
The Python/C API
Release 3.7.5

Guido van Rossum
and the Python development team

October 24, 2019

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Coding standards . 3
1.2 Include Files . 3
1.3 Useful macros . 4
1.4 Objects, Types and Reference Counts . 5
1.5 Exceptions . 8
1.6 Embedding Python . 10
1.7 Debugging Builds . 10

2 Stable Application Binary Interface 13

3 The Very High Level Layer 15

4 Reference Counting 21

5 Exception Handling 23
5.1 Printing and clearing . 23
5.2 Raising exceptions . 24
5.3 Issuing warnings . 26
5.4 Querying the error indicator . 27
5.5 Signal Handling . 28
5.6 Exception Classes . 29
5.7 Exception Objects . 29
5.8 Unicode Exception Objects . 29
5.9 Recursion Control . 31
5.10 Standard Exceptions . 31
5.11 Standard Warning Categories . 33

6 Utilities 35
6.1 Operating System Utilities . 35
6.2 System Functions . 37
6.3 Process Control . 38
6.4 Importing Modules . 38
6.5 Data marshalling support . 42
6.6 Parsing arguments and building values . 43
6.7 String conversion and formatting . 50
6.8 Reflection . 51
6.9 Codec registry and support functions . 52

7 Abstract Objects Layer 55
7.1 Object Protocol . 55
7.2 Number Protocol . 59
7.3 Sequence Protocol . 62
7.4 Mapping Protocol . 64
7.5 Iterator Protocol . 64

i

7.6 Buffer Protocol . 65
7.7 Old Buffer Protocol . 71

8 Concrete Objects Layer 73
8.1 Fundamental Objects . 73
8.2 Numeric Objects . 74
8.3 Sequence Objects . 79
8.4 Container Objects . 103
8.5 Function Objects . 107
8.6 Other Objects . 110

9 Initialization, Finalization, and Threads 127
9.1 Before Python Initialization . 127
9.2 Global configuration variables . 128
9.3 Initializing and finalizing the interpreter . 129
9.4 Process-wide parameters . 130
9.5 Thread State and the Global Interpreter Lock . 133
9.6 Sub-interpreter support . 138
9.7 Asynchronous Notifications . 139
9.8 Profiling and Tracing . 139
9.9 Advanced Debugger Support . 141
9.10 Thread Local Storage Support . 141

10 Memory Management 145
10.1 Overview . 145
10.2 Raw Memory Interface . 146
10.3 Memory Interface . 146
10.4 Object allocators . 148
10.5 Default Memory Allocators . 148
10.6 Customize Memory Allocators . 149
10.7 The pymalloc allocator . 150
10.8 tracemalloc C API . 151
10.9 Examples . 151

11 Object Implementation Support 153
11.1 Allocating Objects on the Heap . 153
11.2 Common Object Structures . 154
11.3 Type Objects . 158
11.4 Number Object Structures . 171
11.5 Mapping Object Structures . 172
11.6 Sequence Object Structures . 172
11.7 Buffer Object Structures . 173
11.8 Async Object Structures . 174
11.9 Supporting Cyclic Garbage Collection . 175

12 API and ABI Versioning 177

A Glossary 179

B About these documents 191
B.1 Contributors to the Python Documentation . 191

C History and License 193
C.1 History of the software . 193
C.2 Terms and conditions for accessing or otherwise using Python . 194
C.3 Licenses and Acknowledgements for Incorporated Software . 197

D Copyright 209

Index 211

ii

The Python/C API, Release 3.7.5

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to extending-index, which describes the general principles of extension writing but does
not document the API functions in detail.

CONTENTS 1

The Python/C API, Release 3.7.5

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.
Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.
Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.
These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.
h>, <assert.h> and <stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python.h before any standard headers are included.
It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments
and building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not
be used by extension writers. Structure member names do not have a reserved prefix.

3

https://www.python.org/dev/peps/pep-0007

The Python/C API, Release 3.7.5

Note: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/
include/pythonversion/ and exec_prefix/include/pythonversion/, where prefix and
exec_prefix are defined by the corresponding parameters to Python’s configure script and version is '%d.
%d' % sys.version_info[:2]. On Windows, the headers are installed in prefix/include, where
prefix is the installation directory specified to the installer.
To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers
from exec_prefix.
C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.
Py_UNREACHABLE()

Use this when you have a code path that you do not expect to be reached. For example, in the default:
clause in a switch statement for which all possible values are covered in case statements. Use this in places
where you might be tempted to put an assert(0) or abort() call.
New in version 3.7.

Py_ABS(x)
Return the absolute value of x.
New in version 3.3.

Py_MIN(x, y)
Return the minimum value between x and y.
New in version 3.3.

Py_MAX(x, y)
Return the maximum value between x and y.
New in version 3.3.

Py_STRINGIFY(x)
Convert x to a C string. E.g. Py_STRINGIFY(123) returns "123".
New in version 3.4.

Py_MEMBER_SIZE(type, member)
Return the size of a structure (type) member in bytes.
New in version 3.6.

Py_CHARMASK(c)
Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to
an unsigned char.

Py_GETENV(s)
Like getenv(s), but returns NULL if -E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

4 Chapter 1. Introduction

The Python/C API, Release 3.7.5

Py_UNUSED(arg)
Use this for unused arguments in a function definition to silence compiler warnings, e.g. PyObject*
func(PyObject *Py_UNUSED(ignored)).
New in version 3.4.

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyObject*. This type
is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it
is only fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you
never declare an automatic or static variable of type PyObject, only pointer variables of type PyObject* can
be declared. The sole exception are the type objects; since these must never be deallocated, they are typically static
PyTypeObject objects.
All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of
the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check(a)
is true if (and only if) the object pointed to by a is a Python list.

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s
an obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)
Reference counts are alwaysmanipulated explicitly. The normal way is to use themacroPy_INCREF() to increment
an object’s reference count by one, and Py_DECREF() to decrement it by one. The Py_DECREF() macro is
considerablymore complex than the incref one, since it must checkwhether the reference count becomes zero and then
cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure.
The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object
if this is a compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assuming sizeof(Py_ssize_t) >= sizeof(void*)).
Thus, the reference count increment is a simple operation.
It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python;
the call mechanism guarantees to hold a reference to every argument for the duration of the call.
However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user from a Py_DECREF(),
so almost any operation is potentially dangerous.
A safe approach is to always use the generic operations (functions whose name begins with PyObject_,
PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of the

1.4. Objects, Types and Reference Counts 5

The Python/C API, Release 3.7.5

object they return. This leaves the caller with the responsibility to call Py_DECREF() when they are done with the
result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by calling Py_DECREF() or Py_XDECREF() when it’s no longer needed—or passing on
this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.
Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.
Few functions steal references; the two notable exceptions are PyList_SetItem() and
PyTuple_SetItem(), which steal a reference to the item (but not to the tuple or list into which the item
is put!). These functions were designed to steal a reference because of a common idiom for populating a tuple or
list with newly created objects; for example, the code to create the tuple (1, 2, "three") could look like this
(forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyLong_FromLong(1L));
PyTuple_SetItem(t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t, 2, PyUnicode_FromString("three"));

Here, PyLong_FromLong() returns a new reference which is immediately stolen by PyTuple_SetItem().
When you want to keep using an object although the reference to it will be stolen, use Py_INCREF() to grab another
reference before calling the reference-stealing function.
Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.
Equivalent code for populating a list can be written using PyList_New() and PyList_SetItem().
However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue(), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *list;

tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given
item:

int
set_all(PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

(continues on next page)

6 Chapter 1. Introduction

The Python/C API, Release 3.7.5

(continued from previous page)

n = PyObject_Length(target);
if (n < 0)

return -1;
for (i = 0; i < n; i++) {

PyObject *index = PyLong_FromSsize_t(i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {

Py_DECREF(index);
return -1;

}
Py_DECREF(index);

}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_GetItem() and PySequence_GetItem(), always return a new reference (the caller becomes
the owner of the reference).
It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you
extract an item from a list using PyList_GetItem(), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem() (which happens to take exactly the same arguments),
you do own a reference to the returned object.
Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem(), and once using PySequence_GetItem().

long
sum_list(PyObject *list)
{

Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())

/* Integer too big to fit in a C long, bail out */
return -1;

total += value;
}
return total;

}

long
sum_sequence(PyObject *sequence)
{

Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

(continues on next page)

1.4. Objects, Types and Reference Counts 7

The Python/C API, Release 3.7.5

(continued from previous page)
n = PySequence_Length(sequence);
if (n < 0)

return -1; /* Has no length */
for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check(item)) {

value = PyLong_AsLong(item);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())

/* Integer too big to fit in a C long, bail out */
return -1;

total += value;
}
else {

Py_DECREF(item); /* Discard reference ownership */
}

}
return total;

}

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int, long, double and char*. A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.
For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred().
These exceptions are always explicitly documented.
Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded applica-
tion). A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, andNULL otherwise. There are a number of functions to set the exception state: PyErr_SetString()
is the most common (though not the most general) function to set the exception state, and PyErr_Clear() clears
the exception state.
The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info();
however, they are not the same: the Python objects represent the last exception being handled by a Python try…
except statement, while the C level exception state only exists while an exception is being passed on between C
functions until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.
exc_info() and friends.

8 Chapter 1. Introduction

The Python/C API, Release 3.7.5

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc_info(), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.
As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception— that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown in the sum_sequence() example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:

item = dict[key]
except KeyError:

item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)
{

/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong(0L);
if (item == NULL)

goto error;
}
const_one = PyLong_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */

(continues on next page)

1.5. Exceptions 9

The Python/C API, Release 3.7.5

(continued from previous page)
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned
references are initialized to NULL for this to work; likewise, the proposed return value is initialized to -1 (failure)
and only set to success after the final call made is successful.

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.
The basic initialization function is Py_Initialize(). This initializes the table of loadedmodules, and creates the
fundamental modules builtins, __main__, and sys. It also initializes the module search path (sys.path).
Py_Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a call to PySys_SetArgvEx(argc, argv,
updatepath) after the call to Py_Initialize().
On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py_Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory named lib/pythonX.Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).
For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries
are in /usr/local/lib/pythonX.Y. (In fact, this particular path is also the “fallback” location, used when no
executable file named python is found along PATH.) The user can override this behavior by setting the environment
variable PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.
The embedding application can steer the search by calling Py_SetProgramName(file) before calling
Py_Initialize(). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front
of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), and Py_GetProgramFullPath() (all
defined in Modules/getpath.c).
Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make
another call to Py_Initialize()) or the application is simply done with its use of Python and wants to
free memory allocated by Python. This can be accomplished by calling Py_FinalizeEx(). The function
Py_IsInitialized() returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter. Notice that Py_FinalizeEx() does not free all memory allocated by the
Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These
checks tend to add a large amount of overhead to the runtime so they are not enabled by default.

10 Chapter 1. Introduction

The Python/C API, Release 3.7.5

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder
of this section.
Compiling the interpreter with the Py_DEBUGmacro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding --with-pydebug to the ./configure command.
It is also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the
Unix build, compiler optimization is disabled.
In addition to the reference count debugging described below, the following extra checks are performed:

• Extra checks are added to the object allocator.
• Extra checks are added to the parser and compiler.
• Downcasts from wide types to narrow types are checked for loss of information.
• A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires
a test_c_api() method.

• Sanity checks of the input arguments are added to frame creation.
• The storage for ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
• Low-level tracing and extra exception checking are added to the runtime virtual machine.
• Extra checks are added to the memory arena implementation.
• Extra debugging is added to the thread module.

There may be additional checks not mentioned here.
Defining Py_TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit,
all existing references are printed. (In interactive mode this happens after every statement run by the interpreter.)
Implied by Py_DEBUG.
Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

1.7. Debugging Builds 11

The Python/C API, Release 3.7.5

12 Chapter 1. Introduction

CHAPTER

TWO

STABLE APPLICATION BINARY INTERFACE

Traditionally, the C API of Python will change with every release. Most changes will be source-compatible, typically
by only adding API, rather than changing existing API or removing API (although some interfaces do get removed
after being deprecated first).
Unfortunately, the API compatibility does not extend to binary compatibility (the ABI). The reason is primarily the
evolution of struct definitions, where addition of a new field, or changing the type of a field, might not break the
API, but can break the ABI. As a consequence, extension modules need to be recompiled for every Python release
(although an exception is possible on Unix when none of the affected interfaces are used). In addition, on Windows,
extension modules link with a specific pythonXY.dll and need to be recompiled to link with a newer one.
Since Python 3.2, a subset of the API has been declared to guarantee a stable ABI. Extension modules wishing
to use this API (called “limited API”) need to define Py_LIMITED_API. A number of interpreter details then
become hidden from the extension module; in return, a module is built that works on any 3.x version (x>=2) without
recompilation.
In some cases, the stable ABI needs to be extended with new functions. Extension modules wishing to use these
new APIs need to set Py_LIMITED_API to the PY_VERSION_HEX value (see API and ABI Versioning) of the
minimum Python version they want to support (e.g. 0x03030000 for Python 3.3). Such modules will work on all
subsequent Python releases, but fail to load (because of missing symbols) on the older releases.
As of Python 3.2, the set of functions available to the limited API is documented in PEP 384. In the C API docu-
mentation, API elements that are not part of the limited API are marked as “Not part of the limited API.”

13

https://www.python.org/dev/peps/pep-0384

The Python/C API, Release 3.7.5

14 Chapter 2. Stable Application Binary Interface

CHAPTER

THREE

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.
Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions
which accept them as parameters.
Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.
int Py_Main(int argc, wchar_t **argv)

The main program for the standard interpreter. This is made available for programs which embed Python.
The argc and argv parameters should be prepared exactly as those which are passed to a C program’s main()
function (converted to wchar_t according to the user’s locale). It is important to note that the argument list
may be modified (but the contents of the strings pointed to by the argument list are not). The return value will
be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception,
or 2 if the parameter list does not represent a valid Python command line.
Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the
process, as long as Py_InspectFlag is not set.

int PyRun_AnyFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_AnyFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the flags argument set to
NULL.

int PyRun_AnyFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value of PyRun_InteractiveLoop(), otherwise return the re-
sult of PyRun_SimpleFile(). filename is decoded from the filesystem encoding (sys.
getfilesystemencoding()). If filename is NULL, this function uses "???" as the filename.

int PyRun_SimpleString(const char *command)
This is a simplified interface to PyRun_SimpleStringFlags() below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags(const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument.
If __main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If
there was an error, there is no way to get the exception information. For the meaning of flags, see below.

15

The Python/C API, Release 3.7.5

Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the
process, as long as Py_InspectFlag is not set.

int PyRun_SimpleFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving closeit set to 0 and flags
set to NULL.

int PyRun_SimpleFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags(), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags re-
turns.

Note: On Windows, fp should be opened as binary mode (e.g. fopen(filename, "rb"). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags() below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem
encoding (sys.getfilesystemencoding()).
Returns 0 when the input was executed successfully, -1 if there was an exception, or an error code from the
errcode.h include file distributed as part of Python if there was a parse error. (Note that errcode.h is
not included by Python.h, so must be included specifically if needed.)

int PyRun_InteractiveLoop(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags() below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)
Can be set to point to a function with the prototype int func(void). The function will be called when
Python’s interpreter prompt is about to become idle and wait for user input from the terminal. The return value
is ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event loops, as
done in the Modules/_tkinter.c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer)(FILE *, FILE *, const char *)
Can be set to point to a function with the prototype char *func(FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s
prompt. The function is expected to output the string prompt if it’s not NULL, and then read a line of in-
put from the provided standard input file, returning the resulting string. For example, The readlinemodule
sets this hook to provide line-editing and tab-completion features.
The result must be a string allocated by PyMem_RawMalloc() or PyMem_RawRealloc(), or NULL if
an error occurred.
Changed in version 3.4: The result must be allocated by PyMem_RawMalloc() or
PyMem_RawRealloc(), instead of being allocated by PyMem_Malloc() or PyMem_Realloc().

struct _node* PyParser_SimpleParseString(const char *str, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename() below, leaving
filename set to NULL and flags set to 0.

16 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.7.5

struct _node* PyParser_SimpleParseStringFlags(const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename() below, leaving
filename set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename(const char *str, const char *file-
name, int start, int flags)

Parse Python source code from str using the start token start according to the flags argument. The re-
sult can be used to create a code object which can be evaluated efficiently. This is useful if a code
fragment must be evaluated many times. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding()).

struct _node* PyParser_SimpleParseFile(FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags() below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags(FILE *fp, const char *filename, int start,
int flags)

Similar to PyParser_SimpleParseStringFlagsFilename(), but the Python source code is read
from fp instead of an in-memory string.

PyObject* PyRun_String(const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags() below, leaving flags
set to NULL.

PyObject* PyRun_StringFlags(const char *str, int start, PyObject *globals, PyObject *locals, PyCompil-
erFlags *flags)

Return value: New reference. Execute Python source code from str in the context specified by the objects
globals and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any
object that implements the mapping protocol. The parameter start specifies the start token that should be used
to parse the source code.
Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving
closeit set to 0 and flags set to NULL.

PyObject* PyRun_FileEx(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving flags
set to NULL.

PyObject* PyRun_FileFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, PyCompilerFlags *flags)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving
closeit set to 0.

PyObject* PyRun_FileExFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyOb-
ject *locals, int closeit, PyCompilerFlags *flags)

Return value: New reference. Similar to PyRun_StringFlags(), but the Python source code is read
from fp instead of an in-memory string. filename should be the name of the file, it is decoded from the
filesystem encoding (sys.getfilesystemencoding()). If closeit is true, the file is closed before
PyRun_FileExFlags() returns.

PyObject* Py_CompileString(const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface toPy_CompileStringFlags() below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags(const char *str, const char *filename, int start, PyCompiler-
Flags *flags)

Return value: New reference. This is a simplified interface to Py_CompileStringExFlags() below,
with optimize set to -1.

PyObject* Py_CompileStringObject(const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)

Return value: New reference. Parse and compile the Python source code in str, returning the resulting code
object. The start token is given by start; this can be used to constrain the code which can be compiled and should

17

The Python/C API, Release 3.7.5

be Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is
used to construct the code object and may appear in tracebacks or SyntaxError exception messages. This
returns NULL if the code cannot be parsed or compiled.
The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization
level of the interpreter as given by -O options. Explicit levels are 0 (no optimization; __debug__ is true), 1
(asserts are removed, __debug__ is false) or 2 (docstrings are removed too).
New in version 3.4.

PyObject* Py_CompileStringExFlags(const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)

Return value: New reference. Like Py_CompileStringObject(), but filename is a byte string decoded
from the filesystem encoding (os.fsdecode()).
New in version 3.2.

PyObject* PyEval_EvalCode(PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_EvalCodeEx(), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx(PyObject *co, PyObject *globals, PyObject *locals, PyObject
*const *args, int argcount, PyObject *const *kws, int kwcount, PyObject
*const *defs, int defcount, PyObject *kwdefs, PyObject *closure)

Return value: New reference. Evaluate a precompiled code object, given a particular environment for its evalu-
ation. This environment consists of a dictionary of global variables, a mapping object of local variables, arrays
of arguments, keywords and defaults, a dictionary of default values for keyword-only arguments and a closure
tuple of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at
any time.

PyObject* PyEval_EvalFrame(PyFrameObject *f)
Return value: New reference. Evaluate an execution frame. This is a simplified interface to
PyEval_EvalFrameEx(), for backward compatibility.

PyObject* PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
Return value: New reference. This is the main, unvarnished function of Python interpretation. It is literally
2000 lines long. The code object associated with the execution frame f is executed, interpreting bytecode and
executing calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes
an exception to immediately be thrown; this is used for the throw() methods of generator objects.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

int PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py_CompileString(). This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString().
This is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In
this case, from __future__ import can modify flags.

18 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.7.5

Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modifica-
tion due to from __future__ import is discarded.

struct PyCompilerFlags {
int cf_flags;

}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP
238.

19

https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0238

The Python/C API, Release 3.7.5

20 Chapter 3. The Very High Level Layer

CHAPTER

FOUR

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.
void Py_INCREF(PyObject *o)

Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XINCREF().

void Py_XINCREF(PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has no effect.

void Py_DECREF(PyObject *o)
Decrement the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which
must not be NULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance with a __del__() method is deallocated). While exceptions in such code are not propagated,
the executed code has free access to all Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state before Py_DECREF() is invoked. For example, code
to delete an object from a list should copy a reference to the deleted object in a temporary variable, update
the list data structure, and then call Py_DECREF() for the temporary variable.

void Py_XDECREF(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF(), and the same warning applies.

void Py_CLEAR(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF(), except that the argument is also set to NULL. The
warning for Py_DECREF() does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argument to NULL before decrementing its reference count.
It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection.

The following functions are for runtime dynamic embedding of Python: Py_IncRef(PyObject *o),
Py_DecRef(PyObject *o). They are simply exported function versions of Py_XINCREF() and
Py_XDECREF(), respectively.
The following functions or macros are only for use within the interpreter core: _Py_Dealloc(),
_Py_ForgetReference(), _Py_NewReference(), as well as the global variable _Py_RefTotal.

21

The Python/C API, Release 3.7.5

22 Chapter 4. Reference Counting

CHAPTER

FIVE

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a
global indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will
set it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL
if they are supposed to return a pointer, or -1 if they return an integer (exception: the PyArg_*() functions return
1 for success and 0 for failure).
Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).
When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should not continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

Note: The error indicator is not the result of sys.exc_info(). The former corresponds to an exception that
is not yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has
therefore stopped propagating).

5.1 Printing and clearing

void PyErr_Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx(int set_sys_last_vars)
Print a standard traceback to sys.stderr and clear the error indicator. Unless the error is a SystemExit.
In that case the no traceback is printed and Python process will exit with the error code specified by the
SystemExit instance.
Call this function only when the error indicator is set. Otherwise it will cause a fatal error!
If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print()
Alias for PyErr_PrintEx(1).

void PyErr_WriteUnraisable(PyObject *obj)
This utility function prints a warning message to sys.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs
in an __del__() method.

23

The Python/C API, Release 3.7.5

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.
An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.
void PyErr_SetString(PyObject *type, const char *message)

This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'utf-8’.

void PyErr_SetObject(PyObject *type, PyObject *value)
This function is similar to PyErr_SetString() but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr_Format(PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a
Python exception class. The format and subsequent parameters help format the error message; they have the
same meaning and values as in PyUnicode_FromFormat(). format is an ASCII-encoded string.

PyObject* PyErr_FormatV(PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format(), but taking a va_list argument rather than a
variable number of arguments.
New in version 3.5.

void PyErr_SetNone(PyObject *type)
This is a shorthand for PyErr_SetObject(type, Py_None).

int PyErr_BadArgument()
This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where message indi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory()
Return value: Always NULL. This is a shorthand for PyErr_SetNone(PyExc_MemoryError); it re-
turns NULL so an object allocation function can write return PyErr_NoMemory(); when it runs out
of memory.

PyObject* PyErr_SetFromErrno(PyObject *type)
Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the integer
errno value and whose second item is the corresponding error message (gotten from strerror()), and
then calls PyErr_SetObject(type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals(), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno(type); when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject(PyObject *type, PyObject *filenameOb-
ject)

Return value: Always NULL. Similar to PyErr_SetFromErrno(), with the additional behavior that if
filenameObject is notNULL, it is passed to the constructor of type as a third parameter. In the case ofOSError
exception, this is used to define the filename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects(PyObject *type, PyObject *filenameOb-
ject, PyObject *filenameObject2)

Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject(), but takes
a second filename object, for raising errors when a function that takes two filenames fails.
New in version 3.4.

24 Chapter 5. Exception Handling

The Python/C API, Release 3.7.5

PyObject* PyErr_SetFromErrnoWithFilename(PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject(), but the
filename is given as a C string. filename is decoded from the filesystem encoding (os.fsdecode()).

PyObject* PyErr_SetFromWindowsErr(int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError() is used instead. It calls the
Win32 function FormatMessage() to retrieve the Windows description of error code given by ierr
or GetLastError(), then it constructs a tuple object whose first item is the ierr value and whose
second item is the corresponding error message (gotten from FormatMessage()), and then calls
PyErr_SetObject(PyExc_WindowsError, object). This function always returns NULL.
Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErr(PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr(), with an additional parameter
specifying the exception type to be raised.
Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename(int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject(), but
the filename is given as a C string. filename is decoded from the filesystem encoding (os.fsdecode()).
Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject(PyObject *type, int ierr, Py-
Object *filename)

Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject(),
with an additional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects(PyObject *type, int ierr,
PyObject *filename, PyOb-
ject *filename2)

Return value: Always NULL. Similar toPyErr_SetExcFromWindowsErrWithFilenameObject(),
but accepts a second filename object.
Availability: Windows.
New in version 3.4.

PyObject* PyErr_SetExcFromWindowsErrWithFilename(PyObject *type, int ierr, const
char *filename)

Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename(), with an ad-
ditional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject* PyErr_SetImportError(PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. This is a convenience function to raise ImportError. msg will be set as the
exception’s message string. name and path, both of which can be NULL, will be set as the ImportError’s
respective name and path attributes.
New in version 3.3.

void PyErr_SyntaxLocationObject(PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exception is not a SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is a
SyntaxError.
New in version 3.4.

void PyErr_SyntaxLocationEx(const char *filename, int lineno, int col_offset)
Like PyErr_SyntaxLocationObject(), but filename is a byte string decoded from the filesystem
encoding (os.fsdecode()).

5.2. Raising exceptions 25

The Python/C API, Release 3.7.5

New in version 3.2.
void PyErr_SyntaxLocation(const char *filename, int lineno)

Like PyErr_SyntaxLocationEx(), but the col_offset parameter is omitted.
void PyErr_BadInternalCall()

This is a shorthand for PyErr_SetString(PyExc_SystemError, message), where message in-
dicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings fromC code. Theymirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is 0 if no exception
is raised, or -1 if an exception is raised. (It is not possible to determine whether a warning message is actually
printed, nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its
normal exception handling (for example, Py_DECREF() owned references and return an error value).
int PyErr_WarnEx(PyObject *category, const char *message, Py_ssize_t stack_level)

Issue a warning message. The category argument is a warning category (see below) or NULL; the message
argument is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the
warning will be issued from the currently executing line of code in that stack frame. A stack_level of 1 is the
function calling PyErr_WarnEx(), 2 is the function above that, and so forth.
Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python
warning categories are available as global variables whose names are enumerated at Standard Warning Cate-
gories.
For information about warning control, see the documentation for the warnings module and the -W option
in the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass(PyObject *exception, PyObject *msg, PyObject *name,
PyObject *path)

Return value: Always NULL.Much like PyErr_SetImportError() but this function allows for specify-
ing a subclass of ImportError to raise.
New in version 3.6.

int PyErr_WarnExplicitObject(PyObject *category, PyObject *message, PyObject *filename,
int lineno, PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit(), see there for more information. The module
and registry arguments may be set to NULL to get the default effect described there.
New in version 3.4.

int PyErr_WarnExplicit(PyObject *category, const char *message, const char *filename, int lineno,
const char *module, PyObject *registry)

Similar to PyErr_WarnExplicitObject() except thatmessage andmodule are UTF-8 encoded strings,
and filename is decoded from the filesystem encoding (os.fsdecode()).

int PyErr_WarnFormat(PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx(), but use PyUnicode_FromFormat() to format the warning
message. format is an ASCII-encoded string.
New in version 3.2.

int PyErr_ResourceWarning(PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat(), but category is ResourceWarning and pass source to
warnings.WarningMessage().

26 Chapter 5. Exception Handling

The Python/C API, Release 3.7.5

New in version 3.6.

5.4 Querying the error indicator

PyObject* PyErr_Occurred()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception type (the
first argument to the last call to one of the PyErr_Set*() functions or to PyErr_Restore()). If not
set, return NULL. You do not own a reference to the return value, so you do not need to Py_DECREF() it.

Note: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches()
instead, shown below. (The comparison could easily fail since the exception may be an instance instead of a
class, in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches(PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(), exc). This should only
be called when an exception is actually set; a memory access violation will occur if no exception has been
raised.

int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns
true when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively
in subtuples) are searched for a match.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may be NULL even when the type object is not.

Note: This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore(type, value, traceback);
}

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the
objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback.
The exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules
will cause subtle problems later.) This call takes away a reference to each object: you must own a reference to
each object before the call and after the call you no longer own these references. (If you don’t understand this,
don’t use this function. I warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch() to save the current error indicator.

void PyErr_NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch() below can be “unnormalized”, mean-
ing that *exc is a class object but *val is not an instance of the same class. This function can be used to

5.4. Querying the error indicator 27

The Python/C API, Release 3.7.5

instantiate the class in that case. If the values are already normalized, nothing happens. The delayed normal-
ization is implemented to improve performance.

Note: This function does not implicitly set the __traceback__ attribute on the exception value. If setting
the traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback(val, tb);

}

void PyErr_GetExcInfo(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the exception info, as known from sys.exc_info(). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which
may be NULL. Does not modify the exception info state.

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo() to restore or
clear the exception state.

New in version 3.3.
void PyErr_SetExcInfo(PyObject *type, PyObject *value, PyObject *traceback)

Set the exception info, as known from sys.exc_info(). This refers to an exception that was already
caught, not to an exception that was freshly raised. This function steals the references of the arguments. To
clear the exception state, pass NULL for all three arguments. For general rules about the three arguments, see
PyErr_Restore().

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used
when code needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo() to read
the exception state.

New in version 3.3.

5.5 Signal Handling

int PyErr_CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If thesignalmodule is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns -1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt()
Simulate the effect of a SIGINT signal arriving. The next time PyErr_CheckSignals() is called, the
Python signal handler for SIGINT will be called.
If SIGINT isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), this function
does nothing.

int PySignal_SetWakeupFd(int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.
The value-1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_fd()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be
called from the main thread.

28 Chapter 5. Exception Handling

The Python/C API, Release 3.7.5

Changed in version 3.5: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException(const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).
The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc(const char *name, const char *doc, PyObject *base, PyOb-
ject *dict)

Return value: New reference. Same as PyErr_NewException(), except that the new exception class can
easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.
New in version 3.2.

5.7 Exception Objects

PyObject* PyException_GetTraceback(PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as acces-
sible from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback(PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject* PyException_GetContext(PyObject *ex)
Return value: New reference. Return the context (another exception instance during whose handling ex was
raised) associated with the exception as a new reference, as accessible from Python through __context__.
If there is no context associated, this returns NULL.

void PyException_SetContext(PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause(PyObject *ex)
Return value: New reference. Return the cause (either an exception instance, or None, set by raise
... from ...) associated with the exception as a new reference, as accessible from Python through
__cause__.

void PyException_SetCause(PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make
sure that cause is either an exception instance or None. This steals a reference to cause.
__suppress_context__ is implicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

5.6. Exception Classes 29

The Python/C API, Release 3.7.5

PyObject* PyUnicodeDecodeError_Create(const char *encoding, const char *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end,
const char *reason)

Return value: New reference. Create a UnicodeDecodeError object with the attributes encoding, object,
length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create(const char *encoding, const Py_UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end,
const char *reason)

Return value: New reference. Create a UnicodeEncodeError object with the attributes encoding, object,
length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create(const Py_UNICODE *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *rea-
son)

Return value: New reference. Create a UnicodeTranslateError object with the attributes object, length,
start, end and reason. reason is a UTF-8 encoded string.

PyObject* PyUnicodeDecodeError_GetEncoding(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding(PyObject *exc)

Return value: New reference. Return the encoding attribute of the given exception object.
PyObject* PyUnicodeDecodeError_GetObject(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject(PyObject *exc)
PyObject* PyUnicodeTranslateError_GetObject(PyObject *exc)

Return value: New reference. Return the object attribute of the given exception object.
int PyUnicodeDecodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeEncodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeTranslateError_GetStart(PyObject *exc, Py_ssize_t *start)

Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0
on success, -1 on failure.

int PyUnicodeDecodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart(PyObject *exc, Py_ssize_t start)

Set the start attribute of the given exception object to start. Return 0 on success, -1 on failure.
int PyUnicodeDecodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeEncodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeTranslateError_GetEnd(PyObject *exc, Py_ssize_t *end)

Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, -1 on failure.

int PyUnicodeDecodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd(PyObject *exc, Py_ssize_t end)

Set the end attribute of the given exception object to end. Return 0 on success, -1 on failure.
PyObject* PyUnicodeDecodeError_GetReason(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason(PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason(PyObject *exc)

Return value: New reference. Return the reason attribute of the given exception object.
int PyUnicodeDecodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason(PyObject *exc, const char *reason)

Set the reason attribute of the given exception object to reason. Return 0 on success, -1 on failure.

30 Chapter 5. Exception Handling

The Python/C API, Release 3.7.5

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically).
int Py_EnterRecursiveCall(const char *where)

Marks a point where a recursive C-level call is about to be performed.
If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using
PyOS_CheckStack(). In this is the case, it sets a MemoryError and returns a nonzero value.
The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and
a nonzero value is returned. Otherwise, zero is returned.
where should be a string such as " in instance check" to be concatenated to the RecursionError
message caused by the recursion depth limit.

void Py_LeaveRecursiveCall()
Ends a Py_EnterRecursiveCall(). Must be called once for each successful invocation of
Py_EnterRecursiveCall().

Properly implementing tp_repr for container types requires special recursion handling. In addition to protect-
ing the stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this
functionality. Effectively, these are the C equivalent to reprlib.recursive_repr().
int Py_ReprEnter(PyObject *object)

Called at the beginning of the tp_repr implementation to detect cycles.
If the object has already been processed, the function returns a positive integer. In that case the tp_repr
implementation should return a string object indicating a cycle. As examples, dict objects return {...} and
list objects return [...].
The function will return a negative integer if the recursion limit is reached. In that case the tp_repr imple-
mentation should typically return NULL.
Otherwise, the function returns zero and the tp_repr implementation can continue normally.

void Py_ReprLeave(PyObject *object)
Ends a Py_ReprEnter(). Must be called once for each invocation of Py_ReprEnter() that returns
zero.

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the
variables:

C Name Python Name Notes
PyExc_BaseException BaseException (1)
PyExc_Exception Exception (1)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedError ConnectionAbortedError

Continued on next page

5.9. Recursion Control 31

The Python/C API, Release 3.7.5

Table 1 – continued from previous page
C Name Python Name Notes
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedError ConnectionRefusedError
PyExc_ConnectionResetError ConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (1)
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError (1)
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsyncIteration StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_ValueError ValueError
PyExc_ZeroDivisionError ZeroDivisionError

New in version 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError,
PyExc_FileExistsError, PyExc_FileNotFoundError, PyExc_InterruptedError,
PyExc_IsADirectoryError, PyExc_NotADirectoryError, PyExc_PermissionError,
PyExc_ProcessLookupError and PyExc_TimeoutError were introduced following PEP 3151.
New in version 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError.
New in version 3.6: PyExc_ModuleNotFoundError.
These are compatibility aliases to PyExc_OSError:

32 Chapter 5. Exception Handling

https://www.python.org/dev/peps/pep-3151

The Python/C API, Release 3.7.5

C Name Notes
PyExc_EnvironmentError
PyExc_IOError
PyExc_WindowsError (3)

Changed in version 3.3: These aliases used to be separate exception types.
Notes:
(1) This is a base class for other standard exceptions.
(2) This is the same as weakref.ReferenceError.
(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is

defined.

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the
Python exception name. These have the type PyObject*; they are all class objects. For completeness, here are all
the variables:

C Name Python Name Notes
PyExc_Warning Warning (1)
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

New in version 3.2: PyExc_ResourceWarning.
Notes:
(1) This is a base class for other standard warning categories.

5.11. Standard Warning Categories 33

The Python/C API, Release 3.7.5

34 Chapter 5. Exception Handling

CHAPTER

SIX

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

6.1 Operating System Utilities

PyObject* PyOS_FSPath(PyObject *path)
Return value: New reference. Return the file system representation for path. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os.PathLike interface, then
__fspath__() is returned as long as it is a str or bytes object. Otherwise TypeError is raised and
NULL is returned.
New in version 3.6.

int Py_FdIsInteractive(FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case
for files for which isatty(fileno(fp)) is true. If the global flag Py_InteractiveFlag is true,
this function also returns true if the filename pointer is NULL or if the name is equal to one of the strings
'<stdin>' or '???'.

void PyOS_BeforeFork()
Function to prepare some internal state before a process fork. This should be called before calling fork() or
any similar function that clones the current process. Only available on systems where fork() is defined.
New in version 3.7.

void PyOS_AfterFork_Parent()
Function to update some internal state after a process fork. This should be called from the parent process after
calling fork() or any similar function that clones the current process, regardless of whether process cloning
was successful. Only available on systems where fork() is defined.
New in version 3.7.

void PyOS_AfterFork_Child()
Function to update internal interpreter state after a process fork. This must be called from the child process
after calling fork(), or any similar function that clones the current process, if there is any chance the process
will call back into the Python interpreter. Only available on systems where fork() is defined.
New in version 3.7.
See also:
os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork(), PyOS_AfterFork_Parent() and PyOS_AfterFork_Child().

void PyOS_AfterFork()
Function to update some internal state after a process fork; this should be called in the new process if the
Python interpreter will continue to be used. If a new executable is loaded into the new process, this function
does not need to be called.

35

The Python/C API, Release 3.7.5

Deprecated since version 3.7: This function is superseded by PyOS_AfterFork_Child().
int PyOS_CheckStack()

Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig(int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction() or
signal(). Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void
(*)(int).

PyOS_sighandler_t PyOS_setsig(int i, PyOS_sighandler_t h)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper around either
sigaction() or signal(). Do not call those functions directly! PyOS_sighandler_t is a typedef
alias for void (*)(int).

wchar_t* Py_DecodeLocale(const char* arg, size_t *size)
Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are
decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character,
escape the bytes using the surrogateescape error handler instead of decoding them.
Encoding, highest priority to lowest priority:

• UTF-8 on macOS and Android;
• UTF-8 if the Python UTF-8 mode is enabled;
• ASCII if the LC_CTYPE locale is "C", nl_langinfo(CODESET) returns the ASCII encoding
(or an alias), and mbstowcs() and wcstombs() functions uses the ISO-8859-1 encoding.

• the current locale encoding.
Return a pointer to a newly allocated wide character string, use PyMem_RawFree() to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size
Return NULL on decoding error or memory allocation error. If size is not NULL, *size is set to
(size_t)-1 on memory error or set to (size_t)-2 on decoding error.
Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale() function to encode the character string back to a byte string.
See also:
The PyUnicode_DecodeFSDefaultAndSize() and PyUnicode_DecodeLocaleAndSize()
functions.
New in version 3.5.
Changed in version 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.

char* Py_EncodeLocale(const wchar_t *text, size_t *error_pos)
Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate char-
acters in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF.
Encoding, highest priority to lowest priority:

• UTF-8 on macOS and Android;
• UTF-8 if the Python UTF-8 mode is enabled;
• ASCII if the LC_CTYPE locale is "C", nl_langinfo(CODESET) returns the ASCII encoding
(or an alias), and mbstowcs() and wcstombs() functions uses the ISO-8859-1 encoding.

• the current locale encoding.
The function uses the UTF-8 encoding in the Python UTF-8 mode.
Return a pointer to a newly allocated byte string, use PyMem_Free() to free the memory. Return NULL on
encoding error or memory allocation error

36 Chapter 6. Utilities

The Python/C API, Release 3.7.5

If error_pos is not NULL, *error_pos is set to (size_t)-1 on success, or set to the index of the invalid
character on encoding error.
Use the Py_DecodeLocale() function to decode the bytes string back to a wide character string.
Changed in version 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.
See also:
The PyUnicode_EncodeFSDefault() and PyUnicode_EncodeLocale() functions.
New in version 3.5.
Changed in version 3.7: The function now supports the UTF-8 mode.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with
the current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject(const char *name)

Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject(const char *name, PyObject *v)
Set name in the sysmodule to v unless v isNULL, in which case name is deleted from the sys module. Returns
0 on success, -1 on error.

void PySys_ResetWarnOptions()
Reset sys.warnoptions to an empty list. This function may be called prior to Py_Initialize().

void PySys_AddWarnOption(const wchar_t *s)
Append s to sys.warnoptions. This function must be called prior to Py_Initialize() in order to
affect the warnings filter list.

void PySys_AddWarnOptionUnicode(PyObject *unicode)
Append unicode to sys.warnoptions.
Note: this function is not currently usable from outside the CPython implementation, as it must be called prior
to the implicit import of warnings in Py_Initialize() to be effective, but can’t be called until enough
of the runtime has been initialized to permit the creation of Unicode objects.

void PySys_SetPath(const wchar_t *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the
platform’s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout(const char *format, ...)
Write the output string described by format to sys.stdout. No exceptions are raised, even if truncation
occurs (see below).
format should limit the total size of the formatted output string to 1000 bytes or less – after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.
If a problem occurs, or sys.stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr(const char *format, ...)
As PySys_WriteStdout(), but write to sys.stderr or stderr instead.

void PySys_FormatStdout(const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_FromFormatV() and
don’t truncate the message to an arbitrary length.
New in version 3.2.

6.2. System Functions 37

The Python/C API, Release 3.7.5

void PySys_FormatStderr(const char *format, ...)
As PySys_FormatStdout(), but write to sys.stderr or stderr instead.
New in version 3.2.

void PySys_AddXOption(const wchar_t *s)
Parse s as a set of -X options and add them to the current options mapping as returned by
PySys_GetXOptions(). This function may be called prior to Py_Initialize().
New in version 3.2.

