
Wiley
Pace

SECOND
EDITION

US $39.99

Shelve in:
Programming Languages/General

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning R
Beginning R, Second Edition is a hands-on book showing how to use the R language, write
and save R scripts, read in data files, and write custom statistical functions as well as use
built in functions. This book shows the use of R in specific cases such as one-way ANOVA
analysis, linear and logistic regression, data visualization, parallel processing, bootstrapping,
and more. It takes a hands-on, example-based approach incorporating best practices with
clear explanations of the statistics being done. It has been completely re-written since the
first edition to make use of the latest packages and features in R version 3.

R is a powerful open-source language and programming environment for statistics and
has become the de facto standard for doing, teaching, and learning computational statistics.

R is both an object-oriented language and a functional language that is easy to
learn, easy to use, and completely free. A large community of dedicated R users and
programmers provides an excellent source of R code, functions, and data sets, with a
constantly evolving ecosystem of packages providing new functionality for data analysis.
R has also become popular in commercial use at companies such as Microsoft, Google,
and Oracle. Your investment in learning R is sure to pay off in the long term as R continues
to grow into the go to language for data analysis and research.

• How to acquire and install R
• Hot to import and export data and scripts
• How to analyze data and generate graphics
• How to program in R to write custom functions
• Hot to use R for interactive statistical explorations
• How to conduct bootstrapping and other advanced techniques

9 781484 203743

53999
ISBN 978-1-4842-0374-3

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning R
An Introduction to Statistical

Programming

Second Edition

Dr. Joshua F. Wiley

Larry A. Pace

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning R

Copyright © 2015 by Dr. Joshua F. Wiley and the estate of Larry A. Pace

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0374-3

ISBN-13 (electronic): 978-1-4842-0373-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Sarah Stowell
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com/9781484203743. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springer.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484203743
www.apress.com/source-code/
http://www.it-ebooks.info/

To Family.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author��xv

In Memoriam��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Introduction���xxiii

■■Chapter 1: Getting Star ted�� 1

■■Chapter 2: Dealing with Dates, Strings, and Data Frames������������������������������������ 15

■■Chapter 3: Input and Output��� 27

■■Chapter 4: Control Structures��� 35

■■Chapter 5: Functional Programming�� 43

■■Chapter 6: Probability Distributions��� 53

■■Chapter 7: Working with Tables�� 67

■■Chapter 8: Descriptive Statistics and Exploratory Data Analysis������������������������� 73

■■Chapter 9: Working with Graphics�� 81

■■Chapter 10: Traditional Statistical Methods��� 93

■■Chapter 11: Modern Statistical Methods�� 101

■■Chapter 12: Analysis of Variance��� 111

■■Chapter 13: Correlation and Regression��� 121

■■Chapter 14: Multiple Regression�� 139

■■Chapter 15: Logistic Regression��� 163

www.it-ebooks.info

http://www.it-ebooks.info/

vi

■ Contents at a Glance

■■Chapter 16: Modern Statistical Methods II��� 193

■■Chapter 17: Data Visualization Cookbook�� 215

■■Chapter 18: High-Performance Computing��� 279

■■Chapter 19: Text Mining��� 303

Index�� 321

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author��xv

In Memoriam��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Introduction���xxiii

■■Chapter 1: Getting Star ted�� 1

1.1 What is R, Anyway?��� 1

1.2 A First R Session��� 3

1.3 Your Second R Session�� 6

1.3.1 Working with Indexes��� 6

1.3.2 Representing Missing Data in R��� 7

1.3.3 Vectors and Vectorization in R�� 8

1.3.4 A Brief Introduction to Matrices�� 9

1.3.5 More on Lists�� 11

1.3.6 A Quick Introduction to Data Frames�� 12

■■Chapter 2: Dealing with Dates, Strings, and Data Frames������������������������������������ 15

2.1 Working with Dates and Times�� 15

2.2 Working with Strings��� 16

2.3 Working with Data Frames in the Real World�� 18

2.3.1 Finding and Subsetting Data�� 19

2.4 Manipulating Data Structures��� 21

2.5 The Hard Work of Working with Larger Datasets��� 22

www.it-ebooks.info

http://www.it-ebooks.info/

viii

■ Contents

■■Chapter 3: Input and Output��� 27

3.1 R Input��� 27

3.1.1 The R Editor�� 28

3.1.2 The R Data Editor�� 29

3.1.3 Other Ways to Get Data Into R�� 30

3.1.4 Reading Data from a File�� 31

3.1.5 Getting Data from the Web��� 31

3.2 R Output�� 33

3.2.1 Saving Output to a File��� 33

■■Chapter 4: Control Structures��� 35

4.1 Using Logic�� 35

4.2 Flow Control�� 36

4.2.1 Explicit Looping�� 36

4.2.2 Implicit Looping�� 38

4.3 If, If-Else, and ifelse( ) Statements��� 41

■■Chapter 5: Functional Programming�� 43

5.1 Scoping Rules��� 44

5.2 Reserved Names and Syntactically Correct Names�� 45

5.3 Functions and Arguments��� 46

5.4 Some Example Functions�� 47

5.4.1 Guess the Number�� 47

5.4.2 A Function with Arguments�� 48

5.5 Classes and Methods�� 49

5.5.1 S3 Class and Method Example��� 49

5.5.2 S3 Methods for Existing Classes�� 50

www.it-ebooks.info

http://www.it-ebooks.info/

ix

■ Contents

■■Chapter 6: Probability Distributions��� 53

6.1 Discrete Probability Distributions�� 53

6.2 The Binomial Distribution�� 54

6.2.1 The Poisson Distribution��� 57

6.2.2 Some Other Discrete Distributions��� 58

6.3 Continuous Probability Distributions��� 58

6.3.1 The Normal Distribution�� 58

6.3.2 The t Distribution�� 61

6.3.3 The t distribution��� 63

6.3.4 The Chi-Square Distribution��� 64

References�� 65

■■Chapter 7: Working with Tables�� 67

7.1 Working with One-Way Tables��� 67

7.2 Working with Two-Way Tables��� 71

■■Chapter 8: Descriptive Statistics and Exploratory Data Analysis������������������������� 73

8.1 Central Tendency��� 73

8.1.1 The Mean�� 73

8.1.2 The Median��� 74

8.1.3 The Mode�� 75

8.2 Variability��� 76

8.2.1 The Range��� 76

8.2.2 The Variance and Standard Deviation��� 77

8.3 Boxplots and Stem-and-Leaf Displays�� 78

8.4 Using the fBasics Package for Summary Statistics�� 79

References�� 80

www.it-ebooks.info

http://www.it-ebooks.info/

x

■ Contents

■■Chapter 9: Working with Graphics�� 81

9.1 Creating Effective Graphics��� 81

9.2 Graphing Nominal and Ordinal Data�� 82

9.3 Graphing Scale Data�� 84

9.3.1 Boxplots Revisited�� 84

9.3.2 Histograms and Dotplots�� 86

9.3.3 Frequency Polygons and Smoothed Density Plots�� 87

9.3.4 Graphing Bivariate Data�� 89

References�� 92

■■Chapter 10: Traditional Statistical Methods��� 93

10.1 Estimation and Confidence Intervals��� 93

10.1.1 Confidence Intervals for Means�� 93

10.1.2 Confidence Intervals for Proportions�� 94

10.1.3 Confidence Intervals for the Variance��� 95

10.2 Hypothesis Tests with One Sample��� 96

10.3 Hypothesis Tests with Two Samples�� 98

References�� 100

■■Chapter 11: Modern Statistical Methods�� 101

11.1 The Need for Modern Statistical Methods��� 101

11.2 A Modern Alternative to the Traditional t Test�� 102

11.3 Bootstrapping�� 104

11.4 Permutation Tests�� 107

References�� 109

www.it-ebooks.info

http://www.it-ebooks.info/

xi

■ Contents

■■Chapter 12: Analysis of Variance��� 111

12.1 Some Brief Background�� 111

12.2 One-Way ANOVA�� 112

12.3 Two-Way ANOVA�� 114

12.3.1 Repeated-Measures ANOVA�� 115

> results <- aov (fitness ~ time + Error (id / time), data = repeated) �� 116

12.3.2 Mixed-Model ANOVA��� 118

References�� 120

■■Chapter 13: Correlation and Regression��� 121

13.1 Covariance and Correlation��� 121

13.2 Linear Regression: Bivariate Case��� 123

13.3 An Extended Regression Example: Stock Screener��� 129

13.3.1 Quadratic Model: Stock Screener��� 131

13.3.2 A Note on Time Series�� 134

13.4 Confidence and Prediction Intervals�� 135

References�� 137

■■Chapter 14: Multiple Regression�� 139

14.1 The Conceptual Statistics of Multiple Regression��� 139

14.2 GSS Multiple Regression Example�� 141

14.2.1 Exploratory Data Analysis��� 141

14.2.2 Linear Model (the First)�� 147

14.2.3 Adding the Next Predictor��� 149

14.2.4 Adding More Predictors�� 151

14.2.5 Presenting Results�� 158

14.3 Final Thoughts��� 161

References�� 161

www.it-ebooks.info

http://www.it-ebooks.info/

xii

■ Contents

■■Chapter 15: Logistic Regression��� 163

15.1 The Mathematics of Logistic Regression�� 163

15.2 Generalized Linear Models�� 164

15.3 An Example of Logistic Regression��� 165

15.3.1 What If We Tried a Linear Model on Age?��� 166

15.3.2 Seeing If Age Might Be Relevant with Chi Square�� 167

15.3.3 Fitting a Logistic Regression Model��� 168

15.3.4 The Mathematics of Linear Scaling of Data�� 169

15.3.5 Logit Model with Rescaled Predictor�� 170

15.3.6 Multivariate Logistic Regression�� 174

15.4 Ordered Logistic Regression��� 179

15.4.1 Parallel Ordered Logistic Regression�� 180

15.4.2 Non-Parallel Ordered Logistic Regression�� 184

15.5 Multinomial Regression��� 187

References�� 192

■■Chapter 16: Modern Statistical Methods II��� 193

16.1 Philosophy of Parameters��� 193

16.2 Nonparametric Tests��� 194

16.2.1 Wilcoxon-Signed-Rank Test�� 194

16.2.2 Spearman’s Rho��� 195

16.2.3 Kruskal-Wallis Test��� 196

16.2.4 One-Way Test�� 198

16.3 Bootstrapping�� 199

16.3.1 Examples from mtcars��� 200

16.3.2 Bootstrapping Confidence Intervals��� 203

16.3.3 Examples from GSS�� 206

16.4 Final Thought��� 213

References�� 213

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

■ Contents

■■Chapter 17: Data Visualization Cookbook�� 215

17.1 Required Packages��� 215

17.2 Univariate Plots��� 215

17.3 Customizing and Polishing Plots��� 226

17.4 Multivariate Plots�� 243

17.5 Multiple Plots�� 266

17.6 Three-Dimensional Graphs�� 272

References�� 277

■■Chapter 18: High-Performance Computing��� 279

18.1 Data��� 279

18.2 Parallel Processing�� 293

18.2.1 Other Parallel Processing Approaches�� 296

References�� 301

■■Chapter 19: Text Mining��� 303

19.1 Installing Needed Packages and Software�� 304

19.1.1 Java�� 304

19.1.2 PDF Software�� 305

19.1.3 R Packages��� 305

19.1.4 Some Needed Files��� 305

19.2 Text Mining�� 306

19.2.1 Word Clouds and Transformations�� 307

19.2.2 PDF Text Input��� 311

19.2.3 Google News Input��� 312

19.2.4 Topic Models��� 313

19.3 Final Thoughts��� 320

References�� 320

Index�� 321

www.it-ebooks.info

http://www.it-ebooks.info/

xv

About the Author

Joshua Wiley is a research fellow at the Mary MacKillop Institute for
Health Research at the Australian Catholic University and a senior partner
at Elkhart Group Limited, a statistical consultancy. He earned his Ph.D.
from the University of California, Los Angeles. His research focuses
on using advanced quantitative methods to understand the complex
interplays of psychological, social, and physiological processes in relation
to psychological and physical health. In statistics and data science, Joshua
focuses on biostatistics and is interested in reproducible research and
graphical displays of data and statistical models. Through consulting
at Elkhart Group Limited and his former work at the UCLA Statistical
Consulting Group, Joshua has supported a wide array of clients ranging
from graduate students to experienced researchers and biotechnology
companies. He also develops or co-develops a number of R packages
including varian, a package to conduct Bayesian scale-location structural
equation models, and MplusAutomation, a popular package that links R to
the commercial Mplus software.

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

In Memoriam

Larry Pace was a statistics author, educator, and consultant. He lived in
the upstate area of South Carolina in the town of Anderson. He earned his
Ph.D. from the University of Georgia in psychometrics (applied statistics)
with a content major in industrial-organizational psychology. He wrote
more than 100 publications including books, articles, chapters, and book
and test reviews. In addition to a 35-year academic career, Larry worked in
private industry as a personnel psychologist and organization effectiveness
manager for Xerox Corporation, and as an organization development
consultant for a private consulting firm. He programmed in a variety of
languages and scripting languages including FORTRAN-IV, BASIC, APL,
C++, JavaScript, Visual Basic, PHP, and ASP. Larry won numerous awards
for teaching, research, and service. When he passed, he was a Graduate
Research Professor at Keiser University, where he taught doctoral courses
in statistics and research. He also taught adjunct classes for Clemson
University. Larry and his wife, Shirley, were volunteers with Meals on
Wheels and avid pet lovers—six cats and one dog, all rescued.

Larry wrote the first edition of Beginning R, as well as the beginning chapters of this second edition. He
passed away on April 8, 2015.

Larry was married to Shirley Pace. He also leaves four grown children and two grandsons.

www.it-ebooks.info

http://www.it-ebooks.info/

xix

About the Technical Reviewer

Sarah Stowell is a contract statistician based in the UK. Previously, she
has worked with Mitsubishi Pharma Europe, MDSL International, and
GlaxoSmithKline. She holds a master of science degree in statistics.

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

Acknowledgments

I would like to acknowledge my coauthor, Larry Pace. This book would never have been without him, and
my heart goes out to his family and friends.

I would also like to thank my brother, Matt, who spent many hours reading drafts and discussing how
best to convey the ideas. When I needed an opinion about how to phrase something, he unflinchingly
brought several ideas to the table (sometimes too many).

www.it-ebooks.info

http://www.it-ebooks.info/

xxiii

Introduction

This book is about the R programming language. Maybe more important, this book is for you.
These days, R is an impressively robust language for solving problems that lend themselves to statistical

programming methods. There is a large community of users and developers of this language, and together
we are able to accomplish things that were not possible before we virtually met.

Of course, to leverage this collective knowledge, we have to start somewhere. Chapters 1 through 5
focus on gaining familiarity with the R language itself. If you have prior experience in programming, these
chapters will be very easy for you. If you have no prior programming experience, that is perfectly fine.
We build from the ground up, and let us suggest you spend some thoughtful time here. Thinking like a
programmer has some very great advantages. It is a skill we would want you to have, and this book is,
after all, for you.

Chapters 6 through 10 focus on what might be termed elementary statistical methods in R. We did not
have the space to introduce those methods in their entirety—we are supposing some knowledge of statistics.
An introductory or elementary course for nonmajors would be more than enough. If you are already familiar
with programming and statistics, we suggest you travel through these chapters only briefly.

With Chapter 11, we break into the last part of the book. For someone with both a fair grasp of traditional
statistics and some programming experience, this may well be a good place to start. For our readers who
read through from the first pages, this is where it starts to get very exciting. From bootstrapping to logistic
regression to data visualization to high-performance computing, these last chapters have hands-on examples
that work through some much applied and very interesting examples.

One final note: While we wrote this text from Chapter 1 to Chapter 19 in order, the chapters are fairly
independent of each other. Don't be shy about skipping to the chapter you're most interested in learning.
We show all our code, and you may well be able to modify what we have to work with what you have.

Happy reading!

www.it-ebooks.info

http://www.it-ebooks.info/

1

Chapter 1

Getting Star ted

There are compelling reasons to use R. Enthusiastic users, programmers, and contributors support R and its
development. A dedicated core team of R experts maintains the language. R is accurate, produces excellent
graphics, has a variety of built-in functions, and is both a functional language and an object-oriented one.
There are (literally) thousands of contributed packages available to R users for specialized data analyses.

Developing from a novice into a more competent user of R may take as little as three months by only
using R on a part-time basis (disclaimer: n = 1). Realistically, depending on background, your development
may take days, weeks, months, or even a few years, depending on how often you use R and how quickly
you can learn its many intricacies. R users often develop into R programmers who write R functions, and R
programmers sometimes want to develop into R contributors, who write packages that help others with
their data analysis needs. You can stop anywhere on that journey you like, but if you finish this book and
follow good advice, you will be a competent R user who is ready to develop into a serious R programmer if
you want to do it. We wish you the best of luck!

1.1 What is R, Anyway?
R is an open-source implementation of the S language created and developed at Bell Labs. S is also the basis
of the commercial statistics program S-PLUS, but R has eclipsed S-PLUS in popularity. If you do not already
have R on your system, the quickest way to get it is to visit the CRAN (Comprehensive R Network Archive)
website and download and install the precompiled binary files for your operating system. R works on
Windows, Mac OS, and Linux systems. If you use Linux, you may already have R with your Linux distribution.
Open your terminal and type $ R --version. If you do not already have R, the CRAN website is located at
the following URL:
 
http://cran.r-project.org/
 

Download and install the R binaries for your operating system, accepting all the defaults. At this writing,
the current version of R is 3.2.0, and in this book, you will see screenshots of R working in both Windows 7
and Windows 8.1. Your authors run on 64-bit operating systems, so you will see that information displayed
in the screen captures in this book. Because not everything R does in Unix-based systems can be done in
Windows, I often switch to Ubuntu to do those things, but we will discuss only the Windows applications
here, and leave you to experiment with Ubuntu or other flavors of Unix. One author runs Ubuntu on the
Amazon Cloud, but that is way beyond our current needs.

Go ahead and download Rstudio (current version as of this writing is 0.98.1103) now too, again,
accepting all defaults from the following URL:

http://www.rstudio.com/products/rstudio/download/

www.it-ebooks.info

http://cran.r-project.org/
http://www.rstudio.com/products/rstudio/download/
http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

2

Rstudio is a very forgiving environment for the novice user, and code written in here will work just as
well in R itself.

Launch Rstudio and examine the resulting interface. Make sure that you can identify the following
parts of the R interface shown in Figure 1-1: the menu bar, the script editing area, the R console, and the
R command prompt, which is >.

Before we continue our first R session, let’s have a brief discussion of how R works. R is a high-level
vectorized computer language and statistical computing environment. You can write your own R code, use
R code written by others, and use R packages you write and those written by you or by others. You can use R
in batch mode, terminal mode, in the R graphical user interface (RGui), or in Rstudio, which is what we will
do in this book. As you learn more about R and how to use it effectively, you will find that you can integrate R
with other languages such as Python or C++, and even with other statistical programs such as SPSS.

In some computer languages, for instance, C++, you have to declare a data type before you assign a
value to a new variable, but that is not true in R. In R, you simply assign a value to the object, and you can
change the value or the data type by assigning a new one. There are two basic assignment operators in R.
The first is < −, a left-pointing assignment operator produced by a less than sign followed by a “minus” sign,
which is really a hyphen. You can also use an equals sign = for assignments in R. I prefer the < − assignment
operator, and will use it throughout this book.

You must use the = sign to assign the parameters in R functions, as you will learn. R is not sensitive to
white space the way some languages are, and the readability of R code is benefited from extra spacing and
indentation, although these are not mandatory. R is, however, case-sensitive, so to R, the variables x and X
are two different things. There are some reserved names in R, which I will tell you about in Chapter 5.

The best way to learn R is to use R, and there are many books, web-based tutorials, R blog sites, and
videos to help you with virtually any question you might have. We will begin with the basics in this book but
will quickly progress to the point that you are ready to become a purposeful R programmer, as mentioned
earlier.

Figure 1-1.  The R console running in Rstudio

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_5
http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

3

Let us complete a five-minute session in R, and then delve into more detail about what we did, and
what R was doing behind the scenes. The most basic use of R is as a command-line interpreted language.
You type a command or statement after the R prompt and then press <Enter>, and R attempts to implement
the command. If R can do what you are asking, it will do it and return the result in the R console. If R
cannot do what you are asking, it will return an error message. Sometimes R will do something but give you
warnings, which are messages concerning what you have done and what the impact might be, but that are
sometimes warnings that what you did was not what you probably wanted to do. Always remember that R,
like any other computer language, cannot think for you.

1.2 A First R Session
Okay, let’s get started. In the R console, type <Ctrl> + L to clear the console in order to have a little more
working room. Then type the following, pressing the <Enter> key at the end of each command you type.
When you get to the personal information, substitute your own data for mine:

> 1 + 1
[1] 2
> 1 ^ 1
[1] 1
> 1 * 1
[1] 1
> 1 - 1
 [1] 0
> 1 : 1 0
[1] 1 2 3 4 5 6 7 8 9 1 0
> (1 : 1 0) ^ 2
[1] 1 4 9 1 6 2 5 3 6 4 9 6 4 8 1 1 0 0
> myName <- "Joshua Wiley"
> myAlmaMater <- "University of California, Los Angeles"
> myURL <- "www.JoshuaWiley.com"
> myPhone <- "1.260.673.5518"
> myData <- list(myName, myAlmaMater, myURL, myPhone)
> myData
[[1]]
[1] "Joshua Wiley"
 
[[2]]
[1] "University of California, Los Angeles"
 
[[3]]
[1] "www.JoshuaWiley.com"
 
[[4]]
[1] "1.260.673.5518"

We began with the use of R as a basic calculator. We can create sequences of integers by using the colon
operator. Using the exponentiation operator (1:10) ˆ2 gives us the squares of all the numbers in the vector
1 to 10. Observe that when you type a command and press the <Enter> key, R will return the result on the
next line, prefaced by an index, such as [1]. You can assign values to variables without declaring the variable
type, as we discussed, so you can just type myName < − "Joshua Wiley" to give the variable a value.

www.it-ebooks.info

http://www.joshuawiley.com/
http://www.joshuawiley.com/
http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

4

This might have seemed a strange way to start, but it shows you some of the things you can enter into
your R workspace simply by assigning them. Character strings must be enclosed in quotation marks, and
you can use either single or double quotes. Numbers can be assigned as they were with the myPhone variable.
With the name and address, we created a list, with is one of the basic data structures in R. Unlike vectors,
lists can contain multiple data types. We also see square brackets [and], which are R’s way to index the
elements of a data object, in this case our list. We can also create vectors, matrices, and data frames in R.
Let’s see how to save a vector of the numbers from 1 to 10. We will call the vector x. We will also create a
“constant” called y:

> x < - 1 : 1 0
> x
[1] 1 2 3 4 5 6 7 8 9 1 0
> y < - 5
> y
[1] 5

See that R starts its listing of both x and y with an index [1]. This is because R does not recognize a
scalar value. To R, even a single number is a vector. The object y is a vector with one element. The [1] in
front of x means that the first element of the vector appears at the beginning of the line. Let’s make another
vector, z, containing a sequence of 33 randomly generated numbers from a normal distribution with a mean
of 70 and a standard deviation of 10. Because the numbers are random, your z vector will not be the same as
mine, though if we wanted to, we could set the seed number in R so that we would both get the same vector:

> z < - r n o r m (3 3 , 70 , 1 0)
> z < - r o u n d (z , 2)
> z
[1] 8 1 . 5 6 7 0 . 8 5 7 7 . 4 8 6 4 . 0 2 6 8 . 9 4 8 0 . 2 4 6 0 . 8 4
7 0 . 9 3 7 5 . 2 1 7 5 . 0 5 5 2 . 1 7 5 2 . 2 9
[1 3] 7 0 . 2 0 7 9 . 2 9 8 4 . 7 5 6 4 . 8 8 7 3 . 7 4 7 1 . 1 9 6 1 . 0 1
6 3 . 4 3 5 5 . 7 4 7 1 . 5 4 6 9 . 7 1 8 2 . 5 2
[2 5] 7 3 . 4 0 7 5 . 3 9 7 9 . 2 8 8 0 . 3 6 6 5 . 7 9 7 3 . 1 5 7 5 . 4 1
6 9 . 5 6 8 5 . 8 7

When R must wrap to a new line in the console to print additional output, it shows the index of the first
element of each line.

To see a list of all the objects in your R session, type the command ls():

> ls()
[1] "myAlmaMater" "myData" "myName" "myPhone" "myURL" "x" "y" "z"

To see the current working directory, type the command getwd(). You can change the working directory
by typing setwd(), but I usually find it easier to use the File menu. Just select File > Change dir... and
navigate to the directory you want to become the new working directory. As you can see from the code listing
here, the authors prefer working in the cloud. This allows us to gain access to our files from any Internet-
connected computer, tablet, or smartphone. Similarly, our R session is saved to the cloud, allowing access
from any of several computers at home or office computers.

> getwd()
[1] "C:/Users/Joshua Wiley/Google Drive/Projects/Books/Apress_BeginningR/BeginningR"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

5

In addition to ls(), another helpful function is dir(), which will give you a list of the files in your current
working directory.

To quit your R session, simply type q() at the command prompt, or if you like to use the mouse, select
File > Exit or simply close Rstudio by clicking on the X in the upper right corner. In any of these cases, you
will be prompted to save your R workspace.

Go ahead and quit the current R session, and save your workspace when prompted. We will come
back to the same session in a few minutes. What was going on in the background while we played with R
was that R was recording everything you typed in the console and everything it wrote back to the console.
This is saved in an R history file. When you save your R session in an RData file, it contains this particular
workspace. When you find that file and open it, your previous workspace will be restored. This will keep you
from having to reenter your variables, data, and functions.

Before we go back to our R session, let’s see how to use R for some mathematical operators and
functions (see Table 1-1). These operators are vectorized, so they will apply to either single numbers or
vectors with more than one number, as we will discuss in more detail later in this chapter. According to the
R documentation, these are “unary and binary generic functions” that operate on numeric and complex
vectors, or vectors that can be coerced to numbers. For example, logical vectors of TRUE and FALSE are
coerced to integer vectors, with TRUE = 1 and FALSE = 0.

Table 1-2 shows R’s comparison operators. Each of these evaluates to a logical result of TRUE or FALSE.
We can abbreviate TRUE and FALSE as T and F, so it would be unwise to name a variable T or F, although R will
let you do that. Note that the equality operator == is different from the = used as an assignment operator. As
with the mathematical operators and the logical operators (see Chapter 4), these are also vectorized.

Table 1-1.  R’s mathematical operators and functions

Operator/Function R Expression Code Example

Addition
Subtraction

+
−

2 + 2
3 - 2

Multiplication * 2 * 5

Division / 4 / 2

Exponent ˆ 3 ˆ 2

Square Root sqrt( ) sqrt(81)

Natural Logarithm log( ) log(10)

Modulus % % x % % y

Absolute Value abs( ) abs(-3)

Table 1-2.  Comparison operators in R

Operator R Expression Code Example

Equality == x == 3

Inequality != x != 4

Greater than > 5 > 3

Less than < 3 < 5

Greater than or equal to >= 3 >= 1

Less than or equal to <= 3 <= 3

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_4
http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

6

R has six “atomic” vector types (meaning that they cannot be broken down any further), including
logical, integer, real, complex, string (or character), and raw. Vectors must contain only one type of
data, but lists can contain any combination of data types. A data frame is a special kind of list and the most
common data object for statistical analysis. Like any list, a data frame can contain both numerical and
character information. Some character information can be used for factors. Working with factors can be a
bit tricky because they are “like” vectors to some extent, but they are not exactly vectors.

My friends who are programmers who dabble in statistics think factors are evil, while statisticians like
me who dabble in programming love the fact that character strings can be used as factors in R, because
such factors communicate group membership directly rather than indirectly. It makes more sense to have
a column in a data frame labeled sex with two entries, male and female, than it does to have a column
labeled sex with 0s and 1s in the data frame. If you like using 1s and 0s for factors, then use a scheme such as
labeling the column female and entering a 1 for a woman and 0 for a man. That way the 1 conveys meaning,
as does the 0. Note that some statistical software programs such as SPSS do not uniformly support the use of
strings as factors, whereas others, for example, Minitab, do.

In addition to vectors, lists, and data frames, R has language objects including calls, expressions, and
names. There are symbol objects and function objects, as well as expression objects. There is also a special
object called NULL, which is used to indicate that an object is absent. Missing data in R are indicated by NA,
which is also a valid logical object.

1.3 Your Second R Session
Reopen your saved R session by navigating to the saved workspace and launching it in R. We will put R
through some more paces now that you have a better understanding of its data types and its operators,
functions, and “constants.” If you did not save the session previously, you can just start over and type in the
missing information again. You will not need the list with your name and data, but you will need the x, y, and
z variables we created earlier.

As you have learned, R treats a single number as a vector of length 1. If you create a vector of two or
more objects, the vector must contain only a single data type. If you try to make a vector with multiple data
types, R will coerce the vector into a single type.

1.3.1 Working with Indexes
R’s indexing is quite flexible. We can use it to add elements to a vector, to substitute new values for old ones,
and to delete elements of the vector. We can also subset a vector by using a range of indexes. As an example,
let’s return to our x vector and make some adjustments:

> x
[1] 1 2 3 4 5 6 7 8 9 1 0
> x [1]
[1] 1
> x [2 : 4]
[1] 2 3 4
> x [- 1 0]
[1] 1 2 3 4 5 6 7 8 9
> x
[1] 1 2 3 4 5 6 7 8 9 1 0
> x [2 : 4] < - c (9 8 , 99 , 1 0 0)
> x
[1] 1 9 8 9 9 1 0 0 5 6 7 8 9 1 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

7

Note that if you simply ask for subsets, the x vector is not changed, but if you reassign the subset or
modified vector, the changes are saved. Observe that the negative index removes the selected element
or elements from the vector but only changes the vector if you reassign the new vector to x. We can, if we
choose, give names to the elements of a vector, as this example shows:

> x < - 1 : 1 0
> x
[1] 1 2 3 4 5 6 7 8 9 1 0
> n a m e s (x) < - c (" A " , " B " , " C " , " D " , " E " , " F " , " G " , " H " , "
I " , " J ")
> x
A B C D E F G H I J
1 2 3 4 5 6 7 8 9 1 0

This showcases the difference between thinking as a user versus thinking as a programmer! R has a
variety of built-in functions that automate even the simplest kind of operations. You just saw me waste
our time by typing in the letters A through J. R already knows the alphabet, and all you have to do is tell
R you want the first 10 letters. The more you know about R, the easier it is to work with, because it keeps
you from having to do a great deal of repetition in your programming. Take a look at what happens when
we ask R for the letters of the alphabet and use the power of built-in character manipulation functions to
make something a reproducible snippet of code. Everyone starts as an R user and (ideally) becomes an R
programmer, as discussed in the introduction:

> x
[1] 1 2 3 4 5 6 7 8 9 1 0
> n a m e s (x) < - t o u p p e r (l e t t e r s [1 : 1 0])
> x
A B C D E F G H I J
1 2 3 4 5 6 7 8 9 1 0

The toupper function coerces the letters to uppercase, and the letters[1:10] subset gives us A
through J. Always think like a programmer rather than a user. If you wonder if something is possible,
someone else has probably thought the same thing. Over two million people are using R right now, and
many of those people write R functions and code that automates the things that we use on such a regular
basis that we usually don’t even have to wonder whether but simply need to ask where they are and how to
use them. You can find many examples of efficient R code on the web, and the discussions on StackExchange
are very helpful.

If you are trying to figure something out that you don’t know how to do, don’t waste much time
experimenting. Use a web search engine, and you are very likely to find that someone else has already found
the solution, and has posted a helpful example you can use or modify for your own problem. The R manual
is also helpful, but only if you already have a strong programming background. Otherwise, it reads pretty
much like a technical manual on your new toaster written in a foreign language.

It is better to develop good habits in the beginning than it is to develop bad habits and then having to
break them first before you can learn good ones. This is what Dr. Lynda McCalman calls a BFO. That means a
blinding flash of the obvious. I have had many of those in my experience with R.

1.3.2 Representing Missing Data in R
Now let’s see how R handles missing data. Create a simple vector using the c() function (some people say
it means combine, while others say it means concatenate). I prefer combine because there is also a cat()
function for concatenating output. For now, just type in the following and observe the results. The built-in

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

8

function for the mean returns NA because of the missing data value. The na.rm = TRUE argument does
not remove the missing value but simply omits it from the calculations. Not every built-in function includes
the na.rm option, but it is something you can program into your own functions if you like. We will discuss
functional programming in Chapter 5, in which I will show you how to create your own custom function
to handle missing data. We will add a missing value by entering NA as an element of our vector. NA is a
legitimate logical character, so R will allow you to add it to a numeric vector:

> w < - c (1 0 , NA , 10 , 25 , 30 , 15 , 10 , 18 , 16 , 1 5)
> w
[1] 1 0 N A 1 0 2 5 3 0 1 5 1 0 1 8 1 6 1 5
> m e a n (w) [1] N A
> m e a n (w , n a . r m = T R U E) [1] 1 6 . 5 5 5 5 6

Observe that the mean is calculated when you omit the missing value, but unless you were to use the
command w <- w[-2], the vector will not change.

1.3.3 Vectors and Vectorization in R
Remember vectors must contain data elements of the same type. To demonstrate this, let us make a vector
of 10 numbers, and then add a character element to the vector. R coerces the data to a character vector
because we added a character object to it. I used the index [11] to add the character element to the vector.
But the vector now contains characters and you cannot do math on it. You can use a negative index, [-11],
to remove the character and the R function as.integer() to coerce the vector back to integers.

To determine the structure of a data object in R, you can use the str() function. You can also check to
see if our modified vector is integer again, which it is:

> x < - 1 : 1 0
> x [1 1] < - " A "
> x
[1] " 1 " " 2 " " 3 " " 4 " " 5 " " 6 " " 7 " " 8 " " 9 " " 1 0
" " A "
> s t r (x)
c h r [1 : 1 1] " 1 " " 2 " " 3 " " 4 " " 5 " " 6 " " 7 " " 8 " " 9 " " 1 0 " . . .
> i s . c h a r a c t e r (x)
 [1] T R U E
> x < - x [- 1 1]
> x < - a s . i n t e g e r (x)
> i s . i n t e g e r (x)
[1] T R U E

Add y to x as follows. See that R recycles y for each value of x, so that the addition operation results in a
new vector. No explicit looping was required:

> x + y
[1] 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

The way vectorization works when you use operations with two vectors of unequal length is that the
shorter vector is recycled. If the larger vector’s length is a multiple of the length of the shorter vector, this
will produce the expected result. When the length of the longer vector is not an exact multiple of the shorter

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_5
http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

9

vector’s length, the shorter vector is recycled until R reaches the end of the longer vector. This can produce
unusual results. For example, divide z by x. Remember that z has 33 elements and x has 10:

> z
[1] 8 1 . 5 6 7 0 . 8 5 7 7 . 4 8 6 4 . 0 2 6 8 . 9 4 8 0 . 2 4 6 0 . 8 4
7 0 . 9 3 7 5 . 2 1 7 5 . 0 5 5 2 . 1 7 5 2 . 2 9 [1 3] 7 0 . 2 0 7 9 . 2 9
8 4 . 7 5 6 4 . 8 8 7 3 . 7 4 7 1 . 1 9 6 1 . 0 1 6 3 . 4 3 5 5 . 7 4 7 1 . 5 4
6 9 . 7 1 8 2 . 5 2 [2 5] 7 3 . 4 0 7 5 . 3 9 7 9 . 2 8 8 0 . 3 6 6 5 . 7 9
7 3 . 1 5 7 5 . 4 1 6 9 . 5 6 8 5 . 8 7
> x
[1] 1 2 3 4 5 6 7 8 9 1 0
> r o u n d (z / x , 2)
[1] 8 1 . 5 6 3 5 . 4 2 2 5 . 8 3 1 6 . 0 0 1 3 . 7 9 1 3 . 3 7 8 . 6 9
8 . 8 7 8 . 3 6 7 . 5 0 5 2 . 1 7 2 6 . 1 4 [1 3] 2 3 . 4 0 1 9 . 8 2 1 6 . 9 5
1 0 . 8 1 1 0 . 5 3 8 . 9 0 6 . 7 8 6 . 3 4 5 5 . 7 4 3 5 . 7 7 2 3 . 2 4
2 0 . 6 3 [2 5] 1 4 . 6 8 1 2 . 5 6 1 1 . 3 3 1 0 . 0 4 7 . 3 1 7 . 3 2
7 5 . 4 1 3 4 . 7 8 2 8 . 6 2
W a r n i n g m e s s a g e :
I n z / x : l o n g e r o b j e c t l e n g t h i s n o t a m u l t i p l e o f s h o
r t e r o b j e c t l e n g t h

R recycled the x vector three times, and then divided the last three elements of z by 1, 2, and 3,
respectively. Although R gave us a warning, it still performed the requested operation.

1.3.4 A Brief Introduction to Matrices
Matrices are vectors with dimensions. We can build matrices from vectors by using the cbind() or rbind()
functions. Matrices have rows and columns, so we have two indexes for each cell of the matrix. Let’s discuss
matrices briefly before we create our first matrix and do some matrix manipulations with it.

A matrix is an m × n (row by column) rectangle of numbers. When n = m, the matrix is said to be
“square.” Square matrices can be symmetric or asymmetric. The diagonal of a square matrix is the set of
elements going from the upper left corner to the lower right corner of the matrix. If the off-diagonal elements
of a square matrix are the same above and below the diagonal, as in a correlation matrix, the square matrix is
symmetric.

A vector (or array) is a 1-by-n or an n-by-1 matrix, but not so in R, as you will soon see. In statistics, we
most often work with symmetric square matrices such as correlation and variance-covariance matrices.
An entire matrix is represented by a boldface letter, such as A:

A

a a a

a a a

a a a

m n

n

n

m m m n

,

, , ,

, , ,

, , ,

=
× × ×

é

ë

ê
ê
ê
ê
ê

ù

û

ú
1 1 1 2 1

2 1 2 2 2

1 2

…
…
�
…

úú
ú
ú
ú

Matrix manipulations are quite easy in R. If you have studied matrix algebra, the following examples
will make more sense to you, but if you have not, you can learn enough from these examples and your own
self-study to get up to speed quickly should your work require matrices.

Some of the most common matrix manipulations are transposition, addition and subtraction, and
multiplication. Matrix multiplication is the most important operation for statistics. We can also find the
determinant of a square matrix, and the inverse of a square matrix with a nonzero determinant.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

10

You may have noticed that I did not mention division. In matrix algebra, we write the following, where
B−1 is the inverse of B. This is the matrix algebraic analog of division (if you talk to a mathematician, s/he
would tell you this is how regular ‘division’ works as well. My best advice, much like giving a mouse a cookie,
is don’t):

	        
AB C

A B C

=

= -1
	 (1, 1)

We define the inverse of a square matrix as follows. Given two square matrices, A and B, if AB = I, the
identity matrix with 1s on the diagonals and 0s on the off-diagonals, then B is the right-inverse of A, and can
be represented as A−1. With this background behind us, let’s go ahead and use some of R’s matrix operators.
A difficulty in the real world is that some matrices cannot be inverted. For example, a so-called singular
matrix has no inverse. Let’s start with a simple correlation matrix:

A =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 00 0 14 0 35

0 14 1 00 0 09

0 35 0 98 1 00

.

.

.

In R, we can create the matrix first as a vector, and then give the vector the dimensions 3 × 3, thus
turning it into a matrix. Note the way we do this to avoid duplicating A; for very large data, this may be more
compute efficient. The is.matrix(X) function will return TRUE if X has these attributes, and FALSE otherwise.
You can coerce a data frame to a matrix by using the as.matrix function, but be aware that this method will
produce a character matrix if there are any nonnumeric columns. We will never use anything but numbers in
matrices in this book. When we have character data, we will use lists and data frames:

> A <- c(1.00, 0.14, 0.35, 0.14, 1.00, 0.09, 0.35, 0.09, 1.00)
> dim(A)<-c(3,3)
> A
 [,1] [,2] [,3]
[1,] 1.00 0.14 0.35
[2,] 0.14 1.00 0.09
[3,] 0.35 0.09 1.00
> d i m (A)
[1] 3 3

Some useful matrix operators in R are displayed in Table 1-3.

Table 1-3.  Matrix operators in R

Operator Operator Code Example

Transposition t t(A)

Matrix Multiplication %*% A %*% B

Inversion solve( ) solve(A)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

11

Because the correlation matrix is square and symmetric, its transpose is the same as A. The inverse
multiplied by the original matrix should give us the identity matrix. The matrix inversion algorithm
accumulates some degree of rounding error, but not very much at all, and the matrix product of A−1 and A is
the identity matrix, which rounding makes apparent:

> A i n v < - s o l v e (A)
> m a t P r o d < - A i n v % * % A
> r o u n d (m a t P r o d)
[, 1] [, 2] [, 3] [1 ,] 1 0 0 [2 ,] 0 1 0
[3 ,] 0 0 1

If A has an inverse, you can either premultiply or postmultiply A by A−1 and you will get an identity matrix
in either case.

1.3.5 More on Lists
Recall our first R session in which you created a list with your name and alma mater. Lists are unusual in a
couple of ways, and are very helpful when we have “ragged” data arrays in which the variables have unequal
numbers of observations. For example, assume that my coauthor, Dr Pace, taught three sections of the same
statistics course, each of which had a different number of students. The final grades might look like the
following:

> section1 <- c(57.3, 70.6, 73.9, 61.4, 63.0, 66.6, 74.8, 71.8, 63.2, 72.3, 61.9, 70.0)
> section2 <- c(74.6, 74.5, 75.9, 77.4, 79.6, 70.2, 67.5, 75.5, 68.2, 81.0, 69.6, 75.6,
69.5, 72.4, 77.1)
> section3 <- c(80.5, 79.2, 83.6, 74.9, 81.9, 80.3, 79.5, 77.3, 92.7, 76.4, 82.0, 68.9,
77.6, 74.6)
> allSections <- list(section1,section2,section3)
> allSections
[[1]]
 [1] 57.3 70.6 73.9 61.4 63.0 66.6 74.8 71.8 63.2 72.3 61.9 70.0
 
[[2]]
 [1] 74.6 74.5 75.9 77.4 79.6 70.2 67.5 75.5 68.2 81.0 69.6 75.6 69.5 72.4 77.1
 
[[3]]
 [1] 80.5 79.2 83.6 74.9 81.9 80.3 79.5 77.3 92.7 76.4 82.0 68.9 77.6 74.6
 
> section_means <- sapply(allSections, mean)
> round(section_means, 2)
[1] 67.23 73.91 79.24
> section_sdev <- sapply(allSections, sd)
> round(section_sdev,2)
[1] 5.74 4.17 5.40

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

12

We combined the three classes into a list and then used the sapply function to find the means and
standard deviations for the three classes. As with the name and address data, the list uses two square brackets
for indexing. The [[1]] indicates the first element of the list, which is a number contained in another list.
The sapply function produces a simplified view of the means and standard deviations. Note that the lapply
function works here as well, as the calculation of the variances for the separate sections shows, but produces a
different kind of output from that of sapply, making it clear that the output is yet another list:

> lapply(allSections,var)
[[1]]
[1] 32.99515
 
[[2]]
[1] 17.3521
 
[[3]]
[1] 29.18879

1.3.6 A Quick Introduction to Data Frames
As I mentioned earlier, the most common data structure for statistics is the data frame. A data frame is a list,
but rectangular like a matrix. Every column represents a variable or a factor in the dataset. Every row in the
data frame represents a case, either an object or an individual about whom data have been collected, so
that, ideally, each case will have a score for every variable and a level for every factor. Of course, as we will
discuss in more detail in Chapter 2, real data are far from ideal.

Here is the roster of the 2014-2015 Clemson University mens’ basketball team, which I downloaded
from the university’s website. I saved the roster as a comma-separated value (CSV) file and then read it into
R using the read.csv function. Please note that in this case, the file ‘roster.csv’ was saved in our working
directory. Recall that earlier we discussed both getwd() and setwd(), these can be quite helpful. As you can
see, when you create data using this method, the file will automatically become a data frame in R:

> r o s t e r < - r e a d . c s v (" r o s t e r . c s v ")
> r o s t e r

Jersey Name Position Inches Pounds Class

1 0 R o o k s , P a t r i c k G 7 4 1 9 0 f r e s h m a n

2 1 A j u k w a , A u s t i n G 7 8 2 0 5 s o p h o m o r e

3 3 H o l m e s , A v r y G 7 4 2 0 5 j u n i o r

4 5 B l o s s o m g a m e , J a r o n F 7 9 2 1 5 s o p h o m o r e

5 1 0 D e V o e , G a b e G 7 5 2 0 0 f r e s h m a n

6 1 2 H a l l , R o d G 7 3 2 0 5 s e n i o r

7 1 5 G r a n t h a m , D o n t e F 8 0 2 0 5 f r e s h m a n

8 2 0 R o p e r , J o r d a n G 7 2 1 6 5 j u n i o r

9 2 1 H a r r i s o n , D a m a r c u s G 7 6 2 0 5 s e n i o r

(continued)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_2
http://www.it-ebooks.info/

Chapter 1 ■ Getting Star ted

13

Jersey Name Position Inches Pounds Class

1 0 3 3 S m i t h , J o s h F 8 0 2 4 5 j u n i o r

1 1 3 5 N n o k o , L a n d r y C 8 2 2 5 5 j u n i o r

1 2 4 4 M c G i l l a n , R i l e y G 7 2 1 7 5 j u n i o r

1 3 5 0 D j i t t e , S i d y C 8 2 2 4 0 s o p h o m o r e

> s t r (r o s t e r)
’ d a t a . f r a m e ’ : 1 3 o b s . o f 6 v a r i a b l e s :
$ J e r s e y : i n t 0 1 3 5 1 0 1 2 1 5 2 0 2 1 3 3 . . .
$ N a m e : F a c t o r w / 1 3 l e v e l s " A j u k w a , A u s t i n " , . . : 1
1 1 8 2 3 6 5 1 2 7 1 3 . . .
$ P o s i t i o n : F a c t o r w / 3 l e v e l s " C " , " F " , " G " : 3 3 3 2 3
3 2 3 3 2 . . .
$ I n c h e s : i n t 7 4 7 8 7 4 7 9 7 5 7 3 8 0 7 2 7 6 8 0 . . .
$ P o u n d s : i n t 1 9 0 2 0 5 2 0 5 2 1 5 2 0 0 2 0 5 2 0 5 1 6 5 2 0
5 2 4 5 . . .
$ C l a s s : F a c t o r w / 4 l e v e l s " f r e s h m a n " , " j u n i o r " ,
. . : 1 4 2 4 1 3 1 2 3 2 . . .

To view your data without editing them, you can use the View command (see Figure 1-2).

Figure 1-2.  Data frame in the viewer window

www.it-ebooks.info

http://www.it-ebooks.info/

15

Chapter 2

Dealing with Dates, Strings, and
Data Frames

The world of data and data analytics is changing rapidly. Data analysts are facing major issues related to
the use of larger datasets, including cloud computing and the creation of so-called data lakes, which are
enterprise-wide data management platforms consisting of vast amounts of data in their original format
stored in an single unmanaged and unstructured location available to the entire organization. This flies in
the face of the carefully structured and highly managed data most of us have come to know and love.

Data lakes solve the problem of independently managed information silos (an old problem in
information technology), and the newer problem of dealing with Big Data projects, which typically require
large amounts of highly varied data. If you are particularly interested in using R for cloud computing, I
recommend Ajay Ohri’s book R for Cloud Computing: An Approach for Data Scientists. We will
touch lightly on the issues of dealing with R in the cloud and with big (or at least bigger) data in subsequent
chapters.

You learned about various data types in Chapter 1. To lay the foundation for discussing some ways
of dealing with real-world data effectively, we first discuss working with dates and times and then discuss
working with data frames in more depth. In later chapters, you will learn about data tables, a package that
provides a more efficient way to work with large datasets in R.

2.1 Working with Dates and Times
Dates and times are handled differently by R than other data. Dates are represented as the number of days
since January 1, 1970, with negative numbers representing earlier dates. You can return the current date and
time by using the date() function and the current day by using the Sys.Date() function:

> date ()
[1] "Fri Dec 26 07:00:28 2014 "
> Sys . Date ()
[1] " 2014 -12 -26 "

By adding symbols and using the format() command, you can change how dates are shown.
These symbols are as follows:

•	 %d The day as a number

•	 %a Abbreviated week day

•	 %A Unabbreviated week day

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_1
http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

16

•	 %b Abbreviated month

•	 %B Unabbreviated month

•	 %y Two-digit year

•	 %Y Four-digit year

See the following example run by the author on 1 January 2015. Notice the use of cat() to concatenate
and output the desired objects:

> today <- Sys . Date ()
> cat (format (today , format = "%A, %B %d, %Y")," Happy New Year !", "\n")
Thursday , January 01, 2015 Happy New Year !

2.2 Working with Strings
You have already seen character data, but let’s spend some time getting familiar with how to manipulate
strings in R. This is a good precursor to our more detailed discussion of text mining later on. We will look
at how to get string data into R, how to manipulate such data, and how to format string data to maximum
advantage. Let’s start with a quote from a famous statistician, R. A. Fisher:

The null hypothesis is never proved or established, but is possibly disproved, in the course
of experimentation. Every experiment may be said to exist only to give the facts a chance of
disproving the null hypothesis.” R. A. Fisher

Although it would be possible to type this quote into R directly using the console or the R Editor, that
would be a bit clumsy and error-prone. Instead, we can save the quote in a plain text file. There are many
good text editors, and I am using Notepad++. Let’s call the file “fishersays.txt” and save it in the current
working directory:

> dir ()
[1] " fishersays . txt " " mouse _ weights _ clean . txt"
[3] " mouseSample . csv " " mouseWts . rda "
[5] " zScores . R"

You can read the entire text file into R using either readLines() or scan(). Although scan() is more
flexible, in this case a text file consisting of a single line of text with a “carriage return” at the end is very easy
to read into R using the readLines() function:

> fisherSays <- readLines ("fishersays.txt")
> fisherSays
[1] "The null hypothesis is never proved or established , but is possibly disproved ,
 in the course of experimentation . Every experiment may be said to exist only to
 give the facts a chance of disproving the null hypothesis . R. A. Fisher "
>

Note that I haven’t had to type the quote at all. I found the quote on a statistics quotes web page, copied
it, saved it into a text file, and then read it into R.

As a statistical aside, Fisher’s formulation did not (ever) require an alternative hypothesis. Fisher was
a staunch advocate of declaring a null hypothesis that stated a certain population state of affairs, and then
determining the probability of obtaining the sample results (what he called facts), assuming that the null

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

17

hypothesis was true. Thus, in Fisher’s formulation, the absence of an alternative hypothesis meant that
Type II errors were simply ignored, whereas Type I errors were controlled by establishing a reasonable
significance level for rejecting the null hypothesis. We will have much more to discuss about the current state
and likely future state of null hypothesis significance testing (NHST), but for now, let’s get back to strings.

A regular expression is a specific pattern in a string or a set of strings. R uses three types of such
expressions:

•	 Regular expressions

•	 Extended regular expressions

•	 Perl-like regular expressions

The functions that use regular expressions in R are as follows (see Table 2-1). You can also use the
glob2rx() function to create specific patterns for use in regular expressions. In addition to these functions,
there are many extended regular expressions, too many to list here. We can search for specific characters,
digits, letters, and words. We can also use functions on character strings as we do with numbers, including
counting the number of characters, and indexing them as we do with numbers. We will continue to work
with our quotation, perhaps making Fisher turn over in his grave by our alterations.

Table 2-1.  R Functions that use regular expressions

Purpose Function Explanation

Substitution sub() Both sub() and gsub() are used to make substitutions in a string

Extraction grep() Extract some value from a string

Detection grepl() Detect the presence of a pattern

The simplest form of a regular expression are ones that match a single character. Most characters,
including letters and digits, are also regular expressions. These expressions match themselves. R also
includes special reserved characters called metacharacters in the extended regular expressions. These have
a special status, and to use them, you must use a double backslash \\to escape these when you need to use
them as literal characters. The reserved characters are ., \, |, (,), [, {, $, *, +, and ?.

Let us pretend that Jerzy Neyman actually made the quotation we attributed to Fisher. This is certainly
not true, because Neyman and Egon Pearson formulated both a null and an alternative hypothesis and
computed two probabilities rather than one, determining which hypothesis had the higher probability of
having generated the sample data. Nonetheless, let’s make the substitution. Before we do, however, look at
how you can count the characters in a string vector. As always, a vector with one element has an index of [1],
but we can count the actual characters using the nchar() function:

> length (fisherSays)
[1] 1
> nchar (fisherSays)
[1] 230
sub ("R. A. Fisher", "Jerzy Neyman", fisherSays)
[1] "The null hypothesis is never proved or established, but is possibly disproved, in the
course of experimentation. Every experiment may be said to exist only to give the facts a
chance of disproving the null hypothesis." Jerzy Neyman"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

18

2.3 Working with Data Frames in the Real World
Data frames are the workhorse data structure for statistical analyses. If you have used other statistical
packages, a data frame will remind you of the data view in SPSS or of a spreadsheet. Customarily, we use
columns for variables and rows for units of analysis (people, animals, or objects). Sometimes we need to
change the structure of the data frame to accommodate certain situations, and you will learn how to stack
and unstack data frames as well as how to recode data when you need to.

There are many ways to create data frames, but for now, let’s work through a couple of data frames
built into R. The data frame comes from the 1974 Motor Trend US Magazine, and contains miles per gallon,
number of cylinders, displacement, gross horsepower, rear axle ratio, weight, quarter mile time in seconds,
‘V’ or Straight engine, transmission, number of forward gears, and number of carburetors.

The complete dataset has 32 cars and 10 variables for each car. We will also learn how to find specific
rows of data:

> str(mtcars)
'data.frame': 32 obs. of 11 variables:
 $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
 $ disp: num 160 160 108 258 360 ...
 $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num 16.5 17 18.6 19.4 17 ...
 $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
 $ am : num 1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
 
> summary(mtcars $ mpg)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.40 15.42 19.20 20.09 22.80 33.90
 
> summary(mtcars $ wt)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.513 2.581 3.325 3.217 3.610 5.424

To refer to a given column in a data fame, you can use either indexing or the $ operator with the data
frame name followed by the variable name. Because data frames have both rows and columns, you must
use indexes for both the row and the column. To refer to an entire row or an entire column, you can use
a comma, as you can with a matrix. To illustrate, the rear axle ratio variable is the fifth column in the data
frame. We can refer to this column in two ways. We can use the dataset$variable notation mtcars $ drat,
or we can equivalently use matrix-type indexing, as in [, 5] using the column number. The head() function
returns the first part or parts of a vector, matrix, data frame, or function, and is useful for a quick “sneak
preview”:

> head(mtcars $ drat)
[1] 3.90 3.90 3.85 3.08 3.15 2.76
 
> head(mtcars [,5])
[1] 3.90 3.90 3.85 3.08 3.15 2.76

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

19

2.3.1 Finding and Subsetting Data
Sometimes, it is helpful to locate in which row a particular set of data may be. We can find the row containing
a particular value very easily using the which() function:

> which (mtcars $ hp >= 300)
[1] 31
> mtcars [31 ,]
 mpg cyl disp hp drat wt qsec vs am gear carb
Maserati Bora 15 8 301 335 3.54 3.57 14.6 0 1 5 8

Suppose the Maserati’s horsepower need to be recoded to NA because it turns out there was an error in
recording the data (note: this occurs on occasion in real world data), just do the following:

mtcars $ hp [mtcars $ hp >= 300] <- NA
> mtcars [31 ,]
 mpg cyl disp hp drat wt qsec vs am gear carb
Maserati Bora 15 8 301 NA 3.54 3.57 14.6 0 1 5 8

With the one observation recoded to missing, a histogram of the horsepower data is shown
(see Figure 2-1):

Figure 2-1.  Car horsepower (with Maserati removed) vs frequency

The data frame indexing using square brackets is similar to that of a matrix. As with vectors, we can
use the colon separator to refer to ranges of columns or rows. For example, say that we are interested in
reviewing the car data for vehicles with manual transmission. Here is how to subset the data in R. Attaching

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

20

the data frame makes it possible to refer to the variable names directly, and thus makes the subsetting
operation a little easier. As you can see, the resulting new data frame contains only the manual transmission
vehicles:

> attach (mtcars)
> mpgMan <- subset (mtcars , am == 1, select = mpg : disp)
> summary (mpgMan $ mpg)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 15.00 21.00 22.80 24.39 30.40 33.90

You can remove a column in a data frame by assigning it the special value NULL. For this illustration, let
us use a small sample of the data. We will remove the displacement variable. First, recall the data frame:

> mpgMan
 mpg cyl disp
Mazda RX4 21.0 6 160.0
Mazda RX4 Wag 21.0 6 160.0
Datsun 710 22.8 4 108.0
Fiat 128 32.4 4 78.7
Honda Civic 30.4 4 75.7
Toyota Corolla 33.9 4 71.1
Fiat X1-9 27.3 4 79.0
Porsche 914-2 26.0 4 120.3
Lotus Europa 30.4 4 95.1
Ford Pantera L 15.8 8 351.0
Ferrari Dino 19.7 6 145.0
Maserati Bora 15.0 8 301.0
Volvo 142E 21.4 4 121.0

Now, simply type the following to remove the variable, and note that the disp variable is no longer part
of the data frame. Also, don’t try this at home unless you make a backup copy of your important data first.

> mpgMan $ disp <- NULL
> mpgMan
 mpg cyl
Mazda RX4 21.0 6
Mazda RX4 Wag 21.0 6
Datsun 710 22.8 4
Fiat 128 32.4 4
Honda Civic 30.4 4
Toyota Corolla 33.9 4
Fiat X1-9 27.3 4
Porsche 914-2 26.0 4
Lotus Europa 30.4 4
Ford Pantera L 15.8 8
Ferrari Dino 19.7 6
Maserati Bora 15.0 8
Volvo 142E 21.4 4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

21

We can add a new variable to a data frame simply by creating it, or by using the cbind() function.
Here’s a little trick to make up some data quickly. I used the rep() function (for replicate) to generate 15
“observations” of the color of the vehicle. First, I created a character vector with three color names, then
I replicated the vector five times to fabricate my new variable. By defining it as mpgMan$colors, I was able
to create it and add it to the data frame at the same time. Notice I only used the first 13 entries of colors as
mpgMan only has 13 manual vehicles:

colors <- c(" black ", " white ", " gray ")
> colors <- rep (colors, 5)
> mpgMan $ colors <- colors[1:13]
> mpgMan
 mpg cyl colors
Mazda RX4 21.0 6 black
Mazda RX4 Wag 21.0 6 white
Datsun 710 22.8 4 gray
Fiat 128 32.4 4 black
Honda Civic 30.4 4 white
Toyota Corolla 33.9 4 gray
Fiat X1-9 27.3 4 black
Porsche 914-2 26.0 4 white
Lotus Europa 30.4 4 gray
Ford Pantera L 15.8 8 black
Ferrari Dino 19.7 6 white
Maserati Bora 15.0 8 gray
Volvo 142E 21.4 4 black

2.4 Manipulating Data Structures
Depending on the required data analysis, we sometimes need to restructure data by changing narrow format
data to wide-format data, and vice versa. Let’s take a look at some ways data can be manipulated in R. Wide
and narrow data are often referred to as unstacked and stacked, respectively. Both can be used to display
tabular data, with wide data presenting each data value for an observation in a separate column. Narrow
data, by contrast, present a single column containing all the values, and another column listing the “context”
of each value. Recall our roster data from Chapter 1.

