Django By Example

Create your own line of successful web applications with Django

http://www.it-ebooks.info/

Django By Example

Create your own line of successful web applications
with Django

Antonio Melé

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Django By Example

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015
Production reference: 1261115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-191-1

www . packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author Project Coordinator
Antonio Melé Neha Bhatnagar
Reviewers Proofreader
Tarun Behal Safis Editing
Alasdair Nicol
Alex Robbins Indexer

Glen Robertson Rekha Nair

Derek Stegelman
Production Coordinator

Aparna Bhagat
Commissioning Editor

Akram Hussain
Cover Work

Aparna Bhagat
Acquisition Editor

Larissa Pinto

Content Development Editor
Arun Nadar

Technical Editor
Rupali Shrawane

Copy Editor
Vatsal Surti

www.it-ebooks.info

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=2b6c032a-c60c-4e6d-fb35-537224beaa6f
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=997611be-3da0-cc45-d80b-50bc7753e60c
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=c7983052-9c94-72c0-5ad8-538337769f5f
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=11df0c1c-8c11-7cb6-45c1-53db7eff0702
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=7f6ead3c-b9f9-806d-8ff9-53db7f3eed3e
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=7f6ead3c-b9f9-806d-8ff9-53db7f3eed3e
http://www.it-ebooks.info/

About the Author

Antonio Melé holds an MSc in Computer Science. He has been developing Django
projects since 2006 and leads the django.es Spanish Django community. He has
founded Zenx IT, a technology company that creates web applications for clients of
several industries.

Antonio has also worked as a CTO for several technology-based start-ups. His father
inspired his passion for computers and programming,.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Tarun Behal is a full-stack software engineer with 4 years of experience in building
and delivering high-quality applications using Python, JavaScript, PHP, Ruby, and
other open source technologies. He is passionate about software development and
enjoys exploring open source projects. Over the years, he has provided consulting
services to several organizations and has played many different roles such as cloud
administrator, frontend technologies, software architect, ERP consultant, and
software developer.

Tarun has a bachelors degree in computer engineering from the Uttar Pradesh
Technical University, Noida, India. He currently lives in Gurgaon, India and works
with Nagarro Software Pvt. Ltd. In the digital world, he can be contacted by e-mail
at tarunbehal@hotmail.com.

I feel very honored to have been asked to review this book. This was
an amazing experience for me as I learned a lot on the way through,
as I am sure you will too. I'd like to thank my family, especially my
brother, Varun, and all my colleagues for their constant support and
motivation.

I feel honored to have been asked to review this book. This was an
amazing experience as I learned a lot, as I am sure you will too.

Alasdair Nicol is a Python developer from Scotland. He discovered Django in
2009 while learning Python, and was instantly hooked. After 5 years with UK-based
hosting provider Memset Hosting, he recently started working at SpatialBuzz, who
provide SaaS for mobile network operators.

When he's not coding, Alasdair enjoys playing squash and running.

www.it-ebooks.info

http://www.it-ebooks.info/

Alex Robbins is a programmer living in Dallas, Texas. He loves programming
in Clojure and Python, doing anything from web development to data science.
He has been using Django since 2008 and enjoying it the whole time. When not
programming, he spends his time with his beautiful wife and amazing son.

Alex has also contributed distributed processing recipes to Clojure Cookbook and has
technically reviewed Enterprise Data Workflows with Cascading.

Glen Robertson is a software engineer from New Zealand. He currently works at
Lyft, where he builds applications in Python and PHP to help grow their transportation
network and fill up more empty car seats on the road. Prior to that, he worked for
Trulia, where he built heat-map visualizations with GeoDjango and PostGIS to show
local information to homebuyers such as crime rates and commute times.

Glen has a bachelor in information technology, majoring in software engineering
from Victoria University of Wellington.

Derek Stegelman is a senior web application developer at Kansas State
University. He works on maintaining Python web applications written using the
Django web framework. He has been working with Django for 5 years on websites
and applications and actively contributes to the Django community through open
source projects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

To my parents and my sister. Thank you for always
encouraging and supporting me.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface iX
Chapter 1: Building a Blog Application 1
Installing Django 1
Creating an isolated Python environment 2
Installing Django with pip 3
Creating your first project 4
Running the development server 5
Project settings 6
Projects and applications 8
Creating an application 8
Designing the blog data schema 9
Activating your application 11
Creating and applying migrations 11
Creating an administration site for your models 13
Creating a superuser 13
The Django administration site 14
Adding your models to the administration site 14
Customizing the way models are displayed 16
Working with QuerySet and managers 18
Creating objects 18
Updating objects 19
Retrieving objects 19
Using the filter() method 20
Using exclude() 20
Using order_by() 20
Deleting objects 21
When QuerySet are evaluated 21
Creating model managers 21

[il

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Building list and detail views 22
Creating list and detail views 22
Adding URL patterns for your views 23
Canonical URLs for models 25

Creating templates for your views 25

Adding pagination 29

Using class-based views 31

Summary 33

Chapter 2: Enhancing Your Blog with Advanced Features 35

Sharing posts by e-mail 35
Creating forms with Django 36
Handling forms in views 37
Sending e-mails with Django 39
Rendering forms in templates 41

Creating a comment system 44
Creating forms from models 47
Handling ModelForms in views 47
Adding comments to the post detail template 49

Adding tagging functionality 52

Retrieving posts by similarity 58

Summary 60

Chapter 3: Extending Your Blog Application 61

Creating custom template tags and filters 61
Creating custom template tags 62
Creating custom template filters 67

Adding a sitemap to your site 69

Creating feeds for your blog posts 73

Adding a search engine with Solr and Haystack 75
Installing Solr 75
Creating a Solr core 76
Installing Haystack 79
Building indexes 80
Indexing data 82
Creating a search view 83

Summary 86

Chapter 4: Building a Social Website 87

Creating a social website project 87

Starting your social website project 88

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Using the Django authentication framework 89
Creating a log-in view 90
Using Django authentication views 95
Log in and log out views 96
Change password views 101
Reset password views 104

User registration and user profiles 109
User registration 109
Extending the User model 112

Using a custom User model 118
Using the messages framework 118

Building a custom authentication backend 120

Adding social authentication to your site 122
Authentication using Facebook 123
Authentication using Twitter 126
Authentication using Google 127

Summary 131

Chapter 5: Sharing Content in Your Website 133

Creating an image bookmarking website 134
Building the image model 134
Creating many-to-many relationships 136
Registering the image model in the administration site 137

Posting content from other websites 137
Cleaning form fields 138
Overriding the save() method of a ModelForm 139
Building a bookmarklet with jQuery 143

Creating a detail view for images 150

Creating image thumbnails using sorl-thumbnail 153

Adding AJAX actions with jQuery 154
Loading j Query 155
Cross-Site Request Forgery in AJAX requests 156
Performing AJAX requests with jQuery 158

Creating custom decorators for your views 161

Adding AJAX pagination to your list views 163

Summary 168

Chapter 6: Tracking User Actions 169

Building a follower system 169
Creating many-to-many relationships with an intermediary model 170
Creating list and detail views for user profiles 173
Building an AJAX view to follow users 178

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Building a generic activity stream application 180
Using the contenttypes framework 181
Adding generic relations to your models 182
Avoiding duplicate actions in the activity stream 186
Adding user actions to the activity stream 187
Displaying the activity stream 188
Optimizing QuerySets that involve related objects 189

Using select_related 189
Using prefetch_related 189
Creating templates for actions 190

Using signals for denormalizing counts 192
Working with signals 193
Defining application configuration classes 195

Using Redis for storing item views 197
Installing Redis 197
Using Redis with Python 199
Storing item views in Redis 200
Storing a ranking in Redis 202
Next steps with Redis 204

Summary 204

Chapter 7: Building an Online Shop 205

Creating an online shop project 205
Creating product catalog models 206
Registering catalog models in the admin site 209
Building catalog views 210
Creating catalog templates 212

Building a shopping cart 217
Using Django sessions 218
Session settings 218
Session expiration 220
Storing shopping carts in sessions 220
Creating shopping cart views 224

Adding items to the cart 225
Building a template to display the cart 227
Adding products to the cart 229
Updating product quantities in the cart 230
Creating a context processor for the current cart 232
Context processors 232
Setting the cart into the request context 233

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Registering customer orders 234
Creating order models 235
Including order models in an administration site 236
Creating customer orders 238

Launching asynchronous tasks with Celery 242
Installing Celery 242
Installing RabbitMQ 243
Adding Celery to your project 243
Adding asynchronous tasks to your application 244
Monitoring Celery 246

Summary 247

Chapter 8: Managing Payments and Orders 249

Integrating a payment gateway 249
Creating a PayPal account 250
Installing django-paypal 250
Adding the payment gateway 252
Using PayPal's Sandbox 256
Getting payment notifications 260
Configuring our application 261
Testing payment notifications 262

Exporting orders to CSV files 264
Adding custom actions to the administration site 264

Extending the admin site with custom views 267

Generating PDF invoices dynamically 271
Installing WeasyPrint 272
Creating a PDF template 272
Rendering PDF files 274
Sending PDF files by e-mail 277

Summary 278

Chapter 9: Extending Your Shop 279

Creating a coupon system 279
Building the coupon models 280
Applying a coupon to the shopping cart 282
Applying coupons to orders 289

Adding internationalization and localization 291
Internationalization with Django 291

Internationalization and localization settings 292
Internationalization management commands 292
How to add translations to a Django project 293
How Django determines the current language 293

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preparing our project for internationalization 294
Translating Python code 295
Standard translations 295
Lazy translations 295
Translations including variables 296
Plural forms in translations 296
Translating your own code 296
Translating templates 301
The {% trans %} template tag 301
The {% blocktrans %} template tag 301
Translating the shop templates 302
Using the Rosetta translation interface 305
Fuzzy translations 308
URL patterns for internationalization 308
Adding a language prefix to URL patterns 308
Translating URL patterns 309
Allowing users to switch language 31
Translating models with django-parler 312
Installing django-parler 313
Translating model fields 313
Creating a custom migration 315
Integrating translations in the administration site 319
Applying migrations for model translation 320
Adapting views for translations 321
Format localization 324
Using django-localflavor to validate form fields 325
Building a recommendation engine 326
Recommending products based on previous purchases 327
Summary 335
Chapter 10: Building an e-Learning Platform 337
Creating an e-Learning platform 337
Building the course models 338
Registering the models in the administration site 341
Providing initial data for models 341
Creating models for diverse content 344
Using model inheritance 345
Abstract models 346
Multi-table model inheritance 346
Proxy models 347
Creating the content models 347
Creating custom model fields 350
Creating a content management system 356
Adding the authentication system 356
Creating the authentication templates 356

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Creating class-based views 359
Using mixins for class-based views 360
Working with groups and permissions 362
Restricting access to class-based views 363
Using formsets 370
Managing course modules 371
Adding content to course modules 375
Managing modules and contents 380
Reordering modules and contents 385
Summary 388
Chapter 11: Caching Content 389
Displaying courses 389
Adding student registration 394
Creating a student registration view 395
Enrolling in courses 397
Accessing the course contents 401
Rendering different types of content 404
Using the cache framework 407
Available cache backends 407
Installing memcached 408
Cache settings 409
Adding memcached to your project 409
Montioring memcached 410
Cache levels 410
Using the low-level cache API 411
Caching based on dynamic data 413
Caching template fragments 414
Caching views 416
Using the per-site cache 416
Summary 417
Chapter 12: Building an API 419
Building a RESTful API 419
Installing Django Rest Framework 420
Defining serializers 421
Understanding parsers and renderers 422
Building list and detail views 423
Creating nested serializers 425
Building custom views 427
Handling authentication 428
Adding permissions to views 429

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Creating view sets and routers 431
Adding additional actions to view sets 432
Creating custom permissions 433
Serializing course contents 434
Summary 436
Index 437

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Django is a powerful Python web framework that encourages rapid development
and clean, pragmatic design, offering a relatively shallow learning curve. This makes
it attractive to both novice and expert programmers.

This book will guide you through the entire process of developing professional web
applications with Django. The book not only covers the most relevant aspects of the
framework, it also teaches you how to integrate other popular technologies into your
Django projects.

The book will walk you through the creation of real-world applications, solving
common problems, and implementing best practices with a step-by-step approach
that is easy to follow.

After reading this book, you will have a good understanding of how Django works
and how to build practical, advanced web applications.

What this book covers

Chapter 1, Building a Blog Application, introduces you to the framework by creating a
blog application. You will create the basic blog models, views, templates, and URLs
to display blog posts. You will learn how to build QuerySets with the Django ORM,
and you will configure the Django administration site.

Chapter 2, Enhancing Your Blog with Advanced Features, teaches how to handle forms
and modelforms, send e-mails with Django, and integrate third-party applications.
You will implement a comment system for your blog posts and allow your users
to share posts by e-mail. The chapter will also guide you through the process of
creating a tagging system.

[ix]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 3, Extending Your Blog Application explores how to create custom template
tags and filters. The chapter will also show you how to use the sitemap framework
and create an RSS feed for your posts. You will complete your blog application by
building a search engine with Solr.

Chapter 4, Building a Social Website explains how to build a social website. You will
use the Django authentication framework to create user account views. You will
learn how to create a custom user profile model and build social authentication into
your project using major social networks.

Chapter 5, Sharing Content in Your Website teaches you how to transform your social
application into an image bookmarking website. You will define many-to-many
relationships for models, and you will create an AJAX bookmarklet in JavaScript
and integrate it into your project. The chapter will show you how to generate image
thumbnails and create custom decorators for your views.

Chapter 6, Tracking User Actions shows you how to build a follower system for users.
You will complete your image bookmarking website by creating a user activity
stream application. You will learn how to optimise QuerySets, and you will work
with signals. You will integrate Redis into your project to count image views.

Chapter 7, Building an Online Shop explores how to create an online shop. You will
build the catalog models, and you will create a shopping cart using Django sessions.
You will learn to manage customer orders and send asynchronous notifications to
users using Celery.

Chapter 8, Managing Payments and Orders explains you how to integrate a payment
gateway into your shop and handle payment notifications. You will also customize
the administration site to export orders to CSV files, and you will generate PDF
invoices dynamically.

Chapter 9, Extending Your Shop teaches you how to create a coupon system to apply
discounts to orders. The chapter will show you how to add internationalization

to your project and how to translate models. You will also build a product
recommendation engine using Redis.

Chapter 10, Building an e-Learning Platform guides you through creating an e-learning
platform. You will add fixtures to your project, use model inheritance, create custom
model fields, use class-based views, and manage groups and permissions. You will
create a content management system and handle formsets.

Chapter 11, Caching Content shows you how to create a student registration system and
manage student enrollment in courses. You will render diverse course contents and
you will learn how to use the cache framework.

[x]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 12, Building an API explores building a RESTful API for your project using
the Django REST framework.

Additionally, Chapter 13, Going Live, is available for download at
. https://www.packtpub.com/sites/default/files/downloads/
Django By Example GoingLive.pdf. You will learn how to create
s a production environment using uWSGI and Nginx, and how to secure it
with SSL. The chapter will explain you how to build a custom subdomain
middleware and create custom management commands.

What you need for this book
* A working installation of Python 3

¢ A Linux OS is recommended

Who this book is for

This book is intended for developers with a basic knowledge of Python who wish to
learn Django in a pragmatic way. Perhaps you are completely new to Django or you
already know a little but you want to get the most out of it. This book will help you
master the most relevant areas of the framework by building practical projects from
scratch. You need to have familiarity with basic programming concepts in order to
read this book. Some previous knowledge of HTML and JavaScript is assumed.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

def post share(request, post id):
post = get object or 404 (Post, id=post 1id, status='published')
if request.method == 'POST':
form = EmailPostForm(request.POST)

[xi]

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf
https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf
http://www.it-ebooks.info/

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def post share(request, post id):
post = get object or 404 (Post, id=post id, status='published')
if request.method == 'POST':
form = EmailPostForm(request.POST)

Any command-line input or output is written as follows:

python manage.py runserver

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
the Next button moves you to the next screen".

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[xii]

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[xiii]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

In this book, you will learn how to build complete Django projects, ready for
production use. In case you haven't installed Django yet, you will learn how to do

it in the first part of this chapter. This chapter will cover how to create a simple blog
application using Django. The purpose of the chapter is to get a general idea of how
the framework works, understand how the different components interact with each
other, and give you the skills to easily create Django projects with basic functionality.
You will be guided through the creation of a complete project without elaborating
upon all the details. The different framework components will be covered in detail
throughout the following chapters of this book.

This chapter will cover the following points:

* Installing Django and creating your first project

* Designing models and generating model migrations
* Creating an administration site for your models

* Working with QuerySet and managers

* Building views, templates, and URLs

* Adding pagination to list views

* Using Django class-based views

Installing Django

If you have already installed Django, you can skip this section and jump directly
to Creating your first project. Django comes as a Python package and thus can be
installed in any Python environment. If you haven't installed Django yet, here

is a quick guide to installing Django for local development.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

Django works well with Python versions 2.7 or 3. In the examples of this book, we
are going to use Python 3. If you're using Linux or Mac OS X, you probably have
Python installed. If you are not sure if Python is installed in your computer, you can
verify it by typing python in the terminal. If you see something like the following,
then Python is installed in your computer:

Python 3.5.0 (v3.5.0:374f501f4567, Sep 12 2015, 11:00:19)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

>>>

If your installed Python version is lower than 3, or Python is not installed on your
computer, download Python 3.5.0 from http://www.python.org/download/ and
install it.

Since you are going to use Python 3, you don't have to install a database. This
Python version comes with the SQLite database built-in. SQLite is a lightweight
database that you can use with Django for development. If you plan to deploy your
application in a production environment, you should use an advanced database
such as PostgreSQL, MySQL, or Oracle. You can get more information about how
to get your database running with Django in https://docs.djangoproject.com/
en/l.8/topics/install/#database-installation.

Creating an isolated Python environment

It is recommended that you use virtualenv to create isolated Python environments,
so you can use different package versions for different projects, which is far more
practical than installing Python packages system wide. Another advantage of using
virtualenv is that you won't need any administration privileges to install Python
packages. Run the following command in your shell to install virtualenv:

pip install virtualenv

After you install virtualenv, create an isolated environment with the following
command:

virtualenv my env

This will create a my_env/ directory including your Python environment. Any
Python libraries you install while your virtual environment is active will go into
the my_env/1lib/python3.5/site-packages directory.

[2]

www.it-ebooks.info

http://www.python.org/download/
https://docs.djangoproject.com/en/1.8/topics/install/#database-installation
https://docs.djangoproject.com/en/1.8/topics/install/#database-installation
http://www.it-ebooks.info/

Chapter 1

If your system comes with Python 2.X and you installed Python 3.X, you have to tell
virtualenv to use the latter. You can locate the path where Python 3 is installed and
use it to create the virtual environment with the following commands:

zenx$ *which python3*

/Library/Frameworks/Python. framework/Versions/3.5/bin/python3

zenx$ *virtualenv my env -p

/Library/Frameworks/Python. framework/Versions/3.5/bin/python3*
Run the following command to activate your virtual environment:
source my env/bin/activate

The shell prompt will include the name of the active virtual environment enclosed in
parentheses, like this:

(my env)laptop:~ zenx$
You can deactivate your environment anytime with the deactivate command.

You can find more information about virtualenv at https://virtualenv.pypa.io/
en/latest/.

On top of virtualenv, you can use virtualenvwrapper. This tool provides wrappers
that make it easier to create and manage your virtual environments. You can
download it from http://virtualenvwrapper.readthedocs.org/en/latest/.

Installing Django with pip

pip is the preferred method for installing Django. Python 3.5 comes with pip pre-
installed, but you can find pip installation instructions at https://pip.pypa.io/
en/stable/installing/. Run the following command at the shell prompt to install
Django with pip:

pip install Django==1.8.6

Django will be installed in the Python site-packages/ directory of your virtual
environment.

Now check if Django has been successfully installed. Run python on a terminal and
import Django to check its version:

>>> import django
>>> django.VERSION
django.VERSION (1, 8, 5, 'final', 0)

[31]

www.it-ebooks.info

https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
http://virtualenvwrapper.readthedocs.org/en/latest/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
http://www.it-ebooks.info/

Building a Blog Application

If you get this output, Django has been successfully installed in your machine.

Django can be installed in several other ways. You can find a complete installation
gukﬂaathttps://docs.djangoproject.com/en/l.8/topics/installﬁ

Creating your first project

Our first Django project will be a complete blog site. Django provides a command
that allows you to easily create an initial project file structure. Run the following
command from your shell:

django-admin startproject mysite
This will create a Django project with the name mysite.

Let's take a look at the generated project structure:

mysite/
manage.py
mysite/
init .py
settings.py
urls.py
wsgi.py

These files are as follows:
* manage.py: A command-line utility to interact with your project. It is a thin
wrapper around the django-admin. py tool. You don't need to edit this file.
* mysite/: Your project directory consist of the following files:

° _ init__ .py: Anempty file that tells Python to treat the mysite
directory as a Python module.

° settings.py: Settings and configuration for your project. Contains
initial default settings.

° urls.py: The place where your URL patterns live. Each URL defined
here is mapped to a view.

° wsgi.py: Configuration to run your project as a WSGI application.
The generated settings.py file includes a basic configuration to use a SQLite

database and a list of Django applications that are added to your project by default.
We need to create the tables in the database for the initial applications.

[4]

www.it-ebooks.info

https:// docs.djangoproject.com/en/1.8/topics/install/
http://www.it-ebooks.info/

Chapter 1

Open the shell and run the following commands:

cd mysite

python manage.py migrate

You will see an output that ends like this:

Rendering model states... DONE

Applying contenttypes.0001 initial... OK

Applying auth.0001 initial... OK

Applying admin.0001 initial... OK

Applying contenttypes.0002 remove content type name... OK
Applying auth.0002 alter permission name max length... OK
Applying auth.0003_alter user email max length... OK
Applying auth.0004_alter user username opts... OK
Applying auth.0005 alter user last login null... OK
Applying auth.0006_require contenttypes 0002... OK
Applying sessions.0001 initial... OK

The tables for the initial applications have been created in the database. You will
learn about the migrate management command in a bit.

Running the development server

Django comes with a lightweight web server to run your code quickly, without
needing to spend time configuring a production server. When you run the

Django development server, it keeps checking for changes in your code. It reloads
automatically, freeing you from manually reloading it after code changes. However,
it might not notice some actions like adding new files to your project, so you will
have to restart the server manually in these cases.

Start the development server by typing the following command from your project's
root folder:

python manage.py runserver

You should see something like this:

Performing system checks...

System check identified no issues (0 silenced).
November 5, 2015 - 19:10:54

Django version 1.8.6, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

Now, open the URL http://127.0.0.1:8000/ in your browser. You should see
a page telling you the project is successfully running, as shown in the following
screenshot:

[-Ns N3] Welcome to Django "y
(] »][e2] [+ @ 127.0.0.1:8000 ¢ | Lecor (O]

It worked!
Congratulations on your first Django-powered page.

Of course, you haven't actually done any work yet. Next, start your first app by running python manage.py startapp [app_label].

You're seeing this message because you have DEBUG = True in your Django settings file and you haven't configured any URLs. Get to work!

You can indicate Django to run the development server on a custom host and port, or
tell it that you want to run your project loading a different settings file. For example,
you can run the manage . py command as follows:

python manage.py runserver 127.0.0.1:8001 \

--settings=mysite.settings

This comes in handy to deal with multiple environments that require different
settings. Remember, this server is only intended for development and is not suitable
for production use. In order to deploy Django in a production environment, you
should run it as a Web Server Gateway Interface (WSGI) application using a real
web server such as Apache, Gunicorn, or uWSGI. You can find more information
about how to deploy Django with different web servers at https://docs.
djangoproject.com/en/1.8/howto/deployment /wsgi/.

Additional downloadable Chapter 13, Going Live covers setting up a production
environment for your Django projects.

Project settings

Let's open the settings.py file and take a look at the configuration of our project.
There are several settings that Django includes in this file, but these are only a part of
all the Django settings available. You can see all settings and their default values in
https://docs.djangoproject.com/en/1.8/ref/settings/.

[6]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
https://docs.djangoproject.com/en/1.8/ref/settings/
http://www.it-ebooks.info/

Chapter 1

The following settings are worth looking at:

DEBUG is a boolean that turns on/ off the debug mode of the project. If set to
True, Django will display detailed error pages when an uncaught exception
is thrown by your application. When you move to a production environment,
remember you have to set it to False. Never deploy a site into production
with DEBUG turned on because you will expose sensitive data of your project.

ALLOWED_HOSTS is not applied while debug mode is on or when running
tests. Once you are going to move your site to production and set DEBUG
to False, you will have to add your domain/host to this setting in order
to allow it to serve the Django site.

INSTALLED APPS is a setting you will have to edit in all projects. This setting
tells Django which applications are active for this site. By default, Django
includes the following applications:

django.contrib.admin: This is an administration site.
django.contrib.auth: This is an authentication framework.

django.contrib.contenttypes: This is a framework for
content types.

django.contrib.sessions: This is a session framework.
django.contrib.messages: This is a messaging framework.
django.contrib.staticfiles: This is a framework for managing
static files.

MIDDLEWARE CLASSES is a tuple containing middlewares to be executed.

ROOT_URLCONF indicates the Python module where the root URL patterns
of your application are defined.

DATABASES is a dictionary containing the settings for all the databases to be
used in the project. There must always be a default database. The default
configuration uses a SQLite3 database.

LANGUAGE_CODE Defines the default language code for this Django site.

Don't worry if you don't understand much about what you are seeing. You will
get more familiar with Django settings in the following chapters.

[71

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

Projects and applications

Throughout this book, you will read the terms project and application over and over.
In Django, a project is considered a Django installation with some settings; and an
application is a group of models, views, templates, and URLs. Applications interact
with the framework to provide some specific functionalities and may be reused in
various projects. You can think of the project as your website, which contains several
applications like blog, wiki, or forum, which can be used in other projects.

Creating an application

Now let's create your first Django application. We will create a blog application from
scratch. From your project's root directory, run the following command:

python manage.py startapp blog
This will create the basic structure of the application, which looks like this:

blog/
_ init_ .py
admin.py
migrations/

_ init_ .py
models.py
tests.py
views.py

These files are as follows:
* admin.py: This is where you register models to include them into the Django
administration site. Using the Django admin site is optional.

* migrations: This directory will contain database migrations of your
application. Migrations allow Django to track your model changes and
synchronize the database accordingly.

* models.py: Data models of your application. All Django applications need
to have a models. py file, but this file can be left empty.

* tests.py: This is where you can add tests for your application.

* views.py: The logic of your application goes here. Each view receives an
HTTP request, processes it, and returns a response.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Designing the blog data schema

We will start by defining the initial data models for our blog. A model is a Python
class that subclasses django.db.models.Model, in which each attribute represents
a database field. Django will create a table for each model defined in the models.py
file. When you create a model, Django offers you a practical API to query the
database easily.

First, we will define a post model. Add the following lines to the models.py file of
the blog application:

from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User

class Post (models.Model) :
STATUS_CHOICES = (
('draft', 'Draft'),
('published', 'Published'),
)
title = models.CharField(max length=250)
slug = models.SlugField(max length=250,
unique for date='publish')
author = models.ForeignKey (User,
related name='blog posts')
body = models.TextField()
publish = models.DateTimeField(default=timezone.now)
created = models.DateTimeField (auto _now_add=True)
updated = models.DateTimeField (auto_now=True)
status = models.CharField(max_ length=10,
choices=STATUS CHOICES,
default='draft')

class Meta:
ordering = ('-publish',)

def str (self):
return self.title

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

This is our basic model for blog posts. Let's take a look at the fields we just defined
for this model:

title: This is the field for the post title. This field is CharField, which
translates into a VARCHAR column in the SQL database.

slug: This is a field intended to be used in URLs. A slug is a short label
containing only letters, numbers, underscores, or hyphens. We will use the
slug field to build beautiful, SEO-friendly URLs for our blog posts. We have
added the unique_for_date parameter to this field so we can build URLs
for posts using the date and slug of the post. Django will prevent from
multiple posts having the same slug for the same date.

author: This field is ForeignKey. This field defines a many-to-one
relationship. We are telling Django that each post is written by a user and

a user can write several posts. For this field, Django will create a foreign
key in the database using the primary key of the related model. In this case,
we are relying on the User model of the Django authentication system. We
specify the name of the reverse relationship, from User to post, with the
related_ name attribute. We are going to learn more about this later.

body: This is the body of the post. This field is TextField, which translates
into a TEXT column in the SQL database.

publish: This datetime indicates when the post was published. We use
Django's timezone now method as default value. This is just a timezone-aware
datetime.now.

created: This datetime indicates when the post was created. Since we
are using auto_now_add here, the date will be saved automatically when
creating an object.

updated: This datetime indicates the last time the post has been updated.
Since we are using auto_now here, the date will be updated automatically
when saving an object.

status: This is a field to show the status of a post. We use a choices
parameter, so the value of this field can only be set to one of the given choices.

As you can see, Django comes with different types of fields that you can use to define
your models. You can find all field types in https://docs.djangoproject.com/
en/1.8/ref/models/fields/.

The class Meta inside the model contains metadata. We are telling Django to sort
results by the publish field in descending order by default when we query the
database. We specify descending order by using the negative prefix.

[10]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/models/fields/
https://docs.djangoproject.com/en/1.8/ref/models/fields/
http://www.it-ebooks.info/

Chapter 1

The _str () method is the default human-readable representation of the object.
Django will use it in many places such as the administration site.

If you come from Python 2.X, note that in Python 3 all strings are natively
considered unicode, therefore we only use the str () method. The
e __unicode () method is obsolete.

Since we are going to deal with datetimes, we will install the pytz module. This
module provides timezone definitions for Python and is required by SQLite to work
with datetimes. Open the shell and install pytz with the following command:

pip install pytz

Django comes with support for timezone-aware datetimes. You can activate/
deactivate time zone support with the USE_TZz setting in the settings.py file of
your project. This setting is set to True when you create a new project using the
startproject management command.

Activating your application

In order for Django to keep track of our application and be able to create database
tables for its models, we have to activate it. To do this, edit the settings.py file
and add blog to the INSTALLED_ APPS setting. It should look like this:

INSTALLED APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'blog’',

)

Now Django knows that our application is active for this project and will be able
to introspect its models.

Creating and applying migrations

Let's create a data table for our model in the database. Django comes with a
migration system to track the changes you do to your models and propagate them
into the database. The migrate command applies migrations for all applications
listed in INSTALLED_APPS; it synchronizes the database with the current models
and migrations.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

First, we need to create a migration for the new model we just created. From the root
directory of your project, enter this command:

python manage.py makemigrations blog

You should get the following output:

Migrations for 'blog':
0001 initial.py:
- Create model Post

Django just created a file 0001_initial.py inside the migrations directory of the
blog application. You can open that file to see how a migration looks like.

Let's take a look at the SQL code that Django will execute in the database to create the
table for our model. The sqlmigrate command takes migration names and returns
their SQL without running it. Run the following command to inspect its output:

python manage.py sqlmigrate blog 0001

The output should look as follows:

BEGIN;

CREATE TABLE "blog post" ("id" integer NOT NULL PRIMARY KEY
AUTOINCREMENT, "title" varchar(250) NOT NULL, "slug" wvarchar (250) NOT
NULL, "body" text NOT NULL, "publish" datetime NOT NULL, "created"
datetime NOT NULL, "updated" datetime NOT NULL, "status" varchar(10)

NOT NULL, "author id" integer NOT NULL REFERENCES "auth user" ("id"));
CREATE INDEX "blog post 2dbcba4l" ON "blog post" ("slug");

CREATE INDEX "blog post 4f331e2f" ON "blog post" ("author id");
COMMIT;

The exact output depends on the database you are using. The output above

is generated for SQLite. As you can see, Django generates the table names by
combining the app name and the lowercase name of the model (blog_post), but
you can also specify them in the Meta class of the models using the db_table
attribute. Django creates a primary key automatically for each model but you can
also override this specifying primary key=True on one of your model fields.

Let's sync our database with the new model. Run the following command to apply
existing migrations:

python manage.py migrate
You will get the following output that ends with the following line:

Applying blog.0001 initial... OK

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

We just applied migrations for the applications listed in INSTALLED_APPS, including
our blog application. After applying migrations, the database reflects the current
status of our models.

If you edit your models.py file in order to add, remove, or change fields of existing
models, or if you add new models, you will have to make a new migration using the
makemigrations command. The migration will allow Django to keep track of model
changes. Then you will have to apply it with the migrate command to keep the
database in sync with your models.

Creating an administration site for your
models

Now that we have defined the post model, we will create a simple administration
site to manage blog posts. Django comes with a built-in administration interface

that is very useful for editing content. The Django admin site is built dynamically by
reading your model metadata and providing a production-ready interface for editing
content. You can use it out-of-the-box, configuring how you want your models to be
displayed in it.

Remember that django.contrib.admin is already included in the INSTALLED APPS
setting of our project and that's why we don't have to add it.

Creating a superuser

First, we need to create a user to manage the admin site. Run the following command:

python manage.py createsuperuser

You will see the following output. Enter your desired username, e-mail, and
password:

Username (leave blank to use 'admin'): admin
Email address: admin@admin.com

Password: *xxxkkk*

Password (again): ***xx*x*x

Superuser created successfully.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

The Django administration site

Now, start the development server with the command python manage.py
runserver and open http://127.0.0.1:8000/admin/ in your browser. You
should see the administration login page, as shown in the following screenshot:

Django administration

Username:

admin

Password:

Log in

Log in using the credentials of the user you created in the previous step. You will see
the admin site index page, as shown in the following screenshot:

Django ad ministration Welcome, admin. Change password / Log out

Site administration

Recent Actions
Groups fAdd ¢ Change My Actions
Users dpAdd o Change None available

The Group and User models you see here are part of the Django authentication
framework located in django. contrib.auth. If you click on Users, you will see the
user you created before. The post model of your blog application has a relationship
with this User model. Remember, it is a relationship defined by the author field.

Adding your models to the administration site

Let's add your blog models to the administration site. Edit the admin. py file of your
blog application and make it look like this:

from django.contrib import admin
from .models import Post

admin.site.register (Post)

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Now, reload the admin site in your browser. You should see your post model in the
admin site as follows:

Django administration Welcome, admin. Change password f Log out

Site administration

Recent Actions

Giroups dehAdd o Change My Actions
Users deAdd o Change None available
Poss deAdd #* Change

That was easy, right? When you register a model in the Django admin site, you get
a user-friendly interface generated by introspecting your models that allows you
to list, edit, create, and delete objects in a simple way.

Click on the Add link on the right of Posts to add a new post. You will see the
create form that Django has generated dynamically for your model, as shown
in the following screenshot:

Django administration Welcome, admin. Change password / Log out

Home » Blog » Posts » Add post
Add post
Title: [
Slug:
Author: Q
Body:
4
Publish: Date:| 3014-09-28 | Today | [F]
Time:|3p.49:52 | Now | (T}
Status: Draft ¥
Save and add anather | Save and continue editing |

Django uses different form widgets for each type of field. Even complex fields such
as DateTimeField are displayed with an easy interface like a JavaScript date picker.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

Fill in the form and click on the Save button. You should be redirected to the post
list page with a successful message and the post you just created, as shown in the
following screenshot:

Django administration Welcome, admin. Change password / Log out

Home » Blog » Posts

© The post "Who was Django Reinhardt?" was added successfully.

Select post to change

| | Post

[Who was Django Reinhardt?

1 post

Customizing the way models are displayed

Now we are going to see how to customize the admin site. Edit the admin. py file of
your blog application and change it into this:

from django.contrib import admin
from .models import Post

class PostAdmin (admin.ModelAdmin) :
list display = ('title', 'slug', 'author', 'publish',
'status')
admin.site.register (Post, PostAdmin)

We are telling the Django admin site that our model is registered into the admin site
using a custom class that inherits from Modeladmin. In this class, we can include
information about how to display the model in the admin site and how to interact
with it. The 1ist_display attribute allows you to set the fields of your model that
you want to display in the admin object list page.

Let's customize the admin model with some more options, using the following code:

class PostAdmin (admin.ModelAdmin) :

list display = ('title', 'slug', 'author', 'publish',
'status')
list filter = ('status', 'created', 'publish', 'author')

search fields = ('title', 'body')
prepopulated fields = {'slug': ('title',)}

raw _id fields = ('author',)
date hierarchy = 'publish'
ordering = ['status', 'publish']

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Go back to your browser and reload the post list page. Now it will look like this:

Django administration Welcome, admin. Change password / Log out

Home » Blog » Posts

Select post to change [Add post +)
Qi | search

By status
14 September 20 ¥

All

0| Title Slug Author Publish 2 & | Status T
By created

(] Who was Django Reinhardt? who-was-django-reinhardt admin Sept. 20, 2014, 12:49 p.m. Draft PRl
= y da

1 post

By publish
Any date

You can see that the fields displayed on the post list page are the ones you specified
in the 1ist_display attribute. The list page now includes a right sidebar that
allows you to filter the results by the fields included in the 1ist_filter attribute.

A search bar has appeared on the page. This is because we have defined a list of
searchable fields using the search_fields attribute. Just below the search bar, there
is a bar to navigate quickly through a date hierarchy. This has been defined by the
date_hierarchy attribute. You can also see that the posts are ordered by Status
and Publish columns by default. You have specified the default order using the
ordering attribute.

Now click on the Add post link. You will also see some changes here. As you
type the title of a new post, the slug field is filled automatically. We have told
Django to prepopulate the slug field with the input of the title field using the
prepopulated_fields attribute. Also, now the author field is displayed with a
lookup widget that can scale much better than a dropdown select input when you
have thousands of users, as shown in the following screenshot:

Author: 1 Q, admin

With a few lines of code, we have customized the way our model is displayed
in the admin site. There are plenty of ways to customize and extend the Django
administration site. Later in this book, we will cover this further.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

Working with QuerySet and managers

Now that you have a fully functional administration site to manage your blog's
content, it's time to learn how to retrieve information from the database and interact
with it. Django comes with a powerful database-abstraction API that lets you create,
retrieve, update, and delete objects easily. The Django Object-relational Mapper
(ORM) is compatible with MySQL, PostgreSQL, SQLite, and Oracle. Remember
that you can define the database of your project by editing the DATABASES setting in
the settings.py file of your project. Django can work with multiple databases at

a time and you can even program database routers that handle the data in any way
you like.

Once you have created your data models, Django gives you a free API to interact
with them. You can find the data model reference of the official documentation at
https://docs.djangoproject.com/en/1.8/ref/models/.

Creating objects

Open the terminal and run the following command to open the Python shell:

python manage.py shell

Then type the following lines:

>>> from django.contrib.auth.models import User

>>> from blog.models import Post

>>> user = User.objects.get (username='admin')

>>> Post.objects.create(title='0One more post',
slug='one-more-post"',
body="'Post body.',
author=user)

>>> post.save ()

Let's analyze what this code does. First, we retrieve the user object that has the
username admin:

user = User.objects.get (username='admin')

The get () method allows you to retrieve a single object from the database. Note that
this method expects one result that matches the query. If no results are returned by
the database, this method will raise a DoesNotExist exception, and if the database
returns more than one result, it will raise a MultipleObjectsReturned exception.
Both exceptions are attributes of the model class that the query is being performed on.

[18]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/models/
http://www.it-ebooks.info/

Chapter 1

Then we create a Post instance with a custom title, slug, and body; and we set the
user we previously retrieved as author of the post:

post = Post (title='Another post', slug='another-post', body='Post
body.', author=user)

[This object is in memory and is not persisted to the database.]

Finally, we save the Post object to the database using the save () method:

post.save ()

This action performs an INSERT SQL statement behind the scenes. We have seen how
to create an object in memory first and then persist it to the database, but we can also
create the object into the database directly using the create () method as follows:

Post.objects.create(title='0One more post', slug='one-more-post',
body="'Post body.', author=user)

Updating objects
Now, change the title of the post into something different and save the object again:

>>> post.title = 'New title'
>>> post.save ()

This time, the save () method performs an UPDATE SQL statement.

The changes you make to the object are not persisted to the
s~ database until you call the save () method.

Retrieving objects

The Django Object-relational mapping (ORM) is based on QuerySet. A QuerySet
is a collection of objects from your database that can have several filters to limit

the results. You already know how to retrieve a single object from the database
using the get () method. As you have seen, we have accessed this method using
Post.objects.get (). Each Django model has at least one manager, and the
default manager is called objects. You get a Queryset object by using your models
manager. To retrieve all objects from a table, you just use the all () method on the
default objects manager, like this:

>>> all posts = Post.objects.all()

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

This is how we create a QuerySet that returns all objects in the database. Note

that this QuerySet has not been executed yet. Django QuerySets are lazy; they are
only evaluated when they are forced to do it. This behavior makes QuerySets very
efficient. If we don't set the QuerySet to a variable, but instead write it directly on
the Python shell, the SQL statement of the QuerySet is executed because we force
it to output results:

>>> Post.objects.all()

Using the filter() method

To filter a QuerySet, you can use the filter () method of the manager. For example,
we can retrieve all posts published in the year 2015 using the following QuerySet:

Post.objects.filter (publish year=2015)

You can also filter by multiple fields. For example, we can retrieve all posts
published in 2015 by the author with the username admin:

Post.objects.filter (publish year=2015, author_ username='admin')

This equals to building the same QuerySet chaining multiple filters:

Post.objects.filter (publish year=2015)\
filter (author username='admin')

We are building queries with field lookup methods using two
underscores (publish__year), but we are also accessing fields
g of related models using two underscores (author _username).

Using exclude()

You can exclude certain results from your QuerySet using the exclude () method
of the manager. For example, we can retrieve all posts published in 2015 whose
titles don't start by why:

Post.objects.filter (publish year=2015)\
.exclude (title startswith='Why"')

Using order_by()

You can order results by different fields using the order_by () method of the
manager. For example, you can retrieve all objects ordered by their title:

Post.objects.order by ('title')

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Ascending order is implied. You can indicate descending order with a negative sign
prefix, like this:

Post.objects.order by ('-title')

Deleting objects

If you want to delete an object, you can do it from the object instance:

post = Post.objects.get (id=1)
post.delete ()

[Note that deleting objects will also delete any dependent relationships.]

When QuerySet are evaluated
You can concatenate as many filters as you like to a QuerySet and you will not hit
the database until the QuerySet is evaluated. Querysets are only evaluated in the
following cases:

* The first time you iterate over them

* When you slice them. for instance: Post .objects.all () [:3]

* When you pickle or cache them

* When you call repr () or len() onthem

* When you explicitly call 1ist () on them

* When you test it in a statement such as bool (), or , and, or if

Creating model managers

As we previously mentioned, objects is the default manager of every model,
which retrieves all objects in the database. But we can also define custom managers
for our models. We are going to create a custom manager to retrieve all posts with
published status.

There are two ways to add managers to your models: You can add extra manager
methods or modify initial manager QuerySets. The first one turns up something
like Post .objects.my manager ()and the later like Post .my manager.all().
Our manager will allow us to retrieve posts using Post . published.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

Edit the models.py file of your blog application to add the custom manager:

class PublishedManager (models.Manager) :
def get queryset(self):
return super (PublishedManager,
self) .get queryset()\
.filter (status='published')

class Post (models.Model) :
...
objects = models.Manager() # The default manager.
published = PublishedManager () # Our custom manager.

get_queryset () is the method that returns the QuerySet to be executed. We use it to
include our custom filter in the final QuerySet. We have defined our custom manager
and added it to the Post model; we can now use it to perform queries. For example,
we can retrieve all published posts whose title starts with who using;:

Post.published.filter(title startswith='Who')

Building list and detail views

Now that you have some knowledge about how to use the ORM, you are ready to
build the views of the blog application. A Django view is just a Python function that
receives a web request and returns a web response. Inside the view goes all the logic
to return the desired response.

First, we will create our application views, then we will define an URL pattern for
each view; and finally, we will create HTML templates to render the data generated
by the views. Each view will render a template passing variables to it and will return
an HTTP response with the rendered output.

Creating list and detail views

Let's start by creating a view to display the list of posts. Edit the views.py file of
your blog application and make it look like this:

from django.shortcuts import render, get object or 404
from .models import Post

def post list (request) :
posts = Post.published.all()
return render (request,
'blog/post/list.html',
{'posts': posts})

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

You just created your first Django view. The post_1list view takes the request
object as the only parameter. Remember that this parameter is required by all views.
In this view, we are retrieving all the posts with the published status using the
published manager we created previously.

Finally, we are using the render () shortcut provided by Django to render the list of
posts with the given template. This function takes the request object as parameter,
the template path and the variables to render the given template. It returns an

Ht tpResponse object with the rendered text (normally HTML code). The render ()
shortcut takes the request context into account, so any variable set by template
context processors is accessible by the given template. Template context processors
are just callables that set variables into the context. You will learn how to use them
in Chapter 3, Extending Your Blog Application.

Let's create a second view to display a single post. Add the following function to the
views.py file:

def post detail (request, year, month, day, post):
post = get object or 404 (Post, slug=post,
status="'published’',
publish year=year,
publish month=month,
publish day=day)
return render (request,
'blog/post/detail .html’',
{'post': post})

This is the post detail view. This view takes year, month, day, and post parameters
to retrieve a published post with the given slug and date. Notice that when we
created the post model, we added the unique_for_date parameter to the s1lug field.
This way we ensure that there will be only one post with a slug for a given date,

and thus, we can retrieve single posts by date and slug. In the detail view, we are
using the get_object_or_404 () shortcut to retrieve the desired post. This function
retrieves the object that matches with the given parameters, or launches an HTTP 404
(Not found) exception if no object is found. Finally, we use the render () shortcut to
render the retrieved post using a template.

Adding URL patterns for your views

An URL pattern is composed of a Python regular expression, a view, and a name that
allows you to name it project-wide. Django runs through each URL pattern and stops
at the first one that matches the requested URL. Then, Django imports the view of the
matching URL pattern and executes it, passing an instance of the HttpRequest class
and keyword or positional arguments.

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

If you haven't worked with regular expressions before, you might want to take a
look at https://docs.python.org/3/howto/regex . html first.

Create an urls. py file in the directory of the blog application and add the
following lines:

from django.conf.urls import url
from . import views

urlpatterns = [
post views
url(r'”*$', views.post list, name='post list'),
url (r'* (?P<year>\d{4})/ (?P<month>\d{2}) / (?P<day>\d{2})/'\
r' (?P<post>[-\wl+)/$",
views.post detail,
name='post detail'),

]

The first URL pattern doesn't take any arguments and is mapped to the post_1list
view. The second pattern takes the following four arguments and is mapped to the
post_detail view. Let's take a look at the regular expression of the URL pattern:

* year: Requires four digits.
* month: Requires two digits. We will only allow months with leading zeros.

* day: Requires two digits. We will only allow days with leading zeros.

* post: Can be composed by words and hyphens.

Creating an urls. py file for each app is the best way to make your
s applications reusable by other projects.

Now you have to include the URL patterns of your blog application into the main
URL patterns of the project. Edit the urls.py file located in the mysite directory of
your project and make it look like the following:

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url(r'”admin/', include (admin.site.urls)),
url(r'”"blog/', include('blog.urls',
namespace='blog',
app name='blog')),

[24]

www.it-ebooks.info

https://docs.python.org/3/howto/regex.html
http://www.it-ebooks.info/

Chapter 1

This way, you are telling Django to include the URL patterns defined in the blog
urls.py under the blog/ path. You are giving them a namespace called blog so
you can refer to this group of URLs easily.

Canonical URLs for models

You can use the post_detail URL that you have defined in the previous section to
build the canonical URL for post objects. The convention in Django is to add a
get_absolute url () method to the model that returns the canonical URL of the
object. For this method, we will use the reverse () method that allows you to build
URLs by their name and passing optional parameters. Edit your models. py file
and add the following;:

from django.core.urlresolvers import reverse
Class Post (models.Model) :
...
def get absolute url(self):
return reverse('blog:post detail',
args=[self.publish.year,
self.publish.strftime('%m'),
self.publish.strftime('%d'),
self.slugl)

Note that we are using the strftime () function to build the URL using month
and day with leading zeros. We will use the get_absolute url () method in
our templates.

Creating templates for your views

We have created views and URL patterns for our application. Now it's time to add
templates to display posts in a user-friendly way.

Create the following directories and files inside your blog application directory:

templates/
blog/
base.html
post/
list.html
detail.html

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

This will be the file structure for our templates. The base . html file will include the
main HTML structure of the website and divide the content into a main content area
and a sidebar. The 1ist .html and detail.html files will inherit from the base . html
file to render the blog post list and detail views respectively.

Django has a powerful template language that allows you to specify how data

is displayed. It is based on template tags, which look like {% tag %} template
variables, which look like {{ variable }} and template filters, which can be
applied to variables and look like {{ variable|filter }}. You can see all
built-in template tags and filters in https://docs.djangoproject.com/en/1.8/
ref/templates/builtins/.

Let's edit the base . html file and add the following code:

{%$ load staticfiles %}
<!DOCTYPE htmls>
<html>
<head>
<title>{% block title %}{% endblock %}</title>
<link href="{% static "css/blog.css" %}" rel="stylesheet">
</head>
<body>
<div id="content">
{% block content %}
{%$ endblock %}
</divs>
<div id="sidebar">
<h2>My blog</h2>
<p>This is my blog.</p>
</divs>
</body>
</html>

{% load staticfiles %} tells Django to load the staticfiles template tags
that are provided by the django.contrib.staticfiles application. After loading
it, you are able to use the {% static %} template filter throughout this template.
With this template filter, you can include static files such as the blog. css file that
you will find in the code of this example, under the static/ directory of the blog
application. Copy this directory into the same location of your project to use the
existing static files.

[26]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/templates/builtins/
https://docs.djangoproject.com/en/1.8/ref/templates/builtins/
http://www.it-ebooks.info/

Chapter 1

You can see that there are two {% block %} tags. These tell Django that we want to
define a block in that area. Templates that inherit from this template can fill the blocks
with content. We have defined a block called title and a block called content.

Let's edit the post/1ist.html file and make it look like the following;:

{% extends "blog/base.html" %}
{% block title %}My Blog{% endblock %}

{% block content %}
<h1l>My Blog</hl>
{%$ for post in posts %}
<h2>

{{ post.title }}

</h2>
<p class="date">
Published {{ post.publish }} by {{ post.author }}
</p>
{{ post.body|truncatewords:30|linebreaks }}
{% endfor %}
{% endblock %}

With the {% extends %} template tag, we are telling Django to inherit from the
blog/base.html template. Then we are filling the title and content blocks of the
base template with content. We iterate through the posts and display their title, date,
author, and body, including a link in the title to the canonical URL of the post. In the
body of the post, we are applying two template filters: truncatewords truncates the
value to the number of words specified, and 1inebreaks converts the output into
HTML line breaks. You can concatenate as many template filters as you wish; each
one will be applied to the output generated by the previous one.

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

Open the shell and execute the command python manage.py runserver to start the
development server. Open http://127.0.0.1:8000/blog/ in your browser and
you will see everything running. Note that you need to have some posts with status
Published in order to see them here. You should see something like this:

8eo0o My Blog "
|« /> |[=] [+ @ 127.0.0.1:8000 ¢ [utecion (O]
This is my blog.

Another post more

Post body.

New title

Post body.

Who was Django Reinhardt?

The Django web framework was named after the amazing jazz guitarist Django Reinhardt.

Then, let's edit the post /detail.html file and make it look like the following:

{% extends "blog/base.html" %}
{% block title %}{{ post.title }}{% endblock %}

{% block content %}
<h1>{{ post.title }}</hl>
<p class="date">
Published {{ post.publish }} by {{ post.author }}
</p>
{{ post.body|linebreaks }}
{% endblock %}

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Now, you can go back to your browser and click on one of the post titles to see the
detail view of a post. You should see something like this:

8eo0o Who was Django Reinhardt? 'y
(<> |[=][+] 127.0.0.1:8000 < (@]

Who was Django Reinhardt? My blog

This is my blog.

The Django web framework was named after the amazing jazz guitarist Django Reinhardt.

Take a look at the URL. It should look like /blog/2015/09/20/who-was-django-
reinhardt/. We have created a SEO friendly URL for our blog posts.

Adding pagination
When you start adding content to your blog, you will soon realize you need to split

the list of posts across several pages. Django has a built-in pagination class that
allows you to manage paginated data easily.

Edit the views.py file of the blog application to import the Django paginator classes
and modify the post_1list view as follows:

from django.core.paginator import Paginator, EmptyPage,\
PageNotAnInteger

def post_list (request) :
object list = Post.published.all()
paginator = Paginator(object list, 3) # 3 posts in each page
page = request.GET.get('page')
try:
posts = paginator.page (page)
except PageNotAnInteger:
If page is not an integer deliver the first page
posts = paginator.page (1)
except EmptyPage:
If page is out of range deliver last page of results
posts = paginator.page(paginator.num pages)
return render (request,
'blog/post/list.html"',
{'page': page,
'posts': posts})

[29]

www.it-ebooks.info

/blog/2015/09/20/who-was-django-reinhardt/
/blog/2015/09/20/who-was-django-reinhardt/
http://www.it-ebooks.info/

Building a Blog Application

This is how pagination works:

1. We instantiate the paginator class with the number of objects we want to
display in each page.
We get the page GET parameter that indicates the current page number.

We obtain the objects for the desired page calling the page () method of
Paginator.

4. If the page parameter is not an integer, we retrieve the first page of results.
If this parameter is a number higher than the last page of results, we retrieve
the last page.

5. We pass the page number and retrieved objects to the template.

Now, we have to create a template to display the paginator, so that it can be included
in any template that uses pagination. In the templates folder of the blog application,
create a new file and name it pagination.html. Add the following HTML code to
the file:

<div class="pagination">

{% if page.has previous %}
Previous
{% endif %}

Page {{ page.number }} of {{ page.paginator.num pages }}.

{% if page.has next %}
Next
{% endif %}

</div>

The pagination template expects a Page object in order to render previous and next
links and display the current page and total pages of results. Let's go back to the
blog/post/list.html template and include the pagination.html template at the
bottom of the {$ content %} block, like this:

{% block content %}

{% include "pagination.html" with page=posts %}
{% endblock %}

Since the page object we are passing to the template is called posts, we are including
the pagination template into the post list template specifying the parameters to
render it correctly. This is the method you can use to reuse your pagination template
in paginated views of different models.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Now, open http://127.0.0.1:8000/blog/ in your browser. You should see
the pagination at the bottom of the post list and you should be able to navigate

through pages:
[-NsXs] My Blog "
[«]»][] [+ 127.0.0.1:8000 ¢ [utecion) (O]
My Blog My blog
This is my blog.
Post body.
Post body.

The Django web framework was named after the amazing jazz guitarist Django Reinhardt.

Page 1 of 2.

Using class-based views

Since a view is a callable that takes a web request and returns a web response, you
can also define your views as class methods. Django provides base view classes

for this. All of them inherit from the view class, which handles HTTP method
dispatching and other functionality. This is an alternate method to create your views.

We are going to change our post_1list view into a class-based view to use the
generic ListView offered by Django. This base view allows you to list objects of

any kind.

Edit the views.py file of your blog application and add the following code:

from django.views.generic import ListView

class PostListView(ListView) :
queryset = Post.published.all()

context object name = 'posts'

paginate by = 3

template name = 'blog/post/list.html’
[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Blog Application

This class-based view is analogous to the previous post_1list view. Here, we are
telling ListView to:

* Use a specific QuerySet instead of retrieving all objects. Instead of defining
a queryset attribute, we could have specified model = Post and Django
would have built the generic Post.objects.all () QuerySet for us.

* Use the context variable posts for the query results. The default variable is
object_list if we don't specify any context_object_name.

* Paginate the result displaying three objects per page.

* Use a custom template to render the page. If we don't set a default template,
ListView will use blog/post list.html.

Now, open the urls.py file of your blog application, comment the previous
post_list URL pattern, and add a new URL pattern using the PostListView
class as follows:

urlpatterns = [

post views

url(r'*sg', views.post list, name='post list'),

url(r'”"$', views.PostListView.as view(), name='post list'),

url (r'” (?P<year>\d{4})/ (?P<month>\d{2}) / (?P<day>\d{2}) /'\
r' (?P<post>[-\wl+)/S",
views.post detail,
name="'post detail'),

]

In order to keep pagination working, we have to use the right page object that is
passed to the template. Django's ListView passes the selected page in a variable
called page_obj, so you have to edit your post_list.html template accordingly
to include the paginator using the right variable, like this:

{% include "pagination.html" with page=page obj %}

Open http://127.0.0.1:8000/blog/ in your browser and check that everything
works the same way as with the previous post_1list view. This is a simple example
of a class-based view that uses a generic class provided by Django. You will learn
more about class-based views in Chapter 10, Building an e-Learning Platform and
successive chapters.

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Summary

In this chapter, you have learned the basics of the Django web framework by creating
a basic blog application. You have designed the data models and applied migrations
to your project. You have created the views, templates, and URLSs for your blog,
including object pagination.

In the next chapter, you will learn how to enhance your blog application with
a comment system, tagging functionality, and allowing your users to share
posts by e-mail.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with
Advanced Features

In the previous chapter, you created a basic blog application. Now you will turn your
application into a fully functional blog with advanced features such as sharing posts
by e-mail, adding comments, tagging posts, and retrieving posts by similarity. In this
chapter, you will learn the following topics:

Sending e-mails with Django

Creating forms and handling them in views
Creating forms from models

Integrating third-party applications
Building complex QuerySets

Sharing posts by e-mail

First, we will allow users to share posts by sending them by e-mail. Take a short time
to think how you would use views, URL's, and templates to create this functionality
using what you have learned in the previous chapter. Now, check what you need

to allow your users to send posts by e-mail. You will need to:

Create a form for users to fill in their name and e-mail, the e-mail recipient,
and optional comments

Create a view in the views. py file that handles the posted data and sends
the e-mail

Add an URL pattern for the new view in the urls.py file of the
blog application

Create a template to display the form

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

Creating forms with Django

Let's start by building the form to share posts. Django has a built-in forms framework
that allows you to create forms in an easy manner. The forms framework allows

you to define the fields of your form, specify the way they have to be displayed, and
indicate how they have to validate input data. Django forms framework also offers

a flexible way to render forms and handle the data.

Django comes with two base classes to build forms:

* Form: Allows you to build standard forms

* ModelForm: Allows you to build forms to create or update model instances

First, create a forms . py file inside the directory of your blog application and make it
look like this:

from django import forms

class EmailPostForm(forms.Form) :
name = forms.CharField(max length=25)
email = forms.EmailField()
to = forms.EmailField ()
comments = forms.CharField(required=False,
widget=forms.Textarea)

This is your first Django form. Take a look at the code: we have created a form by
inheriting the base Form class. We use different field types for Django to validate
fields accordingly.

Forms can reside anywhere in your Django project but the convention is
e to place them inside a forms . py file for each application.

The name field is a CharField. This type of field is rendered as an <input
type="text"> HTML element. Each field type has a default widget that determines
how the field is displayed in HTML. The default widget can be overridden with the
widget attribute. In the comments field, we use a Textarea widget to display it

as a <textarea> HTML element instead of the default <input > element.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Field validation also depends on the field type. For example, the email and to

fields are EmailField. Both fields require a valid e-mail address, otherwise the

field validation will raise a forms.ValidationError exception and the form will

not validate. Other parameters are also taken into account for form validation: we
define a maximum length of 25 characters for the name field and make the comments
field optional with required=False. All of this is also taken into account for field
validation. The field types used in this form are only a part of Django form fields. For
a list of all form fields available, you can visit https://docs.djangoproject . com/
en/1.8/ref/forms/fields/.

Handling forms in views

You have to create a new view that handles the form and sends an e-mail when it's
successfully submitted. Edit the views.py file of your blog application and add the
following code to it:

from .forms import EmailPostForm

def post share(request, post id):
Retrieve post by id
post = get object or 404 (Post, id=post 1id, status='published')

if request.method == 'POST':
Form was submitted
form = EmailPostForm(request.POST)
if form.is valid() :
Form fields passed validation
cd = form.cleaned data
... send email
else:
form = EmailPostForm()
return render (request, 'blog/post/share.html', {'post': post,

'form': form})

[37]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/forms/fields/
https://docs.djangoproject.com/en/1.8/ref/forms/fields/
http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

This view works as follows:

* We define the post_share view that takes the request object and the
post_id as parameters.

* Weuse theget_object_or_ 404 () shortcut to retrieve the post by ID and
make sure the retrieved post has a published status.

* We use the same view for both displaying the initial form and processing
the submitted data. We differentiate if the form was submitted or not based
on the request method. We are going to submit the form using posT. We
assume that if we get a GET request, an empty form has to be displayed, and
if we get a POST request, the form was submitted and needs to be processed.
Therefore, we use request .method == 'POST' to distinguish between the
two scenarios.

The following is the process to display and handle the form:

1. When the view is loaded initially with a GET request, we create a new form
instance that will be used to display the empty form in the template:

form = EmailPostForm/()

2. The user fills in the form and submits it via PosST. Then, we create a form
instance using the submitted data that is contained in request . POST:
if request.method == 'POST':
Form was submitted
form = EmailPostForm(request.POST)

3. After this, we validate the submitted data using the form's is_valid()
method. This method validates the data introduced in the form and returns
True if all fields contain valid data. If any field contains invalid data,
then is_valid() returns False. You can see a list of validation errors
by accessing form.errors.

4. If the form is not valid, we render the form in the template again with the
submitted data. We will display validation errors in the template.

5. If the form is valid, we retrieve the validated data accessing form.cleaned
data. This attribute is a dictionary of form fields and their values.

If your form data does not validate, cleaned_data will
/= only contain the valid fields.

Now, you need to learn how to send e-mails with Django to put everything together.

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Sending e-mails with Django

Sending e-mails with Django is pretty straightforward. First, you need to have a local
SMTP server or define the configuration of an external SMTP server by adding the
following settings in the settings.py file of your project:

e EMAIL HOST: The SMTP server host. Default 1ocalhost.
e EMAIL_PORT: The SMTP port Default 25.

* EMAIL HOST USER: Username for the SMTP server.

* EMAIL HOST_ PASSWORD: Password for the SMTP server.

e EMAIL USE_ TLS: Whether to use a TLS secure connection.

* EMAIL_USE_SSL: Whether to use an implicit TLS secure connection.

If you don't have a local SMTP server, you can probably use the SMTP server of your
e-mail provider. The sample configuration below is valid for sending e-mails via
Gmail servers using a Google account:

EMAIL HOST = 'smtp.gmail.com'

EMAIL HOST USER = 'your account@gmail.com'
EMAIL HOST PASSWORD = 'your password'
EMAIL PORT = 587

EMAIL USE_TLS = True

Run the command python manage.py shell to open the Python shell and send an
e-mail like this:

>>> from django.core.mail import send mail

>>> send mail('Django mail', 'This e-mail was sent with Django.',
'your account@gmail.com', ['your account@gmail.com'], fail
silently=False)

send_mail () takes the subject, message, sender, and list of recipients as required
arguments. By setting the optional argument fail_ silently=False, we are telling
it to raise an exception if the e-mail couldn't be sent correctly. If the output you see is
1, then your e-mail was successfully sent. If you are sending e-mails by Gmail with
the preceding configuration, you might have to enable access for less secured apps at
https://www.google.com/settings/security/lesssecureapps.

Now, we are going to add this to our view. Edit the post_share view in the
views.py file of your blog application and make it look like this:

from django.core.mail import send mail

def post share(request, post id):
Retrieve post by id

[39]

www.it-ebooks.info

https://www.google.com/settings/security/lesssecureapps
http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

post = get object or 404 (Post, id=post id, status='published')
sent = False

if request.method == 'POST':
Form was submitted
form = EmailPostForm(request.POST)
if form.is valid() :
Form fields passed validation
cd = form.cleaned data

post url = request.build absolute uri(
post.get absolute url())
subject = '{} ({}) recommends you reading "{}"'.
format (cd['name'], cd['email'], post.title)
message = 'Read "{}" at {}\n\n{}\'s comments: {}'.

format (post.title, post url, cd['name'], cd['comments'])

send mail (subject, message, 'admin@myblog.com',
[cdl'to']])

sent = True
else:
form = EmailPostForm()
return render (request, 'blog/post/share.html', {'post': post,
'form': form,
'sent': sent})

Note that we declare a sent variable and set it to True when the post was sent. We
are going to use that variable later in the template to display a success message when
the form is successfully submitted. Since we have to include a link to the post in

the e-mail, we retrieve the absolute path of the post using its get_absolute_url ()
method. We use this path as input for request .build_absolute_uri () to build a
complete URL including HTTP schema and hostname. We build the subject and the
message body of the e-mail using the cleaned data of the validated form and finally
send the e-mail to the e-mail address contained in the to field of the form.

Now that your view is complete, remember to add a new URL pattern for it. Open
the urls.py file of your blog application and add the post_share URL pattern,
as follows:

urlpatterns = [
#
url(r'” (?P<post_id>\d+) /share/$', views.post share,
name='post share'),

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Rendering forms in templates

After creating the form, programming the view, and adding the URL pattern, we are
only missing the template for this view. Create a new file into the blog/templates/
blog/post/ directory and name it share.html. Add the following code to it:

{% extends "blog/base.html" %}
{% block title %}Share a post{% endblock %}

{% block content %}
{$ if sent %}
<hl>E-mail successfully sent</hl>
<p>
"{{ post.title }}" was successfully sent to {{ cd.to }}.
</p>
{% else %}
<hl>Share "{{ post.title }}" by e-mail</hl>
<form action="." method="post">
{{ form.as p }}
{% csrf_token %}
<input type="submit" value="Send e-mail'"s>
</form>
{% endif %}
{% endblock %}

This is the template to display the form or a success message when it's sent. As you
can see, we create the HTML form element indicating that it has to be submitted by
the POST method:

<form action="." method="post">

Then we include the actual form instance. We tell Django to render its fields in
HTML paragraph <p> elements with the as_p method. We can also render the form
as an unordered list with as_ul or as a HTML table with as_table. If we want to
render each field, we can also iterate through the fields like in the following example:

)

{$ for field in form %}
<divs>
{{ field.errors }}
{{ field.label tag }} {{ field }}
</div>

)

{% endfor %}

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

The {% csrf_token %} template tag introduces a hidden field with an auto-
generated token to avoid Cross-Site request forgery (CSRF) attacks. These attacks
consist of a malicious website or program performing an unwanted action for a user
on your site. You can find more information about this at https://en.wikipedia.
org/wiki/Cross-site request forgery.

The preceding tag generates a hidden field that looks like this:

<input type='hidden' name='csrfmiddlewaretoken'
value='26JjKo21cEtYkGoV9z4XmJIEHLXNSLDR' />

By default, Django checks for the CSRF token in all POST requests.
% Remember to include the csrf token tag in all forms that are
"~ submitted via POST.

Edit your blog/post/detail.html template and add a the following link to the
share post URL after the {{ post.body|linebreaks }} variable:

<p>

Share this post

</p>

Remember that we are building the URL dynamically using the {$ url %} template
tag provided by Django. We are using the namespace called blog and the URL
named post_share, and we are passing the post ID as parameter to build the
absolute URL.

Now, start the development server with the command python manage.py
runserver, and open http://127.0.0.1:8000/blog/ in your browser. Click on
any post title to view the detail page. Under the post body, you should see the link
we just added, as shown in the following image:

Who was Django Reinhardt? My blog

This is my blog

The Django web framework was named after the amazing jazz guitarist Django Reinhardt.

[42]

www.it-ebooks.info

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
http://www.it-ebooks.info/

Chapter 2

Click on Share this post and you should see the page including the form to share this
post by e-mail. It has to look like the following:

Share "Who was Django Reinhardt?" by e-mail My blog
Name: This is my blog.
Email:

To:

Comments:

SEND E-MAIL

CSS styles for the form are included in the example code in the static/css/blog.
css file. When you click on the Send e-mail button, the form is submitted and
validated. If all fields contain valid data, you will get a success message like

the following:

E-mail successfully sent My blog

"Who was Django Reinhardt?" was successfully sent to account@gmail.com. This is my blog.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

If you input invalid data, you will see that the form is rendered again, including all
validation errors:

Share "Who was Django Reinhardt?" by e-mail My blog

Name: This is my blog.

Antonio

+ Enter a valid email address.

Email:

invalid

« This field is required.

To:

Comments:

Creating a comment system

Now we are going to build a comment system for the blog, wherein the users will be
able to comment on posts. To build the comment system, you will need to:

* Create a model to save comments

* Create a form to submit comments and validate the input data

* Add a view that processes the form and saves the new comment into
the database

» Edit the post detail template to display the list of comments and the form
for adding a new comment

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

First, let's build a model to store comments. Open the models.py file of your blog
application and add the following code:

class Comment (models.Model) :
post = models.ForeignKey (Post, related name='comments')
name = models.CharField(max length=80)
email = models.EmailField()
body = models.TextField()
created = models.DateTimeField (auto now_add=True)
updated = models.DateTimeField (auto_now=True)
active = models.BooleanField(default=True)

class Meta:
ordering = ('created',)

def str (self):
return 'Comment by {} on {}'.format (self.name, self.post)

This is our comment model. It contains a ForeignKey to associate the comment

with a single post. This many-to-one relationship is defined in the Comment model
because each comment will be made on one post, and each post might have multiple
comments. The related name attribute allows us to name the attribute that we use
for the relation from the related object back to this one. After defining this, we can
retrieve the post of a comment object using comment . post and retrieve all comments
of a post using post . comments.all (). If you don't define the related name
attribute, Django will use the undercase name of the model followed by _set

(that is, comment_set) to name the manager of the related object back to this one.

You can learn more about many-to-one relationships at https://docs.
djangoproject.com/en/1.8/topics/db/examples/many to one/.

We have included an active boolean field that we will use to manually
deactivate inappropriate comments. We use the created field to sort comments in
chronological order by default.