PyObject *PySys_GetXOptions()
Return value: Borrowed reference. Return the current dictionary of -X options, similarly to sys.
_xoptions. On error, NULL is returned and an exception is set.
New in version 3.2.

6.3 Process Control

void Py_FatalError(const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. On Unix, the standard C library function abort() is called
which will attempt to produce a core file.

void Py_Exit(int status)
Exit the current process. This calls Py_FinalizeEx() and then calls the standard C library function
exit(status). If Py_FinalizeEx() indicates an error, the exit status is set to 120.
Changed in version 3.6: Errors from finalization no longer ignored.

int Py_AtExit(void (*func)())
Register a cleanup function to be called by Py_FinalizeEx(). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successful, Py_AtExit() returns 0; on failure, it returns -1. The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finalization will have completed
before the cleanup function, no Python APIs should be called by func.

6.4 Importing Modules

PyObject* PyImport_ImportModule(const char *name)
Return value: New reference. This is a simplified interface to PyImport_ImportModuleEx() below,
leaving the globals and locals arguments set to NULL and level set to 0. When the name argument contains
a dot (when it specifies a submodule of a package), the fromlist argument is set to the list ['*'] so that the
return value is the named module rather than the top-level package containing it as would otherwise be the
case. (Unfortunately, this has an additional side effect when name in fact specifies a subpackage instead of a
submodule: the submodules specified in the package’s __all__ variable are loaded.) Return a new reference
to the imported module, or NULL with an exception set on failure. A failing import of a module doesn’t leave
the module in sys.modules.
This function always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock(const char *name)
Return value: New reference. This function is a deprecated alias of PyImport_ImportModule().
Changed in version 3.3: This function used to fail immediately when the import lock was held by another
thread. In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this
function’s special behaviour isn’t needed anymore.

38 Chapter 6. Utilities

The Python/C API, Release 3.7.5

PyObject* PyImport_ImportModuleEx(const char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist)

Return value: New reference. Import a module. This is best described by referring to the built-in Python
function __import__().
The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__(), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.
Failing imports remove incomplete module objects, like with PyImport_ImportModule().

PyObject* PyImport_ImportModuleLevelObject(PyObject *name, PyObject *globals, PyOb-
ject *locals, PyObject *fromlist, int level)

Return value: New reference. Import a module. This is best described by referring to the built-in Python
function __import__(), as the standard __import__() function calls this function directly.
The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__(), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.
New in version 3.3.

PyObject* PyImport_ImportModuleLevel(const char *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)

Return value: New reference. Similar to PyImport_ImportModuleLevelObject(), but the name is
a UTF-8 encoded string instead of a Unicode object.
Changed in version 3.3: Negative values for level are no longer accepted.

PyObject* PyImport_Import(PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current “import hook function”
(with an explicit level of 0, meaning absolute import). It invokes the __import__() function from the
__builtins__ of the current globals. This means that the import is done using whatever import hooks are
installed in the current environment.
This function always uses absolute imports.

PyObject* PyImport_ReloadModule(PyObject *m)
Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with
an exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject(PyObject *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name
argument may be of the form package.module. First check the modules dictionary if there’s one there,
and if not, create a new one and insert it in the modules dictionary. Return NULL with an exception set on
failure.

Note: This function does not load or import the module; if the module wasn’t already loaded, you will get
an empty module object. Use PyImport_ImportModule() or one of its variants to import a module.
Package structures implied by a dotted name for name are not created if not already present.

New in version 3.3.
PyObject* PyImport_AddModule(const char *name)

Return value: Borrowed reference. Similar toPyImport_AddModuleObject(), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule(const char *name, PyObject *co)
Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile(), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to

6.4. Importing Modules 39

The Python/C API, Release 3.7.5

PyImport_ExecCodeModule(). Leaving incompletely initialized modules in sys.modules is dan-
gerous, as imports of such modules have no way to know that the module object is an unknown (and probably
damaged with respect to the module author’s intents) state.
The module’s __spec__ and __loader__ will be set, if not set already, with the appropriate values. The
spec’s loader will be set to the module’s __loader__ (if set) and to an instance of SourceFileLoader
otherwise.
The module’s __file__ attribute will be set to the code object’s co_filename. If applicable,
__cached__ will also be set.
This function will reload the module if it was already imported. See PyImport_ReloadModule() for
the intended way to reload a module.
If name points to a dotted name of the form package.module, any package structures not already created
will still not be created.
See alsoPyImport_ExecCodeModuleEx() andPyImport_ExecCodeModuleWithPathnames().

PyObject* PyImport_ExecCodeModuleEx(const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like PyImport_ExecCodeModule(), but the __file__ attribute of the
module object is set to pathname if it is non-NULL.
See also PyImport_ExecCodeModuleWithPathnames().

PyObject* PyImport_ExecCodeModuleObject(PyObject *name, PyObject *co, PyObject *pathname,
PyObject *cpathname)

Return value: New reference. Like PyImport_ExecCodeModuleEx(), but the __cached__ attribute
of the module object is set to cpathname if it is non-NULL. Of the three functions, this is the preferred one to
use.
New in version 3.3.

PyObject* PyImport_ExecCodeModuleWithPathnames(const char *name, PyObject *co, const
char *pathname, const char *cpathname)

Return value: New reference. Like PyImport_ExecCodeModuleObject(), but name, pathname and
cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the value for pathname
should be from cpathname if the former is set to NULL.
New in version 3.2.
Changed in version 3.3: Uses imp.source_from_cache() in calculating the source path if only the
bytecode path is provided.

long PyImport_GetMagicNumber()
Return the magic number for Python bytecode files (a.k.a. .pyc file). The magic number should be present
in the first four bytes of the bytecode file, in little-endian byte order. Returns -1 on error.
Changed in version 3.3: Return value of -1 upon failure.

const char * PyImport_GetMagicTag()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.
New in version 3.2.

PyObject* PyImport_GetModuleDict()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetModule(PyObject *name)
Return value: New reference. Return the already imported module with the given name. If the module has not
been imported yet then returns NULL but does not set an error. Returns NULL and sets an error if the lookup
failed.
New in version 3.7.

40 Chapter 6. Utilities

https://www.python.org/dev/peps/pep-3147

The Python/C API, Release 3.7.5

PyObject* PyImport_GetImporter(PyObject *path)
Return value: New reference. Return a finder object for a sys.path/pkg.__path__ item path, possi-
bly by fetching it from the sys.path_importer_cache dict. If it wasn’t yet cached, traverse sys.
path_hooks until a hook is found that can handle the path item. Return None if no hook could; this
tells our caller that the path based finder could not find a finder for this path item. Cache the result in sys.
path_importer_cache. Return a new reference to the finder object.

void _PyImport_Init()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup()
Empty the module table. For internal use only.

void _PyImport_Fini()
Finalize the import mechanism. For internal use only.

int PyImport_ImportFrozenModuleObject(PyObject *name)
Return value: New reference. Load a frozen module named name. Return 1 for success, 0 if the module is not
found, and -1 with an exception set if the initialization failed. To access the imported module on a successful
load, use PyImport_ImportModule(). (Note the misnomer — this function would reload the module
if it was already imported.)
New in version 3.3.
Changed in version 3.4: The __file__ attribute is no longer set on the module.

int PyImport_ImportFrozenModule(const char *name)
Similar to PyImport_ImportFrozenModuleObject(), but the name is a UTF-8 encoded string in-
stead of a Unicode object.

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;

};

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose mem-
bers are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code
could play tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab(const char *name, PyObject* (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab(), returning -1 if the table could not be extended. The new module can
be imported by the name name, and uses the function initfunc as the initialization function called on the first
attempted import. This should be called before Py_Initialize().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the
name and initialization function for a module built into the interpreter. The name is an ASCII en-
coded string. Programs which embed Python may use an array of these structures in conjunction with
PyImport_ExtendInittab() to provide additional built-in modules. The structure is defined in
Include/import.h as:

struct _inittab {
const char *name; /* ASCII encoded string */
PyObject* (*initfunc)(void);

};

6.4. Importing Modules 41

The Python/C API, Release 3.7.5

int PyImport_ExtendInittab(struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called before Py_Initialize().

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.
Numeric values are stored with the least significant byte first.
The module supports two versions of the data format: version 0 is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).
void PyMarshal_WriteLongToFile(long value, FILE *file, int version)

Marshal a long integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native long type. version indicates the file format.

void PyMarshal_WriteObjectToFile(PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

PyObject* PyMarshal_WriteObjectToString(PyObject *value, int version)
Return value: New reference. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.
long PyMarshal_ReadLongFromFile(FILE *file)

Return a C long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native size of long.
On error, sets the appropriate exception (EOFError) and returns -1.

int PyMarshal_ReadShortFromFile(FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.
On error, sets the appropriate exception (EOFError) and returns -1.

PyObject* PyMarshal_ReadObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.
Unlike PyMarshal_ReadObjectFromFile(), this function assumes that no further objects will be read
from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain that
you won’t be reading anything else from the file.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString(const char *data, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

42 Chapter 6. Utilities

The Python/C API, Release 3.7.5

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available in extending-index.
The first three of these functions described, PyArg_ParseTuple(),
PyArg_ParseTupleAndKeywords(), and PyArg_Parse(), all use format strings which are used to
tell the function about the expected arguments. The format strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero ormore “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format
unit; and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage
for the returned unicode or bytes area.
In general, when a format sets a pointer to a buffer, the buffer is managed by the corresponding Python object, and
the buffer shares the lifetime of this object. You won’t have to release any memory yourself. The only exceptions are
es, es#, et and et#.
However, when a Py_buffer structure gets filled, the underlying buffer is locked so that the caller can subsequently
use the buffer even inside a Py_BEGIN_ALLOW_THREADS block without the risk of mutable data being resized or
destroyed. As a result, you have to call PyBuffer_Release() after you have finished processing the data (or
in any early abort case).
Unless otherwise stated, buffers are not NUL-terminated.
Some formats require a read-only bytes-like object, and set a pointer instead of a buffer structure. They work by check-
ing that the object’s PyBufferProcs.bf_releasebuffer field is NULL, which disallows mutable objects
such as bytearray.

Note: For all # variants of formats (s#, y#, etc.), the type of the length argument (int or Py_ssize_t) is
controlled by defining the macro PY_SSIZE_T_CLEAN before including Python.h. If the macro was defined,
length is a Py_ssize_t rather than an int. This behavior will change in a future Python version to only support
Py_ssize_t and drop int support. It is best to always define PY_SSIZE_T_CLEAN.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode
objects are converted to C strings using 'utf-8' encoding. If this conversion fails, a UnicodeError is
raised.

Note: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to
C character strings, it is preferable to use the O& format with PyUnicode_FSConverter() as converter.

Changed in version 3.5: Previously, TypeError was raised when embedded null code points were encoun-
tered in the Python string.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills
a Py_buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'utf-8' encoding.

6.6. Parsing arguments and building values 43

The Python/C API, Release 3.7.5

s# (str, read-only bytes-like object) [const char *, int or Py_ssize_t] Like s*, except that it doesn’t accept
mutable objects. The result is stored into two C variables, the first one a pointer to a C string, the second
one its length. The string may contain embedded null bytes. Unicode objects are converted to C strings using
'utf-8' encoding.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is
set to NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case
the buf member of the Py_buffer structure is set to NULL.

z# (str, read-only bytes-like object or None) [const char *, int] Like s#, but the Python object may also be
None, in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] This format converts a bytes-like object to a C pointer to a character
string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if it does,
a ValueError exception is raised.
Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in
the bytes buffer.

y* (bytes-like object) [Py_buffer] This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This
is the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, int] This variant on s# doesn’t accept Unicode objects, only bytes-
like objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any con-
version. Raises TypeError if the object is not a bytes object. The C variable may also be declared as
PyObject*.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a bytearray object, without at-
tempting any conversion. Raises TypeError if the object is not a bytearray object. The C variable may
also be declared as PyObject*.

u (str) [const Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of
Unicode characters. You must pass the address of a Py_UNICODE pointer variable, which will be filled with
the pointer to an existing Unicode buffer. Please note that the width of a Py_UNICODE character depends on
compilation options (it is either 16 or 32 bits). The Python string must not contain embedded null code points;
if it does, a ValueError exception is raised.
Changed in version 3.5: Previously, TypeError was raised when embedded null code points were encoun-
tered in the Python string.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

u# (str) [const Py_UNICODE *, int] This variant on u stores into two C variables, the first one a pointer to a
Unicode data buffer, the second one its length. This variant allows null code points.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

Z (str or None) [const Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

Z# (str or None) [const Py_UNICODE *, int] Like u#, but the Python object may also be None, in which case
the Py_UNICODE pointer is set to NULL.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion.
Raises TypeError if the object is not a Unicode object. The C variable may also be declared as
PyObject*.

44 Chapter 6. Utilities

The Python/C API, Release 3.7.5

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write
buffer interface. It fills a Py_buffer structure provided by the caller. The buffer may contain embedded
null bytes. The caller have to call PyBuffer_Release() when it is done with the buffer.

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character
buffer. It only works for encoded data without embedded NUL bytes.
This format requires two arguments. The first is only used as input, and must be a const char* which
points to the name of an encoding as a NUL-terminated string, or NULL, in which case 'utf-8' encoding
is used. An exception is raised if the named encoding is not known to Python. The second argument must be
a char**; the value of the pointer it references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.
PyArg_ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free()
to free the allocated buffer after use.

et (str, bytes or bytearray) [const char *encoding, char **buffer] Same as es except that byte string
objects are passed through without recoding them. Instead, the implementation assumes that the byte string
object uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, int *buffer_length] This variant on s# is used for encoding
Unicode into a character buffer. Unlike the es format, this variant allows input data which contains NUL
characters.
It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'utf-8' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text
will be encoded in the encoding specified by the first argument. The third argument must be a pointer to an
integer; the referenced integer will be set to the number of bytes in the output buffer.
There are two modes of operation:
If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after usage.
If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple() will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.
In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str, bytes or bytearray) [const char *encoding, char **buffer, int *buffer_length] Same as es#
except that byte string objects are passed through without recoding them. Instead, the implementation as-
sumes that the byte string object uses the encoding passed in as parameter.

Numbers

b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a Cunsigned
char.

h (int) [short int] Convert a Python integer to a C short int.
H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow check-

ing.
i (int) [int] Convert a Python integer to a plain C int.
I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

6.6. Parsing arguments and building values 45

The Python/C API, Release 3.7.5

l (int) [long int] Convert a Python integer to a C long int.
k (int) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.
L (int) [long long] Convert a Python integer to a C long long.
K (int) [unsigned long long] Convert a Python integer to a C unsigned long longwithout overflow check-

ing.
n (int) [Py_ssize_t] Convert a Python integer to a C Py_ssize_t.
c (bytes or bytearray of length 1) [char] Convert a Python byte, represented as a bytes or bytearray

object of length 1, to a C char.
Changed in version 3.3: Allow bytearray objects.

C (str of length 1) [int] Convert a Python character, represented as a str object of length 1, to a C int.
f (float) [float] Convert a Python floating point number to a C float.
d (float) [double] Convert a Python floating point number to a C double.
D (complex) [Py_complex] Convert a Python complex number to a C Py_complex structure.

Other objects

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
not NULL.

O! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required
type, TypeError is raised.

O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted
to void *. The converter function in turn is called as follows:

status = converter(object, address);

where object is the Python object to be converted and address is the void* argument that was passed to
the PyArg_Parse*() function. The returned status should be 1 for a successful conversion and 0 if the
conversion has failed. When the conversion fails, the converter function should raise an exception and leave the
content of address unmodified.
If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this
second call, the object parameter will be NULL; address will have the same value as in the original call.
Changed in version 3.1: Py_CLEANUP_SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.
New in version 3.3.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units in items. Format units for
sequences may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper
range checking is done— the most significant bits are silently truncated when the receiving field is too small to receive
the value (actually, the semantics are inherited from downcasts in C — your mileage may vary).
A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

46 Chapter 6. Utilities

The Python/C API, Release 3.7.5

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple() does not touch the contents of the corresponding C variable(s).

$ PyArg_ParseTupleAndKeywords() only: Indicates that the remaining arguments in the Python argument
list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must
always be specified before $ in the format string.
New in version 3.3.

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg_ParseTuple() raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not decrement
their reference count!
Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.
For the conversion to succeed, the arg object mustmatch the format and the formatmust be exhausted. On success, the
PyArg_Parse*() functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse*() functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple(PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse(PyObject *args, const char *format, va_list vargs)
Identical to PyArg_ParseTuple(), except that it accepts a va_list rather than a variable number of argu-
ments.

int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *key-
words[], ...)

Parse the parameters of a function that takes both positional and keyword parameters into local variables. The
keywords argument is aNULL-terminated array of keyword parameter names. Empty names denote positional-
only parameters. Returns true on success; on failure, it returns false and raises the appropriate exception.
Changed in version 3.6: Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format,
char *keywords[], va_list vargs)

Identical to PyArg_ParseTupleAndKeywords(), except that it accepts a va_list rather than a variable
number of arguments.

int PyArg_ValidateKeywordArguments(PyObject *)
Ensure that the keys in the keywords argument dictionary are strings. This is only needed if
PyArg_ParseTupleAndKeywords() is not used, since the latter already does this check.
New in version 3.2.

int PyArg_Parse(PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METH_OLDARGS parameter parsing method, which has been removed in Python 3. This is not recommended
for use in parameter parsing in new code, and most code in the standard interpreter has been modified to no
longer use this for that purpose. It does remain a convenient way to decompose other tuples, however, and may
continue to be used for that purpose.

6.6. Parsing arguments and building values 47

The Python/C API, Release 3.7.5

int PyArg_UnpackTuple(PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_VARARGS in func-
tion or method tables. The tuple containing the actual parameters should be passed as args; it must actually
be a tuple. The length of the tuple must be at least min and no more than max; min and max may be equal.
Additional arguments must be passed to the function, each of which should be a pointer to a PyObject*
variable; these will be filled in with the values from args; they will contain borrowed references. The variables
which correspond to optional parameters not given by args will not be filled in; these should be initialized by
the caller. This function returns true on success and false if args is not a tuple or contains the wrong number
of elements; an exception will be set if there was a failure.
This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;
PyObject *callback = NULL;
PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);

}
return result;

}

The call to PyArg_UnpackTuple() in this example is entirely equivalent to this call to
PyArg_ParseTuple():

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject* Py_BuildValue(const char *format, ...)
Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse*() family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.
Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returnsNone; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.
When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated by Py_BuildValue(). In other words, if your code invokes malloc() and passes the allocated
memory to Py_BuildValue(), your code is responsible for calling free() for that memory once
Py_BuildValue() returns.
In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to
be passed.
The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.
s (str or None) [const char *] Convert a null-terminated C string to a Python str object using 'utf-8'

encoding. If the C string pointer is NULL, None is used.
s# (str or None) [const char *, int] Convert a C string and its length to a Python str object using

'utf-8' encoding. If the C string pointer is NULL, the length is ignored and None is returned.

48 Chapter 6. Utilities

The Python/C API, Release 3.7.5

y (bytes) [const char *] This converts a C string to a Python bytes object. If the C string pointer is
NULL, None is returned.

y# (bytes) [const char *, int] This converts a C string and its lengths to a Python object. If the C string
pointer is NULL, None is returned.

z (str or None) [const char *] Same as s.
z# (str or None) [const char *, int] Same as s#.
u (str) [const wchar_t *] Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data

to a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.
u# (str) [const wchar_t *, int] Convert a Unicode (UTF-16 orUCS-4) data buffer and its length to a Python

Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.
U (str or None) [const char *] Same as s.
U# (str or None) [const char *, int] Same as s#.
i (int) [int] Convert a plain C int to a Python integer object.
b (int) [char] Convert a plain C char to a Python integer object.
h (int) [short int] Convert a plain C short int to a Python integer object.
l (int) [long int] Convert a C long int to a Python integer object.
B (int) [unsigned char] Convert a C unsigned char to a Python integer object.
H (int) [unsigned short int] Convert a C unsigned short int to a Python integer object.
I (int) [unsigned int] Convert a C unsigned int to a Python integer object.
k (int) [unsigned long] Convert a C unsigned long to a Python integer object.
L (int) [long long] Convert a C long long to a Python integer object.
K (int) [unsigned long long] Convert a C unsigned long long to a Python integer object.
n (int) [Py_ssize_t] Convert a C Py_ssize_t to a Python integer.
c (bytes of length 1) [char] Convert a C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python str object of length 1.
d (float) [double] Convert a C double to a Python floating point number.
f (float) [float] Convert a C float to a Python floating point number.
D (complex) [Py_complex *] Convert a C Py_complex structure to a Python complex number.
O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented

by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. Therefore, Py_BuildValue() will
return NULL but won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.
N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful

when the object is created by a call to an object constructor in the argument list.
O& (object) [converter, anything] Convert anything to a Python object through a converter function. The

function is called with anything (which should be compatible with void *) as its argument and should
return a “new” Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same num-
ber of items.

[items] (list) [matching-items] Convert a sequence of C values to a Python list with the same number
of items.

6.6. Parsing arguments and building values 49

The Python/C API, Release 3.7.5

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of
consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.
PyObject* Py_VaBuildValue(const char *format, va_list vargs)

Return value: New reference. Identical to Py_BuildValue(), except that it accepts a va_list rather than a
variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.
int PyOS_snprintf(char *str, size_t size, const char *format, ...)

Output not more than size bytes to str according to the format string format and the extra arguments. See the
Unix man page snprintf(2).

int PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)
Output not more than size bytes to str according to the format string format and the variable argument list va.
Unix man page vsnprintf(2).

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library functions snprintf() and
vsnprintf(). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C func-
tions do not.
The wrappers ensure that str*[*size-1] is always '\0' upon return. They never write more than size bytes (including
the trailing '\0') into str. Both functions require that str != NULL, size > 0 and format != NULL.
If the platform doesn’t have vsnprintf() and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.
The return value (rv) for these functions should be interpreted as follows:

• When 0 <= rv < size, the output conversion was successful and rv characters were written to str (ex-
cluding the trailing '\0' byte at str*[*rv]).

• When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str*[*size-1] is '\0' in this case.

• When rv < 0, “something bad happened.” str*[*size-1] is '\0' in this case too, but the rest of str is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.
double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception)

Convert a string s to a double, raising a Python exception on failure. The set of accepted strings corresponds
to the set of strings accepted by Python’s float() constructor, except that smust not have leading or trailing
whitespace. The conversion is independent of the current locale.
If endptr is NULL, convert the whole string. Raise ValueError and return -1.0 if the string is not a
valid representation of a floating-point number.
If endptr is not NULL, convert as much of the string as possible and set *endptr to point to the first uncon-
verted character. If no initial segment of the string is the valid representation of a floating-point number, set
*endptr to point to the beginning of the string, raise ValueError, and return -1.0.
If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and
don’t set any exception. Otherwise, overflow_exception must point to a Python exception object; raise
that exception and return -1.0. In both cases, set *endptr to point to the first character after the converted
value.
If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate
Python exception and return -1.0.

50 Chapter 6. Utilities

The Python/C API, Release 3.7.5

New in version 3.1.
char* PyOS_double_to_string(double val, char format_code, int precision, int flags, int *ptype)

Convert a double val to a string using supplied format_code, precision, and flags.
format_code must be one of 'e', 'E', 'f', 'F', 'g', 'G' or 'r'. For 'r', the supplied precision must
be 0 and is ignored. The 'r' format code specifies the standard repr() format.
flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

• Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

• Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.
• Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf() '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.
The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free().
New in version 3.1.

int PyOS_stricmp(const char *s1, const char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp() except that it
ignores the case.

int PyOS_strnicmp(const char *s1, const char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to strncmp() except that it
ignores the case.

6.8 Reflection

PyObject* PyEval_GetBuiltins()
Return value: Borrowed reference. Return a dictionary of the builtins in the current execution frame, or the
interpreter of the thread state if no frame is currently executing.

PyObject* PyEval_GetLocals()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame,
or NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame()
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame is
currently executing.

int PyFrame_GetLineNumber(PyFrameObject *frame)
Return the line number that frame is currently executing.

const char* PyEval_GetFuncName(PyObject *func)
Return the name of func if it is a function, class or instance object, else the name of funcs type.

const char* PyEval_GetFuncDesc(PyObject *func)
Return a description string, depending on the type of func. Return values include “()” for functions and meth-
ods, ” constructor”, ” instance”, and ” object”. Concatenated with the result of PyEval_GetFuncName(),
the result will be a description of func.

6.8. Reflection 51

The Python/C API, Release 3.7.5

6.9 Codec registry and support functions

int PyCodec_Register(PyObject *search_function)
Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first
in the list of search functions.

int PyCodec_KnownEncoding(const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding. This function always
succeeds.

PyObject* PyCodec_Encode(PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method de-
fined by errors. errorsmay beNULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject* PyCodec_Decode(PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method de-
fined by errors. errorsmay beNULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

6.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.
PyObject* PyCodec_Encoder(const char *encoding)

Return value: New reference. Get an encoder function for the given encoding.
PyObject* PyCodec_Decoder(const char *encoding)

Return value: New reference. Get a decoder function for the given encoding.
PyObject* PyCodec_IncrementalEncoder(const char *encoding, const char *errors)

Return value: New reference. Get an IncrementalEncoder object for the given encoding.
PyObject* PyCodec_IncrementalDecoder(const char *encoding, const char *errors)

Return value: New reference. Get an IncrementalDecoder object for the given encoding.
PyObject* PyCodec_StreamReader(const char *encoding, PyObject *stream, const char *errors)

Return value: New reference. Get a StreamReader factory function for the given encoding.
PyObject* PyCodec_StreamWriter(const char *encoding, PyObject *stream, const char *errors)

Return value: New reference. Get a StreamWriter factory function for the given encoding.

6.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError(const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called
by a codec when it encounters unencodable characters/undecodable bytes and name is specified as the error
parameter in the call to the encode/decode function.
The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for

52 Chapter 6. Utilities

The Python/C API, Release 3.7.5

the problematic sequence, and an integer giving the offset in the original string at which encoding/decoding
should be resumed.
Return 0 on success, -1 on error.

PyObject* PyCodec_LookupError(const char *name)
Return value: New reference. Lookup the error handling callback function registered under name. As a special
case NULL can be passed, in which case the error handling callback for “strict” will be returned.

PyObject* PyCodec_StrictErrors(PyObject *exc)
Return value: Always NULL. Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors(PyObject *exc)
Return value: New reference. Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors(PyObject *exc)
Return value: New reference. Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_XMLCharRefReplaceErrors(PyObject *exc)
Return value: New reference. Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors(PyObject *exc)
Return value: New reference. Replace the unicode encode error with backslash escapes (\x, \u and \U).

PyObject* PyCodec_NameReplaceErrors(PyObject *exc)
Return value: New reference. Replace the unicode encode error with \N{...} escapes.
New in version 3.5.

6.9. Codec registry and support functions 53

The Python/C API, Release 3.7.5

54 Chapter 6. Utilities

CHAPTER

SEVEN

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.
It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created by PyList_New(), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject* Py_NotImplemented
The NotImplemented singleton, used to signal that an operation is not implemented for the given type
combination.

Py_RETURN_NOTIMPLEMENTED
Properly handle returning Py_NotImplemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str() of the object is written instead
of the repr().

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.
Note that exceptions which occur while calling __getattr__() and __getattribute__() methods
will get suppressed. To get error reporting use PyObject_GetAttr() instead.

int PyObject_HasAttrString(PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.
Note that exceptions which occur while calling __getattr__() and __getattribute__()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString() instead.

PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value
on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value
on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr(PyObject *o, PyObject *name)
Return value: New reference. Generic attribute getter function that is meant to be put into a type object’s
tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well as an

55

The Python/C API, Release 3.7.5

attribute in the object’s __dict__ (if present). As outlined in descriptors, data descriptors take preference
over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return -1
on failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = v.
If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr().

int PyObject_SetAttrString(PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return -1
on failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = v.
If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp_setattro slot.
It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference
over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the
object’s __dict__ (if present). On success, 0 is returned, otherwise an AttributeError is raised and
-1 is returned.

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of the Python
statement del o.attr_name.

int PyObject_DelAttrString(PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of the Python
statement del o.attr_name.

PyObject* PyObject_GenericGetDict(PyObject *o, void *context)
Return value: New reference. A generic implementation for the getter of a __dict__ descriptor. It creates
the dictionary if necessary.
New in version 3.3.

int PyObject_GenericSetDict(PyObject *o, void *context)
A generic implementation for the setter of a __dict__ descriptor. This implementation does not allow the
dictionary to be deleted.
New in version 3.3.

PyObject* PyObject_RichCompare(PyObject *o1, PyObject *o2, int opid)
Return value: New reference. Compare the values of o1 and o2 using the operation specified by opid, which
must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >,
or >= respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator
corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool(PyObject *o1, PyObject *o2, int opid)
Compare the values of o1 and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. Returns -1 on
error, 0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op o2, where
op is the operator corresponding to opid.

Note: If o1 and o2 are the same object, PyObject_RichCompareBool() will always return 1 for Py_EQ
and 0 for Py_NE.

PyObject* PyObject_Repr(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr(o). Called by the repr()
built-in function.

56 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.5

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject* PyObject_ASCII(PyObject *o)
Return value: New reference. As PyObject_Repr(), compute a string representation of object o, but
escape the non-ASCII characters in the string returned by PyObject_Repr() with \x, \u or \U escapes.
This generates a string similar to that returned by PyObject_Repr() in Python 2. Called by the ascii()
built-in function.

PyObject* PyObject_Str(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string representation
on success, NULL on failure. This is the equivalent of the Python expression str(o). Called by the str()
built-in function and, therefore, by the print() function.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject* PyObject_Bytes(PyObject *o)
Return value: New reference. Compute a bytes representation of object o. NULL is returned on failure and
a bytes object on success. This is equivalent to the Python expression bytes(o), when o is not an integer.
Unlike bytes(o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass(PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return -1.
If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.
If cls has a __subclasscheck__()method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls.__mro__.
Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by having a __bases__ attribute (which must be a tuple of base classes).

int PyObject_IsInstance(PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns -1 and sets an
exception.
If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.
If cls has a __instancecheck__()method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.
An instance inst can override what is considered its class by having a __class__ attribute.
An object cls can override if it is considered a class, and what its base classes are, by having a __bases__
attribute (which must be a tuple of base classes).

int PyCallable_Check(PyObject *o)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always
succeeds.

PyObject* PyObject_Call(PyObject *callable, PyObject *args, PyObject *kwargs)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args,
and named arguments given by the dictionary kwargs.
args must not be NULL, use an empty tuple if no arguments are needed. If no named arguments are needed,
kwargs can be NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args, **kwargs).

7.1. Object Protocol 57

https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-3119

The Python/C API, Release 3.7.5

PyObject* PyObject_CallObject(PyObject *callable, PyObject *args)
Return value: New reference. Call a callable Python object callable, with arguments given by the tuple args. If
no arguments are needed, then args can be NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args).

PyObject* PyObject_CallFunction(PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments.
The C arguments are described using a Py_BuildValue() style format string. The format can be NULL,
indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args).
Note that if you only pass PyObject * args, PyObject_CallFunctionObjArgs() is a faster alter-
native.
Changed in version 3.4: The type of format was changed from char *.

PyObject* PyObject_CallMethod(PyObject *obj, const char *name, const char *format, ...)
Return value: New reference. Call themethod named name of object obj with a variable number of C arguments.
The C arguments are described by a Py_BuildValue() format string that should produce a tuple.
The format can be NULL, indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: obj.name(arg1, arg2, ...).
Note that if you only pass PyObject * args, PyObject_CallMethodObjArgs() is a faster alterna-
tive.
Changed in version 3.4: The types of name and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs(PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject*
arguments. The arguments are provided as a variable number of parameters followed by NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(arg1, arg2, ...).

PyObject* PyObject_CallMethodObjArgs(PyObject *obj, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the Python object obj, where the name of the method is given as
a Python string object in name. It is called with a variable number of PyObject* arguments. The arguments
are provided as a variable number of parameters followed by NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.

Py_hash_t PyObject_Hash(PyObject *o)
Compute and return the hash value of an object o. On failure, return -1. This is the equivalent of the Python
expression hash(o).
Changed in version 3.2: The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNotImplemented(PyObject *o)
Set a TypeError indicating that type(o) is not hashable and return -1. This function receives special
treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not
hashable.

int PyObject_IsTrue(PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression
not not o. On failure, return -1.

int PyObject_Not(PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression
not o. On failure, return -1.

58 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.5

PyObject* PyObject_Type(PyObject *o)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type
of object o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expres-
sion type(o). This function increments the reference count of the return value. There’s really no rea-
son to use this function instead of the common expression o->ob_type, which returns a pointer of type
PyTypeObject*, except when the incremented reference count is needed.

int PyObject_TypeCheck(PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size(PyObject *o)
Py_ssize_t PyObject_Length(PyObject *o)

Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, -1 is returned. This is the equivalent to the Python expression len(o).

Py_ssize_t PyObject_LengthHint(PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__(), and finally return the default value. On error return -1. This is the equivalent
to the Python expression operator.length_hint(o, default).
New in version 3.4.

PyObject* PyObject_GetItem(PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is
the equivalent of the Python expression o[key].

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return -1 on failure; return 0 on success. This is
the equivalent of the Python statement o[key] = v.

int PyObject_DelItem(PyObject *o, PyObject *key)
Remove the mapping for the object key from the object o. Return -1 on failure. This is equivalent to the
Python statement del o[key].

PyObject* PyObject_Dir(PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir(o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL,
this is like the Python dir(), returning the names of the current locals; in this case, if no execution frame is
active then NULL is returned but PyErr_Occurred() will return false.

PyObject* PyObject_GetIter(PyObject *o)
Return value: New reference. This is equivalent to the Python expression iter(o). It returns a new iterator
for the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns
NULL if the object cannot be iterated.

7.2 Number Protocol

int PyNumber_Check(PyObject *o)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of adding o1 and o2, or NULL on failure. This is the equivalent
of the Python expression o1 + o2.

PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of subtracting o2 from o1, or NULL on failure. This is the
equivalent of the Python expression o1 - o2.

PyObject* PyNumber_Multiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of multiplying o1 and o2, or NULL on failure. This is the
equivalent of the Python expression o1 * o2.

7.2. Number Protocol 59

The Python/C API, Release 3.7.5

PyObject* PyNumber_MatrixMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of matrix multiplication on o1 and o2, or NULL on failure.
This is the equivalent of the Python expression o1 @ o2.
New in version 3.5.

PyObject* PyNumber_FloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return the floor of o1 divided by o2, or NULL on failure. This is equivalent to
the “classic” division of integers.

PyObject* PyNumber_TrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return a reasonable approximation for the mathematical value of o1 divided
by o2, or NULL on failure. The return value is “approximate” because binary floating point numbers are
approximate; it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers.

PyObject* PyNumber_Remainder(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the remainder of dividing o1 by o2, or NULL on failure. This is the
equivalent of the Python expression o1 % o2.

PyObject* PyNumber_Divmod(PyObject *o1, PyObject *o2)
Return value: New reference. See the built-in function divmod(). Returns NULL on failure. This is the
equivalent of the Python expression divmod(o1, o2).

PyObject* PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. See the built-in function pow(). ReturnsNULL on failure. This is the equivalent
of the Python expression pow(o1, o2, o3), where o3 is optional. If o3 is to be ignored, pass Py_None
in its place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_Negative(PyObject *o)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent
of the Python expression -o.

PyObject* PyNumber_Positive(PyObject *o)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute(PyObject *o)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs(o).

PyObject* PyNumber_Invert(PyObject *o)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the
equivalent of the Python expression ~o.

PyObject* PyNumber_Lshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of left shifting o1 by o2 on success, or NULL on failure. This
is the equivalent of the Python expression o1 << o2.

PyObject* PyNumber_Rshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of right shifting o1 by o2 on success, or NULL on failure. This
is the equivalent of the Python expression o1 >> o2.

PyObject* PyNumber_And(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise and” of o1 and o2 on success and NULL on failure. This is
the equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xor(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on failure.
This is the equivalent of the Python expression o1 ^ o2.

PyObject* PyNumber_Or(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise or” of o1 and o2 on success, or NULL on failure. This is the
equivalent of the Python expression o1 | o2.

60 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.5

PyObject* PyNumber_InPlaceAdd(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of adding o1 and o2, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 += o2.

PyObject* PyNumber_InPlaceSubtract(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of subtracting o2 from o1, or NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python statement o1 -= o2.

PyObject* PyNumber_InPlaceMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of multiplying o1 and o2, or NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python statement o1 *= o2.

PyObject* PyNumber_InPlaceMatrixMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of matrix multiplication on o1 and o2, orNULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 @= o2.
New in version 3.5.

PyObject* PyNumber_InPlaceFloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the mathematical floor of dividing o1 by o2, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 //= o2.

PyObject* PyNumber_InPlaceTrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return a reasonable approximation for the mathematical value of o1 divided
by o2, or NULL on failure. The return value is “approximate” because binary floating point numbers are
approximate; it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers. The operation is done in-place when o1 supports it.

PyObject* PyNumber_InPlaceRemainder(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the remainder of dividing o1 by o2, or NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python statement o1 %= o2.

PyObject* PyNumber_InPlacePower(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. See the built-in function pow(). Returns NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 **= o2 when o3 is
Py_None, or an in-place variant of pow(o1, o2, o3) otherwise. If o3 is to be ignored, pass Py_None
in its place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of left shifting o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 <<= o2.

PyObject* PyNumber_InPlaceRshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of right shifting o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 >>= o2.

PyObject* PyNumber_InPlaceAnd(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise and” of o1 and o2 on success and NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 &= o2.

PyObject* PyNumber_InPlaceXor(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on failure.
The operation is done in-placewhen o1 supports it. This is the equivalent of the Python statement o1 ^= o2.

PyObject* PyNumber_InPlaceOr(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise or” of o1 and o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 |= o2.

PyObject* PyNumber_Long(PyObject *o)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This
is the equivalent of the Python expression int(o).

PyObject* PyNumber_Float(PyObject *o)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is
the equivalent of the Python expression float(o).

7.2. Number Protocol 61

The Python/C API, Release 3.7.5

PyObject* PyNumber_Index(PyObject *o)
Return value: New reference. Returns the o converted to a Python int on success or NULL with a TypeError
exception raised on failure.

PyObject* PyNumber_ToBase(PyObject *n, int base)
Return value: New reference. Returns the integer n converted to base base as a string. The base argument must
be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefixed with a base marker of '0b',
'0o', or '0x', respectively. If n is not a Python int, it is converted with PyNumber_Index() first.

Py_ssize_t PyNumber_AsSsize_t(PyObject *o, PyObject *exc)
Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If the call fails, an exception is
raised and -1 is returned.
If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError
or OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to
PY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check(PyObject *o)
Returns 1 if o is an index integer (has the nb_index slot of the tp_as_number structure filled in), and 0 other-
wise. This function always succeeds.

7.3 Sequence Protocol

int PySequence_Check(PyObject *o)
Return 1 if the object provides sequence protocol, and 0 otherwise. Note that it returns 1 for Python classes
with a __getitem__() method unless they are dict subclasses since in general case it is impossible to
determine what the type of keys it supports. This function always succeeds.

Py_ssize_t PySequence_Size(PyObject *o)
Py_ssize_t PySequence_Length(PyObject *o)

Returns the number of objects in sequence o on success, and -1 on failure. This is equivalent to the Python
expression len(o).

PyObject* PySequence_Concat(PyObject *o1, PyObject *o2)
Return value: New reference. Return the concatenation of o1 and o2 on success, and NULL on failure. This is
the equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

PyObject* PySequence_InPlaceConcat(PyObject *o1, PyObject *o2)
Return value: New reference. Return the concatenation of o1 and o2 on success, and NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python expression o1 += o2.

PyObject* PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *=
count.

PyObject* PySequence_GetItem(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the
Python expression o[i].

PyObject* PySequence_GetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Return value: New reference. Return the slice of sequence object o between i1 and i2, or NULL on failure. This
is the equivalent of the Python expression o[i1:i2].

int PySequence_SetItem(PyObject *o, Py_ssize_t i, PyObject *v)
Assign object v to the ith element of o. Raise an exception and return -1 on failure; return 0 on success. This
is the equivalent of the Python statement o[i] = v. This function does not steal a reference to v.

62 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.5

If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem(PyObject *o, Py_ssize_t i)
Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the Python statement del
o[i].

int PySequence_SetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i1 to i2. This is the equivalent of the Python
statement o[i1:i2] = v.

int PySequence_DelSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Delete the slice in sequence object o from i1 to i2. Returns -1 on failure. This is the equivalent of the Python
statement del o[i1:i2].

Py_ssize_t PySequence_Count(PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o[key] ==
value. On failure, return -1. This is equivalent to the Python expression o.count(value).

int PySequence_Contains(PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On error, return
-1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index(PyObject *o, PyObject *value)
Return the first index i for which o[i] == value. On error, return -1. This is equivalent to the Python
expression o.index(value).

PyObject* PySequence_List(PyObject *o)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL
on failure. The returned list is guaranteed to be new. This is equivalent to the Python expression list(o).

PyObject* PySequence_Tuple(PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or
NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with
the appropriate contents. This is equivalent to the Python expression tuple(o).