It is easier to show this than it is to explain it. Examine the following code listing to see how this works.
We will start with a narrow or stacked representation of our data, and then we will unstack the data into the
more familiar wide format:

> roster <- read.csv("roster.csv")
> sportsExample <- c("Jersey", "Class")
> stackedData <- roster [sportsExample]
> stackedData
 Jersey Class
1 0 freshman
2 1 sophomore
3 3 junior
4 5 sophomore
5 10 freshman
6 12 senior
7 15 freshman

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_1
http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

22

8 20 junior
9 21 senior
10 33 junior
11 35 junior
12 44 junior
13 50 sophomore
> unstack(stackedData)
$freshman
[1] 0 10 15
 
$junior
[1] 3 20 33 35 44
 
$senior
[1] 12 21
 
$sophomore
[1] 1 5 50

2.5 The Hard Work of Working with Larger Datasets
As I have found throughout my career, real-world data present many challenges. Datasets often have missing
values and outliers. Real data distributions are rarely normally distributed. The majority of the time I have
spent with data analysis has been in preparation of the data for subsequent analyses, rather than the analysis
itself. Data cleaning and data munging are rarely included as a subject in statistics classes, and included
datasets are generally either fabricated or scrubbed squeaky clean.

The General Social Survey (GSS) has been administered almost annually since 1972. One commentator
calls the GSS “America’s mood ring.” The data for 2012 contain the responses to a 10-word vocabulary test.
Each correct and incorrect responses are labeled as such, with missing data coded as NA. The GSS data are
available in SPSS and STATA format, but not in R format. I downloaded the data in SPSS format and then use
the R library foreign to read that into R as follows. As you learned earlier, the View function allows you to see
the data in a spreadsheet-like layout (see Figure 2-2):

> library(foreign)
> gss2012 <- read.spss("GSS2012merged_R5.sav", to.data.frame = TRUE)
> View(gss2012)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

23

Here’s a neat trick: The words are in columns labeled “worda”, “wordb”, . . . , “wordj”. I want to subset
the data, as we discussed earlier, to keep from having to work with the entire set of 1069 variables and 4820
observations. I can use R to make my list of variable names without having to type as much as you might
suspect. Here’s how I used the paste0 function and the built-in letters function to make it easy. There is
an acronym among computer scientists called DRY that was created by Andrew Hunt and David Thomas:
“Don’t repeat yourself.” According to Hunt and Thomas, pragmatic programmers are early adopters, fast
adapters, inquisitive, critical thinkers, realistic, and jacks of all trades:

> myWords <- paste0 ("word", letters [1:10])
> myWords
 [1] "worda" "wordb" "wordc" "wordd" "worde" "wordf" "wordg" "wordh" "wordi" "wordj"
> vocabTest <- gss2012 [myWords]
> head (vocabTest)
 worda wordb wordc wordd worde wordf wordg wordh wordi wordj
1 CORRECT CORRECT INCORRECT CORRECT CORRECT CORRECT INCORRECT INCORRECT CORRECT CORRECT
2 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
3 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
4 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT INCORRECT
5 CORRECT CORRECT INCORRECT CORRECT CORRECT CORRECT INCORRECT <NA> CORRECT INCORRECT
6 CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT CORRECT <NA> CORRECT INCORRECT

We will also apply the DRY principle to our analysis of our subset data. For each of the words, it would
be interesting to see how many respondents were correct versus incorrect. This is additionally interesting
because we have text rather than numerical data (a frequent enough phenomena in survey data). There are
many ways perhaps to create the proportions we seek, but let us explore one such path. Of note here is that
we definitely recommend using the top left Rscript area of Rstudio to type in these functions, then selecting
that code and hitting <Ctrl> + R to run it all in the console.

Figure 2-2.  Viewing the GSS dataset

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

24

First, some exploration of a few new functions. The table() function creates a contingency table with
a count of each combination of factors. Secondly, note the output of myWords[1]. Keeping in mind the
DRY principle, notice the difference between our first use of table versus the second use. It seems a little
changed, no? And yet, if we wanted to get counts for each of our words a through j, the second is much more
powerful if we could simply find a way to increase that counter by 1 each time we ran the code.

> myWords[1]
[1] "worda"
 
> table(vocabTest[, "worda"], useNA = "ifany")
 
INCORRECT CORRECT <NA>
 515 2619 1686
> table(vocabTest[, myWords[1]], useNA = "ifany")
 
INCORRECT CORRECT <NA>
 515 2619 1686

Thinking of increasing a counter by 1 and repeating several times is called looping, and we will explore
looping more later. For now, we’ll secretly loop via lapply to apply table to the entire dataset. Our goal is
to count all corrects/incorrects at once, rather than doing it piecemeal by typing in the same commands
repeatedly and just changing variable names. Also, while headcounts are nice enough, we generally see such
data summarized via proportions. Let’s work our way backward. At the end, we use do.call to use the rbind
function on the percents of each word correct vs incorrect; do.call simply runs rbind on each percents
value in sequence – more looping! The rbind function is used to simply make it all look pretty (consider
typing in percents into your Rstudio console after running the below code to see why rbind is so helpful).
Before we could do that, we needed to build up percents, which we did by running a proportion table to
create those percents. Since we want a proportion table for each word, we use lapply on our dataset. Of
course, the above tables we had created for just worda were not enough, so we had to create each table, take
a prop.table of their data, store all proportion data into percents, and finally make it all look good as we’ve
done on the next page:

> proportion.table <- function(x) {
+ prop.table(table(x))
+ }
>
> percents <- lapply(vocabTest, proportion.table)
>
> do.call(rbind, percents)
 INCORRECT CORRECT
worda 0.16432674 0.8356733
wordb 0.06868752 0.9313125
wordc 0.76188761 0.2381124
wordd 0.04441624 0.9555838
worde 0.17356173 0.8264383
wordf 0.18032787 0.8196721
wordg 0.65165877 0.3483412
wordh 0.63088235 0.3691176
wordi 0.23732057 0.7626794
wordj 0.71540984 0.2845902

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Dealing with Dates, Strings, and Data Frames

25

The GSS dataset also has a variable for the total score on the vocabulary test, which is simply the sum
of the number of words defined correctly. We have added that to the data frame using the cbind function.
I won’t show all the steps here, but will show you after all the recoding of missing data that the distribution
of scores on the vocabulary test is negatively skewed but pretty “normal-looking” by the eyeball test
(see Figure 2-3).

Figure 2-3.  Histogram of scores on the 10-word vocabulary test

www.it-ebooks.info

http://www.it-ebooks.info/

27

Chapter 3

Input and Output

As a scripting language, R is perhaps not as flexible as Python or other languages, but as a statistical
language, R provides all of the basic input and output capabilities that an average user is likely to need.
In Chapter 3, you will learn how to get data into R and how to get output from R in the form and format
you desire.

To prepare for our discussion of input and output, let me first remind you of some functions we
have discussed and tell you about a few that we haven’t yet discussed. This will help greatly with your file
management for both input and output.

Remember the functions getwd() and setwd() are used to identify and change the working directory.
If the file is in the current directory, you can access it using only the file name. If you need a file in a different
directory, you must give the path to the file as well as the name. If you want to know the information about a
particular file, you can use the file.info() function. Sometimes, you might forget whether or not you saved
a file to your working directory. You can find out whether you did by using the file.exists() function.
As you have already seen, we can use ls() to get a list of all of the objects in the workspace and dir() to get
a list of all of the files in the working directory. To get a complete list of all of the functions related to files and
directories, just type ?files at the command prompt. Knowing these functions will make your life easier.
Until you have memorized them, you may want to make a cheat sheet and keep it close at hand when you
are programming.

3.1 R Input
You have already used the R console extensively to type in data and commands. When the demands of data
input exceed the capacity of the console, you can access the R Editor for typing scripts (R code) and import
worksheets to input data.

You also learned in Chapter 2 how to read in string data from a text file. In the example of the statistics
quote, we made a simple replacement of one name with another. There are many more things you can do
with strings, and we will discuss those in Chapter 15.

We can use the scan() function to read in data instead of typing the data in by using the c() function.
For example, say we want to create a vector with 10 numbers. People are usually better at entering data in
columns than rows. Here’s how to use scan() to build a vector:

> newVector <- scan ()
1: 11
2: 23
3: 44
4: 15
5: 67

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_2
http://dx.doi.org/10.1007/978-1-4842-0373-6_15
http://www.it-ebooks.info/

Chapter 3 ■ Input and Output

28

6: 15
7: 12
8: 8
9: 9
10:
Read 9 items
> newVector
[1] 11 23 44 15 67 15 12 8 9

You simply type the numbers in one at a time and hit < Enter> when you are finished. It is also possible
to read a vector into your workspace by using the scan function. Say you have a text file called “yvector.txt,”
and have separated the numbers by spaces. Read it into the workspace as follows:

> yvector <- scan (" yvector . txt ", sep = " ")
Read 12 items
> yvector
[1] 11 22 18 32 39 42 73 27 34 32 19 15

In a similar way, we can get keyboard input using the readline() function. Examine the following code
fragment so see how this works:

> myName <- readline (" What shall I call you ? ")
What shall I call you ? Larry
> myName
[1] " Larry "

3.1.1 The R Editor
Rstudio has some very convenient features in its graphical user interface. The Rstudio Editor is shown in
Figure 3-1. You open this window by selecting from the menu bar the commands File ➤ New File ➤ R script.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Input and Output

29

This is similar to a text processor; and many R programmers prefer to use different text editors. I find
the Rstudio editor useful for writing lines of code and editing them before executing them. RStudio’s editor
also includes a built-in debugger, which is very helpful in code development.

3.1.2 The R Data Editor
As you saw at the end of Chapter 1, the R Data Editor is a spreadsheet-like window into which you can type
and edit data. To open the Data Editor, you must either already have a data frame, or you must create one.
Although the Data Editor is not suitable for creating larger datasets, it is very good for quick changes to an
existing dataset, as we discussed in Chapter 2. For example, suppose with our sports roster we needed to
change Josh Smith’s Inches to 81. We might use the fix() function, which will allow us to click inside the
variables replace ‘80’ with ‘81’. When you fix the labels, or make any other changes to the data frame, just
close the R Data Editor to save the changes (see Figure 3-2).

> roster <- read.csv("roster.csv")
> fix(roster)

Figure 3-1.  The Rstudio editor open

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_1
http://dx.doi.org/10.1007/978-1-4842-0373-6_2
http://www.it-ebooks.info/

Chapter 3 ■ Input and Output

30

3.1.3 Other Ways to Get Data Into R
We can read data into R from different kinds of files, including comma-separated value (CSV) files, text files,
R data files, and others. The scan() function and the readline() function can be used as well.

You can also request user input via the console. Let’s examine these various approaches. We will discuss
functional programming in more depth in Chapter 5, but as a teaser, see the following code to create a
function that requests user input to calculate one’s body mass index (BMI):

BMI <- function () {
 cat (" Please enter your height in inches and weight in pounds :","\n")
 height <- as.numeric (readline (" height = "))
 weight <- as.numeric (readline (" weight = "))
 bmi <- weight/(height^2)*703
 cat (" Your body mass index is:",bmi ,"\n")
 if (bmi < 18.5) risk = " Underweight "
 else if (bmi >= 18.5 & bmi <= 24.9) risk = "Normal"
 else if (bmi >= 25 & bmi <= 29.9) risk = "Overweight"
 else risk = "Obese"
 cat (" According to the National Heart, Lung, and Blood Institute,","\n")
 cat (" your BMI is in the",risk ,"category.","\n")
}

Figure 3-2.  The Rstudio Data Editor open

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_5
http://www.it-ebooks.info/

Chapter 3 ■ Input and Output

31

Open the R Editor and type the code just as you see it. Omit the R command prompts when typing code
in the Editor window. To read the function into your R session, press <Ctrl> + A to select all the lines, and
then press <Ctrl> + R to run the code. You should see the code in the R console now. When the function is
executed, it will prompt the user for his or her height and weight. After the user enters these, the function
then calculates and evaluates the person’s BMI. Because we provide the input from the keyboard, the
function has no arguments, and we simply type BMI() and then press <Enter> to execute it. For example:

> BMI ()
Please enter your height in inches and weight in pounds :
height = 67
weight = 148
Your body mass index is: 23.17755
According to the National Heart, Lung, and Blood Institute,
your BMI is in the Normal category.

3.1.4 Reading Data from a File
The foreign and the Hmisc packages can read files produced by SPSS and many other programs (we’ve
already met foreign). The basic operation in R to read in a data file is read.table. For text files, you must tell
R if the first row of the dataset contains column headers that will be used as variable names. You must also
tell read.table what your separator between variables is, that is, whether it is a tab, a space, or something
else. If you use the read.csv function, it will assume that your data have a header row. You can control
whether R converts strings to factors when it reads in the data by setting stringsAsFactors to TRUE or FALSE.
The default behavior is TRUE. I usually set it to FALSE, because I do not necessarily want all strings to become
factors. We will discuss factors in much more detail later.

Let’s see how these various input operations work in R. I’ve typed a brief history (from memory) of
my recent cell phone purchases). We will read in the entire cellphone dataset from a tab-delimited text file
called “cellphonetab.txt”. Remember that when the data are in text format, you must specify header = TRUE
if you want to use the row of column headings in the first line. In this case, I want the strings to be recognized
as factors, so I accept the default in this case by omitting stringsAsFactors = FALSE:

> cellPhones <- read.table ("cellphonetab.txt ", sep = "\t", header = TRUE)
> str (cellPhones)
'data.frame': 5 obs. of 2 variables:
 $ CellPhone: Factor w/ 5 levels "iPhone 4","iPhone 5",..: 4 5 1 2 3
 $ Year : int 2006 2008 2010 2012 2014

3.1.5 Getting Data from the Web
It is also quite easy to download data from the web. For example, the Institute for Digital Research and
Education at the University of California in Los Angeles has a series of tutorials on R with many example
datasets (see Figure 3-3). Let’s download one of those lessons and work with it briefly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Input and Output

32

Although we have already discussed subsetting data, let’s go ahead and download the IDRE lesson and
work with it briefly. See how easy it is to get the information from the website. We simply use the read.csv
function with the URL to the data on the web as our source. Examine the following code snippet to see how
the small dataset from IDRE can be used to help you learn subsetting:

> hsb2.small <- read.csv ("http://www.ats.ucla.edu/stat/data/hsb2_small.csv")
> names(hsb2.small)
[1] "id" "female" "race" "ses" "schtyp" "prog" "read" "write" "math" "science" "socst"
> (hsb3 <- hsb2.small [, c(1, 7, 8)])
 id read write
1 70 57 52
2 121 68 59
3 86 44 33
4 141 63 44
5 172 47 52
6 113 44 52
##this data continues through 25 lines.

Figure 3-3.  The UCLA Institute for Digital Research and Education website

www.it-ebooks.info

http://www.ats.ucla.edu/stat/data/hsb2_small.csv
http://www.it-ebooks.info/

Chapter 3 ■ Input and Output

33

For example, you can learn how to subset the data by using comparison operators, such as selecting
only the individuals with reading scores above or below a certain number. You can also combine the
comparison operators so that you could select on multiple conditions. Here are all the variables, which
makes it more obvious what the code above did. I learned the trick of enclosing a command in parentheses
to print the result of the command from the IDRE lessons. The one command (hsb3 <- hsb2.small[,
c(1, 7, 8)]) creates and prints the data frame hsb3, which contains the first, the seventh, and the eighth
columns of hsb2.small, and prints the new data frame all in one statement. That’s efficiency at work:

> head (hsb2.small)
 id female race ses schtyp prog read write math science socst
1 70 0 4 1 1 1 57 52 41 47 57
2 121 1 4 2 1 3 68 59 53 63 61
3 86 0 4 3 1 1 44 33 54 58 31
4 141 0 4 3 1 3 63 44 47 53 56
5 172 0 4 2 1 2 47 52 57 53 61
6 113 0 4 2 1 2 44 52 51 63 61

3.2 R Output
R results appear by default in the R console or in the R graphics device, which we will examine in more
detail in Chapter 10. We can also save output in different ways, for example, by writing data objects to files or
saving graphics objects.

As you saw earlier with the example of the BMI function, You can use the cat() function, short for
concatenate, to string together output to the console a line at a time. This is a very helpful way to print a
combination of text and values. Note that you must use quotes and a backslash \"n" to “escape” the new line
character. If you want to enter a tab instead of a new line, use \"t".

3.2.1 Saving Output to a File
The output analog of reading a file is writing it. In R, the basic operation is write.table. You can also use
write.csv. When the data are to be saved in R format, you use the save command. Here is how to save the
UCLA file data to a native R data file, which uses the extension .rda. You see that the new R data file is saved
in the working directory. To read the file into R, instead of using read, you use load instead:

> save (hsb3, file = "hsb3save.rda")
> dir ()
 [1] "BeginningR.Rproj" "Chapter1.R"
 [3] "Chapter2.R" "Chapter3.R"
 [5] "desktop.ini" "fishersays.txt"
 [7] "GSS2012.sav" "GSS2012merged_R5.sav"
 [9] "hsb3.RDS" "hsb3save.rda"
[11] "Release Notes for the GSS 2012 Merged R5.pdf" "roster.csv"
[13] "stack.txt" "yvector.txt"
> load ("hsb3save.rda")
> head (hsb3, 3)
 id read write
1 70 57 52
2 121 68 59
3 86 44 33

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_10
http://www.it-ebooks.info/

Chapter 3 ■ Input and Output

34

Let’s also save this data to a CSV file for practice. The following does the trick. We will also check to
make sure the new file is in the working directory:

> write.csv(hsb3, file = "hsb3.csv")
> file.exists ("hsb3.csv")
[1] TRUE

Finally, we shall subject our poor hsb3 data to one last save, using a rather helpful set of commands
saveRDS( ) and readRDS( ). Notice we take the object, save it as a file (it will show up in our working directory)
and then we can read that file back in as a data object – notice we may even give it a new name as
we read it back!

> saveRDS(hsb3, "hsb3.RDS")
> hsb3Copy <- readRDS("hsb3.RDS")

www.it-ebooks.info

http://www.it-ebooks.info/

35

Chapter 4

Control Structures

In Chapter 3, you saw an example of a simple function for calculating a person’s body mass index (BMI).
The function used logic to determine the person’s risk category. The use of logic, conditional statements,
and loops are all inherent in controlling the flow of a program. Although there are many different ways to
write conditional statements, and loops, too, for that matter, they all boil down to testing to see if some
condition is true or false and then behaving accordingly. A program is nothing more or less than a series of
instructions telling a computer what to do. As I have mentioned, R is both functional and objected-oriented,
so every R program consists of function calls that operate on objects.

4.1 Using Logic
We have spoken frequently about the use of logic. R provides several different ways to select which statement
or statements to perform based on the result of a logical test.

You saw the comparison operators in R in Table 1-2. There are also binary logical operators for Boolean
expressions in R (see Table 4-1).

Table 4-1.  Binary Operators in R

Operator R Expression Explanation

NOT ! Logical negation

Boolean AND & Element-wise

Boolean AND && First element only

Boolean OR | Element-wise

Boolean OR || First element only

As you can see, the shorter form acts in a fashion similar to the arithmetic operators, proceeding
element-wise along the vector. The longer form evaluates left to right, and examines only the first element of
each vector. Examples make these easier to understand. See that the shorter form of OR evaluates the truth
of either the elements of x being less than the elements of y OR of the elements of x being less than 10. All of
these conditions are true. But when we use the longer form, it evaluates only the first element in each vector.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_3
http://dx.doi.org/10.1007/978-1-4842-0373-6_1_tab2
http://www.it-ebooks.info/

Chapter 4 ■ Control Structures

36

Similarly, the shorter version of AND function evaluates to FALSE because on the last comparison, x < y AND
x < 10 are not both true:

> x <- 1:10
> y <- 11:15
> x < y | x < 10
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> x < y || x < 10
[1] TRUE
> x < y & x < 10
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
> x < 6 && x < 10
[1] TRUE

4.2 Flow Control
The programmer must control the flow from one part of the program to another. Flow control involves
the use of loops, conditional statements and branching, and conditions that cause the program to stop
doing something and do something else or to quit entirely. Virtually all computer programming languages
implement these capabilities, but often in very different ways. We will discuss these concepts in the abstract
briefly, but then will illustrate them with very specific examples. As you will see, with R, as with most other
languages, there is often more than one way to accomplish the same purpose. Some of these ways are more
efficient and effective than others, whereas others are not as efficient or effective. Our goal will be to learn
how to program in such a way that we can write efficient, reproducible code. We will cover looping and
conditional statements and branching before we move into a more general discussion of programming in R.

4.2.1 Explicit Looping
R provides three types of explicit loops. You can use one type of looping to accomplish the same purpose
as the other types, but the most commonly used loop in R is the for loop. We also have while loops and
repeat loops. Although most R coders will typically use for loops, we will also illustrate while and repeat
loops, which could work better for some given purpose, especially when iteration through a data structure is
not the primary objective.

Let’s start with a very simple example. We want to multiply 1 through 5 by 10 and print the results to
the R console. Although this is a rather uninteresting example, it shows the syntax of a for loop, which is
for(names in values) expression. Here’s our code and result:

> x <- 1:5
> for (i in x) print (i * 10)
[1] 10
[1] 20
[1] 30
[1] 40
[1] 50

We defined x as the integers from 1 to 5, and wrote the for statement in such a way that the names
attribute i iterated through the values in x one at a time, while the expression print(i * 10) printed the
result of multiplying each successive value in the x vector by 10. Not very fancy, but it worked. Of course,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Control Structures

37

the loop we just wrote was also totally unnecessary, as we could simply ask R to print the results as follows,
using implicit looping (vectorization) rather than explicit looping:

> x <- 1:5
> x * 10
[1] 10 20 30 40 50

We can also use for loops with lists and vectors. For example, we may have a character vector such as
the following, and want to loop through it:

> shoppingBasket <- c("apples", "bananas", "butter", "bread", "milk", "cheese")
> for(item in shoppingBasket) {
+ print(item)
+ }
[1] " apples "
[1] " bananas "
[1] " butter "
[1] " bread "
[1] " milk "
[1] " cheese "

Once again, while possible, this loop is also unnecessary, as we can simply print the shopping list
without the need for looping. As users who come to R from languages that are not vectorized learn about
vectorization and especially about a family of implicit looping functions called apply, such users learn that
implicit looping can be accomplished across not just vectors or lists but also with matrices and even entire
data frames.

The while loop will continue to execute until a stopping condition is met. For example, we can write a loop
such as the following, which will accomplish the same results as our for loop. The while loop required a few
more lines of code. Thus, it is less efficient than the for loop. We specified a counter and iterated the counter
by 1 until the stopping condition in the while statement was met. Some languages begin vector indexing with
0 rather than 1, while R begins with 1. This is the reason for setting the counter to 0 initially. As you will see in
Chapter 5, there are some situations in which while loops have potential advantages over for loops:

> count <- 0
> end <- 5
> while (count < end) {
+ count <- count + 1
+ print(count * 10)
+ }
[1] 10
[1] 20
[1] 30
[1] 40
[1] 50

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_5
http://www.it-ebooks.info/

Chapter 4 ■ Control Structures

38

The repeat loop is similar to the while loop. Just as with a while loop, the statement or statements after
the repeat are executed until a stopping constraint is met. However, the only way to exit a repeat loop is with
a break statement. For this reason, it is quite possible (voice of experience speaking here) to write repeat
loops that keep repeating infinitely if one is not careful. Here is a simple example of a repeat loop:

> total <- 0
> repeat {
+ total <- total + 1
+ print (total*10)
+ if (total == 5)
+ break
+ }
[1] 10
[1] 20
[1] 30
[1] 40
[1] 50

4.2.2 Implicit Looping
The apply function family in R provides users implicit looping capabilities. You should be aware that the
apply function, contrary to the beliefs of many, does not result in speed advantages over explicit loops. In
fact, if you simply type apply and press <Enter> to see the actual apply function, you will observe loops in
that function definition itself. The primary advantage of such “higher-order” functions as the apply family is
the improvement of the clarity or the objective(s) of one’s code. Let’s examine several of the most commonly
used apply functions—there are additional ones that we will not cover in this basic text. The basic apply
function applies a function over the margins of an array. The “margins” in this context are either the rows
(1), the columns (2), or both (1:2). Let’s delve deeper

The apply function can be used to calculate the marginal (row or column) means or sums, as shown
here, but the newer rowMeans, colMeans, rowSums, and colSums functions are designed for speed. Recall the
ten-word vocabulary test from the GSS we used in Chapter 2. Because the test was not administered every
year, there were many missing cases. What if for some reason we wanted to do an analysis on the individual
participants’ scores, which are simply the total of the numbers of words the respondent defined correctly?
We could use the apply function for this purpose. However, just to get rid of those annoying NAs, let’s
choose only the complete cases, that is, those in which there are no NAs (missing values). We can use the
complete.cases function as follows:

> library(foreign)
> gss2012 <- read.spss("GSS2012merged_R5.sav", to.data.frame = TRUE)
> myWords <- paste0 ("word", letters [1:10])
> vocabTest <- gss2012 [myWords] 

> vocab <- vocabTest[complete.cases(vocabTest) ,]
 
> #Our download of GSS2012 has CORRECT & INCORRECT. We convert those to 1 and 0 respectively.
> wordsToNum<-function(x) {
+ as.integer(x=="CORRECT")
+ }
>
> vocab<-apply(vocab,2,wordsToNum)
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_2
http://www.it-ebooks.info/

Chapter 4 ■ Control Structures

39

#apply gives back a matrix, we can turn this back into a data frame > vocab
<- as.data.frame(vocab)
> head(vocab, 3)
 worda wordb wordc wordd worde wordf wordg wordh wordi wordj
1 1 1 0 1 1 1 0 0 1 1
2 1 1 1 1 1 1 1 1 1 0
3 0 1 0 1 1 0 0 0 0 0

From the entire GSS dataset, there are 2,494 individuals who responded to the vocabulary words.
Let’s compare the apply function with the colSums function by using the rbenchmark package, which is
a convenient wrapper around system.time. By default, it will perform 100 replications of the expression
being tested, which should be sufficient for our purposes of comparing the speed of the two functions.
The difference in elapsed times is impressive, with the colSums function producing almost a fivefold
improvement. Sometimes a significant speed improvement is as simple as using a newer function designed
for speed. There are also other ways to achieve speed increases, as we will discuss later:

> install.packages("rbenchmark")
> library(rbenchmark)
> benchmark(apply(vocab, 2, sum))
 test replications elapsed relative user.self sys.self user.child sys.child
1 apply(vocab, 2, sum) 100 0.43 1 0.42 0 NA NA
> benchmark(colSums(vocab))
 test replications elapsed relative user.self sys.self user.child sys.child
1 colSums(vocab) 100 0.09 1 0.1 0 NA NA

The sapply function applies a function to the elements in a list but returns the results in a vector,
matrix, or a list. If the argument simplify = FALSE, sapply will return its results in a list, just as does the
lapply function. If simplify = TRUE (which is the default), then sapply will return a simplified form of the
results if that is possible. If the results are all single values, sapply will return a vector. If the results are all of
the same length, sapply will return a matrix with a column for each element in the list to which the function
was applied. Let’s illustrate these two functions again, each of which avoids explicit looping. We will use an
example similar to our previous one, in which we have three numeric vectors of different lengths combined
into a list and then use the sapply and lapply functions to find the means for all three vectors:

> x1
[1] 55 47 51 54 53 47 45 44 46 50
> x2
[1] 56 57 63 69 60 57 68 57 58 56 67 56
> x3
[1] 68 63 60 71 76 67 67 78 69 69 66 63 78 72
> tests <- list (x1 , x2 , x3)
> tests
[[1]]
[1] 55 47 51 54 53 47 45 44 46 50
 
[[2]]
[1] 56 57 63 69 60 57 68 57 58 56 67 56
 
[[3]]
[1] 68 63 60 71 76 67 67 78 69 69 66 63 78 72
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Control Structures

40

> sapply (tests , mean)
[1] 49.20000 60.33333 69.07143
> lapply (tests , mean)
[[1]]
[1] 49.2
 
[[2]]
[1] 60.33333
 
[[3]]
[1] 69.07143

Another very useful function is the tapply function, which applies a function to each cell of a ragged
array. To demonstrate this function, assume that we have 20 students who have each studied either alone or
in a study group, and each of whom was taught a different study method. The scores for the 20 students on a
quiz may look like the following, with the factors as shown:

> QuizScores
 score approach group
1 80 method1 alone
2 80 method2 alone
3 76 method1 alone
4 79 method2 alone
5 80 method1 alone
6 81 method2 alone
7 83 method1 alone
8 72 method2 alone
9 83 method1 alone
10 77 method2 alone
11 73 method1 group
12 69 method2 group
13 66 method1 group
14 67 method2 group
15 70 method1 group
16 72 method2 group
17 76 method1 group
18 71 method2 group
19 71 method1 group
20 72 method2 group

We can use the tapply function to summarize the scores by the method used and by whether the student
studied alone or in a group. We can also combine the two factors and find the means for each of the cells of a
two-way table. To make our code a little easier to understand, let’s attach the QuizScores data frame so that
we can refer to the scores and the two factors directly. Without doing any statistical analyses, it appears that
studying alone using method 1 may be a good strategy for maximizing one’s quiz score:

> attach(QuizScores)
> tapply(score, approach, mean)
method1 method2
 75.8 74.0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Control Structures

41

> tapply(score, group, mean)
alone group
 79.1 70.7
> tapply (score, list(approach, group), mean)
 alone group
method1 80.4 71.2
method2 77.8 70.2

It’s worth mentioning here that the aggregate function can be used to apply a function such as the
mean to a combination of factors as well. For the quiz data, we can get a convenient summary by using
aggregate as follows. We supply a “formula”—in this case, the score by the two factors—identify the data
frame, and then identify the function. We get a slightly differently formatted result from that of tapply,
although the results are identical:

> aggregate (score ~ approach + group, data = QuizScores, mean)
 approach group score
1 method1 alone 80.4
2 method2 alone 77.8
3 method1 group 71.2
4 method2 group 70.2

4.3 If, If-Else, and ifelse( ) Statements
In addition to looping, we can use various forms of if statements to control the flow of our programs. The if
statement is the simplest. If evaluates simply as:

if (condition) expression

The expression may be a single line of code, or it may be multiple statements (what the R documentation
refers to as a compound statement) enclosed in braces. If the condition evaluates to TRUE, the expression is
performed, and if the conditions evaluates to FALSE, the expression is not performed.

We can also use an if-else statement, which evaluates as follows. Expression1 is performed if the
condition is TRUE, and expression2 is performed if the condition is FALSE:

if (condition) expression1 else expression2

There is also an ifelse function, which takes the form ifelse(test, yes, no). The test is the logical
condition, “yes” is what is returned if the logical condition is TRUE and “no” is what is returned when the
logical condition is false. As usual, examples make the use of these statements clearer.

An if statement leads to the evaluation of the expression if the condition is TRUE. Otherwise, the
expression is not evaluated. For example, say we are conducting a hypothesis test with an alpha level of
.05. We will reject the null hypothesis if the p-value is equal to or lower than .05, and will not reject the
null hypothesis if the p-value is greater than .05. We can use an if statement to specify rejection of the null
hypothesis, Note that in the second case, the condition is false because .051 is greater than .05, so nothing
happens. We can make our function a little more flexible by specifying a default alpha level, which we can
then change as necessary:

> rejectNull <- function(pValue, alpha = .05) {
+ if (pValue <= alpha) print("Reject Null")
+ }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Control Structures

42

> rejectNull(.05)
[1] "Reject Null"
> rejectNull (.051)
>

Adding an else condition covers both bases:

> rejectNull <- function(pValue, alpha = .05) {
+ if (pValue <= alpha) print("Reject Null")
+ else print ("Do not Reject")
+ }
> rejectNull (.07)
[1] "Do not Reject"
> rejectNull(.05)
[1] "Reject Null"
> rejectNull(.05, .01)
[1] "Do not Reject"

The ifelse function is quite interesting. For if and else statements, the condition must result in a
single logical condition being TRUE or FALSE. If you supply a vector, only the first element will be evaluated.
But the ifelse function works on vectors. Say we create a sequence of integers from –5 to + 5 and then
attempt to take the square roots of the elements of the vector. This will return NaNs for all the negative
numbers and will give us a warning. We can avoid the warning, extract the square roots of the non-negative
numbers, and define the square roots of the negative numbers as NA all at once by using ifelse:

> x <- -5:5
> x
[1] -5 -4 -3 -2 -1 0 1 2 3 4 5
> sqrt (x)
[1] NaN NaN NaN NaN NaN 0.000000 1.000000 1.414214
[9] 1.732051 2.000000 2.236068
Warning message:
In sqrt(x) : NaNs produced
 
> sqrt(ifelse(x >= 0, x, NA))
[1] NA NA NA NA NA 0.000000 1.000000 1.414214
[9] 1.732051 2.000000 2.236068

www.it-ebooks.info

http://www.it-ebooks.info/

43

Chapter 5

Functional Programming

The longer one programs, the easier it becomes to think like a programmer. You learn that the best way to
solve a problem is to solve it once in such a way that the adjustments you need to make when the problem
changes slightly are very small ones. It is better to use variables and even other functions in your code
so that you can change a single value once rather than many times. This is the essence of the pragmatic
programmer who writes with purpose. Programmers who come to R from other languages such as C++ or
Python tend to think in loops. You are probably convinced by now that R’s vectorization allows us to avoid
loops in many situations. As you saw in Chapter 4, looping is possible when it is needed. Efficient code
allows us to automate as many tasks as we can so that we don’t repeat ourselves, and to avoid looping as
much as possible.

Soon after I started using R, I quickly decided I needed to be more systematic in my learning, and I
bought a couple of books on R. The R documentation itself is adequate, but was often confusing and difficult
to read on a computer screen. What I soon found was that R functions are also objects in their own right.
As a general rule, we can say that every function has three components. These are the body of the function
(the code inside the function), the formals (or arguments) that control how the function is called, and the
environment, which you might think of as the location indicator of the function’s variables.

One of the nicest things about R is its transparency. You can literally view any function simply by typing
its name without any arguments. Here is the mad() function from the base version of R. You see that its
environment is the stats package that is part of the base R implementation. When no environment is printed,
this means the function was created in the global environment, that is, the current R session:

> mad
function (x, center = median (x), constant = 1.4826 , na.rm = FALSE ,
low = FALSE , high = FALSE)
{
if (na.rm)
x <- x[!is.na(x)]
n <- length (x)
constant * if ((low || high) && n%%2 == 0) {
if (low && high)
stop ("'low ' and 'high ' cannot be both TRUE ")
n2 <- n%/%2 + as. integer (high)
sort (abs (x - center), partial = n2)[n2]
}
else median (abs (x - center))
}
<bytecode : 0 x00000000077b8458 >
< environment : namespace :stats >

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_4
http://www.it-ebooks.info/

Chapter 5 ■ Functional Programming

44

Functions usually have names, but we can also use anonymous, or unnamed functions. We might use
an anonymous function when there’s no advantage to giving the function a name. For example, we could
define a function to calculate the coefficient of variation, which is the ratio of the standard deviation to the
mean. Say that we have no particular recurring use for this statistic but needed it for the displacement, gross
horsepower, and rear axle ratio of the cars in our mtcars data. We could write an anonymous function as
follows:

> sapply (mtcars [, 3:5], function (x) sd(x)/ mean (x))
 disp hp drat
0.5371779 0.4674077 0.1486638 

Just as all R functions do, an anonymous function has formals, a body, and an environment:

> formals(function(x) sd(x)/mean(x))
$x
> body(function(x) sd(x)/mean(x))
sd(x)/mean (x)
> environment (function(x) sd(x)/mean(x))
< environment: R_GlobalEnv>
 

5.1 Scoping Rules
In R, scoping describes how R “looks up” the value of a symbol. If an “unknown” name is not defined in a
function, R will look one level up, and keep doing so all the way up to the global environment. The same is
true of functions. R will keep looking up from the current level until it gets to the global environment, and
then begin looking in any packages loaded in the current workspace until it reaches the empty environment.
Once the empty environment is reached, if R cannot find the value for a given symbol, an error is produced.
This kind of scoping is one of the ways in which R is different from the original S language. R uses what
is known as static or lexical scoping. A free variable is not a formal argument or a local variable, that is,
assigned within the function body. Lexical scoping means that the values of a free variable are searched for
within the environment in which the function was defined and then in the parent environment.

When we try to bind a value to a symbol in R, R searches through the series of environments, as
described earlier. The search list can be found by use of the search function. The global environment (that
is, the user’s workspace) is always the first element of the search list (although a different environment may
be first when the searching is done within a function within a package, rather than by the user). The base
packages is always the last element of the search list, as shown below. The order of the packages in the
search list is important because users are able to configure which packages are loaded at startup. When you
load a new package with the library() or require() functions, that package is placed in the second position in
the search list, and everything else moves down the list:

> search()
[1] ".GlobalEnv" "tools:rstudio" "package:stats" "package:graphics" "
 package:grDevices" "package:utils "
[7] "package:datasets" "package : methods " "Autoloads" "package:base"
> library(swirl)
> search ()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Functional Programming

45

[1] " GlobalEnv" "package:swirl" "tools:rstudio" "package:stats" "
 package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "package:methods" "Autoloads" "
 package:base" 

Typically, we define functions within the global environment, so the values of free variables are located
in the user’s workspace. But in R, it is also possible to define a function within the body of another function,
and to create functions that themselves create additional functions. The lexical scoping provided by R makes
statistical computing easier. We call functions written by other functions “closures.” If you will, they enclose,
or encapsulate the environment of the parent function and can access its variables. This gives us the ability
to have a parent level controlling operation, and a child function in which the actual work is done. Here, for
example, is a function called take.root that defines another function, root. By assigning different values to
n, we can take different roots, such as a square root or a cube root:

> take.root <- function(n) {
+ root <- function(x) {
+ x ^(1/n)
+ }
+ root
+ }
> square.root <- take.root(2)
> cube.root <- take.root(3)
> square.root(81)
[1] 9
> cube.root(27)
[1] 3
> ls(environment(square.root))
[1] "n" "root"
> get ("n", environment(square.root))
[1] 2
> ls(environment(cube.root))
[1] "n" "root"
> get("n", environment(cube.root))
[1] 3
 

5.2 Reserved Names and Syntactically Correct Names
The following words are reserved in R: if, else, repeat, while, function, for, in, next, break,
TRUE, FALSE, NULL, Inf, NaN, NA, NA_integer_, NA_real_, NA_complex_, and NA_character_. In R,
syntactically valid names consist of letters, numbers, and the dot or underline characters. Names must start
with a letter or with a dot, which cannot be followed immediately by a number. The use of dots in function
names could be for several different purposes. For example, visual separation can be accomplished by
the use of dots or underscores, as in data.frame or is.na. Underlines can be used for the same purpose.
Another use of the dot is to identify underlying functions of generic methods. Finally, we can “hide” internal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Functional Programming

46

functions or objects by beginning the name with a dot. This is only a partial obscurity, because we can ask
for all names to be shown, as the following code shows. See that our object .y as well as the .getSymbols and
.Random.seed functions are also “in” the R workspace but visible only when we ask to see everything:

> x <- 10
> .y <- 20
> ls ()
[1] "x"
> ls(all.names = TRUE)
[1] ".getSymbols" ".Random.seed" ".y" "x"
 

5.3 Functions and Arguments
We create functions and store them as R objects. We must tell R we are creating a function by using the
function() directive. In R, a function is a “first class object,” meaning that it can be passed as an argument
to another function, and functions can be nested (defined inside another function, as discussed earlier).
Functions have arguments (also called parameters), and these can potentially have default values. Some
functions do not have arguments at all, as in the BMI function we used in Chapter 3.

R matches the arguments in functions either by position, or by name. In particular, function arguments
are matched in the following order:

	 1.	 check for an exact match for a named argument

	 2.	 check for a partial match

	 3.	 check for a positional match

R also uses “lazy” evaluation, which means that an argument is evaluated only when it is needed. For
example, we can create a function with two arguments, one of which is not used, because the first argument
is matched positionally. The following example illustrates. No error is produced, because the 10 matched x
positionally. Note that supplying a value for y makes no difference, either, as it is not needed by the function.
Our function does not set a default for x, so there can be some damaged ways to call the function. Note that
in the last call to our function, we explicitly name x in the ‘wrong’ position. These examples, of course, are
not meant to encourage bad programming practice but simply to illustrate the way R works. We will hope to
produce effective and efficient functions rather than ones that capitalize on R’s quirks:

> myFun <- function (x,y) {
+ print (x ^2)
+ }
> myFun (10)
[1] 100
> myFun (10 ,20)
[1] 100
> myFun(,10)
Error in print(x^2) : argument "x" is missing, with no default
> myFun(20,x=10)
[1] 100

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_3
http://www.it-ebooks.info/

Chapter 5 ■ Functional Programming

47

5.4 Some Example Functions
In the following sections, I will show you a couple of examples of functions that I have written just for fun.
The first is a function like the BMI function that we used earlier that queries for user input using the readline
function, making the function interactive. As with the BMI function, it does not require arguments. The
second is one that requires arguments, and we will examine in more detail how the arguments are evaluated.

5.4.1 Guess the Number
Here’s a problem similar to one used in many programming classes and books. The computer “thinks” of
a number, and the user guesses until he or she either gets the number right, or runs out of tries. Although
R may not be the best language for writing such a function, it is possible, and we can see at work in the
function many of the things we have talked about. We will use the uniform distribution to pick a number
between 1 and 100, and then let the user determine how many guesses he or she wants. The function has
no arguments, instead querying the user for a new guess if the number is either too high or too low. If the
person guess the number, R reports that fact and tells the user how many tries it took. If the person does
not guess the number, R tells the user he or she is out of tries and then reveals the number it was ”thinking”
about. We use the while loop rather than the for loop, because in this case we are not iterating through a
vector, per se. It would of course be possible to rewrite this with a for loop based on the number of attempts.
Note that the break statements halt the execution of the while loop when the person either guesses the
number correctly or runs out of turns:

guessIt <- function(){
cat ("I am thinking of a number between 1 and 100","\n")
computerPicks <- as.integer(round(runif(1,1,100),0))
attempts <- as.integer(readline("How many guesses do you want? "))
count = 0
while (count < attempts){
count <- count + 1
 userGuess <- as.integer(readline("Enter your guess: "))
 if (count == attempts && userGuess != computerPicks) {
 cat("Sorry, out of tries. My number was ",computerPicks,"\n")
 break
 }
 if (userGuess == computerPicks) {
 cat("You got it in ", count, "tries.","\n")
 break
 }
 if (userGuess < computerPicks) {
 cat("Your guess is too low.","\n")
 }
 if (userGuess > computerPicks){
 cat ("Your guess is too high.","\n")
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Functional Programming

48

Here’s one of my attempts at guessing the correct number. I used the “splitting the difference” strategy,
but there’s a bit of luck involved as well. You can adjust the function in various ways to make it more
interesting, for example by letting the user pick the lower and upper bounds. I set the counter to zero initially
so that when R increments it, I get the correct number for the number of tries:

> guessIt ()
I am thinking of a number between 1 and 100
How many guesses do you want? 7
Enter your guess: 50
Your guess is too high.
Enter your guess: 25
Your guess is too high.
Enter your guess: 13
Your guess is too low.
Enter your guess: 17
Your guess is too low.
Enter your guess: 22
You got it in 5 tries.

5.4.2 A Function with Arguments
Many students learn the general quadratic formula in their algebra classes. Compared to other approaches
to solving quadratic equations, the general formula has the advantage that it always works. As a reminder,
here is the general quadratic formula:

	
x =

-b – b - ac

a

2 4

2 	 (5.1)

The discriminant of a quadratic equation is the expression under the radical. If the discriminant
is positive, the equation will have two real roots. If the discriminant is zero, the equation will have one
(repeated) real root, and if the discriminant is negative, the equation will have two complex roots. Assume
that we are interested only in real roots. Let’s write a function to find the real root(s) of a quadratic equation.
We will then test the function with different coefficients for a, b, and c to make sure that it works correctly:

> # function for finding the real root(s) of a quadratic equation
> quadratic <- function (a, b, c) {
+ discrim <- b^2 - 4*a*c
+ cat("The discriminant is: ", discrim, "\n")
+ if(discrim < 0){
+ cat("There are no real roots. ","\n")}else {
+ root1 <- (-b+ sqrt (discrim)) / (2*a)
+ root2 <- (-b- sqrt (discrim)) / (2*a)
+ cat("root1: ", root1, "\n")
+ cat("root2: ", root2, "\n")
+ }
+ }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Functional Programming

49

> quadratic (2, -1, -8)
The discriminant is: 65
root1: 2.265564
root2: -1.765564
> quadratic (1, -2, 1)
The discriminant is: 0
root1: 1
root2: 1
> quadratic (3, 2, 1)
The discriminant is: -8There are no real roots.

5.5 Classes and Methods
R supports various classes and methods. In particular, there are now three object-oriented systems that work
in R: the S3 class, the S4 class, and the newer Reference Classes, called refclasses (previously talked about
as R5 and also R6, an R package that implements simplified reference classes), which do not depend on S4
classes and the methods package. In this book, we will focus on some examples of S3 classes and methods.
S4 classes and refclasses are more formal and typically only make sense in the context of larger
programming projects, such as when developing an R package.

5.5.1 S3 Class and Method Example
To create an S3 class, we first form a list, and then we set the class attribute by using the class() or the
attr() function. Say we are building a list of the donors to one of our favorite charities. Our list will include
the person’s name, gender, and the amount last donated.

First, our S3 class is as shown. We create the list, set the class attribute, and show the results by typing
the object name:

> info <- list(name = "Jon", gender = "male", donation = 100)
> class(info) <- "member"
> attributes(info)
$ names
[1] "name" "gender" "donation"
 
$ class
[1] "member"
 
> print (info)
$name
[1] "Jon"
 
$gender
[1] "male"
 
$donation
[1] 100
 
attr(,"class")
[1] "member"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Functional Programming

50

When we have R print the object, it shows each the elements, data, and also reports the attributes,
here the class we defined. It is not very pretty, because R does not have any special methods defined for the
print() function to deal with an object of class member. However, using S3 classes and methods, it is easy
to create a specific method for a generic function like print(). The generic way to define a method for a
function in S3 classes is function.class(). In this case, our function is print() and our class is member, so
we call the function, print.member() and define that. This gives us prettier results than before.

> print.member <- function(person) {
+ cat("Name: ", person $name , "\n")
+ cat("Gender: ", person $ gender, "\n")
+ cat("Donation: ", person $ donation, "\n")
+ }
> print (info)
Name: Jon
Gender: male
Donation: 100
 

5.5.2 S3 Methods for Existing Classes
We can also write new S3 methods for existing classes. For example, again using the built in mtcars data,
suppose we conducted an independent samples t-test comparing the miles per gallon for cars with manual
versus automatic transmissions. We’ll do more with t-tests later, for now, focus on the creation of the new
method below:

> results <- t.test(mpg ~ am, data = mtcars)
  
> results
 
 Welch Two Sample t-test
 
data: mpg by am
t = -3.7671, df = 18.332, p-value = 0.001374
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -11.280194 -3.209684
sample estimates:
mean in group 0 mean in group 1
 17.14737 24.39231

R gives us nice text output, but what if we wanted to plot the results? Calling plot() on the t-test object
does not give useful results.

> plot(results)
Error in xy.coords(x, y, xlabel, ylabel, log) :
 'x' is a list, but does not have components 'x' and 'y'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Functional Programming

51

plot() does not work because there are no specific methods defined. To know this, first check the class
of the t-test output, and then we can see if any plot() methods are defined for that class using the methods()
function.

> class (results)
[1] "htest"
> methods(plot)
 [1] plot.acf* plot.correspondence* plot.data.frame*
 [4] plot.decomposed.ts* plot.default plot.dendrogram*
 [7] plot.density* plot.ecdf plot.factor*
[10] plot.formula* plot.function plot.ggplot*
[13] plot.gtable* plot.hclust* plot.histogram*
[16] plot.HoltWinters* plot.isoreg* plot.lda*
[19] plot.lm* plot.mca* plot.medpolish*
[22] plot.mlm* plot.ppr* plot.prcomp*
[25] plot.princomp* plot.profile* plot.profile.nls*
[28] plot.ridgelm* plot.spec* plot.stepfun
[31] plot.stl* plot.table* plot.ts
[34] plot.tskernel* plot.TukeyHSD*
 
 Non-visible functions are asterisked

Since there is no plot.htest() function, no method is defined. Let’s define a simple plot method
for a t-test now. The plot method is designed to take an object, the results from a t-test, and has a second
argument to control how many digits the p-value should be rounded to. We set a default value of 4, so that it
will be rounded to four decimals if another value is not explicitly specified. Now we can again call plot()on
our t-test results object, and this time we get a nice figure. Notice that even though we called our function
plot.htest() we only have to call plot(), methods dispatching means that R looks for a specific version of
plot that matches the class of the first argument, in our case, class htest with output shown in Figure 5-1.
Using methods can be an easy way to write functions that help extend the functionality already available in R
and from the numerous R packages available to fit your individual needs and workflow.

> plot.htest <- function(object, digits.to.round = 4) {
+
+ rounded.pvalue <- round(object$p.value, digits.to.round)
+
+ barplot(object$estimate,
+ ylim = c(0, max(object$estimate) * 1.1),
+ main = paste(object$method, "of", object$data.name),
+ sub = paste("p =", rounded.pvalue))
+ }
>
> plot(results)

 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Functional Programming

52

Figure 5-1.  S3 method plot rewrite graph

www.it-ebooks.info

http://www.it-ebooks.info/

53

Chapter 6

Probability Distributions

In Chapter 6, you will learn how to use R for several important probability distributions. We cover the
binomial distribution, the Poisson distribution, the normal distribution, the t distribution, the F distribution,
and the chi-square distribution. R uses a standardized method for naming the functions associated with
each of these, so that it is easy to remember them. We use the letters d (for density), p (for probability),
q (for quantile), and r (for random) to preface the function, so for the normal distribution, dnorm returns
the density, pnorm returns the probability associated with an area under the curve, qnorm returns the score
associated with a given probability, and rnorm produces the desired number of randomly generated scores
from a normal distribution with a given mean and standard deviation.

Probability distributions may be discrete, as in the case of the binomial and Poisson distributions, or
they may be continuous, as in the case of the normal, t, F, and chi-square distributions. We will consider
discrete probability distributions first.

6.1 Discrete Probability Distributions
Probability can be defined in different ways. For example, we can define the probability of receiving a
heads on the flip of a fair coin as 1/2 or .50. This is the theoretical probability, because the sample space
has two possible outcomes, and there is only one outcome resulting in heads. We could also wait until we
have tossed the coin a number of times to determine how many heads we got as a proportion of the total
number of tosses. This is an empirical probability. Specifically, the probability of an event, E, is the relative
proportion of the number of times E occurs as a proportion of the total number of observed occurrences.

There are any number of discrete probability distributions. A discrete random variable can take
on only clearly separated values, such as heads or tails, or the number of spots on a six-sided die. The
categories must be mutually exclusive and exhaustive. Every event belongs to one and only one category,
and the sum of the probabilities is 1. We can in general calculate the mean and variance of a discrete
probability distribution as follows, though as you will see, we can often simplify the calculations for certain
distributions. First, the mean of any discrete probability distribution can be computed by the following:

	
m = ()éë ùûå xP x 	 (6.1)

The variance for a discrete probability distribution is calculated as follows:

	
s m2 2= -() ()é

ë
ù
ûå x P x 	 (6.2)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_6
http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

54

6.2 The Binomial Distribution
Statisticians rely on the law of large numbers, which tells us that when we perform the same experiment
a large number of times, the average of the results obtained from repeated trials (the empirical value)
should be close to the expected (theoretical) value. The law of large numbers was first derived by Swiss
mathematician Jacob Bernoulli, for whom the Bernoulli process is also named. A Bernoulli process is a finite
or infinite sequence of independent random variables X

1
, X

2
, X

3
, . . . such that for each i, the value of X

i
 is

either 0 or 1. An obvious, if perhaps unimaginative, form of a Bernoulli process is a coin-flipping experiment.
The extension of the Bernoulli process to more than two possible outcomes is known as the Bernoulli
scheme (e.g., the possible outcomes of throwing a six-sided die).

The discrete binomial distribution is very useful for modeling processes in which the binary outcome
can be either a success (1) or a failure (0). The random variable X is the number of successes in N
independent trials, for each of which the probability of success, p, is the same. The number of successes can
range from 0 to N. The expected value of k is N p, the number of trials times the probability of success on a
given trial, and the variance of the binomial distribution is N pq, where q = 1 − p. We calculate the binomial
probability as follows:

	
p X k p N

N

k
p pk N k=() = æ

è
ç

ö

ø
÷ -() -

| , 1
	

(6.3)

The binomial coefficient
N

k

æ

è
ç

ö

ø
÷ is not related to the fraction

N

k
, and it is often written

n
C

k
, read

“N choose k.” The binomial coefficient can be calculated as follows:

	

N

k
N

k N k

æ

è
ç

ö

ø
÷ = -()

!

! ! 	
(6.4)

We can use the choose() function in R to find a binomial coefficient, for example, the number of ways
you can select six individual objects from a total of 10. Simply type choose(N, k), substituting the desired
values:

> choose (10, 6)
[1] 210

We use the binomial distribution in many ways. In each case, the number of “successes” is counted,
and we determine the probability of either an exact number of successes given n and p or the probability
of a range of numbers of successes. As it materializes, the binomial distribution also gives us a good
approximation of the normal distribution as the number of trials increases, and as the probability of success
is close to .50. Here is a binomial distribution for the number of successes (heads) in 10 tosses of a fair coin,
in which the probability of success for each independent trial is .50. We establish a vector of the number of
successes (heads), which can range from 0 to 10, with 5 being the most likely value. The dbinom function
produces a vector of values, but to make ours easier to read in a more customary tabular format, we use
cbind again to create a matrix instead, changing the row names from the standard 1 to 11 to the more
sensible 0 to 10 by using the rownames function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

55

> x <- 0:10
> x
[1] 0 1 2 3 4 5 6 7 8 9 10
> binomCoinToss <- cbind(dbinom(x, 10, .50))
> rownames(binomCoinToss) <- x
> binomCoinToss
 [,1]
0 0.0009765625
1 0.0097656250
2 0.0439453125
3 0.1171875000
4 0.2050781250
5 0.2460937500
6 0.2050781250
7 0.1171875000
8 0.0439453125
9 0.0097656250
10 0.0009765625
 
> class(binomCoinToss)
[1] "matrix"

Careful examination reveals that the distribution is symmetrical, and a plot of the distribution against
the values of x makes this clearer. The shape of the distribution is close to “normal looking,” even though the
binomial distribution is discrete, as shown in the probability mass function (PMF) in Figure 6-1. Here’s how
I plotted the PMF and added the points and the horizontal line for the x axis. Somewhat confusingly, the
type = “h” plots vertical lines on the graph. According to the R documentation, the h is for “histogram like” or
“high-density” vertical lines.

> binomDist <- dbinom (x, 10, 0.50)
> plot (x, binomDist, type = "h")
> points (x, binomDist)
> abline (h = 0)
> lines (x, binomDist)

The addition of lines to “connect the dots” makes it more obvious that the distribution is “normal”
in appearance. We find that the binomial distribution serves as a good approximation of the normal
distribution as the probability of success gets closer to .50 and as the number of trials increases.

Traditionally, statistics books provided tables of various quantiles of the binomial probability
distribution. Modern texts depend on some form of tech (such as the built-in functions in R) to render the
tables unnecessary. For example, if we want to know the probability of any exact number of successes,
we can use the dbinom function, and if we are interested in finding the probability of a range of successes,
we can use the pbinom function. For example, what is the probability of throwing 5 or fewer heads in our
10 tosses of a fair coin? We could calculate the individual probabilities for 0, 1, 2, 3, 4, and 5 and then add
them up, and that would produce the correct answer, but it would be wasteful, as we can use pbinom for the
same answer as follows. Note that when we change the default lower.tail = TRUE argument to lower.
tail = FALSE, we are getting a right-tailed probability. It is important to note that for the pbinom function,
the boundary value is included in the lower-tailed probability interval but excluded from the upper-tailed
interval, as the following code illustrates. Adding the last two probabilities should produce 1, as 5 cannot
“be” in both intervals.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

56

> sum (dbinom(0:5, 10, .50))
[1] 0.6230469
> # calculate the probability k <= 5
> pbinom(5, 10, .50)
[1] 0.6230469
> # calculate the probability k > 5
> pbinom(5, 10, .50, lower.tail = FALSE)
[1] 0.3769531

The problem of whether to include the endpoint or not is important only with discrete probability
distributions, because with continuous distributions, the probability of an exact point on the probability
density curve is essentially zero.

Let us perform a simulation using the rbinom function to see how it works. We will also get an idea of
whether the law of large numbers mentioned earlier can be demonstrated effectively. We will simulate the
tossing of a fair coin 1,000 times, recording whether the coin is heads (1) or tails (0) for each coin toss. We
will also plot the running average of the number of heads against the trial number. We can use the cumsum()
function to keep track of the number of heads, as heads are 1s and tails are 0s, and then we can calculate
the running averages as follows. We can then plot the proportion of heads over the series of trials and add a
horizontal reference line at p = .50 (see Figure 6-2)

> tosses <- rbinom(1000, 1, .5)
> heads <- cumsum(tosses)/1:1000
> plot(heads, type = "l", main = "Proportion of Heads")
> abline (h = .5)

Figure 6-1.  Binomial distribution of the number of heads in 10 coin tosses

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

57

6.2.1 The Poisson Distribution
The Poisson distribution is a special case of the binomial distribution. We define success and failure in the
usual way as 1 and 0, respectively, and as with the binomial distribution, the distinction is often arbitrary.
For example, it makes little sense to talk about a hurricane or a work-related death as a “success.” For that
reason, we will change the word “success” to occurrence. The Poisson distribution, unlike the binomial
distribution, has no theoretical upper bound on the number of occurrences that can happen within a
given interval. We assume the number of occurrences in each interval is independent of the number of
occurrences in any other interval. We also assume the probability that an occurrence will happen is the
same for every interval. As the interval size decreases, we assume the probability of an occurrence in the
interval becomes smaller. In the Poisson distribution, the count of the number of occurrences, X, can take
on whole numbers 0, 1, 2, 3, ... The mean number of successes per unit of measure is the value m. If k is any
whole number 0 or greater, then

	
P X k

k

k

=() =
-e mm

! 	 (6.5)

The variance of the Poisson distribution is also m, and the standard deviation is therefore m . As with
the binomial distribution, we have the dpois, the ppois, the qpois, and the rpois functions.

