Flask Framework
Cookbook

Over 80 hands-on recipes to help you create small-to-large web
applications using Flask

Shalabh Aggarwal [| sk e s

PUBLISHING

Flask Framework Cookbook

Over 80 hands-on recipes to help you create
small-to-large web applications using Flask

Shalabh Aggarwal

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Flask Framework Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1151114

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-340-7
www . packtpub.com

Cover image by Pratyush Mohanta (tysoncinematicsegmail.com)

Author
Shalabh Aggarwal

Reviewers
Matt Copperwaite

Christoph Heer
Jack Stouffer

Commissioning Editor

Ashwin Nair

Acquisition Editor
Subho Gupta

Content Development Editor
Amey Varangaonkar

Technical Editor
Taabish Khan

Copy Editor
Karuna Narayanan

Credits

Project Coordinator
Leena Purkait

Proofreaders
Simran Bhogal

Paul Hindle
Maria Gould

Ameesha Green

Indexer
Mariammal Chettiyar

Production Coordinator

Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Shalabh Aggarwal has several years of experience in developing business systems
and web applications for small-to-medium scale industries. He started his career
working on Python, and although he works on multiple technologies, he remains a
Python developer at heart. He is passionate about open source technologies and writes
highly readable and quality code. He is a major contributor to some very popular open
source applications. He has worked with Openlabs Technologies and Consulting (P)
Limited as the CTO for a large part of his career. He is also active in voluntary training
for engineering students on nonconventional and open source topics.

When not working with full-time assignments, he consults for start-ups on
leveraging different technologies. When not writing code, he writes non-technical
literature and makes music with his guitar.

I would like to dedicate this book to my late father who will always
be there in my thoughts for the love and encouragement he gave
me to explore new things in life. I would like to thank my family,
my mother and my sister, for putting up with me during my long
writing and research sessions. I would also like to thank my friends
and colleagues who encouraged me and kept the momentum going,.
I would like to convey deep gratitude to my mentor, Sharoon
Thomas, who introduced me to these technologies and helped me
learn a lot. Without the support of all of them, I would have never
been able to learn these technologies and complete this book.

About the Reviewers

Matt Copperwaite graduated in Computer Systems and Networks with a BSc Hons
degree from University of Plymouth in 2008 and has since worked in the private and
public sectors in the UK. He is currently a Python software developer and DevOps
engineer for the UK government, mostly working in Django. However, his first love is
Flask, using which he has built several products, all under the GPL license.

Matt is also a trustee of South London Makerspace, a hackerspace-like community
in south London. He is a co-host of The Dick Turpin Road Show, a podcast about
free and open source software, and the LUG "Master" of the Greater London Linux
User Group.

I would like to thank my fiancée, Marie, who has put up with my
crazy ideas and always makes me laugh, and my parents, who
afforded me all the opportunities to get into computing and for
their unconditional love.

Christoph Heer is a passionate Python developer based in Germany. He likes to
develop web applications and also tools and systems for infrastructure optimization,
management, and monitoring. He is proud to be part of the great Python community
and wishes to have more time for open source contribution.

Currently, Christoph is studying Computer Science in Karlsruhe in cooperation with
his current employer, SAP, and is going to finish his degree in the fall of 2015.

I would like to thank Armin Ronacher for his work for the Python
community, especially for Flask and his inspiring API designs and
well-written documentation.

Jack Stouffer is a web programmer from the Metro Detroit area. He works for
Apollo America. At Apollo, he creates various web applications using Python,
Flask, and Backbone.js, which manage everything from KPI tracking and display to
controlling manufacturing. He is currently attending college at Oakland University
in Rochester, Michigan.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Flask Configurations 7
Introduction 7
Environment setup with virtualenv 8
Handling basic configurations 11
Class-based settings 12
Organization of static files 14
Being deployment specific with instance folders 15
Composition of views and models 16
Creating a modular web app with blueprints 19
Making a Flask app installable using setuptools 21
Chapter 2: Templating with Jinja2 23
Introduction 23
Bootstrap layout 24
Block composition and layout inheritance 26
Creating a custom context processor 32
Creating a custom lJinja2 filter 33
Creating a custom macro for forms 35
Advanced date and time formatting 36
Chapter 3: Data Modeling in Flask 39
Introduction 39
Creating a SQLAIchemy DB instance 40
Creating a basic product model 42
Creating a relational category model 46
Database migration using Alembic and Flask-Migrate 49
Model data indexing with Redis 52
Opting the NoSQL way with MongoDB 53

Table of Contents

Chapter 4: Working with Views 57
Introduction 57
Writing function-based views and URL routes 58
Class-based views 60
URL routing and product-based pagination 62
Rendering to templates 64
Dealing with XHR requests 68
Decorator to handle requests beautifully 71
Creating custom 404 and 500 handlers 72
Flashing messages for better user feedback 74
SQL-based searching 77

Chapter 5: Webforms with WTForms 79
Introduction 79
SQLAIchemy model data as form representation 80
Validating fields on the server side 83
Creating a common forms set 86
Creating custom fields and validation 88
Creating a custom widget 90
Uploading files via forms 92
Cross-site Request Forgery protection 96

Chapter 6: Authenticating in Flask 99
Introduction 929
Simple session-based authentication 100
Authenticating using the Flask-Login extension 107
Using OpenlD for authentication 110
Using Facebook for authentication 115
Using Google for authentication 119
Using Twitter for authentication 122

Chapter 7: RESTful API Building 125
Introduction 126
Creating a class-based REST interface 126
Creating an extension-based REST interface 128
Creating a SQLAIchemy-independent REST API 131
A complete REST APl example 133

Chapter 8: Admin Interface for Flask Apps 137
Introduction 137
Creating a simple CRUD interface 138
Using the Flask-Admin extension 143

Table of Contents

Registering models with Flask-Admin 146
Creating custom forms and actions 148
WYSIWYG for textarea integration 151
Creating user roles 153
Chapter 9: Internationalization and Localization 159
Introduction 159
Adding a new language 160
Lazy evaluation and the gettext/ngettext functions 164
Global language-switching action 166
Chapter 10: Debugging, Error Handling, and Testing 169
Introduction 170
Setting up basic file logging 170
Sending e-mails on the occurrence of errors 173
Using Sentry to monitor exceptions 174
Debugging with pdb 178
Creating our first simple test 179
Writing more tests for views and logic 181
Nose library integration 185
Using mocking to avoid real APl access 187
Determining test coverage 190
Using profiling to find bottlenecks 192
Chapter 11: Deployment and Post Deployment 195
Introduction 196
Deploying with Apache 196
Deploying with uWSGI and Nginx 199
Deploying with Gunicorn and Supervisor 202
Deploying with Tornado 204
Using Fabric for deployment 205
S3 storage for file uploads 207
Deploying with Heroku 209
Deploying with AWS Elastic Beanstalk 212
Application monitoring with Pingdom 215
Application performance management and monitoring with New Relic 217
Chapter 12: Other Tips and Tricks 221
Introduction 221
Full-text search with Whoosh 222
Full-text search with Elasticsearch 224

Working with signals 226

Table of Contents

Using caching with your application
E-mail support for Flask applications
Understanding asynchronous operations
Working with Celery

Index

228
230
233
234

237

Preface

Flask is a lightweight web application microframework written in Python. It makes use of the
flexibility of Python to provide a relatively simple template for web application development.
Flask makes it possible to write simple one-page applications, but it also has the power to
scale them and build larger applications without any issues.

Flask has excellent documentation and an active community. It has a number of extensions,
each of which have documentation that can be rated from good to excellent. There are a few
books also available on Flask; they are great and provide a lot of insight into the framework
and its applications. This book tries to take a different approach to explain the Flask
framework and multiple aspects of its practical uses and applications as a whole.

This book takes you through a number of recipes that will help you understand the power

of Flask and its extensions. You will start by seeing the different configurations that a Flask
application can make use of. From here, you will learn how to work with templates, before
learning about the ORM and view layers, which act as the foundation of web applications.
Then, you will learn how to write RESTful APIs with Flask, after learning various authentication
techniques. As you move ahead, you will learn how to write an admin interface followed by the
debugging and logging of errors in Flask. You will also learn how to make your applications
multilingual and gain an insight into the various testing techniques. Finally, you will learn
about the different deployment and post-deployment techniques on platforms such as
Apache, Tornado, Heroku, and AWS Elastic Beanstalk.

By the end of this book, you will have all the necessary information required to make the best
use of this incredible microframework to write small and big applications and scale them with
industry-standard practices.

A good amount of research coupled with years of experience has been used to develop this
book, and | really wish that this book will benefit fellow developers.

Preface

What this book covers

Chapter 1, Flask Configurations, helps in understanding the different ways in which Flask
can be configured to suit various needs as per the demands of the project. It starts by
telling us how to set up our development environment and moves on to the various
configuration techniques.

Chapter 2, Templating with Jinja2, covers the basics of Jinja2 templating from the perspective
of Flask and explains how to make applications with modular and extensible templates.

Chapter 3, Data Modeling in Flask, deals with one of the most important part of any
application, that is, its interaction with the database systems. We will see how Flask
can connect to database systems, define models, and query the databases for the
retrieval and feeding of data.

Chapter 4, Working with Views, talks about how to interact with web requests and the
proper responses to be catered for these requests. It covers various methods of handling
the requests properly and designing them in the best way.

Chapter 5, Webforms with WTForms, covers form handling, which is an important part of any
web application. As much as the forms are important, their validation holds equal importance,
if not more. Presenting this information to the users in an interactive fashion adds a lot of
value to the application.

Chapter 6, Authenticating in Flask, deals with authentication, which sometimes acts as a
thin red line between the application being secure and insecure. This chapter deals with
social logins in detail.

Chapter 7, RESTful API Building, helps in understanding REST as a protocol and then talks
about writing RESTful APIs for Flask applications.

Chapter 8, Admin Interface for Flask Apps, focuses on writing admin views for Flask
applications. First, we will write completely custom-made views and then write them
with the help of an extension.

Chapter 9, Internationalization and Localization, expands the scope of Flask applications and
covers the basics of how to enable support for multiple languages.

Chapter 10, Debugging, Error Handling, and Testing, moves on from being completely
development-oriented to testing our application. With better error handling and tests, the
robustness of the application increases manifold and debugging aids in making the lives
of developers easy.

Chapter 11, Deployment and Post Deployment, covers the various ways and tools using
which the application can be deployed. Then, you will learn about application monitoring,
which helps in keeping track of the performance of the application.

—21

Preface

Chapter 12, Other Tips and Tricks, is a collection of some handy tricks that range from
full-text search to caching. Then finally, we will go asynchronous with certain tasks in
Flask applications.

What you need for this book

In most cases, you will just need a computer system with an average configuration to run
the code present in this book. Usually, any OS will do, but Linux and Mac OS are preferred
over Windows.

Who this book is for

If you are a web developer who wants to learn more about developing applications in Flask
and scale them with industry-standard practices, this is the book for you. This book will also
act as a handy tool if you are aware of Flask's major extensions and want to make the best
use of them.

It is assumed that you have knowledge of Python and a basic understanding of Flask. If you
are completely new to Flask, reading the book from the first chapter and going forward will
help in getting acquainted with Flask as you go ahead.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "After that, create a new file
called run.py in the topmost folder."

A block of code is set as follows:

MESSAGES = {
'default': 'Hello to the World of Flask!',
'great': 'Flask is great!!',

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

from wtforms import FileField

class Product (db.Model) :
image path = db.Column(db.String(255))

def init (self, name, price, category, image path):

Preface

self.image path = image path

class ProductForm(NameForm) :
image = FileField('Product Image')

Any command-line input or output is written as follows:
$ python setup.py install

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Fill up the form and
click on Submit."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

—a1

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http: //www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will

be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Flask Configurations

This introductory chapter will help you to understand the different ways Flask can be
configured to suit various needs as per the demands of the project.

In this chapter, we will cover the following recipes:

>

v

Environment setup with virtualenv

Handling basic configurations

Class-based settings

Organization of static files

Being deployment specific with instance folders
Composition of views and models

Creating a modular web app with blueprints

Making a Flask app installable using setuptools

Introduction

"Flask is a microframework for Python based on Werkzeug, Jinja2 and good
intentions."

Flask official documentation

Why micro? Does it mean that Flask is lacking in functionality or that your complete web
application has to mandatorily go inside one file? Not really! It simply refers to the fact that
Flask aims at keeping the core of the framework small but highly extensible. This makes
writing applications or extensions very easy and flexible and gives developers the power to
choose the configurations they want for their application, without imposing any restrictions
on the choice of database, templating engine, and so on. In this chapter, you will learn some
ways to set up and configure Flask.

Flask Configurations

Getting started with Flask hardly takes 2 minutes. Setting up a simple Hello World application
is as easy as baking a pie:

from flask import Flask
app = Flask(_name_)

@app.route('/")
def hello world():
return 'Hello to the World of Flask!'

if _ name_

== '_main__ ':
app.run()

Now, Flask needs to be installed; this can be done simply via pip:
$ pip install Flask

The preceding snippet is a complete Flask-based web application. Here, an instance of

the imported Flask class is a Web Server Gateway Interface (WSGI) (http://legacy.
python.org/dev/peps/pep-0333/) application. So, app in this code becomes our WSGI
application, and as this is a standalone module, we setthe name stringas ' main '.
If we save this in a file with the name app . py, then the application can simply be run using
the following command:

$ python app.py
* Running on http://127.0.0.1:5000/

Now, if we just head over to our browser and type http://127.0.0.1:5000/, we can see
our application running.

conflict with Flask itself while importing.

Environment setup with virtualenv

Flask can be installed using pip or easy install globally, but we should always prefer to set
up our application environment using virtualenv. This prevents the global Python installation
from getting affected by our custom installation by creating a separate environment for our
application. This separate environment is helpful because you can have multiple versions of
the same library being used for multiple applications, or some packages might have different
versions of the same libraries as dependencies. virtualenv manages this in separate
environments and does not let a wrong version of any library affect any application.

1
[‘Q Never save your application file as £1ask. py; if you do so, it will]

—e1]

Chapter 1

How to do it...

We will first install virtualenv using pip and then create a new environment with the name
my flask env inside the folder in which we ran the first command. This will create a new
folder with the same name:

$ pip install virtualenv

$ virtualenv my flask env
Now, from inside the my flask env folder, we will run the following commands:

$ cd my flask env
$ source bin/activate

$ pip install flask

This will activate our environment and install Flask inside it. Now, we can do anything with our
application within this environment, without affecting any other Python environment.

Until now, we have used pip install flask multiple times. As the name suggests, the
command refers to the installation of Flask just like any Python package. If we look a bit
deeper into the process of installing Flask via pip, we will see that a number of packages
are installed. The following is a summary of the package installation process of Flask:

$ pip install -U flask

Downloading/unpacking flask

Many more lines.........

Successfully installed flask Werkzeug Jinja2 itsdangerous markupsafe

Cleaning up...

In the preceding command, -U refers to the installation with upgrades. This
i will overwrite the existing installation (if any) with the latest released versions.

If we notice carefully, there are five packages installed in total, namely £1ask, Werkzeug,
Jinja2, itsdangerous, and markupsafe. These are the packages on which Flask
depends, and it will not work if any of them are missing.

Flask Configurations

There's more...

To make our lives easier, we can use virtualenvwrapper, Which, as the name suggests, is
a wrapper written over virtualenv and makes the handling of multiple virtualenv easier.

Remember that the installation of virtualenvwrapper should be done
at a global level. So, deactivate any virtualenv that might still be active.
a1 To deactivate it, just use the following command:

-~
<::E $ deactivate
Also, it is possible that you might not be able to install the package at a
global level because of permission issues. Switch to superuser or use
sudo in this case.

You can install virtualenvwrapper using the following commands:

$ pip install virtualenvwrapper
$ export WORKON HOME=~/workspace

$ source /usr/local/bin/virtualenvwrapper.sh

In the preceding code, we installed virtualenvwrapper, created a new environment
variable with the name WORKON_HOME, and provided it with a path, which will act as the
home for all our virtual environments created using virtualenvwrapper. To install Flask,
use the following commands:

$ mkvirtualenv flask

$ pip install flask
To deactivate a virtualenv, we can just run the following command:
$ deactivate

To activate an existing virtualenv using virtualenvwrapper, we can run the
following command:

$ workon flask

References and installation links are as follows:

» https://pypi.python.org/pypi/virtualenv

» https://pypi.python.org/pypi/virtualenvwrapper
» https://pypi.python.org/pypi/Flask

» https://pypi.python.org/pypi/Werkzeug

Chapter 1

» https://pypi.python.org/pypi/Jinja2
» https://pypi.python.org/pypi/itsdangerous
» https://pypi.python.org/pypi/MarkupSafe

Handling basic configurations

The first thing that comes to mind is configuring a Flask application as per the need. In this
recipe, we will try to understand the different ways in which Flask configurations can be done.

Getting ready

In Flask, a configuration is done on an attribute named config of the Flask object.
The config attribute is a subclass of the dictionary data type, and we can modify it
just like any dictionary.

How to do it...

For instance, to run our application in the debug mode, we can write the following:

app = Flask(_name_)
app.config['DEBUG'] = True

The debug Boolean can also be set at the Flask object level rather
than at the config level:

app.debug = True

~ Alternatively, we can use this line of code:
app . run (debug=True)

Enabling the debug mode will make the server reload itself in the case
of any code changes, and it also provides the very helpful Werkzeug
debugger when something goes wrong.

There are a bunch of configuration values provided by Flask. We will come across them in the
relevant recipes.

As the application grows larger, there originates a need to manage the application's
configuration in a separate file as shown here. Being specific to machine-based setups in
most cases will most probably not be a part of the version-control system. For this, Flask
provides us with multiple ways to fetch configurations. The most frequently used ones are
discussed here:

» From a Python configuration file (* . cf£g), the configuration can be fetched using:

app.config.from pyfile('myconfig.cfg')

s

Flask Configurations

» From an object, the configuration can be fetched using:

app.config.from object ('myapplication.default settings')

Alternatively, we can also use:

app.config.from object(name_) #To load from same file

» From the environment variable, the configuration can be fetched using:

app.config.from envvar ('PATH_TO_CONFIG_FILE')

Flask is intelligent enough to pick up only those configuration variables that are written in
uppercase. This allows us to define any local variables in our configuration files/objects and
leave the rest to Flask.

The best practice to use configurations is to have a bunch of default

settings in app . py or via any object in our application itself and then

override the same by loading it from the configuration file. So, the code
Al will look like this:

~
app = Flask(name)
DEBUG = True

TESTING = True
app.config.from object (name)
app.config.from pyfile('/path/to/config/file')

Class-based settings

An interesting way of laying out configurations for different deployment modes, such as
production, testing, staging, and so on, can be cleanly done using the inheritance pattern
of classes. As the project gets bigger, you can have different deployment modes such as
development, staging, production, and so on, where each mode can have several different
configuration settings, and some settings will remain the same.

How to do it...

We can have a default setting base class, and other classes can inherit this base class and
override or add deployment-specific configuration variables.

Chapter 1
The following is an example of our default setting base class:

class BaseConfig(object) :
'Base config class'
SECRET_KEY = 'A random secret key'
DEBUG = True
TESTING = False
NEW_CONFIG_VARIABLE = 'my value'

class ProductionConfig(BaseConfig):
'Production specific config'
DEBUG = False
SECRET_KEY = open('/path/to/secret/file') .read()

class StagingConfig(BaseConfig) :
'Staging specific config!'
DEBUG = True

class DevelopmentConfig(BaseConfig) :
'Development environment specific config'
DEBUG = True
TESTING = True
SECRET_KEY = 'Another random secret key'

\ The secret key is stored in a separate file because, for security
~ concerns, it should not be a part of your version-control system.
Q This should be kept in the local filesystem on the machine itself,
whether it is your personal machine or a server.

Now, we can use any of the preceding classes while loading the application's configuration
via from_object (). Let's say that we save the preceding class-based configuration in a file
named configuration.py:

app.config.from object ('configuration.DevelopmentConfig')
So, overall, this makes the management of configurations for different deployment

environments flexible and easier.

Downloading the example code

purchased from your account at http://www.packtpub. com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

Flask Configurations

Organization of static files

Organizing static files such as JavaScript, stylesheets, images, and so on efficiently is always a
matter of concern for all web frameworks.

How to do it...

Flask recommends a specific way to organize static files in our application:

my_app/
- app.py
- config.py
- _init .py
- static/
- css/
- 98/
- images/
- logo.png

While rendering them in templates (say, the 1ogo . png file), we can refer to the static files
using the following line of code:

If there exists a folder named static at the application's root level, that is, at the same
level as app . py, then Flask will automatically read the contents of the folder without
any extra configuration.

Alternatively, we can provide a parameter named static_folder to the application object
while defining the application in app . py:

app = Flask(__name__ , static_folder='/path/to/static/folder")

Inthe img src path in the How to do it... section, static refers to the value of
static_url path on the application object. This can be modified as follows:

app = Flask(
__name__, static_url path='/differentstatic',
static_folder='/path/to/static/folder"

Chapter 1

Now, to render the static file, we will use the following;:

It is always a good practice to use url_for to create the URLs for static
files rather than explicitly define them:
% <img sre='{{ url for('static', filename="logo.png")
>

by

We will see more of this in the upcoming chapters.

Being deployment specific with instance

folders

Flask provides yet another way of configuration where we can efficiently manage
deployment-specific parts. Instance folders allow us to segregate deployment-specific files
from our version-controlled application. We know that configuration files can be separate for
different deployment environments such as development and production, but there are many
more files such as database files, session files, cache files, and other runtime files. So, we can
say that an instance folder is like a holder bin for these kinds of files.

How to do it...

By default, the instance folder is picked up from the application automatically if we have a
folder named instance in our application at the application level:

my_app/
- app.py
- instance/
- config.cfg

We can also explicitly define the absolute path of the instance folder using the
instance path parameter on our application object:

app = Flask(
__name__, instance path='/absolute/path/to/instance/folder’

)

To load the configuration file from the instance folder, we will use the instance relative
config parameter on the application object:

app = Flask(__name , instance_relative config=True)

]

Flask Configurations

This tells the application to load the configuration file from the instance folder. The following
example shows how this will work:

app = Flask(
_ _name__, instance_path='path/to/instance/folder’,
instance_relative_config=True

)

app.config.from pyfile('config.cfg', silent=True)

In the preceding code, first, the instance folder is loaded from the given path, and then,

the configuration file is loaded from the file named config.cfg in the given instance folder.
Here, silent=True is optional and used to suppress the error in case config.cfgis not
found in the instance folder. If silent=True is not given and the file is not found, then the
application will fail, giving the following error:

IOError: [Errno 2] Unable to load configuration file (No such file or
directory): '/absolute/path/to/config/file’

It might seem that loading the configuration from the instance folder using
. instance_relative_configis redundant work and can be moved to
one of the configuration methods. However, the beauty of this process lies
s in the fact that the instance folder concept is completely independent of
configuration, and instance relative config just compliments the
configuration object.

Composition of views and models

As we go big, we might want to structure our application in a modular manner. We will do this
by restructuring our Hello World application.

How to do it...

1. First, create a new folder in our application and move all our files inside this
new folder.

2. Then,create _init_ .py in our folders, which are to be used as modules.

After that, create a new file called run . py in the topmost folder. As the name implies,
this file will be used to run the application.

4. Finally, create separate folders to act as modules.

Chapter 1

Refer to the following file structure for a better understanding:

flask app/
- run.py
- my_app/
- __init_ .py
- hello/
- _init .py
- models.py
- views.py

First, the flask app/run.py file will look something like the following lines of code:

from my app import app
app . run (debug=True)

Then, the flask app/my app/_ _init__ .py file will look something like the following lines
of code:

from flask import Flask
app = Flask(_name_)

import my app.hello.views

Then, we will have an empty file just to make the enclosing folder a Python package,
flask app/my app/hello/ init .py:

No content.
We need this file just to make this folder a python module.

The models file, flask app/my app/hello/models.py, has a non-persistent
key-value store:

MESSAGES = {
'default': 'Hello to the World of Flask!',

}

Finally, the following is the views file, flask_app/my app/hello/views.py. Here, we
fetch the message corresponding to the key that is asked for and also have a provision to
create or update a message:

from my app import app
from my app.hello.models import MESSAGES

@app.route('/")
@app.route (' /hello’)
def hello world():

[}

Flask Configurations

return MESSAGES|['default']

@app.route (' /show/<key>")
def get message (key) :
return MESSAGES.get (key) or "%s not found!" % key

@app.route ('/add/<key>/<message>')

def add or update message (key, message) :
MESSAGES [key] = message
return "%s Added/Updated" % key

It is just for demonstration and to make things understandable for new

4 Remember that the preceding code is nowhere near production-ready.
! I users of Flask.

We can see that we have a circular import between my app/ init .py andmy app/
hello/views.py, where, in the former, we import views from the latter, and in the latter,
we import the app from the former. So, this actually makes the two modules depend on each
other, but here, it is actually fine as we won't be using views inmy app/ init .py.

We do the import of views at the bottom of the file so that they are not used anyway.

We have used a very simple non-persistent in-memory key-value store for the demonstration
of the model layout structure. It is true that we could have written the dictionary for the
MESSAGES hash map in views . py itself, but it's best practice to keep the model and

view layers separate.

So, we can run this app using just run.py:

$ python run.py
* Running on http://127.0.0.1:5000/

* Restarting with reloader

the debug mode, and the application will reload whenever

+ The reloader indicates that the application is being run in
! I a change is made in the code.

Chapter 1

Now, we can see that we have already defined a default message in MESSAGES. We can
view this message by opening http://127.0.0.1:5000/show/default. Toadd a
new message, we can type http://127.0.0.1:5000/add/great/Flask%201s%20
greatgreat!!. This will update the MESSAGES key-value store to look like the following:

MESSAGES = {
'default': 'Hello to the World of Flask!',
'great': 'Flask is great!!'’',

}

Now, if we open the link http://127.0.0.1:5000/show/great in a browser, we will see
our message, which, otherwise, would have appeared as a not-found message.

» The next recipe, Creating a modular web app with blueprints, provides a much
better way of organizing your Flask applications and is a readymade solution to
circular imports.

Creating a modular web app with blueprints

A blueprint is a concept in Flask that helps make large applications really modular. They keep
application dispatching simple by providing a central place to register all the components in
the application. A blueprint looks like an application object but is not an application. It looks
like a pluggable application or a smaller part of a bigger application, but it is not so. A blueprint
is actually a set of operations that can be registered on an application and represents how to
construct or build an application.

Getting ready

We will take the application from the previous recipe, Composition of views and models,
as a reference and modify it to work using blueprints.

How to do it...

The following is an example of a simple Hello World application using blueprints. It will work in
a manner similar to the previous recipe but is much more modular and extensible.

First, we will start with the £lask _app/my app/ init__ .py file:

from flask import Flask
from my app.hello.views import hello

app = Flask(__name_)
app.register blueprint (hello)

[}

Flask Configurations

Next, the views file, my app/hello/views.py, will look like the following lines of code:

from flask import Blueprint
from my app.hello.models import MESSAGES

hello = Blueprint('hello', _ name_)

@hello.route('/")
@hello.route('/hello’)
def hello world():

return MESSAGES|['default']

@hello.route ('/show/<key>")
def get message (key) :
return MESSAGES.get (key) or "%$s not found!" % key

@hello.route ('/add/<key>/<message>')

def add or_update message (key, message) :
MESSAGES [key] = message
return "%s Added/Updated" % key

We have defined a blueprint in the flask_app/my app/hello/views.py file. We don't
need the application object anymore here, and our complete routing is defined on a blueprint
named hello. Instead of @app . route, we used @hello.route. The same blueprint is
imported in flask app/my app/ _init__ .py and registered on the application object.

We can create any number of blueprints in our application and do most of the activities that
we would do with our application, such as providing different template paths or different static
paths. We can even have different URL prefixes or subdomains for our blueprints.

This application will work in exactly the same way as the last application. The only difference
is in the way the code is organized.

» The previous recipe, Composition of views and models, is useful to get a background
on how this recipe is useful.

=]

Chapter 1

Making a Flask app installable using

setuptools

So, we have a Flask application now, but how do we install it just like any Python package? It
is possible that any other application depends on our application or our application is in fact
an extension for Flask and would need to be installed in a Python environment so that it can
be used by other applications.

How to do it...

Installing a Flask app can be achieved very easily using the setuptools library of Python.
We will have to create a file called setup.py in our application's folder and configure it to run
a setup script for our application. It will take care of any dependencies, descriptions, loading
test packages, and so on.

The following is an example of a simple setup . py script for our Hello World application:

#!/usr/bin/env python

-*- coding: UTF-8 -*-
import os

from setuptools import setup

setup (
name = 'my app',
version='1.0",
license='GNU General Public License v3',
author='Shalabh Aggarwal',
author email='contact@eshalabhaggarwal.com',
description='Hello world application for Flask',
packages=['my app'],
platforms="'any',
install requires=|[

'flask',
1,
classifiers=[
'Development Status :: 4 - Beta',
'Environment :: Web Environment',
'Intended Audience :: Developers',
'License :: OSI Approved :: GNU General Public License v3',
'Operating System :: OS Independent',

s

Flask Configurations

'Programming Language :: Python',
'Topic :: Internet :: WWW/HTTP :: Dynamic Content',
'Topic :: Software Development :: Libraries :: Python Modules'

] r

In the preceding script, most of the configuration is self-explanatory. The classifiers are
used when we make this application available on PyPl. These will help other users search
the application using these classifiers.

Now, we can just run this file with the install keyword as shown here:
$ python setup.py install

This will install this application along with all its dependencies mentioned in install
requires, thatis, Flask and all the dependencies of Flask as well. Then, this app can
be used just like any Python package in our Python environment.

See also

» The list of valid trove classifiers can be found at https://pypi.python.org/
pypi?%3Aaction=1list classifiers

=

Templating with Jinja2

This chapter will cover the basics of Jinja2 templating from the perspective of Flask;
we will also learn how to make applications with modular and extensible templates.

In this chapter, we will cover the following recipes:

» Bootstrap layout

» Block composition and layout inheritance
» Creating a custom context processor

» Creating a custom Jinja2 filter

» Creating a custom macro for forms

» Advanced date and time formatting

Introduction

In Flask, we can write a complete web application without the need of any third-party
templating engine. For example, have a look at the following code; this is a simple
Hello World application with a bit of HTML styling included:

from flask import Flask
app = Flask(_ name)

@app.route('/")

@app.route (' /hello’)

@app.route ('/hello/<user>")

def hello world(user=None) :
user = user or 'Shalabh!'
return '''

<html>

Templating with Jinja2

<head>
<titles>Flask Framework Cookbook</titles>

</head>
<body>
<hlsHello %s!</hl>
<p>Welcome to the world of Flask!</p>
</body>
</html>''' % user
if name == ' main ':
app.run()

Is the preceding pattern of writing the application feasible in the case of large applications
that involve thousands of lines of HTML, JS, and CSS code? Obviously not!

Here, templating saves us because we can structure our view code by keeping our templates
separate. Flask provides default support for Jinja2, although we can use any templating
engine as suited. Furthermore, Jinja2 provides many additional features that make our
templates very powerful and modular.

Bootstrap layout

Most of the applications in Flask follow a specific pattern to lay out templates. In this
recipe, we will talk about the recommended way of structuring the layout of templates
in a Flask application.

Getting ready

By default, Flask expects the templates to be placed inside a folder named templates at the
application root level. If this folder is present, then Flask will automatically read the contents
by making the contents of this folder available for use with the render_ template ()
method, which we will use extensively throughout this book.

How to do it...

Let's demonstrate this with a small application. This application is very similar to the one
we developed in Chapter 1, Flask Configurations. The first thing to do is add a new folder
named templates under my_app. The application structure will now look like the following
lines of code:

flask_app/
- run.py

=

Chapter 2

my_app/
- __init .py
- hello/
- _init .py
- views.py
- templates

We need to make some changes to the application. The hello world method in the views
file, my app/hello/views.py, will look like the following lines of code:

from flask import render template, request

@hello.route('/")

@hello.route('/hello')

def hello world() :
user = request.args.get('user', 'Shalabh')
return render template('index.html', user=user)

In the preceding method, we look for a URL query argument, user. If it is found, we use it,
and if not, we use the default argument, Shalabh. Then, this value is passed to the context
of the template to be rendered, that is, index.html, and the resulting template is rendered.

To start with, the my app/templates/index.html template can be simply put as:

<html>
<head>
<titles>Flask Framework Cookbook</titles>
</head>
<body>
<hils>Hello {{ user }}!</hl>
<p>Welcome to the world of Flask!</p>
</body>
</html>

Now, if we open the URL, http://127.0.0.1:5000/hello, in a browser, we will see a
response, as shown in the following screenshot:

< > |[©][=] [][+] 127.0.0.1:5000/hello ¢ Lic=e=] (0]
Hello Shalabh!

Welcome to the world of Flask!

Templating with Jinja2

We can also pass a URL argument with the user key as http://127.0.0.1:5000/
hello?user=John; we will see the following response:

(< > (][] (1] +]6 1270015000 hellanser=john c] o | (O]

Hello John!

‘Welcome to the world of Flask!

As we can see in views.py, the argument passed in the URL is fetched from the request
object using request.args.get ('user') and passed to the context of the template
being rendered using render template. The argument is then parsed using the Jinja2
placeholder, {{ user }}, tofetch the contents from the current value of the user variable
from the template context. This placeholder evaluates all the expressions that are placed
inside it, depending on the template context.

» The Jinja2 documentation can be found at http://jinja.pocoo.org/.
This comes in handy when writing templates.

Block composition and layout inheritance

Usually, any web application will have a number of web pages that will be different from

each other. Code blocks such as headers and footers will be the same in almost all the pages
throughout the site. Likewise, the menu also remains the same. In fact, usually, just the center
container block changes, and the rest usually remains the same. For this, Jinja2 provides a
great way of inheritance among templates.

It's a good practice to have a base template where we can structure the basic layout of the
site along with the header and footer.

Getting ready

In this recipe, we will try to create a small application where we will have a home page and

a product page (such as the ones we see on e-commerce stores). We will use the Bootstrap
framework to give a minimalistic design to our templates. Bootstrap can be downloaded from
http://getbootstrap.com/.

Here, we have a hardcoded data store for a few products placed in the models. py file.
These are read in views.py and sent over to the template as template context variables
via the render template () method. The rest of the parsing and display is handled by
the templating language, which, in our case, is Jinja2.

=]

Chapter 2

How to do it...

Have a look at the following layout:

flask app/
- run.py
my_app/
- __init .py
- product/
- _init .py
- views.py
- models.py
- templates/
- base.html
- home.html
- product.html
- static/
- Js/

- bootstrap.min.js
- css/
- bootstrap.min.css

- main.css

In the preceding layout, static/css/bootstrap.min.css and static/js/bootstrap.
min.js are standard files and can be downloaded from the Bootstrap website mentioned

in the Getting ready section. The run. py file remains the same as always. The rest of the
application is explained here. First, we will define our models, my app/product/models.
py. In this chapter, we will work on a simple non-persistent key-value store. We will start with
a few hardcoded product records made well in advance:

PRODUCTS = ({

"iphone': {
'name': 'iPhone 5S',
'category': 'Phones’',

'price': 699,

b

'galaxy': {
'name': 'Samsung Galaxy 5',
'category': 'Phones’',

'price': 649,

b

"ipad-air': {
'name': 'iPad Air',
'category': 'Tablets',
'price': 649,

e

Templating with Jinja2

b

"ipad-mini': {
'name': 'iPad Mini',
'category': 'Tablets',

'price': 549

}

Next comes the views, that is, my app/product/views.py. Here, we will follow the
blueprint style to write the application:

from werkzeug import abort

from flask import render template

from flask import Blueprint

from my app.product.models import PRODUCTS

product blueprint = Blueprint ('product', _ name)

@product_blueprint.route('/"')
@product_blueprint.route ('/home')
def home () :

return render template('home.html', products=PRODUCTS)

@product_blueprint.route ('/product/<keys")
def product (key) :
product = PRODUCTS.get (key)
if not product:
abort (404)
return render template('product.html', product=product)

The name of the blueprint, product, that is passed in the Blueprint constructor will be
appended to the endpoints defined in this blueprint. Have a look at the base . html code
for clarity.