PyObject* PySequence_Fast(PyObject *o, const char *m)
Return value: New reference. Return the sequence or iterable o as an object usable by the other
PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError
with m as the message text. Returns NULL on failure.
The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.
As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE(PyObject *o)
Returns the length of o, assuming that owas returned by PySequence_Fast() and that o is notNULL. The
size can also be gotten by calling PySequence_Size() on o, but PySequence_Fast_GET_SIZE()
is faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM(PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast(), o is not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS(PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast()
and o is not NULL.
Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.

PyObject* PySequence_ITEM(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem() but without checking that PySequence_Check() on o is true and with-
out adjustment for negative indices.

7.3. Sequence Protocol 63

The Python/C API, Release 3.7.5

7.4 Mapping Protocol

See also PyObject_GetItem(), PyObject_SetItem() and PyObject_DelItem().
int PyMapping_Check(PyObject *o)

Return 1 if the object provides mapping protocol or supports slicing, and 0 otherwise. Note that it returns 1
for Python classes with a __getitem__() method since in general case it is impossible to determine what
the type of keys it supports. This function always succeeds.

Py_ssize_t PyMapping_Size(PyObject *o)
Py_ssize_t PyMapping_Length(PyObject *o)

Returns the number of keys in object o on success, and-1 on failure. This is equivalent to the Python expression
len(o).

PyObject* PyMapping_GetItemString(PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the string key or NULL on failure. This is
the equivalent of the Python expression o[key]. See also PyObject_GetItem().

int PyMapping_SetItemString(PyObject *o, const char *key, PyObject *v)
Map the string key to the value v in object o. Returns -1 on failure. This is the equivalent of the Python
statement o[key] = v. See also PyObject_SetItem().

int PyMapping_DelItem(PyObject *o, PyObject *key)
Remove the mapping for the object key from the object o. Return -1 on failure. This is equivalent to the
Python statement del o[key]. This is an alias of PyObject_DelItem().

int PyMapping_DelItemString(PyObject *o, const char *key)
Remove the mapping for the string key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_HasKey(PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python expression
key in o. This function always succeeds.
Note that exceptions which occur while calling the __getitem__() method will get suppressed. To get
error reporting use PyObject_GetItem() instead.

int PyMapping_HasKeyString(PyObject *o, const char *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python expression
key in o. This function always succeeds.
Note that exceptions which occur while calling the __getitem__()method and creating a temporary string
object will get suppressed. To get error reporting use PyMapping_GetItemString() instead.

PyObject* PyMapping_Keys(PyObject *o)
Return value: New reference. On success, return a list of the keys in object o. On failure, return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

PyObject* PyMapping_Values(PyObject *o)
Return value: New reference. On success, return a list of the values in object o. On failure, return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

PyObject* PyMapping_Items(PyObject *o)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple
containing a key-value pair. On failure, return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

7.5 Iterator Protocol

There are two functions specifically for working with iterators.

64 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.5

int PyIter_Check(PyObject *o)
Return true if the object o supports the iterator protocol.

PyObject* PyIter_Next(PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up
to the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error
occurs while retrieving the item, returns NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter(obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while (item = PyIter_Next(iterator)) {
/* do something with item */
...
/* release reference when done */
Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

7.6 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the
built-in bytes and bytearray, and some extension types like array.array. Third-party libraries may define
their own types for special purposes, such as image processing or numeric analysis.
While each of these types have their own semantics, they share the common characteristic of being backed by a
possibly large memory buffer. It is then desirable, in some situations, to access that buffer directly and without
intermediate copying.
Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

• on the producer side, a type can export a “buffer interface” which allows objects of that type to expose infor-
mation about their underlying buffer. This interface is described in the section Buffer Object Structures;

• on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object
(for example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms
are possible; for example, the elements exposed by an array.array can be multi-byte values.
An example consumer of the buffer interface is the write() method of file objects: any object that can export a
series of bytes through the buffer interface can be written to a file. While write() only needs read-only access
to the internal contents of the object passed to it, other methods such as readinto() need write access to the
contents of their argument. The buffer interface allows objects to selectively allow or reject exporting of read-write
and read-only buffers.
There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:

• call PyObject_GetBuffer() with the right parameters;

7.6. Buffer Protocol 65

The Python/C API, Release 3.7.5

• call PyArg_ParseTuple() (or one of its siblings) with one of the y*, w* or s* format codes.
In both cases, PyBuffer_Release() must be called when the buffer isn’t needed anymore. Failure to do so
could lead to various issues such as resource leaks.

7.6.1 Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of
memory, it is possible to expose any data to the Python programmer quite easily. The memory could be a large,
constant array in a C extension, it could be a raw block of memory for manipulation before passing to an operating
system library, or it could be used to pass around structured data in its native, in-memory format.
Contrary to most data types exposed by the Python interpreter, buffers are not PyObject pointers but rather simple
C structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is
needed, a memoryview object can be created.
For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().
Py_buffer

void *buf
A pointer to the start of the logical structure described by the buffer fields. This can be any location
within the underlying physical memory block of the exporter. For example, with negative strides the
value may point to the end of the memory block.
For contiguous arrays, the value points to the beginning of the memory block.

void *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically
decremented and set to NULL by PyBuffer_Release(). The field is the equivalent of the return
value of any standard C-API function.
As a special case, for temporary buffers that are wrapped by PyMemoryView_FromBuffer() or
PyBuffer_FillInfo() this field is NULL. In general, exporting objects MUST NOT use this
scheme.

Py_ssize_t len
product(shape) * itemsize. For contiguous arrays, this is the length of the underlying mem-
ory block. For non-contiguous arrays, it is the length that the logical structure would have if it were
copied to a contiguous representation.
Accessing ((char *)buf)[0] up to ((char *)buf)[len-1] is only valid if the buffer
has been obtained by a request that guarantees contiguity. In most cases such a request will be
PyBUF_SIMPLE or PyBUF_WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRITABLE flag.

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize() called on non-
NULL format values.
Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will
be set to NULL, but itemsize still has the value for the original format.
If shape is present, the equality product(shape) * itemsize == len still holds and the
consumer can use itemsize to navigate the buffer.
If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer
must disregard itemsize and assume itemsize == 1.

66 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.5

const char *format
A NUL terminated string in structmodule style syntax describing the contents of a single item. If this
is NULL, "B" (unsigned bytes) is assumed.
This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a
single item representing a scalar. In this case, shape, strides and suboffsetsMUST be NULL.
The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters
MUST respect this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to
PyBUF_MAX_NDIM dimensions.

Py_ssize_t *shape
An array ofPy_ssize_t of lengthndim indicating the shape of thememory as an n-dimensional array.
Note that shape[0] * ... * shape[ndim-1] * itemsizeMUST be equal to len.
Shape values are restricted to shape[n] >= 0. The case shape[n] == 0 requires special atten-
tion. See complex arrays for further information.
The shape array is read-only for the consumer.

Py_ssize_t *strides
An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element
in each dimension.
Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST
be able to handle the case strides[n] <= 0. See complex arrays for further information.
The strides array is read-only for the consumer.

Py_ssize_t *suboffsets
An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the
nth dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after
de-referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding
in a contiguous memory block).
If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).
This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for
further information how to access elements of such an array.
The suboffsets array is read-only for the consumer.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be
freed when the buffer is released. The consumer MUST NOT alter this value.

7.6.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer().
Since the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument
to specify the exact buffer type it can handle.
All Py_buffer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: obj, buf, len,
itemsize, ndim.

7.6. Buffer Protocol 67

The Python/C API, Release 3.7.5

readonly, format

PyBUF_WRITABLE
Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field
MUST be NULL.

PyBUF_WRITABLE can be |’d to any of the flags in the next section. Since PyBUF_SIMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.
PyBUF_FORMAT can be |’d to any of the flags except PyBUF_SIMPLE. The latter already implies format B (un-
signed bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each
flag contains all bits of the flags below it.

Request shape strides suboffsets
PyBUF_INDIRECT

yes yes if needed

PyBUF_STRIDES
yes yes NULL

PyBUF_ND
yes NULL NULL

PyBUF_SIMPLE
NULL NULL NULL

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information,
the buffer must be C-contiguous.

Request shape strides suboffsets contig
PyBUF_C_CONTIGUOUS

yes yes NULL C

PyBUF_F_CONTIGUOUS
yes yes NULL F

PyBUF_ANY_CONTIGUOUS
yes yes NULL C or F

PyBUF_ND
yes NULL NULL C

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

68 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.5

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer_IsContiguous() to determine contiguity.

Request shape strides suboffsets contig readonly format
PyBUF_FULL

yes yes if needed U 0 yes

PyBUF_FULL_RO
yes yes if needed U 1 or 0 yes

PyBUF_RECORDS
yes yes NULL U 0 yes

PyBUF_RECORDS_RO
yes yes NULL U 1 or 0 yes

PyBUF_STRIDED
yes yes NULL U 0 NULL

PyBUF_STRIDED_RO
yes yes NULL U 1 or 0 NULL

PyBUF_CONTIG
yes NULL NULL C 0 NULL

PyBUF_CONTIG_RO
yes NULL NULL C 1 or 0 NULL

7.6.3 Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by itemsize, ndim, shape and strides.
If ndim == 0, the memory location pointed to by buf is interpreted as a scalar of size itemsize. In that case,
both shape and strides are NULL.
If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof(item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity
of a buffer with this function:

def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within

the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem

"""
if offset % itemsize:

return False
if offset < 0 or offset+itemsize > memlen:

return False
if any(v % itemsize for v in strides):

return False

if ndim <= 0:

(continues on next page)

7.6. Buffer Protocol 69

The Python/C API, Release 3.7.5

(continued from previous page)
return ndim == 0 and not shape and not strides

if 0 in shape:
return True

imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] <= 0)

imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] > 0)

return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the
next element in a dimension. For example, the regular three-dimensional C-array char v[2][2][3] can also be
viewed as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2])[2][3]. In suboffsets representa-
tion, those two pointers can be embedded at the start of buf, pointing to two char x[2][3] arrays that can be
located anywhere in memory.
Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++) {

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {

pointer = *((char**)pointer) + suboffsets[i];
}

}
return (void*)pointer;

}

7.6.4 Buffer-related functions

int PyObject_CheckBuffer(PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’t guarantee that
PyObject_GetBuffer() will succeed. This function always succeeds.

int PyObject_GetBuffer(PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the
exact type, it MUST raise PyExc_BufferError, set view->obj to NULL and return -1.
On success, fill in view, set view->obj to a new reference to exporter and return 0. In the case of chained
buffer providers that redirect requests to a single object, view->obj MAY refer to this object instead of
exporter (See Buffer Object Structures).
Successful calls to PyObject_GetBuffer() must be paired with calls to PyBuffer_Release(),
similar to malloc() and free(). Thus, after the consumer is done with the buffer,
PyBuffer_Release() must be called exactly once.

void PyBuffer_Release(Py_buffer *view)
Release the buffer view and decrement the reference count for view->obj. This function MUST be called
when the buffer is no longer being used, otherwise reference leaks may occur.
It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer().

70 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.7.5

Py_ssize_t PyBuffer_SizeFromFormat(const char *)
Return the implied itemsize from format. This function is not yet implemented.

int PyBuffer_IsContiguous(Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (order is 'C') or Fortran-style (order is 'F') contiguous
or either one (order is 'A'). Return 0 otherwise. This function always succeeds.

void* PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices)
Get the memory area pointed to by the indices inside the given view. indices must point to an array of
view->ndim indices.

int PyBuffer_FromContiguous(Py_buffer *view, void *buf, Py_ssize_t len, char fort)
Copy contiguous len bytes from buf to view. fort can be 'C' or 'F' (for C-style or Fortran-style ordering).
0 is returned on success, -1 on error.

int PyBuffer_ToContiguous(void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order can be 'C' or 'F' or 'A' (for C-style
or Fortran-style ordering or either one). 0 is returned on success, -1 on error.
This function fails if len != src->len.

void PyBuffer_FillContiguousStrides(int ndims, Py_ssize_t *shape, Py_ssize_t *strides,
int itemsize, char order)

Fill the strides array with byte-strides of a contiguous (C-style if order is 'C' or Fortran-style if order is 'F')
array of the given shape with the given number of bytes per element.

int PyBuffer_FillInfo(Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,
int flags)

Handle buffer requests for an exporter that wants to expose buf of size len with writability set according to
readonly. buf is interpreted as a sequence of unsigned bytes.
The flags argument indicates the request type. This function always fills in view as specified by flags, unless
buf has been designated as read-only and PyBUF_WRITABLE is set in flags.
On success, set view->obj to a new reference to exporter and return 0. Otherwise, raise
PyExc_BufferError, set view->obj to NULL and return -1;
If this function is used as part of a getbufferproc, exporterMUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

7.7 Old Buffer Protocol

Deprecated since version 3.0.
These functions were part of the “old buffer protocol” API in Python 2. In Python 3, this protocol doesn’t exist
anymore but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around
the new buffer protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is
exported.
Therefore, it is recommended that you call PyObject_GetBuffer() (or the y* or w* format codes with the
PyArg_ParseTuple() family of functions) to get a buffer view over an object, and PyBuffer_Release()
when the buffer view can be released.
int PyObject_AsCharBuffer(PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)

Returns a pointer to a read-only memory location usable as character-based input. The obj argument must
support the single-segment character buffer interface. On success, returns 0, sets buffer to the memory location
and buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

int PyObject_AsReadBuffer(PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location containing arbitrary data. The obj argument must support
the single-segment readable buffer interface. On success, returns 0, sets buffer to the memory location and
buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

7.7. Old Buffer Protocol 71

The Python/C API, Release 3.7.5

int PyObject_CheckReadBuffer(PyObject *o)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0. This function always
succeeds.
Note that this function tries to get and release a buffer, and exceptions which occur while calling corresponding
functions will get suppressed. To get error reporting use PyObject_GetBuffer() instead.

int PyObject_AsWriteBuffer(PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writable memory location. The obj argument must support the single-segment, character
buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the buffer length.
Returns -1 and sets a TypeError on error.

72 Chapter 7. Abstract Objects Layer

CHAPTER

EIGHT

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check(). The
chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in
can cause memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same object as type in the Python layer.

int PyType_Check(PyObject *o)
Return true if the object o is a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact(PyObject *o)
Return true if the object o is a type object, but not a subtype of the standard type object. Return false in all
other cases.

unsigned int PyType_ClearCache()
Clear the internal lookup cache. Return the current version tag.

unsigned long PyType_GetFlags(PyTypeObject* type)
Return the tp_flagsmember of type. This function is primarily meant for use with Py_LIMITED_API; the
individual flag bits are guaranteed to be stable across Python releases, but access to tp_flags itself is not
part of the limited API.
New in version 3.2.
Changed in version 3.4: The return type is now unsigned long rather than long.

void PyType_Modified(PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

73

The Python/C API, Release 3.7.5

int PyType_HasFeature(PyTypeObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC(PyTypeObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS_HAVE_GC.

int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.
This function only checks for actual subtypes, which means that __subclasscheck__() is not called on
b. Call PyObject_IsSubclass() to do the same check that issubclass() would do.

PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Generic handler for the tp_new slot of a type object. Create a new instance
using the type’s tp_alloc slot.

int PyType_Ready(PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Return 0 on success, or return -1 and sets an
exception on error.

PyObject* PyType_FromSpec(PyType_Spec *spec)
Return value: New reference. Creates and returns a heap type object from the spec passed to the function.

PyObject* PyType_FromSpecWithBases(PyType_Spec *spec, PyObject *bases)
Return value: New reference. Creates and returns a heap type object from the spec. In addition to that, the
created heap type contains all types contained by the bases tuple as base types. This allows the caller to
reference other heap types as base types.
New in version 3.3.

void* PyType_GetSlot(PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is
NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into
the appropriate function type.
New in version 3.4.

8.1.2 The None Object

Note that the PyTypeObject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check() function for the same reason.

PyObject* Py_None
The Python None object, denoting lack of value. This object has no methods. It needs to be treated just like
any other object with respect to reference counts.

Py_RETURN_NONE
Properly handle returning Py_None from within a C function (that is, increment the reference count of None
and return it.)

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as “long” integer objects of arbitrary size.

74 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

On error, most PyLong_As* APIs return (return type)-1 which cannot be distinguished from a number.
Use PyErr_Occurred() to disambiguate.
PyLongObject

This subtype of PyObject represents a Python integer object.
PyTypeObject PyLong_Type

This instance of PyTypeObject represents the Python integer type. This is the same object as int in the
Python layer.

int PyLong_Check(PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.

int PyLong_CheckExact(PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.

PyObject* PyLong_FromLong(long v)
Return value: New reference. Return a new PyLongObject object from v, or NULL on failure.
The current implementation keeps an array of integer objects for all integers between -5 and 256, when you
create an int in that range you actually just get back a reference to the existing object. So it should be possible
to change the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyLong_FromUnsignedLong(unsigned long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long, or NULL
on failure.

PyObject* PyLong_FromSsize_t(Py_ssize_t v)
Return value: New reference. Return a new PyLongObject object from a C Py_ssize_t, or NULL on
failure.

PyObject* PyLong_FromSize_t(size_t v)
Return value: New reference. Return a new PyLongObject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong(long long v)
Return value: New reference. Return a new PyLongObject object from a C long long, or NULL on
failure.

PyObject* PyLong_FromUnsignedLongLong(unsigned long long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble(double v)
Return value: New reference. Return a new PyLongObject object from the integer part of v, or NULL on
failure.

PyObject* PyLong_FromString(const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongObject based on the string value in str, which is in-
terpreted according to the radix in base. If pend is non-NULL, *pend will point to the first character in str
which follows the representation of the number. If base is 0, str is interpreted using the integers definition;
in this case, leading zeros in a non-zero decimal number raises a ValueError. If base is not 0, it must be
between 2 and 36, inclusive. Leading spaces and single underscores after a base specifier and between digits
are ignored. If there are no digits, ValueError will be raised.

PyObject* PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python integer value. The Unicode
string is first encoded to a byte string using PyUnicode_EncodeDecimal() and then converted using
PyLong_FromString().
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyLong_FromUnicodeObject().

PyObject* PyLong_FromUnicodeObject(PyObject *u, int base)
Return value: New reference. Convert a sequence of Unicode digits in the string u to a Python integer value. The
Unicode string is first encoded to a byte string using PyUnicode_EncodeDecimal() and then converted
using PyLong_FromString().

8.2. Numeric Objects 75

The Python/C API, Release 3.7.5

New in version 3.3.
PyObject* PyLong_FromVoidPtr(void *p)

Return value: New reference. Create a Python integer from the pointer p. The pointer value can be retrieved
from the resulting value using PyLong_AsVoidPtr().

long PyLong_AsLong(PyObject *obj)
Return a Clong representation of obj. If obj is not an instance ofPyLongObject, first call its__int__()
method (if present) to convert it to a PyLongObject.
Raise OverflowError if the value of obj is out of range for a long.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

long PyLong_AsLongAndOverflow(PyObject *obj, int *overflow)
Return a Clong representation of obj. If obj is not an instance ofPyLongObject, first call its__int__()
method (if present) to convert it to a PyLongObject.
If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or -1, respectively,
and return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1
as usual.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

long long PyLong_AsLongLong(PyObject *obj)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__() method (if present) to convert it to a PyLongObject.
Raise OverflowError if the value of obj is out of range for a long.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

long long PyLong_AsLongLongAndOverflow(PyObject *obj, int *overflow)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
__int__() method (if present) to convert it to a PyLongObject.
If the value of obj is greater than PY_LLONG_MAX or less than PY_LLONG_MIN, set *overflow to 1 or -1,
respectively, and return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and
return -1 as usual.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.
New in version 3.2.

Py_ssize_t PyLong_AsSsize_t(PyObject *pylong)
Return a C Py_ssize_t representation of pylong. pylong must be an instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for a Py_ssize_t.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long PyLong_AsUnsignedLong(PyObject *pylong)
Return a C unsigned long representation of pylong. pylong must be an instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.

size_t PyLong_AsSize_t(PyObject *pylong)
Return a C size_t representation of pylong. pylong must be an instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for a size_t.
Returns (size_t)-1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong(PyObject *pylong)
Return a C unsigned long long representation of pylong. pylong must be an instance of
PyLongObject.
Raise OverflowError if the value of pylong is out of range for an unsigned long long.

76 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

Returns (unsigned long long)-1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask(PyObject *obj)
Return a C unsigned long representation of obj. If obj is not an instance of PyLongObject, first call
its __int__() method (if present) to convert it to a PyLongObject.
If the value of obj is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1.
Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long long PyLong_AsUnsignedLongLongMask(PyObject *obj)
Return a C unsigned long long representation of obj. If obj is not an instance of PyLongObject,
first call its __int__() method (if present) to convert it to a PyLongObject.
If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
PY_ULLONG_MAX + 1.
Returns (unsigned long long)-1 on error. Use PyErr_Occurred() to disambiguate.

double PyLong_AsDouble(PyObject *pylong)
Return a C double representation of pylong. pylong must be an instance of PyLongObject.
Raise OverflowError if the value of pylong is out of range for a double.
Returns -1.0 on error. Use PyErr_Occurred() to disambiguate.

void* PyLong_AsVoidPtr(PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr().
Returns NULL on error. Use PyErr_Occurred() to disambiguate.

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_False and
Py_True. As such, the normal creation and deletion functions don’t apply to booleans. The following macros
are available, however.
int PyBool_Check(PyObject *o)

Return true if o is of type PyBool_Type.
PyObject* Py_False

The Python False object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

PyObject* Py_True
The Python True object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

Py_RETURN_FALSE
Return Py_False from a function, properly incrementing its reference count.

Py_RETURN_TRUE
Return Py_True from a function, properly incrementing its reference count.

PyObject* PyBool_FromLong(long v)
Return value: New reference. Return a new reference to Py_True or Py_False depending on the truth
value of v.

8.2. Numeric Objects 77

The Python/C API, Release 3.7.5

8.2.3 Floating Point Objects

PyFloatObject
This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat_Type
This instance of PyTypeObject represents the Python floating point type. This is the same object as float
in the Python layer.

int PyFloat_Check(PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject.

int PyFloat_CheckExact(PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject.

PyObject* PyFloat_FromString(PyObject *str)
Return value: New reference. Create a PyFloatObject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble(double v)
Return value: New reference. Create a PyFloatObject object from v, or NULL on failure.

double PyFloat_AsDouble(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat. If pyfloat is not a Python floating point object
but has a __float__() method, this method will first be called to convert pyfloat into a float. This method
returns -1.0 upon failure, so one should call PyErr_Occurred() to check for errors.

double PyFloat_AS_DOUBLE(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject* PyFloat_GetInfo(void)
Return value: New reference. Return a structseq instance which contains information about the precision,
minimum and maximum values of a float. It’s a thin wrapper around the header file float.h.

double PyFloat_GetMax()
Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin()
Return the minimum normalized positive float DBL_MIN as C double.

int PyFloat_ClearFreeList()
Clear the float free list. Return the number of items that could not be freed.

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the API.
Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;

(continues on next page)

78 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

(continued from previous page)
double imag;

} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_diff(Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_neg(Py_complex complex)
Return the negation of the complex number complex, using the C Py_complex representation.

Py_complex _Py_c_prod(Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py_complex representation.
If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow(Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_complex representation.
If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance of PyTypeObject represents the Python complex number type. It is the same object as
complex in the Python layer.

int PyComplex_Check(PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject.

int PyComplex_CheckExact(PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject.

PyObject* PyComplex_FromCComplex(Py_complex v)
Return value: New reference. Create a new Python complex number object from a C Py_complex value.

PyObject* PyComplex_FromDoubles(double real, double imag)
Return value: New reference. Return a new PyComplexObject object from real and imag.

double PyComplex_RealAsDouble(PyObject *op)
Return the real part of op as a C double.

double PyComplex_ImagAsDouble(PyObject *op)
Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex(PyObject *op)
Return the Py_complex value of the complex number op.
If op is not a Python complex number object but has a __complex__() method, this method will first be
called to convert op to a Python complex number object. Upon failure, this method returns -1.0 as a real
value.

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

8.3. Sequence Objects 79

The Python/C API, Release 3.7.5

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and are called with a non-bytes parameter.
PyBytesObject

This subtype of PyObject represents a Python bytes object.
PyTypeObject PyBytes_Type

This instance of PyTypeObject represents the Python bytes type; it is the same object as bytes in the
Python layer.

int PyBytes_Check(PyObject *o)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type.

int PyBytes_CheckExact(PyObject *o)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type.

PyObject* PyBytes_FromString(const char *v)
Return value: New reference. Return a new bytes object with a copy of the string v as value on success, and
NULL on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyBytes_FromStringAndSize(const char *v, Py_ssize_t len)
Return value: New reference. Return a new bytes object with a copy of the string v as value and length len on
success, and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,
calculate the size of the resulting Python bytes object and return a bytes object with the values formatted into
it. The variable arguments must be C types and must correspond exactly to the format characters in the format
string. The following format characters are allowed:

Format Characters Type Comment
%% n/a The literal % character.
%c int A single byte, represented as a C int.
%d int Equivalent to printf("%d").1
%u unsigned int Equivalent to printf("%u").1
%ld long Equivalent to printf("%ld").1
%lu unsigned long Equivalent to printf("%lu").1
%zd Py_ssize_t Equivalent to printf("%zd").1
%zu size_t Equivalent to printf("%zu").1
%i int Equivalent to printf("%i").1
%x int Equivalent to printf("%x").1
%s const char* A null-terminated C character array.
%p const void* The hex representation of a C pointer. Mostly equivalent to

printf("%p") except that it is guaranteed to start with the
literal 0x regardless of what the platform’s printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object,
and any extra arguments discarded.

PyObject* PyBytes_FromFormatV(const char *format, va_list vargs)
Return value: New reference. Identical to PyBytes_FromFormat() except that it takes exactly two argu-
ments.

PyObject* PyBytes_FromObject(PyObject *o)
Return value: New reference. Return the bytes representation of object o that implements the buffer protocol.

Py_ssize_t PyBytes_Size(PyObject *o)
Return the length of the bytes in bytes object o.

1 For integer specifiers (d, u, ld, lu, zd, zu, i, x): the 0-conversion flag has effect even when a precision is given.

80 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

Py_ssize_t PyBytes_GET_SIZE(PyObject *o)
Macro form of PyBytes_Size() but without error checking.

char* PyBytes_AsString(PyObject *o)
Return a pointer to the contents of o. The pointer refers to the internal buffer of o, which consists
of len(o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there are any
other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize(NULL, size). It must not be deallocated. If o is not a bytes object
at all, PyBytes_AsString() returns NULL and raises TypeError.

char* PyBytes_AS_STRING(PyObject *string)
Macro form of PyBytes_AsString() but without error checking.

int PyBytes_AsStringAndSize(PyObject *obj, char **buffer, Py_ssize_t *length)
Return the null-terminated contents of the object obj through the output variables buffer and length.
If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns -1
and a ValueError is raised.
The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize(NULL, size). It must not be deallocated. If obj is not a bytes
object at all, PyBytes_AsStringAndSize() returns -1 and raises TypeError.
Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in
the bytes object.

void PyBytes_Concat(PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes; the caller will own
the new reference. The reference to the old value of bytes will be stolen. If the new object cannot be created,
the old reference to bytes will still be discarded and the value of *bytes will be set to NULL; the appropriate
exception will be set.

void PyBytes_ConcatAndDel(PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes. This version decre-
ments the reference count of newpart.

int _PyBytes_Resize(PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes
object; don’t use this if the bytes may already be known in other parts of the code. It is an error to call this
function if the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an
lvalue (it may be written into), and the new size desired. On success, *bytes holds the resized bytes object and
0 is returned; the address in *bytes may differ from its input value. If the reallocation fails, the original bytes
object at *bytes is deallocated, *bytes is set to NULL, MemoryError is set, and -1 is returned.

8.3.2 Byte Array Objects

PyByteArrayObject
This subtype of PyObject represents a Python bytearray object.

PyTypeObject PyByteArray_Type
This instance of PyTypeObject represents the Python bytearray type; it is the same object as bytearray
in the Python layer.

Type check macros

int PyByteArray_Check(PyObject *o)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray_CheckExact(PyObject *o)
Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type.

8.3. Sequence Objects 81

The Python/C API, Release 3.7.5

Direct API functions

PyObject* PyByteArray_FromObject(PyObject *o)
Return value: New reference. Return a new bytearray object from any object, o, that implements the buffer
protocol.

PyObject* PyByteArray_FromStringAndSize(const char *string, Py_ssize_t len)
Return value: New reference. Create a new bytearray object from string and its length, len. On failure, NULL
is returned.

PyObject* PyByteArray_Concat(PyObject *a, PyObject *b)
Return value: New reference. Concat bytearrays a and b and return a new bytearray with the result.

Py_ssize_t PyByteArray_Size(PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString(PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer. The returned array always
has an extra null byte appended.

int PyByteArray_Resize(PyObject *bytearray, Py_ssize_t len)
Resize the internal buffer of bytearray to len.

Macros

These macros trade safety for speed and they don’t check pointers.
char* PyByteArray_AS_STRING(PyObject *bytearray)

Macro version of PyByteArray_AsString().
Py_ssize_t PyByteArray_GET_SIZE(PyObject *bytearray)

Macro version of PyByteArray_Size().

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).
Py_UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE* representation is deprecated and inefficient; it should be avoided in performance- or memory-
sensitive situations.
Due to the transition between the oldAPIs and the newAPIs, Unicode objects can internally be in two states depending
on how they were created:

• “canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most
efficient representation allowed by the implementation.

• “legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode()) and only bear the Py_UNICODE* representation; you will have to
call PyUnicode_READY() on them before calling any other API.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:
Py_UCS4

82 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0393

The Python/C API, Release 3.7.5

Py_UCS2
Py_UCS1

These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8
bits, respectively. When dealing with single Unicode characters, use Py_UCS4.
New in version 3.3.

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.
Changed in version 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.

PyASCIIObject
PyCompactUnicodeObject
PyUnicodeObject

These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyObject pointers.
New in version 3.3.

PyTypeObject PyUnicode_Type
This instance of PyTypeObject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:
int PyUnicode_Check(PyObject *o)

Return true if the object o is a Unicode object or an instance of a Unicode subtype.
int PyUnicode_CheckExact(PyObject *o)

Return true if the object o is a Unicode object, but not an instance of a subtype.
int PyUnicode_READY(PyObject *o)

Ensure the string object o is in the “canonical” representation. This is required before using any of the access
macros described below.
Returns 0 on success and -1with an exception set on failure, which in particular happens if memory allocation
fails.
New in version 3.3.

Py_ssize_t PyUnicode_GET_LENGTH(PyObject *o)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the “canonical”
representation (not checked).
New in version 3.3.

Py_UCS1* PyUnicode_1BYTE_DATA(PyObject *o)
Py_UCS2* PyUnicode_2BYTE_DATA(PyObject *o)
Py_UCS4* PyUnicode_4BYTE_DATA(PyObject *o)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND() to select the right macro. Make sure PyUnicode_READY() has been called be-
fore accessing this.
New in version 3.3.

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode_KIND() macro.
New in version 3.3.

8.3. Sequence Objects 83

The Python/C API, Release 3.7.5

int PyUnicode_KIND(PyObject *o)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Uni-
code object uses to store its data. o has to be a Unicode object in the “canonical” representation (not checked).
New in version 3.3.

void* PyUnicode_DATA(PyObject *o)
Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the “canonical” representation
(not checked).
New in version 3.3.

void PyUnicode_WRITE(int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA()). This macro does not
do any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer
as obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point
value which should be written to that location.
New in version 3.3.

Py_UCS4 PyUnicode_READ(int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA()). No checks
or ready calls are performed.
New in version 3.3.

Py_UCS4 PyUnicode_READ_CHAR(PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the “canonical” representation. This is less efficient
than PyUnicode_READ() if you do multiple consecutive reads.
New in version 3.3.

PyUnicode_MAX_CHAR_VALUE(PyObject *o)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
“canonical” representation. This is always an approximation but more efficient than iterating over the string.
New in version 3.3.

int PyUnicode_ClearFreeList()
Clear the free list. Return the total number of freed items.

Py_ssize_t PyUnicode_GET_SIZE(PyObject *o)
Return the size of the deprecated Py_UNICODE representation, in code units (this includes surrogate pairs as
2 units). o has to be a Unicode object (not checked).
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate
to using PyUnicode_GET_LENGTH().

Py_ssize_t PyUnicode_GET_DATA_SIZE(PyObject *o)
Return the size of the deprecated Py_UNICODE representation in bytes. o has to be a Unicode object (not
checked).
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate
to using PyUnicode_GET_LENGTH().

Py_UNICODE* PyUnicode_AS_UNICODE(PyObject *o)
const char* PyUnicode_AS_DATA(PyObject *o)

Return a pointer to a Py_UNICODE representation of the object. The returned buffer is always terminated
with an extra null code point. It may also contain embedded null code points, which would cause the string to
be truncated when used in most C functions. The AS_DATA form casts the pointer to const char *. The
o argument has to be a Unicode object (not checked).
Changed in version 3.3: This macro is now inefficient – because in many cases the Py_UNICODE repre-
sentation does not exist and needs to be created – and can fail (return NULL with an exception set). Try to
port the code to use the new PyUnicode_nBYTE_DATA() macros or use PyUnicode_WRITE() or
PyUnicode_READ().

84 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate
to using the PyUnicode_nBYTE_DATA() family of macros.

Unicode Character Properties

Unicode provides many different character properties. Themost often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.
int Py_UNICODE_ISSPACE(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a whitespace character.
int Py_UNICODE_ISLOWER(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a lowercase character.
int Py_UNICODE_ISUPPER(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is an uppercase character.
int Py_UNICODE_ISTITLE(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a titlecase character.
int Py_UNICODE_ISLINEBREAK(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a linebreak character.
int Py_UNICODE_ISDECIMAL(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a decimal character.
int Py_UNICODE_ISDIGIT(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a digit character.
int Py_UNICODE_ISNUMERIC(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a numeric character.
int Py_UNICODE_ISALPHA(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is an alphabetic character.
int Py_UNICODE_ISALNUM(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is an alphanumeric character.
int Py_UNICODE_ISPRINTABLE(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped
when repr() is invoked on a string. It has no bearing on the handling of strings written to sys.stdout
or sys.stderr.)

These APIs can be used for fast direct character conversions:
Py_UNICODE Py_UNICODE_TOLOWER(Py_UNICODE ch)

Return the character ch converted to lower case.
Deprecated since version 3.3: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOUPPER(Py_UNICODE ch)
Return the character ch converted to upper case.
Deprecated since version 3.3: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE(Py_UNICODE ch)
Return the character ch converted to title case.
Deprecated since version 3.3: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL(Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This macro
does not raise exceptions.

8.3. Sequence Objects 85

The Python/C API, Release 3.7.5

int Py_UNICODE_TODIGIT(Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This macro does
not raise exceptions.

double Py_UNICODE_TONUMERIC(Py_UNICODE ch)
Return the character ch converted to a double. Return -1.0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:
Py_UNICODE_IS_SURROGATE(ch)

Check if ch is a surrogate (0xD800 <= ch <= 0xDFFF).
Py_UNICODE_IS_HIGH_SURROGATE(ch)

Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).
Py_UNICODE_IS_LOW_SURROGATE(ch)

Check if ch is a low surrogate (0xDC00 <= ch <= 0xDFFF).
Py_UNICODE_JOIN_SURROGATES(high, low)

Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading
and trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:
PyObject* PyUnicode_New(Py_ssize_t size, Py_UCS4 maxchar)

Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point
to be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127,
255, 65535, 1114111.
This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.
New in version 3.3.

PyObject* PyUnicode_FromKindAndData(int kind, const void *buffer, Py_ssize_t size)
Return value: New reference. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND()). The buffer must point to an
array of size units of 1, 2 or 4 bytes per character, as given by the kind.
New in version 3.3.

PyObject* PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as
being UTF-8 encoded. The buffer is copied into the new object. If the buffer is not NULL, the return value
might be a shared object, i.e. modification of the data is not allowed.
If u is NULL, this function behaves like PyUnicode_FromUnicode() with the buffer set to NULL. This
usage is deprecated in favor of PyUnicode_New().

PyObject *PyUnicode_FromString(const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,
calculate the size of the resulting Python Unicode string and return a string with the values formatted into it.
The variable arguments must be C types and must correspond exactly to the format characters in the format
ASCII-encoded string. The following format characters are allowed:

86 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

Format Characters Type Comment
%% n/a The literal % character.
%c int A single character, represented as a C int.
%d int Equivalent to printf("%d").1
%u unsigned int Equivalent to printf("%u").1
%ld long Equivalent to printf("%ld").1
%li long Equivalent to printf("%li").1
%lu unsigned long Equivalent to printf("%lu").1
%lld long long Equivalent to printf("%lld").1
%lli long long Equivalent to printf("%lli").1
%llu unsigned long long Equivalent to printf("%llu").1
%zd Py_ssize_t Equivalent to printf("%zd").1
%zi Py_ssize_t Equivalent to printf("%zi").1
%zu size_t Equivalent to printf("%zu").1
%i int Equivalent to printf("%i").1
%x int Equivalent to printf("%x").1
%s const char* A null-terminated C character array.
%p const void* The hex representation of a C pointer. Mostly

equivalent to printf("%p") except that it is
guaranteed to start with the literal 0x regardless of
what the platform’s printf yields.

%A PyObject* The result of calling ascii().
%U PyObject* A Unicode object.
%V PyObject*, const char* A Unicode object (which may be NULL) and a

null-terminated C character array as a second
parameter (which will be used, if the first parameter is
NULL).

%S PyObject* The result of calling PyObject_Str().
%R PyObject* The result of calling PyObject_Repr().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

Note: The width formatter unit is number of characters rather than bytes. The precision formatter unit is
number of bytes for "%s" and "%V" (if the PyObject* argument is NULL), and a number of characters
for "%A", "%U", "%S", "%R" and "%V" (if the PyObject* argument is not NULL).

Changed in version 3.2: Support for "%lld" and "%llu" added.
Changed in version 3.3: Support for "%li", "%lli" and "%zi" added.
Changed in version 3.4: Support width and precision formatter for "%s", "%A", "%U", "%V", "%S", "%R"
added.

PyObject* PyUnicode_FromFormatV(const char *format, va_list vargs)
Return value: New reference. Identical to PyUnicode_FromFormat() except that it takes exactly two
arguments.

PyObject* PyUnicode_FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Decode an encoded object obj to a Unicode object.
bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the
error handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in
Codecs for details).
All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

1 For integer specifiers (d, u, ld, li, lu, lld, lli, llu, zd, zi, zu, i, x): the 0-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 87

The Python/C API, Release 3.7.5

Py_ssize_t PyUnicode_GetLength(PyObject *unicode)
Return the length of the Unicode object, in code points.
New in version 3.3.

Py_ssize_t PyUnicode_CopyCharacters(PyObject *to, Py_ssize_t to_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)

Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy() if possible. Returns -1 and sets an exception on error, otherwise
returns the number of copied characters.
New in version 3.3.

Py_ssize_t PyUnicode_Fill(PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode[start:start+length].
Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return -1 and raise an exception on error.
New in version 3.3.

int PyUnicode_WriteChar(PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The stringmust have been created throughPyUnicode_New(). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.
This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object
can be modified safely (i.e. that it its reference count is one).
New in version 3.3.

Py_UCS4 PyUnicode_ReadChar(PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out
of bounds, in contrast to the macro version PyUnicode_READ_CHAR().
New in version 3.3.

PyObject* PyUnicode_Substring(PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return value: New reference. Return a substring of str, from character index start (included) to character index
end (excluded). Negative indices are not supported.
New in version 3.3.

Py_UCS4* PyUnicode_AsUCS4(PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string u into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of u). buffer is returned
on success.
New in version 3.3.

Py_UCS4* PyUnicode_AsUCS4Copy(PyObject *u)
Copy the string u into a new UCS4 buffer that is allocated using PyMem_Malloc(). If this fails, NULL is
returned with a MemoryError set. The returned buffer always has an extra null code point appended.
New in version 3.3.

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 4.0.
These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using
them, as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and
memory hits.
PyObject* PyUnicode_FromUnicode(const Py_UNICODE *u, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u

88 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0393

The Python/C API, Release 3.7.5

may be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data.
The buffer is copied into the new object.
If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.
If the buffer is NULL, PyUnicode_READY() must be called once the string content has been filled before
using any of the access macros such as PyUnicode_KIND().
Please migrate to using PyUnicode_FromKindAndData(), PyUnicode_FromWideChar() or
PyUnicode_New().

Py_UNICODE* PyUnicode_AsUnicode(PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py_UNICODE buffer, or NULL on error. This will
create the Py_UNICODE* representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_UNICODE string may also contain embedded null
code points, which would cause the string to be truncated when used in most C functions.
Please migrate to using PyUnicode_AsUCS4(), PyUnicode_AsWideChar(),
PyUnicode_ReadChar() or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII(Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Create a Unicode object by replacing all decimal digits in Py_UNICODE buffer
of the given size by ASCII digits 0–9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize(PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode(), but also saves the Py_UNICODE() array length (excluding the extra
null terminator) in size. Note that the resulting Py_UNICODE* string may contain embedded null code points,
which would cause the string to be truncated when used in most C functions.
New in version 3.3.

Py_UNICODE* PyUnicode_AsUnicodeCopy(PyObject *unicode)
Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem_Free() to free
the buffer). Note that the resulting Py_UNICODE* string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.
New in version 3.2.
Please migrate to using PyUnicode_AsUCS4Copy() or similar new APIs.