As an example, the U.S. Bureau of Labor Statistics reported that in 2012, a year for which complete data
are available, the number of work-related deaths per day averaged 12.7. Assuming the count of work-related
deaths follows a Poisson distribution, what is the probability of exactly 10 deaths on a given day? What is
the probability of 10 or fewer deaths in one day? What is the probability of more than 10 deaths in a day?
Just as with the binomial distribution, the discrete Poisson distribution includes the boundary value in the
lower-tailed probability and excludes it from the upper-tailed probability.

Figure 6-2.  Proportion of heads in 1,000 simulated coin tosses

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

58

> dpois(10, 12.7)
[1] 0.09177708
> ppois(10, 12.7)
[1] 0.2783314
> ppois(10, 12.7, lower.tail = FALSE)
[1] 0.7216686

6.2.2 Some Other Discrete Distributions
In addition to the binomial and the Poisson distributions, there are other useful discrete probability
distributions. The negative binomial distribution is one of these. Instead of determining the distribution of
successes over a fixed number of trials, as we do in the binomial distribution, we determine the number of
failures that are likely to occur before a target number of successes occur. The negative binomial distribution
is built into R as well. A special case of the negative binomial distribution is the geometric distribution,
which is the distribution of the number of failures that occur before the first success. As you would suspect,
this distribution is built into R, too. The nice thing about the discrete probability distributions as well as the
continuous probability distributions in R is that in a sense once you have learned one, you have learned them
all, as the standardized function naming makes it easy to understand how to look up probabilities, how to find
areas, and how to do reverse-lookups, that is, how to find the value associated with a given probability.

6.3 Continuous Probability Distributions
Continuous variables can take on any value within some specified range. Thus continuous probability
functions plot a probability density function (PDF) instead of a discrete probability mass function (PMF).
In contrast to discrete probability distributions, the probability of a single point on the curve is essentially
zero, and we rarely examine such probabilities, rather focusing on areas under the curve. In statistics, the
four most commonly used continuous probability distributions are the normal distribution and three other
distributions theoretically related to the normal distribution, namely, the t distribution, the F distribution,
and the chi-square distribution.

6.3.1 The Normal Distribution
The normal distribution serves as the backbone of modern statistics. As the distribution is continuous,
we are usually interested in finding areas under the normal curve. In particular, we are often interested in
left-tailed probabilities, right-tailed probabilities, and the area between two given scores on the normal
distribution. There are any number of normal distributions, each for any non-zero value of s, the population
standard deviation, so we often find it convenient to work with the unit or standard normal distribution.
The unit normal distribution has a mean of 0 (not to be confused in any way with a zero indicating the
absence of a quantity), and a standard deviation of 1. The normal distribution is symmetrical and mound
shaped, and its mean, mode, and median are all equal to 0. For any normal distribution, we can convert the
distribution to the standard normal distribution as follows:

	
z

x x

x

=
-()m
s 	

(6.6)

which is often called z-scoring or standardizing. The empirical rule tells us that for mound-shaped
symmetrical distributions like the standard normal distribution, about 68% of the observations will lie
between plus and minus 1 standard deviation from the mean. Approximately 95% of the observations will lie

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

59

within plus or minus 2 standard deviations, and about 99.7% of observations will lie within plus or minus 3
standard deviations. We can use the built-in functions for the normal distribution to see how accurately this
empirical rule describes the normal distribution. We find the rule is quite accurate.

> pnorm(3) - pnorm(-3)
[1] 0.9973002
> pnorm(2) - pnorm(-2)
[1] 0.9544997
> pnorm(1) - pnorm(-1)
[1] 0.6826895

By subtracting the area to the left of the lower z score from the area to the left of the higher z score,
we retain the area between the two scores. The qnorm function can be used to locate precise z scores that
correspond to a given probability. For example, in statistics we commonly accept .05 or .01 as our standard
for statistical significance. To find the critical values of z that will put half of the alpha level in the upper tail
and half in the lower tail, we find the z score associated with a probability of 1 − a/2. Let’s start with an alpha
level of .05, and then find the critical values for .01 and .10 as well:

> qnorm(1 - .05/2)
[1] 1.959964
> qnorm(1 - .01/2)
[1] 2.575829
> qnorm(1 - .10/2)
[1] 1.644854

Of course, it is more direct just to type qnorm(.975), but the listing makes it obvious to the reader what
we are really doing. These are standard critical values of z that can be found in any table of the standard
normal distribution, but the advantage of R is that it makes such tables unnecessary, as we can find critical
values more quickly and more accurately with technology than by reading printed tables. To prove the point,
let’s determine the area between z scores of +1.96 and -1.96 using our previous subtraction strategy. Indeed
the area is almost exactly .95 or 95%.

> pnorm(1.96) - pnorm(-1.96)
[1] 0.9500042

If we are doing a one-tailed test, we place the entire alpha level in one tail of the standard normal
distribution. Conducting a one-tailed test has the simultaneous effect of making the statistical test more
powerful given that the results are in the hypothesized direction and making it technically inappropriate to
talk about findings that are not in the hypothesized direction. The default for most statistical software is to
perform a two-tailed test, but it is possible also to specify a left-tailed or a right-tailed test as well.

One of the most important applications of the normal distribution is its ability to describe the
distributions of the means of samples from a population. The central limit theorem tells us that as the
sample size increases, the distribution of sample means becomes more and more normal, regardless of
the shape of the parent distribution. This is the statistical justification for using the normal distribution
and theoretically related distributions such as the t, F, and chi-square distribution, for tests on means,
proportions, and deviations from expectation.

The faithful dataset supplied in the base version of R shows the distributions of the duration of
the eruptions of the Old Faithful geyser and the waiting times between eruptions (Figure 6-3). Both
measurements are in minutes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

60

Let us illustrate the central limit theorem (CLT) using this unusual dataset. We will first take samples
of size 5 and calculate their means, and then we’ll repeat the process with samples of size 20 for the sake of
comparison. If the CLT is correct, the shape of the sampling distribution of means should approach a normal
distribution as the sample size increases, even though the parent distribution is far from normal.

We take N = 999 samples of size 5 from the eruption data, calculating the mean for each sample, and
saving the means using the replicate() function. The replicate() function runs R code (an expression)
N times and is as if we typed and re-ran the code manually N times. We can then repeat the process with a
sample size of 20. Using the par() function allows us to control the graphics output so that we can show the
histograms with the sampling distributions of means for the two sample sizes in side-by-side comparison
(see Figure 6-4).

Figure 6-3.  Duration of eruptions of Old Faithful geyser

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

61

Observation of the histograms reveals two important things. First, the spread of the sample means is
larger with small sample sizes. Second, as promised by the CLT, we see that as the sample size increases, the
shape of the sampling distribution becomes more normal looking. This gives us the reassurance we need to
rely on the normal distribution as a descriptor of the shape of sampling distributions of means, even from
uniform distributions, skewed distributions, or even bimodal distributions like that of the eruption data.

> attach(faithful)
 
> sampsize5 <- 5
> means5 <- replicate(999, mean(sample(eruptions, sampsize5, replace = TRUE)))
 
> sampsize20 <- 20
> means20 <- replicate(999, mean(sample(eruptions, sampsize20, replace = TRUE)))
> par (mfrow=c(1,2))
  
> hist (means5, breaks = 15, xlim = c(1.8, 4.7))
> hist (means20, breaks = 15, xlim = c(1.8, 4.7))
 
> detach(faithful)

6.3.2 The t Distribution
Although the mathematical function for the PDF of the t distribution is quite different from that for the
normal distribution, the t distribution approaches the normal distribution as the degrees of freedom
increase. The degrees of freedom parameter is based on the sample size. The t distribution was developed
as a way to examine the sampling distribution of means for small samples, and it works more effectively for
that purpose than does the normal distribution.

Figure 6-4.  Sample distributions of means for samples of size 5 and 20

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

62

Most statistical software programs, including R and SPSS, use the t distribution for calculating
confidence intervals for means. As the examination of the listing reveals, the t distribution is definitely
needed for small sample sizes, and it works adequately for large sample sizes. The normal distribution, on
the other hand, is appropriate only for situations in which the population standard deviation is known or
where the sample size is large.

If we were to develop a 95% confidence interval for the mean using the standard normal distribution,
we would find that the critical values of ±1.96 would apply in all cases. With the t distribution, the critical
values would vary with the degrees of freedom. Critical values of t for various one- and two-tailed hypothesis
tests were once located in the backs of most statistics texts, but as with the other probability distributions,
the tables are not necessary when one has access to R. The built-in functions for the t distribution work
in the same way as those for the other probability distributions. We can determine the exact two-tailed
probability or one-tailed probability for a given value of t, or the critical value for any one- or two-tailed
hypothesis test. The critical values of t for a 95% confidence interval with 18 degrees of freedom are found as
follows:

> qt(0.975, 18)
[1] 2.100922

To find a critical value for t, we must use the same strategy we use for the normal distribution. However,
we must supply the degrees of freedom parameter as well. As with the normal distribution, we use the
strategy of placing half of alpha in each tail of the t distribution for a two-tailed test or a confidence interval.
With one-tailed tests, we place all of alpha in the upper or lower tail. For example, with a right-tailed test
and 18 degrees of freedom, we find the critical value placing all of alpha in the right tail. Because the y axis
never touches the x axis, there are no theoretical upper or lower bounds to the t or z distributions. In most
programs or calculators one can substitute an arbitrarily large number such as ±999 for the lower or upper
bound, as the z scores or t values at such extremes are essentially zero. R, however, provides the Inf and -Inf
objects to represent positive and negative infinity. We see that indeed the value of 1.734 cuts off the upper 5%
of the t distribution for 18 degrees of freedom from the lower 95%.

> qt (0.95, 18)
[1] 1.734064
> pt (1.734064, 18) - pt(-Inf, 18)
[1] 0.95

As mentioned earlier, the t distribution converges on the standard normal distribution as the degrees
of freedom become larger, making the differences between the two smaller and smaller. Let us plot the
standard normal distribution and then overlay the t distributions for 1, 4, and 9 degrees of freedom. We see
that even with a sample size of 10, the t distribution becomes “normal looking” very quickly (see Figure 6-5).

xaxis <- seq(-4, 4, .05)
y <- dnorm(xaxis)
y1 <- dt(xaxis, 1)
y4 <- dt(xaxis, 4)
y9 <- dt(xaxis, 9)
plot(xaxis, y, type = "l")
lines(xaxis, y1, col = "purple")
lines(xaxis, y4, col = "red")
lines(xaxis, y9, col = "blue")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

63

6.3.3 	 The F distribution
The F distribution, like the t distribution, has degrees of freedom, but in this case, because F is the ratio
of two variances or variance estimates, there are degrees of freedom for both the numerator term and the
denominator term. Again, traditionally, statistics textbooks included tables of critical values of F for varying
combinations of degrees of freedom, but as before, these are found to be unnecessary when R or other
technology is available and those tables are more and more likely to be found absent.

The F distribution is positively skewed, and for most purposes, we place the critical values in the upper
tail by following the expedient of dividing the larger variance estimate by the smaller variance estimate,
though it is entirely possible to have a left-tailed critical value of F. As the degrees of freedom increase, the
F distribution become asymptotically normal. Let’s produce F distributions for several combinations of
degrees of freedom, using the ylim argument to specify the limits of the y axis:

> xaxis <- seq(0, 8, .05)
> y1 <- df(xaxis, 3, 5)
> y2 <- df(xaxis, 6, 10)
> y3 <- df(xaxis, 9, 20)
> y4 <- df(xaxis, 49, 49)
> �plot(xaxis, y1, type = "l", xlab = "Value of F", main = "PDF of F Dist.",
ylim = c(0, 1.5), col = "green")

> lines (xaxis, y2, col = "red")
> lines (xaxis, y3, col = "blue")
> lines (xaxis, y4, col = "purple")

The plot shows that as the degrees of freedom increase, the F distribution becomes more symmetrical
and clusters around a value of 1 (see Figure 6-6). This is because when the null hypothesis is true that the
variances being compared are equal, the value of the F ratio would be 1.

Figure 6-5.  Comparison of the standard normal and t distributions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

64

6.3.4 	 The Chi-Square Distribution
The chi-square distribution has one parameter, the degrees of freedom. We use the chi-square distribution
for tests of frequency counts and cross- tabulations. The chi-square distribution is also very useful for tests
involving model fit. Like the F distribution, the chi-square distribution is positively skewed. Figure 6-7
shows the chi-square distributions for varying degrees of freedom. We will discuss it in more detail in our
chapters on graphics (Chapter 9) and data visualization (Chapter 17), but here I introduce the addition of
text to a plot by use of the text function. I used the built-in locator() function to determine the (x, y)
coordinates where I wanted the labels to be placed. The default is to center the label at the coordinate
pair, but the adj = c(0,0) argument begins the label at the coordinate pair.

> xaxis <- seq(0, 20, .05)
> y1 <- dchisq(xaxis, 4)
> y2 <- dchisq(xaxis, 6)
> y3 <- dchisq(xaxis, 10)
> plot(xaxis, y1, type = "l", xlab = "Chi - square Value")
> lines(xaxis, y2, col = "blue")
> lines(xaxis, y3, col = "red")
> xcoords <- c(3.4, 5.75, 10.6)
> ycoords <- c(0.17, 0.13, 0.09)
> labels <- c("df = 4", "df = 6", "df = 10")
> text(xcoords, ycoords, labels, adj = c(0,0))

Figure 6-6.  The F distribution becomes more symmetrical as the degrees of freedom increase

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_9
http://dx.doi.org/10.1007/978-1-4842-0373-6_17
http://www.it-ebooks.info/

Chapter 6 ■ Probability Distributions

65

As with the F distribution, the chi-square distribution shifts rightward and becomes more mound
shaped as the degrees of freedom increase. The mean of any chi-square distribution is equal to its degrees of
freedom, and the mode is equal to the degrees of freedom minus 2.

The chi-square distribution is usually attributed to Karl Pearson in his development of tests of goodness
of fit. In truth, Pearson independently rediscovered a distribution identified by German statistician Friedrich
Robert Helmert a quarter-century earlier. Helmert described the chi-square distribution in relation to the
distribution of the sample variance. Thus, the chi-square distribution can also be used in hypothesis tests
and confidence intervals for the variance and standard deviation. With the assumption that a sample is
drawn from a normal population, we can test the hypothesis that the population variance is equal to some
specified value, s2, by calculating the following chi-square statistic:

	
c

s
2

2

2

1
=

-()n s
	 (6.7)

With a firm grasp on the most common discrete and continuous probability distributions, we are now ready
to discuss the analysis of tables, including chi-square tests of both goodness of fit and independence, in Chapter 7.

■■ Note I n this chapter, we mentioned critical value(s) which may be equivalently used in null hypothesis testing
in place of p value. Most modern introductory statistical textbooks have deemphasized critical value in favor of
p value. There are even modern practitioners who choose not to use either as all-or-nothing rules to accept or reject
the null hypothesis. In this text, we will limit ourselves to simply describing both critical and p-value R coding.

References
	 1.	 J. T. Roscoe, Fundamental Research Statistics for the Behavioural Sciences, 2nd ed.

(New York: Holt, Rinehart & Winston, 1975).

Figure 6-7.  The chi-square distribution also becomes more symmetrical as the degrees of freedom increase

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_7
http://www.it-ebooks.info/

67

Chapter 7

Working with Tables

Tables are very useful for summarizing data. We can use tables for all kinds of data, ranging from nominal to
ratio. In Chapter 7, you will learn how to use tables to create frequency distributions and cross-tabulations
as well as how to conduct chi-square tests to determine whether the frequencies are distributed according to
some null hypothesis.

The table() function in R returns a contingency table, which is an object of class table, an array of
integer values indicating the frequency of observations in each cell of the table. For a single vector, this
will produce a simple frequency distribution. For two or more variables, we can have rows and columns,
the most common of which will be a two-way contingency table. We can also have higher-order tables.
For example, the HairEyeColor data included with R are in the form of a three-way table, as we see in the
following code:

> data(HairEyeColor)
> HairEyeColor
, , Sex = Male
 Eye
Hair Brown Blue Hazel Green
Black 32 11 10 3
Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8
, , Sex = Female
 
 Eye
Hair Brown Blue Hazel Green
Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8
 
> class(HairEyeColor)
[1] "table"

7.1 Working with One-Way Tables
For those who are not familiar with the terminology of a “one-way” table, it is a listing of the possible values
for the variable being summarized and an adjacent list of the frequency of occurrence for each of the values.
A table can summarize the counts for anything that can be considered or interpreted as a factor, and we can

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_7
http://www.it-ebooks.info/

Chapter 7 ■ Working with Tables

68

build tables from both raw data and summary data. For example, in an analysis we might perform on the
hsb data we met in Chapter 3, I created categories for the math variable so they could be used as an ordinal
factor. Figure 7-1 shows the original data.

Figure 7-1.  Histogram of math scores from the hsb data

The cut2 function in the Hmisc package makes it easy to create the new variable, and the table function
shows that the groups are indeed roughly equal in size. Through a bit of experimentation, I found that a good
choice was five math groups (I rather thought of the five American letter grades of ABCDF). I assigned an
integer to represent each group by adding the as.numeric function. The g argument specifies the number
of groups. Note that if you do not use a convenient label for the group membership, the cut2 function will
provide the interval limits as labels.

> hsb <- read.csv ("http://www.ats.ucla.edu/stat/data/hsb.csv")
> install.packages("Hmisc")
> library(Hmisc)
 
> hsb$mathGp <- as.numeric(cut2(hsb$math, g = 5))
> head(hsb)
 id female race ses schtyp prog read write math science socst mathGp

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_3
http://www.ats.ucla.edu/stat/data/hsb.csv
http://www.it-ebooks.info/

Chapter 7 ■ Working with Tables

69

1 70 0 4 1 1 1 57 52 41 47 57 1
2 121 1 4 2 1 3 68 59 53 63 61 3
3 86 0 4 3 1 1 44 33 54 58 31 3
4 141 0 4 3 1 3 63 44 47 53 56 2
5 172 0 4 2 1 2 47 52 57 53 61 4
6 113 0 4 2 1 2 44 52 51 63 61 3
 
> table(hsb$math)
 
33 35 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 1 1 1 2 6 10 7 7 7 4 8 8 3 5 10 7 8 6 7 10 5 7 13 6 2 5 7 4
63 64 65 66 67 68 69 70 71 72 73 75
 5 5 3 4 2 1 2 1 4 3 1 2
 
> hsb$mathGp2 <- cut2(hsb$math, g = 5)
> head(hsb)
 id female race ses schtyp prog read write math science socst mathGp mathGp2
1 70 0 4 1 1 1 57 52 41 47 57 1 [33,44)
2 121 1 4 2 1 3 68 59 53 63 61 3 [50,56)
3 86 0 4 3 1 1 44 33 54 58 31 3 [50,56)
4 141 0 4 3 1 3 63 44 47 53 56 2 [44,50)
5 172 0 4 2 1 2 47 52 57 53 61 4 [56,62)
6 113 0 4 2 1 2 44 52 51 63 61 3 [50,56)
 
> table(hsb$mathGp2)
 
[33,44) [44,50) [50,56) [56,62) [62,75]
 42 38 43 40 37

Let’s examine a table of the frequencies of the three different SES (socioeconomic status) levels in the
hsb data. These vary substantially from level to level.

> table(hsb$ses)
 
 1 2 3
47 95 58

When we have observed frequencies in two or more categories, as in this example, we can perform a
chi-square test of goodness of fit comparing the observed frequencies with the expected frequencies if each
category had an equal number of observations. We can also test to see if an observed frequency distribution
matches a theoretical one when the expected frequencies are not equal. With a total of k categories, the
value of chi square is calculated as:

c 2

1

2

=
-()

=
å
i

k
i i

i

O E

E 	
(7.1)

where O is the observed frequency in each cell and E is the expected frequency for that cell under the null
hypothesis that the observed and expected frequencies are equal. As the deviations between the observed
and expected frequencies become larger in absolute value, the value of chi square increases, and if the p
value is lower than our specified alpha level, we reject the null hypothesis. Let’s test to see if the SES levels
are evenly distributed, adopting an alpha level of .01.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Working with Tables

70

> chisq.test(table(hsb$ses))
 
 Chi-squared test for given probabilities
 
data: table(hsb$ses)
X-squared = 18.97, df = 2, p-value = 7.598e-05

We reject the null hypothesis. Clearly, SES is distributed unequally. Note the degrees of freedom are
the number of categories minus one. As indicated earlier, there is no particular reason the expected cell
frequencies must be uniformly distributed. Chi-square tests of goodness of fit can be used to determine
whether an observed frequency distribution departs significantly from a given theoretical distribution. The
theoretical distribution could be uniform, but it might also be normal or some other shape.

We can use summary data in addition to tables for chi-square tests. For example, suppose we find that
in a sample of 32 automobiles, there are 11 four-cylinder vehicles, 7 six-cylinder vehicles, and 14 eight-cylinder
vehicles. We can create a vector with these numbers and use the chi-square test as before to determine if the
number of cylinders is equally distributed.

> cylinders <- c(7, 11, 14)
> names(cylinders) <- c("four", "six", "eight")
> cylinders
four six eight
 7 11 14
> chisq.test(cylinders)
 
Chi-squared test for given probabilities
 
data: cylinders
X-squared = 2.3125, df = 2, p-value = 0.3147

The degrees of freedom, again, are based on the number of categories, not the sample size, but the
sample size is still important. With larger samples, the deviations from expectation may be larger, making the
chi-square test more powerful.

When the expected values are unequal, we must provide a vector of expected proportions under
the null hypothesis in addition to observed values. Assume we took a random sample of 500 people in a
given city and found their blood types to be distributed in the fashion shown in in Table 7-1. The expected
proportions are based on the U.S. population values.

Table 7-1.  Distribution of ABO Blood Types

Type Prop. Obs. Exp.

O+ 0.374 195 187.0

A+ 0.357 165 178.5

B+ 0.085 47 42.5

AB+ 0.034 15 17.0

O- 0.066 30 33.0

A- 0.063 35 31.5

B- 0.015 8 7.5

AB- 0.006 5 3.0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Working with Tables

71

Let us test the null hypothesis that the blood types in our city are distributed in accordance with those
in the U.S. population using an alpha level of .05. Here is the chi-square test. Note we receive a warning that
the value of chi square may be incorrect due to the low expected value in one cell.

> obs <- c(195, 165, 47, 15, 30, 35, 8, 5)
> exp <- c(0.374, 0.357, 0.085, 0.034, 0.066, 0.063, 0.015, 0.006)
> chisq.test(obs, p = exp)
 
Chi-squared test for given probabilities
 
data: obs
X-squared = 4.1033, df = 7, p-value = 0.7678
 
Warning message:
In chisq.test(obs, p = exp) : Chi-squared approximation may be incorrect

On the basis of the p value of .768, we do not reject the null hypothesis, and we conclude that the blood
types in our city are distributed in accordance with those in the population.

7.2 Working with Two-Way Tables
With two-way tables, we have r rows and c columns. To test the null hypothesis that the row and column
categories are independent, we can calculate the value of chi square as follows:

c 2

1 1

2

=
-()

= =
åå
j

c

i

r
ij ij

ij

O E

E 	
(7.2)

The expected values under independence are calculated by multiplying each cell’s marginal (row and
column) totals and dividing their product by the overall number of observations. As with one-way tables,
we can use the table function in R to summarize raw data or we can work with summaries we have already
created or located.

The degrees of freedom for a chi-square test with two categorical variables is (r − 1)(c − 1). The
chi-square test for a two-by-two table will thus have 1 degree of freedom. In this special case, we are using
the binomial distribution as a special case of the multinomial distribution, and the binomial distribution is
being used to approximate the normal distribution. Because the binomial distribution is discrete and the
normal distribution is continuous, as we discussed earlier in Chapter 6, we find that a correction factor for
continuity improves the accuracy of the chi-square test. By default, R uses the Yates correction for continuity
for this purpose.

Assume we have information concerning the frequency of migraine headaches among a sample of
120 females and 120 males. According to the Migraine Research Foundation, these headaches affect about
18% of adult women and 6% of adult men. We have already been given the summary data, so we can use it to
build our table and perform our chi-square test as follows. Let’s adopt the customary alpha level of .05.

> migraine <- matrix(c(19, 7, 101, 113), ncol = 2, byrow = TRUE)
> colnames(migraine) <- c("female", "male")
> rownames(migraine) <- c("migraine", "no migraine")
> migraine <- as.table(migraine)
> migraine

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_6
http://www.it-ebooks.info/

Chapter 7 ■ Working with Tables

72

 female male
migraine 19 7
no migraine 101 113
 
> chisq.test(migraine)
 
Pearson's Chi-squared test with Yates' continuity correction
 
data: migraine
X-squared = 5.2193, df = 1, p- value = 0.02234

As you see, we applied the Yates continuity correction. We reject the null hypothesis in favor of the
alternative and conclude that there is an association between an adult’s sex and his or her frequency of
being a migraine sufferer.

It is also possible easily to use the table function to summarize raw data. For example, here is a
cross-tabulation of the sexes and SES groups of the students in the hsb dataset. The chi-square test will now
have 2 degrees of freedom because we have two rows and three columns. Let us determine if the sexes of the
students are associated with the SES level, which we would hope would not be the case.

table(hsb$female, hsb$ses)
  
 1 2 3
 0 15 47 29
 1 32 48 29
> femaleSES <- table(hsb$female, hsb$ses)
> chisq.test(femaleSES)
 
 Pearson's Chi-squared test
 
data: femaleSES
X-squared = 4.5765, df = 2, p-value = 0.1014

I named the table just to reduce the clutter on the command line. As we see, we do not reject the null
hypothesis, and we conclude the SES levels and student sex are independent.

www.it-ebooks.info

http://www.it-ebooks.info/

73

Chapter 8

Descriptive Statistics and
Exploratory Data Analysis

In Chapter 8, we look at both numerical summaries (what are known as descriptive statistics) and graphical
summaries related to exploratory data analysis (EDA). We discuss the topic of graphics more generally in
Chapter 9, and the related topic of data visualization later in our text.

Statistician John Tukey popularized exploratory data analysis in his 1977 book of the same name.
To Tukey, there was exploratory data analysis (EDA) and confirmatory data analysis (CDA), much as we
talk about exploratory and confirmatory factor analysis today. Before we do any kind of serious analysis,
we should understand our data. Understanding the data involves letting the data tell their own story. Tukey
presented a number of graphical and semi-graphical techniques for displaying important characteristics
of data distributions. He also said once that “An approximate answer to the right problem is worth a good
deal more than an exact answer to an approximate problem,” a sentiment with which I find myself in total
agreement. Tukey pointed out that numerical summaries of data focus on the expected values, while
graphical summaries focus on the unexpected.

Tukey wrote something that sounds quite prescient almost 40 years later: “Even when every household
has access to a computing system, it is unlikely that ‘just what we would like to work with’ will be easily
enough available” (Tukey, 1977, p. 663).

8.1 Central Tendency
The three commonly reported measures of central tendency are the mean, the median, and the mode. R
provides built-in functions for the mean and the median. The built-in R function called mode returns the
storage class of an object. The prettyR package provides a function called Mode that returns the modal
value of a dataset, if there is one. If there are multiple modes, prettyR will inform you of that fact, but will not
identify the actual values. A table can be used for that purpose, however.

8.1.1 The Mean
The mean is technically correctly computed only for scale (interval or ratio) data, as the inequality of
intervals for ordinal data make the mean inappropriate. In some cases, we do average ranks, as in certain
nonparametric tests, but as a general rule, we should use only the mode or the median to describe the
center of ordinal data. The mean for a population or a sample of data is defined as the sum of the data values
divided by the number of values. When distinctions are necessary, we will use N to refer to the number of
values in a population and n to refer to the number of values in a sample. If we need to identify sub-samples,
we will use subscripts as in n

1
 and n

2
. The built-in function mean will determine the mean for a dataset.

Remember if you have missing data, you must set na.rm = TRUE in order for the mean to be calculated.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_8
http://dx.doi.org/10.1007/978-1-4842-0373-6_9
http://www.it-ebooks.info/

Chapter 8 ■ Descriptive Statistics and Exploratory Data Analysis

74

In addition to being the most obvious measure of central tendency to most people, the mean has
several statistical advantages. It uses information from every value in the dataset. It is used in the calculation
of additional measures such as standard scores, the variance, and the standard deviation. Perhaps most
important, the mean from a sample is an unbiased estimate of the population mean. We examined the
distribution of sample means in Chapter 6, and found that with larger samples, the distribution of sample
means becomes more normal in shape. The built-in function for the mean is simply mean(). For example,
the mean reading score of the 200 students in the hsb dataset is 52.23:

> mean(hsb$read)
[1] 52.23

One disadvantage of the mean is its sensitivity to extreme values. Because every value in the dataset
contributes to the value of the mean, extreme values “pull” the mean in their direction. Consider a very
small sample of n = 3 where one person is unemployed, one earns in the mid five figures, and the third is a
billionaire. The mean salary might be quite high in that case! The next measure we will discuss, the median,
is more robust than the mean in this regard.

8.1.2 The Median
The median can be used with ordinal, interval, or ratio data. It is the value separating the dataset into halves.
The upper half of the data contains values greater than the median, and the lower half contains values lower
than the median. The median is also called the second quartile and the 50th percentile. There is intuitive
appeal in a middle value dividing the distribution, and the median may be a better index of central tendency
than the mean when the data are skewed.

We can locate the median in any set of data by sorting the data from lowest to highest, and finding the
value located at the position (n + 1)/2 in the ordered data. If there are an odd number of values in the data,
the median will be the observed middle value. If there are an even number of data values, the median is
computed as the mean of the two middle values. Depending on the actual values in the data, the median
may thus be either an observed value or an imputed value. In either case, the median is always the midpoint
of the dataset.

As mentioned earlier, the median is insensitive to extreme values. We base its value only on the middle
one or two data points. When the data distribution is skewed, the median is often more appropriate than the
mean in describing the center of the data. The built-in function is median. Let us find the median value of the
reading scores.

> median(hsb$read)
[1] 50

The fact that the median is lower than the mean of these data indicates that the data are likely to be
positively skewed. Let’s create a histogram of the reading score data, and use the abline function to draw
vertical lines at the positions of the mean and the median to demonstrate this. We will represent the mean
with a heavy dashed line using the lwd = 2 argument to control line width, and the lty = 2 argument to
control line width. We represent the median with a heavy solid blue line using the col = "blue" argument.

> hist(hsb$read)
> abline(v = mean(hsb$read), lty = 2, lwd = 2)
> abline(v = median(hsb$read), col = "blue", lwd = 2)

The completed histogram with the vertical lines added is shown in Figure 8-1. As expected, the data
are positively skewed, and the high scores exert an influence on the mean, which is pulled in the direction
of the skew.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_6
http://www.it-ebooks.info/

Chapter 8 ■ Descriptive Statistics and Exploratory Data Analysis

75

8.1.3 The Mode
The mode can be found simply by identifying the most frequently occurring value or values in a dataset.
Some datasets have no value that repeats, while other data sets may have multiple modes. Recall the geyser
eruption data we used in Chapter 6 to illustrate the central limit theorem were bimodal in nature.

R’s built-in mode function returns the storage class of the R object. As we mentioned earlier, the prettyR
function Mode will return the mode of a dataset if there is one, but will simply inform you if there are multiple
modes. See the following code listing for more details on mode versus Mode.

Figure 8-1.  The mean is influenced by extreme values

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_6
http://www.it-ebooks.info/

Chapter 8 ■ Descriptive Statistics and Exploratory Data Analysis

76

> install.packages("prettyR")
> library(prettyR)
> mode(hsb$read)
[1] "numeric"
> Mode(hsb$read)
[1] "47"
 
> Mode(mtcars$hp)
[1] ">1 mode"

Among many other uses, the table function can be used to identify the values of multiple modes. Using
the sort function makes it more obvious which values are the modes. It is convenient to sort the table in
descending order – note that the top number is the raw data value and the lower number is the count of how
many times that data value shows. Here we have three modes (that show up three times each) of 110, 175,
and 180. I’ve added some spaces for better readability:

> sort(table(mtcars$hp), decreasing = TRUE)
 
110 175 180 66 123 150 245 52 62 65 91 93 95 97 105 109 113 205 215 230
 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
 
264 335
 1 1

8.2 Variability
Three common measures of variability are the range, the variance, and the standard deviation. Each has a
built-in function in R. The range function returns the minimum and maximum values, so if you want the
actual range, you must subtract the minimum from the maximum. The variance function is var, and the
standard deviation function is sd.

8.2.1 The Range
The range is easy to compute, requiring the identification of only the maximum and minimum values.
It is also intuitively easy to grasp as a measure of how closely together or widely apart the data values are.
However, the range is also less informative than other measures of variability in that it tells us nothing else
about the data regarding its shape or the nature of the variability. Let us examine the range of the students’
reading scores:

> range(hsb$read)
[1] 28 76
> max(hsb$read) - min(hsb$read)
[1] 48

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Descriptive Statistics and Exploratory Data Analysis

77

8.2.2 The Variance and Standard Deviation
The population variance is defined as the average of the squared deviations of the raw data from the
population mean:

		 s
m2

2

=
-()å x

N
			 (8.1)

When dealing with sample data, we calculate the variance as shown in equation (8.2). The n − 1 correction
makes the sample value an unbiased estimate of the population variance

		 s
x2 =
-()
-

å x

n

2

1
			 (8.2)

where n represents the size of the sample. R’s var function returns the variance treating the dataset as a sample,
and the sd function returns the sample standard deviation. If you want to treat the dataset as a population, you
must adjust these estimates accordingly.

The variance expresses the dispersion in a dataset in squared terms, and as such changes the units
of measurement from the original units. Taking the square root of the variance returns the index to the
original units of measure. The standard deviation was conceived by Francis Galton in the late 1860’s as a
standardized index of normal variability.

Examine the use of the built-in functions for the variance and standard deviation of the students’
reading and mathematics scores:

> var(hsb$read)
[1] 105.1227
> sd(hsb$read)
[1] 10.25294
 
> var(hsb$math)
[1] 87.76781
> sd(hsb$math)
[1] 9.368448

The coefficient of variation (cv) is the ratio of the standard deviation to the mean. For ratio measures,
this index provides a standardized index of dispersion for a probability or frequency distribution. We can
write a simple function to calculate the cv.

> cv <- function(x){
+ cv <- (sd(x)/mean(x))
+ return (cv)
+ }
  
> cv(mtcars$wt)
[1] 0.3041285
 
> cv(mtcars$qsec)
[1] 0.1001159

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Descriptive Statistics and Exploratory Data Analysis

78

8.3 Boxplots and Stem-and-Leaf Displays
Tukey popularized the five-number summary of a dataset. We used the summary() function in Chapter 2 as
a way to summarize sample data. As you may recall, this summary adds the mean to the Tukey five-number
summary, providing the values of the minimum, the first quartile, the median, the mean, the third quartile,
and the maximum. As a refresher, here is the six-number summary of the math scores for the 200 students in
the hsb dataset.

> summary(hsb$math)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 33.00 45.00 52.00 52.64 59.00 75.00

Tukey conceived of a graphical presentation of the five number summary that he called the box-and-
whiskers plot. Today this is more commonly known as the boxplot. The boxplot function in the base R
graphics package is quite adequate. The box is drawn around the middle 50% of the data, from the first
quartile to the third quartile. The whiskers extend from the first and third quartiles toward the minimum
and the maximum, respectively. Values beyond 3/2 of the interquartile range (the difference between the
third and first quartile) are considered outliers, and are represented by circles. The command to produce the
boxplot is boxplot(hsb$math). The completed boxplot is shown in Figure 8-2.

Figure 8-2.  Boxplot of the math scores of 200 students

Examining the graphical representation of the five-number summary tells a good bit about the data.
The location of the median in the box and the relative size of the whiskers tell us whether the distribution
is more symmetrical or skewed. When the median is close to the center of the box, and the whiskers are
roughly equal in size, the data distribution is more likely to be symmetrical, although these data are not
quite symmetrical (the whiskers are not the same length). In Chapter 9, we will begin to use the excellent
ggplot2 package written by Hadley Wickham. One of the nice features of ggplot2 is the ability to produce
very attractive side-by-side boxplots.

The stem-and-leaf display is a semi-graphical technique suitable for smaller datasets. Stem-and-leaf
displays, also called stem plots, are actually displayed in the R console rather than in the R Graphics device.
The stems are the leading digits and the leaves are the trailing digits. Using the mtcars dataset provided with
R, let us develop a stem-and-leaf display of the miles per gallon:

> data(mtcars)
> stem(mtcars$mpg)
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_8
http://dx.doi.org/10.1007/978-1-4842-0373-6_9
http://www.it-ebooks.info/

Chapter 8 ■ Descriptive Statistics and Exploratory Data Analysis

79

The decimal point is at the |
10 | 44
12 | 3
14 | 3702258
16 | 438
18 | 17227
20 | 00445
22 | 88
24 | 4
26 | 03
28 |
30 | 44
32 | 49

The stem-and-leaf display has the advantage that every data point is shown. The display resembles a
simple frequency distribution, but provides additional information. For larger datasets, such displays are
less helpful than histograms or other visual representations of the data.

8.4 Using the fBasics Package for Summary Statistics
The contributed package fBasics provides a particularly thorough function for descriptive statistics called
basicStats. Apart from the mode, this package provides an excellent statistical summary of a vector of data.
Here is the use of the basicStats function with the students’ math scores.

> install.packages ("fBasics")
> library(fBasics)
> basicStats(hsb$math)
 X..hsb.math
nobs 200.000000
NAs 0.000000
Minimum 33.000000
Maximum 75.000000
1. Quartile 45.000000
3. Quartile 59.000000
Mean 52.645000
Median 52.000000
Sum 10529.000000
SE Mean 0.662449
LCL Mean 51.338679
UCL Mean 53.951321
Variance 87.767814
Stdev 9.368448
Skewness 0.282281
Kurtosis -0.685995

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Descriptive Statistics and Exploratory Data Analysis

80

References
Chambers, J. M. (2008). Software for data analysis: Programming in r. New York, NY: Springer. Hunt, A., &
Thomas, D. (1999). The pragmatic programmer: From journeyman to master. Reading, MA: Addison Wesley.

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin,
105 , 156-166.

Ohri, A. (2014). R for cloud computing: An approach for data scientists. New York, NY: Springer.

Pace, L. A. (2012). Beginning R: An introduction to statistical programming. New York, NY: Apress.

Roscoe, J. T. (1975). Fundamental research statistics for the behavioral sciences (2nd ed.). New York, NY: Holt,
Rinehart and Winston.

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison Wesley.

University of California, Los Angeles. (2015). Resources to help you learn and use R. Retrieved from
http://www.ats.ucla.edu/stat/r/

Wilkinson, L. (2005). The grammar of graphics (2nd ed.). New York, NY: Springer.

www.it-ebooks.info

http://www.ats.ucla.edu/stat/r/
http://www.it-ebooks.info/

81

Chapter 9

Working with Graphics

We have obviously been working with graphics since the beginning of this book, as it is not easy to separate
statistics and graphics, and perhaps it is impossible to do so. In Chapter 9, we will fill in some gaps and
introduce the ggplot2 package as an effective alternative to the graphics package distributed with R.1

The ggplot2 package takes some adjustment in one’s thinking, as it works very differently from the
graphics commands in base R. The payoff is that it can produce beautiful, even stunning, graphics. Although
we will occasionally return to the base R’s graphics package, we will accomplish the majority of what we do
from here on with ggplot2.

To paraphrase John Tukey, descriptive numerical indexes help us see the expected in a set of numbers,
but graphics help us see the unexpected. In Chapter 9, we will tie graphics to the visual revelation of data in
traditional ways. Later we will broaden the discussion to data visualization and include maps and other ways
to allow users to derive meaning and information beyond the traditional graphs and plots.

9.1 Creating Effective Graphics
Graphics can be informative or misleading. Over many years, Yale professor emeritus Edward Tufte has
championed the effective visual display of information. Tufte is a statistician and an artist, so his books are
worth studying for those who would like to learn and observe the principles of excellent graphical design.2

Tufte provides the following principles for good graphics. Graphical displays should

•	 show the data

•	 induce the viewer to think about substance rather than methodology, graphic
design, the technology of graphic production, or something else

•	 avoid distorting what the data have to say

•	 present many numbers in a small space

•	 make large datasets coherent

•	 encourage the eye to compare different pieces of data

•	 reveal the data at several levels of detail, from a broad overview to the fine
structure

•	 serve a reasonably clear purpose: description, exploration, tabulation, or decoration

•	 be closely integrated with the statistical and verbal descriptions of a data set.1

1Edward R. Tufte, The Visual Display of Quantitative Information (Columbia, MD: Graphic Press, 2001), at 13.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_9
http://dx.doi.org/10.1007/978-1-4842-0373-6_9
http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

82

In addition to Tufte’s excellent principles, I will add that it is inappropriate to add three-dimensional
effects to two-dimensional graphs, as that introduces both confusion and a false third dimension. Certain
packages such as Microsoft Excel will readily allow you to make 3-D bar plots and pie charts, but only data
with three actual dimensions should be plotted as such.

9.2 Graphing Nominal and Ordinal Data
Data that are categorical in nature should be represented in bar plots rather than histograms. The visual
separation of the bars corresponds to the discrete nature of the categories. Pie charts can also be used
to display the relative frequencies or proportions of nominal and ordinal data, but the pie chart is often
maligned. Research at Bell Labs indicated that humans are more easily able to judge relative length than
relative area, and thus bar plots (also called bar charts) are typically more informative than pie charts. Pie
charts are available in base R graphics but not in ggplot2. Bar plots are available in both. In addition to
plotting the frequencies for categorical variables, bar plots are also useful for summarizing quantitative data
for two or more factors in what are known as clustered bar plots.

The default in base R for the pie chart is a pastel color palette. To produce a pie chart is simple in
base R. We will use socioeconomic status (SES) in our hsb data for that purpose; these data record 1 (low),
2 (medium), and 3 (high) SES. First, we will summarize the data using the table function, and then we will
produce the pie chart from the table. The completed pie chart appears in Figure 9-1.

> ses <- table (hsb $ ses)
> pie (ses , main = " Pie Chart ")

Figure 9-1.  Pie chart of the three levels of student SES

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

83

Figure 9-2.  Bar plot of the three levels of student SES

As an exercise, without looking further at the table or the actual data, try to estimate the relative
percentages of the three levels. We will now produce a bar plot using ggplot2. As mentioned, ggplot2
requires a different approach from that of base R. In particular, ggplot2 makes use of geometric objects
(abbreviated as geom in their source code) and aesthetics (abbreviated as aes in their source code). To
make the bar plot in ggplot2, we must identify our data source; the variable to summarize; and the type of
geometric object that should be used to represent the data, in this case, bars so we use the geometric object
bar or, in code, geom_bar(). See that you can build up the plot sequentially and then produce it by typing
the name you have given the list. The completed bar plot appears in Figure 9-2. Most people would find it
easier to estimate the relative percentages from the length of the bars rather than from relative areas in a pie
chart. Notice that we add the factor(ses) command to treat the numeric levels as factors. This would not
be required if the three levels were listed as text (e.g., low, medium, and high).

> library (ggplot2)
> bar <- ggplot (hsb , aes (x = ses)) + geom_bar()
> bar

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

84

9.3 Graphing Scale Data
Scale data (interval and ratio) lend themselves to many more kinds of graphics than do nominal and
ordinal data. We can generate boxplots, histograms, dotplots, smooth density plots, frequency polygons,
scatterplots, and other graphical representations of one or more quantitative variables. We discussed the
boxplot in Chapter 8, and we used the base version of R to produce a serviceable boxplot. The boxplot geom
in ggplot2 is designed to use a factor with two or more levels to produce side-by-side boxplots, and it is quite
good for that purpose. With a little adjustment of the parameters, you can also make an attractive boxplot for
a single variable in ggplot2. For that purpose, you would have to use a theme in which certain elements are
blank. We will look at the side-by-side boxplots first, and then at how to make a boxplot for a single variable
should we need to do that.

9.3.1 Boxplots Revisited
Let’s produce side-by-side boxplots of the math scores of the students from the three different SESs. The
position of the variable in the aesthetic identifies it as x or y on the plot, so you can omit those labels in most
cases. The defaults in ggplot2 are adequate for this purpose, and Figure 9-3 shows the finished boxplots.

> boxplots <- ggplot (hsb , aes(factor(ses) , math)) + geom_boxplot()
> boxplots

Figure 9-3.  Boxplots of the math scores for low, medium, and high SES

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_8
http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

85

Although it is a little extra work, we can make a boxplot for a single variable in ggplot2. Let us use a
different dataset for some variety. We will use the cars data from the openintro package.

> install.packages ("openintro")
> library (openintro)
> head (cars)
 type price mpgCity driveTrain passengers weight
1 small 15.9 25 front 5 2705
2 midsize 33.9 18 front 5 3560
3 midsize 37.7 19 front 6 3405
4 midsize 30.0 22 rear 4 3640
5 midsize 15.7 22 front 6 2880
6 large 20.8 19 front 6 3470

Recall our discussion of the fact that ggplot2 is designed to use factors for the x axis. When we have a
single variable, we must provide a fake x factor. We can remove unwanted x axis labeling by using a theme
with element blank() for the axis title, text, and tick marks. Let’s do this for the mpgCity variable, again
building up the graphic in steps.

> mpgBox <- ggplot (cars , aes(factor(0) , mpgCity)) + geom_boxplot()
> mpgBox <- mpgBox + theme (�axis.title.x = element_blank() , axis.text.x = element_blank (),

axis.ticks.x = element_blank())
> mpgBox

Figure 9-4 shows the completed boxplot. The appearance is slightly different from that of the boxplot we
produced using the graphics package in base R.

Figure 9-4.  Boxplot of city miles per gallon for 54 cars

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

86

9.3.2 Histograms and Dotplots
In ggplot2, the default is to create histograms with the bins set to the range of the data divided by 30. For
larger datasets, this default may be appropriate, but for smaller datasets, it is unlikely to be the best choice.
Let’s continue with the city MPG data from the cars dataset and create a histogram using the defaults, and
then adjust the bin width to something more reasonable. The default number of bins is clearly too many
for a dataset with only 54 observations. We can adjust the bin width and change the bars to white bars
with black borders by changing our options in ggplot2. In the base version of R, one can use the par()
function to create multiple plots in the same graphic viewer window. The ggplot2 package uses a different
strategy, including facets for multiple plots (rows or matrices) of plots for similar variables. When the plots
are potentially unrelated, we can use the grid.arrange() function from the gridExtra package to easily
combine multiple ggplot2 graphs into one. We will create one histogram with the default bin width, and
another with a bin width of 5, and then display them side by side (see Figure 9-5 for the finished plots).

> install.packages ("gridExtra")
> library (gridExtra)
> myHist1 <- ggplot (cars , aes (mpgCity)) + geom_histogram (fill = " white ", color = "black ")
> myHist2 <- ggplot (cars , aes (mpgCity)) + geom_histogram (�binwidth = 5, fill = "white",

color = " black ")
> grid.arrange(myHist1, myHist2, ncol = 2)
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

Figure 9-5.  Comparison of histograms

Examination of the side-by-side plots reveals that the default produced too many bars, whereas setting
the bin width to 5 made the histogram more effective. The data are clearly right skewed, as both histograms
make obvious.

When datasets are relatively small, a dotplot can be an effective alternative to the histogram. Like the
stem-and-leaf display we discussed in Chapter 8, a dotplot preserves the “granularity” of the data, so that
a single dot can represent a single data point. Let’s use the same city mileage data to create a dotplot using
geom_dotplot() in ggplot2. In this case, we will not be concerned with reducing the bin width, as we would
want each bin to represent a single data value. We use the table function discussed in Chapter 7 to create a
frequency distribution of the data, in order to compare that distribution with the dotplot.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_8
http://dx.doi.org/10.1007/978-1-4842-0373-6_7
http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

87

> table (cars $ mpgCity)
 
16 17 18 19 20 21 22 23 25 28 29 31 32 33 39 42 46
 3 3 6 8 5 4 4 3 3 2 6 2 1 1 1 1 1 
> dot <- ggplot (cars , aes (mpgCity)) + geom_dotplot ()
> dot
stat _ bindot : binwidth defaulted to range / 30. Use 'binwidth = x' to adjust this

Figure 9-6 shows the dotplot. As you can see, the dotplot resembles a simple frequency histogram,
with each dot representing a single data point. The numbers on the y axis for dotplots are not meaningful
in ggplot2.

Figure 9-6.  Dotplot of city miles per gallon

9.3.3 Frequency Polygons and Smoothed Density Plots
A frequency polygon is a type of line graph in which straight-line segments are used to connect the
frequencies of data values. Best practice is to anchor such plots to the x axis of the plot rather than having
them “float” above the axis, as some statistical software packages do. In ggplot2, geom_freqpoly() is used to
produce frequency polygons. We will revert to the bin width of 5 to make the frequency polygon more useful
to the reader. Continuing with the city miles per gallon data, we have the following commands to produce
the frequency polygon shown in Figure 9-7.

> polygon <- ggplot (cars , aes (mpgCity)) + geom_freqpoly (binwidth = 5)
> polygon

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

88

Sometimes, smoothing a plot gives us a better idea of the real shape of the distribution. We can create
a smoothed density plot of our data as follows. Let’s fill the density plot with a gray color just to make it a bit
more visually appealing (see Figure 9-8).

> density <- ggplot (cars , aes (mpgCity)) + geom_density (fill = " gray ")
> density

Figure 9-7.  Frequency polygon of city miles per gallon

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

89

9.3.4 Graphing Bivariate Data
Up to this point, we have been working mostly with a single variable at a time, or with different levels of the
same variable used as factors. Often, we have the opportunity to explore the relationships among and between
two or more variables, and graphical visualizations of such data are quite helpful. We will limit ourselves here
to bivariate data, but you should be aware that R can produce both 2-D and 3-D plots as needed.

When the x variable is time, or some index based on time, we can plot the values of y over time in a
line graph. When both x and y are continuous variables, we can use points to represent their relationship
as a series of (x, y) pairs. If the relationship is perfectly linear, the points will fit along a straight line. When
the relationship is not perfect, our points will produce scatter around a best-fitting line. Let us first examine
scatterplots and see that we have the ability in ggplot2 to add the regression line and a confidence region to
the scatterplot. We will then examine a hexbin plot in which bivariate data are grouped into hexagonal bins,
with shading used to show the overlap in the data, something about which scatterplots do not convey
much information.

Let’s use ggplot2 to make a scatterplot of the gas mileage of the car and the weight of the car. This
should plot a negative relationship, with heavier cars getting lower mileage. To produce the scatterplot,
we use geom_point(). As before, we can build up the chart by adding specifications and then plot the final
version. The method = lm setting will add the linear regression line, and by default will also add a shaded
95% confidence region. Here is the R code to produce the scatterplot shown in Figure 9-9.

> scatter <- ggplot (cars , aes (weight , mpgCity)) + geom_point ()
> scatter <- scatter + geom_smooth (method = lm)
> scatter

Figure 9-8.  Smoothed density plot of city miles per gallon

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

90

If there is more than one observation with the same (x, y) coordinates, the points will overlap on the
scatterplot. Such overplotting can make seeing the data difficult. If there is a small amount of this, adding
some transparency to the points representing the data can help. We can do this in ggplot2 using the alpha
argument, which ranges from 0 for complete transparent to 1 for completely opaque (see Figure 9-10 for
the results).

> scatter <- ggplot (cars , aes (weight , mpgCity)) + geom_point (alpha = .5)
> scatter <- scatter + geom_smooth (method = lm)
> scatter

Figure 9-9.  Scatterplot of city miles per gallon and car weight

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

91

Another very effective way to show bivariate data is a hexagonal bin plot. Hexagonal bins are shaded
to show the frequency of bivariate data in each bin. This plot is a very good way to determine where the
data are stacked or overlapped. As before, we can build up the plot by adding elements to the overall list as
follows. To show how difficult seeing the data can be with a scatterplot, we use the diamonds dataset built
into ggplot2, which has 50,000 observations. We will also use the grid.arrange() function as before to
put two plots side by side (shown in Figure 9-11), one a scatterplot and the other a hexagonal bin plot. Note
how we can reuse the basic ggplot2 graph data and variable mapping and just present it differently with
geom_point() or geom_hex().

> install.packages ("hexbin")
> library(hexbin)
> dplot <- ggplot (diamonds , aes (price , carat))
> splot <- dplot + geom_point(alpha = .25)
> hex <- dplot + geom_hex ()
> grid.arrange (splot, hex, ncol = 2)

Figure 9-10.  Scatterplot of city miles per gallon and car weight with transparency added for the points

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Working with Graphics

92

References
	 1.	 See Leland Wilkinson, The Grammar of Graphics (New York: Springer, 2005), for

Hadley Wickham’s translation of the ggplot2 package into an R package.

	 2.	 See, for example, Edward R. Tufte, The Visual Display of Quantitative
Information (Columbia, MD: Graphic Press, 2001), which is considered a classic
in the field.

Figure 9-11.  Scatterplot with transparency (left) and hexagonal bin plot (right) of the price and carat size of
50,000 diamonds

www.it-ebooks.info

http://www.it-ebooks.info/

93

Chapter 10

Traditional Statistical Methods

Statistics is an evolving, growing field. Consider that, at this moment, there are hundreds of scholars working
on their graduate degrees in statistics. Each of those scholars must make an original contribution to the field
of statistics, either in theory or in application. This is not to mention the statistics faculty and other faculty
members in various research fields who are working on the cutting edge of statistical applications. Add to
this total the statistical innovators in government, business, the biomedical field, and other organizations.
You get the picture.

The statisticians of the 20th century gave us tools, and we are now in the process of making the tools
better. This chapter will provide a quick run-through of the most common statistical procedures and
hypothesis tests one might learn in an introductory statistics course, and then we will consider some
modern alternatives in Chapter 11.

10.1 Estimation and Confidence Intervals
In this section, we will examine how to produce confidence intervals for means, proportions, and variances.
The discussion of confidence intervals will lead directly into the treatment of the most common
hypothesis tests.

10.1.1 Confidence Intervals for Means
For reasons we have discussed previously, we commonly use the t distribution to develop confidence
intervals for means. We can determine the critical values of t using the qt function, and then we can multiply
the critical value of t by the standard error of the mean to determine the width of one-half the confidence
interval. Adding this margin of error to the sample mean produces the upper limit of the confidence interval,
and subtracting the margin of error from the sample mean produces the lower limit of the confidence interval.
The standard deviation of the sampling distribution of means for samples of size n is found as follows:

	
s

s

n
x

x=
	

(10.1)

This quantity is known as the standard error of the mean. We then multiply the standard error of the
mean by the critical value of t to determine the margin of error. The lower and upper limits of the confidence
interval encompass twice the margin of error.

	
1 100 2-()´ = ± ()a a% /CI x t sx 	 (10.2)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_11
http://www.it-ebooks.info/

Chapter 10 ■ Traditional Statistical Methods

94

The t.test function in R can be used to find a confidence interval for the mean, and it is often used
exactly for that purpose. The default is a 95% confidence interval. As you may recall, we must determine
the degrees of freedom when finding a critical value of t for a confidence interval or hypothesis test. Let
us find a 95% confidence interval for the mean science scores of the 200 students in our hsb sample. First,
just for fun, let’s write a simple function to take the preceding formulas and implement them to get our
confidence interval.

> CI <- function (x, alpha = .05) {
+ sampMean <- mean (x)
+ stderr <- sd(x)/ sqrt(length (x))
+ tcrit <- qt (1- alpha /2, length (x) - 1)
+ margin <- stderr * tcrit
+ CI <- c(sampMean - margin , sampMean + margin)
+ return (CI)
+ }
> CI(hsb $ science)
[1] 50.46944 53.23056

Now, compare the results with those from the one-sample t-test. As you see, the function and the t-test
produced the same confidence limits.

> t.test(hsb$ science)
 
 One Sample t-test
 
data: hsb$science
t = 74.061, df = 199, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 50.46944 53.23056
sample estimates:
mean of x
 51.85

10.1.2 Confidence Intervals for Proportions
You are probably familiar with journalists announcing that some opinion poll had a margin of error of
± 3 percentage points. For proportions, we use the standard normal distribution, rather than the t distribution,
to develop confidence intervals. This is because of the relationship between the binomial distribution
and the normal distribution we discussed in Chapter 6. Let us define the confidence interval for a sample
proportion pˆ as follows:

	
ˆ % ˆ

ˆ(ˆ)
/p CI p z

p p

n
1 100

1
2-()´ = ±

-a a 	 (10.3)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_6
http://www.it-ebooks.info/

Chapter 10 ■ Traditional Statistical Methods

95

As an example, suppose you wanted to determine a confidence interval for a poll of 200 randomly
sampled people in your community of whom 135 expressed support for the death penalty. The sample
proportion is 135/200 = .675. Assume it is known from national polls that 63% of the population is in favor of
the death penalty. We can calculate a 95% confidence interval and then determine whether our confidence
limits “capture” the population proportion.

	
95 0 675 1 96

0 675 0 325

200
0 675 0 065% . .

. .
. .CI = ±

()
= ± 	 (10.4)

We see that the lower limit of our confidence interval is thus 0.61, and our upper limit is .74, so the
population value is in fact within the bounds of our confidence interval (CI). Of course, R has a built-in
function, prop.test(), that provides such calculations for us. The confidence interval is slightly different
from the preceding one, because the standard error term is based on the hypothesized population
proportion rather than the sample proportion. The default for this function is a 95% CI; however, the
command was made explicit for readers who wish to use other CI levels. Here, as always, the Help tab on the
right-hand side of RStudio is very, ahem, helpful.

> prop.test(135,200, conf.level=0.95)
 
 1-sample proportions test with continuity correction
 
data: 135 out of 200, null probability 0.5
X-squared = 23.805, df = 1, p-value = 1.066e-06
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.6047423 0.7384105
sample estimates:
 p
0.675

10.1.3 Confidence Intervals for the Variance
When we use the t distribution and the standard normal distribution for confidence intervals, the intervals
are symmetrical about the estimated value. This is not true when we use the chi-square distribution because
the distribution itself is not symmetrical. As mentioned earlier, we can use the chi-square distribution to
form a CI around a sample variance. The CI can be constructed as follows1:

	

n s

X

n s

XR L

-()
< <

-()1 12

2
2

2

2
s

	
(10.5)

where X2
L
 is the left-tailed critical value of chi square and X2

R
 is the right-tailed critical value. The degrees of

freedom for these values of chi square are n − 1. We could write a simple R function to calculate these values,
as follows. This is a bare-bones function, and the reader is encouraged to adorn his or her own version with
labels and other embellishments. Let us apply our confidence interval function to the variance of the city
miles per gallon from the cars dataset we used extensively in Chapter 9.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_9
http://www.it-ebooks.info/

Chapter 10 ■ Traditional Statistical Methods

96

> library (openintro)
 
> varInterval <- function (data , conf.level = 0.95) {
+ df <- length (data) - 1
+ chi_left <- qchisq ((1 - conf.level)/2, df)
+ chi_right <- qchisq ((1 - conf.level)/2, df , lower.tail = FALSE)
+ v <- var (data)
+ c((df * v)/chi_right, (df * v)/ chi_left)
+ }
  
> var (cars $ mpgCity)
[1] 43.88015
 
> varInterval (cars $ mpgCity)
[1] 31.00787 66.87446

As the output shows, the interval is not symmetrical around the point estimate of the population
variance, as explained earlier. To find a confidence interval for the sample standard deviation, simply take
the square roots of the lower and upper limits of those for the variance.