. The abort () method comes in handy when you want to abort a request
% with a specific error message. Flask provides basic error message pages
i that can be customized as needed. We will see them in the Creating
custom 404 and 500 handlers recipe in Chapter 4, Working with Views.

=]

Chapter 2

The application's configuration file, my _app/ init _ .py, will now look like the following
lines of code:

from flask import Flask
from my app.product.views import product blueprint

app = Flask(_name_)
app.register blueprint (product blueprint)

Apart from the CSS code provided by Bootstrap, we have a bit of custom CSS code in
my app/static/css/main.css

body {
padding-top: 50px;
}
.top-pad {
padding: 40px 15px;
text-align: center;

}

Coming down to templates, the first template acts as the base for all templates. This can aptly
be named as base.html and placed atmy app/templates/base.html:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-
scale=1">

<title>Flask Framework Cookbook</titles
<link href="{{ url for('static',

filename='css/bootstrap.min.css') }}" rel="stylesheet">
<link href="{{ url for('static',6 filename='css/main.css') }}"
rel="gstylesheet">
</head>
<body>

<div class="navbar navbar-inverse navbar-fixed-top"

role="navigation">
<div class="container">

<div class="navbar-header">

<a class="navbar-brand" href="{{ url for ('product.home')
}}"sFlask Cookbook

</div>

</div>

</div>

Templating with Jinja2

<div class="container">
{% block container %}{% endblock %}

</div>

<!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/
2.0.0/jquery.min.js"></scripts>

<script src="{{ url for('static', filename='js/
bootstrap.min.js') }}"></scripts>
</body>
</html>

Most of the preceding code is normal HTML and Jinja2 evaluation placeholders, which

were introduced in the previous chapter. An important point to note is how the url for ()
method is used for blueprint URLs. The blueprint name is appended to all the endpoints. This
becomes very useful when we have multiple blueprints inside one application, and some of
them can have similar-looking URLs.

In the home page, my app/templates/home.html, we iterate over all the products and
show them:

{% extends 'base.html' %}

{% block container %}
<div class="top-pad">
{$ for id, product in products.iteritems() %}
<div class="well">
<h2>
{{
product ['name'] }}
<small>$ {{ product['price'l }}</small>
</h2>
</div>
{% endfor %}
</div>
{% endblock %}

The individual product page, my app/templates/product.html, looks like the following
lines of code:

{% extends 'home.html' %}

{% block container %}
<div class="top-pad">
<h1>{{ product['name'] }}
<small>{{ product['category']l }}</small>

NED

Chapter 2

</hl>
<h3>$ {{ product['price'l }}</h3>
</div>
{% endblock %}

In the preceding template structure, we saw that there is an inheritance pattern being followed.
The base.html file acted as the base template for all other templates. The home . html file
inherited from base . html, and product . html inherited from home . html. In product.
html, we also saw that we overwrote the container block, which was first populated in

home . html. On running this app, we will see the output as shown in the following screenshots:

[> (] (][o] [+] 127.0.0.1:5000/hame c] |[0]

iPad Mini s 540

iPhone 58 s sas

Samsung Galaxy 5 s 649

iPad Air s 640

The preceding screenshot shows how the home page will look. Note the URL in the browser.
This is how the product page will look:

< > |[&3][=] [1][+] 127.0.0.1:5000/product/ipad-mini ¢ gezdee | (O]

Templating with Jinja2

See also

» Check out the Creating a custom context processor and Creating a custom Jinja2
filter recipes, which extend this application

Creating a custom context processor

Sometimes, we might want to calculate or process a value directly in the templates.

Jinja2 maintains a notion that the processing of logic should be handled in views and not

in templates, and thus, it keeps the templates clean. A context processor becomes a handy
tool in this case. We can pass our values to a method; this will then be processed in a Python
method, and our resultant value will be returned. Therefore, we are essentially just adding a
function to the template context (thanks to Python for allowing us to pass around functions
just like any other object).

How to do it...

Let's say we want to show the descriptive name of the product in the format
Category / Product-name:

@product blueprint.context processor:
def some processor() :
def full name (product) :
return '{0} / {1}'.format (product['category'l],
product ['name'])
return {'full name': full name}

A context is simply a dictionary that can be modified to add or remove values. Any method
decorated with @product _blueprint.context processor should return a dictionary
that updates the actual context.

We can use the preceding context processor as follows:
{{ full name (product) }}

We can add this to our app for the product listing (in the £lask_app/my app/templates/
product . html file) in the following manner:

{% extends 'home.html' %}

{% block container %}
<div class="top-pad">
<h4>{{ full name (product) }}</h4>
<h1>{{ product['name'] }}

=

Chapter 2

<small>{{ product['category']l }}</small>
</hl>
<h3>$ {{ productl['price'l }}</h3>
</div>
{% endblock %}

The resulting parsed HTML page will look like the following screenshot:

Flask Cookbook

Tablets / iPad Mini
iPad Mini
$ 549

» Have a look at the Block composition and layout inheritance recipe to understand the
context of this recipe

Creating a custom Jinja2 filter

After looking at the previous recipe, experienced developers might think that it was stupid to
use a context processor to create a descriptive product name. We can simply write a filter to
get the same result; this will make things much cleaner. A filter can be written to display the
descriptive name of the product as shown here:

@product_blueprint.template filter('full name')
def full name_ filter (product) :

return '{0} / {1}'.format (product['category'l],
product ['name'])

This can be used as follows:
{{ product|full name }}

The preceding code will yield a similar result as it did in the previous recipe.

s

Templating with Jinja2

How to do it...

To take things to a higher level, let's create a filter to format the currency based on the current
local language:

import ccy
from flask import request

@app.template filter('format currency')
def format currency filter (amount) :

currency code = ccy.countryccy (request.accept languages.best[-
2:1)
return '{0} {1}'.format (currency code, amount)

The request .accept_ languages list might now work in cases
i where a request does not have the ACCEPT - LANGUAGES header.

The preceding snippet will require the installation of a new package, ccy:
$ pip install ccy

The filter created here takes the language that best matches the current browser locale
(which, in my case, is en-US), takes the last two characters from the locale string, and then
gets the currency as per the ISO country code that is represented by the last two characters.

The filter can be used in our template for the product as shown:
<h3>{{ product['price'] |format currency }}</h3>

It will yield the result shown in the following screenshot:

[« » | (@) (2] [][+ 127.0.0.1:5000/product/ipad-mini ¢ |uReadec] (O]

Tablets / iPad Mini
iPad Mini mbiets
USD 549

S E

Chapter 2

See also

» Check out the Block composition and layout inheritance recipe to understand the
context of this recipe

Creating a custom macro for forms

Macros allow us to write reusable pieces of HTML blocks. They are analogous to functions in
regular programming languages. We can pass arguments to macros like we do to functions in
Python and then use them to process the HTML block. Macros can be called any number of
times, and the output will vary as per the logic inside them.

Getting ready

Working with macros in Jinja2 is a very common topic and has a lot of use cases. Here, we will
just see how a macro can be created and then used after importing.

How to do it...

One of the most redundant pieces of code in HTML is defining input fields in forms. Most
of the fields have similar code with some modifications of style and so on. The following is
a macro that creates input fields when called. The best practice is to create the macroin a
separate file for better reuseability, for example, helpers.html:

{% macro render field(name, class='', value='"', type='text') —%}
<input type="{{ type }}" name="{{ name }}" class="{{ class }}"
value="{{ value }}"/>

)

{%$- endmacro %}

The minus sign (-) before/after % will strip the whitespaces after
i and before these blocks and make the HTML code cleaner to read.

Now, this macro should be imported in the file to be used:

{$ from ' helpers.jinja' import render field %}

Then, it can simply be called using the following:

<fieldset>

{{ render field('username', 'icon-user') }}

{{ render field('password', 'icon-key', type='password') }}
</fieldset>

s

Templating with Jinja2

It is always a good practice to define macros in a different file so as to keep the code clean
and increase code readability. If a private macro that cannot be accessed out of the current
file is needed, then name the macro with an underscore preceding the name.

Advanced date and time formatting

Date and time formatting is a painful thing to handle in web applications. Handling them at
the level of Python, using the datetime library increases the overhead and is pretty complex
when it comes to handling time zones correctly. We should standardize the timestamps to UTC
when stored in the database, but then, the timestamps need to be processed every time they
need to be presented to the users worldwide.

It is a smart thing to defer this processing to the client side, that is, the browser. The browser
always knows the current time zone of the user and will be able to do the date and time
manipulation correctly. Also, this takes off the necessary overhead from our application
servers. We will use Moment.js for this purpose.

Getting ready

Just like any JS library, Moment.js can be included in our app in the following manner. We will
just have to place the JS file, moment .min. js, in the static/js folder. This can then be
used in our HTML file by adding the following statement along with other JS libraries:

<script src="/static/js/moment.min.js"></scripts>

The basic usage of Moment.js is shown in the following code. This can be done in the browser
console for JavaScript:

>>> moment () .calendar () ;

"Today at 4:49 PM"

>>> moment () .endOf ('day"') . fromNow () ;
"in 7 hours"

>>> moment () . format ('LLLL") ;
"Tuesday, April 15 2014 4:55 PM"

How to do it...

To use Moment.js in our application, the best way will be to write a wrapper in Python
and use it via jinja2 environment variables. Refer to http://runnable.com/
UgGXnKwTGpQgAAO7/dates-and-times-in-flask-for-python for more information:

from jinja2 import Markup

class momentjs (object) :
def init_ (self, timestamp) :

NEQ

Chapter 2

self.timestamp = timestamp

Wrapper to call moment.js method
def render (self, format) :
return Markup ("<scripts>\ndocument.write (moment (\"%$s\") .%s)

)

;\n</script>" % (self.timestamp.strftime ("$Y-%m-
$dT%$H:%$M:%S"), format))

Format time
def format (self, fmt):
return self.render ("format (\"%s\")" % fmt)

def calendar (self) :
return self.render ("calendar()")

def fromNow (self) :
return self.render ("fromNow () ")

We can add as many Moment.js methods as we want to parse to the preceding class as
and when needed. Now, in our app . py file, we can set this created class to the jinja
environment variables:

Set jinja template global
app.jinja env.globals['momentjs'] = momentjs

We can use it in templates as follows:

<p>Current time: {{ momentjs(timestamp).calendar() }}</p>

<p>Time: {{momentjs(timestamp).format ('YYYY-MM-DD HH:mm:ss') } }</p>

<p>From now: {{momentjs(timestamp) .fromNow () }}</p>

See more

» Read more about the Moment.js library at http://momentjs.com/

Eis

Data Modeling in Flask

This chapter covers one of the most important parts of any application, that is, the interaction
with database systems. This chapter will take us through how Flask can connect to database
systems, define models, and query the databases for retrieval and feeding of data.

In this chapter, we will cover the following recipes:

» Creating a SQLAIchemy DB instance

» Creating a basic product model

» Creating a relational category model

» Database migration using Alembic and Flask-Migrate
» Model data indexing with Redis

» Opting the NoSQL way with MongoDB

Introduction

Flask has been designed to be flexible enough to support any database. The simplest way
would be to use the direct sqlite3 package, which is a DB-API 2.0 interface and does not
actually give an ORM. Here, we will use SQL queries to talk with the database. This approach
is not suggested for large projects as it can eventually become a nightmare to maintain the
application. Also, with this approach, the models are virtually non-existent and everything
happens in the view functions, where we write queries to interact with the DB.

In this chapter, we will talk about creating an ORM layer for our Flask applications with
SQLAIchemy for relational database systems, which is recommended and widely used for
applications of any size. Also, we will have a glance over how to write a Flask app with the
NoSQL database system.

Data Modeling in Flask

. ORM refers to Object Relational Mapping/Modeling and implies
& how our application's data models store and deal with data at a
s conceptual level. A powerful ORM makes designing and querying

business logic easy and streamlined.

Creating a SQLAIchemy DB instance

SQLAIchemy is a Python SQL toolkit and provides an ORM that gives the flexibility and power
of SQL with the feel of Python's object-oriented nature.

Getting ready

Flask-SQLAIchemy is the extension that provides the SQLAlchemy interface for Flask.
This extension can be simply installed using pip as follows:
$ pip install flask-sglalchemy

The first thing to keep in mind with Flask-SQLAIchemy is the application config parameter that
tells SQLAIchemy about the location of the database to be used:

app.config['SQLALCHEMY DATABASE URI'] = os.environ('DATABASE URI')

This SQLALCHEMY DATABASE_ URI is a combination of the database protocol, any
authentication needed, and also the name of the database. In the case of SQLite,
this would look something like the following:

sqglite:////tmp/test.db
In the case of PostgreSQL, it would look like the following:
postgresql://yourusername :yourpassword@localhost/yournewdb.

This extension then provides a class named Model that helps in defining models for our
application. Read more about database URLs at http://docs.sglalchemy.org/en/
rel 0 9/core/engines.html#database-urls.

For all database systems other than SQLite, separate libraries are
s needed. For example, for using PostgreSQL, you would need psycopg2.

=)

Chapter 3

How to do it...

Let's demonstrate this with a small application. We will build over this application in the next
few recipes. Here, we will just see how to create a db instance and some basic DB commands.
The file's structure would look as follows:

flask catalog/
- run.py
my_app/
- _init .py

First, we start with £lask_app/run.py. Itis the usual run file that we have read about up to
now in this book:

from my app import app
app . run (debug=True)

Then we configure our application configuration file, that is, £1lask_app/my app/
init_ .py.

from flask import Flask
from flask.ext.sglalchemy import SQLAlchemy

app = Flask(_ name)
app.config['SQLALCHEMY DATABASE URI'] = 'sqglite:////tmp/test.db'
db = SQLAlchemy (app)

Here, we configure our application to point SQLALCHEMY DATABASE URI to a specific
location. Then, we create an object of SQLAlchemy with the name db. As the name suggests,
this is the object that will handle all our ORM-related activities. As mentioned earlier, this
object has a class named Model, which provides the base for creating models in Flask.

Any class can just subclass or inherit the Model class to create models, which will act as
database tables.

Now, if we open the URL http://127.0.0.1:5000 in a browser, we will actually see
nothing. This is because there is nothing in the application.

There's more...

Sometimes, you might want a single SQLAlchemy db instance to be used across multiple
applications or create an application dynamically. In such cases, we might not prefer to bind
our db instance to a single application. Here, we will have to work with application contexts to
achieve the desired outcome.

Data Modeling in Flask

In this case, we will register our application with SQLAIchemy differently, as follows:

from flask import Flask
from flask.ext.sglalchemy import SQLAlchemy

db = SQLAlchemy ()

def create_app():
app = Flask(_name_)
db.init_app (app)
return app

M The preceding approach can be taken up while initializing the app
Q with any Flask extension and is very common when dealing with
real-life applications.

Now, all the operations that were earlier possible globally with the db instance will now require
a Flask application context at all times:

Flask application context
>>> from my app import create_ app
>>> app = create_app ()
>>> app.test request context () .push()
>>> # Do whatever needs to be done
>>> app.test request context () .pop ()
Or we can use context manager
with app() :
We have flask application context now till we are inside the
with block

» The next couple of recipes will extend the current application to make a complete
application, which will help us understand the ORM layer better

Creating a basic product model

In this recipe, we will create an application that will help us store products to be displayed
on the catalog section of a website. It should be possible to add products to the catalog
and delete them as and when required. As we saw in previous chapters, this is possible to
do using non-persistent storage as well. But, here we will store data in a database to have
persistent storage.

=

Chapter 3

How to do it...

The new directory layout will look as follows:

flask catalog/
- run.py
my_app/
- __init .py
catalog/
- _init .py
- views.py
- models.py

First of all, we will start by modifying our application configuration file, that is,
flask catalog/my app/ init .py:

from flask import Flask
from flask.ext.sglalchemy import SQLAlchemy

app = Flask(_ name)
app.config['SQLALCHEMY DATABASE URI'] = 'sqglite:////tmp/test.db'
db = SQLAlchemy (app)

from my app.catalog.views import catalog
app.register blueprint (catalog)

db.create all()

The last statement in the file is db. create_all (), which tells the application to create all
the tables in the database specified. So, as soon as the application runs, all the tables will
be created if they are not already there. Now is the time to create models that are placed

in flask catalog/my app/catalog/models.py:

from my app import db

class Product (db.Model) :
id = db.Column(db.Integer, primary key=True)
name = db.Column (db.String(255))
price = db.Column (db.Float)

def init (self, name, price):
self.name = name
self.price = price

def repr (self):
return '<Product %d>' % self.id

&1

Data Modeling in Flask

In this file, we have created a model named Product that has three fields, namely id, name,
and price. The idfield is a self-generated field in the database that will store the ID of the
record and is the primary key. name is a field of type string and price is of type float.

Now, we add a new file for views, which is flask catalog/my_ app/catalog/views.py.
In this file, we have multiple view methods that control how we deal with the product model
and the web application in general:

from flask import request, jsonify, Blueprint
from my app import app, db
from my app.catalog.models import Product

catalog = Blueprint('catalog', _ name_)

@catalog.route('/")
@catalog.route ('/home')
def home () :
return "Welcome to the Catalog Home."

This method handles how the home page or the application landing page looks or responds
to the users. You would most probably use a template for rendering this in your applications.
We will cover this a bit later. Have a look at the following code:

@catalog.route ('/product/<id>")
def product (id) :
product = Product.query.get or 404 (id)
return 'Product - %s, $%s' % (product.name, product.price)

This method controls the output to be shown when a user looks up a specific product using its
ID. We filter for the product using the ID and then return its information if the product is found;
if not, we abort with a 404 error. Consider the following code:

@catalog.route ('/products')
def products() :
products = Product.query.all ()
res = {}
for product in products:
res [product.id] = {
'name': product.name,
'price': str(product.price)
}

return jsonify(res)

=

Chapter 3

This method returns the list of all products in the database in JSON format. Consider the
following code:

@catalog.route ('/product-create', methods=['POST',])
def create product () :

name = request.form.get ('name')

price = request.form.get ('price')

product = Product (name, price)

db.session.add (product)

db.session.commit ()

return 'Product created.'

This method controls the creation of a product in the database. We first get the information
from a request and then create a Product instance from this information. Then, we add
this Product instance to the database session and finally commit to save the record to
the database.

In the beginning, the database is empty and has no product. This can be confirmed by
opening http://127.0.0.1:5000/products in a browser. This would result in an
empty page with just {}.

Now, first we would want to create a product. For this, we need to send a POST request,

which can be sent from the Python prompt using the requests library easily:

>>> import requests

>>> requests.post('http://127.0.0.1:5000/product-create’',
data={'name': 'iPhone 5S', ‘'price': '549.0'})

To confirm whether the product is in the database now, we can open
http://127.0.0.1:5000/products in the browser again. This time,
it would show a JSON dump of the product details.

» The next recipe, Creating a relational category model, demonstrates the relational
aspect of tables

=]

Data Modeling in Flask

Creating a relational category model

In our previous recipe, we created a simple product model that had a couple of fields. However,
in practice, applications are much more complex and have various relationships among their
tables. These relationships can be one-to-one, one-to-many, many-to-one, or many-to-many.

We will try to understand some of them in this recipe with the help of an example.

How to do it...

Let's say we want to have product categories where each category can have multiple products,
but each product should have at least one category. Let's do this by modifying some files

from the preceding application. We will make modifications to both models and views.

In models, we will add a Category model, and in views, we will add new methods to

handle category-related calls and also modify the existing methods to accommodate

the newly added feature.

First, we will modify our models. py file to add the category model and some modifications
to the Product model:

from my app import db

class Product (db.Model) :

id = db.Column(db.Integer, primary key=True)
name = db.Column (db.String(255))
price = db.Column(db.Float)
category id = db.Column(db.Integer,

db.ForeignKey ('category.id'))
category = db.relationship(

'Category', backref=db.backref ('products', lazy='dynamic')

def init (self, name, price, category):
self.name = name
self.price = price
self.category = category

def repr (self):
return '<Product %d>' % self.id

Chapter 3

In the preceding Product model, notice the newly added fields for category id

and category. The category id field is the foreign key to the Category model, and
category represents the relationship table. As evident from the definitions themselves,

one of them is a relationship, and the other uses this relationship to store the foreign key
value in the database. This is a simple many-to-one relationship from product to category.
Also, notice the backref argument in the category field; this argument allows us to access
products from the category model by writing something as simple as category.products
in our views. This acts like the one-to-many relationship from the other end. Consider the
following code:

class Category (db.Model) :
id = db.Column(db.Integer, primary key=True)
name = db.Column(db.String(100))

def init_ (self, name):
self.name = name

def repr (self):

°

return '<Category %d>' % self.id
The preceding code is the Category model, which has just one field called name.
Now, we will modify our views .py file to accommodate the changes in our models:

from my app.catalog.models import Product, Category

@catalog.route ('/products')
def products() :
products = Product.query.all ()
res = {}
for product in products:
res [product.id] = {
'name': product.name,
'price': product.price,
'category': product.category.name

}

return jsonify(res)

Data Modeling in Flask

Here, we have just one change where we are sending the category name and the product's
JSON data is being generated to be returned. Consider the following code:

@catalog.route ('/product-create', methods=['POST',])
def create product () :
name = request.form.get ('name')
price = request.form.get ('price')
categ name = request.form.get ('category"')
category = Category.query.filter by (name=categ name) .first ()
if not category:
category = Category(categ name)
product = Product (name, price, category)
db.session.add (product)
db.session.commit ()
return 'Product created.'

Check out how we are looking for the category before creating the product. We will first search
for an existing category with the category name in the request. If an existing category is found,
we will use it for product creation; otherwise, we will create a new category. Consider the
following code:

@catalog.route ('/category-create', methods=['POST',])
def create category () :

name = request.form.get ('name')

category = Category (name)

db.session.add (category)

db.session.commit ()

return 'Category created.'

The preceding code is a relatively simple method for creating a category using the name
provided in the request. Consider the following code:

@catalog.route ('/categories')
def categories():
categories = Category.query.all ()
res = {}
for category in categories:
res[category.id] = {
'name': category.name
}
for product in category.products:
res [category.id] ['products'] = {
'id': product.id,
'name': product.name,
'price': product.price
}

return jsonify(res)

=

Chapter 3

The preceding method does a bit of tricky stuff. Here, we fetched all the categories from the
database, and then for each category, we fetched all the products and then returned all the
data as a JSON dump.

» Read through the Creating a basic product model recipe to understand the context of
this recipe and how this recipe works for a browser

Database migration using Alembic and

Flask-Migrate

Now, let's say we want to update our models to have a new field called company in

our Product model. One way is to drop the database and then create a new one using
db.drop_all() and db.create all (). However, this approach cannot be followed for
applications in production or even in staging. We would want to migrate our database to
match the newly updated model with all the data intact.

For this, we have Alembic, which is a Python-based tool to manage database migrations and
uses SQLAIchemy as the underlying engine. Alembic provides automatic migrations to a great
extent with some limitations (of course, we cannot expect any tool to be seamless). To act

as the icing on the cake, we have a Flask extension called Flask-Migrate, which eases the
process of migrations even more.

Getting ready

First of all, we will install Flask-Migrate:
$ pip install Flask-Migrate

This will also install Flask-Script and Alembic, among some other dependencies. Flask-Script
powers Flask-Migrate to provide some easy-to-use command-line arguments, which provide
a good level of abstraction to the users and hide all the complex stuff (which are actually
not very difficult to customize if needed).

How to do it...

To enable migrations, we will need to modify our app definition a bit.

The following code shows what such a config looks like if we modify the code for our
catalog application.

Data Modeling in Flask

The following lines of code show how my app/ init _ .py looks:

from flask import Flask

from flask.ext.sglalchemy import SQLAlchemy

from flask.ext.script import Manager

from flask.ext.migrate import Migrate, MigrateCommand

app = Flask(_name_)

app.config['SQLALCHEMY DATABASE URI'] = 'sqglite:////tmp/test.db’
db = SQLAlchemy (app)

migrate = Migrate (app, db)

manager = Manager (app)
manager.add_command ('db', MigrateCommand)

import my app.catalog.views

db.create_all()
Also, we will have to make a small change in run.py:

from my app import manager
manager.run ()

This change in run.py is because now we are using the Flask script manager to handle the
running of our application. The script manager also provides extra command-line arguments
as specified. In this example, we will have db as a command-line argument.

If we pass - -help to run.py while running it as a script, the terminal will show all the
available options, as shown in the following screenshot:

(mydev)Shalabh-Aggarwal s-MacBook-Pro-2: flask_catalog shalabhaggarwal$ python run.py --help
usage: run.py [-h] {shell,db,runserver} ...

positional arguments:
{shell,db, runserver}
shell Runs a Python shell inside Flask application context.

] Perform database migrations
runserver Runs the Flask development server i.e. app.run()

optional arguments:
-h, --help show this help message and exit

Now, to run the application, we will have to run the following:

$ python run.py runserver

SNED

Chapter 3
To initialize migrations, we have to run the init command:
$ python run.py db init

After we make changes to models, we have to call the migrate command:

$ python run.py db migrate
To make the changes reflect on the database, we will call the upgrade command:

$ python run.py db upgrade

Now, let's say we modify the model of our product table to add a new field called company
as shown here:

class Product (db.Model) :
#
Same product model as last recipe
#
company = db.Column(db.String(100))

The result of migrate will be something like the following snippet:

$ python run.py db migrate
INFO [alembic.migration] Context impl SQLiteImpl.
INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added column
'product.company’ Generating <path/to/application>/
flask catalog/migrations/versions/2c08£f71£9253 .py ... done

In the preceding code, we can see that Alembic compares the new model with the database
table and detects a newly added column for company in the product table (created by the
Product model)

Similarly, the output of upgrade will be something like the following snippet:

$ python run.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade None -> 2c08£71£9253, empty

message

Here, Alembic performs the upgrade of the database for the migration detected earlier.
We can see a hex code in the preceding output. This represents the revision of the migration
performed. This is for internal use by Alembic to track the changes to database tables.

i

Data Modeling in Flask

See also

» Check out the Creating a basic product model recipe to understand the context of
this recipe

Model data indexing with Redis

There might be some features that we want to implement but do not want to have a persistent
storage for them. So, we would like to have these stored in a cache-like storage for a short
period of time and then hide them, for example, showing a list of the recently visited products
to the visitors on the website.

Getting ready

We will do this with the help of Redis, which can be installed using the following command:

$ pip install redis

Make sure that you run the Redis server for the connection to happen. To install and run a
Redis server, referto http://redis.io/topics/quickstart.

Then, we need to have the connection open to Redis. This can be done by adding the following
lines of code tomy_app/__init__ .py:

from redis import Redis
redis = Redis ()

We can do this in our application file, where we will define the app, or in the views file,
where we will use it. It is preferred that you do this in the application file because then the
connection will be open throughout the application, and the redis object can be used by
just importing it where needed.

How to do it...

We will maintain a set in Redis that will store the recently visited products. This will be
populated whenever we visit a product. The entry will expire after 10 minutes. This change
goes in views.py:

from my app import redis

@catalog.route ('/product/<id>")
def product (id) :
product = Product.query.get or 404 (id)
product key = 'product-%s' % product.id
redis.set (product key, product.name)
redis.expire (product key, 600)
return 'Product - %s, $%s' % (product.name, product.price)

=

Chapter 3

M It is a good practice to fetch the expire time, thatis, 600, from
Q a configuration value. This can be set on the application object in
my app/ init _ .py, and then can be fetched from here.

In the preceding method, note the set () and expire () methods on the redis object.
First, we set the product ID using the product_key value in the Redis store. Then, we set
the expire time of the key to 600 seconds.

Now, we will look for the keys that are still alive in the cache and then fetch the products
corresponding to these keys and return them:

@catalog.route (' /recent-products')

def recent products() :
keys alive = redis.keys('product-*')
products = [redis.get (k) for k in keys alive]
return jsonify ({'products': products})

An entry is added to the store whenever a user visits a product, and the entry is kept there for
600 seconds (10 minutes). Now, this product will be listed in the recent products list for the
next 10 minutes unless it is visited again, which will reset the time to 10 minutes again.

Opting the NoSQL way with MongoDB

Sometimes, the data to be used in the application we are building might not be structured at
all, can be semi-structured, or can be data whose schema changes over time. In such cases,
we would refrain from using an RDBMS, as it adds to the pain and is difficult to understand
and maintain. For such cases, we might want to use a NoSQL database.

Also, as a result of fast and quick development in the currently prevalent development
environment, it is not always possible to design the perfect schema the first time. NoSQL
provides the flexibility to modify the schema without much of a hassle.

In production environments, the database usually grows to a huge size in a short period of time.
This drastically affects the performance of the overall system. Vertical- and horizontal-scaling
techniques are available as well, but they can be very costly at times. In such cases, a NoSQL
database can be considered, as it is designed from scratch for similar purposes. The ability of
NoSQL databases to run on large multiple clusters and handle huge volumes of data generated
with high velocity makes them a good choice when looking to handle scaling issues with
traditional RDBMS.

Here, we will use MongoDB to understand how to integrate NoSQL with Flask.

Data Modeling in Flask

Getting ready

There are many extensions available to use Flask with MongoDB. We will use Flask-MongoEngine
as it provides a good level of abstraction, which makes it easier to understand. It can be installed
using the following command:

$ pip install flask-mongoengine

Remember to run the MongoDB server for the connection to happen. For more details
on installing and running MongoDB, refer to http://docs.mongodb.org/manual/
installation/.

How to do it...

The following is an application that is a rewrite of our catalog application using MongoDB.
The first change comes to our configuration file, my app/ init .py:

from flask import Flask
from flask.ext.mongoengine import MongoEngine
from redis import Redis

app = Flask(_ name)

app.config['MONGODB_SETTINGS'] = {'DB': 'my catalog'}
app.debug = True

db = MongoEngine (app)

redis = Redis()

from my app.catalog.views import catalog
app.register blueprint (catalog)

Note that instead of the usual SQLAlchemy-centric settings, we now
have MONGODB_SETTINGS. Here, we just specify the name of the
database to use. First, we will have to manually create this database in

MongoDB using the command line:
>>> mongo

MongoDB shell version: 2.6.4
> use my catalog

switched to db my catalog

Chapter 3

Next, we will create a Product model using MongoDB fields. This happens as usual in the
models file, flask catalog/my app/catalog/models.py:

import datetime
from my app import db

class Product (db.Document) :
created at = db.DateTimeField(
default=datetime.datetime.now, required=True
)
key = db.StringField(max_length=255, required=True)
name = db.StringField(max length=255, required=True)
price = db.DecimalField()

def repr (self):
return '<Product %$r>' % self.id

. Note the MongoDB fields used to create the model and their
% similarity with the SQLAIchemy fields used in the previous recipes.
s Here, instead of an ID field, we have created_at, which stores the
timestamp in which the record was created.

The following is the views file, namely flask catalog/my app/catalog/views.py:

from decimal import Decimal
from flask import request, Blueprint, jsonify
from my app.catalog.models import Product

catalog = Blueprint ('catalog', _ name)

@catalog.route('/")
@catalog.route (' /home"')
def home () :

return "Welcome to the Catalog Home."

@catalog.route (' /product/<key>"')
def product (key) :
product = Product.objects.get or 404 (key=key)
return 'Product - %s, $%s' % (product.name, product.price)

@catalog.route ('/products')
def products() :
products = Product.objects.all()

s

Data Modeling in Flask

res = {}
for product in products:
res [product.key] = {
'name': product.name,
'price': str(product.price),

}

return jsonify(res)

@catalog.route ('/product-create', methods=['POST',])
def create product () :
name = request.form.get ('name')
key = request.form.get ('key')
price = request.form.get ('price')
product = Product (
name=name,
key=key,
price=Decimal (price)
)
product.save ()
return 'Product created.'

You will notice it is very similar to the views created for the SQLAlchemy-based models.
There are just a few differences in the methods that are called from the MongoEngine
extension; they should be easy to understand.

» Check out the Creating a basic product model recipe to understand how this
application works

5]

Working with Views

For any web application, it is very important to control how you interact with web requests
and the proper responses to be catered for these requests. This chapter takes us through
the various methods of handling the requests properly and designing them in the best way.

In this chapter, we will cover the following recipes:

» Writing function-based views and URL routes
» Class-based views

» URL routing and product-based pagination

» Rendering to templates

» Dealing with XHR requests

» Decorator to handle requests beautifully

» Creating custom 404 and 500 handlers

» Flashing messages for better user feedback

» SQL-based searching

Introduction

Flask offers several ways of designing and laying out the URL routing for our applications.
Also, it gives us the flexibility to keep the architecture of our views as simple as just functions
to a more complex but extensible class-based layout (which can be inherited and modified as
needed). In earlier versions, Flask just had function-based views. However, later, in version
0.7, inspired by Django, Flask introduced the concept of pluggable views, which allows us

to have classes and then write methods in these classes. This also makes the process of
building a RESTful API pretty simple. Also, we can always go a level deeper into Werkzeug
and use the more flexible but slightly more complex concept of URL maps. In fact, large
applications and frameworks prefer using URL maps.

Working with Views

Writing function-based views and URL

routes

This is the simplest way of writing views and URL routes in Flask. We can just write a method
and decorate it with the endpoint.

Getting ready

To understand this recipe, we can start with any Flask application. The app can be a new,
empty, or any complex app. We just need to understand the methods outlined in this recipe.

How to do it...

The following are the three most widely used, different kinds of requests, demonstrated with
short examples.

A simple GET request
Consider the following code:

@app.route ('/a-get-request')
def get request():
bar = request.args.get('foo', 'bar')

)

return 'A simple Flask request where foo is %s' % bar

This is a simple example of what a GET request looks like. Here, we just check whether the
URL query has an argument called foo. If yes, we display this in the response; otherwise,
the default is bar.

A simple POST request
Consider the following code:

@app.route ('/a-post-request', methods=['POST'])
def post request () :
bar = request.form.get ('foo', 'bar')

)

return 'A simple Flask request where foo is %s' % bar

This is similar to the GET request but with a few differences, that is, the route now
contains an extra argument called methods. Also, instead of request .args, we
now use request . form, as POST assumes that the data is submitted in a form manner.

[Is it really necessary to write GET and POST in separate methods? No!]

NED

Chapter 4
A simple GET/POST request

Consider the following code:

@app.route ('/a-request', methods=['GET', 'POST'])
def some request () :
if request.method == 'GET':
bar = request.args.get('foo', 'bar')
else:
bar = request.form.get('foo', 'bar')

)

return 'A simple Flask request where foo is %s' % bar

Here, we can see that we have amalgamated the first two methods into one, and now,
both GET and POST are handled by one view function.

Let's try to understand how the preceding methods work.

By default, any Flask view function supports only GET requests. In order to support or
handle any other kind of request, we have to specifically tell our route () decorator
about the methods we want to support. This is exactly what we did in our last two
methods for POST and GET/POST.

For GET requests, the request object will look for args, that is, request .args.get (),
and for POST, it will look for form, that is, request . form.get ().

Also, if we try to make a GET request to a method that supports only POST, the request will fail
with a 405 HTTP error. The same holds true for all the methods. See the following screenshot:

<> [@ IE] @ | + [€3 127.0.0.1:5000/a-post-request ¢ | Reade | E]
Method Not Allowed

The method is not allowed for the requested URL.