Py_ssize_t PyUnicode_GetSize(PyObject *unicode)
Return the size of the deprecated Py_UNICODE representation, in code units (this includes surrogate pairs as
2 units).
Please migrate to using PyUnicode_GetLength().

PyObject* PyUnicode_FromObject(PyObject *obj)
Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary.
If obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.
Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.
PyObject* PyUnicode_DecodeLocaleAndSize(const char *str, Py_ssize_t len, const char *errors)

Return value: New reference. Decode a string from UTF-8 on Android, or from the current locale encoding
on other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383).
The decoder uses "strict" error handler if errors is NULL. str must end with a null character but cannot
contain embedded null characters.
Use PyUnicode_DecodeFSDefaultAndSize() to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

8.3. Sequence Objects 89

https://www.python.org/dev/peps/pep-0383

The Python/C API, Release 3.7.5

This function ignores the Python UTF-8 mode.
See also:
The Py_DecodeLocale() function.
New in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_DecodeLocale() was used for the
surrogateescape, and the current locale encoding was used for strict.

PyObject* PyUnicode_DecodeLocale(const char *str, const char *errors)
Return value: New reference. Similar to PyUnicode_DecodeLocaleAndSize(), but compute the
string length using strlen().
New in version 3.3.

PyObject* PyUnicode_EncodeLocale(PyObject *unicode, const char *errors)
Return value: New reference. Encode a Unicode object to UTF-8 on Android, or to the current locale encoding
on other platforms. The supported error handlers are "strict" and "surrogateescape" (PEP 383).
The encoder uses "strict" error handler if errors is NULL. Return a bytes object. unicode cannot contain
embedded null characters.
Use PyUnicode_EncodeFSDefault() to encode a string to Py_FileSystemDefaultEncoding
(the locale encoding read at Python startup).
This function ignores the Python UTF-8 mode.
See also:
The Py_EncodeLocale() function.
New in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_EncodeLocale() was used for the
surrogateescape, and the current locale encoding was used for strict.

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should
be used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler
(PEP 383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be
used, passing PyUnicode_FSConverter() as the conversion function:
int PyUnicode_FSConverter(PyObject* obj, void* result)

ParseTuple converter: encode str objects – obtained directly or through the os.PathLike interface –
to bytes using PyUnicode_EncodeFSDefault(); bytes objects are output as-is. result must be a
PyBytesObject* which must be released when it is no longer used.
New in version 3.1.
Changed in version 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder() as the conversion function:
int PyUnicode_FSDecoder(PyObject* obj, void* result)

ParseTuple converter: decode bytes objects – obtained either directly or indirectly through the os.
PathLike interface – to str using PyUnicode_DecodeFSDefaultAndSize(); str objects are
output as-is. result must be a PyUnicodeObject* which must be released when it is no longer used.
New in version 3.2.
Changed in version 3.6: Accepts a path-like object.

90 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, Release 3.7.5

PyObject* PyUnicode_DecodeFSDefaultAndSize(const char *s, Py_ssize_t size)
Return value: New reference. Decode a string using Py_FileSystemDefaultEncoding and the
Py_FileSystemDefaultEncodeErrors error handler.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize().
See also:
The Py_DecodeLocale() function.
Changed in version 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault(const char *s)
Return value: New reference. Decode a null-terminated string usingPy_FileSystemDefaultEncoding
and the Py_FileSystemDefaultEncodeErrors error handler.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize() if you know the string length.
Changed in version 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault(PyObject *unicode)
Return value: New reference. Encode a Unicode object to Py_FileSystemDefaultEncoding with the
Py_FileSystemDefaultEncodeErrors error handler, and return bytes. Note that the resulting
bytes object may contain null bytes.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to encode a string to the current locale encoding, use
PyUnicode_EncodeLocale().
See also:
The Py_EncodeLocale() function.
New in version 3.2.
Changed in version 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:
PyObject* PyUnicode_FromWideChar(const wchar_t *w, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing
-1 as the size indicates that the function must itself compute the length, using wcslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar(PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied
or -1 in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is
the responsibility of the caller to make sure that the wchar_t* string is null-terminated in case this is required
by the application. Also, note that the wchar_t* string might contain null characters, which would cause the
string to be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString(PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If
size is not NULL, write the number of wide characters (excluding the trailing null termination character) into
*size. Note that the resulting wchar_t string might contain null characters, which would cause the string
to be truncated when used with most C functions. If size is NULL and the wchar_t* string contains null
characters a ValueError is raised.

8.3. Sequence Objects 91

The Python/C API, Release 3.7.5

Returns a buffer allocated by PyMem_Alloc() (use PyMem_Free() to free it) on success. On error,
returns NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.
New in version 3.2.
Changed in version 3.7: Raises a ValueError if size is NULL and the wchar_t* string contains null
characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.
Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones
of the built-in str() string object constructor.
Setting encoding to NULL causes the default encoding to be used which is ASCII. The file sys-
tem calls should use PyUnicode_FSConverter() for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).
Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is “strict” (ValueError is raised).
The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:
PyObject* PyUnicode_Decode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding
and errors have the same meaning as the parameters of the same name in the str() built-in function. The
codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

PyObject* PyUnicode_AsEncodedString(PyObject *unicode, const char *encoding, const char *er-
rors)

Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding
and errors have the same meaning as the parameters of the same name in the Unicode encode() method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised
by the codec.

PyObject* PyUnicode_Encode(const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const
char *errors)

Return value: New reference. Encode the Py_UNICODE buffer s of the given size and return a Python bytes
object. encoding and errors have the same meaning as the parameters of the same name in the Unicode
encode() method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsEncodedString().

UTF-8 Codecs

These are the UTF-8 codec APIs:
PyObject* PyUnicode_DecodeUTF8(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s.
Return NULL if an exception was raised by the codec.

92 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

PyObject* PyUnicode_DecodeUTF8Stateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF8(). If con-
sumed is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will
not be decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

const char* PyUnicode_AsUTF8AndSize(PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation
(in bytes) in size. The size argument can beNULL; in this case no size will be stored. The returned buffer always
has an extra null byte appended (not included in size), regardless of whether there are any other null code points.
In the case of an error, NULL is returned with an exception set and no size is stored.
This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a
pointer to the same buffer. The caller is not responsible for deallocating the buffer.
New in version 3.3.
Changed in version 3.7: The return type is now const char * rather of char *.

const char* PyUnicode_AsUTF8(PyObject *unicode)
As PyUnicode_AsUTF8AndSize(), but does not store the size.
New in version 3.3.
Changed in version 3.7: The return type is now const char * rather of char *.

PyObject* PyUnicode_EncodeUTF8(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer s of the given size using UTF-8 and return a
Python bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE
API; please migrate to using PyUnicode_AsUTF8String(), PyUnicode_AsUTF8AndSize() or
PyUnicode_AsEncodedString().

UTF-32 Codecs

These are the UTF-32 codec APIs:
PyObject* PyUnicode_DecodeUTF32(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Decode size bytes from a UTF-32 encoded buffer string and return the corre-
sponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output.
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

8.3. Sequence Objects 93

The Python/C API, Release 3.7.5

PyObject* PyUnicode_DecodeUTF32Stateful(const char *s, Py_ssize_t size, const char *errors,
int *byteorder, Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF32(). If con-
sumed is not NULL, PyUnicode_DecodeUTF32Stateful() will not treat trailing incomplete UTF-32
byte sequences (such as a number of bytes not divisible by four) as an error. Those bytes will not be decoded
and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String(PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-32 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF32(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int by-
teorder)

Return value: New reference. Return a Python bytes object holding the UTF-32 encoded value of the Unicode
data in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsUTF32String() or PyUnicode_AsEncodedString().

UTF-16 Codecs

These are the UTF-16 codec APIs:
PyObject* PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corre-
sponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe
character).
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful(const char *s, Py_ssize_t size, const char *errors,
int *byteorder, Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16(). If con-
sumed is not NULL, PyUnicode_DecodeUTF16Stateful() will not treat trailing incomplete UTF-16
byte sequences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

94 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

PyObject* PyUnicode_AsUTF16String(PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict”. Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF16(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int by-
teorder)

Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode
data in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is defined, a single Py_UNICODE value may get represented as a surrogate pair. If it
is not defined, each Py_UNICODE values is interpreted as a UCS-2 character.
Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsUTF16String() or PyUnicode_AsEncodedString().

UTF-7 Codecs

These are the UTF-7 codec APIs:
PyObject* PyUnicode_DecodeUTF7(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-7 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF7(). If con-
sumed is not NULL, trailing incomplete UTF-7 base-64 sections will not be treated as an error. Those bytes
will not be decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7(const Py_UNICODE *s, Py_ssize_t size, int base64SetO,
int base64WhiteSpace, const char *errors)

Return value: New reference. Encode the Py_UNICODE buffer of the given size using UTF-7 and return a
Python bytes object. Return NULL if an exception was raised by the codec.
If base64SetO is nonzero, “Set O” (punctuation that has no otherwise special meaning) will be encoded in
base-64. If base64WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the
Python “utf-7” codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsEncodedString().

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:
PyObject* PyUnicode_DecodeUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

8.3. Sequence Objects 95

The Python/C API, Release 3.7.5

PyObject* PyUnicode_EncodeUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:
PyObject* PyUnicode_DecodeRawUnicodeEscape(const char *s, Py_ssize_t size, const char *er-

rors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape
encoded string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as a
bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Raw-Unicode-Escape
and return a bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style
Py_UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString() or
PyUnicode_AsEncodedString().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.
PyObject* PyUnicode_DecodeLatin1(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatin1String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatin1(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Latin-1 and return a
Python bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsLatin1String() or PyUnicode_AsEncodedString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.
PyObject* PyUnicode_DecodeASCII(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

96 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

PyObject* PyUnicode_EncodeASCII(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using ASCII and return a
Python bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsASCIIString() or PyUnicode_AsEncodedString().

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode
and decode characters. The mapping objects provided must support the __getitem__() mapping interface;
dictionaries and sequences work well.
These are the mapping codec APIs:
PyObject* PyUnicode_DecodeCharmap(const char *data, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the
given mapping object. Return NULL if an exception was raised by the codec.
If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None.
Unmapped data bytes – ones which cause a LookupError, as well as ones which get mapped to None,
0xFFFE or '\ufffe', are treated as undefined mappings and cause an error.

PyObject* PyUnicode_AsCharmapString(PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as
a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are
treated as “undefined mapping” and cause an error.

PyObject* PyUnicode_EncodeCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,
const char *errors)

Return value: New reference. Encode the Py_UNICODE buffer of the given size using the givenmapping object
and return the result as a bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsCharmapString() or PyUnicode_AsEncodedString().

The following codec API is special in that maps Unicode to Unicode.
PyObject* PyUnicode_Translate(PyObject *unicode, PyObject *mapping, const char *errors)

Return value: New reference. Translate a Unicode object using the givenmapping object and return the resulting
Unicode object. Return NULL if an exception was raised by the codec.
Themapping object must map Unicode ordinal integers to Unicode strings, integers (which are then interpreted
as Unicode ordinals) or None (causing deletion of the character). Unmapped character ordinals (ones which
cause a LookupError) are left untouched and are copied as-is.

PyObject* PyUnicode_TranslateCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *map-
ping, const char *errors)

Return value: New reference. Translate a Py_UNICODE buffer of the given size by applying a character
mapping table to it and return the resulting Unicode object. Return NULL when an exception was raised by the
codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_Translate(). or generic codec based API

8.3. Sequence Objects 97

The Python/C API, Release 3.7.5

MBCS codecs for Windows

These are theMBCS codec APIs. They are currently only available onWindows and use theWin32MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.
PyObject* PyUnicode_DecodeMBCS(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeMBCS(). If con-
sumed is not NULL, PyUnicode_DecodeMBCSStateful() will not decode trailing lead byte and the
number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes
object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage(int code_page, PyObject *unicode, const char *errors)
Return value: New reference. Encode the Unicode object using the specified code page and return a Python
bytes object. Return NULL if an exception was raised by the codec. Use CP_ACP code page to get the MBCS
encoder.
New in version 3.3.

PyObject* PyUnicode_EncodeMBCS(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using MBCS and return a
Python bytes object. Return NULL if an exception was raised by the codec.
Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE
API; please migrate to using PyUnicode_AsMBCSString(), PyUnicode_EncodeCodePage() or
PyUnicode_AsEncodedString().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.
They all return NULL or -1 if an exception occurs.
PyObject* PyUnicode_Concat(PyObject *left, PyObject *right)

Return value: New reference. Concat two strings giving a new Unicode string.
PyObject* PyUnicode_Split(PyObject *s, PyObject *sep, Py_ssize_t maxsplit)

Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be
done at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will
be done. If negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines(PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF
is considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting
strings.

PyObject* PyUnicode_Translate(PyObject *str, PyObject *table, const char *errors)
Translate a string by applying a character mapping table to it and return the resulting Unicode object.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

98 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join(PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting
Unicode string.

Py_ssize_t PyUnicode_Tailmatch(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end,
int direction)

Return 1 if substr matches str[start:end] at the given tail end (direction == -1 means to do a prefix
match, direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.

Py_ssize_t PyUnicode_Find(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direc-
tion)

Return the first position of substr in str[start:end] using the given direction (direction == 1 means to
do a forward search, direction == -1 a backward search). The return value is the index of the first match; a
value of -1 indicates that no match was found, and -2 indicates that an error occurred and an exception has
been set.

Py_ssize_t PyUnicode_FindChar(PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int di-
rection)

Return the first position of the character ch in str[start:end] using the given direction (direction ==
1 means to do a forward search, direction == -1 a backward search). The return value is the index of the
first match; a value of -1 indicates that no match was found, and -2 indicates that an error occurred and an
exception has been set.
New in version 3.3.
Changed in version 3.7: start and end are now adjusted to behave like str[start:end].

Py_ssize_t PyUnicode_Count(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str[start:end]. Return -1 if an error
occurred.

PyObject* PyUnicode_Replace(PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t max-
count)

Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == -1 means replace all occurrences.

int PyUnicode_Compare(PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.
This function returns -1 upon failure, so one should call PyErr_Occurred() to check for errors.

int PyUnicode_CompareWithASCIIString(PyObject *uni, const char *string)
Compare a Unicode object, uni, with string and return -1, 0, 1 for less than, equal, and greater than, respec-
tively. It is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1
if it contains non-ASCII characters.
This function does not raise exceptions.

PyObject* PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
Return value: New reference. Rich compare two Unicode strings and return one of the following:

• NULL in case an exception was raised
• Py_True or Py_False for successful comparisons
• Py_NotImplemented in case the type combination is unknown

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.
PyObject* PyUnicode_Format(PyObject *format, PyObject *args)

Return value: New reference. Return a new string object from format and args; this is analogous to format
% args.

8.3. Sequence Objects 99

The Python/C API, Release 3.7.5

int PyUnicode_Contains(PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.
element has to coerce to a one element Unicode string. -1 is returned if there was an error.

void PyUnicode_InternInPlace(PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a
Python Unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it
(decrementing the reference count of the old string object and incrementing the reference count of the interned
string object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification:
even though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you
own the object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString(const char *v)
Return value: New reference. A combination of PyUnicode_FromString() and
PyUnicode_InternInPlace(), returning either a new Unicode string object that has been in-
terned, or a new (“owned”) reference to an earlier interned string object with the same value.

8.3.4 Tuple Objects

PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as tuple in the
Python layer.

int PyTuple_Check(PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type.

int PyTuple_CheckExact(PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type.

PyObject* PyTuple_New(Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack(Py_ssize_t n, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are
initialized to the subsequent n C arguments pointing to Python objects. PyTuple_Pack(2, a, b) is
equivalent to Py_BuildValue("(OO)", a, b).

Py_ssize_t PyTuple_Size(PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE(PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

PyObject* PyTuple_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out
of bounds, return NULL and sets an IndexError exception.

PyObject* PyTuple_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem(), but does no checking of its arguments.

PyObject* PyTuple_GetSlice(PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Take a slice of the tuple pointed to by p from low to high and return it as a new
tuple.

int PyTuple_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success.

Note: This function “steals” a reference to o.

100 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

void PyTuple_SET_ITEM(PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem(), but does no error checking, and should only be used to fill in brand new tuples.

Note: This function “steals” a reference to o.

int _PyTuple_Resize(PyObject **p, Py_ssize_t newsize)
Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client
code should never assume that the resulting value of *p will be the same as before calling this function. If the
object referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL,
and raises MemoryError or SystemError.

int PyTuple_ClearFreeList()
Clear the free list. Return the total number of freed items.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple() objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.
PyTypeObject* PyStructSequence_NewType(PyStructSequence_Desc *desc)

Return value: New reference. Create a new struct sequence type from the data in desc, described below.
Instances of the resulting type can be created with PyStructSequence_New().

void PyStructSequence_InitType(PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2(PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PyStructSequence_InitType, but returns 0 on success and -1 on failure.
New in version 3.4.

PyStructSequence_Desc
Contains the meta information of a struct sequence type to create.

Field C Type Meaning
name const char * name of the struct sequence type
doc const char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Field

*
pointer to NULL-terminated array with field names of
the new type

n_in_sequenceint number of fields visible to the Python side (if used as
tuple)

PyStructSequence_Field
Describes a field of a struct sequence. As a struct sequence is modeled as a tuple, all fields are typed as
PyObject*. The index in the fields array of the PyStructSequence_Desc determines which field
of the struct sequence is described.

Field C Type Meaning
name const

char *
name for the field or NULL to end the list of named fields, set to PyStructSe-
quence_UnnamedField to leave unnamed

doc const
char *

field docstring or NULL to omit

char* PyStructSequence_UnnamedField
Special value for a field name to leave it unnamed.

8.3. Sequence Objects 101

The Python/C API, Release 3.7.5

PyObject* PyStructSequence_New(PyTypeObject *type)
Return value: New reference. Creates an instance of type, which must have been created with
PyStructSequence_NewType().

PyObject* PyStructSequence_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the struct sequence pointed to by p. No
bounds checking is performed.

PyObject* PyStructSequence_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Macro equivalent of PyStructSequence_GetItem().

void PyStructSequence_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Sets the field at index pos of the struct sequence p to value o. Like PyTuple_SET_ITEM(), this should
only be used to fill in brand new instances.

Note: This function “steals” a reference to o.

void PyStructSequence_SET_ITEM(PyObject *p, Py_ssize_t *pos, PyObject *o)
Macro equivalent of PyStructSequence_SetItem().

Note: This function “steals” a reference to o.

8.3.6 List Objects

PyListObject
This subtype of PyObject represents a Python list object.

PyTypeObject PyList_Type
This instance of PyTypeObject represents the Python list type. This is the same object as list in the
Python layer.

int PyList_Check(PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type.

int PyList_CheckExact(PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type.

PyObject* PyList_New(Py_ssize_t len)
Return value: New reference. Return a new list of length len on success, or NULL on failure.

Note: If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract
API functions such as PySequence_SetItem() or expose the object to Python code before setting all
items to a real object with PyList_SetItem().

Py_ssize_t PyList_Size(PyObject *list)
Return the length of the list object in list; this is equivalent to len(list) on a list object.

Py_ssize_t PyList_GET_SIZE(PyObject *list)
Macro form of PyList_Size() without error checking.

PyObject* PyList_GetItem(PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by list. The position
must be non-negative; indexing from the end of the list is not supported. If index is out of bounds (<0 or
>=len(list)), return NULL and set an IndexError exception.

PyObject* PyList_GET_ITEM(PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. Macro form of PyList_GetItem() without error checking.

102 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

int PyList_SetItem(PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success or -1 on failure.

Note: This function “steals” a reference to item and discards a reference to an item already in the list at the
affected position.

void PyList_SET_ITEM(PyObject *list, Py_ssize_t i, PyObject *o)
Macro form of PyList_SetItem() without error checking. This is normally only used to fill in new lists
where there is no previous content.

Note: This macro “steals” a reference to item, and, unlike PyList_SetItem(), does not discard a refer-
ence to any item that is being replaced; any reference in list at position i will be leaked.

int PyList_Insert(PyObject *list, Py_ssize_t index, PyObject *item)
Insert the item item into list list in front of index index. Return 0 if successful; return -1 and set an exception
if unsuccessful. Analogous to list.insert(index, item).

int PyList_Append(PyObject *list, PyObject *item)
Append the object item at the end of list list. Return 0 if successful; return -1 and set an exception if unsuc-
cessful. Analogous to list.append(item).

PyObject* PyList_GetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in list containing the objects between low and high.
Return NULL and set an exception if unsuccessful. Analogous to list[low:high]. Negative indices, as
when slicing from Python, are not supported.

int PyList_SetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to list[low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, -1 on failure. Negative indices, as when slicing from Python, are not supported.

int PyList_Sort(PyObject *list)
Sort the items of list in place. Return 0 on success, -1 on failure. This is equivalent to list.sort().

int PyList_Reverse(PyObject *list)
Reverse the items of list in place. Return 0 on success, -1 on failure. This is the equivalent of list.
reverse().

PyObject* PyList_AsTuple(PyObject *list)
Return value: New reference. Return a new tuple object containing the contents of list; equivalent to
tuple(list).

int PyList_ClearFreeList()
Clear the free list. Return the total number of freed items.
New in version 3.3.

8.4 Container Objects

8.4.1 Dictionary Objects

PyDictObject
This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance of PyTypeObject represents the Python dictionary type. This is the same object as dict in
the Python layer.

8.4. Container Objects 103

The Python/C API, Release 3.7.5

int PyDict_Check(PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type.

int PyDict_CheckExact(PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type.

PyObject* PyDict_New()
Return value: New reference. Return a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy_New(PyObject *mapping)
Return value: New reference. Return a types.MappingProxyType object for a mapping which enforces
read-only behavior. This is normally used to create a view to prevent modification of the dictionary for non-
dynamic class types.

void PyDict_Clear(PyObject *p)
Empty an existing dictionary of all key-value pairs.

int PyDict_Contains(PyObject *p, PyObject *key)
Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise return 0. On error,
return -1. This is equivalent to the Python expression key in p.

PyObject* PyDict_Copy(PyObject *p)
Return value: New reference. Return a new dictionary that contains the same key-value pairs as p.

int PyDict_SetItem(PyObject *p, PyObject *key, PyObject *val)
Insert value into the dictionary p with a key of key. key must be hashable; if it isn’t, TypeError will be
raised. Return 0 on success or -1 on failure.

int PyDict_SetItemString(PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a const char*. The key object is created
using PyUnicode_FromString(key). Return 0 on success or -1 on failure.

int PyDict_DelItem(PyObject *p, PyObject *key)
Remove the entry in dictionary p with key key. keymust be hashable; if it isn’t, TypeError is raised. Return
0 on success or -1 on failure.

int PyDict_DelItemString(PyObject *p, const char *key)
Remove the entry in dictionary p which has a key specified by the string key. Return 0 on success or -1 on
failure.

PyObject* PyDict_GetItem(PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if
the key key is not present, but without setting an exception.
Note that exceptions which occur while calling __hash__() and __eq__() methods will get suppressed.
To get error reporting use PyDict_GetItemWithError() instead.

PyObject* PyDict_GetItemWithError(PyObject *p, PyObject *key)
Return value: Borrowed reference. Variant of PyDict_GetItem() that does not suppress exceptions. Re-
turn NULL with an exception set if an exception occurred. Return NULL without an exception set if the key
wasn’t present.

PyObject* PyDict_GetItemString(PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem(), but key is specified as a const
char*, rather than a PyObject*.
Note that exceptions which occur while calling __hash__() and __eq__() methods and creating a tem-
porary string object will get suppressed. To get error reporting use PyDict_GetItemWithError()
instead.

PyObject* PyDict_SetDefault(PyObject *p, PyObject *key, PyObject *defaultobj)
Return value: Borrowed reference. This is the same as the Python-level dict.setdefault(). If present,
it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted with
value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once, instead
of evaluating it independently for the lookup and the insertion.
New in version 3.4.

104 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

PyObject* PyDict_Items(PyObject *p)
Return value: New reference. Return a PyListObject containing all the items from the dictionary.

PyObject* PyDict_Keys(PyObject *p)
Return value: New reference. Return a PyListObject containing all the keys from the dictionary.

PyObject* PyDict_Values(PyObject *p)
Return value: New reference. Return a PyListObject containing all the values from the dictionary p.

Py_ssize_t PyDict_Size(PyObject *p)
Return the number of items in the dictionary. This is equivalent to len(p) on a dictionary.

int PyDict_Next(PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized
to 0 prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The parameters pkey and pvalue should either point
to PyObject* variables that will be filled in with each key and value, respectively, or may be NULL. Any
references returned through them are borrowed. ppos should not be altered during iteration. Its value represents
offsets within the internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.
For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...

}

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {

return -1;
}
PyObject *o = PyLong_FromLong(i + 1);
if (o == NULL)

return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {

Py_DECREF(o);
return -1;

}
Py_DECREF(o);

}

int PyDict_Merge(PyObject *a, PyObject *b, int override)
Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictionary, or any object
supporting PyMapping_Keys() and PyObject_GetItem(). If override is true, existing pairs in a
will be replaced if a matching key is found in b, otherwise pairs will only be added if there is not a matching
key in a. Return 0 on success or -1 if an exception was raised.

int PyDict_Update(PyObject *a, PyObject *b)
This is the same as PyDict_Merge(a, b, 1) in C, and is similar to a.update(b) in Python except
that PyDict_Update() doesn’t fall back to the iterating over a sequence of key value pairs if the second
argument has no “keys” attribute. Return 0 on success or -1 if an exception was raised.

int PyDict_MergeFromSeq2(PyObject *a, PyObject *seq2, int override)
Update or merge into dictionary a, from the key-value pairs in seq2. seq2must be an iterable object producing

8.4. Container Objects 105

The Python/C API, Release 3.7.5

iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins if override is
true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent Python (except for
the return value):

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:

if override or key not in a:
a[key] = value

int PyDict_ClearFreeList()
Clear the free list. Return the total number of freed items.
New in version 3.3.

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functional-
ity not listed below is best accessed using the either the abstract object protocol (includ-
ing PyObject_CallMethod(), PyObject_RichCompareBool(), PyObject_Hash(),
PyObject_Repr(), PyObject_IsTrue(), PyObject_Print(), and PyObject_GetIter()) or
the abstract number protocol (including PyNumber_And(), PyNumber_Subtract(), PyNumber_Or(),
PyNumber_Xor(), PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract(),
PyNumber_InPlaceOr(), and PyNumber_InPlaceXor()).
PySetObject

This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields
of this structure should be considered public and are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
This is an instance of PyTypeObject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of PyTypeObject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.
int PySet_Check(PyObject *p)

Return true if p is a set object or an instance of a subtype.
int PyFrozenSet_Check(PyObject *p)

Return true if p is a frozenset object or an instance of a subtype.
int PyAnySet_Check(PyObject *p)

Return true if p is a set object, a frozenset object, or an instance of a subtype.
int PyAnySet_CheckExact(PyObject *p)

Return true if p is a set object or a frozenset object but not an instance of a subtype.
int PyFrozenSet_CheckExact(PyObject *p)

Return true if p is a frozenset object but not an instance of a subtype.
PyObject* PySet_New(PyObject *iterable)

Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may
be NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if
iterable is not actually iterable. The constructor is also useful for copying a set (c=set(s)).

PyObject* PyFrozenSet_New(PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The
iterable may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure.
Raise TypeError if iterable is not actually iterable.

106 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size(PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len(anyset). Raises a
PyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE(PyObject *anyset)
Macro form of PySet_Size() without error checking.

int PySet_Contains(PyObject *anyset, PyObject *key)
Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python __contains__()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset,
or an instance of a subtype.

int PySet_Add(PyObject *set, PyObject *key)
Add key to a set instance. Also works with frozenset instances (like PyTuple_SetItem() it can be
used to fill-in the values of brand new frozensets before they are exposed to other code). Return 0 on success
or -1 on failure. Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room
to grow. Raise a SystemError if set is not an instance of set or its subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or
its subtypes.
int PySet_Discard(PyObject *set, PyObject *key)

Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is encountered. Does
not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard() method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if set is not an instance of set or its subtype.

PyObject* PySet_Pop(PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object
from the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if set is
not an instance of set or its subtype.

int PySet_Clear(PyObject *set)
Empty an existing set of all elements.

int PySet_ClearFreeList()
Clear the free list. Return the total number of freed items.
New in version 3.3.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.
PyFunctionObject

The C structure used for functions.
PyTypeObject PyFunction_Type

This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python
programmers as types.FunctionType.

int PyFunction_Check(PyObject *o)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

PyObject* PyFunction_New(PyObject *code, PyObject *globals)
Return value: New reference. Return a new function object associated with the code object code. globals must
be a dictionary with the global variables accessible to the function.

8.5. Function Objects 107

The Python/C API, Release 3.7.5

The function’s docstring and name are retrieved from the code object. __module__ is retrieved from globals.
The argument defaults, annotations and closure are set to NULL. __qualname__ is set to the same value as the
function’s name.

PyObject* PyFunction_NewWithQualName(PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New(), but also allows setting the function object’s
__qualname__ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname__
attribute is set to the same value as its __name__ attribute.
New in version 3.3.

PyObject* PyFunction_GetCode(PyObject *op)
Return value: Borrowed reference. Return the code object associated with the function object op.

PyObject* PyFunction_GetGlobals(PyObject *op)
Return value: Borrowed reference. Return the globals dictionary associated with the function object op.

PyObject* PyFunction_GetModule(PyObject *op)
Return value: Borrowed reference. Return the __module__ attribute of the function object op. This is normally
a string containing the module name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults(PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.
Raises SystemError and returns -1 on failure.

PyObject* PyFunction_GetClosure(PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be
NULL or a tuple of cell objects.

int PyFunction_SetClosure(PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.
Raises SystemError and returns -1 on failure.

PyObject *PyFunction_GetAnnotations(PyObject *op)
Return value: Borrowed reference. Return the annotations of the function object op. This can be a mutable
dictionary or NULL.

int PyFunction_SetAnnotations(PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.
Raises SystemError and returns -1 on failure.

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunction and the new way to bind a PyCFunction to a class object.
It replaces the former call PyMethod_New(func, NULL, class).
PyTypeObject PyInstanceMethod_Type

This instance of PyTypeObject represents the Python instance method type. It is not exposed to Python
programs.

int PyInstanceMethod_Check(PyObject *o)
Return true if o is an instance method object (has type PyInstanceMethod_Type). The parameter must
not be NULL.

PyObject* PyInstanceMethod_New(PyObject *func)
Return value: New reference. Return a new instance method object, with func being any callable object func is
the function that will be called when the instance method is called.

108 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

PyObject* PyInstanceMethod_Function(PyObject *im)
Return value: Borrowed reference. Return the function object associated with the instance method im.

PyObject* PyInstanceMethod_GET_FUNCTION(PyObject *im)
Return value: Borrowed reference. Macro version of PyInstanceMethod_Function() which avoids
error checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound
methods (methods bound to a class object) are no longer available.
PyTypeObject PyMethod_Type

This instance of PyTypeObject represents the Python method type. This is exposed to Python programs
as types.MethodType.

int PyMethod_Check(PyObject *o)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL.

PyObject* PyMethod_New(PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the
instance the method should be bound. func is the function that will be called when the method is called. self
must not be NULL.

PyObject* PyMethod_Function(PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.

PyObject* PyMethod_GET_FUNCTION(PyObject *meth)
Return value: Borrowed reference. Macro version ofPyMethod_Function()which avoids error checking.

PyObject* PyMethod_Self(PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth.

PyObject* PyMethod_GET_SELF(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Self() which avoids error checking.

int PyMethod_ClearFreeList()
Clear the free list. Return the total number of freed items.

8.5.4 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.
PyCellObject

The C structure used for cell objects.
PyTypeObject PyCell_Type

The type object corresponding to cell objects.
int PyCell_Check(ob)

Return true if ob is a cell object; ob must not be NULL.
PyObject* PyCell_New(PyObject *ob)

Return value: New reference. Create and return a new cell object containing the value ob. The parameter may
be NULL.

PyObject* PyCell_Get(PyObject *cell)
Return value: New reference. Return the contents of the cell cell.

8.5. Function Objects 109

The Python/C API, Release 3.7.5

PyObject* PyCell_GET(PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-
NULL and a cell object.

int PyCell_Set(PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL; if it is not a cell object, -1 will be returned. On success, 0 will
be returned.

void PyCell_SET(PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code
that hasn’t yet been bound into a function.
PyCodeObject

The C structure of the objects used to describe code objects. The fields of this type are subject to change at
any time.

PyTypeObject PyCode_Type
This is an instance of PyTypeObject representing the Python code type.

int PyCode_Check(PyObject *co)
Return true if co is a code object.

int PyCode_GetNumFree(PyCodeObject *co)
Return the number of free variables in co.

PyCodeObject* PyCode_New(int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyOb-
ject *code, PyObject *consts, PyObject *names, PyObject *varnames, Py-
Object *freevars, PyObject *cellvars, PyObject *filename, PyObject *name,
int firstlineno, PyObject *lnotab)

Return value: New reference. Return a new code object. If you need a dummy code object to create a frame,
use PyCode_NewEmpty() instead. Calling PyCode_New() directly can bind you to a precise Python
version since the definition of the bytecode changes often.

PyCodeObject* PyCode_NewEmpty(const char *filename, const char *funcname, int firstlineno)
Return value: New reference. Return a new empty code object with the specified filename, function name, and
first line number. It is illegal to exec() or eval() the resulting code object.

8.6 Other Objects

8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the
buffered I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module,
which defines several layers over the low-level unbuffered I/O of the operating system. The functions described below
are convenience C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter;
third-party code is advised to access the io APIs instead.
PyFile_FromFd(int fd, const char *name, const char *mode, int buffering, const char *encoding, const

char *errors, const char *newline, int closefd)
Return value: New reference. Create a Python file object from the file descriptor of an already opened file fd.
The arguments name, encoding, errors and newline can be NULL to use the defaults; buffering can be -1 to
use the default. name is ignored and kept for backward compatibility. Return NULL on failure. For a more
comprehensive description of the arguments, please refer to the io.open() function documentation.

110 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

Warning: Since Python streams have their own buffering layer, mixing themwith OS-level file descriptors
can produce various issues (such as unexpected ordering of data).

Changed in version 3.2: Ignore name attribute.
int PyObject_AsFileDescriptor(PyObject *p)

Return the file descriptor associated with p as an int. If the object is an integer, its value is returned. If not,
the object’s fileno() method is called if it exists; the method must return an integer, which is returned as
the file descriptor value. Sets an exception and returns -1 on failure.

PyObject* PyFile_GetLine(PyObject *p, int n)
Return value: New reference. Equivalent to p.readline([n]), this function reads one line from the object
p. pmay be a file object or any object with areadline()method. If n is0, exactly one line is read, regardless
of the length of the line. If n is greater than 0, no more than n bytes will be read from the file; a partial line
can be returned. In both cases, an empty string is returned if the end of the file is reached immediately. If n
is less than 0, however, one line is read regardless of length, but EOFError is raised if the end of the file is
reached immediately.

int PyFile_WriteObject(PyObject *obj, PyObject *p, int flags)
Write object obj to file object p. The only supported flag for flags is Py_PRINT_RAW; if given, the str() of
the object is written instead of the repr(). Return 0 on success or -1 on failure; the appropriate exception
will be set.

int PyFile_WriteString(const char *s, PyObject *p)
Write string s to file object p. Return 0 on success or -1 on failure; the appropriate exception will be set.

8.6.2 Module Objects

PyTypeObject PyModule_Type
This instance of PyTypeObject represents the Python module type. This is exposed to Python programs
as types.ModuleType.

int PyModule_Check(PyObject *p)
Return true if p is a module object, or a subtype of a module object.

int PyModule_CheckExact(PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type.

PyObject* PyModule_NewObject(PyObject *name)
Return value: New reference. Return a newmodule object with the __name__ attribute set to name. Themod-
ule’s __name__, __doc__, __package__, and __loader__ attributes are filled in (all but __name__
are set to None); the caller is responsible for providing a __file__ attribute.
New in version 3.3.
Changed in version 3.4: __package__ and __loader__ are set to None.

PyObject* PyModule_New(const char *name)
Return value: New reference. Similar to PyModule_NewObject(), but the name is a UTF-8 encoded
string instead of a Unicode object.

PyObject* PyModule_GetDict(PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace; this
object is the same as the __dict__ attribute of the module object. If module is not a module object (or a
subtype of a module object), SystemError is raised and NULL is returned.
It is recommended extensions use other PyModule_*() and PyObject_*() functions rather than directly
manipulate a module’s __dict__.

PyObject* PyModule_GetNameObject(PyObject *module)
Return value: New reference. Return module’s __name__ value. If the module does not provide one, or if it
is not a string, SystemError is raised and NULL is returned.

8.6. Other Objects 111

The Python/C API, Release 3.7.5

New in version 3.3.
const char* PyModule_GetName(PyObject *module)

Similar to PyModule_GetNameObject() but return the name encoded to 'utf-8'.
void* PyModule_GetState(PyObject *module)

Return the “state” of the module, that is, a pointer to the block of memory allocated at module creation time,
or NULL. See PyModuleDef.m_size.

PyModuleDef* PyModule_GetDef(PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module
wasn’t created from a definition.

PyObject* PyModule_GetFilenameObject(PyObject *module)
Return value: New reference. Return the name of the file from which module was loaded using module’s
__file__ attribute. If this is not defined, or if it is not a unicode string, raise SystemError and return
NULL; otherwise return a reference to a Unicode object.
New in version 3.2.

const char* PyModule_GetFilename(PyObject *module)
Similar to PyModule_GetFilenameObject() but return the filename encoded to ‘utf-8’.
Deprecated since version 3.2: PyModule_GetFilename() raises UnicodeEncodeError on unen-
codable filenames, use PyModule_GetFilenameObject() instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function),
or compiled-in modules (where the initialization function is added using PyImport_AppendInittab()). See
building or extending-with-embedding for details.
The initialization function can either pass a module definition instance to PyModule_Create(), and return the
resulting module object, or request “multi-phase initialization” by returning the definition struct itself.
PyModuleDef

The module definition struct, which holds all information needed to create a module object. There is usually
only one statically initialized variable of this type for each module.
PyModuleDef_Base m_base

Always initialize this member to PyModuleDef_HEAD_INIT.
const char *m_name

Name for the new module.
const char *m_doc

Docstring for the module; usually a docstring variable created with PyDoc_STRVAR() is used.
Py_ssize_t m_size

Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState(), rather than in static globals. This makes modules safe for use in
multiple sub-interpreters.
This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_free function has been called, if present.
Setting m_size to -1 means that the module does not support sub-interpreters, because it has global
state.
Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_size is required for multi-phase initializa-
tion.
See PEP 3121 for more details.

112 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-3121

The Python/C API, Release 3.7.5

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMethodDef values. Can be NULL if
no functions are present.

PyModuleDef_Slot* m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When
using single-phase initialization, m_slots must be NULL.
Changed in version 3.5: Prior to version 3.5, this member was always set to NULL, and was defined as:

inquiry m_reload

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed. This
function may be called before module state is allocated (PyModule_GetState()may returnNULL),
and before the Py_mod_exec function is executed.

inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed. This function
may be called before module state is allocated (PyModule_GetState() may return NULL), and
before the Py_mod_exec function is executed.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed. This function may
be called before module state is allocated (PyModule_GetState() may return NULL), and before
the Py_mod_exec function is executed.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-
phase initialization”, and uses one of the following two module creation functions:
PyObject* PyModule_Create(PyModuleDef *def)

Return value: New reference. Create a new module object, given the definition in def. This behaves like
PyModule_Create2() with module_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2(PyModuleDef *def, int module_api_version)
Return value: New reference. Create a new module object, given the definition in def, assuming the
API version module_api_version. If that version does not match the version of the running interpreter, a
RuntimeWarning is emitted.

Note: Most uses of this function should be using PyModule_Create() instead; only use this if you are
sure you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using func-
tions like PyModule_AddObject().

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is cre-
ated, and the execution phase, when it is populated. The distinction is similar to the __new__() and __init__()
methods of classes.
Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry
is removed and the module is re-imported, a new module object is created, and the old module is subject to normal
garbage collection – as with Python modules. By default, multiple modules created from the same definition should
be independent: changes to one should not affect the others. This means that all state should be specific to the module
object (using e.g. using PyModule_GetState()), or its contents (such as the module’s __dict__ or individual
classes created with PyType_FromSpec()).

8.6. Other Objects 113

The Python/C API, Release 3.7.5

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple
modules are independent is typically enough to achieve this.
To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef in-
stance with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the
following function:
PyObject* PyModuleDef_Init(PyModuleDef *def)

Return value: Borrowed reference. Ensures a module definition is a properly initialized Python object that
correctly reports its type and reference count.
Returns def cast to PyObject*, or NULL if an error occurred.
New in version 3.5.

The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:
PyModuleDef_Slot

int slot
A slot ID, chosen from the available values explained below.

void* value
Value of the slot, whose meaning depends on the slot ID.

New in version 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:
Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point
to a function of the signature:
PyObject* create_module(PyObject *spec, PyModuleDef *def)
The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should
return a new module object, or set an error and return NULL.
This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.
Multiple Py_mod_create slots may not be specified in one module definition.
If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New(). The name is taken from spec, not the definition, to allow extension modules to dynam-
ically adjust to their place in the module hierarchy and be imported under different names through symlinks,
all while sharing a single module definition.
There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be
used, as long as it supports setting and getting import-related attributes. However, only PyModule_Type
instances may be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-
zero m_size; or slots other than Py_mod_create.

