data")

np.vstack((dates[:-1], rain[:-11))

rain[l:]

boston = datasets.load boston()

x = boston.data

y = boston.target

regress(x, y, "Boston house prices")

Support vector regression

As mentioned before, support vector machines can be used for regression. In the
case of regression, we are using a hyperplane not to separate points, but for a fit.
A learning curve is a way to visualize the behavior of a learning algorithm. It is a
plot of training and test scores for a range of train data sizes. Creating a learning
curve forces us to train the estimator multiple times and is therefore on aggregate
slow. We can compensate for this by creating multiple concurrent estimator jobs.
Support vector regression is one of the algorithms that may require scaling.

We get the following top scores:

Max test score Rain 0.0161004084576
Max test score Boston 0.662188537037

This is similar to the results obtained with the ElasticNetcv class. Many scikit-learn
classes have an n_jobs parameter for that purpose. As a rule of thumb, we often create
as many jobs as there are CPUs in our system. The jobs are created using the standard
Python multiprocessing API. Call the 1earning_curve () function to perform training
and testing:

train sizes, train scores, test scores = learning curve(clf, X, Y,
n_jobs=ncpus)
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Plot scores by averaging them:

plt.plot (train sizes, train scores.mean(axis=1), label="Train
score")

plt.plot (train sizes, test scores.mean(axis=1l), '--', label="Test
score")

The rain data learning curve looks like this:

Rain
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A learning curve is something we are familiar with in our daily lives. The more
experience we have, the more we should have learned. In data analysis terms, we
should have a better score if we add more data. If we have a good training score,
but a poor test score, this means that we are overfitting. Our model only works on
the training data. The Boston house price data learning curve looks much better:
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The code is in the sv_regress.py file in this book's code bundle:
import numpy as np
from sklearn import datasets
from sklearn.learning curve import learning curve
from sklearn.svm import SVR
from sklearn import preprocessing

import multiprocessing
import matplotlib.pyplot as plt

def regress(x, y, ncpus, title):

X
Y
clf = SVR(max_iter=ncpus * 200)

= preprocessing.scale (x)

= preprocessing.scale(y)

X, Y, n_jobs=ncpus)

plt.figure ()
plt.title(title)

train sizes, train scores, test scores = learning curve(clf,
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plt.plot (train sizes, train scores.mean(axis=1), label="Train
score")

plt.plot (train sizes, test scores.mean(axis=1), '--',
label="Test score")

print "Max test score " + title, test scores.max()

plt.grid(True)

plt.legend(loc="'best"')

plt.show ()
rain = .1 * np.load('rain.npy')
rain([rain < 0] = .05/2

dates = np.load('doy.npy')

x = np.vstack((dates[:-1], rain[:-11))
y = rain[l:]

ncpus = multiprocessing.cpu count ()
regress (x.T, y, ncpus, "Rain")

boston = datasets.load boston()
x = boston.data

y = boston.target

regress (x, y, ncpus, "Boston")

Clustering with affinity propagation

Clustering aims to partition data into groups called clusters. Clustering is usually
unsupervised in the sense that no examples are given. Some clustering algorithms
require a guess for the number of clusters, while other algorithms don't. Affinity
propagation falls in the latter category. Each item in a dataset can be mapped into
Euclidean space using feature values. Affinity propagation depends on a matrix
containing Euclidean distances between data points. Since the matrix can quickly
become quite large, we should be careful not to take up too much memory. The
scikit-learn library has utilities to generate structured data. Create three data blobs,
as follows:

x, _ = datasets.make_blobs(n_samples=100, centers=3, n_features=2,
random_state=10)

Call the euclidean distances () function to create the aforementioned matrix:
S = euclidean distances (x)
Cluster using the matrix in order to label the data with the corresponding cluster:

aff pro = cluster.AffinityPropagation() .fit (S)
labels = aff pro.labels_
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If we plot the cluster, we get the following figure:
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Refer to the aff prop.py file in this book's code bundle:

from sklearn import datasets

from sklearn import cluster

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import euclidean distances

X, _ = datasets.make blobs(n samples=100, centers=3, n features=2,
random state=10)
S = euclidean distances (x)

aff pro = cluster.AffinityPropagation() .fit(S)
labels = aff pro.labels

styles = ['o', 'x', '"']
for style, label in zip(styles, np.unique (labels)):

print label
plt.plot (x[labels == label], style, label=label)
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plt.title("Clustering Blobs")
plt.grid(True)
plt.legend(loc="'best"')
plt.show ()

Mean Shift

Mean Shift is another clustering algorithm that doesn't require an estimate

for the number of clusters. It has been successfully applied to image processing.
The algorithm tries to iteratively find the maxima of a density function. Before
demonstrating mean shift, we will average the rain data on a day-of-the-year basis
using a pandas DataFrame. Create the DataFrame and average its data as follows:

df = pd.DataFrame.from records (x.T, columns=['dates',6 'rain'l])
df = df.groupby('dates') .mean()

df .plot ()

The following plot is the result:
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Cluster the data with the mean shift algorithm as follows:

x = np.vstack((np.arange (1, len(df) + 1) ,
df .as_matrix() .ravel()))
x =x.T
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ms = cluster.MeanShift ()
ms.fit (x)
labels = ms.predict (x)

If we visualize the data with different line widths and shading for the three resulting

clusters, the following figure is obtained:

o 50 100 150 200 250 300 350

400

As you can see, we have three clusters based on the average rainfall in mm on the
day of year (1-366). The complete code is in the mean_shift.py file in this book's

code bundle:

import numpy as np

from sklearn import cluster
import matplotlib.pyplot as plt
import pandas as pd

rain = .1 * np.load('rain.npy')

rain[rain < 0] = .05/2

dates = np.load('doy.npy')

x = np.vstack((dates, rain))

df = pd.DataFrame.from records (x.T, columns=['dates'
df = df.groupby('dates') .mean()

, 'rain'])
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df .plot ()
x = np.vstack((np.arange (1, len(df) + 1) ,
df.as_matrix() .ravel()))

x =x.T
ms = cluster.MeanShift ()
ms.fit (x)

labels = ms.predict (x)

plt.figure ()
grays = ['0', '0.5', '0.75']

for gray, label in zip(grays, np.unique(labels)):

match = labels == label
x0 = x[:, 0]
x1 = x[:, 1]

plt.plot (x0[match], x1[match], lw=label+l, label=label)
plt.fill between(x0, x1, where=match, color=gray)

plt.grid(True)
plt.legend ()
plt.show ()

Genetic algorithms

This is the most controversial section in the book so far. Genetic algorithms are
based on the biological theory of evolution (see http://en.wikipedia.org/
wiki/Evolutionary_algorithm). This type of algorithm is useful for searching
and optimization. For instance, we can use it to find the optimal parameters for a
regression or classification problem.

Humans and other life forms on Earth carry genetic information in chromosomes.
Chromosomes are frequently modeled as strings. A similar representation is used

in genetic algorithms. The first step is to initialize the population with random
individuals and related representation of genetic information. We can also initialize
with already-known candidate solutions for the problem. After that, we go through
many iterations called generations. During each generation, individuals are selected
for mating based on a predefined fitness function. The fitness function evaluates
how close an individual is to the desired solution.
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Two genetic operators generate new genetic information:

* Crossover: This occurs via mating and creates new children. We will explain

one-point crossover here. This process takes a piece of genetic information
from one parent and a complementary piece from the other parent. For
example, if the information is represented by 100 list elements, crossover
may take the first 80 element of the first parent and the last 20 from the
other parent. It is possible in genetic algorithms to produce children from
more than two parents. This is an area under research (refer to Eiben, A.
E. et al. Genetic algorithms with multi-parent recombination, Proceedings of the
International Conference on Evolutionary Computation — PPSN III. The Third
Conference on Parallel Problem Solving from Nature: 78-87. ISBN 3-540-
58484-6, 1994).

* Mutation: This is controlled by a fixed mutation rate. This concept is
explained in several Hollywood movies and popular culture. Mutation
is rare and often detrimental or even fatal. However, sometimes mutants
can acquire desirable traits. In certain cases, the trait can be passed on to
future generations.

Eventually, the new individuals replace the old population and we can start a
new iteration. In this example, we will use the Python DEAP library. Install DEAP
as follows:

$ sudo pip install deap
$ pip freeze|grep deap
deap==1.0.1

Start by defining a Fitness subclass that maximizes fitness:

creator.create ("FitnessMax", base.Fitness, weights=(1.0,))

Then, define a template for each individual in the population:

creator.create("Individual", array.array, typecode='d',
fitness=creator.FitnessMax)

DEAP has the concept of a toolbox, which is a registry of necessary functions.
Create a toolbox and register the initialization functions, as follows:

toolbox = base.Toolbox ()
toolbox.register ("attr float", random.random)
toolbox.register ("individual", tools.initRepeat,
creator.Individual, toolbox.attr float, 200)
toolbox.register ("populate", tools.initRepeat, list,
toolbox.individual)
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The first function generates floating-point numbers between 0 and 1. The second
function creates an individual with a list of 200 floating point numbers. The third
function creates a list of individuals. This list represents the population of possible
solutions for a search or optimization problem.

In a society, we want "normal" individuals, but also people like Einstein. In Chapter 3,
Statistics and Linear Algebra, we were introduced to the shapiro () function, which
performs a normality test. For an individual to be normal, we require that the
normality test p-value of his or her list to be as high as possible. The following

code defines the fitness function:

def eval (individual) :
return shapiro(individual) [1],

Let's define the genetic operators:

toolbox.register ("evaluate", eval)

"mate", tools.cxTwoPoint)

"mutate", tools.mutFlipBit, indpb=0.1)
toolbox.register ("select", tools.selTournament, tournsize=4)

toolbox.register
toolbox.register

(
(
(
(

The following list will give you an explanation about the preceding genetic operators:

* evaluate: This operator measures the fitness of each individual. In this
example, the p-value of a normality test is used as a fitness score.

* mate: This operator produces children. In this example, it uses
two-point crossover.

* mutate: This operator changes an individual at random. For a list of
Boolean values, this means that some values are flipped from True to
False and vice versa.

* select: This operator selects the individuals that are allowed to mate.

In the preceding code snippet, we specified that we are going to use two-point
crossover and the probability of an attribute to be flipped. Generate 400 individuals
as the initial population:

pop = toolbox.populate (n=400)
Now start the evolution process, as follows:

hof = tools.HallOfFame (1)
stats = tools.Statistics (key=lambda ind: ind.fitness.values)
stats.register ("max", np.max)

algorithms.eaSimple (pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=80,
stats=stats, halloffame=hof)
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The program reports statistics including the maximum fitness for each generation.
We specified the crossover probability, mutation rate, and maximum generations
after which to stop. The following is an extract of the displayed statistics report:

gen nevals

0 400
245

2 248

79 250

80 248

max
0.000484774
0.000776807
0.00135569

0.99826
0.99826

As you can see, we start out with distributions that are far from normal, but
eventually we get an individual with the following histogram:

45

Refer to the gen _algo.py file in this book's code bundle:

import array
import random

import numpy as np

from deap import algorithms

from deap import base
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from deap import creator

from deap import tools

from scipy.stats import shapiro
import matplotlib.pyplot as plt

creator.create ("FitnessMax", base.Fitness, weights=(1.0,))

creator.create("Individual", array.array, typecode='d',
fitness=creator.FitnessMax)

toolbox = base.Toolbox ()
toolbox.register ("attr float", random.random)

toolbox.register ("individual", tools.initRepeat,
creator.Individual, toolbox.attr float, 200)

toolbox.register ("populate", tools.initRepeat, list,
toolbox.individual)

def eval (individual) :
return shapiro(individual) [1],

toolbox.register ("evaluate", eval)

"mate", tools.cxTwoPoint)

"mutate", tools.mutFlipBit, indpb=0.1)
toolbox.register ("select", tools.selTournament, tournsize=4)

toolbox.register
toolbox.register

(
(
(
(

random. seed (42)

pop = toolbox.populate (n=400)

hof = tools.HallOfFame (1)

stats = tools.Statistics (key=lambda ind: ind.fitness.values)
stats.register ("max", np.max)

algorithms.eaSimple (pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=80,
stats=stats, halloffame=hof)

print shapiro (hof [0]) [1]
plt.hist (hof[0])
plt.grid(True)
plt.show ()
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Neural networks

Artificial Neural Networks (ANN) are models inspired by the animal brain (highly
evolved animals). A neural network is a network of neurons —units with inputs and
outputs. For example, the input can be a value related to the pixel of an image and
the output of a neuron can be passed to another neuron and so on, thus creating a
multilayered network. Neural networks contain adaptive elements making them
suitable to deal with nonlinear models and pattern recognition problems. We will
again try to predict whether it is going to rain based on day-of-the-year and previous
day values. Let's use the theanets Python library, which can be installed as follows:

$ sudo pip install theanets
$ pip freeze|grep theanets
theanets==0.2.0

One of the technical reviewers encountered an error, which was resolved by
updating NumPy and SciPy. We first create an Experiment corresponding to
a neural network and then train the network. Create a network with two input
neurons and one output neuron:

e = theanets.Experiment (theanets.Regressor,
layers=(2, 3, 1),
learning rate=0.1,
momentum=0.5,
patience=300,
train batches=multiprocessing.cpu count (),
num_updates=500)

The network has a hidden layer with three neurons and uses the standard
Python multiprocessing API to speed up computations. Train using a training
and validation dataset:

train = [x[:N], y[:N]]
valid = [x[N:], y[N:]]
e.run(train, wvalid)

Get predictions for the validation data, as follows:
pred = e.network (x[N:]) .ravel()

The scikit-learn library has a utility function, which computes the accuracy of a
classifier. Compute the accuracy as follows:

print "Pred Min", pred.min(), "Max", pred.max()

print "Y Min", y.min(), "Max", y.max()

print "Accuracy", accuracy score(y[N:], pred >= .5)
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Due to the nature of neural nets, the output values can vary. The output may look
like the following;:

Pred Min 0.303503170562 Max 0.737862165479
Y Min 0.0 Max 1.0
Accuracy 0.632345426673

Refer to the neural net.py file in this book's code bundle:

import numpy as np

import theanets

import multiprocessing

from sklearn import datasets

from sklearn.metrics import accuracy score

rain = .1 * np.load('rain.npy')
rain[rain < 0] = .05/2
dates = np.load('doy.npy')

x = np.vstack((dates[:-1], np.sign(rain[:-11)))

x =x.T

y = np.vstack(np.sign(rain([1:]),)

N = int (.9 * len(x))

e = theanets.Experiment (theanets.Regressor,
layers=(2, 3, 1),
learning rate=0.1,
momentum=0.5,
patience=300,
train batches=multiprocessing.cpu count (),
num_updates=500)

train = [x[:N], y[:N]]

valid = [x[N:], yI[N:]]
e.run(train, wvalid)

pred = e.network (x[N:]) .ravel ()

print "Pred Min", pred.min(), "Max", pred.max()

print "Y Min", y.min(), "Max", y.max()

print "Accuracy", accuracy score(y[N:], pred >= .5)
[ 258 ]
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Decision trees

The if a: else b statement is one of the most common statements in Python
programming. By nesting and combining such statements, we can build a so-called
decision tree. This is similar to an old-fashioned flowchart, although flowcharts

also allow loops. The application of decision trees in machine learning is called
decision tree learning. The end nodes of the trees in decision tree learning, also
known as leaves, contain the class labels of a classification problem. Each non-leaf
node is associated with a Boolean condition involving feature values. The scikit-learn
implementation uses Gini impurity and entropy as information metrics. These metrics
measure the probability that an item is misclassified (see http://en.wikipedia.
org/wiki/Decision_tree_learning). Decision trees are easy to understand, use,
visualize, and verify. To visualize the tree, we will make use of Graphviz, which can be
downloaded from http://graphviz.org/. Also, we need to install pydot2, as follows:

$ pip install pydot2
$ pip freeze|grep pydot2
pydot 2==1.0.33

Split the rain data into a training and test set as follows, with the scikit-learn
train test split () function:

X _train, x _test, y train, y test = train test split(x, vy,
random state=37)

Create DecisionTreeClassifier as follows:
clf = tree.DecisionTreeClassifier (random state=37)

We will use the scikit-learn RandomSearchcV class to try out a range of parameters.
Use the class as follows:

params = {"max_depth": [2, None],
"min samples_leaf": sp randint (1, 5),
"criterion": ["gini", "entropy"]}
rscv = RandomizedSearchCV (clf, params)
rscv.fit (x_train,y train)

We get the following best score and parameters from the search:

Best Train Score 0.703164923517
Test Score 0.705058763413
Best params {'criterion': 'gini', 'max _depth': 2, 'min samples leaf':

2}
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It's good to visualize the decision tree even if it's only to verify our assumptions.

Create a decision tree figure with the following code:

sio =

StringIO.StringIO ()

tree.export graphviz(rscv.best estimator ,

feature names=['day-of-year',

dec_tree =

'yest'])

out file=sio,

pydot.graph from dot data(sio.getvalue())

with NamedTemporaryFile (prefix='rain', suffix='.png',
delete=False) as f:
dec_tree.write png (f.name)
print "Written figure to", f.name
Refer to the following plot for the end result:

gini =

yest <= 0.5000]
997

samples = 29353

AN

day -of-year <= 253.5000 day of-year <= 295 5000 Ninner
gini = 0479039839629 gini =0.301425051345
samples = 10960 samples = 18393
Leaf nades
—-""'-—.-.-
gini = 0.4692 gini =0.4971 gini = 03%3 gini =0.2993
samples = 8193 samples = 2767 samples = 14360 samples = 403
value = [ 5113. 3080.] value = 1489, 1278.] value =[ 3616. 10744.] value =[ 739.|3294.

In the non-leaf nodes, we see conditions printed as the top line. If the condition is
true, we go to the left child; otherwise, we go to the right. When we reach a leaf node,
the class with highest value, as given in the bottom line, wins. Inspect the dec_tree.

py file in this book's code bundle:

from
from
from
from
import pydot

sklearn import tree

import StringIO

import numpy as np

sklearn.cross_validation import train test split

sklearn.grid search import RandomizedSearchCV
scipy.stats import randint as sp_ randint

from tempfile import NamedTemporaryFile

rain =

rain[rain < 0] =

.1 * np.load('rain.npy"')

.05/2
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dates = np.load('doy.npy') .astype (int)

x = np.vstack((dates[:-1], np.sign(rain[:-11)))
x =x.T
y = np.sign(rainfl:])

X _train, x _test, y train, y test = train test split(x, vy,
random state=37)

clf = tree.DecisionTreeClassifier (random state=37)
params = {"max_depth": [2, Nonel,
"min samples leaf": sp randint (1, 5),
"criterion": ["gini", "entropy"]}

rscv = RandomizedSearchCV (clf, params)
rscv.fit(x train,y train)

sio = StringIO.StringIO()

tree.export graphviz(rscv.best estimator , out file=sio,
feature names=['day-of-year', 'yest'])

dec tree = pydot.graph from dot data(sio.getvalue())

with NamedTemporaryFile (prefix='rain', suffix='.png',
delete=False) as f:
dec_tree.write png(f.name)

print "Written figure to", f.name
print "Best Train Score", rscv.best score
print "Test Score", rscv.score(x test, y test)
print "Best params", rscv.best params_

Summary

This chapter was devoted to predictive modeling and machine learning. These are
very large fields to cover in one chapter, so you may want to have a look at some of
the books mentioned in the Preface. Predictive analytics uses a variety of techniques,
including machine learning, to make useful predictions for instance to determine
whether it is going to rain tomorrow.

SVM maps the data points to points in multidimensional space. The classification
problem is then reduced to finding a hyperplane or hyperplanes that best separate
the points into classes.
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The elastic net regularization combines linearly the LASSO and ridge methods.
For regression problems, goodness-of-fit is often determined with the coefficient
of determination also called R squared. Some clustering algorithms require a
guess for the number of clusters, while other algorithms don't.

The first step in genetic algorithms is to initialize the population with random
individuals and related representation of genetic information. During each
generation, individuals are selected for mating based on a predefined fitness
function. The application of decision trees in machine learning is called
decision tree learning.

The next chapter, Chapter 11, Environments Outside the Python Ecosystem and
Cloud Computing, describes interoperability and Cloud possibilities.
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Environments Outside
the Python Ecosystem
and Cloud Computing

Outside the Python ecosystem, programming languages such as R, C, Java, and
Fortran are fairly popular. In this chapter, we will delve into the particulars of
exchanging information with these environments.

Cloud computing aims to deliver computing power as a utility over the Internet.
This means that we don't need to have a lot of powerful hardware locally. Instead,
we pay as we go—depending on our current needs. We will also talk about how to
get our Python code in the Cloud. This is a rapidly evolving industry in a fast-paced
world. We have many options available, of which we will cover Google App Engine
and PythonAnywhere. Amazon Web Services (AWS) is deliberately not discussed
in this book, since other books such as Building Machine Learning Systems with Python,
Willi Richert and Luis Pedro Coelho, Packt Publishing, mentioned in the Preface, cover the
topic in great detail. We should also be aware of the Data Science Toolbox at http://
datasciencetoolbox.org/. This is a virtual environment for data analysis based

on Linux, which can be run locally or on AWS. The instructions given on the Data
Science Toolbox website are very clear and should help you set up an environment
with lots of Python packages that we have already installed.

The topics that will be covered in this chapter are as follows:

* Exchanging information with MATLAB/Octave
* Installing rpy2
* Interfacing with R
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* Sending NumPy arrays to Java

* Integrating SWIG and NumPy

* Integrating Boost and Python

* Using Fortran code through f2py

* Setting up Google App Engine

* Running programs on PythonAnywhere
*  Working with Wakari

Exchanging information with
MATLAB/Octave

MATLAB and its open source alternative Octave are popular numerical programs
and programming languages. Octave and MATLAB have syntax very similar to
Python's. In fact, you can find websites that compare their syntax (for instance,

see http://wiki.scipy.org/NumPy for Matlab Users).

Download Octave from http://www.gnu.org/
s software/octave/download.html.

The most recent Octave version at the time of writing was 3.8.0. The scipy.
io.savemat () function saves an array in a file compliant to the Octave and
MATLAB format. The function accepts as parameters the name of the file
and a dictionary with a name for the array and the values. Refer to the
octave demo.py file in this book's code bundle:

import statsmodels.api as sm

from scipy.io import savemat

data loader = sm.datasets.sunspots.load pandas ()
df = data_loader.data
savemat ("sunspots", {"sunspots": df.values})

The preceding code stores sunspots data in a file called sunspots.mat. The extension
is added automatically. Start the Octave Graphical User Interface or command-line
interface. Load the file we created and view the data as follows:

octave:1> load sunspots.mat
octave:2> sunspots
sunspots =
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1.7000e+03 5.0000e+00
1.7010e+03 1.1000e+01
1.7020e+03 1.6000e+01

Installing rpy2

The R programming language is popular among statisticians. It is written in C and
Fortran and is available under the GNU General Public License. R has support for
modeling, statistical tests, time-series analysis, classification, visualization, and
clustering. The Comprehensive R Archive Network (CRAN) and other repository
websites offer thousands of R packages for various tasks.

[ Download R from http://www.r-project.org/. ]

The latest R version as of August 2014 was 3.1.1. The rpy2 package facilitates
interfacing with R from Python. Install rpy?2 as follows with pip:

$ pip install rpy2
$ pip freeze|grep rpy2
rpy2==2.4.2

If you already have rpy?2 installed, follow the instructions on

http://rpy.sourceforge.net/rpy2/doc-dev/html/

overview.html as upgrading is not a straightforward process.

Interfacing with R

R provides a datasets package that contains sample datasets. The morley dataset
has data from measurements of the speed of light made in 1879. The speed of light
is a fundamental physical constant and its value is currently known very precisely.
The data is described at http://stat.ethz.ch/R-manual/R-devel/library/
datasets/html/morley.html. The speed of light value can be found in the scipy.
constants module. The R data is stored in an R dataframe with three columns:

* The experiment number from one to five

* The run number with twenty runs per experiment, bringing the total
measurements to 100

* The measured speed of light in kilometers per second with 299,000 subtracted
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The rpy2.robjects.r () function executes R code in a Python environment.
Load the data as follows:

ro.r ('data(morley) ')

The pandas library provides an R interface via the pandas. rpy . common module.
Load the data into a pandas DataFrame as follows:

df = com.load data('morley')

Let's group the data by experiment with the following code, which creates a five
by two NumPy array:

samples = dict(list (df.groupby ('Expt')))
samples = np.array([samples[i] ['Speed'] .values for i in samples.
keys()1)

When we have data from different experiments, it's interesting to know whether

the data points of these experiments come from the same distribution. The Kruskal-
Wallis one-way analysis of variance (refer to http://en.wikipedia.org/wiki/
Kruskal%E2%80%93Wallis_one-way analysis of variance)is a statistical method,
which analyzes samples without making assumptions about their distributions. The
null hypothesis for this test is that all the medians of the samples are equal. The test is
implemented in the scipy.stats.kruskal () function. Perform the test as follows:

print "Kruskal", kruskal (samples[0], samples[l], samples([2],
samples[3], samples[4])

The test statistic and p-value are printed in the following line:

Kruskal (15.022124661246552, 0.0046555484175328015)

We can reject the null hypothesis, but this doesn't tell us which experiment or
experiments have a deviating median. Further analysis is left as an exercise for
the reader. If we plot the minimum, maximum, and means for each experiment,
we get the following figure:
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Check out the r demo.py file in this book's code bundle:

import pandas.rpy.common as com

import rpy2.robjects as ro

from scipy.stats import kruskal
import matplotlib.pyplot as plt
import numpy as np

from scipy.constants import c

ro.r('data (morley) ')

df = com.load data('morley"')

df ['Speed']

samples =
samples =

samples [3],

= df ['Speed'] + 299000

dict (list (df .groupby ('Expt')))
np.array ([samples[i] ['Speed'] .values for i in
samples.keys () 1)
print "Kruskal", kruskal (samples[0], samples[l], samples([2],

samples [4])

plt.title('Speed of light')
plt.plot (samples.min (axis=1), 'x', label='min')

plt.plot (samples.mean (axis=1), 'o', label='mean')

plt.plot (np.ones(5) * samples.mean(), '--

’

label='All mean')
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plt.plot (np.ones(5) * c¢/1000, lw=2, label='Actual')
plt.plot (samples.max (axis=1), 'v', label='max')
plt.grid(True)

plt.legend()

plt.show ()

Sending NumPy arrays to Java

Like Python, Java is a very popular programming language. We installed Java in
Chapter 8, Working with Databases, as a prerequisite to using Cassandra. To run Java
code, we need the Java Runtime Environment (JRE). For development, the Java
Development Kit (JDK) is required.

Jython is an implementation of Python written in Java. Jython code can use any

Java class. However, Python modules written in C cannot be imported in Jython.
This is an issue, because many numerical and data analysis Python libraries have
modules written in C. The JPype package offers a solution and can be downloaded
from http://pypi.python.org/pypi/JPypel or http://github.com/originell/
jpype. The most current JPype version at the time of writing was 0.5.5.2. Once you
have downloaded and unpacked JPype, run the following command:

$ python setup.py install

Start the Java Virtual Machine (JVM) with the following line:
jpype.startJVM (jpype.getDefaultJVMPath () )

Create a JPype array JArray with some random values:

values = np.random.randn(7)
java_array = jpype.JArray (jpype.JDouble, 1) (values.tolist())

Print each array element as follows:

for item in java_array:
jpype.java.lang.System.out.println (item)

At the end, we should shut down the JVM with the following line:
jpype . shutdownIvM ()

The following is the code listing from the java_demo. py file in this book's code bundle:
import jpype

import numpy as np
from numpy import random
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jpype.startJVM (jpype.getDefaultJVMPath () )

random. seed (44)
values = np.random.randn (7)
java_array = jpype.JArray (jpype.JDouble, 1) (values.tolist())

for item in java_array:
jpype.java.lang.System.out.println (item)

jpype . shutdowndVM ()

Integrating SWIG and NumPy

Cis a widespread programming language developed around 1970. Various C dialects
exist and C has influenced other programming languages. C is not object-oriented.
This led to the creation of C++, which is an object-oriented language with C features,
since C is a subset of C++. C and C++ are compiled languages. We need to compile
source code to create so-called object files. After that, we must link the object files to
create dynamically shared libraries.