10.2 Hypothesis Tests with One Sample
You have already learned in Chapter 7 how to do chi-square tests of goodness of fit with a single sample. In
addition to testing frequencies, we can also test means and proportions for one sample.

We can test the hypothesis that a sample came from a population with a particular mean by using the
one-sample t-test function shown previously for a confidence interval for the sample mean. The value of m,
the population mean is the test value, and the sample value of t is found as:

	
t

x

sx

=
- m0

	
(10.6)

When the null hypothesis that there is no difference between the sample mean and the hypothesized
population mean is true, the resulting statistic is distributed as t with n − 1 degrees of freedom. To illustrate,
let’s determine the probability that the city miles per gallon of the car data came from a population with a
mean city MPG of 25, adopting a traditional alpha level of 0.05.

> t.test (cars $ mpgCity , mu = 25)
 
One Sample t-test
 
data : cars $ mpgCity
t = -1.8694 , df = 53, p- value = 0.06709
alternative hypothesis : true mean is not equal to 25
95 percent confidence interval :
21.50675 25.12288
sample estimates :
mean of x
23.31481

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_7
http://www.it-ebooks.info/

Chapter 10 ■ Traditional Statistical Methods

97

We can determine that we should not reject the null hypothesis in three equivalent ways. First, we
can examine the confidence interval. The test value of 25 is “in” the confidence interval. Second, we might
examine the p value and determine that it is greater than .05. Both approaches lead to the same conclusion:
namely, we do not reject the null hypothesis. Third, the older critical value method (CVM) would also
produce the same conclusion. We would see that our obtained t value of −1.87 is lower than the critical value
of 2.01 with 53 degrees of freedom.

A special case of the t-test arises when we have matched, paired, or repeated measures data. In such
cases, we do not have two independent samples but a single sample of difference scores. Our interest is to
determine whether the average difference is zero. Failing to recognize the dependent nature of such data
means that one is likely to apply a two-sample t-test when the appropriate test is a paired-samples test, also
known as a dependent or correlated t-test. Performing the incorrect test naturally may result in drawing the
wrong conclusion(s).

The t.test() function built into R takes as a default argument paired = FALSE that should be swapped
to TRUE if two vectors of paired data are input.

To illustrate, let us use the UScrime data from the MASS package. For the 47 states, police expenditure
was measured in 1960 and 1959. We will select only the 16 cases from southern states. Let us compare the
t-test for paired data and the one-sample t-test for the same data using the difference scores and testing
the hypothesis that the mean difference is zero. Notice it would be incorrect to not explicitly call out
paired = TRUE in the first example!

> library(MASS)
> pairedPoliceExpenditure <- UScrime [(UScrime $ So == 1) ,]
  
> t.test (pairedPoliceExpenditure $ Po1 , pairedPoliceExpenditure $ Po2 , paired = TRUE)
 
 Paired t-test
 
data: pairedPoliceExpenditure$Po1 and pairedPoliceExpenditure$Po2
t = 6.4606, df = 15, p-value = 1.074e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 2.680336 5.319664
sample estimates:
mean of the differences
 4
> PolExpenDiffs <- pairedPoliceExpenditure $ Po1 - pairedPoliceExpenditure $Po2
> t.test (PolExpenDiffs , mu = 0)
 
 One Sample t-test
 
data: PolExpenDiffs
t = 6.4606, df = 15, p-value = 1.074e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 2.680336 5.319664
sample estimates:
mean of x
 4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Traditional Statistical Methods

98

It is clear that the two tests produced exactly the same results, apart from minor labeling differences.
The values of t, the degrees of freedom, the p values, and the confidence intervals are identical. Some
statistics textbooks do not have a separate presentation of the paired-samples t-test, but those with such
sections, in our experience, often confuse students, many of whom have a difficult time understanding the
difference between paired and independent samples. The best way to get a feel for this is to (incorrectly)
calculate without the paired = TRUE and notice the rather stark difference.

10.3 Hypothesis Tests with Two Samples
We can test hypotheses that two independent means or two independent proportions are the same using the
t.test and prop.test functions in base R. For the reasons discussed earlier, we use the standard normal
distribution or an equivalent chi-square test to test the difference between proportions.

For each of two independent samples, the number of successes and the number of failures must be at
least 5. That is, np ³ 5 and n(1 − p) ³ 5 for each of the two samples. When that is the case, the statistic shown
next follows a standard normal distribution when the null hypothesis is true that the proportions of success
in the population are the same for the two samples.

	

z
P P

Pq
n

Pq
n

=
-

+

ˆ ˆ
1 2

1 2 	

(10.7)

where P x x n n= +() +()1 2 1 2/ and q P= −1 .

As an example, let us consider comparing the proportions of males and females in favor of the death
penalty in two randomly selected samples of 200 each. When we pool the proportions and calculate the
z statistic shown previously, the value of z2 will be equal to the value of c2 in the prop.test when the
continuity correction is not applied. To demonstrate, assume there are 136 men in favor of the death penalty
and 108 women in favor. Are these proportions significantly different at an alpha level of 0.05? First, let us
use the prop.test function both with and without the continuity correction.

> prop.test (x = c(136 , 108) , n = c(200 , 200))
 
2- sample test for equality of proportions with continuity correction
 
data : c(136 , 108) out of c(200 , 200)
X- squared = 7.6608 , df = 1, p- value = 0.005643
alternative hypothesis : two . sided
95 percent confidence interval :
0.04039239 0.23960761
sample estimates :
prop 1 prop 2
0.68 0.54
 
> prop.test (x = c(136 , 108) , n = c(200 , 200) , correct = FALSE)
 
2- sample test for equality of proportions without continuity correction

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Traditional Statistical Methods

99

 
data : c(136 , 108) out of c(200 , 200)
X- squared = 8.2388 , df = 1, p- value = 0.004101
alternative hypothesis : two . sided
95 percent confidence interval :
0.04539239 0.23460761
sample estimates :
prop 1 prop 2
0.68 0.54

Note the value of chi square without the continuity correction is 8.2388. The square root of this quantity
is 2.8703. For fun, let’s create a quick function to perform the same test as a z-test using our previous formula
and see if our value of z is in fact the square root of chi square. The results confirm this.

> zproptest <- function (x1 , x2 , n1 , n2 , conf.level = 0.95) {
+ ppooled <- (x1 + x2)/(n1 + n2)
+ qpooled <- 1 - ppooled
+ p1 <- x1/n1
+ p2 <- x2/n2
+ zstat <- round ((p1 - p2)/ sqrt ((ppooled * qpooled)/n1 + (ppooled * qpooled)/n2) ,4)
+ pval <- round (2 * pnorm (zstat , lower.tail = FALSE) ,4)
+ print ("two - sample z test for proportions ", quote = FALSE)
+ print (c(" valueof z: ",zstat), quote = FALSE)
+ print (c("p- value : ", pval), quote = FALSE)
+ }
> zproptest (136 , 108 , 200 , 200)
[1] two - sample z test for proportions
[1] valueof z: 2.8703
[1] p- value : 0.0041

The independent-samples t-test has two options. The version most commonly taught in the social and
behavioral sciences uses a pooled variance estimate, while statisticians in other fields are more likely to favor
the t test that does not make the assumption of equality of variances in the population. The t.test function
in R covers both possibilities, and for convenience it provides the ability to use data that are coded by a
factor as well as side-by-side data in a data frame or matrix as well as data in two separate vectors.

Because the samples are independent, there is no constraint that the numbers in each sample must
be equal. The t-test assuming unequal variances in the population makes use of the Welch-Satterthwaite
approximation for the degrees of freedom, thus taking the different variances into account. The t-test
assuming equal variances pools the variance estimates, as discussed earlier. We will illustrate both tests. One
expedient is simply to test the equality of the two sample variances and choose the appropriate test on the
basis of that test.

Let us subset the UScrime data so that we have the southern states in one data frame and the not-
southern in another. We will then perform the F test of equality of variances using the var.test function.

> southern <- UScrime [(UScrime $ So ==1) ,]
> notSouthern <- UScrime [(UScrime $ So ==0) ,]
> var.test(southern $ Po1 , notSouthern $ Po1)
 
 F test to compare two variances
 
data: southern$Po1 and notSouthern$Po1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Traditional Statistical Methods

100

F = 0.56937, num df = 15, denom df = 30, p-value = 0.2498
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.2467857 1.5052706
sample estimates:
ratio of variances
 0.5693726

The F test is not significant, so we will use the t-test for equal variances which makes no adjustment to
the degrees of freedom and pools the variance estimates. This test has a p value less than 0.05, and thus we
believe there is a difference in police expenditures in 1959 for southern versus not-southern states (a quick
look at the data via boxplot suggests this makes sense).

> t.test(southern $ Po1 , notSouthern $ Po1, var.equal = TRUE)
 
Two Sample t-test
 
data: southern$Po1 and notSouthern$Po1
t = -2.6937, df = 45, p-value = 0.009894
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -40.408529 -5.833406
sample estimates:
mean of x mean of y
 69.75000 92.87097

In contrast, the default t-test adjusts the degrees of freedom to account for an inequality of variance.
In this case, the two tests produce similar results.

> t.test(southern $ Po1 , notSouthern $ Po1)
 
 Welch Two Sample t-test
 
data: southern$Po1 and notSouthern$Po1
t = -2.9462, df = 38.643, p-value = 0.005427
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -38.999264 -7.242671
sample estimates:
mean of x mean of y
 69.75000 92.87097

In the next chapter, we will introduce some additional tests which harness some of the compute power
possible with the R language and modern computers.

References
	 1.	 Mario F. Triola, Elementary Statistics, 11th ed. (New York: Pearson Education, 2010).

www.it-ebooks.info

http://www.it-ebooks.info/

101

Chapter 11

Modern Statistical Methods

Statistics benefited greatly from the introduction of the modern digital computer in the middle of the 20th
century. Simulations and other analyses that once required laborious and error-prone hand calculations
could be programmed into the computer, saving time and increasing accuracy. We have already used
simulations for some demonstrations. In this chapter, we will discuss modern robust alternatives to the
standard statistical techniques we discussed in Chapter 10.

As you will recall from our previous discussions, some estimators of population parameters, such as the
median, are relatively robust, while others, such as the mean, are less robust, because they are influenced
by outliers or the shape of the distribution. Modern robust statistics include an amalgam of procedures that
are less sensitive to violations of the standard statistical assumptions than are the traditional techniques we
discussed in Chapter 10. Modern techniques include the processes of trimming or Winsorizing estimates
such as those of the mean or the variance, bootstrapping, permutation tests, and a variety of rank-based or
nonparametric tests (Erceg-Hurn & Mirosevich, 2008). The books and articles by Professor Rand Wilcox of
USC are also quite helpful in their presentation of many modern robust alternatives to traditional statistical
procedures (for an introduction, see Wilcox, 2010).

We will separate Chapter 11 into the following sections: a discussion of the need for modern
statistical methods and some robust alternatives to the traditional t-tests, and then an introduction to
both bootstrapping and permutation tests. We will not be looking for a robust alternative to every specific
hypothesis test we have discussed thus far but simply for a representation of this more modern approach in
contrast to the traditional one.

11.1 The Need for Modern Statistical Methods
The development of traditional statistical procedures and hypothesis tests began at the end of the 19th
century and continued into the first half of the 20th century. Even then it was clear that many real datasets
did not meet the familiar distributional assumptions of normality, independence, and equality of variance.
Many observed data were noted to be skewed in distribution, and nonparametric alternatives were
developed, among the first being the Spearman rank correlation as an alternative to the Pearson product-
moment correlation we discussed in Chapter 10. Nonparametric tests are so called because they make fewer
(if any) assumptions about population parameters than parametric tests, and because in many cases no
estimate of a population parameter is being considered.

Many modern statistical procedures are nonparametric in the second sense, as they often do not rely
on population parameters but in fact treat a sample as a “pseudo-population” and repeatedly sample with
replacement from the original sample in order to generate a distribution of a particular statistic of interest.
Resampling techniques can also be used for calculating confidence intervals, not just for familiar statistics
but for ones we might create on our own.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_10
http://dx.doi.org/10.1007/978-1-4842-0373-6_10
http://dx.doi.org/10.1007/978-1-4842-0373-6_11
http://dx.doi.org/10.1007/978-1-4842-0373-6_10
http://www.it-ebooks.info/

Chapter 11 ■ Modern Statistical Methods

102

The methods of statistics continue to evolve. Data these days are much more ready to become “big”
than in any previous era. One of the powerful advantages R provides is the ability to cheaply run many
procedures on even comparatively large datasets. The exploratory data analysis promoted by Tukey can now
readily go far beyond “just” box-and-whisker plots. Provided the preconditions of particular tests are met,
data may be subjected to a battery of procedures to compare and contrast.

11.2 A Modern Alternative to the Traditional t Test
The independent-samples t-test is one of the most popular of all statistical procedures. As we have
discussed, the t-test assuming unequal variances is available when the data analyst is not willing to assume
homoscedasticity. A nonparametric alternative to the independent-samples t-test is the Mann-Whitney
U test, for which the data for both groups are converted to ranks. The question arises as to the performance
of these alternatives regarding their statistical power when the assumptions of equality of variance and
normality of distribution are violated.

Yuen (1974) developed a robust alternative to the independent-samples t-test. Yuen’s test makes use
of trimmed means and Winsorized variances for both groups. When the trimming amount is zero, the
Yuen test produces the same confidence interval for the difference between means as the Welch t-test in
base R. Although we can trim means by any amount, it is common to use a 20% trimmed mean as a robust
estimator of the population mean. This amounts to trimming the top 20% of the data and the bottom 20%
of the data and then calculating the mean of the remaining values. It is worth mentioning that the median
is by definition the 50% trimmed mean. Winsorizing is a slightly different process from trimming. Whereas
trimming discards data values, Winsorization replaces a certain percentage of the top and bottom values
by the scores at given quantiles (e.g., the 5th and 95th percentiles). The unequal-variances t-test has
been shown to perform reasonably when both samples are drawn from normal populations but less
well when the distributions are not normal and when the sample sizes are different. Rand Wilcox’s WRS
(Wilcox’ Robust Statistics) package is available on GitHub. The package contains many functions (more
than 1,100 in fact) for various robust statistical methods, including the Yuen t-test. See the following URL
for instructions on how to install WRS or run the commands in the source code distributed with this text
(available on apress.com).

https://github.com/nicebread/WRS

We save an in-depth treatment of the exact mathematical formulae for other authors and texts. We take
two groups that differ in sample size, means, and variances. Figure 11-1 shows the kernel density diagrams
for the two groups for comparison purposes.

www.it-ebooks.info

https://github.com/nicebread/WRS
http://www.it-ebooks.info/

Chapter 11 ■ Modern Statistical Methods

103

Let us explore these two datasets a bit more, and then compare and contrast the t-test with two new
tests that are more robust. Of course, from the pictures in Figure 11-1, one would not expect the variance or
the means to be the same.

> group1 <- c(151, 78, 169, 88, 194, 196, 109, 143, 150, 85, 168)
> group2 <- c(128, 122, 95, 97, 81)
> summary(group1)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 78.0 98.5 150.0 139.2 168.5 196.0
> var(group1)
[1] 1843.364
>
> summary(group2)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 81.0 95.0 97.0 104.6 122.0 128.0
> var (group2)
[1] 389.3

For the sake of reference, let us perform both the t-test assuming equal variances and the Welch t-test.
Notice that the Welch t-test gives a p value of less than 0.05.

> t.test(group2, group1, var.equal = TRUE)
 
 Two Sample t-test
 
data: group2 and group1
t = -1.6967, df = 14, p-value = 0.1119
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -78.295181 9.131545
sample estimates:

Figure 11-1.  Density plots for two groups of data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Modern Statistical Methods

104

mean of x mean of y
 104.6000 139.1818
 
> t.test(group2, group1)
 
 Welch Two Sample t-test
 
data: group2 and group1
t = -2.2074, df = 13.932, p-value = 0.04457
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -68.1984170 -0.9652194
sample estimates:
mean of x mean of y
 104.6000 139.1818

Now let us use the Yuen test with a trimming amount of .20 for the means, which is the default. Please
see the instructions at the abovementioned GitHub URL (https://github.com/nicebread/WRS) to install
WRS or run the downloaded source code.

> library (WRS)
> yuenTest <- yuen (group2 , group1)
> yuenTest $p.value
[1] 0.1321475
> yuenTest $ci
[1] -83.33050 13.23527

Inspection of the results shows that the Yuen test based on trimmed means and Winsorized variances has
a more conservative confidence interval, and thus it reduces the chance for a Type I error over either of the two
standard t-tests for independent groups. As a final consideration in this section, observe the results from the
Mann-Whitney U test, which is the test produced by the wilcox.test function in R for independent groups.

> wilcox.test (group2, group1)
 
 Wilcoxon rank sum test
 
data: group2 and group1
W = 15, p-value = 0.1804
alternative hypothesis: true location shift is not equal to 0

There are many other modern statistical tests available for a variety of situations, including robust
alternatives to one-sample tests, analysis of variance, and regression. It is always important to examine any
necessary preconditions or assumptions to using a particular test (and to examine any specific disclaimers
about how R programmers have implemented those tests).

11.3 Bootstrapping
Bootstrapping is simple in logic. Instead of assuming anything about a population, we can sample the same
dataset repeatedly. Sampling with replacement allows us to build a distribution of any particular statistic of
interest. We are essentially using our sample as a “pseudo-population” when we take multiple resamples
with replacement from it.

www.it-ebooks.info

https://github.com/nicebread/WRS
http://www.it-ebooks.info/

Chapter 11 ■ Modern Statistical Methods

105

The “plug-in” principle of bootstrapping means that to estimate a parameter, which is some measurable
characteristic of a population, we use the statistic that is the corresponding quantity for the sample. This
principle allows us to model sampling distributions when we have little or no information about the
population, when the sample data do not meet the traditional assumptions required for parametric tests,
and when we create new statistics and want to study their distributions.

To illustrate, let us generate a random sample from a normal distribution with a mean of 500 and a
standard deviation of 100. We will take 1,000 observations and then resample from our data 1,000 times with
replacement. First, let’s bootstrap the mean and then the median to see how this would work. We create
the data and find that the mean and standard deviation are close to 500 and 100, respectively. We can use
our bootstrapped sample and the quantile function to calculate a confidence interval for the 1,000 means
we generated. Note that the population mean of 500 is “in” the confidence interval for the mean of our
bootstrapped means. I went back to the base R package and used the abline function to add vertical lines
for the two confidence limits (see Figure 11-2).

Figure 11-2.  Histograms for bootstrapped means with confidence limits added

> myData <- rnorm (1000 , 500 , 100)
> resamples <- lapply (1:1000 , function (i) sample (myData , replace = TRUE))
> r.mean <- sapply (resamples, mean)
> ci.mean <- c(quantile (r.mean, 0.025) , quantile (r.mean, 0.975))
> ci.mean
2.5% 97.5%
491.0863 503.1850
 
> hist (r.mean)
> abline (v = quantile (r.mean , 0.025))
> abline (v = quantile (r.mean , 0.975))
 
> t.test (myData)
 
One Sample t- test
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Modern Statistical Methods

106

data : myData
t = 155.2015 , df = 999 , p- value < 2.2e -16
alternative hypothesis : true mean is not equal to 0
95 percent confidence interval :
490.4900 503.0522
sample estimates :
mean of x
496.7711

See that the confidence interval for the mean of the original data is virtually the same as the confidence
interval for the bootstrapped means.

Finding confidence intervals and standard error estimates for medians is less commonly done than
finding these for means. Let us continue with our example and bootstrap the median and the mean for the
1,000 samples from a normal population with a mean of 500 and a standard deviation of 100. We will use the
same technique as previously, but this time, we will make a function to combine our procedures. We will
pass the dataset and the number of resamples as arguments to the function, and then write the results of the
function to an object named boot1. This will allow us to query the object for the output of interest. Let us
calculate standard errors for both the mean and the median.

> boot.fun <- function (data , num) {
+ resamples <- lapply (1: num , function (i) sample (data, replace=TRUE))
+ r.median <- sapply (resamples, median)
+ r.mean <- sapply (resamples, mean)
+ std.err.median <- sqrt (var (r.median))
+ std.err.mean <- sqrt (var (r.mean))
+ rawDataName <-
+ �data.frame (std.err.median = std.err.median , std.err.mean = std.err.mean , resamples =

resamples , medians =r.median , means =r.mean)
+ }
> boot1 <- boot.fun (myData , 1000)> boot1 <- boot . fun (myData , 1000)
> boot1 $ std.err.mean
[1] 3.191525
> boot1 $ std.err.median
[1] 4.309543

We can see that the medians have a larger standard error than the means. In general, when the data are
drawn from a normal distribution with a large sample size, the median will produce a confidence interval
about 25% wider than that for the mean.

Figure 11-3 shows the bootstrapped means and medians. The means are clearly the more normally
distributed of the two. To produce the histograms, I combined the medians and means into a single data
frame and used the ggplot2 and the gridExtra packages to create the side-by-side histograms.

> install.packages("gridExtra")
> library (gridExtra) > library (ggplot2)
> �plot1 <- ggplot (boot1, aes (means)) + geom_histogram (binwidth = 1, fill="white",
color="black")

> �plot2 <- ggplot (boot1, aes (medians)) + geom_histogram (binwidth=1, fill ="white",
color="black")

> grid.arrange (plot1, plot2, nrow = 1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Modern Statistical Methods

107

11.4 Permutation Tests
Bootstrapping produces a distribution by sampling with replacement. Because the sampling is random, no
two bootstraps will produce exactly the same results unless they start with the same seed value. You may recall
that permutations are the numbers of ways a set of objects can be ordered or sequenced. Thus when we are
comparing means for groups of size n

1
 and n

2 
, it is instructive to determine the number of ways we can divide

a total of N = n
1
 + n

2
 objects into two groups of size n

1
 and n

2
. We can then determine from many possible ways

of dividing the data into groups of size n
1
 and n

2
 the proportion of those samples in which the mean difference

is larger in absolute value than the original mean difference. The number of possible permutations increases
very quickly as the number of objects increases, and with large samples, it is not necessary to calculate all the
permutations. Say we want to compare the means of two different groups, as we have done with the t-test and
the Yuen test. To run this as a permutation test, we record the mean difference between the two groups and
then combine the data into a single group in order to perform the permutation test.

Permutation tests may be asymptotically valid using the permutational central limit theorem, or they
may produce exact p values using Monte Carlo simulation, a network algorithm, or complete enumeration.
These features are implemented in the perm package available on CRAN. Let us use a hypothetical dataset of
a memory study. The data have the memory recall scores for 20 subjects each from two conditions. Assume
in this case the patients were randomly assigned to the conditions, and the memory test was performed after
taking the drug or placebo for 30 days.

> memory <- read.table("memory_ch11.txt", sep="\t", header = TRUE)
> head (memory)
 cond recall
1 drug 2.0
2 drug 2.0
3 drug 4.5
4 drug 5.5

Figure 11-3.  Histograms for bootstrapped means and medians

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Modern Statistical Methods

108

5 drug 6.5
6 drug 6.5
> tail (memory)
 cond recall
35 placebo 16
36 placebo 17
37 placebo 20
38 placebo 25
39 placebo 29
40 placebo 30

Now, let us perform the Welch t-test and the t-test, assuming equal variances, and compare the results
with those of permutation tests using asymptotic approximation and exact results. Note in the following code
listing that the permTS function in the perm package compares the two samples, but that the permutation tests
use the standard normal distribution instead of the t distribution for calculating the p values.

> install.packages("perm")
> library(perm)
> t.test (recall ~ cond , data = memory)
 
 Welch Two Sample t-test
 
data: recall by cond
t = -2.2552, df = 28.862, p-value = 0.03188
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -8.591498 -0.418502
sample estimates:
 mean in group drug mean in group placebo
 8.930 13.435
 
> t.test (recall ~ cond , data = memory, var.equal = TRUE)
 
 Two Sample t-test
 
data: recall by cond
t = -2.2552, df = 38, p-value = 0.02997
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -8.5490275 -0.4609725
sample estimates:
 mean in group drug mean in group placebo
 8.930 13.435
 
> permTS (recall ~ cond , data = memory)
 
 Permutation Test using Asymptotic Approximation
 
data: recall by cond
Z = -2.1456, p-value = 0.03191
alternative hypothesis: true mean cond=drug - mean cond=placebo is not equal to 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Modern Statistical Methods

109

sample estimates:
mean cond=drug - mean cond=placebo
 -4.505
 
> permTS (recall ~ cond , data = memory , exact = TRUE)
 
 Exact Permutation Test Estimated by Monte Carlo
 
data: recall by cond
p-value = 0.03
alternative hypothesis: true mean cond=drug - mean cond=placebo is not equal to 0
sample estimates:
mean cond=drug - mean cond=placebo
 -4.505
 
p-value estimated from 999 Monte Carlo replications
99 percent confidence interval on p-value:
 0.01251632 0.05338086

Note that the p values for the all four tests are relatively similar. Interestingly, recent research indicates
that the permutation test may not perform well when the data for the groups being compared are not
identically distributed. The robust Yuen test we used earlier shows that when the data are trimmed and we
use Winsorized variances, the results are not significant. This indicates that the probability of Type I error
may have been inflated for all four of our earlier tests.

> recall1 <- memory[memory[,"cond"]=="drug", "recall"]
> recall2 <- memory[memory[,"cond"]=="placebo", "recall"]
> yuenTest <- yuen (recall1, recall2)
> yuenTest $p.value
[1] 0.05191975
> yuenTest $ci
[1] -7.56797807 0.03464473

References
Chambers, J. M. Software for Data Analysis: Programming in r. New York: Springer, 2008.

Erceg-Hurn, D. M., & Mirosevich, V. M. “Modern robust statistical methods: An easy way to maximize the
accuracy and power of your research.” American Psychologist, 63 (7), 591-601 (2008).

Hunt, A., & Thomas, D. The Pragmatic Programmer: From Journeyman to Master. Reading, MA: Addison
Wesley, 1999.

Micceri, T. “The unicorn, the normal curve, and other improbable creatures.” Psychological Bulletin, 105,
156-166 (1989).

Ohri, A. R for Cloud Computing: An Approach for Data Scientists. New York: Springer, 2014.

Pace, L. A. Beginning R: An Introduction to Statistical Programming. New York: Apress, 2012.

Roscoe, J. T. Fundamental Research Statistics for the Behavioural Sciences (2nd ed.). New York: Holt,
Rinehart and Winston, 1975.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Modern Statistical Methods

110

Triola, M. F. Elementary Statistics (11th ed.). Boston, MA: Addison-Wesley, 2010.

Tufte, E. R. The Visual Display of Quantitative Information (2nd ed.). Cheshire, CN: Graphic Press, 2001.

Tukey, J. W. Exploratory Data Analysis. Reading, MA: Addison Wesley, 1977. University of California,
Los Angeles. (2015). Resources to help you learn and use R. Retrieved from www.ats.ucla.edu/stat/r/.

Wilcox, R. R. Fundamentals of Modern Statistical Methods (2nd ed.). New York: Springer, 2010.

Wilkinson, L. The Grammar of Graphics (2nd ed.). New York: Springer, 2005.

Yuen, K. K. “The two-sample trimmed t for unequal population variances.” Biometrika, 61, 165-170 (1974).

www.it-ebooks.info

http://www.ats.ucla.edu/stat/r/
http://www.it-ebooks.info/

111

Chapter 12

Analysis of Variance

So far, we have explored hypothesis tests that cope with at most two samples. Now, of course, they could
be run multiple times—it would be trivial to extend loops and t.test to run through many iterations.
However, that is a proposition fraught with risk. For a given = 0.05, suppose we wish to compare mean
staph infection rates for eight regional medical centers. Then there are choose(8,2) = 28 total pairwise
comparisons. Thus, the chance of at least one Type I error, supposing our eight samples are independent,
is 1 – (.95)28 = 0.7621731 which is rather high. Analysis of variance (ANOVA) compares three or more means
simultaneously, thereby controlling the error rate to the nominal 0.05.

Regardless of the precise type, ANOVA is built on the underlying premise that the variance between our
samples (e.g., the sample means) may be compared with sample variance within our samples to determine
if it seems reasonable that there is a significant difference between means. An F-ratio is built where the
between variances are divided by the within variances. Suppose we have a rather large difference between
some of our sample means. This would lead us to suspect at least one of those regional medical centers has
an overly high rate of staph infection incidents. However, suppose that the sample standard deviations tend
to be rather large—that sort of numerical turbulence would lead us to revise our first-blush instinct toward
believing that despite the difference in means, perhaps the centers are all essentially similar. The closer this
F-ratio is to one, the more support there is for the null hypothesis vis-à-vis sample size(s). Generally, a p
value is calculated for the F-distribution for NHST (null hypothesis significance testing). As we delve into
particulars, we caution our readers that the more complex the ANOVA methodology, the more care required
in results interpretation.

In this chapter, we will compare the means of three or more groups with one-way ANOVA, followed by
the post-hoc comparisons of the Tukey HSD (honest significant difference) criterion. Then, we will delve
further into two-way ANOVA, repeated-measures ANOVA, and mixed-model ANOVA.

12.1 Some Brief Background
We leave mathematical explorations of ANOVA to other texts. However, it is essential to know the three
requirements for ANOVA methods to hold true. We suppose the samples are random and independent
(although we show how to relax this assumption in repeated-measures ANOVA). We also suppose that the
populations from which we draw the samples are both normal and have the same variance. The latter two
requirements are generally somewhat relaxed, and ANOVA may give practical guidance even in scenarios
where the populations are not quite normal or where the variances do not quite match, particularly as long
as the distributions are at least symmetrical. More precise definitions of “quite” are controversial and any
specific threshold may be misleading in particular cases. If there is concern about whether the assumptions
for an ANOVA are met, one approach is to try another test that does not have the same assumptions
(e.g., non-parametric tests) to see whether or not the same conclusions are reached using both approaches.
Where there are k groups, the default null hypothesis for ANOVA is H

0
: m

1
 = … = m

k
.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Analysis of Variance

112

12.2 One-Way ANOVA
With three or more independent samples, we extend the independent-samples t-test to the one-way ANOVA.
The paired-samples t-test is also extended to the repeated-measures ANOVA, in which each observation has
three or more repeated measures on the same dependent variable.

Using simulated student final score data (to not run afoul of confidentiality laws), let us suppose our
data were randomly drawn and independent (we acknowledge that random draws from education data may
be difficult if not impossible/unethical). The alternative hypothesis is that at least one mean is different.
Certainly the means in the latter terms look higher (see Figure 12-1). Note that we use the factor() function
in order to relevel the factor and enforce chronological order.

> myData <- read.table("ANOVA001.txt", sep="\t", header=TRUE)
> myData$Term <- factor(myData$Term, levels = c("FA12", "SP13", "FA13"))
> plot(Score ~ Term, data=myData)

Figure 12-1.  Box-and-whisker plots of the score data for each term

For an ANOVA run to be legitimate, our data are required to be drawn from normal populations. Visual
inspection of the graphs may be a good first place to start (most introductory statistical methods courses
often either simply assume normality or simply “eyeball” it). A glance at the histograms in this case may be
inconclusive (see Figure 12-2). Notice how we can add color to the histograms depending on which term
they are from and also make three separate plots via faceting using facet_wrap() and specifying the variable
to facet, in our case by Term. Finally, since we made separate plots by term in addition to adding color, we
turn off the automatic legend (by specifying an option to the theme() function) that would be created for
color, as that is redundant with the individual plots.

> library (gridExtra)
> library (ggplot2)
 
> ggplot(myData, aes(Score, color = Term)) +
+ geom_histogram(fill = "white", binwidth = 10) +
+ facet_wrap(~ Term) +
+ theme(legend.position = "none")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Analysis of Variance

113

Numerical methods are often preferred to graphical methods. Empirical tests by Razali and Wah (2011)
suggest the Shapiro-Wilk (SW) normality test on each level or factor of our data. By using for(), we make the
code much cleaner and avoid repeated typing as well as the associated chance for error(s).

> for (n in levels(myData$Term)) {
+ test <- with(subset(myData, Term == n), shapiro.test(Score))
+ if (test$p.value < 0.05) {
+ print(c(n, test$p.value))
+ }
+ }

As our loop printed no values, we continue to check whether the variances are the same for each
sample. The Bartlett test for homogeneity of variances (also called homoscedasticity) is built into R. Bartlett's
test is often considered to be sensitive to normality. Since ANOVA requires normality, this is not of particular
concern. Levene's Test is another popular test of homoscedasticity, although it would require installing
another package.

> bartlett.test(Score ~ Term, data = myData)
 
 Bartlett test of homogeneity of variances
 
data: Score by Term
Bartlett's K-squared = 1.199, df = 2, p-value = 0.5491

We do not reject the null hypothesis and, having verified or supposed the requirements of one-way
ANOVA, may proceed. We run an ANOVA in R using the aov() function and then create a summary of that
model using the summary() function. We see that the scores by term are statistically significantly different
with a standard alpha of 0.05.

> results <- aov(Score ~ Term, data = myData)
> summary(results)
Analysis of Variance Table
 

Figure 12-2.  Histograms of the various scores by term looking somewhat normal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Analysis of Variance

114

Response: Score
 Df Sum Sq Mean Sq F value Pr(>F)
Term 2 1123.4 561.69 3.2528 0.04622 *
Residuals 55 9497.3 172.68

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The command TukeyHSD() calculates the HSDs and is often used as a post-hoc test after ANOVA
(when the null hypothesis is rejected). This allows us to see (or perhaps confirm in this case) that the only
difference trending toward statistical significance is the FA12 to FA13. Supposing our treatment had begun
in SP13, we may need further study before concluding our course modifications a success! In addition to
displaying the mean difference between specific pairwise contrasts (FA13 - FA12), we also see the 95%
confidence interval, shown as the lower (lwr) and upper (upr) bounds.

> TukeyHSD(results)
 Tukey multiple comparisons of means
 95% family-wise confidence level
 
Fit: aov(formula = Score ~ Term, data = myData)
 
$Term
 diff lwr upr p adj
SP13-FA12 8.129921 -2.01040487 18.27025 0.1395847
FA13-FA12 10.086237 -0.05408909 20.22656 0.0515202
FA13-SP13 1.956316 -8.31319147 12.22582 0.8906649

One-way ANOVA can be extended to a two-way ANOVA by the addition of a second factor, and even
higher-order ANOVA designs are possible. We can also use mixed-model ANOVA designs in which one or
more factors are within subjects (repeated measures). We explore these more in the next section.

12.3 Two-Way ANOVA
With the two-way ANOVA, we have two between-groups factors, and we test for both main effects for each
factor and the possible interaction of the two factors in their effect on the dependent variable. As before, the
requirements of normal populations and the same variance hold, and while these should be checked, we
suppress those checks in the interest of space. This time, we build a model using data from the MASS package,
and use both SES (socioeconomic status) and a language test score as factors to study verbal IQ. We use a
completely crossed model and test for main effects as well as interaction. We see significant main effects for
both factors but a nonsignificant interaction, as displayed in the ANOVA summary table.

> library(MASS)
> twoway <- aov(IQ ~ SES * lang, data = nlschools)
> summary (twoway)
 Df Sum Sq Mean Sq F value Pr(>F)
SES 1 982 981.9 372.018 <2e-16 ***
lang 1 2769 2769.1 1049.121 <2e-16 ***
SES:lang 1 8 8.1 3.051 0.0808 .
Residuals 2283 6026 2.6

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Analysis of Variance

115

Since the interaction of SES x lang is not significant, we may want to drop it and examine the model with
just the two main effects of SES and lang. We could write out the model formula again and rerun it, but we
can also update existing models to add or drop terms. It does not make much difference with a simple model
as shown in this example, but with more complex models that have many terms, rewriting all of them can
be tedious and complicate the code. In the formula, the dots expand to everything, so we update our first
model by including everything on the left-hand side of the ~ and everything on the right-hand side, and then
subtracting the single term we want to remove, SES x lang. If we had wanted to add a term, we could do that
to using + instead of -.

> twoway.reduced <- update(twoway, . ~ . - SES:lang)
> summary (twoway.reduced)
 Df Sum Sq Mean Sq F value Pr(>F)
SES 1 982 981.9 371.7 <2e-16 ***
lang 1 2769 2769.1 1048.2 <2e-16 ***
Residuals 2284 6034 2.6

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case, removing the interaction made little difference and we draw the same conclusions that
both SES and language are still significant.

12.3.1 Repeated-Measures ANOVA
The one-way repeated-measures ANOVA is a special case of the two-way ANOVA with three or more
measures for the same subjects on the same dependent variable. Suppose we measured fitness level on a
scale of 0 to 10 for six research subjects who are participating in a supervised residential fitness and weight
loss program. The measures are taken on the same day and time and under the same conditions for all
subjects every week. The first four weeks of data are as shown below. Note that we must explicitly define the
subject id and the time as factors for our analysis. To convert some of the variables to factors within the data
frame, we use the within() function, which tells R that everything we do within the curly braces should be
done within the data frame referenced.

> repeated <- read.table("repeated_fitness_Ch12.txt", sep = " ", header = TRUE)
> repeated
 id time fitness
1 1 1 0
2 1 2 1
3 1 3 3
4 1 4 4
5 2 1 1
6 2 2 2
7 2 3 4
8 2 4 5
9 3 1 2
10 3 2 3
11 3 3 3
12 3 4 5
13 4 1 3
14 4 2 4
15 4 3 4
16 4 4 5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Analysis of Variance

116

17 5 1 2
18 5 2 3
19 5 3 3
20 5 4 4
21 6 1 2
22 6 2 3
23 6 3 3
24 6 4 5
   
> repeated <- within(repeated, {
+ id <- factor (id)
+ time <- factor (time)
+ })

> results <- aov (fitness ~ time + Error (id / time), data = repeated)
> summary (results)
 
Error: id
 Df Sum Sq Mean Sq F value Pr(>F)
Residuals 5 8.333 1.667
 
Error: id:time
 Df Sum Sq Mean Sq F value Pr(>F)
time 3 28.5 9.500 28.5 1.93e-06 ***
Residuals 15 5.0 0.333

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see that the effect of time is significant. A means plot makes this clearer (see Figure 12-3). We use
the ggplot2 stat_summary() function to calculate the means for the six subjects for each week and to plot
both points and lines. Note that since we converted time into a factor before, but here we want to use it as a
numerical variable for the x axis, we convert back to a number using the as.numeric() function.

> library(ggplot2)
> meansPlot <- ggplot(repeated, aes (as.numeric(time) , fitness)) +
+ stat_summary(fun.y = mean , geom ="point") +
+ stat_summary (fun.y = mean , geom = "line")
> meansPlot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Analysis of Variance

117

stat_summary() function, using a different summary function and the point-range geom rather than just
points (see Figure 12-4).

> meansPlot2 <- ggplot(repeated, aes (as.numeric(time) , fitness)) +
+ stat_summary(fun.data = mean_cl_normal, geom ="pointrange") +
+ stat_summary (fun.y = mean , geom = "line")
> meansPlot2

Figure 12-3.  Means plot for fitness over time

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Analysis of Variance

118

12.3.2 Mixed-Model ANOVA
A mixed-model ANOVA, as mentioned earlier, must have at least one within-subjects (repeated-measures)
factor, and at least one between-groups factor. Let’s take a simple example, that of a design in which groups
of older and younger adults are taught a list of 20 five-letter words until they can recall the list with 100%
accuracy. After learning the list, each subject attempts to recall the words from the list by listening to the
target words and 20 additional five-letter distractor words randomly chosen by a computer under three
different conditions: no distraction (the subject listens with eyes closed and pushes a button if he or she
recognizes the word as being on the list), simple distraction (the subject performs the same task with open
eyes and background music), or complex distraction (the subject performs the same task while engaged in a
conversation with the experimenter). The data are as follows. We read the data from a CSV file and allow R to
assign the string variables to factors (the default):

> mixedModel <- read.csv("mixedModel.csv")
> str (mixedModel)
'data.frame': 24 obs. of 4 variables:
 $ id : Factor w/ 8 levels "A","B","C","D",..: 1 1 1 2 2 2 3 3 3 4 ...
 $ age : Factor w/ 2 levels "old","young": 2 2 2 2 2 2 2 2 2 2 ...
 $ distr: Factor w/ 3 levels "h","l","m": 2 3 1 2 3 1 2 3 1 2 ...
 $ score: int 8 5 3 7 6 6 8 7 6 7 ...
> mixedModel
 id age distr score
1 A young l 8
2 A young m 5
3 A young h 3
4 B young l 7

Figure 12-4.  Means plot with 95% confidence intervals for fitness over time

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Analysis of Variance

119

5 B young m 6
6 B young h 6
7 C young l 8
8 C young m 7
9 C young h 6
10 D young l 7
11 D young m 5
12 D young h 4
13 E old l 6
14 E old m 5
15 E old h 2
16 F old l 5
17 F old m 5
18 F old h 4
19 G old l 5
20 G old m 4
21 G old h 3
22 H old l 6
23 H old m 3
24 H old h 2

The ez package makes it easier to perform ANOVA for a variety of designs, including the mixed-
model ANOVA. We will use the ezANOVA() function, which will also perform the traditional test of the
sphericity assumption, along with appropriate corrections if sphericity cannot be assumed, after producing
the standard ANOVA summary table. The table lists the specific effect, followed by the numerator and
denominator degrees of freedom for each test, the F value, p value, and stars if the p value is less than .05.
One other useful output, labeled “ges,” is the generalized h2, a measure of the size or magnitude of each
effect, beyond its statistical significance.

> install.packages ("ez")
> library (ez)
> ezANOVA (mixedModel , score , id , distr , between = age)
$ANOVA
 Effect DFn DFd F p p<.05 ges
2 age 1 6 15.7826087 0.007343975 * 0.54260090
3 distr 2 12 19.5000000 0.000169694 * 0.64084507
4 age:distr 2 12 0.2142857 0.810140233 0.01923077
 
$`Mauchly's Test for Sphericity`
 Effect W p p<.05
3 distr 0.5395408 0.2138261
4 age:distr 0.5395408 0.2138261
 
$`Sphericity Corrections`
 Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
3 distr 0.6847162 0.001321516 * 0.8191249 0.0005484227 *
4 age:distr 0.6847162 0.729793578 0.8191249 0.7686615724

We see that we have significant effects for the age and distraction condition, but no significant
interaction. Mauchly's test for sphericity is not significant, suggesting that the results meet the
sphericity assumption for mixed-model ANOVAs, and we can also see that the p values corrected for the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Analysis of Variance

120

(nonsignificant) lack of sphericity, labeled p[GG] and p[HF] for the Greenhouse-Geisser correction and
Huynh-Feldt correction, respectively, are essentially the same as in the uncorrected ANOVA summary table.
An interaction plot, which is quite easy to produce using the base R graphics package, shows the nature of
these effects (see Figure 12-5). We can use the with() function to reference the three variables from within
the mixedModel data frame, without typing its name each time. The plot (Figure 12-5) shows that younger
adults have better recall than older adults at all three levels of distraction, and the fact that all three lines are
virtually parallel agrees with the nonsignificant interaction found from the ANOVA.

> with(mixedModel, interaction.plot (age , distr , score))

Figure 12-5.  Interaction plot for age and distraction condition

References
Razali, N. M., & Wah, Y. B. “Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and
Anderson-Darling tests.” Journal of Statistical Modeling and Analytics, 2(1), 21-33 (2011).

www.it-ebooks.info

http://www.it-ebooks.info/

121

Chapter 13

Correlation and Regression

Discovering a relationship of some sort between various data can often be a powerful model to understand
the links between different processes. We generally consider the variable Y to be an outcome or dependent
on an independent or input variable X. A statistician would speak of the regression of Y on X while a
mathematician would write that Y is a function of X. In this chapter and the next, we are going to take our
time to properly explore both the underlying logic and the practice of employing linear regression. Our goal
is to avoid what is occasionally called “mathyness” and focus on several practical, applied examples that still
allow for the correct sorts of ideas to be living in your head.

In this chapter, we limit our discussion to only two variable (bivariate) data. We will consider correlation
(along with covariance), proceed to linear regression, and briefly touch on curvilinear models. Along
the way, we’ll explore helpful visualizations of our data, to better understand confidence and prediction
intervals for these regression models.

In the next chapter, we will delve even further into regression, leaving behind our single-input, single-
output restriction.

13.1 Covariance and Correlation
Our goal is to quickly look at pairs of data and determine their degree (if any) of linear relationship. Consider
the cars dataset from the openintro package:

> library (openintro)
> attach (cars)
> head(cars)
 type price mpgCity driveTrain passengers weight
1 small 15.9 25 front 5 2705
2 midsize 33.9 18 front 5 3560
3 midsize 37.7 19 front 6 3405
4 midsize 30.0 22 rear 4 3640
5 midsize 15.7 22 front 6 2880
6 large 20.8 19 front 6 3470

It would perhaps make sense that the weight of a car would be related to the miles per gallon in the city
(mpgCity) that a car gets. In particular, we might expect that as weight goes up, mpg goes down. Conversely,
we might just as well model this type of data by saying that as mpg goes up, weight goes down. There is no
particular attachment, statistically speaking, for mpg to be the dependent Y variable and weight to be the
independent input X variable. A visual inspection of the data seems to verify our belief that there may be an
inverse relationship between our Y of mpg and our X of weight (see Figure 13-1).

> plot(mpgCity ~ weight, data = cars)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

122

All the same, as before with ANOVA (analysis of variance), we prefer numeric means over visual
inspections to make our case. We have data pairs (x, y) of observations. X, the weight, is the input or
predictor or independent variable while Y, our mpgCity, is the response or criterion or dependent or output
variable. If we take the mean of X and the mean of Y and adjust the variance formula just a bit, we get
covariance:

s
m m

xy

x yx y

N
=

-() -()å for population or s
x x y y

nxy =
−() −()

−
∑

1
for sample data.

In our case of course, we simply use R code to find covariance:

> with(cars, cov(x = weight, y = mpgCity))
[1] -3820.3

The main point of this is that covariance is a rather natural extension of variance—multiplication
(or more precisely cross product) is an excellent way to get two variables to relate to each other. The chief
complaint against covariance is that it has units; in our case, these units are weight-mpgs per car. If we
divided out by the individual standard deviations of X and Y, then we get what is known as the Pearson
product-moment correlation coefficient. It is scaleless or unitless, and lives in the real number line interval
of [-1, 1]. Zero indicates no linear association between two variables, and -1 or +1 indicates a perfect linear
relationship. Looking at our data in the scatterplot in Figure 13-1, we would expect any straight-line or linear
model to have negative slope. Let’s take a look at the R code to calculate correlation:

> with(cars, cor (weight, mpgCity, method="pearson"))
[1] -0.8769183

The cor.test() function provides a significance test for the correlation coefficient. As we might
suspect, the correlation is highly significant with 52 degrees of freedom. We’ve included some additional
function parameters, to gently remind our readers that R often has many options that may be used,
depending on your precise goals. As always, ?cor.test is your friend!

Figure 13-1.  Weight vs. mpgCity scatterplot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

123

> with(cars, cor.test(weight, mpgCity, alternative="two.sided",
+ method="pearson", conf.level = 0.95))
 
 Pearson's product-moment correlation
 
data: weight and mpgCity
t = -13.157, df = 52, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.9270125 -0.7960809
sample estimates:
 cor
-0.8769183

Having determined that we may reject the null hypothesis, and thus believing that weight and mpg are
in fact negatively, linearly correlated, we proceed to our discussion of linear regression.

13.2 Linear Regression: Bivariate Case
We have already covered a good bit about bivariate data, including the addition of the regression line to a
scatterplot. Nonetheless, the linear model ŷ = b

0
 + b

1
x is sample estimate of a linear relationship between x

and y, where b0 is the y-intercept term and b1 is the regression coefficient.
In the bivariate case, the test for the significance of the regression coefficient is equivalent to the test

that the sample data are drawn from a population in which the correlation is zero. This is not true in the case
of multiple regression, as the correlations among the predictors must also be taken into account.

We can obtain the intercept and regression (slope) terms from the lm() function. As in ANOVA, we
will use a formula to specify the variables in our regression model. A look into the help file for the fitting
linear models function reveals that Y data are also sometimes called a response variable while X may also
be referred to as a term.

> model <- lm(mpgCity ~ weight)
> model
 
Call :
lm(formula = mpgCity ~ weight)
 
Coefficients :
(Intercept) weight
 50.143042 -0.008833

At this point, it is instructive to look once again at our scatterplot, this time with the least-squares
regression line (Figure 13-2). It is worth noting that there do appear to be some outliers to our data—this
is not a perfect linear model. One could imagine a better curve to “connect all the dots.” This leads to an
interesting question, namely, How “good” is our model? The truth is, good may be defined in a number of
ways. Certainly, a linear model is very good in terms of compute time (both to discover and to use). On the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

124

other hand, notice that very few of our plotted dots actually touch our regression line. For a given weight
in our range, an interpolation based on our line seems likely to be mildly incorrect. Again, a numerical
methodology to begin to quantify a good fit based on training data is indicated.

> with(cars, plot(mpgCity ~ weight))
> abline(model, col = "BLUE")

Figure 13-2.  Weight vs. mpgCity scatterplot with blue regression line

We find a more detailed summary of our linear model by using summary(). There is a great deal of
information shown by this command (see the output below). Briefly, R echoes the function call, what
we typed to create the model. This is followed by a summary of the residuals. Residuals are defined
as e = y – ŷ = y – (b

0
 + b

1
x), that is, it is the difference between the expected value, ŷ , and whatever value is

actually observed. Residuals are zero when a point falls exactly on the regression line. R provides a summary
showing the minimum value, the first quartile (25th percentile), median (50th percentile), third quartile
(75th percentile), and maximum residual.

The next part shows the coefficients from the model, often called b or B in textbooks and papers, which
R labels as Estimate, followed by each coefficients’ standard error, capturing uncertainty in the estimate due
to only having a sample of data from the whole population. The t value is simply the ratio of the coefficient to
the standard error, t b SEb= 0 0

/ , and follows the t distribution we learned about in earlier chapters in order to

derive a p value, shown in the final column.
At the bottom, R shows the residual standard error and the standard deviation of residual scores,

and of particular note is the R-squared (the square of the correlation). R-squared is a value between
[0, 1] which is also called the coefficient of determination. It is the percentage of total variation in the
outcome or dependent variable that can be accounted for by the regression model. In other words, it is the
amount of variation in the response/dependent variable that can be explained by variation in the input/
term variable(s). In our case, 76.9% of the variation in mpgCity may be explained by variation in weight.
Contrariwise, 23.1% of the variation in mpg is not explainable by the variation in weights, which is to say that
about a fourth of whatever drives mpg is not weight related. We may be looking for a better model!

■■ Warning  Correlation is not causation! There is a large difference between an observational analysis, such
as what we have just performed, and a controlled experiment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

125

> summary (model)
 
Call :
lm(formula = mpgCity ~ weight, data = cars)
 
Residuals :
 Min 1Q Median 3Q Max
 -5.3580 -1.2233 -0.5002 0.8783 12.6136
 
Coefficients :
 Estimate Std. Error t value Pr (>|t|)
(Intercept) 50.1430417 2.0855429 24.04 <2e -16 ***
weight -0.0088326 0.0006713 -13.16 <2e -16 ***

Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
 
Residual standard error : 3.214 on 52 degrees of freedom
Multiple R- squared : 0.769 , Adjusted R- squared : 0.7645
F- statistic : 173.1 on 1 and 52 DF , p- value : < 2.2e -16

As we mentioned earlier, the test of the significance of the overall regression is equivalent to the test of
the significance of the regression coefficient, and you will find that the value of F for the test of the regression
is the square of the value of t used to test the regression coefficient. Additionally, the residual standard error
is a measure of how far, on average, our y values fall away from our linear model regression line. As our y axis
is miles per gallon, we can see that we are, on average, “off” by 3.2 mpg.

We can also calculate a confidence interval for our regression model. The confidence interval describes
the ranges of the means of y for any given value of x. In other words, if we shade a 95% confidence interval
around our regression line, we would be 95% confident that the true regression line (if we had a population’s
worth of data values) would lie inside our shaded region. Due to the nature of the mathematics powering
regression, we will see that the middle of our scale is more stable than closer to the ends (Figure 13-3).
Conservative statistics tends to embrace interpolation—using a linear regression model to only calculate
predicted values inside the outer term values.

> library(ggplot2)
> p1 <- ggplot(cars, aes(weight, mpgCity)) +
+ geom_point() +
+ stat_smooth(method = lm) +
+ ggtitle("Linear Regression of MPG on Weight") +
+ theme_bw()
> p1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

126

Diagnostic plots of the fitted data points and the residuals are often very useful when we examine linear
relationships. Let us use ggplot2 to produce a plot of the residuals vs. the fitted values, as well as a normal
Q-Q plot for the same data. First, we make the plot of the residuals vs. fitted values. We add a smoothed fit
line and a confidence region, as well as a dashed line at the intercept, which is zero for the standardized
residuals. The plots appear in Figures 13-4 and 13-5.

> p2 <- ggplot(model , aes(.fitted , .resid)) +
+ geom_point() +
+ stat_smooth(method ="loess") +
+ geom_hline(yintercept = 0, col ="red", linetype = "dashed") +
+ xlab(" Fitted values ") +
+ ylab(" Residuals ") +
+ ggtitle(" Residual vs Fitted Plot ") +
+ theme_bw()
> p2

Figure 13-3.  95% Confidence interval shading on our regression line

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

127

Figure 13-4.  Residuals vs. fitted values for the linear model

Figure 13-5.  Normal Q-Q plot for the linear model

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

128

The normal Q-Q plot is constructed in a similar fashion, as follows. Figure 13-5 shows the finished plot.

> p3 <- ggplot(model , aes(sample = .stdresid)) +
+ stat_qq() +
+ geom_abline(intercept = 0, slope = 1) +
+ xlab(" Theoretical Quantiles ") +
+ ylab (" Standardized Residuals ") +
+ ggtitle(" Normal Q-Q ") +
+ theme_bw ()
> p3

A quick examination of the Q-Q plot indicates that the relationship between weight and mileage may
not be best described by a linear model. These data seem left skewed. We can also use a histogram as before
to visualize whether the residuals follow a normal distribution, as a supplement to the Q-Q plot.

> p4 <- ggplot(model , aes(.stdresid)) +
+ geom_histogram(binwidth = .5) +
+ xlab(" Standardized Residuals ") +
+ ggtitle(" Histogram of Residuals ") +
+ theme_bw()
> p4

Figure 13-6.  Histogram of residuals for the linear model

By saving the graphs in R objects along the way, we can put all our results together into a panel of
graphs to get a good overview of our model. Note that we can extract output from the model summary. In
the example that follows, we extract the estimated R2 value, multiply by 100 to make it a percentage, and
have R substitute the number into some text we wrote for the overall title of the graph, using the sprintf(),
which takes a character string and where we write the special %0.1f which substitutes in a number, rounding
to the first decimal. Note that we could have included more decimals by writing %0.3f for three decimals.
Figure 13-7 shows the results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

129

> library(gridExtra)
> grid.arrange(p1, p2, p3, p4,
+ main = sprintf("Linear Regression Example, Model R2 = %0.1f%%",
+ summary(model)$r.squared * 100),
+ ncol = 2)

Figure 13-7.  Regression summary and overview panel graph

13.3 An Extended Regression Example: Stock Screener
Data on stocks are readily enough available for download, and the process may be quite instructive. The
usual sorts of disclaimers about being wise before randomly buying stocks apply. We will first explore the
linear regression between the closing share price for a particular telecommunications company and day
(technically just an indexing of date). We’ll progress to trying our hand at a curvilinear model, which will
both wrap up this chapter and motivate the next chapter’s multiple regression.

Note that for simple and multiple linear regression, an assumption is that the observations are
independent, that is, the value of one observation does not influence or is not associated with the value of
any observation. With stock data or time series data, this assumption is obviously violated, as a stock’s price

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

130

on one day will tend to be related to its price on the day before, the next day, and so on. For the moment, as
we introduce regression, we will ignore this fact, but readers are cautioned that time series analysis requires
some additional methods beyond simple regression.

Unlike some other languages, R starts indexing at 1 rather than 0. As you rapidly move on to more advanced
techniques in R, the temptation to repurpose code from the Internet will be strong. While it may even be wise to
not reinvent the wheel, you must be canny enough to watch for things such as different indices.

We have included in this text’s companion files the same data we used to run the following code. We also
include the code to download stock data “fresh” from the Internet. It is possible that fresh data may not fit our
next two models as well as the data we selected; we were choosy in our data. We also edited the first column
(with the date data) to be an index. We used Excel’s fill handle to do that surgery quickly and intuitively.

> sData=read.csv(file="http://www.google.com/finance/historical?output=csv&q=T",header=TRUE)
> write.csv(sData, "stock_ch13.csv", row.names=FALSE) #some edits happen here in Excel
> sData <- read.csv("stock_ch13.csv", header = TRUE)
> head(sData)
 Index Open High Low Close Volume
1 1 35.85 35.93 35.64 35.73 22254343
2 2 35.59 35.63 35.27 35.57 36972230
3 3 36.03 36.15 35.46 35.52 31390076
4 4 35.87 36.23 35.75 35.77 28999241
5 5 36.38 36.40 35.91 36.12 30005945
6 6 36.13 36.45 36.04 36.18 47585217

We create a plot of the closing stock price by year with a linear model fit to the plot with the following
code to create Figure 13-8. It is perhaps not too difficult to see that a linear fit is perhaps not the best model
for our stock.

> plot(Close ~ Index, data = sData)
> abline(lm(Close ~ Index, data = sData))

Figure 13-8.  Closing value in United States Dollars (USD) over the last 251 days of a telecommunication stock

www.it-ebooks.info

http://www.google.com/finance/historical?output=csv&q=T%22,header=TRUE
http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

131

Despite our graph in Figure 13-8 not fitting very well to a linear model, the model does have statistically
significant linearity, seen in the regression analysis between day and closing stock price. As we see in our
analysis, 14% of the variability in our closing stock price is accounted for by knowing the date.