Sometimes, we might want to have a URL map kind of a pattern, where we prefer to define all
the URL rules with endpoints at a single place rather than them being scattered all around the
application. For this, we will need to define our methods without the route () decorator and
define the route on our application object as shown here:

def get request():

bar = request.args.get('foo', 'bar')

Working with Views

)

return 'A simple Flask request where foo is %s' % bar

app = Flask(_ name)
app.add_url rule('/a-get-request', view_ func=get request)

Make sure that you give the correct relative path to the method assigned to view func.

Class-based views

Flask introduced the concept of pluggable views in version 0.7; this added a lot of flexibility
to the existing implementation. We can write views in the form of classes; these views can
be written in a generic fashion and allow for an easy and understandable inheritance.

Getting ready

Refer to the previous recipe, Writing function-based views and URL routes, to understand the
basic function-based views first.

How to do it...

Flask provides a class named View, which can be inherited to add our custom behavior.

The following is an example of a simple GET request:

from flask.views import View
class GetRequest (View) :

def dispatch request (self) :
bar = request.args.get('foo', 'bar')

)

return 'A simple Flask request where foo is %s' % bar

app.add url rule(
'/a-get-request', view func=GetRequest.as view('get request')

)
To accommodate both the GET and POST requests, we can write the following code:

from flask.views import View

class GetPostRequest (View) :
methods = ['GET', 'POST']

def dispatch request (self) :
if request.method == 'GET':

&)

Chapter 4

bar = request.args.get('foo', 'bar')
if request.method == 'POST':
bar = request.form.get ('foo', 'bar')

return 'A simple Flask request where foo is %s' % bar

app.add url rule(
'/a-request',
view func=GetPostRequest.as view('a request')

We know that by default, any Flask view function supports only GET requests. The same applies
in the case of class-based views. In order to support or handle any other kind of request, we
have to specifically tell our class, via a class attribute called methods, about the HTTP methods
we want to support. This is exactly what we did in our previous example of GET/POST requests.

For GET requests, the request object will look for args, that is, request .args.get (),
and for POST, it will look for form, that is, request . form.get ().

Also, if we try to make a GET request to a method that supports only POST, the request will fail
with a 405 HTTP error. The same holds true for all the methods.

There's more...

Now, many of us might be thinking that is it not possible to just declare GET and POST
methods inside a View class and let Flask handle the rest of the stuff. The answer to
this question is MethodView. Let's write our previous snippet using Methodview:

from flask.views import MethodView
class GetPostRequest (MethodView) :

def get (self):
bar = request.args.get('foo', 'bar')
return 'A simple Flask request where foo is %s' % bar

def post(self):
bar = request.form.get('foo', 'bar')
return 'A simple Flask request where foo is %s' % bar

app.add url rule(
'/a-request',
view func=GetPostRequest.as view('a request')

Working with Views

See also

» Refer to the previous recipe, Writing function-based views and URL routes,
to understand the contrast between class- and function-based views

URL routing and product-based pagination

At times, we might have to parse the various parts of a URL in different parts. For example,
our URL can have an integer part, a string part, a string part of specific length, slashes in the
URL, and so on. We can parse all these combinations in our URLs using URL converters. In
this recipe, we will see how to do this. Also, we will learn how to implement pagination using
the Flask-SQLAlchemy extension.

Getting ready

We have already seen several instances of basic URL converters. In this recipe, we will look at
some advanced URL converters and learn how to use them.

How to do it...

Let's say we have a URL route defined as follows:

@app.route ('/test/<name>")
def get name (name) :
return name

Here, http://127.0.0.1:5000/test/Shalabh will result in Shalabh being parsed and
passed in the name argument of the get _name method. This is a unicode or string converter,
which is the default one and need not be specified explicitly.

We can also have strings with specific lengths. Let's say we want to parse a URL that can
contain a country code or currency code. Country codes are usually two characters long
and currency codes are three characters long. This can be done as follows:

@app.route ('/test/<string (minlength=2,maxlength=3) :code>")
def get name (code) :
return code

This will match both US and USD in the URL, thatis, http://127.0.0.1:5000/test/USD
and http://127.0.0.1:5000/test/US will be treated similarly. We can also match the
exact length using the 1ength parameter instead of minlength and maxlength.

&

Chapter 4
We can also parse integer values in a similar fashion:

@app.route ('/test/<int:age>"')
def get_age (age) :
return str (age)

We can also specify the minimum and maximum values that can be accepted. For example,
we can have @app.route ('/test/<int (min=18,max=99) :age>"'). We can also parse
float values using float in place of int in the preceding example.

Sometimes, we might want to escape slashes in our URLs or parse URLs with some filesystem
path or another URL's path. This can be done as follows:

@app.route ('/test/<path:file>/end"')
def get file(file):
return file

This will catch something like http://127.0.0.1:5000/test/usr/local/app/
settings.py/end and identify usr/local/app/settings.py as the file argument
to be passed to the method.

Adding pagination to applications

In the Creating a basic product model recipe in Chapter 3, Data Modeling in Flask, we created

a handler to list out all the products in our database. If we have thousands of products, then
generating the list of all these products in one go can take a lot of time. Also, if we have to render
these products on a template, then we would not want to show more than 10-20 products on a
page in one go. Pagination proves to be of great help in building great applications.

Let's modify the products () method to list products to support pagination:

@catalog.route ('/products')
@catalog.route ('/products/<int:page>"')
def products (page=1) :
products = Product.query.paginate (page, 10).items
res = {}
for product in products:
res [product.id] = {
'name': product.name,
'price': product.price,
'category': product.category.name

}

return jsonify(res)

Working with Views

In the preceding handler, we added a new URL route that adds a page parameter

to the URL. Now, http://127.0.0.1:5000/products Wwill be the same as
http://127.0.0.1:5000/products/1, and both will return the list of the first

10 products from the DB. Then, http://127.0.0.1:5000/products/2 will return
the next 10 products and so on.

The paginate () method takes three arguments and returns an object of
the Pagination class. These three arguments are:
» page: This is the current page to be listed.
%;%‘ » per page: This is the number of items to be listed per page.
» error_ out:If noitems are found for the page, then this aborts
with a 404 error. To prevent this behavior, set this parameter to
False, and then, it will just return an empty list.

See also

» The Creating a basic product model recipe in Chapter 3, Data Modeling in Flask,
to understand the context of this recipe for pagination

Rendering to templates

After writing the views, we will surely want to render the content on a template and get
information from the underlying database.

Getting ready

To render to templates, we will use Jinja2 as the templating language. Refer to Chapter 2,
Templating with Jinja2, to understand templating in depth.

How to do it...

We will again work in reference to our existing catalog application from the previous recipe.
We will now modify our views to render templates and then display data from the database
in these templates.

The following is the modified views.py code and the templates. The complete app can be
downloaded from the code bundle provided with this book.

Chapter 4

We will start by modifying our views, that is, flask catalog template/my app/
catalog/views.py, to render templates on specific handlers:

from flask import render template

@catalog.route('/")
@catalog.route ('/home')
def home () :
return render template('home.html')

Notice the render_ template () method. This method will render home . html when the
home handler is called. Consider the following code:

@catalog.route ('/product/<id>")
def product (id) :
product = Product.query.get or 404 (id)
return render_ template ('product.html', product=product)

Here, the product . html template will be rendered with the product object in the template
context. Consider the following code:

@catalog.route ('/products')
@catalog.route ('/products/<int:page>")
def products (page=1) :
products = Product.query.paginate (page, 10)
return render template ('products.html', products=products)

Here, the products.html template will be rendered with the list of paginated product
objects in the context. Consider the following code:

@catalog.route ('/product-create', methods=['POST',])
def create_ product () :
.. Same code as before ..
return render_ template ('product.html', product=product)

As we can see in the preceding code, in this case, the template corresponding to the newly
created product will be rendered. This can also be done using redirect (), but we will cover
this at a later stage. Have a look at the following code:

@catalog.route ('/category-create', methods=['POST',])
def create category() :
.. Same code as before ..
return render template('category.html', category=category)

@catalog.route ('/category/<id>")
def category(id) :

]

Working with Views

category = Category.query.get or 404 (id)
return render template('category.html', category=category)

@catalog.route ('/categories')
def categories() :
categories = Category.query.all ()

return render template('categories.html',
categories=categories)

All the three handlers in the preceding code work in a similar way as discussed earlier with
regard to rendering the product-related templates.

The following are all the templates created and rendered as a part of the application.
To understand how these templates are written and how they work, refer to Chapter 2,
Templating with Jinja2.

The flask catalog template/my app/templates/home.html file looks as follows:

{% extends 'base.html' %}

{% block container %}
<hl>Welcome to the Catalog Home</hl>

Click here to see
the catalog

{% endblock %}

The flask catalog template/my app/templates/product.html file looks
as follows:

{% extends 'home.html' %}

{% block container %}
<div class="top-pad">

<h1>{{ product.name }}<small> {{ product.category.name
}}</small></hl>

<h4>{{ product.company }}</h4>
<h3>{{ product.price }}</h3>
</div>
{% endblock %}

The flask catalog template/my app/templates/products.html file looks
as follows:

{% extends 'home.html' %}

{% block container %}

(&)

<div class="top-pad">
{%$ for product in products.items %}
<div class="well">
<h2>

<a href="{{ url for('catalog.product', id=product.id)

}}">{{ product.name }}

<small>$ {{ product.price }}</small>
</h2>
</div>
endfor %}

{
{

o° o°

if products.has prev %}
<a href="{{ url for('catalog.products',
page=products.prev_num) }}">
{{"<< Previous Page"}}

{% else %}
{{"<< Previous Page"}}
{% endif %}
{$ if products.has next %}
<a href="{{ url for('catalog.products'
page=products.next num) }}">
{{"Next page >>"}}

{% else %}
{{"Next page >>"}}
{% endif %}
</div>
{% endblock %}

The flask catalog template/my app/templates/category.html file looks

as follows:

{% extends 'home.html' %}

{% block container %}
<div class="top-pad">
<h2>{{ category.name }}</h2>
<div class="well">
{$ for product in category.products %}
<h3>

<a href="{{ url for('catalog.product'
product .name }}

<small>$ {{ product.price }}</small>
</h3>

’

id=product.id)

Chapter 4

P {d

&7}

Working with Views

)

{% endfor %}
</div>
</div>
{% endblock %}

The flask catalog template/my app/templates/categories.html file looks
as follows:

{% extends 'home.html' %}
{% block container %}
<div class="top-pad">
{% for category in categories %}

<h2>{{ category.name }}</h2>

{% endfor %}
</div>
{% endblock %}

Our view methods have a render template method call at the end. This means that after
the successful completion of the method operations, we will render a template with some
parameters added to the context.

Note how pagination has been implemented in the products.html file.
% It can be further improved to show the page numbers as well between the
’ two links for navigation. | suggest that you try this out on your own.

» Refer to the URL routing and product-based pagination recipe, to understand
pagination and the rest of the application used in this recipe

Dealing with XHR requests

Asynchronous JavaScript XMLHttpRequest (XHR), commonly known as Ajax, has become
an important part of web applications over the last few years. With the advent of one-page
applications and JavaScript application frameworks such as AngularlS, BackbonelS, and
more, this technique of web development has risen exponentially.

&)

Chapter 4

Getting ready

Flask provides an easy way to handle the XHR requests in the view handlers. We can even
have common methods for normal web requests and XHRs. We can just look for a flag on
our request object to determine the type of call and act accordingly.

We will update the catalog application from the previous recipe to have a feature that will
demonstrate XHR requests.

How to do it...

The Flask request object has a flag called is_xhr, which tells us whether the request made
is an XHR request or a simple web request. Usually, when we have an XHR request, the caller
expects the result to be in the JSON format, which can then be used to render content at the
correct place on the web page without reloading the page.

So, let's say we have an Ajax call to fetch the number of products in the database on the
home page. One way to fetch the products is to send the count of products along with the
render template () context. Another way is to send this information over as the response
to an Ajax call. We will implement the latter to understand how Flask handles XHR:

from flask import request, render template, jsonify

@catalog.route('/")
@catalog.route (' /home"')
def home () :
if request.is xhr:
products = Product.query.all ()
return jsonify ({
'count': len (products)
3]

return render template('home.html')

This design of handling XHR and regular requests together in one
method can become a bit bloated, as the application grows large and
different logic handling has to be done in the case of XHR in comparison

to regular requests.
e In such cases, these two types of requests can be separated into

different methods where the handling of XHR is done separately from
regular requests. This can even be extended to have different blueprints
to make URL handling even cleaner.

[}

Working with Views

In the preceding method, we first checked whether this is an XHR. If it is, we return the
JSON data; otherwise, we just render home . html as we have done until now. First, modify
flask catalog template/my app/templates/base.html to a block for scripts.
This empty block, which is shown here, can be placed after the line where the BootstrapJS
script is included:

{% block scripts %}

{% endblock %}

Next, we have flask catalog template/my app/templates/home.html, where
we send an Ajax call to the home () handler, which checks whether the request is an XHR
request. If it is, it fetches the count of products from the database and returns it as a JSON
object. Check the code inside the scripts block:

{% extends 'base.html' %}

{% block container %}
<hl>Welcome to the Catalog Home</hl>

Click here to see the catalog

{% endblock %}

{% block scripts %}
<scripts>
$ (document) .ready (function () {
$.getJSON (" /home", function(data)
$('#catalog link') .append('' + data.count
+ '</spans>') ;
I
3N
</scripts>
{% endblock %}

Now, our home page contains a badge, which shows the number of products in the database.

This badge will load only after the whole page has loaded. The difference in the loading
of the badge and the other content on the page will be notable when the database has
a considerably huge number of products.

[

Chapter 4

The following screenshot shows how the home page looks now:

(4>][] 2] [#] [+ @ 127.0.0.1:5000/home ¢ | Reader | (@]

Flask Cookbook

Welcome to the Catalog Home

Click here to see the catalog

Decorator to handle requests beautifully

Some of us might think that checking whether a request is XHR or not every time kills code
readability. To solve this, we have an easy solution. We can just write a simple decorator that
will handle this redundant code for us.

Getting ready

In this recipe, we will be writing a decorator. For some of the beginners in Python, this might
seem like alien territory. In this case, read http://legacy.python.org/dev/peps/pep-
0318/ for a better understanding of decorators.

How to do it...

The following is the decorator method that we have written for this recipe:

from functools import wraps

def template or_ json(template=None) :
"mwrReturn a dict from your view and this will either
pass it to a template or render json. Use like:

@template_or_json('template.html')
wnn
def decorated(f) :
@wraps (f)
def decorated fn(*args, **kwargs):
ctx = f(*args, **kwargs)
if request.is_xhr or not template:
return jsonify(ctx)
else:
return render_ template (template, **ctx)
return decorated_fn
return decorated

Working with Views

This decorator simply does what we have done in the previous recipe to handle XHR, that
is, checking whether our request is XHR and based on the outcome, either rendering the
template or returning JSON data.

Now, let's apply this decorator to our home () method, which handled the XHR call in the
previous recipe:

@app.route ('/")

@app .route (' /home")

@template or_json('home.html')

def home () :
products = Product.query.all ()
return {'count': len(products) }

» Refer to the Dealing with XHR requests recipe to understand how this recipe changes
the coding pattern

» The reference for this recipe comes from http://justindonato.com/
notebook/template-or-json-decorator-for-flask.html

Creating custom 404 and 500 handlers

Every application throws errors to users at some point of time. These errors can be due to
the user typing a wrong URL (404), application overload (500), or something forbidden for a
certain user to access (403). A good application handles these errors in an interactive way
instead of showing an ugly white page, which makes no sense to most users. Flask provides
an easy-to-use decorator to handle these errors.

Getting ready

The Flask app object has a method called errorhandler (), which enables us to handle our
application's errors in a much more beautiful and efficient manner.

How to do it...

Consider the following code snippet:

@app.errorhandler (404)
def page not found(e) :
return render_ template('404.html'), 404

Here, we have created a method that is decorated with errorhandler () and renders the
404 .html template whenever the 404 Not Found error occurs.

=

Chapter 4

The following lines of code represent the flask catalog template/my app/
templates/404.html template, which is rendered in the case of 404 errors:

{% extends 'home.html' %}

{% block container %}
<div class="top-pad">
<h3>Hola Friend! Looks like in your quest you have reached a
location which does not exist yet.</h3>
<h4>To continue, either check your map location (URL) or go
back home</h4>
</div>
{% endblock %}

So, now, if we open a wrong URL, say http://127.0.0.1:5000/1i-am-1lost, then we will
get what is shown in the following screenshot:

< >][] (2] [#] [+ [127.0.0.1:5000/i-am-lost ¢ | reader | [0

Flask Cookbook

Hola Friend! Looks like in your quest you have reached a location which does not exist yet.
To continue, either check your map location (URL) or go back home

Similarly, we can add more error handlers for other error codes too.

There's more...

It is also possible to create custom errors as per the application requirements and bind them
to error codes and custom error screens. This can be done as follows:

class MyCustom404 (Exception) :
pass

@app.errorhandler (MyCustom404)
def special page not found(error) :
return render_ template ("errors/custom 404.html"), 404

Working with Views

Flashing messages for better user feedback

An important part of all good web applications is to give users feedback about various
activities. For example, when a user creates a product and is redirected to the newly
created product, then it is a good practice to tell the user that the product has been created.

Getting ready

We will be adding the flash messages functionality to our existing catalog application.
We also have to make sure that we add a secret key to the application, because the
session depends on the secret key, and in the absence of the secret key, the application
will error out while flashing.

How to do it...

To demonstrate the flashing of messages, we will flash messages on the creation of products.
First, we will add a secret key to our app configuration in £lask _catalog_ template/my

app/__init .py:
app.secret _key = 'some random key'

Now, we will modify our create product () handlerin flask catalog template/
my app/catalog/views.py to flash a message to the user about the product's creation.
Also, a small change has been made to this handler where now, it will be possible to create
the product from a web interface using a form:

from flask import flash

@catalog.route ('/product-create', methods=['GET', 'POST'])
def create product () :
if request.method == 'POST':
name = request.form.get ('name')

price = request.form.get ('price')

categ name = request.form.get ('category"')

category = Category.query.filter by

(name=categ name) .first ()
if not category:
category = Category(categ name)

product = Product (name, price, category)

db.session.add (product)

db.session.commit ()

flash('The product %s has been created' % name, 'success')

return redirect (url for('catalog.product', id=product.id))
return render template ('product-create.html')

7

Chapter 4

In the preceding method, we first checked whether the request type is POST. If yes, then we
proceed to product creation as always or render the page with a form to create a new product.
Also, notice the £1ash statement that will alert the user on the successful creation of a
product. The first argument to £1ash () is the message to be displayed, and the second is the
category of the message. We can use any identifier as suited in the message category. This
can be used later to determine the type of alert message to be shown.

A new template is added; it holds the code for the product form. The path of the template will
be flask catalog template/my app/templates/product-create.html:

{% extends 'home.html' %}

°

{% block container %}
<div class="top-pad">
<form
class="form-horizontal"
method="POST"
action="{{ url for('catalog.create product') }}"
role="form">
<div class="form-group">
<label for="name" class="col-sm-2 control-
label">Name</label>
<div class="col-sm-10">
<input type="text" class="form-control" id="name"
name="name" >
</div>
</divs>
<div class="form-group">
<label for="price" class="col-sm-2 control-
label">Price</label>
<div class="col-sm-10">
<input type="number" class="form-control" id="price"
name="price">
</div>
</div>
<div class="form-group">
<label for="category" class="col-sm-2 control-
label">Category</label>
<div class="col-sm-10">
<input type="text" class="form-control" id="category"
name="category">
</div>
</div>
<button type="submit" class="btn btn-
default">Submit</button>
</form>
</div>
{% endblock %}

Working with Views

We will also modify our base template, that is, flask catalog template/my app/
templates/base.html, to accommodate flashed messages. Just add the following
lines of code inside the <div> container before the container block:

<div>
{% for category, message in get flashed messages
(with categories=true) %}
<div class="alert alert-{{category}} alert-dismissable">
<button type="button" class="close" data-dismiss="alert"
aria-hidden="true">×</buttons>
{{ message }}
</div>
{% endfor %}

</div>

Notice that in the <div> container, we have added a mechanism to

show a flashed message that fetches the flashed messages in the
T~ template using get _flashed messages ().

A form, like the one shown in the following screenshot, will show up when you navigate to
http://127.0.0.1:5000/product-create

Name

Price

Category

Submit

Chapter 4

Fill up the form and click on Submit. This will lead to the usual product page with an alert
message at the top:

Flask Cookbook

The product iPhone 6 has been created

iIPhone 6
749.0

SQL-based searching

In any web application, it is important to be able to search the database for records based on
some criteria. In this recipe, we will go through how to implement basic SQL-based searching
in SQLAIchemy. The same principle can be used to search any other database system.

Getting ready

We have been implementing some level of search in our catalog application from the
beginning. Whenever we show the product page, we search for a specific product using its ID.
We will now take it to a more advanced level and search on the basis of name and category.

How to do it...

The following is a method that searches in our catalog application for name, price, company,
and category. We can search for any one or multiple criterion (except for the search on
category, which can only be searched alone). Notice that we have different expressions for
different values. For a float value in price, we can search for equality, while in the case of a
string, we can search using 1ike. Also, carefully note how join is implemented in the case
of category search. Place this method in the views file, that is, flask catalog template/
my app/catalog/views.py:

from sglalchemy.orm.util import join
@catalog.route ('/product-search')

@catalog.route ('/product-search/<int:page>"')
def product_search(page=1) :

Working with Views

name = request.args.get ('name')
price = request.args.get('price')
company = request.args.get ('company')
category = request.args.get ('category')
products = Product.query
if name:
products = products.filter (Product.name.like('%' + name +
')
if price:
products = products.filter (Product.price == price)
if company:
products = products.filter (Product.company.like('%' +
company + '%'))
if category:
products = products.select from(join (Product,
Category)) .filter(
Category.name.like ('%$' + category + '%')
)
return render template (
'products.html', products=products.paginate (page, 10)

We can search for products by entering a URL, for example http://127.0.0.1:5000/
product -search?name=1Phone. This will search for products with the name iPhone
and list out the results on the products.html template. Similarly, we can search for
price and/or company or category as needed. Try various combinations by yourself for

a better understanding.

We have used the same product list page to render our search results.

It will be interesting to implement the search using Ajax. | will leave
’ this to you to implement yourselves!

@

Webforms with
WTForms

Form handling is an integral part of any web application. There can be innumerable cases that
make the presence of forms in any web app very important. Some cases can be where users
need to log in or submit some data or cases where applications might require input from users.
As important as the forms are, their validation holds equal importance, if not more. Presenting
this information to users in an interactive fashion adds a lot of value to the application.

In this chapter, we will cover the following recipes:

» SQLAIchemy model data as form representation
» Validating fields on the server side

» Creating a common forms set

» Creating custom fields and validation

» Creating a custom widget

» Uploading files via forms

» Cross-site Request Forgery protection

Introduction

There are various ways in which we can design and implement forms in a web application.
With the advent of Web 2.0, form validation and communicating correct messages to the user
has become very important. Client-side validations can be implemented at the frontend using
JavaScript and HTML5. Server-side validations have a more important role in adding security
to the application rather than being interactive. Server-side validations prevent any incorrect
data from going through to the database and, hence, curb frauds and attacks.

Webforms with WTForms

WTForms provides a lot of fields with server-side validation by default and, hence, increases
the development speed and decreases the overall effort. It also provides the flexibility to write
custom validations and custom fields as needed.

We will use a Flask extension for this chapter. This extension is called Flask-WTF
(https://flask-wtf.readthedocs.org/en/latest/); it provides a small
integration between WTForms and Flask and takes care of important and simple stuff
that we would have to otherwise reinvent in order to make our application secure and
effective. We can install it using the following command:

$ pip install Flask-WTF

SQLAIchemy model data as form

representation

First, let's build a form using a SQLAlchemy model. We will take the product model from
our catalog application and add the functionality to create products from the frontend
using a webform.

Getting ready

We will use our catalog application from Chapter 4, Working with Views. We will develop a
form for the Product model.

How to do it...

To remind you, the Product model looks like the following lines of code in the
models.py file:

class Product (db.Model) :

id = db.Column(db.Integer, primary key=True)
name = db.Column (db.String(255))
price = db.Column(db.Float)
category id = db.Column(db.Integer,

db.ForeignKey ('category.id'))
category = db.relationship(

'Category', backref=db.backref ('products', lazy='dynamic')

)
company = db.Column (db.String(100))

(&)

Chapter 5

First, we will create a ProductForm class; this will subclass the Form class, which is provided
by flask_wtf, to represent the fields needed on a webform:

from flask wtf import Form
from wtforms import TextField, DecimalField, SelectField

class ProductForm (Form) :
name = TextField('Name')
price = DecimalField('Price')
category = SelectField('Category', coerce=int)

We import Form from the £1ask-wtf extension. Everything else like fields and
validators are imported from wt forms directly. The Name field is of type TextField,

as it requires text data, while Price is of type DecimalField, which will parse the data to
Python's Decimal datatype. We have kept Category as type SelectField, which means
that we can choose only from the previously created categories while creating a product.

Note that we have a parameter called coerce in the field definition for
4 Category (which is a selection list); this means that the incoming data
%‘\ from the HTML form will be coerced into an integer value before validation
’ or any other processing. Here, coercing simply means converting the
value provided in a specific datatype to a different datatype.

The create product () handler in views.py should now accommodate the form
created earlier:

from my app.catalog.models import ProductForm
@catalog.route (' /product-create', methods=['GET', 'POST'])

def create product () :
form = ProductForm(request.form, csrf enabled=False)

categories = [(c.id, c.name) for c in Category.query.all ()]
form.category.choices = categories
if request.method == 'POST':

name = request.form.get ('name')

price = request.form.get ('price')

category = Category.query.get or 404 (
request.form.get ('category"')

s

Webforms with WTForms

product = Product (name, price, category)
db.session.add (product)
db.session.commit ()

flash('The product %s has been created' % name, 'success')
return redirect (url for('catalog.product', id=product.id))
return render template('product-create.html', form=form)

The create product () method accepts values from a form on a POST request. This

method will render an empty form with the prefilled choices in the Category field on a GET
request. On the POST request, the form data will be used to create a new product, and when
the creation of the product is completed, the newly created product's page will be displayed.

You will notice that while creating the form object as form =

4 ProductForm(request.form, csrf enabled=False),
we set csrf enabledto False. CSRF is an important part of
s — S . - L
any secure web application. We will talk about it in detail in the
Cross-site Request Forgery protection recipe of this chapter.

The templates/product-create.html template also needs some modification too. The

form objects created by WTForms provide an easy way to create HTML forms and keep the
code readable:

{% extends 'home.html' %}

{% block container %}
<div class="top-pad">
<form method="POST" action="{{

url for('catalog.create product') }}" role="form">

<div class="form-group">{{ form.name.label }}: {{
form.name () }}</divs>

<div class="form-group">{{ form.price.label }}: {{
form.price() }}</divs>

<div class="form-group">{{ form.category.label }}: {{
form.category () }}</divs

<button type="submit" class="btn btn-
default">Submit</buttons>
</form>
</div>
{% endblock %}

Chapter 5

On a GET request, that is, on opening http://127.0.0.1:5000/product-create,
we will see a form similar to the one shown in the following screenshot:

(<>] [©][=2] [+]© 127.0.0.1:5000 ¢

Name:
Price:

Category: | Phones 3

Submit

You can fill in this form to create a new product.

See also

» The Validating fields on the server side recipe to understand how to validate the fields
we just learned to create

Validating fields on the server side

We have forms and fields, but we need to validate them in order to make sure that only
the correct data goes through to the database and errors are handled beforehand rather
than corrupting the database. These validations can also prevent the application against
cross-site scripting (XSS) and CSRF attacks. WTForms provides a whole lot of field types
that themselves have validations written for them by default. Apart from these, there are a
bunch of validators that can be used on the basis of choice and need. We will use a few of
them to understand this concept further.

How to do it...

It is pretty easy to add validations to our WTForm fields. We just need to pass a validators
parameter, which accepts a list of validators to be implemented. Each of the validators can
have their own arguments, which enable us to control the validations to a great extent.

&)

Webforms with WTForms

Let's modify our ProductForm class to have validations:

from decimal import Decimal
from wtforms.validators import InputRequired, NumberRange

class ProductForm (Form) :
name = TextField('Name', validators=[InputRequired()])
price = DecimalField('Price', validators=[
InputRequired (), NumberRange (min=Decimal ('0.0'))
1)
category = SelectField(
'Category', validators=[InputRequired()], coerce=int

)

Here, we have the InputRequired validator on many fields; this means that these fields are
required, and the form will not be submitted unless we have a value for these fields.

The Price field has an additional validator NumberRange with a min parameter set to 0.
This implies that we cannot have a value less than 0 as the price of a product. To complement
these changes, we will have to modify our create product () method a bit:

@catalog.route ('/product-create', methods=['GET', 'POST'])
def create_ product () :
form = ProductForm(request.form, csrf enabled=False)

categories = [(c.id, c.name) for c in Category.query.all()]
form.category.choices = categories

if request.method == 'POST' and form.validate():

name = form.name.data

price = form.price.data

category = Category.query.get or_ 404 (
form.category.data

)

product = Product (name, price, category)

db.session.add (product)

db.session.commit ()

flash('The product %s has been created' % name, 'success')

return redirect (url for ('product', id=product.id))

if form.errors:
flash(form.errors, 'danger')

return render_ template ('product-create.html', form=form)

Chapter 5

M The flashing of form.errors will just display the errors in the form
Q of a JSON object. This can be formatted to be shown in a pleasing
format to the user. This is left for the users to try by themselves.

Here, we modified our create product () method to validate the form for the input
values and to check for the request method type. On a POST request, the form data will be
validated first. If the validation fails for some reason, the same page will be rendered again,
with error messages flashed on it. If the validation succeeds and the creation of the product
is completed, the newly created product's page will be displayed.

Now, try to submit the form without any field filled in, that is, an empty form. An alert message
with an error will be shown as follows:

[« /> | (2] 2] [+]® 127.0.0.1:5000 ¢ | Beader |

{'price': [u'This field is required.'], 'name': [u'This field Is required.'T}

Name:
Price:
Category: | Phones

Submit

Try different combinations of form submission, which will violate the defined validators,
and see the different error messages that come up.

We can replace the processes of checking for the method type being a POST or PUT request
and form validation with one step using validate on_ submit. So, the original code is:

if request.method == 'POST' and form.validate() :
This can be replaced by:

if form.validate on submit () :

Webforms with WTForms

See also

» Refer to the previous recipe, SQLAlchemy model data as form representation,
to understand basic form creation using WTForms

Creating a common forms set

An application can have loads of forms, depending on the design and purpose. Many of these
forms will have common fields with common validators. Many of us might think, "Why not have
common forms parts and then reuse them as and when needed?" This is very much possible
with the class structure for forms' definition provided by WTForms.

How to do it...

In our catalog application, we can have two forms, one each for the Product and Category
models. These forms will have a common field called Name. We can create a common form for
this field, and then, the separate forms for the Product and Category models can use this
form instead of having a Name field in each of them. This can be done as follows:

class NameForm(Form) :
name = TextField('Name', validators=[InputRequired()])

class ProductForm(NameForm) :

price = DecimalField('Price', validators=[
InputRequired (), NumberRange (min=Decimal ('0.0'))

1)

category = SelectField(
'Category', validators=[InputRequired()], coerce=int

)

company = TextField('Company', validators=[Optional()])

class CategoryForm(NameForm) :
pass

We created a common form called NameForm, and the other forms, Product Form and
CategoryForm, inherit from this form to have a field called Name by default. Then, we
can add more fields as needed.

~[ee]

Chapter 5
We can modify the category create () method to use CategoryForm to create categories:

@catalog.route ('/category-create', methods=['GET', 'POST'])
def create_category () :
form = CategoryForm(request.form, csrf enabled=False)

if form.validate on_ submit () :
name = form.name.data
category = Category (name)
db.session.add (category)
db.session.commit ()

flash('The category %s has been created' % name,
'success')

return redirect (url for('catalog.category',
id=category.id))

if form.errors:
flash(form.errors)

return render_ template ('category-create.html', form=form)

A new template templates/category-create.html also needs to be added for
category creation:

{% extends 'home.html' %}

{% block container %}
<div class="top-pad">
<form method="POST" action="{{
url for('catalog.create category') }}" role="form">

<div class="form-group">{{ form.name.label }}: {{
form.name () }}</div>

<button type="submit" class="btn btn-
default">Submit</button>
</form>
</div>
{% endblock %}

Webforms with WTForms

The newly created category form will look like the following screenshot:

Name:

Submit

R This is a very small example of how a common forms set can be
~ implemented. The actual benefits of this approach can be seen in
Q e-commerce applications, where we can have common address forms, and
then, they can be expanded to have separate billing and shipment addresses.

Creating custom fields and validation

Apart from providing a bunch of fields and validations, Flask also provides the flexibility to
create custom fields and validations. Sometimes, we might need to parse some form of data
that cannot be processed using the available current fields. In such cases, we can implement
our own fields.

How to do it...

In our catalog application, we used SelectField for the category, and we populated the
values for this field in our create product () method on a GET request. It would be much
more convenient if we did not bother about this and the population of this field was taken care
of by itself. Let's implement a custom field for this in models.py:

class CategoryField(SelectField) :

def iter choices(self):

categories = [(c.id, c.name) for c in
Category.query.all()]
for value, label in categories:

(e

Chapter 5

yield (value, label, self.coerce(value) == self.data)

def pre validate(self, form):

for v, _ in [(c.id, c.name) for c in
Category.query.all()]:
if self.data == v:
break
else:

raise ValueError (self.gettext ('Not a valid choice'))

class ProductForm(NameForm) :
price = DecimalField('Price', validators=[
InputRequired (), NumberRange (min=Decimal ('0.0'))
1)
category = CategoryField(
'Category', validators=[InputRequired()], coerce=int

)

SelectField implements a method called iter choices (), which populates the values
to the form using the list of values provided to the choices parameter. We overwrote the
iter choices () method to get the values of categories directly from the database,

and this eliminates the need to populate this field every time we need to use this form.

. The behavior created by CategoryField here can also be
% achieved using QuerySelectField. Referto http://wtforms.
i readthedocs.org/en/latest/ext.html#wtforms.ext.
sglalchemy.fields.QuerySelectField for more information.

Due to the changes described in this section, our create product () method in views.py
will have to be modified. For this, just remove the following two statements that populated the
categories in the form:

categories = [(c.id, c.name) for c¢ in Category.query.all()]
form.category.choices = categories

There will not be any visual effect on the application. The only change will be in the way the
categories are populated in the form, as explained in the previous section.

Webforms with WTForms

There's more...

We just saw how to write custom fields. Similarly, we can write custom validations too.
Let's assume that we do not want to allow duplicate categories. We can implement this
in our models easily, but let's do this using a custom validator on our form:

from wtforms.validators import ValidationError

def check duplicate category(case sensitive=True) :
def check duplicate(form, field):
if case sensitive:
res = Category.query.filter(
Category.name.like ('%' + field.data + '%')
) .first ()
else:
res = Category.query.filter(
Category.name.ilike('%' + field.data + '%')
) .first ()
if res:
raise ValidationError (
'Category named %s already exists' % field.data
)

return check duplicate

class CategoryForm(NameForm) :
name = TextField('Name', validators=][
InputRequired (), check duplicate category ()
1)

So, we created our validator in a factory style, where we can get separate validation
results based on whether we want a case-sensitive comparison or not. We can even
write a class-based design, which makes the validator much more generic and flexible,
but | will leave that for the readers to explore.