The good thing about integrating C and Python is that a lot of options are available
to us. The first option is Simplified Wrapper and Interface Generator (SWIG).
SWIG adds an additional step in the development process, which is the generation
of glue code between Python and C (or C++). Download SWIG from http://www.
swig.org/download.html. At the time of writing, the most current SWIG version
was 3.0.2. A prerequisite to installing SWIG is to install Per]l Compatible Regular
Expressions (PCRE). PCRE is a C regular expressions library. Download PCRE from
http://www.pcre.org/. The most current PCRE version at the time of writing was
8.35. After unpacking PCRE, run the following commands:

$ ./configure
$ make
$ make install

The last command in the preceding snippet requires root or sudo access. We can
install SWIG with the same commands. We start by writing a header file containing
function definitions. Write a header file, which defines the following function:

double sum rain(int* rain, int len);
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We will use the preceding function to sum the rain amount values we analyzed in
the previous chapter. Please refer to the sum_rain.h file in this book's code bundle.
The function is implemented in the sum_rain. cpp file in this book's code bundle:

double sum_rain(int* rain, int len) {

double sum = 0.;

for (int i = 0; i < len; i++){
if (rain[i] == -1) {
sum += 0.025;
} else {

sum += 0.1 * rain([i];
}
}

return sum;

}

Define the following SWIG interface file (refer to the sum_rain. 1 file in this book's
code bundle):

$module sum rain

o°

{

#define SWIG FILE WITH INIT
#include "sum rain.h"

o°

}

$include "/tmp/numpy.i"

)

$init %{
import array () ;

o°

}
%$apply (int* IN ARRAY1, int DIM1) { (int* rain, int len)};

%include "sum rain.h"

The preceding code depends on the numpy . i interface file, which can be found at
https://github.com/numpy/numpy/blob/master/tools/swig/numpy.i. In this
example, the file was placed in the /tmp directory, but we can put this file almost
anywhere. Generate the SWIG glue code with the following command:

$ swig -c++ -python sum rain.i
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The preceding step creates a sum_rain_wrap.cxx file. Compile the sum_rain.cpp
file as follows:

$ g++ -02 -fPIC -c sum rain.cpp -I<Python headers dir>

In the previous command, we need to specify the actual Python C headers directory.
We can find it with the following command:

$ python-config -includes
Therefore, we could have also compiled with the following command:
$ g++ -02 -fPIC -c sum rain.cpp -I $(python-config -includes)

The location of this directory will differ depending on Python version and operating
system (it would be something like /usr/include/python2.7). Compile the
generated SWIG wrapper file as follows:

$ g++ -02 -fPIC -c sum rain wrap.cxx -I<Python headers dir> -
I<numpy-dir>/core/include/

The preceding command depends on the location of the installed NumPy. Locate it
from the Python shell as follows:

$ python
>>> import numpy as np

>>> np. file

The string printed on the screen should contain the Python version, site-packages,
andendin __ init__.pyc. If we strip the last part, we should have the NumPy
directory. Alternatively, we can use the following code:

>>> from imp import find module
>>> find module ('numpy')

The final step is to link the object files created by compiling;:
$ g++ -lpython -dynamiclib sum rain.o sum rain wrap.o -o sum rain.so

The preceding steps will work differently on other operating systems, such as
Windows, unless we use Cygwin. It is recommended to ask for help on the SWIG
user mailing lists (http://www.swig.org/mail.html) or StackOverflow, if required.

Test the created library with the swig_demo.py file in this book's code bundle:

from sum rain import *

import numpy as np

rain = np.load('rain.npy')
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print "Swig", sum rain(rain)
rain = .1 * rain

rain[rain < 0] = .025

print "Numpy", rain.sum()

If everything went fine and we didn't confuse Python installations, the following
lines will be printed:

Swig 85291.55
Numpy 85291.55

Integrating Boost and Python

Boost is a C++ library that can interface with Python. Download it from
http://www.boost .org/users/download/. The latest Boost version at the
time of writing was 1.56.0. The easiest but also slowest installation method
involves the following commands:

$ ./bootstrap.sh --prefix=/path/to/boost
$ ./b2 install

The prefix argument specifies the installation directory. In this example, we will
assume that Boost was installed under the user's home directory in a directory
called Boost (such as ~/Boost). In this directory, a 1ib and include directory
will be created. For Unix and Linux, it is useful to run the following command:

export LD_LIBRARY PATH=$HOME/Boost/lib:${LD_LIBRARY PATH}
On Mac OS X, set the following environment variable:

export DYLD LIBRARY PATH=$HOME/Boost/lib

Redefine a rain summation function as given in the boost_rain. cpp file in this
book's code bundle:

#include <boost/python.hpp>
double sum_rain(boost::python::list rain, int len) {
double sum = 0.;
for (int i = 0; i < len; i++){
int val = boost::python::extract<ints>(rain([i]) ;

if(val == -1) {
sum += 0.025;
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} else {
sum += 0.1 * wval;
}

}

return sum;

}

BOOST_PYTHON MODULE (rain) {
using namespace boost: :python;

def ("sum_rain", sum rain);

}

The function accepts a Python list and the size of the list. Call the function from
Python, as given in the rain_demo. py file in this book's code bundle:

import numpy as np
from rain import sum rain

rain = np.load('../rain.npy"')

print "Boost", sum rain(rain.astype(int) .tolist(), len(rain))
rain = .1 * rain

rain[rain < 0] = .025

print "Numpy", rain.sum()

We will automate the development process with the Makefile file in this book's
code bundle:

CC = g++
PYLIBPATH = $(shell python-config --exec-prefix)/lib
LIB = -LS$(PYLIBPATH) $(shell python-config --1libs) -L ${HOME}/Boost/

lib -lboost python
OPTS = $(shell python-config --include) -02 -I${HOME}/Boost/include

default: rain.so
@python ./rain demo.py

rain.so: rain.o
$(cCc) $(LIB) -W1l,-rpath,$(PYLIBPATH) -shared $< -o $@

rain.o: boost rain.cpp Makefile
$(Ccc) $(OPTS) -c $< -o S@

clean:
rm -rf *.so *.o

.PHONY: default clean
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From the command line, run the following commands:

$ make clean;make

The results are identical as expected:

Boost 85291.55
Numpy 85291.55

Using Fortran code through f2py

Fortran (from Formula Translation System) is a mature programming language
mostly used for scientific computing. It was developed in the 1950s with newer
versions emerging such as Fortran 77, Fortran 90, Fortran 95, Fortran 2003, and
Fortran 2008 (refer to http://en.wikipedia.org/wiki/Fortran). Each version
added features and new programming paradigms. We will need a Fortran compiler
for this example. The gfortran compiler is a GNU Fortran compiler, which can be
downloaded from http://gcc.gnu.org/wiki/GFortranBinaries.

The NumPy f2py module serves as an interface between Fortran and Python.

If a Fortran compiler is present, we can create a shared library from Fortran code
using this module. We will write a Fortran subroutine that is intended to sum rain
amount values as given in the previous examples. Define the subroutine and store it
in a Python string. After that, we can call the £2py . compile () function to produce a
shared library from the Fortran code. The end product is in the fort_src.py file in
this book's code bundle:

from numpy import f2py
fsource = ''!'
subroutine sumarray (A, N)

REAL, DIMENSION(N) :: A

INTEGER :: N

RES = 0.1 * SUM(A, MASK = A .GT. 0)
RES2 = -0.025 * SUM(A, MASK = A .LT. 0)
print*, RES + RES2

end

T

f2py.compile (fsource, modulename="'fort sum',verbose=0)
Call the subroutine as given in the fort_demo.py file in this book's code bundle:

import fort sum
import numpy as np
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rain = np.load('rain.npy')

fort sum.sumarray(rain, len(rain))
rain = .1 * rain

rain[rain < 0] = .025

print "Numpy", rain.sum()

The results of Fortran and NumPy agree as expected (we can ignore the last two
digits printed by the Fortran subroutine):

85291.5547
Numpy 85291.55

Setting up Google App Engine

Cloud computing was briefly mentioned in the introduction to this chapter. Google
App Engine (GAE) is one of the offerings in that area. GAE puts each application
made by users in separate sandboxes located somewhere in the Google data centers
(Google Cloud). GAE automatically scales application resources according to the
number of requests. GAE supports several Python web frameworks and numerical
software such as NumPy.

To use GAE, we need a Google account, which is free. Download the GAE tools

and libraries for various operating systems from https://developers.google.
com/appengine/downloads. From this web page, we can download documentation
and the GAE Eclipse plugin as well. For developers who use the Eclipse IDE, the
plugin is recommended. The GAE Standard Development Kit (SDK) provides a
development environment, which mimics the Google Cloud. GAE at the moment
supports Python 2.7 only. We can manage GAE apps either with Python scripts or
using a GUI, which are part of the SDK.

Create a new application with the launcher (navigate to File | New Application).

We will give the project the name gaedemo. In the corresponding folder, GAE

creates configuration files and the main. py file, which serves as an entry point for

the application. If we check https://developers.google.com/appengine/docs/
python/tools/libraries27, we will see that NumPy and matplotlib are supported
in GAE, although not the most recent versions. The matplotlib functionality is limited
in GAE; for instance, we can't run the show () function. Add NumPy support as given
in the app.yaml file in this book's code bundle:

application: gaedemo
version: 1
runtime: python27
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apil version: 1
threadsafe: yes

handlers:

- url: /favicon\.ico
static files: favicon.ico
upload: favicon\.ico

- url: .*
script: main.app

libraries:

- name: webapp2
version: "2.5.1"

- name: numpy
version: "1.6.1"

Add some code that uses NumPy as given in the main. py file in this book's
code bundle:

import webapp2
import numpy as np

class MainHandler (webapp2.RequestHandler) :
def get (self):
self.response.out.write('Hello world!<br/>")
np.random. seed (42)
self.response.out.write ('NumPy sum = ' + str(np.random.
randn (7) .sum()))

app = webapp2.WSGIApplication([('/', MainHandler)],
debug=True)

If we click on the Run button and then click on the Browse button in the GAE launcher,
we should see a web page with the following output in our web browser:

Hello world!
NumPy sum = 3.64009073018

Running programs on PythonAnywhere

PythonAnywhere is a Cloud service for Python development. The interface is
completely web-based and simulates the Bash, Python, and IPython consoles.
The support of Python versions and libraries is more varied compared to GAE.
The preinstalled Python libraries are listed at https://www.pythonanywhere.
com/batteries included/.

[276]

www.it-ebooks.info


https://www.pythonanywhere. com/batteries_included/
https://www.pythonanywhere. com/batteries_included/
http://www.it-ebooks.info/

Chapter 11

The software version may lag a little behind the latest stable versions available,
but not as much as GAE. At the time of writing, installing Python software from the
PythonAnywhere Bash console appears a bit problematic and is not recommended.

It is recommended to upload Python source files instead of using the PythonAnywhere
environment, as it is less responsive than our local environment. Upload files by
clicking on the Files tab in the web application. Since rpy?2 is supported, upload the
r_demo. py file from this chapter. To execute the program, click on the Consoles tab
and then click on the Bash link. Refer to the following screenshot for the end result:

18:18 ~ $§ python r demo.py
Kruskal (15.022124661246552, 0.0046555484175328015)

18:19 ~ §

Unfortunately, PythonAnywhere is not able to process the matplotlib show () function,
so we can only print values on the console.

Working with Wakari

The Cloud service on https://wakari.io/ is similar to the PythonAnywhere website.
The team behind Wakari has people on board who have actively contributed to SciPy
and NumPy in the past. Once we have logged in, we are presented with the Wakari
workspace. On the left in this workspace, we have a file browser that can also be used
to upload files. On the right, we can open the Bash, Python, or IPython consoles.

You can clearly see the file browser in the following screenshot. Use the file browser
to upload the r_demo. py file again.

C+h +5 C 0 & & @
Path: ~/
@B py-earth Share
BB scikit-learn Share
@B scripts Share
@B wakaripython Share
I r_demo.py 787D
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Run the program in a Python 2.7 console. Refer to the following screenshot for the
end result:

[~1$ python r_demo.py
Kruskal (15.022124661246552, 0.0046555484175328015)
Traceback (most recent call last):
File "r_demo.py", line 17, in <module>
plt.title('Speed of light')
File "/opt/anaconda/envs/np18py27-1.9/1ib/python2.7/site-packages/matplotlib/pyplot.py", line 1311, in title
1 = gca().set_title(s, *args, **kwargs)
File "/opt/anaconda/envs/np18py27-1.9/1ib/python2.7/site-packages/matplotlib/pyplot.py", line 803, in gca
ax = gcf().gca(**kwargs)
File "/opt/anaconda/envs/np18py27-1.9/1ib/python2.7/site-packages/matplotlib/pyplot.py", line 450, in gcf
return figure()
File "/opt/anaconda/envs/np18py27-1.9/1ib/python2.7/site-packages/matplotlib/pyplot.py", line 423, in figure
**kwargs)
File " /opt/anaconda/envs/nppryZ? 1.9/1ib/python2.7/site-packages/matplotlib/backends/backend_qt4agg.py", line 31, in new_figure_manager
return new_figure_manager_given_figure(num, thisFig)
File " /opt/anaconda/envs/nplspyZ? 1.9/1ib/python2.7/site-packages/matplotlib/backends/backend_qt4agg.py", line 38, in new_figure_manager_given_figure
canvas = FigureCanvasQTAgg(figure)
File "/opt/anaconda/envs/np18py27-1.9/1ib/python2.7/site-packages/matplotlib/backends/backend_qtd4agg.py", line 70, in __init__
FlgureCanvaSQT __init__( self, figure
File " /opt/anaconda/envs/npl&pyl? 1.9/1ib/python2.7/site-packages/matplotlib/backends/backend_qt4.py", line 207, in __init__
_create_gApp()
File "/opt/anaconda/envs/np18py27-1.9/1ib/python2.7/site-packages/matplotlib/backends/backend_qt4.py", line 62, in _create_gApp
raise RuntimeError('Invalid DISPLAY variable')
RuntimeError: Invalid DISPLAY variable

As we can see, the matplotlib show () function causes an exception to be thrown
this time.