Py_mod_exec
Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python
module: typically, this function adds classes and constants to the module. The signature of the function is:
int exec_module(PyObject* module)
If multiple Py_mod_exec slots are specified, they are processed in the order they appear in them_slots array.

See PEP 489 for more details on multi-phase initialization.

114 Chapter 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0489

The Python/C API, Release 3.7.5

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used directly,
for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.
PyObject * PyModule_FromDefAndSpec(PyModuleDef *def, PyObject *spec)

Return value: New reference. Create a new module object, given the definition in module and the Mod-
uleSpec spec. This behaves like PyModule_FromDefAndSpec2() with module_api_version set to
PYTHON_API_VERSION.
New in version 3.5.

PyObject * PyModule_FromDefAndSpec2(PyModuleDef *def, PyObject *spec, int mod-
ule_api_version)

Return value: New reference. Create a new module object, given the definition in module and the ModuleSpec
spec, assuming the API version module_api_version. If that version does not match the version of the running
interpreter, a RuntimeWarning is emitted.

Note: Most uses of this function should be using PyModule_FromDefAndSpec() instead; only use this
if you are sure you need it.

New in version 3.5.
int PyModule_ExecDef(PyObject *module, PyModuleDef *def)

Process any execution slots (Py_mod_exec) given in def.
New in version 3.5.

int PyModule_SetDocString(PyObject *module, const char *docstring)
Set the docstring for module to docstring. This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.
New in version 3.5.

int PyModule_AddFunctions(PyObject *module, PyMethodDef *functions)
Add the functions from the NULL terminated functions array to module. Refer to the PyMethodDef doc-
umentation for details on individual entries (due to the lack of a shared module namespace, module level
“functions” implemented in C typically receive the module as their first parameter, making them similar to
instance methods on Python classes). This function is called automatically when creating a module from
PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.
New in version 3.5.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution
slot (if using multi-phase initialization), can use the following functions to help initialize the module state:
int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)

Add an object to module as name. This is a convenience function which can be used from the module’s initial-
ization function. This steals a reference to value on success. Return -1 on error, 0 on success.

Note: Unlike other functions that steal references, PyModule_AddObject() only decrements the refer-
ence count of value on success.
This means that its return value must be checked, and calling code must Py_DECREF() value manually on
error. Example usage:

8.6. Other Objects 115

The Python/C API, Release 3.7.5

Py_INCREF(spam);
if (PyModule_AddObject(module, "spam", spam) < 0) {

Py_DECREF(module);
Py_DECREF(spam);
return NULL;

}

int PyModule_AddIntConstant(PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initial-
ization function. Return -1 on error, 0 on success.

int PyModule_AddStringConstant(PyObject *module, const char *name, const char *value)
Add a string constant tomodule as name. This convenience function can be used from themodule’s initialization
function. The string value must be NULL-terminated. Return -1 on error, 0 on success.

int PyModule_AddIntMacro(PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro(module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return -1 on error, 0 on success.

int PyModule_AddStringMacro(PyObject *module, macro)
Add a string constant to module.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter.
This allows the module object to be retrieved later with only a reference to the module definition.
These functions will not work on modules created using multi-phase initialization, since multiple such modules can
be created from a single definition.
PyObject* PyState_FindModule(PyModuleDef *def)

Return value: Borrowed reference. Returns the module object that was created from def for the current
interpreter. This method requires that the module object has been attached to the interpreter state with
PyState_AddModule() beforehand. In case the corresponding module object is not found or has not
been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule(PyObject *module, PyModuleDef *def)
Attaches the module object passed to the function to the interpreter state. This allows the module object to be
accessible via PyState_FindModule().
Only effective on modules created using single-phase initialization.
New in version 3.3.

int PyState_RemoveModule(PyModuleDef *def)
Removes the module object created from def from the interpreter state.
New in version 3.3.

8.6.3 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__()method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.
PyTypeObject PySeqIter_Type

Type object for iterator objects returned by PySeqIter_New() and the one-argument form of the iter()
built-in function for built-in sequence types.

116 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

int PySeqIter_Check(op)
Return true if the type of op is PySeqIter_Type.

PyObject* PySeqIter_New(PyObject *seq)
Return value: New reference. Return an iterator that works with a general sequence object, seq. The iteration
ends when the sequence raises IndexError for the subscripting operation.

PyTypeObject PyCallIter_Type
Type object for iterator objects returned by PyCallIter_New() and the two-argument form of the
iter() built-in function.

int PyCallIter_Check(op)
Return true if the type of op is PyCallIter_Type.

PyObject* PyCallIter_New(PyObject *callable, PyObject *sentinel)
Return value: New reference. Return a new iterator. The first parameter, callable, can be any Python callable
object that can be called with no parameters; each call to it should return the next item in the iteration. When
callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.
PyTypeObject PyProperty_Type

The type object for the built-in descriptor types.
PyObject* PyDescr_NewGetSet(PyTypeObject *type, struct PyGetSetDef *getset)

Return value: New reference.

PyObject* PyDescr_NewMember(PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod(PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

PyObject* PyDescr_NewWrapper(PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod(PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData(PyObject *descr)
Return true if the descriptor objects descr describes a data attribute, or false if it describes a method. descr
must be a descriptor object; there is no error checking.

PyObject* PyWrapper_New(PyObject *, PyObject *)
Return value: New reference.

8.6.5 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as slice in the Python layer.

int PySlice_Check(PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New(PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step param-
eters are used as the values of the slice object attributes of the same names. Any of the values may be NULL,
in which case the None will be used for the corresponding attribute. Return NULL if the new object could
not be allocated.

8.6. Other Objects 117

The Python/C API, Release 3.7.5

int PySlice_GetIndices(PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)

Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.
Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case -1 is returned with an exception set).
You probably do not want to use this function.
Changed in version 3.2: The parameter type for the slice parameter was PySliceObject* before.

int PySlice_GetIndicesEx(PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)

Usable replacement for PySlice_GetIndices(). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.
Returns 0 on success and -1 on error with exception set.

Note: This function is considered not safe for resizable sequences. Its invocation should be replaced by a
combination of PySlice_Unpack() and PySlice_AdjustIndices() where

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength) <␣
↪→0) {

// return error
}

is replaced by

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error

}
slicelength = PySlice_AdjustIndices(length, &start, &stop, step);

Changed in version 3.2: The parameter type for the slice parameter was PySliceObject* before.
Changed in version 3.6.1: If Py_LIMITED_API is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx() is implemented
as a macro using PySlice_Unpack() and PySlice_AdjustIndices(). Arguments start, stop and
step are evaluated more than once.
Deprecated since version 3.6.1: If Py_LIMITED_API is set to the value less than 0x03050400 or between
0x03060000 and 0x03060100 (not including) PySlice_GetIndicesEx() is a deprecated function.

int PySlice_Unpack(PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Extract the start, stop and step data members from a slice object as C integers. Silently reduce
values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, silently boost the start and stop val-
ues less than PY_SSIZE_T_MIN to PY_SSIZE_T_MIN, and silently boost the step values less than
-PY_SSIZE_T_MAX to -PY_SSIZE_T_MAX.
Return -1 on error, 0 on success.
New in version 3.6.1.

Py_ssize_t PySlice_AdjustIndices(Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t step)

Adjust start/end slice indices assuming a sequence of the specified length. Out of bounds indices are clipped
in a manner consistent with the handling of normal slices.
Return the length of the slice. Always successful. Doesn’t call Python code.
New in version 3.6.1.

118 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

8.6.6 Ellipsis Object

PyObject *Py_Ellipsis
The Python Ellipsis object. This object has no methods. It needs to be treated just like any other object
with respect to reference counts. Like Py_None it is a singleton object.

8.6.7 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like
any other object.
PyObject *PyMemoryView_FromObject(PyObject *obj)

Return value: New reference. Create a memoryview object from an object that provides the buffer interface.
If obj supports writable buffer exports, the memoryview object will be read/write, otherwise it may be either
read-only or read/write at the discretion of the exporter.

PyObject *PyMemoryView_FromMemory(char *mem, Py_ssize_t size, int flags)
Return value: New reference. Create a memoryview object using mem as the underlying buffer. flags can be
one of PyBUF_READ or PyBUF_WRITE.
New in version 3.3.

PyObject *PyMemoryView_FromBuffer(Py_buffer *view)
Return value: New reference. Create a memoryview object wrapping the given buffer structure view. For simple
byte buffers, PyMemoryView_FromMemory() is the preferred function.

PyObject *PyMemoryView_GetContiguous(PyObject *obj, int buffertype, char order)
Return value: New reference. Create a memoryview object to a contiguous chunk of memory (in either ‘C’ or
‘F’ortran order) from an object that defines the buffer interface. If memory is contiguous, the memoryview
object points to the original memory. Otherwise, a copy is made and the memoryview points to a new bytes
object.

int PyMemoryView_Check(PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview.

Py_buffer *PyMemoryView_GET_BUFFER(PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

Py_buffer *PyMemoryView_GET_BASE(PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if
the memoryview has been created by one of the functions PyMemoryView_FromMemory() or
PyMemoryView_FromBuffer(). mview must be a memoryview instance.

8.6.8 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.
int PyWeakref_Check(ob)

Return true if ob is either a reference or proxy object.
int PyWeakref_CheckRef(ob)

Return true if ob is a reference object.
int PyWeakref_CheckProxy(ob)

Return true if ob is a proxy object.

8.6. Other Objects 119

The Python/C API, Release 3.7.5

PyObject* PyWeakref_NewRef(PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The
second parameter, callback, can be a callable object that receives notification when ob is garbage collected; it
should accept a single parameter, which will be the weak reference object itself. callbackmay also be None or
NULL. If ob is not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return
NULL and raise TypeError.

PyObject* PyWeakref_NewProxy(PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return
a new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The
second parameter, callback, can be a callable object that receives notification when ob is garbage collected; it
should accept a single parameter, which will be the weak reference object itself. callbackmay also be None or
NULL. If ob is not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return
NULL and raise TypeError.

PyObject* PyWeakref_GetObject(PyObject *ref)
Return value: Borrowed reference. Return the referenced object from a weak reference, ref. If the referent is
no longer live, returns Py_None.

Note: This function returns a borrowed reference to the referenced object. This means that you should
always call Py_INCREF() on the object except if you know that it cannot be destroyed while you are still
using it.

PyObject* PyWeakref_GET_OBJECT(PyObject *ref)
Return value: Borrowed reference. Similar to PyWeakref_GetObject(), but implemented as a macro
that does no error checking.

8.6.9 Capsules

Refer to using-capsules for more information on using these objects.
New in version 3.1.
PyCapsule

This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to
access C APIs defined in dynamically loaded modules.

PyCapsule_Destructor
The type of a destructor callback for a capsule. Defined as:

typedef void (*PyCapsule_Destructor)(PyObject *);

See PyCapsule_New() for the semantics of PyCapsule_Destructor callbacks.
int PyCapsule_CheckExact(PyObject *p)

Return true if its argument is a PyCapsule.
PyObject* PyCapsule_New(void *pointer, const char *name, PyCapsule_Destructor destructor)

Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not
be NULL.
On failure, set an exception and return NULL.
The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)
If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

120 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import().

void* PyCapsule_GetPointer(PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function strcmp() to compare capsule
names.

PyCapsule_Destructor PyCapsule_GetDestructor(PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void* PyCapsule_GetContext(PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

const char* PyCapsule_GetName(PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void* PyCapsule_Import(const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should
specify the full name to the attribute, as in module.attribute. The name stored in the cap-
sule must match this string exactly. If no_block is true, import the module without blocking (using
PyImport_ImportModuleNoBlock()). If no_block is false, import the module conventionally (us-
ing PyImport_ImportModule()).
Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid(PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact(), has a non-NULL pointer stored in it, and its internal namematches the name
parameter. (See PyCapsule_GetPointer() for information on how capsule names are compared.)
In other words, if PyCapsule_IsValid() returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get()) are guaranteed to succeed.
Return a nonzero value if the object is valid andmatches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext(PyObject *capsule, void *context)
Set the context pointer inside capsule to context.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor(PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName(PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name
stored in the capsule was not NULL, no attempt is made to free it.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer(PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.
Return 0 on success. Return nonzero and set an exception on failure.

8.6. Other Objects 121

The Python/C API, Release 3.7.5

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly calling PyGen_New() or PyGen_NewWithQualName().
PyGenObject

The C structure used for generator objects.
PyTypeObject PyGen_Type

The type object corresponding to generator objects.
int PyGen_Check(PyObject *ob)

Return true if ob is a generator object; ob must not be NULL.
int PyGen_CheckExact(PyObject *ob)

Return true if ob’s type is PyGen_Type; ob must not be NULL.
PyObject* PyGen_New(PyFrameObject *frame)

Return value: New reference. Create and return a new generator object based on the frame object. A reference
to frame is stolen by this function. The argument must not be NULL.

PyObject* PyGen_NewWithQualName(PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with
__name__ and __qualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.11 Coroutine Objects

New in version 3.5.
Coroutine objects are what functions declared with an async keyword return.
PyCoroObject

The C structure used for coroutine objects.
PyTypeObject PyCoro_Type

The type object corresponding to coroutine objects.
int PyCoro_CheckExact(PyObject *ob)

Return true if ob’s type is PyCoro_Type; ob must not be NULL.
PyObject* PyCoro_New(PyFrameObject *frame, PyObject *name, PyObject *qualname)

Return value: New reference. Create and return a new coroutine object based on the frame object, with
__name__ and __qualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.12 Context Variables Objects

Note: Changed in version 3.7.1: In Python 3.7.1 the signatures of all context variables C APIs were changed to use
PyObject pointers instead of PyContext, PyContextVar, and PyContextToken, e.g.:

// in 3.7.0:
PyContext *PyContext_New(void);

// in 3.7.1+:
PyObject *PyContext_New(void);

See bpo-34762 for more details.

New in version 3.7.

122 Chapter 8. Concrete Objects Layer

https://bugs.python.org/issue34762

The Python/C API, Release 3.7.5

This section details the public C API for the contextvars module.
PyContext

The C structure used to represent a contextvars.Context object.
PyContextVar

The C structure used to represent a contextvars.ContextVar object.
PyContextToken

The C structure used to represent a contextvars.Token object.
PyTypeObject PyContext_Type

The type object representing the context type.
PyTypeObject PyContextVar_Type

The type object representing the context variable type.
PyTypeObject PyContextToken_Type

The type object representing the context variable token type.
Type-check macros:
int PyContext_CheckExact(PyObject *o)

Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.
int PyContextVar_CheckExact(PyObject *o)

Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.
int PyContextToken_CheckExact(PyObject *o)

Return true if o is of type PyContextToken_Type. o must not be NULL. This function always succeeds.
Context object management functions:
PyObject *PyContext_New(void)

Return value: New reference. Create a new empty context object. Returns NULL if an error has occurred.
PyObject *PyContext_Copy(PyObject *ctx)

Return value: New reference. Create a shallow copy of the passed ctx context object. Returns NULL if an error
has occurred.

PyObject *PyContext_CopyCurrent(void)
Return value: New reference. Create a shallow copy of the current thread context. Returns NULL if an error
has occurred.

int PyContext_Enter(PyObject *ctx)
Set ctx as the current context for the current thread. Returns 0 on success, and -1 on error.

int PyContext_Exit(PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns
0 on success, and -1 on error.

int PyContext_ClearFreeList()
Clear the context variable free list. Return the total number of freed items. This function always succeeds.

Context variable functions:
PyObject *PyContextVar_New(const char *name, PyObject *def)

Return value: New reference. Create a new ContextVar object. The name parameter is used for introspec-
tion and debug purposes. The def parameter may optionally specify the default value for the context variable.
If an error has occurred, this function returns NULL.

int PyContextVar_Get(PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error
occurred, whether or not a value was found.
If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

• default_value, if not NULL;

8.6. Other Objects 123

The Python/C API, Release 3.7.5

• the default value of var, if not NULL;
• NULL

If the value was found, the function will create a new reference to it.
PyObject *PyContextVar_Set(PyObject *var, PyObject *value)

Return value: New reference. Set the value of var to value in the current context. Returns a pointer to a
PyObject object, or NULL if an error has occurred.

int PyContextVar_Reset(PyObject *var, PyObject *token)
Reset the state of the var context variable to that it was in before PyContextVar_Set() that returned the
token was called. This function returns 0 on success and -1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the datetime module. Before using any of these functions, the
header file datetime.h must be included in your source (note that this is not included by Python.h), and the
macro PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro
puts a pointer to a C structure into a static variable, PyDateTimeAPI, that is used by the following macros.
Macro for access to the UTC singleton:
PyObject* PyDateTime_TimeZone_UTC

Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.
New in version 3.7.

Type-check macros:
int PyDate_Check(PyObject *ob)

Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob
must not be NULL.

int PyDate_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

int PyDateTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of
PyDateTime_DateTimeType. ob must not be NULL.

int PyDateTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.

int PyTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob
must not be NULL.

int PyTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.

int PyDelta_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. ob
must not be NULL.

int PyDelta_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.

int PyTZInfo_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType.
ob must not be NULL.

int PyTZInfo_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.

Macros to create objects:

124 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.7.5

PyObject* PyDate_FromDate(int year, int month, int day)
Return value: New reference. Return a datetime.date object with the specified year, month and day.

PyObject* PyDateTime_FromDateAndTime(int year, intmonth, int day, int hour, intminute, int second,
int usecond)

Return value: New reference. Return a datetime.datetime object with the specified year, month, day,
hour, minute, second and microsecond.

PyObject* PyDateTime_FromDateAndTimeAndFold(int year, intmonth, int day, int hour, intminute,
int second, int usecond, int fold)

Return value: New reference. Return a datetime.datetime object with the specified year, month, day,
hour, minute, second, microsecond and fold.
New in version 3.6.

PyObject* PyTime_FromTime(int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.

PyObject* PyTime_FromTimeAndFold(int hour, int minute, int second, int usecond, int fold)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second,
microsecond and fold.
New in version 3.6.

PyObject* PyDelta_FromDSU(int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of
days, seconds and microseconds. Normalization is performed so that the resulting number of microseconds
and seconds lie in the ranges documented for datetime.timedelta objects.

PyObject* PyTimeZone_FromOffset(PyDateTime_DeltaType* offset)
Return value: New reference. Return a datetime.timezone object with an unnamed fixed offset repre-
sented by the offset argument.
New in version 3.7.

PyObject* PyTimeZone_FromOffsetAndName(PyDateTime_DeltaType* offset, PyUnicode* name)
Return value: New reference. Return a datetime.timezone object with a fixed offset represented by the
offset argument and with tzname name.
New in version 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:
int PyDateTime_GET_YEAR(PyDateTime_Date *o)

Return the year, as a positive int.
int PyDateTime_GET_MONTH(PyDateTime_Date *o)

Return the month, as an int from 1 through 12.
int PyDateTime_GET_DAY(PyDateTime_Date *o)

Return the day, as an int from 1 through 31.
Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime *o)

Return the hour, as an int from 0 through 23.
int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime *o)

Return the minute, as an int from 0 through 59.
int PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime *o)

Return the second, as an int from 0 through 59.
int PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime *o)

Return the microsecond, as an int from 0 through 999999.

8.6. Other Objects 125

The Python/C API, Release 3.7.5

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including
subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o)

Return the hour, as an int from 0 through 23.
int PyDateTime_TIME_GET_MINUTE(PyDateTime_Time *o)

Return the minute, as an int from 0 through 59.
int PyDateTime_TIME_GET_SECOND(PyDateTime_Time *o)

Return the second, as an int from 0 through 59.
int PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time *o)

Return the microsecond, as an int from 0 through 999999.
Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta,
including subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DELTA_GET_DAYS(PyDateTime_Delta *o)

Return the number of days, as an int from -999999999 to 999999999.
New in version 3.3.

int PyDateTime_DELTA_GET_SECONDS(PyDateTime_Delta *o)
Return the number of seconds, as an int from 0 through 86399.
New in version 3.3.

int PyDateTime_DELTA_GET_MICROSECONDS(PyDateTime_Delta *o)
Return the number of microseconds, as an int from 0 through 999999.
New in version 3.3.

Macros for the convenience of modules implementing the DB API:
PyObject* PyDateTime_FromTimestamp(PyObject *args)

Return value: New reference. Create and return a new datetime.datetime object given an argument
tuple suitable for passing to datetime.datetime.fromtimestamp().

PyObject* PyDate_FromTimestamp(PyObject *args)
Return value: New reference. Create and return a new datetime.date object given an argument tuple
suitable for passing to datetime.date.fromtimestamp().

126 Chapter 8. Concrete Objects Layer

CHAPTER

NINE

INITIALIZATION, FINALIZATION, AND THREADS

9.1 Before Python Initialization

In an application embedding Python, the Py_Initialize() function must be called before using any other
Python/C API functions; with the exception of a few functions and the global configuration variables.
The following functions can be safely called before Python is initialized:

• Configuration functions:
– PyImport_AppendInittab()

– PyImport_ExtendInittab()

– PyInitFrozenExtensions()

– PyMem_SetAllocator()

– PyMem_SetupDebugHooks()

– PyObject_SetArenaAllocator()

– Py_SetPath()

– Py_SetProgramName()

– Py_SetPythonHome()

– Py_SetStandardStreamEncoding()

– PySys_AddWarnOption()

– PySys_AddXOption()

– PySys_ResetWarnOptions()

• Informative functions:
– Py_IsInitialized()

– PyMem_GetAllocator()

– PyObject_GetArenaAllocator()

– Py_GetBuildInfo()

– Py_GetCompiler()

– Py_GetCopyright()

– Py_GetPlatform()

– Py_GetVersion()

• Utilities:
– Py_DecodeLocale()

• Memory allocators:

127

The Python/C API, Release 3.7.5

– PyMem_RawMalloc()

– PyMem_RawRealloc()

– PyMem_RawCalloc()

– PyMem_RawFree()

Note: The following functions should not be called before Py_Initialize(): Py_EncodeLocale(),
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome(), Py_GetProgramName() and PyEval_InitThreads().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.
When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, -b
sets Py_BytesWarningFlag to 1 and -bb sets Py_BytesWarningFlag to 2.
Py_BytesWarningFlag

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if
greater or equal to 2.
Set by the -b option.

Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).
Set by the -d option and the PYTHONDEBUG environment variable.

Py_DontWriteBytecodeFlag
If set to non-zero, Python won’t try to write .pyc files on the import of source modules.
Set by the -B option and the PYTHONDONTWRITEBYTECODE environment variable.

Py_FrozenFlag
Suppress error messages when calculating the module search path in Py_GetPath().
Private flag used by _freeze_importlib and frozenmain programs.

Py_HashRandomizationFlag
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.
If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

Py_IgnoreEnvironmentFlag
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
Set by the -E and -I options.

Py_InspectFlag
When a script is passed as first argument or the -c option is used, enter interactive mode after executing the
script or the command, even when sys.stdin does not appear to be a terminal.
Set by the -i option and the PYTHONINSPECT environment variable.

Py_InteractiveFlag
Set by the -i option.

Py_IsolatedFlag
Run Python in isolated mode. In isolated mode sys.path contains neither the script’s directory nor the
user’s site-packages directory.
Set by the -I option.

128 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.5

New in version 3.4.
Py_LegacyWindowsFSEncodingFlag

If the flag is non-zero, use the mbcs encoding instead of the UTF-8 encoding for the filesystem encoding.
Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Availability: Windows.

Py_LegacyWindowsStdioFlag
If the flag is non-zero, use io.FileIO instead of WindowsConsoleIO for sys standard streams.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
See PEP 528 for more details.
Availability: Windows.

Py_NoSiteFlag
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main() if you want them
to be triggered).
Set by the -S option.

Py_NoUserSiteDirectory
Don’t add the user site-packages directory to sys.path.
Set by the -s and -I options, and the PYTHONNOUSERSITE environment variable.

Py_OptimizeFlag
Set by the -O option and the PYTHONOPTIMIZE environment variable.

Py_QuietFlag
Don’t display the copyright and version messages even in interactive mode.
Set by the -q option.
New in version 3.2.

Py_UnbufferedStdioFlag
Force the stdout and stderr streams to be unbuffered.
Set by the -u option and the PYTHONUNBUFFERED environment variable.

Py_VerboseFlag
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.
Set by the -v option and the PYTHONVERBOSE environment variable.

9.3 Initializing and finalizing the interpreter

void Py_Initialize()
Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; see Before Python Initialization for the few exceptions.
This initializes the table of loaded modules (sys.modules), and creates the fundamental modules
builtins, __main__ and sys. It also initializes the module search path (sys.path). It does not set
sys.argv; use PySys_SetArgvEx() for that. This is a no-op when called for a second time (without
calling Py_FinalizeEx() first). There is no return value; it is a fatal error if the initialization fails.

9.3. Initializing and finalizing the interpreter 129

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

The Python/C API, Release 3.7.5

Note: On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-
Python uses of the console using the C Runtime.

void Py_InitializeEx(int initsigs)
This function works like Py_Initialize() if initsigs is 1. If initsigs is 0, it skips initialization registration
of signal handlers, which might be useful when Python is embedded.

int Py_IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py_FinalizeEx() is called, this returns false until Py_Initialize() is called again.

int Py_FinalizeEx()
Undo all initializations made by Py_Initialize() and subsequent use of Python/C API functions, and
destroy all sub-interpreters (see Py_NewInterpreter() below) that were created and not yet destroyed
since the last call to Py_Initialize(). Ideally, this frees all memory allocated by the Python interpreter.
This is a no-op when called for a second time (without calling Py_Initialize() again first). Normally
the return value is 0. If there were errors during finalization (flushing buffered data), -1 is returned.
This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated
by Python before exiting from the application.
Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may
cause destructors (__del__() methods) to fail when they depend on other objects (even functions) or mod-
ules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory
allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in
circular references between objects is not freed. Some memory allocated by extension modules may not be
freed. Some extensions may not work properly if their initialization routine is called more than once; this can
happen if an application calls Py_Initialize() and Py_FinalizeEx() more than once.
New in version 3.6.

void Py_Finalize()
This is a backwards-compatible version of Py_FinalizeEx() that disregards the return value.

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding(const char *encoding, const char *errors)
This function should be called before Py_Initialize(), if it is called at all. It specifies which encoding
and error handling to use with standard IO, with the same meanings as in str.encode().
It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the
environment variable does not work.
encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending
on other settings).
Note that sys.stderr always uses the “backslashreplace” error handler, regardless of this (or any other)
setting.
If Py_FinalizeEx() is called, this function will need to be called again in order to affect subsequent calls
to Py_Initialize().
Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
New in version 3.4.

void Py_SetProgramName(const wchar_t *name)
This function should be called before Py_Initialize() is called for the first time, if it is called at all. It

130 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.5

tells the interpreter the value of the argv[0] argument to the main() function of the program (converted
to wide characters). This is used by Py_GetPath() and some other functions below to find the Python run-
time libraries relative to the interpreter executable. The default value is 'python'. The argument should
point to a zero-terminated wide character string in static storage whose contents will not change for the duration
of the program’s execution. No code in the Python interpreter will change the contents of this storage.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.

wchar* Py_GetProgramName()
Return the program name set with Py_SetProgramName(), or the default. The returned string points into
static storage; the caller should not modify its value.

wchar_t* Py_GetPrefix()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName() and some environment variables; for example, if
the program name is '/usr/local/bin/python', the prefix is '/usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the prefix variable in
the top-level Makefile and the --prefix argument to the configure script at build time. The value is
available to Python code as sys.prefix. It is only useful on Unix. See also the next function.

wchar_t* Py_GetExecPrefix()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of com-
plicated rules from the program name set with Py_SetProgramName() and some environment vari-
ables; for example, if the program name is '/usr/local/bin/python', the exec-prefix is '/usr/
local'. The returned string points into static storage; the caller should not modify its value. This corre-
sponds to the exec_prefix variable in the top-level Makefile and the --exec-prefix argument to
the configure script at build time. The value is available to Python code as sys.exec_prefix. It is
only useful on Unix.
Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files
may be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/
local.
Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).
System administrators will know how to configure the mount or automount programs to share /usr/
local between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py_GetProgramFullPath()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName() above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
sys.executable.

wchar_t* Py_GetPath()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is
':' on Unix and Mac OS X, ';' on Windows. The returned string points into static storage; the caller
should not modify its value. The list sys.path is initialized with this value on interpreter startup; it can be
(and usually is) modified later to change the search path for loading modules.

void Py_SetPath(const wchar_t *)
Set the default module search path. If this function is called before Py_Initialize(), then
Py_GetPath() won’t attempt to compute a default search path but uses the one provided instead. This
is useful if Python is embedded by an application that has full knowledge of the location of all modules. The

9.4. Process-wide parameters 131

The Python/C API, Release 3.7.5

path components should be separated by the platform dependent delimiter character, which is ':' on Unix
and Mac OS X, ';' on Windows.
This also causes sys.executable to be set only to the raw program name (see
Py_SetProgramName()) and for sys.prefix and sys.exec_prefix to be empty. It is up
to the caller to modify these if required after calling Py_Initialize().
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
The path argument is copied internally, so the caller may free it after the call completes.

const char* Py_GetVersion()
Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the
major and minor version separated by a period. The returned string points into static storage; the caller should
not modify its value. The value is available to Python code as sys.version.

const char* Py_GetPlatform()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of
the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x,
which is also known as SunOS 5.x, the value is 'sunos5'. On Mac OS X, it is 'darwin'. On Windows,
it is 'win'. The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as sys.platform.

const char* Py_GetCopyright()
Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.

const char* Py_GetCompiler()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

const char* Py_GetBuildInfo()
Return information about the sequence number and build date and time of the current Python interpreter
instance, for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_SetArgvEx(int argc, wchar_t **argv, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s
main() function with the difference that the first entry should refer to the script file to be executed rather
than the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in
argv can be an empty string. If this function fails to initialize sys.argv, a fatal condition is signalled using
Py_FatalError().
If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.
path according to the following algorithm:

• If the name of an existing script is passed in argv[0], the absolute path of the directory where the
script is located is prepended to sys.path.

132 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.5

• Otherwise (that is, if argc is 0 or argv[0] doesn’t point to an existing file name), an empty string is
prepended to sys.path, which is the same as prepending the current working directory (".").

Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.

Note: It is recommended that applications embedding the Python interpreter for purposes other than executing
a single script pass 0 as updatepath, and update sys.path themselves if desired. See CVE-2008-5983.
On versions before 3.1.3, you can achieve the same effect by manually popping the first sys.path element
after having called PySys_SetArgv(), for example using:

PyRun_SimpleString("import sys; sys.path.pop(0)\n");

New in version 3.1.3.
void PySys_SetArgv(int argc, wchar_t **argv)

This function works like PySys_SetArgvEx() with updatepath set to 1 unless the python interpreter
was started with the -I.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
Changed in version 3.4: The updatepath value depends on -I.

void Py_SetPythonHome(const wchar_t *home)
Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.
The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.

w_char* Py_GetPythonHome()
Return the default “home”, that is, the value set by a previous call to Py_SetPythonHome(), or the value
of the PYTHONHOME environment variable if it is set.

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired theGILmay operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval()). The lock is also released around potentially blocking I/O operations like reading
or writing a file, so that other Python threads can run in the meantime.
The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

9.5. Thread State and the Global Interpreter Lock 133

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Release 3.7.5

Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.
The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
... Do some blocking I/O operation ...
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the lock and store its own thread state in the global
variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

Note: Calling system I/O functions is themost common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard zlib and hashlib modules release the GIL
when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is
automatically associated to them and the code showed above is therefore correct. However, when threads are created
from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there
a thread state structure for them.
If you need to call Python code from these threads (often this will be part of a callback API provided by the afore-
mentioned third-party library), you must first register these threads with the interpreter by creating a thread state
data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the
Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the
thread state data structure.
The PyGILState_Ensure() and PyGILState_Release() functions do all of the above automatically.
The typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);

134 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.5

Note that the PyGILState_*() functions assume there is only one global interpreter (created automatically by
Py_Initialize()). Python supports the creation of additional interpreters (usingPy_NewInterpreter()),
but mixing multiple interpreters and the PyGILState_*() API is unsupported.
Another important thing to note about threads is their behaviour in the face of the C fork() call. On most systems
with fork(), after a process forks only the thread that issued the fork will exist. That also means any locks held
by other threads will never be released. Python solves this for os.fork() by acquiring the locks it uses internally
before the fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending
or embedding Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired
before or reset after a fork. OS facilities such as pthread_atfork() would need to be used to accomplish the
same thing. Additionally, when extending or embedding Python, calling fork() directly rather than through os.
fork() (and returning to or calling into Python) may result in a deadlock by one of Python’s internal locks being
held by a thread that is defunct after the fork. PyOS_AfterFork_Child() tries to reset the necessary locks,
but is not always able to.

9.5.3 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the
Python interpreter:
PyInterpreterState

This data structure represents the state shared by a number of cooperating threads. Threads belonging to the
same interpreter share their module administration and a few other internal items. There are no public members
in this structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a second
thread or engaging in any other thread operations such as PyEval_ReleaseThread(tstate). It is not
needed before calling PyEval_SaveThread() or PyEval_RestoreThread().
This is a no-op when called for a second time.
Changed in version 3.7: This function is now called by Py_Initialize(), so you don’t have to call it
yourself anymore.
Changed in version 3.2: This function cannot be called before Py_Initialize() anymore.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_InitThreads() has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.
Changed in version 3.7: The GIL is now initialized by Py_Initialize().

PyThreadState* PyEval_SaveThread()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread
state toNULL, returning the previous thread state (which is notNULL). If the lock has been created, the current
thread must have acquired it.

void PyEval_RestoreThread(PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state
to tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues.

Note: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing()

9.5. Thread State and the Global Interpreter Lock 135

The Python/C API, Release 3.7.5

to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

PyThreadState* PyThreadState_Get()
Return the current thread state. The global interpreter lock must be held. When the current thread state is
NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument tstate, which may be NULL. The
global interpreter lock must be held and is not released.

void PyEval_ReInitThreads()
This function is called from PyOS_AfterFork_Child() to ensure that newly created child processes
don’t hold locks referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:
PyGILState_STATE PyGILState_Ensure()

Ensure that the current thread is ready to call the Python C API regardless of the current state of Python,
or of the global interpreter lock. This may be called as many times as desired by a thread as long as
each call is matched with a call to PyGILState_Release(). In general, other thread-related APIs
may be used between PyGILState_Ensure() and PyGILState_Release() calls as long as the
thread state is restored to its previous state before the Release(). For example, normal usage of the
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS macros is acceptable.
The return value is an opaque “handle” to the thread state when PyGILState_Ensure() was called, and
must be passed to PyGILState_Release() to ensure Python is left in the same state. Even though
recursive calls are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure()
must save the handle for its call to PyGILState_Release().
When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code.
Failure is a fatal error.

Note: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termi-
nation.

void PyGILState_Release(PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState_Ensure() call (but generally this state will be unknown to the caller, hence
the use of the GILState API).
Every call to PyGILState_Ensure() must be matched by a call to PyGILState_Release() on the
same thread.

PyThreadState* PyGILState_GetThisThreadState()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been
made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.
New in version 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

136 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.5

Py_BEGIN_ALLOW_THREADS
This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread();. Note
that it contains an opening brace; it must be matched with a following Py_END_ALLOW_THREADS macro.
See above for further discussion of this macro.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread(_save); }. Note that it contains a closing brace; it
must be matched with an earlier Py_BEGIN_ALLOW_THREADS macro. See above for further discussion of
this macro.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.4 Low-level API

All of the following functions must be called after Py_Initialize().
Changed in version 3.7: Py_Initialize() now initializes the GIL.
PyInterpreterState* PyInterpreterState_New()

Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is
necessary to serialize calls to this function.

void PyInterpreterState_Clear(PyInterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete(PyInterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must
have been reset with a previous call to PyInterpreterState_Clear().

PyThreadState* PyThreadState_New(PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not
be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear(PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState_Delete(PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been
reset with a previous call to PyThreadState_Clear().

PY_INT64_T PyInterpreterState_GetID(PyInterpreterState *interp)
Return the interpreter’s unique ID. If there was any error in doing so then -1 is returned and an error is set.
New in version 3.7.

PyObject* PyThreadState_GetDict()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state
information. Each extension should use a unique key to use to store state in the dictionary. It is okay to call
this function when no current thread state is available. If this function returns NULL, no exception has been
raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you
must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread
states modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending
exception (if any) for the thread is cleared. This raises no exceptions.
Changed in version 3.7: The type of the id parameter changed from long to unsigned long.

9.5. Thread State and the Global Interpreter Lock 137

The Python/C API, Release 3.7.5

void PyEval_AcquireThread(PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which should not be NULL. The
lock must have been created earlier. If this thread already has the lock, deadlock ensues.
PyEval_RestoreThread() is a higher-level function which is always available (even when threads have
not been initialized).

void PyEval_ReleaseThread(PyThreadState *tstate)
Reset the current thread state toNULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The tstate argument, which must not be NULL, is only used to
check that it represents the current thread state — if it isn’t, a fatal error is reported.
PyEval_SaveThread() is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_AcquireLock()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the
lock, a deadlock ensues.
Deprecated since version 3.2: This function does not update the current thread state. Please use
PyEval_RestoreThread() or PyEval_AcquireThread() instead.

void PyEval_ReleaseLock()
Release the global interpreter lock. The lock must have been created earlier.
Deprecated since version 3.2: This function does not update the current thread state. Please use
PyEval_SaveThread() or PyEval_ReleaseThread() instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that. You can switch between sub-interpreters using the PyThreadState_Swap() function. You can create and
destroy them using the following functions:
PyThreadState* Py_NewInterpreter()

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, including
the fundamental modules builtins, __main__ and sys. The table of loaded modules (sys.modules)
and the module search path (sys.path) are also separate. The new environment has no sys.argv variable.
It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these
refer to the same underlying file descriptors).
The return value points to the first thread state created in the new sub-interpreter. This thread state is made
in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If
creation of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state
is stored in the current thread state and there may not be a current thread state. (Like all other Python/C API
functions, the global interpreter lock must be held before calling this function and is still held when it returns;
however, unlike most other Python/C API functions, there needn’t be a current thread state on entry.)
Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is
imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extension’s init function is not called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely re-initialized by calling Py_FinalizeEx()
and Py_Initialize(); in that case, the extension’s initmodule function is called again.

void Py_EndInterpreter(PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL.
All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before

138 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.5

calling this function and is still held when it returns.) Py_FinalizeEx() will destroy all sub-interpreters
that haven’t been explicitly destroyed at that point.

9.6.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect — for example, using low-level file operations like os.close() they can (accidentally or maliciously)
affect each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions
may not work properly; this is especially likely when the extension makes use of (static) global variables, or when
the extension manipulates its module’s dictionary after its initialization. It is possible to insert objects created in one
sub-interpreter into a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-
defined functions, methods, instances or classes between sub-interpreters, since import operations executed by such
objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules.
Also note that combining this functionality with PyGILState_*() APIs is delicate, because these APIs as-
sume a bijection between Python thread states and OS-level threads, an assumption broken by the presence of
sub-interpreters. It is highly recommended that you don’t switch sub-interpreters between a pair of matching
PyGILState_Ensure() and PyGILState_Release() calls. Furthermore, extensions (such as ctypes)
using these APIs to allow calling of Python code from non-Python created threads will probably be broken when
using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.
int Py_AddPendingCall(int (*func)(void *), void *arg)

Schedule a function to be called from the main interpreter thread. On success, 0 is returned and func is queued
for being called in the main thread. On failure, -1 is returned without setting any exception.
When successfully queued, func will be eventually called from the main interpreter thread with the argument
arg. It will be called asynchronously with respect to normally running Python code, but with both these con-
ditions met:

• on a bytecode boundary;
• with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or -1 on failure with an exception set. func won’t be interrupted to perform
another asynchronous notification recursively, but it can still be interrupted to switch threads if the global
interpreter lock is released.
This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

Warning: This is a low-level function, only useful for very special cases. There is no guarantee that func
will be called as quick as possible. If the main thread is busy executing a system call, func won’t be called
before the system call returns. This function is generally not suitable for calling Python code from arbitrary
C threads. Instead, use the PyGILState API.

New in version 3.1.

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

9.7. Asynchronous Notifications 139

The Python/C API, Release 3.7.5

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as
had been reported to the Python-level trace functions in previous versions.
int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval_SetProfile() and PyEval_SetTrace().
The first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg
PyTrace_CALL Always Py_None.
PyTrace_EXCEPTION Exception information as returned by sys.exc_info().
PyTrace_LINE Always Py_None.
PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.
PyTrace_C_EXCEPTION Function object being called.
PyTrace_C_RETURN Function object being called.
PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_tracefunc function when an exception has been raised. The
callback function is called with this value for what when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propagation
causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates.
Only trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting f_trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_tracefunc functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_tracefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_tracefunc functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_tracefunc functions when a C function has returned.

int PyTrace_OPCODE
The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new
opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to 1 on the frame.

void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

140 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.5

void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_SetProfile(), except the tracing function
does receive line-number events and per-opcode events, but does not receive any event related to C func-
tion objects being called. Any trace function registered using PyEval_SetTrace() will not receive
PyTrace_C_CALL, PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what pa-
rameter.