The new comment model you just created is not yet synchronized into the database.
Run the following command to generate a new migration that reflects the creation
of the new model:

python manage.py makemigrations blog
You should see this output:

Migrations for 'blog':
0002_comment .py:
- Create model Comment

[45]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/db/examples/many_to_one/
https://docs.djangoproject.com/en/1.8/topics/db/examples/many_to_one/
http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

Django has generated a file 0002_comment . py inside the migrations/ directory
of the blog application. Now, you need to create the related database schema and
apply the changes to the database. Run the following command to apply existing
migrations:

python manage.py migrate
You will get an output that includes the following line:
Applying blog.0002 comment... OK

The migration we just created has been applied and now a blog_comment table exists
in the database.

Now, we can add our new model to the administration site in order to manage
comments through a simple interface. Open the admin.py file of the blog application
and add an import for the Comment model and the following Mode1Admin:

from .models import Post, Comment

class CommentAdmin (admin.ModelAdmin) :

list display = ('name', 'email', 'post', 'created',K 'active')
list filter = ('active', 'created',K 'updated')
search fields = ('name', 'email',6 'body"')

admin.site.register (Comment, CommentAdmin)

Start the development server with the command python manage.py runserver and
open http://127.0.0.1:8000/admin/ in your browser. You should see the new
model included in the Blog section, as shown in the following screenshot:

Comments b Add

Posts b Add

Our model is now registered into the admin site and we can manage Comment
instances using a simple interface.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Creating forms from models

We still need to build a form to let our users comment on blog posts. Remember
that Django has two base classes to build forms: Form and ModelForm. You used
the first one previously to let your users share posts by e-mail. In the present case,
you will need to use ModelForm because you have to build a form dynamically
from your comment model. Edit the forms. py of your blog application and add
the following lines:

from .models import Comment

class CommentForm(forms.ModelForm) :
class Meta:
model = Comment
fields = ('name', 'email', 'body')

To create a form from a model, we just need to indicate which model to use to
build the form in the Meta class of the form. Django introspects the model and
builds the form dynamically for us. Each model field type has a corresponding
default form field type. The way we define our model fields is taken into account
for form validation. By default, Django builds a form field for each field contained
in the model. However, you can explicitly tell the framework which fields you
want to include in your form using a £ields list, or define which fields you want to
exclude using an exclude list of fields. For our CommentForm, we will just use the
name, email, and body fields for the form because those are the only fields our
users will be able to fill in.

Handling ModelForms in views

We will use the post detail view to instantiate the form, and process it in order to
keep it simple. Edit the models.py file, add imports for the Comment model and
the commentForm form, and modify the post_detail view to make it look like
the following:

from .models import Post, Comment
from .forms import EmailPostForm, CommentForm

def post detail (request, year, month, day, post):
post = get object or 404 (Post, slug=post,
status="'published',
publish year=year,
publish month=month,
publish day=day)

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

List of active comments for this post
comments = post.comments.filter (active=True)

if request.method == 'POST':
A comment was posted
comment form = CommentForm(data=request.POST)
if comment form.is valid():
Create Comment object but don't save to database
yet

new comment = comment form.save(commit=False)
Assign the current post to the comment
new_comment.post = post
Save the comment to the database
new comment.save ()
else:
comment form = CommentForm()
return render (request,
'blog/post/detail.html’',
{'post': post,
'comments': comments,
'comment form': comment form})

Let's review what we have added to our view. We are using the post_detail
view to display the post and its comments. We add a QuerySet to retrieve all
active comments for this post:

comments = post.comments.filter (active=True)

We are building this QuerySet starting from the post object. We are using the
manager for related objects we defined as comments using the related_name
attribute of the relationship in the Comment model.

We also use the same view to let our users add a new comment. Therefore we
build a form instance with comment form = CommentForm() if the view is called
by a GET request. If the request is done via POST, we instantiate the form using the
submitted data and validate it using the is_valid () method. If the form is invalid,
we render the template with the validation errors. If the form is valid, we take the
following actions:

1. We create a new Comment object by calling the form's save () method
like this:

new comment = comment form.save (commit=False)

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The save () method creates an instance of the model that the form is linked
to and saves it to the database. If you call it with commit=False, you create
the model instance, but you don't save it to the database. This comes very
handy when you want to modify the object before finally saving, which is
what we do next. The save () method is available for ModelForm but not for
Form instances, since they are not linked to any model.

2. We assign the current post to the comment we just created:
new_comment.post = post

By doing this, we are specifying that the new comment belongs to the
given post.

3. Finally, we save the new comment to the database with the following code:

new_comment.save ()

Our view is now ready to display and process new comments.

Adding comments to the post detail template

We have created the functionality to manage comments for a post. Now we need to
adapt our post_detail.html template to do the following;:

* Display the total number of comments for the post
* Display the list of comments

* Display a form for users to add a new comment

First, we will add the total comments. Open the blog detail.html template and
append the following code inside the content block:

{% with comments.count as total comments %}
<h2>
{{ total comments }} comment{{ total comments|pluralize }}
</h2>
{% endwith %}

We are using the Django ORM in the template executing the QuerySet comments.
count (). Note that Django template language doesn't use parentheses for calling
methods. The {$ with %} tag allows us to assign a value to a new variable that
will be available to be used until the {% endwith %} tag.

The {% with %} template tag is useful to avoid hitting the database or
K= accessing expensive methods multiple times.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

We use the pluralize template filter to display a plural suffix for the word comment
depending on the total_comments value. Template filters take the value of the
variable they are applied to as input and return a computed value. We will discuss
template filters in Chapter 3, Extending Your Blog Application.

The pluralize template filter displays an "s" if the value is different than 1. The
preceding text will be rendered as 0 comments, 1 comment, or N comments. Django
includes plenty of template tags and filters that help you display information in
the way you want.

Now, let's include the list of comments. Append the following lines to the template
after the preceding code:

{$ for comment in comments %}
<div class="comment">
<p class="info">
Comment {{ forloop.counter }} by {{ comment.name }}
{{ comment.created }}
</p>
{{ comment.body|linebreaks }}
</div>
{% empty %}
<p>There are no comments yet.</p>
{% endfor %}
We use the {$ for %} template tag to loop through comments. We display a default
message if the comments list is empty, telling our users there are no comments for
this post yet. We enumerate comments with the {{ forloop.counter }} variable,
which contains the loop counter in each iteration. Then we display the name of the
user who posted the comment, the date, and the body of the comment.

Finally, you need to render the form or display a successful message instead when it
is successfully submitted. Add the following lines just below the previous code:

)

{$ if new comment %}
<h2>Your comment has been added.</h2>
{% else %}
<h2>Add a new comment</h2>
<form action="." method="post">
{{ comment form.as p }}
{% csrf token %}
<p><input type="submit" value="Add comment"></p>
</form>

{%$ endif %}

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The code is pretty straightforward: If the new_comment object exists, we display

a success message because the comment was successfully created. Otherwise, we
render the form with a paragraph <p> element for each field and include the CSRF
token required for POST requests. Open http://127.0.0.1:8000/blog/ in your
browser and click on a post title to see its detail page. You will see something like
the following;:

Who was Django Reinhardt? My blog

This is my blog.
The Django web framework was named after the amazing jazz guitarist Django Reinhardt.

Share this post

0 comments

There are no comments yet.

Add a new comment

Name:
Email:

Body:

Add a couple of comments using the form. They should appear under your post in
chronological order, like this:

2 comments

Comment 1 by Antonio Oct. 15, 2014, 8:15 p.m.

It's very interesting.

Comment 2 by Bienvenida Oct. 15, 2014, 8:15 p.m.

| didn't know that.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

Open http://127.0.0.1:8000/admin/blog/comment/ in your browser. You
will see the admin page with the list of comments you created. Click on one of
them to edit it, uncheck the Active checkbox, and click the Save button. You will
be redirected to the list of comments again and the Active column will display
an inactive icon for the comment. It should look like the first comment in the
following screenshot:

Select comment to change
Q Search

Go

kil
Name Email Post Created & Active

| Antonio userl@gmail.com Who was Django Reinhardt? Oct. 15, 2014, 8:15 p.m. (-]

Bienvenida userz@amail.com Who was Django Reinhardt? Oct. 15, 2014, 8:15 p.m. (]

2 comments

If you go back to the post detail view, you will notice that the deleted comment is
not displayed anymore; neither is it being counted for the total number of comments.
Thanks to the active field, you can deactivate inappropriate comments and avoid
showing them in your posts.

Adding tagging functionality

After implementing our comment system, we are going to create a way to tag

our posts. We are going to do this by integrating a third-party Django tagging
application in our project. django-taggit is a reusable application that primarily
offers you a Tag model and a manager to easily add tags to any model. You can
take a look at its source code at https://github.com/alex/django-taggit.

First, you need to install django-taggit via pip, running the following command:
pip install django-taggit==0.17.1

Then open the settings.py file of the mysite project and add taggit to your
INSTALLED APPS setting like this:

INSTALLED APPS = (
...
'blog',
'taggit',

[52]

www.it-ebooks.info

https://github.com/alex/django-taggit
http://www.it-ebooks.info/

Chapter 2

Open the models. py file of your blog application and add the TaggableManager
manager provided by django-taggit to the Post model using the following code:

from taggit.managers import TaggableManager
class Post (models.Model) :

#

tags = TaggableManager ()

The tags manager will allow you to add, retrieve, and remove tags from
Post objects.

Run the following command to create a migration for your model changes:
python manage.py makemigrations blog

You should get the following output:

Migrations for 'blog':
0003_post_tags.py:
- Add field tags to post

Now, run the following command to create the required database tables for
django-taggit models and to synchronize your model changes:

python manage.py migrate

You will see an output indicating that migrations have been applied, as follows:

Applying taggit.0001 initial... OK
Applying taggit.0002 auto 20150616 2121... OK
Applying blog.0003 post tags... OK

Your database is now ready to use django-taggit models. Open the terminal with
the command python manage.py shell and learn how to use the tags manager.
First, we retrieve one of our posts (the one with ID 1):

>>> from blog.models import Post
>>> post = Post.objects.get (id=1)

Then add some tags to it and retrieve its tags back to check that they were
successfully added:

>>> post.tags.add('music', 'jazz', 'django')

>>> post.tags.all()

[<Tag: jazz>, <Tag: django>, <Tag: music>]

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

Finally, remove a tag and check the list of tags again:

>>> post.tags.remove ('django’')
>>> post.tags.all()
[<Tag: jazz>, <Tag: musics>]

That was easy, right? Run the command python manage.py runserver to start
the development server again and open http://127.0.0.1:8000/admin/taggit/
tag/ in your browser. You will see the admin page with the list of Tag objects of the
taggit application:

D_jango administration Welcome, admin. Change password / Log out

Home » Taggit» Tags
Select Tag to change Add Tag +
0. -: q] Search |
Action L s (_30_! 0 of 3 selected
(] Name 1 & | Slug 2 &
) diango django
O jazz jazz
[C) music music
3 Tags

Navigate to http://127.0.0.1:8000/admin/blog/post/ and click on a post to edit
it. You will see that posts now include a new Tags field like the following where you
can easily edit tags:

Tags: jazz, music

A comma-separated list of tags.

Now, we are going to edit our blog posts to display the tags. Open the blog/post/
list.html template and add the following HTML code below the post title:

<p class="tags">Tags: {{ post.tags.all|join:", " }}</p>

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The join template filter works as the Python string join () method to concatenate
elements with the given string. Open http://127.0.0.1:8000/blog/ in your
browser. You should see the list of tags under each post title:

Tags: jazz, music

The Django web framework was named after the amazing jazz guitarist Django Reinhardt.

Now, we are going to edit our post_1list view to let users list all posts tagged with a
specific tag. Open the views.py file of your blog application, import the Tag model
form django-taggit, and change the post_1list view to optionally filter posts by
tag like this:

from taggit.models import Tag

def post_ list (request, tag slug=None) :
object list = Post.published.all()
tag = None

if tag slug:
tag = get _object or 404 (Tag, slug=tag slug)
object list = object list.filter(tags__ in=[tagl)
...

The view now works as follows:

1. The view takes an optional tag_slug parameter that has a None default
value. This parameter will come in the URL.

2. Inside the view, we build the initial QuerySet, retrieving all published posts,
and if there is a given tag slug, we get the Tag object with the given slug
using the get_object_or_404 () shortcut.

3. Then we filter the list of posts by the ones that contain the given tag. Since
this is a many-to-many relationship, we have to filter by tags contained in a
given list, which in our case contains only one element.

Remember that Querysets are lazy. The QuerySets to retrieve posts will only be
evaluated when we loop over the post list when rendering the template.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

Finally, modify the render () function at the bottom of the view to pass the tag
variable to the template The view should finally look like this:

def post list (request, tag slug=None) :
object list = Post.published.all()
tag = None

if tag slug:
tag = get object or 404 (Tag, slug=tag slug)
object list = object list.filter(tags_in=[tag])

paginator = Paginator (object list, 3) # 3 posts in each page
page = request.GET.get ('page')
try:
posts = paginator.page (page)
except PageNotAnInteger:
If page is not an integer deliver the first page
posts = paginator.page (1)
except EmptyPage:
If page is out of range deliver last page of results
posts = paginator.page (paginator.num pages)
return render (request, 'blog/post/list.html', {'page': page,
'posts': posts,
'tag': tag})

Open the urls.py file of your blog application, comment out the class-based
postListView URL pattern, and uncomment the post_1ist view like this:

url(r'”*$', views.post list, name='post list'),
url(r'*$', views.PostListView.as view(), name='post list'),

Add the following additional URL pattern to list posts by tag:

url (r'“tag/ (?P<tag_slug>[-\wl+)/$', views.post list,
name="'post list by tag'),

As you can see, both patterns point to the same view, but we are naming them
differently. The first pattern will call the post_1ist view without any optional
parameters, while the second pattern will call the view with the tag slug parameter.

Since we are using the post_1list view, edit the blog/post/list.html template
and modify the pagination to use the posts object like this:

°

{%$ include "pagination.html" with page=posts %}

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Add the following lines above the {$ for %} loop:

{$ if tag %}
<h2>Posts tagged with "{{ tag.name }}"</h2>
{%$ endif %}

If the user is accessing the blog, he will see the list of all posts. If he is filtering
by posts tagged with a specific tag, he will see this information. Now, change
the way tags are displayed into the following:

<p class="tags">
Tags:
{% for tag in post.tags.all %}

{{ tag.name }}

{% if not forloop.last %}, {% endif %}
{% endfor %}
</p>

Now, we loop through all the tags of a post displaying a custom link to the URL to
filter posts by that tag. We build the URL with {$ url "blog:post_list_by tag"
tag.slug %}, using the name of the URL and the tag slug as parameter. We separate
the tags by commas.

Open http://127.0.0.1:8000/blog/ in your browser and click on any tag link.
You will see the list of posts filtered by that tag like this:

My Blog

Posts tagged with "jazz"

Tags:
The Django web framework was named after the amazing jazz guitarist Django Reinhardt.

Page 1 of 1.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

Retrieving posts by similarity

Now that we have tagging for our blog posts, we can do many interesting things
with them. Using tags, we can classify our blog posts very well. Posts about similar
topics will have several tags in common. We are going to build a functionality to
display similar posts by the number of tags they share. In this way, when a user
reads a post, we can suggest them to read other related posts.

In order to retrieve similar posts for a specific post, we need to:

* Retrieve all tags for the current post.

* Get all posts that are tagged with any of those tags.

* Exclude the current post from that list to avoid recommending the same post.
* Order the results by the number of tags shared with the current post.

* In case of two or more posts with the same number of tags, recommend the
most recent post.

e Limit the query to the number of posts we want to recommend.

These steps are translated into a complex QuerySet that we are going to include in
our post_detail view. Open the views.py file of your blog application and add the
following import at the top of it:

from django.db.models import Count

This is the count aggregation function of the Django ORM. This function will allow
us to perform aggregated counts. Then add the following lines inside the post_
detail view before the render () function:

List of similar posts
post_tags_ids = post.tags.values_list('id', flat=True)
similar posts = Post.published.filter(tags_in=post_ tags_ids)\
.exclude (id=post.id)
similar posts = similar posts.annotate (same_tags=Count ('tags'))\
.order by ('-same tags', '-publish') [:4]

This code is as follows:

1. Weretrieve a Python list of ID'S for the tags of the current post. The
values_list () QuerySet returns tuples with the values for the given
fields. We are passing it £1lat=True to get a flat list like [1, 2, 3, ...].

2. We get all posts that contain any of these tags excluding the current
post itself.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

3. We use the count aggregation function to generate a calculated field
same_tags that contains the number of tags shared with all the tags queried.

4. We order the result by the number of shared tags (descendant order) and
by the publish to display recent posts first for the posts with the same
number of shared tags. We slice the result to retrieve only the first four posts.

Add the similar_posts object to the context dictionary for the render () function
as follows:

return render (request,
'blog/post/detail .html’,
{'post': post,
'comments': comments,
'comment form': comment form,
'similar posts': similar posts})

Now, edit the blog/post/detail.html template and add the following code before
the post comments list:

<h2>Similar posts</h2>
{$ for post in similar posts %}
<p>
{{ post.title }}
</p>
{$ empty %}
There are no similar posts yet.
{% endfor %}

It's also recommended that you add the list of tags to your post detail template the
same way we did in the post list template. Now, your post detail page should look
like this:

Who was Django Reinhardt?

Tags:

The Django web framework was named after the amazing jazz guitarist Django Reinhardt.

Similar posts

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Your Blog with Advanced Features

You are successfully recommending similar posts to your users. django-taggit
also includes a a similar objects () manager that you can use to retrieve objects
by shared tags. You can see all django-taggit managers at http://django-taggit.
readthedocs.org/en/latest/api.html.

Summary

In this chapter, you learned how to work with Django forms and model forms. You
created a system to share your site's content by e-mail and you created a comment
system for your blog. You added tagging to your blog posts, integrating a reusable
application, and you built complex QuerySets to retrieve objects by similarity.

In the next chapter, you will learn how to create custom template tags and filters.
You will also build a custom sitemap and feed for your blog posts, and integrate
an advanced search engine into your application.

[60]

www.it-ebooks.info

http://django-taggit.readthedocs.org/en/latest/api.html
http://django-taggit.readthedocs.org/en/latest/api.html
http://www.it-ebooks.info/

Extending Your Blog
Application

The previous chapter went through the basics of forms, and you learned how to
integrate third-party applications into your project. This chapter will cover the
following points:

* Creating custom template tags and filters
* Adding a sitemap and a post feed

* Building a search engine with Solr and Haystack

Creating custom template tags and filters

[)

Django offers a variety of built-in template tags such as {% if %} or {$ block %}.
You have used several in your templates. You can find a complete reference of
built-in template tags and filters at https: //docs.djangoproject.com/en/1.8/
ref/templates/builtins/.

However, Django also allows you to create your own template tags to perform
custom actions. Custom template tags come in very handy when you need to
add functionality to your templates that is not covered by the core set of Django
template tags.

[61]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/templates/builtins/
https://docs.djangoproject.com/en/1.8/ref/templates/builtins/
http://www.it-ebooks.info/

Extending Your Blog Application

Creating custom template tags

Django provides the following helper functions that allow you to create your own
template tags in an easy manner:

* simple_tag: Processes the data and returns a string

* inclusion_tag: Processes the data and returns a rendered template

* assignment tag: Processes the data and sets a variable in the context
Template tags must live inside Django applications.

Inside your blog application directory, create a new directory, name it
templatetags and add anempty _ init__ .py file to it. Create another file in the
same folder and name it blog_tags.py. The file structure of the blog application
should look like the following:

blog/
__init .py
models.py

templatetags/
__init .py
blog tags.py

The name of the file is important. You are going to use the name of this module to
load your tags in templates.

We will start by creating a simple tag to retrieve the total posts published in the blog.
Edit the blog_tags.py file you just created and add the following code:

from django import template
register = template.Library()
from ..models import Post
@register.simple tag

def total posts():
return Post.published.count ()

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We have created a simple template tag that returns the number of posts published

so far. Each template tags module needs to contain a variable called register to be

a valid tag library. This variable is an instance of template.Library and it's used

to register your own template tags and filters. Then we are defining a tag called
total_posts with a Python function and using eregister.simple_tag to define
the function as a simple tag and register it. Django will use the function's name as the
tag name. If you want to register it with a different name, you can do it by specifying
a name attribute like @register.simple tag(name='my tag').

After adding a new template tags module, you will need to restart

the Django development server in order to use the new template
"~ tags and filters.

Before using custom template tags, you have to make them available for the template
using the {% load %} tag. As mentioned before, you need to use the name of the
Python module containing your template tags and filters. Open the blog/base.html
template and add {% load blog_tags %} at the top of it to load your template tags
module. Then use the tag you created to display your total posts. Just add {% total_
posts %} to your template. The template should finally look like this:

{% load blog tags %}
{% load staticfiles %}
< !DOCTYPE html>
<html>
<head>
<title>{% block title %}{% endblock %}</title>
<link href="{% static "css/blog.css" %}" rel="stylesheet">
</head>
<body>
<div id="content">
{% block content %}
{% endblock %}
</div>
<div id="sidebar">
<h2>My blog</h2>
<p>This is my blog. I've written {% total posts %} posts so far.</
P>
</div>
</body>
</html>

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Blog Application

We need to restart the server to keep track of the new files added to the project. Stop
the development server with Ctr[+C and run it again using this command:

python manage.py runserver

Open http://127.0.0.1:8000/blog/ in your browser. You should see the number
of total posts in the sidebar of the site, like this:

My blog

This is my blog. I've written 4 posts so far.

The power of custom template tags is that you can process any data and add it to any
template regardless of the view executed. You can perform QuerySets or process any
data to display results in your templates.

Now, we are going to create another tag to display the latest posts in the sidebar of
our blog. This time we are going to use an inclusion tag. Using an inclusion tag, you
can render a template with context variables returned by your template tag. Edit the
blog_tags.py file and add the following code:

@register.inclusion tag('blog/post/latest posts.html')

def show latest posts(count=5):
latest posts = Post.published.order by ('-publish') [:count]
return {'latest posts': latest posts}

In this code, we register the template tag with eregister.inclusion_tagand we
specify the template that has to be rendered with the returned values with blog/
post/latest_posts.html. Our template tag will accept an optional count parameter
that defaults to 5 and allows us to specify the number of comments we want to
display. We use this variable to limit the results of the query Post .published.
order_by ('-publish') [:count] . Notice that the function returns a dictionary

of variables instead of a simple value. Inclusion tags have to return a dictionary of
values that is used as the context to render the specified template. Inclusion tags
return a dictionary. The template tag we just created can be used passing the optional
number of comments to display like {% show_latest_posts 3 %}.

Now, create a new template file under blog/post/ and name it latest_posts.
html. Add the following code to it:

{% for post in latest posts %}
<lis

{{ post.title }}

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

</1li>
{% endfor %}

Here, we display an unordered list of posts using the latest_posts variable
returned by our template tag. Now, edit the blog/base.html template and add the
new template tag to display the last 3 comments. The sidebar block should look like
the following:

<div id="sidebar">
<h2>My blog</h2>
<p>This is my blog. I've written {% total posts %} posts so far.</p>

<h3>Latest posts</h3>
{% show latest posts 3 %}
</div>

The template tag is called passing the number of comments to display and the
template is rendered in place with the given context.

Now, go back to your browser and refresh the page. The sidebar should now look
like this:

My blog
This is my blog. I've written 4 posts so far.

Latest posts

Finally, we are going to create an assignment tag. Assignment tags are like simple
tags but they store the result in a given variable. We will create an assignment tag
to display the most commented posts. Edit the blog_tags.py file and add the
following import and template tag in it:

from django.db.models import Count

@register.assignment tag
def get most commented posts (count=5) :
return Post.published.annotate (
total comments=Count ('comments')
) .order by ('-total comments') [:count]

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Blog Application

This QuerySet uses the annotate () function for query aggregation, using the Count
aggregation function. We build a QuerySet aggregating the total number of comments
for each postin a total comments field and we order the QuerySet by this field. We
also provide an optional count variable to limit the total number of objects returned
to a given value.

In adition to count, Django offers the aggregation functions Avg, Max, Min, and Sum.
You can read more about aggregation functions at https://docs.djangoproject.
com/en/1.8/topics/db/aggregation/.

Edit the blog/base.html template and append the following code to the sidebar
<div> element:

<h3>Most commented posts</h3>
{% get _most commented posts as most commented posts %}
<uls>
{% for post in most commented posts %}
<lis
{{ post.title }}
</1lis
{% endfor %}

The notation for assignment template tags is {¢ template_tag as variable

%}. For our template tag, we use {$ get_most_commented_posts as most_
commented_posts %}. This way, we are storing the result of the template tag in a
new variable named most_commented_posts. Then, we display the returned posts
with an unordered list.

Now, open your browser and refresh the page to see the final result. It should look
like the following:

My Blog My blog
This is my blog. I've written 4 posts so far.
Latest posts

Tags:

Post body. :
Most commented posts

Tags: :

Post body.

[66]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/db/aggregation/
https://docs.djangoproject.com/en/1.8/topics/db/aggregation/
http://www.it-ebooks.info/

Chapter 3

You can read more about custom template tags at https://docs.djangoproject.
com/en/1.8/howto/custom-template-tags/.

Creating custom template filters

Django has a variety of built-in template filters that allow you to modify variables
in templates. These are Python functions that take one or two parameters —the
value of the variable it's being applied to, and an optional argument. They return
a value that can be displayed or treated by another filter. A filter looks like { {
variable|my_ filter }} or passing an argument, it looks like {{ variable|my_
filter:"foo" }}.You can apply as many filters as you like to a variable like { {
variable|filterl|filter2 }}, and each of them will be applied to the output
generated by the previous filter.

We are going to create a custom filter to be able to use markdown syntax in
our blog posts and then convert the post contents to HTML in the templates.
Markdown is a plain text formatting syntax that is very simple to use and it's
intended to be converted into HTML. You can learn the basics of this format
at http://daringfireball.net/projects/markdown/basics

First, install the Python markdown module via pip using the following command:

pip install Markdown==2.6.2

Then edit the blog_tags.py file and include the following code:

from django.utils.safestring import mark safe
import markdown

@register.filter (name="'markdown')
def markdown format (text) :
return mark safe (markdown.markdown (text))

We register template filters in the same way as we do with template tags. To avoid
collision between our function name and the markdown module, we name our
function markdown_format and name the filter markdown for usage in templates like
{{ variable|markdown }}. Django escapes the HTML code generated by filters.
We use the mark_safe function provided by Django to mark the result as safe HTML
to be rendered in the template. By default, Django will not trust any HTML code

and will escape it before placing it into the output. The only exception are variables
that are marked safe from escaping. This behavior prevents Django from outputting
potentially dangerous HTML and allows you to create exceptions when you know
you are returning safe HTML.

[67]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/
https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/
http://daringfireball.net/projects/markdown/basics
http://www.it-ebooks.info/

Extending Your Blog Application

Now, load your template tags module in the post list and detail templates. Add the
following line at the top of the post/list.html and post/detail.html template
after the {% extends %} tag:

{%$ load blog tags %}
In the post/detail.html templates, replace the following line:
{{ post.body|linebreaks }}
...with the following one:
{{ post.body|markdown }}
Then, in the post/1ist.html file, replace this line:
{{ post.body|truncatewords:30|linebreaks }}
...with the following one:

{{ post.body|markdown|truncatewords html:30 }}

The truncatewords_html filter truncates a string after a certain number of words,
avoiding unclosed HTML tags.

Now, open http://127.0.0.1:8000/admin/blog/post/add/ in your browser and
add a post with the following body:

This is a post formatted with markdown

This is emphasized and **this is more emphasized**.
Here is a list:

* One

* Two

* Three

And a [link to the Django website] (https://www.djangoproject.com/)

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Open your browser and see how the post is rendered. You should see the following:

Tags:

This is a post formatted with markdown
This is emphasized and this is more emphasized.
Here is a list:

* One

« Two

e Three
And a

As you can see, custom template filters are very useful to customize formatting. You
can find more information about custom filters at https://docs.djangoproject.
com/en/1.8/howto/custom-template-tags/#writing-custom-template-
filters.

Adding a sitemap to your site

Django comes with a sitemap framework, which allows you to generate sitemaps for
your site dynamically. A sitemap is an XML file that tells search engines the pages
of your website, their relevance, and how frequently they are updated. By using a
sitemap, you will help crawlers indexing your website's content.

The Django sitemap framework depends on django.contrib.sites, which allows
you to associate objects to particular websites that are running with your project.
This comes handy when you want to run multiple sites using a single Django project.
To install the sitemap framework, we need to activate both the sites and the sitemap
applications in our project. Edit the settings.py file of your project and add
django.contrib.sites and django.contrib.sitemaps to the INSTALLED APPS
setting. Also define a new setting for the site ID, as follows:

SITE ID = 1

Application definition
INSTALLED APPS = (

[69]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/#writing-custom-template-filters
https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/#writing-custom-template-filters
https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/#writing-custom-template-filters
http://www.it-ebooks.info/

Extending Your Blog Application

...
'django.contrib.sites’',
'django.contrib.sitemaps’',

)

Now, run the following command to create the tables of the Django sites application
in the database:

python manage.py migrate

You should see an output that contains this line:
Applying sites.0001 initial... OK

The sites application is now synced with the database. Now, create a new file inside
your blog application directory and name it sitemaps.py. Open the file and add the
following code to it:

from django.contrib.sitemaps import Sitemap
from .models import Post

class PostSitemap (Sitemap) :
changefreqg = 'weekly'
priority = 0.9

def items(self):
return Post.published.all ()

def lastmod(self, obj):
return obj.publish

We create a custom sitemap by inheriting the sitemap class of the sitemaps module.
The changefreqg and priority attributes indicate the change frequency of your
post pages and their relevance in your website (maximum value is 1). The items ()
method returns the QuerySet of objects to include in this sitemap. By default, Django
calls the get_absolute_url () method on each object to retrieve its URL. Remember
that we created this method in Chapter 1, Building a Blog Application, to retrieve the
canonical URL for posts. If you want to specify the URL for each object, you can

add a location method to your sitemap class. The 1astmod method receives each
object returned by items () and returns the last time the object was modified. Both
changefreq and priority method can also be either methods or attributes. You can
see the complete sitemap reference in the official Django documentation located at
https://docs.djangoproject.com/en/1.8/ref/contrib/sitemaps/.

[70]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/contrib/sitemaps/
http://www.it-ebooks.info/

Chapter 3

Finally, we just need to add our sitemap URL. Edit the main urls.py file of your
project and add the sitemap like this:

from django.conf.urls import include, url

from django.contrib import admin

from django.contrib.sitemaps.views import sitemap
from blog.sitemaps import PostSitemap

sitemaps = {
'posts': PostSitemap,

urlpatterns = [
url (r'*admin/', include (admin.site.urls)),
url (r'"blog/"',
include ('blog.urls'namespace="'blog', app name='blog')),
url(r'“sitemap\.xml$', sitemap, {'sitemaps': sitemaps},
name='django.contrib.sitemaps.views.sitemap'),

]

Here, we include the required imports and define a dictionary of sitemaps. We
define a URL pattern that matches with sitemap.xml and uses the sitemap
view. The sitemaps dictionary is passed to the sitemap view. Now open
http://127.0.0.1:8000/sitemap.xml in your browser. You should see
XML code like the following:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<urls>
<loc>http://example.com/blog/2015/09/20/another-post/</loc>
<lastmod>2015-09-29</lastmod>
<changefreg>weekly</changefreqg>
<priority>0.9</priority>
</urls>
<urls>
<loc>http://example.com/blog/2015/09/20/who-was-django-
reinhardt/</loc>
<lastmod>2015-09-20</lastmod>
<changefreg>weekly</changefreqg>
<priority>0.9</priority>
</urls>
</urlset>

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Blog Application

The URL for each post has been built calling its get_absolute_url () method.
The lastmod attribute corresponds to the post publish date field as we specified
in our sitemap, and the changefreq and priority attributes are also taken from
our PostSitemap class. You can see that the domain used to build the URLs is
example.com. This domain comes from a site object stored in the database. This
default object has been created when we synced the sites framework with our
database. Open http://127.0.0.1:8000/admin/sites/site/ in your browser.
You should see something like this:

Djaﬂgo administration Welcome, admin. Change password [Log out

Home » Sites » 5ites

Select site to change Add site
Q| Search|

Action; [resmmeman . Go| 0of 1 selected

| Domain name = Display name

—| example.com example.com

1 site

This is the list display admin view for the sites framework. Here, you can set the
domain or host to be used by the sites framework and the applications that depend
on it. In order to generate URLs that exist in our local environment, change the
domain name to 127.0.0.1:8000 as shown in the following screenshot and save it:

Django administration

Home » Sites » Sites > 127.0.0.1:8000
Change site

Domain name: 127.0.0.1:8000

Display name: 127.0.0.1:8000

We point to our local host for development purposes. In a production environment,
you will have to use your own domain name for the sites framework.

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Creating feeds for your blog posts

Django has a built-in syndication feed framework that you can use to dynamically
generate RSS or Atom feeds in a similar manner to creating sitemaps using the
sites framework.

Create a new file in your blog application directory and name it feeds.py. Add the
following lines to it:

from django.contrib.syndication.views import Feed
from django.template.defaultfilters import truncatewords
from .models import Post

class LatestPostsFeed (Feed) :

title = 'My blog'
link = '/blog/'
description = 'New posts of my blog.'

def items (self):
return Post.published.all() [:5]

def item_title(self, item):
return item.title

def item description(self, item):
return truncatewords (item.body, 30)

First, we subclass the Feed class of the syndication framework. The title, 1ink, and
description attributes correspond to the <title>, <link>, and <descriptions>
RSS elements respectively.

The items () method retrieves the objects to be included in the feed. We are
retrieving only the last five published posts for this feed. The item title () and
item description () methods receive each object returned by items () and return
the title and description for each item. We use the truncatewords built-in template
filter to build the description of the blog post with the first 30 words.

Now, edit the urls.py file of your blog application, import the LatestPostsFeed
you just created, and instantiate the feed in a new URL pattern:

from .feeds import LatestPostsFeed
urlpatterns = [

#
url(r'"“feed/$', LatestPostsFeed(), name='post feed'),

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Blog Application

Navigate to http://127.0.0.1:8000/blog/feed/ in your browser. You should
now see the RSS feedincluding the last five blog posts:

<?xml version="1.0" encoding="utf-8"?>
<rss xmlns:atom="http://www.w3.org/2005/Atom" version="2.0">
<channels>
<title>My blog</title>
<link>http://127.0.0.1:8000/blog/</link>
<description>New posts of my blog.</descriptions>
<atom:link href="http://127.0.0.1:8000/blog/feed/" rel="self"/>
<language>en-us</language>
<lastBuildDate>Sun, 20 Sep 2015 20:40:55 -0000</lastBuildDate>
<item>
<title>Who was Django Reinhardt?</titles>
<link>http://127.0.0.1:8000/blog/2015/09/20/who-was-django-
reinhardt/</link>
<description>The Django web framework was named after the
amazing jazz guitarist Django Reinhardt.</descriptions>
<guid>http://127.0.0.1:8000/blog/2015/09/20/who-was-django-
reinhardt/</guid>
</item>

</channel>
</rss>

If you open the same URL in a RSS client, you will be able to see your feed with a
user-friendly interface.

Last step is adding a feed subscription link to the blog's sidebar. Open the blog/
base.html template and add the following line under the number of total posts
inside the sidebar div:

<p>Subscribe to my RSS feed</
p>

Now, open http://127.0.0.1:8000/blog/ in your browser and take a look at the
sidebar. The new link should take you to your blog's feed:

My blog

This is my blog. I've written 4 posts so far.

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Adding a search engine with Solr and
Haystack

Now, we are going to add search capabilities to our blog. The Django ORM allows
you to perform case-insensitive lookups using the icontains filter. For example,
you can use the following query to find posts that contain the word framework in
their body:

Post.objects.filter (body icontains='framework')

However, if you need more powerful search functionalities, you have to use a proper
search engine. We are going to use Solr in conjunction with Django to build a search
engine for our blog. Solr is a popular open-source search platform that offers full-
text search, term boosting, hit highlighting, faceted search, and dynamic clustering,
among other advanced search features.

In order to integrate Solr in our project, we are going to use Haystack. Haystack is a
Django application that works as an abstraction layer for multiple search engines. It
offers a simple search API very similar to Django QuerySets. Let's start by installing
and configuring Solr and Haystack.

Installing Solr

You will need the Java Runtime Environment version 1.7 or higher to install Solr.
You can check your java version using the command java -version in the shell
prompt. The output might vary but you need to make sure the installed version
is at least 1.7:

java version "1.7.0_25"
Java (TM) SE Runtime Environment (build 1.7.0_25-bls5)
Java HotSpot (TM) 64-Bit Server VM (build 23.25-b01, mixed mode)

If you don't have Java installed or your version is lower than the required one,
then you can download Java from http://www.oracle.com/technetwork/java/
javase/downloads/index.html.

After checking your Java version, download Solr version 4.10.4 from http://
archive.apache.org/dist/lucene/solr/. Unzip the downloaded file and go

to the example directory within the Solr installation directory (that is, cd solr-
4.10.4/example/). This directory contains a ready to use Solr configuration. From
this directory, run Solr with the built-in Jetty web server using the command:

java -jar start.jar

[75]

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://archive.apache.org/dist/lucene/solr/
http://archive.apache.org/dist/lucene/solr/
http://www.it-ebooks.info/

Extending Your Blog Application

Open your browser and enter the URL http://127.0.0.1:8983/solr/. You should
see something like the following:

7)

Apache) H Instance [system 3
-

SOI r - & Start less than a minute ago ohysical Memory

@ Dashboard [Versions

(53 Logging o SOIr-spec 4.10.1

& Core Admin solr-impl 4101 1627268 - mike - 2014-09-24 06:07:51 Swap Space

% lucene-spec 4.10.1

7| Java Properties
lucene-impl 4.10.1 1627268 - mike - 2014-09-24 06:03:16

= Thread Dump

i File Descriptor Count

1 vm =\ JVM-Memory

~ Runtime Oracle Corporation Java HotSpot(TM) 64-Bit Server VM (1.7.0_25 23.25

@ Processors 4

|| Documentation fj Issue Tracker @ IRC Channel [] Community forum || Solr Query Syntax

This is the Solr administration console. This console shows you usage statistics
and allows you to manage your search backend, check the indexed data, and
perform queries.

Creating a Solr core

Solr allows you to isolate instances in cores. Each Solr core is a Lucene instance along
with a Solr configuration, a data schema, and other required configuration to use it.
Solr allows you to create and manage cores on the fly. The example configuration
includes a core called collectionl. You can see the information of this core if you
click on the Core Admin menu tab, as shown in the following screenshot:

'’ —
Apache "' &3 Add Core W =[Rename || & Swap | &b Reload | & Optimize
y

collectionl [# Core
& Dashboard starTime: about 2 hours ago
= Logging instanceDir JUsers/zenx/Downloads /solr-4.10.1/example/solr/collectionl/
dataDir: JUsers/zenx/Downloads /solr-4.10.1/examplefsolr/collection1/data/

il Core Admin

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We are going to create a core for our blog application. First, we need to create the
file structure for our core. Inside the example directory within the solr-4.10.4/
directory, create a new directory and name it blog. Then create the following empty
files and directories inside it:

blog/

data/

conf/
protwords. txt
schema.xml
solrconfig.xml
stopwords. txt
synonyms . txt
lang/

stopwords_en.txt

Add the following XML code to the solrconfig.xml file:

<?xml version="1.0" encoding="utf-8" ?>
<configs>
<luceneMatchVersion>LUCENE 36</luceneMatchVersions>

<requestHandler name="/select" class="solr.StandardRequestHandler"
default="true" />

<requestHandler name="/update" class="solr.UpdateRequestHandler" />
<requestHandler name="/admin" class="solr.admin.AdminHandlers" />

<requestHandler name="/admin/ping" class="solr.PingRequestHandler">
<lst name="invariants">
<str name="gt"s>search</str>
<str name="qg">*:*</str>
</lst>
</requestHandler>
</config>

You can also copy this file from the code that comes along with this chapter. This
is a minimal Solr configuration. Edit the schema . xml file and add the following
XML code:

<?xml version="1.0" ?>
<gschema name="default" version="1.5">
</schemas

This is an empty schema. The schema defines the fields and their types for the data
that will be indexed in the search engine. We are going to use a custom schema later.

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Blog Application

Now, click on the Core Admin menu tab and then click on the Add Core button.
You will see a form like the following that allows you to specify the information
for your core:

rr -
Solr ~

name: |blog
& Dashboard instanceDir: |blog
(=) Logging dataDir: |data
£ Core Admin

config: |solrconfig.xml

- Java Properties
schema: |schema.xml

= Thread Dump

(i)
o

Fill the form with the following data:

* name: blog

e instanceDir: blog

* dataDir: data

* config: solrconfig.xml

* schema: schema.xml
The name field is the name you want to give to this core. The instanceDir field is
the directory of your core. The dataDir is the directory where indexed data will
reside. It is located inside the instanceDir. The config field is the name of your Solr

XML configuration file and the schema field is the name of your Solr XML data
schema file.

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Now, click the Add Core button. If you see the following, then your new core has
been successfully added to Solr:

" — e
Apache " [E3 Add Core = Rename | #& Swap | &) Reload | & Optimize
a1
y

Solr

blog [Core
& Dashboard collectionl startTime: 6 minutes ago
& Logging instanceDir solr/blog/
@ Core Admin dataDir: fUsers/zenx/Downloads/solr-4.10.1/example/solr/blog/data/
.| Java Properties il Index
Thread D
= [hread Dump lastModified: -
version: 1
-
numDaocs /]
maxDoc: o

deletedDocs: -

optimized: "4
current: 4
directory: org.apache.lucene.store.NRTCachingDirectory:NRTCachingDirectory(MMapDirectory@

fUsers/zenx/Downloads /solr-4.10.1/example/solr/blog/data/index
lockFactory=NativeFSLockFactory@/ Users/zenx/Downloads/solr-
4.10.1/example/solr/blog/data/index; maxCacheMB=48.0 maxMergeSizeMB=4.0)

|=] Documentation ‘ﬁ’- Issue Tracker _"E_ IRC Channel [+] Community forum o Solr Query Syntax

Installing Haystack

To use Solr with Django, we need Haystack. Install Haystack via pip using the
following command:

pip install django-haystack==2.4.0

Haystack can interact with several search engine backends. To use the Solr backend,
you also need to install the pysolr module. Run the following command to install it:

pip install pysolr==3.3.2

After installing django-haystack and pysolr, you need to activate Haystack in your
project. Open the settings.py file and add haystack to the INSTALLED APPS
setting like this:

INSTALLED APPS = (
...
'haystack',

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Blog Application

You need to define the search engine backends for haystack. You can do
this by adding a HAYSTACK_CONNECTIONS setting. Add the following into your
settings.py file:

HAYSTACK CONNECTIONS = {

'default': {
'ENGINE': 'haystack.backends.solr backend.SolrEngine',
'URL': 'http://127.0.0.1:8983/solr/blog'

b
}

Notice that the URL points to our blog core. Haystack is now installed and ready
to be used with Solr.

Building indexes

Now, we have to register the models we want to store in the search engine. The
convention for Haystack is to create a search_indexes.py file into your application
and register your models there. Create a new file into your blog application
directory and name it search_indexes.py. Add the following code to it:

from haystack import indexes
from .models import Post

class PostIndex (indexes.SearchIndex, indexes.Indexable) :
text = indexes.CharField(document=True, use template=True)
publish = indexes.DateTimeField(model attr='publish')

def get model (self) :
return Post

def index queryset (self, using=None) :
return self.get model () .published.all ()

This is a custom SearchIndex for the post model. With this index, we tell Haystack
which data from this model has to be indexed in the search engine. The index is built
by subclassing indexes.SearchIndex and indexes.Indexable. Every SearchIndex
requires that one of its fields has document=True. The convention is to name this
field text. This field is the primary search field. With use_template=True, we

are telling Haystack that this field will be rendered to a data template to build the
document the search engine will index. The publish field is a datetime field that will
be also indexed. We indicate that this field corresponds to the publish field of the
Post model by using the model_attr parameter. The field will be indexed with the
content of the publish field of the indexed Post object.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Additional fields like this one are useful to provide additional filters to searches. The
get_model () method has to return the model for the documents that will be stored
in this index. The index_queryset () method returns the QuerySet for the objects
that will be indexed. Notice that we are only including published posts.

Now, create the path and file search/indexes/blog/post_text.txt in the
templates directory of the blog application and add the following code to it:

{{ object.title }}
{{ object.tags.all|join:", " }}
{{ object.body }}

This is the default path for the document template for the text field of our
index. Haystack uses the application name and the model name to build the path
dynamically. Every time we are going to index an object, Haystack will build

a document based on this template and then index the document in the Solr
search engine.

Now that we have a custom search index, we have to create the appropriate Solr
schema. Solr's configuration is XML-based, so we have to generate an XML schema
for the data we are going to index. Fortunately, Haystack offers a way to generate
the schema dynamically, based on our search indexes. Open the terminal and run
the following command:

python manage.py build solr schema

You should see an XML output. If you take a look at the bottom of the generated XML
code, you will see that Haystack generated fields for your Post Index automatically:

<field name="text" type="text en" indexed="true" stored="true"
multivValued="false" />

<field name="publish" type="date" indexed="true" stored="true"
multivValued="false" />

Copy the whole XML output from the initial tag <?xml version="1.0" 2> to the
last tag </schemas, including both tags.

This XML is the schema to index data into Solr. Paste the new schema into the blog/
conf/schema.xml file inside the example directory of your Solr installation. The
schema .xml file is included in the code that comes along with this chapter, so you
can also copy it directly from this file.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Blog Application

Open http://127.0.0.1:8983/solr/ in your browser and click on Core Admin
menu tab, then click on the blog core, and then click the Reload button:

E3 Add Core = Rename | && Swap | &y Reload | & Optimize

We reload the core so that it takes into account the schema.xml changes. When the
core finishes reloading, the new schema is ready to index new data.

Indexing data

Let's index the posts of our blog into Solr. Open the terminal and execute the
following command:

python manage.py rebuild index

You should see the following warning;:

WARNING: This will irreparably remove EVERYTHING from your search
index in connection 'default'.

Your choices after this are to restore from backups or rebuild via the
“rebuild index™ command.

Are you sure you wish to continue? [y/N]

Enter y for yes. Haystack will clear the search index and insert all published blog
posts. You should see an output like this:

Removing all documents from your index because you said so.
All documents removed.
Indexing 4 posts

Open http://127.0.0.1:8983/solr/#/blog in your browser. Under Statistics,
you should be able to see the number of indexed documents as follows:

|gll| Statistics

Last Modified: 2 minutes ago
Num Docs: 4
Max Doc: 4
Heap Memory 5856

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Now, open http://127.0.0.1:8983/solr/#/blog/query in your browser. This
is a query interface provided by Solr. Click the Execute query button. The default
query requests all documents indexed in your core. You will see a JSON output
with the results of the query. The outputted documents look like the following:

{

"id": "blog.post.1l",

"text": "Who was Django Reinhardt?\njazz, music\nThe Django
web framework was named after the amazing jazz guitarist Django
Reinhardt.",

"django_id": "1",

"publish": "2015-09-20T12:49:522Z",

"django ct": "blog.post"

b

This is the data stored for each post in the search index. The text field contains the
title, tags separated by commas, and the body of the post, as this field is built with
the template we defined before.

You have used python manage.py rebuild_index to remove everything in the
index and to index the documents again. To update your index without removing all
objects, you can use python manage.py update_index. Alternatively, you can use
the parameter - -age=<num_hours> to update less objects. You can set up a Cron job
for this in order to keep your Solr index updated.

Creating a search view

Now, we are going to create a custom view to allow our users to search posts. First,
we need a search form. Edit the forms . py file of your blog application and add the
following form:

class SearchForm(forms.Form) :
query = forms.CharField()

We will use the query field to let the users introduce search terms. Edit the views.py
file of your blog application and add the following code to it:

from .forms import EmailPostForm, CommentForm, SearchForm
from haystack.query import SearchQuerySet

def post search(request) :
form = SearchForm/()
if 'query' in request.GET:
form = SearchForm(request.GET)
if form.is valid() :

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Blog Application

cd = form.cleaned data

results = SearchQuerySet () .models (Post)\

.filter (content=cd['query']) .load all()
count total results
total results = results.count()

return render (request,

'blog/post/search.html’',
{rform': form,

'ed': cd,
'results': results,
'total results': total results})

In this view, first we instantiate the SearchForm that we created before. We are
going to submit the form using the GET method so that the resulting URL includes
the query parameter. To see if the form has been submitted, we look for the

query parameter in the request . GET dictionary. When the form is submitted, we
instantiate it with the submitted GET data and we check that the given data is valid.
If the form is valid, we use the we use SearchQuerySet to perform a search for
indexed Post objects whose main content contains the given query. The load_all ()
method loads all related Post objects from the database at once. With this method,
we populate the search results with the database objects to avoid per-object access to
the database when iterating over results to access object data. Finally, we store the
total number of results in a total_results variable and pass the local variables as
context to render a template.

The search view is ready. We need to create a template to display the form and the
results when the user performs a search. Create a new file inside the templates/
blog/post/ directory, name it search.html, and add the following code to it:

{% extends "blog/base.html" %}
{% block title %}Search{% endblock %}

{% block content %}
{$ if "query" in request.GET %}
<hl>Posts containing "{{ cd.query }}"</hl>

<h3>Found {{ total results }} result{{ total results|pluralize
}}</h3>

{% for result in results %}
{% with post=result.object %}

<h4>{{ post.title }}</
a></h4>

{{ post.body|truncatewords:5 }}
{% endwith %}
{% empty %}

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<p>There are no results for your query.</p>
{% endfor %}
<p>Search again</p>
{% else %}
<hl>Search for posts</hl>
<form action="." method="get">
{{ form.as p }}
<input type="submit" value="Search"s>
</form>
{% endif %}
{% endblock %}

As in the search view, we distinguish if the form has been submitted based on the
presence of the query parameter. Before the post is submitted, we display the form
and a submit button. After the post is submitted, we display the query performed,
the total number of results, and the list of results. Each result is a document
returned by Solr and encapsulated by Haystack. We need to use result.object

to access the actual post object related to this result.

Finally, edit the urls.py file of your blog application and add the following
URL pattern:

url (r'”“search/$"', views.post search, name='post search'),

Now, open http://127.0.0.1:8000/blog/search/ in your browser. You should
see a search form like this:

Search for posts My blog

Query: This is my blog. I've written 4
posts so far.

Latest posts

Most commented posts

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Blog Application

Now, enter a query and click the Search button. You will see the results of the search
query like the this:

e -
Posts containing "music My blog

Found 2 results This is my blog. I've written 4

posts so far.
Paost body. Latest posts
The Django web framework was

Most commented posts

Now, you have a powerful search engine built into your project, but starting from
here there are a plenty of things you can do with Solr and Haystack. Haystack
includes search views, forms, and advanced functionalities for search engines. You
can read the Haystack documentation at http://django-haystack.readthedocs.
org/en/latest/.

The Solr search engine can be adapted to any need by customizing your schema.
You can combine analyzers, tokenizers, and token filters that are executed at
index or search time to provide a more accurate search for your site's content.
You can see all possibilities for this at https://wiki.apache.org/solr/
AnalyzersTokenizersTokenFilters.

Summary

In this chapter, you learned how to create custom Django template tags and filters to
provide templates with custom functionality. You also created a sitemap for search
engines to crawl your site and an RSS feed for users to subscribe to. You also built a
search engine for your blog by integrating Solr with Haystack into your project.

In the next chapter, you will learn how to build a social website by using the Django
authentication framework, creating custom user profiles, and building social
authentication.

[86]

www.it-ebooks.info

http://django-haystack.readthedocs.org/en/latest/
http://django-haystack.readthedocs.org/en/latest/
https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://www.it-ebooks.info/

Building a Social Website

In the previous chapter, you learned how to create sitemaps and feeds, and you
built a search engine for your blog application. In this chapter, you will develop a
social application. You will create functionality for users to login, logout, edit, and
reset their password. You will learn how to create a custom profile for your users,
and you will add social authentication to your site.

This chapter will cover the following points:

e Using the authentication framework
e Creating user registration views
e Extending the User model with a custom profile model

¢ Adding social authentication with python-social-auth

Let's start by creating our new project.

Creating a social website project
We are going to create a social application that will allow users to share images they
find on the Internet. We will need to build the following elements for this project:
e An authentication system for users to register, log in, edit their profile,
and change or reset their password
e A followers' system to allow users to follow each other

e Functionality to display shared images and implement a bookmarklet
for users to share images from any website

e An activity stream for each user that allows users to see the content
uploaded by the people they follow

This chapter addresses the first point.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Starting your social website project

Open the terminal and use the following commands to create a virtual environment
for your project and activate it:

mkdir env
virtualenv env/bookmarks

source env/bookmarks/bin/activate

The shell prompt will display your active virtual environment as follows:

(bookmarks) laptop:~ zenxs
Install Django in your virtual environment with the following command:
pip install Django==1.8.6
Run the following command to create a new project:

django-admin startproject bookmarks

After creating the initial project structure, use the following commands to get into
your project directory and create a new application named account:

cd bookmarks/

django-admin startapp account

Remember to activate the new application in your project by adding it to the
INSTALLED APPS setting in the settings.py file. Place it in the INSTALLED APPS
list before any of the other installed apps:

INSTALLED APPS = (
'account',
...

)

Run the next command to sync the database with the models of the default
applications included in the INSTALLED APPS setting;:

python manage.py migrate

We are going to build an authentication system into our project using the
authentication framework.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Using the Django authentication
framework

Django comes with a built-in authentication framework that can handle user
authentication, sessions, permissions, and user groups. The authentication system
includes views for common user actions such as login, logout, change password,
and reset password.

The authentication framework is located at django. contrib.auth and is used by
other Django contrib packages. Remember that you already used the authentication
framework in Chapter 1, Building a Blog Application to create a superuser for your blog
application to access the administration site.

When you create a new Django project using the startproject command, the
authentication framework is included in the default settings of your project. It
consists of the django. contrib.auth application and the following two middleware
classes found in the MIDDLEWARE CLASSES setting of your project:

e AuthenticationMiddleware: Associates users with requests
using sessions
e SessionMiddleware: Handles the current session across requests
A middleware is a class with methods that are globally executed during the request

or response phase. You will use middleware classes on several occasions throughout
this book. You will learn to create custom middlewares in Chapter 13, Going Live.

The authentication framework also includes the following models:

e User: A user model with basic fields; the main fields of this model are:
username, password, email, first name, last name, and is_active.

e Group: A group model to categorize users.

e permission: Flags to perform certain actions.

The framework also includes default authentication views and forms that we will
use later.

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Creating a log-in view
We will start by using the Django authentication framework to allow users to log in
into our website. Our view should perform the following actions to log in a user:

1. Get the username and password by posting a form.
2. Authenticate the user against the data stored in the database.
3. Check if the user is active.

4. Log the user into the website and start an authenticated session.

First, we are going to create a log in form. Create a new forms. py file into your
account application directory and add the following lines to it:

from django import forms

class LoginForm(forms.Form) :
username = forms.CharField()
password = forms.CharField(widget=forms.PasswordInput)

This form will be used to authenticate users against the database. Note that we

use the PasswordInput widget to render its HTML input element, including a
type="password" attribute. Edit the views.py file of your account application
and add the following code to it:

from django.http import HttpResponse

from django.shortcuts import render

from django.contrib.auth import authenticate, login
from .forms import LoginForm

def user login(request) :
if request.method == 'POST':
form = LoginForm(request.POST)
if form.is valid() :
cd = form.cleaned data
user = authenticate (username=cd]['username'],
password=cd['password'])
if user is not None:
if user.is active:
login(request, user)
return HttpResponse ('Authenticated '\
'successfully')
else:

return HttpResponse ('Disabled account')

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

else:
return HttpResponse ('Invalid login')
else:
form = LoginForm ()
return render (request, 'account/login.html', {'form': form})

This is what our basic log in view does: when the user_login view is called with
a GET request, we instantiate a new log in form with form = LoginForm() to
display it in the template. When the user submits the form via POST, we perform
the following actions:

1.

Instantiate the form with the submitted data with form =
LoginForm (request.POST).

Check if the form is valid. If it is not valid, we display the form errors in our
template (for example, if user did not fill one of the fields).

If the submitted data is valid, we authenticate the user against the database
by using the authenticate () method. This method takes a username

and a password and returns a User object if the user has been successfully
authenticated, or None otherwise. If the user has not been authenticated,
we return a raw HttpResponse displaying a message.

If the user was successfully authenticated, we check if the user is active
accessing its is_active attribute. This is an attribute of Django's User

model. If the user is not active, we return an Ht tpresponse displaying
the information.

If the user is active, we log the user into the website. We set the user in the
session by calling the login () method and return a success message.

Note the difference between authenticate and login:
authenticate () checks user credentials and returns a user object
T if they are right; login () sets the user in the current session.

Now, you need to create an URL pattern for this view. Create a new urls.py file into
your account application directory and add the following code to it:

from django.conf.urls import url

from . import views
urlpatterns = [
post views
url(r'Alogin/$', views.user login, name='login'),
1
[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Edit the main urls. py file located in your bookmarks project directory and include
the URL patterns of the account application as follows:

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url (r'*admin/', include (admin.site.urls)),

url(r'“account/', include('account.urls')),

]

The log in view can now be accessed by a URL. It is time to create a template for this
view. Since you don't have any templates for this project, you can start by creating a
base template that can be extended by the log in template. Create the following files
and directories inside the account application directory:

templates/
account/
login.html
base.html

Edit the base . html file and add the following code to it:

)

{$ load staticfiles %}
<!DOCTYPE html>
<html>
<head>
<title>{% block title %}{% endblock %}</title>
<link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
<div id="header"s
Bookmarks
</divs>
<div id="content">
{% block content %}
{% endblock %}
</divs>
</body>
</html>

This will be the base template for the website. As we did in our previous project,

we include the CSS styles in the main template. You can find these static files in the
code that comes along with this chapter. Copy the static/ directory of the account
application to the same location in your project, so that you can use the static files.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The base template defines a title and a content block that can be filled with
content by the templates that extend from it.

Let's create the template for our log-in form. Open the account /login.html
template and add the following code to it:

{% extends "base.html" %}
{% block title %}Log-in{% endblock %}

{% block content %}
<hl>Log-in</hl>
<p>Please, use the following form to log-in:</p>
<form action="." method="post">
{{ form.as p }}
{% csrf _token %}
<p><input type="submit" value="Log-in"></p>
</form>
{% endblock %}

This template includes the form that is instantiated in the view. Since our form will
be submitted via POST, we include the {% csrf_token %} template tag for CSRF
protection. You learned about CSRF protection in Chapter 2, Enhancing Your Blog with
Advanced Features.

There are no users in your database yet. You will need to create a superuser first

in order to be able to access the administration site to manage other users. Open
the command line and execute python manage.py createsuperuser. Fill in the
desired username, e-mail, and password. Then run the development server using
the command python manage.py runserver and openhttp://127.0.0.1:8000/
admin/ in your browser. Access the administration site using the username and
password of the user you just created. You will see the Django administration site,
including the User and Group models of the Django authentication framework. It
will look as follows:

Django administration

Site administration
Recent Actions
Groups gpadd ¢ Change My Actions
Users dhAdd . Change None available
[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Create a new user using the administration site and open http://127.0.0.1:8000/
account/login/ in your browser. You should see the rendered template, including
the log-in form:

00 ® < [Em| 127.0.0.1:8000/account/login/ & |] +

Bookmarks

Log-in

Please, use the following form to log-in:

Username:

Password:

Now, submit the form leaving one of the fields empty. In this case, you will see that
the form is not valid and it displays errors as follows:

Log-in

Please, use the following form to log-in:

Username:

test

« This field is required.

Password:

If you enter an non-existing user or a wrong password, you will get an Invalid
login message.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

If you enter valid credentials, you get an Authenticated successfully message
like this:

® ® < 0 127.0.0.1:8000/account/login/ & M [l |+

Authenticated successfully

Using Django authentication views

Django includes several forms and views in the authentication framework that
you can use straightaway. The login view you have created is a good exercise to
understand the process of user authentication in Django. However, you can use
the default Django authentication views in most cases.

Django provides the following views to deal with authentication:

¢ login: Handles a log in form and logs in a user
e logout: Logs out a user

e logout_then_login: Logs out a user and redirects him to the log-in page
Django provides the following views to handle password changes:

e password_change: Handles a form to change user password
e password_change_done: The success page shown to the user after
changing his password

Django also includes the following views to allow users to reset their password:

e password_reset: Allows the user to reset his password. It generates a
one-time use link with a token and sends it to the user's e-mail account.

e password reset done: Shows the user that the e-mail to reset his
password has been sent to his e-mail account.

e password_reset confirm: Lets the user set a new password.

e password reset_complete: The success page shown to the user after he
resets their password.

The views listed here can save you a lot of time when creating a website with user
accounts. The views use default values that you can override, such as the location of
the template to be rendered or the form to be used by the view.

You can get more information about built-in authentication views at https://docs.
djangoproject.com/en/1.8/topics/auth/default/#module-django.contrib.
auth.views.

[95]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/auth/default/#module-django.contrib.auth.views
https://docs.djangoproject.com/en/1.8/topics/auth/default/#module-django.contrib.auth.views
https://docs.djangoproject.com/en/1.8/topics/auth/default/#module-django.contrib.auth.views
http://www.it-ebooks.info/

Building a Social Website

Log in and log out views

Edit the urls.py of your account application and make it look like this:

from django.conf.urls import url
from . import views

urlpatterns = [
previous login view

url (r'*login/$"', views.user login, name='login'),

login / logout urls

url(r'*login/s',
'django.contrib.auth.views.login',
name="'login'),

url (r'"logout/s$"',
'django.contrib.auth.views.logout"',
name="'logout') ,

url (r'“logout-then-login/$"',
'django.contrib.auth.views.logout_then_login',
name="'logout_then login'),

]

We comment out the URL pattern for the user login view we have created
previously to use the login view of Django's authentication framework.

Create a new directory inside the templates directory of your account application
and name it registration. This is the default path where the Django authentication
views expect your authentication templates to be. Create a new file inside the new
directory, name it login.html, and add the following code to it:

{% extends "base.html" %}
{% block title %$}Log-in{% endblock %}

{% block content %}
<hl>Log-in</hl>
{$ if form.errors %}
<p>
Your username and password didn't match.
Please try again.
</p>
{% else %}
<p>Please, use the following form to log-in:</p>
{% endif %}

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<div class="login-form">
o

<form action="{% url 'login' %}" method="post">
{{ form.as p }}

)

{% csrf token %}
<input type="hidden" name="next" value="{{ next }}" />
<p><input type="submit" value="Log-in"></p>
</form>
</div>
{% endblock %}

This login template is quite similar to the one we created before. Django uses the
AuthenticationFormlocated at django.contrib.auth. forms by default. This
form tries to authenticate the user and raises a validation error if the login was not
successful. In this case, we can look for errors using {$ if form.errors %} in the
template to check if the provided credentials are wrong. Notice that we have added
a hidden HTML <input > element to submit the value of a variable called next. This
variable is first set by the log in view when you pass a next parameter in the request
(for example. http://127.0.0.1:8000/account/login/?next=/account/).

The next parameter has to be a URL. If this parameter is given, the Django login
view will redirect to the given URL after the user logs in.

Now, create a logged_out . html template inside the registration template
directory and make it look like this:

{% extends "base.html" %}
{% block title %$}Logged out{% endblock %}

{% block content %}
<hl>Logged out</hl>
<p>You have been successfully logged out. You can <a href="{% url

)

"login" %}">log-in again.</p>
{% endblock %}

This is the template that Django will display after the user logs out.

After adding the URL patterns and the templates for log in and log out views, your
website is ready for users to log in using the Django authentication views.

Note that the logout then login view we included in our urlconf
/& does not need any template since it performs a redirect to the log in view.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Now, we are going to create a new view to display a dashboard to the user when he
or she logs in their account. Open the views. py file of your account application and
add the following code to it:

from django.contrib.auth.decorators import login required

@login required
def dashboard(request) :
return render (request,
'account/dashboard.html"',
{'section': 'dashboard'})

We decorate our view with the 1ogin required decorator of the authentication
framework. The 1ogin required decorator checks if the current user is
authenticated. If the user is authenticated, it executes the decorated view; if the user
is not authenticated, it redirects him to the login URL with the URL he was trying to
access as a GET parameter named next. By doing so, the log in view redirects the user
back to the URL he was trying to access after he is successfully logged in. Remember
that we added a hidden input in the form of our log in template for this purpose.

We also define a section variable. We are going to use this variable to track which
section of the site the user is watching. Multiple views may correspond to the same
section. This is a simple way to define which section each view corresponds to.

Now, you need to create a template for the dashboard view. Create a new file inside
the templates/account/ directory and name it dashboard.html. Make it look
like this:

{% extends "base.html" %}
{% block title %}Dashboard{% endblock %}

{% block content %}
<hlsDashboard</hl>
<p>Welcome to your dashboard.</p>
{% endblock %}

Then, add the following URL pattern for this view in the urls.py file of the
account application:

urlpatterns = [
#
url(r'”"$', views.dashboard, name='dashboard'),

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Edit the settings.py file of your project and add the following code to it:

from django.core.urlresolvers import reverse lazy

LOGIN REDIRECT URL = reverse lazy('dashboard')
LOGIN URL = reverse lazy('login')
LOGOUT _URL = reverse lazy('logout')

These settings are:

e LOGIN_REDIRECT URL: Tells Django which URL to redirect after login
if the contrib.auth.views.login view gets no next parameter

e LOGIN_URL: Is the URL to redirect the user to log in (e.g. using the
login_required decorator)

e LOGOUT URL: Is the URL to redirect the user to log out

We are using reverse_lazy () to build the URLs dynamically by their name. The
reverse_lazy () function reverses URLs just like reverse () does, but you can use it
when you need to reverse URLs before your project's URL configuration is loaded.

Let's summarize what you have done so far:

¢ You added the built-in Django authentication log in and log out views to
your project

e You created custom templates for both views and defined a simple view
to redirect users after they log in

e Finally, you configured your settings for Django to use these URLs
by default

Now, we are going to add log in and log out links to our base template to put
everything together.

In order to do this, we have to determine whether the current user is logged in or
not, to display the appropriate link in each case. The current user is set in the Http
Request object by the authentication middleware. You can access it with request.
user. You will find a user object in the request even if the user is not authenticated.
A non-authenticated user is set in the request as an instance of AnonymousUser. The
best way to check if the current user is authenticated is by calling request .user.
is_authenticated().

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Edit your base . html and modify the <div> element with ID header, like this:

<div id="header"s
Bookmarks
{% if request.user.is authenticated %}
<ul class="menu">

<li {% if section == "dashboard" %}class="selected"{% endif %}>
My dashboard

</1li>

<li {% if section == "images" %}class="selected"{% endif %}>
Images

</1li>

<li {% if section == "people" %}class="selected"{% endif %}>
People

</1li>

{% endif %}

{% if request.user.is authenticated %}
Hello {{ request.user.first name }},
Logout
{% else %}
Log-in
{% endif %}

</divs>

As you can see, we only display the site's menu to authenticated users. We also check
the current section to add a selected class attribute to the corresponding <1i> item
in order to highlight the current section in the menu using CSS. We also display the
user's first name and a link to log out if the user is authenticated, or a link to log in
otherwise.

Now, open http://127.0.0.1:8000/account/login/ in your browser. You should
see the log in page. Enter a valid username and password and click the Log-in
button. You should see something like this:

My dashboard

Dashboard

Welcome to your dashboard.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

You can see that the My dashboard section is highlighted with CSS because it has
a selected class. Since the user is authenticated the first name of the user is
displayed in the right side of the header. Click on the Logout link. You should
see the following page:

Logged out

You have been successfully logged out. You can

In this page, you can see that the user is logged out, and therefore, you cannot see
the menu of the website anymore. The link on the right side of the header is shows
now Log-in.

If you are seeing the log out page of the Django administration site instead of your
own log out page, check the INSTALLED APPS setting of your project and make sure
that django.contrib.admin comes after the account application. Both templates
are located in the same relative path and the Django template loader will use the
tirst one it finds.

Change password views

We also need our users to be able to change their password after they log in to our
site. We are going to integrate Django authentication views for password change.
Open the urls.py file of the account application and add the following URL
patterns to it:

change password urls

url (r' “password-change/$"',
'django.contrib.auth.views.password change',
name='password change'),

url (r' “password-change/done/$",
'django.contrib.auth.views.password change done',
name="'password change done'),

The password_change view will handle the form to change the password and
the password_change_done will display a success message after the user has
successfully changed his password. Let's create a template for each view.

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Add a new file inside the templates/registration/ directory of your account
application and name it password_change_form.html. Add the following code to it:

{% extends "base.html" %}

{% block title %}Change you password{% endblock %}

°

{% block content %}
<hl>Change you password</hl>

<p>Use the form below to change your password.</p>
<form action="." method="post">

{{ form.as p }}
<p><input type="submit" value="Change"></p>
{% csrf _token %}
</form>
{% endblock %}

This template includes the form to change the password. Now, create another file in

the same directory and name it password_change_done.html. Add the following
code to it:

{$ extends "base.html" %}

{% block title %}Password changed{$% endblock %}

°

{% block content %}
<hl>Password changed</hl>

<p>Your password has been successfully changed.</p>
{% endblock %}

This template only contains the success message to be displayed when the user has
successfully changed their password.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Open http://127.0.0.1:8000/account/password-change/ in your browser. If
your user is not logged in, the browser will redirect you to the login page. After you
are successfully authenticated, you will see the following change password page:

Bookmarks Log-in

Change you password

Use the form below to change your password.

0Old password:
New password:

New password confirmation:

Fill in the form with your current password and your new password and click the
Change button. You will see the following success page:

Bookmarks

Password changed

Your password has been successfully changed.