Summary

We looked over the borders of Python in this chapter. Outside the Python ecosystem,
programming languages such as R, C, Java, and Fortran are fairly popular. We checked
out libraries that provide glue to connect Python with external code —rpy?2 for R,

SWIG and Boost for C, JPype for Java, and f2py for Fortran. Cloud computing aims

to deliver computing power as a utility over the Internet. A brief overview of current
Cloud computing services specialized in Python, including Google App Engine,
PythonAnywhere, and Wakari was also given.

The next chapter, Chapter 12, Performance Tuning, Profiling, and Concurrency, gives hints
on improving performance. Typically, we can speed up Python code by optimizing
our code by using parallelization or rewriting parts of our code in C. We will discuss
several profiling tools and concurrency APlIs.
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Performance Tuning,
Profiling, and Concurrency

" Premature optimization is the root of all evil"

- Donald Knuth, a renowned computer scientist and mathematician

In the real world, there are more important things than performance, such as features,
robustness, maintainability, testability, and usability. That's one of the reasons that
we delayed discussing the topic of performance until the last chapter of the book.

We will give hints on improving performance with profiling as the key technique.
For multicore, distributed systems, we will discuss the relevant frameworks too.

We will discuss the following topics in this chapter:

Profiling the code

Installing Cython

Calling the C code

Creating a pool process with multiprocessing

Speeding up embarrassingly parallel for loops with Joblib
Comparing Bottleneck to NumPy functions

Performing MapReduce with Jug

Installing MPI for Python

[Python Parallel
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Profiling the code

Profiling is about identifying parts of the code that are slow or use a lot of memory.
We will profile a modified version of the sentiment.py code from Chapter 9, Analyzing
Textual Data and Social Media. The code is refactored to comply with multiprocessing
programming guidelines. You will learn about multiprocessing later in this chapter.
Also, we simplified the stopwords filtering. The third change is to have fewer word
features as the reduction doesn't impact accuracy. This last change has the most
impact. The original code ran for about 20 seconds. The new code runs faster than that
and will serve as the baseline in this chapter. Some changes have to do with profiling
and will be explained later in this section. Please refer to the prof_demo. py file in this
book's code bundle:

import random

from nltk.corpus import movie reviews
from nltk.corpus import stopwords
from nltk import FregDist

from nltk import NaiveBayesClassifier
from nltk.classify import accuracy
from lprof hack import profile

@profile
def label docs():
docs = [(list (movie_ reviews.words(fid)), cat)

for cat in movie reviews.categories ()
for fid in movie reviews.fileids(cat)]
random. seed (42)
random. shuffle (docs)

return docs

@profile
def isStopWord (word) :

return word in sw or len(word) == 1
@profile

def filter corpus():
review words = movie reviews.words ()
print "# Review Words", len(review words)

res = [w.lower() for w in review words if not
isStopWord (w.lower () )]

print "# After filter", len(res)

return res
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@profile
def select word features (corpus) :
words = FregDist (corpus)
N = int (.02 * len(words.keys()))
return words.keys () [:N]
@profile
def doc_ features (doc) :
doc_words = FregDist (w for w in doc if not isStopWord (w))
features = {}

for word in word features:
o

features['count (%s)' % word] = (doc_words.get (word, 0))
return features

@profile
def make features(docs) :
return [(doc_ features(d), c) for (d,c) in docs]

@profile
def split data(sets):

return sets[200:], sets[:200]
if name == " main ":

labeled docs = label docs()

sw = set (stopwords.words ('english'))

filtered = filter corpus()

word features = select word features(filtered)
featuresets = make features(labeled docs)

train set, test set = split data(featuresets)
classifier = NaiveBayesClassifier.train(train set)
print "Accuracy", accuracy(classifier, test_ set)
print classifier.show most informative features()

When we measure time, it helps to have as few processes running as possible.
However, we can't be sure that nothing is running in the background, so we will
take the lowest time measured from three measurements with the time command.
This is a command available on various operating systems and Cygwin. Run the
command as follows:

$ time python prof demo.py
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We get a real time, which is the time we would measure using a clock. The user
and sys times measure the CPU time used by the program. The sys time is the time
spent in the kernel. On my machine, the following times in seconds were obtained
(the lowest values were placed between brackets):

Types of time | Run1l Run 2 Run 3
real (13.753) 14.090 13.916
user (13.374) 13.732 13.583
sys 0.424 0.416 (0.373)

Profile the code with the standard Python profiler as follows:

$ python -m cProfile -o /tmp/stat.prof prof demo.py

The -o switch specifies an output file. We can visualize the profiler output with the
gprof2dot PyPi package. Install it as follows:

$ pip install gprof2dot
$ pip freeze|grep gprof2dot
gprof2dot==2014.08.05

Create a PNG visualization with the following command:

$ gprof2dot -f pstats /tmp/stat.prof |dot -Tpng -o /tmp/cprof.png

If you get the error dot: command not found, it means that

you don't have Graphviz installed. You can download Graphviz
’ from http://www.graphviz.org/Download.php.

The full image is too large to display here; here is a small excerpt of it:

prof_demo:
100.

>
24.94% _~4.49%

e
1x - 1=
-

R b

naivebayes:178:train
24.94%
(7.33%)
LES

Query the profiler output as follows:

$ python -m pstats /tmp/stat.prof
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With this command, we enter the profile statistics browser. Strip the filenames from

the output, sort by time, and show the top 10 times:

/tmp/stat.prof% strip
/tmp/stat.prof% sort time
/tmp/stat.prof% stats 10

Refer to the following screenshot for the end result:

ncalls tottime percall cumtime percall
2853946 3.140 0.000 4.186 0.000
319975 2.528 0.000 2.528 0.000
ttern' objects}

2855528 2.106 0.000 6.673 0.000
1 1.499 1.499 5.099 5.099

2001 0.962 0.000 5.440 0.003

1 0.873 0.873 4.879 4,879
3167640 0.847 0.000 0.979 0.000
7621042 0.803 0.000 0.803 0.000
2857530 0.797 0.000 0.797 0.000
6343280 0.776 0.000 4.467 0.000

filename:lineno(function)
probability.py:122(__setitem__)
{method 'findall' of '_sre.SRE_Pat

probability.py:107(inc)
naivebayes.py:178(train)
probability.py:422Cupdate)
prof_demo.py:23(filter_corpus)
prof_demo.py:19(isStopWord)
{method 'get' of 'dict' objects}
probability.py:452(_reset_caches)
util.py:268(iterate_from)

The following is a description of the headers:

Headers Description

ncalls This is the number of calls.

tottime This is the total time spent in the given function
(excluding time made in calls to subfunctions).

percall This is the quotient of tottime divided by ncalls.

cumtime This is the total time spent in this and all subfunctions

(from invocation till exit). This figure is accurate even
for recursive functions.

percall (second)

This is the quotient of cumt ime divided by
primitive calls.

The line profiler is another profiler we can use. This profiler is still in beta, but
it can display statistics for each line in functions, which have been decorated with
the eprofile decorator. Also, it requires a workaround, which has been included
in the 1prof hack.py file in this book's code bundle. The workaround is from an

Internet forum (refer to https://stackoverflow.com/questions/18229628/
python-profiling-using-line-profiler-clever-way-to-remove-profile-

statements). Install and run this profiler with the following commands:

$ pip install --pre line profiler
$ kernprof.py -1 -v prof demo.py
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The full report is too long to reproduce here; instead, the following is a per-function
summary (there is some overlap):

Function: label docs at line 9 Total time: 6.19904 s

Function: isStopWord at line 19 Total time: 2.16542 s

File: prof demo.py Function: filter corpus at line 23

Function: select_word features at line 32 Total time: 4.05266 s
Function: doc_features at line 38 Total time: 12.5919 s
Function: make features at line 46 Total time: 14.566 s
Function: split_data at line 50 Total time: 3.6e-05 s

Installing Cython

The Cython programming language acts as glue between Python and C/C++.
With the Cython tools, we can compile plain Python code, which is closer to
the machine level. The following command will install Cython:

$ pip install cython

The cytoolz package contains utilities created by Cythonizing the handy Python
toolz package. Install cytoolz as follows:

$ pip install cytoolz
$ pip freeze|grep cytoolz
cytoolz==0.7.0

Just as in cooking shows, we will show the results of Cythonizing before going
through the process involved (deferred to the next section). The timeit Python
module measures time. We will use this module to measure different functions.
Define the following function, which accepts as arguments a short code snippet,
a function call, and the number of times the code will run:

def time (code, n):
times = min(timeit.Timer (code, setup=setup) .repeat (3, n))

return round(1000* np.array(times)/n, 3)

We predefine a large setup string containing all the code. The code is in the
timeits.py file in this book's code bundle (the code uses cython_module
built on your machine):

import timeit
import numpy as np

setup = ''"'
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impo

rt nltk

import cython module as cm

impo

from nltk.corpus
from nltk.corpus
from nltk.corpus

impo
impo
impo

sSw =
punc

all_:

txt

def

def

def

all_:

def

def

def

def

rt collections

import stopwords
import movie reviews
import names

rt string
rt pandas as pd
rt cytoolz
set (stopwords.words ('english'))
tuation = set(string.punctuation)

names = set([name.lower () for name in names.words()])
= movie reviews.words (movie reviews.fileids () [0])
isStopWord (w) :

return w in sw

isStopWord2 (w) :
return w in sw

isStopWord3 (w) :
return w in sw

names

isStopWord4 (w) :
return w in sw

freg_dict (words

or

or

or

or

) :

w in punctuation

w in punctuation or not w.isalpha ()

len(w) == 1 or not w.isalpha()

1]
Ju

len(w) =

dd = collections.defaultdict (int)

for word in words:

dd [word] +=
return dd

zero_init () :
features = {}

1

for word in set (txt):

)

features['count (%s)' % word] = (0)

zero_ init2():
features = {}

or w in
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for word in set (txt) :

(0)

features [word] =

keys = list (set (txt))

def zero init3():

features = dict.fromkeys (keys, 0)

zero dict = dict.fromkeys(keys, 0)

def dict copy() :

features = zero dict.copy ()

def time (code, n):

times = min(timeit.Timer (code, setup=setup) .repeat (3, n))

return round(1000* np.array(times)/n, 3)
if name == ' main ':

print "Best of 3 times per loop in milliseconds"

n = 10

print "zero init ", time("zero init ()", n)

print "zero init2", time("zero init2()", n)

print "zero init3", time("zero init3 ()", n)

print "dict copy ", time("dict copy ()", n)

print

n = 10**2

print "isStopWord ", time('[w.lower() for w in txt if not
isStopWord(w.lower())]', n)

print "isStopWord2", time('[w.lower () for w in txt if not
isStopWord2 (w.lower ())]', n)

print "isStopWord3", time('[w.lower() for w in txt if not
isStopWord3 (w.lower ())]', n)

print "isStopWord4", time('[w.lower() for w in txt if not
isStopWord4 (w.lower ())]', n)

print "Cythonized isStopWord", time (' [w.lower() for w in txt
if not cm.isStopWord(w.lower())]l', n)

print "Cythonized filter sw()", time('cm.filter sw(txt)',6 n)

print
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print "FregDist", time("nltk.FregDist(txt)", n)

print "Default dict", time('freq dict(txt)',6 n)

print "Counter", time('collections.Counter (txt)', n)

print "Series", time('pd.Series(txt).value counts()', n)
print "Cytoolz", time('cytoolz.frequencies (txt)', n)

print "Cythonized freq dict", time('cm.freq dict(txt)', n)

So, we have several isStopword () function versions with the following running
times in milliseconds:

isStopWord 0.843
isStopWord2 0.902
isStopWord3 0.963

isStopWord4 0.869
Cythonized isStopWord 0.924
Cythonized filter sw() 0.887

For comparison, we also have the time the running time of a plain pass statement.
The Cythonized isstopword () is based on the isstopwWord3s () function (the most
elaborate filter). If we look at the doc_features () function in prof_demo.py, it
becomes obvious that we shouldn't go over each word feature. Instead, we should
just intersect the set of words in a document and the words chosen as features. All
the other word counts can be safely set to zero. In fact, it's best if we initialize all the
values to zero once and copy this dictionary. For the corresponding functions, we get
the following execution times:

zero _init 0.61
zero_init2 0.555
zero_init3 0.017
dict copy 0.011

Another improvement is to use the Python defaultdict class instead of the NLTK
FregDist class. The related routines have the following run times:

FreqgDist 2.206

Default dict 0.674

Counter 0.79

Series 7.006

Cytoolz 0.542

Cythonized freq dict 0.616

As we can see, the Cythonized versions are consistently faster, although not by much.
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Calling C code

We can call C functions from Cython. The C string strlen () function is the equivalent
of the Python len () function. Call this function from a Cython . pyx file by importing
it as follows:

from libc.string cimport strlen

We can then call strlen() from somewhere else in the .pyx file. The .pyx file
can contain any Python code. Have a look at the cython_module.pyx file in this
book's code bundle:

from collections import defaultdict
from nltk.corpus import stopwords
from nltk.corpus import names

from libc.string cimport strlen

sw = set (stopwords.words ('english'))
all names = set([name.lower () for name in names.words()])

def isStopWord (w) :
return w in sw or strlen(w) == 1 or not w.isalpha() or w in
all names

def filter sw(words) :
return [w.lower() for w in words if not isStopWord(w.lower())]

def freqg_dict (words) :
dd = defaultdict (int)

for word in words:
dd [word] += 1

return dd

To compile this code we need a setup.py file with the following contents:

from distutils.core import setup
from Cython.Build import cythonize

setup (
ext _modules = cythonize ("cython module.pyx")

