Instrumenting CPython with DTrace
and SystemTap

Release 3.7.5

Guido van Rossum
and the Python development team

October 24, 2019

Python Software Foundation
Email: docs@python.org

Contents

1 Enabling the static markers 2
2 Static DTrace probes 3
3 Static SystemTap markers 4
4 Available static markers 5
5 SystemTap Tapsets 6
6 Examples 7
Index 8

author David Malcolm
author Lukasz Langa

DTrace and SystemTap are monitoring tools, each providing a way to inspect what the processes on a computer
system are doing. They both use domain-specific languages allowing a user to write scripts which:

« filter which processes are to be observed
* gather data from the processes of interest
* generate reports on the data

As of Python 3.6, CPython can be built with embedded “markers”, also known as “probes”, that can be observed by
a DTrace or SystemTap script, making it easier to monitor what the CPython processes on a system are doing.

CPython implementation detail: DTrace markers are implementation details of the CPython interpreter. No guar-
antees are made about probe compatibility between versions of CPython. DTrace scripts can stop working or work
incorrectly without warning when changing CPython versions.

1 Enabling the static markers

macOS comes with built-in support for DTrace. On Linux, in order to build CPython with the embedded markers
for SystemTap, the SystemTap development tools must be installed.

On a Linux machine, this can be done via:

’$ yum install systemtap-sdt-devel

or:

’$ sudo apt-get install systemtap-sdt-dev

CPython must then be configured —-with-dtrace:

’checking for —-with-dtrace... yes

On macOS, you can list available DTrace probes by running a Python process in the background and listing all probes
made available by the Python provider:

$ python3.6 -g &
$ sudo dtrace -1 -P python$! # or: dtrace -1 -m python3.6

ID PROVIDER MODULE FUNCTION NAME
29564 python18035 python3.6 _PyEval_EvalFrameDefault function-entry
29565 python18035 python3.6 dtrace_function_entry function-entry
29566 pythonl18035 python3.6 _PyEval_EvalFrameDefault function-
—return
29567 pythonl18035 python3.6 dtrace_function_return function-
—return
29568 pythonl18035 python3.6 collect gc-done
29569 python18035 python3.6 collect gc-start
29570 pythonl18035 python3.6 _PyEval_FEvalFrameDefault line
29571 python18035 python3.6 maybe_dtrace_line line

On Linux, you can verify if the SystemTap static markers are present in the built binary by seeing if it contains a
“.note.stapsdt” section.

$ readelf -S ./python | grep .note.stapsdt
[30] .note.stapsdt NOTE 0000000000000000 00308d78

If you’ve built Python as a shared library (with —enable-shared), you need to look instead within the shared library.
For example:

$ readelf -S libpython3.3dm.so.1.0 | grep .note.stapsdt
[29] .note.stapsdt NOTE 0000000000000000 00365b68

Sufficiently modern readelf can print the metadata:

$ readelf -n ./python

Displaying notes found at file offset 0x00000254 with length 0x00000020:
Owner Data size Description
GNU 0x00000010 NT_GNU_ABI_TAG (ABI version tag)
0S: Linux, ABI: 2.6.32

Displaying notes found at file offset 0x00000274 with length 0x00000024:

Owner Data size Description
GNU 0x00000014 NT_GNU_BUILD_ID (unique build ID.
—bitstring)

Build ID: df924a2b08a7e89f6e11251d4602022977a£2670

(continues on next page)

(continued from previous page)

Displaying notes found at file offset 0x002d6c30 with length 0x00000144:

Owner Data size Description
stapsdt 0x00000031 NT_STAPSDT (SystemTap probe.
—descriptors)

Provider: python

Name: gc__start

Location: 0x00000000004371c3, Base: 0x0000000000630ce2, Semaphore:.
—0x00000000008d6b£6

Arguments: -4Q@%ebx
stapsdt 0x00000030 NT_STAPSDT (SystemTap probe.
—descriptors)

Provider: python

Name: gc__done

Location: 0x00000000004374el, Base: 0x0000000000630ce2, Semaphore:.
—0x00000000008d6bf8

Arguments: -8@%rax
stapsdt 0x00000045 NT_STAPSDT (SystemTap probe.
—descriptors)

Provider: python

Name: function__entry

Location: 0x000000000053db6c, Base: 0x0000000000630ce2, Semaphore:.
—0x00000000008d6be8

Arguments: 8@%rbp 8@%rl2 -4Q@%eax

stapsdt 0x00000046 NT_STAPSDT (SystemTap probe.