Creating a custom widget

Just like we can create custom fields and validators, we can also create custom widgets.
These widgets allow us to control how our fields will look like at the frontend. Each field type
has a widget associated with it. WTForms, by itself, provides a lot of basic and HTML5 widgets.
To understand how to write a custom widget, we will convert our custom selection field for
category into a radio field. | agree with many who would argue that we can directly use the
radio field provided by WTForms. Here, we are just trying to understand how to do it ourselves.

5]

Chapter 5

The widgets provided by default by WTForms can be found at https://
s wtforms.readthedocs.org/en/latest/widgets.html.

How to do it...

In our previous recipe, we created CategoryField. This field used the Select widget,

which was provided by the Select superclass. Let's replace the Select widget with a
radio input:

from wtforms.widgets import html params, Select, HTMLString
class CustomCategoryInput (Select) :

def _ call_ (self, field, **kwargs):
kwargs.setdefault ('id', field.id)
html = []
for val, label, selected in field.iter choices():
html.append (
'<input type="radio" %s> %s' % (
html_params (
name=field.name, value=val,
checked=selected, **kwargs
), label

)
return HTMLString (' '.join (html))

class CategoryField(SelectField) :
widget = CustomCategoryInput ()

Rest of the code remains same as in last recipe Creating
custom field and validation

Here, we added a class attribute called widget in our CategoryField class. This widget
points to CustomCategoryInput, which takes care of HTML code generation for the field to
be rendered. Thisclass hasa call method, which is overwritten to return radio inputs
corresponding to the values provided by the iter choices () method of CategoryField.

i

Webforms with WTForms

When you open the product-creation page http://127.0.0.1:5000/product-create,
it will look like the following screenshot:

Flask Cookbook

Name:
Price:

Category: () Phones () Tablets

Submit

See also

» The previous recipe, Creating custom fields and validation, to understand more about
the level of customization that can be done to the components of WTForms

Uploading files via forms

Uploading files via forms and doing it properly is usually a matter of concern for many web
frameworks. Flask and WTForms handle this for us in a simple and streamlined manner.

How to do it...

First, we will start with the configuration bit. We need to provide a parameter to our application
configuration, that is, UPLOAD FOLDER. This parameter tells Flask about the location where
our uploaded files will be stored. We will implement a feature to store product images.

One way to store product images can be to store images in a binary type field

~ in our database, but this method is highly inefficient and never recommended
Q in any application. We should always store images and other uploads in the

filesystem and store their location in the database using a string field.

Add the following statements to the configuration inmy app/ init .py:

import os

Chapter 5

ALLOWED EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'l)

app.config['UPLOAD FOLDER'] = os.path.realpath('.') +
'/my app/static/uploads'’

Note the app.config ['UPLOAD FOLDER'] statement where we
. store the images inside a subfolder in the static folder itself. This will
& make the process of rendering images easier. Also note the ALLOWED _
S EXTENSIONS statement that is used to make sure that only files of a
specific format go through. The list here is actually for demonstration
purposes only, and for image types, we can filter this list even more.

In the models file, that is, my app/catalog/models.py, add the following highlighted

statements in their designated places:

from wtforms import FileField

class Product (db.Model) :
image path = db.Column(db.String(255))

def init (self, name, price, category, image path):
self.image path = image path

class ProductForm(NameForm) :
image = FileField('Product Image')

Check FileField for image in ProductForm and the field for image path in the
Product model. This is in line with what we discussed earlier about storing files on the
filesystem and storing their path in the DB.

Now, we can modify the create product () method to save the file in my app/catalog/

views.py:

import os
from werkzeug import secure filename
from my app import ALLOWED EXTENSIONS

def allowed file(filename) :
return '.' in filename and \

Webforms with WTForms

filename.lower () .rsplit('.', 1) [1] in
ALLOWED EXTENSIONS

@catalog.route ('/product-create', methods=['GET', 'POST'])
def create product () :
form = ProductForm(request.form, csrf enabled=False)

if form.validate on submit () :

name = form.name.data

price = form.price.data

category = Category.query.get or 404 (
form.category.data

)

image = request.files['image']

filename = '!'

if image and allowed file(image.filename) :
filename = secure filename (image.filename)

image.save (os.path.join (app.config['UPLOAD FOLDER'],
filename))

product = Product (name, price, category, filename)
db.session.add (product)

db.session.commit ()

flash('The product %s has been created' % name, 'success')
return redirect (url for('catalog.product', id=product.id))

if form.errors:
flash(form.errors, 'danger')

return render template('product-create.html', form=form)

We need to add the new field to the product-create formin template templates/
product-create.html. Modify the form tag definition to include the enctype parameter,
and add the field for the image before the Submit button (or wherever you feel it is necessary
inside the form):

<form method="POST"
action="{{ url for('create product') }}"
role="form"
enctype="multipart/form-data">
<!-- The other field definitions as always -->
<div class="form-
group">{{ form.image.label }}: {{
form.image (style='display:inline;') }}</div>

The form should have the enctype="multipart/form-data" statement to tell the
application that the form input will have multipart data.

=

Chapter 5

Rendering the image is very easy as we are storing the files in the static folder. Just add the
img tag wherever the image needs to be displayed in templates/product .html:

<img sre="{{ url for('static',6K filename='uploads/' +
product.image path) }}"/>

The field to upload the image will look something like the following screenshot:

Flask Cookbook

Name:
Price:
Category: () Phones () Tablets

Product Image: | choose File | NO file chosen

Submit

After the creation of the product, the image will be displayed as shown in the following screenshot:

<[>]| [O][2] (%] + [127.00.1:5000/product/3 ¢ | Reader | (O]

iPhone 4 rrones

Apple
649.0

[55]-

Webforms with WTForms

Cross-site Request Forgery protection

In the first recipe of this chapter, we learned that CSRF is an important part of webform
security. We will talk about it in detail now. CSRF stands for Cross-Site Request Forgery, which
basically means that someone can hack into the request that carries a cookie and use this
to trigger some destructive action. We won't be discussing CSRF in detail here, as ample
resources are available on the Internet to learn about this. We will talk about how WTForms
will help us in preventing CSRF. Flask does not provide any security from CSRF by default, as
this has to be handled at the form validation level, which is not provided by Flask. However,
this is done by the Flask-WTF extension for us.

wiki/Cross-site request forgery.

How to do it...

Flask-WTF, by default, provides a form that is CSRF protected. If we have a look at the recipes
so far, we will notice that we have explicitly told our form to not be CSRF protected. We just
have to remove the corresponding statement to enable CSRF.

[More about CSRF can be read at http://en.wikipedia.org/]
/NS

So, form = ProductForm(request.form, csrf enabled=False) willbecome form
= ProductForm(request.form).

Some configuration bits also need to be done in our application:
app.config['WTF_CSRF_SECRET KEY'] = 'random key for form'
By default, the CSRF key is the same as our application's secret key.

With CSRF enabled, we will have to provide an additional field in our forms; this is a hidden
field and contains the CSRF token. WTForms takes care of the hidden field for us, and we
just haveto add {{ form.csrf token }} toour form:

<form method="POST" action="/some-action-like-create-product">
{{ form.csrf token }}
</form>

That was easy! Now, this is not the only type of form submission that we do. We also submit
AJAX form posts; this actually happens a lot more than normal forms with the advent of
JS-based web applications, which are replacing traditional web applications.

Chapter 5

For this, we have added an additional step in our application's configuration:

from flask wtf.csrf import CsrfProtect
#
Add configurations

#
CsrfProtect (app)

The preceding configuration will allow us to access the CSRF token using {{ csrf token() }}
anywhere in our templates. Now, there are two ways to add a CSRF token to AJAX POST requests.

One way is to fetch the CSRF token in our script tag and use it in the POST request:

<script type="text/javascript"s>
var csrfToken = "{{ csrf token() }}";
</scripts>

Another way is to render the token in a meta tag and use it whenever required:
<meta name="csrf-token" content="{{ csrf token() }}"/>

The difference between both is that the first approach might have to be repeated at multiple
places depending on the number of script tags in the application.

Now, to add the CSRF token to AJAX POST, we have to add the X-CSRFToken attribute to it.
This attribute's value can be taken from any of the two approaches stated earlier. We will take
the second one as our example:

var csrfToken = $('meta[name="csrf-token"]').attr('content');
$.ajaxSetup ({
beforeSend: function(xhr, settings)

if (!/”(GET|HEAD|OPTIONS|TRACE)$/1i.test (settings.type)) {
xhr.setRequestHeader ("X-CSRFToken", csrftoken)

}

|3
This will make sure that a CSRF token is added to all the AJAX POST requests that go out.

o7}

Webforms with WTForms

The following screenshot shows what the CSRF token added by WTForms in our form
looks like:

Company:
Category: (=) Phones

Product Image: | Choose fike | 10 Tl selected

Submit
% % [F] resources Bnmm I Oebugger ¥ Console | Q17 -Q-mpn W oories 2 o () node [mesoueee
= | 1t product-creave © [0OM Tree ¢ [@ homl - [@ body [divcontainer [devsop-pad - [form ¢ [inputecsr_token O = Computed | Rules | Mewics
sa'raubar ravbar-ieverse ravbar-fived-top® roles”navigation*s_e/div
ng: BOrger-bon
. [0 ::betore, 1after
ea~fore® enctypes"sultipart/farn-data® _lpcheckeds®1"s oLy y 2034
pe="hidden” values"1480614181. G40FR4241cH5cdIbABeRIcBdE0650R0e] c2bealddhf L™

v
btn btn-gefoult*sSubmit</button= 3 irputscses_token — Style Attribute

The token is completely random and different for all the requests. There are multiple ways
of implementing CSRF-token generation, but this is out of the scope of this book, although
| would encourage users to take a look at some implementations to understand how it's done.

5]

Authenticating in Flask

Authentication is an important part of any application, be it web-based, desktop, or mobile. Each
kind of application has certain best practices of handling user authentication. In web-based
applications, especially SaaS-based applications, this process is of utmost importance, as it
acts as the thin red line between the application being secure and unsecure.

In this chapter, we will cover the following recipes:

» Simple session-based authentication

» Authenticating using the Flask-Login extension
» Using OpenlD for authentication

» Using Facebook for authentication

» Using Google for authentication

» Using Twitter for authentication

Introduction

To keep things simple and flexible, Flask, by default, does not provide a mechanism for
authentication. It always has to be implemented by us, the developers, as per our and
the application's requirements.

Authenticating users for your application can be done in multiple ways. It can be done using

a simple session-based implementation or a more secure approach using the Flask-Login
extension. We can also implement authentication by integrating with popular third-party
services such as OpenlD or social logins such as Facebook, Google, and so on. In this chapter,
we will go through all of these methods.

Authenticating in Flask

Simple session-based authentication

In session-based authentication, when the user logs in for the first time, the user details are
set in the session of the application's server side and stored in a cookie on the browser. After
that, when the user opens the application, the details stored in the cookie are used to check
against the session, and the user is automatically logged in if the session is alive.

SECRET_ KEY should always be specified in your application's
configuration; otherwise, the data stored in the cookie as well as the
e session on the server side will be in plain text, which is highly unsecure.

We will implement a simple mechanism to do this ourselves.

M The implementation done in this recipe is only to explain how
Q authentication basically works at a lower level. This approach
should not be adopted in any production-level application.

Getting ready

We can start with a Flask app configuration as seen in Chapter 5, Webforms with WTForms.
The application's configuration will be done to use the SQLAIchemy and WTForms extensions
(refer to the previous chapter for details).

How to do it...

Before we start with the authentication, we need to have a model to store the user details.
We will first create the models and forms in flask_authentication/my app/auth/
models.py:

from werkzeug.security import generate password hash,
check password hash

from flask wtf import Form

from wtforms import TextField, PasswordField

from wtforms.validators import InputRequired, EqualTo
from my app import db

class User (db.Model) :
id = db.Column(db.Integer, primary key=True)
username = db.Column (db.String(100))
pwdhash = db.Column (db.String())

def init (self, username, password) :

100

Chapter 6

self.username = username
self .pwdhash = generate password hash (password)

def check password(self, password) :
return check password hash(self.pwdhash, password)

The preceding code is the User model, which has two fields: username and pwdhash. The
username field works as its name suggests. The pwdhash field stores the salted hash of the
password, because it is not recommended that you store passwords directly in databases.

Then, we will create two forms: one for user registration and the other for login. In
RegistrationForm, we will create two fields of type PasswordField, just like any
other website's registration; this is to make sure that the user enters the same password
in both fields:

class RegistrationForm(Form) :

username = TextField('Username', [InputRequired()])
password = PasswordField (
'Password', [
InputRequired (), EqualTo('confirm', message='Passwords

must match')

)

confirm = PasswordField('Confirm Password', [InputRequired()])

class LoginForm(Form) :
username = TextField('Username', [InputRequired()])
password = PasswordField ('Password', [InputRequired()])

Then, we will create views in flask_authentication/my app/auth/views.py to
handle the user requests for registration and login:

from flask import request, render template, flash, redirect,
url for, \

session, Blueprint
from my app import app, db
from my app.auth.models import User, RegistrationForm, LoginForm

auth = Blueprint ('auth', _ name)

@auth.route('/")
@auth.route (' /home!')
def home () :
return render template('home.html')

@auth.route ('/register', methods=['GET', 'POST'])
def register():

Authenticating in Flask

if session.get ('username') :
flash('Your are already logged in.', 'info')
return redirect (url for ('auth.home'))

form = RegistrationForm(request.form)

if request.method == 'POST' and form.validate() :
username = request.form.get ('username')
password = request.form.get ('password')
existing username =
User.query.filter by (username=username) .first ()
if existing username:

flash(
'This username has been already taken. Try another
one.',
'warning'
)
return render template('register.html', form=form)

user = User (username, password)
db.session.add (user)
db.session.commit ()
flash('You are now registered. Please login.', 'success')
return redirect (url for('a
if form.errors:
flash(form.errors, 'danger')

return render template('register.html', form=form)

The preceding method handles user registration. On a GET request, the registration form

is shown to the user; this form asks for the username and password. Then, the username

is checked for its uniqueness after the form validation is complete. If the username is not
unique, the user is asked to choose a new username; otherwise, a new user is created in the
database and redirected to the login page, which is handled as shown in the following code:

@auth.route('/login', methods=['GET', 'POST'])
def login() :

form = LoginForm(request.form)
if request.method == 'POST' and form.validate() :

username = request.form.get ('username')
password = request.form.get ('password')

102

Chapter 6

existing user =
User.query.filter by (username=username) .first ()

if not (existing user and existing user.check password

(password)) :
flash('Invalid username or password. Please try
again.', 'danger')
return render template('login.html', form=form)
session['username'] = username
flash('You have successfully logged in.', 'success')

return redirect (url for ('auth.home'))

if form.errors:

flash(form.errors, 'danger')

return render template('login.html', form=form)

The preceding method handles the user login. After the form validation, we first check if

the username exists in the database. If not, we ask the user to enter the correct username.
Similarly, we check if the password is correct. If not, we ask the user for the correct password.
If all the checks pass, the session is populated with a username key, which holds the
username of the user. The presence of this key on the session indicates that the user is
logged in. Consider the following code:

@auth.route ('/logout')
def logout () :
if 'username' in session:
session.pop ('username')
flash('You have successfully logged out.', 'success')

return redirect (url for ('auth.home'))

The preceding method becomes self-implied after we understand the 1ogin () method.

Here, we just popped out the username key from the session, and the user got logged
out automatically.

Then, we will create the templates that are rendered by the register () and login ()
handlers for the registration and login, respectively, created earlier.

The flask authentication/my app/templates/base.html template remains almost
the same as it was in Chapter 5, Webforms with WTForms. The only change will be with the
routing where catalog will be replaced by auth.

Authenticating in Flask

First, we will have a simple home page flask authentication/my app/templates/
home . html, which reflects if the user is logged in or not and shows links for registration
and login if the user is not logged in:

{% extends 'base.html' %}
{% block container %}
<hl>Welcome to the Authentication Demo</hl>
{$ if session.username %}
<h3>Hey {{ session.username }}!!</h3>
Click here to
logout
{% else %}
Click here to login or
register
{% endif %}
{% endblock %}

Then, we will create a registration page, flask_authentication/my app/templates/
register.html:

{% extends 'home.html' %}
{% block container %}
<div class="top-pad">
<form
method="POST"
action="{{ url for('auth.register') }}"
role="form">
{{ form.csrf token }}
<div class="form-group">{{ form.username.label }}: {{
form.username () }}</divs
<div class="form-group">{{ form.password.label }}: {{
form.password () }}</div>
<div class="form-group">{{ form.confirm.label }}: {{

form.confirm() }}</divs>
<button type="submit" class="btn btn-default"s>
Submit</buttons>
</form>
</div>

{% endblock %}

Chapter 6

Finally, we will create a simple login page, flask authentication/my app/templates/
login.html:

{% extends 'home.html' %}
{% block container %}
<div class="top-pad">
<form
method="POST"
action="{{ url for('auth.login') }}"
role="form">
{{ form.csrf token }}
<div class="form-group">{{ form.username.label }}: {{
form.username () }}</divs>
<div class="form-group">{{ form.password.label }}: {{
form.password () }}</div>
<button type="submit" class="btn btn-default">
Submit</button>
</form>
</div>
{% endblock %}

How this application works is demonstrated with the help of the screenshots in this section.

The first screenshot is the home page that comes up on opening
http://127.0.0.1:5000/home:

Welcome to the Authentication Demo

Click here to login or register

This is the home page visible to a user that is not logged in

Authenticating in Flask

The registration page that comes up on opening http://127.0.0.1:5000/register
looks like the following screenshot:

[« »][] (2] [##] [+ |6 127.0.0.1:5000/register

¢ JLieaser) (O]

Password: =-==-- ®

Confirm Password: ===+ ®

Submit

The registration form

After the registration, the login page will be shown on opening http://127.0.0.1:5000/
login:

(4> | (O] [e2] [#%] [+ [127.0.0.1:5000/login

¢ |Laeader | (@]

You are now registered. Please login.

Username: shalabhaggarwal

Password: [s=sseee *

Submit

The login page rendered after successful registration

Finally, the home page is shown to the logged-in user at http://127.0.0.1:5000/home:

[« »][] 2] [#] [+][O 127.0.0.1:5000/home

¢ JLReader | (O]

Flask Cookbook

You have successfully logged in.

Welcome to the Authentication Demo
Hey shalabhaggarwal!!

Click here to logout

Home page as shown to a logged-in user
106

Chapter 6

See also

» The next recipe, Authenticating using the Flask-Login extension, which covers a much
secure and production-ready method of performing user authentication

Authenticating using the Flask-Login

extension

In our previous recipe, we learned how to implement session-based authentication ourselves.
Flask-Login is a popular extension that handles a lot of stuff for us in a very good way, saving

us from reinventing the wheel all over again. It also does not bind us to any specific database
or limit us to any specific fields/methods for authentication. It can also handle the Remember
me feature, account recovery features, and so on.

Getting ready

We can modify the application created in the previous recipe to accommodate the changes to
be done by the Flask-Login extension.

Before that, we have to install the extension itself:

$ pip install Flask-Login

How to do it...

To use Flask-Login, we have to first modify our application's configuration, which is in
flask_authentication/my app/ init .py:

from flask.ext.login import LoginManager

#
Do other application config

#

login manager = LoginManager ()
login manager.init app (app)
login manager.login view = 'login'

Authenticating in Flask

After importing the LoginManager class from the extension, we will create an object

of this class. Then, we can configure the app object for use with LoginManager using
init_app (). Then, we will have multiple configurations that can be done on our
login_manager object as per our needs. Here, | have just demonstrated one basic and
compulsory configuration, that is, Login_view, which points to the view handler for our
login requests. Further, we can even configure the messages to be shown to the users, how
long our session will last, the app to handle logins using request headers, and so on. Refer
to the Flask-Login documentation at https://flask-login.readthedocs.org/en/
latest/#customizing-the-login-process for more details.

Flask-Login calls for some additional methods to be added to our User model/class:

def is authenticated(self) :
return True

def is_active(self):
return True

def is_anonymous (self) :
return False

def get_id(self):
return unicode (self.id)

In the preceding code, we added four methods, which are explained as follows:

» 1is authenticated(): This method usually returns True. This should return
False only in cases where we do not want a user to be authenticated.

» is active ():This method usually returns True. This should return False onlyin
cases where we have blocked or banned a user.

» 1is anonymous (): This method is used to indicate a user who is not supposed to be
logged in to the system and should access the application as anonymous. This should
usually return False for regular logged-in users.

» get_id(): This method represents the unique ID used to identify the user.
This should be a unicode value.

Next, we have to make changes to our views in my_app/views.py:

from flask import g

from flask.ext.login import current user, login user, \
logout_user, login required

from my app import login manager

@login manager.user_ loader
def load user(id):

108

Chapter 6

return User.query.get (int (id))

@auth.before request
def get current user():
g.user = current_user

In the preceding method, the @auth.before request decorator implies that this
method will be called before the view function whenever a request is received. Here,
we have memoized our logged-in user:

@auth.route('/login', methods=['GET', 'POST'])
def login() :
if current user.is authenticated():
flash('You are already logged in.')
return redirect (url for ('auth.home'))

Same block of code as from last recipe Simple session
based authentication

Next replace the statement session['username'] =
username by the one below

login user (existing user)

flash('You have successfully logged in.',6 'success')

return redirect (url for ('auth.home'))

if form.errors:
flash(form.errors, 'danger')

return render template('login.html', form=form)

@auth.route ('/logout')
@login required
def logout () :
logout_user()
return redirect (url for ('home'))

Notice that now, in login (), we checked if the current user is authenticated before
doing anything else. Here, current user is a proxy to represent the object for the currently
logged-in User record. Then, after all the validations and checks are done, the user is logged
in using the 1login_user () method. This method accepts the user object and handles all the
session-related activities to be done to log in a user.

Now, coming on to the 1logout () method, we first saw that there is a decorator added

for login_required (). This decorator makes sure that the user is logged in before this
method is executed. It can be used for any view method in our application. To log a user out,
we just have to call Logout_user (), which will clean up the session for the currently
logged-in user and, in turn, log the user out of the application.

Authenticating in Flask

As we do not handle sessions ourselves, there will be a minor change in the templates too.
This happens whenever we want to check if the user is logged in and there is some content
to be shown based on this choice:

{%$ if current user.is authenticated() %}
...do something...
{% endif %}

The demonstration in this recipe works exactly as it did in the previous recipe, Simple
session-based authentication. Only the implementation differs, but the end result
remains the same.

The Flask-Login extension makes the implementation of the Remember me feature pretty
simple. To do this, we just have to pass remember=True to the login user () method. This
will save a cookie on the user's computer, and Flask-Login will automatically use the same to
log the user in automatically if the session is active. Readers should try implementing this on
their own.

» The previous recipe, Simple session-based authentication, to understand the
complete working of this recipe.

» Flask provides a special object called g. You can read more about this at
http://flask.pocoo.org/docs/0.10/api/#flask.g.

Using OpenlD for authentication

OpenlD allows us to use an existing account to sign in to multiple websites without the
need to create new passwords for each website. Thus, this eliminates the need to share
personal information with all the websites. There are certain cooperating sites (also known
as relying parties) that authenticate user logins, and thousands of sites accept OpenlID as
an authentication mechanism. OpenlID also allows you to control which information can be
shared with the websites you visit and register with. Read more about OpenlD and relying
parties at http://en.wikipedia.org/wiki/OpenID.

Chapter 6

Getting ready

Flask has an extension called Flask-OpenlID, which makes the use and integration of OpenlD
with our application very simple and easy. This extension depends on the python-openid
library. To install this, we can simply use the following command:

$ pip install Flask-OpenID

We will build over the application from the Authenticating using the Flask-Login extension recipe.

How to do it...

We will first start with our configuration in £lask _authentication/my app/ init .py:

from flask.ext.openid import OpenID

#
Do other application config

#

oid = OpenlID(app, 'openid-store')

First, we imported the OpenID class from the Flask extension. Then, we instantiated the class
using our app object and created an object called oid. The second argument to OpenID
while creating the oid object is the path to the store, which will store the OpenlD information
for the authentication process.

M Here, we used a path to a folder on the filesystem, but this can
Q be configured to use your own store, which can be a relational
database or a NoSQL document.

As we are integrating OpenlD with our existing application keeping the existing functionality
intact, we will use our existing username field to store the unique identifier received from
OpenlD, which can be email or nickname. This calls for the addition of a new form to our
application to accept the OpenlD URL:

class OpenIDForm(Form) :
openid = TextField('OpenID', [InputRequired()])

Authenticating in Flask

The major chunk of changes will be to our views, that is, flask authentication/my
app/auth/views.py:

from my app import oid
from my app.auth.models import OpenIDForm

@auth.route('/login', methods=['GET', 'POST'])
@oid.loginhandler
def login() :
if g.user is not None and current user.is_authenticated() :
flash('You are already logged in.',6 'info')

return redirect (url for ('home'))

form = LoginForm(request.form)
openid form = OpenIDForm(request.form)

if request.method == 'POST':
if request.form.has key('openid'):
openid form.validate ()
if openid form.errors:
flash(openid form.errors, 'danger')
return render_ template (
'login.html', form=form,
openid_form=openid_ form
)
openid = request.form.get ('openid')
return oid.try login(openid, ask_for=['email',
'nickname'])
else:
form.validate ()
if form.errors:
flash(form.errors, 'danger')
return render_ template (
'login.html', form=form,
openid_form=openid_ form
)
username = request.form.get ('username')
password = request.form.get ('password')
existing user = User.query.filter by
(username=username) .first ()

if not (existing user and
existing user.check password(password)) :

flash(

Chapter 6

'Invalid username or password. Please try
again.',
'danger!'
)

return render template('login.html', form=form)

login user (existing user)
flash('You have successfully logged in.', 'success')
return redirect (url for ('auth.home'))

if form.errors:
flash(form.errors, 'danger')

return render template('login.html', form=form,
openid form=openid form)

In the preceding method, we first checked if the current user is authenticated. If yes, then

we redirect the user to the home page. Otherwise, if the request method is POST, then we
first check if we have an openid field in our form. If there is such a field, we validate the
OpenIDForm, and upon successful validation, we call oid.try login (), which takes the
OpenID URL and the fields to be fetched from the OpenlID provider as the inputs. If the form
does not have an openid field, then it is our regular form for a traditional login, and we follow
the same process as we did in the previous recipe. Consider the following code:

@oid.after login
def after login(resp):
username = resp.nickname or resp.email
if not username:
flash('Invalid login. Please try again.',6 'danger')
return redirect (url for('auth.login'))
user = User.query.filter by (username=username) .first ()
if user is None:
user = User (username, '')
db.session.add (user)
db.session.commit ()
login user (user)
return redirect (url for ('auth.home'))

This method is called after OpenID's try login () method receives a response from the
provider. All this happens asynchronously. First, we tried to fetch the nickname or email
from the provider. If none of the two are found, then this login is invalid. Then, we checked for
an existing user with the nickname or email by matching in the username field. If a user is
found, we log the user in; otherwise, we create a new user and then log in.

Authenticating in Flask

This also calls for a small change in our templates/login.html template to
accommodate OpenIDForm:

{% extends 'home.html' %}
{% block container %}
<div class="top-pad">
<ul class="nav nav-tabs">
<li class="active"><a href="#simple-form" data-
toggle="tab">01ld Style Login
OpenID
</uls>
<div class="tab-content">
<div class="tab-pane active" id="simple-form">
<form
method="POST"
action="{{ url for('auth.login') }}"
role="form">
{{ form.csrf token }}
<div class="form-group">{{ form.username.label }}: {{
form.username () }}</div>
<div class="form-group">{{ form.password.label }}: {{
form.password () }}</div>
<button type="submit" class="btn btn-
default">Submit</buttons>
</form>
</div>
<div class="tab-pane" id="openid-form">
<form
method="POST"
action="{{ url for('auth.login') }}"
role="form">
{{ openid form.csrf token }}
<div class="form-group">{{ openid form.openid.label }}:
{{ openid form.openid() }}</div>
<button type="submit" class="btn btn-
default">Submit</buttons>
</form>
</div>
</div>
</div>
{% endblock %}

In this code, we created a tabbed structure where the first tab is our conventional login and
the second tab corresponds to the OpenlD login.

114

Chapter 6

The tabbed page for login will look like the following screenshot:

(<>][] (2] (3] [+] 127.0.0.1:5000/100in — K ¢ [Readec | [O]

Oild Style Login OpeniD

OpeniD: | some opened url *

Submit

We have to enter an OpenID URL, and the rest of the process will work according to the provider.

Using Facebook for authentication

We have seen that many websites provide an option to log in to their website using third-party
authentications such as Facebook, Google, Twitter, LinkedIn, and so on. This has been made
possible by OAuth, which is an open standard for authorization. It allows the client site to use
an access token to access the protected information/resources provided by the resource
server. In this recipe, we will see how to implement OAuth-based authorization via Facebook.
In the recipes to follow, we will do the same using other providers.

Getting started

First, we will start by installing the Flask-OAuth extension and its dependencies:

$ pip install Flask-OAuth

Authenticating in Flask

Next, we have to register for a Facebook application that will be used for login. Although the
process for registration with the Facebook app is pretty straightforward and self-explanatory,
we are only concerned with the App ID, App Secret, and Site URL options. The following
screenshot should help you in understanding this. More details can be found on the Facebook
developer pages at https://developers.facebook.com/.

Flask Cookbook b Basic Advanced Migrations
@ Dashboard App ID App Secret
365709490149802 Show
Settings
Display Name Namespace
Y Status & Review Flask Cookbook B]
% App Details App Domains Contact Email

2 Roles
#4 Open Graph Website
A Aerts Site URL
http://localhost:5000/
M Localize
Mabile Site URL
= Payments

How to do it...

As always, we will first start with the configuration partinmy app/ init .py:

from flask oauth import OAuth
oauth = OAuth/()

facebook = oauth.remote app ('facebook',
base url='https://graph.facebook.com/',
request token url=None,
access_token url='/oauth/access token',
authorize url='https://www.facebook.com/dialog/oauth',
consumer_ key='FACEBOOK APP ID',
consumer secret='FACEBOOK APP_ SECRET',
request token params={'scope': 'email'}

Chapter 6

In the previous code snippet, we registered a remote Facebook application with our
application for authentication. All the parameters passed in remote app () will remain the
same for all the Facebook remote apps except consumer key and consumer secret,
which actually correspond to the App ID and App Secret options, respectively, of our
Facebook application.

Next, we will modify our views, that is, my app/auth/views.py:

from my app import facebook

@auth.route ('/facebook-login')
def facebook login() :
return facebook.authorize (
callback=url_for(
'auth.facebook authorized',
next=request.args.get ('next') or request.referrer or
None,

_external=True

))

The previous method calls the authorize () method of the 0auth instance with a callback
URL to which the response received from Facebook should be passed for further action.

The _external=True statement here implies that the URL
i can be external to the application.

Consider the following code:

@auth.route ('/facebook-login/authorized')
@facebook.authorized handler
def facebook authorized(resp) :
if resp is None:
return 'Access denied: reason=%s error=%s' % (
request.args['error reason'],
request.args['error description']
)
session|['facebook oauth token'] = (respl['access token'], ''")
me = facebook.get ('/me')
user = User.query.filter by (username=me.data['email']).first()
if not user:
user = User (me.data['email'], '')

Authenticating in Flask

db.session.add (user)
db.session.commit ()

login user (user)
flash(
'Logged in as id=%s name=%s' % (me.datal['id'],
me.datal['name']),
'success'

)

return redirect (request.args.get ('next'))

The previous method handles the response received from Facebook and logs the user in,
if the user with the same e-mail address already exists; otherwise, it creates a new user
and then logs the user in. Consider the following code:

@facebook. tokengetter
def get facebook oauth token() :
return session.get ('facebook oauth token')

This method just fetches the token that is stored in the session for the current user.

Finally, we will modify our login template to allow the Facebook login. First, we add a tab for
social logins:

<ul class="nav nav-tabs">
<1li class="active">01ld
Style Login</1li>
OpenlD

Social Logins</
a></1li>

This is followed by adding the contents for the newly added Social logins tab:

<div class="tab-pane" id="social-logins">
<a href="{{ url for('auth.facebook login',
next=url for ('auth.home')) }}">Login via Facebook
</div>

So, we just added a new tab to allow social logins. Right now, we have just one for Facebook
here. More will be added in the recipes to follow. Also, we just have a simple link right now;
we can always add styles and buttons as needed.

Chapter 6

The login page has a new tab that provides an option to the user to log in using social logins:

[«]| [>] (=] [#] [+ @ 127.00.1:5000/l0gin ¢ |geacer | (O]

Cld Style Login OpeniD Social

Login via Facebook

When we click on the Login via Facebook link, the application will be taken to Facebook and
will ask for user login and permission. Once the permission is granted, the user will be logged
in to the application.

Using Google for authentication

Just like we did for Facebook, we can integrate our application to enable login using Google.

Getting ready

We will start by building over the last recipe. It is easy to just implement Google authentication
by leaving out the Facebook auth (by leaving out the Facebook-specific parts).

Now, we have to create a project from the Google developer console (https://console.
developers.google.com). Then, we have to create a client ID for the web application; this
ID will provide the credentials needed for OAuth to work. The following screenshot should help:

)] 2 +Shalabh
Google a
¢ Flask Cookbook Compute Engine and App Engine Learn mare
Chent 1D 1058204691762~
Ovendiew
Svifdccd IeZnubifroodbmh2hhgiogqd . apps . googleusercontent .com
Email address 1058204691762
ARl private SvifieesIBznuby hIhng o loper. gaervi eam
Credentiaks Learn maore
Cansent scrmen st e ek 1 HERELAT
Push
Parmissions Chent 1D for web apphcation
Settings Client ID
Suppart appa.goagleussreontont . eom
Ermail address
App Engine
Ideveloper .geerviceasoount . com
Chient secret
Fedirect URls mbtp://loealhost 5000 /eauthleallbank
Cloud SOL Javazeript Origing htep://localhost: 5000/

Authenticating in Flask

How to do it...

As always, we will first start with the configuration partinmy app/ init .py:

from flask oauth import OAuth
oauth = OAuth ()

google = oauth.remote app('google',
base url='https://www.google.com/accounts/',
authorize url='https://accounts.google.com/o/ocauth2/auth',
request token url=None,
request token params={
'scope': 'https://www.googleapis.com/auth/userinfo.email'’,
'response_type': 'code'
b
access_token url='https://accounts.google.com/o/oauth2/token’,
access_token method='POST',
access_token params={'grant type': 'authorization code'},
consumer_ key='GOOGLE CLIENT ID',
consumer secret='GOOGLE CLIENT SECRET'
)

In the preceding code, we registered a remote Google application with our application for
authentication. All the parameters passed in remote_app () will remain the same for all
the Google remote apps except consumer key and consumer_secret, which actually
correspond to the Client ID and Client secret options, respectively, of our Google project.

Next, we will modify our views, that is, my app/auth/views.py:

import requests
from my app import google

GOOGLE_OAUTH2 USERINFO_URL =
'https://www.googleapis.com/oauth2/vl/userinfo’

@auth.route ('/google-login')
def google login() :
return google.authorize (

callback=url for('auth.google authorized',
_external=True))

120

Chapter 6

The preceding method calls the authorize () method of the OAuth instance with a callback
URL to which the response received from Google should be passed for further action.
Consider the following code:

@auth.route (' /oauth2callback')
@google.authorized handler
def google authorized(resp) :
if resp is None:
return 'Access denied: reason=%s error=%s' % (
request.args['error reason'],
request.args['error description']
)
session['google ocauth token'] = (resp['access_token'], '')

userinfo = requests.get (GOOGLE_OAUTH2_ USERINFO_URL,
params=dict (

access_token=resp['access_token'],
)) .json ()

user = User.query.filter by (username=userinfo
['email']) .first ()
if not user:
user = User (userinfo['email'], ''")
db.session.add (user)
db.session.commit ()

login user (user)
flash(
'Logged in as id=%s name=%s' % (userinfo['id'],
userinfo['name']),
'success'

)

return redirect (url for ('auth.home'))

The preceding method handles the response received from Google and logs the user in if a
user with the same e-mail address already exists; otherwise, it creates a new user and then
logs the user in. An important point to note here is that the route URL of this method is the

same as the redirect URL set in our Google client settings (see the Getting ready section of
this recipe). Consider the following code:

@google.tokengetter
def get google oauth token() :
return session.get ('google oauth token')

Authenticating in Flask

This method just fetches the token that is stored in the session for the current user. Finally,
we will modify our login template to allow the Google login:

Login via Google

The Google login works in @ manner similar to how the Facebook login from the previous
recipe works.