)
Compile the code with the following command:

$ python setup.py build ext -inplace

[288]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 12

We can now modify the sentiment analysis program to call the Cython functions. We
will also add the improvements mentioned in the previous section. As we are going
to use some of the functions over and over again, these functions were extracted into
the core.py file in this book's code bundle. Check out the cython_ demo.py file in
this book's code bundle (the code uses cython_module built on your machine):

. NLTK imports omitted ..

import cython module as cm

import cytoolz

from core import label docs

from core import filter corpus

from core import split data

def

def

def

select word features (corpus) :

words = cytoolz.frequencies (filtered)
sorted words = sorted(words, key=words.get)
N = int (.02 * len(sorted words))

return sorted words[-N:]

match(a, b):
return set(a.keys()) .intersection (b)

doc_ features (doc) :
doc_words = cytoolz.frequencies(cm.filter sw(doc))

# initialize to O
features = zero features.copy ()

word matches = match(doc_words, word features)

for word in word matches:
features[word] = (doc_words [word])

return features

def make features(docs) :

return [(doc_features(d), c¢) for (d,c) in docs]

if name == " main ":

labeled docs = label docs()
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filtered = filter corpus()

word features = select word features(filtered)
zero features = dict.fromkeys (word features, 0)
featuresets = make features(labeled docs)

train set, test set = split data(featuresets)
classifier = NaiveBayesClassifier.train(train set)
print "Accuracy", accuracy(classifier, test_ set)
print classifier.show most informative features()

The following table summarizes the results of the time command (lowest values
were placed between brackets):

Types of time | Run1l Run 2 Run 3
real (9.974) 9.995 10.024
user (9.618) 9.682 9.713
sys 0.404 0.365 (0.36)

Creating a process pool with
multiprocessing

Multiprocessing is a standard Python module that targets machines with multiple
processors. Multiprocessing works around the Global Interpreter Lock (GIL) by
creating multiple processes.

The GIL locks Python bytecode so that only
e—"one thread can access it.

Multiprocessing supports process pools, queues, and pipes. A process pool is a
pool of system processes that can execute a function in parallel. Queues are data
structures that are usually used to store tasks. Pipes connect different processes in
such a way that the output of one process becomes the input of another.

Windows doesn't have an os . fork () function, so we need to make

sure that outside the if = name == " main " block only

imports and def blocks are defined.

Create a pool and register a function as follows:

p = mp.Pool (nprocs)
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The pool has a map () method that is the parallel equivalent of the Python
map () function:

p.map (simulate, [i for i in xrange (10, 50)1)

We will simulate the movement of a particle in one dimension. The particle performs
a random walk and we are interested in computing the average end position of the
particle. We repeat this simulation for different walk lengths. The calculation itself is
not important. The important part is to compare the speedup with multiple processes
versus a single process. We will plot the speedup with matplotlib. The full code is in
the multiprocessing sim.py file in this book's code bundle:

from numpy.random import random integers
from numpy.random import randn

import numpy as np

import timeit

import argparse

import multiprocessing as mp

import matplotlib.pyplot as plt

def simulate (gsize):
n =20
mean = 0
M2 = 0

speed = randn(10000)

for i in xrange (1000) :

n=n+»1

indices = random integers (0, len(speed)-1, size=size)
x = (1 + speed[indices]) .prod()

delta = x - mean

mean = mean + delta/n

M2 = M2 + delta* (x - mean)
return mean

def serial():
start = timeit.default_timer()

for i in xrange (10, 50):
simulate (1)

end = timeit.default timer() - start
print "Serial time", end

return end

[291]

www.it-ebooks.info


http://www.it-ebooks.info/

Performance Tuning, Profiling, and Concurrency

def parallel (nprocs) :
start = timeit.default timer()
p = mp.Pool (nprocs)

print nprocs, "Pool creation time", timeit.default timer() -

start

p.map (simulate, [i for i in xrange (10,

p.close()

p.Jjoin()

end = timeit.default timer() - start
print nprocs, "Parallel time", end

return end

if mname == " main ":
ratios = []
baseline = serial()

for i in xrange(l, mp.cpu count()):

ratios.append(baseline/parallel (i))

plt.xlabel ('# processes')
plt.ylabel ('Serial/Parallel’)

plt.plot (np.arange(1l, mp.cpu count()),

plt.grid(True)
plt.show ()

ratios)

If we take the speedup values for process pool sizes ranging from 1 to 8 (the number
of processors is hardware dependent), we get the following figure:

3.5 T

1

Serial/Parallel

0.5 1 1 I 1
1

# processes

2 3 4 5
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Amdahl's law (see http://en.wikipedia.org/wiki/Amdahl%27s_law) best
describes the speedups due to parallelization. This law predicts the maximum possible
speedup. The number of processes limits the absolute maximum speedup. However,
as we can see in the preceding plot, we don't get a doubling of speed with two
processes nor does using three processes triple the speed, but we come close. Some
parts of any given Python code may be impossible to parallelize. For example, we may
need to wait for a resource to become available or we may be performing a calculation
that has to be performed sequentially. We also have to take into account overhead
from parallelization setup and related interprocess communication. Amdahl's law
states that there is a linear relationship between the inverse of the speedup, the inverse
of the number of processes, and the portion of the code, which cannot be parallelized.

Speeding up embarrassingly parallel for
loops with Joblib

Joblib is a Python library created by the developers of scikit-learn. Its main mission
is to improve the performance of long-running Python functions. Joblib achieves
the improvements through caching and parallelization using multiprocessing or
threading under the hood. Install Joblib as follows:

$ pip install joblib
$ pip freeze|grep joblib
joblib==0.8.2

We will reuse the code from the previous example only changing the parallel ()
function. Refer to the joblib demo.py file in this book's code bundle:

def parallel (nprocs) :
start = timeit.default timer ()
Parallel (nprocs) (delayed(simulate) (i) for i in xrange (10, 50))

end = timeit.default timer() - start
print nprocs, "Parallel time", end
return end
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Refer to the following plot for the end result (the number of processors is
hardware-dependent):
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Comparing Bottleneck to NumPy
functions

Bottleneck is a set of functions inspired by NumPy and SciPy, but written in Cython
with high performance in mind. Bottleneck provides separate Cython functions for
each combination of array dimensions, axis, and data type. This is not shown to the
end user and the limiting factor for Bottleneck is to determine which Cython function
to execute. Install Bottleneck as follows:

$ pip install bottleneck

We will compare the execution times for the numpy .median () and scipy.stats.
rankdata () functions in relation to their Bottleneck counterparts. It can be useful to
determine the Cython function manually before using it in a tight loop or frequently
called function. Print the name of the Bottleneck median () function as follows:

func, _ = bn.func.median_ selector(a, axis=0)
print "Bottleneck median func name", func
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For the rankdata () function, we can do the following:

func, _ = bn.func.rankdata selector(a, axis=0)
print "Bottleneck rankdata func name", func

This program is given in the bn_demo. py file in this book's code bundle:

import bottleneck as bn
import numpy as np
import timeit

setup = '"'

import numpy as np

import bottleneck as bn

from scipy.stats import rankdata

np.random. seed (42)
a = np.random.randn (30)
T
def time(code, setup, n):
return timeit.Timer (code, setup=setup) .repeat (3, n)

if name == ' main ':
n = 10**3
print n, "pass", max(time("pass", "", n))
print n, "min np.median", min(time('np.median(a)', setup, n))
print n, "min bn.median", min(time('bn.median(a)', setup, n))
a = np.arange (7)
print "Median diff", np.median(a) - bn.median(a)
func, _ = bn.func.median selector(a, axis=0)
print "Bottleneck median func name", func

print n, "min scipy.stats.rankdata", min(time ('rankdata(a)"',

setup, n))

print n, "min bn.rankdata", min(time ('bn.rankdata(a)', setup,
n))

func, _ = bn.func.rankdata_selector(a, axis=0)

print "Bottleneck rankdata func name", func

The following is the output with running times and function names:

1000 pass 1.4066696167e-05

1000 min np.median 0.0271320343018

1000 min bn.median 0.00440287590027

Median diff 0.0

Bottleneck median func name <built-in function median 1d int64 axisO>
1000 min scipy.stats.rankdata 0.0171868801117
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1000 min bn.rankdata 0.00528407096863
Bottleneck rankdata func name <built-in function
rankdata 1d int64 axisO0>

Clearly, Bottleneck is very fast; unfortunately, due to its setup, Bottleneck doesn't
have that many functions yet. The following table lists the implemented functions
from http://pypi.python.org/pypi/Bottleneck:

Category Functions
. median, nanmedian, rankdata, ss, nansum, nanmin, nanmax
NumPy/SciPy ’ ’ L ’ ’ ’
nanmean, nanstd, nanargmin, and nanargmax
. nanrankdata, nanvar, partsort, argpartsort, replace, nn
Functions , s , argp , rep ,nn,

anynan, and allnan

move sum, move nansum, move mean, move nanmearn, move
Moving window | median, move std, move nanstd, move min, move nanmin,
move max, and move nanmax

Performing MapReduce with Jug

Jug is a distributed computing framework that uses tasks as central parallelization
units. As backends, Jug uses filesystems or the Redis server. The Redis server was
discussed in Chapter 8, Working with Databases. Install Jug with the following command:

$ pip install jug

MapReduce (see http://en.wikipedia.org/wiki/MapReduce) is a distributed
algorithm used to process large datasets with a cluster of computers. The algorithm
consists of a Map and a Reduce phase. During the Map phase, data is processed in
a parallel fashion. The data is split up in parts and on each part, filtering or other
operations are performed. In the Reduce phase, the results from the Map phase are
aggregated, for instance, to create a statistics report.

Map 1

Map 2 \
/ \} s ,
Reduce =——p Resul
Data /
» Map

o |

Map n
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If we have a list of text files, we can compute word counts for each file. This can be
done during the Map phase. At the end, we can combine individual word counts
into a corpus word frequency dictionary. Jug has MapReduce functionality, which is
demonstrated in the jug_demo.py file in this book's code bundle (the code depends
on the cython module artifact):

import jug.mapreduce

from jug.compound import CompoundTask
import cython module as cm

import cytoolz

import cPickle

def get txts():

return [(1, 'Lorem ipsum dolor sit amet, consectetur
adipiscing elit.'), (2, 'Donec a elit pharetra, malesuada massa
vitae, elementum dolor.'), (3, 'Integer a tortor ac mi vehicula
tempor at a nunc.')]

def freqg dict(file words) :
filtered = cm.filter sw(file words[1] .split())

fd = cytoolz.frequencies (filtered)
return fd

def merge (left, right):
return cytoolz.merge with(sum, left, right)

merged counts = CompoundTask (jug.mapreduce.mapreduce, merge, freqg
dict, get txts(), map step=1)

In the preceding code, the merge () function is called during the Reduce phase
and the freq_dict () function is called during the Map phase. We define a Jug
CompoundTask consisting of multiple subtasks. Before we run this code, we need
to start a Redis server. Perform MapReduce by issuing the following command:

$ jug execute jug demo.py --jugdir=redis://127.0.0.1/&

The ampersand (&) at the end means that this command runs in the background.
We can issue the command from multiple computers in this manner, if the Redis
server is accessible in the network. In this example, Redis only runs on the local
machine (127.0.0.1 is the IP address of the localhost). However, we can still run
the command multiple times locally. We can check the status of the Jug command
as follows:

$ jug status jug demo.py
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By default, Jug stores data in the current working directory if we don't specify the
jugdir option. Clean the Jug directory with the following command:

$ jug cleanup jug demo.py

To query Redis and perform the rest of the analysis, we will use another program.
In this program, initialize Jug as follows:

jug.init ('jug demo.py', 'redis://127.0.0.1/")
import jug demo

The following line gets the results from the Reduce phase:
words = jug.task.value(jug demo.merged counts)

The rest of the code is given in the jug_redis.py file in this book's code bundle:

import jug

def main() :

jug.init ('jug demo.py', 'redis://127.0.0.1/")

import jug demo

print "Merged counts", jug.task.value(jug demo.merged counts)
if name == " main ":

main ()

Installing MPI for Python

The Message Passing Interface (MPI) (see http://en.wikipedia.org/wiki/
Message_Passing_ Interface) is a standard protocol developed by experts to work
on a broad assortment of distributed machines. Originally, in the '90s, MPI was used to
write programs in Fortran and C. MPI is independent of hardware and programming
languages. MPI functions include the send and receive operations, MapReduce
functionality, and synchronization. MPI has point-to-point functions involving two
processors and operations involving all processors. MPI has bindings for several
programming languages, including Python. Download MPI from http://www.
open-mpi.org/software/ompi/v1.8/ 1.8.1. MPI1.8.1 was the latest MPI version
at the time of writing. We can check on the website whether there is a newer version
available. Installing MPI can take a while (nearly 30 minutes). The following are the
commands involved, assuming that we install it in the /usr/local directory:

$ ./configure --prefix=/usr/local
$ make all
$ sudo make install
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Install Python bindings for MPI as follows:

$ pip install mpiédpy
$ pip freeze|grep mpi4py
mpid4py==1.3.1

IPython Parallel

IPython Parallel is the IPython API for parallel computing. We will set it up to use
MPI for message passing. We may have to set environment variables as follows:

$ export LC ALL=en US.UTF-8
$ export LANG=en US.UTF-8

Issue the following command at the command line:

$ ipython profile create --parallel --profile=mpi

The preceding command will create a file in our home directory, which can be found
at .ipython/profile mpi/iplogger config.py.