—descriptors)

Provider: python

Name: function__ return

Location: 0x000000000053dba8, Base: 0x0000000000630ce2, Semaphore:.
—0x00000000008d6bea

Arguments: 8@%rbp 8@%rl2 -4@%eax

The above metadata contains information for SystemTap describing how it can patch strategically-placed machine
code instructions to enable the tracing hooks used by a SystemTap script.

2 Static DTrace probes

The following example DTrace script can be used to show the call/return hierarchy of a Python script, only tracing
within the invocation of a function called “start”. In other words, import-time function invocations are not going to
be listed:

self int indent;

python$target:::function-entry
/copyinstr (argl) == "start"/
{

self->trace = 1;

python$target:::function-entry
/self->trace/
{
printf ("$d\t%*s:", timestamp, 15, probename);
printf ("$*s", self->indent, "");
printf ("$s:%s:%d\n", basename (copyinstr (arg0)), copyinstr (argl), arg2);
self->indent++;

python$target:::function-return

(continues on next page)

(continued from previous page)

/self->trace/
{

self->indent-—;

printf(

printf(

printf(
}
python$target::

/copyinstr (argl
{
self->t

"sd\ts*s:",

no w
s*s",

"$s:%s:%d\n",

:function-return
)y == "start"/

race = 0;

timestamp,
self->indent,
basename (copyinstr (arg0)),

15,

""),.

probename) ;

copyinstr (argl), arg2);

It can be invoked like this:

$ sudo dtrace -

q -s

call_stack.d -c

"python3.6 script.py"

The output looks like this:

156641360502280
156641360518804
156641360532797
156641360546807
156641360563367
156641360578365
156641360591757
156641360605556
156641360617482
156641360629814
156641360642285
156641360656770
156641360669707
156641360687853
156641360700719
156641360719640
156641360732567
156641360747370

function-entry

function-entry:
function-entry:
function-return:
function-return:
function-entry:
function-entry:
function-entry:
function-return:
function-return:
function-return:
function-entry:
function-return:
function-entry:
function-return:
function-entry:
function-return:

function-return

:call_stack.py:start:23

call_stack
call_stack
call_stack
call_stack
call_stack
call_stack
call_stack

:function_4:

call_stack.py:function_1:1
call_stack.py:function_3:9
call_stack.py:function_3:10
call_stack.py:function_1:2
call_stack.py:function_2:5
call_stack.py:function_1:1
call_stack.py:function_3:9
call_stack.py:function_3:10
call_stack.py:function_1:2
.py:
.py:
.py:
-Py
.py:
.py:
.py:

function_2:6

function_3:9

function_3:10
13
14
18
21

function_4:
function_5:
function_5:

:call_stack.py:start:28

3 Static SystemTap markers

The low-level way to use the SystemTap integration is to use the static markers directly. This requires you to explicitly
state the binary file containing them.

For example, this SystemTap script can be used to show the call/return hierarchy of a Python script:

probe process ("python") .mark ("function__entry") {
filename = user_string($argl);
funcname = user_string($arg2);
lineno = $arg3;
printf ("$s => %s in %s:%d\\n",
thread_indent (1), funcname, filename, lineno);
}
probe process ("python") .mark ("function__return") {
filename = user_string($argl);
funcname = user_string($arg?);
lineno = $arg3;

(continues on next page)

(continued from previous page)

printf ("%$s <= %s in $%$s:%d\\n",
thread_indent (-1), funcname, filename, lineno);

It can be invoked like this:

$ stap \
show—-call-hierarchy.stp \
-c "./python test.py"

The output looks like this:

11408 python (8274) => __ _contains__ in Lib/_abcoll.py:362
11414 python(8274) => __getitem__ in Lib/os.py:425
11418 python (8274) : => encode in Lib/os.py:490

11424 python (8274) : <= encode in Lib/os.py:493

11428 python(8274) <= __getitem__ in Lib/os.py:426
11433 python (8274) <= _ contains__ in Lib/_abcoll.py:366

where the columns are:
* time in microseconds since start of script
* name of executable
* PID of process
and the remainder indicates the call/return hierarchy as the script executes.