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.
PyInterpreterState* PyInterpreterState_Head()

Return the interpreter state object at the head of the list of all such objects.
PyInterpreterState* PyInterpreterState_Main()

Return the main interpreter state object.
PyInterpreterState* PyInterpreterState_Next(PyInterpreterState *interp)

Return the next interpreter state object after interp from the list of all such objects.
PyThreadState * PyInterpreterState_ThreadHead(PyInterpreterState *interp)

Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState* PyThreadState_Next(PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native
TLS implementation to support the Python-level thread local storage API (threading.local). The CPython
C level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a
void* value per thread.
The GIL does not need to be held when calling these functions; they supply their own locking.
Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

Note: None of these API functions handle memory management on behalf of the void* values. You need to
allocate and deallocate them yourself. If the void* values happen to be PyObject*, these functions don’t do
refcount operations on them either.

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses
a new type Py_tss_t instead of int to represent thread keys.
New in version 3.7.
See also:
“A New C-API for Thread-Local Storage in CPython” (PEP 539)
Py_tss_t

This data structure represents the state of a thread key, the definition of which may depend on the underlying

9.9. Advanced Debugger Support 141

https://www.python.org/dev/peps/pep-0539

The Python/C API, Release 3.7.5

TLS implementation, and it has an internal field representing the key’s initialization state. There are no public
members in this structure.
When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_NEEDS_INIT is allowed.

Py_tss_NEEDS_INIT
This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with
Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_tss_t, required in extension modules built with Py_LIMITED_API, where static
allocation of this type is not possible due to its implementation being opaque at build time.
Py_tss_t* PyThread_tss_alloc()

Return a value which is the same state as a value initialized with Py_tss_NEEDS_INIT, or NULL in the
case of dynamic allocation failure.

void PyThread_tss_free(Py_tss_t *key)
Free the given key allocated by PyThread_tss_alloc(), after first calling
PyThread_tss_delete() to ensure any associated thread locals have been unassigned. This is a
no-op if the key argument is NULL.

Note: A freed key becomes a dangling pointer, you should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread_tss_set()
and PyThread_tss_get() are undefined if the given Py_tss_t has not been initialized by
PyThread_tss_create().
int PyThread_tss_is_created(Py_tss_t *key)

Return a non-zero value if the given Py_tss_t has been initialized by PyThread_tss_create().
int PyThread_tss_create(Py_tss_t *key)

Return a zero value on successful initialization of a TSS key. The behavior is undefined if the value pointed to
by the key argument is not initialized by Py_tss_NEEDS_INIT. This function can be called repeatedly on
the same key – calling it on an already initialized key is a no-op and immediately returns success.

void PyThread_tss_delete(Py_tss_t *key)
Destroy a TSS key to forget the values associated with the key across all threads, and change the key’s initial-
ization state to uninitialized. A destroyed key is able to be initialized again by PyThread_tss_create().
This function can be called repeatedly on the same key – calling it on an already destroyed key is a no-op.

int PyThread_tss_set(Py_tss_t *key, void *value)
Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread.
Each thread has a distinct mapping of the key to a void* value.

void* PyThread_tss_get(Py_tss_t *key)
Return the void* value associated with a TSS key in the current thread. This returns NULL if no value is
associated with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

Deprecated since version 3.7: This API is superseded by Thread Specific Storage (TSS) API.

142 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.7.5

Note: This version of the API does not support platforms where the native TLS key is defined in a way that cannot
be safely cast to int. On such platforms, PyThread_create_key() will return immediately with a failure
status, and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.
int PyThread_create_key()
void PyThread_delete_key(int key)
int PyThread_set_key_value(int key, void *value)
void* PyThread_get_key_value(int key)
void PyThread_delete_key_value(int key)
void PyThread_ReInitTLS()

9.10. Thread Local Storage Support 143

The Python/C API, Release 3.7.5

144 Chapter 9. Initialization, Finalization, and Threads

CHAPTER

TEN

MEMORY MANAGEMENT

10.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The man-
agement of this private heap is ensured internally by the Python memory manager. The Python memory manager
has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.
At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.
It is important to understand that the management of the Python heap is performed by the interpreter itself and that
the user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap.
The allocation of heap space for Python objects and other internal buffers is performed on demand by the Python
memory manager through the Python/C API functions listed in this document.
To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library: malloc(), calloc(), realloc() and free(). This will result in mixed calls
between the C allocator and the Python memory manager with fatal consequences, because they implement different
algorithms and operate on different heaps. However, one may safely allocate and release memory blocks with the C
library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

...Do some I/O operation involving buf...
res = PyBytes_FromString(buf);
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the bytes object returned as a result.
In most situations, however, it is recommended to allocate memory from the Python heap specifically because the
latter is under control of the Python memory manager. For example, this is required when the interpreter is extended
with new object types written in C. Another reason for using the Python heap is the desire to inform the Python
memory manager about the memory needs of the extension module. Even when the requested memory is used
exclusively for internal, highly-specific purposes, delegating all memory requests to the Python memory manager
causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under certain
circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collection,

145

The Python/C API, Release 3.7.5

memory compaction or other preventive procedures. Note that by using the C library allocator as shown in the
previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.
See also:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.
The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator
every time a new pymalloc object arena is created, and on shutdown.

10.2 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not
need to be held.
The default raw memory allocator uses the following functions: malloc(), calloc(), realloc() and
free(); call malloc(1) (or calloc(1, 1)) when requesting zero bytes.
New in version 3.4.
void* PyMem_RawMalloc(size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc(1) had
been called instead. The memory will not have been initialized in any way.

void* PyMem_RawCalloc(size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc(1, 1) had been called instead.
New in version 3.5.

void* PyMem_RawRealloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes.
If p is NULL, the call is equivalent to PyMem_RawMalloc(n); else if n is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyMem_RawMalloc(),
PyMem_RawRealloc() or PyMem_RawCalloc().
If the request fails, PyMem_RawRealloc() returns NULL and p remains a valid pointer to the previous
memory area.

void PyMem_RawFree(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc(), PyMem_RawRealloc() or PyMem_RawCalloc(). Otherwise, or if
PyMem_RawFree(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

10.3 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.
The default memory allocator uses the pymalloc memory allocator.

146 Chapter 10. Memory Management

The Python/C API, Release 3.7.5

Warning: The GIL must be held when using these functions.

Changed in version 3.6: The default allocator is now pymalloc instead of system malloc().
void* PyMem_Malloc(size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_Calloc(size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc(1, 1) had been called instead.
New in version 3.5.

void* PyMem_Realloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes.
If p is NULL, the call is equivalent to PyMem_Malloc(n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyMem_Malloc(),
PyMem_Realloc() or PyMem_Calloc().
If the request fails, PyMem_Realloc() returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_Malloc(), PyMem_Realloc() or PyMem_Calloc(). Otherwise, or if PyMem_Free(p)
has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.
TYPE* PyMem_New(TYPE, size_t n)

Same as PyMem_Malloc(), but allocates (n * sizeof(TYPE)) bytes of memory. Returns a pointer
cast to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize(void *p, TYPE, size_t n)
Same as PyMem_Realloc(), but the memory block is resized to (n * sizeof(TYPE)) bytes. Returns
a pointer cast to TYPE*. On return, pwill be a pointer to the newmemory area, orNULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del(void *p)
Same as PyMem_Free().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

• PyMem_MALLOC(size)

• PyMem_NEW(type, size)

• PyMem_REALLOC(ptr, size)

• PyMem_RESIZE(ptr, type, size)

• PyMem_FREE(ptr)

10.3. Memory Interface 147

The Python/C API, Release 3.7.5

• PyMem_DEL(ptr)

10.4 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.
The default object allocator uses the pymalloc memory allocator.

Warning: The GIL must be held when using these functions.

void* PyObject_Malloc(size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc(1) had
been called instead. The memory will not have been initialized in any way.

void* PyObject_Calloc(size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc(1, 1) had been called instead.
New in version 3.5.

void* PyObject_Realloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes.
If p is NULL, the call is equivalent to PyObject_Malloc(n); else if n is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc() or PyObject_Calloc().
If the request fails, PyObject_Realloc() returns NULL and p remains a valid pointer to the previous
memory area.

void PyObject_Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyObject_Malloc(), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

10.5 Default Memory Allocators

Default memory allocators:

Configuration Name PyMem_RawMallocPyMem_Malloc PyOb-
ject_Malloc

Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debug"malloc + debug pymalloc +

debug
pymalloc +
debug

Release build, without py-
malloc

"malloc" malloc malloc malloc

Debug build, without py-
malloc

"malloc_debug" malloc + debug malloc + de-
bug

malloc + de-
bug

148 Chapter 10. Memory Management

The Python/C API, Release 3.7.5

Legend:
• Name: value for PYTHONMALLOC environment variable
• malloc: system allocators from the standard C library, C functions: malloc(), calloc(), realloc()
and free()

• pymalloc: pymalloc memory allocator
• “+ debug”: with debug hooks installed by PyMem_SetupDebugHooks()

10.6 Customize Memory Allocators

New in version 3.4.
PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has four fields:

Field Meaning
void *ctx user context passed as first argument
void* malloc(void *ctx, size_t size) allocate a memory block
void* calloc(void *ctx, size_t nelem,
size_t elsize)

allocate a memory block initialized
with zeros

void* realloc(void *ctx, void *ptr, size_t
new_size)

allocate or resize a memory block

void free(void *ctx, void *ptr) free a memory block

Changed in version 3.5: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a
new calloc field was added.

PyMemAllocatorDomain
Enum used to identify an allocator domain. Domains:
PYMEM_DOMAIN_RAW

Functions:
• PyMem_RawMalloc()

• PyMem_RawRealloc()

• PyMem_RawCalloc()

• PyMem_RawFree()

PYMEM_DOMAIN_MEM
Functions:
• PyMem_Malloc(),
• PyMem_Realloc()

• PyMem_Calloc()

• PyMem_Free()

PYMEM_DOMAIN_OBJ
Functions:
• PyObject_Malloc()

• PyObject_Realloc()

• PyObject_Calloc()

• PyObject_Free()

10.6. Customize Memory Allocators 149

The Python/C API, Release 3.7.5

void PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.
The new allocator must return a distinct non-NULL pointer when requesting zero bytes.
For the PYMEM_DOMAIN_RAW domain, the allocator must be thread-safe: the GIL is not held when the
allocator is called.
If the new allocator is not a hook (does not call the previous allocator), the PyMem_SetupDebugHooks()
function must be called to reinstall the debug hooks on top on the new allocator.

void PyMem_SetupDebugHooks(void)
Setup hooks to detect bugs in the Python memory allocator functions.
Newly allocated memory is filled with the byte 0xCD (CLEANBYTE), freed memory is filled with the byte
0xDD (DEADBYTE). Memory blocks are surrounded by “forbidden bytes” (FORBIDDENBYTE: byte 0xFD).
Runtime checks:

• Detect API violations, ex: PyObject_Free() called on a buffer allocated by PyMem_Malloc()
• Detect write before the start of the buffer (buffer underflow)
• Detect write after the end of the buffer (buffer overflow)
• Check that the GIL is held when allocator functions of PYMEM_DOMAIN_OBJ (ex:
PyObject_Malloc()) and PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are
called

On error, the debug hooks use the tracemalloc module to get the traceback where a memory block was
allocated. The traceback is only displayed if tracemalloc is tracing Python memory allocations and the
memory block was traced.
These hooks are installed by default if Python is compiled in debug mode. The PYTHONMALLOC environment
variable can be used to install debug hooks on a Python compiled in release mode.
Changed in version 3.6: This function now also works on Python compiled in release mode. On error, the debug
hooks now use tracemalloc to get the traceback where a memory block was allocated. The debug hooks
now also check if the GIL is held when functions of PYMEM_DOMAIN_OBJ and PYMEM_DOMAIN_MEM
domains are called.
Changed in version 3.7.3: Byte patterns 0xCB (CLEANBYTE), 0xDB (DEADBYTE) and 0xFB
(FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and 0xFD to use the same values than Windows
CRT debug malloc() and free().

10.7 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called “arenas” with a fixed size of 256 KiB. It falls back to PyMem_RawMalloc() and
PyMem_RawRealloc() for allocations larger than 512 bytes.
pymalloc is the default allocator of the PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) and
PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc()) domains.
The arena allocator uses the following functions:

• VirtualAlloc() and VirtualFree() on Windows,
• mmap() and munmap() if available,
• malloc() and free() otherwise.

150 Chapter 10. Memory Management

The Python/C API, Release 3.7.5

10.7.1 Customize pymalloc Arena Allocator

New in version 3.4.
PyObjectArenaAllocator

Structure used to describe an arena allocator. The structure has three fields:

Field Meaning
void *ctx user context passed as first argument
void* alloc(void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, size_t size, void
*ptr)

free an arena

PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
Get the arena allocator.

PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
Set the arena allocator.

10.8 tracemalloc C API

New in version 3.7.

10.9 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by
using the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as
fatal because it mixes two different allocators operating on different heaps.

10.8. tracemalloc C API 151

The Python/C API, Release 3.7.5

char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released with PyObject_New(), PyObject_NewVar() and PyObject_Del().
These will be explained in the next chapter on defining and implementing new object types in C.

152 Chapter 10. Memory Management

CHAPTER

ELEVEN

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

11.1 Allocating Objects on the Heap

PyObject* _PyObject_New(PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar(PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init(PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. Initialize a newly-allocated object op with its type and initial reference.
Returns the initialized object. If type indicates that the object participates in the cyclic garbage detector, it is
added to the detector’s set of observed objects. Other fields of the object are not affected.

PyVarObject* PyObject_InitVar(PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. This does everything PyObject_Init() does, and also initializes the
length information for a variable-size object.

TYPE* PyObject_New(TYPE, PyTypeObject *type)
Return value: New reference. Allocate a new Python object using the C structure type TYPE and the Python
type object type. Fields not defined by the Python object header are not initialized; the object’s reference count
will be one. The size of the memory allocation is determined from the tp_basicsize field of the type
object.

TYPE* PyObject_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. Allocate a new Python object using the C structure typeTYPE and the Python type
object type. Fields not defined by the Python object header are not initialized. The allocated memory allows
for the TYPE structure plus size fields of the size given by the tp_itemsize field of type. This is useful for
implementing objects like tuples, which are able to determine their size at construction time. Embedding the
array of fields into the same allocation decreases the number of allocations, improving thememorymanagement
efficiency.

void PyObject_Del(void *op)
Releases memory allocated to an object using PyObject_New() or PyObject_NewVar(). This is
normally called from the tp_dealloc handler specified in the object’s type. The fields of the object should
not be accessed after this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

See also:
PyModule_Create() To allocate and create extension modules.

153

The Python/C API, Release 3.7.5

11.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.
All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions
of some macros also used, whether directly or indirectly, in the definition of all other Python objects.
PyObject

All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference count and
a pointer to the corresponding type object. Nothing is actually declared to be a PyObject, but every pointer
to a Python object can be cast to a PyObject*. Access to the members must be done by using the macros
Py_REFCNT and Py_TYPE.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. Access to the members must be done
by using the macros Py_REFCNT, Py_TYPE, and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

PyObject ob_base;

See documentation of PyObject above.
PyObject_VAR_HEAD

This is a macro used when declaring new types which represent objects with a length that varies from instance
to instance. The PyObject_VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVarObject above.
Py_TYPE(o)

This macro is used to access the ob_type member of a Python object. It expands to:

(((PyObject*)(o))->ob_type)

Py_REFCNT(o)
This macro is used to access the ob_refcnt member of a Python object. It expands to:

(((PyObject*)(o))->ob_refcnt)

Py_SIZE(o)
This macro is used to access the ob_size member of a Python object. It expands to:

(((PyVarObject*)(o))->ob_size)

PyObject_HEAD_INIT(type)
This is a macro which expands to initialization values for a new PyObject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT(type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

154 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return value is NULL, an exception shall have
been set. If not NULL, the return value is interpreted as the return value of the function as exposed in Python.
The function must return a new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C with signature METH_VARARGS |
METH_KEYWORDS.

_PyCFunctionFast
Type of the functions used to implement Python callables in C with signature METH_FASTCALL.

_PyCFunctionFastWithKeywords
Type of the functions used to implement Python callables in C with signature METH_FASTCALL |
METH_KEYWORDS.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning
ml_name const char * name of the method
ml_meth PyCFunction pointer to the C implementation
ml_flags int flag bits indicating how the call should be constructed
ml_doc const char * points to the contents of the docstring

The ml_meth is a C function pointer. The functions may be of different types, but they always return PyObject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyObject*, it is common that the method implementation uses the
specific C type of the self object.
The ml_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.
There are four basic calling conventions for positional arguments and two of them can be combined with
METH_KEYWORDS to support also keyword arguments. So there are a total of 6 calling conventions:
METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunction. The function expects
two PyObject* values. The first one is the self object for methods; for module functions, it is the module
object. The second parameter (often called args) is a tuple object representing all arguments. This parameter
is typically processed using PyArg_ParseTuple() or PyArg_UnpackTuple().

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects
three parameters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or
possibly NULL if there are no keyword arguments. The parameters are typically processed using
PyArg_ParseTupleAndKeywords().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type
_PyCFunctionFast. The first parameter is self, the second parameter is a C array of PyObject*
values indicating the arguments and the third parameter is the number of arguments (the length of the array).
This is not part of the limited API.
New in version 3.7.

METH_FASTCALL | METH_KEYWORDS
Extension of METH_FASTCALL supporting also keyword arguments, with methods of type

11.2. Common Object Structures 155

The Python/C API, Release 3.7.5

_PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the
vectorcall protocol: there is an additional fourth PyObject* parameter which is a tuple representing the
names of the keyword arguments or possibly NULL if there are no keywords. The values of the keyword
arguments are stored in the args array, after the positional arguments.
This is not part of the limited API.
New in version 3.7.

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH_O flag, instead of invoking
PyArg_ParseTuple() with a "O" argument. They have the type PyCFunction, with the self pa-
rameter, and a PyObject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to create class methods, similar to what is created when using the classmethod() built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to
create static methods, similar to what is created when using the staticmethod() built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.
METH_COEXIST

The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named __contains__() and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field C Type Meaning
name const char * name of the member
type int the type of the member in the C struct
offset Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable
doc const char * points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in
Python, it will be converted to the equivalent Python type.

156 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

Macro name C type
T_SHORT short
T_INT int
T_LONG long
T_FLOAT float
T_DOUBLE double
T_STRING const char *
T_OBJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char
T_BYTE char
T_UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.
flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. T_STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EXmem-
bers can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of thePyTypeObject.tp_getset
slot.

Field C Type Meaning
name const char * attribute name
get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc const char * optional docstring
clo-
sure

void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject* parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject *(*getter)(PyObject *, void *);

It should return a new reference on success or NULL with a set exception on failure.
set functions take two PyObject* parameters (the instance and the value to be set) and a function pointer
(the associated closure):

typedef int (*setter)(PyObject *, PyObject *, void *);

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or -1 with
a set exception on failure.

11.2. Common Object Structures 157

The Python/C API, Release 3.7.5

11.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
the PyTypeObject structure. Type objects can be handled using any of the PyObject_*() or PyType_*()
functions, but do not offer much that’s interesting to most Python applications. These objects are fundamental to how
objects behave, so they are very important to the interpreter itself and to any extension module that implements new
types.
Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.
Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc,
objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc
The structure definition for PyTypeObject can be found in Include/object.h. For convenience of refer-
ence, this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)

or tp_reserved (Python 3) */
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

(continues on next page)

158 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

(continued from previous page)
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new(), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.
PyObject* PyObject._ob_next
PyObject* PyObject._ob_prev

These fields are only present when the macro Py_TRACE_REFS is defined. Their initialization to NULL
is taken care of by the PyObject_HEAD_INIT macro. For statically allocated objects, these fields always
remainNULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-linked
list of all live objects on the heap. This could be used for various debugging purposes; currently the only use is
to print the objects that are still alive at the end of a run when the environment variable PYTHONDUMPREFS
is set.
These fields are not inherited by subtypes.

Py_ssize_t PyObject.ob_refcnt
This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that
for statically allocated type objects, the type’s instances (objects whose ob_type points back to the type) do
not count as references. But for dynamically allocated type objects, the instances do count as references.
This field is not inherited by subtypes.

PyTypeObject* PyObject.ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the

11.3. Type Objects 159

The Python/C API, Release 3.7.5

PyObject_HEAD_INITmacro, and its value should normally be &PyType_Type. However, for dynam-
ically loadable extension modules that must be usable on Windows (at least), the compiler complains that this
is not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro
and to initialize this field explicitly at the start of the module’s initialization function, before doing anything
else. This is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready() checks if ob_type
is NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready() will not change
this field if it is non-zero.
This field is inherited by subtypes.

Py_ssize_t PyVarObject.ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects,
this field has a special internal meaning.
This field is not inherited by subtypes.

const char* PyTypeObject.tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage Q in package
P should have the tp_name initializer "P.Q.M.T".
For dynamically allocated type objects, this should just be the type name, and the module name explicitly
stored in the type dict as the value for key '__module__'.
For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as the __module__ attribute, and everything after the last dot is made accessible as the
__name__ attribute.
If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created
with pydoc.
This field is not inherited by subtypes.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all
instances have the same size, given in tp_basicsize.
For a type with variable-length instances, the instances must have an ob_size field, and the instance size
is tp_basicsize plus N times tp_itemsize, where N is the “length” of the object. The value of
N is typically stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative
ob_size to indicate a negative number, andN isabs(ob_size) there. Also, the presence of anob_size
field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaningful ob_size field).
The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance
layout. The basic size does not include the GC header size.
These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is gen-
erally not safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the
implementation of the base type).

160 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

A note about alignment: if the variable items require a particular alignment, this should be taken care of by the
value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof(double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirement for double).

destructor PyTypeObject.tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and Ellipsis).
The destructor function is called by the Py_DECREF() and Py_XDECREF() macros when the new
reference count is zero. At this point, the instance is still in existence, but there are no references
to it. The destructor function should free all references which the instance owns, free all memory
buffers owned by the instance (using the freeing function corresponding to the allocation function used
to allocate the buffer), and finally (as its last action) call the type’s tp_free function. If the type
is not subtypable (doesn’t have the Py_TPFLAGS_BASETYPE flag bit set), it is permissible to call
the object deallocator directly instead of via tp_free. The object deallocator should be the one
used to allocate the instance; this is normally PyObject_Del() if the instance was allocated using
PyObject_New() or PyObject_VarNew(), or PyObject_GC_Del() if the instance was allocated
using PyObject_GC_New() or PyObject_GC_NewVar().
This field is inherited by subtypes.

printfunc PyTypeObject.tp_print
Reserved slot, formerly used for print formatting in Python 2.x.

getattrfunc PyTypeObject.tp_getattr
An optional pointer to the get-attribute-string function.
This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_getattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is

PyObject * tp_getattr(PyObject *o, char *attr_name);

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrfunc PyTypeObject.tp_setattr
An optional pointer to the function for setting and deleting attributes.
This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_setattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is

PyObject * tp_setattr(PyObject *o, char *attr_name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro: a subtype inherits both tp_setattr and tp_setattro from its base type when the
subtype’s tp_setattr and tp_setattro are both NULL.

PyAsyncMethods* tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and
asynchronous iterator protocols at the C-level. See Async Object Structures for details.
New in version 3.5: Formerly known as tp_compare and tp_reserved.

reprfunc PyTypeObject.tp_repr
An optional pointer to a function that implements the built-in function repr().
The signature is the same as for PyObject_Repr(); it must return a string or a Unicode object. Ideally,
this function should return a string that, when passed to eval(), given a suitable environment, returns an
object with the same value. If this is not feasible, it should return a string starting with '<' and ending with
'>' from which both the type and the value of the object can be deduced.

11.3. Type Objects 161

The Python/C API, Release 3.7.5

When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by
the type name, and %p by the object’s memory address.
This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.
The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject.tp_hash
An optional pointer to a function that implements the built-in function hash().
The signature is the same as for PyObject_Hash(); it must return a value of the type Py_hash_t. The
value -1 should not be returned as a normal return value; when an error occurs during the computation of the
hash value, the function should set an exception and return -1.
This field can be set explicitly to PyObject_HashNotImplemented() to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python
level, causing isinstance(o, collections.Hashable) to correctly return False. Note that the
converse is also true - setting __hash__ = None on a class at the Python level will result in the tp_hash
slot being set to PyObject_HashNotImplemented().
When this field is not set, an attempt to take the hash of the object raises TypeError.
This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompare andtp_hash, when the subtype’stp_richcompare andtp_hash are bothNULL.

ternaryfunc PyTypeObject.tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call().
This field is inherited by subtypes.

reprfunc PyTypeObject.tp_str
An optional pointer to a function that implements the built-in operation str(). (Note that str is a type now,
and str() calls the constructor for that type. This constructor calls PyObject_Str() to do the actual
work, and PyObject_Str() will call this handler.)
The signature is the same as for PyObject_Str(); it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used,
among other things, by the print() function.
When this field is not set, PyObject_Repr() is called to return a string representation.
This field is inherited by subtypes.

getattrofunc PyTypeObject.tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as for PyObject_GetAttr(). It is usually convenient to set this field to
PyObject_GenericGetAttr(), which implements the normal way of looking for object attributes.
This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

162 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

setattrofunc PyTypeObject.tp_setattro
An optional pointer to the function for setting and deleting attributes.
The signature is the same as forPyObject_SetAttr(), but setting v toNULL to delete an attributemust be
supported. It is usually convenient to set this field to PyObject_GenericSetAttr(), which implements
the normal way of setting object attributes.
This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

PyBufferProcs* PyTypeObject.tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer in-
terface. These fields are documented in Buffer Object Structures.
The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject.tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically
not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must
be considered to have a zero or NULL value instead.
Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the
tp_traverse and tp_clear fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype
and the tp_traverse and tp_clear fields in the subtype exist and have NULL values.
The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_flags field. The macro PyType_HasFeature() takes a type and a flags value, tp and
f, and checks whether tp->tp_flags & f is non-zero.
Py_TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ed when a new instance
is created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes;
only the type referenced by the instance’s ob_type gets INCREF’ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a “final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by PyType_Ready().

Py_TPFLAGS_READYING
This bit is set while PyType_Ready() is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created using
PyObject_GC_New() and destroyed using PyObject_GC_Del(). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse
and tp_clear are present in the type object.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in the
type object and its extension structures. Currently, it includes the following bits:
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION, Py_TPFLAGS_HAVE_VERSION_TAG.

Py_TPFLAGS_LONG_SUBCLASS

Py_TPFLAGS_LIST_SUBCLASS

Py_TPFLAGS_TUPLE_SUBCLASS

11.3. Type Objects 163

The Python/C API, Release 3.7.5

Py_TPFLAGS_BYTES_SUBCLASS

Py_TPFLAGS_UNICODE_SUBCLASS

Py_TPFLAGS_DICT_SUBCLASS

Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS
These flags are used by functions such as PyLong_Check() to quickly determine if a type
is a subclass of a built-in type; such specific checks are faster than a generic check, like
PyObject_IsInstance(). Custom types that inherit from built-ins should have their tp_flags
set appropriately, or the code that interacts with such types will behave differently depending on what
kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE
This bit is set when the tp_finalize slot is present in the type structure.
New in version 3.4.

const char* PyTypeObject.tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the __doc__ attribute on the type and instances of the type.
This field is not inherited by subtypes.

traverseproc PyTypeObject.tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. More information about Python’s garbage collection scheme can
be found in section Supporting Cyclic Garbage Collection.
The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implemen-
tation of a tp_traverse function simply calls Py_VISIT() on each of the instance’s members that are
Python objects. For example, this is function local_traverse() from the _thread extension module:

static int
local_traverse(localobject *self, visitproc visit, void *arg)
{

Py_VISIT(self->args);
Py_VISIT(self->kw);
Py_VISIT(self->dict);
return 0;

}

Note that Py_VISIT() is called only on those members that can participate in reference cycles. Although
there is also a self->key member, it can only be NULL or a Python string and therefore cannot be part of
a reference cycle.
On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so the gc module’s get_referents() function will include it.
Note thatPy_VISIT() requires the visit and arg parameters tolocal_traverse() to have these specific
names; don’t name them just anything.
This field is inherited by subtypes together with tp_clear and the Py_TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, andtp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject.tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set.
The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not imple-
ment a tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely

164 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

of tuples. Therefore the tp_clear functions of other types must be sufficient to break any cycle containing
a tuple. This isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.
Implementations of tp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members to NULL, as in the following example:

static int
local_clear(localobject *self)
{

Py_CLEAR(self->key);
Py_CLEAR(self->args);
Py_CLEAR(self->kw);
Py_CLEAR(self->dict);
return 0;

}

The Py_CLEAR() macro should be used, because clearing references is delicate: the reference to the con-
tained object must not be decremented until after the pointer to the contained object is set to NULL. This is
because decrementing the reference count may cause the contained object to become trash, triggering a chain
of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks,
associated with the contained object). If it’s possible for such code to reference self again, it’s important that
the pointer to the contained object be NULL at that time, so that self knows the contained object can no longer
be used. The Py_CLEAR() macro performs the operations in a safe order.
Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.
More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.
This field is inherited by subtypes together with tp_traverse and the Py_TPFLAGS_HAVE_GC flag bit:
the flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the
subtype.

richcmpfunc PyTypeObject.tp_richcompare
An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare(PyObject *a, PyObject *b, int op). The first parameter is guar-
anteed to be an instance of the type that is defined by PyTypeObject.
The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_NotImplemented, if another error occurred it must return NULL and set
an exception condition.

Note: If you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and
!=, but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompare and
tp_hash when the subtype’s tp_richcompare and tp_hash are both NULL.
The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare():

Constant Comparison
Py_LT <
Py_LE <=
Py_EQ ==
Py_NE !=
Py_GT >
Py_GE >=

11.3. Type Objects 165

The Python/C API, Release 3.7.5

The following macro is defined to ease writing rich comparison functions:
PyObject *Py_RETURN_RICHCOMPARE(VAL_A, VAL_B, int op)

Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A
and VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats).
The third argument specifies the requested operation, as for PyObject_RichCompare().
The return value’s reference count is properly incremented.
On error, sets an exception and returns NULL from the function.
New in version 3.7.

Py_ssize_t PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject_ClearWeakRefs() and the PyWeakref_*() functions. The instance structure needs
to include a field of type PyObject* which is initialized to NULL.
Do not confuse this field with tp_weaklist; that is the list head for weak references to the type object itself.
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
via tp_weaklistoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types are
weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the
instance layout and setting the tp_weaklistoffset of that slot’s offset.
When a type’s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak
reference list head for instances of the type, and the slot’s offset is stored in the type’stp_weaklistoffset.
When a type’s __slots__ declaration does not contain a slot named __weakref__, the type inherits its
tp_weaklistoffset from its base type.

getiterfunc PyTypeObject.tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).
This function has the same signature as PyObject_GetIter().
This field is inherited by subtypes.

iternextfunc PyTypeObject.tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it
must return NULL; a StopIteration exception may or may not be set. When another error occurs, it must
return NULL too. Its presence signals that the instances of this type are iterators.
Iterator types should also define the tp_iter function, and that function should return the iterator instance
itself (not a new iterator instance).
This function has the same signature as PyIter_Next().
This field is inherited by subtypes.

struct PyMethodDef* PyTypeObject.tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular meth-
ods of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
method descriptor.
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* PyTypeObject.tp_members
An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

166 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
member descriptor.
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject.tp_getset
An optional pointer to a static NULL-terminated array of PyGetSetDef structures, declaring computed
attributes of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject.tp_base
An optional pointer to a base type fromwhich type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.
This field is not inherited by subtypes (obviously), but it defaults to &PyBaseObject_Type (which to
Python programmers is known as the type object).

PyObject* PyTypeObject.tp_dict
The type’s dictionary is stored here by PyType_Ready().
This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_Ready() has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like __add__()).
This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

Warning: It is not safe to use PyDict_SetItem() on or otherwise modify tp_dict with the
dictionary C-API.

descrgetfunc PyTypeObject.tp_descr_get
An optional pointer to a “descriptor get” function.
The function signature is

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.
descrsetfunc PyTypeObject.tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.
The function signature is

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.
Py_ssize_t PyTypeObject.tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr().
Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.
If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If
the value is less than zero, it specifies the offset from the end of the instance structure. A negative offset is
more expensive to use, and should only be used when the instance structure contains a variable-length part.
This is used for example to add an instance variable dictionary to subtypes of str or tuple. Note that the

11.3. Type Objects 167

The Python/C API, Release 3.7.5

tp_basicsize field should account for the dictionary added to the end in that case, even though the dictio-
nary is not included in the basic object layout. On a system with a pointer size of 4 bytes, tp_dictoffset
should be set to -4 to indicate that the dictionary is at the very end of the structure.
The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):

round up to sizeof(void*)

where tp_basicsize, tp_itemsize and tp_dictoffset are taken from the type object, and
ob_size is taken from the instance. The absolute value is taken because ints use the sign of ob_size
to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is
always found via tp_dictoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types has an
instance variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set
to that slot’s offset.
When a type defined by a class statement has a __slots__ declaration, the type inherits its
tp_dictoffset from its base type.
(Adding a slot named __dict__ to the __slots__ declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just like __weakref__ though.)

initproc PyTypeObject.tp_init
An optional pointer to an instance initialization function.
This function corresponds to the __init__() method of classes. Like __init__(), it is possible to
create an instance without calling __init__(), and it is possible to reinitialize an instance by calling its
__init__() method again.
The function signature is

int tp_init(PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the call to __init__().
The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after
the type’s tp_new function has returned an instance of the type. If the tp_new function returns an instance
of some other type that is not a subtype of the original type, no tp_init function is called; if tp_new
returns an instance of a subtype of the original type, the subtype’s tp_init is called.
This field is inherited by subtypes.

allocfunc PyTypeObject.tp_alloc
An optional pointer to an instance allocation function.
The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-
zero, the object’s ob_size field should be initialized to nitems and the length of the allocated memory block
should be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of sizeof(void*);
otherwise, nitems is not used and the length of the block should be tp_basicsize.
Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done by tp_new.

168 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to PyType_GenericAlloc(), to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject.tp_new
An optional pointer to an instance creation function.
If this function is NULL for a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.
The function signature is

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).
The tp_new function should call subtype->tp_alloc(subtype, nitems) to allocate space for
the object, and then do only as much further initialization as is absolutely necessary. Initialization that can
safely be ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for
immutable types, all initialization should take place in tp_new, while for mutable types, most initialization
should be deferred to tp_init.
This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

destructor PyTypeObject.tp_free
An optional pointer to an instance deallocation function. Its signature is freefunc:

void tp_free(void *)

An initializer that is compatible with this signature is PyObject_Free().
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement);
in the latter, this field is set to a deallocator suitable to match PyType_GenericAlloc() and the value of
the Py_TPFLAGS_HAVE_GC flag bit.

inquiry PyTypeObject.tp_is_gc
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_flags field, and check the Py_TPFLAGS_HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is

int tp_is_gc(PyObject *self)

(The only example of this are types themselves. The metatype, PyType_Type, defines this function to
distinguish between statically and dynamically allocated types.)
This field is inherited by subtypes.

PyObject* PyTypeObject.tp_bases
Tuple of base types.
This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

PyObject* PyTypeObject.tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in
Method Resolution Order.
This field is not inherited; it is calculated fresh by PyType_Ready().

11.3. Type Objects 169

The Python/C API, Release 3.7.5

destructor PyTypeObject.tp_finalize
An optional pointer to an instance finalization function. Its signature is destructor:

void tp_finalize(PyObject *)

If tp_finalize is set, the interpreter calls it once when finalizing an instance. It is called either from the
garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated.
Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the
object in a sane state.
tp_finalize should not mutate the current exception status; therefore, a recommended way to write a
non-trivial finalizer is:

static void
local_finalize(PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);

/* ... */

/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);

}

For this field to be taken into account (even through inheritance), you must also set the
Py_TPFLAGS_HAVE_FINALIZE flags bit.
This field is inherited by subtypes.
New in version 3.4.
See also:
“Safe object finalization” (PEP 442)

PyObject* PyTypeObject.tp_cache
Unused. Not inherited. Internal use only.

PyObject* PyTypeObject.tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject.tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal use
only. They are documented here for completeness. None of these fields are inherited by subtypes.
Py_ssize_t PyTypeObject.tp_allocs

Number of allocations.
Py_ssize_t PyTypeObject.tp_frees

Number of frees.
Py_ssize_t PyTypeObject.tp_maxalloc

Maximum simultaneously allocated objects.
PyTypeObject* PyTypeObject.tp_next

Pointer to the next type object with a non-zero tp_allocs field.
Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage
collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called
will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from

170 Chapter 11. Object Implementation Support

https://www.python.org/dev/peps/pep-0442

The Python/C API, Release 3.7.5

some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which called
tp_dealloc will not violate any assumptions of the library.

11.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Each
function is used by the function of similar name documented in the Number Protocol section.
Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;

binaryfunc nb_matrix_multiply;
binaryfunc nb_inplace_matrix_multiply;

} PyNumberMethods;

Note: Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined
for the given operands, binary and ternary functions must return Py_NotImplemented, if another error
occurred they must return NULL and set an exception.

11.4. Number Object Structures 171

The Python/C API, Release 3.7.5

Note: The nb_reserved field should always be NULL. It was previously called nb_long, and was re-
named in Python 3.0.1.

11.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has
three members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping_Size() and PyObject_Size(), and has the same signature. This
slot may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods.mp_subscript
This function is used by PyObject_GetItem() and PySequence_GetSlice(), and has the same
signature as PyObject_GetItem(). This slot must be filled for the PyMapping_Check() function to
return 1, it can be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript
This function is used by PyObject_SetItem(), PyObject_DelItem(),
PyObject_SetSlice() and PyObject_DelSlice(). It has the same signature as
PyObject_SetItem(), but v can also be set to NULL to delete an item. If this slot is NULL, the
object does not support item assignment and deletion.

11.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size() and PyObject_Size(), and has the same signature. It
is also used for handling negative indices via the sq_item and the sq_ass_item slots.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat() and has the same signature. It is also used by the +
operator, after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat() and has the same signature. It is also used by the *
operator, after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem(), after trying the subscription via the mp_subscript slot. This slot must be
filled for the PySequence_Check() function to return 1, it can be NULL otherwise.
Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed
as is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem(), after trying the item assignment and deletion via
the mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment
and deletion.

172 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains() and has the same signature. This slot may be
left to NULL, in this case PySequence_Contains() simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat() and has the same signature. It
should modify its first operand, and return it. This slot may be left to NULL, in this case
PySequence_InPlaceConcat() will fall back to PySequence_Concat(). It is also used by the
augmented assignment +=, after trying numeric in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat() and has the same signature. It
should modify its first operand, and return it. This slot may be left to NULL, in this case
PySequence_InPlaceRepeat() will fall back to PySequence_Repeat(). It is also used by the
augmented assignment *=, after trying numeric in-place multiplication via the nb_inplace_multiply
slot.

11.7 Buffer Object Structures

PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an
exporter object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:
(1) Check if the request can be met. If not, raise PyExc_BufferError, set view->obj to NULL and

return -1.
(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->obj to exporter and increment view->obj.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

• Re-export: Eachmember of the tree acts as the exporting object and sets view->obj to a new reference
to itself.

• Redirect: The buffer request is redirected to the root object of the tree. Here, view->obj will be a
new reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to
specific requests are in section Buffer request types.
All memory pointed to in the Py_buffer structure belongs to the exporter and must remain valid until there
are no consumers left. format, shape, strides, suboffsets and internal are read-only for the
consumer.
PyBuffer_FillInfo() provides an easy way of exposing a simple bytes buffer while dealing correctly
with all request types.
PyObject_GetBuffer() is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs.bf_releasebuffer
The signature of this function is:

11.7. Buffer Object Structures 173

The Python/C API, Release 3.7.5

void (PyObject *exporter, Py_buffer *view);

Handle a request to release the resources of the buffer. If no resources need to be released,
PyBufferProcs.bf_releasebuffer may be NULL. Otherwise, a standard implementation of this
function will take these optional steps:
(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.
The exporterMUST use theinternal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.
This function MUST NOT decrement view->obj, since that is done automatically in
PyBuffer_Release() (this scheme is useful for breaking reference cycles).
PyBuffer_Release() is the interface for the consumer that wraps this function.

11.8 Async Object Structures

New in version 3.5.
PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator ob-
jects.
Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;

} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

PyObject *am_await(PyObject *self)

The returned object must be an iterator, i.e. PyIter_Check() must return 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter
The signature of this function is:

PyObject *am_aiter(PyObject *self)

Must return an awaitable object. See __anext__() for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext
The signature of this function is:

PyObject *am_anext(PyObject *self)

Must return an awaitable object. See __anext__() for details. This slot may be set to NULL.