Using Twitter for authentication

OAuth was actually born while writing the OpenID API for Twitter. In this recipe, we will
integrate Twitter login with our application.

Getting ready

We will continue by building over the Using Google for authentication recipe. It is easy to
just implement Twitter auth by leaving out specific parts from Facebook and/or Google
authentication.

Now, we have to create an application from the Twitter Application Management page
(https://apps.twitter.com/). It will automatically create APl key and API secret
for us to use. Have a look at the following screenshot:

W Application Management -

flask_cookbook

Details Seftings APl Keys Permissions

Application settings

API key

API secret

Access level Read and write (modify app permissions)
Qwner shalabh_agrwal

Owner ID

122

Chapter 6

How to do it...

As always, we will first start with the configuration partinmy app/ init .py:

from flask oauth import OAuth
oauth = OAuth ()

twitter = oauth.remote app('twitter',
base url='https://api.twitter.com/1.1/"',
request token url='https://api.twitter.com/ocauth/request token',
access_token url='https://api.twitter.com/ocauth/access token',
authorize url='https://api.twitter.com/oauth/authenticate’,
consumer key='Twitter API Key',
consumer secret='Twitter API Secret'

)

In the preceding code, we registered a remote Twitter application with our application for
authentication. All the parameters passed in remote_app () will remain the same for
all Twitter remote apps except consumer key and consumer_secret, which actually
correspond to the API key and API secret options, respectively, of our Twitter application.

Next, we will modify our views, that is, my app/auth/views.py:

from my app import twitter

@auth.route ('/twitter-login')
def twitter login():
return twitter.authorize (
callback=url for(
'auth.twitter authorized',

next=request.args.get ('next') or request.referrer or
None,

_external=True

))

The preceding method calls the authorize () method of the OAuth instance with a callback
URL to which the response received from Twitter should be passed for further action. Consider
the following code:

@auth.route ('/twitter-login/authorized')
@twitter.authorized handler
def twitter authorized(resp):
if resp is None:
return 'Access denied: reason=%s error=%s' % (
request.args|['error reason'],

Authenticating in Flask

request.args['error description']
)
session['twitter oauth token'l = resp['oauth token'l + \
resp['oauth token secret']

user = User.query.filter by (username=resp
["screen name']) .first()
if not user:
user = User(resp['screen name'], '')
db.session.add (user)
db.session.commit ()

login user (user)
flash('Logged in as twitter handle=%s' % resp['screen name'l])
)

)

return redirect (request.args.get ('next'

The preceding method handles the response received from Twitter and logs the user in
if a user with same Twitter screen name (also known as a Twitter handle) already exists;
otherwise, it creates a new user and then logs the user in. Consider the following code:

@twitter.tokengetter
def get twitter oauth token():
return session.get ('twitter oauth token')

This method just fetches the token that is stored in the session for the current user. Finally,
we will modify our login template to allow the Twitter login:

<a href="{{ url for('auth.twitter login',
next=url for('auth.home')) }}">Login via Twitter

This recipe works in a manner similar to how the Facebook and Google logins from the
previous recipes work.

Similarly, we can integrate LinkedIn, GitHub, and scores of other third-party
providers that provide support for login and authentication using OAuth.
. | will leave it to you to implement many more integrations on your own.
% The following links have been added for quick reference:
s

» LinkedIn: https://developer.linkedin.com/
documents/authentication

» GitHub: https://developer.github.com/v3/ocauth/

124

RESTful API Building

An API, or Application Programming Interface, can be summarized as a developer's interface
to the application. Just like end users have a visible frontend user interface to work on

and talk to the application, developers also need a user interface to the application. REST,
or REpresentational State Transfer, is not a protocol or a standard. It is just a software
architectural style or a set of constraints defined for writing applications and aims at
simplifying the interfaces within and outside the application. When web service APIs are
written in a way to adhere to the REST constraints, then they are known as RESTful APlIs.
Being RESTful keeps the API decoupled from the internal application details. This results in
ease of scalability and keeps things simple. The uniform interface ensures that each and
every request is documented.

It is a topic of debate whether REST is better or SOAP is. It actually is a
% subjective question as it depends on what needs to be done. Each has its
Y . . .
own benefits and should be chosen as per the needs of the application.

In this chapter, we will cover the following recipes:

» Creating a class-based REST interface

» Creating an extension-based REST interface

» Creating a SQLAIchemy-independent REST API
» A complete REST API example

RESTful API Building

Introduction

As the name suggests, REpresentational State Transfer (REST) calls for segregating your API
into logical resources, which can be accessed and manipulated using HTTP requests, where
each request consists of a method out of GET, POST, PUT, PATCH, and DELETE (there can be
more, but these are the ones used the most). Each of these methods has a specific meaning.
One of the key implied principles of REST is that the logical grouping of resources should be
easily understandable and, hence, provide simplicity along with portability.

Up until now in this book, we have used a resource called Product. Let's see how we can
logically map our API calls to the resource segregation:

» GET /products/1: This gets the product with ID 1

» GET /products: This gets the list of products

» POST /products: This creates a new product

» PUT /products/1:This updates the product with ID 1

» PATCH /products/1: This partially updates the product with ID 1

» DELETE /products/1: This deletes the product with ID 1

Creating a class-based REST interface

We saw how class-based views work in Flask using the concept of pluggable views in the
Class-based views recipe in Chapter 4, Working with Views. We will now see how we can
use the same concept to create views, which will provide a REST interface to our application.

Getting ready

Let's take a simple view that will handle the REST style calls to our Product model.

How to do it...

We have to simply modify our views for product handling to extend the MethodView class:

from flask.views import MethodView
class ProductView (MethodView) :

def get(self, id=None, page=1):
if not id:
products = Product.query.paginate (page, 10).items
res = {}

126

Chapter 7

for product in products:
res [product.id] = {
'name': product.name,
'price': product.price,
'category': product.category.name

else:
product = Product.query.filter by (id=id) .first()
if not product:
abort (404)
res = json.dumps ({
'name': product.name,
'price': product.price,
'category': product.category.name
3]

return res
The preceding get () method searches for the product and sends back a JSON result.

Similarly, we can write the post (), put (), and delete () methods too:

def post (self):
Create a new product.

Return the ID/object of newly created product.
return

def put(self, id):
Update the product corresponding provided id.

Return the JSON corresponding updated product.
return

def delete(self, id):
Delete the product corresponding provided id.
Return success or error message.
return

Many of us would wonder why we have no routing here. To include routing, we have to do
the following:

product view = ProductView.as view('product view')

app.add_url rule('/products/', view func=product view,
methods=['GET', 'POST'])

app.add_url rule('/products/<int:ids>', view func=product view,
methods=['GET', 'PUT', 'DELETE'])

RESTful API Building

The first statement here converts the class to an actual view function internally that can be
used with the routing system. The next two statements are the URL rules corresponding to
the calls that can be made.

The MethodView class identified the type of HTTP method in the request sent and converted
the name to lowercase. Then, it matched this to the methods defined in the class and called
the matched method. So, if we make a GET call to ProductView, it will automatically be
mapped to the get () method and processed accordingly.

We can also use a Flask extension for this called Flask-Classy (https://pythonhosted.
org/Flask-Classy/). This will handle the classes and routing automatically to a great
extent and make life easier. We won't be discussing this here though, but it's an extension
that is definitely worth exploring.

Creating an extension-based REST interface

In the previous recipe, Creating a class-based REST interface, we saw how to create a

REST interface using pluggable views. Here, we will use a Flask extension, Flask-Restless,
developed completely from the point of view of building REST interfaces. It provides a simple
generation of RESTful APIs for database models defined using SQLAIchemy. These generated
APIs send and receive messages in the JSON format.

Getting ready

First, we need to install the Flask-Restless extension:
$ pip install Flask-Restless
We will build over our application from the SQL-based searching recipe of Chapter 4,

Working with Views, to include a RESTful API interface.

M It is advisable that you read Chapter 4, Working with Views,
Q before moving ahead if the concepts of views and handlers
are not clear.

128

Chapter 7

How to do it...

Adding a RESTful API interface to a SQLAIchemy model is very easy with the use of
Flask-Restless. First, we need to add the REST APl manager provided by this extension
to our application config and create an instance of it using the app object:

from flask.ext.restless import APIManager

manager = APIManager (app, flask sqglalchemy db=db)

After this, we need to enable API creation on our models using the manager instance.
For this, we can just add the following lines of code to views.py:

from my app import manager

manager.create api (Product, methods=['GET', 'POST', 'DELETE'])
manager.create api (Category, methods=['GET', 'POST', 'DELETE'])

This will create RESTful APIs with the GET, POST, and DELETE methods on our models
for Product and Category. By default, only the GET method is provided if the methods
argument is missed out.

To test and see how this works, we can send some requests using the Python shell using
the requests library:

>>> import requests

>>> import json

>>> res = requests.get('http://127.0.0.1:5000/api/category"')

>>> res.json()

{u'total pages': 0, u'objects': [], u'num results': 0, u'page': 1}

We made a GET request to fetch a list of categories, but right now, there is no record for it.
Let's look for the products now:

>>> res = requests.get('http://127.0.0.1:5000/api/product')

>>> res.json()

{u'total pages': 0, u'objects': [], u'num results': 0, u'page': 1}

RESTful API Building

We made a GET request to fetch the list of products, but there is no record for it. Let's create a
new product now:

>>> d = {'name': u'iPhone', 'price': 549.00, 'category':
{'name"': 'Phones'}}

>>> res = requests.post('http://127.0.0.1:5000/api/product', data=json.
dumps (d) , headers={'Content-Type': 'application/json'})

>>> res.json()

{u'category': {u'id': 1, u'name': u'Phones'}, u'name': u'iPhone',
u'company': u'', u'price': 549.0, u'category id': 1, u'id': 2, u'image_
path': u''}

We sent a POST request to create a product with some data. Notice the headers argument
in the request. Each POST request sent in Flask-Restless should have this header. Now, we
should look for the list of products again:

>>> res = requests.get('http://127.0.0.1:5000/api/product')

>>> res.json()

{u'total pages': 1, u'objects': [{u'category': {u'id': 1, u'name’:
u'Phones'}, u'name': u'iPhone', u'company': u'', u'price': 549.0,
u'category id': 1, u'id': 1, u'image path': u''}l, u'num results': 1,
u'page': 1}

If we look for the products again via a GET request, we can see that we have a newly created
product in the database now.

Also notice that the results are already paginated by default; this is one of the signs of a good
API design.

There's more...

This automatic creation of a RESTful API interface is cool, but every application needs some
customizations, validations, and handling of requests as per the application business logic.
This is made possible using request preprocessors and postprocessors. As evident by
the names, preprocessors are the methods that will run before the request is processed,
and postprocessors run after the request is processed and before the response is sent by
the application. These are defined in create api () as maps of the request type (GET, POST,
and so on) and the list of methods to act as preprocessors or postprocessors on the
specified request:

manager.create_ api (

Product,

methods=['GET', 'POST', 'DELETE'],

preprocessors={
'GET_SINGLE': ['a preprocessor for single get'],
'GET_MANY': ['another preprocessor for many get'],

130

Chapter 7

'POST': ['a preprocessor for post']
I
postprocessors={
'DELETE': ['a postprocessor for delete']

}
)

The GET, PUT, and PATCH requests can be called for single or multiple records; hence, they
have two variants each. For example, in the preceding code, we have GET SINGLE and

GET_ MANY for GET requests. The preprocessors and postprocessors for each of the request
type accept different arguments and act upon them without returning any return value. Refer
to the Flask-Restless documentation at https://flask-restless.readthedocs.org/
en/latest/ at for more details.

Creating a SQLAIchemy-independent

REST API

In the previous recipe, Creating an extension-based REST interface, we saw how to create
a REST API interface using an extension that was dependent on SQLAlchemy. Now, we will
use an extension called Flask-Restful, which is written over Flask pluggable views and is
independent of ORM.

Getting ready

First, we will start with the installation of the extension:

$ pip install Flask-Restful

We will modify the catalog application from the previous recipe to add a REST interface using
this extension.

How to do it...

As always, we will start with changes to our application's configuration, which will look
something like the following lines of code:

from flask.ext.restful import Api
api = Api (app)

Here, app is our Flask application object/instance.

RESTful API Building

Next, we will create our API inside the views . py file. Here, we will just try to understand
how to lay out the skeleton of the API. Actual methods and handlers will be covered in the
A complete REST APl example recipe:

from flask.ext.restful import Resource
from my app import api

class ProductApi (Resource) :

def get(self, id=None) :
Return product data
return 'This is a GET response'

def post (self):
Create a new product
return 'This is a POST response'

def put(self, id):
Update the product with given id
return 'This is a PUT response'

def delete(self, id):
Delete the product with given id
return 'This is a DELETE response'

The preceding API structure is self-explanatory. Consider the following code:

api.add_resource (
ProductApi,
' /api/product',
'/api/product/<int:id>"
)

Here, we created the routing for Productapi, and we can specify multiple routes as needed.

We will see how this will work on the Python shell using the requests library just like we did
in the previous recipe:

>>> import requests

>>> res = requests.get('http://127.0.0.1:5000/api/product')

>>> res.json()

u'This is a GET response'

>>> res = requests.post('http://127.0.0.1:5000/api/product’')

132

Chapter 7

u'This is a POST response'

>>> res = requests.put('http://127.0.0.1:5000/api/product/1")
u'This is a PUT response'

>>> res = requests.delete('http://127.0.0.1:5000/api/product/1"')
u'This is a DELETE response'

In the preceding snippet, we saw that all our requests are properly routed to the respective
methods; this is evident from the response received.

See also

» Make sure you read the next recipe, A complete REST APl example, to see the API
skeleton from this recipe coming to life

A complete REST APl example

In this recipe, we will convert the API structure created in the previous recipe, Creating a
SQLAIchemy-independent REST API, into a full-fledged RESTful API interface.

Getting ready

We will take the API skeleton from the previous recipe as the base to create a complete
functional SQLAIchemy-independent RESTful API. Although we will use SQLAIchemy as
the ORM for demonstration, this recipe can be written in a similar fashion for any ORM
or underlying database.

How to do it...

The following lines of code are the complete RESTful API for the Product model. These code
snippets will go into the views.py file:

from flask.ext.restful import regparse

parser = regparse.RequestParser ()
parser.add argument ('name', type=str)
parser.add argument ('price', type=float)
parser.add argument ('category', type=dict)

RESTful API Building

In the preceding snippet, we created parser for the arguments that we expected to

have in our requests for POST and PUT. The request expects each of the argument to have
a value. If a value is missing for any argument, then None is used as the value. Consider
the following code:

class ProductApi (Resource) :

def get(self, id=None, page=1):

if not id:
products = Product.query.paginate (page, 10) .items
else:
products = [Product.query.get (id)]
if not products:
abort (404)
res = {}
for product in products:
res [product.id] = {

'name': product.name,
'price': product.price,
'category': product.category.name

}

return json.dumps (res)

The preceding get () method corresponds to GET requests and returns a paginated list of
products if no id is passed; otherwise, it returns the corresponding product. Consider the
following code:

def post (self):
args = parser.parse_args ()
name = args/['name']
price = args|['price']
categ name = args|['category'] ['name']
category = Category.query.filter by
(name=categ _name) .first ()
if not category:
category = Category(categ name)
product = Product (name, price, category)
db.session.add (product)
db.session.commit ()
res = {}
res [product.id] = {
'name': product.name,
'price': product.price,
'category': product.category.name,

}

return json.dumps (res)

Chapter 7

The preceding post () method will lead to the creation of a new product by making a POST
request. Consider the following code:

def put(self, id):
args = parser.parse_args ()

name = args/['name']
price = args|['price']
categ name = args|['category'] ['name']

category = Category.query.filter by
(name=categ _name) .first ()
Product.query.filter by (id=1id) .update ({
'name': name,
'price': price,
'category id': category.id,
3]
db.session.commit ()
product = Product.query.get or 404 (id)
res = {}
res [product.id] = {
'name': product.name,
'price': product.price,
'category': product.category.name,

}

return json.dumps (res)

In the preceding code, we updated an existing product using a PUT request. Here, we should
provide all the arguments even if we intend to change a few of them. This is because of the
conventional way in which PUT has been defined to work. If we want to have a request where
we intend to pass only those arguments that we intend to update, then we should use a
PATCH request. Consider the following code:

def delete(self, id):
product = Product.query.filter by (id=id)
product.delete ()
db.session.commit ()
return json.dumps ({'response': 'Success'})

Last but not least, we have the DELETE request, which will simply delete the product that
matches the id passed. Consider the following code:

api.add_resource (
ProductApi,
'/api/product',
'/api/product/<int:id>",
' /api/product/<int:id>/<int:page>'
)

The preceding code is the definition of all the possible routes our APl can accommodate.

RESTful API Building

» The APl works in a manner similar to what was shown in the Creating an
extension-based REST interface recipe

An important facet of REST APIs is token-based authentication to allow
M only limited and authenticated users to be able to use and make calls
Q to the APIL. | will urge you to explore this on your own. We covered the
basics of user authentication in Chapter 6, Authenticating in Flask,
which will serve as the base for this concept.

136

Admin Interface for
Flask Apps

Every application needs an interface that provides special privileges to some users

and can be used to maintain and upgrade the application resources. For example, we can
have an interface in an e-commerce application; this interface will allow some special users

to create categories, products, and so on. Some users might have permissions to handle other
users who shop on the website and deal with their account information and so on. Similarly,
there can be many cases where we will need to isolate an interface of our application from
normal users.

In this chapter, we will cover the following recipes:

>

Creating a simple CRUD interface
Using the Flask-Admin extension
Registering models with Flask-Admin
Creating custom forms and actions
WYSIWYG for textarea integration

Creating user roles

Introduction

As opposed to the much popular Python-based web framework, Django, Flask does not
provide an admin interface by default. Although this can be seen as a shortcoming by many,
this gives the developers the flexibility to create the admin interface as per their requirements
and have complete control over the application.

Admin Interface for Flask Apps

We can opt to write an admin interface for our application from scratch or use an extension

of Flask, which does most of the work for us and gives us the option to customize the logic

as needed. One very popular extension for creating admin interfaces in Flask is Flask-Admin
(https://pypi.python.org/pypi/Flask-Admin), which is inspired by the Django
admin but is implemented in a way that the developer has complete control over the look, feel,
and functionality of the application. In this chapter, we will start with the creation of an admin
interface on our own and then move onto using the Flask-Admin extension and fine-tuning it
as needed.

Creating a simple CRUD interface

CRUD refers to Create, Read, Update, and Delete. A basic necessity of having an admin
interface is to have the ability to create, modify, or delete the records/resources from the
application as and when needed. We will create a simple admin interface that will allow
the admin users to perform these operations on the records that other normal users
generally can't.

Getting ready

We will start with our authentication application from the Authenticating using the Flask-Login
extension recipe in Chapter 6, Authenticating in Flask, and add admin authentication and

an interface for admins to the same, to allow only the admin users to create, update, and
delete user records. Here, in this recipe, | will cover some specific parts that are needed to
understand the concepts. For the complete application, refer to the code samples available
with the book.

How to do it...

We will start with our models by adding a new field called admin to the User model in
models.py. This field will help in identifying whether the user is an admin or not:

from wtforms import BooleanField

class User (db.Model) :
id = db.Column(db.Integer, primary key=True)
username = db.Column (db.String(60))
pwdhash = db.Column (db.String())
admin = db.Column (db.Boolean())

def _ init__ (self, username, password, admin=False) :

self.username = username
self .pwdhash = generate password hash (password)

138

Chapter 8

self.admin = admin

def is_admin(self):
return self.admin

The preceding method simply returns the value of the admin field. This can have a custom
implementation as per your needs. Consider the following code:

class AdminUserCreateForm(Form) :
username = TextField('Username', [InputRequired()])
password = PasswordField ('Password', [InputRequired()])
admin = BooleanField('Is Admin ?')

class AdminUserUpdateForm (Form) :
username = TextField('Username', [InputRequired()])
admin = BooleanField('Is Admin ?')

Also, we created two forms that will be used by our admin views.

Now, we will modify our views in views . py to implement the admin interface:

from functools import wraps

from my app.auth.models import AdminUserCreateForm,
AdminUserUpdateForm

def admin login required (func) :
@wraps (func)
def decorated view(*args, **kwargs):
if not current user.is admin() :
return abort (403)
return func(*args, **kwargs)
return decorated view

The preceding code is the admin login_ required decorator that works just like the
login_required decorator. The difference is that it needs to be implemented along
with login_ required, and it checks if the currently logged-in user is an admin.

The following are all the handlers that we will need to create a simple admin interface.

Note the usage of the @admin_login_ required decorator. Everything else is pretty much
standard as we learned in the previous chapters of this book, which focused on views and
authentication handling:

@auth.route ('/admin')
@login required
@admin_ login required

Admin Interface for Flask Apps

def

home admin() :
return render template('admin-home.html')

@auth.route ('/admin/users-list')

@login required

@admin login required

def

users_list admin() :
users = User.query.all()
return render template('users-list-admin.html', users=users)

@auth.route ('/admin/create-user', methods=['GET', 'POST'])
@login required

@admin login required

def

one.

140

user create admin() :
form = AdminUserCreateForm(request.form)

if form.validate() :
username = form.username.data
password = form.password.data
admin = form.admin.data
existing username = User.query.filter by
(username=username) .first ()
if existing username:
flash(

'This username has been already taken. Try another

'warning'

)

return render template('register.html', form=form)
user = User (username, password, admin)
db.session.add (user)
db.session.commit ()
flash('New User Created.', 'info')
return redirect (url for('auth.users list admin'))

if form.errors:
flash(form.errors, 'danger')

return render template('user-create-admin.html', form=form)

Chapter 8

The preceding method allows admin users to create new users in the system. This works in
a manner pretty similar to the register () method but allows the admins to set the admin
flag on the users. Consider the following code:

@auth.route ('/admin/update-user/<id>', methods=['GET', 'POST'])
@login_required
@admin_login_required
def user update_ admin(id) :
user = User.query.get (id)
form = AdminUserUpdateForm(
request.form,
username=user.username,
admin=user.admin

if form.validate() :
username = form.username.data
admin = form.admin.data

User.query.filter by (id=1id) .update ({
'username': username,
'admin': admin,

3]

db.session.commit ()
flash('User Updated.', 'info')
return redirect (url_for('auth.users_list_admin'))

if form.errors:
flash(form.errors, 'danger')

return render template('user-update-admin.html', form=form,
user=user)

The preceding method allows the admin users to update the records of other users. However,
as per the best practices of writing web applications, we do not allow the admins to simply
view and change the passwords of any user. In most cases, the provision to change passwords
should rest with the user who owns the account. Admins, though, can have the provision to
update the password in some cases, but still, it should never be possible for them to see the
passwords set by the user earlier. This is the topic for discussion in the Creating custom forms
and actions recipe. Consider the following code:

@auth.route('/admin/delete-user/<id>")
@login_required
@admin_login_required

Admin Interface for Flask Apps

def user delete admin(id) :
user = User.query.get (id)
user.delete ()

db.session.commit ()
flash('User Deleted.')
return redirect (url for('auth.users list admin'))

The user delete admin () method should actually be implemented on a POST request.
This is left to the readers to implement by themselves.

Followed by models and views, we will create some templates to complement them. It might
have been evident to many of us from the code of the views itself that we need to add four
new templates, namely, admin-home.html, user-create-admin.html, user-update-
admin.html, and users-list-admin.html. How these work is shown in the next section.
Readers should now be able to implement these templates by themselves, but for reference,
the code is always available with the samples provided with the book.

To start with, we added a menu item to the application; this provides a direct link to the admin
home page, which will look like the following screenshot:

Welcome to the Authentication Demo

Click here to login or register

The menu item named Admin

A user must be logged in as admin to access this page and other admin-related pages.
If a user is not logged in as admin, then the application will show an error, as shown in
the following screenshot:

(<>][] =] (5] [+ [© 127.0.0.1:5000/

Forbidden

You don't have the permission to access the requested resource. It is either read-protected or not readable by the server.

142

Chapter 8

To a logged-in admin user, the admin home page will look as follows:

[« > | &) (2] 2]] + @ 127.0.0.1:5000

Flask Cookbook Admin

Welcome to the Admin Demo

Hey admin!!
List of all users
Create a new user
Click here to logout

From here, the admin can see the list of users on a system or create a new user. The options
to edit or delete the users will be available in the user list page itself.

1
= To set a user as the first admin, create a new user from the
terminal using SQLAIchemy with the admin flag set to True.

Using the Flask-Admin extension

Flask-Admin is an available extension that helps in the creation of admin interfaces for our
application in a simpler and faster way. All the subsequent recipes in this chapter will focus
on using and extending this extension.

Getting ready

First, we need to install the Flask-Admin extension:
$ pip install Flask-Admin

We will extend our application from the first recipe and keep building over the same.

Admin Interface for Flask Apps

How to do it...

Adding a simple admin interface to any Flask application using the Flask-Admin extension is
just a matter of a couple of statements.

We just need to add the following lines to our application's configuration:
from flask.ext.admin import Admin
app = Flask(_ name)
Add any other application configuration

admin = Admin (app)

Just initializing an application with the Admin class from the Flask-Admin extension will put up
a basic admin page, as shown in the following screenshot:

Lei> | (] [=2] (3] [+] @ 127.0.0.1:5000/acmi

Admin Home

The admin page as created by Flask-Admin

Notice the URL in the screenshot, which is http://127.0.0.1:5000/admin/. We can also
add our own views to it; this is as simple as adding a new class as a new view that inherits
from the BasevView class:

from flask.ext.admin import BaseView, expose

class HelloView (BaseView) :
@expose ('/")
def index(self):
return self.render ('some-template.html')

After this, we will need to add this view to our admin object in the Flask configuration:

import my_ app.auth.views as views

admin.add_view(views.HelloView (name='Hello'))

Chapter 8

This will make the admin page look like the following screenshot:

Admin Home Hello

One thing to notice here is that this page does not have any authentication or authorization
logic implemented by default, and it will be accessible to all. The reason for this is

that Flask-Admin does not make any assumptions about the authentication system in
place. As we are using Flask-Login for our applications, we can add a method named

is accessible () toour HelloView class:

def is_accessible(self):
return current user.is authenticated() and
current_user.is_admin ()

After implementing the preceding code, there is still an admin view that won't be completely
user protected and will be publicly available. This will be the admin home page. To make this
available only to the admins, we have to inherit from AdminIndexView and implement
is_accessible():

from flask.ext.admin import AdminIndexView

class MyAdminIndexView (AdminIndexView) :
def is_accessible(self):
return current user.is authenticated() and
current_useriis_admig()

Then, just pass this view to the admin object in the application's configuration as
index view, and we are done:

admin = Admin(app, index view=views.MyAdminIndexView())

This approach makes all our admin views accessible only to the admin users. We can
also implement any permission or conditional access rules in is_accessible () as
and when required.

Admin Interface for Flask Apps

Registering models with Flask-Admin

In the last recipe, we saw how to get started with the Flask-Admin extension to create admin
interfaces/views to our application. In this recipe, we will see how to implement admin views
for our existing models with the facilities to perform CRUD operations.

Getting ready

We will extend our application from the last recipe to include an admin interface for the
User model.

How to do it...

Again, with Flask-Admin, registering a model with the admin interface is very easy. We just
need to add a single line of code to get this:

from flask.ext.admin.contrib.sgla import ModelView

Other admin configuration as shown in last recipe
admin.add view(ModelView (views.User, db.session))

Here, in the first line, we imported ModelView from flask.ext .admin.contrib.sqgla,
which is provided by Flask-Admin to integrate SQLAIchemy models. This will create a new
admin view for the User model; the view will look like the following screenshot:

Admin Home User

List (2) Create With selected ~

Username Pwdhash Admin
4 | admin pbkdf2:sha1:1000$LEI9NIgB$2186298eB82fe5a0la92 18bdd33d9a1ad8417cf062 v
£ 1 shalabh pbkdf2:shal:1000$UBcH6fai$89fcbb96ect6711c75dc37abc469a8f34B413eaa

Looking at the preceding screenshot, most of us will agree that showing the password

hash to any user, be it admin or a normal user, does not make sense. Also, the default
model-creation mechanism provided by Flask-Admin will fail for our User creation, because
we have an __init () method in our User model; this method expects values for the
three fields, while the model-creation logic implemented in Flask-Admin is very generic and
does not provide any value during model creation.

146

Chapter 8

Now, we will customize the default behavior of Flask-Admin to something of our own where we
fix the User creation mechanism and hide the password hash from the views:

class UserAdminView (ModelView) :

column_searchable list = ('username',)
column_sortable list = ('username', 'admin')
column_exclude_ list = ('pwdhash',)

form excluded columns = ('pwdhash',)

form edit rules = ('username', 'admin')

def is_accessible(self):
return current user.is authenticated() and
current_user.is_admin ()

The preceding code shows some rules and settings that our admin view for User will follow.
These are self-explanatory. A couple of them, column_exclude list and form excluded
columns, might seem a bit confusing. The former will exclude the columns mentioned from
the admin view itself and refrain from using these columns in search, creation, and other CRUD
operations. The latter will prevent the fields mentioned from being shown on the form for CRUD
operations. Consider the following code:

def scaffold form(self):
form_class = super (UserAdminView, self).scaffold form()
form_class.password = PasswordField('Password')
return form class

The preceding method overrides the creation of the form from the model and adds a password
field, which will be used in place of the password hash. Consider the following application:

def create model (self, form):
model = self.model (

form.username.data, form.password.data,
form.admin.data

)

form.populate obj (model)
self.session.add (model)

self. on model change (form, model, True)
self.session.commit ()

The preceding method overrides the model-creation logic to suit our application.
To add this model to the admin object in the application config, we will write the following:

admin.add view(views.UserAdminView (views.User, db.session))

Admin Interface for Flask Apps

Notice the self. on model change (form, model, True)

statement. Here, True, the last parameter, signifies that the call is
’ for the creation of a new record.

The admin interface for the User model will now look like the following screenshot:

Admin Home = User

List (2) Create With selected ~
Username Admin
Pl admin v

L1 shalabh

We have a search box here, and no password hash is visible. There are changes to user
creation and edit views too. | urge you to run the application to see for yourselves.

Creating custom forms and actions

In this recipe, we will create some custom forms using the forms provided by Flask-Admin.
Also, we will create a custom action using the custom form.

Getting ready

In the last recipe, we saw that the edit form view for the User record update had no option to
update the password for the user. The form looked like the following screenshot:

(4]p][]][] [+ [® 127.00.1:5000

Admin Home = User

Username shalabh

Admin =

m Save and Continue Cancel

148

Chapter 8

In this recipe, we will customize this form to allow administrators to update the password for
any user.

How to do it...

The implementation of this feature will just require changes to views . py. First, we will start
by importing rules from the Flask-Admin forms:

from flask.ext.admin.form import rules

In the last recipe, we had form_edit_rules, which had just two fields, that is, username
and admin as a list. This denoted the fields that will be available for editing to the admin
user on the User model update view.

Updating the password is not a simple affair of just adding one more field to the list of
form edit_rules, because we do not store cleartext passwords. We store password
hashes instead, which cannot be edited directly by users. We need to input the password
from the user and then convert it to a hash while storing. We will see how to do this in the
following code:

form edit_rules = (
'username', 'admin',
rules.Header ('Reset Password'),
'new_password', 'confirm!'
)
form create rules = (
'username', 'admin', 'notes', 'password'

)

The preceding piece of code signifies that we now have a header in our form; this header
separates the password reset section from the rest of the section. Then, we will add two
new fields, new_password and confirm, which will help us safely change the password:

def scaffold form(self):
form_class = super (UserAdminView, self).scaffold form()
form_class.password = PasswordField('Password')
form_class.new_password = PasswordField('New Password')
form_class.confirm = PasswordField('Confirm New Password')
return form class

This also calls for a change to the scaffold form() method so that the two new fields
become valid when the form renders.

Admin Interface for Flask Apps

Finally, we will implement the update model () method, which is called when we try to
update the record:

def update _model (self, form, model) :
form.populate obj (model)
if form.new password.data:
if form.new_password.data != form.confirm.data:
flash('Passwords must match')
return
model .pwdhash = generate password hash
(form.new_password.data)
self.session.add (model)
self. on model_ change (form, model, False)
self.session.commit ()

In the preceding code, we will first make sure that the password entered in both the fields is
the same. If yes, we will proceed with resetting the password along with any other change.

Notice the self. on model_change (form, model, False)
statement. Here, False, as the last parameter, signifies that the call

is not for the creation of a new record. This is also used in the last
’ recipe, where we created the user. In that case, the last parameter

was set to True.

The user update form will now look like the following screenshot:

Admin Home User

Username shalabh B]

Admin o~

Reset Password

New Password ®

Confirm New ®

Password
m Save and Continue Cancel

150

Chapter 8

Here, if we enter the same password in both the password fields, the user password will
be updated.

WYSIWYG for textarea integration

As users of websites, we all know that writing beautiful and formatted text using the normal
textarea fields is a nightmare. There are plugins that make our life easier and turn simple
textareas into What you see is what you get (WYSIWYG) editors. One such editor is CKEditor.
It is open source, provides good flexibility, and has huge community support. Also, it is
customizable and allows users to build add-ons as needed.

Getting ready

We start by adding a new textarea field to our User model for notes and then integrating
this field with CKEditor to write formatted text. This will include the addition of a JavaScript
library and a CSS class to a normal textarea field to convert it into a CKEditor-compatible
textarea field.

How to do it...

First, we will add the notes field to the User model, which will then look as follows:

class User (db.Model) :
id = db.Column(db.Integer, primary key=True)
username = db.Column (db.String(60))
pwdhash = db.Column (db.String())
admin = db.Column (db.Boolean())
notes = db.Column (db.UnicodeText)

def _ init_ (self, username, password, admin=False, notes='"'):
self.username = username
self .pwdhash = generate password hash (password)
self.admin = admin
self.notes = notes

After this, we will create a custom wt form widget and field for a CKEditor textarea field:

from wtforms import widgets, TextAreaField

class CKTextAreaWidget (widgets.TextArea) :
def call_ (self, field, **kwargs):

kwargs.setdefault ('class_', 'ckeditor')
return super (CKTextAreaWidget, self). call (field,
**kwargs)

Admin Interface for Flask Apps

In the custom widget in the preceding code, we added a ckeditor class to our TextArea
widget. For more insights into the WTForm widgets, refer to the Creating a custom widget
recipe in Chapter 5, Webforms with WTForms. Consider the following code:

class CKTextAreaField (TextAreaField) :
widget = CKTextAreaWidget ()

In the custom field in the preceding code, we set the widget to CKTextAreaWidget,
and when this field is rendered, the CSS class ckeditor will be added to it.

Next, we need to modify our form rules in the UserAdminView class, where we specify
the template to be used for the create and edit forms. We will also override the normal
TextAreaField with CKTextAreaField for notes:

form_overrides = dict (notes=CKTextAreaField)

create template = 'edit.html'
edit template = 'edit.html'

In the preceding code block, form_overrides enables the overriding of a normal textarea
field with the CKEditor textarea field.