> results <- lm(Close ~ Index, data = sData)
> summary(results)
 
Call:
lm(formula = Close ~ Index, data = sData)
 
Residuals:
 Min 1Q Median 3Q Max
-2.28087 -0.68787 0.03499 0.65206 2.42285
 
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.726751 0.114246 295.211 < 2e-16 ***
Index 0.005067 0.000786 6.446 5.91e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 0.9023 on 249 degrees of freedom
Multiple R-squared: 0.143, Adjusted R-squared: 0.1396
F-statistic: 41.55 on 1 and 249 DF, p-value: 5.914e-10

13.3.1 Quadratic Model: Stock Screener
Let us see if we can account for more of the variability in closing stock prices by fitting a quadratic model to
our dataset. We are getting near multiple regression territory here, although, technically, we are not adding
another term to our mix simply because we will only square the index predictor. Our model will fit this
formula:

y = b
0
 + b

1
 x + b

2
 x2

We still save multiple input terms for Chapter 14. We could create another variable in our dataset that
was a vector of our squared index values, a common practice in curve-fitting analysis that creates a second-
order equation. However, R’s formula interface allows us to use arithmetic operations right on the variables
in the regression model, as long as we wrap them in I(), to indicate that these should be regular arithmetic
operations, not the special formula notation. Ultimately, this is still a linear model because we have a linear
combination of days (index) and days (index) squared. Putting this all together in R and repeating our
regression analysis from before yields:

> resultsQ <- lm(Close ~ Index + I(Index^2), data = sData)
> summary(resultsQ)
 
Call:
lm(formula = Close ~ Index + I(Index^2), data = sData)
 
Residuals:
 Min 1Q Median 3Q Max
-1.69686 -0.55384 0.04161 0.56313 1.85393
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_14
http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

132

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.494e+01 1.387e-01 251.868 <2e-16 ***
Index -2.363e-02 2.542e-03 -9.296 <2e-16 ***
I(Index^2) 1.139e-04 9.768e-06 11.656 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 0.7267 on 248 degrees of freedom
Multiple R-squared: 0.4463, Adjusted R-squared: 0.4419
F-statistic: 99.96 on 2 and 248 DF, p-value: < 2.2e-16
> resultsQ <- lm(Close ~ Index + IndexSQ)

Our quadratic model is a better fit (again, we save for another text a discussion about the risks of
overfitting) than our linear model. The quadratic model accounts for approximately 44% of the variation
in closing stock prices via our Index and Index^2 predictor(s). Using the predict() function, we produce
predicted stock closing prices from the quadratic model, and save them into a new variable called predQuad,
into our data frame sData so that we may use the lines() function to add the curved line in Figure 13-9.

> sData$predQuad <- predict(resultsQ)
> plot(Close ~ Index, data = sData, main = "quadratic model")
> abline(results)
> lines(sData$predQuad, col="blue")

Figure 13-9.  Quadratic (curve) and linear (straight) regression lines on scatterplot

We may also call R’s plot() function on resultsQ to see four diagnostic plots based on the distances
between predicted values of stock closing prices (which is what our blue line traces) vs. the observed or
training values (we call these residuals). Of interest is that R actually has several versions of the plot()
function. To be precise, we are using plot.lm(). However, since our object is of the class lm, R is clever
enough to use the correct version of our function without us explicitly calling it. R will plot Figures 13-10
through 13-13 one at a time for us.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

133

> class(resultsQ)
[1] "lm"
 
> plot(resultsQ)
Hit <Return> to see next plot:
Hit <Return> to see next plot:
Hit <Return> to see next plot:
Hit <Return> to see next plot:

Figure 13-11.  Normal Q-Q plot for the quadratic model shows good fit

Figure 13-10.  Residuals vs. fitted values

The normal Q-Q plot shows that excepting a few outliers, our quadratic model is a fairly good fit. Days
156, 157, and 158 show up in the plot as being less-than-ideal residuals, but overall the residuals appear to
follow a normal distribution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

134

The plot of the standardized residuals against the fitted values can help us see if there are any systematic
trends in residuals. For example, perhaps the lower the fitted values, the higher the residuals, which might
alert us that our model is fitting poorly in the tails.

Figure 13-13.  Residuals vs. leverage plot

The final plot shows the standardized residuals against the leverage. Leverage is a measure of how
much influence a particular data point has on the regression model. Points with low leverage will not tend
to make a big difference on the model fit, regardless of whether they have a large or small residual. R shows
the Cook’s distance as a dashed red line, values outside this may be concerning. We do not see the Cook’s
distance line in the graph in Figure 13-13 because it is outside the range of data, a good sign that all our
residuals fall within it.

Figure 13-12.  Scale-Location plot

13.3.2 A Note on Time Series
One feature of time series data, such as stock prices, is that the value at time t is often associated with the
value at time t - 1. We can see this from the graphs of the data where there appear to be some cyclical effects
in stock prices. One common type of time series analyses is AutoRegressive Integrated Moving Average
(ARIMA) models. ARIMA models can incorporate seasonality effects as well as autoregressive processes,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

135

where future values depend on some function of past values. A very brief example of a simple ARIMA model
fit to the stock data is shown in the code that follows and in Figure 13-14. Although we will not cover time
series analysis in this introductory book, interested readers are referred to Makridakis, Wheelwright, and
Hyndman (1998) for an excellent textbook on time series and forecasting.

> install.packages("forecast")
> library(forecast)
> m <- auto.arima(sData$Close)
  
> pred <- forecast(m, h = 49)
  
> plot(Close ~ Index, data = sData, main = "ARIMA Model of Stock Prices",
+ xlim = c(1, 300), ylim = c(30, 42))
> lines(fitted(m), col = "blue")
> lines(252:300, pred$mean, col = "blue", lty = 2, lwd = 2)
> lines(252:300, pred$lower[, 2], lty = 2, lwd = 1)
> lines(252:300, pred$upper[, 2], lty = 2, lwd = 1)

Figure 13-14.  ARIMA model of closing stock prices with forecasting and 95% confidence intervalsI

13.4 Confidence and Prediction Intervals
For our regression model(s), we can graph the confidence intervals (CIs) and prediction intervals (PIs). The
t distribution is used for CI and PI to adjust the standard error of the estimate. In the summary() function we
called on our linear results from our stock data, R provides the standard error of the estimate (R calls this
residual standard error) near the end of the output:

Residual standard error: 0.9023 on 249 degrees of freedom.

Notice that this is in y-axis units (in this case USD) and estimates the population standard deviation
for y at a given value of x. This is not the most ideal fit, since +/- $0.90 doesn’t do much for stock portfolio
estimation! Repeating the calculation on the quadratic model is somewhat better. Recall that earlier, our
model yielded Residual standard error: 0.7267 on 248 degrees of freedom.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

136

We show the code for the linear model, have the code for both models in this text’s companion files, and
show both linear and quadratic models in Figures 13-15 and 13-16, respectively.

> conf <- predict(results, interval = "confidence")
> pred <- predict(results, interval = "prediction")
Warning message:
In predict.lm(results, interval = "prediction") :
 predictions on current data refer to _future_ responses
 
> colnames(conf) <- c("conffit", "conflwr", "confupr")
> colnames(pred) <- c("predfit", "predlwr", "predupr")
  
> intervals <- cbind(conf, pred)
> head(intervals)
 conffit conflwr confupr predfit predlwr predupr
1 33.73182 33.50815 33.95549 33.73182 31.94069 35.52294
2 33.73688 33.51455 33.95922 33.73688 31.94592 35.52784
3 33.74195 33.52095 33.96295 33.74195 31.95116 35.53275
4 33.74702 33.52735 33.96668 33.74702 31.95639 35.53765
5 33.75208 33.53375 33.97042 33.75208 31.96162 35.54255
6 33.75715 33.54014 33.97416 33.75715 31.96684 35.54746
> intervals <- as.data.frame(intervals)
  
> plot(Close ~ Index, data = sData, ylim = c(32, 37))
> with(intervals, {
+ lines(predLin)
+ lines(conflwr, col = "blue")
+ lines(confupr, col = "blue")
+ lines(predlwr, col = "red")
+ lines(predupr, col = "red")
+ })

Figure 13-15.  Linear fit to sData with CI and PI lines

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Correlation and Regression

137

Either way, as interesting as these data are, perhaps the authors’ choices to remain in academia rather
than pursue careers on Wall Street are self-explanatory. Of course, if we were to extend our model with more
relevant predictors beyond only time, a more useful model might be uncovered. This is the heart of multiple
regression, which we explore in the next chapter.

References
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. Forecasting Methods and Applications (3rd ed.). New
York: John Wiley & Sons, 1998.

Figure 13-16.  Quadratic fit to sData with CI lines

www.it-ebooks.info

http://www.it-ebooks.info/

139

Chapter 14

Multiple Regression

The idea of multiple regression is that rather than just having a single predictor, a model built on multiple
predictors may well allow us to more accurately understand a particular system. As in Chapter 13, we will
still focus overall on linear models—we will simply have a new goal to increase our number of predictors.
Also as before, we save for other texts a focus on the behind-the-scenes mathematics; our goal is to
conceptually explore the methods of using and understanding multiple regression. Having offered this
caveat, however, doesn’t free us from taking just a little bit of a look at some of the math that power these
types of models.

14.1 The Conceptual Statistics of Multiple Regression
In the previous chapter, we stated simply that our general model was ŷ = b

0
 + b

1
x. This was mostly true. To

get just a shade more technical, our model was ŷ = b
0
 + b

1
x while we hoped to be finding the true equation of

y = B
0
 + B

1
X + e. In other words, if we had access to an entire population worth of data, we would find y and

it would have been predicted by a single input predictor x, up to some error e which we would assume as a
precondition was independent of our input x and normally distributed about zero. For simple regression, this
was perhaps not vital as a fine point to focus on understanding. For multiple predictors, however, we will want
to have some techniques to determine which predictors are more or less valuable to improving our model.

This decision of which predictors to include becomes an important part of multiple regression because
our formula can be quite a bit more complicated. In multiple regression, we hope to find the true equation
of y = B

0
 + B

1
X

1
 + B

2
X

2
 + ¼ + B

k
X

k
 + e. By using our training data from a limited number of k predictors, we find

our regression equation ŷ = b
0
 + b

1
x

1
 + b

2
 x

2
 + ¼ + b

k
x

k
. Once we remove the restriction of having only a single

predictor, one of the questions we’ll have to answer is which predictors we should use. We will want to
ensure that we reward simpler models over more complex models. Another question that we will need to
consider is whether any of our predictors will have an interaction with each other.

Consider the following example, where we wish to study how students succeed at learning statistics.
In Chapter 13, we would perhaps have considered how many hours a student studies a week as a predictor
for final course score. However, some students arrive at an introductory statistics course fresh out of high
school, while other arrive after a decade in the workforce, and still others have already taken calculus and
differential equations. So, while hours per week of study (S) may well be one useful predictor, we may also
wish to add months since last mathematics course (M) as well as highest level of mathematics completed (H)
and percent of book examples read (P) to our mix of predictors. Looking at this example, let us talk through
how a model should work.

These all sound useful enough, but it may well turn out that some of them are fairly useless as
predictors once we build our model. Furthermore, while studying is all well and good, the fact is that
study can be thought of as deliberate practice. Practicing incorrect methods would be a terrible idea,
and yet it may well happen. On the other hand, a student who reads her textbook examples cautiously is
perhaps less likely to practice incorrect methods. In terms of our equation, we start out imagining that

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_13
http://dx.doi.org/10.1007/978-1-4842-0373-6_13
http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

140

y = B
0
 + B

S
 S + B

M
  M + B

H 
H + B

P
P + e may make a good model. Yet, as mentioned, perhaps incorrect study

is a bad idea. We would like to code into our formula the interaction of reading textbook examples with
study. We do this through multiplication of the study hours and percent of textbook read predictors:
y = B

0
 + B

S
S + B

M
 M + B

H
  H + B

P
P + B

SP
 (S * P) + e. This interaction term answers the question, “Does the effect of

hours per week of study depend on the percent of book examples read?” or equivalently, “Does the effect of
percent of book examples read depend on the number of hours per week of study?” Two-way interactions
can always be interpreted two ways, although typically people pick whichever variable makes most sense as
having the “effect” and which one makes most sense as “moderating” or modifying the effect. Later on in an
extended example, we will show how to determine if an interaction predictor may be warranted. Of course,
we have already seen such interactions somewhat in Chapter 13, where we made a variable interact with
itself to create a polynomial model.

Although each predictor may be important on its own, due to overlap, we may find that not all variables
are uniquely predictive. For example, in a sample of college seniors, highest level of mathematics completed
(H) and months since last mathematics course (M) may be correlated with each other as students who
took math most recently may have been taking it their whole undergraduate and thus have a higher level as
well. In this case we may want to drop one or the other in order to simplify the model, without much loss in
predictive performance. One of the first ways we can evaluate performance in R is by observing the Adjusted
R-squared output of the linear model. Recall from the prior chapter that in the summary() function of linear
models, near the end of that output, it gave both Multiple R-squared and Adjusted R-squared values (which in
that chapter were the same), and we stated:

R-squared is a value between [0, 1] which is also called the coefficient of determination.
It is the percentage of total variation in the outcome or dependent variable that can
be accounted for by the regression model. In other words, it is the amount of variation
in the response/dependent variable that can be explained by variation in the input/
term variable(s).

Adjusted R-squared is calculated from the Multiple R-squared value, adjusted for the number of
observations and the number of predictor variables. More observations make the adjustment increase, while
more predictors adjust the value down. The formula is given here:

Adjusted R
n

n k
Multiple R2 21

1

1
1= -

-
- +()

é

ë
ê
ê

ù

û
ú
ú

-()

To round out this brief, conceptual discussion of the ideas we’re about to see in action, we make a
brief note about standard error. Recall from Chapter 13 that we also claimed “the residual standard error is
a measure of how far, on average, our y values fall away from our linear model regression line.” Regression
assumes that the error is independent of the predictor variables and normally distributed. The way in which
the regression coefficients are calculated makes the errors independent of the predictors, at least linearly.
Many people focus on whether the outcome of regression is normally distributed, but the assumption is only
that the errors or residuals be normally distributed. Graphs of the residuals are often examined as a way to
assess whether they are normally or approximately normally distributed.

As we explore multiple regression through the gss2014 data introduced in prior chapters, we will
examine several predictors that we could use, and explain how a cautious look at various graphs and R
package outputs will help us create a more powerful model through multiple predictors.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_13
http://dx.doi.org/10.1007/978-1-4842-0373-6_13
http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

141

14.2 GSS Multiple Regression Example
Recall that our General Social Survey (GSS) data include behavioral, attitudinal, and demographic
questions. For our purposes, we will focus on nine items of age in years, female/male sex, marital status,
years of education (educ), hours worked in a usual week (hrs2), total family income (income06), satisfaction
with finances (satfin), happiness (happy), and self-rated health. Our goal, by the end of the extended
example, will be to use multiple predictors to determine total family income.

We will also use several packages, so to focus on the analysis, we will install and load all those packages
now. We will also load the GSS2012 file we downloaded in an earlier chapter as an SPSS file and then call
out just the reduced dataset of the nine variables we mentioned earlier and name it gssr (“r” for reduced) as
follows (note, R often gives some warnings about unrecognized record types when reading SPSS data files,
these are generally ignorable):

> install.packages(c("GGally", "arm", "texreg"))
> library(foreign)
> library(ggplot2)
> library(GGally)
> library(grid)
> library(arm)
> library(texreg)
> gss2012 <- read.spss("GSS2012merged_R5.sav", to.data.frame = TRUE)
> gssr <- gss2012[, c("age", "sex", "marital", "educ", "hrs2", "income06", "satfin",
"happy", "health")]

In our gssr dataset we have 4,820 observations on nine variables. Of these, age, education, hours
worked in a typical week, and income are all numeric variables, yet they are not coded as such in our data
frame. We use the within() function to take in our data, recode these categories as numeric data, and then
save those changes. As always, data munging may well take a fair bit of time. The following code does this:

> gssr <- within(gssr, {
+ age <- as.numeric(age)
+ educ <- as.numeric(educ)
+ hrs2 <- as.numeric(hrs2)
+ # recode income categories to numeric
+ cincome <- as.numeric(income06)
+ })

With our data in a data frame and organized into usable data types, we are ready to begin deciding
which of our eight possible predictors might best allow us to estimate total family income. As a first pass, we
might consider that income may be predicted by age, by education, and by hours worked per week.

14.2.1 Exploratory Data Analysis
We are ready to perform some exploratory data analysis (EDA) on our numeric data using ggpairs(). Our
goal is to see if any of the values we just forced to be numeric (and thus easy to graph and analyze) might
make good predictors. This code will give a convenient, single image that shows the correlations between
each of our potential predictors, the bar graph of each individual predictor, and a scatterplot (and single
variable regression line) between each pair of variables. Along the diagonal, we’ll have our bar graphs, while
the lower triangle will have scatterplots.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

142

> ggpairs(gssr[, c("age", "educ", "hrs2", "cincome")],
+ diag = list(continuous = "bar"),
+ lower = list(continuous = "smooth"),
+ title = "Scatter plot of continuous variables")
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
There were 19 warnings (use warnings() to see them)

Our plan is to use age, education, and usual hours worked weekly as predictors for total family
income. As such, the right-most column correlations in Figure 14-1 are of interest. Recall that correlation
yields an output between [-1, 1]. The further a variable is from 0, the more interesting we consider it as a
potential predictor. Education seems to have a positive correlation with income, which makes sense. As
education increases, income might increase. Age and income, on the other hand, seem to have a very weak
relationship.

This weak relationship may be readily seen in the scatterplots of the lower triangle of our Figure 14-1.
It may be difficult to see in the textbook plot due to size, but run the previous code in R and you will see
that the lower right income vs. age scatterplot has a rather boring linear regression line. For any particular
income, there are many possible ages that could get there. Contrast this with the income vs. education
scatterplot; the regression line shows that higher incomes are related to more educations. Something to
notice about these scatterplots is that there a dot for each of our 4,820 observations. Since education is
measured in years, and income is binned data (and thus segmented), these scatterplots do not quite show
the whole picture. That is because it is not easy to see, without the regression line, that there are many more
dots at the (educ, cincome) (20, 25) mark then there are at the (20, 10) mark. Now, with the regression line,
one supposes that must be true to pull that line up. In just a bit, we’ll discuss the idea of jitter to make those
differences a shade easier to see.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

143

While we are seeking higher correlations between our potential predictor variables and income, low
correlations between our predictors are desirable. The fact that education and hours per week have so little
in common with a correlation of -0.0618 and a fairly flat regression line in the (educ, hrs2) scatterplot gives
us hope that adding hours into the mix of predictors would be bringing something new to the multiple
regression.

Figure 14-1.  Correlations, bar graphs, and scatterplots of age, education, hours worked in usual week, and
incomeZ

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

144

Spend some time looking over Figure 14-1. It really has quite a lot of data packed inside one set of charts
and graphs.

From Figure 14-1, we decide that education may be a good first predictor for income. The GSS actually
allows respondents to select from a range of total family income, then codes those ranges into bins. The
higher the bin, the more income the respondent’s family unit makes in a year. Looking one last time at that
scatterplot, recall that we pointed out that a single dot on that chart might well be secretly many dots packed
directly on top of each other. In the R package ggplot2, we can include a geometric objected aptly titled jitter
to introduce just a little wiggle to our data values. This will allow us to visually unpack each dot, so that all
4,820 observations (less some 446 rows of missing data) are more visible. We see the code for this as follows:

> ggplot(gssr, aes(educ, cincome)) +
+ # use jitter to add some noise and alpha to set transparency to more easily see data
+ geom_jitter(alpha = .2) +
+ stat_smooth() +
+ theme_bw() +
+ xlab("Years of Education") +
+ ylab("Income Bins")
geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula:
y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.
Warning messages:
1: Removed 446 rows containing missing values (stat_smooth).
2: Removed 446 rows containing missing values (geom_point).

While we’ve used ggplot2 in prior chapters, let us take a moment to explore how the syntax works. The
function call ggplot(data, more_arguments_here) builds a plot incrementally. The data in our case is
replaced with the call to our actual data, gssr. Most often in this book, we make an aesthetic map through
the aes(x, y, ...) function call as one last argument to the ggplot() function. Since we kept the order
that aes() was expecting for x and y, in the code above we simply put our predictor variable educ and our
dependent cincome into the function. As we’d already told ggplot() that we were using gssr data, it knew
where to look for educ and cincome without more complex row call tags such as gssr$educ.

Next, ggplot2 allows us to incrementally add additional layers. The actual data points are geometric
objects, which we want jittered for these data so we call geom_jitter(). The alpha argument is available
for most geometric objects, and ranges from 0 to 1, where 0 indicates that the object should be completely
transparent, and 1 indicates it should be completely opaque. A value of .2 will be more transparent than
opaque. Every geometric object has a default statistic (and vice versa), although that can be overridden as
we do in the preceding code by calling stat_smooth() to create the smoothed line in our image. We wrap up
the plot with an overall graph theme (bw for black and white, in this example) and explicitly label the x and y
axis. Figure 14-2 shows the result.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

145

Looking at Figure 14-2, thanks to jittering, we can see the density of our data values. This shows
well why higher education had such a higher correlation with higher income (and the smooth line helps
demonstrate this as well). By having a better sense of where our data are located, we can collapse our data.
Few people have less than 9 years of education. Furthermore, as we can see from the smooth line, there is
not much benefit from more than perhaps 18 years of education. We again reduce our data, not removing
columns as we did before, but rather recoding education to a new set of values that trims our data if it is
below 9 or above 18. The functions pmin() and pmax() return the parallel minimum or maximum. They
operate on each element of a vector or variable. In our example, we first ask for the maximum of either years
of education or 9, and then the minimum of years of education or 18.

> gssr <- within(gssr, {
+ reduc <- pmin(pmax(educ, 9), 18)
+ })

From here, we may redraw our plot, and see an updated graph that more clearly highlights education’s
expected contribution to our multiple regression model:

> ggplot(gssr, aes(reduc, cincome)) +
+ geom_jitter(alpha = .2) +
+ stat_smooth() +
+ theme_bw() +
+ xlab("Years of (Recoded) Education") +
+ ylab("Income Bins")
geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula:
y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.

Figure 14-2.  Scatterplot of income vs. years of education (with jitter)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

146

Warning messages:
1: Removed 446 rows containing missing values (stat_smooth).
2: Removed 446 rows containing missing values (geom_point).

Running the foregoing code yields the updated graph seen in Figure 14-3. We have a fairly straight line,
with only a bit of wiggle near what might be the “less than high school” or “more than high school” breaks.
Notice we have cautiously relabeled our graph to call out that we have chosen to recode the education data.
Any time data are trimmed or otherwise altered, best practice is to call it by a different title inside the code
and to purposefully mention such a thing has been done via graph labels on any images.

Figure 14-3.  Income bins vs. years of (recoded) education (min. 9 to max. 18)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

147

14.2.2 Linear Model (the First)
Now that we have explored our data somewhat, we are ready to begin building our linear model. Just as in
Chapter 13, we start with a simple model:

> m <- lm(cincome ~ reduc, data = gssr)
> summary(m)
 
Call:
lm(formula = cincome ~ reduc, data = gssr)
 
Residuals:
 Min 1Q Median 3Q Max
-20.1731 -3.2061 0.7609 3.7609 12.6784
 
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.47003 0.42634 8.139 5.14e-16 ***
reduc 0.98351 0.03049 32.256 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 5.127 on 4372 degrees of freedom
 (446 observations deleted due to missingness)
Multiple R-squared: 0.1922, Adjusted R-squared: 0.192
F-statistic: 1040 on 1 and 4372 DF, p-value: < 2.2e-16

We see that our p values are significant for our adjusted education data. However, our education data
can only account for 19.2% of the total variance in income. There is definitely room for improvement here!
Notice as mentioned earlier that the Multiple R-squared is the same as the Adjusted R-squared for the single
variable case.

It is also important to note that of our 446 deleted values, not all of them have fully missing data. Some
are missing education, others miss only income, and of course some are missing both. It is a worthy topic for
another time how to handle missing data through more elegant means than list-wise deletion (where cases
missing any variable in a regression are removed) for missingness.

Just as we did in the last chapter, we will take a look at our graphs to see if this model makes sense as
seen from the following code leading to Figure 14-4:

> par(mfrow = c(2, 2))
> plot(m)

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_13
http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

148

We can see (perhaps clearly enough from the Normal Q-Q plot) that our residuals look normal enough,
except for some odd behavior in the tails.

Figure 14-4.  The four plot(m) graphs all at once

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

149

14.2.3 Adding the Next Predictor
It seems that years of education may well be a good predictor for total family income. However, it still only
accounts for 19.2% of the total variance found in income. Returning to our collected data, we next explore if
sex makes a difference, starting, as always, with a graph for our EDA generated from the following code and
seen in Figure 14-5:

> ggplot(gssr, aes(reduc, cincome)) +
+ geom_jitter(alpha = .2) +
+ stat_smooth() +
+ theme_bw() +
+ xlab("Years of (Recoded) Education") +
+ ylab("Income Bins") +
+ facet_wrap(~ sex)
geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula:
y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.
geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula:
y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.
Warning messages:
1: Removed 178 rows containing missing values (stat_smooth).
2: Removed 268 rows containing missing values (stat_smooth).
3: Removed 178 rows containing missing values (geom_point).
4: Removed 268 rows containing missing values (geom_point).

Figure 14-5.  Income vs. years of (recoded) education broken out by sex of survey respondent

Since our income values for both male and female at 18 years of education are roughly similar
(by inspection), yet our initial values for income seem lower, we believe that sex may well be interacting with
education. We update our model accordingly, and use a new operator ‘.’ which means everything. So we
write .~.*sex as shorthand for “everything our model used to have on the left-hand side, while on the right-
hand side, include sex and interactions with sex as variables.” In R, this sort of update follows this format:
a*b = a + b + a*b where it gives the main effects of a, of b, and of a interacting with b. Note that R uses the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

150

colons, “:” to indicate the interaction of two variables, although mathematically, it is the multiplication of
two variables and in writing typically indicated by “*” or “x” as in “education x sex”. You can see the specifics
in the summary() function call that follows:

> m2 <- update(m, . ~ . * sex)
> summary(m2)
 
Call:
lm(formula = cincome ~ reduc + sex + reduc:sex, data = gssr)
 
Residuals:
 Min 1Q Median 3Q Max
-20.4990 -2.8145 0.8855 3.5010 13.5891
 
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.34540 0.62202 8.594 < 2e-16 ***
reduc 0.89742 0.04446 20.186 < 2e-16 ***
sexFEMALE -3.45342 0.84833 -4.071 4.77e-05 ***
reduc:sexFEMALE 0.16023 0.06066 2.641 0.00829 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 5.087 on 4370 degrees of freedom
 (446 observations deleted due to missingness)
Multiple R-squared: 0.2054, Adjusted R-squared: 0.2048
F-statistic: 376.5 on 3 and 4370 DF, p-value: < 2.2e-16

In the summary, we see that while we now have three prediction variables, namely, our adjusted
education variable, our dummy-coded sex variable, and our education * sex interaction, we have now
accounted for 20.5% of income variability through our model. Our p values remain significant, courtesy of
our rather large N even though the additional variance accounted for in this model is only around 1%.

We close out this section by visualizing our predicted results. The function expand.grid() creates
a data frame from all possible combinations of factors, in this case the reduc values from 9 to 18 and the
levels of gssr$sex data from our gssr dataset. Using the predict() function, we create ŷ data and graph it
in Figure 14-6.

> newdata <- expand.grid(reduc = 9:18, sex = levels(gssr$sex))
> head(newdata)
 reduc sex
1 9 MALE
2 10 MALE
3 11 MALE
4 12 MALE
5 13 MALE
6 14 MALE
  
> newdata$yhat <- predict(m2, newdata = newdata)
 
> ggplot(newdata, aes(reduc, yhat, colour = sex)) +
+ geom_line(size=1.5) +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

151

+ theme_bw() +
+ xlab("Recoded Years of Education") +
+ ylab("Income Bin")

Figure 14-6.  Income vs. recoded years of education broken out by male/female sex

As can be seen in Figure 14-6, sex seems to have an effect on income. This effect appears larger with
lower education, although it is not a dramatic interaction.

14.2.4 Adding More Predictors
As we add more predictors beyond our initial group, we have ever more aspects to consider. Do we need to
simply add the new predictors into our model or must we include interactions? This requires some cautious
looks at the graphs and at the summary data. We turn to age as that seemed the weakest correlation of our
data set. In the code that follows, we see what should now be fairly familiar:

> p <- ggplot(gssr, aes(age, cincome)) +
+ geom_jitter(alpha = .2) +
+ stat_smooth() +
+ theme_bw() +
+ xlab("Age in Years") +
+ ylab("Income Bins")
> p
geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula:
y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.
Warning messages:
1: Removed 470 rows containing missing values (stat_smooth).
2: Removed 470 rows containing missing values (geom_point).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

152

The resulting graph in Figure 14-7 shows what appears to be a quadratic effect of age. Notice that
this also explains why the age correlation was weak! Correlation only looks for linear effects, and this is
quadratic. We left a breadcrumb for this near the start of our discussion where we noted age had a weak
correlation; notice too that the geom_jitter() function is very helpful in seeing how a straight-line average
would perhaps give a very incorrect picture of the effect age has on income.

Figure 14-7.  Income vs. age (in years) showing a quadratic fit to the data

Age seems to have good things to say about income, but do we need to consider whether the effect of
age differs by sex? Again, we use the facet_wrap() function to sort by male and female:

> p2 <- p + facet_wrap(~ sex)
> p2
geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula:
y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.
geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula:
y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.
Warning messages:
1: Removed 186 rows containing missing values (stat_smooth).
2: Removed 284 rows containing missing values (stat_smooth).
3: Removed 186 rows containing missing values (geom_point).
4: Removed 284 rows containing missing values (geom_point).

As seen in Figure 14-8, the quadratic shapes of the graphs are approximately the same. Furthermore
(and again we are doing this simply by visual inspection), there does not seem to be anything special about
male vs. female income by age beyond what we already knew about their incomes in general.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

153

Since the age effect is quadratic, we update our model to include both age and age squared (we did this
in the last chapter with time on our stock example). Note that to use regular arithmetic operators inside an R
formula, we wrap them in another function, I(), which is just the identity function.

> m3 <- update(m2, . ~ . + (age + I(age^2)))
> summary(m3)
 
Call:
lm(formula = cincome ~ reduc + sex + age + I(age^2) + reduc:sex, data = gssr)
 
Residuals:
 Min 1Q Median 3Q Max
-19.0198 -2.7655 0.8147 3.4970 12.9333
 

Figure 14-8.  Income vs. male age in years and female age in years

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

154

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.2387081 0.8546644 -1.449 0.14731
reduc 0.8620941 0.0439172 19.630 < 2e-16 ***
sexFEMALE -3.4718386 0.8372444 -4.147 3.44e-05 ***
age 0.3023966 0.0260673 11.601 < 2e-16 ***
I(age^2) -0.0028943 0.0002505 -11.555 < 2e-16 ***
reduc:sexFEMALE 0.1650542 0.0598623 2.757 0.00585 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 5.003 on 4344 degrees of freedom
 (470 observations deleted due to missingness)
Multiple R-squared: 0.2289, Adjusted R-squared: 0.228
F-statistic: 257.9 on 5 and 4344 DF, p-value: < 2.2e-16

In this update, we see again that our p value is significant and that our predictors now explain 22.8%
of our variability in income. This is from the Adjusted R-squared, which is a good sign that these are useful
predictors to have in our model. We haven’t checked our four plots from our regression model recently, so
we again run the code for that and view the resulting two-by-two grid in Figure 14-9.

> par(mfrow = c(2, 2))
> plot(m3)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

155

Again, we see that the normal residuals precondition holds near the middle of our data, but less so at
the tails. As we added more predictors, more predicted values are possible and thus our graphs that at first
had very clear “bands” in the residuals vs. fitted values are now more dispersed.

Figure 14-9.  The four plot(m3) graphs all at once

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

156

As for our last additions, we use our model to create our prediction lines. This time, we will not only
get our lines, but we will include standard errors for our confidence intervals. The 95% confidence intervals
for the average predicted value can be obtained as approximately ŷ ± 1.96 * SE or precisely ŷ + Za = .025

 * SE and
ŷ + Za = .975

 * SE, which can be obtained in R as qnorm(.025) and qnorm(.975), respectively. However, rounded
to two decimals these are +/- 1.96, which is sufficient precision for visual inspection. This time, we select
only certain levels of education attainment in three-year increments from our chosen interval. Following is
the code for both these steps:

> newdata <- expand.grid(age = 20:80, reduc = c(9, 12, 15, 18), sex = levels(gssr$sex))
> head(newdata)
 age reduc sex
1 20 9 MALE
2 21 9 MALE
3 22 9 MALE
4 23 9 MALE
5 24 9 MALE
6 25 9 MALE
  
> newdata <- cbind(newdata, predict(m3, newdata = newdata, se.fit = TRUE))
 
> head(newdata)
 age reduc sex fit se.fit df residual.scale
1 20 9 MALE 11.41034 0.3165924 4344 5.003214
2 21 9 MALE 11.59407 0.3070684 4344 5.003214
3 22 9 MALE 11.77202 0.2983259 4344 5.003214
4 23 9 MALE 11.94417 0.2903586 4344 5.003214
5 24 9 MALE 12.11053 0.2831553 4344 5.003214
6 25 9 MALE 12.27111 0.2767002 4344 5.003214

Next, we run the code to plot our new model’s newdata. This time, we let linetype = sex which cycles
through different lines types depending on sex. Last time, we did the same process with color (although that
may not have been clear in the printed version of this text). The code that follows includes a new geometric
object, geom_ribbon(), which shows our confidence intervals. Also the plot will set education constant and
contrast income vs. age in years. This is a sort of two-dimensional way to code in the fact that age, sex, and
education have us in at least three dimensions (ignoring the addition of interaction predictors). Finally, we
include some code to remove the legend’s title, move the legend to the lower part of the graph, and make the
legend larger.

> ggplot(newdata, aes(age, fit, linetype = sex)) +
+ geom_ribbon(aes(ymin = fit - 1.96 * se.fit,
+ ymax = fit + 1.96 * se.fit), alpha = .3) +
+ geom_line(size=1.5) +
+ theme_bw() +
+ theme(
+ legend.title = element_blank(), # get rid of legend title
+ legend.position = "bottom", # move legend to bottom of graph
+ legend.key.width = unit(1, "cm")) + # make each legend bigger
+ xlab("Age in Years") +
+ ylab("Income Bin") +
+ facet_wrap(~ reduc)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

157

We see the result of the preceding code in Figure 14-10. Each panel of the graph has the years of
education at the top, although R is only showing the values, not the variable name or anything to tell us those
numbers represent years of education (i.e., what a figure legend is for!).

Figure 14-10.  Income vs. age in years for males and females segmented by adjusted education data

We see in Figure 14-10 that while there is a significant difference in both the model and the confidence
intervals around the model for male and female income, by the upper end of educational attainment, that
difference becomes less extreme with the overlap of the shaded confidence intervals (as always, trusting a
visual inspection is risky, we ran View(newdata) and looked at the actual confidence intervals to confirm)—
not entirely comforting, but perhaps better than might have been.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

158

14.2.5 Presenting Results
We turn our attention now to preparing our results for final presentation. We have increased our predictive
ability by 3.58%. Of course, with a dataset as rich as the GSS data, we might be tempted to carry on our
efforts. After all, we certainly haven’t used all possible predictors (including the usual hours worked per
week). Indeed, an inspection of Figure 14-1, which has a slightly counterintuitive linear regression line,
makes the authors wonder if there is not a quadratic shape to that effect as well. It certainly seems possible
that income would be low for both part-time and over-full-time workers, while the highest earners might
work typical jobs more generally. Still, we are confident that there is enough here for the interested reader to
continue adding predictors.

Using the coef() and confint() functions, we extract the coefficients and confidence intervals from
our final m3 model and cbind() them together.

> coef(m3)
 (Intercept) reduc sexFEMALE age I(age^2)
reduc:sexFEMALE
 -1.238708083 0.862094062 -3.471838551 0.302396558 -0.002894312
0.165054159
> confint(m3)
 2.5 % 97.5 %
(Intercept) -2.914286341 0.436870176
reduc 0.775993915 0.948194210
sexFEMALE -5.113264804 -1.830412297
age 0.251291337 0.353501778
I(age^2) -0.003385371 -0.002403252
reduc:sexFEMALE 0.047693534 0.282414783
  
> output <- cbind(B = coef(m3), confint(m3))
> output
 B 2.5 % 97.5 %
(Intercept) -1.238708083 -2.914286341 0.436870176
reduc 0.862094062 0.775993915 0.948194210
sexFEMALE -3.471838551 -5.113264804 -1.830412297
age 0.302396558 0.251291337 0.353501778
I(age^2) -0.002894312 -0.003385371 -0.002403252
reduc:sexFEMALE 0.165054159 0.047693534 0.282414783

We see that looks somewhat messy, so we round the output.

> round(output, 2)
 B 2.5 % 97.5 %
(Intercept) -1.24 -2.91 0.44
reduc 0.86 0.78 0.95
sexFEMALE -3.47 -5.11 -1.83
age 0.30 0.25 0.35
I(age^2) 0.00 0.00 0.00
reduc:sexFEMALE 0.17 0.05 0.28

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

159

It can be helpful to standardize variables to help make them more interpretable. Gelman (2008)
recommends scaling by 2 standard deviations (SD). This is readily enough done with the arm package we
installed and included earlier. Running the model again with the standardize() function not only scales the
regression inputs but also mean centers variables to make interactions more interpretable.

> z.m3 <- standardize(m3, standardize.y = TRUE)

Now coefficients for continuous variables represent the effect on SDs of income bin per 2 SD change in
the predictor roughly equivalent to going from “low” to “high” (i.e., one extreme to the other). For a binary
variable like sex, the coefficient is the difference between sexes.

> round(cbind(B = coef(z.m3), confint(z.m3)), 2)
 B 2.5 % 97.5 %
(Intercept) 0.07 0.05 0.09
z.reduc 0.43 0.40 0.46
c.sex -0.11 -0.13 -0.08
z.age 0.05 0.02 0.07
I(z.age^2) -0.30 -0.35 -0.25
z.reduc:c.sex 0.07 0.02 0.13

Writing a generic (and reusable) function to format output, and then calling it on the m3 data yields

> regCI <- function(model) {
+ b <- coef(model)
+ cis <- confint(model)
+ sprintf("%0.2f [%0.2f, %0.2f]",
+ b, cis[, 1], cis[, 2])
+ }
 
> regCI(m3)
[1] "-1.24 [-2.91, 0.44]" "0.86 [0.78, 0.95]" "-3.47 [-5.11, -1.83]"
[4] "0.30 [0.25, 0.35]" "-0.00 [-0.00, -0.00]" "0.17 [0.05, 0.28]"

Showing the raw and standardized estimates side by side, we note that on raw scale the squared age
term is hard to read because age has such a big range. The effect of changing a single year squared was very
small, but standardized, the coefficient is much larger matching the importance of age we saw in the graphs.

> data.frame(
+ Variable = names(coef(m3)),
+ Raw = regCI(m3),
+ Std. = regCI(z.m3))
 Variable Raw Std.
1 (Intercept) -1.24 [-2.91, 0.44] 0.07 [0.05, 0.09]
2 reduc 0.86 [0.78, 0.95] 0.43 [0.40, 0.46]
3 sexFEMALE -3.47 [-5.11, -1.83] -0.11 [-0.13, -0.08]
4 age 0.30 [0.25, 0.35] 0.05 [0.02, 0.07]
5 I(age^2) -0.00 [-0.00, -0.00] -0.30 [-0.35, -0.25]
6 reduc:sexFEMALE 0.17 [0.05, 0.28] 0.07 [0.02, 0.13]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

160

We can also make nice summaries of models using the texreg package. It creates a little bit prettier
model output using the layout of coefficients (standard error) and p values as asterisks. We use an additional
argument to put the coefficient and standard error on the same row. If we had many models, we might leave
this off, in which case the standard error would go on a new line below the coefficient, making more room
across the page for extra models.

> screenreg(m3, single.row = TRUE)
 
===================================
 Model 1

(Intercept) -1.24 (0.85)
reduc 0.86 (0.04) ***
sexFEMALE -3.47 (0.84) ***
age 0.30 (0.03) ***
I(age^2) -0.00 (0.00) ***
reduc:sexFEMALE 0.17 (0.06) **

R^2 0.23
Adj. R^2 0.23
Num. obs. 4350
RMSE 5.00
===================================
*** p < 0.001, ** p < 0.01, * p < 0.05

We can also show the iterative model process as a nice summary for this example. It has captured most
the results we would want or need to report, including all the coefficients, whether an effect is statistically
significant, the number of observations, raw and adjusted R-squared, and the residual standard error, here
labeled RMSE for root mean square error. Note that there are options available to control the format of
output, including customizing model names to be more informative than the default 1, 2, 3, customizing
the row labels, how many digits to round to, whether to include confidence intervals, and many more. The
interested reader is referred to the open access journal article on the package by Leifeld (2013).

> screenreg(list(m, m2, m3), single.row = TRUE)
 
===
 Model 1 Model 2 Model 3

(Intercept) 3.47 (0.43) *** 5.35 (0.62) *** -1.24 (0.85)
reduc 0.98 (0.03) *** 0.90 (0.04) *** 0.86 (0.04) ***
sexFEMALE -3.45 (0.85) *** -3.47 (0.84) ***
reduc:sexFEMALE 0.16 (0.06) ** 0.17 (0.06) **
age 0.30 (0.03) ***
I(age^2) -0.00 (0.00) ***

R^2 0.19 0.21 0.23
Adj. R^2 0.19 0.20 0.23
Num. obs. 4374 4374 4350
RMSE 5.13 5.09 5.00
===
*** p < 0.001, ** p < 0.01, * p < 0.05

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Multiple Regression

161

14.3 Final Thoughts
Multiple linear regression works well when there is a rich set of data that has many options for predictor or
independent variables. As noted earlier in our discussion about the Adjusted R-squared value, larger n can
be helpful, particularly when each predictor by itself only explains a small amount of variance. Multiple
regression also supposes that the response variable is numeric and continuous. This worked well enough in
our GSS data where annual, total family income was used as a response.

This would work less well if we attempted to use income06 to predict sex, on the other hand. Such a
categorical, qualitative variable can be better explained through logistic regression or logit models. We will
explore models for categorical outcomes, such as logistic regression, in the next chapter.

References
Gelman, A. “Scaling regression inputs by dividing by two standard deviations.” Statistics in Medicine, 27(15),
2865–2873 (2008).

Gelman, A., & Su, Y-S. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models, 2015. R
package version 1.8-6. Available at: http://CRAN.R-project.org/package=arm.

Leifeld, P. (2013). “texreg: Conversion of statistical model output in R to LaTeX and HTML tables.” Journal of
Statistical Software, 55(8), 1–24. Available at: www.jstatsoft.org/v55/i08/.

R Core Team. (2015). foreign: Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase, R
package version 0.8-65. http://CRAN.R-project.org/package=foreign.

Schloerke, B., Crowley, J., Cook, D., Hofmann, H., Wickham, H., Briatte, F., Marbach, M., &Thoen,
E. GGally: Extension to ggplot2, 2014. R package version 0.5.0. Available at:
http://CRAN.R-project.org/package=GGally.

www.it-ebooks.info

http://cran.r-project.org/package=arm
http://www.jstatsoft.org/v55/i08/
http://cran.r-project.org/package=foreign
http://cran.r-project.org/package=GGally
http://www.it-ebooks.info/

163

Chapter 15

Logistic Regression

The linear regressions we have been exploring have some underlying assumptions. First and foremost is that
response and prediction variables should have a linear relationship. Buried in that assumption is the idea
that these variables are quantitative. However, what if the response variable is qualitative or discrete? If it is
binary, such as measuring whether participants are satisfied or not satisfied, we could perhaps dummy-code
satisfaction as 1 and no satisfaction as 0. In that case, while a linear regression may provide some guidance,
it will also likely provide outputs well beyond the range of [0,1], which is clearly not right. Should we desire to
predict more than two responses (e.g., not satisfied, mostly satisfied, and satisfied), the system breaks down
even more.

Fortunately, logistic regression provides a mechanism for dealing with precisely these kinds of data. We
will start off this chapter going into just enough mathematical background that we can understand when to
use logistic regression and how to interpret the results. From there, we will work through a familiar dataset to
understand the function calls and mechanisms R has in place to perform such calculations.

15.1 The Mathematics of Logistic Regression
First of all, apologies for the amount of mathematics we are about to go through. This is a methods text, and
yet, to properly understand the results of logistic regression, it helps to understand where this all starts. If you
are already familiar with logarithms, odds, and probability, feel free to move on to the example. If not, we will
keep this as high level as possible, again saving for statistics texts and our appendix the precise reasoning.

At its heart, the advances of modern mathematics are powered by the idea of functions. In mathematics
as in R, functions map input values to unique output values. That is, if we input the same information to
the same function, we expect the same output. One of the more fascinating functions discovered over the
years is the logarithmic function. It has many useful properties; perhaps one of the most impressive is that
it converts the multiplication of large numbers into the addition of smaller values. This was terribly useful
in computations of early navigation because multiplying large numbers is generally difficult while summing
small numbers is comparatively easy.

log log logMN M N() = () + ()

Another useful feature of a logarithm is that it is the inverse function of an exponent. In a once popular
movie, the protagonist claimed there were three steps to any good magic trick. The final step was that one had
to undo the magic and make things right again. That is the power of inverses. We can map our inputs from our
world into a more convenient place where it is easy to solve. However, once we have exploited the easy-to-solve
feature, we need to take our results back into our world. We will see throughout our example in this section
that we often take our answers and go to some pains to pull them back into “our” world. The fact that we are
performing a conversion on our data also means we must be cautious with our interpretation of results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

164

Our goal is to model dummy-coded quantitative information. If we had a function that took inputs that
were continuous variables and forced the outputs to live between 0 and 1, we might well be fairly happy.
Fortunately, such a function exists. It is called the logistic function and for a single predictor X is as follows:

P X
e

e

B B X

B B X() =
+

+

+

0 1

0 11

We will let R worry about how to discover the coefficients; our focus here is that there are exponents on
the right-hand side, and that the foregoing function’s range of outputs is trapped between 0 and 1 regardless
of the input values. We also care about understanding how to interpret our logistic regression results. A little
bit of algebraic manipulation on our function tells us that

P Y

P Y
eB B X()

- ()
= +

1
0 1

The left-hand side of our equation is the odds. As anyone who attends the Kentucky Derby knows, odds
and probability are related, but they are not quite the same. Suppose we know from television that four out
of five dentists recommend a particular brand of gum. Then the probability of a dentist recommending this
gum is 4/5 which would be P(Y) = 0.8. However, our odds would be 4 to 1 which in the foregoing ratio would

be 4 since
0 8

1 0 8
4

.

.-
= . Odds can live between 0 and infinity. Still, while we can understand the left-hand side,

the right-hand side is not as nice as it might be. Remember, logarithms and exponents are inverses. If we
take (or compose) both sides of our equation with a logarithm, we get a left-hand side of logarithmic odds or
log odds or simply logit. The right-hand side becomes a linear model.

log
P Y

P Y
B B X

()
- ()

æ

è
çç

ö

ø
÷÷ = +

1 0 1

As we interpret our coefficients from the example model we are about to meet, it will often be
convenient to talk about the logit or log odds. If we want to convert to odds, then we may simply take the
exponent of logit. Thus, while statistical work often discusses probability, when doing logistic regression, we
tend to speak in terms of odds instead. As visible from the preceding equation, this is a linear model. Much
of what we calculate will be quite similar to the single and multivariate linear regressions we have already
performed, just on the log odds scale!

As a final note, logistic regression assumes that our dependent variable is categorical, that there is a
linear relationship between the predictor and response variables in the logistic space (not necessarily in the
“real world” space, indeed in some examples we will see decidedly nonlinear probabilities, even though they
are linear on the log odds scale), that our predictor variables are not perfectly collinear, and that we have
a fairly large dataset (we use z-scores rather than t-scores). Things that we used to require (such as normal
distribution for response variable or normal distribution for errors) are no longer required, which is rather
convenient.

15.2 Generalized Linear Models
Previously, we talked about linear models. Now we will introduce the generalized linear model (GLM).
GLMs, as you might expect, are a general class of models. The expected value of our outcome, Y, is E(Y),
which is the mean or m. GLMs then take the following form:

h = B
0
 + B

1
X

g(m) = h

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

165

The first part should look very familiar, except we have replaced ŷ with h. h is called the linear predictor,
because it is always on a linear scale. g() is called the link function. Link functions are functions that link the
linear predictor to the original scale of the data, or “our” world. Finally, we will define one more function:

h() = g()−1

h() is the inverse link function, the function that takes us back to “our” world from the linear world.
So g() takes us from our world to a linear world, and h() takes us back again. With that said, more or less as
long as we can (1) find a suitable link function so that on that scale, our outcome is a linear function of the
predictors, (2) we can define an inverse link function, and (3) we can find a suitable distribution, then we
can use a GLM to do regression.

For example, linear regression is very simple. It assumes that g(Y ) = Y and that h(g(Y )) = Y, in other
words, the link and inverse link functions are just the identity function—no transformation occurs, and it
assumes the data come from a Gaussian distribution. We have already talked about another link function,

although we did not call it that. For logistic regression, g Y
P Y

P Y
() = ()

- ()
æ

è
çç

ö

ø
÷÷log

1
 and h

e

e
()h

h

h=
+1

, and we

assume the data follow a binomial distribution. There are many other distributions and link functions we
could choose from. For example, we could fit a log normal model, but using a log link function, but still
assuming the data follow a Gaussian distribution, such as for income data which cannot be zero. We will see
in R how we specify the distribution we want to assume, and the link function.

15.3 An Example of Logistic Regression
We will use our familiar gss2012 dataset, this time attempting to understand when satisfaction with finances
(satfin) occurs. Suppose satfin is a dependent variable, and recall this dataset has age in years (age),
female vs. male (sex), marital status (marital), years of education (educ), income divided into a number
of bins where higher bin number is higher income (income06), self-rated health (health), and happiness
(happy). We explore the dataset to find predictors for financial satisfaction. Also, as before, we will make
our library calls first, read our data, and perform some data management. We will also for simplicity’s sake
drop all missing cases using the na.omit() function. Handling missing data (in more reasonable ways than
dropping all cases missing any variable) is definitely an important topic. In the interest of keeping our focus
on logit models, we save that topic for a future book.

> library(foreign)
> library(ggplot2)
> library(GGally)
> library(grid)
> library(arm)
> library(texreg)
 
> gss2012 <- read.spss("GSS2012merged_R5.sav", to.data.frame = TRUE)
> gssr <- gss2012[, c(�"age", "sex", "marital", "educ", "income06", "satfin",

"happy", "health")]
> gssr <- na.omit(gssr)
 
> gssr <- within(gssr, {
+ age <- as.numeric(age)
+ educ <- as.numeric(educ)
+ cincome <- as.numeric(income06)
+ })

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

166

Our gssr data have 2,835 observations after fully removing every row that had missing data for any of
our eight variables. Notice that while age and education were already text numbers that we have forced to
be numeric, the income06 variable was descriptive, so we have created a new column named cincome to
hold a numeric value for those titles (e.g., “150000 OR OVER” becomes “25”). Recalling that we have deleted
the n/a responses from our data, we take a first look at the satfin data in Figure 15-1 generated by the
following code:

> ggplot(gssr, aes(satfin)) +
+ geom_bar() +
+ theme_bw()

For our first pass at logistic regression, we wish to focus only on satisfied vs. not fully satisfied. We create
a new variable named Satisfied to append to our gssr dataset which we code to 1 for satisfied responses to
satfin and 0 otherwise. We also look at a table of those results in the code that follows:

> gssr$Satisfied <- as.integer(gssr$satfin == "SATISFIED")
> table(gssr$Satisfied)
 
 0 1
2122 713

15.3.1 What If We Tried a Linear Model on Age?
These data now seem to satisfy our requirements for running logistic regression. In particular, having
financial satisfaction or not fully having financial satisfaction is a qualitative variable and some 2,835
observations seem to be a large dataset. Suppose we select age as a potential predictor for Satisfied. We
take a moment to consider a normal linear model. This has the advantage of not only seeing (with real data)
why we would want such a creature as logistic regression but also seeing what data that are not normal
might look like in the usual plots for exploratory data analysis (EDA). We fit the linear model, generate our

Figure 15-1.  Bar graph satfin levels vs. count

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

167

plots, and see from Figure 15-2, particularly the Normal Q-Q plot, that a linear model is not the way to go. Of
course, none of these four graphs looks anything like the linear model results we saw in the last two chapters.
These diagnostics show marked non-normality of the data along with other violations of assumptions.

> m.lin <- lm(Satisfied ~ age, data = gssr)
  
> par(mfrow = c(2, 2))
> plot(m.lin)

15.3.2 Seeing If Age Might Be Relevant with Chi Square
Earlier, we learned of the chi-square tests for categorical data, such as these. If we converted our age variable
(much as we did with satfin) into a discrete variable, we could do a chi-square test. Of course, to do so, we
would have to pick some level cut-off for age and recode it; here we create a new variable that is 1 if age is ³ 45
and 0 if age is < 45. Creating a contingency table and running the test shows highly significant results. By
the way, when assigning output to a variable for use later, wrapping the whole statement in parentheses is a
simple trick to get the output to print, without too much extra typing.

Figure 15-2.  Standard plot() call on the linear model Satisfied ~ age

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

168

> gssr$Age45 <- as.integer(gssr$age >= 45)
 
> (tab <- xtabs(~Satisfied + Age45, data = gssr))
 Age45
Satisfied 0 1
 0 940 1182
 1 249 464
> chisq.test(tab)
 Pearson's Chi-squared test with Yates' continuity correction
data: tab
X-squared = 18.88, df = 1, p-value = 1.392e-05

The fact that these results are significant does lend weight to our hypothesis that age may well make a
good predictor for satisfaction. What if we prefer to leave age as a continuous variable? We turn to logistic
regression, which in R uses the GLM and the glm() function. One of the virtues of using R is that the usual
functions are often quite adept at determining what sorts of data and data structures are being passed to
them. Thus, we will see many similarities between what we have done and what we do now for logit models.
We start with our new function and our old friend, the summary() function. You will see that glm() works
very similarly to lm() except that we have to use an additional argument, family = binomial(), to tell
R that the errors should be assumed to come from a binomial distribution. If you would like to see what
other families can be used with the glm() function, look at the R help page for the ?family. You will see that
linear regression is actually a specific case of the GLM and if you wanted to, you could run it using the glm()
function. You can also use different link functions for each distribution. We did not have to tell R that we
wanted to use a logit link function, because that is the default for the binomial family, but if we wanted to, we
could have written family = binomial(link = "logit").

15.3.3 Fitting a Logistic Regression Model
> m <- glm(Satisfied ~ age, data = gssr, family = binomial())
  
> summary(m)
 
Call:
glm(formula = Satisfied ~ age, family = binomial(), data = gssr)
 
Deviance Residuals:
 Min 1Q Median 3Q Max
-1.0394 -0.7904 -0.6885 1.3220 1.9469
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.086915 0.142801 -14.614 < 2e-16 ***
age 0.019700 0.002621 7.516 5.64e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
(Dispersion parameter for binomial family taken to be 1)
 
 Null deviance: 3197.7 on 2834 degrees of freedom
Residual deviance: 3140.4 on 2833 degrees of freedom
AIC: 3144.4
 
Number of Fisher Scoring iterations: 4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

169

The summary() function is quite as it has been. It starts off echoing the model call and then provides a
summary of the residuals. Recall from our earlier discussion of the theory that these estimates are log odds
or logits. In other words, a one-year increase in age is associated with a 0.019700 increase in the log odds of
being financially satisfied. We’ll spend some effort in a moment to convert that number into something more
intuitively meaningful. For now, just keep in mind that our outcome is in log odds scale. Also notice that,
again as mentioned, we have z values instead of t values. Logistic regression (as a specific case of GLM) relies
on large-number theory and this is the reason we need to have a large sample size, as there is no adjustment
for degrees of freedom. The p values (which are significant) are derived from the z values. The intercept
coefficient is the log odds of being satisfied for someone who is zero years old. Notice that this is outside the
minimum value for our age predictor, and thus it is a somewhat meaningless number. Also notice that log
odds can be negative for odds between 0 and 1. This can also be counterintuitive at first.

Looking at the final outputs of our summary tells us that for the binomial model we’re using, dispersion
is taken to be fixed. The null deviance is based on the log likelihood and is for an empty model; the residual
deviance is based on the log likelihood and is for the actual model. These two numbers can be used to give
an overall test of model performance/fit similar to the F test for linear models, but in this case it is called a
likelihood ratio test (LRT) and follows the chi-square distribution.

To perform a LRT, we first fit a null or empty model which has only an intercept. To test constructed
models against null models in R (or to test any two models against each other, for that matter), the generally
agreed upon function call is anova(). It is somewhat confusing as we should not interpret its use to mean
we are doing an ANOVA (analysis of variance). This function, when given a sequence of objects, tests the
models against one another. This function is also part of the reason we opted to remove our rows with null
data. It requires the models to be fitted to the same dataset, and the null model will find fewer conflicts than
our constructed model. Of note in the code and output that follows is that there is a significant difference
between the two models, and thus we believe our model, m, provides a better fit to the data than a model
with only an intercept (not a hard bar to beat!).

> m0 <- glm(Satisfied ~ 1, data = gssr, family = binomial())
>
> anova(m0, m, test = "LRT")
Analysis of Deviance Table
 
Model 1: Satisfied ~ 1
Model 2: Satisfied ~ age
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2834 3197.7
2 2833 3140.4 1 57.358 3.634e-14 ***

As we mentioned previously, the fact that the intercept is fairly meaningless due to being well outside
our range of ages might be something to fix to make our model more intuitive. But first, an aside.

15.3.4 The Mathematics of Linear Scaling of Data
If we were to look at a very brief example of just three data points we wished to average, let us say 0, 45, and
45, we would see the arithmetic mean was 30. Now, suppose that we wanted to adjust our x-axis scale in a
linear fashion. That is, we might choose to divide all our numbers by 45. If we did that, our new variables
would be 0, 1, and 1, and our new average would be 2/3. Of course, we could have simply found our new
mean by reducing 30/45 which is of course also 2/3. All this is to say that we might expect linear adjustments
to x-axis variables to be well behaved in some convenient fashion. After taking a brief look at Figure 15-3 and
the code that created it, notice that linear adjustments of the x axis, while they may change the scale of the x
axis, do not change the line really. Here, we make our x-axis conversion by dividing by 5 and adding 3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

170

> x0 <- c(5, 15, 25, 35, 45)
> x1 <- c(4, 6, 8, 10, 12)
> y <- c(0, 10, 20, 30, 40)
> par(mfrow = c(1,2))
> plot(x0,y, type = "l")
> plot(x1,y, type = "l")

15.3.5 Logit Model with Rescaled Predictor
Let us take a closer look at our age variable. We can see from Figure 15-4 and the summary() code that
respondents’ ages ranged from 18 to 89 years. We recall from before that our log odds for increase by a single
year were rather low. This all leads us to consider changing our predictor scale to something more suitable.

> hist(gssr$age)
> summary(gssr$age)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 18.00 35.00 49.00 49.24 61.00 89.00

A more suitable choice might be to center our age data so that 0 is 18 years of age. This would make our
intercept much more useful to us. We also might divide by 10 to be able to discuss how satisfaction changes
by decades after reaching adulthood.

Now, with this change, since regression models are invariant to linear transformations of predictors,
our model is the same, although our output looks a little different. The intercept is now the log odds of
being satisfied at age 18 where our age scale starts and the age effect of 0.19700 is the log odds for a decade
increase in age.