For a —enable-shared build of CPython, the markers are contained within the libpython shared library, and the probe’s
dotted path needs to reflect this. For example, this line from the above example:

’probe process ("python") .mark ("function__entry") { ‘

should instead read:

’probe process ("python") .library ("libpython3.6dm.s0.1.0") .mark ("function__entry") { ‘

(assuming a debug build of CPython 3.6)

4 Available static markers

function__entry (str filename, str funcname, int lineno)
This marker indicates that execution of a Python function has begun. It is only triggered for pure-Python
(bytecode) functions.

The filename, function name, and line number are provided back to the tracing script as positional arguments,
which must be accessed using $argl, $arg2, $arg3:

e Sargl: (const char *) filename, accessible using user_string ($argl)
* Sarg2: (const char *) function name, accessible using user_string ($arg2)
e Sarg3: int line number

function__return (str filename, str funcname, int lineno)
This marker is the converse of function__entry (), and indicates that execution of a Python function
has ended (either via return, or via an exception). It is only triggered for pure-Python (bytecode) functions.

The arguments are the same as for function__entry ()

line (str filename, str funcname, int lineno)
This marker indicates a Python line is about to be executed. It is the equivalent of line-by-line tracing with a
Python profiler. It is not triggered within C functions.

The arguments are the same as for function__entry().

gc___start (int generation)
Fires when the Python interpreter starts a garbage collection cycle. arg0 is the generation to scan, like gc .
collect ().

gc__done (long collected)
Fires when the Python interpreter finishes a garbage collection cycle. argO0 is the number of collected objects.

import__find__load__start (str modulename)
Fires before import1ib attempts to find and load the module. arg0 is the module name.

New in version 3.7.

import__find__load__done (str modulename, int found)
Fires after import1ib’s find_and_load function is called. argQ is the module name, argl indicates if
module was successfully loaded.

New in version 3.7.

5 SystemTap Tapsets

The higher-level way to use the SystemTap integration is to use a “tapset”: SystemTap’s equivalent of a library, which
hides some of the lower-level details of the static markers.

Here is a tapset file, based on a non-shared build of CPython:

/*
Provide a higher-level wrapping around the function__entry and
function_ return markers:
*/
probe python.function.entry = process ("python") .mark ("function__entry")

{

filename = user_string($argl);
funcname = user_string($arg2);
lineno = $arg3;

frameptr = S$argd
}
probe python.function.return = process ("python") .mark ("function__return")
{

filename = user_string($argl);

funcname = user_string($arg2);

lineno = $arg3;

frameptr = $arg4

If this file is installed in SystemTap’s tapset directory (e.g. /usr/share/systemtap/tapset), then these
additional probepoints become available:

python. function.entry (str filename, str funcname, int lineno, frameptr)
This probe point indicates that execution of a Python function has begun. It is only triggered for pure-Python
(bytecode) functions.

python. function. return (str filename, str funcname, int lineno, frameptr)
This probe point is the converse of python. function.return (), and indicates that execution of a
Python function has ended (either via return, or via an exception). It is only triggered for pure-Python
(bytecode) functions.

6 Examples

This SystemTap script uses the tapset above to more cleanly implement the example given above of tracing the Python
function-call hierarchy, without needing to directly name the static markers:

probe python.function.entry
{
printf ("$s => %s in %s:%d\n",
thread_indent (1), funcname, filename, lineno);

probe python.function.return
{
printf ("$s <= %s in %s:%d\n",
thread_indent (-1), funcname, filename, lineno);

The following script uses the tapset above to provide a top-like view of all running CPython code, showing the top
20 most frequently-entered bytecode frames, each second, across the whole system:

global fn_calls;

probe python.function.entry
{

fn_calls[pid(), filename, funcname, lineno] += 1;

probe timer.ms (1000) {
printf ("\033[2J\033[1;1H") /* clear screen */
printf ("$6s %80s %$6s %$30s %$6s\n",
"pID", "FILENAME", "LINE", "FUNCTION", "CALLS")
foreach ([pid, filename, funcname, lineno] in fn_calls- limit 20) {
printf ("$6d %$80s %6d %$30s %6d\n",
pid, filename, lineno, funcnamne,
fn_calls[pid, filename, funcname, lineno]);
}
delete fn_calls;

Index
F

function__entry (C function), 5
function__return (C function), 5

G

gc__done (C function), 6
gc__start (C function), 6

import__find__load__done (C function), 6
import__find__load__start (C function), 6

L

line (C function), 5

P

python. function.entry (C function), 6
python. function.return (C function), 6

	Enabling the static markers
	Static DTrace probes
	Static SystemTap markers
	Available static markers
	SystemTap Tapsets
	Examples
	Index