The last part in this recipe is the templates/edit .html template mentioned earlier:

{% extends 'admin/model/edit.html' %}

{% block tail %}

{{ super() }}
<script src="http://cdnjs.cloudflare.com/ajax/
libs/ckeditor/4.0.1/ckeditor.js"></scripts>
{% endblock %}

Here, we extended the default edit .html file provided by Flask-Admin and added the
CKEditor JS file so that our ckeditor class on CKTextAreaField works.

After we have done all the changes, the user create form will look like the following
screenshot. Notice the Notes field in particular.

152

Chapter 8

[« >][] (2] (3] [+ @ 127.0.0.1:5000
Admin Home = User
Username *
Admin
Notes ERCEEE . || e ™M= Q|| 8 Source
B I -5 | .01 = 4= | 99 || Styles ~ || Format 5 .?

body p
Password *

Save and Continue Cancel

Here, anything entered in the Notes field will be automatically formatted in HTML while saving
and can be used anywhere later for display purposes.

» This recipe is inspired from the gist by the author of Flask-Admin. The gist can be
found at https://gist.github.com/mrjoes/5189850.

Creating user roles

Until now, we saw how a view that is accessible to a certain set of admin users can be created
easily using the is_accessible () method. This can be extended to have different kinds

of scenarios where specific users will be able to view specific views. There is another way of
implementing user roles at a much more granular level in a model where the roles determine
whether a user can perform all, some, or any of the CRUD operations.

Admin Interface for Flask Apps

Getting ready

In this recipe, we will see a basic way of creating user roles, where an admin user can only
perform actions they are entitled to.

Chapter 9

Sometimes, the messages do not get compiled after running the
preceding command. This is because the messages might be marked
as fuzzy (starting with a #). These need to be looked at by a human and
s the # sign has to be removed if the message is OK to be updated by the
compiler. To bypass this check, add a - £ flag to the preceding compile
command as it will force everything to get compiled.

If we run the application with French set as the primary language in the browser, the home
page will look like the following screenshot:

Bienvenue sur le catalogue Accueil

Cliquez ici pour voir le catalogue

If the primary language is set to something other than French, then the content will be shown
in English, which is the default language.

My browser language settings currently look like the ones shown in the following screenshot:

Languages
Add languages and drag to order them based on your preference. Learn maore

Languages French - francais

French » Dffer to translate pages in this language
English (United States)

English

Portuguese

Portuguese (Brazil)

Internationalization and Localization

There's more...

Next time, if we need to update the translations in our messages . po file, we do not need to
call the init command again. Instead, we can run an update command, which is as follows:

$ pybabel update -i my app/messages.pot -d my app/translations

After this, run the compile command as usual.

It is often desired to change the language of a website based on the

user IP and location (determined from the IP). This is regarded as an
s inferior way of handling localization as compared to the use of the

Accept-Language header, as we did in our application.

See also

» The Global language-switching action recipe to allow the user to change the language
directly from the application rather than doing it at the browser level.

» Animportant aspect of multiple languages is to be able to format the date, time,
and currency accordingly. Babel handles this also pretty neatly. | urge you to try
your hands at this by yourself. Refer to the Babel documentation available at
http://babel.pocoo.org/docs/ for this.

Lazy evaluation and the gettext/ngettext

functions

Lazy evaluation is an evaluation strategy that delays the evaluation of an expression until
its value is needed, that is, it is a call-by-need mechanism. In our application, there can be
several instances of texts that are evaluated later while rendering the template. It usually
happens when we have texts that are marked as translatable outside the request context,
so we defer the evaluation of these until they are actually needed.

Getting ready

Let's start with the application from the previous recipe. Now, we want the labels in the
product- and category-creation forms to show the translated values.

164

Chapter 9

How to do it...

To mark all the field labels in the product and category forms as translatable, we will make the
following changes to models.py:

from flask.ext.babel import _

class NameForm(Form) :
name = TextField(('Name'), validators=[InputRequired()])

class ProductForm(NameForm) :
price = DecimalField(('Price'), validators=|[
InputRequired (), NumberRange (min=Decimal ('0.0'))
1)
category = CategoryField(
_('Category'), validators=[InputRequired()], coerce=int

)
image = FileField(('Product Image'))

class CategoryForm(NameForm) :

name = TextField(('Name'), validators=|[
InputRequired(), check duplicate category ()
1)
Notice that all the field labels are enclosed within _ () to be marked for translation.

Now, run the pybabel extract and update commands to update the messages . po file,
and then fill in the relevant translations and run the compile command. Refer to the previous
recipe, Adding a new language, for details.

Now, open the product-creation page using the link http://127.0.0.1:5000/product -
create. However, does it work as expected? No! As most of us would have guessed by now, the
reason for this behavior is that this text is marked for translation outside the request context.

To make this work, we just need to modify the import statement to the following:
from flask.ext.babel import lazy gettext as _

Now, we have more text to translate. Let's say we want to translate the product-creation flash
message content, which looks as follows:

flash('The product %s has been created' % name)

Internationalization and Localization

To mark it as translatable, we cannot just simply wrap the whole thing inside _ () or
gettext (). The gettext () function supports placeholders, which can be used as
% (name) s. Using this, the preceding code will become something like:

flash(_ ('The product % (name)s has been created', name=name))
The resulting translated text for this will be like Le produit % (name)s a été créé.

There might be cases where we need to manage the translations based on the number of
items, that is, singular or plural names. This is handled by the ngettext () method. Let's
take an example where we want to show the number of pages in our products.html
template. For this, we need to add the following:

{{ ngettext ('%(num)d page', '%(num)d pages', products.pages) }}

Here, the template will render page if there is only page and pages if there is more than
one page.

It is interesting to note how this translation looks in the messages . po file:

#: my app/templates/products.html:20
#, python-format

msgid "% (num)d page"

msgid plural "% (num)d pages"
msgstr[0] "% (num)d page"

msgstr[1] "% (num)d pages"

The preceding code makes the concept clear.

Global language-switching action

In the previous recipes, we saw that the languages change on the basis of the current
language preferences in the browser. However, now, we want a mechanism where we can
switch the language to be used irrespective of the language in the browser. For this, we need
to handle the language at the application level.

Getting ready

We start by modifying the application from the last recipe, Lazy evaluation and the
gettext/ngettext functions, to accommodate the changes to enable language switching.
We will add an extra URL part to all our routes to add the current language. We can just
change this language in the URL to switch between languages.

166

How to do it...

The first change that we need to do is modify all our URL rules to accommodate an extra
URL part. So @app.route (' /') will become @app.route (' /<lang>/"'), and @app.
route (' /home') will become @app.route (' /<lang>/home'). Similarly, @app .
route (' /product-search/<int:page>") will become @app.route ('/<lang>/
product-search/<int :page>"'). The same needs to be done for all the URL rules.

Now, we need to add a function that will add the language passed in the URL to the global
proxy object g:

@app.before request
def before():
if request.view args and 'lang' in request.view args:
g.current lang = request.view args['lang']
request.view args.pop('lang')

This method will run before each request and add the current language to g.

However, this will mean that all the url for () calls in the application need to be modified
to have an extra parameter called 1ang to be passed. Fortunately, there is an easy way out
of this, which is as follows:

from flask import url for as flask url for

@app.context processor
def inject url for():
return {
'url for': lambda endpoint, **kwargs: flask url for(
endpoint, lang=g.current lang, **kwargs

url for = inject url for() ['url for']

In the preceding code, we first imported url for from £lask as flask url for. Then,
we updated the application context processor to have the url for () function, which is a
modified version of url for () provided by Flask to have 1ang as an extra parameter.

Chapter 9

Now, run the application as it is and you will notice that all the URLs will have a language part.

The following two screenshots explain how the rendered templates will look.

Internationalization and Localization

On opening http://127.0.0.1:5000/en/home, we see the following:

[« > | (][] [3%] [+ O 127.0.0.1:5000/en/home

ookbook

Welcome to the Catalog Home

Click here to see the catalog i)

The home page with English as the language

Now, just change the URLto http://127.0.0.1:5000/fr/home, and the home page will
look like the following screenshot:

Flask Cookbook

Bienvenue sur le catalogue Accueil

Cliquez ici pour voir le catalogue €XD

The home page with French as the language

» The recipe, Adding a new language, to handle localization based on the language set
in the browser (which is, by default, picked up from the language set at the OS level)

168

10

Debugging, Error
Handling, and Testing

Until now, in this book, we have concentrated on developing applications and adding features
to them one at a time. It is very important to know how robust our application is and keep
track of how the application has been working and performing. This, in turn, gives rise to the
need of being informed when something goes wrong in the application. It is normal to miss
out on certain edge cases while developing an application, and usually, even the test cases
miss them out. It will be great to know these edge cases whenever they occur so that they can
be handled accordingly.

Testing in itself is a very huge topic, and has several books attributed to it. Here, we will try to
understand the basics of testing with Flask.

In this chapter, we will cover the following recipes:

» Setting up basic file logging

» Sending e-mails on the occurrence of errors
» Using Sentry to monitor exceptions

» Debugging with pdb

» Creating our first simple test

» Writing more tests for views and logic

» Nose library integration

» Using mocking to avoid real APl access

» Determining test coverage

» Using profiling to find bottlenecks

Debugging, Error Handling, and Testing

Introduction

Effective logging and the ability to debug quickly are some of the deciding factors to choose
a framework for application development. The better the logging and debugging support
from the framework, the quicker the process of application development and the easier the
maintenance in future. It helps developers quickly find out the issues in the application, and
many times, logging points out the issues even before they are identified by the end users.
Effective error handling plays an important role in end user satisfaction and eases the pain
of debugging at the developers' end. Even if the code is perfect, the application is bound to
throw errors at times. Why? The answer is simple: the code might be perfect, but the world
in which it works is not. There can be innumerable issues that can occur, and as developers,
we always want to know the reason behind any anomaly. Writing test cases along with the
application is one of the most important pillars of software writing.

Python's inbuilt logging system works pretty well with Flask. We will work with this logging
system in this chapter before moving on to an awesome service called Sentry, which eases
the pain of debugging and error logging to a huge extent.

As we have already talked about the importance of testing for application development,
we will now see how to write test cases for a Flask application. We will also see how we
can measure code coverage and profile our application to tackle any bottlenecks.

Setting up basic file logging

By default, Flask will not log anything for us anywhere, except for the errors with their stack
traces, which are sent to the logger (we will see more of this in the remaining part of the
chapter). This creates a lot of stack traces when we run the application in the development
mode using run. py, but in production systems, we don't have this luxury. Thankfully, the
logging library provides a whole lot of log handlers, which can be used as per our requirements.

Getting ready

We will start with our catalog application and add some basic logging to it using
FileHandler, which logs messages to a specified file on the filesystem. We will start with
a basic log format and then see how to format the log messages to be more informative.

How to do it...

As always, the first change is made tothe _init .py file, which serves as the
application's configuration file:

app.config['LOG _FILE'] = 'application.log'

if not app.debug:

170

Chapter 10

import logging

from logging import FileHandler

file handler = FileHandler (app.config['LOG _FILE'])
file handler.setLevel (logging.INFO)
app.logger.addHandler (file handler)

Here, we added a configuration parameter to specify the logfile's location. This takes the
relative path from the application folder, unless an absolute path is explicitly specified. Next,
we will check whether the application is not already in the mode, and then, we will add a
handler logging to a file with the logging level as INFO. DEBUG is the lowest logging level and
will log everything at any level. For more details, refer to the logging library documentation
(link available in the See also section).

After this, we just need to add loggers to our application wherever they are needed, and
our application will start logging to the deputed file. Let's add a couple of loggers for
demonstration to views. py:

@catalog.route('/")
@catalog.route('/<lang>/")
@catalog.route ('/<lang>/home"')
@template or json('home.html')
def home () :
products = Product.query.all ()
app.logger.info(
'Home page with total of %d products' % len(products)
)

return {'count': len (products) }

@catalog.route ('/<lang>/product/<id>")
def product (id) :
product = Product.query.filter by (id=id) .first()
if not product:
app.logger.warning ('Requested product not found.')
abort (404)
return render template('product.html', product=product)

In the preceding code, we have loggers to a couple of our view handlers. Notice that the first
of the loggers in home () is of the info level and the other in product () is warning. If we
setourloglevelin __ init .py as INFO, then both will be logged, and if we set the level as
WARNING, then only the warning logger will be logged.

Debugging, Error Handling, and Testing

The preceding piece of code will create a file called application. log at the root application
folder. The logger statements as specified will be logged to this file and will look something like
the following snippet, depending on the handler called; the first one being from home and the
second from requesting a product that does not exist:

Home page with total of 1 products

Requested product not found.

The information logged does not help much. It will be great to know when the issue was
logged, with what level, which file caused the issue at what line number, and so on. This can
be achieved using advanced logging formats. For this, we need to add a couple of statements
to the configuration file, thatis, init .py:

if not app.debug:
import logging
from logging import FileHandler, Formatter
file handler = FileHandler (app.config['LOG FILE'])
file handler.setLevel (logging.WARNING)
app.logger.addHandler (file handler)
file handler.setFormatter (Formatter (

)

'% (asctime)s % (levelname)s: % (message)s '
o

'[in % (pathname)s:% (lineno)d]"’

))

In the preceding code, we added a formatter to £ile handler, which will log the time, log
level, message, file path, and line number. After this, the logged message will look as follows:

2014-08-02 15:18:21,154 WARNING: Requested product not found. [in /Users/
shalabhaggarwal/workspace/mydev/flask catalog testing lgging/my app/
catalog/views.py:50]

» Read through Python's logging library documentation about handlers at
https://docs.python.org/dev/library/logging.handlers.html
to know more about logging handlers

172

Chapter 10

Sending e-mails on the occurrence of errors

It is a good idea to receive errors when something unexpected happens with the application.
Setting this up is pretty easy and adds a lot of convenience to the process of error handling.

Getting ready

We will take the application from the last recipe and add mail handler to it to make our
application send e-mails when an error occurs. Also, we will demonstrate how to set up these
e-mails using Gmail as the SMTP server.

How to do it...

We will first add the handler to our configuration in __init__ .py. This is similar to how we
added file handler in the last recipe:

RECEPIENTS = ['some_receiver@gmail.com']

if not app.debug:
import logging
from logging import FileHandler, Formatter
from logging.handlers import SMTPHandler
file handler = FileHandler (app.config['LOG_FILE'])
file handler.setLevel (logging.INFO)
app.logger.addHandler (file handler)
mail handler = SMTPHandler (
("smtp.gmail.com", 587), 'sender@gmail.com', RECEPIENTS,
'Error occurred in your application',
('sendere@egmail.com', 'some gmail password'), secure=())
mail handler.setLevel (logging.ERROR)
app.logger.addHandler (mail handler)
for handler in [file_handler, mail_handler] :
handler.setFormatter (Formatter (
'% (asctime)s % (levelname)s: % (message)s '
'[in % (pathname)s:%(lineno)d]'

))

Here, we have a list of e-mail addresses to which the error notification e-mail will be sent. Also
note that we have set the log level to ERROR in the case of mail handler. This is because
e-mails will be necessary only in the case of crucial and important matters.

For more details on the configuration of SMTPHandler, refer to the documentation.

Debugging, Error Handling, and Testing

M Always make sure that you turn the debug flag off in run.py
Q to enable the application to log and send e-mails for internal
application errors (error 500).

To cause an internal application error, just misspell a keyword in any of your handlers.
You will receive an e-mail in your mailbox, with the formatting as set in the configuration
and a complete stack trace for your reference.

There's more...

We might also want to log all the errors when a page is not found (error 404). For this, we can
just tweak the errorhandler method a bit:

@app.errorhandler (404)
def page not found(e) :
app.logger.error (e)
return render template('404.html'), 404

Using Sentry to monitor exceptions

Sentry is a tool that eases the process of monitoring exceptions and also provides insights
into the errors that the users of the application face while using it. It is highly possible that
there are errors in logfiles that get missed out by the human eye. Sentry categorizes the
errors under different categories and keeps a count of the recurrence of errors. This helps
in understanding the severity of the errors on multiple criteria and helps us to handle them
accordingly. It has a nice GUI that facilitates all of these features.

Getting ready

We will start with the Sentry installation and configuration procedure. There are multiple ways
of installing and configuring Sentry as per our needs. Sentry also provides a SaaS-based
hosted solution where you can just skip the installation part discussed ahead and move on
directly to integration. You can get Sentry from https://www.getsentry.com.

Here, we will discuss a very basic version of the Sentry installation and configuration
procedure, and the rest can be taken up by you when your level of familiarity with Sentry
increases. We will use PostgreSQL as the database for Sentry, as it is highly recommended
by the Sentry team itself, so we will run the following command:

$ pip install sentry[postgres]

174

Chapter 10

Sentry is a server application that will need a client library to access it. The recommended
client is Raven, which can be simply installed for a Flask-based setup by running the
following command:

$ pip install raven|[flask]

There is another library named blinker that is also needed. It is used to handle signals
from the Flask application (this is out of the scope of this book, but you can read more
about itat https://pypi.python.org/pypi/blinker). It can be installed using
the following command:

$ pip install blinker

How to do it...

Following the installations, we need to do some configurations for the Sentry server. First,
initialize the config file in a path of your choice. | prefer to initialize it inside a folder named
etc inthe current virtualenv. This can be done using the following command:

$ sentry init etc/sentry.conf.py
Then, the basic configuration will look something like the following code:

from sentry.conf.server import *

DATABASES = {

'default':
'ENGINE': 'django.db.backends.postgresqgl psycopg2',
'NAME': 'sentry', # Name of the postgres database
'USER': 'postgres', # Name of postgres user
'PASSWORD': '',
'HOST': '',
'PORT': '',
"OPTIONS':
'autocommit': True,
}
SENTRY URL PREFIX = 'http: //localhost:9000"
SENTRY WEB HOST = '0.0.0.0'

SENTRY WEB_PORT = 9000
SENTRY WEB_OPTIONS = {

'workers': 3, # the number of gunicorn workers
'limit request line': 0, # required for raven-js
'secure_scheme headers': {'X-FORWARDED-PROTO': 'https'},

Debugging, Error Handling, and Testing

We can also configure the mail server details so that Sentry can send e-mails when errors are
encountered and effectively take the overhead from the logging library, as we did in the last
recipe. More about this can be read at http://sentry.readthedocs.org/en/latest/
quickstart/index.html#fconfigure-outbound-mail.

Now, in postgres, we need to create the database that we used in our Sentry configuration
and upgrade the initial schema:

$ createdb -E utf-8 sentry

$ sentry --config=etc/sentry.conf.py upgrade

The upgrade process will create a default superuser. If it does not, do so yourself by running
the following commands:

$ sentry --config=etc/sentry.conf.py createsuperuser

Username: sentry

Email address: someuser@example.com

Password:

Password (again):

Superuser created successfully.

$ sentry --config=etc/sentry.conf.py repair -owner=sentry

In the last command, sentry is the username that was chosen while creating the superuser.
Now, just start the Sentry server by running the following command:

$ sentry --config=etc/sentry.conf.py start

By default, Sentry runs on port 9000 and can be accessed at http://localhost:9000/.

Next, we need to create a team in Sentry using the GUI and then create a project to record our
application's error logs. After you log in to Sentry using the superuser credentials, you will see
a button, as shown in the following screenshot:

Your teams Create a New Team

176

Chapter 10

Create a team and project as the forms ask for. The project form will look like the
following screenshot:

Create a New Project

Projects allow you to ScOpe evants 1o a spacific application in your organization. For example, You might have Separate projacts for b vE - of saparate projects
tar your web app and mabile app.

Project Name*

Flask Framework Cookbook

Platform®

Flask [Python) -

Cwiner

aantry

After this, a screen like the one in the following screenshot will be shown. The details here will
be used in our Flask application's configuration.

Configuring Flask (Python)

Python Django Tornado (@) raven-python

Start by installing raven-python:
pip install raven

You'll also need blinker if you do not have it already:
pip install blinker

Blinker s required for signals to work within Flask.

Add the required configuration in your application setup:

from raven.contrib.flask import Sentry

app.config['SENTRY_DSN'] = 'http://d8ebadadc65942%aa7d00Z70e5175e55 : 9ddI27e3b6c5493dI8b7 fSbabccddbelBl ocal host : 9000,/3"
sentry = Sentry(app)

That's it! Raven automatically installs an error handling hook to pipe all uncaught exceptions to Sentry.

Now, simply copy the details highlighted in the preceding screenshot and place them in the
Flask configuration file. This will enable the logging of any uncaught errors to Sentry.

Debugging, Error Handling, and Testing

An error logged in Sentry will look like the following screenshot:

= Stream Settings
+" Resolve Feed Pause Updates Sort by: Last Seen + Since: Jul 29th +

my_app.catalog.views in product
MNameError: global name 'render_tempate’ is not defined

1

It is also possible to log messages and user-defined exceptions in Sentry. | leave this to you to
figure out by yourself.

Debugging with pdb

Most of the Python developers reading this book might already be aware of the usage of pdb,
that is, the Python debugger. For those who are not aware of it, pdb is an interactive source
code debugger for Python programs. We can set breakpoints wherever needed, debug using
single-stepping at the source line level, and inspect the stack frames.

Many new developers might be of the opinion that the job of a debugger can be handled using
a logger, but debuggers provide a much deeper insight into the flow of control and preserve
the state at each step, and hence, save a lot of development time.

Getting ready

We will use Python's built-in pdb module for this recipe and use it in our application from the
last recipe.

How to do it...

Using pdb is pretty simple in most cases. We just need to insert the following statement
wherever we want to insert a breakpoint to inspect a certain block of code:

import pdb; pdb.set trace()

This will trigger the application to break execution at this point, and then, we can step through
the stack frames one by one using the debugger commands.

178

Chapter 10

So, let's insert this statement in one of our methods, say, the handler for products:

def products (page=1) :
products = Product.query.paginate (page, 10)
import pdb; pdb.set trace()
return render template ('products.html', products=products)

Whenever the control comes to this line, the debugger prompt will fire up; this will look
as follows:

-> return render template('products.html', products=product)
(Pdb) u

> /Users/shalabhaggarwal/workspace/flask heroku/lib/python2.7/site-
packages/Flask-0.10.1-py2.7.egg/flask/app.py(1461)dispatch request()

-> return self.view functions|[rule.endpoint] (**req.view args)
(Pdb) u

> /Users/shalabhaggarwal/workspace/flask heroku/lib/python2.7/site-
packages/Flask-0.10.1-py2.7.egg/flask/app.py(1475) full dispatch request()

-> rv = self.dispatch request()
(Pdb) u

> /Users/shalabhaggarwal/workspace/flask heroku/lib/python2.7/site-
packages/Flask-0.10.1-py2.7.egg/flask/app.py(1817)wsgi app ()

-> response = self.full dispatch request()

Notice the u written against (Pdb) . This signifies that | am moving the current frame

one level up in the stack trace. All the variables, parameters, and properties used in that
statement will be available in the same context to help figure out the issue or just understand
the flow of code.

» Check out the pdb module documentation at https://docs.python.org/2/
library/pdb.html#debugger-commands to get hold of the various
debugger commands

Creating our first simple test

Testing is one of the pillars of any software during development, and later during maintenance
and expansion too. Especially in the case of web applications where the application will
handle high traffic and be scrutinized by a large number of end users at all times, testing
becomes pretty important, as the user feedback determines the fate of the application. In

this recipe, we will see how to start with test writing and also see more complex tests in the
recipes to follow.

Debugging, Error Handling, and Testing

Getting ready

We will start with the creation of a new test file named app tests.py at the root application
level, that is, alongside the my app folder.

The unittest2 Python library also needs to be installed using the following command:

$ pip install unittest2

How to do it...

To start with, the contents of the app tests.py test file will be as follows:

import os

from my app import app, db
import unittest2 as unittest
import tempfile

The preceding code describes the imports needed for this test suite. We will use unittest2
for our testing (install it using pip if not installed already). A tempfile is needed to create
SQLite databases on the fly.

All the test cases need to subclass from unitest . TestCase:

class CatalogTestCase (unittest.TestCase) :

def setUp(self):
self.test db file = tempfile.mkstemp() [1]

app.config['SQLALCHEMY DATABASE URI'] = 'sqglite:///' +
self.test db file
app.config['TESTING'] = True

self.app = app.test client()
db.create all()

The preceding method is run before each test is run and creates a new test client. A test is
represented by the methods in this class that start with the test_ prefix. Here, we set a
database name in the app configuration, which is a timestamp that will always be unique.

We also set the TESTING flag to True, which disables error catching to enable better testing.
Finally, we ran the create _all () method on db to create all the tables from our application
in the test database created. Consider the following code:

def tearDown (self) :
os.remove (self.test db file)

180

Chapter 10

The preceding method is called after each test is run. Here, we will remove the current
database file and use a fresh database file for each test. Consider the following code:

def test home (self) :
rv = self.app.get('/")
self.assertEqual (rv.status_code, 200)

The preceding code is our first test where we sent an HTTP GET request to our application at
the / URL and tested the response for the status code, which should be 200; this represents
a successful GET response.

if __name_ == '_main_ ':
unittest.main()

To run the test file, just execute the following command in the terminal:
$ python app tests.py

The following screenshot shows the output that signifies the outcome of the tests:

Ran 1 test in 0.053s

oK

» Check out the next recipe, Writing more tests for views and logic, to see more on how
to write complex tests

Writing more tests for views and logic

In the last recipe, we got started with writing tests for our Flask application. In this recipe, we
will build upon the same test file and add more tests for our application; these tests will cover
testing the views for behavior and logic.

Getting ready

We will build upon the test file named app_tests.py created in the last recipe.

Debugging, Error Handling, and Testing

How to do it...

Before we write any tests, we need to add a small bit of configuration to setUp () to disable
the CSRF tokens, as they are not generated by default for test environments:

app.config['WTF_CSRF_ENABLED'] = False

The following are some tests that are created as a part of this recipe. Each test will be
described as we go further:

def test products(self):
"Test Products list page"
rv = self.app.get('/en/products')
self.assertEqual (rv.status code, 200)
self.assertTrue('No Previous Page' in rv.data)
self.assertTrue('No Next Page' in rv.data)

The preceding test sends a GET request to /products and asserts that the status code of
the response is 200. It also asserts that there is no previous page and no next page (rendered
as a part of template logic). Consider the following code:

def test create category(self):
"Test creation of new category"
rv = self.app.get('/en/category-create')
self.assertEqual (rv.status code, 200)

rv = self.app.post('/en/category-create')
self.assertEqual (rv.status code, 200)
self.assertTrue('This field is required.' in rv.data)

rv = self.app.get('/en/categories')
self.assertEqual (rv.status code, 404)
self.assertFalse ('Phones' in rv.data)

rv = self.app.post('/en/category-create', data={
'name': 'Phones’',

3]

self.assertEqual (rv.status code, 302)

rv = self.app.get('/en/categories')
self.assertEqual (rv.status code, 200)
self.assertTrue ('Phones' in rv.data)

rv = self.app.get('/en/category/1")
self.assertEqual (rv.status code, 200)
self.assertTrue ('Phones' in rv.data)

182

Chapter 10

The preceding test creates a category and asserts for corresponding status messages. When
a category is successfully created, we will redirect to the newly created category page, and
hence, the status code will be 302. Consider the following code:

def test create product (self):
"Test creation of new product"
rv = self.app.get('/en/product-create')
self.assertEqual (rv.status_code, 200)

rv = self.app.post('/en/product-create')
self.assertEqual (rv.status_code, 200)
self.assertTrue('This field is required.' in rv.data)

Create a category to be used in product creation
rv = self.app.post('/en/category-create', data={
'name': 'Phones',

3]

self.assertEqual (rv.status_code, 302)

rv = self.app.post ('/en/product-create', data={

'name': 'iPhone 5',
'price': 549.49,
'company': 'Apple',

'category': 1

3]

self.assertEqual (rv.status_code, 302)

rv = self.app.get('/en/products')
self .assertEqual (rv.status_code, 200)
self.assertTrue('iPhone 5' in rv.data)

The preceding test creates a product and asserts for corresponding status messages on
each call.

As part of this test, we identified a small improvement in our
create_product () method. What looked like image =
% request.files['image'] earlier has now been replaced by
S image = request.files and request.files['image'].
This is because in the case of an HTML form, we had an empty
request.files['image'] parameter, but in this case, we don't.

Debugging, Error Handling, and Testing
Consider the following code:

def test search product (self):
"Test searching product"
Create a category to be used in product creation
rv = self.app.post('/en/category-create', data={
'name': 'Phones',
1)

self.assertEqual (rv.status_code, 302)

Create a product
rv = self.app.post ('/en/product-create', data={

'name': 'iPhone 5',
'price': 549.49,
'company': 'Apple',

'category': 1

3]

self.assertEqual (rv.status_code, 302)

Create another product
rv = self.app.post ('/en/product-create', data={

'name': 'Galaxy S5',
'price': 549.49,
'company': 'Samsung',

'category': 1

3]

self .assertEqual (rv.status_code, 302)
self.app.get('/")

rv = self.app.get('/en/product-search?name=iPhone"')
self.assertEqual (rv.status_code, 200)
self.assertTrue('iPhone 5' in rv.data)
self.assertFalse('Galaxy S5' in rv.data)

rv = self.app.get('/en/product-search?name=iPhone 6')
self.assertEqual (rv.status_code, 200)
self.assertFalse('iPhone 6' in rv.data)

The preceding test first creates a category and two products. Then, it searches for one product
and makes sure that only the searched product is returned in the result.

Chapter 10

To run the test file, just execute the following command in the terminal:

$ python app tests.py -v

test create category (main .CatalogTestCase)
Test creation of new category ... ok

test create product (main .CatalogTestCase)
Test creation of new product ... ok

test home (_ main .CatalogTestCase)

Test home page ... ok

test products (_ main .CatalogTestCase)

Test Products list page ... ok

test search product (main .CatalogTestCase)
Test searching product ... ok

Ran 5 tests in 0.189s

OK

What follows the command is the output that signifies the outcome of tests.

Nose library integration

Nose is a library that makes testing easier and much more fun. It provides a whole lot of tools to
enhance our tests. Although Nose can be used for multiple purposes, the most important usage
remains that of a test collector and runner. Nose automatically collects tests from Python source
files, directories, and packages found in the current working directory. We will focus on how to
run individual tests using Nose rather than the whole bunch of tests every time.

Getting ready

First, we need to install the Nose library:

$ pip install nose

Debugging, Error Handling, and Testing

How to do it...

We can execute all the tests in our application using Nose by running the following command:

$ nosetests -v

Test creation of new category ... ok
Test creation of new product ... ok
Test home page ... ok

Test Products list page ... ok

Test searching product ... ok

Ran 5 tests in 0.399s

OK

This will pick out all the tests in our application and run them even if we have multiple
test files.

To run a single test file, we can simply run the following command:

$ nosetests app tests.py

Now, if we want to run a single test, we simply need to run the following command:
$ nosetests app tests:CatalogTestCase.test home

This becomes important when we have a memory-intensive application and a large number
of test cases. Then, the tests themselves can take a lot of time to run, and doing so every
time can be very frustrating for a developer. Instead, we will prefer to run only those tests
that concern the change made or the test that broke on a certain change.

See also

» There are many other ways of configuring Nose for optimal and effective usage
as per our requirements. Refer to the Nose documentation at http://nose.
readthedocs.org/en/latest/usage.html for more details.

186

Chapter 10

Using mocking to avoid real APl access

We are aware of how testing works, but now, let's say we have a third-party application/service
integrated via API calls with our application. It will not be a great idea to make calls to this
application/service every time tests are run. Sometimes, these can be paid too, and making
calls during tests can not only be expensive, but also affect the statistics of that service.
Mocking plays a very important role in such scenarios. The simplest example of this can be
mocking SMTP for e-mails. In this recipe, we will integrate our application with the geoip library
and then test it via mocking.

Getting ready

First, we need to install the mock and geoip libraries and the corresponding database:

$ pip install mock
$ pip install python-geoip
$ pip install python-geoip-geolite2

Now, let's say we want to store the location of the user who creates a product (think of a
scenario where the application is administered via multiple locations around the globe).

We need to make some small changes to models.py, views.py and
templates/product.html.

For models.py, we will add a new field named user_timezone:

class Product (db.Model) :
.. Other fields
user timezone = db.Column(db.String(255))

def init (self, name, price, category=None, image path='"',
user timezone='"):
Other fields initialization

self.user_ timezone = user_timezone
For views.py, we will modify the create product () method to include the timezone:
import geoip

def create product () :
form = ProductForm(request.form)

if request.method == 'POST' and form.validate() :
.. Non changed code
match = geoip.geolite2.lookup (request.remote addr)

Debugging, Error Handling, and Testing

product = Product (
name, price, company, existing category, filename,
match and match.timezone or 'Localhost'

)

.. Non changed code

Here, we fetched the geolocation data using an IP lookup and passed this during product
creation. If no match is found, then the call is made from the localhost, or from 127.0.0.1
or 0.0.0.0.

Also, we will add this new field in our product template so that it becomes easy to verify in the
test. For this, just add {{ product.user timezone }} somewhere inthe product.html
template.

How to do it...

Modify app_tests.py to accommodate mocking of the geoip lookup:

from geoip import IPInfo
from mock import patch

class CatalogTestCase (unittest.TestCase) :

def setUp(self):
.. Non changed code
self.lookup patcher = patch('geoip.geolite2.lookup',
autospec=True)
PatchedLookup = self.lookup patcher.start ()
PatchedLookup.return value = IPInfo('17.0.0.1"', {
"location': {
'time_zone': 'America/Los_Angeles'

3]

db.create all()

First, we imported IPInfo from geoip, which is the class that defines the format in
which the lookup data is to be created. Then, we patched geocip.geolite2.lookup
and started the patcher. This means that whenever this call is made, it will be patched
with return_value, which is set next. Consider the following code:

def tearDown (self) :
self.lookup patcher.stop()
os.remove (self.test db file)

188

Chapter 10

We stopped the mock patcher in tearDown so that the actual calls are not affected.
Consider the following code:

def test create product (self):
"Test creation of new product"
.. Non changed code

rv = self.app.post ('/en/product-create', data={

'name': 'iPhone 5',
'price': 549.49,
'company': 'Apple',

'category': 1

1

self.assertEqual (rv.status_code, 302)

rv = self.app.get('/en/product/1")
self.assertEqual (rv.status_code, 200)
self.assertTrue('iPhone 5' in rv.data)
self.assertTrue ('America/Los_Angeles' in rv.data)

Here, after the creation of the product, we asserted that the America/Los_Angeles value
is present somewhere in the product template that is rendered.

Run the test and see whether it passes:

$ nosetests app_tests:CatalogTestCase.test_create product -v

Test creation of new product ... ok

Ran 1 test in 0.095s

OK

See also

» There are multiple ways in which mocking can be done. | demonstrated just one of
them. You can choose any method from the ones available.

Debugging, Error Handling, and Testing

Determining test coverage

In the previous recipes, test writing was covered, but there is an important aspect to testing
called coverage. Coverage determines how much of our code has been covered by the tests.
The higher the percentage of coverage, the better our tests (although it's not the only criterion
for good tests). In this recipe, we will check the code coverage of our application.

M Remember that 100 percent test coverage does not mean that the
Q code is flawless. However, in any case, it is better than having no
tests or lower coverage. Anything that is not tested is broken.

Getting ready

We will use a library called coverage for this recipe. The following is the installation command:

$ pip install coverage

How to do it...

The simplest way of getting the coverage details is to use the command line. Simply run the
following command:

$ coverage run -source=../<Folder name of application> --omit=app tests.
pPy,run.py app_ tests.py

Here, - -source indicates the directories that are to be considered in coverage, and - -omit
indicates the files that need to be omitted in the process.