Add the following line in this file:

c.IPClusterEngines.engine launcher class = 'MPIEngineSetLauncher'

Start a cluster that uses the MPI profile as follows:
$ ipcluster start --profile=mpi --engines=MPI --debug

The preceding command specifies that we are using the mpi profile and MPI engine
with debug-level logging. We can now interact with the cluster from an IPython
Notebook. Start a notebook with plotting enabled and with NumPy, SciPy, and
matplotlib automatically imported as follows:

$ ipython notebook --profile=mpi --log-level=DEBUG --pylab inline

The preceding command uses the mpi profile with debug log level. The notebook
for this example is stored in the IPythonParallel. ipynb file in this book's code
bundle. Import the IPython Parallel client class and the statsmodels.api module
as follows:

In [1]:from IPython.parallel import Client
import statsmodels.api as sm
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Load the sunspots data and calculate the mean:

In [2]: data loader = sm.datasets.sunspots.load pandas ()
vals = data_loader.data['SUNACTIVITY'] .values

glob mean = vals.mean()

glob mean

The following will be output:

Out [2]: 49.752103559870541

Create a client as follows:
In [3]: ¢ = Client (profile='mpi')

Create a view to the clients with the following line:
In [4]: view=c[:]

IPython has the concept of magics. These are special commands specific to
IPython notebooks. Enable magics as follows:

In [5]: view.activate()
Load the mpi_ipython.py file in this book's code bundle:

from mpi4py import MPI

from numpy.random import random integers
from numpy.random import randn

import numpy as np

import statsmodels.api as sm

import bottleneck as bn

import logging

def jackknife(a, parallel=True) :
data loader = sm.datasets.sunspots.load pandas ()
vals = data_loader.data['SUNACTIVITY'] .values

func, _ = bn.func.nanmean selector(vals, axis=0)

(]

results

for i in a:
tmp = np.array(vals.tolist())
tmp[i] = np.nan
results.append (func (tmp))
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results = np.array(results)

if parallel:
comm = MPI.COMM_ WORLD
rcvBuf = np.zeros (0.0, 'd'")
comm.gather ( [results, MPI.DOUBLE], [rcvBuf, MPI.DOUBLE])

return results

if name == " main ":
skiplist = np.arange (39, dtype='int')
print jackknife (skiplist, False)

The preceding program contains a function, which performs jackknife resampling.
Jackknife resampling is a type of resampling where we omit one of the observations
in the sample and then calculate the statistical estimator we are interested in. In this
case, we are interested in the mean. We leave one observation out by setting it to
NumPy NaN. Then, we call the Bottleneck nanmean () function on the new sample.
The following is the load command:

In [6]: view.run('mpi ipython.py"')
Next, we split and spread an array with all the indices of the sunspots array:
In [7]: view.scatter('a',6 np.arange(len(vals), dtype='int'))
The a array can be displayed in the notebook as follows:
In [8]: view['a']
Here is the output of the preceding command:
out[8]:[array([ O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 381), .. TRUNCATED ..]
Call the jackknife () function on all the clients:
In [9]: %px means = jackknife(a)
Once all the worker processes are done, we can view the result:

In [10]: view['means']
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The result is a list of as many processes as we started. Each process returns a NumPy
array containing means calculated by jackknife resampling. This structure is not very
useful, so transform it into a flat list:

In [11]: all means = []

for v in view['means']:
all means.extend(v)

mean (all means)
You will get the following output:
Out [11]: 49.752103559870577

We can also compute the standard deviation, but that is easy so we will skip it.
It's much more interesting to plot a histogram of the jackknifed means:

In [13]: hist(all means, bins=sqgrt(len(all_means)))

Refer to the following plot for the end result:

&0

50

0
492 493 454 455 496 497 498 499 50.0

For troubleshooting, we can use the following line that displays error messages from
the worker processes:

In [14]: [(k, c.metadatalk] ['started'], c.metadatalk] ['pyout'],
c.metadata (k] ['pyerr']) for k in c.metadata.keys ()]
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Summary

In this chapter, we tuned the performance of the sentiment analysis script from
Chapter 9, Analyzing Textual Data and Social Media. Using profiling, Cython, and
various improvements, we doubled the execution speed of that example. We also
used multiprocessing, Joblib, Jug, and MPI via IPython Parallel to take advantage
of parallelization.

This was the last chapter of this book. After the appendices and the index, there
is only the back cover. Of course, the learning process will not stop. Change the
code to suit your needs. It's always nice to have a private data analysis project,
even if it is just for practice. If you can't think of a project, join a competition on
http://www.kaggle.com/. They have several competitions with nice prizes.

If you are interested in NumPy, you can look forward to the second edition

of NumPy Cookbook, Ivan Idris, Packt Publishing, which is planned for 2015.
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This appendix gives a brief overview and glossary of technical concepts used
throughout the book.

Amdahl's law predicts the maximum possible speedup due to parallelization.
The number of processes limits the absolute maximum speedup. Some parts

of any given Python code might be impossible to parallelize. We also have to
take into account overhead from parallelization setup and related interprocess
communication. Amdahl's law states that there is a linear relationship between
the inverse of the speedup, the inverse of the number of processes, and the
portion of the code that cannot be parallelized.

ARMA models combine autoregressive and moving average models. They are
used to forecast future values of time series.

Artificial Neural Networks (ANN) are models inspired by the animal brain.

A neural network is a network of neurons — units with inputs and outputs.
The output of a neuron can be passed to a neuron and so on, thus creating a
multilayered network. Neural networks contain adaptive elements, making
them suitable to deal with nonlinear models and pattern recognition problems.

Augmented Dickey Fuller (ADF) test is a statistical test related to cointegration.

Autocorrelation is the correlation within a dataset and can indicate a trend. For
example, if we have a lag of one period, we can check whether the previous value
influences the current value. For that to be true, the autocorrelation value has to
be pretty high.

Autocorrelation plots graph autocorrelations of time series data for different lags.
Autocorrelation is the correlation of a time series with the same lagged time series.
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The autoregressive model is a model that uses (usually linear) regression to forecast
future values of a time series using previous values. Autoregressive models are a
special case of the ARMA models. They are equivalent to ARMA models with zero
moving average components.

The bag-of-words model is a simplified model of text, in which the text is represented
by a bag of words. In this representation, the order of the words is ignored. Typically,
word counts or the presence of certain words are used as features in this model.

Bubble charts are an extension of the scatter plot. In a bubble chart, the value of a
third variable is represented by the size of the bubble surrounding a data point.

Cassandra Query Language (CQL) is a query language for Apache Cassandra with
a syntax similar to SQL.

Cointegration is similar to correlation and is a statistical characteristic of time series
data. Cointegration is a measure of how synchronized two time series are.

Clustering aims to partition data into groups called clusters. Clustering is usually
unsupervised in the sense that the training data is not labeled. Some clustering
algorithms require a guess for the number of clusters, while other algorithms don't.

CSS (Cascading Style Sheets) is a language used to style elements of a web page.
CSS is maintained and developed by the World Wide Web Consortium.

CSS selectors are rules used to select content in a web page.

Character codes are included in NumPy for backward compatibility with Numeric.
Numeric is the predecessor of NumPy.

Data type objects are instances of the numpy . dtype class. They provide an
object-oriented interface for manipulation of NumPy data types.

Eigenvalues are scalar solutions to the equation 2x = ax, where A is a two-dimensional
matrix and x is a one-dimensional vector.

Eigenvectors are vectors corresponding to eigenvalues.

The exponential moving average is a type of moving average with exponentially
decreasing weights with time.

Fast Fourier Transform (FFT) is a fast algorithm to compute the Fourier transform.
FFT is O(N log N), which is a huge improvement over older algorithms.

Filtering is a type of signal-processing technique, which involves removing or
suppressing part of the signal. Many filter types exist including the median and
Wiener filter.
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Fourier analysis is based on the Fourier series named after the mathematician
Joseph Fourier. The Fourier series is a mathematical method to represent functions
as an infinite series of sine and cosine terms. The functions in question can be real
or complex valued.

Genetic algorithms are based on the biological theory of evolution. This type of
algorithms is useful for searching and optimization.

Graphical Processor Units (GPUs) are specialized circuits used to display
graphics efficiently. Recently, GPUs have been used to perform massively parallel
computations (for instance, to train neural networks).

The Hierarchical Data Format (HDF) is a specification and technology for the storage
of big numerical data. The HDF group maintains a related software library.

The Hilbert-Huang transform is a mathematical algorithm to decompose a signal.
This method can be used to detect periodic cycles in time series data. It was used
successfully to determine sunspot cycles.

HyperText Markup Language (HTML) is the fundamental technology used to
create web pages. It defines tags for media, text, and hyperlinks.

The Internet Engineering Task Force (IETF) is an open group working on
maintaining and developing the Internet. IETF is open in the sense that anybody
can join in principle.

JavaScript Object Notation (JSON) is a data format. In this format, data is written
down using JavaScript notation. JSON is more succinct than other data formats
such as XML.

k-fold cross-validation is a form of cross-validation involving k (a small integer
number) random data partitions called folds. In k iterations, each fold is used once
for validation and the rest of the data is used for training. The results of the iterations
can be combined at the end.

Kruskal-Wallis one-way analysis of variance is a statistical method that analyzes
sample variance without making assumptions about their distributions.

The lag plot is a scatter plot for a time series and the same time series lagged. A lag
plot shows autocorrelation within time series data for a certain lag.

The learning curve is a way to visualize the behavior of a learning algorithm. It is a
plot of training and test scores for a range of train data sizes.

Logarithmic plots (or log plots) are plots that use a logarithmic scale. This type of
plots is useful when the data varies a lot because they display orders of magnitude.
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Logistic regression is a type of a classification algorithm. This algorithm can be
used to predict probabilities associated with a class or an event occurring. Logistic
regression is based on the logistic function, which has values in the range between
zero and one, just like in probabilities. The logistic function can therefore be used to
transform arbitrary values into probabilities.

MapReduce is a distributed algorithm used to process large datasets with a cluster
of computers. The algorithm consists of Map and Reduce phases. During the Map
phase, data is processed in parallel fashion. The data is split up in parts and on each
part, filtering or other operations are performed. In the Reduce phase, the results
from the Map phase are aggregated.

Moore's law is the observation that the number of transistors in a modern computer
chip doubles every two years. This trend has continued since Moore's law formulation
around 1970. There is also a second Moore's law, which is also known as Rock's

law. This law states that the cost of R & D and manufacturing of integrated circuits
increases exponentially.

Moving averages specify a window of previously seen data that is averaged each time
the window slides forward by one period. The different types of moving average differ
essentially in the weights used for averaging.

Naive Bayes classification is a probabilistic classification algorithm based on Bayes
theorem from probability theory and statistics. It is called naive because of its strong
independence assumptions.

Object-relational mapping (ORM) is a software architecture pattern for translation
between database schemas and object-oriented programming languages.

Opinion mining or sentiment analysis is a research field with the goal of efficiently
finding and evaluating opinions and sentiments in text.

Part of Speech (POS) tags are tags for each word in a sentence. These tags have a
grammatical meaning such as a verb or noun.

REST (Representational State Transfer) is an architectural style for web services.

RSS (Really Simple Syndication) is a standard for the publication and retrieval of
web feeds such as blogs.

The scatter plot is a two-dimensional plot showing the relationship between two
variables in a Cartesian coordinate system. The values of one variable are represented
on one axis and the values of the other variable are represented by the other axis.

We can quickly visualize correlation this way.
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Signal processing is a field of engineering and applied mathematics that handles the
analysis of analog and digital signals, corresponding to variables that vary with time.

SQL is a specialized language for relational database querying and manipulation.
This includes creating tables, inserting rows in tables, and deleting tables.

Stopwords are common words with low-information value. Stopwords are usually
removed before analyzing text. Although filtering stopwords is a common practice,
there is no standard definition for stopwords.

Supervised learning is a type of machine learning that requires labeled training data.

Support vector machines (SVM) can be used for regression (SVR) and
classification (SVC). SVM maps the data points to points in a multidimensional
space. The mapping is performed by a so-called kernel function. The kernel
function can be linear or nonlinear.

Term frequency-inverse document frequency (tf-idf) is a metric measuring the
importance of a word in a corpus. It is composed of a term frequency number and

an inverse document frequency number. The term frequency counts the number

of times a word occurs in a document. The inverse document frequency counts the
number of documents in which the word occurs and takes the inverse of the number.

A time series is an ordered list of data points starting with the oldest measurements
first. Usually, each data point has a related timestamp.
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This appendix lists useful functions organized by packages for matplotlib, NumPy,
pandas, scikit-learn, and SciPy.

matplotlib

The following are useful matplotlib functions:

matplotlib.pyplot.axis (*v, **kwargs): This is the method to get or set
axis properties. For example, axis ('off') turns off the axis lines and labels.

matplotlib.pyplot.figure (num=None, figsize=None, dpi=None,
facecolor=None, edgecolor=None, frameon=True, FigureClass=<class
'matplotlib.figure.Figure's, **kwargs): This function creates a

new figure.

matplotlib.pyplot.grid(b=None, which='major', axis='both',
**kwargs) : This function turns the plot grids on or off.

matplotlib.pyplot.hist(x, bins=10, range=None, normed=False,
weights=None, cumulative=False, bottom=None, histtype='bar',
align="mid', orientation='vertical', rwidth=None, log=False,
color=None, label=None, stacked=False, hold=None, **kwargs):
This function plots a histogram.

matplotlib.pyplot.imshow (X, cmap=None, norm=None, aspect=None,
interpolation=None, alpha=None, vmin=None, vmax=None,
origin=None, extent=None, shape=None, filternorm=1,
filterrad=4.0, imlim=None, resample=None, url=None, hold=None,
**kwargs) : This function displays an image for array-like data.

matplotlib.pyplot.legend(*args, **kwargs): This function
shows a legend at an optionally specified location (for instance,
plt.legend(loc='best"')).
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* matplotlib.pyplot.plot(*args, **kwargs): This function creates
a two-dimensional plot with single or multiple (x, y) pairs and a
corresponding optional format string.