Figure 15-4.  Histogram of age vs. frequency

Figure 15-3.  A visual demonstration that linear x-axis rescales don’t really change the line

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

171

> gssr$Agec <- (gssr$age - 18) / 10
> m <- glm(Satisfied ~ Agec, data = gssr, family = binomial())
> summary(m)
 
Call:
glm(formula = Satisfied ~ Agec, family = binomial(), data = gssr)
 
Deviance Residuals:
 Min 1Q Median 3Q Max
-1.0394 -0.7904 -0.6885 1.3220 1.9469
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.73232 0.09895 -17.507 < 2e-16 ***
Agec 0.19700 0.02621 7.516 5.64e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
(Dispersion parameter for binomial family taken to be 1)
 
 Null deviance: 3197.7 on 2834 degrees of freedom
Residual deviance: 3140.4 on 2833 degrees of freedom
AIC: 3144.4
 
Number of Fisher Scoring iterations: 4

Often the log odds scale is not very intuitive, so researchers prefer to interpret odds ratios directly; we
can convert the coefficients to odds ratios by exponentiation, since logarithm and exponents are inverses.

> cbind(LogOdds = coef(m), Odds = exp(coef(m)))
 LogOdds Odds
(Intercept) -1.7323153 0.1768744
Agec 0.1969999 1.2177439

Now we can interpret the effect of age, as for each decade increase in age, people have 1.22 times the
odds of being satisfied; they do not have 1.22 times the chance or the probability of being satisfied. These
are still odds. Just not log odds.

We may also be interested in the confidence intervals (CIs). As usual, we take the coefficient and add
the 95% confidence intervals. We do this in the log odds scale first and then exponentiate that result. This is
because our method of discovering CIs is predicated around the linear model of the log odds scale
(i.e., estimate ± 1.96 x standard error).

> results <- cbind(LogOdds = coef(m), confint(m))
Waiting for profiling to be done...
> results
 LogOdds 2.5 % 97.5 %
(Intercept) -1.7323153 -1.9284027 -1.5404056
Agec 0.1969999 0.1457785 0.2485537
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

172

> exp(results)
 LogOdds 2.5 % 97.5 %
(Intercept) 0.1768744 0.1453802 0.2142942
Agec 1.2177439 1.1569399 1.2821696

For graphing and interpreting, perhaps the easiest scale is probabilities as odds can still be confusing
and depend on the actual probability of an event happening. Let us create a new dataset of ages, across the
whole age range, and get the predicted probability of being satisfied for each hypothetical person. We will
generate the age dataset, get the predicted probabilities, and then graph it. The predict() function knows
we are calling it on m which is an S3 class of type GLM. Thus, we are actually calling predict.glm(), which
has as its default type the decision to use the "link" scale, which is log odds. We want a probability scale,
which is the original response scale, and thus set the type to "response".

> newdat <- data.frame(Agec = seq(0, to = (89 - 18)/10, length.out = 200))
> newdat$probs <- predict(m, newdata = newdat, type = "response")
  
> head(newdat)
 Agec probs
1 0.00000000 0.1502917
2 0.03567839 0.1511915
3 0.07135678 0.1520957
4 0.10703518 0.1530043
5 0.14271357 0.1539174
6 0.17839196 0.1548350
  
> p <- ggplot(newdat, aes(Agec, probs)) +
+ geom_line() +
+ theme_bw() +
+ xlab("Age - 18 in decades") +
+ ylab("Probability of being financially satisfied")
> p

The foregoing code generates Figure 15-5, but notice that it doesn’t quite give us what we want. Namely,
while the y axis is now in a very intuitive probability scale, the x axis is still in our linearly transformed scale.
It would be helpful to rerun the graph making sure to both analyze the code at years that make sense
(i.e. 20, 40, 60, and 80 years of age) and label the x axis in such a way that we could see that. The following
code makes this happen, and we show Figure 15-6 on the next page contrasted with our earlier image. When
we update the labels, we also need to relabel the x axis to make it clear the axis is now in age in years rather
than centered and in decades.

> p2 <- p +
+ scale_x_continuous("Age in years", breaks = (c(20, 40, 60, 80) - 18)/10,
+ labels = c(20, 40, 60, 80))
> p2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

173

Figure 15-5.  GLM prediction graph on age minus 18 in decades and probability of being financially satisfied

Figure 15-6.  GLM prediction graph as in Figure 15-5 with better breaks and hand labeled for interpretability

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

174

15.3.6 Multivariate Logistic Regression
We turn our efforts now to multivariate logistic regression to improve our logit model. It would seem cincome
might make a good predictor of income satisfaction and perhaps education, educ, also matters. Income does
seem to be significant, although the main effect of education is not statistically significant.

> m2 <- update(m, . ~ . + cincome + educ)
> summary(m2)
 
Call:
glm(formula = Satisfied ~ Agec + cincome + educ, family = binomial(),
 data = gssr)
 
Deviance Residuals:
 Min 1Q Median 3Q Max
-1.3535 -0.8009 -0.6029 1.0310 2.7238
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.27729 0.27387 -15.618 <2e-16 ***
Agec 0.24130 0.02836 8.508 <2e-16 ***
cincome 0.10989 0.01049 10.478 <2e-16 ***
educ 0.03045 0.01693 1.799 0.0721 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
(Dispersion parameter for binomial family taken to be 1)
 
 Null deviance: 3197.7 on 2834 degrees of freedom
Residual deviance: 2955.6 on 2831 degrees of freedom
AIC: 2963.6
 
Number of Fisher Scoring iterations: 4

Perhaps there is an interaction between education and income? Education and income interact when
income is zero, higher education is associated with lower log odds of financial satisfaction, but as income
goes up, the relationship between education and financial satisfaction goes toward zero.

> m3 <- update(m, . ~ . + cincome * educ)
> summary(m3)
 
Call:
glm(�formula = Satisfied ~ Agec + cincome + educ + cincome:educ,family = binomial(),

data = gssr)
 
Deviance Residuals:
 Min 1Q Median 3Q Max
-1.5182 -0.7865 -0.5904 0.9003 2.8120
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

175

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.391097 0.661266 -2.104 0.035406 *
Agec 0.235217 0.028477 8.260 < 2e-16 ***
cincome -0.051122 0.036209 -1.412 0.157992
educ -0.190748 0.050788 -3.756 0.000173 ***
cincome:educ 0.012068 0.002647 4.559 5.13e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
(Dispersion parameter for binomial family taken to be 1)
 
 Null deviance: 3197.7 on 2834 degrees of freedom
Residual deviance: 2936.8 on 2830 degrees of freedom
AIC: 2946.8
 
Number of Fisher Scoring iterations: 4

One item of note is that as we add more predictors to our model, unlike with the linear regressions we
did in prior chapters, there is not a convenient multiple correlation coefficient (i.e., R2) term to measure if
we are progressing toward a “better” model or not. One possibility we have hinted at before is to have two
datasets. We could train our model on the first dataset, and then test our model against the second dataset
to determine how far off our predictions might be. There are a variety of methods to do so (e.g., cross-
validation), and these methods are not particularly difficult to code in R. However, they can be compute
intensive. McFadden (1974) suggests an analogous measure using a log likelihood ratio which belongs to a
class of measures sometimes labeled pseudo R-squared. There are many alternative approaches available
and each has various pros and cons, without any single measure being agreed upon as optimal or the “gold
standard.” McFadden’s R2 is straightforward to calculate, and for now, we show a function implementing
McFadden’s algorithm.

> McFaddenR2 <- function(mod0, mod1, ...){
+ L0 <- logLik(mod0)
+ L1 <- logLik(mod1)
+ MFR2 <- 1 - (L1/L0)
+ return(MFR2)
+ }
>
> MFR2_1 <- McFaddenR2(m0,m)
> MFR2_2 <- McFaddenR2(m0,m2)
> MFR2_3 <- McFaddenR2(m0,m3)
>
> McFaddenResults <- cbind(c(MFR2_1,MFR2_2,MFR2_3))
> McFaddenResults
 [,1]
[1,] 0.01793689
[2,] 0.07469872
[3,] 0.08161767

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

176

Our model seems to be improving, so we turn our attention to getting results. Before we start looking
at predictions, we take a look at our new predictor variables. Based on those explorations, we build our
new data model to pass to our predict() function. In this case, we will see from the summary() function
calls (and our intuition) that it makes sense to segment education based on high school, university, and
postgraduate levels while we model all income bins and fix age to be the mean age. When generating
predictions, it is important to have an eye on how we’re going to present those predictions in graphical
form. Graphs that are “too complicated” may not clearly convey what is happening in the model. As models
become better at uncovering the response variable, they tend to gain predictors and complexity. Only
observing certain educational levels and fixing the age to mean age are ways to reduce that complexity
somewhat. We want both predicted probabilities based on some choices of inputs to our predictors (with the
coefficients from our model) as well as CIs around the predictions. Recall that CIs can be calculated as the
model estimates plus or minus 1.96 times standard error. As before, these calculations make sense on linear
equations (imagine if we had a predicted probability of zero and subtracted 1.96 x standard error, we would
end up with a CI going beyond a probability of zero!). Thus, they must be done first on the log odds scale (the
link scale), and then converted to probabilities at the end. To add the CIs, we use the se.fit = TRUE option
to get the standard errors, and we get the estimates on the link scale, rather than the response scale.

> summary(gssr$educ)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.00 12.00 14.00 13.77 16.00 20.00
 
> summary(gssr$cincome)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 14.00 18.00 17.04 21.00 25.00
 
> newdat <- expand.grid(
+ educ = c(12, 16, 20),
+ cincome = 1:25,
+ Agec = mean(gssr$Agec))
 
> newdat <- cbind(newdat, predict(m3, newdata = newdat,
+ type = "link", se.fit = TRUE))
  
> head(newdat)
 educ cincome Agec fit se.fit residual.scale
1 12 1 3.124056 -2.851555 0.1808835 1
2 16 1 3.124056 -3.566276 0.2598423 1
3 20 1 3.124056 -4.280998 0.4206850 1
4 12 2 3.124056 -2.757866 0.1705653 1
5 16 2 3.124056 -3.424317 0.2470500 1
6 20 2 3.124056 -4.090769 0.4002471 1
   
> newdat <- within(newdat, {
+ LL <- fit - 1.96 * se.fit
+ UL <- fit + 1.96 * se.fit
+ })

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

177

Recall that to calculate CIs, we had to use the log odds scale. Thus, in our predict() function, we chose
type = "link" this time. Then we calculated our lower limit (LL) and our upper limit (UL) for each point.
Never forgetting that we are presently in the log odds scale, we can now convert the fitted values (these are
what R calls predicted values) and the CIs to the probability scale. In R, the inverse logit function plogis()
can be applied to the data. At the same time, ggplot can be employed to visualize the results in a strictly
functional fashion. The plot color-codes the three education levels and has shaded probability ribbons. Of
note is that provided the error ribbons do not intersect the lines of the other plots, then there is a significant
difference between education levels, which allows for relatively easy visual inspection of the level of income
at which education makes a statistically significant difference in probability of being satisfied. We see that at
various income levels, this seems to be the case, although Figure 15-7 isn’t fully clear.

> newdat <- within(newdat, {
+ Probability <- plogis(fit)
+ LLprob <- plogis(LL)
+ ULprob <- plogis(UL)
+ })
 
> p3 <- ggplot(newdat, aes(cincome, Probability, color = factor(educ))) +
+ geom_ribbon(aes(ymin = LLprob, ymax = ULprob), alpha = .5) +
+ geom_line() +
+ theme_bw() +
+ xlab("Income Bins") +
+ ylab("Probability of being financially satisfied")
> p3

Figure 15-7.  Income bin vs. probability of being satisfied with high school, university, and graduate education
levels. Not the most attractive graph

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

178

While this graph may be functional, it leaves a lot to be desired. It is perhaps difficult to see when the
CIs intersect the various education lines. This makes it difficult to see when more or less education might
cause statistically significant differences in Satisfaction. We use the scales library here to clean up the
y axis. The theme() command increases the size of our legend, and moves it to the bottom of the graph.
Notice that in the aes() function the factor(educ) was used for color, fill, and linetype. To remove
the factor(educ) and replace it with a nicer label of “Education” for all three of those in our legend, we
must change the label in each one. Finally, we force the shown intervals of our Income bins and our y-axis
probability via the coord_cartesian() command. Our efforts pay off in Figure 15-8 (be sure to run this code
as the printed version of this text won’t show the full color picture).

> library(scales) # to use labels = percent
 
Attaching package: 'scales'
 
The following object is masked from 'package:arm':
 
 rescale
 
>
> p4 <- ggplot(newdat, aes(cincome, Probability,
+ color = factor(educ), fill = factor(educ),
+ linetype = factor(educ))) +
+ geom_ribbon(aes(ymin = LLprob, ymax = ULprob, color = NULL), alpha = .25) +
+ geom_line(size = 1) +
+ theme_bw() +
+ scale_y_continuous(labels = percent) +
+ scale_color_discrete("Education") +
+ scale_fill_discrete("Education") +
+ scale_linetype_discrete("Education") +
+ xlab("Income Bins") +
+ ylab("Probability of being financially satisfied") +
+ theme(legend.key.size = unit(1, "cm"),
+ legend.position = "bottom") +
+ coord_cartesian(xlim = c(1, 25), ylim = c(0, .65))
> p4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

179

In Figure 15-8, one can readily see that on either side of the 15 Income bin ($25,000 to $29,999), there are
places where the confidence bands do not include the other line. Thus, in those regions, it seems education
has a more potent effect rather than in the middle where there is overlap for middling income levels. Also
notice that the y-axis labels are at last in a very intuitive probability scale and are even written as a percent.

A final thought on this example is that satfin was deliberately recoded to an all-or-nothing
Satisfaction variable. The natural extension is to consider if there is a way to make this model work well for
nonbinary categorical data. It turns out the answer is indeed in the positive, and the next section explores
the topic of ordered logistic regression.

15.4 Ordered Logistic Regression
Our first prediction was binary in nature. One was either fully financially satisfied or recoded to a “not fully
satisfied” catch-all variable that had both not at all and more or less financially satisfied. This is often a very
useful level of masking to engage. Multiple-choice exam question options (e.g., with options A, B, C, and D
where only one is correct) are readily coded to a 25% probability of randomly guessing the correct (i.e., True)
answer and a 75% probability of randomly selecting an incorrect (i.e., False) answer. The advantage is that
such steps simplify the model. One of the challenges in building good models is that they are meant to be
simplifications of the real world. To paraphrase Tukey (1962), “Never let your attraction to perfection prevent
you from achieving good enough.”

Figure 15-8.  A much nicer graph, which more cleanly shows the effects of income and education on
Satisfaction

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

180

All the same, there are times when more advanced models are required to get any traction on the
challenge at hand. In those cases, it can be helpful to recognize that while the overall model is still logistic,
we would like some nuances that are more subtle than an all-or-nothing approach. We present two such
examples in the next two sections.

15.4.1 Parallel Ordered Logistic Regression
Extending the first example from using predictions of only full financial satisfaction, a model could be
developed that predicts each level of satisfaction. From the raw gss2012 data, satfin has three levels, not
at all satisfied, more or less satisfied, and satisfied. These are ordered in that not at all satisfied < more or
less satisfied < satisfied. Installing and loading the VGAM package, which allows fits for many types of models
including ordered logistic models, will allow for a more nuanced exploration of financial satisfaction. The
first step is to let the gssr dataset know that satfin in fact holds factored, ordered data. The model is built
using the VGAM package’s vglm() function to create an ordered logistic regression. In this particular function
call, the cumulative() family is used; we specify parallel = TRUE, and while glm() used the logit link as
well (by default), here it is explicitly stated. Finally, the summary() function is called on this null model. The
following commands and output have been respaced somewhat for clarity and space.

> install.packages("VGAM")
> library(VGAM)
Loading required package: stats4
Loading required package: splines
> gssr$satfin <- factor(gssr$satfin,
+ levels = c("NOT AT ALL SAT", "MORE OR LESS", "SATISFIED"),
+ ordered = TRUE)
 
> mo <- vglm(satfin ~ 1,
+ family = cumulative(link = "logit", parallel = TRUE, reverse = TRUE),
+ data = gssr)
 
> summary(mo)
 
Call:
vglm(formula = satfin ~ 1, family = cumulative(link = "logit",
 parallel = TRUE, reverse = TRUE), data = gssr)
 
Pearson residuals:
 Min 1Q Median 3Q Max
logit(P[Y>=2]) -1.4951 -1.4951 0.3248 0.8206 0.8206
logit(P[Y>=3]) -0.7476 -0.7476 -0.3036 1.6943 1.6943
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept):1 0.84478 0.04096 20.62 <2e-16 ***
(Intercept):2 -1.09063 0.04329 -25.20 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

181

Number of linear predictors: 2
Names of linear predictors: logit(P[Y>=2]), logit(P[Y>=3])
Dispersion Parameter for cumulative family: 1
Residual deviance: 6056.581 on 5668 degrees of freedom
Log-likelihood: -3028.291 on 5668 degrees of freedom
Number of iterations: 1

Notice that mo is an empty model. Thus, the only estimates are intercepts for our two levels; one of
which is the log odds of being greater than 2 and the other which is log odds of being precisely 3. Since there
are only three possibilities, we can solve for the probability of being in any of the three levels. Since this is an
empty model, it should match precisely with a proportion table. A handful of function calls to plogis() and
some algebra will yield the probability of being satisfied, more or less satisfied, or not satisfied, respectively.
The code for this follows:

> plogis(-1.09063)
[1] 0.2514997
> plogis(0.84478) - plogis(-1.09063)
[1] 0.4479713
> 1 - plogis(0.84478)
[1] 0.300529
> prop.table(table(gssr$satfin))
 
NOT AT ALL SAT MORE OR LESS SATISFIED
 0.3005291 0.4479718 0.2514991

With the null model in place, the model may be updated to explore the effect of age (the adjusted age
from earlier) on financial satisfaction.

> mo1 <- vglm(satfin ~ 1 + Agec,
+ family = cumulative(�link = "logit", parallel = TRUE, reverse = TRUE),

data = gssr)
 
> summary(mo1)
Call:
vglm(formula = satfin ~ 1 + Agec, family = cumulative(link = "logit",
 parallel = TRUE, reverse = TRUE), data = gssr)
 
Pearson residuals:
 Min 1Q Median 3Q Max
logit(P[Y>=2]) -2.048 -1.3060 0.3395 0.8071 0.9815
logit(P[Y>=3]) -0.937 -0.7183 -0.3167 1.2556 2.1670
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept):1 0.38898 0.07587 5.127 2.94e-07 ***
(Intercept):2 -1.57479 0.08193 -19.222 < 2e-16 ***
Agec 0.15128 0.02121 7.132 9.91e-13 ***

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

182

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of linear predictors: 2
Names of linear predictors: logit(P[Y>=2]), logit(P[Y>=3])
Dispersion Parameter for cumulative family: 1
Residual deviance: 6005.314 on 5667 degrees of freedom
Log-likelihood: -3002.657 on 5667 degrees of freedom
Number of iterations: 3

Again, the cbind() function along with exponentiation may be used to compare and contrast the log
odds with the odds of the coefficients with code and output as follows:

> cbind(LogOdds = coef(mo1), Odds = exp(coef(mo1)))
 LogOdds Odds
(Intercept):1 0.3889768 1.4754703
(Intercept):2 -1.5747920 0.2070506
Agec 0.1512757 1.1633174

Interpreting this, it could be said that for every decade older a person is, that person has 1.16 times the
odds of being in a higher financial satisfaction level. To see this graphically, create a new data frame that has
200 values of the adjusted age data. Specifically, ensure that the range of ages is from 0 for 18 to the maximum
age of 89 less 18 divided by 10 to adjust the scale. Then, use the predict() function again, which is turning
out along with summary() to be very powerful in the number of models it has been built to understand, to
ensure that the points are in probability response rather than log odds link. The new dataset that has the
created inputs for the predictor variable as well as the resulting output response values may be viewed.

> newdat <- data.frame(Agec = seq(from = 0, to = (89 - 18)/10, length.out = 200))
>
> #append prediction data to dataset
> newdat <- cbind(newdat, predict(mo1, newdata = newdat, type = "response"))
>
> #view new data set
> head(newdat)
 Agec NOT AT ALL SAT MORE OR LESS SATISFIED
1 0.00000000 0.4039636 0.4245020 0.1715343
2 0.03567839 0.4026648 0.4250325 0.1723027
3 0.07135678 0.4013673 0.4255589 0.1730738
4 0.10703518 0.4000712 0.4260812 0.1738476
5 0.14271357 0.3987764 0.4265994 0.1746241
6 0.17839196 0.3974831 0.4271134 0.1754034

Once the data for a graph is thus acquired, it may be plotted. To use ggplot2, it must be a long dataset,
and thus the library reshape2 is called along with the function melt(). As with summary(), there is more
than one type of melt() function. Regardless of the type, melt() takes an input of data and reshapes the data
based on a vector of identification variables aptly titled id.vars. For this particular example, this should be

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

183

set to id.vars="Agec". Notice the difference between the previous head(newdat) call and the same call on
the melted data frame that follows:

> library(reshape2)
> newdat <- melt(newdat, id.vars = "Agec")
> head(newdat)
 Agec variable value
1 0.00000000 NOT AT ALL SAT 0.4039636
2 0.03567839 NOT AT ALL SAT 0.4026648
3 0.07135678 NOT AT ALL SAT 0.4013673
4 0.10703518 NOT AT ALL SAT 0.4000712
5 0.14271357 NOT AT ALL SAT 0.3987764
6 0.17839196 NOT AT ALL SAT 0.3974831

The data are ready to graph with fairly familiar calls to ggplot. The only new aspect of this call is
perhaps providing better factor names from the raw names to something a little more reader friendly.

> newdat$variable <- factor(newdat$variable,
+ levels = c("NOT AT ALL SAT", "MORE OR LESS", "SATISFIED"),
+ labels = c("Not Satisfied", "More/Less Satisfied", "Satisfied"))
>
> p5 <- ggplot(newdat, aes(Agec, value, color = variable, linetype = variable)) +
+ geom_line(size = 1.5) +
+ scale_x_continuous("Age", breaks = (c(20, 40, 60, 80) - 18)/10,
+ labels = c(20, 40, 60, 80)) +
+ scale_y_continuous("Probability", labels = percent) +
+ theme_bw() +
+ theme(legend.key.width = unit(1.5, "cm"),
+ legend.position = "bottom",
+ legend.title = element_blank()) +
+ ggtitle("Financial Satisfaction")
> p5

Figure 15-9 makes it clear that there is little difference in the percentage of people who are more or less
satisfied with financial situation across the lifespan, with the bigger changes happening to those who are
not satisfied vs. those who are satisfied. One helpful way to better understand the results besides graphs is
to look at the marginal effect. The marginal effect answers the question: “How much would the probability
of being financially satisfied [or any of the levels] change for person i if age increased?” This is valuable
because although the model is linear on the log odds scale, it is not linear on the probability scale; the
marginal effect is the first derivative of the function on the probability scale. With R, fortunately, it is easy
enough to compute as follows:

> margeff(mo1, subset = 1)
 NOT AT ALL SAT MORE OR LESS SATISFIED
(Intercept) -0.09249320 0.32523987 -0.23274666
Agec -0.03597124 0.01361342 0.02235782

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

184

These results show that for person 1, the instantaneous rate of change in probability of being satisfied
is .022, whereas there is a larger decrease of -.036 in probability of being not at all satisfied. Another useful
sort of effect size is the average marginal effect in the data. That is, it asks the question: “On average in the
sample, what is the instantaneous rate of change in probability of being satisfied [or any of the levels] by
age?” We can get this by not subsetting the data, then extracting just the Agec term ignoring intercepts, and
taking the mean of each row, to get the averages.

> rowMeans(margeff(mo1)["Agec", ,])
NOT AT ALL SAT MORE OR LESS SATISFIED
 -0.031344533 0.003157332 0.028187201

These results show that, on average, a decade change in age is associated with almost no change in
being more or less satisfied at .003, about a .028 probability higher chance of being satisfied, and about a
.031 probability lower chance of being not satisfied.

As we turn our attention from this example, we call to the reader’s attention that while our primary
goal was to explore ordered logistic regression, we deliberately chose to set one of our variables to be
parallel = TRUE. Let us explore what happens if we choose otherwise.

15.4.2 Non-Parallel Ordered Logistic Regression
In the prior example, the use of the parallel argument in the function call assumed the effect of any
predictors have exactly parallel (equal) relationship on the outcome for each of the different groups. If we
set parallel = FALSE, then the effect of predictors, here Agec, would be allowed to be different for each
comparison where the comparisons are being satisfied or more or less satisfied vs. not satisfied, and satisfied
vs. more or less satisfied or not satisfied. This is still an ordered logistic regression. We are only relaxing the
assumption that a predictor has the same effect for each level of response. It is a very minor code change, and
we show the code for that as well as a summary() as follows:

> mo.alt <- vglm(satfin ~ 1 + Agec,
+ family = cumulative(link = "logit", parallel = FALSE, reverse = TRUE),
+ data = gssr)
> summary(mo.alt)
 

Figure 15-9.  Age vs. probability of three levels of financial satisfaction

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

185

Call:
vglm(formula = satfin ~ 1 + Agec, family = cumulative(link = "logit",
 parallel = FALSE, reverse = TRUE), data = gssr)
 
Pearson residuals:
 Min 1Q Median 3Q Max
logit(P[Y>=2]) -1.873 -1.3518 0.3296 0.8116 0.9033
logit(P[Y>=3]) -1.051 -0.7022 -0.3234 1.1607 2.3272
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept):1 0.50092 0.08565 5.849 4.95e-09 ***
(Intercept):2 -1.70992 0.09842 -17.374 < 2e-16 ***
Agec:1 0.11222 0.02505 4.479 7.50e-06 ***
Agec:2 0.19020 0.02610 7.288 3.15e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Number of linear predictors: 2
Names of linear predictors: logit(P[Y>=2]), logit(P[Y>=3])
Dispersion Parameter for cumulative family: 1
Residual deviance: 5997.851 on 5666 degrees of freedom
Log-likelihood: -2998.925 on 5666 degrees of freedom
Number of iterations: 4

Note first that, as before, we edited some spaces out for readability. Also notice that this looks very
much like our earlier code for a parallel model, excepting Agec:1 and Agec:2. The values for the intercepts
have changed, of course, as well. All the prior code and processes we did to discuss log odds vs. odds and to
create CIs continues to hold true.

What the preceding code demonstrates is an elegant way to recover essentially the same coefficients
without needing to create two variables. Going all the way back to our code near the beginning of this
chapter, the non-parallel process in a single step essentially compares satisfied or more or less
satisfied with not satisfied as well as compares satisfied with more or less satisfied or not
satisfied. To demonstrate this binary logistic model, we could create the two variables from satfin and
generate two completely separate models:

> gssr <- within(gssr, {
+ satfin23v1 <- as.integer(satfin != "NOT AT ALL SAT")
+ satfin3v12 <- as.integer(satfin == "SATISFIED")
+ })
>
> m23v1 <- glm(satfin23v1 ~ 1 + Agec,
+ family = binomial(), data = gssr)
> m3v12 <- glm(satfin3v12 ~ 1 + Agec,
+ family = binomial(), data = gssr)

Now we can explore our models using summary(). As you look through the two models, notice that
although not exactly the same, this is essentially what the ordinal logistic model does. There are only very
slight differences in the coefficients. It is the job of the researcher to determine if the actual, real-world
process makes more sense to model with non-parallel predictor coefficients. Otherwise, we choose to
set parallel = TRUE, thereby adding the constraint during parameter estimation that the coefficients

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

186

for independent predictors be equal. As long as this assumption holds, it provides a simpler or more
parsimonious model to the data, as only a single coefficient is needed for age (or all the other predictors we
may choose to enter), which can result in a reduced standard error (i.e., it is more likely to have adequate
power to detect a statistically significant effect)and is easier to explain to people.

> summary(m23v1)
 
Call:
glm(formula = satfin23v1 ~ 1 + Agec, family = binomial(), data = gssr)
 
Deviance Residuals:
 Min 1Q Median 3Q Max
-1.7525 -1.4600 0.7976 0.8759 0.9719
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.50474 0.08568 5.891 3.83e-09 ***
Agec 0.11104 0.02505 4.432 9.33e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
(Dispersion parameter for binomial family taken to be 1)
 
 Null deviance: 3466.1 on 2834 degrees of freedom
Residual deviance: 3446.2 on 2833 degrees of freedom
AIC: 3450.2
 
Number of Fisher Scoring iterations: 4
 
> summary(m3v12)
 
Call:
glm(formula = satfin3v12 ~ 1 + Agec, family = binomial(), data = gssr)
 
Deviance Residuals:
 Min 1Q Median 3Q Max
-1.0394 -0.7904 -0.6885 1.3220 1.9469
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.73232 0.09895 -17.507 < 2e-16 ***
Agec 0.19700 0.02621 7.516 5.64e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
(Dispersion parameter for binomial family taken to be 1)
 
 Null deviance: 3197.7 on 2834 degrees of freedom
Residual deviance: 3140.4 on 2833 degrees of freedom
AIC: 3144.4
 
Number of Fisher Scoring iterations: 4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

187

To recap what we have accomplished so far, we remind our readers that one of the underlying reasons
for logistic regression is to have qualitative response variables. So far, we have explored examples of such
qualitative models that were binary, that were ordered, and, just now, that were ordered as well as having the
predictors effect different levels of that ordering in not the same way. We turn our attention now to another
possibility, namely, that there are multiple, qualitative outcomes that are not ordered.

15.5 Multinomial Regression
Multinomial regression is related to logistic regression; it is applicable when there are multiple levels of
an unordered outcome. It is conceptually similar to ordered regression, in that we shy away from binary
outcomes, yet these outcomes have no particular order or organization. For example, we might look at
predicting marital status, which can be married, widowed, divorced, separated, or never married. We may
well have access in the gssr dataset to the types of predictors that could get some traction on marital status.
Furthermore, such a very qualitative response perhaps precludes any binary process (although never married
vs. married at least once comes to mind for some scenarios). The vglm() function from before has various
settings for family, and, for our last example, we will use the multinomial() option. First, some EDA:

> table(gssr$marital)
 
 MARRIED WIDOWED DIVORCED SEPARATED NEVER MARRIED
 1363 209 483 89 691

We see that there are definitely plenty of survey participants in each of the response categories.
Additionally, it seems reasonable that Agec may have something to do with this as well. After all, it takes time
to move through some of these cycles! We build our model and explore the summary() as follows (again with
some spacing edits to enhance readability):

> m.multi <- vglm(marital ~ 1 + Agec, family = multinomial(), data = gssr)
 
> summary(m.multi)
 
Call:
vglm(formula = marital ~ 1 + Agec, family = multinomial(), data = gssr)
 
Pearson residuals:
 Min 1Q Median 3Q Max
log(mu[,1]/mu[,5]) -8.282 -0.7192 -0.40376 0.89433 1.813
log(mu[,2]/mu[,5]) -9.053 -0.1651 -0.05401 -0.01177 21.453
log(mu[,3]/mu[,5]) -8.086 -0.3927 -0.26479 -0.13968 3.970
log(mu[,4]/mu[,5]) -6.431 -0.1918 -0.07934 -0.06021 8.050
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept):1 -1.04159 0.10376 -10.038 <2e-16 ***
(Intercept):2 -8.29667 0.40292 -20.592 <2e-16 ***
(Intercept):3 -2.71498 0.14884 -18.241 <2e-16 ***
(Intercept):4 -3.71948 0.26232 -14.179 <2e-16 ***
Agec:1 0.68608 0.03980 17.240 <2e-16 ***
Agec:2 1.89683 0.08399 22.585 <2e-16 ***
Agec:3 0.87255 0.04817 18.114 <2e-16 ***
Agec:4 0.67009 0.07955 8.424 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

188

Number of linear predictors: 4
 
Names of linear predictors:
log(mu[,1]/mu[,5]), log(mu[,2]/mu[,5]), log(mu[,3]/mu[,5]), log(mu[,4]/mu[,5])
Dispersion Parameter for multinomial family: 1
Residual deviance: 6374.723 on 11332 degrees of freedom
Log-likelihood: -3187.362 on 11332 degrees of freedom
Number of iterations: 6

These results are similar to those in our previous logistic regression models. There are five levels of
marital status; the model will compare the first four levels against the last level. Thus, one can think of each
intercept and coefficient as a series of four binary logistic regressions. There will always be k - 1 models,
where k is the number of levels in the dependent/outcome variable. The reason it is important to use a
multinomial model, rather than a series of binary logistic regressions, is that in a multinomial model, each
person’s probability of falling into any of the category levels must sum to one. Such requirement is enforced
in a multinomial model but may not be enforced in a series of binary logistic regressions. Perhaps the last
category is not the “best” comparison group. We may readily change it up, and while the coefficients will
change (because they are comparing different sets of groups), the model is actually the same (which can
be seen from identical log-likelihoods). Perhaps confusingly, VGLM uses 1, 2, 3, and 4 to indicate the first,
second, third, and fourth coefficients, regardless of what the reference level is. The software leaves it to us to
figure out which specific comparisons 1, 2, 3, and 4 correspond to.

> m.multi <- vglm(marital ~ 1 + Agec, family = multinomial(refLevel = 1), data = gssr)
 
> summary(m.multi)
 
Call:
vglm(formula = marital ~ 1 + Agec, family = multinomial(refLevel = 1), data = gssr)
 
Pearson residuals:
 Min 1Q Median 3Q Max
log(mu[,2]/mu[,1]) -1.7895 -0.2320 -0.09909 -0.010393 21.455
log(mu[,3]/mu[,1]) -1.0607 -0.5687 -0.40601 -0.108840 3.891
log(mu[,4]/mu[,1]) -0.4455 -0.2859 -0.10124 -0.056649 8.637
log(mu[,5]/mu[,1]) -1.4390 -0.5711 -0.31163 -0.009688 15.948
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept):1 -7.25508 0.39308 -18.457 < 2e-16 ***
(Intercept):2 -1.67339 0.13649 -12.260 < 2e-16 ***
(Intercept):3 -2.67789 0.25766 -10.393 < 2e-16 ***
(Intercept):4 1.04159 0.10376 10.038 < 2e-16 ***
Agec:1 1.21075 0.07520 16.100 < 2e-16 ***
Agec:2 0.18647 0.03581 5.207 1.92e-07 ***
Agec:3 -0.01599 0.07360 -0.217 0.828
Agec:4 -0.68608 0.03980 -17.240 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

189

Number of linear predictors: 4
Names of linear predictors:
log(mu[,2]/mu[,1]), log(mu[,3]/mu[,1]), log(mu[,4]/mu[,1]), log(mu[,5]/mu[,1])
 
Dispersion Parameter for multinomial family: 1
Residual deviance: 6374.723 on 11332 degrees of freedom
Log-likelihood: -3187.362 on 11332 degrees of freedom
Number of iterations: 6

The probabilities may also be presented (again as before):

> newdat <- data.frame(Agec = seq(from = 0, to = (89 - 18)/10, length.out = 200))
> newdat <- cbind(newdat, predict(m.multi, newdata = newdat, type = "response"))
> head(newdat)
 Agec MARRIED WIDOWED DIVORCED SEPARATED NEVER MARRIED
1 0.00000000 0.2444538 0.0001727253 0.04586190 0.01679599 0.6927156
2 0.03567839 0.2485414 0.0001833658 0.04694004 0.01706710 0.6872681
3 0.07135678 0.2526617 0.0001946343 0.04803671 0.01734014 0.6817669
4 0.10703518 0.2568134 0.0002065657 0.04915198 0.01761503 0.6762130
5 0.14271357 0.2609957 0.0002191969 0.05028588 0.01789169 0.6706075
6 0.17839196 0.2652075 0.0002325665 0.05143843 0.01817004 0.6649515

Converting these data into long data allows us to graph it with ggplot2 as seen in Figure 15-10 via the
following code:

> newdat <- melt(newdat, id.vars = "Agec")
 
> ggplot(newdat, aes(Agec, value, color = variable, linetype = variable)) +
+ geom_line(size = 1.5) +
+ scale_x_continuous("Age", breaks = (c(20, 40, 60, 80) - 18)/10,
+ labels = c(20, 40, 60, 80)) +
+ scale_y_continuous("Probability", labels = percent) +
+ theme_bw() +
+ theme(legend.key.width = unit(1.5, "cm"),
+ legend.position = "bottom",
+ legend.direction = "vertical",
+ legend.title = element_blank()) +
+ ggtitle("Marital Status")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

190

This can also be visualized using an area plot, where at any given age, 100% of the people fall into one
of the possible categories. This allows for visualization of how the probability of being in any specific marital
status changes across the lifespan, as seen in Figure 15-11 (of course, since this is cross-sectional data, there
may also be cohort effects, with people who were 80 years old at the time of the GSS 2012 survey having
grown up with a different culture or experience at age 20 than perhaps those people who were 20 at the time
of the GSS 2012 survey were experiencing). It is best to run the following code on your own computer, to
allow the full color experience:

> ggplot(newdat, aes(Agec, value, fill = variable)) +
+ geom_area(aes(ymin = 0)) +
+ scale_x_continuous("Age", breaks = (c(20, 40, 60, 80) - 18)/10,
+ labels = c(20, 40, 60, 80)) +
+ scale_y_continuous("Probability", labels = percent) +
+ theme_bw() +
+ theme(legend.key.width = unit(1.5, "cm"),
+ legend.position = "bottom",
+ legend.direction = "vertical",
+ legend.title = element_blank()) +
+ ggtitle("Marital Status")

Figure 15-10.  Marital status probability vs. age (relabeled)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

191

The GLM provides a consistent framework for regression even when the outcomes are continuous or
discrete and may come from different distributions. In this chapter we have explored a variety of models
that can utilize noncontinuous, discrete outcomes, including binary logistic regression, ordered logistic
regression for discrete data with more than two levels where there is a clear ordering, and multinomial
regression for discrete data with more than two levels where there is not a clear ordering to the levels. We
have also seen how nonlinear transformations (such as the inverse logit) can have finicky requirements. For
example, we must compute CIs on the log odds scale and then convert back to probabilities. This can raise
some challenges. For example, what if we wanted CIs for the average marginal effects in the probabilities
we presented? We averaged the probabilities, which was intuitive, but it is not clear how we could obtain
CIs not for an individual probability but for the average marginal effect on the probability scale. Problems
like this turn out to be tricky and are often not implemented in software. In the next chapter, we will explore
some nonparametric tests, and we will also discuss bootstrapping, a powerful tool that can be used to derive
CIs and standard errors and conduct statistical inference when we are not sure what the exact distribution
of our data is or when we do not know the formula to estimate standard errors or CIs, or they are just not
implemented in the software we are using, such as for the average marginal effect on the probability scale.

Figure 15-11.  Area plot for marital status vs. age (relabeled)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15 ■ Logistic Regression

192

References
Gelman, G., & Su, Y-S. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. R package
version 1.8-6, 2015. http://CRAN.R-project.org/package=arm.

Leifeld, P. “texreg: Conversion of statistical model output in R to LaTeX and HTML tables. Journal of
Statistical Software, 55(8), 1–24 (2013). www.jstatsoft.org/v55/i08/

McFadden, D. “Conditional logit analysis of qualitative choice behavior.” In P. Zarembka (ed.), Frontiers in
Econometrics, pp. 105–142, New York: Academic Press, 1974.

R Core Team. foreign: Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase, R package
version 0.8-65, 2015. http://CRAN.R-project.org/package=foreign.

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for
Statistical Computing, 2015. www.R-project.org/.

Schloerke, B., Crowley, J., Cook, D., Hofmann, H., Wickham, H., Briatte, F., Marbach, M., & and Thoen, E.
GGally: Extension to ggplot2. R package version 0.5.0, 2014. http://CRAN.R-project.org/package=GGally.

Wickham, H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer, 2009.

Wickham, H. scales: Scale Functions for Visualization. R package version 0.2.5, 2015.
http://CRAN.R-project.org/package=scales.

Tukey, J. W. (1962). The future of data analysis. The Annals of Mathematical Statistics, 1-67.

www.it-ebooks.info

http://cran.r-project.org/package=arm
http://www.jstatsoft.org/v55/i08/
http://cran.r-project.org/package=foreign
http://www.r-project.org/
http://cran.r-project.org/package=GGally
http://cran.r-project.org/package=scales
http://www.it-ebooks.info/

193

Chapter 16

Modern Statistical Methods II

In this chapter, we explore more of what might be termed modern statistics. In particular, we will explore
nonparametric tests and bootstrapping. As with many things, it helps to explore the reasons why such modern
methods might be useful in a little depth. We have organized this chapter into three main parts. The first
delves philosophically into the reasoning behind the need for these methods, while again avoiding as much
mathematics as possible. The second section covers our familiar process of methodologically introducing the
packages and function calls for several useful nonparametric tests. Finally, we investigate bootstrapping, with
examples highlighting the historically unprecedented power available now through modern computing.

16.1 Philosophy of Parameters
So far, we have primarily focused on analyses that supposed some parameterization of our data. In Chapter 10,
we tended to care about the distribution of our data. So for the t-test(s) that we performed, it was a
requirement or assumption that our data values followed a normal distribution, that the variance of our data
followed a chi-squared distribution, and that our data would be independently sampled. In Chapter 12, we
explored analysis of variance (ANOVA) and introduced the Shapiro-Wilk (SW) normality test function of
shapiro.test(). We also introduced the bartlett.test() function for homoscedasticity. By Chapter 13,
we were looking at Normal Q-Q plots to inform as to whether the residuals followed a normal distribution.
Thus, so far, most of our statistical analyses have had a requirement of several preconditions or assumptions
or parameters. The approach used has been to use exploratory data analysis (EDA), find a distribution
that matched, and then run a test whose assumptions could be satisfied. Along the way, we sometimes
mentioned that some of these analyses were robust enough to cope with minor deviations from their
assumptions provided their results were interpreted accordingly.

This chapter explores methods that do not simply relax the normality (or other distribution)
assumptions—we may remove them entirely! This is termed nonparametric statistics. This becomes
important when we have no reason to make parametric assumptions about data, or in fact the data may
clearly violate assumptions of standard models. A case in point might be if the Normal Q-Q plot were
to show that the residuals of our linear model were clearly not normal. Another feature often present
in nonparametric tests is that they are outlier resistant. In other words, if an outlier is appended to a
dataset, measures such as the arithmetic mean will be perhaps significantly altered. Often, by their nature,
nonparametric tests are somewhat more immune to such changes.

As a final comment before we delve into our usual examples, if an assumption of a test cannot be satisfied,
then we cannot trust the conclusions of that test (see Chapter 11, section 11.2)—that is, a t-test run on non-
normal data might give a significant p value when there is no significance (beyond the chance of Type I error) or
might give a nonsignificant p value when there is in fact significance (beyond the chance of Type II error). Using a
nonparametric test can then provide guidance in such cases. Generally, however, the more assumptions that can
be found to hold true, the more nuanced the test results can be. Thus, the traditional methods, when they hold
true, in some sense work “better” or are more powerful than (some of) the modern methods.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_10
http://dx.doi.org/10.1007/978-1-4842-0373-6_12
http://dx.doi.org/10.1007/978-1-4842-0373-6_13
http://dx.doi.org/10.1007/978-1-4842-0373-6_11
http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

194

16.2 Nonparametric Tests
So far, we have already looked at the function wilcox.test(), which was also called the Mann-Whitney
test (see the section “A Modern Alternative to the Traditional t-Test,” in Chapter 11). That test was used
similarly to two independent sample t-tests, except it removed the assumption that normality was required.
In this section, we make extensive use of the coin package. We now explore the Wilcoxon-Signed-Rank
test (a substitute for a t-test in paired samples), Spearman’s test (a ranked version of Pearson’s correlation
coefficient), the Kruskal-Wallis test, and a test to measure up to k independent sample data.

We start off by installing the coin package, and loading our libraries.

> install.packages("coin")
package 'coin' successfully unpacked and MD5 sums checked
 
> library(ggplot2)
> library(GGally)
> library(grid)
> library(reshape2)
> library(scales)
> library(coin)
Loading required package: survival

16.2.1 Wilcoxon-Signed-Rank Test
As with a paired t-test, it is supposed the data are paired and come from the same population and that
each pair is randomly selected. This is a non-parametric test, however. Thus, normality is not required.
Furthermore, our data need only be ordinal, not truly continuous. This greatly widens the range of data that
may be considered. Suppose we have ten pairs of data measured before and after some treatment. By using
the R function call runif(), we can generate random data. By using the set.seed() function call, we can be
sure that our pseudo-random data will match your data (and thus we expect to get the same answers). As
you can see in Figure 16-1, the data are not normally distributed. Thus, using a paired t-test would not be
appropriate. The wilcoxsign_test() may be called, however, as these data definitely fit its criterion. All the
same, the null hypothesis is not rejected (expected given the use of random data).

> set.seed(4)
> untreated <- runif(10, 20, 75)
> treated <- runif(10,20,75)
> differences = treated - untreated
> xydat <- data.frame(treated, untreated)
> shapiro.test(differences)
 
 Shapiro-Wilk normality test
 
data: differences
W = 0.9352, p-value = 0.5009
 
> hist(differences)
> wilcoxsign_test(treated ~ untreated,data = xydat)
 
 Asymptotic Wilcoxon-Signed-Rank Test
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_11
http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

195

data: y by x (neg, pos)
 stratified by block
Z = 0.96833, p-value = 0.3329
alternative hypothesis: true mu is not equal to 0

16.2.2 Spearman’s Rho
The nonparametric form of Pearson’s r is Spearman’s Rho. You’ll recall that Pearson’s r, also called the
Pearson product-moment correlation coefficient, was a measure of linear correlation between two variables.
Pearson’s r also requires interval or ratio level metrics, and it is sensitive to outliers. Spearman’s Rho
simply seeks to determine if as one variable increases, it is reasonable to say that the other variable either
consistently increases or consistently decreases. Spearman’s does not require normality, and can work on
ranked or ordinal data. Suppose we want to measure wolf pack hierarchy vs. number of elk successfully
hunted in a summer. We can readily send our field researchers out into various national parks to collect data.
And, imagining a fully funded operation, suppose the actual number of kill-bites delivered (if such a metric
exists) per wolf was collectible. Our response data of elk hunted might well be a reasonable type of data.
However, pack hierarchy is less precise. While our field researchers may well have a strong sense as to which
animals are dominant compared to which members of the pack are not, there really isn’t a reason to say that
the alpha is ten times more dominant than the beta wolf! We see the results of the test for our invented data,
along with a scatterplot in Figure 16-2.

> wolfpackH <- c(1:10)
> wolfkills <- c(23, 20, 19, 19, 19, 15, 13, 8, 2, 2)
> spearman_test(wolfkills~wolfpackH)
 
 Asymptotic Spearman Correlation Test
 
data: wolfkills by wolfpackH
Z = -2.9542, p-value = 0.003135
alternative hypothesis: true mu is not equal to 0
 
> plot(wolfpackH, wolfkills, type="p")

Figure 16-1.  Histogram of differences between two sets of random data showing the data are not normal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

196

16.2.3 Kruskal-Wallis Test
The Kruskal-Wallis one-way analysis of variance is another ranked test. It is a nonparametric counterpart
to ANOVA. To explore this variety of nonparametric statistics, we’ll be examining the mtcars dataset. The
volume of an engine’s cylinders displaces a certain amount of air, called displacement. To get started, let’s
look at the distribution of displacement (disp) in Figure 16-3. In looking at the histogram, our data do not
appear to be particularly normal.

> hist(mtcars$disp)

Figure 16-2.  Wolf scatterplot of elk kills vs. pack hierarchy rank

Figure 16-3.  mtcars’ displacement vs. frequency histogram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

197

Next, ANOVA is used to examine whether carburetor predicts displacement; in this case, the
results were not statistically significant. However, displacement does not seem to have exactly a normal
distribution. In particular, we note that the Normal Q-Q plot has some issues, as seen in Figure 16-4 on the
lower left. We could also use a Kruskal-Wallis Rank Sum Test (Hollander & Wolfe, 1973) using the function
call kruskal.test(). The Kruskal-Wallis test operates on ranks, rather than on means, so it does not matter
what the distribution of the original variable was as everything is converted to ranks.

> summary(aov(disp ~ factor(carb), data = mtcars))
 Df Sum Sq Mean Sq F value Pr(>F)
factor(carb) 5 149586 29917 2.382 0.0662 .
Residuals 26 326599 12562

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> Data4<-aov(disp ~ factor(carb), data = mtcars)
> plot(Data4)
> kruskal.test(disp ~ factor(carb), data = mtcars)
 
 Kruskal-Wallis rank sum test
 
data: disp by factor(carb)
Kruskal-Wallis chi-squared = 11.868, df = 5, p-value = 0.03664

Figure 16-4.  Normal Q-Q plot of the residuals that do not look fully normal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

198

The kruskal.test() form of this function has few options. More options are available in the coin
package version. We utilize the function call kruskal_test() which gives us the same results as the call
from base R. The authors recommend performing such double-checks on occasion with packages you
are unfamiliar with as a way of checking that you understand how a function works and the quality of the
package. It is, of course, not a completely foolproof error-checking methodology, but it can certainly help us
understand if there are any differences in notation.

> kruskal_test(disp ~ factor(carb), data = mtcars)
 
 Asymptotic Kruskal-Wallis Test
 
data: disp by factor(carb) (1, 2, 3, 4, 6, 8)
chi-squared = 11.868, df = 5, p-value = 0.03664

16.2.4 One-Way Test
Carrying on from our Kruskal-Wallis data, we explore the perspective of the oneway_test(). This test is
a k-sample permutation test that, unlike Kruskal-Wallis, computes the test statistics on untransformed
response variables. As our data of displacements are not already ranked, this may yield alternative insight.
The results of the permutation test are closer to the initial ANOVA and suggest that overall carburetor does
not have a statistically significant effect, which if your authors knew more about cars might not be surprising.

> oneway_test(disp ~ factor(carb), data = mtcars)
 
 Asymptotic K-Sample Fisher-Pitman Permutation Test
 
data: disp by factor(carb) (1, 2, 3, 4, 6, 8)
chi-squared = 9.7381, df = 5, p-value = 0.083

One way we can look at the data is by plotting the means and medians. Some of the levels only have
one point because the mean and median overlap when there is a single observation. This is not a perfect
example since this is a small dataset with only 32 observations. Often, in data analysis, we may consider
dropping some levels or collapsing levels. Nevertheless, we close out this section with code to observe this
and the plot in Figure 16-5.

> p <- ggplot(mtcars, aes(carb, disp)) +
+ stat_summary(fun.y = mean, geom = "point", colour = "black", size = 3) +
+ stat_summary(fun.y = median, geom = "point", colour = "blue", size = 3) +
+ theme_bw()
> p

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

199

16.3 Bootstrapping
One of the primary forces behind many aspects of statistics is the realization that it is not possible to deal
with entire populations of data. So, instead, a fair amount of effort is spent projecting sample data as
estimators of the population measures. However, as we have seen, not all populations are normal or readily
matchable to some other useful mold. Thus, the nonparametric tests can allow for the same process to occur,
but without as many preconditions or assumptions.

However, what if one could turn a sample into a population? What if there was some way to randomly
draw again and again from a sample, until one’s data size was as large as a population? Such a sample would
not be as precise as drawing randomly from the actual population. Still, we could presumably use more
direct methods rather than the less precise statistical estimates. Methods that attempt to exploit such ideas
are generally termed resampling methods. The variant we discuss in this section is the bootstrap.

The name bootstrap comes from a story about a baron who was trapped in a swamp. Left with few
resources, he ended up pulling himself out of the swamp by his own bootstraps (an impressive feat to be
sure) and was able to be on his way. Slightly less mythically, we perform our sampling from our sample
with replacement, and apply such a process to many different scenarios. We do not exhaustively treat those
scenarios in this section; we simply observe several examples that are perhaps very common.

In our R code for this section, we will use the boot package library(boot). The boot package has a function,
boot(), which is what we will primarily use for bootstrapping. This function takes as input both data and another
function that produces the expected values to be bootstrapped. The function inputted into the boot function call
should take a parameter and the indices of the data which boot() will provide for each bootstrapped (re)sample.

> library(boot)
 
Attaching package: 'boot'
 
The following object is masked from 'package:survival':
 
 aml
 
>

Figure 16-5.  Means and medians of carburators vs. displacement

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

200

16.3.1 Examples from mtcars
To start, we can just bootstrap the difference in two means like an independent samples t-test. Because the
indices are randomly generated, to make the bootstrap reproducible we need to set the random number
seed. We return to our mtcars dataset, and again inspect our displacement data. This time, we create
a dataset we call bootres where we’ve drawn 5,000 bootstrap samples to get the distribution of mean
differences. We also plot the distribution and observe the quantiles in Figure 16-6.

> set.seed(1234)
> ## now we can draw 5,000 bootstrap samples
> ## to get the distribution of mean differences
>
> bootres <- boot(
+ data = mtcars,
+ statistic = function(d, i) {
+ as.vector(diff(tapply(d$disp[i], d$vs[i], mean)))
+ },
+ R = 5000)
> plot(bootres)

Figure 16-6.  Histogram of 5,000 bootstrapped samples and Normal Q-Q plot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

201

We can also plot the distribution with an added line for the mean in the raw data. In this case the
distribution of mean differences appears approximately normal as we see in Figure 16-7 plotted from the
following code.

> hist(bootres$t[,1])
> abline(v = bootres$t0, col = "blue", lwd = 3)

The real power of bootstrapping is that bootstrapping works even for items where the distribution is
unknown, such as for medians. The distribution of medians appears less normal as seen in Figure 16-8.

> set.seed(1234)
> bootres2 <- boot(
+ data = mtcars,
+ statistic = function(d, i) {
+ as.vector(diff(tapply(d$disp[i], d$vs[i], median)))
+ },
+ R = 5000)
>
> hist(bootres2$t[,1], breaks = 50)
> abline(v = bootres2$t0, col = "blue", lwd = 3)

Figure 16-7.  Histogram of bootres with an added line for the mean in the raw data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

202

Another simple example is bootstrapping the log of the variance as shown in the following code and in
Figure 16-9. We take the log of the variance because variances fall within the bounds of (0, Inf). When log
transformed the bounds go from (-Inf, Inf). It is generally better, if possible, to have unbounded variances.

> set.seed(1234)
> bootres3 <- boot(
+ data = mtcars,
+ statistic = function(d, i) {
+ as.vector(diff(tapply(d$disp[i], d$vs[i], function(x) log(var(x)))))
+ },
+ R = 5000)
>
> hist(bootres3$t[,1], breaks = 50)
> abline(v = bootres3$t0, col = "blue", lwd = 3)

Figure 16-8.  Histogram of bootres2 for medians on displacement from mtcars

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

203

16.3.2 Bootstrapping Confidence Intervals
While looking at the various distributions from the bootstrap samples is helpful, typically we want to
summarize the distribution somehow. Most commonly, people report on the estimate and bootstrapped
confidence intervals. There are actually several different ways to calculate confidence intervals from
bootstrapping.

Typically if we want 95% confidence intervals, we have to work out what the 2.5th and 97.5th percentile
of a distribution would be, given the estimated parameters. For example, for a normal distribution we use
the estimated mean and variance, and from those we can find the percentiles. In bootstrapping, we can
use the “percentile” method to get confidence intervals very easily. Because we actually have (typically)
thousands of bootstrap resamples, we actually have a pretty good sample of the distribution we are
interested in. Rather than working out assumptions and the math for a particular percentile, we can just
find the percentiles we desire (typically 2.5th and 97.5th) empirically. To do this in R, we can use the
quantile() function, which calculates quantiles or percentiles. For example (rounded to three decimals):

> round(quantile(bootres3$t[,1], probs = c(.025, .975)), 3)
 2.5% 97.5%
-2.586 -0.313

Figure 16-9.  Histogram for log of the variance on displacement from mtcars

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

204

We can also do this directly in R using the boot.ci() function with type = "perc" as shown next:

> boot.ci(bootres3, type = "perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 5000 bootstrap replicates
 
CALL :
boot.ci(boot.out = bootres3, type = "perc")
 
Intervals :
Level Percentile
95% (-2.588, -0.312)
Calculations and Intervals on Original Scale

The reason these estimates are slightly different is that for non-integer order statistics, R interpolates
on the normal quantile scale. That is, the .025th percentile may not exactly exist in the bootstrap data, and
so R interpolates between the two nearest points to estimate it, and the way that is done in boot.ci() vs.
quantile() differs, leading to slightly different results. These would get smaller and smaller as the number
of bootstrap resamples increased (if you like as an exercise, try changing from 5,000 to 50,000, which should
still only take a few minutes for this simple example, and then rerun and compare the results). Putting these
together with our graph, we can visualize it as shown in Figure 16-10.

> hist(bootres3$t[,1], breaks = 50)
> abline(v = bootres3$t0, col = "blue", lwd = 3)
> abline(v = quantile(bootres3$t[,1], probs = c(.025)), col = "yellow", lwd = 3)
> abline(v = quantile(bootres3$t[,1], probs = c(.975)), col = "yellow", lwd = 3)

Figure 16-10.  Histogram with confidence intervals for log of the variance

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

205

Another type of confidence interval is called the “basic” bootstrap. It is actually very similar to the
percentile method, but rather than reporting the percentiles directly, these are subtracted from 2x the
actual estimate (again rounded by three decimals). Again, we may do this directly in R using the boot.ci()
function with type = "basic". We show both sets of code next, and, again, small differences are due to
interpolation.

> round((2 * bootres3$t0) - quantile(bootres3$t[,1], probs = c(.975, .025)), 3)
 97.5% 2.5%
-2.205 0.068
  
directly
> boot.ci(bootres3, type = "basic")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 5000 bootstrap replicates
 
CALL :
boot.ci(boot.out = bootres3, type = "basic")
 
Intervals :
Level Basic
95% (-2.206, 0.070)
Calculations and Intervals on Original Scale

Another type of confidence interval is called the “normal” interval, which assumes the parameter
distribution is normal but, instead of using the variance estimate from the model, uses the variance of
the bootstrap distribution. The normal interval also adjusts for bias in the bootstrap distribution, which
is calculated as the difference between the mean of the bootstrap samples and the actual statistic on the
original raw data. Again, we can also do this directly in R using the boot.ci() function with type = "norm"
as shown in the following code:

> bias <- mean(bootres3$t) - bootres3$t0
> sigma <- sd(bootres3$t[,1])
> ## manually
> round(bootres3$t0 - bias - qnorm(c(.975, .025), sd = sigma), 3)
[1] -2.296 -0.106
> ## directly
> boot.ci(bootres3, type = "norm")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 5000 bootstrap replicates
 
CALL :
boot.ci(boot.out = bootres3, type = "norm")
 
Intervals :
Level Normal
95% (-2.296, -0.106)
Calculations and Intervals on Original Scale

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

206

A final approach to confidence intervals in bootstrapping is the bias corrected and accelerated (BCa)
confidence interval. This attempts to adjust not only for bias but also for differences in the shape of the
bootstrap distribution. The details behind the exact calculation are more complicated and are not discussed
here (but see Carpenter & Bithell, 2000). It is easy to obtain the BCa bootstrap confidence intervals in R, and
at least in theory these should provide less bias and better coverage (i.e., a nominal 95% confidence interval
should include the true value about 95% of the time; if it includes the true value exactly 95% of the time, this
is a good sign, if a nominally 95% confidence interval only includes the true value about 80% of the time, we
would conclude that the coverage was poor).