174 Chapter 11. Object Implementation Support

The Python/C API, Release 3.7.5

11.9 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.
To create a container type, the tp_flags field of the type object must include the Py_TPFLAGS_HAVE_GC
and provide an implementation of the tp_traverse handler. If instances of the type are mutable, a tp_clear
implementation must also be provided.
Py_TPFLAGS_HAVE_GC

Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyObject_GC_New() or

PyObject_GC_NewVar().
2. Once all the fields which may contain references to other containers are initialized, it must call

PyObject_GC_Track().
TYPE* PyObject_GC_New(TYPE, PyTypeObject *type)

Analogous to PyObject_New() but for container objects with the Py_TPFLAGS_HAVE_GC flag set.
TYPE* PyObject_GC_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)

Analogous to PyObject_NewVar() but for container objects with the Py_TPFLAGS_HAVE_GC flag set.
TYPE* PyObject_GC_Resize(TYPE, PyVarObject *op, Py_ssize_t newsize)

Resize an object allocated by PyObject_NewVar(). Returns the resized object or NULL on failure. op
must not be tracked by the collector yet.

void PyObject_GC_Track(PyObject *op)
Adds the object op to the set of container objects tracked by the collector. The collector can run at unexpected
times so objects must be valid while being tracked. This should be called once all the fields followed by the
tp_traverse handler become valid, usually near the end of the constructor.

void _PyObject_GC_TRACK(PyObject *op)
A macro version of PyObject_GC_Track(). It should not be used for extension modules.
Deprecated since version 3.6: This macro is removed from Python 3.8.

Similarly, the deallocator for the object must conform to a similar pair of rules:
1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack() must be called.
2. The object’s memory must be deallocated using PyObject_GC_Del().

void PyObject_GC_Del(void *op)
Releases memory allocated to an object using PyObject_GC_New() or PyObject_GC_NewVar().

void PyObject_GC_UnTrack(void *op)
Remove the object op from the set of container objects tracked by the collector. Note that
PyObject_GC_Track() can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

void _PyObject_GC_UNTRACK(PyObject *op)
A macro version of PyObject_GC_UnTrack(). It should not be used for extension modules.
Deprecated since version 3.6: This macro is removed from Python 3.8.

The tp_traverse handler accepts a function parameter of this type:
int (*visitproc)(PyObject *object, void *arg)

Type of the visitor function passed to the tp_traverse handler. The function should be called with an

11.9. Supporting Cyclic Garbage Collection 175

The Python/C API, Release 3.7.5

object to traverse as object and the third parameter to the tp_traverse handler as arg. The Python core
uses several visitor functions to implement cyclic garbage detection; it’s not expected that users will need to
write their own visitor functions.

The tp_traverse handler must have the following type:
int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.
The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

To simplify writing tp_traverse handlers, a Py_VISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:
void Py_VISIT(PyObject *o)

If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return
it. Using this macro, tp_traverse handlers look like:

static int
my_traverse(Noddy *self, visitproc visit, void *arg)
{

Py_VISIT(self->foo);
Py_VISIT(self->bar);
return 0;

}

The tp_clear handler must be of the inquiry type, or NULL if the object is immutable.
int (*inquiry)(PyObject *self)

Drop references that may have created reference cycles. Immutable objects do not have to define this method
since they can never directly create reference cycles. Note that the object must still be valid after calling this
method (don’t just call Py_DECREF() on a reference). The collector will call this method if it detects that
this object is involved in a reference cycle.

176 Chapter 11. Object Implementation Support

CHAPTER

TWELVE

API AND ABI VERSIONING

PY_VERSION_HEX is the Python version number encoded in a single integer.
For example if the PY_VERSION_HEX is set to 0x030401a2, the underlying version information can be found
by treating it as a 32 bit number in the following manner:

Bytes Bits (big en-
dian order)

Meaning

1 1-8 PY_MAJOR_VERSION (the 3 in 3.4.1a2)
2 9-16 PY_MINOR_VERSION (the 4 in 3.4.1a2)
3 17-24 PY_MICRO_VERSION (the 1 in 3.4.1a2)
4 25-28 PY_RELEASE_LEVEL (0xA for alpha, 0xB for beta, 0xC for release can-

didate and 0xF for final), in this case it is alpha.
29-32 PY_RELEASE_SERIAL (the 2 in 3.4.1a2, zero for final releases)

Thus 3.4.1a2 is hexversion 0x030401a2.
All the given macros are defined in Include/patchlevel.h.

177

https://github.com/python/cpython/tree/3.7/Include/patchlevel.h

The Python/C API, Release 3.7.5

178 Chapter 12. API and ABI Versioning

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering the code for an indented code block, when
within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes),
or after specifying a decorator.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/
scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr() would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance() and issubclass(); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections.abcmodule), numbers (in the numbersmodule),
streams (in the io module), import finders and loaders (in the importlib.abc module). You can create
your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by
convention as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class at-
tributes, and functions are stored in the __annotations__ special attribute of modules, classes, and func-
tions, respectively.
See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:
• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

179

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, Release 3.7.5

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine
function defined with async def except that it contains yield expressions for producing a series of values
usable in an async for loop.
Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
An asynchronous generator function may contain await expressions as well as async for, and async
with statements.

asynchronous generator iterator An object created by a asynchronous generator function.
This is an asynchronous iterator which when called using the __anext__() method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.
Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous
iterator from its __aiter__() method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter__() and __anext__() methods.
__anext__ must return an awaitable object. async for resolves the awaitables returned by an
asynchronous iterator’s __anext__() method until it raises a StopAsyncIteration exception.
Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an
__await__() method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary

mode ('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.
BytesIO and gzip.GzipFile.
See also text file for a file object able to read and write str objects.

bytes-like object An object that supports the Buffer Protocol and can export a C-contiguous buffer. This includes
all bytes, bytearray, and array.array objects, as well as many common memoryview objects.
Bytes-like objects can be used for various operations that work with binary data; these include compression,
saving to a binary file, and sending over a socket.
Some operations need the binary data to be mutable. The documentation often refers to these as “read-
write bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of a
bytearray. Other operations require the binary data to be stored in immutable objects (“read-only bytes-
like objects”); examples of these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said
to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python
releases.
A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

180 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

The Python/C API, Release 3.7.5

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of
the class).

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3,
but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the
same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5
rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the mathmodule, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__()
and __exit__() methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-
Local Storage in which each execution thread may have a different value for a variable. However, with context
variables, there may be several contexts in one execution thread and the main usage for context variables is to
keep track of variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-
dimensional buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in
memory next to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous
arrays, the last index varies the fastest when visiting items in order of memory address. However, in Fortran
contiguous arrays, the first index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited
at another point. Coroutines can be entered, exited, and resumed at many different points. They can be
implemented with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the
async def statement, and may contain await, async for, and async with keywords. These were
introduced by PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The
term “CPython” is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiv-
alent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of

181

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python/C API, Release 3.7.5

Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.
For more information about descriptors’ methods, see descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are called
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dic-
tionary changes, the view reflects these changes. To force the dictionary view to become a full list use
list(dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation of
the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of
valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module Amodule written in C or C++, using Python’s C API to interact with the core and with user code.
f-string String literals prefixed with 'f' or 'F' are commonly called “f-strings” which is short for formatted string

literals. See also PEP 498.
file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying

resource. Depending on the way it was created, a file object canmediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets,
pipes, etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object A synonym for file object.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.
See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note
that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.

182 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238

The Python/C API, Release 3.7.5

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality.

__future__ Apseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter.
By importing the __future__module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The
garbage collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it containsyield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.
Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.
Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
clause defining a loop variable, range, and an optional if clause. The combined expression generates values
for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different types.
Which implementation should be used during a call is determined by the dispatch algorithm.
See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP
443.

GIL See global interpreter lock.
global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes

Python bytecode at a time. This simplifies the CPython implementation by making the object model (including
critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by
multi-processor machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.
Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed
that overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

183

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0443

The Python/C API, Release 3.7.5

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding
source file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() method). Hashable
objects which compare equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.
Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import.
During import, this list of locations usually comes from sys.path, but for subpackages it may also come
from the parent package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.
interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-

terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry be-
cause of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually
releases all allocated resources, such as modules and various critical internal structures. It also makes several
calls to the garbage collector. This can trigger the execution of code in user-defined destructors or weakref
callbacks. Code executed during the shutdown phase can encounter various exceptions as the resources it
relies on may not function anymore (common examples are library modules or the warnings machinery).
The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of
any classes you define with an __iter__() method or with a __getitem__() method that implements
Sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(),
…). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__()method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__() method just raise StopIteration again. Iterators are required to have an
__iter__() method that returns the iterator object itself so every iterator is also iterable and may be used

184 Appendix A. Glossary

The Python/C API, Release 3.7.5

in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a list) produces a fresh new iterator each time you pass it to the
iter() function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.
More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They include
min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of
how to create and use key functions.

keyword argument See argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function is

called. The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the
looking” and “the leaping”. For example, the code, if key in mapping: return mapping[key]
can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be
solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the re-
sults. result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] gen-
erates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional.
If omitted, all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.
mapping A container object that supports arbitrary key lookups and implements the methods specified in the

Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search ofsys.meta_path. Meta path finders are related to, but different
from path entry finders.
See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.
More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

185

https://www.python.org/dev/peps/pep-0302

The Python/C API, Release 3.7.5

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python
interpreter since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing
arbitrary Python objects. Modules are loaded into Python by the process of importing.
See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.
named tuple The term “named tuple” applies to any type or class that inherits from tuple and whose indexable

elements are also accessible using named attributes. The type or class may have other features as well.
Several built-in types are named tuples, including the values returned by time.localtime() and os.
stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand or it can be created with the factory function collections.namedtuple(). The latter
technique also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.islice()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages
may have no physical representation, and specifically are not like a regular package because they have no
__init__.py file.
See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only for
reference and not for assignment. Local variables both read and write in the innermost scope. Likewise, global
variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path__ attribute.
See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, argu-
ments) that the function can accept. There are five kinds of parameter:

186 Appendix A. Glossary

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

The Python/C API, Release 3.7.5

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for
defining positional-only parameters. However, some built-in functions have positional-only parameters
(e.g. abs()).

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.
path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how

to locate modules given a path entry.
See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.
path-like object An object representing a file system path. A path-like object is either a str or bytes object

representing a path, or an object implementing the os.PathLike protocol. An object that supports the os.
PathLike protocol can be converted to a str or bytes file system path by calling the os.fspath()
function; os.fsdecode() andos.fsencode() can be used to guarantee astr orbytes result instead,
respectively. Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.
See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument See argument.
provisional API A provisional API is one which has been deliberately excluded from the standard library’s back-

wards compatibility guarantees. While major changes to such interfaces are not expected, as long as they are

187

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420

The Python/C API, Release 3.7.5

marked provisional, backwards incompatible changes (up to and including removal of the interface) may occur
if deemed necessary by core developers. Such changes will not be made gratuitously – they will occur only if
serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.
Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.
This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.
Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something

in the distant future.) This is also abbreviated “Py3k”.
Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather

than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method
defined in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the
same as the object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return
the reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminat-
ing instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

188 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

The Python/C API, Release 3.7.5

sequence An iterable which supports efficient element access using integer indices via the __getitem__() spe-
cial method and defines a __len__() method that returns the length of the sequence. Some built-in se-
quence types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and
__len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.
The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a
single argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (sub-
script) notation uses slice objects internally.

special method Amethod that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

text encoding A codec which encodes Unicode strings to bytes.
text file A file object able to read and writestr objects. Often, a text file actually accesses a byte-oriented datastream

and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.
See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:

from typing import List, Tuple

def remove_gray_shades(
colors: List[Tuple[int, int, int]]) -> List[Tuple[int, int, int]]:

pass

could be made more readable like this:

from typing import List, Tuple

Color = Tuple[int, int, int]

def remove_gray_shades(colors: List[Color]) -> List[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or

return value.

189

https://www.python.org/dev/peps/pep-0484

The Python/C API, Release 3.7.5

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().
See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending
a line: the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh
convention '\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to
install and upgrade Python distribution packages without interfering with the behaviour of other Python appli-
cations running on the same system.
See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

190 Appendix A. Glossary

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.
Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you
want to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers
are always welcome!
Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
• the Docutils project for creating reStructuredText and the Docutils suite;
• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.
It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!

191

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

The Python/C API, Release 3.7.5

192 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
//www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

193

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, Release 3.7.5

C.2 Terms and conditions for accessing or otherwise using
Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.5

1. This LICENSE AGREEMENT is between the Python Software Foundation␣
↪→("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise␣
↪→using Python

3.7.5 software in source or binary form and its associated␣
↪→documentation.

2. Subject to the terms and conditions of this License Agreement, PSF␣
↪→hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to␣
↪→reproduce,

analyze, test, perform and/or display publicly, prepare derivative␣
↪→works,

distribute, and otherwise use Python 3.7.5 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's␣

↪→notice of
copyright, i.e., "Copyright © 2001-2019 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.7.5 alone or in any derivative␣

↪→version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.5 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made␣

↪→to Python
3.7.5.

4. PSF is making Python 3.7.5 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY␣

↪→OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY␣

↪→REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR␣

↪→THAT THE
USE OF PYTHON 3.7.5 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.5
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A␣

↪→RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.5, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material␣
↪→breach of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

194 Appendix C. History and License

The Python/C API, Release 3.7.5

of agency, partnership, or joint venture between PSF and Licensee. ␣
↪→This License

Agreement does not grant permission to use PSF trademarks or trade name␣
↪→in a

trademark sense to endorse or promote products or services of Licensee,␣
↪→or any

third party.

8. By copying, installing or otherwise using Python 3.7.5, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 195

The Python/C API, Release 3.7.5

(continued from previous page)
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

196 Appendix C. History and License

The Python/C API, Release 3.7.5

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 197

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Release 3.7.5

(continued from previous page)
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all

(continues on next page)

198 Appendix C. History and License

http://www.wide.ad.jp/

The Python/C API, Release 3.7.5

(continued from previous page)
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 199

The Python/C API, Release 3.7.5

(continued from previous page)
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission

(continues on next page)

200 Appendix C. History and License

The Python/C API, Release 3.7.5

(continued from previous page)
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 201

The Python/C API, Release 3.7.5

(continued from previous page)
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The filePython/pyhash.c containsMarekMajkowski’ implementation of Dan Bernstein’s SipHash24 algorithm.
It contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name byDavidM. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

(continues on next page)

202 Appendix C. History and License

http://www.netlib.org/fp/

The Python/C API, Release 3.7.5

(continued from previous page)
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 203

The Python/C API, Release 3.7.5

(continued from previous page)
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

(continues on next page)

204 Appendix C. History and License

The Python/C API, Release 3.7.5

(continued from previous page)
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 205

The Python/C API, Release 3.7.5

(continued from previous page)

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

(continues on next page)

206 Appendix C. History and License

The Python/C API, Release 3.7.5

(continued from previous page)
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 207

The Python/C API, Release 3.7.5

208 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:
Copyright © 2001-2019 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

209

The Python/C API, Release 3.7.5

210 Appendix D. Copyright

INDEX

Non-alphabetical
..., 179
2to3, 179
>>>, 179
__all__ (package variable), 38
__dict__ (module attribute), 111
__doc__ (module attribute), 111
__file__ (module attribute), 111, 112
__future__, 183
__import__

built-in function, 39
__loader__ (module attribute), 111
__main__

module, 10, 129, 138
__name__ (module attribute), 111
__package__ (module attribute), 111
__slots__, 188
_frozen (C type), 41
_inittab (C type), 41
_Py_c_diff (C function), 79
_Py_c_neg (C function), 79
_Py_c_pow (C function), 79
_Py_c_prod (C function), 79
_Py_c_quot (C function), 79
_Py_c_sum (C function), 79
_Py_NoneStruct (C variable), 153
_PyBytes_Resize (C function), 81
_PyCFunctionFast (C type), 155
_PyCFunctionFastWithKeywords (C type), 155
_PyImport_Fini (C function), 41
_PyImport_Init (C function), 41
_PyObject_GC_TRACK (C function), 175
_PyObject_GC_UNTRACK (C function), 175
_PyObject_New (C function), 153
_PyObject_NewVar (C function), 153
_PyTuple_Resize (C function), 101
_thread

module, 135

A
abort(), 38
abs

built-in function, 60
abstract base class, 179
annotation, 179
argument, 179

argv (in module sys), 132
ascii

built-in function, 57
asynchronous context manager, 180
asynchronous generator, 180
asynchronous generator iterator, 180
asynchronous iterable, 180
asynchronous iterator, 180
attribute, 180
awaitable, 180

B
BDFL, 180
binary file, 180
buffer interface

(see buffer protocol), 65
buffer object

(see buffer protocol), 65
buffer protocol, 65
built-in function

__import__, 39
abs, 60
ascii, 57
bytes, 57
classmethod, 156
compile, 39
divmod, 60
float, 61
hash, 58, 162
int, 61
len, 59, 62, 64, 102, 105, 107
pow, 60, 61
repr, 56, 161
staticmethod, 156
tuple, 63, 103
type, 59

builtins
module, 10, 129, 138

bytearray
object, 81

bytecode, 180
bytes

built-in function, 57
object, 80

bytes-like object, 180

211

The Python/C API, Release 3.7.5

C
calloc(), 145
Capsule

object, 120
C-contiguous, 68, 181
class, 180
class variable, 181
classmethod

built-in function, 156
cleanup functions, 38
close() (in module os), 138
CO_FUTURE_DIVISION (C variable), 19
code object, 110
coercion, 181
compile

built-in function, 39
complex number, 181

object, 78
context manager, 181
context variable, 181
contiguous, 68, 181
copyright (in module sys), 132
coroutine, 181
coroutine function, 181
CPython, 181
create_module (C function), 114

D
decorator, 181
descriptor, 181
dictionary, 182

object, 103
dictionary view, 182
divmod

built-in function, 60
docstring, 182
duck-typing, 182

E
EAFP, 182
environment variable

exec_prefix, 4
PATH, 10
prefix, 4
PYTHON*, 128
PYTHONDEBUG, 128
PYTHONDONTWRITEBYTECODE, 128
PYTHONDUMPREFS, 159
PYTHONHASHSEED, 128
PYTHONHOME, 10, 128, 133
PYTHONINSPECT, 128
PYTHONIOENCODING, 130
PYTHONLEGACYWINDOWSFSENCODING, 129
PYTHONLEGACYWINDOWSSTDIO, 129
PYTHONMALLOC, 146, 149, 150
PYTHONMALLOCSTATS, 146
PYTHONNOUSERSITE, 129
PYTHONOPTIMIZE, 129

PYTHONPATH, 10, 128
PYTHONUNBUFFERED, 129
PYTHONVERBOSE, 129

EOFError (built-in exception), 111
exc_info() (in module sys), 8
exec_module (C function), 114
exec_prefix, 4
executable (in module sys), 131
exit(), 38
expression, 182
extension module, 182

F
file

object, 110
file object, 182
file-like object, 182
finder, 182
float

built-in function, 61
floating point

object, 78
floor division, 182
Fortran contiguous, 68, 181
free(), 145
freeze utility, 41
frozenset

object, 106
f-string, 182
function, 182

object, 107
function annotation, 182

G
garbage collection, 183
generator, 183
generator expression, 183
generator iterator, 183
generic function, 183
GIL, 183
global interpreter lock, 133, 183

H
hash

built-in function, 58, 162
hashable, 184
hash-based pyc, 184

I
IDLE, 184
immutable, 184
import path, 184
importer, 184
importing, 184
incr_item(), 9, 10
inquiry (C type), 176
instancemethod

object, 108

212 Index

The Python/C API, Release 3.7.5

int
built-in function, 61

integer
object, 74

interactive, 184
interpreted, 184
interpreter lock, 133
interpreter shutdown, 184
iterable, 184
iterator, 184

K
key function, 185
KeyboardInterrupt (built-in exception), 28
keyword argument, 185

L
lambda, 185
LBYL, 185
len

built-in function, 59, 62, 64, 102, 105,
107

list, 185
object, 102

list comprehension, 185
loader, 185
lock, interpreter, 133
long integer

object, 74
LONG_MAX, 76

M
magic

method, 185
magic method, 185
main(), 130, 132
malloc(), 145
mapping, 185

object, 103
memoryview

object, 119
meta path finder, 185
metaclass, 185
METH_CLASS (built-in variable), 156
METH_COEXIST (built-in variable), 156
METH_FASTCALL (built-in variable), 155
METH_NOARGS (built-in variable), 156
METH_O (built-in variable), 156
METH_STATIC (built-in variable), 156
METH_VARARGS (built-in variable), 155
method, 185

magic, 185
object, 109
special, 189

method resolution order, 186
MethodType (in module types), 107, 109
module, 186

__main__, 10, 129, 138

_thread, 135
builtins, 10, 129, 138
object, 111
search path, 10, 129, 131
signal, 28
sys, 10, 129, 138

module spec, 186
modules (in module sys), 38, 129
ModuleType (in module types), 111
MRO, 186
mutable, 186

N
named tuple, 186
namespace, 186
namespace package, 186
nested scope, 186
new-style class, 186
None

object, 74
numeric

object, 74

O
object, 186

bytearray, 81
bytes, 80
Capsule, 120
code, 110
complex number, 78
dictionary, 103
file, 110
floating point, 78
frozenset, 106
function, 107
instancemethod, 108
integer, 74
list, 102
long integer, 74
mapping, 103
memoryview, 119
method, 109
module, 111
None, 74
numeric, 74
sequence, 79
set, 106
tuple, 100
type, 5, 73

OverflowError (built-in exception), 76

P
package, 186
package variable

__all__, 38
parameter, 186
PATH, 10
path

Index 213

The Python/C API, Release 3.7.5

module search, 10, 129, 131
path (in module sys), 10, 129, 131
path based finder, 187
path entry, 187
path entry finder, 187
path entry hook, 187
path-like object, 187
PEP, 187
platform (in module sys), 132
portion, 187
positional argument, 187
pow

built-in function, 60, 61
prefix, 4
provisional API, 187
provisional package, 188
Py_ABS (C macro), 4
Py_AddPendingCall (C function), 139
Py_AddPendingCall(), 139
Py_AtExit (C function), 38
Py_BEGIN_ALLOW_THREADS, 134
Py_BEGIN_ALLOW_THREADS (C macro), 136
Py_BLOCK_THREADS (C macro), 137
Py_buffer (C type), 66
Py_buffer.buf (C member), 66
Py_buffer.format (C member), 66
Py_buffer.internal (C member), 67
Py_buffer.itemsize (C member), 66
Py_buffer.len (C member), 66
Py_buffer.ndim (C member), 67
Py_buffer.obj (C member), 66
Py_buffer.readonly (C member), 66
Py_buffer.shape (C member), 67
Py_buffer.strides (C member), 67
Py_buffer.suboffsets (C member), 67
Py_BuildValue (C function), 48
Py_BytesWarningFlag (C variable), 128
Py_CHARMASK (C macro), 4
Py_CLEAR (C function), 21
Py_CompileString (C function), 17
Py_CompileString(), 18
Py_CompileStringExFlags (C function), 18
Py_CompileStringFlags (C function), 17
Py_CompileStringObject (C function), 17
Py_complex (C type), 78
Py_DebugFlag (C variable), 128
Py_DecodeLocale (C function), 36
Py_DECREF (C function), 21
Py_DECREF(), 5
Py_DontWriteBytecodeFlag (C variable), 128
Py_Ellipsis (C variable), 119
Py_EncodeLocale (C function), 36
Py_END_ALLOW_THREADS, 134
Py_END_ALLOW_THREADS (C macro), 137
Py_EndInterpreter (C function), 138
Py_EnterRecursiveCall (C function), 31
Py_eval_input (C variable), 18
Py_Exit (C function), 38

Py_False (C variable), 77
Py_FatalError (C function), 38
Py_FatalError(), 132
Py_FdIsInteractive (C function), 35
Py_file_input (C variable), 18
Py_Finalize (C function), 130
Py_FinalizeEx (C function), 130
Py_FinalizeEx(), 38, 129, 138
Py_FrozenFlag (C variable), 128
Py_GetBuildInfo (C function), 132
Py_GetCompiler (C function), 132
Py_GetCopyright (C function), 132
Py_GETENV (C macro), 4
Py_GetExecPrefix (C function), 131
Py_GetExecPrefix(), 10
Py_GetPath (C function), 131
Py_GetPath(), 10, 130, 131
Py_GetPlatform (C function), 132
Py_GetPrefix (C function), 131
Py_GetPrefix(), 10
Py_GetProgramFullPath (C function), 131
Py_GetProgramFullPath(), 10
Py_GetProgramName (C function), 131
Py_GetPythonHome (C function), 133
Py_GetVersion (C function), 132
Py_HashRandomizationFlag (C variable), 128
Py_IgnoreEnvironmentFlag (C variable), 128
Py_INCREF (C function), 21
Py_INCREF(), 5
Py_Initialize (C function), 129
Py_Initialize(), 10, 130, 138
Py_InitializeEx (C function), 130
Py_InspectFlag (C variable), 128
Py_InteractiveFlag (C variable), 128
Py_IsInitialized (C function), 130
Py_IsInitialized(), 10
Py_IsolatedFlag (C variable), 128
Py_LeaveRecursiveCall (C function), 31
Py_LegacyWindowsFSEncodingFlag (C vari-

able), 129
Py_LegacyWindowsStdioFlag (C variable), 129
Py_Main (C function), 15
Py_MAX (C macro), 4
Py_MEMBER_SIZE (C macro), 4
Py_MIN (C macro), 4
Py_mod_create (C variable), 114
Py_mod_exec (C variable), 114
Py_NewInterpreter (C function), 138
Py_None (C variable), 74
Py_NoSiteFlag (C variable), 129
Py_NotImplemented (C variable), 55
Py_NoUserSiteDirectory (C variable), 129
Py_OptimizeFlag (C variable), 129
Py_PRINT_RAW, 111
Py_QuietFlag (C variable), 129
Py_REFCNT (C macro), 154
Py_ReprEnter (C function), 31
Py_ReprLeave (C function), 31

214 Index

The Python/C API, Release 3.7.5

Py_RETURN_FALSE (C macro), 77
Py_RETURN_NONE (C macro), 74
Py_RETURN_NOTIMPLEMENTED (C macro), 55
Py_RETURN_RICHCOMPARE (C function), 166
Py_RETURN_TRUE (C macro), 77
Py_SetPath (C function), 131
Py_SetPath(), 131
Py_SetProgramName (C function), 130
Py_SetProgramName(), 10, 129, 131
Py_SetPythonHome (C function), 133
Py_SetStandardStreamEncoding (C function),

130
Py_single_input (C variable), 18
Py_SIZE (C macro), 154
PY_SSIZE_T_MAX, 76
Py_STRINGIFY (C macro), 4
Py_TPFLAGS_BASE_EXC_SUBCLASS (built-in vari-

able), 164
Py_TPFLAGS_BASETYPE (built-in variable), 163
Py_TPFLAGS_BYTES_SUBCLASS (built-in vari-

able), 163
Py_TPFLAGS_DEFAULT (built-in variable), 163
Py_TPFLAGS_DICT_SUBCLASS (built-in variable),

164
Py_TPFLAGS_HAVE_FINALIZE (built-in variable),

164
Py_TPFLAGS_HAVE_GC (built-in variable), 163
Py_TPFLAGS_HEAPTYPE (built-in variable), 163
Py_TPFLAGS_LIST_SUBCLASS (built-in variable),

163
Py_TPFLAGS_LONG_SUBCLASS (built-in variable),

163
Py_TPFLAGS_READY (built-in variable), 163
Py_TPFLAGS_READYING (built-in variable), 163
Py_TPFLAGS_TUPLE_SUBCLASS (built-in vari-

able), 163
Py_TPFLAGS_TYPE_SUBCLASS (built-in variable),

164
Py_TPFLAGS_UNICODE_SUBCLASS (built-in vari-

able), 164
Py_tracefunc (C type), 140
Py_True (C variable), 77
Py_tss_NEEDS_INIT (C macro), 142
Py_tss_t (C type), 141
Py_TYPE (C macro), 154
Py_UCS1 (C type), 82
Py_UCS2 (C type), 82
Py_UCS4 (C type), 82
Py_UNBLOCK_THREADS (C macro), 137
Py_UnbufferedStdioFlag (C variable), 129
Py_UNICODE (C type), 83
Py_UNICODE_IS_HIGH_SURROGATE (C macro),

86
Py_UNICODE_IS_LOW_SURROGATE (C macro), 86
Py_UNICODE_IS_SURROGATE (C macro), 86
Py_UNICODE_ISALNUM (C function), 85
Py_UNICODE_ISALPHA (C function), 85
Py_UNICODE_ISDECIMAL (C function), 85

Py_UNICODE_ISDIGIT (C function), 85
Py_UNICODE_ISLINEBREAK (C function), 85
Py_UNICODE_ISLOWER (C function), 85
Py_UNICODE_ISNUMERIC (C function), 85
Py_UNICODE_ISPRINTABLE (C function), 85
Py_UNICODE_ISSPACE (C function), 85
Py_UNICODE_ISTITLE (C function), 85
Py_UNICODE_ISUPPER (C function), 85
Py_UNICODE_JOIN_SURROGATES (C macro), 86
Py_UNICODE_TODECIMAL (C function), 85
Py_UNICODE_TODIGIT (C function), 85
Py_UNICODE_TOLOWER (C function), 85
Py_UNICODE_TONUMERIC (C function), 86
Py_UNICODE_TOTITLE (C function), 85
Py_UNICODE_TOUPPER (C function), 85
Py_UNREACHABLE (C macro), 4
Py_UNUSED (C macro), 4
Py_VaBuildValue (C function), 50
Py_VerboseFlag (C variable), 129
Py_VISIT (C function), 176
Py_XDECREF (C function), 21
Py_XDECREF(), 10
Py_XINCREF (C function), 21
PyAnySet_Check (C function), 106
PyAnySet_CheckExact (C function), 106
PyArg_Parse (C function), 47
PyArg_ParseTuple (C function), 47
PyArg_ParseTupleAndKeywords (C function),

47
PyArg_UnpackTuple (C function), 47
PyArg_ValidateKeywordArguments (C func-

tion), 47
PyArg_VaParse (C function), 47
PyArg_VaParseTupleAndKeywords (C func-

tion), 47
PyASCIIObject (C type), 83
PyAsyncMethods (C type), 174
PyAsyncMethods.am_aiter (C member), 174
PyAsyncMethods.am_anext (C member), 174
PyAsyncMethods.am_await (C member), 174
PyBool_Check (C function), 77
PyBool_FromLong (C function), 77
PyBUF_ANY_CONTIGUOUS (C macro), 68
PyBUF_C_CONTIGUOUS (C macro), 68
PyBUF_CONTIG (C macro), 69
PyBUF_CONTIG_RO (C macro), 69
PyBUF_F_CONTIGUOUS (C macro), 68
PyBUF_FORMAT (C macro), 68
PyBUF_FULL (C macro), 69
PyBUF_FULL_RO (C macro), 69
PyBUF_INDIRECT (C macro), 68
PyBUF_ND (C macro), 68
PyBUF_RECORDS (C macro), 69
PyBUF_RECORDS_RO (C macro), 69
PyBUF_SIMPLE (C macro), 68
PyBUF_STRIDED (C macro), 69
PyBUF_STRIDED_RO (C macro), 69
PyBUF_STRIDES (C macro), 68

Index 215

The Python/C API, Release 3.7.5

PyBUF_WRITABLE (C macro), 68
PyBuffer_FillContiguousStrides (C func-

tion), 71
PyBuffer_FillInfo (C function), 71
PyBuffer_FromContiguous (C function), 71
PyBuffer_GetPointer (C function), 71
PyBuffer_IsContiguous (C function), 71
PyBuffer_Release (C function), 70
PyBuffer_SizeFromFormat (C function), 70
PyBuffer_ToContiguous (C function), 71
PyBufferProcs, 65
PyBufferProcs (C type), 173
PyBufferProcs.bf_getbuffer (C member),

173
PyBufferProcs.bf_releasebuffer (C mem-

ber), 173
PyByteArray_AS_STRING (C function), 82
PyByteArray_AsString (C function), 82
PyByteArray_Check (C function), 81
PyByteArray_CheckExact (C function), 81
PyByteArray_Concat (C function), 82
PyByteArray_FromObject (C function), 82
PyByteArray_FromStringAndSize (C func-

tion), 82
PyByteArray_GET_SIZE (C function), 82
PyByteArray_Resize (C function), 82
PyByteArray_Size (C function), 82
PyByteArray_Type (C variable), 81
PyByteArrayObject (C type), 81
PyBytes_AS_STRING (C function), 81
PyBytes_AsString (C function), 81
PyBytes_AsStringAndSize (C function), 81
PyBytes_Check (C function), 80
PyBytes_CheckExact (C function), 80
PyBytes_Concat (C function), 81
PyBytes_ConcatAndDel (C function), 81
PyBytes_FromFormat (C function), 80
PyBytes_FromFormatV (C function), 80
PyBytes_FromObject (C function), 80
PyBytes_FromString (C function), 80
PyBytes_FromStringAndSize (C function), 80
PyBytes_GET_SIZE (C function), 80
PyBytes_Size (C function), 80
PyBytes_Type (C variable), 80
PyBytesObject (C type), 80
PyCallable_Check (C function), 57
PyCallIter_Check (C function), 117
PyCallIter_New (C function), 117
PyCallIter_Type (C variable), 117
PyCapsule (C type), 120
PyCapsule_CheckExact (C function), 120
PyCapsule_Destructor (C type), 120
PyCapsule_GetContext (C function), 121
PyCapsule_GetDestructor (C function), 121
PyCapsule_GetName (C function), 121
PyCapsule_GetPointer (C function), 121
PyCapsule_Import (C function), 121
PyCapsule_IsValid (C function), 121

PyCapsule_New (C function), 120
PyCapsule_SetContext (C function), 121
PyCapsule_SetDestructor (C function), 121
PyCapsule_SetName (C function), 121
PyCapsule_SetPointer (C function), 121
PyCell_Check (C function), 109
PyCell_GET (C function), 109
PyCell_Get (C function), 109
PyCell_New (C function), 109
PyCell_SET (C function), 110
PyCell_Set (C function), 110
PyCell_Type (C variable), 109
PyCellObject (C type), 109
PyCFunction (C type), 155
PyCFunctionWithKeywords (C type), 155
PyCode_Check (C function), 110
PyCode_GetNumFree (C function), 110
PyCode_New (C function), 110
PyCode_NewEmpty (C function), 110
PyCode_Type (C variable), 110
PyCodec_BackslashReplaceErrors (C func-

tion), 53
PyCodec_Decode (C function), 52
PyCodec_Decoder (C function), 52
PyCodec_Encode (C function), 52
PyCodec_Encoder (C function), 52
PyCodec_IgnoreErrors (C function), 53
PyCodec_IncrementalDecoder (C function), 52
PyCodec_IncrementalEncoder (C function), 52
PyCodec_KnownEncoding (C function), 52
PyCodec_LookupError (C function), 53
PyCodec_NameReplaceErrors (C function), 53
PyCodec_Register (C function), 52
PyCodec_RegisterError (C function), 52
PyCodec_ReplaceErrors (C function), 53
PyCodec_StreamReader (C function), 52
PyCodec_StreamWriter (C function), 52
PyCodec_StrictErrors (C function), 53
PyCodec_XMLCharRefReplaceErrors (C func-

tion), 53
PyCodeObject (C type), 110
PyCompactUnicodeObject (C type), 83
PyCompilerFlags (C type), 18
PyComplex_AsCComplex (C function), 79
PyComplex_Check (C function), 79
PyComplex_CheckExact (C function), 79
PyComplex_FromCComplex (C function), 79
PyComplex_FromDoubles (C function), 79
PyComplex_ImagAsDouble (C function), 79
PyComplex_RealAsDouble (C function), 79
PyComplex_Type (C variable), 79
PyComplexObject (C type), 79
PyContext (C type), 123
PyContext_CheckExact (C function), 123
PyContext_ClearFreeList (C function), 123
PyContext_Copy (C function), 123
PyContext_CopyCurrent (C function), 123
PyContext_Enter (C function), 123

216 Index

The Python/C API, Release 3.7.5

PyContext_Exit (C function), 123
PyContext_New (C function), 123
PyContext_Type (C variable), 123
PyContextToken (C type), 123
PyContextToken_CheckExact (C function), 123
PyContextToken_Type (C variable), 123
PyContextVar (C type), 123
PyContextVar_CheckExact (C function), 123
PyContextVar_Get (C function), 123
PyContextVar_New (C function), 123
PyContextVar_Reset (C function), 124
PyContextVar_Set (C function), 124
PyContextVar_Type (C variable), 123
PyCoro_CheckExact (C function), 122
PyCoro_New (C function), 122
PyCoro_Type (C variable), 122
PyCoroObject (C type), 122
PyDate_Check (C function), 124
PyDate_CheckExact (C function), 124
PyDate_FromDate (C function), 124
PyDate_FromTimestamp (C function), 126
PyDateTime_Check (C function), 124
PyDateTime_CheckExact (C function), 124
PyDateTime_DATE_GET_HOUR (C function), 125
PyDateTime_DATE_GET_MICROSECOND (C func-

tion), 125
PyDateTime_DATE_GET_MINUTE (C function),

125
PyDateTime_DATE_GET_SECOND (C function),

125
PyDateTime_DELTA_GET_DAYS (C function), 126
PyDateTime_DELTA_GET_MICROSECONDS (C

function), 126
PyDateTime_DELTA_GET_SECONDS (C function),

126
PyDateTime_FromDateAndTime (C function),

125
PyDateTime_FromDateAndTimeAndFold (C

function), 125
PyDateTime_FromTimestamp (C function), 126
PyDateTime_GET_DAY (C function), 125
PyDateTime_GET_MONTH (C function), 125
PyDateTime_GET_YEAR (C function), 125
PyDateTime_TIME_GET_HOUR (C function), 126
PyDateTime_TIME_GET_MICROSECOND (C func-

tion), 126
PyDateTime_TIME_GET_MINUTE (C function),

126
PyDateTime_TIME_GET_SECOND (C function),

126
PyDateTime_TimeZone_UTC (C variable), 124
PyDelta_Check (C function), 124
PyDelta_CheckExact (C function), 124
PyDelta_FromDSU (C function), 125
PyDescr_IsData (C function), 117
PyDescr_NewClassMethod (C function), 117
PyDescr_NewGetSet (C function), 117
PyDescr_NewMember (C function), 117

PyDescr_NewMethod (C function), 117
PyDescr_NewWrapper (C function), 117
PyDict_Check (C function), 103
PyDict_CheckExact (C function), 104
PyDict_Clear (C function), 104
PyDict_ClearFreeList (C function), 106
PyDict_Contains (C function), 104
PyDict_Copy (C function), 104
PyDict_DelItem (C function), 104
PyDict_DelItemString (C function), 104
PyDict_GetItem (C function), 104
PyDict_GetItemString (C function), 104
PyDict_GetItemWithError (C function), 104
PyDict_Items (C function), 104
PyDict_Keys (C function), 105
PyDict_Merge (C function), 105
PyDict_MergeFromSeq2 (C function), 105
PyDict_New (C function), 104
PyDict_Next (C function), 105
PyDict_SetDefault (C function), 104
PyDict_SetItem (C function), 104
PyDict_SetItemString (C function), 104
PyDict_Size (C function), 105
PyDict_Type (C variable), 103
PyDict_Update (C function), 105
PyDict_Values (C function), 105
PyDictObject (C type), 103
PyDictProxy_New (C function), 104
PyErr_BadArgument (C function), 24
PyErr_BadInternalCall (C function), 26
PyErr_CheckSignals (C function), 28
PyErr_Clear (C function), 23
PyErr_Clear(), 8, 10
PyErr_ExceptionMatches (C function), 27
PyErr_ExceptionMatches(), 10
PyErr_Fetch (C function), 27
PyErr_Format (C function), 24
PyErr_FormatV (C function), 24
PyErr_GetExcInfo (C function), 28
PyErr_GivenExceptionMatches (C function),

27
PyErr_NewException (C function), 29
PyErr_NewExceptionWithDoc (C function), 29
PyErr_NoMemory (C function), 24
PyErr_NormalizeException (C function), 27
PyErr_Occurred (C function), 27
PyErr_Occurred(), 8
PyErr_Print (C function), 23
PyErr_PrintEx (C function), 23
PyErr_ResourceWarning (C function), 26
PyErr_Restore (C function), 27
PyErr_SetExcFromWindowsErr (C function), 25
PyErr_SetExcFromWindowsErrWithFilename

(C function), 25
PyErr_SetExcFromWindowsErrWithFilenameObject

(C function), 25
PyErr_SetExcFromWindowsErrWithFilenameObjects

(C function), 25

Index 217

The Python/C API, Release 3.7.5

PyErr_SetExcInfo (C function), 28
PyErr_SetFromErrno (C function), 24
PyErr_SetFromErrnoWithFilename (C func-

tion), 24
PyErr_SetFromErrnoWithFilenameObject

(C function), 24
PyErr_SetFromErrnoWithFilenameObjects

(C function), 24
PyErr_SetFromWindowsErr (C function), 25
PyErr_SetFromWindowsErrWithFilename (C

function), 25
PyErr_SetImportError (C function), 25
PyErr_SetImportErrorSubclass (C function),