Now, to print the report on the terminal itself, run the following command:
$ coverage report

The following screenshot shows the output:

my_app/__init__
my_app/catalog/__init__

my_app/ catalog/model s
my_app/catalog/views

190

Chapter 10

To get a nice HTML output of the coverage report, run the following command:
$ coverage html

This will create a new folder named htmlcov in your current working directory. Inside this,
just open up index.html in a browser, and the full detailed view will be available.

Alternatively, we can include a piece of code in our test file and get the coverage report every
time the tests are run. Add the following code snippets in app_tests.py:

Before anything else, add this:

import coverage

cov = coverage.coverage (
omit = [
' /Users/shalabhaggarwal /workspace/mydev/lib/python2.7/site-
packages/*',
'app_tests.py'

)

cov.start ()

Here, we imported the coverage library and created an object of it; this tells the library to
omit all site-packages (by default, the coverage report is calculated for all dependencies
as well) and the test file itself. Then, we started the process to determine the coverage.

Finally, modify the last block of code to the following:

if __name_ == '_main_ ':
try:
unittest.main ()
finally:
cov.stop ()
cov.save ()

cov.report ()
cov.html report (directory = 'coverage')
cov.erase ()

In the preceding code, we first put unittest.main () inside a try..finally block. This is
because unittest.main () exits after all the tests are executed. Now, the coverage-specific
code is forced to run after this method completes. We first stopped the coverage report,
saved it, printed the report on the console, and then generated the HTML version of it before
deleting the temporary . coverage file (this is created automatically as part of the process).

Debugging, Error Handling, and Testing

If we run our tests after including the coverage-specific code, then we can run the
following command:

$ python app tests.py

The output will be as shown in the following screenshot:

Stmts Miss Cover Missing

my_app/ __init__

my_app/catalog/__init__

my_app/catalog/models 33, 44, 58, 62, 74, 90

my_app/catalog/views 31, 53-54, 76, 78, %0, 89, 107-108, 147, 161-162

» Itis also possible to determine coverage using the Nose library that we discussed
in the Nose library integration recipe. | leave it to you to explore this option yourself.
Refer to https://nose.readthedocs.org/en/latest/plugins/cover.
html?highlight=coverage for a head start.

Using profiling to find bottlenecks

Profiling is an important tool when we decide to scale the application. Before scaling, we want
to know whether any process is a bottleneck and affects the overall performance. Python has
an inbuilt profiler, cProfile, that can do the job for us, but to make life easier, Werkzeug
has a ProfilerMiddleware of its own, which is written over cProfile. We will use this to
determine whether there is anything that affects the performance.

Getting ready

We will use the application from the previous recipe and add ProfilerMiddleware in a
new file named generate profile.py.

192

Chapter 10

How to do it...

Create a new file, generate profile.py, alongside run.py, which works like run.py
itself but with ProfilerMiddleware:

from werkzeug.contrib.profiler import ProfilerMiddleware
from my app import app

app.wsgl app = ProfilerMiddleware (app.wsgi app, restrictions = [10])
app . run (debug=True)

Here, we imported ProfilerMiddleware from werkzeug and then modified wsgi_app on
our Flask app to use it, with a restriction of the top 10 calls to be printed in the output.

Now, we can run our application using generate profile.py:
$ python generate profile.py

We can then create a new product. Then, the output for that specific call will be like the
following screenshot:

/product-create’
8197 function calls (8072 primitive calls) in 9.061 seconds

Ordered by: internal time, call count
List reduced from 1103 to 10 due to restriction <10>

ncalls tottime percall cumtime percall filename:lineno(function)

0.031 9.031 9.038 ©0.038 /Users/shalabhaggarwal /workspace/mydev/1ib/python2.7/site-packages/geoip.py:501(open_database)

0.007 0.007 0,007 {method 'rfind’ of 'mmap.mmap® objects}

0.003 0.003 0.000 /Users/shalabhaggarwal/workspace/mydev/1ib/python2.7/site-packages/geoip.py:287(_parse_node)

0.001 0.001 0.000 {method 'execute' of 'sqlite3.Cursor’ objects}

. . .001 {method 'commit’ of 'sqlite3.Connection' objects}

001 {__import_}
809 /Users/shalabhaggarwal/workspace/mydev/1ib/python2.7/site-packages/sqlalchemy/sql/compiler.py: 1081(bindparam_string)
000 {isinstance}
.000 /Users/shalabhaggarwal /workspace/mydev/1ib/python2.7/site-packages/werkzeug/urls.py:374(url_quote)
.000 {getattr}

Tt

It is evident from the preceding screenshot that the most intensive call in this process is the
call made to the geoip database. So, if we decide to improve the performance sometime down
the line, then this is something that needs to be looked at first.

11

Deployment and Post
Deployment

Up until now in the book, we have seen how to write Flask applications in different ways.
Deployment of an application and managing the application post-deployment is as important
as developing it. There can be various ways of deploying an application, where choosing the
best way depends on the requirements. Deploying an application correctly is very important
from the points of view of security and performance. There are multiple ways of monitoring an
application after deployment of which some are paid and others are free to use. Using them
again depends on requirements and features offered by them.

In this chapter, we will cover the following recipes:

>

Deploying with Apache

Deploying with uWSGI and Nginx
Deploying with Gunicorn and Supervisor
Deploying with Tornado

Using Fabric for deployment

S3 storage for file uploads

Deploying with Heroku

Deploying with AWS Elastic Beanstalk
Application monitoring with Pingdom

Application performance management and monitoring with New Relic

Deployment and Post Deployment

Introduction

In this chapter, we will talk about various application-deployment techniques, followed by
some monitoring tools that are used post-deployment.

Each of the tools and techniques has its own set of features. For example, adding too much
monitoring to an application can prove to be an extra overhead to the application and the
developers as well. Similarly, missing out on monitoring can lead to undetected user errors
and overall user dissatisfaction.

Hence, we should choose the tools wisely and they will ease our lives to the maximum.

In the post-deployment monitoring tools, we will discuss Pingdom and New Relic. Sentry is
another tool that will prove to be the most beneficial of all from a developer's perspective.
It has already been covered in the Using Sentry to monitor exceptions recipe in Chapter 10,
Debugging, Error Handling, and Testing.

Deploying with Apache

First, we will learn how to deploy a Flask application with Apache, which is, unarguably,
the most popular HTTP server. For Python web applications, we will use mod_wsgi, which
implements a simple Apache module that can host any Python applications that support
the WSGI interface.

Remember that mod_wsgi is not the same as Apache and needs
i to be installed separately.

Getting ready

We will start with our catalog application and make appropriate changes to it to make it
deployable using the Apache HTTP server.

First, we should make our application installable so that our application and all its libraries
are on the Python load path. This can be done using a setup . py script, as seen in the
Making a Flask app installable using setuptools recipe in Chapter 1, Flask Configurations.
There will be a few changes to the script as per this application. The major changes are
mentioned here:

packages=[
'my_app',
'my app.catalog',
] ’
include package data=True,
zip safe = False,

196

Chapter 11

First, we mentioned all the packages that need to be installed as part of our application. Each
of these needsto have an _ init .py file. The zip safe flag tells the installer to not
install this application as a ZIP file. The include package data statement reads from a
MANIFEST. in file in the same folder and includes any package data mentioned here. Our
MANIFEST. in file looks like:

recursive-include my app/templates *
recursive-include my app/static *
recursive-include my app/translations *

Now, just install the application using the following command:

$ python setup.py install

Installing mod_wsgi is usually OS-specific. Installing it on a Debian-based
M distribution should be as easy as just using the packaging tool, that is,
Q apt or aptitude. For details, refer to https://code.google.com/p/
modwsgi/wiki/InstallationInstructions and https://
github.com/GrahamDumpleton/mod wsgi.

How to do it...

We need to create some more files, the first one being app . wsgi. This loads our application
as a WSGI application:

activate this = '<Path to virtualenvs>/bin/activate_ this.py'
execfile(activate this, dict(_file =activate_ this))

from my app import app as application
import sys, logging
logging.basicConfig(stream = sys.stderr)

As we perform all our installations inside virtualenv, we need to activate the environment
before our application is loaded. In the case of system-wide installations, the first two
statements are not needed. Then, we need to import our app object as application, which
is used as the application being served. The last two lines are optional, as they just stream
the output to the standard logger, which is disabled by mod_wsgi by default.

The app object needs to be imported as application, because
i mod_wsgi expects the application keyword.

Deployment and Post Deployment

Next comes a config file that will be used by the Apache HTTP server to serve our application
correctly from specific locations. The file is named apache wsgi.conf:

<VirtualHost *>

WSGIScriptAlias / <Path to applications/flask catalog deployment/
app.wsgi

<Directory <Path to application>/flask catalog deployments>
Order allow,deny
Allow from all

</Directory>

</VirtualHost>

The preceding code is the Apache configuration, which tells the HTTP server about the various
directories where the application has to be loaded from.

The final step is to add the apache wsgi . conf file to apache2/httpd. conf so that our
application is loaded when the server runs:

Include <Path to applications/flask catalog deployment/
apache_wsgi.conf

Let's restart the Apache server service using the following command:

$ sudo apachectl restart

Openup http://127.0.0.1/ in the browser to see the application's home page. Any errors
coming up can be seen at /var/log/apache2/error_ log (this path can differ depending
on 0OS).

After all this, it is possible that the product images uploaded as part of the product creation
do not work. For this, we should make a small modification to our application's configuration:

app.config['UPLOAD FOLDER'] = '<Some static absolute
path>/flask test uploads'

We opted for a static path because we do not want it to change every time the application is
modified or installed.

198

Chapter 11

Now, we will include the path chosen in the preceding code to apache wsgi.conf:

Alias /static/uploads/ "<Some static absolute
path>/flask test uploads/"
<Directory "<Some static absolute path>/flask test uploads"s>
Order allow,deny
Options Indexes
Allow from all
IndexOptions FancyIndexing
</Directory>

After this, install the application and restart apachectl.

» http://httpd.apache.org/
» https://code.google.com/p/modwsgi/
» http://wsgi.readthedocs.org/en/latest/

» https://pythonhosted.org/setuptools/setuptools.html#setting-
the-zip-safe-flag

Deploying with uWSGI and Nginx

For those who are already aware of the usefulness of uUWSGI and Nginx, there is not much
that can be explained. uWSGlI is a protocol as well as an application server and provides a
complete stack to build hosting services. Nginx is a reverse proxy and HTTP server that is very
lightweight and capable of handling virtually unlimited requests. Nginx works seamlessly with
uWSGI and provides many under-the-hood optimizations for better performance.

Getting ready

We will use our application from the last recipe, Deploying with Apache, and use the
same app.wsgi, setup.py, and MANIFEST. in files. Also, other changes made to the
application's configuration in the last recipe will apply to this recipe as well.

1
‘Q Disable any other HTTP servers that might be running,

such as Apache and so on.

Deployment and Post Deployment

How to do it...

First, we need to install uWSGI and Nginx. On Debian-based distributions such as Ubuntu, they
can be easily installed using the following commands:

sudo apt-get install nginx

sudo apt-get install uWSGI
& You can also install uWwSGI inside a virtualenv using
i the pip install uWSGI command.

Again, these are 0S-specific, so refer to the respective documentations as per the OS used.

Make sure that you have an apps-enabled folder for uwSGlI, where we will keep our
application-specific UWSGI configuration files, and a sites-enabled folder for Nginx,
where we will keep our site-specific configuration files. Usually, these are already present
in most installations in the /etc/ folder. If not, refer to the 0S-specific documentations to
figure out the same.

Next, we will create a file named uwsgi . ini in our application:

[uwsgil]

http-socket = :9090

plugin = python

wsgi-file = <Path to applications>/flask catalog deployment/app.wsgi
processes =3

To test whether uWSGI is working as expected, run the following command:

$ uwsgi --ini uwsgi.ini

The preceding file and command are equivalent to running the following command:
$ uwsgi --http-socket :9090 --plugin python --wsgi-file app.wsgi

Now, point your browser to http://127.0.0.1:9090/; this should open up the home page
of the application.

Create a soft link of this file to the apps-enabled folder mentioned earlier using the
following command:

$ 1ln -s <path/to/uwsgi.ini> <path/to/apps-enabled>

200

Chapter 11

Before moving ahead, edit the preceding file to replace http-socket with socket. This
changes the protocol from HTTP to uWSGI (read more about it at http://uwsgi-docs.
readthedocs.org/en/latest/Protocol.html). Now, create a new file called nginx-
wsgi.conf. This contains the Nginx configuration needed to serve our application and the
static content:

location / {
include uwsgi_params;
uwsgi pass 127.0.0.1:9090;

}
location /static/uploads/{
alias <Some static absolute paths>/flask test uploads/;

}

In the preceding code block, uwsgi pass specifies the uWSGI server that needs to be
mapped to the specified location.

Create a soft link of this file to the sites-enabled folder mentioned earlier using the
following command:

$ 1n -s <path/to/nginx-wsgi.conf> <path/to/sites-enabled>

Edit the nginx. conf file (usually found at /etc/nginx/nginx.conf) to add the following
line inside the first server block before the last }:

include <path/to/sites-enabled>/*;
After all of this, reload the Nginx server using the following command:
$ sudo nginx -s reload

Point your browser to http://127.0.0.1/ to see the application that is served via Nginx
and uWSGI.

The preceding instructions of this recipe can vary depending on
the OS being used and different versions of the same OS can also

impact the paths and commands used. Different versions of these
’ packages can also have some variations in usage. Refer to the
documentation links provided in the next section.

» Refertohttp://uwsgi-docs.readthedocs.org/en/latest/ for more
information on uUWSGI.

» Refertohttp://nginx.com/ for more information on Nginx.

201

Deployment and Post Deployment

» There is a good article by DigitalOcean on this. | advise you to go through this
to have a better understanding of the topic. It is available at https://www.
digitalocean.com/community/tutorials/how-to-deploy-python-wsgi-
applications-using-uwsgi-web-server-with-nginx.

» To get an insight into the difference between Apache and Nginx, | think the article by
Anturis at https://anturis.com/blog/nginx-vs-apache/ is pretty good.

Deploying with Gunicorn and Supervisor

Gunicorn is a WSGI HTTP server for Unix. It is very simple to implement, ultra light, and fairly
speedy. Its simplicity lies in its broad compatibility with various web frameworks.

Supervisor is a monitoring tool that controls various child processes and handles the
starting/restarting of these child processes when they exit abruptly due to some reason.

It can be extended to control the processes via the XML-RPC API over remote locations without
logging in to the server (we won't discuss this here as it is out of the scope of this book).

One thing to remember is that these tools can be used along with the other tools mentioned
in the applications in the previous recipe, such as using Nginx as a proxy server. This is left to
you to try on your own.

Getting ready

We will start with the installation of both the packages, that is, gunicorn and supervisor.
Both can be directly installed using pip:

$ pip install gunicorn

$ pip install supervisor

How to do it...

To check whether the gunicorn package works as expected, just run the following command
from inside our application folder:

$ gunicorn -w 4 -b 127.0.0.1:8000 my app:app

After this, point your browser to http://127.0.0.1:8000/ to see the application's
home page.

202

Chapter 11

Now, we need to do the same using Supervisor so that this runs as a daemon and will

be controlled by Supervisor itself rather than human intervention. First of all, we need

a Supervisor configuration file. This can be achieved by running the following command

from virtualenv. Supervisor, by default, looks for an etc folder that has a file named
supervisord.conf. In system-wide installations, this folder is /etc/, and in virtualenv,
it will look for an etc folder in virtualenv and then fall back to /etc/:

$ echo supervisord conf > etc/supervisord.conf

The echo_supervisord conf program is provided by
i Supervisor; it prints a sample config file to the location specified.

This command will create a file named supervisord. conf in the etc folder. Add the
following block in this file:

[program: flask catalog]

command=<path/to/virtualenv>/bin/gunicorn -w 4 -b 127.0.0.1:8000 my_
app:app

directory=<path/to/virtualenv>/flask catalog deployment
user=sgsomeuser # Relevant user

autostart=true

autorestart=true

stdout logfile=/tmp/app.log

stderr logfile=/tmp/error.log

M Make a note that one should never run the applications as a root user.
Q This is a huge security flaw in itself as the application crashes, which
can harm the OS itself.

Now, run the following commands:

$ supervisord
$ supervisorctl status

flask catalog RUNNING pid 40466, uptime 0:00:03

203

Deployment and Post Deployment

The first command invokes the supervisord server, and the next one gives a status of all
the child processes.

M The tools discussed in this recipe can be coupled with
Q Nginx to serve as a reverse proxy server. | suggest that you
try it by yourself.

Every time you make a change to your application and then wish to restart Gunicorn in order
for it to reflect the changes, run the following command:

$ supervisorctl restart all

You can also give specific processes instead of restarting everything:

$ supervisorctl restart flask catalog

» http://gunicorn-docs.readthedocs.org/en/latest/index.html

» http://supervisord.org/index.html

Deploying with Tornado

Tornado is a complete web framework and a standalone web server in itself. Here, we will
use Flask to create our application, which is basically a combination of URL routing and
templating, and leave the server part to Tornado. Tornado is built to hold thousands of
simultaneous standing connections and makes applications very scalable.

Tornado has limitations while working with WSGI applications. So, choose
wisely! Read more at http://www.tornadoweb.org/en/stable/
i wsgi.html#running-wsgi-apps-on-tornado-servers.

Getting ready

Installing Tornado can be simply done using pip:

$ pip install tornado

Chapter 11

How to do it...

Next, create a file named tornado_server.py and put the following code in it:

from tornado.wsgi import WSGIContainer
from tornado.httpserver import HTTPServer
from tornado.ioloop import IOLoop

from my app import app

http server = HTTPServer (WSGIContainer (app))
http server.listen(5000)
IOLoop.instance () .start ()

Here, we created a WSGI container for our application; this container is then used to create an
HTTP server, and the application is hosted on port 5000.

Run the Python file created in the previous section using the following command:
$ python tornado server.py

Point your browser to http://127.0.0.1:5000/ to see the home page being served.

M We can couple Tornado with Nginx (as a reverse proxy to serve
Q static content) and Supervisor (as a process manager) for the
best results. It is left for you to try this on your own.

Using Fabric for deployment

Fabric is a command-line tool in Python; it streamlines the use of SSH for application
deployment or system-administration tasks. As it allows the execution of shell commands on
remote servers, the overall process of deployment is simplified, as the whole process can now
be condensed into a Python file, which can be run whenever needed. Therefore, it saves the
pain of logging in to the server and manually running commands every time an update has to
be made.

Getting ready

Installing Fabric can be simply done using pip:

$ pip install fabric

205

Deployment and Post Deployment

We will use the application from the Deploying with Gunicorn and Supervisor recipe. We will
create a Fabric file to perform the same process to the remote server.

For simplicity, let's assume that the remote server setup has been already done and all the
required packages have also been installed with a virtualenv environment, which has also
been created.

How to do it...

First, we need to create a file called fabfile.py in our application, preferably at the
application's root directory, that is, along with the setup . py and run. py files. Fabric, by
default, expects this filename. If we use a different filename, then it will have to be explicitly
specified while executing.

A basic Fabric file will look like:

from fabric.api import sudo, cd, prefix, run

def deploy_app() :
"Deploy to the server specified"
root_path = '/usr/local/my env'

with cd(root_path):
with prefix("source %s/bin/activate" % root_ path) :
with cd('flask catalog deployment') :
run('git pull')
run('python setup.py install')

sudo ('bin/supervisorctl restart all')

Here, we first moved into our virtualenv, activated it, and then moved into our application.
Then, the code is pulled from the Git repository, and the updated application code is installed
using setup.py install. After this, we restarted the supervisor processes so that the
updated application is now rendered by the server.

Most of the commands used here are self-explanatory, except
. prefix, which wraps all the succeeding commands in its block with
% the command provided. This means that the command to activate
s virtualenv will run first and then all the commands in the with block
will execute with virtualenv activated. The virtualenv will be
deactivated as soon as control goes out of the with block.

206

Chapter 11

To run this file, we need to provide the remote server where the script will be executed. So, the
command will look something like:

$ fab -H my.remote.server deploy app

Here, we specified the address of the remote host where we wish to deploy and the name of
the method to be called from the f£ab script.

There's more...

We can also specify the remote host inside our fab script, and this can be good idea if the
deployment server remains the same most of the times. To do this, add the following code to
the fab script:

from fabric.api import settings

def deploy app to server():
"Deploy to the server hardcoded"
with settings (host string='my.remote.server'):
deploy app ()

Here, we have hardcoded the host and then called the method we created earlier to start the
deployment process.

S3 storage for file uploads

Amazon explains S3 as the storage for the Internet that is designed to make web-scale
computing easier for developers. S3 provides a very simple interface via web services; this
makes storage and retrieval of any amount of data very simple at any time from anywhere on
the Internet. Until now, in our catalog application, we saw that there were issues in managing
the product images uploaded as a part of the creating process. The whole headache will go
away if the images are stored somewhere globally and are easily accessible from anywhere.
We will use S3 for the same purpose.

Getting ready

Amazon offers boto, a complete Python library that interfaces with Amazon Web Services via
web services. AiImost all of the AWS features can be controlled using boto. It can be installed

using pip:

$ pip install boto

207

Deployment and Post Deployment

How to do it...

Now, we should make some changes to our existing catalog application to accommodate
support for file uploads and retrieval from S3.

First, we need to store the AWS-specific configuration to allow boto to make calls to S3. Add the
following statements to the application's configuration file, that is, my _app/ init .py:

app.config['AWS ACCESS KEY'] = 'Amazon Access Key'
app.config['AWS SECRET KEY'] = 'Amazon Secret Key'
app.config['AWS BUCKET'] = 'flask-cookbook'

Next, we need to change our views . py file:

from boto.s3.connection import S3Connection

This is the import that we need from boto. Next, replace the following two lines in
create product ():

filename = secure filename (image.filename)
image.save (os.path.join(app.config['UPLOAD FOLDER'], filename))

Replace these two lines with:

filename = image.filename
conn = S3Connection(
app.config['AWS_ACCESS KEY']l, app.config['AWS_SECRET_KEY']
)
bucket = conn.create bucket (app.config['AWS BUCKET'])
key = bucket.new key(filename)
key.set contents from file(image)
key.make public()
key.set metadata(
'Content-Type', 'image/' + filename.split('.') [-1].lower()

)

The last change will go to our product . html template, where we need to change the image
src path. Replace the original img src statement with the following statement:

<img src="{{ 'https://s3.amazonaws.com/' + config['AWS BUCKET'] +
'/' + product.image path }}"/>

208

Chapter 11

Now, run the application as usual and create a product. When the created product is
rendered, the product image will take a bit of time to come up as it is now being served
from S3 (and not from a local machine). If this happens, then the integration with S3 has
been successfully done.

See also

» The next recipe, Deploying with Heroku, to see how S3 is instrumental in easy
deployment without the hassles of managing uploads on the server

Deploying with Heroku

Heroku is a cloud application platform that provides an easy and quick way to build and deploy
web applications. Heroku manages the servers, deployment, and related operations while
developers spend their time on developing applications. Deploying with Heroku is pretty simple
with the help of the Heroku toolbelt, which is a bundle of some tools that make deployment
with Heroku a cakewalk.

Getting ready

We will proceed with the application from the previous recipe that has S3 support for uploads.

As mentioned earlier, the first step will be to download the Heroku toolbelt, which can be
downloaded as per the OS from https://toolbelt.heroku.com/.

Once the toolbelt is installed, a certain set of commands will be available at the terminal;
we will see them later in this recipe.

\ It is advised that you perform Heroku deployment from a fresh
~ virtualenv where we have only the required packages for
Q our application installed and nothing else. This will make the
deployment process faster and easier.

209

Deployment and Post Deployment

Now, run the following command to log in to your Heroku account and sync your machined
SSH key with the server:

$ heroku login

Enter your Heroku credentials.
Email: shalabh7777@gmail.com
Password (typing will be hidden) :

Authentication successful.

You will be prompted to create a new SSH key if one does not exist. Proceed accordingly.

Remember! Before all this, you need to have a Heroku
i account available on https://www.heroku.com/.

How to do it...

Now, we already have an application that needs to be deployed to Heroku. First, Heroku needs
to know the command that it needs to run while deploying the application. This is done in a
file named Procfile:

web: gunicorn -w 4 my app:app

Here, we will tell Heroku to run this command to run our web application.

There are a lot of different configurations and commands that
can go into Procfile. For more details, read the Heroku
’ documentation.

Heroku needs to know the dependencies that need to be installed in order to successfully
install and run our application. This is done via the requirements. txt file:

Flask==0.10.1
Flask-Restless==0.14.0
Flask-SQLAlchemy==1.0
Flask-WTF==0.10.0
Jinja2==2.7.3
MarkupSafe==0.23
SQLAlchemy==0.9.7
WIForms==2.0.1
Werkzeug==0.9.6
boto==2.32.1

Chapter 11

gunicorn==19.1.1
itsdangerous==0.24
mimerender==0.5.4
python-dateutil==2.2
python-geoip==1.2
python-geoip-geolite2==2014.0207
python-mimeparse==0.1.4
six==1.7.3

wsgiref==0.1.2

This file contains all the dependencies of our application, the dependencies of these
dependencies, and so on. An easy way to generate this file is using the pip freeze command:

$ pip freeze > requirements.txt

This will create/update the requirements. txt file with all the packages installed
in virtualenv.

Now, we need to create a Git repo of our application. For this, we will run the following commands:
$ git init
$ git add

$ git commit -m "First Commit"

Now, we have a Git repo with all our files added.

M Make sure that you have a .gitignore file in your repo or at a
Q global level to prevent temporary files such as . pyc from being
added to the repo.

Now, we need to create a Heroku application and push our application to Heroku:

$ heroku create
Creating damp-tor-6795... done, stack is cedar

http://damp-tor-6795.herokuapp.com/ | git@heroku.com:damp-tor-
6795.git

Git remote heroku added
$ git push heroku master

After the last command, a whole lot of stuff will get printed on the terminal; this will indicate
all the packages being installed and finally, the application being launched.

Deployment and Post Deployment

After the previous commands have successfully finished, just open up the URL provided by
Heroku at the end of deployment in a browser or run the following command:

$ heroku open

This will open up the application's home page. Try creating a new product with an image and
see the image being served from Amazon S3.

To see the logs of the application, run the following command:

$ heroku logs

There's more...

There is a glitch with the deployment we just did. Every time we update the deployment via the
git push command, the SQLite database gets overwritten. The solution to this is to use the
Postgres setup provided by Heroku itself. | urge you to try this by yourself.

Deploying with AWS Elastic Beanstalk

In the last recipe, we saw how deployment to servers becomes easy with Heroku. Similarly,
Amazon has a service named Elastic Beanstalk, which allows developers to deploy their
application to Amazon EC2 instances as easily as possible. With just a few configuration options,
a Flask application can be deployed to AWS using Elastic Beanstalk in a couple of minutes.

Getting ready

We will start with our catalog application from the previous recipe, Deploying with Heroku.
The only file that remains the same from this recipe is requirement . txt. The rest of the
files that were added as a part of that recipe can be ignored or discarded for this recipe.

Now, the first thing that we need to do is download the AWS Elastic Beanstalk
command-line tool library from the Amazon website (http://aws.amazon.com/
code/6752709412171743). This will download a ZIP file that needs to be unzipped
and placed in a suitable place, preferably your workspace home.

The path of this tool should be added to the PATH environment so that the commands are
available throughout. This can be done via the export command as shown:

$ export PATH=$PATH:<path to unzipped EB CLI package>/eb/linux/python2.7/

Chapter 11
This can also be added to the ~/ .profile or ~/.bash profile file using:

export PATH=$PATH:<path to unzipped EB CLI package>/eb/linux/
python2.7/

How to do it...

There are a few conventions that need to be followed in order to deploy using Beanstalk.
Beanstalk assumes that there will be a file called application.py, which contains the
application object (in our case, the app object). Beanstalk treats this file as the WSGI file,
and this is used for deployment.

\ In the Deploying with Apache recipe, we had a file named app . wgsi
~ where we referred our app object as application because apache/
Q mod_wsgi needed it to be so. The same thing happens here too
because Amazon, by default, deploys using Apache behind the scenes.

The contents of this application.py file can be just a few lines as shown here:

from my app import app as application
import sys, logging
logging.basicConfig(stream = sys.stderr)

Now, create a Git repo in the application and commit with all the files added:
$ git init
$ git add .

$ git commit -m "First Commit"

M Make sure that you have a .gitignore file in your repo or at a
Q global level to prevent temporary files such as . pyc from being
added to the repo.

Now, we need to deploy to Elastic Beanstalk. Run the following command to do this:
$ eb init

The preceding command initializes the process for the configuration of your Elastic Beanstalk
instance. It will ask for the AWS credentials followed by a lot of other configuration options
needed for the creation of the EC2 instance, which can be selected as needed. For more
help on these options, referto http://docs.aws.amazon.com/elasticbeanstalk/
latest/dg/create deploy Python flask.html.

Deployment and Post Deployment

After this is done, run the following command to trigger the creation of servers, followed by the
deployment of the application:

$ eb start

Behind the scenes, the preceding command creates the EC2 instance

(a volume), assigns an elastic IP, and then runs the following command
s to push our application to the newly created server for deployment:

$ git aws.push

This will take a few minutes to complete. When done, you can check the status of your
application using the following command:

$ eb status -verbose

Whenever you need to update your application, just commit your changes using the git and
push commands as follows:

$ git aws.push

When the deployment process finishes, it gives out the application URL. Point your browser to
it to see the application being served.

Yet, you will find a small glitch with the application. The static content, that is, the CSS and
JS code, is not being served. This is because the static path is not correctly comprehended
by Beanstalk. This can be simply fixed by modifying the application's configuration on your
application's monitoring/configuration page in the AWS management console. See the
following screenshots to understand this better:

,r Elastic Beanstalk flask_catalog eb = Create New Environment
| - (flaskcatalogab-anv-am2ifovhhm.al K.com) ik

flask_catalog_eb » flaskcatalogeb-env At
SRR Overview £ Retresh

Configuration

Logs Health FAunning Version

Moenitering Q Graen git-OfcB07S P i

Alarms Manitor Upload and Deploy

Configuration
Events
Bdbit Amazon Linux 2014.03
Tags v1.0.4 running Pytnon 2.7

Chapter 11

Click on the Configuration menu item in the left-hand side menu.

flasl-(_catalog_ab L3 flaskcatalogeb-en\.r (Maskeatalogeb-env-am2jfbvhhrm, elasticbeanstai.com) Actions =
Dashboard Web Tier
Configuration
Logs Scaling * Instances O Notifications
Monitoring Environment type: Singls instance Instance type: t1.micra Notifications: Off
Alarms Availability Zones: Any
Events
Tags
Software Configuration L Rolling Updates L #
Leg publication: Off Rolling updates are disabled
NumProcesses: 1
NumThreads: 15
[raticFies: 5t appiiae|
WSGIPath: application.py

Notice the highlighted box in the preceding screenshot. This is what we need to change as per
our application. Open Software Settings.

Static Files

To improve performance, you can configure Apache or Nginx to serve static files from a set of directories inside your web application. Learn more.

Virtual Path (Example: /assets) Directory (Example: /static/assets)

J/static/ my_app/static/

Change the virtual path for /static/, as shown in the preceding screenshot.

After this change is made, the environment created by Elastic Beanstalk will be updated
automatically, although it will take a bit of time. When done, check the application again
to see the static content also being served correctly.

Application monitoring with Pingdom

Pingdom is a website-monitoring tool that has the USP of notifying you as soon as your
website goes down. The basic idea behind this tool is to constantly ping the website at a
specific interval, say, 30 seconds. If a ping fails, it will notify you via an e-mail, SMS, tweet, or
push notifications to mobile apps, which inform that your site is down. It will keep on pinging
at a faster rate until the site is back up again. There are other monitoring features too, but we
will limit ourselves to uptime checks in this book.

Deployment and Post Deployment

Getting ready

As Pingdom is a SaaS service, the first step will be to sign up for an account. Pingdom
offers a free trial of 1 month in case you just want to try it out. The website for the
service is https://www.pingdom. com.

We will use the application deployed to AWS in the Deploying with AWS Elastic Beanstalk
recipe to check for uptime. Here, Pingdom will send an e-mail in case the application goes
down and will send an e-mail again when it is back up.

How to do it...

After successful registration, create a check for time. Have a look at the following screenshot:

Dashboare) Monitoring B
Monitoring | soowew |
(] S
19 Dashboard
- down
EITE NAME v TYPE UP SINCE RESPONSE TIME /
Flask AWS
o e WP Down

flankcatalogeb-em-gaeusis. . | amin

As you can see, | already added a check for the AWS instance. To create a new check, click on
the ADD NEW button. Fill in the details asked by the form that comes up.

After the check is successfully created, try to break the application by consciously making a
mistake somewhere in the code and then deploying to AWS. As soon as the faulty application
is deployed, you will get an e-mail notifying you of this. This e-mail will look like:

DOWN alert: Flask AWS (flaskcatalogeb-env-gqcu2iSbbm.elasticbeanstalk.com) is = B
DOWN Inbox x
alert@pingdom.com 4:42 PM (14 minutes ago) L
to me [~

PingdomAlert DOWN:
Flask AWS (flaskcatalogeb-env-ggcu2iSbbm.elasticbeanstalk. com) is down since 0B/20/2014 12:12:23PM.

Chapter 11

Once the application is fixed and put back up again, the next e-mail should look like:

UP alert: Flask AWS (flaskcatalogeb-env-gqcu2iSbbm.elasticbeanstalk.com) is UP = H
Inbox x
alert@pingdom.com 4:46 PM (11 minutes ago) - -
to me [~

PingdomAlert UP:
Flask AWS (flaskcatalogeb-env-ggcu2iSbbm.elasticbeanstalk.com) is UP again at 08/20/2014 12:16:23PM, after 4m of

downtime.

You can also check how long the application has been up and the downtime instances from
the Pingdom administration panel.

Application performance management and

monitoring with New Relic

New Relic is an analytics software that provides near real-time operational and business
analytics related to your application. It provides deep analytics on the behavior of the application
from various aspects. It does the job of a profiler as well as eliminating the need to maintain
extra moving parts in the application. It actually works in a scenario where our application

sends data to New Relic rather than New Relic asking for statistics from our application.

Getting ready

We will use the application from the last recipe, which is deployed to AWS.

The first step will be to sign up with New Relic for an account. Follow the simple signup
process, and upon completion and e-mail verification, it will lead to your dashboard. Here,
you will have your license key available, which we will use later to connect our application
to this account. The dashboard should look like the following screenshot:

O NewRelic. " iNSiGHTS |

= Applications . . .
Get started with New Relic APM and New Relic
1 Browser
o D Choose your language
D Mobile PYTHON -
& Servers B Get your license key
@ Plugins
 Tools
(This customizes your configuration, below.)

Deployment and Post Deployment

Here, click on the large button named Reveal your license key.

How to do it...

Once we have the license key, we need to install the newrelic Python library:
$ pip install newrelic

Now, we need to generate a file called newrelic.ini, which will contain details
regarding the license key, the name of our application, and so on. This can be done
using the following commands:

$ newrelic-admin generate-config LICENSE-KEY newrelic.ini

In the preceding command, replace LICENSE-KEY with the actual license key of your
account. Now, we have a new file called newrelic.ini. Open and edit the file for the
application name and anything else as needed.

To check whether the newrelic. ini file is working successfully, run the following command:
$ newrelic-admin validate-config newrelic.ini

This will tell us whether the validation was successful or not. If not, then check the license key
and its validity.