> boot.ci(bootres3, type = "bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 5000 bootstrap replicates
 
CALL :
boot.ci(boot.out = bootres3, type = "bca")
 
Intervals :
Level BCa
95% (-2.384, -0.194)
Calculations and Intervals on Original Scale

So far, we have examined fairly simple examples of statistics we might want to bootstrap. Next, we will
examine a more complex case where we could use bootstrapping.

16.3.3 Examples from GSS
In the previous chapter, we built some models for categorical outcomes using the GSS data. We will use that
data again and fit an ordered logistic model to it as a preliminary step, and then examine how we might
incorporate bootstrapping. We show the code to get the basic model up running below with some cleanup
for legibility:

> library(foreign)
> library(VGAM)
 
> gss2012 <- read.spss("GSS2012merged_R5.sav", to.data.frame = TRUE)
> gssr <- gss2012[, c("age", "sex", "marital", "educ", "income06", "satfin", "happy", "health")]
> gssr <- na.omit(gssr)
 
> gssr <- within(gssr, {
+ age <- as.numeric(age)
+ Agec <- (gssr$age - 18) / 10
+ educ <- as.numeric(educ)
+ # recode income categories to numeric
+ cincome <- as.numeric(income06)
+ satfin <- factor(satfin,
+ levels = c("NOT AT ALL SAT", "MORE OR LESS", "SATISFIED"),
+ ordered = TRUE)
+ })
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

207

> m <- vglm(satfin ~ Agec + cincome * educ,
+ family = cumulative(link = "logit", parallel = TRUE, reverse = TRUE), data = gssr)
> summary(m)
 
Call:
vglm(formula = satfin ~ Agec + cincome * educ, family = cumulative(link = "logit",
 parallel = TRUE, reverse = TRUE), data = gssr)
 
Pearson residuals:
 Min 1Q Median 3Q Max
logit(P[Y>=2]) -3.651 -0.9955 0.3191 0.7164 2.323
logit(P[Y>=3]) -1.562 -0.6679 -0.3018 0.7138 6.240
 
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept):1 0.964729 0.480847 2.006 0.0448 *
(Intercept):2 -1.188741 0.481270 -2.470 0.0135 *
Agec 0.169257 0.021790 7.768 8.00e-15 ***
cincome -0.061124 0.027614 -2.213 0.0269 *
educ -0.182900 0.036930 -4.953 7.32e-07 ***
cincome:educ 0.012398 0.002033 6.098 1.07e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of linear predictors: 2
Names of linear predictors: logit(P[Y>=2]), logit(P[Y>=3])
Dispersion Parameter for cumulative family: 1
Residual deviance: 5675.892 on 5664 degrees of freedom
Log-likelihood: -2837.946 on 5664 degrees of freedom
Number of iterations: 5

Now that we have the basic model, what if we wanted to get bootstrapped confidence intervals for
coefficients or predictions from the model? To do this within R, we need to write a function that can be
passed to the boot() function that will get all the statistics we are interested in exploring.

> model_coef_predictions <- function(d, i) {
+
+ m.tmp <- vglm(satfin ~ Agec + cincome * educ,
+ family = cumulative(link = "logit", parallel = TRUE, reverse = TRUE),
+ data = d[i,])
+ newdat <- expand.grid(
+ Agec = seq(from = 0, to = (89 - 18)/10, length.out = 50),
+ cincome = mean(d$cincom),
+ educ = c(12, 16, 20))
+
+ bs <- coef(m.tmp)
+ predicted.probs <- predict(m.tmp, newdata = newdat,
+ type = "response")
+
+ out <- c(bs, predicted.probs[, 1], predicted.probs[, 2], predicted.probs[, 3])
+
+ return(out)
+ }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

208

Now, this next bit of code may take some time to run on your machine. In fact, in one of the remaining
chapters we will discuss ways to wring out more performance from modern computers. At its default
settings, R is not the most efficient user of available compute power. To put this into context, we ran this
on fairly powerful machines with large amounts of RAM (not so relevant in this case) and multiple cores
(potentially relevant but not with this code) and high processing power (more relevant). It took under ten
minutes, but over three to run (the author made a brief caffeinated beverage run and offers apologies for less
than precise measurement).

> set.seed(1234)
> boot.res <- boot(
+ data = gssr,
+ statistic = model_coef_predictions,
+ R = 5000)

Again, this code took several minutes to run, but once complete, it gives us quite a bit of information
as it has the bootstrapped distributions for each of the model coefficients as well as a variety of predicted
probabilities. Of course, we could have just saved the model coefficients, as those are enough to calculate the
predicted probabilities.

To start with, we can loop through the results and calculate the 95% BCa confidence intervals for each
statistic) and store the results along with the estimate in the original data in a new data frame. Perhaps
surprisingly, calculating the confidence intervals for each statistic actually took longer than running
the initial bootstrap! To see how this works without taking too much time, you can run just the first few
parameters, by replacing 1:length(boot.res$t0) with 1:6 in the code that follows. On a high-end desktop, this
code took over an hour, and may take much longer depending on the specific machine being used. This is
due to using the BCa confidence intervals, which are more computationally demanding, and are repeated
for each of the statistics of which there are 450 predicted probabilities (three levels of the outcome by 150
observations in our made-up dataset for prediction), and a handful more model coefficients.

> boot.res2 <- lapply(1:length(boot.res$t0), function(i) {
+ cis <- boot.ci(boot.res, index = i, type = "bca")
+ data.frame(Estimate = boot.res$t0[i],
+ LL = cis$bca[1, 4],
+ UL = cis$bca[1, 5])
+ })

Next we can take the results, which currently are a list of data frames where each data frame has a single
row, and combine them row-wise.

> boot.res2 <- do.call(rbind, boot.res2)
> head(round(boot.res2, 3), 10)
 Estimate LL UL
(Intercept):1 0.965 0.066 1.888
(Intercept):2 -1.189 -2.097 -0.263
Agec 0.169 0.124 0.213
cincome -0.061 -0.113 -0.007
educ -0.183 -0.254 -0.112
cincome:educ 0.012 0.009 0.016
1 0.434 0.395 0.474
2 0.428 0.391 0.467
3 0.422 0.386 0.459
4 0.417 0.381 0.452

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

209

We can see that the first six rows give parameter estimates along with confidence intervals, and then the
predicted probabilities start. We can use the rep() function to help us label each row of the dataset.

> boot.res2$Type <- rep(c("coef", "Not Satisfied", "More/Less Satisfied", "Satisified"),
+ c(6, 150, 150, 150))

Copying the data used from prediction within our function, we can merge the predicted results and
confidence intervals from bootstrapping with the values used for prediction to generate a final dataset for
graphing or presentation. Note that since we have three levels of the outcome, we need to repeat our newdat
object three times. We could have just typed it three times, but that does not scale well (what if you needed
to do it 300 times), so we show how to use the rep() function again this time to create a list where each
element is a data frame, we then combine row-wise using do.call() and rbind(), before finally column-
wise combining it with the bootstrapping results to create a final dataset for presentation.

> newdat <- expand.grid(
+ Agec = seq(from = 0, to = (89 - 18)/10, length.out = 50),
+ cincome = mean(gssr$cincom),
+ educ = c(12, 16, 20))
>
> finaldat <- cbind(boot.res2[-(1:6),], do.call(rbind, rep(list(newdat), 3)))

We do this, and graph the results in Figure 16-11 using fairly familiar code as follows:

> p<- ggplot(finaldat, aes(Agec, Estimate, colour = Type, linetype = Type)) +
+ geom_ribbon(aes(ymin = LL, ymax = UL, colour = NULL, fill = Type), alpha = .25) +
+ geom_line(size = 1.5) +
+ scale_x_continuous("Age", breaks = (c(20, 40, 60, 80) - 18)/10,
+ labels = c(20, 40, 60, 80)) +
+ scale_y_continuous("Probability", labels = percent) +
+ theme_bw() +
+ theme(legend.key.width = unit(1.5, "cm"),
+ legend.position = "bottom",
+ legend.title = element_blank()) +
+ facet_wrap(~educ) +
+ ggtitle("Financial Satisfaction")
> p

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

210

These results show us that for adults in the average income bin, there is not much difference in financial
satisfaction by education level. Conversely, there are large changes across the lifespan.

Finally, let’s examine whether there are any differences in the confidence intervals from normal theory
vs. bootstrapping. First, we get the estimates and standard errors as a matrix.

> (coef.tab <- coef(summary(m)))
 Estimate Std. Error z value Pr(>|z|)
(Intercept):1 0.96472914 0.480847174 2.006311 4.482304e-02
(Intercept):2 -1.18874068 0.481270087 -2.470007 1.351103e-02
Agec 0.16925731 0.021790024 7.767651 7.995485e-15
cincome -0.06112373 0.027614421 -2.213471 2.686517e-02
educ -0.18290044 0.036929590 -4.952680 7.319831e-07
cincome:educ 0.01239790 0.002033034 6.098224 1.072537e-09

Then we can calculate the 95% confidence intervals and combine with our bootstrapped results
(dropping the fourth column labeling the type of the result).

> coef.res <- cbind(boot.res2[1:6, -4],
+ NormalLL = coef.tab[, 1] + qnorm(.025) * coef.tab[, 2],
+ NormalUL = coef.tab[, 1] + qnorm(.975) * coef.tab[, 2])

Figure 16-11.  Financial satisfaction plot(s) sorted by years of education

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

211

> coef.res
 Estimate LL UL NormalLL NormalUL
(Intercept):1 0.96472914 0.065709812 1.888282581 0.022285994 1.907172279
(Intercept):2 -1.18874068 -2.096506820 -0.262608836 -2.132012714 -0.245468639
Agec 0.16925731 0.124358398 0.212613375 0.126549646 0.211964972
cincome -0.06112373 -0.112977921 -0.007421777 -0.115246998 -0.007000457
educ -0.18290044 -0.254102950 -0.111955065 -0.255281108 -0.110519774
cincome:educ 0.01239790 0.008504279 0.016193052 0.008413223 0.016382571

While there are some differences, in this particular case, they appear quite small. These results might
encourage us to believe that these data are “well-behaved” and the parametric assumptions we made are
fairly reasonable. In other cases, results may differ more and we would have to try to understand why and
decide which results we trusted.

So far we have seen how bootstrapping can be applied in many situations; in some of those situations
confidence intervals are not well-defined (like the median) and in other cases we may use bootstrapping
as a sort of sensitivity analysis or a check that our results are robust. Before we conclude our discussion of
bootstrapping, we will look at one more example that shows how flexible bootstrapping can be.

Suppose we wanted test whether the difference in the probability of being financially satisfied between
an 18-year-old and an 89-year-old, who both had 16 years of education and an average income bin, was
exactly canceling each other out (i.e., the same magnitude but opposite sign differences):

DSatisfied = P(satisfied | age = 89) – P(satisfied | age = 18)

D Not Satisfied = P(not satisfied | age = 89) – P(not satisfied | age = 18)

D DSatisfied Not Satisfied+
=
?

0

> subset(finaldat, Agec %in% c(0, 7.1) & educ == 16 & Type != "More/Less Satisfied")
 Estimate LL UL Type Agec cincome educ
51 0.4068473 0.3678249 0.4481580 Not Satisfied 0.0 17.04056 16
100 0.1709739 0.1440701 0.2042896 Not Satisfied 7.1 17.04056 16
513 0.1447413 0.1241949 0.1686146 Satisified 0.0 17.04056 16
1002 0.3601464 0.3127528 0.4066795 Satisified 7.1 17.04056 16

From here, we can see that we want the 51st and 100th for the first and third outcome level. We can
make an index variable to grab these and check that it works.

> index <- c(51, 100, 51 + 300, 100 + 300)
> finaldat[index,]
 Estimate LL UL Type Agec cincome educ
51 0.4068473 0.3678249 0.4481580 Not Satisfied 0.0 17.04056 16
100 0.1709739 0.1440701 0.2042896 Not Satisfied 7.1 17.04056 16
513 0.1447413 0.1241949 0.1686146 Satisified 0.0 17.04056 16
1002 0.3601464 0.3127528 0.4066795 Satisified 7.1 17.04056 16

Now we can go to the bootstrapping results, noting that since the first six bootstrap statistics are for
coefficients, we need to add 6 to our index variable, recalling that t0 has the actual estimates in the real data
and t has the bootstrapped distribution.

> tmp.bootres <- boot.res$t0[index + 6]
> btmp.bootres <- boot.res$t[, index + 6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

212

Now we can calculate the differences and test them. We show the resulting histogram in Figure 16-12.

> deltaSatisfied <- tmp.bootres[4] - tmp.bootres[3]
> deltaNotSatisfied <- tmp.bootres[2] - tmp.bootres[1]
 
> bdeltaSatisfied <- btmp.bootres[, 4] - btmp.bootres[, 3]
> bdeltaNotSatisfied <- btmp.bootres[, 2] - btmp.bootres[, 1]
 
> test <- deltaSatisfied + deltaNotSatisfied
> btest <- bdeltaSatisfied + bdeltaNotSatisfied
 
> hist(btest, breaks = 50)
> abline(v = test, col = "blue", lwd = 5)
> abline(v = quantile(btest, probs = .025), col = "yellow", lwd = 5)
> abline(v = quantile(btest, probs = .975), col = "yellow", lwd = 5)

The 95% confidence interval just includes zero, suggesting that we cannot reject the hypothesis that

D Satisfied + D Not Satisfied = 0

and practically speaking, suggesting that indeed the difference between young and old in probability
of being financially satisfied is about the same magnitude as the difference in probability of being not
financially satisfied. This same approach would work, even if we had a more complex hypothesis and various
nonlinear transformations. While those are challenges for deriving standard errors, they are comparatively
straightforward in regard to bootstrapping.

Figure 16-12.  Histogram of btest

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ Modern Statistical Methods II

213

16.4 Final Thought
For centuries, statistics has been concerned with taking sample data and using them along with clever
models to determine, within some level of confidence, how the population data are behaving. Generally,
this has required making various assumptions about how the population data might be expected to behave.
Through nonparametric models, we are able to relax or even remove some assumptions or preconditions
on our data, while still having actionable models. With bootstrapping, we are even able to cope with data
that may well have very few known characteristics. However, these come with a price. A nonparametric
model may well not be as “tight” a confidence interval as a similar parametric model. This, of course, may
be solved with collecting more data, yet even that comes with a computation load cost. And, as we saw for
bootstrapping, that computational load may well be comparatively high. Nevertheless, computers are very
helpful, and to explore and understand data without them would be perhaps foolish. We turn now to a look
at data visualization with the rich graphics of the medium, before we spend some time discovering just how
to exploit as much computational efficiency in a machine as possible.

References
Canty, A., & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-17, 2015.

Carpenter, J., & Bithell, J. “Bootstrap confidence intervals: when, which, what? A practical guide for medical
statisticians.” Statistics in Medicine, 19(9), 1141–1164 (2000).

Hollander, M., & Wolfe, D. A. Nonparametric Statistical Methods. New York: John Wiley & Sons, 1973.

Hothorn, T., Hornik, K., van de Wiel, M. A., & Zeileis, A. (A Lego system for conditional inference.
The American Statistician, 60(3), 257–263 (2006).

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for
Statistical Computing, 2015. www.R-project.org/.

Schloerke, B., Crowley, J., Cook, D., Hofmann, H., Wickham, H., Briatte, F., Marbach, M., & and Thoen, E.
GGally: Extension to ggplot2. R package version 0.5.0, 2014. http://CRAN.R-project.org/package=GGally.

Wickham, H. “Reshaping data with the reshape package. Journal of Statistical Software, 21(12), 1-20 (2007).
www.jstatsoft.org/v21/i12/.

Wickham., H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer, 2009.

Wickham, H. scales: Scale Functions for Visualization. R package version 0.2.5, 2015.
http://CRAN.R-project.org/package=scales.

www.it-ebooks.info

http://www.r-project.org/
http://cran.r-project.org/package=GGally
http://www.jstatsoft.org/v21/i12/
http://cran.r-project.org/package=scales
http://www.it-ebooks.info/

215

Chapter 17

Data Visualization Cookbook

Throughout the book we used quite a few graphs to help you visualize and understand data, but we never
went through them systematically. In this cookbook chapter, we will show you how to make a number of
different kinds of common graphs in R (most of which you have not seen yet, though for completeness we
duplicate one or two).

17.1 Required Packages
First, we will load some packages. Be sure to use install.packages("packageName") for any packages
that are not yet installed on your computer. In the section “References,” we cite all these packages, and our
reader(s) will note that many are actually quite new (or at least newly updated).

install.packages(c("gridExtra", "plot3D", "cowplot", "Hmisc"))
library(grid)
library(gridExtra)
library(ggplot2)
library(GGally)
library(RColorBrewer)
library(plot3D)
library(scatterplot3d)
library(scales)
library(hexbin)
library(cowplot)
library(boot)
library(Hmisc)

17.2 Univariate Plots
We will start off with plots of a single variable. For continuous variables, we might want to know what the
distribution of the variable is. Histograms and density plots are commonly used to visualize the distribution
of continuous variables, and they work fairly well for small and for very large datasets. We see the results in
Figure 17-1 and Figure 17-2.

p1 <- ggplot(mtcars, aes(mpg))
p1 + geom_histogram() + ggtitle("Histogram")
p1 + geom_density() + ggtitle("Density Plot")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

216

Figure 17-1.  Histogram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

217

We could overlay the density plot on the histogram (see Figure 17-3) if we wished, but for that we need
to make the y axes the same for both, which we can do by making the histogram plot densities rather than
counts. We also change the fill color to make the density line easier to see (black on dark gray is not easy), and
make each bin of the histogram wider to smooth it a bit more, like the density plot, which is quite smooth.

Figure 17-2.  Density plot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

218

p1 + geom_histogram(aes(y = ..density..), binwidth = 3, fill = "grey50") +
 geom_density(size = 1) +
 ggtitle("Histogram with Density Overlay")

Figure 17-3.  Adjusting scales and altering colors are common data visualization techniques

As we mentioned, this also works well for large datasets, such as the diamonds data, which has 53,940
rows. Notice the rather small density measurements in Figure 17-4.

ggplot(diamonds, aes(price)) +
 geom_histogram(aes(y = ..density..), fill = "grey50") +
 geom_density(size = 1) +
 ggtitle("Histogram with Density Overlay")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

219

For small datasets, a dotplot (Figure 17-5) provides a natural representation of the raw data, although
it does not work well for a large dataset, even with just a few hundred or a few thousand dots they become
confusing and overly ‘busy’.

p1 + geom_dotplot() + ggtitle("Dotplot")

Figure 17-4.  Even very large datasets are readily graphed

Figure 17-5.  Dotplot is best to pictorially show smaller datasets in full

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

220

It can also be helpful to show summary statistics about a distribution—for example, where the mean or
median is perhaps with a confidence interval (CI). We can get the mean and 95% CI from a t-test and then
use the values for plotting. The result is subtle but highlights the central tendency and our uncertainty about
the mtcars data shown in Figure 17-6.

sumstats <- t.test(mtcars$mpg)
 
p1 +
 geom_histogram(aes(y = ..density..), binwidth = 3, fill = "grey50") +
 geom_point(aes(x = sumstats$estimate, y = -.001),) +
 geom_segment(aes(x = sumstats$conf.int[1], xend = sumstats$conf.int[2], y = -.001, yend =
-.001)) +
 ggtitle("Histogram with Mean and 95% CI")

Figure 17-6.  Mean and 95% CI shown on the graph

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

221

Finally, a boxplot or a box-and-whisker plot (Figure 17-7) can be a helpful summary of a continuous
variables distribution. The bar in the middle is the median, and the box is the lower and upper quartiles,
with the whiskers extending the range of the data or until the point of outliers (represented as dots).

ggplot(mtcars, aes("MPG", mpg)) + geom_boxplot()

Figure 17-7.  Boxplot and box-and-whisker plot with outlier, bold median line, and 25th and 75th percentile
hinges

For discrete, univariate data, we can visualize the distribution using a barplot of the frequencies in
Figure 17-8.

ggplot(diamonds, aes(cut)) +
 geom_bar()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

222

We can also make a stacked barplot as graphed in Figure 17-9.

ggplot(diamonds, aes("Cut", fill = cut)) +
 geom_bar()

Figure 17-8.  Barplot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

223

If we make a stacked barplot but use polar coordinates, we have a pie chart (Figure 17-10).

ggplot(diamonds, aes("Cut", fill = cut)) +
 geom_bar(width = 1) +
 coord_polar(theta = "y")

Figure 17-9.  Stacked barplots serve dual roles as both barplots and rectangular pie charts

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

224

To make the numbers proportions, we can divide by the total, and Figure 17-11 looks more like a
traditional pie chart.

ggplot(diamonds, aes("Cut", fill = cut)) +
 geom_bar(aes(y = ..count.. / sum(..count..)), width = 1) +
 coord_polar(theta = "y")

Figure 17-10.  Polar coordinates are quite useful, and pie charts are just one example

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

225

We are not limited to using barplots either. Points work equally well to convey the proportion of
diamonds with each cut. Although bars are more traditional, most of the space filled by the bars is not
informative; all that really matters is the height of each bar, which can be shown more succinctly with a
point. Figure 17-12 would also have little room for either misinterpretation or introducing any bias

ggplot(diamonds, aes(cut)) +
 geom_point(aes(y = ..count.. / sum(..count..)),
 stat = "bin", size = 4)

Figure 17-11.  Traditional pie chart with percents

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

226

17.3 Customizing and Polishing Plots
One of the most challenging tasks with graphics is often not making the initial graph but customizing it to get
it ready for presentation or publication. In this section, we will continue with some of the distribution graphs
we showed earlier but focus on examples of how to customize each piece. As a starting point, we can adjust
the axis labels as we did in Figure 17-13.

p1 + geom_histogram(binwidth = 3) +
 xlab("Miles per gallon (MPG)") +
 ylab("Number of Cars") +
 ggtitle("Histogram showing the distribution of miles per gallon")

Figure 17-12.  A very honest graph

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

227

It is also possible to adjust the font type, color, and size of the text, as well as use math symbols
(Figure 17-14).

p1 + geom_histogram(binwidth = 3) +
 xlab(expression(frac("Miles", "Gallon"))) +
 ylab("Number of Cars") +
 ggtitle(expression("Math Example: Histogram showing the distribution of "~frac("Miles",
"Gallon")))

Figure 17-13.  Customized axis labels

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

228

If we wanted to adjust the fonts, we could create a custom theme object. In Figure 17-15, we change the
family for the axis text (the numbers), the axis titles (the labels), and the overall plot title. We can also adjust
the size of the fonts and color, inside the element_text() function.

font.sans <- theme(
 axis.text = element_text(family = "serif", size = 12, color = "grey40"),
 axis.title = element_text(family = "serif", size = 12, color = "grey40"),
 plot.title = element_text(family = "serif", size = 16))
 
p1 + geom_histogram(binwidth = 3) +
 xlab("Miles per Gallon") +
 ylab("Number of Cars") +
 ggtitle("Size and Font Example: Histogram showing the distribution of MPG") +
 font.sans

Figure 17-14.  Labels with mathematical symbols

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

229

We can manually create our own themes, but for a “minimalist” theme, theme_classic() is a nice
option. We can also adjust the axis limits so there is less blank space using coord_cartesian(). This trims
the viewing area of the plot, but not the range of values accepted. For example, if there were an outlier in the
data, that would still be used for plotting, but coord_cartesian() would just adjust what is actually shown,
which is different from adjusting limits using the scale_*() functions. We do this with the following code
and show it in Figure 17-16:

p1 + geom_histogram(binwidth = 3) +
 theme_classic() +
 coord_cartesian(xlim = c(8, 38), ylim = c(0, 8)) +
 xlab("Miles per gallon (MPG)") +
 ylab("Number of cars") +
 ggtitle("Histogram showing the distribution of miles per gallon")

Figure 17-15.  Size and font example

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

230

We can also use less ink by outlining the histogram bars with black and filling them with white. In
general, in ggplot2, “color” refers to the color used on the edge, and fill refers to the color used to fill the
shape up. These options apply in many cases beyond just histograms. Figure 17-17 shows an example.

p1 + geom_histogram(color = "black", fill = "white", binwidth = 3) +
 theme_classic() +
 coord_cartesian(xlim = c(8, 38), ylim = c(0, 8)) +
 xlab("Miles per gallon (MPG)") +
 ylab("Number of cars") +
 ggtitle("Histogram showing the distribution of miles per gallon")

Figure 17-16.  Controlled viewing area

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

231

Even if we have numerical/quantitative data, we could add labels, if that would make it more
informative, as shown in Figure 17-18.

p1 + geom_histogram(color = "black", fill = "white", binwidth = 3) +
 scale_x_continuous(breaks = c(10, 20, 30), labels = c("Terrible", "Okay", "Good")) +
 theme_classic() +
 coord_cartesian(xlim = c(8, 38), ylim = c(0, 8)) +
 xlab("Miles per gallon (MPG)") +
 ylab("Number of cars") +
 ggtitle("Histogram showing the distribution of miles per gallon")

Figure 17-17.  Low-ink graphs demonstrating the use of color and fill

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

232

With longer labels, sometimes the orientation needs to be adjusted (Figure 17-19). The angle can be set
using element_text(), as can the horizontal and vertical adjustments, which range from 0 to 1.

p1 + geom_histogram(color = "black", fill = "white", binwidth = 3) +
 scale_x_continuous(breaks = c(10, 20, 30), labels = c("Terrible", "Okay", "Good")) +
 theme_classic() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1)) +
 coord_cartesian(xlim = c(8, 38), ylim = c(0, 8)) +
 xlab("Miles per gallon (MPG)") +
 ylab("Number of cars") +
 ggtitle("Histogram showing the distribution of miles per gallon")

Figure 17-18.  Qualitative labels for quantitative data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

233

For some data, linear scales are not the best to visualize the data. For example, the price of diamonds is
a rather skewed distribution, making it hard to see (Figure 17-20).

ggplot(diamonds, aes(price)) +
 geom_histogram()

Figure 17-19.  Angled labels

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

234

We can use a square root or log scale instead. In this example, we also use grid.arrange() from the
gridExtra package to put two plots together as in Figure 17-21.

grid.arrange(
 ggplot(diamonds, aes(price)) +
 geom_histogram() +
 scale_x_sqrt() +
 ggtitle("Square root x scale"),
 ggplot(diamonds, aes(price)) +
 geom_histogram() +
 scale_x_log10() +
 ggtitle("log base 10 x scale"))

Figure 17-20.  Histogram of diamonds versus price

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

235

Instead of changing the actual scale of the data, we could also just change the coordinate system. First,
though, we need to adjust the scale of the data, because with zero and some negative values included, not
in the data but on the scale of the plot, square roots and logarithms will not work. So first we use scale_x_
continuous() to adjust the scale to be exactly the range of the diamond prices, with no expansion, and then
we can transform the coordinates. We show this in Figure 17-22.

grid.arrange(
 ggplot(diamonds, aes(price)) +
 geom_histogram() +
 scale_x_continuous(limits = range(diamonds$price), expand = c(0, 0)) +
 coord_trans(x = "sqrt") +
 ggtitle("Square root coordinate system"),
 ggplot(diamonds, aes(price)) +
 geom_histogram() +

Figure 17-21.  X axis under various scales

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

236

A final aspect of graphs that often needs adjustment is colors, shapes, and legends. Using the diamonds
data, we can look at a density plot colored by cut of the diamond in Figure 17-23.

ggplot(diamonds, aes(price, color = cut)) +
 geom_density(size = 1) +
 scale_x_log10() +
 ggtitle("Density plots colored by cut")

 scale_x_continuous(limits = range(diamonds$price), expand = c(0, 0)) +
 coord_trans(x = "log10") +
 ggtitle("Log base 10 coordinate system"))

Figure 17-22.  Change coordinate system

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

237

The ggplot2 package has a default color palette, but we can also examine others. The RColorBrewer
package has a number of color palettes available. We can view the different color palettes for five levels,
using the function display.brewer.all(). Using an option, we can pick colors that are colorblind friendly,
so that the widest possible audience will be able to easily read our graphs. The type specifies whether we
want a sequential palette ("seq", nice for gradients or ordered data) or a qualitative (“qual”, for unordered
discrete data), or a divergent color palette (“div”, emphasizing extremes). We used “all” to indicate we
want to see all palettes. Please run the code that follows or view the electronic version of this text to see
Figure 17-24 in full color.

display.brewer.all(n = 5, type = "all", colorblindFriendly=TRUE)

Figure 17-23.  Adjusting color by cut

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

238

From here, perhaps we like the “Set2” palette, in which case we can use scale_color_brewer() or, if we
wanted to use color as a fill, scale_fill_brewer() to pick the palette. We will also move the legend down to
the bottom (or remove it altogether using legend.position = "none") in Figure 17-25.

ggplot(diamonds, aes(price, color = cut)) +
 geom_density(size = 1) +
 scale_color_brewer(palette = "Set2") +
 scale_x_log10() +
 ggtitle("Density plots colored by cut") +
 theme(legend.position = "bottom")

Figure 17-24.  The full color palette

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

239

Figure 17-25.  Improved layout and color

We can change the legend orientation, using the legend.direction argument, and by using the scale
names that create the legend (in this case, only color, but it could also be color and shape, or color and linetype,
or any other combination) we can also adjust the legend title. If we wanted, we could use math notation here as
well, just as we showed for the title and axis legends. We show our code and then Figure 17-26:

ggplot(diamonds, aes(price, color = cut)) +
 geom_density(size = 1) +
 scale_color_brewer(palette = "Set2") +
 scale_x_log10() +
 scale_color_discrete("Diamond Cut") +
 ggtitle("Density plots colored by cut") +
 theme(legend.position = "bottom", legend.direction = "vertical")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

240

We can also move the legend into the graph, by specifying the position as two numerical numbers,
one for the x, y coordinates and also by specifying the justification of the legend with respect to the position
coordinates (Figure 17-27).

ggplot(diamonds, aes(price, color = cut)) +
 geom_density(size = 1) +
 scale_color_discrete("Diamond Cut") +
 ggtitle("Density plots colored by cut") +
 theme(legend.position = c(1, 1), legend.justification = c(1, 1))

Figure 17-26.  Vertical legend

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

241

Figure 17-27.  Legend moved into the graph

With the scales package loaded (which we did at the start), there are a number of special formats
available for axis text, such as percent or dollar. We have price data on the x axis so will use the dollar labels
for Figure 17-28. We can also use element_blank() to remove almost any aspect of the plot we want—in this
case removing all the y axis information, as density is not a very informative number beyond what we can
visually see—thus simplifying the graph.

ggplot(diamonds, aes(price, color = cut)) +
 geom_density(size = 1) +
 scale_color_discrete("Diamond Cut") +
 scale_x_continuous(labels = dollar) +
 ggtitle("Density plot of diamond price by cut") +
 theme_classic() +
 theme(legend.position = c(1, 1),
 legend.justification = c(1, 1),
 axis.line.x = element_blank(),
 axis.line.y = element_blank(),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

242

We can also flip the axes. This can be helpful sometimes with long labels or to make it easier to read
some of the labels. Figure 17-29, with boxplots, demonstrates.

grid.arrange(
ggplot(diamonds, aes(cut, price)) +
 geom_boxplot() +
 ggtitle("Boxplots of diamond price by cut") +
 theme_classic(),
ggplot(diamonds, aes(cut, price)) +
 geom_boxplot() +

 axis.ticks.y = element_blank(),
 axis.text.y = element_blank(),
 axis.title = element_blank()) +
 coord_cartesian(xlim = c(0, max(diamonds$price)), ylim = c(0, 4.2e-04))

Figure 17-28.  Adjusting axis scales

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

243

 ggtitle("Boxplots of diamond price by cut - flipped") +
 theme_classic() +
 coord_flip())

Figure 17-29.  Boxplots with flipped axis

17.4 Multivariate Plots
In this section we will show how to make a wide variety of multivariate plots. To start, we will examine
a bivariate scatterplot. Scatterplots (Figure 17-30) are great for showing the relationship between two
continuous variables.

ggplot(mtcars, aes(mpg, hp)) +
 geom_point(size = 3)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

244

For smaller datasets, rather than plotting points, we can plot the text labels to help understand which
cases may stand out (here, for example, the Maserati). As we see in Figure 17-31, such labels are not always
perfectly clear (depending on point location), and for larger datasets the text would be unreadable. Although
not shown, plotting labels and points can be combined by adding both points and text.

ggplot(mtcars, aes(mpg, hp)) +
 geom_text(aes(label = rownames(mtcars)), size = 2.5)

Figure 17-30.  Multivariate scatterplot relating mpg to hp

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

245

Figure 17-31.  Labeled points

We can add another layer of information to scatterplots by coloring the points by a third variable. If the
variable is discrete, we can convert it to a factor to get a discrete color palette (Figure 17-32).

ggplot(mtcars, aes(mpg, hp, color = factor(cyl))) +
 geom_point(size = 3)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

246

If the coloring variable is continuous, a gradient may be used instead as shown in Figure 17-33.

ggplot(mtcars, aes(mpg, hp, color = disp)) +
 geom_point(size=3)

Figure 17-32.  Three variables including a factor cyl via color coding

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

247

We can push this even farther by changing the shapes. Putting all this together, we can visually see
quite a bit of overlap, where cars with the highest horsepower tend to have higher displacement and
eight cylinders, and cars with the highest miles per gallon tend to have only four cylinders and lower
displacement. Figure 17-34 shows four variables.

ggplot(mtcars, aes(mpg, hp, color = disp, shape = factor(cyl))) +
 geom_point(size=3)

Figure 17-33.  Continuous third variable colored with a gradient rather than factoring

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

248

Adding a regression or smooth line to scatterplots can help highlight the trend in the data (Figure 17-35).
By default for small datasets, ggplot2 will use a loess smoother, which is very flexible, to fit the data.

ggplot(mtcars, aes(mpg, hp)) +
 geom_point(size=3) +
 stat_smooth()

Figure 17-34.  Four variables displayed in one graph

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

249

We could get a linear line of best fit by setting the method on stat_smooth() directly (Figure 17-36).

ggplot(mtcars, aes(mpg, hp)) +
 geom_point(size=3) +
 stat_smooth(method = "lm")

Figure 17-35.  Smooth fitted regression line to highlight trend

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

250

A nice feature is that if we drill down by coloring the data, the smooth line also drills down. The
command se = FALSE turns off the shaded region indicating the confidence interval. Figure 17-37 shows
rather well how different cylinders influence miles per gallon and horsepower.

ggplot(mtcars, aes(mpg, hp, color = factor(cyl))) +
 geom_point(size=3) +
 stat_smooth(method = "lm", se = FALSE, size = 2)

Figure 17-36.  Our familiar linear model linear regression line

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

251

If we wanted to color the points but have one overall summary line, we could override the color for
stat_smooth() specifically (Figure 17-38).

ggplot(mtcars, aes(mpg, hp, color = factor(cyl))) +
 geom_point(size=3) +
 stat_smooth(aes(color = NULL), se = FALSE, size = 2)

Figure 17-37.  There are some distinct differences based on number of cylinders, it seems

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

252

In general in ggplot2, most geometric objects can have different colors, fill colors, shapes, or linetypes
applied to them, resulting in a finer-grained view of the data if there are summary functions like smooth
lines, density plots, histograms, and so on.

For larger datasets, scatterplots can be hard to read. Two approaches to make it easier to see high-
density regions are to make points smaller and semitransparent. We show an example in Figure 17-39.

ggplot(diamonds, aes(price, carat)) +
 geom_point(size = 1, alpha = .25)

Figure 17-38.  A single smooth line

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

253

Another approach is to bin them and color them by how many points fall within a bin. This is somewhat
similar to what happens with histograms for a single variable. Dots within a certain area are grouped
together as one, and then color is used to indicate how many observations a particular dot represents. This
helps to see the “core” high-density area. We show this in Figure 17-40.

ggplot(diamonds, aes(price, carat)) +
 geom_hex(bins = 75)

Figure 17-39.  Smaller dots

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

254

Another approach is to bin the data (Figure 17-41), which we can do using the cut() function to make
ten bins each containing about 10% of the sample. Then we can use a boxplot of the carats for each price
decile to see the relationship. The automatic labels from the cut() function help to show what price values
are included.

diamonds <- within(diamonds, {
 pricecat <- cut(price, breaks = quantile(price, probs = seq(0, 1, length.out = 11)),
include.lowest = TRUE)
})
 
ggplot(diamonds, aes(pricecat, carat)) +
 geom_boxplot() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))

Figure 17-40.  Color-coded density scatterplot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

255

To get even more detailed distributional data, we could use a violin plot, which is essentially a series
of density plots on their side, and putting carats on a log base 10 scale can help us to more clearly see in
Figure 17-42.

ggplot(diamonds, aes(pricecat, carat)) +
 geom_violin() +
 scale_y_log10() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))

Figure 17-41.  Binned data boxplots

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

256

Next we use the Indometh data, which records drug concentration in six subjects over time after
administration to assess how quickly the drug is processed. Figure 17-43 shows the use of a line plot to
visualize these data. We use the group argument to make individual lines for each of the subjects.

ggplot(Indometh, aes(time, conc, group = Subject)) +
 geom_line()

Figure 17-42.  Binned violin plots

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

257

We could add points to Figure 17-44 as well if we wanted to, although that is not terribly helpful in
this case.

ggplot(Indometh, aes(time, conc, group = Subject)) +
 geom_line() +
 geom_point()

Figure 17-43.  Drug concentration vs. time with grouping by subject

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

258

With so few subjects, a boxplot at each time point would not make a great summary, but perhaps the
mean or median would. The stat_summary() function is a powerful function to calculate summaries of the
data. Note that because we want to summarize across subjects, we turn off grouping for the summary in
Figure 17-45 (although it is used for the lines).

ggplot(Indometh, aes(time, conc, group = Subject)) +
 geom_line() +
 stat_summary(aes(group = NULL), fun.y = mean, geom = "line", color = "blue", size = 2)

Figure 17-44.  Specific points added to show precise concentration at certain times

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

259

Using the stat_summary() we could also get the mean and CI at each time point, and plot using a point
for the mean and a line for the 95% CI. Figure 17-46 shows estimates for each time.

ggplot(Indometh, aes(time, conc)) +
 stat_summary(fun.data = mean_cl_normal, geom = "pointrange")

Figure 17-45.  Shows how various aspects may be set on or to null

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

260

When one variable is discrete and another is continuous, a barplot of the means of the continuous
variable by the discrete variable is popular. We go back to the diamonds data and look at the price of the
diamond by the cut in Figure 17-47.

ggplot(diamonds, aes(cut, price)) +
 stat_summary(fun.y = mean, geom = "bar", fill = "white", color = "black")

Figure 17-46.  95% CIs for each specified time

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

261

It is also common to use the bars to show the mean, and add error bars to show the CI around the
mean, which we do in Figure 17-48. The width option adjusts how wide (from left to right) the error bars are
in Figure 17-48.

ggplot(diamonds, aes(cut, price)) +
 stat_summary(fun.y = mean, geom = "bar", fill = "white", color = "black") +
 stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = .2)

Figure 17-47.  Price by grade of cut

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

262

Because we know the price data are not normal, we may be concerned about using the mean and thus
prefer to use the median. To get a CI for the medians, we can write our own median bootstrap function. As
output, it must return a data frame with columns for y, ymin, and ymax. This function builds on several things
we have done so far in this book. In this case, we use the function is.null() call to see if we want to default
to 1,000 bootstraps. Otherwise, we may call our function with a specific value other than 1,000.

median_cl_boot <- function(x, ...) {
 require(boot)
 args <- list(...)
 # if missing, default to 1000 bootstraps
 if (is.null(args$R)) {
 args$R <- 1000
 }
 result <- boot(x, function(x, i) {median(x[i])}, R = args$R)
 cis <- boot.ci(result, type = "perc")

Figure 17-48.  Price vs. cut with error bars

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

263

 data.frame(y = result$t0,
 ymin = cis$percent[1, 4],
 ymax = cis$percent[1, 5])
}

Now we can make our plot as before, but passing our newly written function to fun.data. Not
surprisingly given that the price data were highly skewed, the median price is considerably lower than the
average. Figure 17-49 shows the difference the median makes.

ggplot(diamonds, aes(cut, price)) +
 stat_summary(fun.y = median, geom = "bar", fill = "white", color = "black") +
 stat_summary(fun.data = median_cl_boot, geom = "errorbar", width = .2)

Figure 17-49.  Price vs. cut with bootstrapped median error bars

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

264

Next we need to do a bit of data manipulation to create the cumulative position over time, and then we
use Figure 17-51 to look at the results.

company <- within(company, {
 MonthC <- as.numeric(factor(Month, levels = Month))
 MonthEnd <- c(head(cumsum(NetIncome), -1), 0)
 MonthStart <- c(0, head(MonthEnd, -1))
 GainLoss <- factor(as.integer(NetIncome > 0), levels = 0:1, labels = c("Loss", "Gain"))
})
grid.newpage()
grid.table(company)

Another type of plot used in business is a waterfall plot (Figure 17-52). Suppose we had the following
data for net income each month for a company. We could have R make a nice visual table (Figure 17-50) of
the data using the grid.table() function from the gridExtra package.

company <- data.frame(
 Month = months(as.Date(paste0("2015-", 1:12, "-01"))),
 NetIncome = c(-6, 7, -5, 5, 13, -3, -4, -1, 11, 4, -10, 8))
grid.newpage()
grid.table(company)

Figure 17-50.  A table showing month and net income

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

265

Now we are ready to make a waterfall plot in R (see Figure 17-52). Although these are basically bars,
we do not use geom_bar() but rather geom_rect(), because barplots typically never go under zero, while
waterfall plots may. We also add a horizontal line at zero, and make it dashed using linetype = 2. We use
a manual fill scale to specify exactly the colors we want for losses and gains, relabel the numeric 1 to 12
months to use their natural names. We label the y axis in dollars, and then adjust the axis labels, put the
legend in the upper right corner, and remove the legend title using element_blank().

ggplot(company, aes(MonthC, fill = GainLoss)) +
 geom_rect(aes(xmin = MonthC - .5, xmax = MonthC + .5,
 ymin = MonthEnd, ymax = MonthStart)) +
 geom_hline(yintercept = 0, size = 2, linetype = 2) +
 scale_fill_manual(values = c("Loss" = "orange", "Gain" = "blue")) +
 scale_x_continuous(breaks = company$MonthC, labels = company$Month) +
 xlab("") +
 scale_y_continuous(labels = dollar) +
 ylab("Net Income in Thousands") +
 theme_classic() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1),
 legend.position = c(0, 1),
 legend.justification = c(0, 1),
 legend.title = element_blank())

Figure 17-51.  Cumulative position over time

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

266

17.5 Multiple Plots
Often it can be helpful to separate data and have multiple plots. For example, in the diamonds data, suppose
we wanted to look at the relationship again between carat and price, but we wanted to explore the impact
of cut, clarity, and color of the diamond. That would be too much to fit into one single plot, but it could be
shown as a panel of plots. We can do this by using the facet_grid() function, which facets plots by row (the
left-hand side) and column (the right-hand side). Figure 17-53 shows the resulting graph.

ggplot(diamonds, aes(carat, price, color = color)) +
 geom_point() +
 stat_smooth(method = "loess", se = FALSE, color = "black") +
 facet_grid(clarity ~ cut) +
 theme_bw() +
 theme(legend.position = "bottom",
 legend.title = element_blank())

Figure 17-52.  Waterfall plot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

267

If we do not want a grid, we can just wrap a series of plots together. By default, the individual plots
all use the same axis limits, but if the range of the data is very different, to help see each plot clearly, we
may want to free the scales (which can also be done in the same way in the facet_grid() function used
previously). A downside of freeing the scales, as shown in Figure 17-54, is that for each plot, comparison
across plots becomes more difficult.

ggplot(diamonds, aes(carat, color = cut)) +
 geom_density() +
 facet_wrap(~clarity, scales = "free") +
 theme_bw() +
 theme(legend.position = "bottom",
 legend.title = element_blank())

Figure 17-53.  Price vs. carat as well as cut, clarity, and color

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

268

When working with a dataset, it can be helpful to get a general overview of the relations among a
number of variables. A scatterplot matrix such as the one in Figure 17-55 is one way to do this, and it is
conveniently implemented in the GGally package. The lower diagonal shows the bivariate scatterplots,
the diagonal has density plots for each individual variable, and the upper diagonal has the Pearson
correlation coefficients.

ggscatmat(mtcars[, c("mpg", "disp", "hp", "drat", "wt", "qsec")])

Figure 17-54.  Freeing the scales does give more freedom; with great power comes great responsibility

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

269

To get a simple visual summary of the magnitudes of correlations, we could also use the ggcorr()
function, which creates the heatmap in Figure 17-56 based on the correlation size.

ggcorr(mtcars[, c("mpg", "disp", "hp", "drat", "wt", "qsec")])

Figure 17-55.  Scatterplot matrix

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

270

The approaches for creating multiple plots we’ve examined so far work well when the data are all
together and we are making essentially the same plot repeatedly, but sometimes we want to make a panel
of plots that are each quite different. For example, in the code that follows we make three plots to go into a
panel of graphs, and store them in R objects:

plota <- ggplot(mtcars, aes(mpg, hp)) +
 geom_point(size = 3) +
 stat_smooth(se = FALSE)
plotb <- ggplot(mtcars, aes(mpg)) +
 geom_density() +
 theme(axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 axis.title.y = element_blank(),
 axis.line.y = element_blank())
plotc <- ggplot(mtcars, aes(hp)) +
 geom_density() +
 theme(axis.text.y = element_blank(),
 axis.ticks.y = element_blank(),
 axis.title.y = element_blank(),
 axis.line.y = element_blank())

Figure 17-56.  A heatmap

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

271

Now we plot them all together in Figure 17-57 using functions from the cowplot package. Each plot is
drawn, and the x and y coordinates are given, along with its width and its height. We can also add labels to
indicate which panel is which (A, B, and C, in this case).

ggdraw() +
 draw_plot(plota, 0, 0, 2/3, 1) +
 draw_plot(plotb, 2/3, .5, 1/3, .5) +
 draw_plot(plotc, 2/3, 0, 1/3, .5) +
 draw_plot_label(c("A", "B", "C"), c(0, 2/3, 2/3), c(1, 1, .5), size = 15)

Figure 17-57.  Using the cowplot package to plot many graphs together

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

272

17.6 Three-Dimensional Graphs
In closing, we are going to examine a few less common but nonetheless helpful ways of visualizing data. We
begin by looking at some ways to visualize three-dimensional data. First is the contour plot. Contour plots
show two variables on the x and y axis, and the third variable (dimension) using lines. A line always has
the same value on the third dimension. To show how this works, we can set up a linear model with some
interactions and quadratic terms with carat and x predicting the price of diamonds, and then use the model
on some new data to get the predicted prices.

m <- lm(price ~ (carat + I(carat^2)) * (x + I(x^2)), data = diamonds)
 
newdat <- expand.grid(carat = seq(min(diamonds$carat), max(diamonds$carat), length.out =
100),
 x = seq(min(diamonds$x), max(diamonds$x), length.out = 100))
 
newdat$price <- predict(m, newdata = newdat)

Now we can easily graph the data in Figure 17-58 using geom_contour(). We color each line by the log
of the level (here price). Examining the bottom line, we can see that the model predicts the same price for
the diamond that is just over 1 carat and 0 x as it does for nearly 10 x and close to 0 carats. Again each line
indicates a single price value, so the line shows you how different combinations of the predictors, sometimes
nonlinearly, can result in the same predicted price value.

ggplot(newdat, aes(x = x, y = carat, z = price)) +
 geom_contour(aes(color = log(..level..)), bins = 30, size = 1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

273

Figure 17-58.  Contour plot

When making contour plots from predicted values, it is important to consider whether the values are
extrapolations or not. For example, even though we made our predicted values of carat and x within the
range of the real data, a quick examination of the relationship between carat and x (Figure 17-59) shows that
not all carat sizes occur at all possible values of x, so many of the lines in our contour plot are extrapolations
from the data to the scenario, “what if there were a __ carat diamonds with __ x?” rather than being grounded
in reality.

ggplot(diamonds, aes(carat, x)) +
 geom_point(alpha = .25, size = 1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

274

Another way we can plot three-dimensional data is using a three-dimensional plot projected into two
dimensions. The ggplot2 package does not do this, so we will use functions from the plot3D packages. To
start with, we can examine a three-dimensional scatterplot in Figure 17-60.

with(mtcars, scatter3D(hp, wt, mpg, pch = 16, type = "h", colvar = NULL))

Figure 17-59.  A quick look at carat and x

Figure 17-60.  Three-dimensional scatterplot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

275

As before, we can color the points and add titles, although the arguments to do this differ from ggplot2 as
this is a different package. Another challenge with three-dimensional plots is choosing the angle from which
to view it. The best angle (or perhaps a few) depends on the data and what features you want to highlight, so it
often involves trial and error to find a nice set. To put more than one graph together, we use the par() function,
and then simply plot two graphs, also showing how to add color and detailed labels in Figure 17-61.

par(mfrow = c(2, 1))
 
with(mtcars, scatter3D(hp, wt, mpg,
 colvar = cyl, col = c("blue", "orange", "black"),
 colkey = FALSE,
 pch = 16, type = "h",
 theta = 0, phi = 30,
 ticktype = "detailed",
 main = "Three-dimensional colored scatterplot"))
 
with(mtcars, scatter3D(hp, wt, mpg,
 colvar = cyl, col = c("blue", "orange", "black"),
 colkey = FALSE,
 pch = 16, type = "h",
 theta = 220, phi = 10,
 ticktype = "detailed",
 xlab = "Horsepower", ylab = "Weight", zlab = "Miles per Gallon",
 main = "Three-dimensional colored scatterplot"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

276

We hope this cookbook chapter has been helpful. The graphs are ones we have used ourselves over
the years, and sometimes, when looking at some data, one of the most helpful things to do (especially when
attempting to explain to fellow team members what the data indicate) is to reference graphs and charts. One
of the authors regularly hoards snippets of code for graphs that either look visually appealing or present well
certain types of data. Then, when he encounters data in the wild that might benefit from such a graph, he has
the code to make that happen readily available. We turn our attention in the next chapter to exploiting some
advantages of modern hardware configurations.

Figure 17-61.  Different angles and colors and labels of the same 3D scatterplot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ Data Visualization Cookbook

277

References
Auguie, B. gridExtra: Miscellaneous Functions for “Grid” Graphics. R package version 2.0.0, 2015.
http://CRAN.R-project.org/package=gridExtra.

Canty, A., & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-17, 2015.

Carr, D., ported by Nicholas Lewin-Koh, Martin Maechler and contains copies of lattice function
written by Deepayan Sarkar. hexbin: Hexagonal Binning Routines. R package version 1.27.0, 2014.
http://CRAN.R-project.org/package=hexbin.

Davison, A. C., & Hinkley, D. V. Bootstrap Methods and Their Applications. Cambridge, MA: Cambridge
University Press, 1997.

Harrell, F. E. Jr., with contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous. R
package version 3.16-0, 2015. http://CRAN.R-project.org/package=Hmisc.

Ligges, U., & Mächler, M. “Scatterplot3d—an R package for visualizing multivariate data.” Journal of
Statistical Software, 8(11), 1-20 (2003).

Neuwirth, E. RColorBrewer: ColorBrewer Palettes. R package version 1.1-2, 2014. http://CRAN.R-project.
org/package=RColorBrewer.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria, 2015. www.R-project.org/.

Schloerke, B., Crowley, J., Cook, D., Hofmann, H., Wickham, H., Briatte, F., Marbach, M., & and Thoen, E.
GGally: Extension to ggplot2. R package version 0.5.0, 2014. http://CRAN.R-project.org/package=GGally.

Soetaert, K. plot3D: Plotting multi-dimensional data. R package version 1.0-2, 2014.
http://CRAN.R-project.org/package=plot3D.

Wickham, H. ggplot2: Elegant graphics for data analysis. New York: Springer, 2009.

Wickham, H. scales: Scale Functions for Visualization. R package version 0.2.5, 2015.
http://CRAN.R-project.org/package=scales.

Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 0.5.0,
2015. http://CRAN.R-project.org/package=cowplot.

www.it-ebooks.info

http://cran.r-project.org/package=gridExtra
http://cran.r-project.org/package=gridExtra
http://cran.r-project.org/package=hexbin
http://cran.r-project.org/package=Hmisc
http://cran.r-project.org/package=RColorBrewer
http://cran.r-project.org/package=RColorBrewer
http://www.R-project.org/
http://cran.r-project.org/package=GGally
http://cran.r-project.org/package=plot3D
http://cran.r-project.org/package=scales
http://cran.r-project.org/package=cowplot
http://www.it-ebooks.info/

279

Chapter 18

High-Performance Computing

In this chapter, we introduce high-performance computing. Broadly, computing may be slow because we
have larger datasets and/or because we are doing more computations. We will talk a little about ways to
deal with both in R. When people say high-performance computing or big data they can mean very different
things. In this chapter we will not discuss processing terabytes of data or analyses that require large clusters.
Instead, we only assume a fairly standard desktop or laptop that has at least two cores. Note that some of the
code examples in this chapter may take some time to run. That is deliberate so it is both more realistic and
starts to convey the “feel” of larger data. Making a typo can be more painful when it takes minutes or hours
to get your result and you find out it is wrong and you have to run it again!

18.1 Data
First, we will discuss working with larger datasets. The R package nycflights13 (Wickham, 2014) has some
datasets with a few hundred thousand observations.

> install.packages("nycflights13")
> install.packages("iterators")
> library(nycflights13)
> library(iterators)
> head(flights)
 year month day dep_time dep_delay arr_time arr_delay carrier tailnum flight
1 2013 1 1 517 2 830 11 UA N14228 1545
2 2013 1 1 533 4 850 20 UA N24211 1714
3 2013 1 1 542 2 923 33 AA N619AA 1141
4 2013 1 1 544 -1 1004 -18 B6 N804JB 725
5 2013 1 1 554 -6 812 -25 DL N668DN 461
6 2013 1 1 554 -4 740 12 UA N39463 1696
 origin dest air_time distance hour minute
1 EWR IAH 227 1400 5 17
2 LGA IAH 227 1416 5 33
3 JFK MIA 160 1089 5 42
4 JFK BQN 183 1576 5 44
5 LGA ATL 116 762 5 54
6 EWR ORD 150 719 5 54

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

280

Now suppose that we wanted to create a new variable in the data that was the standard deviation of
arrival time delays by destination airport. We could use the ave() function. It performs an operation (such
as calculating the standard deviation) by an index. For example, suppose we had some data from three
different groups.

Group 1 Group 2 Group 3

1 4 7

2 5 8

3 6 9

If these data were shaped in “long” form, they would look like as shown in the table that follows, where
all the values are in one column, and another column indicates which group each value belongs to

Value Group

1 1

2 1

3 1

4 2

5 2

6 2

7 3

8 3

9 3

Now, what if we wanted to calculate something by each group? For example, we could calculate the
means per group, which are 2, 5, and 8 for groups 1, 2, and 3, respectively. However, if we want the mean
per group to be a new variable in the dataset, we need to fill in the mean of group 1 for every row belonging
to group 1, and the mean of group 2 for every row belonging to group 2. In other words, the mean (or
whatever we calculate) needs to be repeated as many times as the data from which it came. That is exactly
what ave() does and following is a simple example of ave() in action. The first argument is the data to use
for calculation. The second argument is the index variable (in our previous example, group), and the third
argument is the function to be used for calculation. You can see in the output that the means, 2, 5, and 8,
have each been repeated the same number of times as the index variable

> ave(1:9, c(1, 1, 1, 2, 2, 2, 3, 3, 3), FUN = mean)
[1] 2 2 2 5 5 5 8 8 8

Following is one way we may try to accomplish our goal in the flights data. We will make use of the
system.time() function throughout this chapter to examine how long it takes to run different pieces of code,
noting that these results are not intended to indicate how long it will take on your machine or your data but
to compare different coding approaches. The results are in seconds, and we will focus on the elapsed time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

281

system.time(
+ flights <- within(flights, {
+ ArrDelaySD <- ave(arr_delay, dest, FUN = function(x) sd(x, na.rm = TRUE))
+ })
+)
 user system elapsed
 0.05 0.01 0.06

What about just finding the mean arrival delay for flights departing in the first half of the year?

system.time(
+ mean(subset(flights, month < 7)$arr_delay)
+)
 user system elapsed
 0.22 0.00 0.22

It does not take long in this case, but it is starting to be noticeable and we are still dealing with small
data. Often, great performance improvements can be had just by using optimized code. The data.table
package provides an alternative to data frames that makes fewer copies and can be much faster. We are
using version 1.9.5 data.table package for this chapter, as there have been some recent advances. As of the
writing of this book, 1.9.5 is the development version, which is only available from GitHub, but thanks to
the devtools package, which has a function install_github(), it is easy to install the latest development
versions of any R package hosted on GitHub. Although generally it is perhaps safer to use packages on
CRAN as they are more stable, as you start to push the limits of R and come closer to the cutting edge, it is
helpful to be able to install from GitHub, where many R package developers choose to host the development
source code of their packages. If you are on Windows or Mac and have not already, now is good time to get
the development tools. For Windows, you can download them from https://cran.r-project.org/bin/
windows/Rtools/. For Mac, all you need to do is install Xcode.

> install.packages("devtools")
> library(devtools)
> install_github("Rdatatable/data.table")
Downloading github repo Rdatatable/data.table@master
Installing data.table
Much more output here about the package being compiled
mv data.table.dll datatable.dll
installing to c:/usr/R/R-3.2.2/library/data.table/libs/x64
** R
** inst
** tests
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded
* DONE (data.table)

www.it-ebooks.info

https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

282

Now, we can load the data.table package and convert the flights data into a data.table object, and
then try out the same calculations listed previously.

> library(data.table)
data.table 1.9.5 For help type: ?data.table
*** NB: by=.EACHI is now explicit. See README to restore previous behaviour.
 
> flights2 <- as.data.table(flights)
 
> system.time(
+ flights2[, ArrDelaySD := sd(arr_delay, na.rm = TRUE), by = dest]
+)
 user system elapsed
 0.01 0.00 0.02
> all.equal(flights2$ArrDelaySD, flights$ArrDelaySD)
[1] TRUE
  
> system.time(
+ mean(flights2[month < 7]$arr_delay)
+)
 user system elapsed
 0.03 0.02 0.04

Using data.table gives identical results and the code is much faster. Although the data.table package
does not use multiple cores, it is highly optimized for speed and also tries to reduce memory usage. In
regular R data frames, many common operations result in copies being made. In data.table, objects are
often modified in place meaning where needed, and data are changed in place in memory rather than
making a whole new copy. The end result is that basic data manipulation operations may work several times
faster using data.table than using a regular data frame in R. Next, we will explore how to use data.table in
more detail, as its syntax differs from those of data frames in some important ways.

To start, we can see what happens if we just type the data.table object in R.