26
PyErr_SetInterrupt (C function), 28
PyErr_SetNone (C function), 24
PyErr_SetObject (C function), 24
PyErr_SetString (C function), 24
PyErr_SetString(), 8
PyErr_SyntaxLocation (C function), 26
PyErr_SyntaxLocationEx (C function), 25
PyErr_SyntaxLocationObject (C function), 25
PyErr_WarnEx (C function), 26
PyErr_WarnExplicit (C function), 26
PyErr_WarnExplicitObject (C function), 26
PyErr_WarnFormat (C function), 26
PyErr_WriteUnraisable (C function), 23
PyEval_AcquireLock (C function), 138
PyEval_AcquireThread (C function), 138
PyEval_AcquireThread(), 135
PyEval_EvalCode (C function), 18
PyEval_EvalCodeEx (C function), 18
PyEval_EvalFrame (C function), 18
PyEval_EvalFrameEx (C function), 18
PyEval_GetBuiltins (C function), 51
PyEval_GetFrame (C function), 51
PyEval_GetFuncDesc (C function), 51
PyEval_GetFuncName (C function), 51
PyEval_GetGlobals (C function), 51
PyEval_GetLocals (C function), 51
PyEval_InitThreads (C function), 135
PyEval_InitThreads(), 129
PyEval_MergeCompilerFlags (C function), 18
PyEval_ReInitThreads (C function), 136
PyEval_ReleaseLock (C function), 138
PyEval_ReleaseThread (C function), 138
PyEval_ReleaseThread(), 135
PyEval_RestoreThread (C function), 135
PyEval_RestoreThread(), 134, 135
PyEval_SaveThread (C function), 135
PyEval_SaveThread(), 134, 135
PyEval_SetProfile (C function), 140
PyEval_SetTrace (C function), 140
PyEval_ThreadsInitialized (C function), 135
PyExc_ArithmeticError, 31
PyExc_AssertionError, 31
PyExc_AttributeError, 31
PyExc_BaseException, 31

PyExc_BlockingIOError, 31
PyExc_BrokenPipeError, 31
PyExc_BufferError, 31
PyExc_BytesWarning, 33
PyExc_ChildProcessError, 31
PyExc_ConnectionAbortedError, 31
PyExc_ConnectionError, 31
PyExc_ConnectionRefusedError, 31
PyExc_ConnectionResetError, 31
PyExc_DeprecationWarning, 33
PyExc_EnvironmentError, 32
PyExc_EOFError, 31
PyExc_Exception, 31
PyExc_FileExistsError, 31
PyExc_FileNotFoundError, 31
PyExc_FloatingPointError, 31
PyExc_FutureWarning, 33
PyExc_GeneratorExit, 31
PyExc_ImportError, 31
PyExc_ImportWarning, 33
PyExc_IndentationError, 31
PyExc_IndexError, 31
PyExc_InterruptedError, 31
PyExc_IOError, 32
PyExc_IsADirectoryError, 31
PyExc_KeyboardInterrupt, 31
PyExc_KeyError, 31
PyExc_LookupError, 31
PyExc_MemoryError, 31
PyExc_ModuleNotFoundError, 31
PyExc_NameError, 31
PyExc_NotADirectoryError, 31
PyExc_NotImplementedError, 31
PyExc_OSError, 31
PyExc_OverflowError, 31
PyExc_PendingDeprecationWarning, 33
PyExc_PermissionError, 31
PyExc_ProcessLookupError, 31
PyExc_RecursionError, 31
PyExc_ReferenceError, 31
PyExc_ResourceWarning, 33
PyExc_RuntimeError, 31
PyExc_RuntimeWarning, 33
PyExc_StopAsyncIteration, 31
PyExc_StopIteration, 31
PyExc_SyntaxError, 31
PyExc_SyntaxWarning, 33
PyExc_SystemError, 31
PyExc_SystemExit, 31
PyExc_TabError, 31
PyExc_TimeoutError, 31
PyExc_TypeError, 31
PyExc_UnboundLocalError, 31
PyExc_UnicodeDecodeError, 31
PyExc_UnicodeEncodeError, 31
PyExc_UnicodeError, 31
PyExc_UnicodeTranslateError, 31
PyExc_UnicodeWarning, 33

218 Index

The Python/C API, Release 3.7.5

PyExc_UserWarning, 33
PyExc_ValueError, 31
PyExc_Warning, 33
PyExc_WindowsError, 32
PyExc_ZeroDivisionError, 31
PyException_GetCause (C function), 29
PyException_GetContext (C function), 29
PyException_GetTraceback (C function), 29
PyException_SetCause (C function), 29
PyException_SetContext (C function), 29
PyException_SetTraceback (C function), 29
PyFile_FromFd (C function), 110
PyFile_GetLine (C function), 111
PyFile_WriteObject (C function), 111
PyFile_WriteString (C function), 111
PyFloat_AS_DOUBLE (C function), 78
PyFloat_AsDouble (C function), 78
PyFloat_Check (C function), 78
PyFloat_CheckExact (C function), 78
PyFloat_ClearFreeList (C function), 78
PyFloat_FromDouble (C function), 78
PyFloat_FromString (C function), 78
PyFloat_GetInfo (C function), 78
PyFloat_GetMax (C function), 78
PyFloat_GetMin (C function), 78
PyFloat_Type (C variable), 78
PyFloatObject (C type), 78
PyFrame_GetLineNumber (C function), 51
PyFrameObject (C type), 18
PyFrozenSet_Check (C function), 106
PyFrozenSet_CheckExact (C function), 106
PyFrozenSet_New (C function), 106
PyFrozenSet_Type (C variable), 106
PyFunction_Check (C function), 107
PyFunction_GetAnnotations (C function), 108
PyFunction_GetClosure (C function), 108
PyFunction_GetCode (C function), 108
PyFunction_GetDefaults (C function), 108
PyFunction_GetGlobals (C function), 108
PyFunction_GetModule (C function), 108
PyFunction_New (C function), 107
PyFunction_NewWithQualName (C function),

108
PyFunction_SetAnnotations (C function), 108
PyFunction_SetClosure (C function), 108
PyFunction_SetDefaults (C function), 108
PyFunction_Type (C variable), 107
PyFunctionObject (C type), 107
PyGen_Check (C function), 122
PyGen_CheckExact (C function), 122
PyGen_New (C function), 122
PyGen_NewWithQualName (C function), 122
PyGen_Type (C variable), 122
PyGenObject (C type), 122
PyGetSetDef (C type), 157
PyGILState_Check (C function), 136
PyGILState_Ensure (C function), 136

PyGILState_GetThisThreadState (C func-
tion), 136

PyGILState_Release (C function), 136
PyImport_AddModule (C function), 39
PyImport_AddModuleObject (C function), 39
PyImport_AppendInittab (C function), 41
PyImport_Cleanup (C function), 41
PyImport_ExecCodeModule (C function), 39
PyImport_ExecCodeModuleEx (C function), 40
PyImport_ExecCodeModuleObject (C func-

tion), 40
PyImport_ExecCodeModuleWithPathnames

(C function), 40
PyImport_ExtendInittab (C function), 41
PyImport_FrozenModules (C variable), 41
PyImport_GetImporter (C function), 40
PyImport_GetMagicNumber (C function), 40
PyImport_GetMagicTag (C function), 40
PyImport_GetModule (C function), 40
PyImport_GetModuleDict (C function), 40
PyImport_Import (C function), 39
PyImport_ImportFrozenModule (C function),

41
PyImport_ImportFrozenModuleObject (C

function), 41
PyImport_ImportModule (C function), 38
PyImport_ImportModuleEx (C function), 38
PyImport_ImportModuleLevel (C function), 39
PyImport_ImportModuleLevelObject (C

function), 39
PyImport_ImportModuleNoBlock (C function),

38
PyImport_ReloadModule (C function), 39
PyIndex_Check (C function), 62
PyInstanceMethod_Check (C function), 108
PyInstanceMethod_Function (C function), 108
PyInstanceMethod_GET_FUNCTION (C func-

tion), 109
PyInstanceMethod_New (C function), 108
PyInstanceMethod_Type (C variable), 108
PyInterpreterState (C type), 135
PyInterpreterState_Clear (C function), 137
PyInterpreterState_Delete (C function), 137
PyInterpreterState_GetID (C function), 137
PyInterpreterState_Head (C function), 141
PyInterpreterState_Main (C function), 141
PyInterpreterState_New (C function), 137
PyInterpreterState_Next (C function), 141
PyInterpreterState_ThreadHead (C func-

tion), 141
PyIter_Check (C function), 64
PyIter_Next (C function), 65
PyList_Append (C function), 103
PyList_AsTuple (C function), 103
PyList_Check (C function), 102
PyList_CheckExact (C function), 102
PyList_ClearFreeList (C function), 103
PyList_GET_ITEM (C function), 102

Index 219

The Python/C API, Release 3.7.5

PyList_GET_SIZE (C function), 102
PyList_GetItem (C function), 102
PyList_GetItem(), 7
PyList_GetSlice (C function), 103
PyList_Insert (C function), 103
PyList_New (C function), 102
PyList_Reverse (C function), 103
PyList_SET_ITEM (C function), 103
PyList_SetItem (C function), 102
PyList_SetItem(), 6
PyList_SetSlice (C function), 103
PyList_Size (C function), 102
PyList_Sort (C function), 103
PyList_Type (C variable), 102
PyListObject (C type), 102
PyLong_AsDouble (C function), 77
PyLong_AsLong (C function), 76
PyLong_AsLongAndOverflow (C function), 76
PyLong_AsLongLong (C function), 76
PyLong_AsLongLongAndOverflow (C function),

76
PyLong_AsSize_t (C function), 76
PyLong_AsSsize_t (C function), 76
PyLong_AsUnsignedLong (C function), 76
PyLong_AsUnsignedLongLong (C function), 76
PyLong_AsUnsignedLongLongMask (C func-

tion), 77
PyLong_AsUnsignedLongMask (C function), 77
PyLong_AsVoidPtr (C function), 77
PyLong_Check (C function), 75
PyLong_CheckExact (C function), 75
PyLong_FromDouble (C function), 75
PyLong_FromLong (C function), 75
PyLong_FromLongLong (C function), 75
PyLong_FromSize_t (C function), 75
PyLong_FromSsize_t (C function), 75
PyLong_FromString (C function), 75
PyLong_FromUnicode (C function), 75
PyLong_FromUnicodeObject (C function), 75
PyLong_FromUnsignedLong (C function), 75
PyLong_FromUnsignedLongLong (C function),

75
PyLong_FromVoidPtr (C function), 76
PyLong_Type (C variable), 75
PyLongObject (C type), 75
PyMapping_Check (C function), 64
PyMapping_DelItem (C function), 64
PyMapping_DelItemString (C function), 64
PyMapping_GetItemString (C function), 64
PyMapping_HasKey (C function), 64
PyMapping_HasKeyString (C function), 64
PyMapping_Items (C function), 64
PyMapping_Keys (C function), 64
PyMapping_Length (C function), 64
PyMapping_SetItemString (C function), 64
PyMapping_Size (C function), 64
PyMapping_Values (C function), 64
PyMappingMethods (C type), 172

PyMappingMethods.mp_ass_subscript (C
member), 172

PyMappingMethods.mp_length (C member),
172

PyMappingMethods.mp_subscript (C mem-
ber), 172

PyMarshal_ReadLastObjectFromFile (C
function), 42

PyMarshal_ReadLongFromFile (C function), 42
PyMarshal_ReadObjectFromFile (C function),

42
PyMarshal_ReadObjectFromString (C func-

tion), 42
PyMarshal_ReadShortFromFile (C function),

42
PyMarshal_WriteLongToFile (C function), 42
PyMarshal_WriteObjectToFile (C function),

42
PyMarshal_WriteObjectToString (C func-

tion), 42
PyMem_Calloc (C function), 147
PyMem_Del (C function), 147
PYMEM_DOMAIN_MEM (C variable), 149
PYMEM_DOMAIN_OBJ (C variable), 149
PYMEM_DOMAIN_RAW (C variable), 149
PyMem_Free (C function), 147
PyMem_GetAllocator (C function), 149
PyMem_Malloc (C function), 147
PyMem_New (C function), 147
PyMem_RawCalloc (C function), 146
PyMem_RawFree (C function), 146
PyMem_RawMalloc (C function), 146
PyMem_RawRealloc (C function), 146
PyMem_Realloc (C function), 147
PyMem_Resize (C function), 147
PyMem_SetAllocator (C function), 150
PyMem_SetupDebugHooks (C function), 150
PyMemAllocatorDomain (C type), 149
PyMemAllocatorEx (C type), 149
PyMemberDef (C type), 156
PyMemoryView_Check (C function), 119
PyMemoryView_FromBuffer (C function), 119
PyMemoryView_FromMemory (C function), 119
PyMemoryView_FromObject (C function), 119
PyMemoryView_GET_BASE (C function), 119
PyMemoryView_GET_BUFFER (C function), 119
PyMemoryView_GetContiguous (C function),

119
PyMethod_Check (C function), 109
PyMethod_ClearFreeList (C function), 109
PyMethod_Function (C function), 109
PyMethod_GET_FUNCTION (C function), 109
PyMethod_GET_SELF (C function), 109
PyMethod_New (C function), 109
PyMethod_Self (C function), 109
PyMethod_Type (C variable), 109
PyMethodDef (C type), 155
PyModule_AddFunctions (C function), 115

220 Index

The Python/C API, Release 3.7.5

PyModule_AddIntConstant (C function), 116
PyModule_AddIntMacro (C function), 116
PyModule_AddObject (C function), 115
PyModule_AddStringConstant (C function),

116
PyModule_AddStringMacro (C function), 116
PyModule_Check (C function), 111
PyModule_CheckExact (C function), 111
PyModule_Create (C function), 113
PyModule_Create2 (C function), 113
PyModule_ExecDef (C function), 115
PyModule_FromDefAndSpec (C function), 115
PyModule_FromDefAndSpec2 (C function), 115
PyModule_GetDef (C function), 112
PyModule_GetDict (C function), 111
PyModule_GetFilename (C function), 112
PyModule_GetFilenameObject (C function),

112
PyModule_GetName (C function), 112
PyModule_GetNameObject (C function), 111
PyModule_GetState (C function), 112
PyModule_New (C function), 111
PyModule_NewObject (C function), 111
PyModule_SetDocString (C function), 115
PyModule_Type (C variable), 111
PyModuleDef (C type), 112
PyModuleDef_Init (C function), 114
PyModuleDef_Slot (C type), 114
PyModuleDef_Slot.slot (C member), 114
PyModuleDef_Slot.value (C member), 114
PyModuleDef.m_base (C member), 112
PyModuleDef.m_clear (C member), 113
PyModuleDef.m_doc (C member), 112
PyModuleDef.m_free (C member), 113
PyModuleDef.m_methods (C member), 112
PyModuleDef.m_name (C member), 112
PyModuleDef.m_reload (C member), 113
PyModuleDef.m_size (C member), 112
PyModuleDef.m_slots (C member), 113
PyModuleDef.m_traverse (C member), 113
PyNumber_Absolute (C function), 60
PyNumber_Add (C function), 59
PyNumber_And (C function), 60
PyNumber_AsSsize_t (C function), 62
PyNumber_Check (C function), 59
PyNumber_Divmod (C function), 60
PyNumber_Float (C function), 61
PyNumber_FloorDivide (C function), 60
PyNumber_Index (C function), 61
PyNumber_InPlaceAdd (C function), 60
PyNumber_InPlaceAnd (C function), 61
PyNumber_InPlaceFloorDivide (C function),

61
PyNumber_InPlaceLshift (C function), 61
PyNumber_InPlaceMatrixMultiply (C func-

tion), 61
PyNumber_InPlaceMultiply (C function), 61
PyNumber_InPlaceOr (C function), 61

PyNumber_InPlacePower (C function), 61
PyNumber_InPlaceRemainder (C function), 61
PyNumber_InPlaceRshift (C function), 61
PyNumber_InPlaceSubtract (C function), 61
PyNumber_InPlaceTrueDivide (C function), 61
PyNumber_InPlaceXor (C function), 61
PyNumber_Invert (C function), 60
PyNumber_Long (C function), 61
PyNumber_Lshift (C function), 60
PyNumber_MatrixMultiply (C function), 59
PyNumber_Multiply (C function), 59
PyNumber_Negative (C function), 60
PyNumber_Or (C function), 60
PyNumber_Positive (C function), 60
PyNumber_Power (C function), 60
PyNumber_Remainder (C function), 60
PyNumber_Rshift (C function), 60
PyNumber_Subtract (C function), 59
PyNumber_ToBase (C function), 62
PyNumber_TrueDivide (C function), 60
PyNumber_Xor (C function), 60
PyNumberMethods (C type), 171
PyObject (C type), 154
PyObject_AsCharBuffer (C function), 71
PyObject_ASCII (C function), 57
PyObject_AsFileDescriptor (C function), 111
PyObject_AsReadBuffer (C function), 71
PyObject_AsWriteBuffer (C function), 72
PyObject_Bytes (C function), 57
PyObject_Call (C function), 57
PyObject_CallFunction (C function), 58
PyObject_CallFunctionObjArgs (C function),

58
PyObject_CallMethod (C function), 58
PyObject_CallMethodObjArgs (C function), 58
PyObject_CallObject (C function), 57
PyObject_Calloc (C function), 148
PyObject_CheckBuffer (C function), 70
PyObject_CheckReadBuffer (C function), 71
PyObject_Del (C function), 153
PyObject_DelAttr (C function), 56
PyObject_DelAttrString (C function), 56
PyObject_DelItem (C function), 59
PyObject_Dir (C function), 59
PyObject_Free (C function), 148
PyObject_GC_Del (C function), 175
PyObject_GC_New (C function), 175
PyObject_GC_NewVar (C function), 175
PyObject_GC_Resize (C function), 175
PyObject_GC_Track (C function), 175
PyObject_GC_UnTrack (C function), 175
PyObject_GenericGetAttr (C function), 55
PyObject_GenericGetDict (C function), 56
PyObject_GenericSetAttr (C function), 56
PyObject_GenericSetDict (C function), 56
PyObject_GetArenaAllocator (C function),

151
PyObject_GetAttr (C function), 55

Index 221

The Python/C API, Release 3.7.5

PyObject_GetAttrString (C function), 55
PyObject_GetBuffer (C function), 70
PyObject_GetItem (C function), 59
PyObject_GetIter (C function), 59
PyObject_HasAttr (C function), 55
PyObject_HasAttrString (C function), 55
PyObject_Hash (C function), 58
PyObject_HashNotImplemented (C function),

58
PyObject_HEAD (C macro), 154
PyObject_HEAD_INIT (C macro), 154
PyObject_Init (C function), 153
PyObject_InitVar (C function), 153
PyObject_IsInstance (C function), 57
PyObject_IsSubclass (C function), 57
PyObject_IsTrue (C function), 58
PyObject_Length (C function), 59
PyObject_LengthHint (C function), 59
PyObject_Malloc (C function), 148
PyObject_New (C function), 153
PyObject_NewVar (C function), 153
PyObject_Not (C function), 58
PyObject._ob_next (C member), 159
PyObject._ob_prev (C member), 159
PyObject_Print (C function), 55
PyObject_Realloc (C function), 148
PyObject_Repr (C function), 56
PyObject_RichCompare (C function), 56
PyObject_RichCompareBool (C function), 56
PyObject_SetArenaAllocator (C function),

151
PyObject_SetAttr (C function), 56
PyObject_SetAttrString (C function), 56
PyObject_SetItem (C function), 59
PyObject_Size (C function), 59
PyObject_Str (C function), 57
PyObject_Type (C function), 59
PyObject_TypeCheck (C function), 59
PyObject_VAR_HEAD (C macro), 154
PyObjectArenaAllocator (C type), 151
PyObject.ob_refcnt (C member), 159
PyObject.ob_type (C member), 159
PyOS_AfterFork (C function), 35
PyOS_AfterFork_Child (C function), 35
PyOS_AfterFork_Parent (C function), 35
PyOS_BeforeFork (C function), 35
PyOS_CheckStack (C function), 36
PyOS_double_to_string (C function), 51
PyOS_FSPath (C function), 35
PyOS_getsig (C function), 36
PyOS_InputHook (C variable), 16
PyOS_ReadlineFunctionPointer (C variable),

16
PyOS_setsig (C function), 36
PyOS_snprintf (C function), 50
PyOS_stricmp (C function), 51
PyOS_string_to_double (C function), 50
PyOS_strnicmp (C function), 51

PyOS_vsnprintf (C function), 50
PyParser_SimpleParseFile (C function), 17
PyParser_SimpleParseFileFlags (C func-

tion), 17
PyParser_SimpleParseString (C function), 16
PyParser_SimpleParseStringFlags (C func-

tion), 16
PyParser_SimpleParseStringFlagsFilename

(C function), 17
PyProperty_Type (C variable), 117
PyRun_AnyFile (C function), 15
PyRun_AnyFileEx (C function), 15
PyRun_AnyFileExFlags (C function), 15
PyRun_AnyFileFlags (C function), 15
PyRun_File (C function), 17
PyRun_FileEx (C function), 17
PyRun_FileExFlags (C function), 17
PyRun_FileFlags (C function), 17
PyRun_InteractiveLoop (C function), 16
PyRun_InteractiveLoopFlags (C function), 16
PyRun_InteractiveOne (C function), 16
PyRun_InteractiveOneFlags (C function), 16
PyRun_SimpleFile (C function), 16
PyRun_SimpleFileEx (C function), 16
PyRun_SimpleFileExFlags (C function), 16
PyRun_SimpleString (C function), 15
PyRun_SimpleStringFlags (C function), 15
PyRun_String (C function), 17
PyRun_StringFlags (C function), 17
PySeqIter_Check (C function), 116
PySeqIter_New (C function), 117
PySeqIter_Type (C variable), 116
PySequence_Check (C function), 62
PySequence_Concat (C function), 62
PySequence_Contains (C function), 63
PySequence_Count (C function), 63
PySequence_DelItem (C function), 63
PySequence_DelSlice (C function), 63
PySequence_Fast (C function), 63
PySequence_Fast_GET_ITEM (C function), 63
PySequence_Fast_GET_SIZE (C function), 63
PySequence_Fast_ITEMS (C function), 63
PySequence_GetItem (C function), 62
PySequence_GetItem(), 7
PySequence_GetSlice (C function), 62
PySequence_Index (C function), 63
PySequence_InPlaceConcat (C function), 62
PySequence_InPlaceRepeat (C function), 62
PySequence_ITEM (C function), 63
PySequence_Length (C function), 62
PySequence_List (C function), 63
PySequence_Repeat (C function), 62
PySequence_SetItem (C function), 62
PySequence_SetSlice (C function), 63
PySequence_Size (C function), 62
PySequence_Tuple (C function), 63
PySequenceMethods (C type), 172

222 Index

The Python/C API, Release 3.7.5

PySequenceMethods.sq_ass_item (C mem-
ber), 172

PySequenceMethods.sq_concat (C member),
172

PySequenceMethods.sq_contains (C mem-
ber), 172

PySequenceMethods.sq_inplace_concat (C
member), 173

PySequenceMethods.sq_inplace_repeat (C
member), 173

PySequenceMethods.sq_item (C member), 172
PySequenceMethods.sq_length (C member),

172
PySequenceMethods.sq_repeat (C member),

172
PySet_Add (C function), 107
PySet_Check (C function), 106
PySet_Clear (C function), 107
PySet_ClearFreeList (C function), 107
PySet_Contains (C function), 107
PySet_Discard (C function), 107
PySet_GET_SIZE (C function), 107
PySet_New (C function), 106
PySet_Pop (C function), 107
PySet_Size (C function), 107
PySet_Type (C variable), 106
PySetObject (C type), 106
PySignal_SetWakeupFd (C function), 28
PySlice_AdjustIndices (C function), 118
PySlice_Check (C function), 117
PySlice_GetIndices (C function), 117
PySlice_GetIndicesEx (C function), 118
PySlice_New (C function), 117
PySlice_Type (C variable), 117
PySlice_Unpack (C function), 118
PyState_AddModule (C function), 116
PyState_FindModule (C function), 116
PyState_RemoveModule (C function), 116
PyStructSequence_Desc (C type), 101
PyStructSequence_Field (C type), 101
PyStructSequence_GET_ITEM (C function), 102
PyStructSequence_GetItem (C function), 102
PyStructSequence_InitType (C function), 101
PyStructSequence_InitType2 (C function),

101
PyStructSequence_New (C function), 101
PyStructSequence_NewType (C function), 101
PyStructSequence_SET_ITEM (C function), 102
PyStructSequence_SetItem (C function), 102
PyStructSequence_UnnamedField (C vari-

able), 101
PySys_AddWarnOption (C function), 37
PySys_AddWarnOptionUnicode (C function), 37
PySys_AddXOption (C function), 38
PySys_FormatStderr (C function), 37
PySys_FormatStdout (C function), 37
PySys_GetObject (C function), 37
PySys_GetXOptions (C function), 38

PySys_ResetWarnOptions (C function), 37
PySys_SetArgv (C function), 133
PySys_SetArgv(), 129
PySys_SetArgvEx (C function), 132
PySys_SetArgvEx(), 10, 129
PySys_SetObject (C function), 37
PySys_SetPath (C function), 37
PySys_WriteStderr (C function), 37
PySys_WriteStdout (C function), 37
Python 3000, 188
Python Enhancement Proposals

PEP 1, 187
PEP 7, 3
PEP 238, 19, 182
PEP 278, 190
PEP 302, 182, 185
PEP 343, 181
PEP 362, 180, 187
PEP 383, 89, 90
PEP 384, 13
PEP 393, 82, 88
PEP 411, 188
PEP 420, 182, 186, 187
PEP 442, 170
PEP 443, 183
PEP 451, 114, 182
PEP 484, 179, 183, 189, 190
PEP 489, 114
PEP 492, 180, 181
PEP 498, 182
PEP 519, 187
PEP 525, 180
PEP 526, 179, 190
PEP 528, 129
PEP 529, 90, 129
PEP 539, 141
PEP 3116, 190
PEP 3119, 57
PEP 3121, 112
PEP 3147, 40
PEP 3151, 32
PEP 3155, 188

PYTHON*, 128
PYTHONDEBUG, 128
PYTHONDONTWRITEBYTECODE, 128
PYTHONDUMPREFS, 159
PYTHONHASHSEED, 128
PYTHONHOME, 10, 128, 133
Pythonic, 188
PYTHONINSPECT, 128
PYTHONIOENCODING, 130
PYTHONLEGACYWINDOWSFSENCODING, 129
PYTHONLEGACYWINDOWSSTDIO, 129
PYTHONMALLOC, 146, 149, 150
PYTHONMALLOCSTATS, 146
PYTHONNOUSERSITE, 129
PYTHONOPTIMIZE, 129
PYTHONPATH, 10, 128

Index 223

The Python/C API, Release 3.7.5

PYTHONUNBUFFERED, 129
PYTHONVERBOSE, 129
PyThread_create_key (C function), 143
PyThread_delete_key (C function), 143
PyThread_delete_key_value (C function), 143
PyThread_get_key_value (C function), 143
PyThread_ReInitTLS (C function), 143
PyThread_set_key_value (C function), 143
PyThread_tss_alloc (C function), 142
PyThread_tss_create (C function), 142
PyThread_tss_delete (C function), 142
PyThread_tss_free (C function), 142
PyThread_tss_get (C function), 142
PyThread_tss_is_created (C function), 142
PyThread_tss_set (C function), 142
PyThreadState, 133
PyThreadState (C type), 135
PyThreadState_Clear (C function), 137
PyThreadState_Delete (C function), 137
PyThreadState_Get (C function), 136
PyThreadState_GetDict (C function), 137
PyThreadState_New (C function), 137
PyThreadState_Next (C function), 141
PyThreadState_SetAsyncExc (C function), 137
PyThreadState_Swap (C function), 136
PyTime_Check (C function), 124
PyTime_CheckExact (C function), 124
PyTime_FromTime (C function), 125
PyTime_FromTimeAndFold (C function), 125
PyTimeZone_FromOffset (C function), 125
PyTimeZone_FromOffsetAndName (C function),

125
PyTrace_C_CALL (C variable), 140
PyTrace_C_EXCEPTION (C variable), 140
PyTrace_C_RETURN (C variable), 140
PyTrace_CALL (C variable), 140
PyTrace_EXCEPTION (C variable), 140
PyTrace_LINE (C variable), 140
PyTrace_OPCODE (C variable), 140
PyTrace_RETURN (C variable), 140
PyTuple_Check (C function), 100
PyTuple_CheckExact (C function), 100
PyTuple_ClearFreeList (C function), 101
PyTuple_GET_ITEM (C function), 100
PyTuple_GET_SIZE (C function), 100
PyTuple_GetItem (C function), 100
PyTuple_GetSlice (C function), 100
PyTuple_New (C function), 100
PyTuple_Pack (C function), 100
PyTuple_SET_ITEM (C function), 100
PyTuple_SetItem (C function), 100
PyTuple_SetItem(), 6
PyTuple_Size (C function), 100
PyTuple_Type (C variable), 100
PyTupleObject (C type), 100
PyType_Check (C function), 73
PyType_CheckExact (C function), 73
PyType_ClearCache (C function), 73

PyType_FromSpec (C function), 74
PyType_FromSpecWithBases (C function), 74
PyType_GenericAlloc (C function), 74
PyType_GenericNew (C function), 74
PyType_GetFlags (C function), 73
PyType_GetSlot (C function), 74
PyType_HasFeature (C function), 73
PyType_IS_GC (C function), 74
PyType_IsSubtype (C function), 74
PyType_Modified (C function), 73
PyType_Ready (C function), 74
PyType_Type (C variable), 73
PyTypeObject (C type), 73
PyTypeObject.tp_alloc (C member), 168
PyTypeObject.tp_allocs (C member), 170
PyTypeObject.tp_as_buffer (C member), 163
PyTypeObject.tp_base (C member), 167
PyTypeObject.tp_bases (C member), 169
PyTypeObject.tp_basicsize (C member), 160
PyTypeObject.tp_cache (C member), 170
PyTypeObject.tp_call (C member), 162
PyTypeObject.tp_clear (C member), 164
PyTypeObject.tp_dealloc (C member), 161
PyTypeObject.tp_descr_get (C member), 167
PyTypeObject.tp_descr_set (C member), 167
PyTypeObject.tp_dict (C member), 167
PyTypeObject.tp_dictoffset (C member),

167
PyTypeObject.tp_doc (C member), 164
PyTypeObject.tp_finalize (C member), 169
PyTypeObject.tp_flags (C member), 163
PyTypeObject.tp_free (C member), 169
PyTypeObject.tp_frees (C member), 170
PyTypeObject.tp_getattr (C member), 161
PyTypeObject.tp_getattro (C member), 162
PyTypeObject.tp_getset (C member), 167
PyTypeObject.tp_hash (C member), 162
PyTypeObject.tp_init (C member), 168
PyTypeObject.tp_is_gc (C member), 169
PyTypeObject.tp_itemsize (C member), 160
PyTypeObject.tp_iter (C member), 166
PyTypeObject.tp_iternext (C member), 166
PyTypeObject.tp_maxalloc (C member), 170
PyTypeObject.tp_members (C member), 166
PyTypeObject.tp_methods (C member), 166
PyTypeObject.tp_mro (C member), 169
PyTypeObject.tp_name (C member), 160
PyTypeObject.tp_new (C member), 169
PyTypeObject.tp_next (C member), 170
PyTypeObject.tp_print (C member), 161
PyTypeObject.tp_repr (C member), 161
PyTypeObject.tp_richcompare (C member),

165
PyTypeObject.tp_setattr (C member), 161
PyTypeObject.tp_setattro (C member), 162
PyTypeObject.tp_str (C member), 162
PyTypeObject.tp_subclasses (C member),

170

224 Index

The Python/C API, Release 3.7.5

PyTypeObject.tp_traverse (C member), 164
PyTypeObject.tp_weaklist (C member), 170
PyTypeObject.tp_weaklistoffset (C mem-

ber), 166
PyTZInfo_Check (C function), 124
PyTZInfo_CheckExact (C function), 124
PyUnicode_1BYTE_DATA (C function), 83
PyUnicode_1BYTE_KIND (C macro), 83
PyUnicode_2BYTE_DATA (C function), 83
PyUnicode_2BYTE_KIND (C macro), 83
PyUnicode_4BYTE_DATA (C function), 83
PyUnicode_4BYTE_KIND (C macro), 83
PyUnicode_AS_DATA (C function), 84
PyUnicode_AS_UNICODE (C function), 84
PyUnicode_AsASCIIString (C function), 96
PyUnicode_AsCharmapString (C function), 97
PyUnicode_AsEncodedString (C function), 92
PyUnicode_AsLatin1String (C function), 96
PyUnicode_AsMBCSString (C function), 98
PyUnicode_AsRawUnicodeEscapeString (C

function), 96
PyUnicode_AsUCS4 (C function), 88
PyUnicode_AsUCS4Copy (C function), 88
PyUnicode_AsUnicode (C function), 89
PyUnicode_AsUnicodeAndSize (C function), 89
PyUnicode_AsUnicodeCopy (C function), 89
PyUnicode_AsUnicodeEscapeString (C func-

tion), 95
PyUnicode_AsUTF8 (C function), 93
PyUnicode_AsUTF8AndSize (C function), 93
PyUnicode_AsUTF8String (C function), 93
PyUnicode_AsUTF16String (C function), 94
PyUnicode_AsUTF32String (C function), 94
PyUnicode_AsWideChar (C function), 91
PyUnicode_AsWideCharString (C function), 91
PyUnicode_Check (C function), 83
PyUnicode_CheckExact (C function), 83
PyUnicode_ClearFreeList (C function), 84
PyUnicode_Compare (C function), 99
PyUnicode_CompareWithASCIIString (C

function), 99
PyUnicode_Concat (C function), 98
PyUnicode_Contains (C function), 99
PyUnicode_CopyCharacters (C function), 88
PyUnicode_Count (C function), 99
PyUnicode_DATA (C function), 84
PyUnicode_Decode (C function), 92
PyUnicode_DecodeASCII (C function), 96
PyUnicode_DecodeCharmap (C function), 97
PyUnicode_DecodeFSDefault (C function), 91
PyUnicode_DecodeFSDefaultAndSize (C

function), 90
PyUnicode_DecodeLatin1 (C function), 96
PyUnicode_DecodeLocale (C function), 90
PyUnicode_DecodeLocaleAndSize (C func-

tion), 89
PyUnicode_DecodeMBCS (C function), 98

PyUnicode_DecodeMBCSStateful (C function),
98

PyUnicode_DecodeRawUnicodeEscape (C
function), 96

PyUnicode_DecodeUnicodeEscape (C func-
tion), 95

PyUnicode_DecodeUTF7 (C function), 95
PyUnicode_DecodeUTF7Stateful (C function),

95
PyUnicode_DecodeUTF8 (C function), 92
PyUnicode_DecodeUTF8Stateful (C function),

92
PyUnicode_DecodeUTF16 (C function), 94
PyUnicode_DecodeUTF16Stateful (C func-

tion), 94
PyUnicode_DecodeUTF32 (C function), 93
PyUnicode_DecodeUTF32Stateful (C func-

tion), 93
PyUnicode_Encode (C function), 92
PyUnicode_EncodeASCII (C function), 96
PyUnicode_EncodeCharmap (C function), 97
PyUnicode_EncodeCodePage (C function), 98
PyUnicode_EncodeFSDefault (C function), 91
PyUnicode_EncodeLatin1 (C function), 96
PyUnicode_EncodeLocale (C function), 90
PyUnicode_EncodeMBCS (C function), 98
PyUnicode_EncodeRawUnicodeEscape (C

function), 96
PyUnicode_EncodeUnicodeEscape (C func-

tion), 95
PyUnicode_EncodeUTF7 (C function), 95
PyUnicode_EncodeUTF8 (C function), 93
PyUnicode_EncodeUTF16 (C function), 95
PyUnicode_EncodeUTF32 (C function), 94
PyUnicode_Fill (C function), 88
PyUnicode_Find (C function), 99
PyUnicode_FindChar (C function), 99
PyUnicode_Format (C function), 99
PyUnicode_FromEncodedObject (C function),

87
PyUnicode_FromFormat (C function), 86
PyUnicode_FromFormatV (C function), 87
PyUnicode_FromKindAndData (C function), 86
PyUnicode_FromObject (C function), 89
PyUnicode_FromString (C function), 86
PyUnicode_FromString(), 104
PyUnicode_FromStringAndSize (C function),

86
PyUnicode_FromUnicode (C function), 88
PyUnicode_FromWideChar (C function), 91
PyUnicode_FSConverter (C function), 90
PyUnicode_FSDecoder (C function), 90
PyUnicode_GET_DATA_SIZE (C function), 84
PyUnicode_GET_LENGTH (C function), 83
PyUnicode_GET_SIZE (C function), 84
PyUnicode_GetLength (C function), 88
PyUnicode_GetSize (C function), 89

Index 225

The Python/C API, Release 3.7.5

PyUnicode_InternFromString (C function),
100

PyUnicode_InternInPlace (C function), 100
PyUnicode_Join (C function), 99
PyUnicode_KIND (C function), 83
PyUnicode_MAX_CHAR_VALUE (C function), 84
PyUnicode_New (C function), 86
PyUnicode_READ (C function), 84
PyUnicode_READ_CHAR (C function), 84
PyUnicode_ReadChar (C function), 88
PyUnicode_READY (C function), 83
PyUnicode_Replace (C function), 99
PyUnicode_RichCompare (C function), 99
PyUnicode_Split (C function), 98
PyUnicode_Splitlines (C function), 98
PyUnicode_Substring (C function), 88
PyUnicode_Tailmatch (C function), 99
PyUnicode_TransformDecimalToASCII (C

function), 89
PyUnicode_Translate (C function), 97, 98
PyUnicode_TranslateCharmap (C function), 97
PyUnicode_Type (C variable), 83
PyUnicode_WCHAR_KIND (C macro), 83
PyUnicode_WRITE (C function), 84
PyUnicode_WriteChar (C function), 88
PyUnicodeDecodeError_Create (C function),

29
PyUnicodeDecodeError_GetEncoding (C

function), 30
PyUnicodeDecodeError_GetEnd (C function),

30
PyUnicodeDecodeError_GetObject (C func-

tion), 30
PyUnicodeDecodeError_GetReason (C func-

tion), 30
PyUnicodeDecodeError_GetStart (C func-

tion), 30
PyUnicodeDecodeError_SetEnd (C function),

30
PyUnicodeDecodeError_SetReason (C func-

tion), 30
PyUnicodeDecodeError_SetStart (C func-

tion), 30
PyUnicodeEncodeError_Create (C function),

30
PyUnicodeEncodeError_GetEncoding (C

function), 30
PyUnicodeEncodeError_GetEnd (C function),

30
PyUnicodeEncodeError_GetObject (C func-

tion), 30
PyUnicodeEncodeError_GetReason (C func-

tion), 30
PyUnicodeEncodeError_GetStart (C func-

tion), 30
PyUnicodeEncodeError_SetEnd (C function),

30
PyUnicodeEncodeError_SetReason (C func-

tion), 30
PyUnicodeEncodeError_SetStart (C func-

tion), 30
PyUnicodeObject (C type), 83
PyUnicodeTranslateError_Create (C func-

tion), 30
PyUnicodeTranslateError_GetEnd (C func-

tion), 30
PyUnicodeTranslateError_GetObject (C

function), 30
PyUnicodeTranslateError_GetReason (C

function), 30
PyUnicodeTranslateError_GetStart (C

function), 30
PyUnicodeTranslateError_SetEnd (C func-

tion), 30
PyUnicodeTranslateError_SetReason (C

function), 30
PyUnicodeTranslateError_SetStart (C

function), 30
PyVarObject (C type), 154
PyVarObject_HEAD_INIT (C macro), 154
PyVarObject.ob_size (C member), 160
PyWeakref_Check (C function), 119
PyWeakref_CheckProxy (C function), 119
PyWeakref_CheckRef (C function), 119
PyWeakref_GET_OBJECT (C function), 120
PyWeakref_GetObject (C function), 120
PyWeakref_NewProxy (C function), 120
PyWeakref_NewRef (C function), 119
PyWrapper_New (C function), 117

Q
qualified name, 188

R
realloc(), 145
reference count, 188
regular package, 188
repr

built-in function, 56, 161

S
sdterr

stdin stdout, 130
search

path, module, 10, 129, 131
sequence, 189

object, 79
set

object, 106
set_all(), 7
setswitchinterval() (in module sys), 133
SIGINT, 28
signal

module, 28
single dispatch, 189
SIZE_MAX, 76

226 Index

The Python/C API, Release 3.7.5

slice, 189
special

method, 189
special method, 189
statement, 189
staticmethod

built-in function, 156
stderr (in module sys), 138
stdin

stdout sdterr, 130
stdin (in module sys), 138
stdout

sdterr, stdin, 130
stdout (in module sys), 138
strerror(), 24
string

PyObject_Str (C function), 57
sum_list(), 7
sum_sequence(), 8, 9
sys

module, 10, 129, 138
SystemError (built-in exception), 111, 112

T
text encoding, 189
text file, 189
tp_as_async (C member), 161
tp_as_mapping (C member), 162
tp_as_number (C member), 162
tp_as_sequence (C member), 162
traverseproc (C type), 176
triple-quoted string, 189
tuple

built-in function, 63, 103
object, 100

type, 189
built-in function, 59
object, 5, 73

type alias, 189
type hint, 189

U
ULONG_MAX, 76
universal newlines, 190

V
variable annotation, 190
version (in module sys), 132
virtual environment, 190
virtual machine, 190
visitproc (C type), 175

Z
Zen of Python, 190

Index 227

	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	Stable Application Binary Interface
	The Very High Level Layer
	Reference Counting
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	String conversion and formatting
	Reflection
	Codec registry and support functions

	Abstract Objects Layer
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Numeric Objects
	Sequence Objects
	Container Objects
	Function Objects
	Other Objects

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support

	Memory Management
	Overview
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	The pymalloc allocator
	tracemalloc C API
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Supporting Cyclic Garbage Collection

	API and ABI Versioning
	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