Log out and log in again using your new password to verify that everything works
as expected.

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Reset password views

Add the following URL patterns for password restoration to the urls.py file of the
account application:

restore password urls

url (r' “password-reset/$"',
'django.contrib.auth.views.password reset',
name='password reset'),

url (r' “password-reset/done/s$",
'django.contrib.auth.views.password reset done',
name='password reset done'),

url (r' “password-reset/confirm/ (?P<uidbé64>[-\w]+) / (?P<token>[-\wl+)/$"',
'django.contrib.auth.views.password reset confirm',
name='password reset confirm'),

url (r' “password-reset/complete/$"',
'django.contrib.auth.views.password reset complete',
name='password reset complete'),

Add a new file in the templates/registration/ directory of your account
application and name it password_reset_form.html. Add the following code to it:

{% extends "base.html" %}

{% block title %}Reset your password{% endblock %}

{% block content %}
<hl>Forgotten your password?</hls>
<p>Enter your e-mail address to obtain a new password.</p>
<form action="." method="post">
{{ form.as p }}
<p><input type="submit" value="Send e-mail"></p>
{% csrf token %}
</form>
{% endblock %}

Now, create another file in the same directory and name it password_reset_email.
html. Add the following code to it:

Someone asked for password reset for email {{ email }}. Follow the
link below:

{{ protocol }}://{{ domain }}{% url "password reset confirm"
uidb64=uid token=token %}

Your username, in case you've forgotten: {{ user.get username }}

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

This is the template that will be used to render the e-mail sent to the user to reset
their password.

Create another file in the same directory and name it password_reset_done.html.
Add the following code to it:

{% extends "base.html" %}

{% block title %}Reset your password{% endblock %}

°

{% block content %}

<hl>Reset your password</hl>

<p>We've emailed you instructions for setting your password.</p>

<p>If you don't receive an email,
the address you registered with.</p>
{% endblock %}

please make sure you've entered

Create another template and name it password_reset_confirm.html. Add the
following code to it:

{% extends "base.html" %}

°

{% block title %}Reset your password{% endblock %}

{% block content %}
<hl>Reset your password</hl>
{% if validlink %}
<p>Please enter your new password twice:</p>
<form action="." method="post">
{{ form.as p }}
{% csrf _token %}
<p><input type="submit" value="Change my password" /></p>
</form>
{% else %}
<p>The password reset link was invalid, possibly because it has
already been used. Please request a new password reset.</p>
{% endif %}
{% endblock %}

We check if the provided link is valid. Django reset password view sets this variable

and puts it in the context of this template. If the link is valid, we display the user
password reset form.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Create another template and name it password_reset_complete.html. Enter the
following code into it:

{% extends "base.html" %}
{% block title %}Password reset{% endblock %}

{% block content %}
<hl>Password set</hl>

<p>Your password has been set. You can <a href="{% url "login"
$}"s>log in now</p>
{% endblock %}
Finally, edit the registration/login.html template of the account application
and add the following code after the <form> element:

°

<p><a href="{% url "password reset" %}"sForgotten your
password?</p>

Now, open http://127.0.0.1:8000/account/login/ in your browser and click
the Forgotten your password? link. You should see the following page:

Forgotten your password?

Enter your e-mail address to obtain a new password.

Email:

At this point, you need to add an SMTP configuration to the settings.py file of
your project, so that Django is able to send e-mails. We have seen how to add e-mail
settings to your project in Chapter 2, Enhancing Your Blog with Advanced Features.
However, during development, you can configure Django to write e-mails to the
standard output instead of sending them through an SMTP server. Django provides
an e-mail backend to write e-mails to the console. Edit the settings.py file of your
project and add the following line:

EMAIL BACKEND = 'django.core.mail.backends.console.EmailBackend'

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The EMAIL BACKEND setting indicates the class to use to send e-mails.

Go back to your browser, enter the e-mail address of an existing user, and click the
Send e-mail button. You should see the following page:

Reset your password

We've emailed you instructions for setting your password.

If you don't receive an email, please make sure you've entered the address you
registered with.

Take a look at the console where you are running the development server. You will
see the generated e-mail as follows:

IME-Version: 1.0

Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: 7bit

Subject: Password reset on 127.0.0.1:8000

From: webmaster@localhost

To: user@domain.com

Date: Thu, 24 Sep 2015 14:35:08 -0000

Message-ID: <20150924143508.62996.55653@zenx.local>

Someone asked for password reset for email user@domain.com. Follow the
link below:
http://127.0.0.1:8000/account/password-reset/confirm/MQ/45f-
9c3f30caafd523055fce/

Your username, in case you've forgotten: zenx

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

The e-mail is rendered using the password_reset_email.html template we
created earlier. The URL to reset your password includes a token that was generated
dynamically by Django. Open the link in your browser. You should see the
following page:

Bookmarks Log-in

Reset your password

Please enter your new password twice:

New password:

New password confirmation:

CHANGE MY PASSWORD

The page to set a new password corresponds to the password_reset_confirm.html
template. Fill in a new password and click the Change my password button. Django
creates a new encrypted password and saves it in the database. You will see a
success page like this one:

Bookmarks Log-in

Password set

Your password has been set. You can log in now

Now, you can log in back to your account using your new password. Each token to
set a new password can be used only once. If you open the link you received again,
you will get a message telling you the token is invalid.

You have integrated the views of the Django authentication framework in your
project. These views are suitable for most cases. However, you can create your
own views if you need a different behavior.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

User registration and user profiles

Existing users can now log in, log out, change their password, and reset the
password if they forgot it. Now, we need to build a view to allow visitors to
create a user account.

User registration

Let's create a simple view to allow user registration in our website. Initially, we have
to create a form to let the user enter a username, their real name, and a password.
Edit the forms. py file located inside the account application directory and add

the following code to it:

from django.contrib.auth.models import User

class UserRegistrationForm(forms.ModelForm) :
password = forms.CharField(label='Password',
widget=forms.PasswordInput)
password2 = forms.CharField(label='Repeat password',
widget=forms.PasswordInput)

class Meta:
model = User
fields = ('username', 'first _name',6 ‘'email')

def clean password2 (self) :
cd = self.cleaned data
if cd['password'] != cd['password2']:
raise forms.ValidationError ('Passwords don\'t match.')
return cd['password2']

We have created a model form for the User model. In our form we include only the
username, first name, and email fields of the model. These fields will be validated
based on their corresponding model fields. For example, if the user chooses a
username that already exists, their will get a validation error. We have added two
additional fields password and password2 for the user to set his or her password
and confirm it. We have defined a clean password2 () method to check the second
password against the first one and not let the form validate if the passwords don't
match. This check is done when we validate the form calling its is_valid () method.
You can provide a clean_<fieldname> () method to any of your form fields in
order to clean the value or raise form validation errors for the specific field. Forms
also include a general clean () method to validate the entire form, which is useful to
validate fields that depend on each other.

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Django also provides a UserCreationForm form that you can use, which resides in
django.contrib.auth. forms and is very similar to the one we have created.

Edit the views.py file of the account application and add the following code to it:

from .forms import LoginForm, UserRegistrationForm

def register (request) :
if request.method == 'POST':
user form = UserRegistrationForm(request.POST)
if user form.is valid() :
Create a new user object but avoid saving it yet
new_user = user form.save (commit=False)
Set the chosen password
new_user.set password (
user form.cleaned datal['password'])
Save the User object
new_user.save ()
return render (request,
'account/register done.html',
{'new user': new user})
else:
user form = UserRegistrationForm()
return render (request,
'account/register.html',
{'user form': user_ form})

The view for creating user accounts is quite simple. Instead of saving the raw
password entered by the user, we use the set_password () method of the User
model that handles encryption to save for safety.

Now, edit the urls.py file of your account application and add the following
URL pattern:

url (r'“register/$', views.register, name='register'),

Finally, create a new template in the account/ template directory, name it
register.html, and make it look as follows:

{% extends "base.html" %}

)

{% block title %}Create an account{% endblock %}

{% block content %}
<hl>Create an account</hl>
<p>Please, sign up using the following form:</p>

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<form action="." method="post">
{{ user form.as p }}

)

{% csrf _token %}
<p><input type="submit" value="Create my account"></p>
</forms>
{% endblock %}

Add a template file in the same directory and name it register_done.html. Add
the following code to it:

{% extends "base.html" %}
{% block title %}Welcome{% endblock %}
{% block content %}

<hl>Welcome {{ new user.first name }}!</hl>
<p>Your account has been successfully created. Now you can <a

)

href="{% url "login" %}">log in.</p>
{% endblock %}

Now, open http://127.0.0.1:8000/account/register/ in your browser. You
will see the registration page you created:

Bookmarks Log-in

Create an account

Please, sign up using the following form:

Username:

Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only.

First name:
Email address:
Password:

Repeat password:

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Fill in the details for a new user and click the Create my account button. If all fields
are valid, the user will be created and you will get the following success message:

Welcome Antonio!

Your account has been successfully created. Now you can log in.

Click the log in link and enter your username and password to verify that you can
access your account.

Now, you can also add a link for registration to your login template. Edit the
registration/login.html template and replace this line:

<p>Please, use the following form to log-in:</p>
...with this one:

<p>Please, use the following form to log-in. If you don't have an
account register here</p>

We made the sign up page accessible from the login page.

Extending the User model

When you have to deal with user accounts, you will find out that the User model
of the Django authentication framework is suitable for common cases. However,
the user model comes with very basic fields. You may wish to extend the User
model to include additional data. The best way to do this is by creating a profile
model that contains all additional fields and a one-to-one relationship with the
Django User model.

Edit the models.py file of your account application and add the following code to it:

from django.db import models
from django.conf import settings

class Profile (models.Model) :
user = models.OneToOneField (settings.AUTH USER MODEL)
date of birth = models.DateField(blank=True, null=True)

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

photo = models.ImageField(upload to='users/%Y/%m/%d',
blank=True)

def str (self):
return 'Profile for user {}'.format (self.user.username)

. Inorder to keep your code generic, use the get user model () method
% to retrieve the user model and the AUTH_USER_MODEL setting to refer to
= it when defining model's relations to the user model, instead of referring
to the auth User model directly.

The user one-to-one field allows us to associate profiles with users. The photo field is
an ImageField field. You will need to install one of the Python packages to manage
images, which are PIL (Python Imaging Library) or Pillow, which is a PIL fork. Install
Pillow by running the following command in your shell:

pip install Pillow==2.9.0

For Django to serve media files uploaded by users with the development server, add
the following settings to the settings. py file of your project:

MEDIA URL = ' /media/"
MEDIA ROOT = os.path.join(BASE DIR, 'media/')

MEDIA URL is the base URL to serve the media files uploaded by users, and
MEDIA_ROOT is the local path where they reside. We build the path dynamically
relative to our project path to make our code more generic.

Now, edit the main urls.py file of the bookmarks project and modify the code
as follows:

from django.conf.urls import include, url
from django.contrib import admin

from django.conf import settings

from django.conf.urls.static import static

urlpatterns = [
url (r'*admin/', include (admin.site.urls)),
url (r'*account/', include ('account.urls')),

if settings.DEBUG:
urlpatterns += static(settings.MEDIA URL,
document_root=settings.MEDIA ROOT)

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

In this way, the Django development server will be in charge of serving the media
files during development.

The static () helper function is suitable for development but not for production use.
Never serve your static files with Django in a production environment.

Open the shell and run the following command to create the database migration
for the new model:

python manage.py makemigrations
You will get this output:

Migrations for 'account':
0001 initial.py:
- Create model Profile

Next, sync the database with the following command:

python manage.py migrate

You will see an output that includes the following line:
Applying account.0001 initial... OK

Edit the admin. py file of the account application and register the profile model in
the administration site, like this:

from django.contrib import admin
from .models import Profile

class ProfileAdmin (admin.ModelAdmin) :
list display = ['user',K 'date of birth', 'photo']

admin.site.register (Profile, ProfileAdmin)

Run the development server again using the python manage.py runserver
command. Now, you should be able to see the profile model in the administration
site of your project, as follows:

Profiles s Add ¢ Change

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Now, we are going to let users edit their profile in the website. Add the following
model forms to the forms. py file of the account application:

from .models import Profile

class UserEditForm(forms.ModelForm) :
class Meta:
model = User
fields = ('first name', 'last name',6 'email')

class ProfileEditForm(forms.ModelForm) :
class Meta:
model = Profile
fields = ('date of birth', 'photo')

These forms are as follows:
e UserEditForm: Will allow users to edit their first name, last name, and

e-mail, which are stored in the built-in User model.

e pProfilekEditForm: Will allow users to edit the extra data we save in the
custom Profile model. Users will be able to edit their date of birth and
upload a picture for their profile.

Edit the views.py file of the account application and import the Profile model
like this:

from .models import Profile

And add the following lines to the register view below new_user.save():

Create the user profile
profile = Profile.objects.create (user=new_user)

When users register in our site, we create an empty profile associated to them. You
should create a profile object manually using the administration site for the users
you created before.

Now, we are going to let users edit their profile. Add the following code to the
same file:

from .forms import LoginForm, UserRegistrationForm, \
UserEditForm, ProfileEditForm

@login required
def edit (request):
if request.method == 'POST':

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

user form = UserEditForm(instance=request.user,
data=request.POST)
profile form = ProfileEditForm(
instance=request.user.profile,
data=request.POST,
files=request.FILES)
if user form.is valid() and profile form.is wvalid():
user form.save()
profile form.save()
else:
user form = UserEditForm(instance=request.user)
profile form = ProfileEditForm(
instance=request.user.profile)
return render (request,
'account/edit.html"',
{'user form': user form,

'profile form': profile form})

We use the 1ogin_ required decorator because users have to be authenticated to edit
their profile. In this case, we are using two model forms: UserEditForm to store the
data of the built-in User model and pProfileEditForm to store the additional profile
data. To validate the submitted data, we check that the is valid () method of both
forms returns True. In this case, we save both forms to update the corresponding
object in the database.

Add the following URL pattern to the urls.py file of the account application:

url (r'”"edit/$', views.edit, name='edit'),

Finally, create a template for this view in templates/account/ and name it
edit.html. Add the following code to it:

{% extends "base.html" %}
{% block title %}Edit your account{% endblock %}

{% block content %}
<hl>Edit your account</hl>
<p>You can edit your account using the following form:</p>
<form action="." method="post" enctype="multipart/form-data">
{{ user form.as p }}
{{ profile form.as p }}
{% csrf token %}
<p><input type="submit" value="Save changes"></p>
</form>
{% endblock %}

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We include enctype="multipart/form-data" in our form to enable
% file uploads. We use one HTML form to submit both the user_formand
the profile formforms.

Register a new user and open http://127.0.0.1:8000/account/edit/. You
should see the following page:

Bookmarks My dashboard Images People Hello Antonio, Logout

Edit your account

You can edit your account using the following form:

First name:
Antonio

Last name:
Melé
Email address:
antonio.mele@zenxit.con
Date of birth:
1986-05-13

Photo:

Seleccionar archivo | Nada seleccionado

Now, you can also edit the dashboard page and include links to edit profile
and change password pages. Open the account /dashboard.html template
and replace this line:

<p>Welcome to your dashboard.</p>

...with this one:

<p>Welcome to your dashboard. You can edit
your profile or change your
password.</p>

Users can now access the form to edit their profile from their dashboard.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Using a custom User model

Django also offers a way to substitute the whole User model with your own custom
model. Your user class should inherit from Django's AbstractUser class, which
provides the full implementation of the default user as an abstract model. You can
read more about this method at https://docs.djangoproject.com/en/1.8/
topics/auth/customizing/#substituting-a-custom-user-model.

Using a custom user model will give you more flexibility, but it might also result
in more difficult integration with pluggable applications that interact with the
User model.

Using the messages framework

When dealing with user actions, you might want to inform your users about the
result of their actions. Django has a built-in messages framework that allows you

to display one-time notifications to your users. The messages framework is located
at django.contrib.messages and it is included in the default INSTALLED APPS

list of the settings.py file when you create new projects using python manage.

py startproject. You will notice that your settings file contains a middleware
named django.contrib.messages.middleware.MessageMiddleware in the list of
MIDDLEWARE CLASSES of your settings. The messages framework provides a simple
way to add messages to users. Messages are stored in the database and displayed in
the next request the user does. You can use the messages framework in your views
by importing the messages module and adding new messages with simple shortcuts
like this:

from django.contrib import messages
messages.error (request, 'Something went wrong')

You can create new messages using the add_message () method or any of the
following shortcut methods:
e success (): Success messages to display after an action was successful
e info():Informational messages
e warning(): Something has not yet failed but may fail imminently
e error(): An action was not successful or something failed

e debug(): Debug messages that will be removed or ignored in a
production environment

[118]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#substituting-a-custom-user-model
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#substituting-a-custom-user-model
http://www.it-ebooks.info/

Chapter 4

Let's display messages to users. Since the messages framework applies globally to
the project, we can display messages for the user in our base template. Open the
base.html template and add the following code between the <div> element with
the id header and the <div> element with the id content:

°

{$ if messages %}
<ul class="messages">
{% for message in messages %}
<li class="{{ message.tags }}">
{{ message|safe }}
%¥
</1lis
{% endfor %}

{% endif %}

The messages framework includes a context processor that adds a messages variable
to the request context. So you can use this variable in your templates to display
current messages to the user.

Now, let's modify our edit view to use the messages framework. Edit the views.py
file of your application and make the edit view look as follows:

from django.contrib import messages

@login required
def edit (request) :
if request.method == 'POST':
#
if user form.is valid() and profile form.is valid():
user form.save ()
profile form.save()
messages.success (request, 'Profile updated '\
'successfully')
else:
messages.error (request, 'Error updating your profile')
else:
user form = UserEditForm(instance=request.user)

#

We add a success message when the user successfully updates their profile. If any of
the forms are invalid, we add an error message instead.

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Open http://127.0.0.1:8000/account/edit/ in your browser and edit your
profile. When the profile is successfully updated, you should see the following
message:

Bookmarks My dashboard Images People Hello Antonio, Logout

When the form is not valid, you should see the following message:

Bookmarks My dashboard Images People Hello Antonio, Logout

Building a custom authentication
backend

Django allows you to authenticate against different sources. The AUTHENTICATION
BACKENDS setting includes the list of authentication backends for your project. By
default, this setting is set to the following:

('django.contrib.auth.backends.ModelBackend',)

The default ModelBackend authenticates users against the database using the User
model of django.contrib.auth. This will suit most of your projects. However, you
can create custom backends to authenticate your user against other sources like a
LDAP directory or any other system.

You can read more information about customizing authentication at https://
docs.djangoproject.com/en/1.8/topics/auth/customizing/#other-
authentication-sources.

Whenever you use the authenticate () function of django.contrib.auth,

Django tries to authenticate the user against each of the backends defined in
AUTHENTICATION_BACKENDS one by one, until one of them successfully authenticates
the user. Only if all of the backends fail to authenticate the user, he or she will not be
authenticated into your site.

[120]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#other-authentication-sources
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#other-authentication-sources
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#other-authentication-sources
http://www.it-ebooks.info/

Chapter 4

Django provides a simple way to define your own authentication backends. An
authentication backend is a class that provides the following two methods:

e authenticate (): Takes user credentials as parameters. Has to return
True if the user has been successfully authenticated, or False otherwise.

e get_user(): Takes a user ID parameter and has to return a User object.

Creating a custom authentication backend is as simple as writing a Python class that
implements both methods. We are going to create an authentication backend to let
users authenticate in our site using their e-mail address instead of their username.

Create a new file inside your account application directory and name it
authentication.py. Add the following code to it:

from django.contrib.auth.models import User

class EmailAuthBackend (object) :

nnn

Authenticate using e-mail account.
nmnn

def authenticate(self, username=None, password=None) :
try:
user = User.objects.get (email=username)
if user.check password (password) :
return user
return None
except User.DoesNotExist:
return None

def get user(self, user id):
try:
return User.objects.get (pk=user id)
except User.DoesNotExist:
return None

This is a simple authentication backend. The authenticate () method receives the
username and password optional parameters. We could use different parameters,
but we use username and password to make our backend work with the
authentication framework views straightaway. The preceding code works as follows:

e authenticate (): We try to retrieve a user with the given e-mail address
and check the password using the built-in check _password () method of
the User model. This method handles the password hashing to compare
the given password against the password stored in the database.

e get_user(): We geta user by the ID set in the user_id parameter.
Django uses the backend that authenticated the user to retrieve the
User object for the duration of the user session.

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Edit the settings.py file of your project and add the following setting:

AUTHENTICATION_ BACKENDS = (
'django.contrib.auth.backends.ModelBackend',
'account.authentication.EmailAuthBackend',

)

We keep the default ModelBackend that is used to authenticate with username and
password, and we include our own email-based authentication backend. Now, open
http://127.0.0.1:8000/account/login/ in your browser. Remember that Django
will try to authenticate the user against each of the backends, so now you should be
able to log in using your username or e-mail account seamlessly.

. The order of the backends listed in the AUTHENTICATION
BACKENDS setting matters. If the same credentials are valid for
= multiple backends, Django will stop at the first backend that

successfully authenticates the user.

Adding social authentication to your site

You might also want to add social authentication to your site using services such as
Facebook, Twitter, or Google. Python-social-auth is a Python module that simplifies
the process of adding social authentication to your website. By using this module, you
can let your users log in to your website using their account of other services. You can
find the code of this module at https://github.com/omab/python-social-auth.

This module comes with authentication backends for different Python frameworks,
including Django.

To install the package via pip, open the console and run the following command:

pip install python-social-auth==0.2.12

Then add social.apps.django_app.default to the INSTALLED_ APPS setting in the
settings.py file of your project:

INSTALLED APPS = (

#...

'social.apps.django app.default',
)

This is the default application to add python-social-auth to Django projects. Now,
run the following command to sync python-social-auth models with your database:

python manage.py migrate

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

You should see that the migrations for the default application are applied as
follows:

Applying default.0001 initial... OK
Applying default.0002 add related name... OK
Applying default.0003 alter email max length... OK

Python-social-auth includes backends for multiple services. You can see a list of
all backends at https://python-social-auth.readthedocs.org/en/latest/
backends/index.html#supported-backends.

We are going to include authentication backends for Facebook, Twitter, and Google.

You need to add social login URL patterns to your project. Open the main urls.py
file of the bookmarks project and add the following URL pattern to it:

url ('social-auth/"',
include ('social.apps.django app.urls', namespace='social')),

In order to make social authentication work, you will need a hostname, because
several services will not allow redirecting to 127.0.0.1 or localhost. In order to
fix this, under Linux or Mac OS X, edit your /etc/hosts file and add the following
line to it:

127.0.0.1 mysite.com

This will tell your computer to point the mysite.com hostname to your own
machine. If you are using Windows, your hosts file is located at ¢: \Winwows\
System32\Drivers\etc\hosts.

To verify that your host redirection worked, open http://mysite.com:8000/
account/login/ in your browser. If you see the log in page of your application,
everything was done correctly.

Authentication using Facebook

In order to let your users log in with their Facebook account to your site, add the
following line to the AUTHENTICATION_ BACKENDS setting in the settings.py file
of your project:

'social .backends. facebook.Facebook20Auth2"',

[123]

www.it-ebooks.info

https://python-social-auth.readthedocs.org/en/latest/backends/index.html#supported-backends
https://python-social-auth.readthedocs.org/en/latest/backends/index.html#supported-backends
http://mysite.com:8000/account/login/
http://mysite.com:8000/account/login/
http://www.it-ebooks.info/

Building a Social Website

In order to add social authentication with Facebook, you need a Facebook developer
account, and you have to to create a new Facebook application. Open https://
developers. facebook.com/apps/?action=create in your browser and click on
the Add new app button. Click on Website platform and enter Bookmarks for your
app name. When asked, enter http://mysite.com:8000/ as your Site URL. Follow
the quickstart and click on Create App ID.

Go to the Dashboard of your site. You will see something similar to the following:

Dashboard

Bookmarks o

App ID App Secret

568713913263231 612923922aeq9a7cf0c3862411187a34 Reset

Copy the App ID and App Secret keys and add them to the settings.py file of
your project as follows:

SOCIAL_AUTH_FACEBOOK KEY = 'XXX' # Facebook App ID
SOCIAL_AUTH_FACEBOOK SECRET = 'XXX' # Facebook App Secret

Optionally, you can define a SOCIAL_AUTH_FACEBOOK_SCOPE setting with the extra
permissions you want to ask Facebook users for:

SOCIAL_AUTH_ FACEBOOK_SCOPE = ['email']

Finally, open your registration/login.html template and append the following
code to the content block:

<div class="social">

<li class="facebook"><a href="{% url "social:begin" "facebook"
%$}">Sign in with Facebook</1lis

</div>

[124]

www.it-ebooks.info

https://developers.facebook.com/apps/?action=create
https://developers.facebook.com/apps/?action=create
http://www.it-ebooks.info/

Chapter 4

Open http://mysite.com:8000/account/login/ in your browser. Now your login
page will look as follows:

Bookmarks Log-in

Log-in
Please, use the following form to log-in:

Username: Login with Facebook

Password:

Forgotten your password?

Click the Login with Facebook button. You will be redirected to Facebook, and you
will see a modal dialog asking for your permission to let the Bookmarks application
access your public Facebook profile:

Bookmarks will receive the following info: your public profile.

Review the info you provide

i@ This does not let the app post to Facebook.

Gance

Click the Okay button. Python-social-auth handles the authentication. If everything
goes well, you will be logged in and redirected to the dashboard page of your site.
Remember that we have used this URL in the LOGIN_REDIRECT URL setting. As you
can see, adding social authentication to your site is pretty straightforward.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Authentication using Twitter
For social authentication using Twitter, add the following line to the

AUTHENTICATION_ BACKENDS setting in the settings.py file of your project:

'social .backends.twitter.TwitterOAuth',

You need to create a new application in your Twitter account. Open https://apps.
twitter.com/app/new in your browser and enter the details of your application
including the following settings:

e Website: http://mysite.com:8000/
e Callback URL: http://mysite.com:8000/social-auth/complete/

twitter/

Make sure you mark the checkbox Allow this application to be used to Sign in
with Twitter. Then click on Keys and Access Tokens. You should see the following
information:

Bookmarks

Details Settings = Keys and Access Tokens = Permissions

Application Settings

Consumer Key (APl Key) SC9¢cJPoJCOMbK1 JHKbBKS7 JMui
Consumer Secret (AP| Secret) EalmSqJz9s 15MtINJJpsNZfm2Vu4gfMiaOQzTLrdee6NkFeNg
Access Level Read-only (modify app permissions)

Copy the Consumer Key and Consumer Secret keys into the following settings in
the settings.py file of your project:

SOCIAL AUTH TWITTER KEY = 'XXX' # Twitter Consumer Key
SOCIAL AUTH TWITTER SECRET = 'XXX' # Twitter Consumer Secret

Now, edit the 1ogin.html template and add the following code in the element:

)

<1li class="twitter"s<a href="{% url "social:begin" "twitter"

)

$}"sLogin with Twitter

[126]

www.it-ebooks.info

https://apps.twitter.com/app/new
https://apps.twitter.com/app/new
http://www.it-ebooks.info/

Chapter 4

Open http://mysite.com:8000/account/login/ in your browser and click the
Login with Twitter link. You will be redirected to Twitter and it will ask you to
authorize the application:

Authorize Bookmarks to use your

account? *
Cance Sormere peme

Click on Authorize app button. You will be logged in and redirected to the
dashboard page of your site.

Authentication using Google

Google offers OAuth2 authentication. You can read about Google's OAuth2
implementation at https://developers.google.com/accounts/docs/OAuth2.

First, you need to create an API key in your Google Developer Console. Open
https://console.developers.google.com/project in your browser and click
the Create project button. Give it a name and click the Create button as follows:

New Project

Project name

Bookmarks

Your project |D will be bookmarks-1080

Show advanced options.

[127]

www.it-ebooks.info

http://mysite.com:8000/account/login/
https://developers.google.com/accounts/docs/OAuth2
https://console.developers.google.com/project
http://www.it-ebooks.info/

Building a Social Website

After the project is created, click the APIs & auth link on the left menu and then
click on Credentials section. Click the Add credentials button and choose OAuth 2.0
client ID as follows:

APls

Credentials

You need credentials to access AFls. Enable the AFls you plan to
use and then create the credentials t g. Depending on
the API, you need an APl key, a service z an DAuth 2.0
client |D. Refer to the AFI documentation for details

Add credentials =

AP key
Identifies your project using a simple APl key to check quota and access
For APls like Google Translate

OAuth 2.0 client 1D
Requests USer Consent 50 your app can access the user's data

For APls like Google Calendar

Service account
Enables serverto-server, app-level authentication using robot accounts.

Cloud APIs.

For use with Google

Google will ask you to configure the consent screen first. This is the page that will be
shown to users to give their consent to access your site with their Google account. Click
the Configure consent screen button. Select your e-mail address, enter Bookmarks as
Product name, and click the Save button. The consent screen for your application will
be configured and you will be redirected to finish creating your Client ID.

Fill in the form with the following information:

e Application type: Select Web application
e Name: Enter Bookmarks.

e Authorized redirect URIs: Add http://mysite.com:8000/social-
auth/complete/google-oauth2/

[128]

www.it-ebooks.info

http://mysite.com:8000/social-auth/complete/google-oauth2/
http://mysite.com:8000/social-auth/complete/google-oauth2/
http://www.it-ebooks.info/

Chapter 4

The form should look as follows:

Create client ID

Application type

® Web application
Android Learn mare
Chrome App Learn more
i0S Learn more
FlayStation 4
Cther

MName

Bookmarks

Authorized JavaScript origins
Enter JavaScrpt origi £ rredirect LURIs below {or both

Cannot contatr dcard (htip:/ /*. example.com) gt (hitty B Tple

Autherized redirect URIs

http://mysite.com:8000/social-auth/complete/google-oauth2/

Click the Create button. You will get the Client ID and Client Secret keys. Add them
to your settings.py file, like this:

SOCIAL AUTH GOOGLE OAUTH2 KEY = '' # Google Consumer Key
SOCIAL AUTH GOOGLE OAUTH2 SECRET = '' # Google Consumer Secret

In the left menu of the Google Developers Console, under the APIs & auth section,
click the APIs link. You will see a list that contains all Google APIs. Click on
Google+ API and then click the Enable API button in the following page:

=Bl Enable AP

Google+ API

The Google+ AFI enables developers to build on top of the Google+ platform

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Social Website

Edit the 1ogin.html template and add the following code to the element:

<li class="google"sLogin
with Google

Open http://mysite.com:8000/account/login/ in your browser. The login page
should now look as follows:

Bookmarks Log-in

Log-in
Please, use the following form to log-in:
Username: Login with Facebook

Password: Login with Twitter

Forgotten your password?

Login with Google

Click the Login with Google button. You should be redirected to Google and asked
for permissions with the consent screen we previously configured:

~ Bookmarks would like to:
H View your email address ®

B View your basic profile info ®

By clicking Accept, you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can
change this and other Account Permissions at any time.

Cancel Accept

[130]

www.it-ebooks.info

http://mysite.com:8000/account/login/
http://www.it-ebooks.info/

Chapter 4

Click the Accept button. You will be logged in and redirected to the dashboard page
of your website.

We have added social authentication to our project. The python-social-auth module
contains backends for other popular on-line services.

Summary

In this chapter, you learned how to build an authentication system into your site and
created custom user profiles. You also added social authentication to your site.

In the next chapter, you will learn how to create an image bookmarking system,
generate image thumbnails, and create AJAX views.

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in
Your Website

In the previous chapter, you built user registration and authentication into your
website. You learned how to create a custom profile model for your users and
you added social authentication to your site with major social networks.

In this chapter, you will learn how to create a JavaScript bookmarklet to share
content from other sites into your website, and you will implement AJAX
features into your project using jQuery and Django.

This chapter will cover the following points:

Creating many-to-many relationships

Customizing behavior for forms

Using jQuery with Django

Building a jQuery bookmarklet

Generating image thumbnails using sorl-thumbnail
Implementing AJAX views and integrating them with jQuery
Creating custom decorators for views

Building AJAX pagination

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

Creating an image bookmarking website

We are going to allow users to bookmark and share images they find in other
websites and share them in our site. For this, we will need to do the following tasks:

1. Define a model to store images and their information.
2. Create a form and a view to handle image uploads.

3. Build a system for users to be able to post images they find in external
websites.

First, create a new application inside your bookmarks project directory with the
following command:

django-admin startapp images
Add 'images' to the INSTALLED_ APPS setting in the settings.py file as follows:

INSTALLED APPS = (
#
'images"',

)

Now Django knows that the new application is active.

Building the image model

Edit the models.py file of the images application and add the following code to it:

from django.db import models
from django.conf import settings

class Image (models.Model) :
user = models.ForeignKey (settings.AUTH_USER_MODEL,
related name='images created')
title = models.CharField(max length=200)
slug = models.SlugField(max length=200,
blank=True)
url = models.URLField()
image = models.ImageField(upload to='images/%Y/%m/%d')
description = models.TextField (blank=True)
created = models.DateField(auto now_add=True,
db_ index=True)

def str (self):

return self.title

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This is the model we are going to use to store images bookmarked from different
sites. Let's take a look at the fields of this model:

* user: The User object that bookmarked this image. This is a ForeignKey
field because it specifies a one-to-many relationship: A user can post multiple
images, but each image is posted by a single user.

* title: A title for the image.

* slug: A short label containing only letters, numbers, underscores, or hyphens
to be used for building beautiful SEO-friendly URLs.

* url: The original URL for this image.
* image: The image file.
* description: An optional description for the image.

* created: The datetime that indicates when the object has been created in
the database. Since we use auto_now_add, this datetime is automatically set
when the object is created. We use db_index=True so that Django creates
an index in the database for this field.

Database indexes improve query performance. Consider setting db_
* index=True for fields that you frequently query using filter (),
% exclude (), or order_by (). ForeignKey fields or fields with
’ unique=True imply the creation of an index. You can also use
Meta.index together to create indexes for multiple fields.

We are going to override the save () method of the Image model to automatically
generate the slug field based on the value of the title field. Import the slugify ()
function and add a save () method to the Image model as follows:

from django.utils.text import slugify

class Image (models.Model) :
...
def save(self, *args, **kwargs):
if not self.slug:
self.slug = slugify(self.title)
super (Image, self).save(*args, **kwargs)

In this code, we use the slufigy () function provided by Django to automatically
generate the image slug for the given title when no slug is provided. Then, we save
the object. We will generate slugs for images automatically so that users don't have
to enter a slug for each image.

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

Creating many-to-many relationships

We are going to add another field to the Image model to store the users that like an
image. We will need a many-to-many relationship in this case, because a user might
like multiple images and each image can be liked by multiple users.

Add the following field to the Image model:

users_ like = models.ManyToManyField(settings.AUTH USER_MODEL,
related name='images liked',
blank=True)

When you define a ManyToManyField, Django creates an intermediary join table
using the primary keys of both models. The ManyToManyField can be defined in
any of the two related models.

As with ForeignKey fields, the related name attribute of ManyToManyField
allows us to name the relationship from the related object back to this one.
ManyToManyField fields provide a many-to-many manager that allows us to
retrieve related objects such as image.users_like.all() or from a user object
such as user.images liked.all().

Open the command line and run the following command to create an initial
migration:

python manage.py makemigrations images
You should see the following output:

Migrations for 'images':
0001 _initial.py:
- Create model Image

Now run this command to apply your migration:

python manage.py migrate images

You will get an output that includes the following line:
Applying images.0001_ initial... OK

The 1mage model is now synced to the database.

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Registering the image model in the
administration site

Edit the admin. py file of the images application and register the Image model into
the administration site as follows:

from django.contrib import admin
from .models import Image

class ImageAdmin (admin.ModelAdmin) :
list display = ['title', 'slug', 'image', 'created']
list filter = ['created']

admin.site.register (Image, ImageAdmin)

Start the development server with the command python manage.py runserver.
Open http://127.0.0.1:8000/admin/ in your browser and you will see the
Image model in the administration site, like this:

Images gpAdd ¢ Change

Posting content from other websites

We are going to allow users to bookmark images from external websites. The user
will provide the URL of the imagg, a title, and optional description. Our application
will download the image and create a new Image object in the database.

Let's start by building a form to submit new images. Create a new forms.py file
inside the images application directory and add the following code to it:

from django import forms
from .models import Image

class ImageCreateForm(forms.ModelForm) :
class Meta:
model = Image
fields = ('title', 'url', 'description')
widgets = {
'url': forms.HiddenInput,

}

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

As you can see, this form is a Mode1Form built from the Image model including only
the title, url, and description fields. Our users are not going to enter the image
URL directly in the form. Instead, they are going to use a JavaScript tool to choose
an image from an external site and our form will receive its URL as a parameter.
We override the default widget of the ur1l field to use a HiddenInput widget. This
widget is rendered as an HTML input element with a type="hidden" attribute.

We use this widget because we don't want this field to be visible to users.

Cleaning form fields

In order to verify that the provided image URL is valid, we are going to check that
the filename ends with a . jpg or . jpeg extension to only allow JPG files. Django
allows you to define form methods to clean specific fields using the notation
clean <fieldnames (). This method is executed for each field, if present, when you
call is_valid() on aform instance. In the clean method, you can alter the field's
value or raise any validation errors for this specific field when needed. Add the
following method to the ImageCreateForm

def clean url (self):

url = self.cleaned data['url']
valid extensions = ['Jjpg', 'Jjpeg']
extension = url.rsplit('.', 1) [1].lower ()

if extension not in valid extensions:
raise forms.ValidationError ('The given URL does not ' \
'match valid image extensions.')

return url

In this code, we define a clean _url () method to clean the url field. The code works
as follows:

1. We get the value of the url field by accessing the cleaned_data dictionary
of the form instance.

2. We split the URL to get the file extension and check if it is one of the valid
extensions. If it is not a valid extension, we raise a ValidationError and
the form instance will not be validated. We are performing a very simple
validation. You could use more advanced methods to check whether the
given URL provides a valid image file or not.

In addition to validating the given URL, we will also need to download the image
file and save it. We could, for example, use the view that handles the form to
download the image file. Instead, we are going to take a more general approach by
overriding the save () method of our model form to perform this task every time
the form is saved.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Overriding the save() method of a ModelForm

As you know, ModelForm provides a save () method to save the current model
instance to the database and return the object. This method receives a boolean
commit parameter, which allows you to specify whether the object has to be persisted
to the database. If commit is False, the save () method will return a model instance
but will not save it to the database. We are going to override the save () method of
our form in order to retrieve the given image and save it.

Add the following imports at the top of the forms.py file:

from urllib import request
from django.core.files.base import ContentFile
from django.utils.text import slugify

Then add the following save () method to the ImageCreateForm:

def save(self, force insert=False,
force update=False,
commit=True) :

image = super (ImageCreateForm, self) .save(commit=False)
image url = self.cleaned data['url']
image name = '{}.{}'.format (slugify(image.title),
image url.rsplit('.', 1) [1].lower())

download image from the given URL

response = request.urlopen(image url)

image.image.save (image name,
ContentFile (response.read()),
save=False)

if commit:

image.save ()
return image

We override the save () method keeping the parameters required by ModelForm.
This code is as follows:

1. We create a new image instance by calling the save () method of the form
with commit=False
We get the URL from the cleaned_data dictionary of the form.

We generate the image name by combining the image title slug with the
original file extension.

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

4.

We use the Python ur11ib module to download the image and then we call
the save () method of the image field passing it a ContentFile object that is
instantiated with the downloaded file contents. In this way we save the file to
the media directory of our project. We also pass the parameter save=False
to avoid saving the object to database yet.

In order to maintain the same behavior as the save () method we override,
we save the form to the database only when the commit parameter is True.

Now we need a view for handling the form. Edit the views.py file of the images
application and add the following code to it:

from django.shortcuts import render, redirect

from django.contrib.auth.decorators import login required

from django.contrib import messages

from .forms import ImageCreateForm

@login required

def image create (request) :

if request.method == 'POST':
form is sent
form = ImageCreateForm(data=request.POST)
if form.is valid() :
form data is wvalid
cd = form.cleaned data
new _item = form.save (commit=False)

assign current user to the item
new_item.user request .user
new_item.save (

)
messages.success (request, 'Image added successfully')

redirect to new created item detail view
return redirect (new_item.get absolute url())
else:
build form with data provided by the bookmarklet via GET
form = ImageCreateForm(data=request.GET)

return render (request,
'images/image/create.html',
{'section': 'images',
'form': form})

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We add a login_required decorator to the image_create view to prevent access
for non-authenticated users. This is how this view works:

1. We expect initial data via GET in order create an instance of the form. This
data will consist of the url and title attributes of an image from an external
website and will be provided via GET by the JavaScript tool we will create
later. For now we just assume that this data will be there initially.

2. If the form is submitted we check if it is valid. If the form is valid we create
a new Image instance, but we prevent the object from being saved into the
database yet by passing commit=False.

3. We assign the current user to the new image object. This is how we can know
who uploaded each image.

We save the image object to the database.

5. Finally, we create a success message using the Django messaging framework
and redirect the user to the canonical URL of the new image. We haven't
implemented the get_absolute_url () method of the Image model yet,
we will do that later.

Create a new urls.py file inside your images application and add the following
code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
url (r'”“create/$', views.image create, name='create'),

]

Edit the main urls. py file of your project to include the patterns we just created for
the images application as follows:

urlpatterns = [
url (r'*admin/', include (admin.site.urls)),
url (r'*account/', include ('account.urls')),

url (r'”“images/', include('images.urls', namespace='images')),

]

Finally, you need to create a template to render the form. Create the following
directory structure inside the images application directory:

templates/
images/
image/

create.html

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

Edit the new create.html template and add the following code to it:

{$ extends "base.html" %}
{% block title %}Bookmark an image{% endblock %}

{% block content %}
<hl>Bookmark an image</hl>

<form action="." method="post">
{{ form.as p }}
{% csrf_token %}
<input type="submit" value="Bookmark it!"s>
</form>
{% endblock %}

Now open http://127.0.0.1:8000/images/create/?title=...&url=... in

your browser, including a title and url GET parameters prov1d1ng an existing
JPG image URL in the latter.

For example, you can use the following URL: http://127.0.0.1:8000/
images/create/?title=%20Django%20and%20Duke&url=http://upload.
wikimedia.org/wikipedia/commons/8/85/Django Reinhardt and Duke
Ellington_ %28Gottlieb%29.jpg.

You will see the form with an image preview like the following one:

Bookmark an image

Title:

Django and Duke

Description:

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Add a description and click the Bookmark it! button. A new Image object will be
saved into your database. You will get an error indicating that the Image model has
no get_absolute_url () method. Don't worry about this for now, we are going to
add this method later. Open http://127.0.0.1:8000/admin/images/image/ in
your browser and verify that the new image object has been saved.

Building a bookmarklet with jQuery

A bookmarklet is a bookmark stored in a web browser that contains JavaScript code
to extend the browser's functionality. When you click the bookmark, the JavaScript
code is executed on the website being displayed in the browser. This is very useful
for building tools that interact with other websites.

Some online services such as Pinterest implement their own bookmarklets to let
users share content from other sites onto their platform. We are going to create
a bookmarklet, in a similar way, to let users share images from other sites in
our website.

We are going to use jQuery to build our bookmarklet. jQuery is a popular JavaScript
framework that allows you to develop client-side functionality faster. You can read
more about jQuery at its official website http://jquery.com/.

This is how your users will add a bookmarklet to their browser and use it:

1. The user drags a link from your site to his browser's bookmarks. The link
contains JavaScript code in its href attribute. This code will be stored in
the bookmark.

2. The user navigates to any website and clicks the bookmark. The JavaScript
code of the bookmark is executed.

Since the JavaScript code will be stored as a bookmark, you will not be able to
update it later. This is an important drawback, but you can solve it by implementing
a simple launcher script that loads the actual JavaScript bookmarklet from a URL.
Your users will save this launcher script as a bookmark and you will be able to
update the code of the bookmarklet anytime. This is the approach we are going

to take to build our bookmarklet. Let's start!

Create a new template under images/templates/ and name it bookmarklet
launcher. js. This will be the launcher script. Add the following JavaScript
code to this file:

(function () {
if (window.myBookmarklet !== undefined) {
myBookmarklet () ;

}

[143]

www.it-ebooks.info

http://jquery.com/
http://www.it-ebooks.info/

Sharing Content in Your Website

else {
document .body.appendChild (document .createElement ('script')) .
src='http://127.0.0.1:8000/static/js/bookmarklet.js?r="'+Math.
floor (Math.random()*99999999999999999999) ;

P O;

This script discovers if the bookmarklet is already loaded by checking if the
myBookmarklet variable is defined. By doing so, we avoid loading it again if the
user clicks on the bookmarklet repeatedly. If myBookmarklet is not defined, we load
another JavaScript file adding a <script> element to the document. The script tag
loads the bookmarklet . js script using a random number as parameter to prevent
loading the file from the browser's cache.

The actual bookmarklet code will reside in the bookmarklet . js static file. This will
allow us to update our bookmarklet code without requiring our users to update
the bookmark they previously added to their browser. Let's add the bookmarklet
launcher to the dashboard pages, so that our users can copy it to their bookmarks.

Edit the account /dashboard.html template of the account application and make it
look like the following:

{% extends "base.html" %}
{% block title %}Dashboard{% endblock %}

{% block content %}
<hlsDashboard</hl>

{% with total images created=request.user.images created.count %}

<p>Welcome to your dashboard. You have bookmarked {{ total images

created }} image{{ total images created|pluralize }}.</p>
{% endwith %}

<p>Drag the following button to your bookmarks toolbar to bookmark
images from other websites - <a href="javascript:{% include
"bookmarklet launcher.js" %}" class="button">Bookmark it<p>

<p>You can also edit your profile or
change your password.<p>

{% endblock %}

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The dashboard displays now the total number of images bookmarked by the
user. We use the {$ with %} template tag to set a variable with the total number
of images bookmarked by the current user. We also include a link with an href
attribute that contains the bookmarklet launcher script. We are including this
JavaScript code from the bookmarklet_launcher.js template.

Open http://127.0.0.1:8000/account/ in your browser. You should see the
following page:

Bookmarks Images People Hello Antonio, Logout

Dashboard

Welcome to your dashboard. You have bookmarked 2 images.

Drag the following button to your bookmarks toolbar to bookmark images from other websites —+

You can also edit your profile or change your password.

Drag the Bookmark it! link to the bookmarks toolbar of your browser.
Now create the following directories and files inside the images application directory:

* static/

.] s/

® bookmarklet.js
You will find a static/css/ directory under the images application directory,
in the code that comes along with this chapter. Copy the css/ directory into the

static/ directory of your code. The css/bookmarklet .css file provides the styles
for our JavaScript bookmarklet.

Edit the bookmarklet . js static file and add the following JavaScript code to it:

(function () {

var jquery version = '2.1.4';
var site url = 'http://127.0.0.1:8000/"';
var static_url = site _url + 'static/';

var min width = 100;
var min height = 100;

function bookmarklet (msg) {
// Here goes our bookmarklet code

bi

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

// Check if jQuery is loaded

if (typeof window.jQuery != 'undefined')
bookmarklet () ;

} else {
// Check for conflicts
var conflict = typeof window.$!= 'undefined';

// Create the script and point to Google API
var script = document.createElement ('script');
script.setAttribute('src',
'http://ajax.googleapis.com/ajax/libs/jquery/' +
jquery version + '/jquery.min.js');
// Add the script to the 'head' for processing
document .getElementsByTagName ('head') [0] .appendChild (script) ;
// Create a way to wait until script loading
var attempts = 15;
(function () {
// Check again if jQuery is undefined
if (typeof window.jQuery == 'undefined') {
if (--attempts > 0)
// Calls himself in a few milliseconds
window. setTimeout (arguments.callee, 250)
} else {
// Too much attempts to load, send error
alert ('An error ocurred while loading jQuery')
}
} else {
bookmarklet () ;

This is the main jQuery loader script. It takes care of using jQuery if it's already
loaded in the current website, or it loads jQuery from Google's CDN otherwise.
When jQuery is loaded it executes the bookmarklet () function that will contain
our bookmarklet code. We also set some variables at the top of the file:

* jguery version: The jQuery version to load

* site urland static url: The base URL for our website and base URL
for static files respectively

* min_widthand min_height: minimum width and height in pixels for the
images our bookmarklet will try to find in the site

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Now let's implement the bookmarklet function. Edit the bookmarklet () function to
make it look like this:

function bookmarklet (msg) {
// load CSS
var css = jQuery('<link>"');
css.attr ({
rel: 'stylesheet',
type: 'text/css',
href: static_url + 'css/bookmarklet.css?r=' + Math.floor (Math.
random () *99999999999999999999)

3N

jQuery ('head') .append(css) ;

// load HTML

box html = '<div id="bookmarklet"s×</
a><hl>Select an image to bookmark:</hl><div class="images"></div></
divs>"';

jQuery ('body') .append (box_html) ;

// close event
jQuery ('#bookmarklet #close') .click (function () {
jQuery ('#bookmarklet') .remove () ;
I3
Vi

This code works as follows:

1. Weload the bookmarklet.css stylesheet using a random number as
parameter to avoid the browser's cache.

2. We add custom HTML to the document <body> element of the current
website. This consists of a <div> element that will contain the images
found on the current website.

3. We add an event that removes our HTML from the document when the user
clicks the close link of our HTML block. We use the #bookmarklet #close
selector to find the HTML element with an ID named close, which has a
parent element with an ID named bookmarklet. A jQuery selectors allow
you to find HTML elements. A jQuery selector returns all elements
found by the given CSS selector. You can find a list of jQuery selectors
at http://api.jquery.com/category/selectors/.

[147]

www.it-ebooks.info

http://api.jquery.com/category/selectors/
http://www.it-ebooks.info/

Sharing Content in Your Website

After loading the CSS styles and the HTML code for the bookmarklet we need to find
the images in the website. Add the following JavaScript code at the bottom of the
bookmarklet () function:

// find images and display them
jQuery.each(jQuery ('img[src$="jpg"] '), function (index, image) {

if (jQuery(image) .width() >= min width && jQuery(image) .height () »>=
min height)

{
image url = jQuery(image) .attr('src');
jQuery ('#bookmarklet .images') .append('<img src=""'+
image url +'" />');

}
13N

This code uses the img [src$="9jpg"] selector to find all HTML elements,
whose src attribute finishes with a jpg string. This means that we are finding all JPG
images displayed in the current website. We iterate over the results using the each ()
method of jQuery. We add to our <div class="images"> HTML container the
images with a size larger than the one specified with the min_width and min_height
variables.

The HTML container now includes the images that can be bookmarked. We want
the user to click on the desired image and bookmark it. Add the following code at
the bottom of the bookmarklet () function:

// when an image is selected open URL with it
jQuery ('#bookmarklet .images a').click (function (e) {
selected image = jQuery(this) .children('img') .attr('src');
// hide bookmarklet
jQuery ('#bookmarklet') .hide () ;
// open new window to submit the image
window.open (site url +'images/create/?url='
+ encodeURIComponent (selected image)
+ '&title="
+ encodeURIComponent (jQuery ('title') .text()),
' blank');

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This code works as follows:

1. Weattach a click() event to the images' link elements.

2. When a user clicks on an image we set a new variable called selected_image
that contains the URL of the selected image.

3. We hide the bookmarklet and open a new browser window with the URL for
bookmarking a new image in our site. We pass the <title> element of the
website and the selected image URL as GET parameters.

Open a website of your own choice in your browser and click on your bookmarklet.
You will see that a new white box appears on the the website, displaying all JPG
images found with higher dimensions than 100 x 100 px. It should look like the
following example:

Select an image to bookmark:

Since we are using the Django development server, and we are serving pages via
HTTP, the bookmarklet will not work in websites served via HTTPS due to security
restrictions of the browser.

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

If you click on an image, you will be redirected to the image create page, passing the
title of the website and the URL of the selected image as GET parameters:

o0 ® [Em] 127.0.0.1:8000/images/create/?uri=http%3A%2F° i}]

i Bookmark image +

Bookmark an image

Congratulations! This is your first JavaScript bookmarklet and it is fully integrated
into your Django project.

Creating a detail view for images

We are going to create a simple detail view for displaying an image that has been
saved into our site. Open the views.py file of the images application and add the
following code to it:

from django.shortcuts import get object or 404
from .models import Image
def image detail (request, id, slug):
image = get object or 404 (Image, id=id, slug=slug)
return render (request,
'images/image/detail .html"',

{'section': 'images',
'image': image})
[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This is a simple view to display an image. Edit the urls.py file of the images
application and add the following URL pattern:

url (r'"detail/ (?P<id>\d+)/ (?P<slug>[-\wl+)/S$",
views.image detail, name='detail'),

Edit the models.py file of the images application and add the get_absolute_url ()
method to the Image model as follows:

from django.core.urlresolvers import reverse

class Image (models.Model) :
#
def get absolute url(self):

return reverse('images:detail', args=[self.id, self.slugl)

Remember that the common pattern for providing canonical URLs for objects is
to define a get _absolute url () method in the model.

Finally, create a template inside the /images/image/ template directory of the
images application and name it detail.html. Add the following code to it:

{% extends "base.html" %}

—
o\°

block title %}{{ image.title }}{% endblock %}

°

—
o\°

block content %}
<h1>{{ image.title }}</hl>

{% with total likes=image.users like.count %}
<div class="image-info">
<div>

{{ total likes }} like{{ total likes|pluralize }}

</div>
{{ image.description|linebreaks }}
</div>
<div class="image-likes">
{% for user in image.users_like.all %}
<div>

<p>{{ user.first name }}</p>
</div>
{% empty %}
Nobody likes this image yet.

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

{% endfor %}
</div>
{% endwith %}
{% endblock %}

This is the template to display the detail of a bookmarked image. We make use
of the {& with %} tag to store the result of the QuerySet counting all user likes
in a new variable called total likes. By doing so we avoid evaluating the same
QuerySet twice. We also include the image description and we iterate over
image.users_like.all to display all the users that like this image.

Using the {$ with %} template tag is useful to prevent Django from
" evaluating QuerySets multiple times.

Now bookmark a new image using the bookmarklet. You will be redirected to
the image detail page after you posted the image. The page will include a success
message as follows:

Djangology by Django Reinhardt

Djangology is a compilation album by Django
Reinhardt and Stephane Grappelli, released in
2005.

Nobody likes this image yet.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Creating image thumbnails using
sorl-thumbnail

We are displaying the original image in the detail page but dimensions for different
images may vary a lot. Also, the original files for some images might be huge, and
loading them might take too long time. The best way to display optimized images in
a uniform way is to generate thumbnails. We are going to use a Django application
called sorl-thumbnail for this purpose.

Open the terminal and install sorl-thumbnail using the following command:

pip install sorl-thumbnail==12.3

Edit the settings.py file of the bookmarks project and add sorl.thumbnail
to the INSTALLED_APPS settings.

Then run the following command to sync the application with your database:
python manage.py migrate
You should see an output that includes the following line:

Creating table thumbnail kvstore

The sorl-thumbnail application offers you different ways to define image
thumbnails. The application provides a {% thumbnail %} template tag to generate
thumbnails in templates and a custom ImageField if you want to define thumbnails
in your models. We are going to use the template tag approach. Edit the images/
image/detail.html template and replace the following line:

With these lines:

{$ load thumbnail %}
{% thumbnail image.image "300" as im %}

{% endthumbnail %}

Here, we define a thumbnail with fixed width of of 300 pixels. The first time a user
loads this page, a thumbnail image will be created. The generated thumbnail will
be served in the following requests. Start the development server with the python
manage.py runserver command and access the image detail page for an existing
image. The thumbnail will be generated and displayed on the site.

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

The sorl-thumbnail application offers several options to customize your
thumbnails, including cropping algorithms and different effects that can be applied.
If you have any difficulty generating thumbnails, you can add THUMBNAIL DEBUG

= True to your settings in order to obtain debug information. You can read the full
documentation of the sorl-thumbnail application at http://sorl-thumbnail.
readthedocs.org/.

Adding AJAX actions with jQuery

Now we are going to add AJAX actions to our application. AJAX comes from
Asynchronous JavaScript and XML. This term encompasses a group of techniques
to make asynchronous HTTP requests. It consists in sending and retrieving data
from the server asynchronously, without reloading the whole page. Despite the
name, XML is not required. You can send or retrieve data in other formats such
as JSON, HTML, or plain text.

We are going to add a link to the image detail page to let users click it to like an
image. We will perform this action with an AJAX call to avoid reloading the whole
page. First, we are going to create a view for users to like/unlike images. Edit the
views.py file of the images application and add the following code to it:

from django.http import JsonResponse
from django.views.decorators.http import require POST

@login required
@require_POST
def image like (request):
image id = request.POST.get('id')
action = request.POST.get ('action')
if image_id and action:
try:
image = Image.objects.get (id=image id)
if action == 'like':
image.users_like.add(request.user)
else:
image.users_like.remove (request.user)
return JsonResponse ({'status':'ok'})
except:
pass
return JsonResponse ({'status':'ko'})

[154]

www.it-ebooks.info

http://sorl-thumbnail.readthedocs.org/
http://sorl-thumbnail.readthedocs.org/
http://www.it-ebooks.info/

Chapter 5

We are using two decorators for our view. The login required decorator

prevents users that are not logged in from accessing this view. The require_GET
decorator returns an HttpResponseNotAllowed object (status code 405) if the HTTP
request is not done via GET. This way we only allow GET requests for this view.
Django also provides a require POST decorator to only allow POST requests and
arequire http methods decorator to which you can pass a list of allowed methods
as an argument.

In this view we use two GET parameters:

* image_id: The ID of the image object on which the user is performing
the action

* action: The action that the user wants to perform, which we assume
to be a string with the value like or unlike

We use the manager provided by Django for the users_1ike many-to-many field of
the Image model in order to add or remove objects from the relationship using the
add () or remove () methods. Calling add () passing an object that is already present
in the related object set does not duplicate it and thus, calling remove () passing an
object that is not in the related object set does nothing. Another useful method of
the many-to-many manager is clear (), which removes all objects from the related
object set.

Finally, we use the JsonResponse class provided by Django, which returns an HTTP
response with an application/json content type, converting the given object into
a JSON output.

Edit the urls.py file of the images application and add the following URL pattern
toit:

url(r'*like/$"', views.image like, name='like'),

Loading j Query

We need to add the AJAX functionality to our image detail template. In order to use
jQuery in our templates, we are going to include it in the base . html template of our
project first. Edit the base .html template of the account application and include the
following code before the closing </body> HTML tag:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></scripts>
<scripts>
$ (document) . ready (function () {
{% block domready %}
{% endblock %}
P

</scripts>

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

We load the jQuery framework from Google, which hosts popular JavaScript
frameworks in a high-speed reliable content delivery network. You can also
download jQuery from http://jquery.com/ and add it to the static directory
of your application.

We add a <script> tag to include JavaScript code. $ (document) .ready () isa
jQuery function that takes a handler that is executed when the DOM hierarchy has
been fully constructed. DOM comes from Document Object Model. The DOM is
created by the browser when a webpage is loaded, and it is constructed as a tree of
objects. By including our code inside this function we make sure all HTML elements
we are going to interact with are loaded in the DOM. Our code will be only executed
once the DOM is ready.

Inside the document ready handler function, we include a Django template block
called domready, in which templates that extend the base template will be able to
include specific JavaScript.

Don't get confused with JavaScript code and Django template tags. Django template
language is rendered in the server side outputting the final HTML document

and JavaScript is executed in the client side. In some cases, it is useful to generate
JavaScript code dynamically using Django.

. In the examples of this chapter we include JavaScript code in
% Django templates. The preferred way to include JavaScript code
= is by loading . js files, which are served as static files, especially
when they are large scripts.

Cross-Site Request Forgery in AJAX requests

You have learned about Cross-Site Request Forgery in Chapter 2, Enhancing Your
Blog With Advanced Features. With the CSRF protection active, Django checks for a
CSRF token in all POST requests. When you submit forms you can use the {% csrf_
token %} template tag to send the token along with the form. However, it is a bit
inconvenient for AJAX requests to pass the CSRF token as POST data in with every
POST request. Therefore, Django allows you to set a custom X-CSRFToken header

in your AJAX requests with the value of the CSRF token. This allows you to set up
jQuery or any other JavaScript library, to automatically set the x-CSRFToken header
in every request.

[156]

www.it-ebooks.info

http://jquery.com/
http://www.it-ebooks.info/

Chapter 5

In order to include the token in all requests, you need to:

1. Retrieve the CSRF token form the csrftoken cookie, which is set if CSRF
protection is active.

2. Send the token in the AJAX request using the X-CSRFToken header.

You can find more information about CSRF protection and AJAX at https://docs.
djangoproject.com/en/1.8/ref/csrf/#ajax.

Edit the last code you included in your base . html template and make it look like
the following;:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></script>
<script src=" http://cdn.jsdelivr.net/jquery.cookie/l.4.1/jquery.
cookie.min.js "></script>
<scripts>
var csrftoken = $.cookie('csrftoken');
function csrfSafeMethod (method) {
// these HTTP methods do not require CSRF protection
return (/" (GET|HEAD|OPTIONS|TRACE)S$/.test (method));
}
$.ajaxSetup ({
beforeSend: function(xhr, settings) {
if (!csrfSafeMethod(settings.type) && !this.crossDomain) {
xhr.setRequestHeader ("X-CSRFToken", csrftoken);
}
}
R
$ (document) .ready (function () {
{% block domready %}
{% endblock %}
1)

</script>
The code above is as follows:
1. Weload the jQuery Cookie plugin from a public CDN, so that we can interact
with cookies.
We read the value of the csrftoken cookie.

We define the csrfsafeMethod () function to check whether an HTTP
method is safe. Safe methods don't require CSRF protection. These are GET,
HEAD, OPTIONS, and TRACE.

[157]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/csrf/#ajax
https://docs.djangoproject.com/en/1.8/ref/csrf/#ajax
http://www.it-ebooks.info/

Sharing Content in Your Website

4. We setup jQuery AJAX requests using $.ajaxSetup (). Before each AJAX
request is performed, we check if the request method is safe and the current
request is not cross-domain. If the request is unsafe, we set the X- CSRFToken
header with the value obtained from the cookie. This setup will apply to all
AJAX requests performed with jQuery.

The CSRF token will be included in all AJAX request that use unsafe HTTP methods
such as POST or PUT.

Performing AJAX requests with jQuery

Edit the images/image/detail.html template of the images application and
replace the following line:

°

{%$ with total likes=image.users like.count %}

With the following one:

{% with total likes=image.users_ like.count users like=image.users
like.all %}

Then modify the <div> element with the image-info class as follows:

<div class="image-info">
<divs>

{{ total likes }}
like{{ total likes|pluralize }}

<a href="#" data-id="{{ image.id }}" data-action="{% if request.
user in users like %}un{% endif %}like" class="like button">
{% if request.user not in users like %}
Like
{% else %}
Unlike
{% endif %}

</divs>
{{ image.description|linebreaks }}
</divs>

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

First, we add another variable to the {$ with %} template tag to store the results

of the image .users_like.all query and avoid executing it twice. We display the
total number of users that like this image and include a link to like/unlike the image:
We check if the user is in the related object set of users_1like to display either like
or unlike based on the current relationship of the user and this image. We add the
following attributes to the <a> HTML element:

* data-id: The ID of the image displayed.

e data-action: The action to run when the user clicks the link. This can be
like or unlike.

We will send the value of both attributes in the AJAX request to the image_like
view. When a user clicks the 1ike/unlike link, we need to perform the following
actions on the client side:

1. Call the AJAX view passing the image ID and the action parameters to it.

2. If the AJAX request is successful, update the data-action attribute of the
<a> HTML element with the opposite action (1ike / unlike), and modify its
display text accordingly.

3. Update the total number of 1ikes that is displayed.

Add the domready block at the bottom of the images/image/detail.html template
with the following JavaScript code:

)

{% block domready %}
$('a.like') .click (function (e) {
e.preventDefault () ;
$.post ('{% url "images:like" %}°',
{
id: $(this) .data('id'),
action: $(this).data('action')
b
function (data) {
if (data['status'] == 'ok')
{

var previous_action = $('a.like').data('action');

// toggle data-action

$('a.like') .data('action', previous action == 'like' ?
'unlike' : 'like');
// toggle link text
$('a.like') .text (previous_action == 'like' ? 'Unlike’
'Like') ;
[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

// update total likes

var previous likes = parselnt ($('span.count .total').
text ());

$('span.count .total').text (previous action == 'like' ?
previous likes + 1 : previous likes - 1);

{% endblock %}
This code works as follows:

1. Weusethe $('a.like') jQuery selector to find all <a> elements of the
HTML document with the class 1ike.

2. We define a handler function for the c1ick event. This function will be
executed every time the user clicks the 1ike/unlike link.

3. Inside the handler function we use e.preventDefault () to avoid the
default behavior of the <a> element. This will prevent from the link
taking us anywhere.

4. Weuse $.post () to perform an asynchronous POST request to the server.
jQuery also provides a $.get () method to perform GET requests and a
low-level $.ajax () method.

5. Weuse Django's {% url %} template tag to build the URL for the
AJAX request.

6. We build the POST parameters dictionary to send in the request. These are
the 1D and action parameters expected by our Django view. We retrieve
these values from the <a> element's data-id and data-action attributes.

7. We define a callback function that is executed when the HTTP response is
received. It takes a data attribute that contains the content of the response.

8. We access the status attribute of the data received and check if it equals to
ok. If the returned data is as expected, we toggle the data-action attribute
of the link and its text. This allows the user to undo his action.

9. We increase or decrease the total likes count by one, depending on the
action performed.

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Open the image detail page in your browser for an image you have uploaded. You
should be able to see the following initial likes count and the LIKE button as follows:

Click the LIKE button. You will see that the total likes count increases in one and the
button text changes into UNLIKE like this:

When you click the UNLIKE button the action is performed, the button's text
changes back to LIKE and the total count changes accordingly.

When programming JavaScript, especially when performing AJAX requests, it is
recommended to use a tool such as Firebug for debugging. Firebug is a Firefox
add-on that allows you to debug JavaScript and monitor CSS and HTML changes.
You can download Firebug from http://getfirebug.com/. Other browsers such as
Chrome or Safari also include developer tools to debug JavaScript. In those browsers
you can right-click anywhere in the website and click on Inspect element to access
the web developer tools.

Creating custom decorators for your
views

We are going to restrict our AJAX views to allow only requests generated via AJAX.
The Django Request object provides an is_ajax () method that checks if the request
is being made with XMLHt tprequest, which means it is an AJAX request. This value
is set in the HTTP X REQUESTED WITH HTTP header, which is included in AJAX
requests by most JavaScript libraries.

We are going to create a decorator for checking the HTTP_X_REQUESTED_WITH header
in our views. A decorator is a function that takes another function and extends the
behavior of the latter without explicitly modifying it. If the concept of decorators

is foreign to you, you might like to take a look at https://www.python.org/dev/
peps/pep-0318/ before you continue reading.

[161]

www.it-ebooks.info

http://getfirebug.com/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
http://www.it-ebooks.info/

Sharing Content in Your Website

Since our decorator will be generic and could be applied to any view, we will create a
common Python package in our project. Create the following directory and files inside
the bookmarks project directory:

* common/
e init .py

® decorators.py

Edit the decorators.py file and add the following code to it:

from django.http import HttpResponseBadRequest

def ajax required(f) :
def wrap(request, *args, **kwargs):
if not request.is ajax():
return HttpResponseBadRequest ()
return f (request, *args, **kwargs)
wrap. doc =f. doc
wrap. name_ =f. name
return wrap

This is our custom ajax_required decorator. It defines a wrap function that returns
an HttpResponseBadRequest object (HTTP 400 code) if the request is not AJAX.
Otherwise, it returns the decorated function.

Now you can edit the views.py file of the images application and add this decorator
to your image_like AJAX view as follows:

from common.decorators import ajax required

@ajax required

@login required
@require_POST

def image like (request):

#

If you try to access http://127.0.0.1:8000/images/1like/ directly with your
browser, you will get an HTTP 400 response.

Build custom decorators for your views if you find that you are repeating
= the same checks in multiple views.

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Adding AJAX pagination to your list
views

We need to list all bookmarked images in our website. We are going to use AJAX
pagination to build infinite scroll functionality. Infinite scroll is achieved by loading
the next results automatically when the user scrolls to the bottom of the page.

We are going to implement an image list view that will handle both standard
browser requests and AJAX requests including pagination. When the user initially
loads the image list page, we display the first page of images. When he scrolls to the
bottom of the page we load the following page of items via AJAX and append it

to the bottom of the main page.

The same view will handle both standard and AJAX pagination. Edit the views.py
file of the images application and add the following code to it:

from django.http import HttpResponse
from django.core.paginator import Paginator, EmptyPage, \
PageNotAnInteger

@login required
def image list (request):
images = Image.objects.all()
paginator = Paginator(images, 8)
page = request.GET.get ('page')
try:
images = paginator.page (page)
except PageNotAnInteger:
If page is not an integer deliver the first page
images = paginator.page (1)
except EmptyPage:
if request.is ajax():
If the request is AJAX and the page is out of range
return an empty page
return HttpResponse('')
If page is out of range deliver last page of results
images = paginator.page (paginator.num pages)
if request.is ajax():
return render (request,
'images/image/list ajax.html',
{'section': 'images', 'images': images})
return render (request,
'images/image/list.html"',
{'section': 'images', 'images': images})

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

In this view, we create a QuerySet to return all images from the database. Then we
build a paginator object to paginate the results retrieving eight images per page.
We get an EmptyPage exception if the requested page is out of range. If this the
case and the request is done via AJAX, we return an empty HttpResponse that will
help us stop the AJAX pagination on the client side. We render the results to two
different templates:

* For AJAX requests, we render the 1ist_ajax.html template. This template
will only contain the images of the requested page.

* For standard requests, we render the 1ist.html template. This template will
extend the base.html template to display the whole page and will include
the 1ist_ajax.html template to include the list of images.