Now, add the following lines at the top of the application's configuration file, that is,
my app/_ _init__ .py in our case. Make sure that you add these lines before
anything else is imported:

import newrelic.agent
newrelic.agent.initialize('newrelic.ini')

Now, we need to update the requirements. txt file. So, run the following command:
$ pip freeze > requirements.txt
After this, commit the changes and deploy the application to AWS using the following command:

$ git aws.push

Chapter 11

Once the application is successfully updated on AWS, it will start sending statistics to New
Relic, and the dashboard will have a new application added to it.

O New Relic. ™ |NSIGHTS

= Applications Applications Qu Filter application %
Browser 2 Name S App server 2 Throughput @ = Error % =

@ Transactions I Flask AWS Test 6.35 ms 1.33 rpm 0.00%

O Mobile

£ Servers

Open the application-specific page, and a whole lot of statistics will come across. It will also
show which calls have taken the most amount of time and how the application is performing.
You will also see multiple tabs that correspond to a different type of monitoring to cover all
the aspects.

See also

» The Deploying with AWS Elastic Beanstalk recipe to understand the deployment part
used in this recipe

12

Other Tips and Tricks

This book has covered almost all the areas needed to be known for the creation of a web
application using Flask. Much has been covered, and you need to explore more on your own.
In this final chapter, we will go through some additional recipes that can be used to add value
to the application, if necessary.

In this chapter, we will cover the following recipes:

» Full-text search with Whoosh

» Full-text search with Elasticsearch

» Working with signals

» Using caching with your application

» E-mail support for Flask applications

» Understanding asynchronous operations
» Working with Celery

Introduction

In this chapter, we will first learn how to implement full-text search using Whoosh and
Elasticsearch. Full-text search becomes important for a web application that offers a lot of
content and options, such as an e-commerce site. Next, we will catch up on signals that

help decouple applications by sending notifications (signals) when an action is performed
somewhere in the application. This action is caught by a subscriber/receiver, which can perform
an action accordingly. This is followed by implementing caching for our Flask application.

Other Tips and Tricks

We will also see how e-mail support is added to our application and how e-mails can be sent
directly from the application on different actions. We will then see how we can make our
application asynchronous. By default, WSGI applications are synchronous and blocking, that
is, by default, they do not serve multiple simultaneous requests together. We will see how to
deal with this via a small example. We will also integrate Celery with our application and see
how a task queue can be used to our application's benefit.

Full-text search with Whoosh

Whoosh is a fast, featureful, full-text indexing and searching library implemented in Python. It
has a pure Pythonic APl and allows developers to add search functionality to their applications
easily and efficiently. In this recipe, we will use a package called Flask-WhooshAlchemy, which
integrates the text-search functionality of Whoosh with SQLAIchemy for use in Flask applications.

Getting ready

The Flask-WhooshAlchemy package can be installed via pip using the following command:
$ pip install flask whooshalchemy

This will install the required packages and dependencies.

How to do it...

Integrating Whoosh with Flask using SQLAlchemy is pretty straightforward. First, we need to
provide the path to the Whoosh base directory where the index for our models will be created.
This should be done in the application's configuration, thatis, my app/ init .py:

app.config['WHOOSH BASE'] = '/tmp/whoosh'
You can choose any path you prefer, and it can be absolute or relative.

Next, we need to make some changes to our models. py file to make the string/text
fields searchable:

import flask.ext.whooshalchemy as whooshalchemy
from my app import app

class Product (db.Model) :
__searchable = ['name', 'company']
.. Rest of code as before ..
whooshalchemy.whoosh index (app, Product)

class Category (db.Model) :

222

Chapter 12

__searchable = ['name']
.. Rest of code as before ..

whooshalchemy.whoosh index (app, Category)

Notice the searchable statement that has been added to both the models. It tells
Whoosh to create index on these fields. Remember that these fields should only be of the
text or string type. The whoosh _index statements tell the application to create the index
for these models if they are not already available.

After this is done, we can add a new handler to search using Whoosh. This is to be done
inviews.py:

@catalog.route ('/product-search-whoosh')
@catalog.route (' /product-search-whoosh/<int:page>"')
def product search whoosh (page=1) :

g = request.args.get('q')

products = Product.query.whoosh search(q)

return render template (

'products.html', products=products.paginate (page, 10)
)

Here, we got the URL argument with the key as g and passed its value to the whoosh
search () method that does the full-text search in the Product model on the name and
company fields, which we had made searchable in the models earlier.

Those who have gone through the SQL-based searching recipe in Chapter 4, Working with
Views, will recall that we implemented a method that performed a search on the basis

of fields. However, here, in the case of Whoosh, we do not need to specify any field while
searching. We can type any text and if this matches the searchable fields, the results will
be shown, ordered in the rank of their relevance.

First, create some products in the application. Now, if we open http://127.0.0.1:5000/
product-search-whoosh?g=1Phone, the resulting page will list all the products that have
iPhone in their names.

M There are advanced options provided by Whoosh where we can
Q control which fields to be searched for or how the result has to be
ordered. You can explore them as per the needs of your application.

223

Other Tips and Tricks

See also

» Referto https://pythonhosted.org/Whoosh/

» Referto https://pypi.python.org/pypi/Flask-WhooshAlchemy

Full-text search with Elasticsearch

Elasticsearch is a search server based on Lucene, which is an open source information-retrieval
library. Elasticsearch provides a distributed full-text search engine with a RESTful web interface
and schema-free JSON documents. In this recipe, we will implement full-text search using
Elasticsearch for our Flask application.

Getting ready

We will use a Python library called pyelasticsearch, which makes dealing with
Elasticsearch a lot easier:

$ pip install pyelasticsearch

We also need to install the Elasticsearch server itself. This can be downloaded from
http://www.elasticsearch.org/download/. Unpack the package downloaded
and run the following command:

$ bin/elasticsearch

This will start the Elasticsearch server on http://localhost:9200/ by default.

How to do it...

To perform the integration, we will start by adding the Elasticsearch object to the application's
configuration, thatis, my _app/ init .py:

from pyelasticsearch import ElasticSearch
from pyelasticsearch.exceptions import IndexAlreadyExistsError

es = ElasticSearch('http://localhost:9200/")
try:

es.create index('catalog')
except IndexAlreadyExistsError, e:

pass

Here, we created an es object from the ElasticSearch class, which accepts the server
URL. Then, we created an index called catalog. This is done in a try-except block
because if the index already exists, then IndexAlreadyExistsError is thrown,

which we can just ignore.

224

Chapter 12

Next, we need the ability to add a document to our Elasticsearch index. This can be done in
views or models, but in my opinion, the best way will be to add it in the model layer. So, we will
do this in the models . py file:

from my app import es
class Product (db.Model) :

def add_index to es(self):
es.index('catalog', 'product', {
'name': self.name,
'category': self.category.name
|3

es.refresh('catalog')
class Category (db.Model) :

def add_index to es(self):
es.index('catalog', 'category', {
'name': self.name,

3]

es.refresh('catalog')

Here, in each of the models, we added a new method called add index to es (), which
will add the document that corresponds to the current Product or Category object to the
catalog index with the relevant document type, that is, product or category. Finally, we
refreshed our index so that the newly created index is available to be searched for.

The add_index to_es () method can be called when we create, update, or delete a product
or category. For demonstration purposes, | will just add this method while creating the product
in views.py:

from my app import es

def create_ product () :
#... normal product creation as always ...#
db.session.commit ()
product.add index to es()
#... normal process as always ...#

@catalog.route ('/product-search-es')
@catalog.route ('/product-search-es/<int:page>"')
def product_ search es(page=1):

g = request.args.get('q')

products = es.search(q)

return products

225

Other Tips and Tricks

Also, we added a product_search _es () method to allow searching on the Elasticsearch
index we just created. Do the same in the create category () method as well.

How to do it...

Now, let's say we created a few categories and products in each of the categories. Now, if we
open http://127.0.0.1:5000/product-search-es?g=galaxy, then we will get a
response like what is shown in the following screenshot:

{"hits"; {"hits": [{"_score": 0.7554128,"_type": "product”, "_id":
"cenE9YqYSVO6LIz43acxVe", "_source": {"category"”: "Phones",
"company": "Samsung", "name": "Galaxy 55"}, "_index": "catalog"},
{"_score": 0.7554128,"_type": "product”, " _id":
"XtLtchRzTCmyKZY91FTEew", "_source"; {"category": "Phones", "name";
"Galaxy 85"}, "_index": "catalog"}], "total": 2, "max_score": 0.7554128},
"_shards": {"successful": 10, "failed": 0, "total": 10}, "took": 2, "timed_out":
false}

| encourage you to try and enhance the formatting and display of the page.

Working with signals

Signals can be thought of as events that happen in our application. These events can be
subscribed by certain receivers who then invoke a function whenever the event occurs. The
occurrence of events is broadcasted by senders who can specify the arguments that can be
used by the function to be triggered by the receiver.

M You should refrain from modifying any application data in the
Q signals because signals are not executed in a specified order
and can easily lead to data corruption.

Getting ready

We will use a Python library called blinker, which provides the signals feature. Flask has
inbuilt support for blinker and uses signaling to a good extent. There are certain core
signals provided by Flask.

In this recipe, we will use the application from the Full-text search with Elasticsearch recipe and
make the addition of the product and category documents to indexes work via signals.

226

Chapter 12

How to do it...

First, we need to create signals for the product and category creation. This can be done in
models.py. This can be done in any file we want, as signals are created on the global scope:

from blinker import Namespace

catalog signals = Namespace ()

product created = catalog signals.signal ('product-created')
category created = catalog signals.signal ('category-created')

We use Namespace 1o create signals, as it will create them in a custom namespace rather
than in the global namespace and, thus, help in cleaner management of the signals. We
created two signals where the intent of the use of both is clear by their names.

Then, we need to create subscribers to these signals and attach functions to them. For this,
the add_index to_es () methods have to be removed, and new functions on the global
scope have to be created:

def add product index to_ es(sender, product):
es.index('catalog', 'product', {
'name': product.name,
'category': product.category.name
3]

es.refresh('catalog')
product created.connect (add product index to es, app)

def add category index to es(sender, category):
es.index('catalog', 'category', {
'name': category.name,
3]

es.refresh('catalog"')

category created.connect (add category index to _es, app)

In the preceding code snippet, we created subscribers to the signals created earlier using
.connect (). This method accepts the function that should be called when the event occurs;
it also accepts the sender as an optional argument. The app object is provided as the sender
because we do not want our function to be called every time the event is triggered anywhere
in any application. This specifically holds true in the case of extensions, which can be used

by multiple applications. The function that gets called by the receiver gets the sender as

the first argument, which defaults to none if the sender is not provided. We provided the
product/category as the second argument for which the record needs to be added to the
Elasticsearch index.

227

Other Tips and Tricks

Now, we just need to emit the signal that can be caught by the receiver. This needs to be
done in views.py. For this, we just need to remove the calls to the add_index_to_es()
methods and replace them with the . send () methods:

from my app.catalog.models import product created, category created

def create_ product () :
#... normal product creation as always ...#
db.session.commit ()
product created.send(app, product=product)
product.add index to_es()
#... normal process as always ...#

Do the same in the create_category () method as well.

Whenever a product is created, the product _created signal is emitted, with the app object
as the sender and the product as the keyword argument. This is then caught in models.py,
and the add_product_index_to_es () function is called, which adds the document to the
catalog index.

» The Full-text search with Elasticsearch recipe for background information on
this recipe

» Referto https://pypi.python.org/pypi/blinker
» Refertohttp://flask.pocoo.org/docs/0.10/signals/#core-signals

» Signals provided by Flask-SQLAIchemy can be found at https://pythonhosted.
org/Flask-SQLAlchemy/signals.html

Using caching with your application

Caching becomes an important and integral part of any web application when scaling or
increasing the response time of your application becomes a question. Caching is the first
thing that is implemented in these cases. Flask, by itself, does not provide any caching
support by default, but Werkzeug does. Werkzeug has some basic support to cache with
multiple backends, such as Memcached and Redis.

228

Chapter 12

Getting ready

We will install a Flask extension called Flask-Cache, which simplifies the process of caching
a lot:

$ pip install Flask-Cache

We will use our catalog application for this purpose and implement caching for some methods.

How to do it...

First, we need to initialize Cache to work with our application. This is done in the application's
configuration, thatis, my _app/ init .py:

from flask.ext.cache import Cache

cache = Cache(app, config={'CACHE TYPE': 'simple'})

Here, we used simple as the Cache type where the cache is stored in the memory. This is
not advised for production environments. For production, we should use something such as
Redis, Memcached, filesystem cache, and so on. Flask-Cache supports all of them with a
couple more backends.

Next, we need to add caching to our methods; this is pretty simple to implement. We just
need to add a @cache.cached (timeout=<time in seconds>) decorator to our view
methods. A simple target can be the list of categories (we will do this in views.py):

from my app import cache

@catalog.route ('/categories')
@cache.cached (timeout=120)
def categories() :
Fetch and display the list of categories

This way of caching stores the value of the output of this method in the cache in the form of a
key-value pair, with the key as the request path.

After adding the preceding code, to check whether the cache works as expected, first fetch the
list of categories by pointing the browser to http://127.0.0.1:5000/categories. This
will save a key-value pair for this URL in the cache. Now, create a new category quickly and
navigate back to the same category list page. You will notice that the newly added category is
not listed. Wait for a couple of minutes and then reload the page. The newly added category
will be shown now. This is because the first time the category list was cached, it expired after
2 minutes, that is, 120 seconds.

229

Other Tips and Tricks

This might seem to be a fault with the application, but in the case of large applications, this
becomes a boon where the hits to the database are reduced, and the overall application
experience improves. Caching is usually implemented for those handlers whose results

do not get updated frequently.

There's more...

Many of us might think that such caching will fail in the case of a single category or product
page, where each record has a separate page. The solution to this is memoization. It is
similar to cache with the difference that it stores the result of a method in the cache along
with the information on the parameters passed. So, when a method is created with the same
parameters multiple times, the result is loaded from the cache rather than making a database
hit. Implementing memoization is again quite simple:

@catalog.route ('/product/<id>")
@cache .memoize (120)
def product (id) :

Fetch and display the product

Now, if we call a URL, say http://127.0.0.1:5000/product/1 in our browser, the first
time it will be loaded after making calls to the database. However, the next time, if we make
the same call, the page will be loaded from the cache. On the other hand, if we open another
product, say, http://127.0.0.1:5000/product/2, then it will be loaded after fetching
the product details from the database.

» Read more about Flask-Cache at https://pythonhosted.org/Flask-Cache/

» Read more about memoization at http://en.wikipedia.org/wiki/
Memoization

E-mail support for Flask applications

The ability to send e-mails is usually one of the most basic functions of any web application.
It is usually easy to implement with any application. With Python-based applications, it is
also quite simple to implement with the help of smtplib. In the case of Flask, this is further
simplified by an extension called Flask-Mail.

Getting ready

Flask-Mail can be easily installed via pip:

$ pip install Flask-Mail

230

Chapter 12

Let's take a simple case where en e-mail will be sent to a catalog manager in the application
whenever a new category is added.

How to do it...

First, we need to instantiate the Mail object in our application's configuration, that is,
my app/ init .py:

from flask mail import Mail

app.config['MAIL SERVER'] = 'smtp.gmail.com'
app.config['MAIL PORT'] = 587

app.config['MAIL USE TLS'] = True

app.config['MAIL USERNAME'] = 'gmail username'

app.config['MAIL PASSWORD'] = 'gmail password'
app.config['MAIL DEFAULT SENDER'] = ('Sender name', 'sender email')

mail = Mail (app)

Also, we need to do some configuration to set up the e-mail server and sender account. The
preceding code is a sample configuration for Gmail accounts. Any SMTP server can be set up
like this. There are several other options provided; they can be looked up in the Flask-Mail
documentation at https://pythonhosted.org/Flask-Mail.

To send an e-mail on category creation, we need to make the following changes in views.py:

from my app import mail
from flask mail import Message

@catalog.route ('/category-create', methods=['GET', 'POST'])
def create_category() :
.. Create category ..
db.session.commit ()
message = Message (
"New category added",
recipients=['some-receiver@domain.com']
)
message.body = 'New category "%$s" has been created' %
category.name
mail.send (message)
.. Rest of the process ..

Here, a new e-mail will be sent to the list of recipients from the default sender configuration
that we created.

231

Other Tips and Tricks

Now, let's assume that we need to send a large e-mail with a lot of HTML content. Writing all
this in our Python file will make the overall code ugly and unmanageable. A simple solution
to this is to create templates and render their content while sending e-mails. | created two
templates: one for the HTML content and one simply for text content.

The category-create-email-text.html template will look like this:

A new category has been added to the catalog.

The name of the category is {{ category.name }}.
Click on the URL below to access the same:
{{ url for('catalog.category', id=category.id, _external = True) }}

This is an automated email. Do not reply to it.
The category-create-email-html.html template will look like this:

<p>A new category has been added to the catalog.</p>

<p>The name of the category is <a href="{{ url for('catalog.category',

id=category.id, _external = True) }}">
<h2>{{ category.name }}</h2>
.
</p>

<p>This is an automated email. Do not reply to it.</p>

After this, we need to modify our procedure of creating e-mail messages that we did earlier in
the views.py file:

message.body = render template(
"category-create-email-text.html",
category=category

)

message.html = render template(
"category-create-email-html.html",
category=category

» Read the next recipe, Understanding asynchronous operations, to see how we can
delegate the time-consuming e-mail sending process to an asynchronous thread
and speed up our application

232

Chapter 12

Understanding asynchronous operations

Some of the operations in a web application can be time-consuming and make the overall
application feel slow for the user, even though it's not actually slow. This decreases the user
experience significantly. To deal with this, the simplest way to implement the asynchronous
execution of operations is with the help of threads. In this recipe, we will implement it using the
thread and threading libraries of Python. The threading library is simply an interface over
thread; it provides more functionality and hides things that are normally not used by users.

Getting ready

We will use the application from the E-mail support for Flask applications recipe. Many of
us will have noticed that while the e-mail is being sent, the application waits for the whole
process to finish, which is actually unnecessary. E-mail sending can be easily done in the
background, and our application can become available to the user instantaneously.

How to do it...

Doing an asynchronous execution with the thread library is very simple. Just add the
following code to views.py:

import thread

def send mail (message) :
with app.app_context () :
mail.send (message)

Replace the line below in create category ()
#mail.send (message)

by

thread.start new thread(send mail, (message,))

As you can see, the sending of an e-mail happens in a new thread, which sends the message
as a parameter to the newly created method. We need to create a new send mail () method
because our e-mail templates contain url_ for, which can be executed only inside an
application context; this won't be available in the newly created thread by default.

Alternatively, sending an e-mail can also be done using the threading library:
from threading import Thread
Replace the previously added line in create category() by

new_thread = Thread(target=send mail, args=[message])
new_thread.start ()

233

Other Tips and Tricks

Effectively, the same thing happens as earlier but the threading library provides the
flexibility of starting the thread whenever needed instead of creating and starting the
thread at the same time.

It is pretty simple to observe how this works. Compare the performance of this type of
execution with the application in the previous recipe, E-mail support for Flask applications.
You will notice that the application is more responsive. Another way can be to monitor the
debug logs, where the newly created category's page will load before the e-mail is sent.

Working with Celery

Celery is a task queue for Python. Earlier, there used to be an extension to integrate Flask and
Celery, but with Celery 3.0, it became obsolete. Now, Celery can be directly used with Flask

by just using a bit of configuration. In the Understanding asynchronous operations recipe, we
implemented asynchronous processing to send an e-mail. In this recipe, we will implement it
using Celery.

Getting ready

Celery can be installed simply from PyPI:
$ pip install celery

To make Celery work with Flask, we will need to modify our Flask app config file a bit. Here, we
will use Redis as the broker (thanks to its simplicity).

We will use the application from the previous recipe and implement Celery in it.

How to do it...

The first thing that we need to do is a bit of configuration in the application's configuration file,
thatis, my app/ init .py:

from celery import Celery
app.config.update (

CELERY_BROKER URL='redis://localhost:6379',
CELERY RESULT BACKEND='redis://localhost:6379'

def make celery(app) :
celery = Celery(

Chapter 12

app.import name, broker=app.config['CELERY BROKER URL']
)
celery.conf.update (app.config)
TaskBase = celery.Task
class ContextTask (TaskBase) :

abstract = True

def call (self, *args, **kwargs):

with app.app_context () :
return TaskBase. call (self, *args, **kwargs)

celery.Task = ContextTask
return celery

The preceding snippet comes directly from the Flask website and can be used as is in your
application in most cases:

celery = make celery(app)
To run the Celery process, execute the following command:

$ celery worker -b redis://localhost:6379 --app=my app.celery -1 INFO

Make sure that Redis is also running on the broker URL,
s as specified in the configuration.

Here, -b points to the broker, and —app points to the celery object that is created in the
configuration file.

Now, we just need to use this celery object in our views.py file to send e-mails
asynchronously:

from my app import celery

@celery.task ()
def send mail (message) :
with app.app_context () :
mail.send (message)

Add this line wherever the email needs to be sent
send mail.apply async((message,))

We add the @celery. task decorator to any method that we wish to be used as a Celery
task. The Celery process will detect these methods automatically.

235

Other Tips and Tricks

Now, when we create a category and an e-mail is sent, we can see a task being run on the
Celery process logs, which will look like this:

[2014-08-28 01:16:47,365: INFO/MainProcess] Received task: my app.
catalog.views.send mail [d2ca07ae-6b47-4b76-9935-17b826cdc340]

[2014-08-28 01:16:55,695: INFO/MainProcess] Task my app.catalog.
views.send mail [d2ca07ae-6b47-4b76-9935-17b826cdc340] succeeded in
8.329121886s: Nomne

» Refer to the Understanding asynchronous operations recipe to see how threads can
be used for various purposes, in our case, to send e-mails

» Read more about Celery at http://docs.celeryproject.org/en/latest/
index.html

236

A

abort() method 28
admin interface
creating, for Flask app 137
CRUD interface, creating 138-143
user roles, creating 153-156
Alembic
about 49
used, for database migration 49-51
AngularJS 68
Apache
Flask app, deploying 196-199
application
monitoring, New Relic used 217, 218
monitoring, Pingdom used 215-217
Application Programming Interface (API) 125
Asynchronous JavaScript
XMLHttpRequest (Ajax) 68
asynchronous operations 233
authentication
implementing, with Facebook 115-118
implementing, with Flask-Login 107-110
implementing, with Google 119-121
implementing, with OpenID 110-114
implementing, with Twitter 122-124
session-based authentication,
implementing 100-106
AWS Elastic Beanstalk
about 212
URL, for downloading 212
used, for deploying Flask app 212-215

B
BackbonelS 68

Index

basic file logging
setting up 170-172
basic Product model
creating 42-45
blinker library
about 226
URL 175
block composition, Jinja2 27-31
blueprints
about 19
used, for creating modular web app 19, 20
Bootstrap
URL 26
using 26
Bootstrap layout
structuring 24-26
boto 207

C

caching

about 228

using, with application 229
Celery

about 234

URL 236

working with 234-236
CKEditor 151
class-based REST interface

creating 126-128
class-based settings,

Flask configurations 12,13
class-based views 60-62
common forms set

creating, WTForms used 86-88
configuration, Flask 11

Create, Read, Update, and Delete interface.

See CRUD interface
Cross-site Request Forgery. See CSRF
cross-site scripting (XSS) 83
CRUD interface

about 138

creating 138-143
CSRF

about 96

preventing, with Flask-WTF 96-98

URL 96
custom 404 handlers

creating 72,73
custom 500 handlers

creating 72,73
custom actions

creating 148-151
custom context processor

creating 32, 33
custom fields

creating 88-90
custom forms

creating 148-151
custom lJinja2 filter

creating 33, 34
custom macro

creating, for forms 35
custom validation

creating 88-90
custom widget

creating 90-92

D

database
migrating, Alembic used 49-51
migrating, Flask-Migrate used 49-51
database URLs
reference link 40
date and time
formatting, with Moment.js 36
debugging
pdb, used 178, 179
decorator
reference link, for creating 71
used, for handling XHR requests 71, 72

238

Elasticsearch
about 224
full-text search, performing with 224-226
URL, for downloading 224
e-mail support
providing, for Flask applications 231
error handling
e-mails, sending 173
exceptions
monitoring, Sentry used 174-177
extension-based REST interface
creating 128-130

F

Fabric
about 205
used, for deploying Flask app 205-207
Facebook
using, for authentication 115-118
Facebook developer
URL 116
field validation
adding, WTForms used 83-85
files
uploading via forms, Flask-WTF used 92-95
Flask
about 7,8
authentication 99
configuration 11
example 8
Jinja2 support 24
setting, with virtualenv 8-10
views 57
Flask app
admin interface, creating 137
deploying, Fabric used 205-207
deploying, with Apache 196-199
deploying, with AWS Elastic
Beanstalk 212-215
deploying, with Gunicorn 202, 203
deploying, with Heroku 209-211
deploying, with Nginx 199-201
deploying, with Supervisor 202, 203

deploying, with Tornado 204, 205
deploying, with uWSGI 199-201
e-mail support, providing for 231
GET/POST request 59
GET request 58
installing, setuptools used 21, 22
POST request 58
Flask-Admin extension (Flask-Admin)
about 138, 143
URL 138
used, for registering models 146-148
using 143-145
Flask-Babel
about 160
URL, for documentation 164
used, for adding language 160-164
Flask-Cache
about 229
URL 230
Flask-Classy
about 128
URL 128
Flask configurations
class-based settings 12, 13
deployment-specific files, managing with
instance folders 15
models composition 16-18
modular web app, creating with
blueprints 19, 20
static files, organizing 14
views composition 16-18
Flask-Login
URL, for documentation 108
used, for implementing
authentication 107-110
Flask-Mail
about 230
URL, for documentation 231
Flask-Migrate
about 49
installing 49
used, for database migration 49-51
Flask-OpeniD 111
Flask-Restful
using 131
Flask-Restless
URL, for documentation 131

using 128
Flask-SQLAIchemy 40
Flask-WhooshAlchemy package 222
Flask-WTF

about 80

installing 80

URL 80

used, for CSRF protection 96-98

used, for uploading files via forms 92-95
form

building, with SQLAIchemy model 80-83
full-text search

performing, with Elasticsearch 224-226

performing, with Whoosh 222, 223
function-based views

writing 58, 59

G

get_id() method 108
gettext() function 164-166
GitHub
URL 124
global language-switching action
implementing 166-168
Google
using, for authentication 119-121
Google developer console
URL 119
Gunicorn
about 202
Flask app, deploying with 202, 203

H

Heroku

about 209

URL 210

used, for deploying Flask app 209-211
Heroku toolbelt

URL, for downloading 209
HTTP requests

DELETE 126

GET 126

PATCH 126

POST 126

PUT 126

239

internationalization (i18n) 160
is_active() method 108
is_anonymous() method 108
is_authenticated() method 108

J

Jinja2
block composition 26-31
Bootstrap layout, structuring 24-26
custom context processor, creating 32, 33
custom Jinja2 filter, creating 33, 34
custom macro, creating for forms 35
layout inheritance 26-31
URL, for documentation 26
using 24

L

language

adding, Flask-Babel used 160-164
layout inheritance, Jinja2 26-31
lazy evaluation 164-166
LinkedIn

URL 124
localization (1120n) 160

macros, Jinja2 35
memoization
about 230
URL 230
messages
flashing, for user feedback 74-76
mocking
about 187
using 187-189
model data indexing
with Redis 52, 53
models
composing 16-18
registering, Flask-Admin used 146-148
mod_wsgi
installing 197
URL 197

210

using 196
Moment.js

URL 37

used, for formatting date and time 36
MongoDB

installing 54

NoSQL, opting with 53-56

URL, for installing 54

using 53

New Relic

about 217

used, for monitoring application 217,218
ngettext() function 164-166
Nginx

about 199

URL 201

used, for deploying Flask app 199-201
Nose

about 185

URL, for documentation 186

used, for executing tests 185, 186
NoSQL

about 53

opting, with MongoDB 53-56

0

OAuth 115
Object Relational
Mapping/Modeling (ORM) 40
OpeniD
about 110
reference link 110
used, for authentication 110-114

P

paginate() method
about 64
error_out argument 64
page argument 64
per_page argument 64
pdb
URL, for documentation 179
using, for debugging 178, 179

Pingdom

about 215

URL 216

used, for monitoring application 215-217
Poedit

URL 162
product-based pagination

adding, to applications 63

implementing 62-64
profiling

about 192

using 192, 193
psycopg2 40
pyelasticsearch library 224
python-openid library 111
Python's logging library

URL, for documentation 172
pytz 160

Raven 175
Redis

URL 52

used, for model data indexing 52, 53
relational Category model

creating 46-49
relying parties 110
REpresentational State Transfer (REST) 125
REST API

creating 133-135

S

S3 storage
used, for file uploads 207, 208
Sentry
about 170
URL 174
used, for monitoring exceptions 174-177
using 196
session-based authentication
implementing 100-106
setuptools
used, for installing Flask app 21, 22
signals
about 226
working with 227, 228

signals, Flask-SQLAIchemy
URL 228
speaklater 160
SQLAIchemy 40
SQLAIchemy DB instance
creating 40-42
SQLAIchemy-independent REST API
creating 131, 132
SQLAIchemy model
used, for building form 80-83
SQL-based search
implementing 77,78
static files
organizing, for Flask configurations 14
Supervisor
about 202
Flask app, deploying with 202, 203

T

templates
views, rendering to 64-68
test coverage
determining 190, 191
tests
creating 179-181
creating, for logic 181-184
creating, for views 181-184
executing, Nose used 185, 186
textarea
integrating, WYSIWYG used 151-153
threading library 233
Tornado
about 204
Flask app, deploying with 204, 205
limitations 204
URL 204
Twitter
URL 122
using, for authentication 122-124

U

URL routes
implementing 62-64
writing 58, 59

user roles, admin interface
creating 153-156

1

uWsaGl
about 199
URL 201
used, for deploying Flask app 199-201

Vv

views
about 57
class-based views, writing 60-62
composing 16-18
custom 404 handlers, creating 72, 73
custom 500 handlers, creating 72, 73
function-based views, writing 58, 59
messages, flashing for user feedback 74-76
product-based pagination,
implementing 62-64
rendering, to templates 64-68
SQL-based searching, implementing 77, 78
URL routes, implementing 62, 63
URL routes, writing 58, 59
XHR requests, handling with 69, 70
XHR requests, handling with decorator 71, 72
virtualenv
installing, pip used 9
used, for setting Flask 8-10

242

virtualenvwrapper
using 10

w

Web Server Gateway Interface (WSGI) 8
What you see is what you get. See WYSIWYG
Whoosh

about 222

full-text search, performing with 222, 223
WTForms

about 80

URL, for widgets 91

used, for adding field validation 83-85

used, for creating common forms set 86-88
WYSIWYG

about 151

using, for textarea integration 151-153

X

XHR requests
handling, decorator used 71, 72
handling, with views 69, 70
XMLHttpRequest (XHR) 68

open source

community experience distilled

PUBLISHING

Thank you for buying
Flask Framework Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Instant Flask Web

Development
ISBN: 978-1-78216-962-8 Paperback: 78 pages

Tap into Flask to build a complete application in a style
that you control

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

t | Fast | Focused

Flask Web Development 2. Build a small but complete web application with
Python and Flask.

3. Explore the basics of web page layout using
Twitter Bootstrap and jQuery.

Ron DuPlain

4. Getto know how to validate data entry using
HTML forms and WTForms.

Learning Python Design

Patterns
ISBN: 978-1-78328-337-8 Paperback: 100 pages

A practical and fast-paced guide exploring Python
design patterns

1. Explore the Model-View-Controller pattern and
learn how to build a URL shortening service.

2. All design patterns use a real-world example that
can be modified and applied in your software.

3. No unnecessary theory! The book consists of
only the fundamental knowledge that you need
to know.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Python Data Visualization
Cookbook

ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1. Learn how to set up an optimal Python

Python Data Visualization environment for data visualization.

Cookbook) . .
2. Understand topics such as importing data for

visualization and formatting data for visualization.

3. Understand the underlying data and how to use
the right visualizations.

Mastering Python Regular
Expressions
ISBN: 978-1-78328-315-6 Paperback: 110 pages

Leverage regular expressions in Python even for the
most complex features

1. Explore the workings of regular expressions
in Python.

Mastering Python
Regular Expressions

2. Learn all about optimizing regular expressions
using RegexBuddy.

3. Full of practical and step-by-step examples,
tips for performance, and solutions for
performance-related problems faced

by users all over the world.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Flask Configurations
	Introduction
	Environment setup with virtualenv
	Handling basic configurations
	Class-based settings
	Organization of static files
	Being deployment specific with instance folders
	Composition of views and models
	Creating a modular web app with blueprints
	Making a Flask app installable using setuptools

	Chapter 2: Templating with Jinja2
	Introduction
	Bootstrap layout
	Block composition and layout inheritance
	Creating a custom context processor
	Creating a custom Jinja2 filter
	Creating a custom macro for forms
	Advanced date and time formatting

	Chapter 3: Data Modeling in Flask
	Introduction
	Creating a SQLAlchemy DB instance
	Creating a basic product model
	Creating a relational category model
	Database migration using Alembic and Flask-Migrate
	Model data indexing with Redis
	Opting the NoSQL way with MongoDB

	Chapter 4: Working with Views
	Introduction
	Writing function-based views and URL routes
	Class-based views
	URL routing and product-based pagination
	Rendering to templates
	Dealing with XHR requests
	Decorator to handle requests beautifully
	Creating custom 404 and 500 handlers
	Flashing messages for better user feedback
	SQL-based searching

	Chapter 5: Webforms with WTForms
	Introduction
	SQLAlchemy model data as form representation
	Validating fields on the server side
	Creating a common forms set
	Creating custom fields and validation
	Creating a custom widget
	Uploading files via forms
	Cross-site Request Forgery protection

	Chapter 6: Authenticating in Flask
	Introduction
	Simple session-based authentication
	Authenticating using the Flask-Login extension
	Using OpenID for authentication
	Using Facebook for authentication
	Using Google for authentication
	Using Twitter for authentication

	Chapter 7: RESTful API Building
	Introduction
	Creating a class-based REST interface
	Creating an extension-based REST interface
	Creating a SQLAlchemy-independent
REST API
	A complete REST API example

	Chapter 8: Admin Interface for Flask Apps
	Introduction
	Creating a simple CRUD interface
	Using the Flask-Admin extension
	Registering models with Flask-Admin
	Creating custom forms and actions
	WYSIWYG for textarea integration
	Creating user roles

	Chapter 9: Internationalization and Localization
	Introduction
	Adding a new language
	Lazy evaluation and the gettext/ngettext functions
	Global language-switching action

	Chapter 10: Debugging, Error Handling, and Testing
	Introduction
	Setting up basic file logging
	Sending e-mails on the occurrence of errors
	Using Sentry to monitor exceptions
	Debugging with pdb
	Creating our first simple test
	Writing more tests for views and logic
	Nose library integration
	Using mocking to avoid real API access
	Determining test coverage
	Using profiling to find bottlenecks

	Chapter 11: Deployment and Post Deployment
	Introduction
	Deploying with Apache
	Deploying with uWSGI and Nginx
	Deploying with Gunicorn and Supervisor
	Deploying with Tornado
	Using Fabric for deployment
	S3 storage for file uploads
	Deploying with Heroku
	Deploying with AWS Elastic Beanstalk
	Application monitoring with Pingdom
	Application performance management and monitoring with New Relic

	Chapter 12: Other Tips and Tricks
	Introduction
	Full-text search with Whoosh
	Full-text search with Elasticsearch
	Working with signals
	Using caching with your application
	E-mail support for Flask applications
	Understanding asynchronous operations
	Working with Celery

	Index