®* matplotlib.pyplot.scatter(x, y, s=20, c='b', marker='o',
cmap=None, norm=None, vmin=None, vmax=None, alpha=None,
linewidths=None, verts=None, hold=None, **kwargs): This function
creates a scatter plot of two arrays.

* matplotlib.pyplot.show(*args, **kw): This function displays a plot.

* matplotlib.pyplot.subplot (*args, **kwargs): This function creates
subplots if the row number, column number, and index number of the plot
are given. All these numbers start from one. For instance, p1t . subplot (221)
creates the first subplot in a two-by-two grid.

* matplotlib.pyplot.title(s, *args, *xkwargs): This function putsa
title on the plot.

NumPy

The following are useful NumPy functions:

* numpy.arange ([start,] stopl, step,], dtype=None): This function
creates a NumPy array with evenly spaced values within a specified range.

® numpy.argsort(a, axis=-1, kind='quicksort', order=None):
This function returns the indices that will sort the input array.

® numpy.array(object, dtype=None, copy=True, order=None,
subok=False, ndmin=0): This function creates a NumPy array from an
array-like sequence such as a Python list.

* numpy.dot(a, b, out=None):This function calculates the dot product of
two arrays.

* numpy.eye (N, M=None, k=0, dtype=<type 'float's): This function
returns the identity matrix.

* numpy.load(file, mmap_mode=None): This function loads NumPy arrays
or pickled objects from .npy, .npz, or pickles. A memory-mapped array
is stored in the filesystem and doesn't have to be completely loaded in the
memory. This is especially useful for large arrays.

® numpy.loadtxt (fname, dtype=<type 'float's>, comments='#"',
delimiter=None, converters=None, skiprows=0, usecols=None,
unpack=False, ndmin=0): This function loads data from a text file into
a NumPy array.
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numpy.mean (a, axis=None, dtype=None, out=None, keepdims=False):
This function calculates the arithmetic mean along the given axis.

numpy.median(a, axis=None, out=None, overwrite input=False):
This function calculates the median along the given axis.

numpy .ones (shape, dtype=None, order='cC'): This function creates a
NumPy array of a specified shape and data type, containing ones.

numpy.polyfit (x, y, deg, rcond=None, full=False, w=None,
cov=False): This function performs a least squares polynomial fit.

numpy . reshape (a, newshape, order='C'): This function changes the
shape of a NumPy array.

numpy . save (file, arr): This function saves a NumPy array to a file in
the NumPy .npy format.

numpy . savetxt (fname, X, fmt='%.18e', delimiter=' ',
newline='\n', header='', footer='', comments='# '): This function
saves a NumPy array to a text file.

numpy.std(a, axis=None, dtype=None, out=None, ddof=0,
keepdims=False): This function returns the standard deviation along

the given axis.

numpy .where (condition, [x, yl):This function selects array elements
from input arrays based on a Boolean condition.

numpy . zeros (shape, dtype=float, order='cC'): This function creates a
NumPy array of a specified shape and data type, containing zeros.

pandas

The following are useful pandas functions:

pandas.date_range (start=None, end=None, periods=None, freg='D',
tz=None, normalize=False, name=None, closed=None): This function
creates a fixed frequency date-time index

pandas.isnull (obj): This function finds NaN and None values
pandas.merge (left, right, how='inner', on=None, left on=None,
right on=None, left index=False, right index=False, sort=False,
suffixes=('_x', '_y'), copy=True): This function merges the DataFrame
objects with a database-like join on columns or indices

pandas.pivot_ table(data, values=None, rows=None, cols=None,
aggfunc='mean', fill value=None, margins=False, dropna=True):
This function creates a spreadsheet-like pivot table as a pandas DataFrame

[313]

www.it-ebooks.info


http://www.it-ebooks.info/

Useful Functions

pandas.read_csv(filepath or buffer, sep=',', dialect=None,
compression=None, doublequote=True, escapechar=None,
quotechar='""', quoting=0, skipinitialspace=False,
lineterminator=None, header='infer',6 index_ col=None,

names=None, prefix=None, skiprows=None, skipfooter=None, skip_
footer=0, na_ values=None, na_ fvalues=None, true values=None,
false values=None, delimiter=None, converters=None,
dtype=None, usecols=None, engine='c', delim whitespace=False,
as_recarray=False, na filter=True, compact_ ints=False, use_
unsigned=False, low memory=True, buffer lines=None, warn
bad lines=True, error_bad lines=True, keep_ default na=True,
thousands=Nment=None, decimal='.',6 parse dates=False, keep_
date col=False, dayfirst=False, date parser=None, memory
map=False, nrows=None, iterator=False, chunksize=None,
verbose=False, encoding=None, squeeze=False, mangle dupe
cols=True, tupleize cols=False, infer datetime format=False):
This function creates a DataFrame from a CSV file

pandas.read_excel (io, sheetname, *+*kwds): This function reads an
Excel worksheet into a DataFrame

pandas.read_hdf (path or buf, key, **kwargs): This function returns
a pandas object from an HDF store

pandas.read_json(path or buf=None, orient=None, typ='frame',
dtype=True, convert axes=True, convert dates=True, keep
default dates=True, numpy=False, precise float=False, date_
unit=None): This function creates a pandas object from a JSON string

pandas.to_datetime (arg, errors='ignore',6 dayfirst=False,

utc=None, box=True, format=None, coerce=False, unit='ns',
infer_ datetime_format=False): This function converts a string or

list of strings to datetime

Scikit-learn

The following are useful scikit-learn functions:

sklearn.cross _validation.train test split (*arrays, **options):
This function splits arrays into random train and test sets

sklearn.metrics.accuracy score(y_true, y pred, normalize=True,
sample weight=None): This function returns the accuracy classification score

sklearn.metrics.euclidean distances (X, Y=None, Y norm_
squared=None, squared=False): This function computes the distance
matrix for the input data
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SciPy

This section shows useful SciPy functions:

scip

scip

y.fftpack

fftshift (x, axes=None): This function shifts the zero-frequency component
to the center of the spectrum

rfft (x, n=None, axis=-1, overwrite x=0): This function performs a
discrete Fourier transform of an array containing real values

y.signal
detrend(data, axis=-1, type='linear', bp=0): This function removes

the linear trend or a constant from the data

medfilt (volume, kernel size=None): This function applies a median
filter on an array

wiener (im, mysize=None, noise=None): This function applies a Wiener
filter on an array

scipy.stats

anderson (x, dist='norm'): This function performs the Anderson-Darling
test for data coming from a specified distribution

kruskal (*args): This function performs the Kruskal-Wallis H test for data

normaltest (a, axis=0): This function tests whether data complies to the
normal distribution

scoreatpercentile(a, per, limit=(), interpolation
method="'fraction'): This function computes the score at a specified
percentile of the input array

shapiro(x, a=None, reta=False): This function applies the Shapiro-Wilk
test for normality
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Online Resources

The following is a list of links to documentation, forums, articles,
and other information:

The Apache Cassandra database: http://cassandra.apache.org
Beautiful Soup: http://www.crummy.com/software/BeautifulSoup
The HDF Group website: http://www.hdfgroup.org

A gallery of interesting IPython notebooks: https://github.com/ipython/
ipython/wiki/A-gallery-of-interesting-IPython-Notebooks

The Graphviz open source graph visualization software:
http://graphviz.org/

The IPython website: http://ipython.org/

matplotlib (a Python plotting library): http://matplotlib.org/
MongoDB (an open source document database): http://www.mongodb.org
The mpidpy docs: http://mpidpy.scipy.org/docs/usrman/index.html
NLTK (Natural Language Toolkit): http: //www.nltk.org/

NumPy and SciPy Documentation: http://docs.scipy.org/doc/

NumPy and SciPy Mailing Lists: http://www.scipy.org/Mailing Lists

Open MPI (a high performance message passing library):
http://www.open-mpi.org

Packt Publishing help and support: http://www.packtpub.com/support
The pandas home page: http://pandas.pydata.org

Python performance tips:
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

www.it-ebooks.info


http://cassandra.apache.org
http://www.crummy.com/software/BeautifulSoup
http://www.hdfgroup.org
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
http://graphviz.org/
http://ipython.org/
http://matplotlib.org/
http://www.mongodb.org
http://mpi4py.scipy.org/docs/usrman/index.html
http://www.nltk.org/
http://docs.scipy.org/doc/
http://www.scipy.org/Mailing_Lists
http://www.open-mpi.org
http://www.packtpub.com/support
http://pandas.pydata.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://www.it-ebooks.info/

Online Resources

* Redis (an open source, key-value store): http://redis.io/

* Scikit-learn (machine learning with Python):
http://scikit-learn.org/stable/

* Scikit-learn performance tips:
http://scikit-learn.org/stable/developers/performance.html

* SciPy performance tips: http://wiki.scipy.org/PerformanceTips

* SQLAlchemy (the Python SQL toolkit and Object Relational Mapper):
http://www.sglalchemy.org

* The Toolz utility functions documentation:
http://toolz.readthedocs.org/en/latest/
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affinity propagation

clustering, performing with 248, 249
Amazon Web Services. See AWS
Amdabhl's law

about 293, 305

URL 293
Anderson-Darling test 237
annotate() function 151
annotations 150, 151
Apache Cassandra

about 207

URL, for database 317
application

writing, with NumPy arrays 16-19
ARMA models

about 179, 180, 305

reference link 179
array() function 27
array shapes, manipulating

about 32-34

arrays, converting 48

arrays, splitting 39

arrays, stacking 35

NumPy array attributes 41-47
Artificial Neural Networks (ANN) 257, 305
astype function 48
Atom feeds

parsing 134, 135
Augmented Dickey-Fuller (ADF)

about 171, 305

reference link 171
autocorrelation 173-175, 305

Index

autocorrelation plots 159, 305
autoregressive model 176-178, 306
AWS 263

B

bag-of-words model 216, 306
Bartlett window 169
basic matplotlib plots 144, 145
Beautiful Soup
HTML, parsing with 135-141
URL 317
bigrams() function 218
binarize() function 237
binary installers
URL, for downloading 86
using 86
binomial distribution
gambling 72,73
binomial function 72
Blackman window 169
boolean indexing, NumPy arrays 53, 54
Boost
about 272
download link 272
Python, integrating with 272, 273
Bottleneck
about 294
comparing, to NumPy functions 294, 295
references 296
boxcar window 168
box plot 161
broadcasting 55
bubble chart 148, 306
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C

C 269
C++ 269
Cardinal Number (CD) tag 215
Cascading Style Sheets. See CSS
Cassandra

key-value 208, 209

references 207

traditional relational databases 208, 209

Cassandra Query Language (CQL) 208, 306

C code
calling 288-290
character codes 30, 306
classification
performing, with logistic
regression 238, 239
performing, with support vector
machines (SVM) 240, 241
cloud computing 263
clustering
about 248, 306
performing, with affinity
propagation 248, 249
clusters 248
code
profiling 280-283
coefficient of determination
URL 242
cointegration
about 170, 306
defining 171-173
column families 207
column_stack function 38
column stacking 38
Command Line Interface (CLI) 21
Comma-separated Value (CSV) file 63
Comprehensive R Archive Network
(CRAN) 265
concatenate() function 37
concat() function 104
corpora 211
correlate() function 174
crossover operator 253
CSS 138, 306

CSS selectors
about 140, 306
URL, for documentation 140
CSV files
writing, with NumPy 120, 121
writing, with pandas 120, 121
Cython
installing 284, 287
cytoolz package 284

D

data
querying, in pandas 94-96
reading to Excel, with pandas 129, 130
storing, in Redis 206
storing, with PyTables 124-126
writing to Excel, with pandas 129, 130
data aggregation 99-102
database
accessing, from pandas 194, 195
populating, with SQLAlchemy 198, 199
querying, with SQLAlchemy 200
database cursor 192
DataFrame
about 85-87
appending 103, 104
concatenating 103, 104
creating 87-90
data aggregation 99-102
joining 105, 106
pickling 122,123
reading, to HDF5 stores 126-128
statistical methods 97, 98
URL 87
writing, to HDFb5 stores 126-128
Data Science Toolbox
URL 263
dataset 202, 203
datasets package 265
data structures, pandas
DataFrame 85
Series 85
data type objects 30, 306
dates
dealing with 110-112
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Debian

NumPy, installing on 12
decision tree 259
decision tree learning 259, 260
DELETE method 131
depth stacking 37
depth-wise splitting 40
descriptive statistics

with NumPy 63-65
detrend filter 188
detrend() function 188
dill 123
doc_features() function 287
dsplit function 40
dstack function 37
dtype attributes 31
dtype constructors 31

E

eigenvalues

about 69, 306

obtaining 69-71
eigenvectors

about 69, 306

obtaining 69-71
ElasticNetCV

regression, performing with 242-244
ElasticNetCV class 243-245
elastic net regularization

about 242

URL 242
ensembles 233
euclidean_distances() function 248
Excel

data, reading to 129, 130

data, writing to 129, 130
execute() call 194
executemany() method 194
exponential moving average 167, 306

F

f2py
Fortran code, using through 274

fancy indexing 50, 51

Fast Fourier Transform (FFT) 184, 306
features 233
fft() function 184
fftshift() function 184
filtering 187, 306
fit() method 239
fitness function 252
flatten function 34
folds 239, 307
format parameter

URL, for documentation 120
Formula Translation System 274
Fortran

about 274

code, using through f2py 274

reference link 274
Fourier analysis

about 184, 307

examples 185
Fourier series 184, 307
FreqDist class 217
functions, matplotlib 311, 312
functions, NumPy 312, 313
functions, pandas 313, 314
functions, scikit-learn 314
functions, scipy.fftpack 315
functions, scipy.signal 315
functions, scipy.stats 315

G

generations 252

Genetic algorithms
about 307
overview 252-255
URL 252

genetic operators
about 253
crossover 253
evaluate 254
mate 254
mutate 254
mutation 253
select 254