Edit the urls.py file of the images application and add the following URL pattern
toit:

url(r'”*$', views.image list, name='list'),

Finally, we need to create the templates mentioned above. Inside the images/image/
template directory create a new template and name it 1ist_ajax.html. Add the
following code to it:

{% load thumbnail %}

{% for image in images %}
<div class="image">

{% thumbnail image.image "300x300" crop="100%" as im %}

{% endthumbnail %}

<div class="info">

{{ image.title }}

</div>
</div>

{% endfor %}

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This template displays the list of images. We will use it to return results for AJAX

requests. Create another template in the same directory and name it 1ist.html.
Add the following code to it:

{$ extends "base.html" %}

{% block title %}Images bookmarked{% endblock %}

{% block content %}
<hl>Images bookmarked</hl>
<div id="image-list">
{%$ include "images/image/list ajax.html" %}
</div>
{% endblock %}

The list template extends the base . html template. To avoid repeating code, we
include the 1ist_ajax.html template for displaying images. The 1ist .html

template will hold the JavaScript code for loading additional pages when scrolling
to the bottom of the page.

Add the following code to the 1ist.html template:

{% block domready %}
var page = 1;
var empty page = false;
var block_request = false;

$ (window) .scroll (function()

var margin = $(document) .height () - $(window) .height () - 200;
if ($(window) .scrollTop() > margin && empty page == false &&
block_request == false)
block_request = true;
page += 1;
$.get ('?page=' + page, function(data)
if (data == '') {

empty page = true;
}

else {
block request = false;
S ('#image-list') .append(data) ;

{% endblock %}

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

This code provides the infinite scroll functionality. We include the JavaScript
code in the domready block that we defined in the base.html template. The code
is as follows:

1. We define the following variables:

[e]

page: Stores the current page number.

o

empty_page: Allows us to know if the user is in the last page and
retrieves an empty page. As soon as we get an empty page we will
stop sending additional AJAX requests because we will assume there
are no more results.

block_request: Prevents from sending additional requests while an
AJAX request is in progress.

2. Weuse $ (window) .scroll () to capture the scroll event and we define
a handler function for it.

3. We calculate the margin variable getting the difference between the total
document height and the window height because that's the height of the
remaining content for the user to scroll. We subtract a value of 200 from the
result so that we load the next page when the user is closer than 200 pixels
to the bottom of the page.

4. We only send an AJAX request if no other AJAX request is being done
(block_request has to be false) and the user didn't got to the last
page of results (empty_page is also false).

5. Wesetblock_ request to true to avoid that the scroll event triggers
additional AJAX requests, and we increase the page counter by one,
in order to retrieve the next page.

6. We perform an AJAX GET request using $.get () and we receive the HTML
response back in a variable called data. There are two scenarios:

o

The response has no content: We got to the end of the results and
there are no more pages to load. We set empty_page to true
to prevent additional AJAX requests.

The response contains data: We append the data to the HTML
element with the image-list id. The page content expands vertically
appending results when the user approaches the bottom of the page.

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Open http://127.0.0.1:8000/images/ in your browser. You will see the list of
images you have bookmarked so far. It should look similar to this:

Images bookmarked

Nice dish New trends Clean spaces Benz

Relaxing waterfall Skateboarding Jazz singer Have a drink?

Scroll to the bottom of the page to load additional pages. Make sure that you have
bookmarked more than eight images using the bookmarklet, because that's the
number of images we are displaying per page. Remember that you can use Firebug
or a similar tool to track the AJAX requests and debug your JavaScript code.

Finally, edit the base .html template of the account application and add the URL
for the Images item of the main menu as follows:

<li {% if section == "images" %}class="selected"{% endif %}>Images

Now you can access the image list from the main menu.

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing Content in Your Website

Summary

In this chapter, we have built a JavaScript bookmarklet to share images from other
websites into our site. You have implemented AJAX views with jQuery and added
AJAX pagination.

Next chapter will teach you how to build a follower system and an activity stream.
You will work with generic relations, signals, and denormalization. You will also
learn how to use Redis with Django.

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

In the previous chapter, you implemented AJAX views into your project using
jQuery and built a JavaScript bookmarklet for sharing content from other websites
in your platform.

In this chapter, you will learn how to build a follower system and create a user
activity stream. You will discover how Django signals work and integrate Redis
fast I/ O storage into your project to store item views.

This chapter will cover the following points:

* Creating many-to-many relationships with an intermediary model
* Building AJAX views

* Creating an activity stream application

* Adding generic relations to models

* Optimizing QuerySets for related objects

* Using signals for denormalizing counts

* Storing item views in Redis

Building a follower system

We will build a follower system into our project. Our users will be able to follow
each other and track what other users share on the platform. The relationship
between users is a many-to-many relationship, A user can follow multiple users
and can be followed back by multiple users.

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Creating many-to-many relationships with an
intermediary model

In previous chapters, you created many-to-many relationships by adding a
ManyToManyField to one of the related models and letting Django create the
database table for the relationship. This is suitable for most of the cases, but
sometimes you might need to create an intermediate model for the relation. Creating
an intermediary model is necessary when you want to store additional information
for the relationship, for example the date when the relation was created or a field
that describes the type of the relationship.

We will create an intermediary model for building relationships between users.
There are two reasons why we want to use an intermediate model:

* We are using the user model provided by Django and we want to avoid
altering it

e We want to store the time when the relation is created

Edit the models.py file of your account application and add the following code to it:

from django.contrib.auth.models import User

class Contact (models.Model) :
user from = models.ForeignKey (User,
related name='rel from set')
user to = models.ForeignKey (User,
related name='rel to_set')
created = models.DateTimeField (auto_now_add=True,
db_index=True)

class Meta:
ordering = ('-created',)

def str (self):

return '{} follows {}'.format (self.user from,
self.user_to)

This is the Contact model we will use for user relationships. It contains the
following fields:
* user from: A ForeignKey for the user that creates the relationship
* user_to: A ForeignKey for the user being followed

* created: A DateTimeField field with auto now add=True to store the time
when the relationship was created

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

A database index is automatically created on ForeignKey fields. We use
db_index=True to create a database index for the created field. This will
improve query performance when ordering QuerySets by this field.

Using the ORM, we could create a relationship for a user user1 following another
user user2, like this:

userl = User.objects.get (id=1)
user2 = User.objects.get (id=2)
Contact.objects.create(user from=userl, user to=user2)

The related managers rel_from_set and rel_to_set will return a QuerySet for
the contact model. In order to access the end side of the relationship from the User
model, it would be desirable that User contained a ManyToManyField as follows:

following = models.ManyToManyField('self',
through=Contact,
related name='followers',
symmetrical=False)

In this example, we tell Django to use our custom intermediary model for the
relationship by adding through=Contact to the ManyToManyField. Thisis a

many-to-many relationship from the User model to itself: We refer to 'self’
in the ManyToManyField field to create a relationship to the same model.

When you need additional fields in a many-to-many relationship,
* create a custom model with a ForeignKey for each side of the
% relationship. Add a ManyToManyField in one of the related
"~ models and indicate Django to use your intermediary model by
including it in the through parameter.

If the User model was part of our application, we could add the previous field to
the model. However, we cannot alter the User class directly because it belongs to
the django.contrib.auth application. We are going to take a slightly different
approach, by adding this field dynamically to the User model. Edit the models.py
file of the account application and add the following lines:

Add following field to User dynamically
User.add to class('following',
models.ManyToManyField('self',
through=Contact,
related name='followers',
symmetrical=False))

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

In this code, we use the add_to_class () method of Django models to
monkey-patch the User model. Be aware that using add_to_class () is not the
recommended way for adding fields to models. However, we take advantage
from using it in this case because of the following reasons:

* We simplify the way we retrieve related objects using the Django ORM
with user.followers.all() and user.following.all (). We use the
intermediary Contact model and avoid complex queries that would involve
additional database joins, as it would have been if we had defined the
relationship in our custom profile model.

* The table for this many-to-many relationship will be created using the
Ccontact model. Thus, the ManyToManyField added dynamically will not
imply any database changes for the Django User model.

* We avoid creating a custom user model, keeping all the advantages of
Django's built-in User.

Keep in mind that in most cases, it is preferable to add fields to the profile model
we created before, instead of monkey-patching the user model. Django also allows
you to use custom user models. If you want to use your custom user model, take a
look at the documentation at https://docs.djangoproject.com/en/1.8/topics/
auth/customizing/#specifying-a-custom-user-model.

You can see that the relationship includes symmetrical=False. When you define a
ManyToManyField to the model itself, Django forces the relationship to be symmetrical.
In this case, we are setting symmetrical=False to define a non-symmetric relation.
This is, if I follow you, it doesn't mean you automatically follow me.

. When you use an intermediate model for many-to-many
% relationships some of the related manager's methods are disabled,
i suchasadd (), create() or remove (). You need to create or
delete instances of the intermediate model instead.

Run the following command to generate the initial migrations for the account
application:

python manage.py makemigrations account

You will see the following output:

Migrations for 'account':
0002_contact.py:
- Create model Contact

[172]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#specifying-a-custom-user-model
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#specifying-a-custom-user-model
http://www.it-ebooks.info/

Chapter 6

Now run the following command to sync the application with the database:

python manage.py migrate account

You should see an output that includes the following line:

Applying account.0002 contact... OK

The contact model is now synced to the database and we are able to create
relationships between users . However, our site doesn't offer a way to browse
through users or see a particular user profile yet. Let's build list and detail
views for the User model.

Creating list and detail views for user profiles

Open the views.py file of the account application and add the following code to it:

from django.shortcuts import get object or 404
from django.contrib.auth.models import User

@login required
def user list (request):
users = User.objects.filter(is_active=True)
return render (request,
'account/user/list.html"',
{'section': 'people',
'users': users})

@login required
def user detail (request, username) :
user = get object or 404 (User,
username=username,
is_active=True)
return render (request,
'account/user/detail.html’',
{'section': 'people',
'user': user})

These are simple list and detail views for User objects. The user_1list view gets all
active users. The Django User model contains a flag is_active to designate whether
the user account is considered active. We filter the query by is_active=True to
return only active users. This view returns all results, but you can improve it by
adding pagination the same way we did for the image_1list view.

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

The user detail view uses the get_object or 404 () shortcut to retrieve the
active user with the given username. The view returns an HTTP 404 response
if no active user with the given username is found.

Edit the urls.py file of the account application, and add an URL pattern for each
view as follows:

urlpatterns = [
...
url (r' “users/$"', views.user list, name='user list'),
url (r' “users/ (?P<username>[-\wl+)/$"',
views.user detail,
name='user detail'),

1

We are going to use the user_detail URL pattern to generate the canonical URL

for users. You have already defined a get_absolute_url () method in a model to
return the canonical URL for each object. Another way to specify an URL for a model
is by adding the ABSOLUTE_URL_OVERRIDES setting to your project.

Edit the settings. py file of your project and add the following code to it:

ABSOLUTE_URL_OVERRIDES =
'auth.user': lambda u: reverse_lazy('user_detail',
args=[u.username])

}

Django adds a get_absolute_url () method dynamically to any models that appear
in the ABSOLUTE_URL_OVERRIDES setting. This method returns the corresponding
URL for the given model specified in the setting. We return the user_detail URL
for the given user. Now you can use get_absolute_url () ona User instance to
retrieve its corresponding URL. Open the Python shell with the command python
manage.py shell and run the following code to test it:

>>> from django.contrib.auth.models import User
>>> user = User.objects.latest ('id')

>>> str(user.get absolute url())

' /account/users/ellington/"’

The returned URL is as expected. We need to create templates for the views we just
built. Add the following directory and files to the templates/account/ directory of
the account application:

/user/
detail.html
list.html

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Edit the account /user/list.html template and add the following code to it:

extends "base.html" %}
load thumbnail %}

—_~
o0 oe

—_
o°

block title %}People{% endblock %}

—_
o°

block content %}

<hl>People</hl>

<div id="people-list">
{$ for user in users

o°
—

<div class="user">

{% thumbnail user.profile.photo "180x180" crop="100%" as im

o°
—

{% endthumbnail %}

<div class="info">

{{ user.get_full name }}

</divs>
</divs>
{% endfor %}
</divs>
{% endblock %}

This template allows us to list all the active users in the site. We iterate over the given
users and use sorl-thumbnail's {$ thumbnail %} template tag to generate profile
image thumbnails.

Open the base . html template of your project and include the user_1list URL in the
href attribute of the following menu item:

<li {% if section == "people" %}class="selected"{% endif %}>People

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Start the development server with the command python manage.py runserver and
open http://127.0.0.1:8000/account/users/ in your browser. You should see a
list of users like the following one:

Bookmarks My dashboard Images Hello , Logout

People

Turing Tesla Einstein

Edit account /user/detail.html template of the account application and add the
following code to it:

{
{

extends "base.html" %}
load thumbnail %}

o0 oe

{% block title %}{{ user.get full name }}{% endblock %}

{% block content %}
<h1>{{ user.get full name }}</hl>
<div class="profile-info">
{% thumbnail user.profile.photo "180x180" crop="100%" as im %}

{% endthumbnail %}
</div>
{% with total followers=user.followers.count %}

{{ total followers }}
follower{{ total followers|pluralize }}

<a href="#" data-id="{{ user.id }}" data-action="{% if request.

)

user in user.followers.all %$}un{% endif %}follow" class="follow
button">

{$ if request.user not in user.followers.all %}

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Follow
{% else %}
Unfollow
{% endif %}

<div id="image-list" class="image-container"s
{% include "images/image/list ajax.html" with images=user.
images created.all %}
</div>
{% endwith %}
{% endblock %}

In the detail template we display the user profile and we use the {% thumbnail %}
template tag to display the profile image. We show the total number of followers and
a link to follow/unfollow the user. We prevent users from following themselves

by hiding this link if the user is watching their own profile. We are going to perform
an AJAX request to follow/unfollow a particular user. We add data-id and data-
action attributes to the <a> HTML element including the user ID and the initial
action to perform when it's clicked, follow or unfollow, that depends on the user
requesting the page being or not a follower of this user. We display the images
bookmarked by the user with the 1ist_ajax.html template.

Open your browser again and click on a user that has bookmarked some images.
You will see a profile detail like the following one:

Bookmarks My dashboard Images Hello, Logout

Tesla

Tesla working Alternating Electric Current Electric Generator
Generator

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Building an AJAX view to follow users

We will create a simple view to follow/unfollow a user using AJAX. Edit the
views.py file of the account application and add the following code to it:

from django.http import JsonResponse

from django.views.decorators.http import require POST
from common.decorators import ajax required

from .models import Contact

@ajax_required
@require POST
@login required
def user follow(request) :
user id = request.POST.get ('id"')
action = request.POST.get ('action')
if user id and action:
try:
user = User.objects.get (id=user id)
if action == 'follow':
Contact.objects.get or create(
user_ from=request.user,
user to=user)
else:
Contact.objects.filter (user from=request.user,
user to=user) .delete()
return JsonResponse ({'status':'ok'})
except User.DoesNotExist:
return JsonResponse ({'status':'ko'})
return JsonResponse ({'status':'ko'})

The user_follow view is quite similar to the image like view we created before.
Since we are using a custom intermediary model for the users' many-to-many
relationship, the default add () and remove () methods of the automatic manager
of ManyToManyField are not available. We use the intermediary contact model
to create or delete user relationships.

Import the view you just created in the urls. py file of the account application and
add the following URL pattern to it:

url (r'*users/follow/S$"', views.user follow, name='user_ follow'),

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Make sure that you place this pattern before the user_ detail URL pattern.
Otherwise, any requests to /users/follow/ will match the regular expression of
the user_detail pattern and it will be executed instead. Remember that in every
HTTP request Django checks the requested URL against each pattern in order of
appearance and stops at the first match.

Edit the user/detail.html template of the account application and append the
following code to it:

{% block domready %}
$('a.follow') .click (function (e) {
e.preventDefault () ;
$.post ('{% url "user follow" %}',
{
id: $(this) .data('id'),
action: $(this).data('action')
b
function (data) {
if (data['status'] == 'ok') {
var previous action = $('a.follow') .data('action');

// toggle data-action
$('a.follow') .data('action"',
previous action == 'follow' ? 'unfollow' : 'follow');
// toggle link text
S('a.follow') .text (
previous action == 'follow' ? 'Unfollow' : 'Follow');

// update total followers
var previous followers = parselnt (

$('span.count .total').text());
$('span.count .total').text (previous action == 'follow' ?
previous followers + 1 : previous followers - 1);

{% endblock %}

This is the JavaScript code to perform the AJAX request to follow or unfollow a
particular user and also toggle the follow /unfollow link. We use jQuery to perform
the AJAX request and set both the data-action attribute and the text of the HTML
<a> element based on its previous value. When the AJAX action is performed, we also
update the count of total followers displayed on the page. Open the user detail page
of an existing user and click the Follow link to try the functionality we just built.

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Building a generic activity stream
application

Many social websites show an activity stream to their users, so that they can track
what other users do in the platform. An activity stream is a list of recent activities
performed by a user or a group of users. For example, Facebook's News Feed is an
activity stream. Example actions can be User X bookmarked image Y or User X is
now following user Y. We will build an activity stream application so that every
user can see recent interactions of users he follows. To do so, we will need a model
to save the actions performed by users on the website and simple way to add actions
to the feed.

Create a new application named actions inside your project with the following
command:

django-admin startapp actions

Add 'actions' to INSTALLED APPS in the settings.py file of your project to let
Django know the new application is active:

INSTALLED APPS = (
..
'actions',

)
Edit the models.py file of the actions application and add the following code to it:

from django.db import models
from django.contrib.auth.models import User

class Action(models.Model) :
user = models.ForeignKey (User,
related name='actions',
db_index=True)
verb = models.CharField(max length=255)
created = models.DateTimeField (auto now_add=True,
db_index=True)

class Meta:
ordering = ('-created',)

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This is the Act ion model that will be used for storing user activities. The fields of
this model are as follows:

* user: The user that performed the action. This is a Foreignkey to the Django
User model.

* verb: The verb describing the action that the user has performed.

* created: The date and time when this action was created. We use auto_now_
add=True to automatically set this to the current datetime when the object is
saved for the first time in the database.

With this basic model, we can only store actions such as User X did something. We
need an extra ForeignKey field in order to save actions that involve a target object,
such as User X bookmarked image Y or User X is now following user Y. As you
already know, a normal ForeignKey can only point to one other model. Instead,

we need a way for the action's target object to be an instance of any existing model.
This is where the Django contenttypes framework comes on the scene.

Using the contenttypes framework

Django includes a contenttypes framework located at django.contrib.
contenttypes. This application can track all models installed in your project
and provides a generic interface to interact with your models.

The 'django.contrib.contenttypes' is included in the INSTALLED APPS setting
by default when you create a new project using the startproject command. It

is used by other contrib packages such as the authentication framework and the
admin application.

The contenttypes application contains a ContentType model. Instances of this
model represent the actual models of your application, and new instances of
ContentType are automatically created when new models are installed in your
project. The contentType model has the following fields:

* app_label: The name of the application the model belongs to. This is
automatically taken from the app_1label attribute of the model Meta options.
For example, our Image model belongs to the application images.

* model: The name of the model class.

* name: The human-readable name of the model. This is automatically taken
from the verbose_name attribute of the model Meta options.

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Let's take a look at how we can interact with ContentType objects. Open the
Python console using the python manage.py shell command. You can get the
ContentType object corresponding to a specific model by performing a query
with the app label and model attributes such as this:

>>> from django.contrib.contenttypes.models import ContentType
>>> image type = ContentType.objects.get (app label='images',
model="'image"')

>>> image type

<ContentType: images

You can also retrieve the model class back from a ContentType object by calling its
model class () method:

>>> image type.model class()
<class 'images.models.Image'>

It's also common to get the contentType object for a particular model class as
follows:

>>> from images.models import Image
>>> ContentType.objects.get for model (Image)
<ContentType: images

These are just some examples of using contenttypes. Django offers more ways to work
with them. You can find the official documentation about the contenttypes framework
at https://docs.djangoproject.com/en/1.8/ref/contrib/contenttypes/.

Adding generic relations to your models

In generic relations ContentType objects play the role of pointing to the model used
for the relationship. You will need three fields to setup a generic relation in a model:

* A ForeignKey field to contentType. This will tell us the model for the
relationship.

* A field to store the primary key of the related object. This will usually be a
PositiveIntegerField to match Django automatic primary key fields.

* A field to define and manage the generic relation using the two previous
fields. The contenttypes framework offers a GenericForeignKey field for
this purpose.

[182]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/contrib/contenttypes/
http://www.it-ebooks.info/

Chapter 6

Edit the models.py file of the actions application and make it look like this:

from django.db import models

from django.contrib.auth.models import User

from django.contrib.contenttypes.models import ContentType

from django.contrib.contenttypes.fields import GenericForeignKey

class Action (models.Model) :

user = models.ForeignKey (User,
related name='actions',
db_ index=True)

verb = models.CharField(max length=255)

target ct = models.ForeignKey (ContentType,
blank=True,
null=True,
related name='target obj')
target id = models.PositivelIntegerField(null=True,
blank=True,
db index=True)
target = GenericForeignKey('target ct', 'target id')
created = models.DateTimeField (auto now_add=True,
db_ index=True)

class Meta:
ordering = ('-created',)

We have added the following fields to the Action model:

target ct: A ForeignKey field to the ContentType model.

target_id: A PositiveIntegerField for storing the primary key of the
related object.

target: A GenericForeignKey field to the related object based on the
combination of the two previous fields.

Django does not create any field in the database for GenericForeignKey fields. The
only fields that are mapped to database fields are target_ct and target_id. Both
fields have blank=True and null=True attributes so that a target object is not
required when saving Action objects.

You can make your applications more flexible by using generic

relationships instead of foreign-keys when it makes sense to have
’ a generic relation.

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Run the following command to create initial migrations for this application:
python manage.py makemigrations actions
You should see the following output:

Migrations for 'actions':
0001 _initial.py:
- Create model Action

Then, run the next command to sync the application with the database:
python manage.py migrate

The output of the command should indicate that the new migrations have been
applied as follows:

Applying actions.0001 initial... OK

Let's add the Action model to the administration site. Edit the admin . py file of the
actions application and add the following code to it:

from django.contrib import admin
from .models import Action

class ActionAdmin (admin.ModelAdmin) :

list display = ('user', 'verb',K 'target',6 'created')
list filter = ('created',)
search fields = ('verb',)

admin.site.register (Action, ActionAdmin)

You just registered the Action model in the administration site. Run the command
python manage.py runserver to initialize the development server and open
http://127.0.0.1:8000/admin/actions/action/add/ in your browser. You
should see the page for creating a new Action object as follows:

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Dj ango administration Welcome, Antonio. Change password | Log out

Home » Actions » Actions » Add action

Add action

User: | ——eoeeme AL
Verh:

Target content | ——----——-
type:

ar

Target object
id:

Save and add ancther | Save and continue editing

As you can see, only the target_ct and target_id fields that are mapped to actual
database fields are shown, and the GenericForeignKey field does not appear here.
The target_ct allows you to select any of the registered models of your Django
project. You can restrict the contenttypes to choose from to a limited set of models
by using the 1imit_choices_to attribute in the target_ct field: The 1imit_
choices_to attribute allows you to restrict the content of ForeignKey fields to a
specific set of values.

Create a new file inside the actions application directory and name it utils.py.
We will define a shortcut function that will allow us to create new Action objects in
a simple way. Edit the new file and add the following code to it:

from django.contrib.contenttypes.models import ContentType
from .models import Action

def create action(user, verb, target=None) :
action = Action(user=user, verb=verb, target=target)
action.save ()

The create_action() function allows us to create actions that optionally include a
target object. We can use this function anywhere in our code to add new actions
to the activity stream.

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Avoiding duplicate actions in the activity
stream

Sometimes your users might perform an action multiple times. They might click
several times on like/unlike buttons or perform the same action multiple times in a
short period of time. This will make you end up storing and displaying duplicated
actions. In order to avoid this we will improve the create action() function to
avoid most of the duplicates.

Edit the utils.py file of the actions application and make it look like the following:

import datetime

from django.utils import timezone

from django.contrib.contenttypes.models import ContentType
from .models import Action

def create action(user, verb, target=None) :
check for any similar action made in the last minute
now = timezone.now()
last minute = now - datetime.timedelta(seconds=60)
similar actions = Action.objects.filter (user id=user.id,
verb= verb,
timestamp gte=last minute)
if target:
target ct = ContentType.objects.get for model (target)
similar actions = similar actions.filter(
target ct=target ct,
target id=target.id)
if not similar actions:
no existing actions found
action = Action(user=user, verb=verb, target=target)
action.save()
return True
return False

We have changed the create_action () function to avoid saving duplicate actions
and return a boolean to tell if the action was saved or not. This is how we avoid
duplicates:

* First, we get the current time using the timezone.now () method provided
by Django. This method does the same as datetime.datetime.now () but
returns a timezone-aware object. Django provides a setting called USE_Tz
to enable or disable timezone support. The default settings.py file created
using the startproject command includes USE_Tz=True.

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

* We use the last_minute variable to store the datetime one minute ago and
we retrieve any identical actions performed by the user since then.

* We create an Action object if no identical action already exists in the last
minute. We return True if an Action object was created, False otherwise.

Adding user actions to the activity stream

It's time to add some actions to our views to build the activity stream for our users.
We are going to store an action for each of the following interactions:

* A user bookmarks an image

* A user likes/unlikes an image

* A user creates an account

* A user follows/unfollows another user

Edit the views.py file of the images application and add the following import:

from actions.utils import create action

In the image_create view, add create_action() after saving the image like this:

new_item.save ()

create_action(request.user, 'bookmarked image', new_item)

In the image_like view, add create_action() after adding the user to the
users_like relationship as follows:

image.users_like.add(request.user)
create action(request.user, 'likes', image)

Now edit the views.py file of the account application and add the following import:
from actions.utils import create action

In the register view, add create_action() after creating the Profile object
as follows:

new_user.save ()
profile = Profile.objects.create (user=new_user)
create action(new user, 'has created an account')

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

In the user follow view add create action() like this:

Contact.objects.get or create(user from=request.user,
user to=user)
create action(request.user, 'is following', user)

As you can see, thanks to our Action model and our helper function, it's very easy
to save new actions to the activity stream.

Displaying the activity stream

Finally, we need a way to display the activity stream for each user. We are going to
include it in the user's dashboard. Edit the views.py file of the account application.
Import the Action model and modify the dashboard view as follows:

from actions.models import Action

@login required
def dashboard(request) :
Display all actions by default
actions = Action.objects.exclude (user=request.user)
following ids = request.user.following.values list('id’',
flat=True)
if following ids:
If user is following others, retrieve only their actions
actions = actions.filter(user id in=following ids)

actions = actions[:10]

return render (request,
'account/dashboard.html’',
{'section': 'dashboard',
'actions': actions})

In this view, we retrieve all actions from the database, excluding the ones performed
by the current user. If the user is not following anybody yet, we display the latest
actions performed by other users on the platform. This is the default behavior when
the user is not following any other users yet. If the user is following other users, we
restrict the query to only display actions performed by the users he follows. Finally,
we limit the result to the first 10 actions returned. We are not using order_by () here
because we are relying on the default ordering we provided in the Meta options

of the Action model. Recent actions will come first, since we have set ordering =
('-created',) in the Action model.

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Optimizing QuerySets that involve related
objects

Every time you retrieve an Action object, you will probably access its related User
object, and probably the user's related profile object too. The Django ORM offers
a simple way to retrieve related objects at once, avoiding additional queries to

the database.

Using select_related

Django offers a QuerySet method called select_related() that allows you to
retrieve related objects for one-to-many relationships. This translates to a single,
more complex QuerySet, but you avoid additional queries when accessing the
related objects. The select_related method is for ForeignKey and oneToOne fields.
It works by performing a SQL Jo1N and including the fields of the related object

in the SELECT statement.

To take advantage of select_related (), edit the following line of the previous code:
actions = actions.filter(user_id in=following ids)
And add select_related on the fields that you will use:

actions = actions.filter(user id_ in=following_ids)\
.select related('user', 'user profile')

We are using user__profile to join the profile table too in one single SQL query.
If you call select_related() without passing any arguments to it, it will retrieve
objects from all ForeignKey relationships. Always limit select_related() to the
relationships that will be accessed afterwards.

[Using select_related () carefully can vastly improve execution time.]
K -

Using prefetch_related

Asyou see, select_related () will help you boost performance for retrieving related
objects in one-to-many relationships. However, select_related () cannot work for
many-to-many or many-to-one relationships (ManyToMany or reverse ForeignKey
fields). Django offers a different QuerySet method called prefetch_related that
works for many-to-many and many-to-one relations in addition to the relations
supported by select_related(). The prefetch related() method performsa
separate lookup for each relationship and joins the results using Python. This method
also supports prefetching of GenericRelation and GenericForeignKey.

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Complete your query by adding prefetch_related () to it for the target
GenericForeignKey field as follows:

actions = actions.filter(user id in=following_ ids)\
.select related('user', 'user profile')\
.prefetch related('target')

This query is now optimized for retrieving the user actions including related objects.

Creating templates for actions

We are going to create the template to display a particular Action object. Create a
new directory inside the actions application directory and name it templates. Add
the following file structure to it:

actions/
action/
detail.html

Edit the actions/action/detail.html template file and add the following lines
to it:

{$ load thumbnail %}

°

{$ with user=action.user profile=action.user.profile %}
<div class="action">
<div class="images">

)

{$ if profile.photo %}
{% thumbnail user.profile.photo "80x80" crop="100%" as im %}

<img src="{{ im.url }}" alt="{{ user.get full name }}"
class="item-img">

% endthumbnail %}
{$ endif %}

{

°

{$ if action.target %}
{$ with target=action.target %}
{$ if target.image %}
{% thumbnail target.image "80x80" crop="100%" as im %}

{% endthumbnail %}

{% endif %}

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

{% endwith %}
{¢ endif %}
</div>
<div class="info">
<p>
{{ action.created|timesince }} ago

{{ user.first name }}

{{ action.verb }}
{$ if action.target %}
{% with target=action.target %}
{{ target }}
{% endwith %}
{% endif %}
</p>
</div>
</div>
{% endwith %}

This is the template to display an Action object. First, we use the {$ with %}
template tag to retrieve the user performing the action and their profile. Then, we
display the image of the target object if the Action object has a related target object.
Finally, we display the link to the user that performed the action, the verb and the
target object, if any.

Now, edit the account /dashboard.html template and append the following code
to the bottom of the content block:

<h2>What's happening</h2>
<div id="action-list">
{% for action in actions %}
{% include "actions/action/detail.html" %}
{% endfor %}

</div>

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Open http://127.0.0.1:8000/account/ in your browser. Log in with an existing
user and perform several actions so that they get stored in the database. Then, log in
using another user, follow the previous user, and take a look at the generated action
stream in the dashboard page. It should look like the following;:

What's happening

1 likes E

1 bookmarked image Elect

bookmarked image Alte

We just created a complete activity stream for our users and we can easily add new
user actions to it. You can also add infinite scroll functionality to the activity stream
by implementing the same AJAX paginator we used for the image_1list view.

Using signals for denormalizing counts

There are some cases when you would like to denormalize your data. Denormalization
is making data redundant in a way that it optimizes read performance. You have

to be careful about denormalization and only start using it when you really need

it. The biggest issue you will find with denormalization is it's difficult to keep your
denormalized data updated.

We will see an example of how to improve our queries by denormalizing counts.
The drawback is that we have to keep the redundant data updated. We are going
to denormalize data from our Image model and use Django signals to keep the
data updated.

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Working with signals

Django comes with a signal dispatcher that allows receiver functions to get notified
when certain actions occur. Signals are very useful when you need your code to do
something every time something else happens. You can also create your own signals
so that others can get notified when an event happens.

Django provides several signals for models located at django.db.models.signals.
Some of these signals are:

* pre_save and post_save: Sent before or after calling the save () method
of a model

* pre_delete and post_delete: Sent before or after calling the delete ()
method of a model or QuerySet

* m2m_changed: Sent when a ManyToManyField on a model is changed

These are just a subset of the signals provided by Django. You can find the list of all
built-in signals at https://docs.djangoproject.com/en/1.8/ref/signals/.

Let's say you want to retrieve images by popularity. You can use the Django
aggregation functions to retrieve images ordered by then number of users who like
them. Remember you used Django aggregation functions in Chapter 3, Extending Your
Blog Application. The following code will retrieve images by their number of likes:

from django.db.models import Count
from images.models import Image

images_by popularity = Image.objects.annotate(
total likes=Count ('users_like')) .order by ('-total likes')

However, ordering images by counting their total 1ikes is more expensive in terms
of performance than ordering them by a field which stores total counts. You can
add a field to the Image model to denormalize the total number of 1ikes to boost
performance in queries that involve this field. How to keep this field updated?

Edit the models.py file of the images application and add the following field to the
Image model:

total likes = models.PositiveIntegerField(db_index=True,
default=0)

The total 1likes field will allow us to store the total count of users that like each
image. Denormalizing counts is useful when you want to filter or order QuerySets
by them.

[193]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/signals/
http://www.it-ebooks.info/

Tracking User Actions

There are several ways to improve performance that you have to take into
% account before denormalizing fields. Consider database indexes, query
' optimization and caching before starting to denormalize your data.

Run the following command to create the migrations for adding the new field to the
database table:

python manage.py makemigrations images

You should see the following output:

Migrations for 'images':
0002 image total likes.py:
- Add field total likes to image

Then, run the following command to apply the migration:
python manage.py migrate images

The output should include the following line:
Applying images.0002 image total likes... OK

We are going to attach a receiver function to the m2m_changed signal. Create a
new file inside the images application directory and name it signals.py. Add the
following code to it:

from django.db.models.signals import m2m_changed
from django.dispatch import receiver
from .models import Image

@receiver (m2m_changed, sender=Image.users_like.through)

def users_like changed(sender, instance, **kwargs):
instance.total likes = instance.users_like.count ()
instance.save ()

First, we register the users_like_changed function as a receiver function using
the receiver () decorator and we attach it to the m2m_changed signal. We connect
the function to Image.users_like.through so that the function is only called if the
m2m_changed signal has been launched by this sender. There is an alternate method
for registering a receiver function, which consists of using the connect () method
of the signal object.

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Django signals are synchronous and blocking. Don't confuse signals
& with asynchronous tasks. However, you can combine both to launch
/" .. .
asynchronous tasks when your code gets notified by a signal.

You have to connect your receiver function to a signal, so that it gets called every
time the signal is sent. The recommended method for registering your signals is

by importing them in the ready () method of your application configuration class.
Django provides an application registry that allows you to configure and introspect
your applications.

Defining application configuration classes

Django allows you to specify configuration classes for your applications. To provide
a custom configuration for your application, create a custom class that inherits

the AppConfig class located in django. apps. The application configuration class
allows you to store metadata and configuration for the application and provides
introspection.

You can find more information about application configuration at https://docs.
djangoproject.com/en/1.8/ref/applications/.

In order to register your signal receiver functions, when you are using the
receiver () decorator you just need to import the signals module of your
application inside the ready () method of the AppConfig class. This method is called
as soon as the application registry is fully populated. Any other initializations for
your application should be also included inside this method.

Create a new file inside the images application directory and name it apps . py.
Add the following code to it:

from django.apps import AppConfig

class ImagesConfig(AppConfig) :
name = 'images'
verbose name = 'Image bookmarks'

def ready(self):
import signal handlers
import images.signals

[195]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/applications/
https://docs.djangoproject.com/en/1.8/ref/applications/
http://www.it-ebooks.info/

Tracking User Actions

The name attribute defines the full Python path to the application. The verbose_name
attribute sets the human-readable name for this application. It's displayed in the
administration site. The ready () method is where we import the signals for this
application.

Now we need to tell Django where our application configuration resides. Edit the
__init__ .py filelocated inside the images application directory and add the
following line to it:

default app config = 'images.apps.ImagesConfig'

Open your browser to view an image detail page and click on the like button. Go
back to the administration site and take a look at the total likes attribute. You
should see that the total_likes attribute is updated like in the following example:

Users like: a
einstein
pepo -
tesla

Total likes: 3

Now you can use the total_likes attribute to order images by popularity or
display the value anywhere, avoiding complex queries to calculate it. The following
query to get images ordered by their 1ike count:

images_ by popularity = Image.objects.annotate(
likes=Count ('users like')) .order by('-likes')

Can now become like this:
images_by popularity = Image.objects.order by ('-total likes')
This results in a much less expensive SQL query. This is just an example about how

to use Django signals.

Use signals with caution, since they make difficult to know the control
& flow. In many cases you can avoid using signals if you know which
/’b . . .
receivers need to be notified.

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

You will need to set initial counts to match the current status of the database. Open
the shell with the command python manage.py shell and run the following code:

from images.models import Image

for image in Image.objects.all():
image.total_likes = image.users_like.count ()
image.save ()

The likes count for each image is now updated.

Using Redis for storing item views

Redis is and advanced key-value database that allows you to save different types of
data and is extremely fast on I/O operations. Redis stores everything in memory, but
the data can be persisted by dumping the dataset to disk every once in a while or by
adding each command to a log. Redis is very versatile compared to other key-value
stores: It provides a set of powerful commands and supports diverse data structures
such as strings, hashes, lists, sets, ordered sets, and even bitmaps or HyperLogLogs.

While SQL is best suitable for schema-defined persistent data storage, Redis offers
numerous advantages when dealing with rapidly changing data, volatile storage,
or when a quick cache is needed. Let's see how Redis can be used for building new
functionality into our project.

Installing Redis

Download the latest Redis version from http://redis.io/download. Unzip
the tar.gz file, enter the redis directory and compile Redis using the make
command as follows:

cd redis-3.0.4

make

After installing it use the following shell command to initialize the Redis server:
src/redis-server

You should see an output that ends with the following lines:

Server started, Redis version 3.0.4
* DB loaded from disk: 0.001 seconds
* The server is now ready to accept connections on port 6379

[197]

www.it-ebooks.info

http://redis.io/download
http://www.it-ebooks.info/

Tracking User Actions

By default, Redis runs on port 6379, but you can also specify a custom port using the
- -port flag, for example redis-server --port 6655. When your server is ready,
you can open the Redis client in another shell using the following command:

src/redis-cli

You should see the Redis client shell like the following;:

127.0.0.1:6379>

The Redis client allows you to execute Redis commands directly from the shell.
Let's try some commands. Enter the SET command in the Redis shell to store a
value in a key:

127.0.0.1:6379> SET name "Peter"

OK

The previous command creates a name key with the string value "peter" in the
Redis database. The ok output indicates that the key has been saved successfully.
Then, retrieve the value using the GET command as follows:

127.0.0.1:6379> GET name

"Peter"

You can also check if a key exists by using the EX1STS command. This command
returns 1 if the given key exists, 0 otherwise:

127.0.0.1:6379> EXISTS name

(integer) 1

You can set the time for a key to expire using the EXPIRE command, which allows
you to set time to live in seconds. Another option is using the EXPIREAT command
that expects a Unix timestamp. Key expiration is useful to use Redis as a cache or
to store volatile data:

127.0.0.1:6379> GET name

"Peter"

127.0.0.1:6379> EXPIRE name 2

(integer) 1
Wait for 2 seconds and try to get the same key again:

127.0.0.1:6379> GET name
(nil)

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The (nil) response is a null response and means no key has been found. You can
also delete any key using the DEL. command as follows:

127.0.0.1:6379> SET total 1
OK

127.0.0.1:6379> DEL total
(integer) 1

127.0.0.1:6379> GET total
(nil)

These are just basic commands for key operations. Redis includes a large set of
commands for other data types such as strings, hashes, sets, ordered sets, and so on.
You can take a look at all Redis commands at http://redis.io/commands and all
Redis data types at http://redis.io/topics/data-types.

Using Redis with Python

We need Python bindings for Redis. Install redis-py via pip using the command:

pip install redis==2.10.3
You can find the redis-py docs at http://redis-py.readthedocs.org/.

The redis-py offers two classes for interacting with Redis: sStrictRedis and Redis.
Both offer the same functionality. The StrictRedis class attempts to adhere to the
official Redis command syntax. The Redis class extends StrictRedis overriding
some methods to provide backwards compatibility. We are going to use the
StrictRedis class since it follows the Redis command syntax. Open the Python
shell and execute the following code:

>>> import redis
>>> ¥ = redis.StrictRedis (host="'localhost', port=6379, db=0)

This code creates a connection with the Redis database. In Redis, databases are
identified by an integer index instead of a database name. By default, a client is
connected to database 0. The number of available Redis databases is set to 16,
but you can change this in the redis. conf file.

Now set a key using the Python shell:

>>> r.set('foo', 'bar')
True

[199]

www.it-ebooks.info

http://redis.io/commands
http://redis.io/topics/data-types
http://redis-py.readthedocs.org/
http://www.it-ebooks.info/

Tracking User Actions

The command returns True indicating that the key has been successfully created.
Now you can retrieve the key using the get () command:

>>> r.get ('foo')
'bar’

As you can see, the methods of strictRedis follow the Redis command syntax.

Let's integrate Redis into our project. Edit the settings.py file of the bookmarks
project and add the following settings to it:

REDIS HOST = 'localhost'
REDIS PORT = 6379
REDIS DB = 0

These are the settings for the Redis server and the database that we will use for
our project.

Storing item views in Redis

Let's store the total number of times an image has been viewed. If we did this using
the Django ORM, it would involve an SQL UPDATE statement every time an image
is displayed. Using Redis instead, we just need to increment a counter stored in
memory, resulting in much better performance.

Edit the views. py file of the images application and add the following code to it:

import redis
from django.conf import settings

connect to redis

r = redis.StrictRedis (host=settings.REDIS HOST,
port=settings.REDIS PORT,
db=settings.REDIS_DB)

Here we establish the Redis connection in order to use it in our views. Edit the
image_detail view and make it look as follows:

def image detail (request, id, slug):
image = get object or 404 (Image, id=id, slug=slug)
increment total image views by 1
total views = r.incr('image:{}:views'.format (image.id))
return render (request,
'images/image/detail .html"',
{'section': 'images',
'image': image,
'total views': total views})

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In this view, we use the INCR command that increments the value of a key by 1 and
sets the value to 0 before performing the operation if the key does not exist. The
incr () method returns the value of the key after performing the operation and we
store it in the total_views variable. We build the Redis key using a notation like
object-type:id:field (for example image:33:1id).

The convention for naming Redis keys is to use a colon sign as separator
for creating namespaced keys. By doing so, the key names are specially
verbose and related keys share part of the same schema in their names.

Edit the image/detail.html template and add the following code to it after the
existing element:

{{ total views }}
view{{ total views|pluralize }}

Now open an image detail page in your browser and load it several times. You will
see that each time the view is executed the total views displayed are incremented by
1. See the following example:

Alternating Electric Current Generator

Alternating Electric Current Generator

Nobody likes this image yet.

You have successfully integrated Redis into your project to store item counts.

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Storing a ranking in Redis

Let's built some more functionality with Redis. We are going to create a ranking
of the most viewed images in our platform. For building this ranking we will use
Redis sorted sets. A sorted set is a non-repeating collection of strings in which
every member is associated with a score. Items are sorted by their score.

Edit the views.py file of the images application and make the image detail view
look as follows:

def image detail (request, id, slug):
image = get object or 404 (Image, id=id, slug=slug)
increment total image views by 1
total views = r.incr('image:{}:views'.format (image.id))
increment image ranking by 1
r.zincrby ('image ranking', image.id, 1)
return render (request,
'images/image/detail .html"',
{'section': 'images',
'image': image,
'total views': total views})

We use the zincrby () command to store image views in a sorted set with the key
image:ranking. We are storing the image id, and a score of 1 that will be added to
the total score of this element in the sorted set. This will allow us to keep track of all
image views globally and have a sorted set ordered by the total number of views.

Now create a new view to display the ranking of the most viewed images. Add the
following code to the views.py file:

@login required
def image ranking(request) :
get image ranking dictionary

image ranking = r.zrange('image ranking', 0, -1,
desc=True) [:10]
image ranking ids = [int (id) for id in image_ ranking]

get most viewed images
most viewed = list (Image.objects.filter(
id in=image ranking ids))

most viewed.sort (key=lambda x: image ranking ids.index(x.id))
return render (request,

'images/image/ranking.html"',

{'section': 'images',

'most_viewed': most viewed})

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This is the image _ranking view. We use the zrange () command to obtain the
elements in the sorted set. This command expects a custom range by lowest and
highest score. By using 0 as lowest and -1 as highest score we are telling Redis

to return all elements in the sorted set. We also specify desc=True to retrieve the
elements ordered by descending score. Finally, we slice the results using [:10] to get
the first 10 elements with highest scores. We build a list of returned image IDs and we
store it in the image_ranking ids variable as a list of integers. We retrieve the Image
objects for those IDs and force the query to be executed by using the 1ist () function.
It is important to force the QuerySet execution because next we use the sort () list
method on it (at this point we need a list of objects instead of a queryset). We sort the
Image objects by their index of appearance in the image ranking. Now we can use the
most_viewed list in our template to display the 10 most viewed images.

Create a new image/ranking.html template file and add the following code to it:

{$ extends "base.html" %}
{% block title %}Images ranking{$% endblock %}

{% block content %}
<hl>Images ranking</hls>
<ols>
{%$ for image in most viewed %}

{{ image.title }}

</1li>
{% endfor %}

{% endblock %}

The template is pretty straightforward, as we just iterate over the Image objects
contained in the most_viewed list.

Finally create an URL pattern for the new view. Edit the urls.py file of the images
application and add the following pattern to it:

url (r'“ranking/$', views.image ranking, name='create'),

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking User Actions

Open http://127.0.0.1:8000/images/ranking/ in your browser. You should be
able to see an image ranking as follows:

Images ranking

Next steps with Redis

Redis is not a replacement for your SQL database but a fast in-memory storage that
is more suitable for certain tasks. Add it to your stack and use it when you really feel
it's needed. The following are some scenarios in which Redis suits pretty well:

Counting: As you have seen, it is very easy to manage counters with Redis.
You can use incr () and incrby () for counting stuff.

Storing latest items: You can add items to the start/end of a list using
lpush () and rpush (). Remove and return first/last element using 1pop () /
rpop ().You can trim the list length using 1trim() to maintain its length.

Queues: In addition to push and pop commands, Redis offers blocking
queue commands.

Caching: Using expire () and expireat () allows you to use Redis as a
cache. You can also find third-party Redis cache backends for Django.

Pub/Sub: Redis provides commands for subscribing/unsubscribing and
sending messages to channels.

Rankings and leaderboards: Redis sorted sets with scores make it very easy
to create leaderboards.

Real-time tracking: Redis fast I/ O makes it perfect for real-time scenarios.

Summary

In this chapter, you have built a follower system and a user activity stream. You have
learned how Django signals work and you have integrated Redis into your project.

In the next chapter, you will learn how to build an on-line shop. You will create a
product catalog and build a shopping cart using sessions. You will also learn how
to launch asynchronous tasks with Celery.

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

In the previous chapter, you created a follower system and built a user activity
stream. You also learned how Django signals work and integrated Redis into your
project to count image views. In this chapter, you will learn how to build a basic
online shop. You will create a catalog of products and implement a shopping cart
using Django sessions. You will also learn how to create custom context processors
and launch asynchronous tasks using Celery.

In this chapter, you will learn to:

* Create a product catalog
* Build a shopping cart using Django sessions
* Manage customer orders

* Send asynchronous notifications to customers using Celery

Creating an online shop project

We are going to start with a new Django project to build an online shop. Our users
will be able to browse through a product catalog and add products to a shopping
cart. Finally, they will be able to checkout the cart and place an order. This chapter
will cover the following functionalities of an online shop:

* Creating the product catalog models, adding them to the administration site,
and building the basic views to display the catalog

* Building a shopping cart system using Django sessions to allow users
to keep selected products while they browse the site

* Creating the form and functionality to place orders

* Sending an asynchronous email confirmation to users when they place
an order

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

First, create a virtual environment for your new project and activate it with the
following commands:

mkdir env
virtualenv env/myshop

source env/myshop/bin/activate
Install Django in your virtual environment with the following command:
pip install Django==1.8.6

Start a new project called myshop with an application called shop by opening a shell
and running the following commands:

django-admin startproject myshop
cd myshop/
django-admin startapp shop

Edit the settings. py file of your project and add your application to the
INSTALLED APPS setting as follows:

INSTALLED APPS = (
...
'shop',

)

Your application is now active for this project. Let's define the models for the
product catalog.

Creating product catalog models

The catalog of our shop will consist of products that are organized into different
categories. Each product will have a name, optional description, optional image,
a price, and an available stock. Edit the models.py file of the shop application
that you just created and add the following code:

from django.db import models

class Category(models.Model) :
name = models.CharField(max length=200,
db index=True)
slug = models.SlugField(max length=200,
db index=True,
unique=True)

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

class Meta:

ordering = ('name',)
verbose name = 'category'
verbose name plural = 'categories'

def str (self):
return self.name

class Product (models.Model) :
category = models.ForeignKey (Category,
related name='products')

name models.CharField(max length=200, db_index=True

)
)

slug models.SlugField(max length=200, db_index=True

image = models.ImageField (upload to='products/%$Y/%m/%d',
blank=True)

description = models.TextField (blank=True)

price = models.DecimalField(max digits=10, decimal places=2)

stock = models.PositiveIntegerField()

available = models.BooleanField(default=True)

created = models.DateTimeField (auto now_add=True)

updated = models.DateTimeField(auto now=True)

class Meta:
ordering = ('name',)
index together = (('id', 'slug'),)

def str (self):
return self.name

These are our Category and Product models. The category model consists of
a name field and a s1ug unique field. The Product model fields are as follows:

* category: This is ForeignKey to the category model. This is a many-to-one
relationship: A product belongs to one category and a category contains
multiple products.

* name: This is the name of the product.
* slug: This is the slug for this product to build beautiful URLs.
* image: This is an optional product image.

* description: This is an optional description of the product.

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

* price: This is DecimalField. This field uses Python's decimal.Decimal
type to store a fixed-precision decimal number. The maximum number of
digits (including the decimal places) is set using the max_digits attribute
and decimal places with the decimal_places attribute.

* stock: This is PositiveIntegerField to store the stock of this product.

* available: This is a boolean that indicates whether the product is available
or not. This allows us to enable/disable the product in the catalog.

* created: This field stores when the object was created.
* updated: This field stores when the object was last updated.

For the price field, we use DecimalField instead of FloatField to avoid
rounding issues.

Always use DecimalField to store monetary amounts. FloatField

uses Python's f1oat type internally, whereas DecimalField uses
<" Python's Decimal type. By using the Decimal type, you will avoid the

float rounding issues.

In the Meta class of the Product model, we use the index_together meta option to
specify an index for the id and slug fields together. We define this index, because
we plan to query products by both, id and s1ug. Both fields are indexed together to
improve performances for queries that utilize the two fields.

Since we are going to deal with images in our models, open the shell and install
Pillow with the following command:

pip install Pillow==2.9.0

Now, run the next command to create initial migrations for your project:
python manage.py makemigrations

You will see the following output:

Migrations for 'shop':
0001 _initial.py:
- Create model Category
- Create model Product
- Alter index together for product (1 constraint(s))

Run the next command to sync the database:

python manage.py migrate

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

You will see an output that includes the following line:
Applying shop.0001 initial... OK

The database is now synced with your models.

Registering catalog models in the admin site

Let's add our models to the administration site so that we can easily manage
categories and products. Edit the admin.py file of the shop application and
add the following code to it:

from django.contrib import admin
from .models import Category, Product

class CategoryAdmin (admin.ModelAdmin) :
list display = ['name', 'slug']
prepopulated fields = {'slug': ('name',)}
admin.site.register (Category, CategoryAdmin)

class ProductAdmin (admin.ModelAdmin) :

list display = ['name', 'slug',6 'price', 'stock',
'available', 'created',6 ‘'updated']
list filter = ['available', 'created',K ‘'updated']
list editable = ['price', 'stock', 'available']
prepopulated fields = {'slug': ('name',)}

admin.site.register (Product, ProductAdmin)

Remember that we use the prepopulated_fields attribute to specify fields where
the value is automatically set using the value of other fields. As you have seen
before, this is convenient for generating slugs. We use the 1ist_editable attribute
in the ProductAdmin class to set the fields that can be edited from the list display
page of the administration site. This will allow you to edit multiple rows at once.
Any field in 1ist_editable must also be listed in the 1ist_display attribute, since
only the fields displayed can be edited.

Now, create a superuser for your site using the following command:

python manage.py createsuperuser

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Start the development server with the command python manage.py runserver.
Open http://127.0.0.1:8000/admin/shop/product/add/ in your browser and
log in with the user that you just created. Add a new category and product using the
administration interface. The product change list page of the administration page
will then look like this:

Django administration Welcome, admin. View site / Change password / Log out

Home > Shop » Products

Select product to change

Action: | —==-m-m-- %] Ga| 00F 4 selected
By available
All

| Name Slug Category Price Stack Available Created ¥ Updated
| Greentea green-tea Tea 30,00 22 March 8, 2015, 5:48 p.m. March 8, 2015, 9:42 p.m.

Ne

1 product By created

Any date

Building catalog views

In order to display the product catalog, we need to create a view to list all the
products or filter products by a given category. Edit the views.py file of the shop
application and add the following code to it:

from django.shortcuts import render, get object or 404
from .models import Category, Product

def product list (request, category slug=None) :
category = None
categories = Category.objects.all ()
products = Product.objects.filter (available=True)
if category slug:
category = get object or 404 (Category, slug=category slug)
products = products.filter (category=category)
return render (request,
'shop/product/list.html"',
{'category': category,
'categories': categories,
'products': products})

We will filter the QuerySet with available=True to retrieve only available products.
We will use an optional category_slug parameter to optionally filter products by a
given category.

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We also need a view to retrieve and display a single product. Add the following
view to the views.py file:

def product detail (request, id, slug):
product = get object or 404 (Product,
id=id,
slug=slug,
available=True)
return render (request,
'shop/product/detail .html',
{'product': product})

The product_detail view expects the id and slug parameters in order to retrieve
the Product instance. We can get this instance by just the ID since it's a unique
attribute. However, we include the slug in the URL to build SEO-friendly URLs
for products.

After building the product list and detail views, we have to define URL patterns for
them. Create a new file inside the shop application directory and name it urls.py.
Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [

url (r'”*$', views.product list, name='product list'),

url (r'” (?P<category_slug>[-\w]+)/$"',
views.product list,
name='product list by category'),

url (r'”* (?P<id>\d+) / (?P<slug>[-\wl+)/$"',
views.product detail,
name="'product detail'),

]

These are the URL patterns for our product catalog. We have defined two different
URL patterns for the product_1list view: a pattern named product_1list, which
calls the product_1list view without any parameters; and a pattern named
product_list_by category, which provides a category_slug parameter to the
view for filtering products by a given category. We added a pattern for the product_
detail view, which passes the id and slug parameters to the view in order to
retrieve a specific product.

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Edit the urls.py file of the myshop project to make it look like this:

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url (r'*admin/', include (admin.site.urls)),
url(r'”', include('shop.urls', namespace='shop')),

]

In the main URLs patterns of the project, we will include URLSs for the shop
application under a custom namespace named 'shop'.

Now, edit the models.py file of the shop application, import the reverse () function,
and add a get_absolute url () method to the Category and Product models
as follows:

from django.core.urlresolvers import reverse

#
class Category (models.Model) :
...
def get absolute url(self):
return reverse('shop:product list by category’,
args=[self.slugl)

class Product (models.Model) :
...
def get absolute url(self):
return reverse ('shop:product detail’,
args=[self.id, self.slug])

As you already know, get_absolute_url () is the convention to retrieve URL
for a given object. Here, we will use the URLs patterns that we just defined in
the urls.py file.

Creating catalog templates

Now, we need to create templates for the product list and detail views. Create the
following directory and file structure inside the shop application directory:

templates/
shop/
base.html
product/
list.html
detail.html

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We need to define a base template, and then extend it in the product list and detail
templates. Edit the shop/base . html template and add the following code to it:

{%$ load static %}
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>{% block title %}My shop{% endblock %}</title>
<link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
<div id="header"s>
My shop
</div>
<div id="subheader"s
<div class="cart">
Your cart is empty.
</div>
</div>
<div id="content">
{% block content %}
{% endblock %}
</div>
</body>
</html>

This is the base template that we will use for our shop. In order to include the
required CSS styles and images that are used by the templates, you will need to copy
the static files that come along with this chapter, located in the static/ directory of
the shop application. Copy them to the same location of your project.

Edit the shop/product/list.html template and add the following code to it:

{
{

extends "shop/base.html" %}

°

load static %}

o0 oe

{% block title %}
{$ if category %}{{ category.name }}{% else %}Products{% endif %}
{% endblock %}

{% block content %}
<div id="sidebar">
<h3>Categories</h3>

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

)

<1li {% if not category %}class="selected"{% endif %}>
All

</1li>

{$ for c in categories %}

)

<li {% if category.slug == c.slug %$}class="selected"{% endif

o\

}>
{{ c.name }}
</1li>
{% endfor %}

</div>
<div id="main" class="product-list"s>

)

<h1>{% if category %}{{ category.name }}{% else %}Products{% endif
$}</hl>
{$ for product in products %}
<div class="item">

))

<img src="{% if product.image %}{{ product.image.url }}{%

else %}{% static "img/no image.png" %}{% endif %}">

{{ product.name }}</
a>

${{ product.price }}

</div>
{% endfor %}
</div>

{% endblock %}

This is the product list template. It extends the shop/base.html template and

uses the categories context variable to display all the categories in a sidebar and
products to display the products of the current page. The same template is used for
both: listing all available products and listing products filtered by a category. Since
the image field of the Product model can be blank, we need to provide a default
image for the products that don't have an image. The image is located in our static
files directory with the relative path img/no_image.png.

Since we are using ImageField to store product images, we need the development
server to serve uploaded image files. Edit the settings.py file of myshop and add
the following settings:

MEDIA URL = '/media/'
MEDIA ROOT = os.path.join(BASE DIR, 'media/')

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

MEDIA_URL is the base URL that serves media files uploaded by users. MEDIA_ROOT is
the local path where these files reside, which we build dynamically prepending the
BASE_DIR variable.

For Django to serve the uploaded media files using the development server, edit the
urls.py file of myshop and add make it look like this:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
...
]
if settings.DEBUG:
urlpatterns += static(settings.MEDIA URL,
document root=settings.MEDIA ROOT)

Remember that we only serve static files this way during the development. In a
production environment, you should never serve static files with Django.

Add a couple of products to your shop using the administration site and open
http://127.0.0.1:8000/ in your browser. You will see the product list page,
which looks like this:

My shop

Your cart is empty.

-

Products

Categories

Tea

— |

Green tea Red tea Tea powder
$30 $45.5 $21.2

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

If you create a product using the administration site and don't upload any images,
the default no_image . png image will be displayed:

Products
NO IMAGE
AVAILABLE
Black tea Tea powder Red tea
$32.20 $21.20 $45.50

Let's edit the product detail template. Edit the shop/product/detail.html template
and add the following code to it:

{% extends "shop/base.html" %}
{% load static %}

{% block title %)}

{$ if category %}{{ category.title }}{% else %}Products{% endif %}
{% endblock %}

{% block content %}
<div class="product-detail"s
<img src="{% if product.image %}{{ product.image.url }}{% else %
{% static "img/no_image.png" %}{% endif %}">
<h1>{{ product.name }}</hl>

<h2>{{ product.
category }}</h2>

<p class="price">${{ product.price }}</p>
{{ product.description|linebreaks }}
</div>
{% endblock %}

o\
—

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We call the get_absolute_url () method on the related category object to
display the available products that belong to the same category. Now, open
http://127.0.0.1:8000/ in your browser and click on any product to see
the product detail page. It will look as follows:

My shop

Your cart is empty.

Red tea

Tea

$45.5

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.

We have now created a basic product catalog.

Building a shopping cart

After building the product catalog, the next step is to create a shopping cart that will
allow users to select the products that they want to purchase. A shopping cart allows
users to select the products they want and store them temporarily while they browse
the site, until they eventually place an order. The cart has to be persisted in the
session so that the cart items are kept during the user's visit.

We will use Django's session framework to persist the cart. The cart will be kept in
the session until it finishes or the user checks out of the cart. We will also need
to build additional Django models for the cart and its items.

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Using Django sessions

Django provides a session framework that supports anonymous and user sessions.
The session framework allows you to store arbitrary data for each visitor. Session
data is stored on the server side, and cookies contain the session ID, unless you use
the cookie-based session engine. The session middleware manages sending and
receiving cookies. The default session engine stores session data in the database,
but as you will see next, you can choose between different session engines.

To use sessions, you have to make sure that the MIDDLEWARE_CLASSES setting of your
project contains 'django.contrib.sessions.middleware.SessionMiddleware'.
This middleware manages sessions and is added by default when you create a new
project using the startproject command.

The session middleware makes the current session available in the request object.
You can access the current session using request . session, by utilizing it similar to
a Python dictionary to store and retrieve session data. The session dictionary accepts
any Python object by default that can be serialized into JSON. You can set a variable
in the session like this:

request.session['foo'] = 'bar'
Retrieve a session key:

request.session.get ('foo')
Delete a key you stored in the session:

del request.session['foo']

As you saw, we just treated request . session like a standard Python dictionary.

. When users log into the site, their anonymous session is lost and a new
% session is created for the authenticated users. If you store items in an
= anonymous session that you need to keep after users log in, you will have
to copy the old session data into the new session.

Session settings

There are several settings you can use to configure sessions for your project. The
most important is SESSTON_ENGINE. This setting allows you to set the place where
sessions are stored. By default, Django stores sessions in the database using the
Session model of the django.contrib.sessions application.

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Django offers the following options for storing session data:

Database sessions: Session data is stored in the database. This is the default
session engine.

File-based sessions: Session data is stored in the file system.

Cached sessions: Session data is stored in a cache backend. You can specify
cache backends using the CACHES setting. Storing session data in a cache
system offers best performance.

Cached database sessions: Session data is stored in a write-through cache
and database. Reads only use the database if the data is not already in
the cache.

Cookie-based sessions: Session data is stored in the cookies that are sent
to the browser.

For better performance, use a cache-based session engine. Django
% supports Memcached and there are other third-party cache
backends for Redis and other cache systems.

You can customize sessions with other settings. Here are some of the important
session related settings:

SESSION COOKIE AGE: This is the duration of session cookies in seconds. The
default value is 1209600 (2 weeks).

SESSION COOKIE DOMAIN: This domain is used for session cookies. Set this to
.mydomain.com to enable cross-domain cookies.

SESSION_COOKIE_SECURE: This is a boolean indicating that the cookie should
only be sent if the connection is an HTTPS connection.

SESSION_EXPIRE AT BROWSER_CLOSE: This is a boolean indicating that the
session has to expire when the browser is closed.

SESSION SAVE EVERY REQUEST: This is a boolean that, if True, will save
the session to the database on every request. The session expiration is also
updated each time.

You can see all the session settings at https://docs.djangoproject.com/en/1.8/
ref/settings/#sessions.

[219]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/settings/#sessions
https://docs.djangoproject.com/en/1.8/ref/settings/#sessions
http://www.it-ebooks.info/

Building an Online Shop

Session expiration

You can choose to use browser-length sessions or persistent sessions using the
SESSION_EXPIRE_ AT BROWSER_CLOSE setting. This is set to False by default,
forcing the session duration to the value stored in the SESSION_COOKIE_AGE setting.
If you set SESSION_EXPIRE_ AT BROWSER_ CLOSE to True, the session will expire
when the user closes the browser, and the SESSION_COOKIE_ AGE setting will not
have any effect.

You can use the set_expiry () method of request . session to overwrite the
duration of the current session.

Storing shopping carts in sessions

We need to create a simple structure that can be serialized to JSON for storing
cart items in a session. The cart has to include the following data for each item
contained in it:

* idof a Product instance

* The quantity selected for this product

* The unit price for this product
Since product prices may vary, we take the approach of storing the product's price
along with the product itself when it's added to the cart. By doing so, we keep the

same price that users saw when they added the item to the cart, even if the product's
price is changed afterward.

Now, you have to manage creating carts and associate them with sessions. The
shopping cart has to work as follows:

* When a cart is needed, we check if a custom session key is set. If no cart is set
in the session, we create a new cart and save it in the cart session key.

* For successive requests, we perform the same check and get the cart items
from the cart session key. We retrieve the cart items from the session and
their related Product objects from the database.

Edit the settings.py file of your project and add the following setting to it:

CART SESSION _ID = 'cart'

This is the key that we are going to use to store the cart in the user session. Since
Django sessions are per-visitor, we can use the same cart session key for all sessions.

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Let's create an application for managing shopping carts. Open the terminal and
create a new application, running the following command from the project directory:

python manage.py startapp cart

Then, edit the settings.py file of your project and add 'cart' to the INSTALLED
APPS setting as follows:

INSTALLED APPS = (
#
'shop',
'cart',

)

Create a new file inside the cart application directory and name it cart.py. Add the
following code to it:

from decimal import Decimal
from django.conf import settings
from shop.models import Product

class Cart (object) :

def init (self, request):

nnn

Initialize the cart.
wn
self.session = request.session
cart = self.session.get (settings.CART SESSION_ID)
if not cart:
save an empty cart in the session
cart = self.session[settings.CART SESSION ID] = {}
self.cart = cart

This is the cart class that will allow us to manage the shopping cart. We require

the cart to be initialized with a request object. We store the current session using
self.session = request.session to make it accessible to the other methods

of the cart class. First, we try to get the cart from the current session using self.
session.get (settings.CART_SESSION_ID). If no cart is present in the session, we
set an empty cart just by setting an empty dictionary in the session. We expect our
cart dictionary to use product IDs as keys and a dictionary with quantity and price as
value for each key. By doing so, we can guarantee that a product is not added more
than once in the cart; we can also simplify the way to access any cart item data.

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Let's create a method to add products to the cart or update their quantity. Add the
following add () and save () methods to the cart class:

def add(self, product, quantity=1, update quantity=False):

nnn

Add a product to the cart or update its quantity.
wn
product id = str(product.id)
if product_id not in self.cart:

self.cart [product_id] = {'quantity': 0,

'price': str(product.price)}

if update quantity:

self.cart [product_id] ['quantity'] = quantity
else:

self.cart [product id] ['quantity'] += quantity
self.save ()

def save(self):
update the session cart
self.session[settings.CART SESSION ID] = self.cart
mark the session as "modified" to make sure it is saved
self.session.modified = True

The add () method takes the following parameters:

* product: The Product instance to add or update in the cart.
* gquantity: An optional integer for product quantity. This defaults to 1.

* update_guantity: This is a boolean that indicates whether the quantity
needs to be updated with the given quantity (True), or the new quantity
has to be added to the existing quantity (False).

We use the product id as a key in the cart contents dictionary. We convert the
product id into a string because Django uses JSON to serialize session data, and
JSON only allows string key names. The product id is the key and the value that we
persist is a dictionary with quantity and price for the product. The product's price
is converted from Decimal into string in order to serialize it. Finally, we call the
save () method to save the cart in the session.

The save () method saves all the changes to the cart in the session and marks the
session as modified using session.modified = True. This tells Django that the
session has changed and needs to be saved.

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We also need a method for removing products from the cart. Add the following
method to the cart class:

def remove (self, product) :

nnn

Remove a product from the cart.
wan
product_id = str(product.id)
if product_id in self.cart:
del self.cart [product_ id]
self.save()

The remove () method removes a given product from the cart dictionary and calls
the save () method to update the cart in the session.

We will have to iterate through the items contained in the cart and access the related
Product instances. To do so, you can definean __iter__ () method in your class.
Add the following method to the cart class:

def iter (self):
Iterate over the items in the cart and get the products
from the database.
product ids = self.cart.keys()
get the product objects and add them to the cart
products = Product.objects.filter(id in=product ids)
for product in products:

self.cart[str(product.id)] ['product'] = product

for item in self.cart.values():
item['price'] = Decimal (item['price'])
item['total price'] = item['price']l * item['quantity']

yield item

Inthe iter () method, we retrieve the Product instances that are present in
the cart to include them in the cart items. Finally, we iterate over the cart items
converting the item's price back into Decimal and add a total_price attribute
to each item. Now, we can easily iterate over the items in the cart.

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

We also need a way to return the number of total items in the cart. When the len ()

function is executed on an object, Python callsits __len () method to retrieve
its length. We are going to define a custom __len__ () method to return the total
number of items stored in the cart. Add the following _ len_ () method to the
Cart class:

def len (self):

nnn

Count all items in the cart.

nnn

return sum(item['quantity'] for item in self.cart.values())
We return the sum of the quantities of all the cart items.

Add the following method to calculate the total cost for the items in the cart:

def get total price(self):

return sum(Decimal (item['price']) * item['quantity'] for item in
self.cart.values())

And finally, add a method to clear the cart session:

def clear (self):
remove cart from session
del self.session[settings.CART_SESSION_ID]
self.session.modified = True

Our cart class is now ready to manage shopping carts.

Creating shopping cart views
Now that we have a cart class to manage the cart, we need to create the views
to add, update, or remove items from it. We need to create the following views:
* A view to add or update items in a cart, which can handle current and new
quantities
* A view to remove items from the cart

* A view to display cart items and totals

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Adding items to the cart

In order to add items to the cart, we need a form that allows the user to select a
quantity. Create a forms . py file inside the cart application directory and add the
following code to it:

from django import forms
PRODUCT QUANTITY CHOICES = [(i, str(i)) for i in range(l, 21)]

class CartAddProductForm(forms.Form) :
quantity = forms.TypedChoiceField (
choices=PRODUCT QUANTITY CHOICES,
coerce=int)
update = forms.BooleanField(required=False,
initial=False,
widget=forms.HiddenInput)

We will use this form to add products to the cart. Our CartAddProductForm class
contains the following two fields:

* quantity: This allows the user to select a quantity between 1-20. We use
a TypedChoiceField field with coerce=int to convert the input into
an integer.

* update: This allows you to indicate whether the quantity has to be added
to any existing quantity in the cart for this product (False), or if the existing
quantity has to be updated with the given quantity (True). We use a
HiddenInput widget for this field, since we don't want to display it
to the user.

Let's create a view for adding items to the cart. Edit the views.py file of the cart
application and add the following code to it:

from django.shortcuts import render, redirect, get object or_ 404
from django.views.decorators.http import require POST

from shop.models import Product

from .cart import Cart

from .forms import CartAddProductForm

@require_ POST

def cart add(request, product id):
cart = Cart (request)
product = get object or 404 (Product, id=product id)
form = CartAddProductForm(request.POST)

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

if form.is valid() :
cd = form.cleaned data
cart.add (product=product,
quantity=cd['quantity'],
update quantity=cd['update'])
return redirect ('cart:cart detail')

This is the view for adding products to the cart or updating quantities for existing
products. We use the require POST decorator to allow only POST requests, since
this view is going to change data. The view receives the product 1D as parameter. We
retrieve the Product instance with the given ID and validate cartAddProductForm.
If the form is valid, we will either add or update the product in the cart. The view
redirects to the cart_detail URL that will display the contents of the cart. We are
going to create the cart_detail view shortly.

We also need a view to remove items from the cart. Add the following code to the
views.py file of the cart application:

def cart remove (request, product id):
cart = Cart (request)
product = get object or 404 (Product, id=product_id)
cart.remove (product)
return redirect ('cart:cart detail')

The cart_remove view receives the product id as parameter. We retrieve the
Product instance with the given id and remove the product from the cart.
Then, we redirect the user to the cart detail URL.

Finally, we need a view to display the cart and its items. Add the following view
to the views.py file:

def cart detail (request) :
cart = Cart (request)
return render (request, 'cart/detail.html', {’cart': cart})

The cart_detail view gets the current cart to display it.

We have created views to add items to the cart, update quantities, remove items
from the cart, and display the cart. Let's add URL patterns for these views. Create
a new file inside the cart application directory and name it urls.py. Add the
following URLs to it:

from django.conf.urls import url
from . import views

urlpatterns = [
url (r'*$', views.cart detail, name='cart detail'),

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

url (r'”*add/ (?P<product_id>\d+)/s$',
views.cart add,
name='cart add'),

url (r'“remove/ (?P<product_id>\d+)/$",
views.cart remove,
name='cart_remove'),

]

Edit the main urls. py file of myshop and add the following URL pattern to include
the cart URLs:

urlpatterns = [
url (r'”*admin/', include(admin.site.urls)),
url(r'“cart/', include('cart.urls', namespace='cart')),
url(r'”', include('shop.urls', namespace='shop')),

]

Make sure that you include this URL pattern before the shop .urls pattern, since it's
more restrictive than the latter.

Building a template to display the cart

The cart_add and cart_remove views don't render any templates, but we need
to create a template for the cart_detail view to display cart items and totals.

Create the following file structure inside the cart application directory:

templates/
cart/
detail.html

Edit the cart/detail.html template and add the following code to it:

{
{

extends "shop/base.html" %}

)

load static %}

o° o°

{% block title %}
Your shopping cart
{% endblock %}

{% block content %}
<hl>Your shopping cart</hl>
<table class="cart">
<thead>
<tr>
<th>Image</th>

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

<th>Product</th>
<th>Quantity</th>
<th>Remove</th>
<th>Unit price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
{$ for item in cart %}
{% with product=item.product %}
<tr>
<td>

))

<img src="{% if product.image %}{{ product.image.url

)))

}1}1{% else %}{% static "img/no_image.png" %}{% endif %}">

</td>
<td>{{ product.name }}</td>
<td>{{ item.quantity }}</td>
<tds><a href="{% url "cart:cart remove" product.id
%$}">Remove</td>
<td class="num">${{ item.price }}</td>
<td class="num">${{ item.total price }}</td>
</tr>
{% endwith %}
{% endfor %}
<tr class="total">
<td>Total</td>
<td colspan="4"></td>
<td class="num">${{ cart.get total price }}</td>
</tr>
</tbody>
</table>
<p class="text-right">
<a href="{% url "shop:product list" %}" class="button
light">Continue shopping
Checkout
</p>
{% endblock %}

This is the template that is used to display the cart contents. It contains a table with
the items stored in the current cart. We allow users to change the quantity for the
selected products using a form that is posted to the cart_add view. We also allow
users to remove items from the cart by providing a Remove link for each of them.

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Adding products to the cart

Now, we need to add an Add to cart button to the product detail page. Edit
the views.py file of the shop application, and add CartAddProductForm to
the product detail view like this:

from cart.forms import CartAddProductForm

def product_ detail (request, id, slug):
product = get object or 404 (Product, id=id,
slug=slug,
available=True)
cart_product form = CartAddProductForm()
return render (request,
'shop/product/detail .html"',
{'product': product,
‘cart product form': cart product form})

Edit the shop/product/detail.html template of the shop application, and add the
following form the product's price like this:

<p class="price">${{ product.price }}</p>

<form action="{% url "cart:cart add" product.id %}" method="post">
{{ cart_product form }}
{% csrf token %}
<input type="submit" value="Add to cart">

</form>

Make sure the development server is running with the command python manage.py
runserver. Now, open http://127.0.0.1:8000/ in your browser and navigate to
a product detail page. It now contains a form to choose a quantity before adding the
product to the cart. The page will look like this:

My shop

Your cart is empty.

Green tea
Tea

$30.00

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Choose a quantity and click on the Add to cart button. The form is submitted to
the cart_add view via POST. The view adds the product to the cart in the session,
including its current price and the selected quantity. Then, it redirects the user

to the cart detail page, which will look like the following screenshot:

My shop

Your cart is empty.

Your shopping cart

Image Product Quantity Remove Unit price Price

Green tea 2 Remove $30.00 $60.00

$60.00

Continue shopping m

Updating product quantities in the cart

When users see the cart, they might want to change product quantities before placing
an order. We are going to allow users to change quantities from the cart detail page.

Edit the views.py file of the cart application and change the cart_detail view
to this:

def cart detail (request) :
cart = Cart (request)
for item in cart:
item['update quantity form'] = CartAddProductForm(
initial={'quantity': item['quantity'l],
'update': True})
return render (request, 'cart/detail.html', {'cart': cart})

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We create an instance of cartAddProductForm for each item in the cart to allow
changing product quantities. We initialize the form with the current item quantity
and set the update field to True so that when we submit the form to the cart add
view, the current quantity is replaced with the new one.

Now, edit the cart/detail.html template of the cart application and find
following line:

<td>{{ item.quantity }}</td>

Replace the previous line with the following code:

<td>

<form action="{% url "cart:cart add" product.id %}" method="post"s>
{{ item.update gquantity form.quantity }}
{{ item.update guantity form.update }}
<input type="submit" value="Update">
{% csrf token %}
</form>
</td>

Open http://127.0.0.1:8000/cart/ in your browser. You will see a form to edit
the quantity for each cart item, shown as follows:

My shop

Your cart is empty.

Your shopping cart

Image Product Quantity Remove Unit price Price

a Green tea : B Remaove $30.00 $60.00

$60.00

Continue shopping m

Change the quantity of an item and click on the Update button to test the
new functionality.

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Creating a context processor for the current
cart

You might have noticed that we are still showing the message Your cart is empty in
the header of the site. When we start adding items to the cart, we will see the total
number of items in the cart and the total cost instead. Since this is something that
should be displayed in all the pages, we will build a context processor to include the
current cart in the request context, regardless of the view that has been processed.

Context processors

A context processor is a Python function that takes the request object as an
argument and returns a dictionary that gets added to the request context. They
come in handy when you need to make something available to all templates.

By default, when you create a new project using the startproject command,
your project will contain the following template context processors, in the
context_processors option inside the TEMPLATES setting:

* django.template.context processors.debug: This sets the Boolean
debug and sql_queries variables in the context representing the list
of SQL queries executed in the request

* django.template.context processors.request: This sets the request
variable in the context

* django.contrib.auth.context processors.auth: This sets the user
variable in the request

* django.contrib.messages.context processors.messages: Lhis sets
a messages variable in the context containing all messages that have been
sent using the messages framework.

Django also enables django.template.context_processors.csrf to avoid
cross-site request forgery attacks. This context processor is not present in the
settings, but it is always enabled and cannot be turned off for security reasons.

You can see the list of all built-in context processors at https://docs.
djangoproject.com/en/1.8/ref/templates/api/#built-in-template-
context-processors.

[232]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/templates/api/#built-in-template-context-processors
https://docs.djangoproject.com/en/1.8/ref/templates/api/#built-in-template-context-processors
https://docs.djangoproject.com/en/1.8/ref/templates/api/#built-in-template-context-processors
http://www.it-ebooks.info/

Chapter 7

Setting the cart into the request context

Let's create a context processor to set the current cart into the request context for
templates. We will be able to access this cart in any template.

Create a new file into the cart application directory and name it context_
processors.py. Context processors can reside anywhere in your code, but creating
them here will keep your code well organized. Add the following code to the file:

from .cart import Cart

def cart (request) :
return {'cart': Cart(request)}

As you can see, a context processor is a function that receives the request object

as parameter, and returns a dictionary of objects that will be available to all the
templates rendered using RequestContext. In our context processor, we instantiate
the cart using the request object and make it available for the templates as a variable
named cart.

Edit the settings.py file of your project and add 'cart.context processors.
cart' to the context_processors option inside the TEMPLATES setting. The setting
will look as follows after the change:

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',

'DIRS': [],

'APP_DIRS': True,

"OPTIONS':

'context processors': [

'django.template.context processors.debug',
'django.template.context processors.request',
'django.contrib.auth.context processors.auth',
'django.contrib.messages.context processors.messages',
'cart.context processors.cart',

Your context processor will now be executed every time a template is rendered
using Django's RequestContext. The cart variable will be set in the context for
your templates.

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Context processors are executed in all the requests that use
@’@‘\ RequestContext. You might want to create a custom template tag
instead of a context processor, if you are going to access the database.

Now, edit the shop/base.html template of the shop application and find the:

<div class="cart">
Your cart is empty.

</div>
Replace the previous lines with the following code:

<div class="cart">
{% with total items=cart|length %}
{$ if cart|length > 0 %}
Your cart:

{{ total items }} item{{ total items|pluralize }}
${{ cart.get total price }}

{% else %}
Your cart is empty.
{%$ endif %}
{$ endwith %}
</divs>

Reload your server using the command python manage.py runserver. Open
http://127.0.0.1:8000/ in your browser and add some products to the cart.
In the header of the website, you can see the total number of items in the current

and the total cost like this:

My shop

Your cart: 2 items, $60.00

Registering customer orders

When a shopping cart is checked out, you need to save an order into the database.
Orders will contain information about customers and the products they are buying.

Create a new application for managing customer orders using the following command:

python manage.py startapp orders

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Edit the settings.py file of your project and add 'orders' to the INSTALLED APPS
setting as follows:

INSTALLED APPS = (
#
'orders',

)

You have activated the new application.

Creating order models

You will need a model to store the order details, and a second model to store items
bought, including their price and quantity. Edit the models.py file of the orders
application and add the following code to it:

from django.db import models
from shop.models import Product

class Order (models.Model) :
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
email = models.EmailField()
address = models.CharField(max length=250)
postal_code = models.CharField(max length=20)
city = models.CharField(max length=100)
created = models.DateTimeField (auto now_add=True)
updated = models.DateTimeField(auto_now=True)
paid = models.BooleanField(default=False)

class Meta:
ordering = ('-created',)

def str (self):
return 'Order {}'.format (self.id)

def get total cost (self):
return sum(item.get cost() for item in self.items.all())

class OrderItem(models.Model) :
order = models.ForeignKey (Order, related name='items')
product = models.ForeignKey (Product,
related name='order items')

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

price = models.DecimalField(max digits=10, decimal places=2)
quantity = models.PositivelIntegerField (default=1)

def str (self):
return '{}'.format (self.id)

def get cost (self):
return self.price * self.quantity

The order model contains several fields for customer information and a paid
boolean field, which defaults to False. Later on, we are going to use this field to
differentiate between paid and unpaid orders. We also define a get_total_cost ()
method to obtain the total cost of the items bought in this order.

The orderItem model allows us to store the product, quantity, and price paid for
each item. We include get _cost () to return the cost of the item.

Run the next command to create initial migrations for the orders application:

python manage.py makemigrations

You will see the following output:

Migrations for 'orders':
0001 initial.py:
- Create model Order
- Create model OrderItem

Run the following command to apply the new migration:
python manage.py migrate

Your order models are now synced to the database.

Including order models in an administration
site

Let's add the order models to the administration site. Edit the admin . py file of the
orders application to make it look like this:

from django.contrib import admin
from .models import Order, OrderItem

class OrderItemInline (admin.TabularInline) :
model = OrderItem
raw_id fields = ['product']

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

class OrderAdmin (admin.ModelAdmin) :
list display = ['id', 'first name',6 'last name', 'email',
'address', 'postal code', 'city', 'paid',
'created', 'updated']
list filter = ['paid', 'created',K ‘'updated']
inlines = [OrderItemInline]

admin.site.register (Order, OrderAdmin)

We use a ModelInline for the OrderItem model to include it as an inline in the
OrderAdmin class. An inline allows you to include a model for appearing on the
same edit page as the parent model.

Run the development server with the command python manage.py runserver, and
then open http://127.0.0.1:8000/admin/orders/order/add/ in your browser.
You will see the following page:

Django administration Welcome, admin. View site / Change password / Log out
Home » Orders » Orders » Add order
Add order
First name:
Last name:
Email:
Address:
Postal code:
City:
] Paid
Product Price Quantity | Delete?
a : 1
Q : 1
Q : 1
ok Add another Order item
Sarver ;nd ?‘f“}' ago(helr'r Sar\.rei ;nd ;qntingg gdi}ing

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Creating customer orders

We need to use the order models that we just created to persist the items contained
in the shopping cart when the user finally wishes to place an order. The functionality
for creating a new order will work as follows:

1. We present users an order form to fill in their data.

2. We create a new Order instance with the data entered by users, and then we
create an associated OrderItem instance for each item in the cart.

3. We clear all the cart contents and redirect users to a success page.

First, we need a form to enter order details. Create a new file inside the orders
application directory and name it forms.py. Add the following code to it:

from django import forms
from .models import Order

class OrderCreateForm(forms.ModelForm) :
class Meta:
model = Order
fields = ['first name', 'last _name',6 'email',6 ‘'address',
'postal code', 'city']

This is the form that we are going to use for creating new order objects. Now, we
need a view to handle the form and create a new order. Edit the views . py file of
the orders application and add the following code to it:

from django.shortcuts import render
from .models import OrderItem

from .forms import OrderCreateForm
from cart.cart import Cart

def order create (request):
cart = Cart (request)
if request.method == 'POST':
form = OrderCreateForm(request.POST)
if form.is valid() :
order = form.save ()
for item in cart:

OrderItem.objects.create (order=order,
product=item['product'],
price=item['price'],
quantity=item['quantity'])

clear the cart
cart.clear ()

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

return render (request,
'orders/order/created.html’,
{'order': order})
else:
form = OrderCreateForm()
return render (request,
'orders/order/create.html’',
{rcart': cart, 'form': form})

In the order create view, we will obtain the current cart from the session with
cart = Cart (request). Depending on the request method, we will perform the
following tasks:

* The GET request: This instantiates the OrderCreateForm form and renders
the template orders/order/create.html.

* The POST request: This validates the data that get posted. If the data is
valid, we will use order = form.save () to create a new order instance. We
will then save it to the database, and then store it in the order variable. After
creating the order, we will iterate over the cart items and create OrderItem
for each of them. Finally, we will clear the cart contents.

Now, create a new file inside the orders application directory and name it urls.py.
Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
url (r'“create/$"',
views.order create,
name='order_create’),

]

This is the URL pattern for the order create view. Edit the urls.py file of myshop
and include the following pattern. Remember to place it before the shop.urls pattern:

url (r'"orders/', include('orders.urls', namespace='orders')),

Edit the cart/detail.html template of the cart application and replace this line:
Checkout

Replace this with the following ones:

<a href="{% url "orders:order create" %}" class="button"s
Checkout

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Users can now navigate from the cart detail page to the order form. We still need
to define templates for placing orders. Create the following file structure inside
the orders application directory:

templates/
orders/
order/
create.html
created.html

Edit the orders/order/create.html template and include the following code:

{% extends "shop/base.html" %}

{% block title %)}
Checkout
{% endblock %}

{% block content %}
<hl>Checkout</hl>

<div class="order-info">
<h3>Your order</h3>

{$ for item in cart %}
<lis
{{ item.quantity }}x {{ item.product.name }}
${{ item.total price }}

</1lis
{% endfor %}

<p>Total: ${{ cart.get total price }}</p>
</div>
<form action="." method="post" class="order-form">

{{ form.as p }}
<p><input type="submit" value="Place order"></p>

{% csrf _token %}
</form>

{% endblock %}

This template displays the cart items including totals and the form to place an order.

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Edit the orders/order/created.html template and add the following code:

{% extends "shop/base.html" %}

{% block title %}
Thank you
{% endblock %}

{% block content %}

<hl>Thank you</hl>

<p>Your order has been successfully completed. Your order number is
{{ order.id }}.</p>
{% endblock %}

This is the template that we render when the order is successfully created. Start the
web development server to track new files. Open http://127.0.0.1:8000/ in your
browser, add a couple of products to the cart, and continue to checkout the page.
You will see a page like the following one:

My shop

Your cart: 3 items, $105.50

Checkout

First name:
Your order
Antonio
« 2x Green tea $60.00
Last name: + 1xRedtea $45.50

Melé
Total: $§105.50

Email:

Address:

Postal code:

City:

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

Fill in the form with the valid data and click on Place order button. The order will be
created and you will see a success page like this:

My shop

Your cart: 3 items, $105.50

Thank you

Your order has been successfully completed. Your order number is 1.

Launching asynchronous tasks with
Celery

Everything you execute in a view will affect response time. In many situations

you might want to return a response to the user as quickly as possible and let the
server execute some process asynchronously. This is especially relevant for time-
consuming processes or processes subject to failure, which might need a retry policy.
For example, a video sharing platform allows users to upload videos but requires

a long time to transcode uploaded videos. The site might return a response to the
user, telling him the transcoding will start soon, and start transcoding the video
asynchronously. Another example is sending e-mails to users. If your site sends
e-mail notifications from a view, the SMTP connection might fail or slow down the
response. Launching asynchronous tasks is essential to avoid blocking execution.

Celery is a distributed task queue that can process vast amounts of messages. It does
real-time processing, but also supports task scheduling. Using Celery, not only can
you create asynchronous tasks easily and let them be executed by workers as soon as
possible, but you can also schedule them to run at a specific time.

You can find the Celery documentation at http://celery.readthedocs.org/en/
latest/.

Installing Celery

Let's install Celery and integrate it into our project. Install Celery via pip using the
following command:

pip install celery==3.1.18

[242]

www.it-ebooks.info

http://celery.readthedocs.org/en/latest/
http://celery.readthedocs.org/en/latest/
http://www.it-ebooks.info/

Chapter 7

Celery requires a message broker in order to handle requests from an external
source. The broker takes care of sending messages to Celery workers, which
process tasks as they receive them. Let's install a message broker.

Installing RabbitMQ

There are several options to choose as a message broker for Celery, including
key-value stores such as Redis or an actual message system such as RabbitMQ. We will
configure Celery with RabbitMQ), since it's a recommended message worker for Celery.

If you are using Linux, you can install RabbitMQ from the shell using the following
command:

apt-get install rabbitmg

If you need to install RabbitMQ on Mac OS X or Windows, you can find standalone
versions at https://www.rabbitmg.com/download.html.

After installing it, launch RabbitMQ using the following command from the shell:
rabbitmg-server
You will see an output that ends with the following line:

Starting broker... completed with 10 plugins.

RabbitMQ is running and ready to receive messages.

Adding Celery to your project

You have to provide a configuration for the Celery instance. Create a new file next
to the settings.py file of myshop and name it celery.py. This file will contain the
Celery configuration for your project. Add the following code to it:

import os
from celery import Celery
from django.conf import settings

set the default Django settings module for the 'celery' program.
os.environ.setdefault ('DJANGO SETTINGS MODULE', 'myshop.settings')

app = Celery('myshop')

app.config from object ('django.conf:settings')
app.autodiscover tasks(lambda: settings.INSTALLED APPS)

[243]

www.it-ebooks.info

https://www.rabbitmq.com/download.html
http://www.it-ebooks.info/

Building an Online Shop

In this code we set the DJANGO_SETTINGS_MODULE variable for the Celery
command-line program. Then we create an instance of our application with app

= Celery('myshop'). We load any custom configuration from our project settings
using the config_from_object() method. Finally we tell Celery to auto-discover
asynchronous tasks for the applications listed in the INSTALLED_APPS setting.
Celery will look for a tasks.py file in each application directory to load asynchronous
tasks defined in it.

You need to import the celery module in the __init__.py file of your project to
make sure it is loaded when Django starts. Edit the myshop/__init__ .py file and
add the following code to it:

import celery
from .celery import app as celery app

Now, you can start programming asynchronous tasks for your applications.

. The CELERY ALWAYS EAGER setting allows you to execute tasks locally
% in a synchronous way instead of sending them to the queue. This is useful
& for running unit tests or the project in your local environment without
running Celery.

Adding asynchronous tasks to your
application

We are going to create an asynchronous task to send an email notification to our
users when they place an order.

The convention is to include asynchronous tasks for your application in a tasks
module within your application directory. Create a new file inside the orders
application and name it tasks.py. This is the place where Celery will look for
asynchronous tasks. Add the following code to it:

from celery import task
from django.core.mail import send mail
from .models import Order

@task

def order created(order id):
nmnn
Task to send an e-mail notification when an order is
successfully created.

nnn

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

order = Order.objects.get (id=order id)

subject = 'Order nr. {}'.format (order.id)
message = 'Dear {},\n\nYou have successfully placed an order.)\
Your order id is {}.'.format(order.first name,
order.id)
mail sent = send mail (subject,
message,

'admin@myshop.com',
[order.emaill)
return mail sent

We define the order created task by using the task decorator. As you can see, a
Celery task is just a Python function decorated with task. Our task function receives
an order_id parameter. It's always recommended to pass only IDS to task functions
and lookup objects when the task is executed. We use the send_mail () function
provided by Django to send an email notification to the user that placed the order.

If you don't want to set up email settings, you can tell Django to write emails to the
console by adding the following setting to the settings.py file:

EMAIL BACKEND = 'django.core.mail.backends.console.EmailBackend'

. Use asynchronous tasks not only for time-consuming processes,
& but also for other processes that are subject to failure, which do
e not take so much time to be executed, but which are subject to

connection failures or require a retry policy.

Now we have to add the task to our order create view. Open the views.py file of
the orders application and import the task as follows:

from .tasks import order created
Then, call the order_created asynchronous task after clearing the cart as follows:

clear the cart

cart.clear ()

launch asynchronous task
order created.delay (order.id)

We call the delay () method of the task to execute it asynchronously. The task will
be added to the queue and will be executed by a worker as soon as possible.

Open another shell and start the celery worker, using the following command:

celery -A myshop worker -1 info

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Online Shop

The Celery worker is now running and ready to process tasks. Make sure the Django
development server is also running. Open http://127.0.0.1:8000/ in your
browser, add some products to your shopping cart, and complete an order. In the
shell, you started the Celery worker and you will see an output similar to this one:

[2015-09-14 19:43:47,526: INFO/MainProcess] Received task: orders.
tasks.order created[933e383c-095e-4cbd-b909-70c07e6a2ddf]

[2015-09-14 19:43:50,851: INFO/MainProcess] Task orders.tasks.
order created[933e383c-095e-4cbd-b909-70c07e6a2ddf] succeeded in
3.318835098994896s: 1

The task has been executed and you will receive an email notification for your order.

Monitoring Celery

You might want to monitor the asynchronous tasks that are executed. Flower is a
web-based tool for monitoring Celery. You can install Flower using the command
pip install flower

Once installed, you can launch Flower running the following command from your
project directory:

celery -A myshop flower

Open http://localhost:5555/dashboard in your browser. You will be able to see
the active Celery workers and asynchronous tasks' statistics:

Active: 0 Processed: 1 Failed: 0 Succeeded: 1 Retried: 0
Shut Down
Worker Name Status Active Processed Failed Succeeded Retried Load Average
celery@MacBook-Air-de-Antonic.local | Oniine IR 1 0 1 0 2.85,3.64, 3.28

You can find documentation for Flower at http://flower.readthedocs.org/en/
latest/.

[246]

www.it-ebooks.info

http://flower.readthedocs.org/en/latest/
http://flower.readthedocs.org/en/latest/
http://www.it-ebooks.info/

Chapter 7

Summary

In this chapter, you created a basic shop application. You created a product catalog
and built a shopping cart using sessions. You implemented a custom context
processor to make the cart available to your templates and created a form for placing
orders. You also learned how to launch asynchronous tasks with Celery.

In the next chapter, you will learn to integrate a payment gateway into your shop,
add custom actions to the administration site, export data as CSV, and generate PDF
files dynamically.

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments
and Orders

In the previous chapter, you created a basic on-line shop with a product catalog and
ordering system. You also learned how to launch asynchronous tasks with Celery.
In this chapter, you will learn how to integrate a payment gateway into your site.
You will also extend the administration site to manage orders and export them to
different formats.

In this chapter, we will cover how to:

* Integrate a payment gateway into your project
* Manage payment notifications

* Export orders to CSV files

* Create custom views for the administration site

* Generate PDF invoices dynamically

Integrating a payment gateway

A payment gateway allows you to process payments online. Using a payment
gateway, you can manage customer's orders and delegate payment processing
through a reliable, secure third party. This means you don't have to worry about
storing credit cards in your own system.

There are many payment gateway providers to choose from. We are going to
integrate PayPal, which is one of the most popular payment gateways.

[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

PayPal offers several methods to integrate its gateway into your site. The standard
integration consists of a Buy now button, which you probably have seen on other
websites. The button redirects buyers to PayPal to process the payment. We are
going to integrate PayPal Payments Standard including a custom Buy now button in
our site. PayPal will process the payment and will send a notification to our server
indicating the payment status.

Creating a PayPal account

You need to have a PayPal Business account to integrate the payment gateway into
your site. If you don't own a PayPal account yet, sign up at https://www.paypal.

com/signup/account. Make sure that you choose a Business Account and sign up
to the PayPal Payments Standard solution, as shown in the following screenshot:

PayPal Payments Standard
$0/month

Easily accept all forms of payment:
+/ Accept credit cards and PayPal on your site

+/ Swipe cards in your store and on the go
+/ Create and email invoices for fast payment

Select Standard

Learn more

Fill in your details in the sign up form and complete the sign up process. PayPal will
send you an e-mail to verify your account.

Installing django-paypal

Django-paypal is a third-party Django application that simplifies integrating

PayPal into Django projects. We are going to use it to integrate the PayPal Payments
Standard solution in our shop. You can find django-paypal's documentation

at http://django-paypal.readthedocs.org/.

Install django-paypal from the shell with the following command:

pip install django-paypal==0.2.5

[250]

www.it-ebooks.info

https://www.paypal.com/signup/account
https://www.paypal.com/signup/account
http://django-paypal.readthedocs.org/
http://www.it-ebooks.info/

Chapter 8

Edit the settings.py file of your project and add 'paypal.standard.ipn' to the
INSTALLED_APPS setting as follows:

INSTALLED APPS = (
#
'paypal.standard.ipn’',
)

This is the application provided by django-paypal to integrate PayPal Payments
Standard with Instant Payment Notification (IPN). We are going to handle payment
notifications later.

Add the following settings to the settings. py file of myshop to configure
django-paypal:

django-paypal settings
PAYPAL RECEIVER EMAIL = 'mypaypalemail@emyshop.com'
PAYPAL TEST = True

These settings are as follows:

* PAYPAL RECEIVER_EMAIL: The e-mail of your PayPal account. Replace
mypaypalemailemyshop.com with the e-mail you used to create your
PayPal account.

* PAYPAL TEST: A boolean indicating whether the PayPal's sandbox
environment should be used to process payments. The sandbox allows you
to test your PayPal integration before moving to a production environment.

Open the shell and run the following command to sync models of django-paypal
with the database:

python manage.py migrate
You should see an output that ends in a similar way to this:

Running migrations:
Rendering model states... DONE
Applying ipn.0001 initial... OK
Applying ipn.0002 paypalipn mp id... OK
Applying ipn.0003 auto 20141117 1647... OK

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

The models of django-paypal are now synced with the database. You also need to
add the URL patterns of django-paypal to your project. Edit the main urls.py file
located in the myshop directory and add the following URL pattern. Remember to
place it before the shop.urls pattern to avoid wrong pattern match:

url (r'“paypal/', include ('paypal.standard.ipn.urls')),

Let's add the payment gateway to the checkout process.

Adding the payment gateway

The checkout process should work as follows:

1. Users add items to their shopping cart.
Users check out their shopping cart.
Users are redirected to PayPal for payment.

PayPal sends a payment notification to our site.

AR

PayPal redirects users back to our website.

Create a new application in your project using the following command:

python manage.py startapp payment

We are going to use this application to manage the checkout process and
user payments.

Edit the settings.py file of your project and add 'payment ' to the INSTALLED_ APPS
setting as follows:

INSTALLED APPS = (
...
'paypal.standard.ipn',
'payment'’',

)

The payment application is now active in the project. Edit the views.py file of the
orders application and make sure to include the following imports:

from django.shortcuts import render, redirect

from django.core.urlresolvers import reverse

Replace the following lines of the order_create view:

launch asynchronous task
order created.delay(order.id)
return render (request, 'orders/order/created.html', locals())

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

...with the following ones:

launch asynchronous task

order created.delay(order.id) # set the order in the session

request.session['order id'] = order.id # redirect to the payment

return redirect (reverse('payment:process'))

After successfully creating an order, we set the order ID in the current session using
the order_id session key. Then, we redirect the user to the payment : process URL,

which we are going to create next.

Edit the views.py file of the payment application and add the following code to it:

from decimal import Decimal

from django.conf import settings

from django.core.urlresolvers import reverse

from django.shortcuts import render, get object or 404
from paypal.standard.forms import PayPalPaymentsForm
from orders.models import Order

def payment process(request) :
order id = request.session.get ('order id')
order = get object or 404 (Order, id=order id)
host = request.get host()

paypal dict = {
'business': settings.PAYPAL RECEIVER_ EMAIL,

Decimal ('.01')),

'amount': '%.2f' % order.get total cost().quantize(
'item name': 'Order {}'.format (order.id),
'invoice': str (order.id),

'currency code': 'USD',

'notify url': 'http://{}{}'.format (host,

reverse ('paypal-ipn')),

'return url': 'http://{}{}'.format (host,

reverse ('payment :done')),

'cancel return': 'http://{}{}'.format (host,

reverse ('payment :canceled')),

}
form = PayPalPaymentsForm(initial=paypal dict)
return render (request,
'payment /process.html’',
{'order': order, 'form':form})

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

In the payment_process view, we generate a custom PayPal's Buy now button to
pay an order. First, we get the current order from the order_id session key, which
was set before by the order create view. We get the order object for the given ID
and build a new payPalPaymentsForm including the following fields:

business: The PayPal merchant account to process the payment. We use the
e-mail account defined in the PAYPAL, RECEIVER_EMAIL setting here.

amount: The total amount to charge the customer.

item_name: The name of the item being sold. We use the order ID, since the
order may contain multiple products.

invoice: The invoice ID. This id has to be unique for each payment. We use
the order ID.

currency_code: The currency for this payment. We set this to USD for
U.S. Dollar. Use the same currency as the one set in your PayPal account
(EUR for Euro).

notify url: The URL PayPal will send IPN requests to. We use the
paypal-ipn URL provided by django-paypal. The view associated to
this URL handles payment notifications and stores them in the database.

return_url: The URL to redirect the user after the payment is successful.
We use the URL payment : done, which we have to create next.

cancel_return: The URL to redirect the user if the payment was canceled or
there was some other issue. We use the URL payment : canceled, which we
also have to create next.

The pPayPalPaymentsForm will be rendered as a standard form with hidden fields,
and the user will only see the Buy now button. When users click the button, the
form will be submitted to PayPal via POST.

Let's create simple views for PayPal to redirect users when the payment has been
successful, or when it has been canceled for some reason. Add the following code
to the same views.py file:

from django.views.decorators.csrf import csrf exempt

@csrf exempt

def payment done (request) :

return render (request, 'payment/done.html')

@csrf_ exempt

def payment canceled(request) :

return render (request, 'payment/canceled.html')

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We use the csrf_exempt decorator to avoid Django expecting a CSRF token, since
PayPal can redirect the user to any of these views via POST. Create a new file inside
the payment application directory and name it urls.py. Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
url (r'“process/$', views.payment process, name='process'),
url (r'“done/$', views.payment done, name='done'),
url (r'“canceled/$', views.payment canceled, name='canceled'),

]

These are the URLs for the payment workflow. We have included the following
URL patterns:

* process: For the view that generates the PayPal form for the Buy now button
* done: For PayPal to redirect the user when the payment is successful

* canceled: For PayPal to redirect the user when the payment is canceled

Edit the main urls. py file of the myshop project and include the URL patterns for the
payment application:

url (r'“payment/', include ('payment.urls', namespace='payment')),
Remember to place it before the shop.urls pattern to avoid wrong pattern match.
Create the following file structure inside the payment application directory:

templates/
payment/
process.html
done.html

canceled.html

Edit the payment /process.html template and add the following code to it:

{% extends "shop/base.html" %}
{% block title %}Pay using PayPal{% endblock %}

{% block content %}
<hl>Pay using PayPal</hl>
{{ form.render }}

{% endblock %}

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

This is the template that renders PayPalPaymentsForm and displays the Buy
now button.

Edit the payment /done.html template and add the following code to it:

{% extends "shop/base.html" %}

{% block content %}

<hl>Your payment was successful</hl>

<p>Your payment has been successfully received.</p>
{% endblock %}

This is the template for the page that the user is redirected to after a successful
payment.

Edit the payment /canceled.html template and add the following code to it:

{% extends "shop/base.html" %}

{% block content %}
<hl>Your payment has not been processed</hl>
<p>There was a problem processing your payment.</p>
{% endblock %}

This is the template for the page that the user is redirected to when there is some
issue processing the payment or if the user canceled the payment.

Let's try the complete payment process.

Using PayPal's Sandbox

Open http://developer.paypal.comin your browser and log in with your PayPal
business account. Click the Dashboard menu item, and on the left menu click the
Accounts option under Sandbox. You should see the list of your sandbox test
accounts as follows:

[256]

www.it-ebooks.info

http://developer.paypal.com
http://www.it-ebooks.info/

Chapter 8

Paypa, DCVCI'0,0CI Documentation Dashboard Support Search Q Antonio Log Cut
Dashboard Sandbox test accounts Create Account
My apps Questions? Check out the Testing Guide. Non-US developers should read our FAQ.

My account

Total records: 2 Enter Sandbox site & show 10 per page~ « 1w
Sandbox
Accounts . Email Address Type Country Date Created
Motifications info-facilitator@zenxit.com BUSINESS ES 02 May 2015 “
Transactions info-buyer@zenxit.com PERSOMNAL ES 02 May 2015 “
IPN simulator
Webhooks simulator Delete “« 1w
Live

Transactions

Initially, you will see a business and a personal test account automatically created by
PayPal. You can create new sandbox test accounts with the Create Account button.

Click the Personal Account in the list to expand it, and then click the Profile
link. You will see information about the test account including e-mail and profile
information as follows:

Account details

Profile Funding Settings

Email 1D: info-buyer@zenxit.com
Password: Change password
Phone number: 4086551434

Account type: Personal

Status: Verified

Country: us

Notes:

In the Funding tab, you will find bank account, credit card data, and PayPal
credit balance.

The test accounts can be used to do payments in your website using the sandbox
environment. Navigate to the Profile tab and click the Change password link.
Create a custom password for this test account.

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

Open the shell and start the development server with the command python
manage.py runserver.Openhttp://127.0.0.1:8000/ in your browser, add some
products to the shopping cart, and fill in the checkout form. When you click the Place
order button, the order will be persisted to the database, the order ID will be saved
in the current session, and you will be redirected to the payment process page. This
page retrieves the order from the session and renders the PayPal form displaying a
Buy Now button, like this:

Pay using PayPal

Buy Now
EEET v 1 2 []

You can take a look at the HTML source code to see the generated form fields.

Click the Buy Now button. You will be redirected to PayPal, and you should see the
following page:

Choose a way to pay
Your order summary

Descriptions. Amaunt
- Pay with my PayPal account PayPaf
Order 33 $21.20 Log in to your account to complete the purchase
tern price: $21.20
Quantity: 1 Emall
Item total $21.20

Total $21.20 USD PayPal password

LogIn

Forgot email or password?

Create a PayPal account

And pay with your debit or credit card

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Enter the buyer test account e-mail and password and click the Log In button. You
will be redirected to the following page:

Review your information
Your order summary

Descriptions Amount Paypa’ a
Pay Now
Qrder 33 s21.20
Item price: $21.20
Cuantity: 1 Special Instructions
Item total $21.20 Note to saller: agg
Total $21.20 USD
Payment methods &7 Change
PayPal Balance $21.20 USD

PayPal gift card, certificate, reward, or other discount Redeem
Wiew PayPal policies and your payment methed rights.

Contact information
info-buyer@zenxit.com

Pay Now

Now, click the Pay Now button. Finally, you will see a confirmation page that
includes your transaction ID. The page should look like this:

Thanks for your order
You just made a payment of

$21.20 USD PayPal &

7 Antonio, you just completed your payment.

Your transaction 1D for this payment 5: 39644 325093682628

Print receipt

We'll send a confirmation email to info-buyer@zenxit.com
Paid to
info@zenxit.com Return to info@zenxit com

Go to PayPal account overview
Add funds from your bank

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

Click the Return to e-mail@domain.com button. You will be redirected to the URL
you have specified in the return_url field of PayPalPaymentsForm. That is the
URL for the payment_done view. The page will look like this:

My shop

Your cart is empty.

Your payment was successful

Your payment has been successfuly received.

The payment has been successful. However, PayPal is unable to send a payment
status notification to our application, since we are running our project on our local
host with the IP 127.0. 0.1 that is not publicly accessible. We are going to learn how
to make our site accessible form the Internet and be able to receive IPN notifications.

Getting payment notifications

IPN is a method offered by most payment gateways to track purchases real-

time. A notification is instantly sent to your server when the gateway processes a
payment. This notification contains all payment details, including the status and a
signature of the payment, which can be used to confirm the origin of the notification.
This notification is sent as a separate HTTP request to your server. In the case of
connectivity issues, PayPal will make multiple attempts to notify your site.

The django-paypal application comes with two different signals for IPNs. These
signals are:

* wvalid_ipn_ received: Triggered when the IPN message received from
PayPal is correct and is not a duplicate of an existing message in the database

* invalid_ipn_received: This signal is triggered when the IPN received from
PayPal contains invalid data or is not well formed

We are going to create a custom receiver function and connect it to the valid _ipn_
received signal to confirm payments.

Create a new file inside the payment application directory and name it signals.py.
Add the following code to it:

from django.shortcuts import get object or 404

from paypal.standard.models import ST PP_COMPLETED

from paypal.standard.ipn.signals import valid ipn received
from orders.models import Order

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

def payment notification(sender, **kwargs):

ipn obj = sender

if ipn obj.payment status == ST PP COMPLETED:
payment was successful
order = get object or 404 (Order, id=ipn obj.invoice)
mark the order as paid
order.paid = True
order.save ()

valid ipn received.connect (payment notification)

We connect the payment notification receiver function to the valid ipn
received signal provided by django-paypal. The receiver function works
as follows:

1. We receive the sender object, which is an instance of the payPalIPN model
defined in paypal.standard.ipn.models.

2. We check the payment status attribute to make sure it equals the completed
status of django-paypal. This status indicates that the payment was
successfully processed.

3. Then we use the get_object_or_ 404 () shortcut function to get the order
whose ID matches the invoice parameter we provided for PayPal.

4. We mark the order as paid by setting its paid attribute to True and saving
the order object to the database.

You have to make sure that your signals module is loaded so that the receiver
function is called when the valid ipn received signalis triggered. The best
practice is to load your signals when the application containing them is loaded. This
can be done by defining a custom application configuration, which will be explained
in the next section.

Configuring our application

You learned about application configuration in Chapter 6, Tracking User Actions. We
are going to define a custom configuration for our payment application in order to
load our signal receiver functions.

Create a new file inside the payment application directory and name it apps. py.
Add the following code to it:

from django.apps import AppConfig

class PaymentConfig (AppConfig) :
name = 'payment'

[261]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

verbose name = 'Payment'

def ready(self):
import signal handlers
import payment.signals

In this code, we define a custom AppConfig class for the payment application. The
name parameter is the name of the application and verbose_name contains the
human-readable format. We import the signals module in the ready () method

to make sure they are loaded when the application is initialized.

Editthe init_ .py file of the payment application and add the following line to it:

default app config = 'payment.apps.PaymentConfig'

This will make Django to automatically load your custom application configuration
class. You can find further information about application configuration at
https://docs.djangoproject.com/en/1.8/ref/applications/.

Testing payment notifications

Since we are working in a local environment, we need to make sure that our site
is available to PayPal. There are several applications that allow you to make your
development environment available on the Internet. We are going to use Ngrok,
which is one of the most popular ones.

Download Ngrok for your operating system from https://ngrok.com/ and run it
from the shell using the following command:

./ngrok http 8000

With this command, you are telling Ngrok to create a tunnel to your local host on
port 8000 and assign an Internet accessible hostname for it. You should see an output
similar to this one:

Tunnel Status online

Version 2.0.17/2.0.17

Web Interface http://127.0.0.1:4040

Forwarding http://1alb50f2.ngrok.io -> localhost:8000

Forwarding https://1lalb50f2.ngrok.io -> localhost:8000

Connnections ttl opn rtl rt5 P50 po0
0 0 0.00 0.00 0.00 0.00

[262]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/ref/applications/
http://www.it-ebooks.info/

Chapter 8

Ngrok tells us that our site, running locally at localhost on port 8000 using
Django's development server, is made available on the Internet through the URLs
http://1alb50f2.ngrok.io and https://1alb50£f2.ngrok.io for the HTTP and
HTTPS protocols respectively. Ngrok also provides a URL to access a web interface
that displays information about requests sent to the server.

Open the URL provided by Ngrok with your browser; for example,
http://1alb50£f2.ngrok.io. Add some products to the shopping cart, place an
order, and pay using your PayPal test account. This time, PayPal will be able to reach
the URL that is generated for the notify url field of PayPalPaymentsFormin the
payment_process view. If you take a look at the rendered form, you will see that

the HTML form field looks like this:

<input id="id notify url" name="notify url" type="hidden"
value="http://1alb50f2.ngrok.io/paypal/">

After finishing the payment process, open http://127.0.0.1:8000/admin/ipn/
paypalipn/ in your browser. You should see an IPN object for the last payment with
status Completed. This object contains all the information of the payment, which is
sent by PayPal to the URL you provided for IPN notifications. The IPN admin list
display page should look like this:

Select PayPal IPN to change
Q Search

777777777 4| Go| 0of 1selected

| | PayPal IPN Flag Flag info Invaice Custom Payment status Created at

<IPN: Transaction OTAS7586F5997012R> (-] 38 Completed May 19, 2015, 11:14 a.m.

1 PayPal IPN

You can also launch IPNs using the PayPal's IPN simulator located at https://
developer.paypal.com/developer/ipnSimulator/. The simulator allows
you to specify the fields and the type of notification to send.

In addition to PayPal Payments Standard, PayPal offers Website Payments Pro,
which is a subscription service that allows you to accept payments on your site
without redirecting the user to PayPal. You can find information about how to
integrate Website Payments Pro at http://django-paypal . readthedocs.org/en/
v0.2.5/pro/index.html.

[263]

www.it-ebooks.info

https://developer.paypal.com/developer/ipnSimulator/
https://developer.paypal.com/developer/ipnSimulator/
http://django-paypal.readthedocs.org/en/v0.2.5/pro/index.html
http://django-paypal.readthedocs.org/en/v0.2.5/pro/index.html
http://www.it-ebooks.info/

Managing Payments and Orders

Exporting orders to CSV files

Sometimes, you might want to export the information contained in a model to a file
so that you can import it in any other system. One of the most widely used formats
to export/import data is Comma-Separated Values (CSV). A CSV file is a plain text
file consisting of a number of records. There is usually one record per line, and some
delimiter character, usually a literal comma, separates the record fields. We are going
to customize the administration site to be able to export orders to CSV files.

Adding custom actions to the administration
site

Django offers you a wide range of options to customize the administration site. We
are going to modify the object list view to include a custom admin action.

An admin action works as follows: A user selects objects from the admin's object list
page with checkboxes, then selects an action to perform on all of the selected items,
and executes the action. The following screenshot shows where actions are located
in the administration site:

Select user to change
CL Search

L¥ailsyt o Delete selected users Go

Username

admin

1 user

Create custom admin actions to allow staff users to apply actions
" to multiple elements at once.

You can create a custom action by writing a regular function that receives the
following parameters:

* The current ModelAdmin being displayed

* The current request object as an Ht tpRequest instance

* A QuerySet for the the objects selected by the user

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

This function will be executed when the action is triggered from the
administration site.

We are going to create a custom admin action to download a list of orders as a CSV
file. Edit the admin.py file of the orders application and add the following code
before the 0rderadmin class:

import csv
import datetime
from django.http import HttpResponse

def export to csv(modeladmin, request, queryset):
opts = modeladmin.model. meta
response = HttpResponse (content type='text/csv')
response ['Content-Disposition'] = 'attachment; \
filename={}.csv'.format (opts.verbose name)
writer = csv.writer (response)

fields = [field for field in opts.get fields() if not field.many
to _many and not field.one to many]

Write a first row with header information
writer.writerow([field.verbose name for field in fields])
Write data rows
for obj in queryset:
data row = []
for field in fields:
value = getattr(obj, field.name)
if isinstance(value, datetime.datetime) :
value = value.strftime('%d/%$m/%Y"')
data row.append (value)
writer.writerow(data row)
return response
export to csv.short description = 'Export to CSV!'

In this code, we perform the following tasks:

1. We create an instance of Ht tpResponse including a custom text/csv content
type to tell the browser that the response has to be treated as a CSV file. We
also add a content-Disposition header to indicate that the HTTP response
contains an attached file.

We create a CSV writer object that will write on the response object.

We get the model fields dynamically using the get_fields () method of
the model _meta options. We exclude many-to-many and one-to-many
relationships.

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

4. We write a header row including the field names.

5. We iterate over the given QuerySet and write a row for each object returned
by the QuerySet. We take care of formatting datetime objects because the
output value for CSV has to be a string.

6. We customize the display name for the action in the template by setting a
short description attribute to the function.

We have created a generic admin action that can be added to any ModelAdmin class.

Finally, add the new export_to_csv admin action to the OrderAdmin class
as follows:

class OrderAdmin (admin.ModelAdmin) :
#

actions = [export to csv]

Open http://127.0.0.1:8000/admin/orders/order/ in your browser. The
resulting admin action should look like this:

Django administration

Home » Orders » Orders
Select order to change
Action: | Export to CSV %+ | Go| 2 of 11 selected
| ID First name Last name Email Address
11 Antonio Melé antonio.mele@gmail.com Bank Street
10 Antonio Melé antonio.mele@gmail.com Bank Street
119 Antonio Mele antonio.mele@gmail.com Bank Street
] B Antonio Melé antonio.mele@gmail.com Bank Street

Select some orders and choose the Export to CSV action from the select box, then
click the Go button. Your browser will download the generated CSV file named
order.csv. Open the downloaded file using a text editor. You should see contents
with the following format, including a header row and a row for each order object
you selected:

ID,first name,last name,email,address,postal

code, city,created,updated, paid
3,Antonio,Melé,antonio.mele@gmail .com,Bank Street 33,WS J11,London, 25/
05/2015,25/05/2015, False

As you can see, creating admin actions is pretty straightforward.

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Extending the admin site with custom
views

Sometimes you may want to customize the administration site beyond what is
possible through configuration of Mode1Admin, creation of admin actions, and
overriding admin templates. If this is the case, you need to create a custom admin
view. With a custom view, you can build any functionality you need. You just have
to make sure that only staff users can access your view and that you maintain the
admin look and feel by making your template extend an admin template.

Let's create a custom view to display information about an order. Edit the views.py
file of the orders application and add the following code to it:

from django.contrib.admin.views.decorators import staff member
required

from django.shortcuts import get object or 404

from .models import Order

@staff member required
def admin order detail (request, order id):
order = get object or 404 (Order, id=order id)
return render (request,
'admin/orders/order/detail .html"',
{'order': order})

The staff member required decorator checks that both is active and is_staff
fields of the user requesting the page are set to True. In this view, we get the order
object with the given id and render a template to display the order.

Now, edit the urls.py file of the orders application and add the following URL
pattern to it:

url (r'*admin/order/ (?P<order_id>\d+)/$',
views.admin_order detail,
name='admin order detail'),

Create the following file structure inside the templates/ directory of the orders
application:

admin/
orders/
order/
detail.html

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

Edit the detail.html template and add the following contents to it:

{% extends "admin/base site.html" %}
{% load static %}

{% block extrastyle %}

<link rel="stylesheet" type="text/css" href="{% static "css/admin.
css" %}" />
{% endblock %}

{3 block title %}
Order {{ order.id }} {{ block.super }}
{% endblock %}

{% block breadcrumbs %}
<div class="breadcrumbs">

)

Home ›
Orders
›
Order {{
order.id }}
› Detail
</divs>

{% endblock %}

{% block content %}
<hi1>0rder {{ order.id }}</hl>
<ul class="object-tools">
<lis>
Print order
</1li>

<table>
<tr>
<th>Created</th>
<td>{{ order.created }}</td>
</tr>
<tr>
<th>Customer</th>
<td>{{ order.first name }} {{ order.last name }}</td>
</tr>
<tr>
<th>E-mail</th>
<td>{{ order.email }}</td>
</tr>

<tr>

[268]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<th>Address</th>
<td>{{ order.address }}, {{ order.postal code }} {{ order.city
}}</td>
</tr>
<tr>
<th>Total amount</th>
<td>${{ order.get total cost }}</td>
</tr>
<tr>
<th>Status</th>
<td>{% if order.paid %}Paid{% else %}Pending payment{% endif %}</
td>
</tr>
</table>

<div class="module">
<div class="tabular inline-related last-related">
<table>
<h2>Items bought</h2>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
{$ for item in order.items.all %}
<tr class="row{% cycle "1" "2" $}">
<td>{{ item.product.name }}</td>
<td class="num">${{ item.price }}</td>
<td class="num">{{ item.quantity }}</td>
<td class="num">${{ item.get cost }}</td>
</tr>
{% endfor %}
<tr class="total">
<td colspan="3">Total</td>
<td class="num">${{ order.get total cost }}</td>
</tr>
</tbody>
</table>
</div>
</div>
{% endblock %}

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

This is the template to display an order detail in the administration site. This
template extends the admin/base_site.html template of Django's administration
site that contains the main HTML structure and CSS styles of the admin. We load
the custom static file css/admin. css.

In order to use static files, you need to get them from the code that came with
this chapter. Copy the static files located in the static/ directory of orders
application and add them to the same location in your project.

We use the blocks defined in the parent template to include our own content.
We display information about the order and the items bought.

When you want to extend an admin template, you need to know its structure and
identify existing blocks. You can find all admin templates at https://github. com/
django/django/tree/1.8.6/django/contrib/admin/templates/admin.

You can also override an admin template if you need so. To override an admin
template, copy it into your templates directory keeping the same relative path and
filename. Django's administration site will use your custom template instead of the
default one.

Finally, let's add a link to each order object in the list display page of the
administration site. Edit the admin. py file of the orders application and add the
following code to it, above the orderadmin class:

from django.core.urlresolvers import reverse

def order detail (obj) :
return 'View'.format (
reverse ('orders:admin order detail', args=[obj.id]))
order detail.allow tags = True

This is a function that takes an 0rder object as argument and returns an HTML link
for the admin_order_detail URL. Django escapes HTML output by default. We
have to set the allow_tags attribute of this callable to True to avoid auto-escaping.

. Setthe allow_tags attribute to True to avoid HTML-escaping in any
& Model method, ModelAdmin method, or any other callable. When you
e— use allow tags, make sure to escape input that has come from the user
to avoid cross-site scripting.

[270]

www.it-ebooks.info

https://github.com/django/django/tree/1.8.6/django/contrib/admin/templates/admin
https://github.com/django/django/tree/1.8.6/django/contrib/admin/templates/admin
http://www.it-ebooks.info/

Chapter 8

Then, edit the orderaAdmin class to display the link:

class OrderAdmin (admin.ModelAdmin) :
list display = ['id',

'first name',

...
'updated!',

order detail]

Open http://127.0.0.1:8000/admin/orders/order/ in your browser. Each row
now includes a View link as follows:

City Paid Created + Updated Order detail
Madrid @ May 19, 2015, 3:16 p.m. May 19, 2015, 3:16 p.m. View

Click the View link of any order to load the custom order detail page. You should
see a page like the following one:

Django administration

Home » Orders » Order 41 » Detail

Order 41 (" Print order]
Created May 19, 2015, 10:46 p.m.

Customer Django Reinhardt

E-mail antonio.mele@gmail.com

Address Jazz Street, 28027 Madrid

Total amount $229.10

Status Pending payment

Product Price Quantity Total

Red tea 545.50 1 545.50
Tea powder 521.20 3 $63.60
Creen tea $30.00 4 §120.00
Total $229.10

Generating PDF invoices dynamically

Now that we have a complete checkout and payment system, we can generate a
PDF invoice for each order. There are several Python libraries to generate PDF
files. One popular library to generate PDFs with Python code is Reportlab. You can
find information about how to output PDF files with Reportlab at https://docs.
djangoproject.com/en/1.8/howto/outputting-pdf/.

[271]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/howto/outputting-pdf/
https://docs.djangoproject.com/en/1.8/howto/outputting-pdf/
http://www.it-ebooks.info/

Managing Payments and Orders

In most cases, you will have to add custom styles and formatting to your PDF
files. You will find it more convenient to render an HTML template and convert it
into a PDF file, keeping Python away from the presentation layer. We are going to
follow this approach and use a module to generate PDF files with Django. We will
use WeasyPrint, which is a Python library that can generate PDF files from HTML
templates.

Installing WeasyPrint

First, install WeasyPrint's dependencies for your OS, which you will find at
http://weasyprint.org/docs/install/#platforms.

Then, install WeasyPrint via pip using the following command:

pip install WeasyPrint==0.24

Creating a PDF template

We need an HTML document as input for WeasyPrint. We are going to create an
HTML template, render it using Django, and pass it to WeasyPrint to generate the
PDF file.

Create a new template file inside the templates/orders/order/ directory of the
orders application and name it pdf . html. Add the following code to it:

<html>
<body>
<h1>My Shop</hl>
<p>
Invoice no. {{ order.id }}</br>

{{ order.created|date:"M d, Y" }}

</p>

<h3>Bill to</h3>

<p>
{{ order.first name }} {{ order.last name }}

{{ order.email }}

{{ order.address }}

{{ order.postal code }}, {{ order.city }}
</p>

[272]

www.it-ebooks.info

http://weasyprint.org/docs/install/#platforms
http://www.it-ebooks.info/

Chapter 8

<h3>Items bought</h3>
<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
{$ for item in order.items.all %}
<tr class="row{% cycle "1" "2" %}">
<td>{{ item.product.name }}</td>
<td class="num">${{ item.price }}</td>
<td class="num">{{ item.quantity }}</td>
<td class="num">${{ item.get cost }}</td>
</tr>
{% endfor %}
<tr class="total">
<td colspan="3">Total</td>
<td class="num">${{ order.get total cost }}</td>
</tr>
</tbody>
</table>

))))

{$ if order.paid %}Paid{% else %}Pending payment{% endif %}

</body>

</html>

This is the template for the PDF invoice. In this template, we display all order details
and an HTML <table> element including the products. We also include a message
to display if the order has been paid or the payment is still pending.

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

Rendering PDF files

We are going to create a view to generate PDF invoices for existing orders using the
administration site. Edit the views.py file inside the orders application directory
and add the following code to it:

from django.conf import settings

from django.http import HttpResponse

from django.template.loader import render to_string
import weasyprint

@staff_ member_required
def admin order_ pdf (request, order id):
order = get_object or 404 (Order, id=order_ id)
html = render to_string('orders/order/pdf.html',
{'order': order})
response = HttpResponse (content type='application/pdf')
response ['Content-Disposition'] = 'filename=\
"order {}.pdf"'.format (order.id)
weasyprint .HTML (string=html) .write_pdf (response,
stylesheets=[weasyprint.CSS(
settings.STATIC ROOT + 'css/pdf.css')])
return response

This is the view to generate a PDF invoice for an order. We use the staff member
required decorator to make sure only staff users can access this view. We get the
order object with the given ID and we use the render to_string() function
provided by Django to render orders/order/pdf . html. The rendered HTML is
saved in the html variable. Then, we generate a new HttpResponse object specifying
the application/pdf content type and including the Content-Disposition header
to specify the file name. We use WeasyPrint to generate a PDF file from the rendered
HTML code and write the file to the Ht tpresponse object. We use the static file css/
pdf . css to add CSS styles to the generated PDF file. We load it from the local path
by using the STATIC ROOT setting. Finally, we return the generated response.

Since we need to use the STATIC_ROOT setting, we have to add it to our project. This
is the project's path for static files to reside. Edit the settings.py file of the myshop
project and add the following setting:

STATIC_ROOT = os.path.join(BASE DIR, 'static/')

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Then, run the command python manage.py collectstatic. You should see an
output that ends as follows:

You have requested to collect static files at the destination
location as specified in your settings:

code/myshop/static

This will overwrite existing files!
Are you sure you want to do this?

Write yes and press Enter. You should get a message indicating that the static files
have been copied to the STATIC_ROOT directory.

The collectstatic command copies all static files from your applications into
the directory defined in the STATIC_ROOT setting. This allows each application to
provide its own static files using a static/ directory that contains them. You can
also provide additional static files sources in the STATICFILES_DIRS setting. All
of the directories specified in the STATICFILES DIRS list will also be copied to the
STATIC_ROOT directory when collectstatic is executed.

Edit the urls.py file inside the orders application directory and add the following
URL pattern to it:

url(r'Aadmin/order/(?P<order_id>\d+)/pdf/$',
views.admin order pdf,

name="'admin order pdf'),

Now, we can edit the admin list display page for the order model to add a link to
the PDF file for each result. Edit the admin. py file inside the orders application and
add the following code above the 0OrderaAdmin class:

def order pdf (obj) :
return 'PDF'.format (
reverse ('orders:admin order pdf', args=I[obj.id]))
order pdf.allow tags = True
order pdf.short description = 'PDF bill'

Add order pdf to the 1ist display attribute of the Orderadmin class as follows:

class OrderAdmin (admin.ModelAdmin) :
list display = ['id',
#
order detail,
order pdf]

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

If you specify a short_description attribute for your callable, Django will use it for
the name of the column.

Open http://127.0.0.1:8000/admin/orders/order/ in your browser. Each row
should now include a PDF link like this:

City Paid Created + Updated Order detail PDF bill
Madrid @ May 19, 2015, 10:46 p.m. May 19, 2015, 10:46 p.m. View PDF

Click the PDF link for any order. You should see a generated PDF file like the
following one for orders that have not been paid yet:

My Shop

Invoice nr. 41

Bill to

Django Reinhardt
antonio.mele@gmail.com
Jazz Street

28027, Madrid

ltems bought

Product Price Quantity Pedido

Red tea $45.50 1 $45.50
Tea powder $21.20 3 $63.60
Green tea $30.00 4 $120.00

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

For paid orders, you will see the following PDF file:

ltems bought

Product Price Quantity

Red tea $45.50 1
Tea powder $21.20 3
Green tea $30.00 4

Pedido

$45.50

$63.60

$120.00

Total $229.10

Sending PDF files by e-mail

Let's send an e-mail to our customers including the generated PDF invoice when
a payment is received. Edit the signals.py file of the payment application and

add the following imports:

from django.template.loader import render to string

from django.core.mail import EmailMessage
from django.conf import settings

import weasyprint

from io import BytesIO

Then add the following code after the order.save () line, with the same indentation

level:

create invoice e-mail

subject = 'My Shop - Invoice no. {}'.format (order.id)
message = 'Please, find attached the invoice for your recent
purchase. '

email = EmailMessage (subject,

message,
'admin@myshop.com',
[order.emaill)

generate PDF
html = render to_string('orders/order/pdf.html',
out = BytesIO()

{rorder':

order})

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Payments and Orders

stylesheets=[weasyprint.CSS(settings.STATIC ROOT + 'css/pdf.css!')]
weasyprint .HTML (string=html) .write pdf (out,
stylesheets=stylesheets)
attach PDF file
email.attach('order {}.pdf'.format (order.id),
out.getvalue (),
'application/pdf!')
send e-mail
email.send()

In this signal, we use the EmailMessage class provided by Django to create an e-mail
object. Then we render the template into the html variable. We generate the PDF

file from the rendered template, and we output it to a BytesIO instance, which is a
in-memory bytes buffer. Then we attach the generated PDF file to the EmailMessage
object using its attach () method, including the contents of the out buffer.

Remember to set up your SMTP settings in the settings.py file of the project to
send e-mails. You can refer to Chapter 2, Enhancing Your Blog with Advanced Features
to see a working example for an SMTP configuration.

Now you can open the URL for your application provided by Ngrok and complete
a new payment process in order to receive the PDF invoice into your e-mail.

Summary

In this chapter, you integrated a payment gateway into your project. You customized
the Django administration site and learned how to generate CSV and PDF files
dynamically.

The next chapter will give you an insight into internationalization and localization
for Django projects. You will also create a coupon system and build a product
recommendation engine.

[278]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

In the previous chapter, you learned how to integrate a payment gateway into your
shop. You managed payment notifications and you learned how to generate CSV
and PDF files. In this chapter, you will add a coupon system to your shop. You

will learn how internationalization and localization work, and you will build a
recommendation engine.

This chapter will cover the following points:

* Creating a coupon system to apply discounts
* Adding internationalization to your project

* Using Rosetta to manage translations

* Translating models using django-parler

* Building a product recommendation engine

Creating a coupon system

Many online shops give out coupons to customers that can be redeemed for
discounts on their purchases. An online coupon usually consists of a code that is
given to users, which is valid for a specific time frame. The code can be redeemed
one or multiple times.

We are going to create a coupon system for our shop. Our coupons will be valid for
clients that enter the coupon in a specific time frame. The coupons will not have any
limitation on the number of times they can be redeemed, and they will be applied to
the total amount of the shopping cart. For this functionality, we will need to create a
model to store the coupon code, a valid time frame, and the discount to apply.

[279]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

Create a new application inside the myshop project using the following command:
python manage.py startapp coupons

Edit the settings.py file of myshop and add the application to the INSTALLED APPS
setting as follows:

INSTALLED APPS = (
#
'coupons',

)

The new application is now active in our Django project.

Building the coupon models

Let's start by creating the coupon model. Edit the models. py file of the coupons
application and add the following code to it:

from django.db import models
from django.core.validators import MinValueValidator, \
MaxValueValidator

class Coupon (models.Model) :
code = models.CharField(max_ length=50,
unique=True)
valid_from = models.DateTimeField()
valid_to = models.DateTimeField()
discount = models.IntegerField(
validators=[MinValueValidator (0),
MaxValueValidator (100)1])
active = models.BooleanField()

def str (self):
return self.code

This is the model we are going to use to store coupons. The Coupon model contains
the following fields:

* code: The code that users have to enter in order to apply the coupon
to their purchase.

* valid_from: The datetime value that indicates when the coupon
becomes valid.

[280]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

* valid_to: The datetime value that indicates when the coupon
becomes invalid.

* discount: The discount rate to apply (this is a percentage, so it takes values
from 0 to 100). We use validators for this field to limit the minimum and
maximum accepted values.

* active: A boolean that indicates whether the coupon is active.

Run the following command to generate the initial migration for the coupons
application:

python manage.py makemigrations
The output should include the following lines:

Migrations for 'coupons':
0001 initial.py:
- Create model Coupon

Then we execute the next command to apply migrations:

python manage.py migrate

You should see an output that includes the following line:
Applying coupons.0001 initial... OK

The migrations are now applied in the database. Let's add the coupon model to the
administration site. Edit the admin. py file of the coupons application and add the
following code to it:

from django.contrib import admin
from .models import Coupon

class CouponAdmin (admin.ModelAdmin) :

list display = ['code', 'valid from', 'valid to',
'discount', 'active'l]

list filter = ['active',K 'wvalid from', 'wvalid to']

search _fields = ['code']

admin.site.register (Coupon, CouponAdmin)

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

The coupon model is now registered in the administration site. Ensure your local
server is running with the command python manage.py runserver. Open
http://127.0.0.1:8000/admin/coupons/coupon/add/ in your browser. You
should see the following form:

Django ad ministration Welcome, admin. View site / Change password | Log out

Home » Coupons » Coupons » Add coupon
Add coupon
Code:
Valid from: Date: Today | [5)
Time: Now | (D)
Valid to: Date: Today | [F)
Time: Now | (T)
Discount:
Active
Save and add another Save and continue editing E

Fill in the form to create a new coupon that is valid for the current date, make sure
you check the Active checkbox, and click the Save button.

Applying a coupon to the shopping cart

We can store new coupons and make queries to retrieve existing coupons. Now we
need a way for customers to apply coupons to their purchases. Take a moment to
think about how this functionality would work. The way to apply a coupon would
be as follows:

1. The user adds products to the shopping cart.

2. The user can enter a coupon code in a form displayed in the shopping cart
detail page.

3. When a user enters a coupon code and submits the form, we look for an
existing coupon with the given code that is currently valid. We have to check
that the coupon's code matches the one entered by the user, the active
attribute is True, and the current datetime is between the valid from and
valid_to values.

[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

4. If a coupon is found, we save it in the user's session and display the cart
including the discount applied to it and the updated total amount.

5. When the user places an order, we save the coupon to the given order.

Create a new file inside the coupons application directory and name it forms.py.
Add the following code to it:

from django import forms

class CouponApplyForm(forms.Form) :
code = forms.CharField()

This is the form we are going to use for the user to enter a coupon code. Edit the
views.py file inside the coupons application and add the following code to it:

from django.shortcuts import render, redirect

from django.utils import timezone

from django.views.decorators.http import require POST
from .models import Coupon

from .forms import CouponApplyForm

@require POST
def coupon_apply (request) :
now = timezone.now()
form = CouponApplyForm(request.POST)
if form.is valid() :
code = form.cleaned data['code']
try:
coupon = Coupon.objects.get (code iexact=code,
valid from lte=now,
valid to gte=now,
active=True)
request.session['coupon id'] = coupon.id
except Coupon.DoesNotExist:
request.session['coupon id'] = None
return redirect ('cart:cart detail')

The coupon_apply view validates the coupon and stores it in the user's session. We
apply the require POST decorator to this view to restrict it to POST requests. In the
view, we perform the following tasks:

1. We instantiate the CouponApplyForm form using the posted data and we
check that the form is valid.

[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

2. If the form is valid, we get the code entered by the user from the form's
cleaned_data dictionary. We try to retrieve the Coupon object with the given
code. We use the iexact field lookup to perform a case-insensitive exact
match. The coupon has to be currently active (active=True) and valid for
the current datetime. We use Django's timezone .now () function to get the
current time-zone-aware datetime and we compare it with the valid from
and valid_to fields performing 1te (less than or equal to) and gte (greater
than or equal to) field lookups respectively.

We store the coupon id in the user's session.

We redirect the user to the cart_detail URL to display the cart with the
coupon applied.

We need a URL pattern for the coupon_apply view. Create a new file inside the
coupons application directory and name it urls.py. Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
url (r'“apply/$', views.coupon apply, name='apply'),
]

Then, edit the main urls.py of the myshop project and include the coupons URL
patterns as follows:

url (r'“coupons/', include('coupons.urls', namespace='coupons')),
Remember to place this pattern before the shop.urls pattern.

Now edit the cart . py file of the cart application. Include the following import:

from coupons.models import Coupon

Add the following code to the end of the __init__ () method of the cart class to
initialize the coupon from the current session:

store current applied coupon
self.coupon id = self.session.get ('coupon id')

In this code, we try to get the coupon_id session key from the current session and
store its value in the cart object. Add the following methods to the cart object:

@property
def coupon (self) :
if self.coupon id:

[284]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

return Coupon.objects.get (id=self.coupon_ id)
return None

def get discount (self) :
if self.coupon:
return (self.coupon.discount / Decimal('100')) \
* self.get total price()
return Decimal('0'")

def get total price after discount (self):
return self.get total price() - self.get discount ()

These methods are as follows:

* coupon (): We define this method as a property. If the cart contains a
coupon_id function, the Coupon object with the given id is returned.

* get discount (): If the cart contains a coupon, we retrieve its discount rate
and return the amount to be deducted from the total amount of the cart.

* get total price after discount (): We return the total amount of the
cart after deducting the amount returned by the get_discount () method.

The cart class is now prepared to handle a coupon applied to the current session
and apply the corresponding discount.