Gentoo
NumPYy, installing on 12
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GET method 131
gfortran compiler
about 274
download link 274
Global Interpreter Lock (GIL) 290
Google App Engine (GAE)
download link 275
setting up 275, 276
Graphical Processor Units (GPUs)
about 148, 307
URL 148
Graphviz
URL 282, 317
grid search 241
GridSearchCV class 241
GridSearchCV object 241
Gutenberg corpus 214
Gutenberg project
URL 214

H

Hanning window 169
HDF 124, 307
HDF5
about 124
URL, for installing 124
HDF5 stores
DataFrame, reading to 126-128
DataFrame, writing to 126-128
HDF Group
URL 317
Hierarchical Data Format. See HDF
Hilbert-Huang transform 181, 307
history, IPython shell
displaying 21
horizontal splitting 39
horizontal stacking 36
hsplit function 39
hstack function 36

if a: else b statement 259
information

exchanging, with MATLAB/Octave 264
installation, Cython 284, 287
installation, NLTK 212, 213
installation, pandas 86, 87
installation, rpy2 265
Internet Engineering Task Force

(IETF) 135, 307

IPython

about 9

building, from source 14, 15

git commands 15

installing, on Linux 12

installing, on Mac OS X 13, 14

installing, on Windows 10

installing, with setup tools 15

notebooks 22

URL 11, 317

using, as shell 19, 21
IPython notebooks

about 22

references 22

URL, for gallery 317
IPython Parallel 299-302
IPython shell

features 19

pylab switch 19

session, saving 20

system shell command, executing 21
IPython source code

URL, for downloading 14
IRC channel

URL 23
isalpha() method 227
isStopWord3() function 287
isStopword() function 287

HTML (Hypertext Markup Language) J

about 135, 307

parsing, with Beautiful Soup 135-141 jackknife() function 301

jackknife resampling 301
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Java

NumPy arrays, sending to 268

URL, for downloading 207

URL, for installation instructions 207
Java Development Kit (JDK) 268
Java Runtime Environment (JRE) 268
JavaScript Object Notation. See JSON
Java Virtual Machine (JVM) 268
Joblib

about 293

used, for improving performance of

long-running Python function 293

join() method 105
JSON

about 131, 307

reading, with pandas 132, 133

URL 131

using 131, 132

writing, with pandas 132, 133
Jug

about 296

MapReduce, performing with 296-298
Jython 268

K

kernel function 240, 309

keyspace 208

k-fold cross-validation 239, 307

Kruskal-Wallis one-way analysis
of variance 266, 307

L

LabelBinarizer class 237
lag plot

about 158, 307

example 159
learning curve 245, 246, 307
learning curve() function 245
least absolute shrinkage and selection

operator (LASSO) 242

leaves 259
legend() function 150
legends 150, 151

len() function 288
lightweight access, sqlite3 192,193
linear algebra

about 59

linear systems, solving with NumPy 68, 69
matrices, inverting with NumPy 66, 67
with NumPy 66

linear systems

solving, with NumPy 68, 69

Linux

[Python, installing on 12

Linux distributions 12

list of locations indexing, NumPy arrays 52
loads() function 132

loadtxt function 64

logarithmic plots 146, 147, 307

logistic function 238, 308

logistic regression

about 238, 308
classification, performing with 238, 239
URL 238

logspace() function 241
loremIpsum.html file

URL 136

machine learning 233
Mac OS X

IPython, installing on 13, 14

Mandriva

NumPYy, installing on 12

manual pages

help function, calling 22
question mark, querying 22
reading 22

map() method 291
Map phase 296, 308
MapReduce

about 308
performing, with Jug 296-298
URL 296

MATLAB

about 264
information, exchanging with 264
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matplotlib N
about 9
building, from source 14, 15
functions 311, 312
git commands 15
installing, with setup tools 15
reference link, for gallery 143
subpackages 144

Naive Bayes classification 219-221, 308
names

filtering out 214, 215
Natural Language Toolkit. See NLTK
ndarray 25
neural network

URL 11, 317 overview 257, 258
matplotlib.pyplot.loglog() function 146 NLTK
matrices about 211
inverting, with NumPy 66, 67 installing 212, 213
mean shift algorithm 250, 251 URL 317

normal distribution

sampling 74
normality test

performing, with SciPy 75-78
Not Only SQL (NoSQL) 191
numbers

filtering out 214, 215
Numeric 30, 306

medfilt() function 187
median filter
about 187
reference link 187
median() function 294
merge() function 105
Message Passing Interface. See MPI
meteorological data, Dutch KNMI institute

reference link 236 NumPy
mind map about 9, 86
URL 9 building, from source 14, 15

missing values

handling 108, 109
MongoDB

about 204

URL 317
MongoDB distribution

URL, for downloading 204
Moore's law 146, 308
morley dataset 265
moving averages 167, 308
MPI

installing, for Python 298

references 298
mpidpy

URL 317
multidimensional array

creating 27
multiprocessing

about 290

process pool, creating with 290-292
mutation operator 253

CSV files, writing with 120, 121
descriptive statistics 63-65
eigenvalues, obtaining 69-71
eigenvectors, obtaining 69-71
functions 312, 313

git commands 15

installing, on Debian 12
installing, on Gentoo 12
installing, on Mandriva 12
installing, on Red Hat 12
installing, on Ubuntu 12
installing, with setup tools 15
linear algebra, performing 66

linear systems, solving with 68, 69

matrices, inverting with 66, 67
random numbers 71

references 23

SWIG, integrating with 269-271
URL 11, 23

NumPy and SciPy Documentation

URL 317
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NumPy and SciPy Mailing Lists
URL 317
NumPy array attributes 41, 45
NumPy array elements
selecting 27,28
NumPy array object 25
NumPy arrays
about 16
advantages 26
broadcasting 55-57
converting 48
copies, creating 48, 49
indexing 32
indexing, with booleans 53, 54
indexing, with list of locations 52
one-dimensional slicing 32
sending, to Java 268
splitting 39
stacking 35
used, for writing application 16-19
views, creating 48, 49
NumPy functions
Bottleneck, comparing to 294, 295
numpy.i interface file
reference link 270
numpy.linalg subpackage
eig function 69
eigvals function 69
using 66
NumPy-masked array
creating 78-80
extreme values, disregarding 80-83
negative values, disregarding 80-83
numpy.ma subpackage 78-80
numpy.median() function 294
NumPy modules 59-61
NumPy .npy binary format
comparing 122,123
NumPy numerical types
about 28, 29
bool 28
character codes 30
complex 29
complex64 29
complex128 29
data type objects 30

dtype attributes 31
dtype constructors 31
float 29

floatl6 28

float32 28

float64 29

int8 28

intl6 28

int32 28

int64 28

inti 28

uint8 28

uintl6 28

uint32 28

uint64 28

(0

object-relational mapping (ORM) 196, 308

Octave

about 264
download link 264
information, exchanging with 264

one-point crossover 253
Open MPI

URL 317

opinion mining 222, 308

P

pandas

about 85

CSV files, writing with 120, 121
databases, accessing from 194, 195
data, querying 94-96

data, reading to Excel 129, 130
data, writing to Excel 129, 130
exploring 86, 87

functions 313, 314

installing 86, 87

JSON, reading with 132, 133
JSON, writing with 132, 133
URL 317

pandas plotting 155
pandas, requisites

NumPy 86
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python-dateutil 86 proper noun singular (NNP) tag 215

pytz 86 properties, ndarray
parallel() function 293 flat 46
parsing, Atom feeds 134, 135 imag 46
parsing, HTML itemsize 45
with Beautiful Soup 135-141 j 46
parsing, RSS 134, 135 nbytes 45
Part of Speech (POS) tags 215, 308 ndim 45
PCRE real 46
about 269 size 45
download link 269 T 45
periodic signals pseudo-random numbers 71
generating 181-183 PUT method 131
Perl Compatible Regular Expressions. pydoc module 60
See PCRE pylab switch, IPython shell 19, 20
phase spectrum 186 PyMongo 204
pickling PyTables
about 123 data, storing with 124-126
URL 123 Python
pivot table 113 integrating, with Boost 272, 273
pkg_check.py file 144 MP], installing for 298
pkgutil module 60 software requisites 10
Plot.ly URL 10
about 160 URL, for documentation 94
using 161 URL, for performance tips 317
plot() method 155,156 PythonAnywhere
Pony ORM 201 about 276
pos_tag() function 215 programs, running on 276, 277
POST method 131 python-bs4
power spectrum 186 URL, for downloading 136
predictive analytics python-dateutil 86
about 233
reference link, for example 233 Q

predict() method 243

predictors 233 Quandl

preinstalled Python libraries URL 94
reference link 276

preprocessing 236, 237 R

Principal Component Analysis (PCA) 69 R

probability density functions (pdf) 74
process pool

creating, with multiprocessing 290-292
profiling 280
programs

running, on PythonAnywhere 276, 277

download link 265
interfacing with 265-267
random numbers, NumPy
binomial distribution, gambling 72, 73
normal distribution, sampling 74
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normality test, performing
with SciPy 75-78

pseudo-random numbers 71

real random numbers 71
random_state parameter 239
rankdata() function 295
ravel function 34
read_sql() method 200
Really Simple Syndication. See RSS
real random numbers 71
Red Hat

NumPy, installing on 12
Redis

about 206

data, storing in 206

URL 206, 318
Reduce phase 296, 308
regression

performing, with ElasticNetCV 242-244

reinforcement learning 234
relational database 191

remote data access 114-116

REmote Dlctionary Server. See Redis

Representational State Transfer. See REST

reshape function 35
resize method 35
REST
about 131, 308
URL 131
REST web services
using 131, 132
rfft() function 184
ridge method 242
rolling mean() function 168
row_stack function 38
row stacking 38
rpy2
installing 265
reference link, for upgrading 265
R squared 242
RSS
about 134, 308
parsing 134, 135
URL 134

S

scale() function 237
scatter plot

about 148, 308

creating 156, 157
scikit-learn

about 235, 236

functions 314

references 318
SciPy

about 9

building, from source 14, 15

git commands 15

installing, with setup tools 15

normality test, performing with 75-78

references 23

URL 11
scipy.constants module 265
scipy.fftpack

functions 315
scipy.io.savemat() function 264
SciPy modules 59-61
scipy.optimize.leastsq() function 177
scipy.signal package

about 187

functions 315
scipy.stats

functions 315
scipy.stats.kruskal() function 266
scipy.stats.rankdata() function 294
SciPy Superpack

URL 13
score() method 239
semilogx() function 146
semilogy() function 146
sentiment analysis 222-224, 308
Series data structures

about 85, 90

creating 90-93
session, IPython shell

saving 20
setup tools

used, for installing IPython 15

used, for installing matplotlib 15
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used, for installing NumPy 15

used, for installing SciPy 15
signal processing 165, 309
Simplified Wrapper and Interface

Generator. See SWIG

sklearn.preprocessing module 236
social network analysis 230-232
soft margin 240
software requisites, Python

[Python 10

matplotlib 10

NumPy 10

SciPy 10
SourceForge website

URL 13
spectral analysis 186
SQL 192, 309
SQLAIchemy

about 196

database, populating with 198, 199

database, querying with 200

installing 196, 197

setting up 196, 197

URL 318

URL, for support page 196
SQLite 192
Stack Overflow software

URL 23
Standard Development Kit (SDK) 275
statistical methods

about 97, 98

count 97

describe 97

kurt 97

mad 97

max 97

median 97

min 97

mode 97

skew 97

std 97

var 97
statistics 59
statsmodels subpackages 166
stopwords

about 213, 309

filtering out 214, 215
str attribute 32
strlen() function 288
supervised learning 234, 309
support vector machines (SVM)
about 240, 309
classification, performing with 240, 241
support vector regression (SVR)
about 240, 245-247
URL 240
SWIG
about 269
download link 269
integrating, with NumPy 269-271
reference link, for user mailing lists 271
system shell command, IPython shell
executing 21

T

tagging 215
term frequency-inverse document
frequency (tf-idf) 226, 309

Tfidf Vectorizer class 227
three-dimensional plots 153
timeit module 284
time series 165, 309
tolist function 48
Toolz

URL 318
transpose function 35
triangular window 169
trigrams() function 218

U

Ubuntu

NumPy, installing on 12
unpickling 123
unsupervised learning 234

\'

vertical splitting 40
vertical stacking 36, 37
vsplit function 40
vstack function 36
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Wakari

URL 277

working with 277, 278
WarGames

reference link 234
Wiener filter

about 187

reference link 187
wiener() function 187
window function

about 168

reference link 168
Windows

IPython, installing on 10, 11

word clouds
creating 225-229
word frequencies
analyzing 217, 218
Wordle
about 225
URL 225
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Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
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be sent to authorepacktpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
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additional reward for your expertise.
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Develop efficient parallel systems using the robust
Python environment
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parallel programming.

2. Boosts your Python computing capabilities.

3. Contains easy-to-understand explanations
and plenty of examples.

Building Probabilistic Graphical
Models with Python

Building Probabilistic Graphical

Models with Python
ISBN: 978-1-78328-900-4 Paperback: 172 pages

Solve machine learning problems using probabilistic
graphical models implemented in Python with
real-world applications

1. Stretch the limits of machine learning by
learning how graphical models provide an
insight on particular problems, especially
in high dimension areas such as image
processing and NLP.

2. Solve real-world problems using
Python libraries to run inferences
using graphical models.

3. A practical, step-by-step guide that
introduces readers to representation,
inference, and learning using Python
libraries best suited to each task.

Please check www.PacktPub.com for information on our titles
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Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python
environment for data visualization.

2. Understand the topics such as importing
data for visualization and formatting data
for visualization.

3. Understand the underlying data and
how to use the right visualizations.

Building Machine Learning
Systems with Python

Building Machine Learning

Systems with Python
ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on guide

1. Master machine learning using a broad set of
Python libraries and start building your own
Python-based ML systems.

2. Covers classification, regression, feature
engineering, and much more guided by
practical examples.

3. A scenario-based tutorial to get into the
right mind-set of a machine learner (data
exploration) and successfully implement
this in your new or existing projects.

Please check www.PacktPub.com for information on our titles
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