Let's include the coupon system in the cart detail view. Edit the views.py file of the
cart application and add the following import at the top of the file:

from coupons.forms import CouponApplyForm
Further down, edit the cart detail view and add the new form to it as follows:

def cart detail (request) :
cart = Cart (request)
for item in cart:
item['update quantity form'] = CartAddProductForm
initial={'quantity': item['quantity'],
'update': True})
coupon_apply form = CouponApplyForm()

return render (request,
'cart/detail .html',
{rcart': cart,
'coupon apply form': coupon_apply_form})

[285]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

Edit the cart/detail.html template of the cart application and find the
following lines:

<tr class="total">

<td>Total</td>

<td colspan="4"></td>

<td class="num">${{ cart.get total price }}</td>
</tr>

Replace them with the following ones:

)

{$ if cart.coupon %}
<tr class="subtotal">
<td>Subtotal</td>
<td colspan="4"></td>
<td class="num">${{ cart.get total price }}</td>
</tr>
<tr>
<td>
"{{ cart.coupon.code }}" coupon
({{ cart.coupon.discount }}% off)
</td>
<td colspan="4"></td>
<td class="num neg">
- ${{ cart.get discount|floatformat:"2" }}
</td>
</tr>
{% endif %}
<tr class="total">
<td>Total</td>
<td colspan="4"></td>
<td class="num">
${{ cart.get total price after discount|floatformat:"2" }}
</td>
</tr>

This is the code to display an optional coupon and its discount rate. If the cart
contains a coupon, we display a first row including the total amount of the cart as
the Subtotal. Then we use a second row to display the current coupon applied to
the cart. Finally, we display the total price including any discount by calling the
get_total_price_after discount () method of the cart object.

[286]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In the same file, include the following code after the </table> HTML tag:

<p>Apply a coupon:</p>

<form action="{% url "coupons:apply" %}" method="post"s>
{{ coupon_apply form }}
<input type="submit" value="Apply">
{% csrf _token %}

</form>

This will display the form to enter a coupon code and apply it to the current cart.

Open http://127.0.0.1:8000/ in your browser, add a product to the cart, and
apply the coupon you created by entering its code in the form. You should see that
the cart displays the coupon discount as follows:

Your shopping cart

Product Quantity Remove Unit price Price

Tea powder : B Remove $21.20 $42.40
Subtotal $42.40
"SUMMER" coupon (10% off) -54.24
Total $38.16

Apply a coupon:

Continue shopping Checkout

Let's add the coupon to the next step of the purchase process. Edit the orders/
order/create.html template of the orders application and find the following lines:

<uls>
{% for item in cart %}

{{ item.quantity }}x {{ item.product.name }}
${{ item.total price }}

[287]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

</1li>
{% endfor %}

Replace them with the following code:

{$ for item in cart %}

{{ item.quantity }}x {{ item.product.name }}
${{ item.total price }}
</1li>
{% endfor %}
{% if cart.coupon %}

"{{ cart.coupon.code }}" ({{ cart.coupon.discount }}% off)
- ${{ cart.get discount|floatformat:"2" }}
</1li>
{% endif %}
</uls>

The order summary should now include the applied coupon, if there is any. Now
find the following line:

<p>Total: ${{ cart.get total price }}</p>
Replace it with the following one:

<p>Total: ${{ cart.get total price after discount|floatformat:"2" }}</
P>

By doing so, the total price will be also calculated by applying the discount of

the coupon.

Open http://127.0.0.1:8000/orders/create/ in your browser. You should see
that the order summary includes the applied coupon as follows:

Your order
« 1x Tea powder $21.20
- 1x Red tea $45.50
= SUMMER" (10% off) - 56.67

Total: $60.03

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Users can now apply coupons to their shopping cart. However, we still need to store
coupon information in the order that is created when users check out the cart.

Applying coupons to orders

We are going to store the coupon that was applied for each order. First, we need
to modify the order model to store the related Coupon object, if there is any.

Edit the models.py file of the orders application and add the following imports
toit:

from decimal import Decimal

from django.core.validators import MinValueValidator, \
MaxValueValidator

from coupons.models import Coupon

Then, add the following fields to the order model:

coupon = models.ForeignKey (Coupon,
related name='orders',
null=True,
blank=True)
discount = models.IntegerField(default=0,
validators=[MinValueValidator (0),
MaxValueValidator (100)])

These fields will allow us to store an optional coupon applied to the order and the
discount applied by the coupon. The discount is stored in the related coupon object,
but we include it in the order model to preserve it if the coupon is modified or
deleted.

Since the order model has changed, we need to create a migration. Run the
following command from the command line:

python manage.py makemigrations
You should see an output like this:

Migrations for 'orders':
0002_auto _20150606_1735.py:
- Add field coupon to order
- Add field discount to order

Apply the new migration with the next command:

python manage.py migrate orders

[289]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

You should get the confirmation that the new migration has been applied. The order
model field changes are now synced with the database.

Go back to the models. py file and change the get_total_cost () method of the
order model as follows:

def get total cost(self):
total cost = sum(item.get cost() for item in self.items.all())
return total cost - total cost * \
(self.discount / Decimal('100'))

The get_total cost () method of the order model will now take into account the
applied discount, if there is any.

Edit the views.py file of the orders application and modify the order create view
to save the related coupon and its discount when creating a new order. Find the
following line:

order = form.save ()

Replace it with the following ones:

order = form.save (commit=False)
if cart.coupon:
order.coupon = cart.coupon
order.discount = cart.coupon.discount
order.save()

In the new code, we create an Order object using the save () method of the
OrderCreateForm form. We avoid saving it to the database yet by using
commit=False. If the cart contains a coupon, we store the related coupon and
the discount that was applied. Then we save the order object to the database.

Make sure the development server is running with the command python manage.py
runserver. Run Ngrok from the shell using the following command:

./ngrok http 8000

Open the URL provided by Ngrok in your browser and complete a purchase using
the coupon you created. When you finish a successful purchase, you can go to
http://127.0.0.1:8000/admin/orders/order/ and check that the order object
contains the coupon and the applied discount as follows:

[290]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Coupon: SUMMER # | dk

Discount: 10
Product Price
52

2 Q\ Red tea 45,50
53

3 q Tea powder 21,20

You can also modify the admin order detail template and the order PDF bill to
display the applied coupon in the same manner we did for the cart.

Next, we are going to add internationalization to our project.

Adding internationalization and
localization

Django offers full internationalization and localization support. It allows you to
translate your application into multiple languages and it handles locale-specific
formatting for dates, times, numbers, and time zones. Let's clarify the difference
between internationalization and localization. Internationalization (frequently
abbreviated to i18n) is the process of adapting software for the potential use of
different languages and locales, so that it isn't hard-wired to a specific language or
locale. Localization (abbreviated to 110n) is the process of actually translating the
software and adapting it to a particular locale. Django itself is translated into more
than 50 languages using its internationalization framework.

Internationalization with Django

The internationalization framework allows you to easily mark strings for translation
both in Python code and in your templates. It relies on the GNU gettext toolset to
generate and manage message files. A message file is a plain text file that represents
a language. It contains a part, or all, translation strings found in your application
and their respective translations for a single language. Message files have the

. po extension.

Once the translation is done, message files are compiled to offer rapid access to
translated strings. The compiled translation files have the .mo extension.

[291]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

Internationalization and localization settings

Django provides several settings for internationalization. The following settings are
the most relevant ones:

USE_I18N: A boolean that specifies whether Django's translation system is
enabled. This is True by default.

USE_L10N: A boolean indicating whether localized formatting is enabled.
When active, localized formats are used to represent dates and numbers.
This is False by default.

USE_TZ: A boolean that specifies whether datetimes are timezone-aware.
When you create a project with the startproject command, this is set
to True.

LANGUAGE_CODE: The default language code for the project. This is in
standard language ID format, for example, 'en-us' for American English
or 'en-gb' for British English. This setting requires USE_I18N set to True
in order to take effect. You can find a list of valid language IDs at
http://www.il8nguy.com/unicode/language-identifiers.html.

LANGUAGES: A tuple that contains available languages for the project. They
come in two-tuples of language code and language name. You can see the
list of available languages at django. conf.global_settings. When you
choose which languages your site will be available in, you set LANGUAGES
to a subset of that list.

LOCALE_PATHS: A list of directories where Django looks for message files
containing translations for this project.

TIME_ZONE: A string that represents the time zone for the project. This is set
to 'uTC' when you create a new project using the startproject command.
You can set it to any other time zone such as ' Europe/Madrid'.

These are some of the internationalization and localization settings available.
You can find the full list at https://docs.djangoproject.com/en/1.8/ref/
settings/#globalization-i18n-110n.

Internationalization management commands

Django includes the following commands to manage translations using manage . py
or the django-admin utility:

makemessages - This runs over the source tree to find all strings marked
for translation and creates or updates the . po message files in the locale
directory. A single. po file is created for each language.

[292]

www.it-ebooks.info

http://www.i18nguy.com/unicode/language-identifiers.html
https://docs.djangoproject.com/en/1.8/ref/settings/#globalization-i18n-l10n
https://docs.djangoproject.com/en/1.8/ref/settings/#globalization-i18n-l10n
http://www.it-ebooks.info/

Chapter 9

* compilemessages - This compiles the existing . po message files to .mo files
that are used to retrieve translations.

You will need the gettext toolset to be able to create, update, and compile message
files. Most Linux distributions include the gettext toolkit. If you are using Mac OS X,
probably the simplest way to install it is via Homebrew at http://brew.sh/

with the command brew install gettext. You might also need to force link

it with the command brew link gettext --force.For Windows, follow

the steps at https://docs.djangoproject.com/en/1.8/topics/i18n/
translation/#gettext-on-windows.

How to add translations to a Django project

Let's take a look at the process to internationalize our project. We will need to do the
following:

1. We mark strings for translation in our Python code and our templates.

2. Werun the makemessages command to create or update message files that
include all translations strings from our code.

3. We translate the strings contained in the message files and compile them
using the compilemessages management command.

How Django determines the current language

Django comes with a middleware that determines the current language based on
request data. This is the LocaleMiddleware middleware that resides in django.
middleware.locale. LocaleMiddleware performs the following tasks:

1. If youare using i18_patterns, that is, you use translated URL patterns, it
looks for a language prefix in the requested URL to determine the current
language.

2. If no language prefix is found, it looks for an existing LANGUAGE _SESSION_
KEY in the current user's session.

3. If the language is not set in the session, it looks for an existing cookie with
the current language. A custom name for this cookie can be provided in
the LANGUAGE_COOKIE_NAME setting. By default, the name for this cookie is
django_language.

4. If no cookie is found, it looks for the Accept -Language HTTP header of
the request.

5. If the Accept - Language header does not specify a language, Django uses the
language defined in the LANGUAGE_CODE setting.

[293]

www.it-ebooks.info

http://brew.sh/
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#gettext-on-windows
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#gettext-on-windows
http://www.it-ebooks.info/

Extending Your Shop

By default, Django will use the language defined in the LANGUAGE_CODE setting
unless you are using LocaleMiddleware. The process described above only
applies when using this middleware.

Preparing our project for internationalization

Let's prepare our project to use different languages. We are going to create an
English and a Spanish version for our shop. Edit the settings. py file of your
project and add the following LANGUAGES setting to it. Place it next to the
LANGUAGE_CODE setting:

LANGUAGES = (
('en', 'English'),
('es', 'Spanish'),

)

The LANGUAGES setting contains two tuples that consist of language code and name.
Language codes can be locale-specific, such as en-us or en-gb, or generic, such as
en. With this setting, we specify that our application will be only available in English
and Spanish. If we don't define a custom LANGUAGES setting, the site will be available
in all the languages Django is translated into.

Make your LANGUAGE_CODE setting look as follows:
LANGUAGE_CODE = 'en'

Add 'django.middleware.locale.LocaleMiddleware' to the MIDDLEWARE
CLASSES setting. Make sure that this middleware comes after sessionMiddleware,
because LocaleMiddleware needs to use session data. It also has to be placed before
CommonMiddleware, because the latter needs an active language to resolve the
requested URL. The MIDDLEWARE_CLASSES setting should now look as follows:

MIDDLEWARE CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.locale.LocaleMiddleware',
'django.middleware.common.CommonMiddleware"',

...

. The order of middlewares is very important because each middleware
% can depend on data set by other middleware executed previously.
L Middleware is applied for requests in order of appearance in
MIDDLEWARE_CLASSES, and in reverse order for responses.

[294]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Create the following directory structure inside the main project directory, next to the
manage . py file:

locale/
en/
es/

The locale directory is the place where message files for your application will
reside. Edit the settings.py file again and add the following setting to it:

LOCALE_PATHS =
os.path.join (BASE DIR, 'locale/'),
)

The LoCALE_PATHS setting specifies the directories where Django has to look for
translation files. Locale paths that appear first have the highest precedence.

When you use the makemessages command from your project directory, message
files will be generated in the 1ocale/ path we created. However, for applications
that contain a 1ocale/ directory, message files will be generated in that directory.

Translating Python code

To translate literals in your Python code, you can mark strings for translation using
the gettext () function included in django.utils.translation. This function
translates the message and returns a string. The convention is to import this function
as a shorter alias named _ (underscore character).

You can find all the documentation about translations at https://docs.
djangoproject.com/en/1.8/topics/il8n/translation/.

Standard translations

The following code shows how to mark a string for translation:

from django.utils.translation import gettext as _
output = ('Text to be translated.')

Lazy translations

Django includes lazy versions for all of its translation functions, which have the
suffix _lazy (). When using the lazy functions, strings are translated when the value
is accessed rather than when the function is called (this is why they are translated
lazily). The lazy translation functions come in handy when strings marked for
translation are in paths that are executed when modules are loaded.

[295]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/i18n/translation/
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/
http://www.it-ebooks.info/

Extending Your Shop

Using gettext_lazy () instead of gettext (), strings are translated
% when the value is accessed rather than when the function is called. Django
’ offers a lazy version for all translation functions.

Translations including variables

The strings marked for translation can include placeholders to include variables
in the translations. The following code is an example of a translation string with
a placeholder:

from django.utils.translation import gettext as _

month = ('April!')
day = '14"
output = ('Today is % (month)s %(day)s') % {'month': month,

'day': day}

By using placeholders, you can reorder the text variables. For example, an English
translation for the previous example might be "Today is April 14", while the Spanish
one is "Hoy es 14 de Abril". Always use string interpolation instead of positional
interpolation when you have more than one parameter for the translation string.

By doing so, you will be able to reorder the placeholder text.

Plural forms in translations

For plural forms, you can use ngettext () and ngettext_lazy (). These functions
translate singular and plural forms depending on an argument that indicates the
number of objects. The following example shows how to use them:

output = ngettext ('there is % (count)d product',
'there are % (count)d products',

°

count) % {'count': count}

Now that you know the basics about translating literals in our Python code, it's time
to apply translations to our project.

Translating your own code

Edit the settings.py file of your project, import the gettext_lazy () function, and
change the LANGUAGES setting as follows to translate the language names:

from django.utils.translation import gettext lazy as _

LANGUAGES = (

[296]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

('en', ('English')),
('es', ('Spanish')),

)

Here, we use the gettext lazy () function instead of gettext () to avoid a circular
import, thus translating the languages' names when they are accessed.

Open the shell and run the following command from your project directory:

django-admin makemessages --all

You should see the following output:

processing locale es
processing locale en

Take a look at the 1ocale/ directory. You should see a file structure like this:

en/
LC_MESSAGES/
django.po
es/
LC_MESSAGES/
django.po

A .po message file has been created for each language. Open es/LC_MESSAGES/
django.po with a text editor. At the end of the file, you should be able to see
the following:

#: settings.py:104

msgid "English"
msgstr ""

#: settings.py:105
msgid "Spanish"
msgstr ""

Each translation string is preceded by a comment showing details about the file and
line where it was found. Each translation includes two strings:
* msgid: The translation string as it appears in the source code.

* msgstr: The language translation, which is empty by default. This is where
you have to enter the actual translation for the given string.

[297]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

Fill in the msgstr translations for the given msgid string as follows:

#: settings.py:104
msgid "English"
msgstr "Inglés"

#: settings.py:105
msgid "Spanish"
msgstr "Espafiol"

Save the modified message file, open the shell, and run the following command:
django-admin compilemessages
If everything goes well, you should see an output like the following:

processing file django.po in myshop/locale/en/LC_MESSAGES
processing file django.po in myshop/locale/es/LC_MESSAGES

The output gives you information about the message files that are being compiled.
Take a look at the 1ocale directory of the myshop project again. You should see the
following files:

en/

LC_MESSAGES/
django.mo
django.po

es/

LC_MESSAGES/
django.mo
django.po

You can see that a . mo compiled message file has been generated for each language.

We have translated the language names themselves. Now let's translate the model
field names that are displayed in the site. Edit the models.py file of the orders
application and add names marked for translation for the order model fields

as follows:

from django.utils.translation import gettext lazy as _

class Order (models.Model) :
first name = models.CharField(('£first name'),
max_length=50)
last name = models.CharField(('last name'),
max_length=50)

email = models.EmailField(('e-mail'),)

[298]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

address = models.CharField(('address'),
max_length=250)
postal code = models.CharField(('postal code'),
max_length=20)
city = models.CharField(('city'),
max length=100)
#...

We have added names for the fields that are displayed when a user is placing a new
order. These are first name, last name, email, address, postal code, and city.
Remember that you can also use the verbose_name attribute to name the fields.

Create the following directory structure inside the orders application directory:

locale/
en/
es/

By creating a 1ocale directory, translation strings of this application will be stored
in a message file under this directory instead of the main messages file. In this way,
you can generate separated translation files for each application.

Open the shell from the project directory and run the following command:

django-admin makemessages --all

You should see the following output:

processing locale es
processing locale en

Open the es/LC_MESSAGES/django. po file using a text editor. You will see the
translations strings for the order model. Fill in the following msgstr translations
for the given msgid strings:

#: orders/models.py:10
msgid "first name"
msgstr "nombre"

#: orders/models.py:12
msgid "last name"
msgstr "apellidos"

#: orders/models.py:14
msgid "e-mail"
msgstr "e-mail"

[299]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

#: orders/models.py:15
msgid "address"
msgstr "direccidn"

#: orders/models.py:17
msgid "postal code"
msgstr "cbédigo postal"

#: orders/models.py:19
msgid "city"
msgstr "ciudad"

After you have finished adding the translations, save the file.

Besides a text editor, you can use Poedit to edit translations. Poedit is a software
to edit translations, and it uses gettext. It is available for Linux, Windows, and
Mac OS X. You can download Poedit from http://poedit .net/.

Let's also translate the forms of our project. OrderCreateForm of the orders
application does not have to be translated, since it is a Mode1Form and it uses the
verbose name attribute of the order model fields for the form field labels. We are
going to translate the forms of the cart and coupons applications.

Edit the forms. py file inside the cart application directory and add a 1abel
attribute to the quantity field of the CartAddProductForm, then mark this
field for translation as follows:

from django import forms
from django.utils.translation import gettext lazy as _

PRODUCT QUANTITY CHOICES = [(i, str(i)) for i in range(l, 21)]

class CartAddProductForm(forms.Form) :

quantity = forms.TypedChoiceField (
choices=PRODUCT QUANTITY CHOICES,
coerce=int,
label=_ ('Quantity'))

update = forms.BooleanField(required=False,
initial=False,
widget=forms.HiddenInput)

[300]

www.it-ebooks.info

http://poedit.net/
http://www.it-ebooks.info/

Chapter 9

Edit the forms. py file of the coupons application and translate the couponApplyForm
form as follows:

from django import forms
from django.utils.translation import gettext lazy as _

class CouponApplyForm(forms.Form) :
code = forms.CharField(label=_('Coupon'))

We have added a label to the code field and marked it for translation.

Translating templates

Django offers the {% trans %} and {% blocktrans %} template tags to translate
strings in templates. In order to use the translation template tags, you have to add
{% load ilsn %} at the top of your template to load them.

The {% trans %} template tag

The {% trans %} template tag allows you to mark a string, a constant, or variable
content for translation. Internally, Django executes gettext () on the given text.
This is how to mark a string for translation in a template:

{$ trans "Text to be translated" %}

You can use as to store the translated content in a variable that you can use
throughout your template. The following example stores the translated text
in a variable called greeting:

{% trans "Hello!" as greeting %}
<h1>{{ greeting }}</hl>

The {% trans %} tagis useful for simple translation strings, but it cannot handle
content for translation that includes variables.

The {% blocktrans %} template tag

The {% blocktrans %} template tag allows you to mark content that includes
literals and variable content using placeholders. The following example shows you
how to use the {% blocktrans %} tagincluding a name variable in the content

for translation:

{% blocktrans %$}Hello {{ name }}!{% endblocktrans %}

[301]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

You can use with to include template expressions such as accessing object attributes
or applying template filters to variables. You always have to use placeholders for
these. You cannot access expressions or object attributes inside the blocktrans
block. The following example shows you how to use with to include an object
attribute on which the capfirst filter is applied:

°

{% blocktrans with name=user.name|capfirst %}
Hello {{ name }}!
{% endblocktrans %}

Use the {$ blocktrans %} taginstead of {$ trans %} whenyou
= need to include variable content in your translation string.

Translating the shop templates

Edit the shop/base . html template of the shop application. Make sure you load the
i18n tag at the top of the template and mark strings for translation as follows:

{% load il8n %}
{% load static %}
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>
{% block title %}{% trans "My shop" %}{% endblock %}
</title>
<link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
<div id="header">
{% trans "My shop" %}
</div>
<div id="subheader">
<div class="cart">
{% with total items=cart|length %}
{%$ if cart|length > 0 %}
{% trans "Your cart" %}:

{% blocktrans with total items plural=total
items|pluralize
total price=cart.get total price %}

[302]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

{{ total items }} item{{ total items plural }},
${{ total price }}
{% endblocktrans %}

{% else %}
{% trans "Your cart is empty." %}
{% endif %}
{% endwith %}
</div>
</div>
<div id="content"s>
{% block content %}
{% endblock %}
</div>
</body>
</html>

Notice the {% blocktrans %} tag to display the cart's summary. The cart's summary
was previously as follows:

{{ total items }} item{{ total items|pluralize }},
${{ cart.get total price }}

We utilized {% blocktrans with ... %} to use placeholders for total
items|pluralize (template tag applied here) and cart.get_total_price
(object method accessed here), resulting in:

{% blocktrans with total items plural=total items|pluralize
total price=cart.get total price %}

{{ total items }} item{{ total items plural }},

${{ total price }}
{% endblocktrans %}

Next, edit the shop/product/detail.html template of the shop application and
load the i18n tags at the top of it but after the {% extends %} tag, which always
has to be the first tag in the template:

{$ load i18n %}
Then, find the following line:

<input type="submit" value="Add to cart"s>
Replace it with the following one:

)

<input type="submit" value="{% trans "Add to cart" %}">

[303]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

Now translate the orders application templates. Edit the orders/order/create.
html template of the orders application and mark text for translation as follows:

{% extends "shop/base.html" %}
{% load il8n %}

{% block title %)
{% trans "Checkout" %}
{% endblock %}

{% block content %}
<h1>{% trans "Checkout" %}</hl>

<div class="order-info">
<h3>{% trans "Your order" %}</h3>

{$ for item in cart %}
<lis
{{ item.quantity }}x {{ item.product.name }}
${{ item.total price }}
</1lis
{% endfor %}
{

°
o
°

o

if cart.coupon %}
<lis
{% blocktrans with code=cart.coupon.code
discount=cart.coupon.discount %}
"{{ code }}" ({{ discount }}% off)
{% endblocktrans %}
- ${{ cart.get discount|floatformat:"2" }}
</1lis
{% endif %}

<p>{% trans "Total" %}: ${{
cart.get total price after discount|floatformat:"2" }}</p>

</div>

<form action="." method="post" class="order-form">

{{ form.as p }}

<p><input type="submit" value="{% trans "Place order" %}"></p>

{% csrf _token %}
</form>

{% endblock %}

[304]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Take a look at the following files in the code that come along with this chapter to see
how strings are marked for translation:

* The shop application: the shop/product/list.html template
* The orders application: the orders/order/created.html template

* The cart application: the cart/detail.html template

Let's update the message files to include the new translation strings. Open the shell
and run the following command:

django-admin makemessages --all

The . po files inside the 1ocale directory of the myshop project and you'll see that the
orders application now contains all the strings we marked for translation.

Edit the . po translation files of the project and the orders application and include
Spanish translations. You can refer to the translated . po files in the source code that
comes along with this chapter.

Open the shell from the project directory and run the following commands:

cd orders/
django-admin compilemessages

cd ../
We have compiled the translation files for the order application.

Run the following command so that translations for applications that do not contain
a locale directory are included in the project's messages file:

django-admin compilemessages

Using the Rosetta translation interface

Rosetta is a third-party application that allows you to edit translations using the
same interface as the Django administration site. Rosetta makes it easy to edit . po
files and it updates compiled translation files. Let's add it into our project.

Install Rosetta via pip using this command:
pip install django-rosetta==0.7.6

Then, add 'rosetta’ to the INSTALLED APPS setting in your project's
settings.py file.

[305]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

You need to add Rosetta's URLs to your main URL configuration. Edit the main
urls.py file of your project and add the following URL pattern to it:

url (r'“rosetta/', include('rosetta.urls')),
Make sure you place it before the shop.urls pattern to avoid a wrong pattern match.

Open http://127.0.0.1:8000/admin/ and log in using your superuser. Then,
navigate to http://127.0.0.1:8000/rosetta/ in your browser. You should see
a list of existing languages like this:

» Language selection

b, ©roiect L e party L ojango J an)

Application Progress Messages Translated Fuzzy Obsolete File

Myshop 0.00% 32 0 0 0 (Users/zenx/Django by Example/Chapter 9 - Extending your shop/code/myshop/myshap/locale/en /LC_MESSAGES/django.po

Application Progress Messages Translated Fuzzy Obsolete File

Myshop 100.00% 32 32 0

fUsers/zenx/Django by Example/Chapter 9 - Extending your shop/code/myshop/myshap/locale/fes /LC_MESSAGES/django.po

In the Filter section, click All to display all the available message files, including
those that belong to the orders application. Click the Myshop link under the
Spanish section to edit Spanish translations. You should see a list of translation
strings as follows:

Rosetta Pick another file / Download this catalog

Home > Spanish » Myshop » Progress: 100.00%
Translate into Spanish Display: [Transiated oniy] o
Q Go|
QOriginal Spanish [-] Fuzzy Occurrences(s)
Quantity 0 cart/forms .py:11
Cantidad /‘ cart/templates/cart/detail. html:16
Your shopping cart Tu carro O cart/templates/cart/detail.html:6
p cart/templates/cart/detail.html.py:10
Image Jmagen O cart/templates/cart/detail.html:14
i
Product Producto O cart/templates/cart/detail.himl:15
i
Remove Eliminar O cart/templates/cart/detail.html:17
P cart/templates/cart/detail.html.py:4@
Unit price Precio unitario O cart/templates/cart/detail.himl:18
i
Price Precio O cart/templates/cart/detail.html:19
i
Update Actualizar O cart/templates/cart/detail.html:36
i
Subtotal Subtotal O cart/templates/cart/detail.html:49
i
. rTm 0 cart/templates/cart/detail.html:54
<td>"H(E6dEYS" coupon (RCETSEBUREISH% d<td>Cugm ‘%écode}s ((discount)s¥¥ de
off)</td> escuento)</td>
i

[306]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

You can enter the translations under the Spanish column. The Occurrences column
displays the files and line of code where each translation string was found.

Translations that include placeholders will appear like this:

%(total_items)s item¥ Hitotal_items)s productoMitotal_items_plural)s,
(total_items_plural)s, $%(total_price)s $¥(total_price)s

Rosetta uses a different background color to display placeholders. When you
translate content, make sure you keep placeholders untranslated. For example,
take the following string:

% (total items)s item% (total items plural)s, $%(total price)s
It is translated into Spanish like this:
% (total_items)s producto% (total items plural)s, $%(total price)s

You can take a look at the source code that comes along with this chapter to use
the same Spanish translations for your project.

When you finish editing translations, click the Save and translate next block button
to save the translations to the .po file. Rosetta compiles the message file when you
save translations, so there is no need for you to run the compilemessages command.
However, Rosetta requires write access to the 1ocale directories to write the
message files. Make sure the directories have valid permissions.

If you want other users to be able to edit translations, open http://127.0.0.1:8000/
admin/auth/group/add/ in your browser and create a new group named
translators. Then access http://127.0.0.1:8000/admin/auth/user/ to edit the
users you want to grant permissions to so they can edit translations. When editing

a user, under the Permissions section, add the translators group to the Chosen
Groups for each user. Rosetta is only available to superusers or users that belong

to the translators group.

You can read Rosetta's documentation at http://django-rosetta.readthedocs.
org/en/latest/.

. When you add new translations in your production environment, if you
% serve Django with a real web server, you will have to reload your server
<8 after running the compilemessages command or after saving the
translations with Rosetta for changes to take effect.

[307]

www.it-ebooks.info

http://django-rosetta.readthedocs.org/en/latest/
http://django-rosetta.readthedocs.org/en/latest/
http://www.it-ebooks.info/

Extending Your Shop

Fuzzy translations

You might have noticed that there is a Fuzzy column in Rosetta. This is not a Rosetta
feature; it is provided by gettext. If the fuzzy flag is active for a translation, it will

not be included in the compiled message files. This flag is for translation strings that
require revision from the translator. When . po files are updated with new translation
strings, it is possible that some translation strings are automatically flagged as fuzzy.
This happens when gettext finds some msgid that has been slightly modified and
gettext pairs it with what it thinks it was the old translation and flags it as fuzzy for
review. The translator should then review fuzzy translations, remove the fuzzy flag,
and compile the message file again.

URL patterns for internationalization

Django offers internationalization capabilities for URLs. It includes two main
features for internationalized URLs:

* Language prefix in URL patterns: Adding a language prefix to URLs
to serve each language version under a different base URL

* Translated URL patterns: Marking URL patterns for translation so that
the same URL is different for each language

A reason for translating URLSs is to optimize your site for search engines. By adding
a language prefix to your patterns, you will be able to index an URL for each
language instead of a single URL for all of them. Furthermore, by translating URLs
into each language, you will provide search engines with URLs that will rank better
for each language.

Adding a language prefix to URL patterns

Django allows you to add a language prefix to your URL patterns. For example, the
English version of your site can be served under a path starting by /en/ and the
Spanish version under /es/.

To use languages in URL patterns, you have to make sure that django.middleware.
locale.LocaleMiddleware appears in the MIDDLEWARE CLASSES setting in the
settings.py file. Django will use it to identify the current language from the
requested URL.

Let's add a language prefix to our URL patterns. Edit the main urls.py file of the
myshop project and add the following import:

from django.conf.urls.il8n import il8n_ patterns

[308]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Then, add i18n_patterns () as follows:

urlpatterns = il8n patterns(
url (r'*admin/', include (admin.site.urls)),
url(r'”“cart/', include('cart.urls', namespace='cart')),
url (r'"orders/', include('orders.urls', namespace='orders')),
url (r'“payment/', include ('payment.urls',

namespace='payment')),
url (r'“paypal/', include('paypal.standard.ipn.urls')),

url (r'“coupons/', include ('coupons.urls',
namespace='coupons')),

url (r'“rosetta/', include ('rosetta.urls')),

url(r'”', include('shop.urls', namespace='shop')),

)

You can combine URL patterns under patterns () and under i18n_patterns ()

so that some patterns include a language prefix and others don't. However, it's best
to use translated URLs only to avoid the possibility that a carelessly translated URL
matches a non-translated URL pattern.

Run the development server and open http://127.0.0.1:8000/ in your
browser. Since you are using the LocaleMiddleware Django will perform the steps
described in the How Django determines the current language section to determine

the current language and then it will redirect you to the same URL including the
language prefix. Take a look at the URL in your browser; it should now look like
http://127.0.0.1:8000/en/. The current language will be the one set by the
Accept-Language header of your browser if it is Spanish or English, or the default
LANGUAGE_CODE (English) defined in your settings otherwise.

Translating URL patterns

Django supports translated strings in URL patterns. You can use a different
translation for each language for a single URL pattern. You can mark URL patterns
for translation the same way you would do with literals, using the ugettext_lazy ()
function.

Edit the main urls.py file of the myshop project and add translation strings to the
regular expressions of the URL patterns for the cart, orders, payment, and coupons
applications as follows:

from django.utils.translation import gettext lazy as _

urlpatterns = i18n patterns(
url (r'*admin/', include (admin.site.urls)),

A

url((r'“cart/'), include('cart.urls', namespace='cart')),

[309]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

url(_(r'Aorders/'), include ('orders.urls',
namespace='orders')),

url(_(r'Apayment/'), include ('payment.urls',
namespace='payment')),

url (r'“paypal/', include ('paypal.standard.ipn.urls')),

url(_(r'Acoupons/'), include ('coupons.urls',
namespace='coupons')),

url (r'“rosetta/', include('rosetta.urls')),

url(r'”', include('shop.urls', namespace='shop')),

)

Edit the urls.py file of the orders application and mark URL patterns for
translation like this:

from django.conf.urls import url
from .import views
from django.utils.translation import gettext lazy as _

urlpatterns = [
url(_(r'Acreate/$'), views.order create, name='order create'),
#

1

Edit the urls.py file of the payment application and change the code into this:

from django.conf.urls import url
from . import views
from django.utils.translation import gettext lazy as _

urlpatterns = [
url (_(r'“process/$'), views.payment process, name='process'),
url(_ (r'”“done/$'), views.payment done, name='done'),
url(_ (r'”canceled/$"'),
views.payment canceled,
name="'canceled'),

]

We don't need to translate the URL patterns of the shop application since they are
built with variables and do not include any other literals.

Open the shell and run the next command to update the message files with the new
translations:

django-admin makemessages --all

[310]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Make sure the development server is running. Open http://127.0.0.1:8000/en/
rosetta/ in your browser and click the Myshop link under the Spanish section.
You can use the display filter to see only the strings that have not been translated
yet. Make sure you keep the special characters of regular expressions in your URL
translations. Translating URLSs is a delicate task; if you alter the regular expression,
you can break the URL.

Allowing users to switch language

Since we are serving content that is available in multiple languages, we should let
our users switch the site's language. We are going to add a language selector to our
site. The language selector will consist of a list of available languages, which are
displayed using links.

Edit the shop/base . html template and find the following lines:

<div id="header"s
{% trans "My shop" %}
</divs>

Replace them with the following code:

<div id="header"s>
{% trans "My shop" %}

{% get_current language as LANGUAGE CODE %}
{% get_available languages as LANGUAGES %}
{% get language info list for LANGUAGES as languages %}
<div class="languages">
<p>{% trans "Language" %}:</p>
<ul class="languages">
{% for language in languages %}

<a href="/{{ language.code }}/" {% if language.code ==
LANGUAGE CODE %} class="selected"{% endif %}»>
{{ language.name local }}

</1li>
{% endfor %}

</div>

</div>

[311]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

This is how we build our language selector:

First we load the internationalization tags using {% load i18n %}.

We use the {% get_current_language %} tag to retrieve the
current language.

3. We get the languages defined in the LANGUAGES setting using the
{% get_available_languages %} template tag.

4. We use the tag {% get_language info_list %} to provide easy access
to the language attributes.

5. We build an HTML list to display all available languages and we add a
selected class attribute to the current active language.

We use the template tags provided by i18n based on the languages available in
the settings of your project. Now open http://127.0.0.1:8000/ in your browser
and take a look. You should see the language selector at the top right of the site

as follows:

My shop Language: English Spanish

Your cart: 4 items, $95,80

Users can now easily switch their language.

Translating models with django-parler

Django does not provide a solution for translating models out of the box. You have to
implement your own solution to manage content stored in different languages or use
a third-party module for model translation. There are several third-party applications
that allow you to translate model fields. Each of them takes a different approach to
storing and accessing translations. One of these applications is django-parler. This
module offers a very effective way to translate models and it integrates smoothly
with Django's administration site.

django-parler generates a separate database table for each model that contains
translations. This table includes all the translated fields and a foreign key for the
original object the translation belongs to. It also contains a language field, since
each row stores the content for one single language.

[312]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Installing django-parler

Install django-parler via pip using the following command:
pip install django-parler==1.5.1

Then, edit the settings.py file of your project and add 'parler' to the
INSTALLED APPS setting. Add also the following code to your settings file:

PARLER LANGUAGES = {

None: (
{'code': 'en',},
{tcode': 'es',},

)

'default': {
'fallback': 'en',
'hide_untranslated': False,

}

This setting defines the available languages en and es for django-parler. We
specify the default language en and we indicate that django-parler should
not hide untranslated content.

Translating model fields

Let's add translations for our product catalog. django-parler provides a
TranslatedModel model class and a TranslatedFields wrapper to translate
model fields. Edit the models. py file inside the shop application directory and
add the following import:

from parler.models import TranslatableModel, TranslatedFields

Then, change the category model to make the name and slug fields translatable.
We are keeping also the non-translated fields for now:

class Category(TranslatableModel) :
name = models.CharField(max length=200, db_index=True)
slug = models.SlugField(max length=200,
db index=True,
unique=True)
translations = TranslatedFields (
name = models.CharField(max length=200,
db index=True),
slug = models.SlugField(max length=200,
db index=True,
unique=True)

[313]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

The category model inherits now from TranslatedModel instead of models.Model.
and both the name and s1lug fields are included in the TranslatedFields wrapper.

Edit the Product model to add translations for the name, slug, and description
fields as follows. Also keep the non-translated fields for now:

class Product (TranslatableModel) :
name = models.CharField(max length=200, db_index=True)
slug = models.SlugField(max length=200, db_index=True)
description = models.TextField (blank=True)
translations = TranslatedFields (
name = models.CharField(max length=200, db index=True),
slug = models.SlugField(max length=200, db index=True),
description = models.TextField(blank=True)
)
category = models.ForeignKey (Category,
related name='products')
image = models.ImageField (upload to='products/%$Y/%m/%d',
blank=True)
price = models.DecimalField(max digits=10, decimal places=2)
stock = models.PositiveIntegerField()
available = models.BooleanField(default=True)
created = models.DateTimeField (auto now_add=True)
updated = models.DateTimeField (auto_now=True)

django-parler generates another model for each translatable model. In the following
image, you can see the fields of the Product model and what the generated
ProductTranslation model will look like:

id ProductTranslation

category :
image id

price name

stock slug o
available description
created Taguage_code
updated master

translations

[314]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The ProductTranslation model generated by django-parler includes the

name, slug, and description translatable fields, a 1anguage code field, and a
ForeignKey for the master product object. There is a one-to-many relationship from
Product to ProductTranslation. A ProductTranslation object will exist for each
available language of each Product object.

Since Django uses a separate table for translations, there are some Django features
that we cannot use. It is not possible to use a default ordering by a translated field.
You can filter by translated fields in queries, but you cannot include a translatable
field in the ordering Meta options. Edit the models.py file of the shop application
and comment out the ordering attribute of the category Meta class:

class Meta:
ordering = ('name',)
verbose name = 'category'
verbose_name_plural = 'categories'

We also have to comment out the index_together attribute of the Product Meta
class, since the current version of django-parler does not provide support to validate
it. Edit the Product Meta class and make it look like this:

class Meta:
ordering = ('-created',)
index together = (('id', 'slug'),)

You can read more about django-parler's compatibility with Django at
http://django-parler.readthedocs.org/en/latest/compatibility.html.

Creating a custom migration

When you create new models with translations, you need to execute
makemigrations to generate migrations for the models and then migrate to sync
changes to the database. However, when making existing fields translatable, you
probably have existing data in your database that you want to keep. We are going
to migrate our current data into the new translation models. Therefore, we have
added the translated fields but we have intentionally kept the original fields.

The steps to add translations to existing fields are the following;:
1. We create the migration for the new translatable model fields, keeping the
original fields.

2. We build a custom migration to copy data from existing fields into
translation models.

3. We remove the existing fields from the original models.

[315]

www.it-ebooks.info

http://django-parler.readthedocs.org/en/latest/compatibility.html
http://www.it-ebooks.info/

Extending Your Shop

Run the following command to create the migration for the translation fields we have
added to the category and Product models:

python manage.py makemigrations shop --name "add translation model"

You should see the following output:

Migrations for 'shop':
0002_add translation model.py:
- Create model CategoryTranslation
- Create model ProductTranslation
- Change Meta options on category
- Alter index together for product (0 constraint (s))
- Add field master to producttranslation
- Add field master to categorytranslation
- Alter unique together for producttranslation (1 constraint (s))
- Alter unique together for categorytranslation (1 constraint(s))

Migrating existing data
Now we need to create a custom migration to copy existing data into the new
translation models. Create an empty migration using this command:

python manage.py makemigrations --empty shop --name "migrate
translatable fields"

You will get the following output:

Migrations for 'shop':
0003 _migrate translatable fields.py

Edit the shop/migrations/0003 migrate translatable fields.py file and add
the following code to it:

-*- coding: utf-8 -*-
from _ future import unicode_literals
from django.db import models, migrations
from django.apps import apps
from django.conf import settings
from django.core.exceptions import ObjectDoesNotExist

translatable models = {
'Category': ['name', 'slug'],
'Product': ['name',6 'slug',6 'description'],

[316]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

def forwards func(apps, schema editor):
for model, fields in translatable models.items() :
Model = apps.get model ('shop', model)
ModelTranslation = apps.get model ('shop',

"{}Translation'.format (model))

for obj in Model.objects.all() :

translation fields = {field: getattr(obj, field) for field
in fields}

translation = ModelTranslation.objects.create (
master id=obj.pk,
language code=settings.LANGUAGE CODE,
**translation fields)

def backwards func(apps, schema editor) :
for model, fields in translatable models.items() :
Model = apps.get model ('shop', model)
ModelTranslation = apps.get model ('shop',

"{}Translation'.format (model))

for obj in Model.objects.all() :

translation = get translation(obj, ModelTranslation)
for field in fields:

setattr(obj, field, getattr(translation, field))
obj.save ()

def get translation(obj, MyModelTranslation) :

translations = MyModelTranslation.objects.filter (master id=obj.pk)
try:

Try default translation

return translations.get (language code=settings.LANGUAGE CODE)
except ObjectDoesNotExist:

Hope there is a single translation
return translations.get ()

class Migration(migrations.Migration) :
dependencies = [

("shop', '0002 add translation model'),
1

operations = [

migrations.RunPython (forwards func, backwards func),

[317]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

This migration includes forwards_func () and backwards_func () functions that
contain the code to be executed to apply/reverse the migration.

The migration process works as follows:

1. We define the models and their translatable fields in the translatable
models dictionary.

2. To apply the migration, we iterate over the models that include translations
to get the model and its translatable model classes with app.get_model ().

3. We iterate over all existing objects in the database and create a translation
object for the LANGUAGE_CODE defined in the project's settings. We include a
ForeignKey to the original object and a copy for each translatable field from
the original fields.

The backward function executes the reverse process, retrieving the default translation
object and copying the translatable fields' values back into the original object.

We have created a migration to add translation fields, then a migration to copy
content from existing fields into the new translation models.

Finally, we need to remove the original fields we don't need anymore. Edit the
models. py file of the shop application and remove the name and s1ug fields of
the category model. The category model fields should now look as follows:

class Category(TranslatableModel) :
translations = TranslatedFields (
name = models.CharField(max length=200, db_index=True),
slug = models.SlugField(max length=200,
db_index=True,
unique=True)

)

Remove the name, slug, and description fields of the Product model. It should
now look like this:

class Product (TranslatableModel) :

translations = TranslatedFields (
name = models.CharField(max length=200, db_index=True),
slug = models.SlugField(max length=200, db index=True),
description = models.TextField (blank=True)

)

category = models.ForeignKey (Category,

related name='products')
image = models.ImageField (upload to='products/%$Y/%m/%d',
blank=True)

[318]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

price = models.DecimalField(max digits=10, decimal places=2)
stock = models.PositiveIntegerField()

available = models.BooleanField(default=True)

created = models.DateTimeField (auto now_ add=True)

updated = models.DateTimeField(auto now=True)

Now we have to create a final migration that reflects this model change. However, if
we try to run the manage . py utility, we will get an error because we haven't adapted
the administration site for the translatable models yet. Let's fix the administration
site first.

Integrating translations in the administration site

Django-parler integrates smoothly with the Django administration site. It includes a
TranslatableAdmin class that overrides the ModelAdmin class provided by Django
to manage model translations.

Edit the admin. py file of the shop application and add the following import to it:

from parler.admin import TranslatableAdmin

Modify the CategoryAdmin and ProductAdmin classes to inherit from
TranslatableAdmin instead of ModelAdmin. Django-parler doesn't support the
prepopulated fields attribute yet, but it does support the get_prepopulated
fields () method that provides the same functionality. Let's change this
accordingly. The admin. py file should now look like this:

from django.contrib import admin
from .models import Category, Product
from parler.admin import TranslatableAdmin

class CategoryAdmin (TranslatableAdmin) :
list display = ['name', 'slug']

def get prepopulated fields(self, request, obj=None):
return {'slug': ('name’,)}

admin.site.register (Category, CategoryAdmin)

class ProductAdmin (TranslatableAdmin) :

list display = ['name', 'slug',6 'category',6 'price',K 'stock',
'available', 'created',6 ‘'updated']
list filter = ['available', 'created',K 'updated',K 'category']
list editable = ['price', 'stock',6 'available']
[319]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

def get prepopulated fields(self, request, obj=None):
return {'slug': ('name',)}

admin.site.register (Product, ProductAdmin)

We have adapted the administration site to work with the new translated models.
We can now sync the database with the model changes we made.

Applying migrations for model translation

We removed the old fields from our models before adapting the administration site.
Now we need to create a migration for this change. Open the shell and run
the following command:

python manage.py makemigrations shop --name "remove untranslated fields"

You will see the following output:

Migrations for 'shop':
0004 _remove untranslated fields.py:
- Remove field name from category
- Remove field slug from category
- Remove field description from product
- Remove field name from product
- Remove field slug from product

With this migration, we are going to remove the original fields and keep the
translatable fields.

In summary, we have created the following migrations:

1. Added translatable fields to models.
2. Migrated existing data from the original fields to the translatable fields.

3. Removed the original fields from the models.

Run the following command to apply the three migrations we have created:

python manage.py migrate shop

You will an output that includes the following lines:

Applying shop.0002 add translation model... OK

Applying shop.0003 migrate translatable fields... OK

Applying shop.0004 remove untranslated fields... OK
[320]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Our models are now synchronized with the database. Let's translate an object.

Run the development server using python manage.py runserver and open
http://127.0.0.1:8000/en/admin/shop/category/add/ in your browser. You
will see that the Add category page includes two different tabs, one for English and
one for Spanish translations:

Djal'lgo adml nistration Welcome, admin. View site / Change password / Log out

Home » Shop » Categories » Add category
Add category (English)
English 5

Name:

Slug:

Save and add another Save and continue editing m

You can now add a translation and click the Save button. Make sure you save the
changes before you change the tab or you will lose them.

Adapting views for translations

We have to adapt our shop views to use translations QuerySets. Run python
manage.py shell from the command line and take a look at how you can retrieve
and query translation fields. To get a field's content for the current active language,
you just have to access the field the same way you access any normal model field:

>>> from shop.models import Product
>>> product=Product.objects.first ()
>>> product.name

'Black tea'

When you access translated fields, they are resolved using the current language.
You can set a different current language for an object so that you access that
specific translation:

>>> product.set current_ language('es')
>>> product.name

'Té negro'

>>> product.get current language ()

1 es 1

[321]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

When performing a QuerySet using filter (), you can filter using the related
translation objects with the translations__ syntax as follows:

>>> Product.objects.filter (translations name='Black tea')

[<Product: Black tea>]

You can also use the 1anguage () manager to set a specific language for the objects
retrieved as follows:

>>> Product.objects.language('es') .all()

[<Product: Té negro>, <Product: Té en polvo>, <Product: Té rojo>,
<Product: Té verde>]

As you can see, the way to access and query translated fields is quite straightforward.

Let's adapt the product catalog views. Edit the views.py file of the shop application
and in the product_1list view, find the following line:

category = get object or 404 (Category, slug=category slug)
Replace it with the following ones:

language = request.LANGUAGE CODE

category = get object or 404 (Category,
translations language code=language,
translations slug=category slug)

Then, edit the product_detail view and find the following lines:

product = get object or 404 (Product,
id=id,
slug=slug,
available=True)

Replace them with the following code:

language = request.LANGUAGE CODE

get object or 404 (Product,
id=id,
translations language code=language,
translations slug=slug,
available=True)

The product_list and product_detail views are now adapted to retrieve
objects using translated fields. Run the development server and open
http://127.0.0.1:8000/es/ in your browser. You should see the product
list page, including all products translated into Spanish:

[322]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Mi tienda Idioma: Inglés Espafiol

Tu carro esta vacio.

) Productos
Categorias
Todos
AL NO IMAGE
AVAILABLE
—]
Té negro Té en polvo Té rojo
$32,20 $21,20 $45,50

Té verde
$30,00

Now each product's URL is built using the s1lug field translated into the current
language. For example, the URL for a product in Spanish is http://127.0.0.1:8000/
es/2/te-rojo/, whereas in English the URL is http://127.0.0.1:8000/en/2/red-
tea/. If you navigate to a product detail page, you will see the translated URL and the
contents for the selected language, like the following example:

Mi tienda Idioma: Inglés Espafiol
Tu carro esta vacio.

Té rojo

Té

$45,50

Cantidad: 1 Afiadir al carro

Té Pu Erh (rojo) con un proceso especial de fermentecion. Producido en
Yunnan, provincia del sur de China, conocida como la regién de la
"eterna primavera’. Las hojas de té previamente procesadas, se
almacenan en grandes bodegas oscuras como minimo un afio.

[323]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

If you want to know more about django-parler, you can find the full documentation
at http://django-parler.readthedocs.org/en/latest/.

You have learned how to translate Python code, templates, URL patterns, and model
fields. To complete the internationalization and localization process, we need to
display localized formatting for dates, times, and numbers.

Format localization

Depending on the user's locale, you might want to display dates, times, and numbers
in different formats. The localized formatting can be activated by changing the
USE_L10N setting to True in the settings.py file of your project.

When USE_L10N is enabled, Django will try to use a locale specific format whenever
it outputs a value in a template. You can see that decimal numbers in the English
version of your site are displayed with a dot separator for decimal places, while

in the Spanish version they are displayed using a comma. This is due to the locale
formats specified for the es locale by Django. You can take a look at the Spanish
formatting configuration at https://github.com/django/django/blob/
stable/1.8.x/django/conf/locale/es/formats.py.

Normally, you will set the USE_L10N setting to True and let Django apply the format
localization for each locale. However, there might be situations in which you don't
want to use localized values. This is especially relevant when outputting JavaScript
or JSON that has to provide a machine-readable format.

Django offers a {% localize %} template tag that allows you to turn on/off
localization for template fragments. This gives you control over localized formatting.
You will have to load the 110n tags to be able to use this template tag. The following
is an example of how to turn on and off localization in a template:

{$ load 110n %}
{%$ localize on %}
{{ value }}

{%$ endlocalize %}
{%$ localize off %}

{{ value }}
{%$ endlocalize %}

[324]

www.it-ebooks.info

http://django-parler.readthedocs.org/en/latest/
https://github.com/django/django/blob/stable/1.8.x/django/conf/locale/es/formats.py
https://github.com/django/django/blob/stable/1.8.x/django/conf/locale/es/formats.py
http://www.it-ebooks.info/

Chapter 9

Django also offers the localize and unlocalize template filters to force or avoid
localization of a value. These filters can be applied as follows:

{{ value|localize }}
{{ value|unlocalize }}

You can also create custom format files to specify locale formatting. You can find
further information about format localization at https://docs.djangoproject.
com/en/1.8/topics/il8n/formatting/.

Using django-localflavor to validate
form fields

django-localflavor is a third-party module that contains a collection of specific utils,
such as form fields or model fields that are specific for each country. It's very useful
to validate local regions, local phone numbers, identity card numbers, social security
numbers, and so on. The package is organized into a series of modules named after
ISO 3166 country codes.

Install django-localflavor using the following command:

pip install django-localflavor==1.1

Edit the settings.py file of your project and add 'localflavor' to the
INSTALLED APPS setting.

We are going to add a United States (U.S.) zip code field so that a valid U.S. zip
code is required to create a new order.

Edit the forms. py file of the orders application and make it look as follows:

from django import forms
from .models import Order
from localflavor.us.forms import USZipCodeField

class OrderCreateForm(forms.ModelForm) :
postal code = USZipCodeField()
class Meta:
model = Order

fields = ['first name', 'last name',6 'email',6 'address',
'postal code', 'city',]
[325]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/i18n/formatting/
https://docs.djangoproject.com/en/1.8/topics/i18n/formatting/
http://www.it-ebooks.info/

Extending Your Shop

We import the UszipCodeField field from the us package of localflavor

and use it for the postal_code field of the OrderCreateForm form. Open
http://127.0.0.1:8000/en/orders/create/ in your browser and try to enter
a 3-letter postal code. You will get the following validation error that is raised
by USzZipCodeField:

Enter a zip code in the format XXXXX or XXXXX-XXXX.

This is just a brief example of how to use a custom field from localflavor in your
own project for validation purposes. The local components provided by localflavor
are very useful to adapt your application to specific countries. You can read the
django-localflavor documentation and see all available local components for each
country at https://django-localflavor.readthedocs.org/en/latest/.

Next, we are going to build a recommendation engine into our shop.

Building a recommendation engine

A recommendation engine is a system that predicts the preference or rating that a user
would give to an item. The system selects relevant items for the users based on their
behavior and the knowledge it has about them. Nowadays, recommendation systems
are used in many online services. They help users by selecting the stuff they might be
interested in from the vast amount of available data irrelevant to them. Offering good
recommendations enhances user engagement. E-commerce sites also benefit from
offering relevant product recommendations by increasing their average sale.

We are going to create a simple yet powerful recommendation engine that suggests
products that are usually bought together. We will suggest products based on
historic sales, thus identifying products that are usually bought together. We are
going to suggest complementary products in two different scenarios:

* Product detail page: We will display a list of products that are usually
bought with the given product. This will be displayed like: Users who
bought this also bought X, Y, Z. We need a data structure that allows us to
store the number of times that each product has been bought together with
the product being displayed.

* Cart detail page: Based on the products users add to the cart, we are going
to suggest products that are usually bought together with these ones. In this
case, the score we calculate to obtain related products has to be aggregated.

We are going to use Redis to store products that are purchased together. Remember
that you already used Redis in Chapter 6, Tracking User Actions. If you haven't
installed Redis yet, you can find installation instructions in that chapter.

[326]

www.it-ebooks.info

https://django-localflavor.readthedocs.org/en/latest/
http://www.it-ebooks.info/

Chapter 9

Recommending products based on previous
purchases

Now, we will recommend products to users based on what they have added to the
cart. We are going to store a key in Redis for each product bought in our site. The
product key will contain a Redis sorted set with scores. We will increment the score
by 1 for each product bought together every time a new purchase is completed.

When an order is successfully paid for, we store a key for each product bought,
including a sorted set of products that belong to the same order. The sorted set
allows us to give scores for products that are bought together.

Edit the settings.py file of your project and add the following settings to it:

'localhost!'
6379

REDIS_ HOST
REDIS_ PORT
REDIS DB = 1

These are the settings required to establish a connection with the Redis server. Create
a new file inside the shop application directory and name it recommender.py. Add
the following code to it:

import redis
from django.conf import settings
from .models import Product

connect to redis

r = redis.StrictRedis (host=settings.REDIS_ HOST,
port=settings.REDIS_ PORT,
db=settings.REDIS_DB)

class Recommender (object) :

def get product_key(self, id):
return 'product:{}:purchased with'.format (id)

def products_bought (self, products) :
product_ids = [p.id for p in products]
for product_id in product_ids:
for with_id in product_ids:
get the other products bought with each product
if product_id != with_ id:
increment score for product purchased together
r.zincrby (self.get product_ key(product_id),
with id,
amount=1)

[327]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

This is the Recommender class that will allow us to store product purchases
and retrieve product suggestions for a given product or products. The get_
product_key () method receives an id of a Product object and builds the
Redis key for the sorted set where related products are stored, which looks like
product: [id] :purchased with.

The products_bought () method receives a list of Product objects that have been
bought together (that is, belong to the same order). In this method, we perform the
following tasks:

1. We get the product IDs for the given product objects.

2. We iterate over the product IDs. For each id, we iterate over the product
IDs and skip the same product so that we get the products that are bought
together with each product.

3. We get the Redis product key for each product bought using the
get_product_id () method. For a product with an ID of 33, this method
returns the key product : 33 :purchased_with. This is the key for the sorted
set that contains the product IDs of products that were bought together with
this one.

4. We increment the score of each product id contained in the sorted set by 1.
The score represents the times another product has been bought together
with the given product.

So we have a method to store and score the products that were bought together.
Now we need a method to retrieve the products that are bought together for a list
of given products. Add the following suggest_products_for () method to the
Recommender class:

def suggest products for(self, products, max results=6):
product ids = [p.id for p in products]
if len(products) == 1:
only 1 product
suggestions = r.zrange (
self.get product key(product ids[0]),
0, -1, desc=True) [:max results]
else:
generate a temporary key
flat ids = ''.join([str(id) for id in product ids])
tmp _key = 'tmp {}'.format (flat_ ids)
multiple products, combine scores of all products
store the resulting sorted set in a temporary key
keys = [self.get product key(id) for id in product_ ids]
r.zunionstore (tmp key, keys)

[328]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

remove ids for the products the recommendation is for
r.zrem(tmp key, *product ids)
get the product ids by their score, descendant sort
suggestions = r.zrange(tmp key, 0, -1,
desc=True) [:max_results]
remove the temporary key
r.delete (tmp key)
suggested products ids = [int(id) for id in suggestions]

get suggested products and sort by order of appearance
suggested products = list (Product.objects.filter(id in=suggested

products_ids))

suggested products.sort (key=lambda x: suggested products ids.

index (x.id))

return suggested products

The suggest_products_for () method receives the following parameters:

products: This is a list of Product objects to get recommendations for. It can
contain one or more products.

max_results: This is an integer that represents the maximum number of
recommendations to return.

In this method, we perform the following actions:

We get the product IDs for the given Product objects.

If only one product is given, we retrieve the ID of the products that were
bought together with the given product, ordered by the total number of times
that they were bought together. To do so, we use Redis' ZRANGE command.
We limit the number of results to the number specified in the max_results
attribute (6 by default).

If more than one product is given, we generate a temporary Redis key built
with the IDs of the products.

We combine and sum all scores for the items contained in the sorted set
of each of the given products. This is done using the Redis' ZUNIONSTORE
command. The ZUNIONSTORE command performs a union of the sorted
sets with the given keys, and stores the aggregated sum of scores of the
elements in a new Redis key. You can read more about this command at
http://redis.io/commands/ZUNIONSTORE. We save the aggregated
scores in the temporary key.

[329]

www.it-ebooks.info

http://redis.io/commands/ZUNIONSTORE
http://www.it-ebooks.info/

Extending Your Shop

5. Since we are aggregating scores, we might obtain the same products we are
getting recommendations for. We remove them from the generated sorted
set using the ZREM command.

6. We retrieve the IDs of the products from the temporary key, ordered by
their score using the ZRANGE command. We limit the number of results to
the number specified in the max_results attribute. Then we remove the
temporary key.

7. Finally, we get the product objects with the given id and we order the
products by the same order as the them.

For practical purposes, let's also add a method to clear the recommendations.
Add the following method to the Recommender class:

def clear purchases(self):
for id in Product.objects.values list('id', flat=True):
r.delete(self.get product key(id))

Let's try our recommendation engine. Make sure you include several Product objects
in the database and initialize the Redis server using the following command from
the shell:

src/redis-server

Open another shell, execute python manage.py shell, and write the following code
to retrieve several products:

from shop.models import Product

black tea = Product.objects.get (translations name='Black tea')
red tea = Product.objects.get (translations name='Red tea')
green_tea = Product.objects.get (translations name='Green tea')
tea powder = Product.objects.get (translations_name='Tea powder')

Then, add some test purchases to the recommendation engine:

from shop.recommender import Recommender
= Recommender ()
.products_bought ([black tea, red teal)
.products_bought ([black tea, green teal)
.products_bought ([red tea, black tea, tea powderl])
.products_bought ([green tea, tea powder])

.products_bought ([black tea, tea powder])

R B B B R K R

(
(
(
(
(
(

.products_bought ([red tea, green teal)

[330]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

We have stored the following scores:

black tea: red tea (2), tea powder (2), green tea (1)
red_tea: black tea (2), tea powder (1), green tea (1)
green tea: black tea (1), tea powder (1), red tea(l)

tea powder: black tea (2), red tea (1), green tea (1)

Let's take a look at the recommended products for a single product:

>>> r.suggest products for([black teal)

[<Product: Tea powder>, <Product: Red tea>, <Product: Green teas>]
>>> r.suggest products for([red tea])

[<Product: Black tea>, <Product: Tea powder>, <Product: Green teasx]
>>> r.suggest products for([green tea])

[<Product: Black tea>, <Product: Tea powder>, <Product: Red teas>]
>>> r.suggest products for([tea powder])

[<Product: Black tea>, <Product: Red tea>, <Product: Green tea>]

As you can see, the order for recommended products is based on their score. Let's get
recommendations for multiple products with aggregated scores:

>>> r.suggest products for([black tea, red teal)
[<Product: Tea powder>, <Product: Green teas>]

>>> r.suggest products for([green tea, red teal)
[<Product: Black tea>, <Product: Tea powders>]

>>> r.suggest products for([tea powder, black tea])
[<Product: Red tea>, <Product: Green tea>]

You can see that the order of the suggested products matches the aggregated scores.
For example, products suggested for black_tea and red_tea are tea_powder (2+1)
and green_tea (1+1).

We have verified that our recommendation algorithm works as expected. Let's
display recommendations for products on our site.

Edit the views. py file of the shop application and add the following import:

from .recommender import Recommender

[331]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

Add the following code to the product_detail view just before the render ()
function:

r = Recommender ()
recommended products = r.suggest products for([product], 4)

We get a maximum of four product suggestions. The product_detail view should
now look as follows:

from .recommender import Recommender

def product detail (request, id, slug):
product = get object or 404 (Product,
id=id,
slug=slug,
available=True)
cart_product form = CartAddProductForm/()
r = Recommender ()
recommended products = r.suggest products for([product], 4)
return render (request,
'shop/product/detail .html',
{'product': product,
'cart _product form': cart product_ form,
'recommended products': recommended products})

Now edit the shop/product/detail.html template of the shop application and add
the following code after {{ product.description|linebreaks }}:

{%$ if recommended products %}
<div class="recommendations">
<h3>{% trans "People who bought this also bought" %}</h3>
{% for p in recommended products %}
<div class="item">

<img src="{% if p.image %}{{ p.image.url }}{% else %}{
static "img/no image.png" %}{% endif %}">

<p>{{ p.name }}</p>
</div>

o\°

)

{% endfor %}
</div>
{% endif %}

[332]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Run the development server with the command python manage.py runserver and
open http://127.0.0.1:8000/en/ in your browser. Click on any product to see its
details page. You should see that recommended products are displayed below the

product, as shown in the following image:

Green tea
Tea

$30.00

People who bought this also bought

NO IMAGE . .

AVAILABLE

Black tea Tea powder Red tea

We are also going to include product recommendations in the cart. The

recommendation will be based on the products that the user has added to the cart.
Edit the views.py inside the cart application directory and add the following import:

from shop.recommender import Recommender

Then, edit the cart_detail view to make it look as follows:

def cart detail (request) :
cart = Cart (request)
for item in cart:
item['update quantity form'] = CartAddProductForm

initial={'quantity': item['quantity'],

'update': True})
coupon_apply form = CouponApplyForm/()

r = Recommender ()
cart products = [item['product'] for item in cart]

recommended products = r.suggest products for(cart products,

max results=4)

[333]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Shop

return render (request,
'cart/detail.html’',
{rcart': cart,
'coupon_apply form': coupon apply form,
'recommended products': recommended products})

Edit the cart/detail.html template of the cart application and add the following
code just after the </table> HTML tag:

{$ if recommended products %}
<div class="recommendations cart"x>
<h3>{% trans "People who bought this also bought" %}</h3>
{$ for p in recommended products %}
<div class="item">

<img src="{% if p.image %}{{ p.image.url }}{% else %}{
static "img/no_image.png" %}{% endif %}">

<p>{{ p.name }}</p>
</div>
{% endfor %}
</div>
{% endif %}

o°

Open http://127.0.0.1:8000/en/ in your browser and add a couple of products
to your cart. When you navigate to http://127.0.0.1:8000/en/cart/, you should
see the aggregated product recommendations for the items in the cart as follows:

Your shopping cart

el

Tea powder 1 m

Red tea 1

People who bought this also bought

Black tea Green tea

[334]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Congratulations! You have built a complete recommendation engine using Django
and Redis.

Summary

In this chapter, you created a coupon system using sessions. You learned how
internationalization and localization work. You also built a recommendation
engine using Redis.

In the next chapter, you will start a new project. You will build an e-learning
platform with Django using class-based views and you will create a custom
content management system.

[335]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

Building an e-Learning
Platform

In the previous chapter, you added internationalization to your online shop project.
You also built a coupon system and a product recommendation engine. In this
chapter, you will create a new project. You will build an e-Learning platform
creating a custom content management system.

In this chapter, you will learn how to:

* Create fixtures for your models

* Use model inheritance

* Create custom model fields

* Use class-based views and mixins

* Build formsets

* Manage groups and permissions

* Create a content management system

Creating an e-Learning platform

Our last practical project will be an e-Learning platform. In this chapter, we are going
to build a flexible Content Management System (CMS) that allows instructors to
create courses and manage their contents.

First, create a virtual environment for your new project and activate it with the
following commands:

mkdir env
virtualenv env/educa

source env/educa/bin/activate

[337]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Install Django in your virtual environment with the following command:
pip install Django==1.8.6

We are going to manage image uploads in our project, so we also need to install
Pillow with the following command:

pip install Pillow==2.9.0

Create a new project using the following command:

django-admin startproject educa

Enter the new educa directory and create a new application using the following
commands:

cd educa

django-admin startapp courses

Edit the settings.py file of the educa project and add courses to the
INSTALLED_APPS setting as follows:

INSTALLED APPS = (
'courses',
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles’',

)

The courses application is now active for the project. Let's define the models for
courses and course contents.

Building the course models

Our e-Learning platform will offer courses in various subjects. Each course will be
divided into a configurable number of modules, and each module will contain a
configurable number of contents. There will be contents of various types: text, file,
image, or video. The following example shows what the data structure of our course
catalog will look like:

Subject 1
Course 1
Module 1
Content 1 (image)

[338]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Content 3 (text)
Module 2

Content 4 (text)

Content 5 (file)

Content 6 (video)

Let's build the course models. Edit the models. py file of the courses application and
add the following code to it:

from django.db import models
from django.contrib.auth.models import User

class Subject (models.Model) :
title = models.CharField(max length=200)
slug = models.SlugField(max length=200, unique=True)

class Meta:
ordering = ('title',)

def str (self):
return self.title

class Course (models.Model) :
owner = models.ForeignKey (User,
related name='courses_created')

subject = models.ForeignKey (Subject,

related name='courses')
title = models.CharField(max length=200)
slug = models.SlugField(max length=200, unique=True)
overview = models.TextField()
created = models.DateTimeField(auto_now_add=True)

class Meta:
ordering = ('-created',)

def str (self):
return self.title

class Module (models.Model) :
course = models.ForeignKey (Course, related name='modules')
title = models.CharField(max length=200)
description = models.TextField (blank=True)

def str (self):
return self.title

[339]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

These are the initial Subject, Course, and Module models. The course model fields
are as follows:
e owner: The instructor that created this course.

* subject: The subject that this course belongs to. A ForeignKey field that
points to the Subject model.

* title: The title of the course.
* slug: The slug of the course. This will be used in URLs later.

e overview: Thisis a TextField column to include an overview about
the course.

* created: The date and time when the course was created. It will be
automatically set by Django when creating new objects because of
auto_now_add=True.

Each course is divided into several modules. Therefore, the Module model contains
a ForeignKey field that points to the Course model.

Open the shell and run the following command to create the initial migration for
this app:

python manage.py makemigrations
You will see the following output:

Migrations for 'courses':
0001 initial.py:
- Create model Course
- Create model Module
- Create model Subject
- Add field subject to course

Then, run the following command to apply all migrations to the database:
python manage.py migrate

You should see an output including all applied migrations, including those of
Django. The output will contain the following line:

Applying courses.0001 _initial... OK

This tells us that the models of our courses app have been synced to the database.

[340]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Registering the models in the administration
site

We are going to add the course models to the administration site. Edit the admin. py
file inside the courses application directory and add the following code to it:

from django.contrib import admin
from .models import Subject, Course, Module

@admin.register (Subject)

class SubjectAdmin (admin.ModelAdmin) :
list display = ['title', 'slug'l
prepopulated fields = {'slug': ('title',)}

class ModuleInline (admin.StackedInline) :
model = Module

@admin.register (Course)
class CourseAdmin (admin.ModelAdmin) :

list display = ['title', 'subject', 'created']
list filter = ['created', 'subject']

search fields = ['title', 'overview']
prepopulated fields = {'slug': ('title',)}
inlines = [ModuleInline]

The models for the course application are now registered in the administration site.
We use the @admin.register () decorator instead of the admin.site.register()
function. Both provide the same functionality.

Providing initial data for models

Sometimes you might want to pre-populate your database with hard-coded data.
This is useful to automatically include initial data in the project setup instead of
having to add it manually. Django comes with a simple way to load and dump
data from the database into files that are called fixtures.

Django supports fixtures in JSON, XML, or YAML formats. We are going to create a
fixture to include some initial subject objects for our project.

First, create a superuser using the following command:

python manage.py createsuperuser

[341]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Then, run the development server using the following command:

python manage.py runserver

Now, open http://127.0.0.1:8000/admin/courses/subject/ in your browser.
Create several subjects using the administration site. The list display page should
look as follows:

Django adml nistration Welcome, admin. View site / Change password / Log out

Home » Courses » Subjects
Select subject to change Add subject +

Action: [emeasa=as 4/ Go| 0 of 4 selected
| Title a | Slug
—| Mathematics mathematics
~] Music music
| Physics physics
—| Programming programming
4 subjects

Run the following command from the shell:

python manage.py dumpdata courses --indent=2

You will see an output similar to the following;:

"fields": {
"title": "Programming',
"slug": "programming"
b
"model": "courses.subject",
"pkv: 1
b
{
"fields": {
"title": "Mathematics",
"slug": "mathematics"
b
"model": "courses.subject",
"pk': 2
b
{

[342]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

"fields": {
"title": "Physics",
"slug": "physics"

b

"model": "courses.subject",
"pk": 3
b
{
"fields": {
"title": "Music",
"slug": "music"
I
"model": "courses.subject",
"pk": 4

}
]

The dumpdata command dumps data from the database into the standard output,
serialized in JSON by default. The resulting data structure includes information
about the model and its fields for Django to be able to load it into the database.

You can provide names of applications to the command or specify models for
outputting data using the app . Model format. You can also specify the format using
the - - format flag. By default, dumpdata outputs the serialized data to the standard
output. However, you can indicate an output file using the - -output flag. The
--indent flag allows you to specify indentation. For more information on dumpdata
parameters, run python manage.py dumpdata --help.

Save this dump to a fixtures file into a fixtures/ directory in the orders application
using the following commands:

mkdir courses/fixtures

python manage.py dumpdata courses --indent=2 --output=courses/fixtures/
subjects.json

Use the administration site to remove the subjects you created. Then load the fixture
into the database using the following command:

python manage.py loaddata subjects.json

All subject objects included in the fixture are loaded into the database.

[343]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

By default, Django looks for files in the fixtures/ directory of each application, but
you can specify the complete path to the fixture file for the 1oaddata command. You
can also use the FIXTURE_DIRS setting to tell Django additional directories to look
for fixtures.

Fixtures are not only useful for initial data but also to provide sample
. data for your application or data required for your tests.

You can read about how to use fixtures for testing at https://docs.djangoproject.
com/en/1.8/topics/testing/tools/#topics-testing-fixtures.

If you want to load fixtures in model migrations, take a look at Django's
documentation about data migrations. Remember that we created a custom migration
in Chapter 9, Extending Your Shop to migrate existing data after modifying models for
translations. You can find the documentation for migrating data at https://docs.
djangoproject.com/en/1.8/topics/migrations/#data-migrations.

Creating models for diverse content

We plan to add different types of content to the course modules such as texts,
images, files, and videos. We need a versatile data model that allows us to store
diverse content. In Chapter 6, Tracking User Actions, you have learned about the
convenience of using generic relations to create foreign keys that can point to objects
of any model. We are going to create a Content model that represents the modules
contents and define a generic relation to associate any kind of content.

Edit the models.py file of the courses application and add the following imports:

from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes.fields import GenericForeignKey

Then add the following code to the end of the file:

class Content (models.Model) :
module = models.ForeignKey (Module, related name='contents')
content type = models.ForeignKey (ContentType)
object id = models.PositivelIntegerField()
item = GenericForeignKey ('content type', 'object id')

[344]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/testing/tools/#topics-testing-fixtures
https://docs.djangoproject.com/en/1.8/topics/testing/tools/#topics-testing-fixtures
https://docs.djangoproject.com/en/1.8/topics/migrations/#data-migrations
https://docs.djangoproject.com/en/1.8/topics/migrations/#data-migrations
http://www.it-ebooks.info/

Chapter 10

This is the content model. A module contains multiple contents, so we define a
ForeignKey field to the Module model. We also set up a generic relation to associate
objects from different models that represent different types of content. Remember
that we need three different fields to set up a generic relationship. In our Content
model, these are:

* content type: A ForeignKey field to the ContentType model

* object_id: Thisis PositiveIntegerField to store the primary key of the
related object

* item: A GenericForeignKey field to the related object by combining the
two previous fields

Only the content_type and object_id fields have a corresponding column in the
database table of this model. The item field allows you to retrieve or set the related
object directly, and its functionality is built on top of the other two fields.

We are going to use a different model for each type of content. Our content models
will have some common fields, but they will differ in the actual contents they
can store.

Using model inheritance

Django supports model inheritance. It works in a similar way to standard class
inheritance in Python. Django offers the following three options to use model
inheritance:

* Abstract models: Useful when you want to put some common information
into several models. No database table is created for the abstract model.

* Multi-table model inheritance: Applicable when each model in the
hierarchy is considered a complete model by itself. A database table is
created for each model.

* Proxy models: Useful when you need to change the behavior of a model, for
example, including additional methods, changing the default manager, or
using different meta options. No database table is created for proxy models.

Let's take a closer look at each of them.

[345]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Abstract models

An abstract model is a base class in which you define fields you want to include in
all child models. Django doesn't create any database table for abstract models. A
database table is created for each child model, including the fields inherited from
the abstract class and the ones defined in the child model.

To mark a model as abstract, you need to include abstract=True in its Meta class.
Django will recognize that it is an abstract model and will not create a database
table for it. To create child models, you just need to subclass the abstract model.
The following is an example of an abstract Ccontent model and a child Text model:

from django.db import models

class BaseContent (models.Model) :
title = models.CharField(max length=100)
created = models.DateTimeField (auto now_ add=True)

class Meta:
abstract = True

class Text (BaseContent) :
body = models.TextField()

In this case, Django would create a table for the Text model only, including the
title, created, and body fields.

Multi-table model inheritance

In multi-table inheritance, each model corresponds to a database table. Django
creates a OneToOneField field for the relationship in the child's model to its parent.

To use multi-table inheritance, you have to subclass an existing model. Django will
create a database table for both the original model and the sub-model. The following
example shows multi-table inheritance:

from django.db import models

class BaseContent (models.Model) :
title = models.CharField(max length=100)
created = models.DateTimeField (auto now_add=True)

class Text (BaseContent) :
body = models.TextField()

Django would include an automatically generated oneTooneField field in the Text
model and create a database table for each model.

[346]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Proxy models

Proxy models are used to change the behavior of a model, for example, including
additional methods or different meta options. Both models operate on the database
table of the original model. To create a proxy model, add proxy=True to the Meta
class of the model.

The following example illustrates how to create a proxy model:

from django.db import models
from django.utils import timezone

class BaseContent (models.Model) :
title = models.CharField(max length=100)
created = models.DateTimeField (auto now_add=True)

class OrderedContent (BaseContent) :
class Meta:
proxy = True
ordering = ['created']

def created delta(self):
return timezone.now() - self.created

Here, we define an orderedContent model that is a proxy model for the content
model. This model provides a default ordering for QuerySets and an additional
created_delta () method. Both models, Content and OrderedContent, operate on
the same database table, and objects are accessible via the ORM through either model.

Creating the content models

The content model of our courses application contains a generic relation to
associate different types of content to it. We will create a different model for each
type of content. All content models will have some fields in common, and additional
fields to store custom data. We are going to create an abstract model that provides
the common fields for all content models.

Edit the models.py file of the courses application and add the following code to it:

class ItemBase (models.Model) :
owner = models.ForeignKey (User,
related name='%(class)s related')
title = models.CharField(max length=250)
created = models.DateTimeField (auto now_ add=True)
updated = models.DateTimeField (auto now=True)

[347]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

class Meta:
abstract = True

def str (self):
return self.title

class Text (ItemBase) :
content = models.TextField()

class File(ItemBase) :
file = models.FileField(upload to='files')

class Image (ItemBase) :
file = models.FileField(upload to='images')

class Video(ItemBase) :
url = models.URLField()

In this code, we define an abstract model named ItemBase. Therefore, we have
set abstract=True in its Meta class. In this model, we define the owner, title,
created, and updated fields. These common fields will be used for all types of
content. The owner field allows us to store which user created the content. Since
this field is defined in an abstract class, we need different related name for each
sub-model. Django allows us to specify a placeholder for the model class name in
the related_name attribute as % (class) s. By doing so, related_name for each
child model will be generated automatically. Since we use '% (class)s_related'
as related name, the reverse relation for child models will be text related,
file_related, image_related, and video_related respectively.

We have defined four different content models, which inherit from the ItemBase
abstract model. These are:

* Text: To store text content.

e rile: To store files, such as PDF.

* Image: To store image files.

* video: To store videos. We use an URLField field to provide a video URL in

order to embed it.

Each child model contains the fields defined in the ItemBase class in addition to its
own fields. A database table will be created for the Text, File, Image, and Video
models respectively. There will be no database table associated to the ItemBase
model since it is an abstract model.

[348]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Edit the content model you created previously and modify its content_type field
as follows:

content type = models.ForeignKey (ContentType,
limit choices to={'model in': ('text"',
'video',
'image',
"file')})

Weadd alimit_choices_to argument to limit the ContentType objects that can
be used for the generic relationship. We use the model__in field lookup to filter the
query to the ContentType objects with a model attribute thatis 'text', 'video’,
'image' or, 'file’.

Let's create a migration to include the new models we have added. Run the following
command from the command line:

python manage.py makemigrations

You should see the following output:

Migrations for 'courses':
0002 _content file image text video.py:
- Create model Content
- Create model File
- Create model Image
- Create model Text
- Create model Video

Then, run the following command to apply the new migration:
python manage.py migrate
The output you see should end as follows:

Running migrations:
Rendering model states... DONE
Applying courses.0002 content file image text wvideo... OK

We have created models that are suitable to add diverse content to the course
modules. However, there is still something missing in our models. The course
modules and contents should follow a particular order. We need a field that
allows us to order them easily.

[349]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Creating custom model fields

Django comes with a complete collection of model fields that you can use to build
your models. However, you can also create your own model fields to store custom
data or alter the behavior of existing fields.

We need a field that allows us to specify an order for objects. If you think about an
easy way to do this with a field provided by Django, you will probably think of
adding a PositiveIntegerField to your models. This is a good starting point. We
can create a custom field that inherits from PositiveIntegerField and provides
additional behavior.

There are two relevant functionalities that we will build into our order field:

* Automatically assign an order value when no specific order is provided.
When no order is provided while storing an object, our field should
automatically assign the next order based on the last existing ordered object.
If there are two objects with order 1 and 2 respectively, when saving a third
object, we should automatically assign the order 3 to it if no specific order
is given.

* Order objects with respect to other fields. Course modules will be ordered
with respect to the course they belong to and module contents with respect
to the module they belong to.

Create a new fields.py file inside the courses application directory and add the
following code to it:

from django.db import models
from django.core.exceptions import ObjectDoesNotExist

class OrderField(models.PositiveIntegerField) :

def init (self, for fields=None, *args, **kwargs):
self.for fields = for fields
super (OrderField, self). init (*args, **kwargs)

def pre save(self, model instance, add):
if getattr(model instance, self.attname) is None:
no current value
try:
gs = self.model.objects.all()
if self.for fields:
filter by objects with the same field values
for the fields in "for fields"

[350]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

query = {field: getattr (model instance, field) for
field in self.for fields}

gs = gs.filter (**query)
get the order of the last item
last item = gs.latest (self.attname)
value = last item.order + 1
except ObjectDoesNotExist:
value = 0
setattr (model instance, self.attname, value)
return value
else:
return super (OrderField,
self) .pre_save(model instance, add)

This is our custom OrderField. It inherits from the PositiveIntegerField field
provided by Django. Our orderField field takes an optional for_fields parameter
that allows us to indicate the fields that the order has to be calculated with respect to.

Our field overrides the pre save () method of the PositiveIntegerField field,
which is executed before saving the field into the database. In this method, we
perform the following actions:

1. We check if a value already exists for this field in the model instance. We use
self.attname, which is the attribute name given to the field in the model. If
the attribute's value is different than None, we calculate the order we should
give it as follows:

1. We build a QuerySet to retrieve all objects for the field's model. We
retrieve the model class the field belongs to by accessing self.model.

2. Wefilter the QuerySet by the fields' current value for the model fields
that are defined in the for_fields parameter of the field, if any. By
doing so, we calculate the order with respect to the given fields.

3. We retrieve the object with the highest order with last_item =
gs.latest (self.attname) from the database. If no object is found,
we assume this object is the first one and assign the order o to it.

If an object is found, we add 1 to the highest order found.
5. We assign the calculated order to the field's value in the model
instance using setattr () and return it.

2. If the model instance has a value for the current field, we don't do anything,.

[351]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

When you create custom model fields, make them generic. Avoid
hardcoding data that depends on a specific model or field. Your
field should work in any model.

You can find more information about writing custom model fields at
https://docs.djangoproject.com/en/1.8/howto/custom-model-fields/.

Let's add the new field to our models. Edit the models.py file of the courses
application and import the new field as follows:

from .fields import OrderField

Then, add the following orderField field to the Module model:

order = OrderField(blank=True, for fields=['course'l])

We name the new field order, and we specify that the ordering is calculated with
respect to the course by setting for_fields=['course']. This means that the order
for a new module will be assigned adding 1 to the last module of the same Course
object. Now you can edit the __str__ () method of the Module model to include its
order as follows:

def str (self):

return '{}. {}'.format (self.order, self.title)

Module contents also need to follow a particular order. Add an orderField field
to the content model as follows:

order = OrderField(blank=True, for fields=['module'l])

This time, we specify that the order is calculated with respect to the module
field. Finally, let's add a default ordering for both models. Add the following
Meta class to the Module and Content models:

class Meta:

ordering = ['order']
The Module and content models should now look as follows:

class Module (models.Model) :
course = models.ForeignKey (Course, related name='modules')
title = models.CharField(max length=200)
description = models.TextField (blank=True)
order = OrderField(blank=True, for fields=['course'l])

[352]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/howto/custom-model-fields/
http://www.it-ebooks.info/

Chapter 10

class Meta:
ordering = ['order']

def str (self):

return '{}. {}'.format(self.order, self.title)

class Content (models.Model) :
module = models.ForeignKey (Module, related name='contents')
content type = models.ForeignKey (ContentType,

limit choices to={'model in': ('text',
'video',
'file')})

object id = models.PositivelIntegerField()
item = GenericForeignKey ('content type', 'object id')
order = OrderField(blank=True, for fields=['module'])

class Meta:
ordering = ['order']

Let's create a new model migration that reflects the new order fields. Open the
shell and run the following command:

python manage.py makemigrations courses

You will see the following output:

You are trying to add a non-nullable field 'order' to content without
a default; we can't do that (the database needs something to populate

existing rows) .
Please select a fix:

1) Provide a one-off default now (will be set on all existing rows)

2) Quit, and let me add a default in models.py
Select an option:

Django is telling us that since we added a new field for an existing model, we have to
provide a default value for existing rows in the database. If the field had nul1l=True,
it would accept null values and Django would create the migration without asking

for a default value. We can specify a default value or cancel the migration and
add a default attribute to the order field in the models.py file before creating
the migration.

[353]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Enter 1 and press Enter to provide a default value for existing records. You will see
the following output:

Please enter the default value now, as valid Python
The datetime and django.utils.timezone modules are available, so you
can do e.g. timezone.now/()

>>>

Enter 0 so that this is the default value for existing records and press Enter. Django
will ask you for a default value for the Module model too. Choose the first option
and enter 0 as default value again. Finally, you will see an output similar to the
following one:

Migrations for 'courses':
0003_auto_20150701_1851.py:
- Change Meta options on content
- Change Meta options on module
- Add field order to content
- Add field order to module

Then, apply the new migrations with the following command:
python manage.py migrate

The output of the command will inform you that the migration was successfully
applied as follows:

Applying courses.0003 auto 20150701 1851... OK

Let's test our new field. Open the shell using python manage.py shell and create a
new course as follows:

>>> from django.contrib.auth.models import User

>>> from courses.models import Subject, Course, Module

>>> user = User.objects.latest('id')

>>> subject = Subject.objects.latest('id"')

>>> cl = Course.objects.create (subject=subject, owner=user,
title='Course 1', slug='coursel')

We have created a course in the database. Now, let's add modules to the course and
see how the modules' order is automatically calculated. We create an initial module
and check its order:

>>> ml = Module.objects.create (course=cl, title='Module 1')
>>> ml.order
0

[354]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

orderField sets its value to 0, since this is the first Module object created for the
given course. Now we create a second module for the same course:

>>> m2 = Module.objects.create (course=cl, title='Module 2')
>>> m2.order
1

OorderField calculates the next order value adding 1 to the highest order for existing
objects. Let's create a third module forcing a specific order:

>>> m3 = Module.objects.create (course=cl, title='Module 3', order=5)
>>> m3.order
5

If we specify a custom order, the orderField field does not interfere and the value
given to the order is used.

Let's add a fourth module:

>>> m4 = Module.objects.create (course=cl, title='Module 4')
>>> m4.order
6

The order for this module has been automatically set. Our orderField field does not
guarantee that all order values are consecutive. However, it respects existing order
values and always assigns the next order based on the highest existing order.

Let's create a second course and add a module to it:

>>> c2 = Course.objects.create(subject=subject, title='Course 2',
slug='course2', owner=user)

>>> m5 = Module.objects.create (course=c2, title='Module 1')
>>> m5.order
0

To calculate the new module's order, the field only takes into consideration
existing modules that belong to the same course. Since this is the first module
of the second course, the resulting order is 0. This is because we specified for_
fields=['course'] in the order field of the Module model.

Congratulations! You have successfully created your first custom model field.

[355]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Creating a content management system

Now that we have created a versatile data model, we are going to build a content
management system (CMS). The CMS will allow instructors to create courses and
manage their content. We need to provide the following functionality:

* Login to the CMS.

» List the courses created by the instructor.

e Create, edit, and delete courses.

* Add modules to a course and re-order them.

* Add different types of content to each module and re-order contents.

Adding the authentication system

We are going to use Django's authentication framework in our platform. Both
instructors and students will be an instance of Django's user model. Thus, they will
be able to login to the site using the authentication views of django.contrib.auth.

Edit the main urls. py file of the educa project and include the 1ogin and logout
views of Django's authentication framework:

from django.conf.urls import include, url
from django.contrib import admin
from django.contrib.auth import views as auth views

urlpatterns = [
url (r'“accounts/login/$', auth views.login, name='login'),
url (r'“accounts/logout/$', auth views.logout, name='logout'),
url(r'”admin/', include (admin.site.urls)),

Creating the authentication templates

Create the following file structure inside the courses application directory:

templates/
base.html
registration/
login.html
logged out.html

[356]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Before building the authentication templates, we need to prepare the base template
for our project. Edit the base.html template file and add the following content to it:
{% load staticfiles %}
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>{% block title %}Educa{% endblock %}</title>
<link href="{% static "css/base.css" %}" rel="stylesheet">

</head>
<body>
<div id="header">
Educa
<ul class="menu">
{% if request.user.is authenticated %}
<lisSign out

)

{% else %}
<a href="{%
{% endif %}

</div>
<div id="content">
{% block content %}
{% endblock %}
</div>

url "login" %}">Sign in

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></script>
<scripts>
$ (document) . ready (function() {

)

{% block domready %}
{% endblock %}

1
</script>
</body>
</html>
This is the base template that will be extended by the rest of the templates. In this

template, we define the following blocks:

* title: The block for other templates to add a custom title for each page.

* content: The main block for content. All templates that extend the base
template should add content to this block.

* domready: Located inside the $document . ready () function of jQuery. It
allows us to execute code when the DOM has finished loading.

[357]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

The CSS styles used in this template are located in the static/ directory of the
courses application, in the code that comes along with this chapter. You can copy
the static/ directory into the same directory of your project to use them.

Edit the registration/login.html template and add the following code to it:

{% extends "base.html" %}

{% block title %}Log-in{% endblock %}

—
o\°

block content %}
<hl>Log-in</hl>
<div class="module">
{$ if form.errors %}
<p>Your username and password didn't match. Please try again.</
p>
{% else %}
<p>Please, use the following form to log-in:</p>
{% endif %}
<div class="login-form">
<form action="{% url 'login' %}" method="post">
{{ form.as p }}
{% csrf _token %}
<input type="hidden" name="next" value="{{ next }}" />
<p><input type="submit" value="Log-in"></p>
</form>
</div>
</div>
{% endblock %}

This is a standard login template for Django's 1ogin view. Edit the registration/
logged_out.html template and add the following code to it:

{% extends "base.html" %}

{% block title %}Logged out{% endblock %}

—
o\°

block content %}
<hl>Logged out</hl>
<div class="module">

<p>You have been successfully logged out. You can <a href="{% url
"login" %}">log-in again.</p>
</div>

{% endblock %}

[358]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

This is the template that will be displayed to the user after logout. Run the
development server with the command python manage.py runserver and open
http://127.0.0.1:8000/accounts/login/ in your browser. You should see the
login page like this:

Log-In

Please, use the following form to log-in:

Username:

Password:

Creating class-based views

We are going to build views to create, edit, and delete courses. We will use
class-based views for this. Edit the views.py file of the courses application
and add the following code to it:

from django.views.generic.list import ListView
from .models import Course

class ManageCourselistView(ListView) :
model = Course
template name = 'courses/manage/course/list.html’

def get queryset (self) :
gs = super (ManageCourseListView, self).get queryset()
return gs.filter (owner=self.request.user)

This is the ManageCourseListView view. It inherits from Django's generic Listview.
We override the get_queryset () method of the view to retrieve only courses
created by the current user. To prevent users from editing, updating, or deleting
courses they didn't create, we will also need to override the get_queryset ()

method in the create, update, and delete views. When you need to provide a specific
behavior for several class-based views, it is recommended to use mixins.

[359]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Using mixins for class-based views

Mixins are a special kind of multiple inheritance for a class. You can use them to
provide common discrete functionality that, added to other mixins, allows you
to define the behavior of a class. There are two main situations to use mixins:

* You want to provide multiple optional features for a class

* You want to use a particular feature in several classes

You can find documentation about how to use mixins with class-based views at
https://docs.djangoproject.com/en/1.8/topics/class-based-views/mixins/.

Django comes with several mixins that provide additional functionality to your
class-based views. You can find all mixins at https://docs.djangoproject.com/
en/1.8/ref/class-based-views/mixins/.

We are going to create a mixin class that includes a common behavior and use it for
the course's views. Edit the views. py file of the courses application and modify
it as follows:

from django.core.urlresolvers import reverse lazy

from django.views.generic.list import ListView

from django.views.generic.edit import CreateView, UpdateView, \
DeleteView

from .models import Course

class OwnerMixin (object) :
def get queryset(self):
gs = super (OwnerMixin, self).get queryset()
return gs.filter (owner=self.request.user)

class OwnerEditMixin (object) :
def form valid(self, form):
form.instance.owner = self.request.user
return super (OwnerEditMixin, self).form valid(form)

class OwnerCourseMixin (OwnerMixin) :
model = Course

class OwnerCourseEditMixin (OwnerCourseMixin, OwnerEditMixin) :

fields = ['subject', 'title', 'slug', 'overview']

success_url = reverse lazy('manage course list')

template name = 'courses/manage/course/form.html’
[360]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/class-based-views/mixins/
https://docs.djangoproject.com/en/1.8/ref/class-based-views/mixins/
https://docs.djangoproject.com/en/1.8/ref/class-based-views/mixins/
http://www.it-ebooks.info/

Chapter 10

class ManageCourseListView (OwnerCourseMixin, ListView):
template name = 'courses/manage/course/list.html’

class CourseCreateView (OwnerCourseEditMixin, CreateView):

pass

class CourseUpdateView (OwnerCourseEditMixin, UpdateView):

pass

class CourseDeleteView (OwnerCourseMixin, DeleteView) :
template name = 'courses/manage/course/delete.html’
success_url = reverse lazy('manage course list')

In this code, we create the ownerMixin and ownerEditMixin mixins. We will use
these mixins together with the ListView, CreateView, UpdateView, and DeleteView
views provided by Django. ownerMixin implements the following method:

* get_gueryset (): This method is used by the views to get the base QuerySet.
Our mixin will override this method to filter objects by the owner attribute to
retrieve objects that belong to the current user (request .user).

OwnerEditMixin implements the following method:

* form valid(): This method is used by views that use Django's
ModelFormMixin mixin, i.e., views with forms or modelforms such as
CreateView and UpdateView. form valid () is executed when the submitted
form is valid. The default behavior for this method is saving the instance
(for modelforms) and redirecting the user to success_url. We override this
method to automatically set the current user in the owner attribute of the
object being saved. By doing so, we set the owner for an object automatically
when it is saved.

Our ownerMixin class can be used for views that interact with any model that
contains an owner attribute.

We also define an OwnerCourseMixin class that inherits OwnerMixin and provides
the following attribute for child views:

* model: The model used for QuerySets. Used by all views.

[361]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

We define a OwnerCourseEditMixin mixin with the following attributes:

e fields: The fields of the model to build the model form of the createview
and UpdateView views.

* success_url: Used by Createview and UpdateView to redirect the user
after the form is successfully submitted. We use a URL with the name
manage_course_list that we are going to create later.

Finally, we create the following views that subclass OwnerCourseMixin:

* ManageCourseListView: Lists the courses created by the user. It inherits
from OwnerCourseMixin and ListView.

* CourseCreateView: Uses a modelform to create a new Course object. It uses
the fields defined in ownerCourseEditMixin to build a model form and also
subclasses CreatevView.

* CourseUpdateView: Allows editing an existing Course object. It inherits
from OwnerCourseEditMixin and UpdateView.

* CourseDeleteView: Inherits from OwnerCourseMixin and the generic
DeleteView. Defines success_url to redirect the user after the object
is deleted.

Working with groups and permissions

We have created the basic views to manage courses. Currently, any user could access
these views. We want to restrict these views so that only instructors have permission
to create and manage courses. Django's authentication framework includes a
permission system that allows you to assign permissions to users and groups. We are
going to create a group for instructor users and assign permissions to create, update,
and delete courses.

Run the development server using the command python manage.py runserver
and open http://127.0.0.1:8000/admin/auth/group/add/ in your browser to
create a new Group object. Add the name Instructors and choose all permissions of
the courses application except those of the subject model as follows:

[362]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Django administration Welcome, admin. View site / Change password / Log out

Name:

Permissions:

Add group

Home > Authentication and Authorization » Groups > Add group

Instructors

Available permissions @

admin | log entry | Can add log entry
admin | log entry | Can change log entry
admin | log entry | Can delete log entry
auth | group | Can add group

auth | group | Can change group

auth | group | Can delete aroup

auth | permission | Can add permission
auth | permission | Can change permission
auth | permission | Can delete permission
auth | user | Can add user

auth | user | Can change user

auth | user | Can delete user

contenttypes | content type | Can add content type

Choose all

(2]
courses | content | Can add content
courses | content | Can change content
courses | content | Can delete content
courses | course | Can add course
courses | course | Can change course
courses | course | Can delete course
courses | file | Can add file
courses | file | Can change file
courses | file | Can delete file
courses | module | Can add module
courses | module | Can change module
courses | module | Can delete module
courses | text | Can add text
courses | text | Can change text
courses | text | Can delete text

Remove all

Save and add another Sawve and continue editing :

As you can see, there are three different permissions for each model: Can add,
can change, and Can delete. After choosing permissions for this group, click
the Save button.

Django creates permissions for models automatically, but you can also create custom
permissions. You can read more about adding custom permissions at https://docs.
djangoproject.com/en/1.8/topics/auth/customizing/#custom-permissions.

Open http://127.0.0.1:8000/admin/auth/user/add/ and create a new user. Edit
the user and add the Instructors group to it as follows:

Groups:

Available groups @

Q

Instructors

Users inherit the permissions of the groups they belong to, but you can also add
individual permissions to a single user using the administration site. Users that
have is_superuser set to True have all permissions automatically.

Restricting access to class-based views

We are going to restrict access to the views so that only users with the appropriate
permissions can add, change, or delete Course objects. The authentication
framework includes a permission required decorator to restrict access to views.
Django 1.9 will include permission mixins for class-based views. However, Django
1.8 does not include them. Therefore, we are going to use permission mixins
provided by a third-party module named django-braces.

[363]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#custom-permissions
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#custom-permissions
http://www.it-ebooks.info/

Building an e-Learning Platform

Using mixins from django-braces

Django-braces is a third-party module that contains a collection of generic mixins
for Django. These mixins provide additional features for class-based views. You
can see a list of all mixins provided by django-braces at http://django-braces.
readthedocs.org/en/latest/.

Install django-braces via pip using the command:
pip install django-braces==1.8.1

We are going to use the following two mixins from django-braces to limit access
to views:

* LoginRequiredMixin: Replicates the login required decorator's
functionality.

* PermissionRequiredMixin: Grants access to the view to users that have
a specific permission. Remember that superusers automatically have
all permissions.

Edit the views.py file of the courses application and add the following import:

from braces.views import LoginRequiredMixin,
PermissionRequiredMixin

Make OwnerCourseMixin inherit LoginRequiredMixin like this:

class OwnerCourseMixin (OwnerMixin, LoginRequiredMixin) :

model = Course
fields = ['subject', 'title', 'slug', 'overview']
success_url = reverse lazy('manage course list')

Then, add a permission_required attribute to the create, update, and delete views,
as follows:

class CourseCreateView (PermissionRequiredMixin,
OwnerCourseEditMixin,
CreateView) :
permission required = 'courses.add course'

class CourseUpdateView (PermissionRequiredMixin,
OwnerCourseEditMixin,

UpdateView) :
template name = 'courses/manage/course/form.html’
permission required = 'courses.change course'
[364]

www.it-ebooks.info

http://django-braces.readthedocs.org/en/latest/
http://django-braces.readthedocs.org/en/latest/
http://www.it-ebooks.info/

Chapter 10

class CourseDeleteView (PermissionRequiredMixin,
OwnerCourseMixin,
DeleteView) :
template name = 'courses/manage/course/delete.html’
success_url = reverse_lazy('manage course list')
permission required = 'courses.delete course'

PermissionRequiredMixin checks that the user accessing the view has the
permission specified in the permission_required attribute. Our views are
now only accessible to users that have proper permissions.

Let's create URLs for these views. Create a new file inside the courses application
directory and name it urls.py. Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [

url (r'”“mine/$"',
views.ManageCourseListView.as view(),
name='manage course list'),

url (r'“create/$"',
views.CourseCreateView.as view(),
name='course_create'),

url (r'” (?P<pk>\d+) /edit/$",
views.CourseUpdateView.as view(),
name='course_edit'),

url (r'” (?P<pk>\d+) /delete/s",
views.CourseDeleteView.as view(),
name="'course delete'),

]

These are the URL patterns for the list, create, edit, and delete course views. Edit the
main urls.py file of the educa project and include the URL patterns of the courses
application as follows:

urlpatterns = [
url (r'“accounts/login/$', auth views.login, name='login'),
url (r'“accounts/logout/$', auth views.logout, name='logout'),
url (r'”*admin/', include(admin.site.urls)),

url(r'”“course/', include('courses.urls')),

[365]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

We need to create the templates for these views. Create the following directories and
files inside the templates/ directory of the courses application:

courses/
manage/
course/
list.html
form.html
delete.html

Edit the courses/manage/course/list.html template and add the following
code to it:

{% extends "base.html" %}

{% block title %}My courses{% endblock %}

°

{% block content %}
<h1l>My courses</hl>

<div class="module">
{% for course in object list %}
<div class="course-info">
<h3>{{ course.title }}</h3>

<p>
Edit
Delete
</p>
</div>

{% empty %}
<p>You haven't created any courses yet.</p>
{% endfor %}
<p>
<a href="{%
course
</p>
</div>
{% endblock %}

url "course create" %}" class="button"s>Create new

This is the template for the ManageCourseListView view. In this template, we

list the courses created by the current user. We include links to edit or delete each
course, and a link to create new courses.

[366]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Run the development server using the command python manage.py runserver.
()palhttp://127.0.0.1:8000/accounts/login/?next:/course/mine/hﬁyour
browser and log in with a user that belongs to the Instructors group. After logging
in, you will be redirected to the URL http://127.0.0.1:8000/course/mine/ and
you should see the following page:

EDUCA

My courses

You haven't created any courses yet.

CREATE NEW COURSE

This page will display all courses created by the current user.

Let's create the template that displays the form for the create and update course
views. Edit the courses/manage/course/form.html template and write the
following code:

{% extends "base.html" %}

{% block title %}
{$ if object %}
Edit course "{{ object.title }}"
{3 else %}
Create a new course
{% endif %}
{% endblock %}

{% block content %}
<hl>
{$ if object %}
Edit course "{{ object.title }}"
{3 else %}
Create a new course
{% endif %}
</hl>
<div class="module">
<h2>Course info</h2>
<form action="." method="post">

{{ form.as p }}

[367]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

)

{% csrf _token %}
<p><input type="submit" value="Save course"></p>
</forms>
</divs>
{% endblock %}

The form.html template is used for both the CourseCreateview and
CourseUpdateView views. In this template, we check if an object variable is in the
context. If object exists in the context, we know that we are updating an existing
course, and we use it in the page title. Otherwise, we are creating a new Course object.

Open http://127.0.0.1:8000/course/mine/ in your browser and click the Create
new course button. You will see the following page:

Create a new course

Course info

Subject:

ar

Title:
Slug:

Overview:

[368]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Fill in the form and click the Save course button. The course will be saved and you
will be redirected to the course list page. It should look as follows:

EDUCA

My courses

Django course

Edit Delete

Then, click the Edit link for the course you have just created. You will see the form
again, but this time you are editing an existing Course object instead of creating one.

Finally, edit the courses/manage/course/delete.html template and add the
following code:

{% extends "base.html" %}

{

o\©

block title %}Delete course{% endblock %}

—_
o\°

block content %}
<hls>Delete course "{{ object.title }}"</hl>

<div class="module">
<form action="" method="post">
{% csrf token %}
<p>Are you sure you want to delete "{{ object }}"?</p>

<input type="submit" class"button" value="Confirm">
</form>

</divs>
{% endblock %}

This is the template for the CourseDeleteview view. This view inherits from

DeleteView provided by Django, which expects user confirmation to delete
an object.

[369]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Open your browser and click the Delete link of your course. You should see the
following confirmation page:

Delete course "Mathematics 101"

Are you sure you want to delete "Mathematics 101"?

Click the CONFIRM button. The course will be deleted and you will be redirected
to the course list page again.

Instructors can now create, edit, and delete courses. Next, we need to provide them
with a content management system to add modules and contents to courses. We will
start by managing course modules.

Using formsets

Django comes with an abstraction layer to work with multiple forms on the same
page. These groups of forms are known as formsets. Formsets manage multiple
instances of certain Form or ModelForm. All forms are submitted at once and the
formset takes care of things like the initial number of forms to display, limiting the
maximum number of forms that can be submitted, and validating all forms.

Formsets include an is_valid () method to validate all forms at once. You can also
provide initial data for the forms and specify how many additional empty forms
to display.

You can learn more about formsets at https://docs.djangoproject.com/
en/1.8/topics/forms/formsets/, and about model formsets at https://docs.
djangoproject.com/en/1.8/topics/forms/modelforms/#model -formsets.

[370]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/forms/formsets/
https://docs.djangoproject.com/en/1.8/topics/forms/formsets/
https://docs.djangoproject.com/en/1.8/topics/forms/modelforms/#model-formsets
https://docs.djangoproject.com/en/1.8/topics/forms/modelforms/#model-formsets
http://www.it-ebooks.info/

Chapter 10

Managing course modules

Since a course is divided into a variable number of modules, it makes sense to use
formsets here. Create a forms. py file in the courses application directory and add
the following code to it:

from django import forms
from django.forms.models import inlineformset factory
from .models import Course, Module

ModuleFormSet = inlineformset factory(Course,

Module,
fields=['title"',

'description'],
extra=2,

can_delete=True)

This is the ModuleFormset formset. We build it using the inlineformset_factory ()
function provided by Django. Inline formsets is a small abstraction on top of formsets
that simplifies working with related objects. This function allows us to build a model
formset dynamically for the Module objects related to a Course object.

We use the following parameters to build the formset:

e fields: The fields that will be included in each form of the formset.

* extra: Allows us to set up the number of empty extra forms to display in
the formset.

* can_delete: If you set this to True, Django will include a Boolean field for
each form that will be rendered as a checkbox input. It allows you to mark
the objects you want to delete.

Edit the views.py file of the courses application and add the following code to it:

from django.shortcuts import redirect, get object or 404
from django.views.generic.base import TemplateResponseMixin, View
from .forms import ModuleFormSet

class CourseModuleUpdateView (TemplateResponseMixin, View) :
template name = 'courses/manage/module/formset.html’
course = None

def get formset (self, data=None) :
return ModuleFormSet (instance=self.course,
data=data)

[371]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

def dispatch(self, request, pk):
self.course = get object or 404 (Course,
id=pk,
owner=request .user)
return super (CourseModuleUpdateView,
self) .dispatch(request, pk)

def get(self, request, *args, **kwargs):
formset = self.get formset ()
return self.render to response ({'course': self.course,
'formset': formset})

def post(self, request, *args, **kwargs):
formset = self.get formset (data=request.POST)
if formset.is wvalid():
formset.save ()
return redirect ('manage course list')
return self.render to response ({'course': self.course,
"formset': formset})

The courseModuleUpdateView view handles the formset to add, update, and delete
modules for a specific course. This view inherits from the following mixins and views:

TemplateResponseMixin: This mixin takes charge of rendering templates
and returning an HTTP response. It requires a template_name attribute
that indicates the template to be rendered and provides the render_to_
response () method to pass it a context and render the template.

view: The basic class-based view provided by Django.

In this view, we implement the following methods:

get_formset (): We define this method to avoid repeating the code to build
the formset. We create a ModuleFormSet object for the given Course object
with optional data.

dispatch () : This method is provided by the view class. It takes an HTTP
request and its parameters and attempts to delegate to a lowercase method
that matches the HTTP method used: A GET request is delegated to the

get () method and a POST request to post () respectively. In this method,
we use the get_object_or_404 () shortcut function to get the Course object
for the given id parameter that belongs to the current user. We include this
code in the dispatch () method because we need to retrieve the course for
both GET and POST requests. We save it into the course attribute of the
view to make it accessible to other methods.

[372]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

* get (): Executed for GET requests. We build an empty ModuleFormsSet
formset and render it to the template together with the current
Course object using the render_to_response () method provided by
TemplateResponseMixin.

* post (): Executed for POST requests. In this method, we perform the
following actions:

1. We build a ModuleFormsSet instance using the submitted data.

2. We execute the is_valid () method of the formset to validate all
of its forms.

3. If the formset is valid, we save it by calling the save () method. At
this point, any changes made, such as adding, updating, or marking
modules for deletion, are applied to the database. Then, we redirect
users to the manage course 1list URL. If the formset is not valid, we
render the template to display any errors instead.

Edit the urls.py file of the courses application and add the following URL pattern
toit:

url (r'” (?P<pk>\d+) /module/s",
views.CourseModuleUpdateView.as_view(),
name='course module update'),

Create a new directory inside the courses/manage/ template directory and name
it module. Create a courses/manage/module/formset . html template and add the
following code to it:

{$ extends "base.html" %}

{% block title %}
Edit "{{ course.title }}"
{% endblock %}

{% block content %}
<h1>Edit "{{ course.title }}"</hl>
<div class="module">
<h2>Course modules</h2>
<form action="" method="post">
{{ formset }}
{{ formset.management form }}
{% csrf _token %}
<input type="submit" class="button" value="Save modules">
</form>
</div>
{% endblock %}

[373]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

In this template, we create a <form> HTML element, in which we include our
formset. We also include the management form for the formset with the variable

{{ formset.management_ form }}. The management form includes hidden fields to
control the initial, total, minimum, and maximum number of forms. As you can see,
it's very easy to create a formset.

Edit the courses/manage/course/list.html template and add the following link
for the course_module update URL below the course edit and delete links:

)

Edit

)

Delete
Edit modules

We have included the link to edit the course modules. Open
http://127.0.0.1:8000/course/mine/ in your browser and click the
Edit modules link for a course. You should see a formset as follows:

EDUCA Signiout

Edit "Django course”

Course modules

Title:

Description:

Delete:

Title:

Description:

The formset includes a form for each Module object contained in the course.
After these, two empty extra forms are displayed because we set extra=2 for
ModuleFormSet. When you save the formset, Django will include another two
extra fields to add new modules.

[374]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Adding content to course modules

Now, we need a way to add content to course modules. We have four different
types of content: Text, Video, Image, and File. We can consider creating four different

views to create content, one for each model. Yet, we are going to take a more
generic approach and create a view that handles creating or updating objects

of any content model.

Edit the views. py file of the courses application and add the following code to it:

from django.forms.models import modelform factory
from django.apps import apps
from .models import Module, Content

class ContentCreateUpdateView (TemplateResponseMixin, View) :
module = None
model = None
obj = None
template name = 'courses/manage/content/form.html'

def get model (self, model name) :
if model name in ['text', 'video', 'image',K 'file']:
return apps.get model (app label='courses',
model name=model name)
return None

def get form(self, model, *args, **kwargs):
Form = modelform factory(model, exclude=['owner',
'order',
'created',
'updated'])
return Form(*args, **kwargs)

def dispatch(self, request, module id, model name, id=None) :

self .module = get object or 404 (Module,
id=module_ id,

course owner=request .user)

self .model = self.get model (model name)
if id:
self.obj = get object or 404 (self.model,
id=id,

owner=request .user)
return super (ContentCreateUpdateView,

self) .dispatch(request, module id, model name, id)

[375]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

This is the first part of ContentCreateUpdateview. It will allow us to create and
update contents of different models. This view defines the following methods:

get_model () : Here, we check that the given model name is one of the four
content models: text, video, image, or file. Then we use Django's apps module
to obtain the actual class for the given model name. If the given model name
is not one of the valid ones, we return None.

get_form(): We build a dynamic form using the modelform_factory ()
function of the form's framework. Since we are going to build a form for
the Text, Video, Image, and File models, we use the exclude parameter
to specify the common fields to exclude from the form and let all other
attributes be included automatically. By doing so, we don't have to know
which fields to include depending on the model.

dispatch(): It receives the following URL parameters and stores the
corresponding module, model, and content object as class attributes:

° module id: The id for the module that the content is/will be
associated with.

° model_name: The model name of the content to create/update.

© id: The id of the object that is being updated. It's None to create
new objects.

Add the following get () and post () methods to ContentCreateUpdateView

def get(self, request, module id, model name, id=None) :

form = self.get form(self.model, instance=self.obj)
return self.render to response ({'form': form,
'object': self.obj})

def post(self, request, module id, model name, id=None) :

form = self.get form(self.model,
instance=self.obj,
data=request.POST,
files=request.FILES)
if form.is_valid() :

obj = form.save (commit=False)
obj.owner = request.user
obj.save ()

if not id:

new content
Content.objects.create (module=self .module,

[376]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

item=o0bj)
return redirect ('module content list', self.module.id)

return self.render to response ({'form': form,
'object': self.obj})

These methods are as follows:

get () : Executed when a GET request is received. We build the model
form for the Text, Video, Image, or File instance that is being updated.
Otherwise, we pass no instance to create a new object, since self.obj is
None if no id is provided.

post () : Executed when a POST request is received. We build the modelform
passing any submitted data and files to it. Then we validate it. If the form is
valid, we create a new object and assign request .user as its owner before
saving it to the database. We check for the id parameter. If no id is provided,
we know the user is creating a new object instead of updating an existing
one. If this is a new object, we create a Content object for the given module
and associate the new content to it.

Edit the urls.py file of the courses application and add the following URL patterns

to it:

url (r'*module/ (?P<module_id>\d+) /content/ (?P<model names>\w+) /
create/$"',

views.ContentCreateUpdateView.as view(),
name='module content create'),

url (r'*module/ (?P<module_id>\d+) /content/ (?P<model names>\w+) / (?P<id>\

a+)/s',

views.ContentCreateUpdateView.as view(),
name='module content update'),

The new URL patterns are:

module_content_create: To create new text, video, image, or file objects
and adding them to a module. It includes the module_id and model name
parameters. The first one allows linking the new content object to the given
module. The latter specifies the content model to build the form for.

module_content_update: To update an existing text, video, image, or file
object. It includes the module id and model_ name parameters, and an id
parameter to identify the content that is being updated.

[377]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Create a new directory inside the courses/manage/ template directory and name it
content. Create the template courses/manage/content/form.html and add the
following code to it:

{$ extends "base.html" %}

{% block title %}
{$ if object %}
Edit content "{{ object.title }}"
{% else %}
Add a new content
{% endif %}
{% endblock %}

{% block content %}
<hl>
{$ if object %}
Edit content "{{ object.title }}"
{% else %}
Add a new content
{%$ endif %}
</hl>
<div class="module">
<h2>Course info</h2>
<form action="" method="post" enctype="multipart/form-data">
{{ form.as p }}
{% csrf token %}
<p><input type="submit" value="Save content"></p>
</form>
</divs>
{% endblock %}

This is the template for the ContentCreateUpdateview view. In this template, we
check if an object variable is in the context. If object exists in the context, we know
that we are updating an existing object. Otherwise, we are creating a new object.

We include enctype="multipart/form-data" to the <form> HTML element,
because the form contains a file upload for the File and Image content models.

[378]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Run the development server. Create a module for an existing course and open
http://127.0.0.1:8000/course/module/6/content/image/create/ in your
browser. Change the module id in the URL if necessary. You will see the form to
create an Image object as follows:

Add a new content

Course info

Title:

File:

Choose File N0 file selected

Don't submit the form yet. If you try to do so, it will fail because we haven't defined
the module_content_list URL yet. We are going to create it in a bit.

We also need a view to delete contents. Edit the views.py file of the courses
application and add the following code:

class ContentDeleteView (View) :

def post(self, request, id):
content = get object or 404 (Content,
id=id,
module course owner=request.user)
module = content.module
content.item.delete ()
content .delete ()
return redirect ('module content list', module.id)

The ContentDeleteView retrieves the Content object with the given i4, it deletes
the related Text, Video, Image, or File object, and finally, it deletes the content
object and redirects the user to the module_content_list URL to list the other
contents of the module.

[379]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Edit the urls.py file of the courses application and add the following URL pattern
toit:

url (r'”“content/ (?P<id>\d+) /delete/$"',
views.ContentDeleteView.as_view(),
name='module content delete'),

Now, instructors can create, update, and delete contents easily.

Managing modules and contents

We have built views to create, edit, and delete course modules and contents.
Now, we need a view to display all modules for a course and list contents for
a specific module.

Edit the views.py file of the courses application and add the following code to it:

class ModuleContentListView(TemplateResponseMixin, View) :
template name = 'courses/manage/module/content list.html'

def get (self, request, module id):
module = get object or 404 (Module,
id=module_ id,
course__owner=request.user)

return self.render_to_response({'module': module})

This is ModuleContentListView. This view gets the Module object with the given id
that belongs to the current user and renders a template with the given module.

Edit the urls.py file of the courses application and add the following URL pattern
toit:

url (r'“module/ (?P<module_id>\d+)/$"',
views.ModuleContentListView.as view(),
name='module content list'),

Create a new template inside the templates/courses/manage/module/ directory
and name it content_list.html. Add the following code to it:

{$ extends "base.html" %}
{% block title %}

Module {{ module.order|add:1 }}: {{ module.title }}
{% endblock %}

[380]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10
{

)
o
)

{%

block content %}

with course=module.course %}
<hl>Course "{{ course.title }}"</hl>
<div class="contents">
<h3>Modules</h3>

<ul id="modules">

{$ for m in course.modules.all %}
<li data-id="{{ m.id }}" {®

% if m == module %}
class="selected"{% endif %}>

]

<spans
Module {{ m.order|add:1 }}

{{ m.title }}

</1li>
{% empty %}
No modules yet.
{% endfor %}

<p>Edit
modules</p>
</div>

<div class="module">

<h2>Module {{ module.order|add:1 }}: {{ module.title }}</h2>
<h3>Module contents:</h3>

<div id="module-contents">

°

{$ for content in module.contents.all %}
<div data-id="{{ content.id }}">
{$ with item=content.item %}
<p>{{ item }}</p>
Edit

<form action="{% url "module content delete" content.id
%$}" method="post">

<input type="submit" value="Delete">
{% csrf token %}
</form>
{% endwith %}
</div>
{% empty %}

<p>This module has no contents yet.</p>
{% endfor %}

[381]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

</div>
<hrs>
<h3>Add new content:</h3>
<ul class="content-types">
<a href="{% url "module content create" module.id "text"
$}"sText</1li>
<a href="{% url "module content create" module.id "image"
$}">Image</1li>
<a href="{% url "module content create" module.id "video"
$}"s>video</1li>
<a href="{% url "module content create" module.id "file"
$}"sFile</1li>

</div>
endwith %}
endblock %}

{
{

This is the template that displays all modules for a course and the contents for the
selected module. We iterate over the course modules to display them in a sidebar.
We also iterate over the module's contents and access content . item to get the
related Text, Video, Image, or File object. We also include links to create new text,
video, image, or file contents.

)
o
)

o

We want to know which type of object each of the item object is: Text, Video, Image,
or File. We need the model name to build the URL to edit the object. Besides this,
we could display each item in the template differently, based on the type of content
it is. We can get the model for an object from the model's Meta class, by accessing

the object's _meta attribute. Nevertheless, Django doesn't allow accessing variables
or attributes starting with underscore in templates to prevent retrieving private
attributes or calling private methods. We can solve this by writing a custom
template filter.

Create the following file structure inside the courses application directory:

templatetags/
__init .py
course.py

Edit the course.py module and add the following code to it:

from django import template
register = template.Library()

@register.filter
def model name (obj) :

[382]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

try:

return obj. meta.model name
except AttributeError:

return None

This is the model name template filter. We can apply it in templates as
object |model_name to get the model's name for an object.

Edit the templates/courses/manage/module/content_list.html template and
add the following line after the {% extends %} template tag:

)

{% load course %}
This will load the course template tags. Then, replace the following lines:

<p>{{ item }}</p>
Edit

...with the following ones:

<p>{{ item }} ({{ item|model name }})</p>

)

<a href="{% url "module content update" module.id item|model name
item.id %}"s>Edit

Now, we display the item model in the template and use the model name to build
the link to edit the object. Edit the courses/manage/course/list.html template
and add a link to the module content 1list URL like this:

°

Edit modules
{% if course.modules.count > 0 %}

<a href="{% url "module content list" course.modules.first.id
%}">Manage contents
{% endif %}

The new link allows users to access the contents of the first module of the course,
if any.

[383]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Open http://127.0.0.1:8000/course/mine/ and click the Manage contents
link for a course that contains at least one module. You will see a page like the
following one:

Course "Django course”

Modules Module 1: Installing Django

MODULE 1

A Madule contents:
Installing Django

This module has no contents yet.
MODULE 2
Models

Add new content:

Text Image Video File

When you click on a module in the left sidebar, its contents are displayed in the main
area. The template also includes links to add a new text, video, image, or file content
for the module being displayed. Add a couple of different contents to the module
and take a look at the result. The contents will appear after Module contents like

the following example:

Course "Django course”

Modules Module 2: Installing Django

MODULE 2

A Module contents:
Installing Django

MODULE 1 Installing Django (text)
Models

Edit Delete

Configuring the server (video)

Edit Delete

Add new content:

Text Image Video File

[384]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Reordering modules and contents

We need to offer a simple way to re-order course modules and their contents. We
will use a JavaScript drag-n-drop widget to let our users reorder the modules of

a course by dragging them. When users finish dragging a module, we will launch
an asynchronous request (AJAX) to store the new module order.

We need a view that receives the new order of modules' id encoded in JSON. Edit
the views.py file of the courses application and add the following code to it:

from braces.views import CsrfExemptMixin, JsonRequestResponseMixin

class ModuleOrderView (CsrfExemptMixin,
JsonRequestResponseMixin,
View) :
def post (self, request):
for id, order in self.request json.items() :
Module.objects.filter (id=id,
course owner=request.user) .update (order=order)

return self.render json response({'saved': 'OK'})
This is ModuleOrderview. We use the following mixins of django-braces:

* CsrfExemptMixin: To avoid checking for a CSRF token in POST requests.
We need this to perform AJAX POST requests without having to generate

csrf token.

* JsonRequestResponseMixin: Parses the request data as JSON and also
serializes the response as JSON and returns an HTTP response with the
application/json content type.

We can build a similar view to order a module's contents. Add the following code
to the views.py file:

class ContentOrderView (CsrfExemptMixin,
JsonRequestResponseMixin,
View) :
def post(self, request):
for id, order in self.request json.items() :
Content.objects.filter (id=id,

module course_owner=request.user) \
.update (order=order)

return self.render json response({'saved': 'OK'})

[385]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

Now, edit the urls.py file of the courses application and add the following URL
patterns to it:

url (r'“module/order/s$"',
views.ModuleOrderView.as view(),
name='module order'),

url (r'”“content/order/s$"',
views.ContentOrderView.as_view(),

name='content order'),

Finally, we need to implement the drag-n-drop functionality in the template. We
will use the jQuery Ul library for this. jQuery Ul is built on top of jQuery and it
provides a set of interface interactions, effects, and widgets. We will use its sortable
element. First, we need to load jQuery Ul in the base template. Open the base . html
file located in the templates/ directory of the courses application, and add jQuery
UI below the script to load jQuery, as follows:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></scripts>

<script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/
jquery-ui.min.js"></script>

We load the jQuery Ul library just after the jQuery framework. Now, edit the
courses/manage/module/content_list.html template and add the following
code to it at the bottom of the template:

)

{% block domready %}
$ ('#modules') .sortable ({
stop: function(event, ui) {
modules order = {};
$ ('#modules') .children () .each (function () {
// update the order field
$(this) .find (' .order') .text ($(this) .index () + 1);
// associate the module's id with its order

modules order[$(this).data('id')] = $(this).index();
P
$.ajax ({

type: 'POST',

url: '{% url "module order" %}',

contentType: 'application/json; charset=utf-8',
dataType: 'json',
data: JSON.stringify (modules order)

[386]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

$ ('#module-contents') .sortable ({
stop: function(event, ui) {
contents order = {};
$ ('#module-contents') .children () .each (function () {
// associate the module's id with its order
contents order[$(this) .data('id')] = $(this).index();
P
$.ajax ({
type: 'POST',
url: '{% url "content order" %}',

contentType: 'application/json; charset=utf-8',
dataType: 'json',
data: JSON.stringify(contents order),

3N

1

}

)
{% endblock %}

This JavaScript code is in the {$ block domready %} block and therefore it will
be included inside the $ (document) . ready () event of jQuery that we defined in
the base.html template. This guarantees that our JavaScript code is executed once
the page has been loaded. We define a sortable element for the modules list in
the sidebar and a different one for the module's content list. Both work in a similar
manner. In this code, we perform the following tasks:

1. First, we define a sortable element for the modules HTML element.
Remember that we use #modules, since jQuery uses CSS notation for
selectors.

2. We specify a function for the stop event. This event is triggered every time
the user finishes sorting an element.

3. We create an empty modules_order dictionary. The keys for this dictionary
will be the modules' id, and the values will be the assigned order for each
module.

4. We iterate over the #module children elements. We recalculate the displayed
order for each module and get its data-id attribute, which contains the
module's id. We add the id as key of the modules_order dictionary and
the new index of module as the value.

5. We launch an AJAX POST request to the content_order URL, including the
serialized JSON data of modules_order in the request. The corresponding
ModuleOrderView takes care of updating the modules order.

[387]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an e-Learning Platform

The sortable element to order contents is quite similar to this one. Go back to your
browser and reload the page. Now you will be able to click and drag both, modules
and contents, to reorder them like the following example:

Course "Django course"

Modules Module 2: Installing Django

MODULE 1 “I_.

R ule contents:
Installing Django

MODULE 2 Installing Django (text)
Models

Edit Delete

Configuring the server (video)

Edit Delete

Great! Now you can re-order both course modules and module contents.

Summary

In this chapter, you learned how to create a versatile content management system.
You used model inheritance and created a custom model field. You also worked with
class-based views and mixins. You created formsets and a system to manage diverse
types of contents.

In the next chapter, you will create a student registration system. You will also
render different kinds of contents, and you will learn how to work with Django's
cache framework.

[388]

www.it-ebooks.info

http://www.it-ebooks.info/

11

Caching Content

In the previous chapter, you used model inheritance and generic relationships to
create flexible course content models. You also built a course management system
using class-based views, formsets and AJAX ordering for contents. In this chapter,
you will:

* Create public views for displaying course information

* Build a student registration system

* Manage student enrollment in courses

* Render diverse course contents

* Cache content using the cache framework

We will start by creating a course catalog for students to browse existing courses and
be able to enroll in them.

Displaying courses

For our course catalog we have to build the following functionality:

* List all available courses, optionally filtered by subject

* Display a single course overview

Edit the views. py file of the courses application and add the following code:

from django.db.models import Count
from .models import Subject

class CourselListView (TemplateResponseMixin, View) :
model = Course
template name = 'courses/course/list.html'

[389]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

def get(self, request, subject=None) :

subjects = Subject.objects.annotate (
total courses=Count ('courses'))
courses = Course.objects.annotate (
total modules=Count ('modules'))
if subject:
subject = get object or 404 (Subject, slug=subject)
courses = courses.filter (subject=subject)
return self.render to response ({'subjects': subjects,
'subject': subject,
'courses': courses})

This is the CourseListView. It inherits from TemplateResponseMixin and View. In
this view, we perform the following tasks:

1. We retrieve all subjects, including the total number of courses for each of
them. We use the ORM's annotate () method with the count () aggregation
function for doing so.

2. Weretrieve all available courses, including the total number of modules
contained in each course.

3. If a subject slug URL parameter is given we retrieve the corresponding
subject object and we limit the query to the courses that belong to the
given subject.

4. We use the render_to_response () method provided by
TemplateResponseMixin to render the objects to a template
and return an HTTP response.

Let's create a detail view for displaying a single course overview. Add the following
code to the views . py file:

from django.views.generic.detail import DetailView

class CourseDetailView (DetailView) :
model = Course
template name = 'courses/course/detail.html’'

This view inherits from the generic Detailview provided by Django. We specify the
model and template_name attributes. Django's DetailView expects a primary key
(pk) or slug URL parameter to retrieve a single object for the given model. Then it
renders the template specified in template_name, including the object in the context
as object.

[390]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Edit the main urls. py file of the educa project and add the following URL
pattern to it:

from courses.views import CourseListView

urlpatterns = [
#
url(r'”*$', CourseListView.as view(), name='course list'),

]

We add the course_1list URL pattern to the main urls.py file of the project
because we want to display the list of courses in the URL http://127.0.0.1:8000/
and all other URLSs for the courses application have the /course/ prefix.

Edit the urls.py file of the courses application and add the following URL patterns:

url (r'“subject/ (?P<subject>[\w-1+) /3",
views.CourseListView.as view(),

name="'course_ list subject'),

url (r'* (?P<slug>[\w-1+)/$"',
views.CourseDetailView.as view(),

name='course detail'),
We define the following URL patterns:

* course_list_subject: For displaying all courses for a subject

* course_detail: For displaying a single course overview

Let's build templates for the CourseListView and CourseDetailView views.
Create the following file structure inside the templates/courses/ directory of
the courses application:

* course/
® list.html
® detail.html

Edit the courses/course/list.html template and write the following code:

{% extends "base.html" %}

{% block title %}
{$ if subject %}
{{ subject.title }} courses
{% else %}
All courses
{% endif %}

[391]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

{% endblock %}

{% block content %}
<hl>
{$ if subject %}
{{ subject.title }} courses
{% else %}
All courses
{% endif %}
</hl>
<div class="contents">
<h3>Subjects</h3>
<ul id="modules">

)))

<1li {% if not subject %}class="selected"{% endif %}>
All
</1li>
{$ for s in subjects %}
<li {% if subject == s %}class="selected"{% endif %
<a href="{% url "course list subject" s.slug %}"
{{ s.title }}

{{ s.total courses }} courses

</1li>
{% endfor %}

</div>
<div class="module">

>
>

)

{% for course in courses %}
{% with subject=course.subject %}
<h3>{{
course.title }}</h3>
<p>
<a href="{% url "course list subject" subject.slug
$}"s{{ subject }}.
{{ course.total modules }} modules.
Instructor: {{ course.owner.get full name }}
</p>
{% endwith %}
{% endfor %}
</div>
{% endblock %}

This is the template for listing available courses. We create an HTML list to display
all subject objects and build a link to the course_list_subject URL for each of
them. We add a selected HTML class to highlight the current subject, if any. We
iterate over every Course object, displaying the total number of modules and the
instructor name.

[392]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Run the development server using the command python manage.py runserver and

open http://127.0.0.1:8000/ in your browser. You should see a page similar to
the following one:

Sign out

All courses

Subjects Algebra basics

All Mathematics. 5 modules. Instructor. Antonio Melé

Mathematics

Python for beginners
1 COURSES

Programming. 2 medules. Instructor. James Zhang

Music production

Physics Music. 4 modules. Instructor: James Zhang
0]
Django course

Programming. 10 modules. Instructor: Antonio Melé

The left sidebar contains all subjects, including the total number of courses for each
of them. You can click any subject to filter the courses being displayed.

Edit the courses/course/detail . html template and add the following code to it:

{% extends "base.html" %}

{% block title %}
{{ object.title }}
{% endblock %}

{% block content %}
{% with subject=course.subject %}
<hl>
{{ object.title }}
</hl>
<div class="module">
<h2>0verview</h2>
<p>
<a href="{% url "course list subject" subject.slug
$}">{{ subject.title }}.

{{ course.modules.count }} modules.

[393]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

Instructor: {{ course.owner.get full name }}
</p>
{{ object.overview|linebreaks }}
</divs>
{% endwith %}
{% endblock %}

In this template, we display the overview and details for a single course. Open
http://127.0.0.1:8000/ in your browser and click one of the courses. You
should see a page with the following structure:

EDUCA Sign out

Algebra basics

Overview
Mathematics. 0 modules. Instructor. Antonio Melé

Algebra is the language through which we describe patterns. Think of it as a shorthand, of sorts. As opposed to having to do
something over and over again, algebra gives you a simple way to express that repetitive process. Once you achieve an
understanding of algebra, the higher-level math subjects become accessible to you. We will cover topics such as linear
equations, linear inequalities, linear functions, systems of equations, factoring expressions, quadratic expressions,
exponents, functions, and ratios.

We have created a public area for displaying courses. Next, we need to allow users to
register as students and enroll in courses.

Adding student registration

Create a new application using the following command:

python manage.py startapp students

Edit the settings.py file of the educa project and add 'students' to the
INSTALLED_APPS setting as follows:

INSTALLED APPS = (
#
'students',

[394]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Creating a student registration view

Edit the views.py file of the students application and write the following code:

from django.core.urlresolvers import reverse lazy

from django.views.generic.edit import CreateView

from django.contrib.auth.forms import UserCreationForm

from django.contrib.auth import authenticate, login

class StudentRegistrationView (CreateView) :

template name = 'students/student/registration.html’
form class = UserCreationForm
success_url = reverse_ lazy('student course list')

def form valid(self, form):
result = super (StudentRegistrationView,
self) .form valid(form)
cd = form.cleaned data
user = authenticate (username=cd['username'l],
password=cd|['passwordl'])
login(self.request, user)
return result

This is the view that allows students to register in our site. We use the generic
CreateView that provides the functionality for creating model objects. This view
requires the following attributes:

template_name: The path of the template to render for this view.

form_class: The form for creating objects, which has to be a ModelForm. We
use Django's UserCreationForm as registration form to create User objects.

success_url: The URL to redirect the user to when the form is successfully
submitted. We reverse the student_course_list URL, which we are going
to create later for listing the courses students are enrolled in.

The form_valid () method is executed when valid form data has been posted. It
has to return an HTTP response. We override this method to login the user after
successfully signing up.

Create a new file inside the students application directory and add name it urls.py.
Add the following code to it:

from django.conf.urls import url

from . import views

urlpatterns = [

[395]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

url (r'“register/$",
views.StudentRegistrationView.as view(),
name="'student registration'),

]

The edit the main urls.py of the educa project and include the URLs for the
students application by adding the following pattern to your URL configuration:

url (r'“students/', include ('students.urls')),

Create the following file structure inside the students application:

templates/
students/
student/
registration.html

Edit the students/student/registration.html template and add the following
code to it:

{% extends "base.html" %}

{% block title %}
Sign up
{% endblock %}

{% block content %}
<hl>
Sign up
</hl>
<div class="module">
<p>Enter your details to create an account:</p>
<form action="" method="post">
{{ form.as p }}
{% csrf token %}
<p><input type="submit" value="Create my account"></p>
</form>
</div>
{% endblock %}

Finally edit the settings.py file of the educa project and add the following code to it:

from django.core.urlresolvers import reverse lazy
LOGIN REDIRECT URL = reverse lazy('student course list')

[396]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

This is the setting used by the auth module to redirect the user to after a successful
login, if no next parameter is present in the request.

Run the development server and open http://127.0.0.1:8000/students/
register/ in your browser. You should see the registration form like this:

EDUCA

Sign up

Enter your details to create an account:

Username:
Password:

Password confirmation:

CREATE MY ACCOUNT

Enrolling in courses

After users create an account, they should be able to enroll in courses. In order
to store enrollments, we need to create a many-to-many relationship between the
Course and User models. Edit the models.py file of the courses application and
add the following field to the Course model:

students = models.ManyToManyField (User,
related name='courses joined',
blank=True)

From the shell, execute the following command to create a migration for this change:
python manage.py makemigrations
You will see an output similar to this:

Migrations for 'courses':
0004_course_students.py:
- Add field students to course

[397]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

Then execute the next command to apply pending migrations:

python manage.py migrate

You should see the following output:

Operations to perform:
Apply all migrations: courses
Running migrations:
Rendering model states... DONE
Applying courses.0004 course students... OK

We can now associate students with the courses in which they are enrolled.
Let's create the functionality for students to enroll in courses.

Create a new file inside the students application directory and name it forms. py.
Add the following code to it:

from django import forms
from courses.models import Course

class CourseEnrollForm(forms.Form) :
course = forms.ModelChoiceField(queryset=Course.objects.all(),
widget=forms.HiddenInput)

We are going to use this form for students to enroll in courses. The course field is
for the course in which the user gets enrolled. Therefore, it's a ModelChoiceField.
We use a HiddenInput widget because we are not going to show this field to the
user. We are going to use this form in the CourseDetailview view to display an
enroll button.

Edit the views. py file of the students application and add the following code:

from django.views.generic.edit import FormView
from braces.views import LoginRequiredMixin
from .forms import CourseEnrollForm

class StudentEnrollCourseView (LoginRequiredMixin, FormView) :
course = None
form class = CourseEnrollForm

def form valid(self, form):
self.course = form.cleaned data['course']
self.course.students.add(self.request.user)
return super (StudentEnrollCourseView,
self) .form valid(form)

[398]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

def get success url(self):
return reverse lazy('student course detail’,
args=[self.course.id])

This is the studentEnrollCourseView. It handles students enrolling in courses.
The view inherits from the LoginRequiredMixin so that only logged in users can
access the view. It also inherits from Django's Formview , since we handle a form
submission. We use the CourseEnrol1lForm form for the form class attribute and
also define a course attribute for storing the given course object. When the form is
valid, we add the current user to the students enrolled in the course.

The get_success_url () method returns the URL the user will be redirected to if
the form was successfully submitted. This method is equivalent to the success_url
attribute. We reverse the student course detail URL, which we will create later
in order to display the course contents.

Edit the urls.py file of the students application and add the following URL pattern
to it:

url (r'“enroll-course/$"',
views.StudentEnrollCourseView.as view(),
name="'student enroll course'),

Let's add the enroll button form to the course overview page. Edit the views.py
file of the courses application and modify the CourseDetailview to make it look
as follows:

from students.forms import CourseEnrollForm

class CourseDetailView (DetailView) :
model = Course
template name = 'courses/course/detail.html’

def get context data(self, **kwargs):
context = super (CourseDetailView,
self) .get_context data(**kwargs)
context['enroll form'] = CourseEnrollForm(
initial={"'course':self.object})
return context

We use the get _context data () method to include the enrollment form in the
context for rendering the templates. We initialize the hidden course field of the
form with the current course object, so that it can be submitted directly.

[399]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

Edit the courses/course/detail . html template and find the following line:

{{ object.overview|linebreaks }}

The preceding line should be replaced with the following ones:

{{ object.overview|linebreaks }}
{% if request.user.is authenticated %}
<form action="{% url "student enroll course" %}" method="post">
{{ enroll form }}
{% csrf token %}
<input type="submit" class="button" value="Enroll now">
</form>
{% else %}

Register to enroll

{% endif %}

This is the button for enrolling in courses. If the user is authenticated, we
display the enrollment button including the hidden form that points to the
student_enroll_ course URL. If the user is not authenticated, we display
a link to register in the platform.

Make sure the development server is running, open http://127.0.0.1:8000/ in
your browser and click a course. If you are logged in, you should see an ENROLL
NOW button placed below the course overview, as follows:

Overview
Mathematics. 0 modules. Instructor; Antonio Melé

Algebra is the language through which we describe patterns. Think of it as a shorthand, of sorts. As opposed to having to do
something over and over again, algebra gives you a simple way to express that repetitive process. Once you achieve an
understanding of algebra, the higherlevel math subjects become accessible to you. We will cover topics such as linear
equations, linear inequalities, linear functions, systems of equations, factoring expressions, quadratic expressions,
exponents, functions, and ratios

If you are not logged in, you will see a Register to enroll button instead.

[400]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Accessing the course contents

We need a view for displaying the courses the students are enrolled in, and a view
for accessing the actual course contents. Edit the views. py file of the students
application and add the following code to it:

from django.views.generic.list import ListView
from courses.models import Course

class StudentCourseListView (LoginRequiredMixin, ListView):
model = Course
template name = 'students/course/list.html'

def get queryset (self):
gs = super (StudentCourseListView, self).get queryset()
return gs.filter (students_ in=[self.request.user])

This is the view for students to list the courses they are enrolled in. It inherits from
LoginRequiredMixin to make sure that only logged in users can access the view.
It also inherits from the generic ListView for displaying a list of Course objects.
We override the get_queryset () method for retrieving only the courses the user
is enrolled in: We filter the QuerySet by the students ManyToManyField field for
doing so.

Then add the following code to the views.py file:

from django.views.generic.detail import DetailView

class StudentCourseDetailView (DetailView) :
model = Course
template name = 'students/course/detail.html’

def get queryset (self):
gs = super (StudentCourseDetailView, self).get queryset ()
return gs.filter (students in=[self.request.user])

def get context data(self, **kwargs):
context = super (StudentCourseDetailView,
self) .get context data(**kwargs)
get course object
course = self.get object()
if 'module id' in self.kwargs:
get current module
context ['module'] = course.modules.get (
id=self.kwargs['module id'l])

[401]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

else:
get first module

context ['module'] = course.modules.all() [0]
return context

This is the sStudentCourseDetailview. We override the get queryset () method to
limit the base QuerySet to courses in which the user is enrolled. We also override the
get context data () method to set a course module in the context if the module id
URL parameter is given. Otherwise, we set the first module of the course. This way,
students will be able to navigate through modules inside a course.

Edit the the urls.py file of the students application and add the following URL
patterns to it:

url (r'“courses/$"',
views.StudentCourselListView.as view(),
name='student course list'),

url (r'“course/ (?P<pk>\d+) /$',
views.StudentCourseDetailView.as view(),
name='student course_ detail'),

url (r'“course/ (?P<pk>\d+) / (?P<module id>\d+)/$"',
views.StudentCourseDetailView.as view(),
name='student course_detail module'),

Create the following file structure inside the templates/students/ directory of the
students application:

course/
detail.html
list.html

Edit the students/course/list.html template and add the following code to it:

{% extends "base.html" %}
{% block title %}My courses{% endblock %}

{% block content %}
<h1>My courses</hl>

<div class="module">
{%$ for course in object list %}
<div class="course-info">

[402]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

<h3>{{ course.title }}</h3>
<p><a href="{% url "student course detail" course.id
%$}">Access contents</p>
</div>
{% empty %}
<p>
You are not enrolled in any courses yet.
<a href="{% url "course list" %}"sBrowse courses
to enroll in a course.
</p>
{% endfor %}
</div>
{% endblock %}

This template displays the courses the user is enrolled in. Edit the students/
course/detail.html template and add the following code to it:

{% extends "base.html" %}
{% block title %}

{{ object.title }}
{% endblock %}

{% block content %}

<hl>

{{ module.title }}
</hl>
<div class="contents">

<h3>Modules</h3>
<ul id="modules">
{$ for m in object.modules.all %}
<li data-id="{{ m.id }}" {% if m == module %}
class="selected"{% endif %}>
<a href="{% url "student course detail module" object.
id m.id %}">

Module {{ m.order|add:1l
}}

{{ m.title }}

</1li>
{% empty %}
No modules yet.

[403]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

{% endfor %}

</div>

<div class="module">

)

{$ for content in module.contents.all %}
{$ with item=content.item %}
<h2>{{ item.title }}</h2>
{{ item.render }}
{% endwith %}
{% endfor %}
</div>
{% endblock %}

This is the template for enrolled students to access a course contents. First we
build an HTML list including all course modules and highlighting the current
module. Then we iterate over the current module contents, and access each content
item to display it using {{ item.render }}. We are going to add the render ()
method to the content models next. This method will take care of rendering the
content properly.

Rendering different types of content

We need to provide a way to render each type of content. Edit the models.py
file of the courses application directory and add the following render () method
to the ItemBase model as follows:

from django.template.loader import render to string
from django.utils.safestring import mark safe

class ItemBase (models.Model) :
...

def render (self):
return render to string('courses/content/{}.html'.format (
self. meta.model name), {'item': self})

This method uses the render_to_string() function for rendering a template and
returning the rendered content as a string. Each kind of content is rendered using a
template named after the content model. We use self. meta.model name to build
the appropriate template name for 1a. The render () methods provides a common
interface for rendering diverse content.

[404]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Create the following file structure inside the templates/courses/ directory of the
courses application:

content/
text.html
file.html
image.html
video.html
Edit the courses/content/text.html template and write this code:
{{ item.content |linebreaks|safe }}
Edit the courses/content/file.html template and add the following:
<p><a href="{{ item.file.url }}" class="button"sDownload file</p>
Edit the courses/content/image.html template and write:
<p></p>

For files uploaded with ImageField and FileField to work, we need to set up our
project to serve media files with the development server. Edit the settings.py file
of your project and add the following code to it:

MEDIA URL = ' /media/"
MEDIA ROOT = os.path.join(BASE DIR, 'media/')

Remember that MEDIA URL is the base URL to serve uploaded media files and
MEDIA_ROOT is the local path where the files are located.

Edit the main urls.py file of your project and add the following imports:

from django.conf import settings
from django.conf.urls.static import static

Then, write the following lines at the end of the file:

urlpatterns += static(settings.MEDIA URL,
document root=settings.MEDIA ROOT)

Your project is now ready for uploading and serving media files using the
development server. Remember that the development server is not suitable
for production use. We will cover configuring a production environment in
the next chapter.

[405]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

We also have to create a template for rendering video objects. We will use django-
embed-video for embedding video content. Django-embed-video is a third-party
Django application that allows you to embed videos in your templates, from sources
like YouTube or Vimeo, by simply providing the video public URL.

Install the package with the following command:

pip install django-embed-video==1.0.0

Then, edit the settings.py file of your project and add 'embed_video' to the
INSTALLED APPS setting. You can find django-embed-video's documentation at
http://django-embed-video.readthedocs.org/en/v1.0.0/.

Edit the courses/content/video.html template and write the following code:

{
{

Now run the development server and access http://127.0.0.1:8000/course/
mine/ in your browser. Access the site with a user that belongs the Instructors group
or a superuser, and add multiple contents to a course. For including video content,
you can just copy any YouTube URL, for example https://www.youtube . com/
watch?v=bgV39D1mz2U, and include it it in the ur1l field of the form. After adding
contents to the course open http://127.0.0.1:8000/, click the course and click the
ENROLL NOW button. You should get enrolled in the course and be redirected to the
student_course_detail URL. The following image shows a sample course contents:

load embed video tags %}

°
°
°

°

video item.url 'small' %}

Django overview

Modules Why Djanga?

MODULE 1

Django overview With Django, you can take Web applications from concept to launch in a matter of hours.
Django takes care of much of the hassle of Web development.

It's free and open source.

MODULE 2
Installing Django

Django video
MODULE 3
Models

DjangoCon 2012 - Malcolm Tredinnick "The D.. @ «§

MODULE 4
Views

In the background...
MODULE 5
Templates

MODULE 6
URLs

[406]

www.it-ebooks.info

http://django-embed-video.readthedocs.org/en/v1.0.0/
https://www.youtube.com/watch?v=bgV39DlmZ2U
https://www.youtube.com/watch?v=bgV39DlmZ2U
http://www.it-ebooks.info/

Chapter 11

Great! You have created a common interface for rendering course contents, each of
them being rendered in a particular way.

Using the cache framework

HTTP requests to your web application usually entail database access, data
processing, and template rendering. This is much more expensive in terms
of processing than serving a static website.

The overhead in some requests can be significant when your site starts getting
more and more traffic. This is where caching becomes precious. By caching
queries, calculation results, or rendered content in an HTTP request, you will
avoid cost-expensive operations in the following requests. This translates into
shorter response times and less processing on the server side.

Django includes a robust cache system that allows you to cache data with different
levels of granularity. You can cache a single query, the output of a specific view,
parts of rendered template content, or your entire site. Items are stored in the cache
system for a default time. You can specify the default timeout for cached data.

This is how you will usually use the cache framework when your application gets
an HTTP request:

1. Try to find the requested data in the cache.

2. If found, return the cached data.

3. If not found, perform the following steps:

1. Perform the query or processing required to obtain the data.
2. Save the generated data in the cache.
3. Return the data.

You can read detailed information about Django's cache system at https://docs.
djangoproject.com/en/1.8/topics/cache/.

Available cache backends

Django comes with several cache backends. These are:

®* Dbackends.memcached.MemcachedCache Or backends.memcached.
PyLibMCCache: A memcached backend. memcached is a fast and efficient
memory-based cache server. The backend to use depends on the memcached
Python bindings you choose.

[407]

www.it-ebooks.info

https://docs.djangoproject.com/en/1.8/topics/cache/
https://docs.djangoproject.com/en/1.8/topics/cache/
http://www.it-ebooks.info/

Caching Content

* Dbackends.db.DatabaseCache: Use the database as cache system.

* Dbackends.filebased.FileBasedCache: Use the file storage system.
Serializes and stores each cache value as a separate file.

* Dbackends.locmem.LocMemCache: Local memory cache backend. This the
default cache backend.

* Dbackends.dummy.DummyCache: A dummy cache backend intended only for
development. It implements the cache interface without actually caching
anything. This cache is per-process and thread-safe.

For optimal performance, use a memory-based cache backend
S such as the Memcached backend.

Installing memcached

We are going to use the memcached backend. Memcached runs in memory and it
is allotted a specified amount of RAM. When the allotted RAM is full, Memcached
starts removing the oldest data to store new data.

Download memcached from http://memcached.org/downloads. If you are using
Linux, you can install memcached using the following command:

./configure && make && make test && sudo make install

If you are using Mac OS X, you can install Memcached with the Homebrew
package manager using the command brew install Memcached. You can download
Homebrew from http://brew. sh.

If you are using Windows, you can find a Windows binary version of memcached
at http://code.jellycan.com/memcached/.

After installing Memcached, open a shell and start it using the following command:
memcached -1 127.0.0.1:11211

Memcached will run on port 11211 by default. However, you can specify a custom
host and port by using the -1 option. You can find more information about
Memcached at http://memcached.org.

After installing Memcached, you have to install its Python bindings. You can do it
with the following command:

pip install python3-memcached==1.51

[408]

www.it-ebooks.info

http://memcached.org/downloads
http://brew.sh
http://code.jellycan.com/memcached/
http://memcached.org
http://www.it-ebooks.info/

Chapter 11

Cache settings

Django provides the following cache settings:

cAcHES: A dictionary containing all available caches for the project.
CACHE MIDDLEWARE_ ALIAS: The cache alias to use for storage.

CACHE_MIDDLEWARE_KEY PREFIX: The prefix to use for cache keys.
Set a prefix to avoid key collisions if you share the same cache between
several sites.

CACHE_MIDDLEWARE_SECONDS: The default number of seconds to cache pages.

The caching system for the project can be configured using the CACHES setting.
This setting is a dictionary that allows you to specify the configuration for multiple
caches. Each cache included in the caAcHES dictionary can specify the following data:

BACKEND: The cache backend to use.

KEY_ FUNCTION: A string containing a dotted path to a callable that takes a
prefix, version, and key as arguments and returns a final cache key.

KEY_ PREFIX: A string prefix for all cache keys, to avoid collisions.

LOCATION: The location of the cache. Depending on the cache backend, this
might be a directory, a host and port, or a name for the in-memory backend.

OPTIONS: Any additional parameters to be passed to the cache backend.

TIMEOUT: The default timeout, in seconds, for storing the cache keys.
300 seconds by default, which is five minutes. If set to None cache keys
will not expire.

VERSION: The default version number for the cache keys. Useful for
cache versioning.

Adding memcached to your project

Let's configure the cache for our project. Edit the settings.py file of the educa
project and add the following code to it:

CACHES = {
'default': {
'BACKEND' : 'django.core.cache.backends.memcached.
MemcachedCache',
'LOCATION': '127.0.0.1:11211",

}

[409]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

We are using the MemcachedCache backend. We specify its location using
address :port notation. If you have multiple memcached instances you can
use a list for LOCATION.

Montioring memcached

There is a third-party package called django-memcache-status that displays statistics
for your memcached instances in the administration site. For compatibility with
Python3, install it from the following fork with the following command:

pip install git+git://github.com/zenx/django-memcache-status.git

Edit the settings.py file and add 'memcache status' to the INSTALLED APPS

setting. Make sure memcached is running, start the development server in another
shell window and open http://127.0.0.1:8000/admin/ in your browser. Log in
into the administration site using a superuser. You should see the following block:

This graph shows the cache usage. The green color represents free cache while red
indicates used space. If you click the title of the box, it shows detailed statistics about
your memcached instance.

We have setup memcached for our project and are able to monitor it. Let's start
caching data!

Cache levels

Django provides the following levels of caching listed below by ascendant order of
granularity:

* Low-level cache API: Provides the highest granularity. Allows you to cache
specific queries or calculations.

* Per-view cache: Provides caching for individual views.

* Template cache: Allows you to cache template fragments.

* Per-site cache: The highest-level cache. It caches your entire site.

[410]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Think about your cache strategy before implementing caching. Focus
@’@‘\ first on expensive queries or calculations, which are not calculated in
’ a per-user basis.

Using the low-level cache API

The low-level cache API allows you to store objects in the cache with any granularity.
It is located at django. core. cache. You can import it like this:

from django.core.cache import cache

This uses the default cache. It's equivalent to caches ['default']. Accessing a
specific cache is also possible via its alias:

from django.core.cache import caches
my cache = caches['alias']

Let's take a look at how the cache API works. Open the shell with the command
python manage.py shell and execute the following code:

>>> from django.core.cache import cache
>>> cache.set ('musician', 'Django Reinhardt',6 20)

We access the default cache backend and use set (key, value, timeout) to store
a key named 'musician' with a value that is the string 'Django Reinhardt' for 20
seconds. If we don't specify a timeout, Django uses the default timeout specified for
the cache backend in the CACHES setting. Now execute the following code:

>>> cache.get ('musician')
'Django Reinhardt'

We retrieve the key from the cache. Wait for 20 seconds and execute the same code:

>>> cache.get ('musician')
None

The 'musician' cache key expired and the get () method returns None because the
key is not in the cache anymore.

Always avoid storing a None value in a cache key because you won't
= be able to distinguish between the actual value and a cache miss.

[411]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

Let's cache a QuerySet:

>>> from courses.models import Subject
>>> subjects = Subject.objects.all()
>>> cache.set ('all subjects',6 subjects)

We perform a queryset on the subject model and store the returned objects in the
'all_subjects' key. Let's retrieve the cached data:

>>> cache.get ('all subjects')

[<Subject: Mathematics>, <Subject: Music>, <Subject: Physicss>,
<Subject: Programmings]

We are going to cache some queries in our views. Edit the views.py file of the
courses application and add the following import:

from django.core.cache import cache

In the get () method of the courseListView, replace the following line:

subjects = Subject.objects.annotate (
total courses=Count ('courses'))

With the following ones:

subjects = cache.get('all subjects')
if not subjects:
subjects = Subject.objects.annotate (
total courses=Count ('courses'))
cache.set('all subjects', subjects)

In this code, first we try to get the all_students key from the cache using cache.
get (). This returns None if the given key is not found. If no key is found (not cached
yet, or cached but timed out) we perform the query to retrieve all Subject objects
and their number of courses, and we cache the result using cache.set ().

Run the development server and open http://127.0.0.1:8000/ in your
browser. When the view is executed, the cache key is not found and the QuerySet
is executed. Open http://127.0.0.1:8000/admin/ in your browser and expand
the memcached statistics. You should see usage data for the cache similar to the
following ones:

[412]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Miss Ratio 20% [
Avg GET by item 2
Avg GET by seconds/minutes 0/3

Detailed Statistics:
Auth Errors 0

Cmd Get 5
Rusage User 0.003557

Incr Misses 0O

Cet Hits 4

Take a look at Curr Items, which should be 1. This shows that there is one item
currently stored in the cache. Get Hits shows how many get commands were
successful and Get Misses shows the get requests for keys that are missing.
The Miss Ratio is calculated using both of them.

Now navigate back to http://127.0.0.1:8000/ using your browser and reload the
page several times. If you take a look at the cache statistics now you will see several
reads more (Get Hits and Cmd Get have increased).

Caching based on dynamic data

Many times you will want to cache something that is based on dynamic data. In
these cases, you have to build dynamic keys that contain all information required to
uniquely identify the cached data. Edit the views. py file of the courses application
and modify the CourseListView view to make it look like this:

class CourselistView (TemplateResponseMixin, View) :
model = Course
template name = 'courses/course/list.html'

def get(self, request, subject=None):
subjects = cache.get('all subjects')
if not subjects:
subjects = Subject.objects.annotate (
total courses=Count ('courses'))
cache.set ('all_subjects', subjects)
all courses = Course.objects.annotate(
total modules=Count ('modules'))

[413]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

if subject:
subject = get object or 404 (Subject, slug=subject)
key = 'subject {} courses'.format (subject.id)
courses = cache.get (key)
if not courses:
courses = all courses.filter (subject=subject)
cache.set (key, courses)
else:
courses = cache.get('all courses')
if not courses:
courses = all courses
cache.set('all courses', courses)
return self.render to response ({'subjects': subjects,
'subject': subject,
'courses': courses})

In this case, we also cache both all courses and courses filtered by subject. We
use the all_courses cache key for storing all courses if no subject is given. If
there is a subject we build the key dynamically with 'subject_{} courses'.
format (subject.id).

It is important to note that we cannot use a cached QuerySet to build other QuerySets,
since what we cached are actually the results of the QuerySet. So we cannot do:

courses = cache.get('all courses')
courses.filter (subject=subject)

Instead we have to create the base QuerySet Course.objects.annotate
(total_modules=Count ('modules')), which is not going to be executed
until it is forced, and use it to further restrict the QuerySet with all courses.
filter (subject=subject) in case the data was not found in the cache.

Caching template fragments

Caching template fragments is a higher level approach. You need to load the cache
template tags in your template using {% load cache %}.Then you will be able to
use the {% cache %} template tag to cache specific template fragments. You will
usually use the template tag as follows:

)

{% cache 300 fragment name %}

)

{% endcache %}

[414]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

The {% cache %} tag has two required arguments: The timeout, in seconds, and a
name for the fragment. If you need to cache content depending on dynamic data,
you can do so by passing additional arguments to the {$ cache %} template tag to
uniquely identify the fragment.

Edit the /students/course/detail.html of the students application. Add the
following code at the top of it, just after the {% extends %} tag:

{% load cache %}

Then, replace the following lines:

)

{$ for content in module.contents.all %}
{$ with item=content.item %}
<h2>{{ item.title }}</h2>
{{ item.render }}
{$ endwith %}
{% endfor %}

With the following ones:

{% cache 600 module contents module %}
{% for content in module.contents.all %}
{$ with item=content.item %}
<h2>{{ item.title }}</h2>
{{ item.render }}
{% endwith %}
{% endfor %}
{% endcache %}

We cache this template fragment using the name module contents and passing
the current Module object to it. Thus, we uniquely identify the fragment. This is
important to avoid caching a module's contents and serving the wrong content
when a different module is requested.

If the USE_I18N setting is set to True, the per-site middleware cache
will respect the active language. If you use the {$ cache %} template

%@“ tag you have use one of the translation-specific variables available in
templates to achieve the same result, such as {$ cache 600 name
request . LANGUAGE _CODE %}.

[415]

www.it-ebooks.info

http://www.it-ebooks.info/

Caching Content

Caching views

You can cache the output of individual views using the cache_page decorator
located at django.views.decorators.cache. The decorator requires a timeout
argument (in seconds).

Let's use it in our views. Edit the urls.py file of the students application and add the
following import:

from django.views.decorators.cache import cache page

Then apply the cache_page decorator the student_course_detail and student_
course_detail module URL patterns, as follows:

url (r'“course/ (?P<pk>\d+) /$',
cache_page (60 * 15) (views.StudentCourseDetailView.as_view()),
name="'student course_detail'),

url (r'“course/ (?P<pk>\d+) / (?P<module_id>\d+) /$"',
cache_page (60 * 15) (views.StudentCourseDetailView.as_view()),
name="'student course_detail module'),

Now the result for the StudentCourseDetailView is cached for 15 minutes.

The per-view cache uses the URL to build the cache key. Multiple URLs
= pointing to the same view will be cached separately.

Using the per-site cache

This is the highest-level cache. It allows you to cache your entire site.

To allow the per-site cache edit the settings.py file of your project and add
the UpdateCacheMiddleware and FetchFromCacheMiddleware classes to the
MIDDLEWARE CLASSES setting as follows:

MIDDLEWARE CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.cache.UpdateCacheMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.cache.FetchFromCacheMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',

#

[416]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Remember that middlewares are executed in the given order during the request
phase, and in reverse order during the response phase. UpdateCacheMiddleware
is placed before commonMiddleware because it runs during response time, when
middlewares are executed in reverse order. FetchFromCacheMiddleware is placed
after commonMiddleware intentionally, because it needs to access request data set
by the latter.

Then, add the following settings to the settings.py file:

CACHE MIDDLEWARE ALIAS = 'default'
CACHE_ MIDDLEWARE SECONDS = 60 * 15 # 15 minutes
CACHE_MIDDLEWARE KEY PREFIX = 'educa'

In these settings we use the default cache for our cache middleware and we set the
global cache timeout to 15 minutes. We also specify a prefix for all cache keys to
avoid collisions in case we use the same memcached backend for multiple projects.
Our site will now cache and return cached content for all GET requests.

We have done this to test the per-site cache functionality. However, the per-site cache
is not suitable for us, since the course management views need to show updated data
to instantly reflect any changes. The best approach to follow in our project is to cache
the templates or views that are used to display course contents to students.

We have seen an overview of the methods provided by Django to cache data.
You should define your cache strategy wisely and prioritize the most expensive
QuerySets or calculations.

Summary

In this chapter, we have created public views for the courses and you have built a
system for students to register and enroll in courses. We have installed memcached
and have implemented different cache levels.

In the next chapter, we will build a RESTful API for your project.

[417]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

12

Building an API

In the previous chapter, you built a student registration system and enrollment
in courses. You created views to display course contents and learned how to use
Django's cache framework. In this chapter, you will learn how to do the following:

* Build a RESTful API
* Handle authentication and permissions for API views
* Create API view sets and routers

Building a RESTful API

You might want to create an interface for other services to interact with your web
application. By building an API, you can allow third parties to consume information
and operate with your application programmatically.

There are several ways you can structure your API, but following REST principles
is encouraged. The REST architecture comes from Representational State Transfer.
RESTful APIs are resource-based. Your models represent resources and HTTP
methods such as GET, POST, PUT, or DELETE are used to retrieve, create, update,
or delete objects. HTTP response codes are also used in this context. Different HTTP
response codes are returned to indicate the result of the HTTP request, e.g. 2xx
response codes for success, 4xX for errors, and so on.

The most common formats to exchange data in RESTful APIs are JSON and XML. We
will build a REST API with JSON serialization for our project. Our API will provide
the following functionality:

* Retrieve subjects
¢ Retrieve available courses
e Retrieve course contents

e Enroll in a course

[419]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API

We can build an API from scratch with Django by creating custom views. However,
there are several third-party modules that simplify creating an API for your project,
the most popular among them being Django Rest Framework.

Installing Django Rest Framework

Django Rest Framework allows you to easily build REST API's for your project.
You can find all information about REST Framework at http://www.django-rest-
framework.org.

Open the shell and install the framework with the following command:

pip install djangorestframework==3.2.3

Edit the settings.py file of the educa project and add rest_framework to the
INSTALLED APPS setting to activate the application, as follows:

INSTALLED APPS = (
...
'rest framework',

)
Then, add the following code to the settings.py file:

REST FRAMEWORK = {
'DEFAULT PERMISSION CLASSES': [
'rest framework.permissions.DjangoModelPermissionsOrAnonReadOnly'
]
}

You can provide a specific configuration for your API using the REST
FRAMEWORK setting. REST Framework offers a wide range of settings to configure
default behaviors. The DEFAULT PERMISSION_CLASSES setting specifies the
default permissions to read, create, update, or delete objects. We set the
DjangoModelPermissionsOrAnonReadOnly as the only default permission class.
This class relies on Django's permissions system to allow users to create, update,
or delete objects, while providing read-only access for anonymous users. You will
learn more about permissions later.

For a complete list of available settings for REST framework, you can visit
http://www.django-rest-framework.org/api-guide/settings/.

[420]

www.it-ebooks.info

http://www.django-rest-framework.org
http://www.django-rest-framework.org
http://www.django-rest-framework.org/api-guide/settings/
http://www.it-ebooks.info/

Chapter 12

Defining serializers

After setting up REST Framework, we need to specify how our data will be
serialized. Output data has to be serialized into a specific format, and input data
will be de-serialized for processing. The framework provides the following classes
to build serializers for single objects:

* Serializer: Provides serialization for normal Python class instances
* ModelSerializer: Provides serialization for model instances

* HyperlinkedModelSerializer: The same as ModelSerializer, but
represents object relationships with links rather than primary keys

Let's build our first serializer. Create the following file structure inside the courses
application directory:

api/
__init .py
serializers.py

We will build all the API functionality inside the api directory to keep everything
well organized. Edit the serializers.py file and add the following code:

from rest framework import serializers
from ..models import Subject

class SubjectSerializer(serializers.ModelSerializer) :
class Meta:
model = Subject
fields = ('id', 'title', 'slug')

This is the serializer for the Subject model. Serializers are defined in a similar
fashion to Django's Form and ModelForm classes. The Meta class allows you to specify
the model to serialize and the fields to be included for serialization. All model fields
will be included if you don't set a fields attribute.

Let's try our serializer. Open the command line and start the Django shell with the
command python manage.py shell. Run the following code:

from courses.models import Subject

from courses.api.serializers import SubjectSerializer
subject = Subject.objects.latest('id")

serializer = SubjectSerializer (subject)
serializer.data

[421]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API

In this example, we get a Subject object, create an instance of SubjectSerializer,
and access the serialized data. You will get the following output:

{rslug': 'music', 'id': 4, 'title': 'Music'}

As you can see, the model data is translated into Python native data types.

Understanding parsers and renderers

The serialized data has to be rendered in a specific format before you return it in an
HTTP response. Likewise, when you get an HTTP request, you have to parse the
incoming data and deserialize it before you can operate with it. REST Framework
includes renderers and parsers to handle that.

Let's see how to parse incoming data. Given a JSON string input, you can use the
JsoNParser class provided by REST framework to convert it to a Python object.
Execute the following code in the Python shell:

from io import BytesIO

from rest_framework.parsers import JSONParser
data = b'{"id":4,"title":"Music", "slug": "music"}"
JSONParser () .parse (BytesIO (data))

You will get the following output:
{rid': 4, 'title': 'Music', 'slug': 'music'}

REST Framework also includes Renderer classes that allow you to format API
responses. The framework determines which renderer to use through content
negotiation. It inspects the request's Accept header to determine the expected
content type for the response. Optionally, the renderer is determined by the format
suffix of the URL. For example, accessing will trigger the JSONRenderer in order
to return a JSON response.

Go back to the shell and execute the following code to render the serializer object
from the previous serializer example:

from rest framework.renderers import JSONRenderer
JSONRenderer () .render (serializer.data)

You will see the following output:

br{rid":4,"title":"Music", "slug":"music"}"'

[422]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

We use the JsoNRenderer to render the serialized data into JSON. By

default, REST Framework uses two different renderers: JSONRenderer and
BrowsableAPIRenderer. The latter provides a web interface to easily browse your
API You can change the default renderer classes with the DEFAULT_RENDERER_
CLASSES option of the REST FRAMEWORK setting.

You can find more information about renderers and parsers at http: //www.django-
rest-framework.org/api-guide/renderers/ and http://www.django-rest-
framework.org/api—guide/parsers/respecﬁvebk

Building list and detail views

REST Framework comes with a set of generic views and mixins that you can use
to build your API views. These provide functionality to retrieve, create, update, or
delete model objects. You can see all generic mixins and views provided by REST
Framework at http://www.django-rest-framework.org/api-guide/generic-
views/.

Let's create list and detail views to retrieve Subject objects. Create a new file inside
the courses/api/ directory and name it views.py. Add the following code to it:

from rest framework import generics
from ..models import Subject
from .serializers import SubjectSerializer

class SubjectListView(generics.ListAPIView) :
queryset = Subject.objects.all()
serializer class = SubjectSerializer

class SubjectDetailView(generics.RetrieveAPIView) :
queryset = Subject.objects.all()
serializer class = SubjectSerializer

In this code, we are using the generic ListAPIView and RetrieveAPIView views of
REST Framework. We include a pk URL parameter for the detail view to retrieve the
object for the given primary key. Both views have the following attributes:

* queryset: The base QuerySet to use to retrieve objects

* serializer_ class: The class to serialize objects

[423]

www.it-ebooks.info

http://www.django-rest-framework.org/api-guide/renderers/
http://www.django-rest-framework.org/api-guide/renderers/
http://www.django-rest-framework.org/api-guide/parsers/
http://www.django-rest-framework.org/api-guide/parsers/
http://www.django-rest-framework.org/api-guide/generic-views/
http://www.django-rest-framework.org/api-guide/generic-views/
http://www.it-ebooks.info/

Building an API

Let's add URL patterns for our views. Create a new file inside the courses/api/
directory and name it urls.py and make it look as follows:

from django.conf.urls import url

from . import views

urlpatterns = [
url (r'“subjects/$",
views.SubjectListView.as_view(),
name="'subject list'),
url (r'“subjects/ (?P<pk>\d+) /S,
views.SubjectDetailView.as_view(),
name="'subject detail'),

]

Edit the main urls. py file of the educa project and include the API patterns
as follows:

urlpatterns = [
#
url (r'"api/', include('courses.api.urls', namespace='api')),

]

We use the api namespace for our API URLs. Ensure your server is running with
the command python manage.py runserver.Open the shell and retrieve the URL
http://127.0.0.1:8000/api/subjects/ with cURL as follows:

$ curl http://127.0.0.1:8000/api/subjects/

You will get a response similar to the following one:

[{"id":2,"title":"Mathematics", "slug":"mathematics"},{"id":4,"title": "Mus
ic","slug":"music"},{"id":3,"title":"Physics", "slug":"physics"}, {"id":1,"
title":"Programming", "slug":"programming"}]

The HTTP response contains a list of Subject objects in JSON format. If your
operating system doesn't come with cURL installed, you can download it from
http://curl.haxx.se/dlwiz/. Instead of cURL, you can also use any other tool
to send custom HTTP requests such as a browser extension such as Postman, which
you can get at https://www.getpostman. com.

[424]

www.it-ebooks.info

http://curl.haxx.se/dlwiz/
https://www.getpostman.com
http://www.it-ebooks.info/

Chapter 12

Open http://127.0.0.1:8000/api/subjects/ in your browser. You will see REST
Framework's browsable API as follows:

Api Root / Subject List

Subject List =T

GET /api/subjects

HTTP 200 0K

Vary: Accept

Allow: GET, HEAD, OPTIONS
Content-Type: application/json

nign: 2
"title": "Mathematics"™
“slug": “"mathematics"

“title": "Music”
"slug": "music"

"title": “Physics"
"slug": “physics"

"title": "Programming"
"slug": “"programming"

This HTML interface is provided by the BrowsableAPIRenderer renderer. It
displays the result headers and content and allows you to perform requests. You can
also access the API detail view for a Subject object by including its id in the URL.
Open http://127.0.0.1:8000/api/subjects/1/ in your browser. You will see a
single subject object rendered in JSON format.

Creating nested serializers

We are going to create a serializer for the Course model. Edit the api/serializers.
py file and add the following code to it:

from ..models import Course

class CourseSerializer (serializers.ModelSerializer):
class Meta:

[425]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API

model = Course
fields = ('id', 'subject',6 'title', 'slug', 'overview',
'created', 'owner', 'modules')

Let's take a look at how a Course object is serialized. Open the shell, run python
manage.py shell, and run the following code:

from rest framework.renderers import JSONRenderer
from courses.models import Course

from courses.api.serializers import CourseSerializer
course = Course.objects.latest('id'")

serializer = CourseSerializer (course)
JSONRenderer () .render (serializer.data)

You will get a JSON object with the fields we included in Courseserializer. You
can see that the related objects of the modules manager are serialized as a list of
primary keys, like this:

"modules": [17, 18, 19, 20, 21, 22]
We want to include more information about each module, so we need to serialize

Module objects and nest them. Modify the previous code of the api/serializers.
py file to make it look as follows:

from rest framework import serializers
from ..models import Course, Module

class ModuleSerializer(serializers.ModelSerializer) :
class Meta:
model = Module
fields = ('order', 'title', 'description')

class CourseSerializer(serializers.ModelSerializer) :
modules = ModuleSerializer (many=True, read only=True)

class Meta:

model = Course
fields = ('id', 'subject',6 'title', 'slug', 'overview',
'created', 'owner', 'modules')

We define a ModuleSerializer to provide serialization for the Module model. Then
we add a modules attribute to CourseSerializer to nest the ModuleSerializer
serializer. We set many=True to indicate that we are serializing multiple objects.

The read_only parameter indicates that this field is read-only and should not be
included in any input to create or update objects.

[426]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Open the shell and create an instance of CourseSerializer again. Render the
serializer's data attribute with JSONRenderer. This time, the listed modules are
being serialized with the nested ModuleSerializer serializer, like this:

"modules":

{

]

[
"order": O,
"title": "Django overview",
"description": "A brief overview about the Web Framework."

"order": 1,
"title": "Installing Django",
"description": "How to install Django."

You can read more about serializers at http://www.django-rest-framework.org/
api-guide/serializers/.

Building custom views

REST Framework provides an ApIview class, which builds API functionality on
top of Django's View class. The ApIview class differs from view in using REST
Framework's custom Request and Response objects and handling APIException
exceptions to return the appropriate HTTP responses. It also has a built-in
authentication and authorization system to manage access to views.

We are going to create a view for users to enroll in courses. Edit the api/views.py
file and add the following code to it:

from django.shortcuts import get object or 404

from rest framework.views import APIView

from rest framework.response import Response

from

..models import Course

class CourseEnrollView (APIView) :

def post(self, request, pk, format=None) :

course = get object or 404 (Course, pk=pk)
course.students.add (request.user)
return Response ({'enrolled': True})

[427]

www.it-ebooks.info

http://www.django-rest-framework.org/api-guide/serializers/
http://www.django-rest-framework.org/api-guide/serializers/
http://www.it-ebooks.info/

Building an API

The courseEnrollview view handles user enrollment in courses. The preceding
code is as follows:

We create a custom view that subclasses APIView.

We define a post () method for POST actions. No other HTTP method will
be allowed for this view.

We expect a pk URL parameter containing the ID of a course. We retrieve the
course by the given pk parameter and raise a 404 exception if it's not found.

We add the current user to the students many-to-many relationship of the

Course object and return a successful response.

Edit the api/urls.py file and add the following URL pattern for the
CourseEnrollView view:

url (r'“courses/ (?P<pk>\d+) /enroll/$",
views.CourseEnrollView.as view(),
name='course_enroll'),

Theoretically, we could now perform a POST request to enroll the current

user in a course. However, we need to be able to identify the user and prevent
unauthenticated users from accessing this view. Let's see how API authentication
and permissions work.

Handling authentication

REST Framework provides authentication classes to identify the user performing
the request. If authentication is successful, the framework sets the authenticated
User object in request . user. If no user is authenticated, an instance of Django's

AnonymousUser is set instead.

REST Framework provides the following authentication backends:

BasicAuthentication: HTTP Basic Authentication. The user and password
are sent by the client in the Authorization HTTP header encoded with
Base64. You can learn more about it at https://en.wikipedia.org/wiki/
Basic_access_authentication.

TokenAuthentication: Token-based authentication. A Token model is used
to store user tokens. Users include the token in the Authorization HTTP
header for authentication.

SessionAuthentication: Uses Django's session backend for authentication.
This backend is useful to perform authenticated AJAX requests to the API
from your website's frontend.

[428]

www.it-ebooks.info

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication
http://www.it-ebooks.info/

Chapter 12

You can build a custom authentication backend by subclassing the
BaseAuthentication class provided by REST Framework and overriding
the authenticate () method.

You can set authentication on a per-view basis, or set it globally with the
DEFAULT AUTHENTICATION_ CLASSES setting.

Authentication only identifies the user performing the request. It won't
@’@‘\ allow or deny access to views. You have to use permissions to restrict
’ access to views.

You can find all the information about authentication at http://www.django-rest-
framework.org/api-guide/authentication/.

Let's add BasicAuthentication to our view. Edit the api/views.py file of
the courses application and add an authentication_classes attribute to
CourseEnrollView as follows:

from rest_framework.authentication import BasicAuthentication

class CourseEnrollView (APIView) :
authentication classes = (BasicAuthentication,)

#

Users will be identified by the credentials set in the Authorization header of the
HTTP request.

Adding permissions to views
REST Framework includes a permission system to restrict access to views. Some of
the built-in permissions of REST Framework are:
* AllowAny: Unrestricted access, regardless of if a user is authenticated or not.
* IsAuthenticated: Allows access to authenticated users only.

* IsAuthenticatedOrReadOnly: Complete access to authenticated users.
Anonymous users are only allowed to execute read methods such as GET,
HEAD, or OPTIONS.

* DjangoModelPermissions: Permissions tied to django.contrib.auth. The
view requires a queryset attribute. Only authenticated users with model
permissions assigned are granted permission.

* DjangoObjectPermissions: Django permissions on a per-object basis.

[429]

www.it-ebooks.info

http://www.django-rest-framework.org/api-guide/authentication/
http://www.django-rest-framework.org/api-guide/authentication/
http://www.it-ebooks.info/

Building an API

If users are denied permission, they will usually get one of the following HTTP
error codes:

e HTTP 401: Unauthorized

e HTTP 403: Permission denied

You can read more information about permissions at http://www.django-rest-
framework.org/api-guide/permissions/.

Edit the api/views.py file of the courses application and add a
permission classes attribute to CourseEnrollview as follows:

from rest_framework.authentication import BasicAuthentication
from rest_framework.permissions import IsAuthenticated

class CourseEnrollView (APIView) :

authentication classes = (BasicAuthentication,)
permission_ classes = (IsAuthenticated,)
#

We include the IsAuthenticated permission. This will prevent anonymous
users from accessing the view. Now, we can perform a POST request to our
new API method.

Make sure the development server is running. Open the shell and run the following
command:

curl -i -X POST http://127.0.0.1:8000/api/courses/1/enroll/
You will get the following response:

HTTP/1.0 401 UNAUTHORIZED

{"detail": "Authentication credentials were not provided."}

We get a 401 HTTP code as expected, since we are not authenticated. Let's use basic
authentication with one of our users. Run the following command:

curl -i -X POST -u student:password http://127.0.0.1:8000/api/
courses/1/enroll/

Replace student : password with the credentials of an existing user. You will get the
following response:

HTTP/1.0 200 OK

{"enrolled": true}

[430]

www.it-ebooks.info

http://www.django-rest-framework.org/api-guide/permissions/
http://www.django-rest-framework.org/api-guide/permissions/
http://www.it-ebooks.info/

Chapter 12

You can access the administration site and check that the user is now enrolled in
the course.

Creating view sets and routers

viewSets allow you to define the interactions of your API and let REST Framework
build the URLs dynamically with a Router object. By using view sets, you can avoid
repeating logic for multiple views. View sets include actions for the typical create,
retrieve, update, delete operations, which are 1ist (), create (), retrieve (),
update (), partial update (), and destroy ().

Let's create a view set for the Course model. Edit the api/views.py file and add the
following code to it:

from rest framework import viewsets
from .serializers import CourseSerializer

class CourseViewSet (viewsets.ReadOnlyModelViewSet) :
queryset = Course.objects.all()
serializer class = CourseSerializer

We subclass ReadonlyModelviewsSet, which provides the read-only actions 1ist ()
and retrieve () to both list objects or retrieve a single object. Edit the api/urls.py
file and create a router for our view set as follows:

from django.conf.urls import url, include
from rest_framework import routers

from . import views

router = routers.DefaultRouter ()
router.register ('courses', views.CourseViewSet)

urlpatterns = [
#
url(r'”', include (router.urls)),

]

We create a DefaultRouter object and register our view set with the courses prefix.
The router takes charge of generating URLs automatically for our view set.

[431]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API

Open http://127.0.0.1:8000/api/ in your browser. You will see that the router
lists all view sets in its base URL, as shown in the following screenshot:

Api Root i

GET /api

HTTP 200 OK

Vary: Accept

Content-Type: application/json
Allow: GET, HEAD, OPTIONS

"courses'": "http://127.0.0.1:80008/api/courses/"

You can access http://127.0.0.1:8000/api/courses/ to retrieve the list
of courses.

You can learn more about view sets at http://www.django-rest-framework.
org/api-guide/viewsets/. You can also find more information about routers at
http://www.django-rest-framework.org/api-guide/routers/.

Adding additional actions to view sets

You can add extra actions to view sets. Let's change our previous CourseEnrollview
view into a custom view set action. Edit the api/views.py file and modify the
CourseViewSet class to look as follows:

from rest framework.decorators import detail route

class CourseViewSet (viewsets.ReadOnlyModelViewSet) :
queryset = Course.objects.all()
serializer class = CourseSerializer

@detail route (methods=['post'l],
authentication classes=[BasicAuthentication],
permission classes=[IsAuthenticated])
def enroll (self, request, *args, **kwargs):
course = self.get object()
course.students.add (request .user)
return Response ({'enrolled': True})

[432]

www.it-ebooks.info

http://www.django-rest-framework.org/api-guide/viewsets/
http://www.django-rest-framework.org/api-guide/viewsets/
http://www.django-rest-framework.org/api-guide/routers/
http://www.it-ebooks.info/

Chapter 12

We add a custom enroll () method that represents an additional action for this view
set. The preceding code is as follows:

* Weuse the detail route decorator of the framework to specify that this is
an action to be performed on a single object.

* The decorator allows us to add custom attributes for the action. We
specify that only the POST method is allowed for this view, and set the
authentication and permission classes.

* Weuseself.get_object () to retrieve the Course object.
* We add the current user to the students many-to-many relationship and

return a custom success response.

Edit the api/urls.py file and remove the following URL, since we don't need
it anymore:

url (r'“courses/ (?P<pk>[\d] +) /enroll/S$",
views.CourseEnrollView.as view(),

name='course_enroll'),
Then edit the api/views.py file and remove the CourseEnrollview class.

The URL to enroll in courses is now automatically generated by the router. The URL
remains the same, since it's built dynamically using our action name enroll.

Creating custom permissions

We want students to be able to access the contents of the courses they are enrolled

in. Only students enrolled in a course should be able to access its contents. The best
way to do this is with a custom permission class. Django provides a BasePermission
class that allows you to define the following methods:

* has permission(): View-level permission check
* has_object_permission (): Instance-level permission check
These methods should return True to grant access or False otherwise. Create a

new file inside the courses/api/ directory and name it permissions.py. Add the
following code to it:

from rest framework.permissions import BasePermission
class IsEnrolled(BasePermission) :

def has_object permission(self, request, view, obj):
return obj.students.filter (id=request.user.id) .exists()

[433]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API

We subclass the BasePermission class and override the has _object permission().
We check that the user performing the request is present in the students relationship
of the course object. We are going to use the IsEnrolled permission next.

Serializing course contents

We need to serialize course contents. The Content model includes a generic foreign
key that allows us to associate objects of different content models. Yet, we have
added a common render () method for all content models in the previous chapter.
We can use this method to provide rendered contents to our API.

Edit the api/serializers.py file of the courses application and add the following
code to it:

from ..models import Content

class ItemRelatedField(serializers.RelatedField) :
def to_representation(self, value):
return value.render ()

class ContentSerializer (serializers.ModelSerializer) :
item = ItemRelatedField(read only=True)

class Meta:
model = Content
fields = ('order', 'item')

In this code, we define a custom field by subclassing the RelatedField serializer
field provided by REST Framework and overriding the to_representation()
method. We define the contentSerializer serializer for the content model and
use the custom field for the item generic foreign key.

We need an alternate serializer for the Module model that includes its contents, and
an extended Course serializer as well. Edit the api/serializers.py file and add
the following code to it:

class ModuleWithContentsSerializer (serializers.ModelSerializer) :
contents = ContentSerializer (many=True)

class Meta:
model = Module
fields = ('order', 'title', 'description', 'contents')

[434]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

class CourseWithContentsSerializer (serializers.ModelSerializer) :
modules = ModuleWithContentsSerializer (many=True)

class Meta:
model = Course
fields = ('id', 'subject',6 'title', 'slug',
'overview', 'created', 'owner', 'modules')

Let's create a view that mimics the behavior of the retrieve () action but includes
the course contents. Edit the api/views.py file and add the following method to
the CourseviewSet class:

from .permissions import IsEnrolled
from .serializers import CourseWithContentsSerializer

class CourseViewSet (viewsets.ReadOnlyModelViewSet) :
#
@detail route (methods=['get'],
serializer class=CourseWithContentsSerializer,
authentication classes=[BasicAuthentication],
permission classes=[IsAuthenticated,
IsEnrolled])
def contents(self, request, *args, **kwargs):
return self.retrieve (request, *args, **kwargs)

The description of this method is as follows:
* Weuse the detail route decorator to specify that this action is performed
on a single object.
* We specify that only the GET method is allowed for this action.

e We use the new CourseWithContentsSerializer serializer class that
includes rendered course contents.

* We use both the IsAuthenticated and our custom IsEnrolled permissions.
By doing so, we make sure that only users enrolled in the course are able
to access its contents.

* We use the existing retrieve () action to return the course object.

Open http://127.0.0.1:8000/api/courses/1/contents/ in your browser. If
you access the view with the right credentials, you will see that each module of
the course includes the rendered HTML for course contents, like this:

{

"order": O,
"title": "Installing Django",

[435]

www.it-ebooks.info

http://www.it-ebooks.info/

Building an API

"description": "",
"contents": [
{
"order": O,
"item": "<p>Take a look at the following video for installing

Django:</p>\n"
b
{

"order": 1,

"item": "\n<iframe width=\"480\" height=\"360\" src=\"http://
www . youtube . com/embed/bgV39D1mZ2U?wmode=opaque\" frameborder=\"0\"
allowfullscreens</iframes\n\n"

}
]
}

You have built a simple API that allows other services to access the course application
programmatically. REST Framework also allows you to manage creating and editing
objects with the Modelviewset view set. We have covered the main aspects of

Django Rest Framework, but you will find further information about its features

in its extensive documentation at http: //www.django-rest - framework.org/.

Summary

In this chapter, you created a RESTful API for other services to interact with your
web application.

An additional Chapter 13, Going Live is available for download at https: //www.
packtpub.com/sites/default/files/downloads/Django By Example
GoingLive.pdf. It will teach you how to build a production environment using
uWSGI and NGINX. You will also learn how to implement a custom middleware
and create custom management commands.

You have reached the end of this book. Congratulations! You have learned the skills
required to build successful web applications with Django. This book has guided
you through the process of developing real-life projects and integrating Django with
other technologies. Now you are ready to create your own Django project, whether
it is a simple prototype or a large-scale web application.

Good luck with your next Django adventure!

[436]

www.it-ebooks.info

http://www.django-rest-framework.org/
https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf
https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf
https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf
http://www.it-ebooks.info/

A

activity stream
displaying 188
duplicate actions, avoiding 186
user actions, adding 187, 188
add_to_class() method 172
administration site
catalog models, registering 209
course models, registering 341
creating 13
custom actions, adding to 264-266
extending, with custom views 267, 270
logging in 14
models, adding 14-16
models, customizing 16, 17
superuser, creating 13
translations, integrating 319
admin template
URL 270
aggregation functions
URL 66
AJAX actions
adding, with jQuery 154, 155
AJAX pagination
adding, to list views 163-167
AJAX requests
Cross-Site Request Forgery 156, 157
performing, with jQuery 158-161
AJAX views
building, for following users 178,179
custom decorators, creating 161, 162
application configuration classes
defining 195
URL 195

Index

asynchronous tasks
adding, to application 244-246
authentication
BasicAuthentication, URL 428
handling 428, 429
SessionAuthentication 428
TokenAuthentication 428
URL 429
authentication backends
about 121
authenticate() method 121
get_user() method 121
URL 123
authentication framework, Django
authentication views, using 95
group model 89
log in views 96-101
log in views, creating 90-94
log out views 96-99
password views, changing 101-103
password views, resetting 104-108
permission model 89
user model 89
using 89

B

blog application
applications 8
creating 4, 8
development server, executing 5, 6
project settings 6, 7

blog data schema
application, activating 11
designing 9-11

[437]

www.it-ebooks.info

http://www.it-ebooks.info/

migrations, applying 11-13
migrations, creating 11-13
blogs
feeds, creating 73, 74
posts, retrieving by similarity 58, 59
tagging functionality, adding 52-57
built-in authentication views
URL 95
built-in template tags
URL 26

C

cache backends 408
cache framework
cache backends 407
cache levels 410
cache settings 409
caching, dynamic data based 413, 414
caching template fragments 414, 415
caching, views 416
low-level cache API, using 411-413
memcached, adding to project 409
memcached, installing 408
memcached, monitoring 410
per-site cache, using 416, 417
using 407
CartAddProductForm class
quantity field 225
update field 225
Cart detail page 326
catalog models
registering, in administration site 209, 210
catalog templates
creating 212-217
catalog views
building 210-212
Celery
adding, to project 243, 244
documentation, URL 242
installing 242
monitoring 246
CELERY_ALWAYS_EAGER setting 244
class-based views
using 31, 32

class-based views, CMS
creating 359
mixins, URL 360
mixins, using 360-362
CMS
about 337
authentication system, adding 356
authentication templates, creating 356-359
class-based views, creating 359
content, adding to course modules 375-380
contents, managing 380-384
contents, reordering 385-388
creating 356
formsets, suing 370
groups, working with 362
mixins, using for class-based views 360-362
modules, managing 380-384
modules, reordering 385-388
permissions, working with 362
Comma-Separated Values (CSV) 264
comments
adding, to post detail template 49-52
system, creating 44-46
content management system. See CMS
content models
creating 347-349
contenttypes framework
app_label field 181
model field 181
name field 181
URL 182
using 181
context processor
about 232
creating, for current cart 232
URL 232
coupon system
coupon, applying to shopping cart 282-289
coupon models, building 280-282
coupons, applying to orders 289, 290
creating 279, 280
course contents
accessing 401-404
serializing 434, 435
types, rendering 404-407
video content including, URL 406

[438]

www.it-ebooks.info

http://www.it-ebooks.info/

course models custom User model

building 338-340 specifying, URL 172
creating, for diverse content 344, 345 using 118
initial data, providing 341-344 custom views
model inheritance, using 345 administration site, extending with 267, 270
registering, in administration site 341
course modules D
content, adding 375-380
managing 380-384 data counts
reordering 385-387 denormalizing, with signals 192
courses data migration
displaying 389-394 URL 344
create_action function 185 data models'
Cross-Site Request Forgery ref'erer}ce link 18
in AJAX requests 156, 157 detail view
URL 157 building 423-425
CSV files for images, creating 150-152
orders, exporting to 264 Django
cURL authentication customization, URL 118
URL 424 authentication, dealing with 95
custom authentication backend authentication framework 89
building 120-122 customizing authentication, URL 120
custom decorators documentation, URL 70
creating, for AJAX views 161, 162 e-mails, sending with 39, 40
customer orders forms, creating with 36, 37
creating 238-242 %nstall%ng 1, .2 .
GET request 239 installing, with pip 3
models, creating 235, 236 isolated Python environment, creating 2, 3
models, including in password changes, handling 95
administration site 236, 237 password reset, ways 95
POST request 239 reference link 2
registering 234 URL, for installation 3
custom filters django-braces
URL 69 about 364-370

installing 364

custom migration
LoginRequiredMixin 364

creating 315

existing data, migrating 316, 318 mixins, URL 364

custom models PermissionRequiredMixin 364
fields, creating 350-355 django-localflavor
fields, URL 352 URL 326

custom template filters used, for validating form fields 325
creating 61-69 django-parler

custom template tags custom migration, creating 315
creating 62-66 installing 313
URL 61, 67 migrations, applying for model

translation 320, 321

[439]

www.it-ebooks.info

http://www.it-ebooks.info/

model fields, translating 313-315
models, translating 312
reference link 315

translations, integrating in administration

site 319
URL 324

views, adapting for translations 321-324

django-paypal
installing 250, 251
URL 250

Django Rest framework
installing 420
URL 420, 436

Django sessions
shopping carts, storing 220, 221
using 218

django-taggit managers
URL 52, 60

domready 156

format localization
reference link 325
forms
creating, from models 47
creating, with Django 36, 37
fields, URL 37
handling, in views 37, 38
rendering, in templates 41-43
formsets
can_delete parameter 371
course modules, managing 371
Extra parameter 371
Fields parameter 371
is_valid() method 370
URL 370
using 370-374
Fuzzy translations 308

G

E generic activity stream application
activity stream, disadvantages 188
e-Learning platform building 180
building 337, 338 contenttypes framework, using 181, 182
CMS, creating 356 duplicate actions, adding in activity stream
course models, building 338-340 186
custom model fields, creating 350-355 generic relations, adding to models 182-185
models, creating for diverse QuerySets, optimizing 189
content 344, 345 templates, creating 190, 191
e-mails user actions, adding to activity stream 187
sending, with Django 39, 40 generic relations
adding, to models 182-185

F get_model() method 81
gettext toolset
Facebook URL 293
URL 124 Google

used, for adding social
authentication 124, 125

URL 127,128
used, for adding social

feeds authentication 127-131
creating, for blog posts 73, 74 groups
follower system access, restricting to class-based views 363

AJAX view, building for
following user 178,179

building 169

list and detail views for user profiles, creat-
ing 173-177

many-to-many relationships, creating with
intermediary model 170-173

working with 362, 363

Haystack
data, indexing 82, 83
documentation, URL 86

[440]

www.it-ebooks.info

http://www.it-ebooks.info/

indexes, building 80-82

installing 79, 80

search view, creating 83-86

used, for adding search engine 75
helper functions

assignment_tag 62

inclusion_tag 62

simple_tag 62
Homebrew

URL 293, 408

image bookmarking website

creating 134

image model, building 134, 135

image model, registering in administration

site 137

many-to-many relationships, creating 136
image model

building 135

created field 135

description field 135

image field 135

registering, in administration site 137

slug field 135

title field 135

url field 135

user field 135
image thumbnails

creating, with sorl-thumbnail 153
index_queryset() method 81
installation

Celery 243

RabbitMQ 243
Instant Payment Notification (IPN) 251
internationalization (i18n)

about 291

adding 291

django-localflavor, using 325

Fuzzy translations 308

language, determining 293

management commands 292

models, translating with django-parler 312

project, preparing 294, 295

Python code, translating 295

Rosetta translation interface, using 305-307
settings 292
templates, translating 301
translations, adding 293
URL 292
URL patterns 308
users, allowing to switch language 311, 312
item_description() method 73
items() method 73
item views
storing, in Redis 197-201

J

Java
URL, for download 75
jQuery
loading 155, 156
URL 156
used, for adding AJAX actions 154, 155
used, for building bookmarklet 143-150
used, for performing AJAX
requests 158-161

L

language code 292
language name 292
less secured apps
URL 39
list
building 22
creating 22, 23
list views
AJAX pagination, adding 163-167
building 423-425
load_all() method 84
localization (110n)
adding 291
formatting 324
URL 324
low-level cache API
about 411, 412
caching, dynamic data based 413, 414
Lucene instance 76

[441]

www.it-ebooks.info

http://www.it-ebooks.info/

management commands, internationaliza-
tion (i18n)
compilemessages 293
makemessages 292
many-to-many relationships
creating 136

creating, with intermediary model 170, 171

many-to-one relationships
URL 45
memcached
adding, to project 409
installing 408
monitoring 410
URL 408
Windows binary version, URL 408
message file 291
messages framework
using 118
methods
add_message() method 118
debug () method 118
error () method 118
info() method 118
success() method 118
migrations
applying 11-13
creating 11-13
mixins
URL 360
ModelForms
handling, in views 47-49
save() method, overriding 139-143
model inheritance
abstract models 345, 346
multi-table model inheritance 345, 346
proxy models 345, 347
using 345
model managers
creating 21, 22
models
forms, creating from 47

N

nested serializers
creating 425-427
Ngrok
URL 263

(0

Object-Relational Mapping (ORM) 18,19
objects
creating 18, 19
deleting 21
retrieving 19
retrieving, exclude() method used 20
retrieving, filter() method used 20
retrieving, order_by() method used 20
updating 19
online shop project
catalog models, registering in administra-
tion site 209
catalog templates, creating 212-217
catalog views, building 210-212
creating 205, 206
product catalog models, creating 206-208
orders
custom actions, adding to administration
site 264-266
exporting, to CSV files 264

P

pagination
adding 29, 30

parsers
about 422,423
URL 423

payment gateway
adding 252-256
application, configuring 261, 262
django-paypal, installing 250, 251
integrating 249
payment notifications, obtaining 260, 261
payment notifications, testing 262, 263
PayPal account, creating 250
PayPals Sandbox, using 256-259

[442]

www.it-ebooks.info

http://www.it-ebooks.info/

PayPal
Sandbox, using 256-259
URL, for signing up 250
PDF invoices
generating 271
files, rendering 274-277
files, sending by e-mail 277, 278
template, creating 272, 273
WeasyPrint, installing 272
permissions
access, restricting to class-based views 363
adding, to views 429-431
custom permissions, URL 363
URL 430
working with 362, 363
per-site cache
using 416, 417
pip
Django, installing with 3
URL 3
Poedit
URL 300
Postman
URL 424
post model
author field 10
body field 10
created field 10
publish field 10
slug field 10
status field 10
title field 10
updated field 10
posts, sharing by e-mail
about 35
e-mails, sending with Django 39, 40
forms, creating with Django 36, 37
forms, handling in views 37, 38
forms, rendering in templates 41
primary key (pk) 390
product catalog models
creating 206-209
Product model fields
available 208
category 207
created 208
description 207

image 207

name 207

price 208

slug 207

stock 208

updated 208
Python

Redis, using with 199
Python 3.5.0

URL 2
Python Imaging Library (PIL) 113

Q

QuerySet
evaluating 21
objects, creating 18, 19
objects, deleting 21
objects, retrieving 19
objects, updating 19
prefetch_related, using 189
select_related, using 189
with involve related objects, optimizing 189
working with 18

R

RabbitMQ
installing 243
URL 243
ready() method 195
receiver functions 193
recommendation engine
building 326
products, recommending 327-335
Redis
caching 204
counting 204
installing 197-199
item views, storing 200, 201
latest items, storing 204
Pub/Sub 204
queues 204
rankings and leaderboards 204
ranking, storing 202, 203
used, for storing item views 197
using, with Python 199, 200

[443]

www.it-ebooks.info

http://www.it-ebooks.info/

redis-py docs
URL 199
regular expressions
URL 24
renderers
about 422
URL 423
RESTful API
additional actions, adding to view
sets 432,433
authentication, handling 428, 429
building 419, 420
course contents, serializing 434, 435
custom permissions, creating 433, 434
custom views, building 427, 428
detail view, building 423-425
Django Rest framework, installing 420
list view, building 423-425
nested serializers, creating 425-427
parsers 422,423
permissions, adding to views 429, 430
renderers 422,423
routers, creating 431, 432
serializers, defining 421, 422
view sets, creating 431, 432
reverse_lazy() function 99
Rosetta translation interface
URL 307
using 305-307
routers
creating 431, 432
URL 432

S

save() method, ModelForm
overriding 139-142
search engine
adding, with Haystack 75
adding, with Solr 75
search view
URL 86
serializers
defining 421, 422
URL 427

session related settings 219
sessions data, storing
cached database sessions 219
cached sessions 219
cookie-based sessions 219
database sessions 219
file-based sessions 219
shopping cart
building 217
context processor, creating 232
displaying, by creating template 227, 228
Django sessions, using 218
items, adding 225-227
product quantities, updating 230, 231
products, adding 229, 230
session expiration 220
session settings 218, 219
setting, into request context 233, 234
storing, in sessions 220-224
views, creating 224
signals
application configuration classes,
defining 195-197
URL 193
used, for denormalizing counts 192
working with 193, 194
site
sitemap, adding 69-72
social authentication, adding to 122
social authentication, URL 122
social authentication
adding, to site 122,123
adding, with Facebook 123-125
adding, with Google 127-131
adding, with Twitter 126
social website project
creating 87
elements, building 87
middleware classes 89
starting 88
Solr
core, creating 76-78
data, indexing 82, 83
indexes, building 80, 81
installing 75

[444]

www.it-ebooks.info

http://www.it-ebooks.info/

search view, creating 83-86

URL 82,83

used, for adding search engine 75
sorl-thumbnail

URL 154

used, for creating image thumbnails 153
static() helper function 114
student registration

adding 394

courses, enrolling in 397-400

view, creating 395-397

T

tagging functionality, blogs
adding 52-60
templates
creating, for views 25-29
forms, rendering 41-43
fragments, caching 414, 415
templates, internationalization (i18n)
{% blocktrans %} template tag 301, 302
{% trans %} template tag 301
shop templates, translating 302-305
translating 301
translations
custom code, translating 296-301
including variables 296
lazy translations 295
plural forms 296
standard translations 295
URL 295
Twitter
URL 126, 127

used, for adding social authentication 126

U

URL patterns, internationalization (i18n)
about 308
features 308
language prefix, adding 308, 309
translating 309-311

User model
extending 112-117

user profiles

about 109, 110
list and detail views, creating 173-177

user registration

about 109
allowing 109-112

users_like_changed function 194

\'

views

adapting, for translations 321-324
building 22

canonical URLs, building for models 25
creating 22,23

forms, handling 37, 38

ModelForms, handling 47-49
templates, creating 25-29

URL patterns, adding 23-25

view sets

actions, adding 432, 433
creating 431, 432
URL 432

virtualenv

URL 3

virtualenvwrapper

about 3
URL 3

w

WeasyPrint

installing 272
URL 272

Y4

ZUNIONSTORE command

about 329
URL 329

[445]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Django By Example

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Django Design Patterns
and Best Practices

Django Design Patterns and Best
Practices
ISBN: 978-1-78398-664-4 Paperback: 222 pages

Easily build maintainable websites with powerful and
relevant Django design patterns

1. Unravel the common problems of web
development in Django.

2. Learn the current best practices while working
in Django 1.7 and Python 3.4.

3. Experience the challenges of working on an
end-to-end social network project.

Web Development with
Django Cookbook

Web Development with Django

Cookbook
ISBN: 978-1-78328-689-8 Paperback: 294 pages

Over 70 practical recipes to create multilingual,
responsive, and scalable websites with Django

1. Improve your skills by developing models,
forms, views, and templates.

2. Create a rich user experience using Ajax and
other JavaScript techniques.

3. A practical guide to writing and using APIs to
import or export data.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Django Essentials
ISBN: 978-1-78398-370-4 Paperback: 172 pages

Develop simple web applications with the powerful
Django framework

1. Getto know MVC pattern and the structure of
Django.

2. Create your first webpage with Django
mechanisms.

3. Enable user interaction with forms.

4. Program extremely rapid forms with Django
features.

Instant Django 1.5 Application

Development Starter
ISBN: 978-1-78216-356-5 Paperback: 78 pages

Jump into Django with this hands-on guide to
practical web application development with Python

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
Short | Fast | Focused results.

Django 1.5 Application

Devel opm ent Starter 2. Work with the database API to create a data-

driven app.

3. Learn Django by creating a practical web
Mauro Rocco [f'f‘.U{l_] application.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building a Blog Application
	Installing Django
	Creating an isolated Python environment
	Installing Django with pip

	Creating your first project
	Running the development server
	Project settings
	Projects and applications
	Creating an application

	Designing the blog data schema
	Activating your application
	Creating and applying migrations

	Creating an administration site for your models
	Creating a superuser
	The Django administration site
	Adding your models to the administration site
	Customizing the way models are displayed

	Working with QuerySet and managers
	Creating objects
	Updating objects
	Retrieving objects
	Using the filter() method
	Using exclude()
	Using order_by()

	Deleting objects
	When QuerySet are evaluated
	Creating model managers

	Building list and detail views
	Creating list and detail views
	Adding URL patterns for your views
	Canonical URLs for models

	Creating templates for your views
	Adding pagination
	Using class-based views
	Summary

	Chapter 2: Enhancing Your Blog with Advanced Features
	Sharing posts by e-mail
	Creating forms with Django
	Handling forms in views
	Sending e-mails with Django
	Rendering forms in templates

	Creating a comment system
	Creating forms from models
	Handling ModelForms in views
	Adding comments to the post detail template

	Adding tagging functionality
	Retrieving posts by similarity
	Summary

	Chapter 3: Extending Your Blog Application
	Creating custom template tags and filters
	Creating custom template tags
	Creating custom template filters

	Adding a sitemap to your site
	Creating feeds for your blog posts
	Adding a search engine with Solr and Haystack
	Installing Solr
	Creating a Solr core
	Installing Haystack
	Building indexes
	Indexing data
	Creating a search view

	Summary

	Chapter 4: Building a Social Website
	Creating a social website project
	Starting your social website project

	Using the Django authentication framework
	Creating a log-in view
	Using Django authentication views
	Log in and log out views
	Change password views
	Reset password views

	User registration and user profiles
	User registration
	Extending the User model
	Using a custom User model

	Using the messages framework

	Building a custom authentication backend
	Adding social authentication to your site
	Authentication using Facebook
	Authentication using Twitter
	Authentication using Google

	Summary

	Chapter 5: Sharing Content in
Your Website
	Creating an image bookmarking website
	Building the image model
	Creating many-to-many relationships
	Registering the image model in the administration site

	Posting content from other websites
	Cleaning form fields
	Overriding the save() method of a ModelForm
	Building a bookmarklet with jQuery

	Creating a detail view for images
	Creating image thumbnails using
sorl-thumbnail
	Adding AJAX actions with jQuery
	Loading j Query
	Cross-Site Request Forgery in AJAX requests
	Performing AJAX requests with jQuery

	Creating custom decorators for your views
	Adding AJAX pagination to your list views
	Summary

	Chapter 6: Tracking User Actions
	Building a follower system
	Creating many-to-many relationships with an intermediary model
	Creating list and detail views for user profiles
	Building an AJAX view to follow users

	Building a generic activity stream application
	Using the contenttypes framework
	Adding generic relations to your models
	Avoiding duplicate actions in the activity stream
	Adding user actions to the activity stream
	Displaying the activity stream
	Optimizing QuerySets that involve related objects
	Using select_related
	Using prefetch_related

	Creating templates for actions

	Using signals for denormalizing counts
	Working with signals
	Defining application configuration classes

	Using Redis for storing item views
	Installing Redis
	Using Redis with Python
	Storing item views in Redis
	Storing a ranking in Redis
	Next steps with Redis

	Summary

	Chapter 7: Building an Online Shop
	Creating an online shop project
	Creating product catalog models
	Registering catalog models in the admin site
	Building catalog views
	Creating catalog templates

	Building a shopping cart
	Using Django sessions
	Session settings
	Session expiration
	Storing shopping carts in sessions
	Creating shopping cart views
	Adding items to the cart
	Building a template to display the cart
	Adding products to the cart
	Updating product quantities in the cart

	Creating a context processor for the current cart
	Context processors
	Setting the cart into the request context

	Registering customer orders
	Creating order models
	Including order models in an administration site
	Creating customer orders

	Launching asynchronous tasks with Celery
	Installing Celery
	Installing RabbitMQ
	Adding Celery to your project
	Adding asynchronous tasks to your application
	Monitoring Celery

	Summary

	Chapter 8: Managing Payments
and Orders
	Integrating a payment gateway
	Creating a PayPal account
	Installing django-paypal
	Adding the payment gateway
	Using PayPal's Sandbox
	Getting payment notifications
	Configuring our application
	Testing payment notifications

	Exporting orders to CSV files
	Adding custom actions to the administration site

	Extending the admin site with custom views
	Generating PDF invoices dynamically
	Installing WeasyPrint
	Creating a PDF template
	Rendering PDF files
	Sending PDF files by e-mail

	Summary

	Chapter 9: Extending Your Shop
	Creating a coupon system
	Building the coupon models
	Applying a coupon to the shopping cart
	Applying coupons to orders

	Adding internationalization and localization
	Internationalization with Django
	Internationalization and localization settings
	Internationalization management commands
	How to add translations to a Django project
	How Django determines the current language

	Preparing our project for internationalization
	Translating Python code
	Standard translations
	Lazy translations
	Translations including variables
	Plural forms in translations
	Translating your own code

	Translating templates
	The {% trans %} template tag
	The {% blocktrans %} template tag
	Translating the shop templates

	Using the Rosetta translation interface
	Fuzzy translations
	URL patterns for internationalization
	Adding a language prefix to URL patterns
	Translating URL patterns

	Allowing users to switch language
	Translating models with django-parler
	Installing django-parler
	Translating model fields
	Creating a custom migration
	Integrating translations in the administration site
	Applying migrations for model translation
	Adapting views for translations

	Format localization
	Using django-localflavor to validate
form fields

	Building a recommendation engine
	Recommending products based on previous purchases

	Summary

	Chapter 10: Building an e-Learning Platform
	Creating an e-Learning platform
	Building the course models
	Registering the models in the administration site
	Providing initial data for models

	Creating models for diverse content
	Using model inheritance
	Abstract models
	Multi-table model inheritance
	Proxy models

	Creating the content models

	Creating custom model fields
	Creating a content management system
	Adding the authentication system
	Creating the authentication templates
	Creating class-based views
	Using mixins for class-based views
	Working with groups and permissions
	Restricting access to class-based views

	Using formsets
	Managing course modules

	Adding content to course modules
	Managing modules and contents
	Reordering modules and contents

	Summary

	Chapter 11: Caching Content
	Displaying courses
	Adding student registration
	Creating a student registration view
	Enrolling in courses

	Accessing the course contents
	Rendering different types of content

	Using the cache framework
	Available cache backends
	Installing memcached
	Cache settings
	Adding memcached to your project
	Montioring memcached

	Cache levels
	Using the low-level cache API
	Caching based on dynamic data

	Caching template fragments
	Caching views
	Using the per-site cache

	Summary

	Chapter 12: Building an API
	Building a RESTful API
	Installing Django Rest Framework
	Defining serializers
	Understanding parsers and renderers
	Building list and detail views
	Creating nested serializers
	Building custom views
	Handling authentication
	Adding permissions to views
	Creating view sets and routers
	Adding additional actions to view sets
	Creating custom permissions
	Serializing course contents

	Summary

	Index