> flights2
 year month day dep_time dep_delay arr_time arr_delay carrier tailnum
 1: 2013 1 1 517 2 830 11 UA N14228
 2: 2013 1 1 533 4 850 20 UA N24211
 3: 2013 1 1 542 2 923 33 AA N619AA
 4: 2013 1 1 544 -1 1004 -18 B6 N804JB
 5: 2013 1 1 554 -6 812 -25 DL N668DN

336772: 2013 9 30 NA NA NA NA 9E
336773: 2013 9 30 NA NA NA NA 9E
336774: 2013 9 30 NA NA NA NA MQ N535MQ
336775: 2013 9 30 NA NA NA NA MQ N511MQ
336776: 2013 9 30 NA NA NA NA MQ N839MQ
 flight origin dest air_time distance hour minute ArrDelaySD
 1: 1545 EWR IAH 227 1400 5 17 41.00647
 2: 1714 LGA IAH 227 1416 5 33 41.00647
 3: 1141 JFK MIA 160 1089 5 42 41.29391
 4: 725 JFK BQN 183 1576 5 44 34.45790
 5: 461 LGA ATL 116 762 5 54 46.96864

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

283

336772: 3393 JFK DCA NA 213 NA NA 39.91506
336773: 3525 LGA SYR NA 198 NA NA 41.84991
336774: 3461 LGA BNA NA 764 NA NA 48.34005
336775: 3572 LGA CLE NA 419 NA NA 45.83643
336776: 3531 LGA RDU NA 431 NA NA 42.26542

The data.table object has printing methods that automatically print the first few and last few rows,
rather than returning everything. In data.table any object within the brackets tends to be assumed to be
a variable in the dataset. This often means that you do not need to explicitly reference the dataset or use
quotes. For example, to select all rows of the data where the carrier was Delta, we type the following:

> flights2[carrier == "DL"]
output omitted

This is compared with how we would do the same thing in base R:

> head(flights[flights$carrier == "DL",])
> head(subset(flights, carrier == "DL"))
output omitted

We can select columns in a similar way. For example, to tabulate the destinations of Delta flights, we
can type the following:

> table(flights2[carrier == "DL", dest])
 
 ATL AUS BNA BOS BUF CVG DCA DEN DTW EYW FLL IND JAC
10571 357 1 972 3 4 2 1043 3875 17 2903 2 2
 JAX LAS LAX MCI MCO MEM MIA MSP MSY OMA PBI PDX PHL
 1 1673 2501 82 3663 432 2929 2864 1129 1 1466 458 2
 PHX PIT PWM RSW SAN SAT SEA SFO SJU SLC SRQ STL STT
 469 250 235 426 575 303 1213 1858 1301 2102 265 1 30
 TPA
 2129

To create a new variable, we can use the := syntax. For example, we can create a new variable encoding
the difference between departing and arrival delays (a similar approach could be used to create other scores,
such as the sum of correct answers on a test).

> flights2[, NewVariable := dep_delay - arr_delay]
> colnames(flights2)
 [1] "year" "month" "day" "dep_time" "dep_delay"
 [6] "arr_time" "arr_delay" "carrier" "tailnum" "flight"
[11] "origin" "dest" "air_time" "distance" "hour"
[16] "minute" "ArrDelaySD" "NewVariable"

We can also make a new variable by recoding an existing variable. Here we will overwrite NewVariable.
Suppose we consider delays greater than two hours to be true delays and otherwise just a variation around
normal (i.e., no delay). We can overwrite the variable using ifelse() to encode delays greater than
120 minutes as “Delayed” and everything else as “No Delay”. We can then count the number of delays and
no delays using .N which returns the number of the last row in data.table, and doing this by NewVariable,
which effectively works to count, much like table().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

284

> flights2[, NewVariable := ifelse(arr_delay > 120, "Delayed", "No Delay")]
> flights2[, .N, by = NewVariable]
 NewVariable N
1: No Delay 317312
2: Delayed 10034
3: NA 9430

Here we can see that data.table also listed the number of missing values. Another useful way to use
.N is as an index. This can be particularly powerful combined with order(). For example, suppose we
wanted to see the least and most delayed flight arrivals by whether they meet our definition of delayed
(> 120 minutes) or not. The example that follows orders by our NewVariable and then by arrival delay, and
then gets the first two and last two rows for arrival delay by NewVariable. Note that 1:0 expands into c(1, 0),
which is helpful as we could also have written 5:0 if we wanted the last five, making it easy to get however
many first or last values we want.

> flights2[order(NewVariable, arr_delay), arr_delay[c(1:2, .N - 1:0)], by = NewVariable]
 NewVariable V1
 1: Delayed 121
 2: Delayed 121
 3: Delayed 1127
 4: Delayed 1272
 5: No Delay -86
 6: No Delay -79
 7: No Delay 120
 8: No Delay 120
 9: NA NA
10: NA NA
11: NA NA
12: NA NA

Another common operation is dropping a variable. To remove a variable, simply set it to NULL.
In data.table this is a very fast operation as no copy of the dataset is made, unlike in base R where the data
are essentially copied without that variable.

> flights2[, NewVariable := NULL]
> colnames(flights2)
 [1] "year" "month" "day" "dep_time" "dep_delay"
 [6] "arr_time" "arr_delay" "carrier" "tailnum" "flight"
[11] "origin" "dest" "air_time" "distance" "hour"
[16] "minute" "ArrDelaySD"

If only certain rows of the data are selected when a variable is created, the rest will be missing.

> flights2[carrier == "DL", NewVariable := "Test"]
> table(is.na(flights2[carrier == "DL", NewVariable]))
 
FALSE
48110
> table(is.na(flights2[carrier != "DL", NewVariable]))
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

285

 TRUE
288666
> flights2[, NewVariable := NULL]

data.table also has a very powerful and flexible way of performing operations by a variable in the
dataset (e.g., getting the mean delay by month of the year).

> flights2[, mean(arr_delay, na.rm=TRUE), by = month]
 month V1
 1: 1 6.1299720
 2: 10 -0.1670627
 3: 11 0.4613474
 4: 12 14.8703553
 5: 2 5.6130194
 6: 3 5.8075765
 7: 4 11.1760630
 8: 5 3.5215088
 9: 6 16.4813296
10: 7 16.7113067
11: 8 6.0406524
12: 9 -4.0183636

It is even easy to make multiple summary variables by another variable.

> flights2[, .(M = mean(arr_delay, na.rm=TRUE),
+ SD = sd(arr_delay, na.rm=TRUE)),
+ by = month]
 month M SD
 1: 1 6.1299720 40.42390
 2: 10 -0.1670627 32.64986
 3: 11 0.4613474 31.38741
 4: 12 14.8703553 46.13311
 5: 2 5.6130194 39.52862
 6: 3 5.8075765 44.11919
 7: 4 11.1760630 47.49115
 8: 5 3.5215088 44.23761
 9: 6 16.4813296 56.13087
10: 7 16.7113067 57.11709
11: 8 6.0406524 42.59514
12: 9 -4.0183636 39.71031

Or to do so by multiple variables, such as by month and by destination.

> flights2[, .(M = mean(arr_delay, na.rm=TRUE),
+ SD = sd(arr_delay, na.rm=TRUE)),
+ by = .(month, dest)]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

286

 month dest M SD
 1: 1 IAH 4.1627907 33.74079
 2: 1 MIA -2.1506148 32.42194
 3: 1 BQN 2.6451613 30.01545
 4: 1 ATL 4.1520468 34.17429
 5: 1 ORD 7.2876936 47.88168

1109: 9 TYS -14.0425532 30.62605
1110: 9 BHM -0.2727273 49.71172
1111: 9 ALB -11.3684211 17.26657
1112: 9 CHO 10.2105263 40.62098
1113: 9 ILM -7.9000000 26.79140

Notice that data.table also automatically includes the grouping by variables (here month and dest) in
the results so we know what each mean and standard deviation apply to. Sometimes, how we want to group
data by is not always a variable in the dataset directly. For example, we could compare mean flight delays
between Fall and Spring vs. Spring to Fall months. Operations can be done directly within the by statement.

> flights2[, .(M = mean(arr_delay, na.rm=TRUE),
+ SD = sd(arr_delay, na.rm=TRUE)),
+ by = .(Winter = month %in% c(9:12, 1:3))]
 Winter M SD
1: TRUE 4.038362 39.83271
2: FALSE 10.727385 50.10366

To include our summary variables in the original dataset rather than a new summarized dataset, we use
the := operator again. Here we also show how to create multiple new variables at once, rather than having to
create one new variable at a time. Note that the values will be recycled to fill as many rows as the dataset (in
the code that follows we can see the mean for all rows for month 1 are the same).

> flights2[, c("MonthDelayM", "MonthDelaySD") := .(
+ mean(arr_delay, na.rm=TRUE),
+ sd(arr_delay, na.rm=TRUE)), by = month]
> ## view results
> flights2[, .(month, MonthDelayM, MonthDelaySD)]
 month MonthDelayM MonthDelaySD
 1: 1 6.129972 40.42390
 2: 1 6.129972 40.42390
 3: 1 6.129972 40.42390
 4: 1 6.129972 40.42390
 5: 1 6.129972 40.42390

336772: 9 -4.018364 39.71031
336773: 9 -4.018364 39.71031
336774: 9 -4.018364 39.71031
336775: 9 -4.018364 39.71031
336776: 9 -4.018364 39.71031

If there is a key, such as an ID or some other variable we will often be summarizing others by, we can
use the setkey() function which sorts and indexes the data, making operations involving the key variable
much faster. For example, we can set month as the key.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

287

> setkey(flights2, month)

Once the key is set, we can refer to it using the J() operator. For example, to get months 3 to 7, we can
type the following:

> system.time(flights2[J(3:7)])
 user system elapsed
 0.01 0.00 0.01

which is much faster than the equivalent in base R.

> system.time(subset(flights, month %in% 3:7))
 user system elapsed
 0.16 0.05 0.20

Here we can see that data.table has a tremendous speed advantage (admittedly, it takes a bit of time
to set the key in the first place, but for repeated use, that is a one-time cost). It might seem difficult to use
a whole new type of data structure, but because data.table inherits from data frame, most functions that
work on a data frame will work on a data.table object. If they are designed for it, they may be much faster. If
not, at least they will still work as well as for a regular data frame. For example, in a regular linear regression:

> summary(lm(arr_delay ~ dep_time, data = flights2))
 
Call:
lm(formula = arr_delay ~ dep_time, data = flights2)
 
Residuals:
 Min 1Q Median 3Q Max
-100.67 -23.21 -8.76 9.07 1280.13
 
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.174e+01 2.229e-01 -97.55 <2e-16 ***
dep_time 2.123e-02 1.554e-04 136.65 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 43.41 on 327344 degrees of freedom
 (9430 observations deleted due to missingness)
Multiple R-squared: 0.05397, Adjusted R-squared: 0.05396
F-statistic: 1.867e+04 on 1 and 327344 DF, p-value: < 2.2e-16

Operations can also be paired with subsetting. For example, earlier we saw how to use the .N
convenience function. Now we count how many flights in each month were delayed by more than 12 hours.
Here there are only ten rows because some months had zero flights delayed by more than 12 hours. April
and June appear to have been particularly bad months.

> flights2[arr_delay > 60*12, .N, by = month]
 month N
 1: 1 3
 2: 2 4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

288

 3: 3 2
 4: 4 5
 5: 5 2
 6: 6 5
 7: 7 2
 8: 9 1
 9: 11 1
10: 12 4

Another dataset, airlines, has the full names of each carrier. We can merge it with the flights dataset
to have detailed carrier names (first converting the airlines data into a data.table object). This merging
(or join) is fast because the data are already ordered by the key following the call to setkey(). Note that it is
also possible to do nested joins (e.g., Dataset1[Dataset2[Dataset3]]), as long as the datasets all use the
same keys they will be evaluated from the innermost outward. For joins, the nomatch argument controls
what happens if no match can be found, either filling it with missing values (NA) or the default, or dropping
those rows if nomatch = 0 is specified. The documentation for ?data.table has more details.

> airlines2 <- as.data.table(airlines)
> setkey(airlines2, carrier)
> setkey(flights2, carrier)
 
> ## join the data.tables by their key
> flights3 <- flights2[airlines2]
 
> ## view just three variables
> flights3[, .(year, carrier, name)]
 year carrier name
 1: 2013 9E Endeavor Air Inc.
 2: 2013 9E Endeavor Air Inc.
 3: 2013 9E Endeavor Air Inc.
 4: 2013 9E Endeavor Air Inc.
 5: 2013 9E Endeavor Air Inc.

336772: 2013 YV Mesa Airlines Inc.
336773: 2013 YV Mesa Airlines Inc.
336774: 2013 YV Mesa Airlines Inc.
336775: 2013 YV Mesa Airlines Inc.
336776: 2013 YV Mesa Airlines Inc.

Joinings can also be done by multiple keys. For example, another dataset has weather data by month,
day, and airport. To join this with the flights data, we would set month, day, and origin airport as keys. Of
course we have to convert the weather data frame to a data.table object first.

> weather2 <- as.data.table(weather)
> weather2
 origin year month day hour temp dewp humid wind_dir wind_speed
 1: EWR 2013 NA NA NA 44.96 17.96 33.55 20 3.45234
 2: EWR 2013 1 1 0 37.04 21.92 53.97 230 10.35702
 3: EWR 2013 1 1 1 37.04 21.92 53.97 230 13.80936
 4: EWR 2013 1 1 2 37.94 21.92 52.09 230 12.65858
 5: EWR 2013 1 1 3 37.94 23.00 54.51 230 13.80936

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

289

8715: EWR 2013 12 30 19 37.04 21.02 51.95 320 17.26170
8716: EWR 2013 12 30 20 35.06 17.96 49.30 340 17.26170
8717: EWR 2013 12 30 21 33.08 15.98 48.98 320 14.96014
8718: EWR 2013 12 30 22 30.92 12.92 46.74 340 16.11092
8719: EWR 2013 12 30 23 28.94 12.02 48.69 330 14.96014
 wind_gust precip pressure visib
 1: 3.972884 0 1025.9 10
 2: 11.918651 0 1013.9 10
 3: 15.891535 0 1013.0 10
 4: 14.567241 0 1012.6 10
 5: 15.891535 0 1012.7 10

8715: 19.864419 0 1017.6 10
8716: 19.864419 0 1019.1 10
8717: 17.215830 0 1019.8 10
8718: 18.540125 0 1020.5 10
8719: 17.215830 0 1021.1 10
 
> setkey(flights2, month, day, origin)
> setkey(weather2, month, day, origin)

Because the weather data have hourly data, before we can join, we need to collapse the data somehow.
We will take the mean. One way to do this is just by writing out each column we care about.

> weather2b <- weather2[, .(temp = mean(temp, na.rm=TRUE),
+ precip = mean(precip, na.rm=TRUE),
+ visib = mean(visib, na.rm=TRUE)),
+ by = .(month, day, origin)]
> weather2b
 month day origin temp precip visib
 1: NA NA EWR 44.9600 0.00000000 10.000000
 2: 1 1 EWR 38.4800 0.00000000 10.000000
 3: 1 2 EWR 28.8350 0.00000000 10.000000
 4: 1 3 EWR 29.4575 0.00000000 10.000000
 5: 1 4 EWR 33.4775 0.00000000 10.000000

369: 12 26 EWR 31.0475 0.00000000 9.541667
370: 12 27 EWR 34.2425 0.00000000 10.000000
371: 12 28 EWR 39.1550 0.00000000 10.000000
372: 12 29 EWR 43.0475 0.03291667 7.947917
373: 12 30 EWR 38.9000 0.00000000 10.000000

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

290

However, writing each column or variable name becomes time-consuming when there are many
columns. Fortunately, there is a way around this. There is another special way to refer to the columns in a
data.table object, .SD. We can use this to get the mean of all columns except the ones we are grouping by.

> weather2c <- weather2[, lapply(.SD, mean, na.rm=TRUE),
+ by = .(month, day, origin)]
> weather2c
 month day origin year hour temp dewp humid wind_dir
 1: NA NA EWR 2013 NaN 44.9600 17.96000 33.55000 20.0000
 2: 1 1 EWR 2013 11.78261 38.4800 25.05043 58.38609 263.0435
 3: 1 2 EWR 2013 11.50000 28.8350 11.38250 47.78625 307.9167
 4: 1 3 EWR 2013 11.50000 29.4575 14.78000 54.39583 276.9565
 5: 1 4 EWR 2013 11.50000 33.4775 19.20500 55.88042 242.9167

369: 12 26 EWR 2013 11.50000 31.0475 19.04750 60.90417 153.7500
370: 12 27 EWR 2013 11.50000 34.2425 19.87250 56.68750 253.7500
371: 12 28 EWR 2013 11.50000 39.1550 23.00750 54.89750 222.9167
372: 12 29 EWR 2013 11.50000 43.0475 32.33000 67.60208 166.5217
373: 12 30 EWR 2013 11.50000 38.9000 30.71750 73.83875 280.8333
 wind_speed wind_gust precip pressure visib
 1: 3.452340 3.972884 0.00000000 1025.900 10.000000
 2: 12.758648 14.682397 0.00000000 1012.443 10.000000
 3: 12.514732 14.401704 0.00000000 1017.337 10.000000
 4: 7.863663 9.049346 0.00000000 1021.058 10.000000
 5: 13.857309 15.946714 0.00000000 1017.533 10.000000

369: 5.801849 6.676652 0.00000000 1027.129 9.541667
370: 8.343155 9.601136 0.00000000 1026.475 10.000000
371: 8.822647 10.152925 0.00000000 1023.117 10.000000
372: 8.103409 9.325241 0.03291667 1014.595 7.947917
373: 12.035241 13.849914 0.00000000 1012.541 10.000000

Now we are ready to join the datasets. We can see that we end up with the same number of rows but
have now added additional columns for the weather data.

> flights4 <- weather2c[flights2]
  
> dim(flights2)
[1] 336776 17
> dim(flights4)
[1] 336776 28

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

291

Finally, in data.table, almost any operation can be done within the middle argument, even functions
that are called for their side effects, not what they return. In the code that follows we calculate the regression
of arrival delay on visibility and we do this by carrier (airline).

> flights4[, as.list(coef(lm(arr_delay ~ visib))), by = carrier]
 carrier (Intercept) visib
 1: AA 46.58181 -4.859830
 2: AS 51.46830 -6.645643
 3: B6 54.26659 -4.758500
 4: DL 49.36366 -4.505132
 5: EV 78.28173 -6.600792
 6: MQ 52.29302 -3.868518
 7: UA 35.47410 -3.463089
 8: US 38.34697 -4.007031
 9: WN 65.21767 -5.847156
10: 9E 45.61693 -4.690411
11: HA -29.45361 2.268041
12: VX 25.30893 -2.789938
13: F9 12.50000 NA
14: FL 97.11111 NA
15: YV 4.00000 NA
16: OO -88.79863 11.939863

We can even make plots. To catch multiple plots, we use the par() function. Of course, as we saw in
Chapter 17, it would be easy to do this in ggplot2; this is just an example of the different operations you can
do in a data.table object and by other variables. Because the plot() function creates a plot but returns no
data, we end up with an empty data.table object.

> par(mfrow = c(4, 3))
> flights4[, plot(density(na.omit(arr_delay)), main = "Arival Delay", xlab = "", ylab =
"Density"), by = month]
Empty data.table (0 rows) of 1 col: month

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_17
http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

292

So far we have just explored the data.table package in R, which allows for faster and somewhat more
memory-efficient data management in R. However, it still requires the data to be loaded into memory. Many
larger datasets will be too big for memory. For data that cannot be loaded into memory, there are a few
options. The ff package uses flat files stored on disk and links them to R. The dplyr package also supports
linking to databases, including SQLite, MySQL, Postgresql, and Bigquery. Although, ultimately, the data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

293

often have to be read into R, you rarely need all the data at once. For example, from a large database, you
may only need to select certain observations, and read in two variables to examine their relationship. Even
if the full dataset cannot fit in memory, by linking to a database and only pulling in what you need
when you need it, you can use the memory available to go a lot farther. The package homepage for dplyr
(https://cran.r-project.org/web/packages/dplyr/) has many introductions to these topics.

18.2 Parallel Processing
The other easy way to increase performance for some operations is through parallel processing. Again we
are going to restrict ourselves to using multiple cores just on one machine, not distributed computing. To see
many of the packages available to help with this, a good place to start is the High-Performance Computing
CRAN task view (https://cran.r-project.org/web/views/HighPerformanceComputing.html). One thing
worth noting is that many of the parallel processing functions work better or only work on Linux or Mac
(built on Linux). In order to make this chapter more general, we will focus on methods that apply across
operating systems.

The parallel package is built into R now and provides a few facilities for parallel processing. A little
later, we’ll examine other options. To start, we load the package. For Linux machines, there are some
multicore functions we could use straight away, but to make this generic, we will create a local cluster that
takes advantage of multiple cores and works on Linux, Mac, and Windows. We will make one assuming four
cores are available. If you have two cores, you would just change the 4 to a 2. If you have more cores, you
could increase the number. If you don’t know what your computer has, you can use the detectCores()
function, which should tell you (note that this does not distinguish physical and logical cores, so, for
example, two physical cores with hyperthreading will count as four).

> library(parallel)
> cl <- makeCluster(4)

Because there is some overhead in sending commands to and getting results back from the cluster, for
trivial operations, like addition, it may actually be slower to use the parallel version. We have used lapply()
function before to loop through some index and perform operations. Here we will use parLapply() which is
a parallel version, and the main workhorse.

> system.time(lapply(1:1000, function(i) i + 1))
 user system elapsed
 0 0 0
> system.time(parLapply(cl, 1:1000, function(i) i + 1))
 user system elapsed
 0 0 0

We can notice the real-time difference as the task becomes more computationally demanding.

> time1 <- system.time(lapply(1:1000, function(i) mean(rnorm(4e4))))
> time2 <- system.time(parLapply(cl, 1:1000, function(i) mean(rnorm(4e4))))

The nonparallel version here took about four times as long (the code that follows shows how to get
the ratio of elapsed time), which is what we would expect for this sort of easily parallelized example (easy
because no data need to be transferred, results are simple, each task is about equally computationally
demanding, and no operations depend on a previous operation).

www.it-ebooks.info

https://cran.r-project.org/web/packages/dplyr/
https://cran.r-project.org/web/views/HighPerformanceComputing.html
http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

294

> time1["elapsed"] / time2["elapsed"]
 elapsed
4.063063

To give a practical example of the benefits of parallelization, we can go back to our bootstrapping
example from Chapter 16.

> library(boot)
> library(VGAM)
> library(foreign)
 
> gss2012 <- read.spss("GSS2012merged_R5.sav", to.data.frame = TRUE)
> gssr <- gss2012[, c("age", "sex", "marital", "educ", "income06", "satfin", "happy",
"health")]
> gssr <- na.omit(gssr)
> gssr <- within(gssr, {
+ age <- as.numeric(age)
+ Agec <- (gssr$age - 18) / 10
+ educ <- as.numeric(educ)
+ # recode income categories to numeric
+ cincome <- as.numeric(income06)
+ satfin <- factor(satfin,
+ levels = c("NOT AT ALL SAT", "MORE OR LESS", "SATISFIED"),
+ ordered = TRUE)
+ })
 
> m <- vglm(satfin ~ Agec + cincome * educ,
+ family = cumulative(link = "logit", parallel = TRUE, reverse = TRUE),
+ data = gssr)
 
> ## write function to pass to boot()
> model_coef_predictions <- function(d, i) {
+
+ m.tmp <- vglm(satfin ~ Agec + cincome * educ,
+ family = cumulative(link = "logit", parallel = TRUE, reverse = TRUE),
+ data = d[i,])
+ newdat <- expand.grid(
+ Agec = seq(from = 0, to = (89 - 18)/10, length.out = 50),
+ cincome = mean(d$cincom),
+ educ = c(12, 16, 20))
+ bs <- coef(m.tmp)
+ predicted.probs <- predict(m.tmp, newdata = newdat,
+ type = "response")
+ out <- c(bs, predicted.probs[, 1], predicted.probs[, 2], predicted.probs[, 3])
+ return(out)
+ }

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-0373-6_16
http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

295

In order to use the bootstrap on the cluster, we need the cluster to have everything set up. For example,
we need to load the relevant packages on the cluster. The boot() function is rather unique in R, in that it is
designed to be parallelized and accepts arguments for a cluster to use. As we will see, most functions are
not like that and rely on us being able to somehow break the task down into smaller chunks and distribute
them to the cluster ourselves. We can evaluate commands on the cluster using the clusterEvalQ() function,
which returns results from each of the nodes (here four).

> clusterEvalQ(cl, {
+ library(VGAM)
+ })
[[1]]
 [1] "VGAM" "splines" "stats4" "methods" "stats" "graphics"
 [7] "grDevices" "utils" "datasets" "base"
 
[[2]]
 [1] "VGAM" "splines" "stats4" "methods" "stats" "graphics"
 [7] "grDevices" "utils" "datasets" "base"
 
[[3]]
 [1] "VGAM" "splines" "stats4" "methods" "stats" "graphics"
 [7] "grDevices" "utils" "datasets" "base"
 
[[4]]
 [1] "VGAM" "splines" "stats4" "methods" "stats" "graphics"
 [7] "grDevices" "utils" "datasets" "base"
 
> clusterSetRNGStream(cl, iseed = 1234)
> boot.res <- boot(
+ data = gssr,
+ statistic = model_coef_predictions,
+ R = 5000,
+ parallel = "snow",
+ ncpus = 4,
+ cl = cl)

Next we calculate the 95% bias-corrected and accelerated bootstrap confidence intervals. The function
call boot.ci() is not designed to be parallel, so we can use the parLapply() function again. Now because
we are calling a boot.ci() function within the cluster, we need to load the book package on the cluster
(before we called boot() which then had the cluster do operations, but boot() was called in our current R
instance, not on the cluster; hence we did not need to load the boot package on the cluster before). We will
also find that although our local R instance has the boot.res object, the cluster does not. We need to export
the data from our local R instance to the cluster. Note that if we were using Linux, we could use mclapply()
which is a multicore version and relies on forking which allows processes to share memory, reducing the
need to export data explicitly as for the local cluster we created. However, the cluster approach works across
operating systems, while the mclapply() approach does not.

> clusterEvalQ(cl, {
> library(boot)
> })
> ## output omitted
> clusterExport(cl, varlist = "boot.res")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

296

 
> boot.res2 <- parLapply(cl, 1:6, function(i) {
+ cis <- boot.ci(boot.res, index = i, type = "bca")
+ data.frame(Estimate = boot.res$t0[i],
+ LL = cis$bca[1, 4],
+ UL = cis$bca[1, 5])
+ })

Even parallelized, this code takes quite a bit of time to run. Here we just show it for the six coefficients,
rather than all the predicted probabilities. We could easily change this by indexing over all of boot.res$t0
rather than only 1:6. It is substantially faster than the naive single-core version, and the actual code required
to make it parallel is fairly easy.

> ## combine row-wise
> boot.res2 <- do.call(rbind, boot.res2)
> round(boot.res2, 3)
 Estimate LL UL
(Intercept):1 0.965 0.008 1.834
(Intercept):2 -1.189 -2.128 -0.300
Agec 0.169 0.128 0.215
cincome -0.061 -0.112 -0.007
educ -0.183 -0.251 -0.108
cincome:educ 0.012 0.008 0.016

18.2.1 Other Parallel Processing Approaches
Another approach to parallel processing is using the foreach package. The foreach package is really just a
consistent front end to parallelize for loops. What is nice about it is that it can use a variety of parallel back
ends, including multiple cores and clusters. This means that the appropriate back end for a specific system
can be chosen and registered, and then the rest of the code will work the same. For this example, we will
continue using the cluster we created, but first we will install the necessary packages. So in addition to
loading the foreach package, we need to load the doSNOW package and then register the cluster we created.
On Linux or Mac, we could load the doMC library instead and use the registerDoMC() specifying the number
of cores to achieve a similar result but using forking instead of a local cluster.

> install.packages("foreach")
> install.packages("doSNOW")
 
> library(foreach)
> library(doSNOW)
> registerDoSNOW(cl)

From here, we can use the foreach() function to iterate over a variable and do something, here just
taking the mean of some random data as we examined before using parLapply(). To make foreach()
parallel, we use %dopar% instead of %do%. Another nice feature is that if no parallel back end is registered,
%dopar% will still work, but it will run sequentially instead of in parallel. However, it will still run, which can
be helpful for ensuring that code works (even if slowly) on many different machines and configurations.
Finally, notice that we specify the function used to combine results. Since, for each run, we will get a single

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

297

numeric mean, we can combine these into a vector using the c() function. For more complex examples,
we could use different functions to combine the results. In the code that follows we show both approaches,
along with timing and the histograms (Figure 18-1) to show that the results are comparable (differences are
due to random variation).

> system.time(
+ res1 <- foreach(i = 1:1000, .combine = 'c') %do% mean(rnorm(4e4))
+)
 user system elapsed
 5.24 0.00 5.23
> system.time(
+ res2 <- foreach(i = 1:1000, .combine = 'c') %dopar% mean(rnorm(4e4))
+)
 user system elapsed
 0.53 0.02 1.94
> par(mfrow = c(1, 2))
> hist(res1)
> hist(res2)

Figure 18-1.  Histograms of results from sequential and parallel processing

The foreach package also makes use of the iterators package, which has some special iterators to
make life easier. For example, suppose we wanted to calculate the coefficient of variation (the ratio of the
mean to the variance) for each variable in a dataset. We can do this using the iter() function on the mtcars
dataset, and specifying we want to iterate over the dataset by columns, and the variable that is passed should
be called “x.” Here we choose to combine the results using rbind() to put them into a one-column matrix.

> foreach(x=iter(mtcars, by='col'), .combine = rbind) %dopar% (mean(x) / var(x))
 [,1]
result.1 0.55309350
result.2 1.93994943
result.3 0.01502017
result.4 0.03120435
result.5 12.58061252

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

298

result.6 3.36047700
result.7 5.58967159
result.8 1.72222222
result.9 1.63157895
result.10 6.77407407
result.11 1.07805255

Now let’s consider a more advanced example. Suppose we wanted to regress every continuous variable
in the diamonds dataset on cut, color, and clarity. More generally, it is not uncommon to have a fixed set of
predictors and a variety of outcomes or the reverse—a fixed outcome but a variety of potential predictors.
To test which sets of predictors or outcomes are related, we may want to iterate over the predictors (or
outcomes) via running multiple independent regressions. To have nice results, we might write a short
function to show the estimate and 95% confidence interval. We can then use the foreach() function to
iterate over the continuous variables in the diamonds data, and use cbind() to combine the results column-
wise.

> prettyout <- function(object) {
+ cis <- confint(object)
+ bs <- coef(object)
+ out <- sprintf("%0.2f [%0.2f, %0.2f]", bs, cis[, 1], cis[, 2])
+ names(out) <- names(bs)
+ return(out)
+ }
 
> continuous.vars <- sapply(diamonds, is.numeric)
> results <- foreach(dv=iter(diamonds[, continuous.vars], by='col'), .combine = cbind)
%dopar%
+ prettyout(lm(dv ~ cut + color + clarity, data = diamonds))

Now we can print the results. To remove all the quotation marks, we explicitly call print() and use the
quote = FALSE argument. To avoid too much output, we only examine the first two columns.

> print(results[, 1:2], quote = FALSE)
 result.1 result.2
(Intercept) 0.85 [0.85, 0.86] 62.24 [62.22, 62.27]
cut.L -0.09 [-0.10, -0.07] -1.77 [-1.81, -1.72]
cut.Q 0.01 [-0.00, 0.02] 1.11 [1.07, 1.15]
cut.C -0.08 [-0.09, -0.07] -0.01 [-0.05, 0.02]
cut^4 -0.02 [-0.03, -0.01] 0.26 [0.24, 0.29]
color.L 0.45 [0.44, 0.46] 0.19 [0.15, 0.23]
color.Q 0.07 [0.06, 0.08] -0.01 [-0.04, 0.03]
color.C -0.01 [-0.02, 0.00] -0.07 [-0.10, -0.03]
color^4 0.01 [-0.00, 0.02] 0.03 [0.00, 0.06]
color^5 -0.02 [-0.03, -0.01] 0.02 [-0.01, 0.05]
color^6 0.01 [-0.00, 0.01] -0.02 [-0.04, 0.01]
clarity.L -0.64 [-0.66, -0.62] -0.41 [-0.47, -0.34]
clarity.Q 0.14 [0.12, 0.16] 0.10 [0.04, 0.17]
clarity.C -0.03 [-0.04, -0.01] -0.16 [-0.22, -0.10]
clarity^4 0.01 [-0.00, 0.03] 0.08 [0.03, 0.12]
clarity^5 0.07 [0.06, 0.08] -0.14 [-0.17, -0.10]
clarity^6 -0.02 [-0.03, -0.01] 0.07 [0.04, 0.10]
clarity^7 0.01 [0.00, 0.02] -0.01 [-0.03, 0.02]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

299

Next we examine another case where parallel processing can be helpful. Cross-validation is a
commonly used technique in machine learning and other exploratory modeling. The idea is that models
will tend to overfit the data, even if only slightly, and so evaluating the performance of a model on sample
predictions will be overly optimistic. Instead, it is better to evaluate the performance of a model on out-
of-sample predictions (i.e., on data not used in the model). K-fold cross-validation separates the data into
k groups, and then systematically leaves one out, trains the model on the remaining k - 1 group, and then
predicts from the model on the hold-out data, and iterates through until all parts of the data have been used
for training and as the hold-out testing data. A common number for k is 10, which requires ten identical
models to be run on different subsets of the data—a perfect case that is easy to parallelize.

First we will create a list of row indices to be dropped from a given training model and used as the hold-
out test data, and then use foreach to iterate through. In the example code that follows, we want to calculate
a cross-validated R2, then combine the results into a vector, and finally calculate the mean. We can specify all
of that in the call to foreach(). Then the results are compared to a linear regression model on the full data.

> ## cross validated R squared
> drop.index <- tapply(1:nrow(gssr),
+ rep(1:10, each = ceiling(nrow(gssr)/10))[1:nrow(gssr)],
+ function(x) x)
  
> CV <- foreach(i = drop.index, .combine = 'c', .final = mean) %dopar% {
+ m <- lm(cincome ~ educ, data = gssr[-i,])
+ cor(gssr[i, "cincome"], predict(m, newdata = gssr[i,]))^2
+ }
  
> summary(lm(cincome ~ educ, data = gssr))
 
Call:
lm(formula = cincome ~ educ, data = gssr)
 
Residuals:
 Min 1Q Median 3Q Max
-21.2006 -2.8900 0.9035 3.6270 14.0418
 
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.64760 0.45438 12.43 <2e-16 ***
educ 0.82765 0.03224 25.67 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 
Residual standard error: 5.183 on 2833 degrees of freedom
Multiple R-squared: 0.1887, Adjusted R-squared: 0.1884
F-statistic: 658.9 on 1 and 2833 DF, p-value: < 2.2e-16
 
> CV
[1] 0.1829171

Although the results here are not too different, it illustrates how cross-validation can be performed,
in parallel, to obtain more realistic estimates of model performance. Of course in this case, we have the
adjusted R2, but for performance statistics where we do not know how to adjust them, cross-validation
provides a computationally intense but conceptually straightforward approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

300

The foreach package can also handle nested parallel loops. For example, we could use cross-validation
combined with screening a number of predictor variables to identify which predictors explained the largest
amount of variance in income bins in the GSS data. This can be done by chaining foreach() calls together
using the %:% operator. The result looks like this and at the end we add the column names back and show the
variance accounted for across all ten cross-validations

> CV2 <-
+ foreach(x = iter(gssr[, 1:4], by = "col"), .combine = "cbind") %:%
+ foreach(i = drop.index, .combine = 'rbind') %dopar% {
+ x2 <- x[-i]
+ m <- lm(gssr$cincome[-i] ~ x2)
+ cor(gssr$cincome[i], predict(m, newdata = data.frame(x2 = x[i])))^2
+ }
 
> colnames(CV2) <- colnames(gssr)[1:4]
> round(CV2, 2)
 age sex marital educ
result.1 0.00 0.02 0.19 0.19
result.2 0.00 0.00 0.19 0.23
result.3 0.01 0.01 0.27 0.19
result.4 0.01 0.01 0.18 0.15
result.5 0.01 0.02 0.22 0.23
result.6 0.01 0.02 0.22 0.13
result.7 0.04 0.00 0.14 0.16
result.8 0.00 0.02 0.19 0.24
result.9 0.00 0.06 0.27 0.21
result.10 0.00 0.00 0.25 0.09

We will close this section by showing how to do conditional evaluation. Recall that in our first
experiment with the iterators, we iterated over the numeric columns of the diamonds dataset. Using the
same operator we used for nested loops, %:%, we can add when statements, so that the functions are only
executed when certain conditions are meant. For example, we could use a when statement to only include
numeric variables, rather than preselecting only columns we knew were numeric. This can also be useful for
resampling statistics like the bootstrap. For example, if one of the predictors was a rare event, it is possible
that in a particular bootstrap sample, none of the sampled cases would have the event, in which case the
predictor would have no variability. We might prefer to not evaluate these rather than get results with
missing or infinite coefficients.

> results <- foreach(dv=iter(diamonds, by='col'), .combine = cbind) %:%
+ when(is.numeric(dv)) %dopar%
+ prettyout(lm(dv ~ cut + color + clarity, data = diamonds))
 
> print(results[, 1:2], quote = FALSE)
 result.1 result.2
(Intercept) 0.85 [0.85, 0.86] 62.24 [62.22, 62.27]
cut.L -0.09 [-0.10, -0.07] -1.77 [-1.81, -1.72]
cut.Q 0.01 [-0.00, 0.02] 1.11 [1.07, 1.15]
cut.C -0.08 [-0.09, -0.07] -0.01 [-0.05, 0.02]
cut^4 -0.02 [-0.03, -0.01] 0.26 [0.24, 0.29]
color.L 0.45 [0.44, 0.46] 0.19 [0.15, 0.23]
color.Q 0.07 [0.06, 0.08] -0.01 [-0.04, 0.03]
color.C -0.01 [-0.02, 0.00] -0.07 [-0.10, -0.03]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18 ■ High-Performance Computing

301

color^4 0.01 [-0.00, 0.02] 0.03 [0.00, 0.06]
color^5 -0.02 [-0.03, -0.01] 0.02 [-0.01, 0.05]
color^6 0.01 [-0.00, 0.01] -0.02 [-0.04, 0.01]
clarity.L -0.64 [-0.66, -0.62] -0.41 [-0.47, -0.34]
clarity.Q 0.14 [0.12, 0.16] 0.10 [0.04, 0.17]
clarity.C -0.03 [-0.04, -0.01] -0.16 [-0.22, -0.10]
clarity^4 0.01 [-0.00, 0.03] 0.08 [0.03, 0.12]
clarity^5 0.07 [0.06, 0.08] -0.14 [-0.17, -0.10]
clarity^6 -0.02 [-0.03, -0.01] 0.07 [0.04, 0.10]
clarity^7 0.01 [0.00, 0.02] -0.01 [-0.03, 0.02]

Finally, once we are done using a cluster, we need to shut it down, which can be done using the
stopCluster() command. Otherwise, even if we no longer use the cluster or workers, they will sit there and
use system resources like memory.

> stopCluster(cl)

In closing, we have seen how using data management packages designed for large data and speed can
have a dramatic impact in the time it takes to do data manipulation and management on larger datasets,
although still requiring that they fit within memory. We have also seen how, for some problems, it is easy to
gain great speed advantages through parallel processing when multiple cores are available. All the parallel
processing examples in this chapter were explicit parallelization. That is, we processed variables or for loops
in parallel. None of these approaches would help if you had a single regression model that was very slow
to complete or matrix multiplication or decomposition that took a long time. Currently, there are not many
R functions designed with implicit parallelization. One way such implicit parallelization can be achieved
is by linking R to parallel linear algebra systems such as ATLAS or GoToBlas2, although this is a decidedly
nonbeginning topic and outside the scope of this book. One easy way to get going with this is to use a
modified version of R provided by Revolution Analytics (www.revolutionanalytics.com/revolution-r-open)
which uses Intel Math Kernel Library for parallel processing of a variety of math operations, speeding up
tasks such as matrix multiplication and principal component analysis.

References
Revolution Analytics. iterators: Iterator construct for R. R package version 1.0.7, 2014.
http://CRAN.R-project.org/package=iterators.

Wickham, H. nycflights13: Data about flights departing NYC in 2013. R package version 0.1, 2014.
http://CRAN.R-project.org/package=nycflights13.

www.it-ebooks.info

http://www.revolutionanalytics.com/revolution-r-open
http://cran.r-project.org/package=iterators
http://cran.r-project.org/package=nycflights13
http://www.it-ebooks.info/

303

Chapter 19

Text Mining

Our final topic is text mining or text data mining. It is really only something that can be done with access
to comparatively decent computing power (at least historically speaking). The concept is simple enough.
Read text data into R that can then be quantitatively analyzed. The benefits are easier to imagine than the
mechanics. Put simply, imagine if one could determine the most common words in a chapter, or a textbook.
What if the common words in one text could be compared to the common words in other texts? What might
those comparisons teach us? Perhaps different authors have a set of go-to words they more frequently use.
Perhaps there is a way to discover who wrote a historical text (or at least provide some likely suspects).
Perhaps a model may be trained to sort “good” essays from “bad” essays (or to sort spam and ham in e-mail
files). Full disclaimer: this is a beginning R text. There are many more things that would be brilliant to do to
text data than what we will do in this chapter.

So what will we do in this chapter? For starters, we will discuss how to import text into R and get it ready
for analysis. Text can come in many formats these days, and depending on the size and scope of your project,
some ways may be more or less feasible. We will discuss some implementations that (currently) allow for
importing a collection of common file(s). We’ll also discuss pulling in some regularly updating files from the
Internet.

Along the way, we will do some exploratory data analysis (EDA) with word clouds. Not only will
this EDA let us confirm that we have successfully imported a document, but it will let us get to know
what is in the text. An imported text file (e.g., .txt, .pdf, or .docx) is called a corpus. We’ll discuss various
transformations that are possible on the corpus, and we’ll visualize just what those changes do.

From there, we will start to perform more in-depth inspections and analytics of a corpus: counting word
frequency, finding correlations, visualizing correlations, topic models, and even some clever uses of our
familiar glm() function to do some sorting.

Importing information from random file types can be difficult. UTF-8 *.txt files are quite universal
and thus are often comparatively easy. These days, most of the Microsoft Word files are XML files, and R tends
to play well with XML files once you remove the wrappers that make them *.docx files. Older Word formats
(such as .doc pre-2006 or so) require more esoteric methods to use primarily just R. If you routinely deal in
many different file types, we recommend learning a language other than R that is designed to process many
formats into a consistent one to prepare a corpus of documents for analysis.

As you may well already know, but if not you will certainly discover, dealing with data usually requires
data munging. For simplicity’s sake, we will start off with basic .txt files, and build on additional formats
from there as space allows. First, though, we need to install the right software.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

304

19.1 Installing Needed Packages and Software
Several pieces of software are needed to run many of these examples. It may seem tedious to get them all
working, and for that we do apologize. Text mining is fairly new, and the way we understand what may
be done is changing very quickly. As with any effort that requires such an array of software to work, error
messages or odd results may be more the norm than the exception. The web links we provide may prove to
be inaccurate (although we have done our best to select more stable links). Our advice is to approach getting
text mining functional as a series of steps in an adventure, after generous quantities of sleep, patience, and
caffeine. As always with R, Google will prove a loyal friend. The R community is a clever bunch (although
message board civility on occasion merits a “needs improvement” rating).

19.1.1 Java
It is important that you install Java on your computer. It is also important that you have installed the correct
version(s) of R, RStudio, and Java. In this chapter we will provide some guidance for Windows users, as they
make up a sizable cohort of users. For Windows 7, click the start button, right-click My Computer, and click
properties. Next to system type it should say 64 bit, although it may say 32 bit. More detailed instructions
may be found at http://windows.microsoft.com/en-us/windows7/find-out-32-or-64-bit for XP, Vista,
or 7. Visit https://support.microsoft.com/en-us/kb/827218 for Windows 8 or 10 or use the search
option to find “Settings” and then select system. From there, select “about” and see next to system type that
it says 64 bit, although it may say 32 bit. It is possible to try your luck with Sys.info() in the R command
line. Ideally, under the machine output, you’d want to see something with a “64.” This command returns
information about the current system.

Once you’ve (ideally) confirmed you’re on a 64-bit system, you may use the R.Version() command to
see what version and type of R you installed. The information that follows is about the platform on which R
was built, not the one on which it is running. There is quite a bit of output, but following are just a few key
pieces to see the version of R you have and also whether it is 32 or 64 bit.

> R.Version()
 
$arch
[1] "x86_64"
 
$language
[1] "R"
 
$version.string
[1] "R version 3.2.1 (2015-06-18)"
 
$nickname
[1] "World-Famous Astronaut"

Provided your 64 bits (or 32 bits as the case may be) are all lined up, then all that remains is to make
sure that you have the correct version of Java installed. Visit www.java.com/en/download/manual.jsp and
select the 64-bit (or 32-bit) version to install. A restart or two of your system would be wise, and from there it
should work seamlessly. Those are famous last words, and if they prove untrue, a quick Google of the error
message(s) should prove helpful.

www.it-ebooks.info

http://windows.microsoft.com/en-us/windows7/find-out-32-or-64-bit
https://support.microsoft.com/en-us/kb/827218
http://www.java.com/en/download/manual.jsp
http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

305

19.1.2 PDF Software
To allow for PDF files to be used, we need to have the Xpdf suite of tools available. It is perhaps simplest to
download the zip file from www.foolabs.com/xpdf/download.html. To make the Xpdf suite work properly,
we need to add it to the windows PATH variable so that it can be found from the command line and R. From
the foregoing web site, download the .zip file. Extract the zip files to a convenient directory (e.g., C:\usr\
xpdfbin-win-3.04). Right-click the Windows start menu, select “system,” select “Advanced system settings,”
and in the system properties window that opens, select the “Advanced” tab. Then select the “Environment
Variables,” in the lower “System variables” box, scroll down until you see the “Path” line, select it to highlight,
and click “Edit.” Click the “Variable value:” box, being sure to only unhighlight the text. Go to the end (you
can hit “End” on your keyboard to do this), and type ;C:\usr\xpdfbin-win-3.04\bin64 and then select
“OK.” If you unzipped the files to another location, change the path appropriately. Also if you are using a
32-bit system and R, you should choose the 32-bit Xpdf suite by using the other directory. This will make it
easier for R to find the correct file. Please be careful when doing this—it is not beyond the realm of possibility
to cause heartache and grief.

19.1.3 R Packages
We also need a few R packages.

> install.packages("tm")
> install.packages("wordcloud")
> install.packages("tm.plugin.webmining")
> install.packages("topicmodels")
> install.packages("SnowballC")
>library(tm)
Loading required package: NLP
> library(wordcloud)
Loading required package: RColorBrewer
> library(tm.plugin.webmining)
 
Attaching package: ‘tm.plugin.webmining’
 
The following object is masked from ‘package:base’:
 
 parse
 
> library(topicmodels)
> library(SnowballC)

19.1.4 Some Needed Files
Finally, we turn our attention to having some local files for R to read into a corpus. First of all, in your working
directory (really only for convenience and you may check with getwd()), please create a folder named ch19
as shown in Figure 19-1.

www.it-ebooks.info

http://www.foolabs.com/xpdf/download.html
http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

306

From there, please visit www.gutenberg.org/ebooks/author/68 and download the text files for Pride and
Prejudice, Emma, Sense and Sensibility, and Mansfield Park. Also download the PDF for Pride and Prejudice.

Figure 19-1.  Screenshot of folder in working directory

Figure 19-2.  Screenshot of ch19 folder contents

You are now ready to learn to do some text mining!

19.2 Text Mining
UTF-8 text files are the most common file type and the most readily managed in R. The first step is to get the
textual information into R and in a format that our tm package can manipulate. There are several new function
calls and arguments to discuss. We want to create a Corpus() and the self-titled function does just that. This
command first takes an object (for us it will usually be a file), can take a type of “reader” if needed (e.g., to
read PDF files), and can be given a language argument (the default is “en” for English). Our files are in a folder

www.it-ebooks.info

http://www.gutenberg.org/ebooks/author/68
http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

307

in our working directory called ch19. We use DirSource(directory = ".", pattern = NULL, recursive =
FALSE, ignore.case = FALSE, mode = "text") to get files into R. A note on this function call is that
the directory (which defaults to our working directory) can be given paths to folders outside the getwd().
The pattern and ignore.case variables may be used to set filename patterns so that only the files you wish
are read into R. The recursive argument could be used to go deeper into the directory that you named. We
show our first example that selects the Pride and Prejudice text file pg1342.txt as the sole source.

> austen <- Corpus (DirSource("ch19/", pattern="pg1342"))
> inspect(austen)
<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 0
Content: documents: 1
 
[[1]]
<<PlainTextDocument>>
Metadata: 7
Content: chars: 690723
 
> summary(austen)
 Length Class Mode
pg1342.txt 2 PlainTextDocument list

As you can see, we have some information that indicates a successful read-in of our file. Another
success indicator is that the global environment is now updated. If you’re using RStudio, it would look
like Figure 19-3.

Figure 19-3.  Screenshot of Pride and Prejudice VCorpus

19.2.1 Word Clouds and Transformations
Let’s attempt to obtain a visual idea of what this corpus actually holds. In its raw form, the text file
(and we recommend at least a quick glance through the raw text file to see what it contains) has many
words. In real life, there would be some advantage to removing the “header” information and table
of contents style information. We have not done that here. To get a sense of what is in our corpus, we
turn to a word cloud. The wordcloud package has a function call named wordcloud(words,freq,scal
e=c(4,.5),min.freq=3,max.words=Inf, random.order=TRUE, random.color=FALSE, rot.per=.1,
colors="black",ordered.colors=FALSE,use.r.layout=FALSE, fixed.asp=TRUE, ...) which takes
several inputs. The first term, words, takes in a corpus. The scale argument assigns the range of word sizes
(more common words are larger). The variable max.words sets the maximum number of words that show

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

308

up in the cloud. Remember, there are many words in this corpus. Depending on screen real estate, you may
well find efforts to show more words throw an error, thus our compromise of the top 100. The 0.35 of rot.
per limits the vertical words to 35% of the total. Looking at the code that follows (which creates the output
seen in Figure 19-4), we can see several of these arguments in action. Note, if you are getting warnings and
a square output, then adjusting your viewing area to be larger may help. In R, this can be done simply by
resizing the graphics window. In RStudio, this can be done by going full screen and using your mouse to
increase the viewing area for the plots tab.

> wordcloud(austen, scale=c(5,0.5), max.words=100, random.order=FALSE,
+ rot.per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))

Figure 19-4.  Word cloud of unprocessed corpus text

Notice that not only are there several words that are quite boring, but the word elizabeth shows up at
least twice. Generally, we find it convenient to perform some transformations to the corpus to get the sorts
of words we would expect from a text file. The function call tm_map() takes a corpus as its first input and
then a function call to a transformation to apply to that corpus. We do not discuss the specifics of the various
transformations simply because they are well named as shown in the following code. Note that removeWords
can also take a custom word list. Of note, stop words are words to be removed prior to analysis. Canonically
these are words such as “the” or “and,” which do not add any real substance and simply serve to connect
other words. It can be helpful when performing analytics on technical writing to remove words that may not
be of interest (e.g., if analyzing R code, you may want to remove the assignment operator, <-). Figure 19-5
shows our new word cloud after transformations and removing punctuation, whitespace, and stop words.

> austen <- tm_map(austen, content_transformer(tolower))
> austen <- tm_map(austen, removePunctuation)
> austen <- tm_map(austen, removeWords, stopwords("english"))
> austen <- tm_map(austen, content_transformer(stripWhitespace))
 
> wordcloud(austen, scale=c(5,0.5), max.words=100, random.order=FALSE,
+ rot.per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

309

This might be a fairly basic and common set of transformations. Notice that the words sister and sisters
show up. We might not care about such repeats, and if that were the case, we’d be interested in finding only
word stems. The SnowballC package can help with such stems. We run our code one last time and see the
result in Figure 19-6. This transformation will take words such as lady, ladies, and ladies’ and write it as a
common stem ladi.

austen <- tm_map(austen, stemDocument)
 
> wordcloud(austen, scale=c(5,0.5), max.words=100, random.order=FALSE,
+ rot.per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))

Figure 19-5.  Word cloud with several transformations performed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

310

Word clouds are essentially EDA for text mining. Our readers will note that Ms Elizabeth seems to be
the principal word and focus of Pride and Prejudice. Before we turn our attention to some other aspects
of text mining, let us take our text transformation operations and package them into a single function. We
have commented out a few additional possibilities, and leave it to the reader to use or not use pieces of this
function as seems best for a particular document or set of documents.

> txttrans = function(text){
+ text = tm_map(text, content_transformer(tolower))
+ text = tm_map(text, removePunctuation)
+ ##text = tm_map(text, content_transformer(removeNumbers))
+ text = tm_map(text, removeWords, stopwords("english"))
+ text = tm_map(text, content_transformer(stripWhitespace))
+ ##text = tm_map(text, stemDocument)
+ text
+ }

While the word cloud creates a nice visual, it is not readily used to run additional code or analysis.
Generally, we prefer to use TermDocumentMatrix() or DocumentTermMatrix() function calls. They create
essentially the same structure (e.g., a matrix), and the difference is entirely whether the rows are terms or
documents. Of course, for this specific example, we only have one document.

> austen = TermDocumentMatrix(austen)
> austen
<<TermDocumentMatrix (terms: 4365, documents: 1)>>
Non-/sparse entries: 4365/0
Sparsity : 0%
Maximal term length: 26
Weighting : term frequency (tf)

Figure 19-6.  Word cloud with word stemming. Notice the ladi three words below elizabeth

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

311

It can also be helpful not only to see a word cloud, where there is simply the top 100 words, but to see
all the words above (or below for that matter) a certain frequency. The function call findFreqTerms(x,
lowfreq = 0, highfreq = Inf) does just that on a Term Document or Document Term Matrix. Output is
sorted alphabetically for all terms in Pride and Prejudice that show up at least 100 times. Notice these words
have been stemmed, so words like marry, marries, and married would all be just marri as seen in row [49].

> findFreqTerms(austen, low = 100)
 
 [1] "alway" "answer" "appear" "attent" "away" "believ"
 [7] "bennet" "bingley" "can" "catherin" "certain" "collin"
[13] "come" "darci" "daughter" "day" "dear" "elizabeth"
[19] "enough" "even" "ever" "everi" "expect" "famili"
[25] "father" "feel" "felt" "first" "friend" "gardin"
[31] "give" "good" "great" "happi" "hope" "hous"
[37] "howev" "jane" "know" "ladi" "last" "letter"
[43] "like" "littl" "long" "look" "love" "lydia"
[49] "made" "make" "man" "mani" "manner" "marri"
[55] "may" "mean" "might" "miss" "mother" "mrs"
[61] "much" "must" "never" "noth" "now" "one"
[67] "quit" "receiv" "repli" "return" "room" "said"
[73] "saw" "say" "see" "seem" "shall" "sister"
[79] "soon" "speak" "sure" "take" "talk" "think"
[85] "though" "thought" "time" "two" "walk" "way"
[91] "well" "wickham" "will" "wish" "without" "work"
[97] "young"

So far we have accomplished a fair bit. Text has been input into a corpus, and we begin to have a sense
of what makes that particular set of words perhaps unique. Still, that isn’t the real power of what this was
designed to do. We need more words. While we could simply get more text files (and indeed we have already),
not all words come from text files. So first, we take a brief detour to the Portable Document Format (PDF).

19.2.2 PDF Text Input
We have our function, txttrans(), which can quickly process a corpus into something that may be readily
analyzed. We have the correct software for PDFs, and our path is ready to help. With all that legwork done,
it is quite simple to input a PDF file (or a few hundred). We do so with a PDF version of Pride and Prejudice,
primarily to see that it is in fact equivalent to text. Note that if other PDF files were in this same directory,
they would also be read in, so you may want to either specify the particular file or make sure the directory
only has PDFs in it that you wish to read into R. To quickly demonstrate this, we show another word cloud in
Figure 19-7. Note that for this to work, it is important that the pdftotext program discussed earlier (in the
section “PDF Software”) can be executed directly from the command line. On Windows, this means ensuring
it is correctly added to the PATH variable. On Linux or Mac, the program will need to be where the system
usually searches for applications.

> austen2<-Corpus(DirSource("ch19/", pattern="pdf"), readerControl = list(reader=readPDF))
> austen2 <- txttrans(austen2)
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

312

> summary(austen2)
 Length Class Mode
1342-pdf.pdf 2 PlainTextDocument list
 
> wordcloud(austen2, scale=c(5,0.5), max.words=100, random.order=FALSE,
+ rot.per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))

Figure 19-7.  Word cloud of Pride and Prejudice from a PDF version

Once the information is in a corpus, it doesn’t really matter from what type of file it came. Analytics may
be readily performed on it. However, what is currently limiting us is that we only have a single document in
these corpora. So, let’s get 100 documents online in a relatively painless way.

19.2.3 Google News Input
Because we are getting these online, please be aware that your output may not match ours perfectly. The
world of news involving Jane Austen is a happening place! The first thing to notice is that we have quite
a few more documents than we had before. Still, all the same, we have what should now be a familiar
process. Figure 19-8 is not quite the same as our prior word clouds. Regardless, it seems clear our search was
successful.

> austen4 = WebCorpus(GoogleNewsSource("Jane Austen"))
> austen4
<<WebCorpus>>
Metadata: corpus specific: 3, document level (indexed): 0
Content: documents: 100
 
> austen4 = txttrans(austen4)
> wordcloud(austen4, scale=c(5,0.5), max.words=100, random.order=FALSE,
+ rot.per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

313

The tm.plugin.webmining package has quite a few functions that are similar to GoogleNewsSource(). A
brief look at the help file shows options for Reuters, NYT, financial news, and Yahoo. These are prepackaged
and work well. There are other functions that may require a bit more processing afterward, yet they will
allow reading in various types of web-based files. To keep our and your outputs looking the same, we return
to the world of Jane Austen, and input several of her novels.

19.2.4 Topic Models
The topicmodels package allows a corpus to be readily parsed into a topic model. First, let’s run our now
very familiar code, and see the resulting word cloud in Figure 19-9 for a single corpus that holds four of Ms
Austen’s novels.

> austen_pesm <- Corpus(DirSource("ch19/", pattern="pg"))
 
> summary(austen_pesm)
 Length Class Mode
pg1342.txt 2 PlainTextDocument list
pg141.txt 2 PlainTextDocument list
pg158.txt 2 PlainTextDocument list
pg161.txt 2 PlainTextDocument list
 
> austen_pesm = txttrans(austen_pesm)
 
> wordcloud(austen_pesm, scale=c(5,0.5), max.words=100, random.order=FALSE,
+ rot.per=0.35, use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))

Figure 19-8.  Google News word cloud on “jane austen” search term

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

314

Notice the difference in the word cloud. Across many novels, mrs becomes a much more common word.
We begin to see that while in a single novel there may be an intense focus on Ms Elizabeth or Ms Woodhouse,
there are certain recurring themes across the collection of novels. We could contrast this word cloud with one
created by the works of Shakespeare and perhaps notice some defining differences. If you cared about spam
vs. ham in electronic mail, you might do similar sorts of checks on e-mails to see if they looked more like the
word cloud for spam or more like the word cloud for ham. You might even begin to perform some of the more
familiar analytics we’ve already done to see if one could train some sort of model on ham or spam, and then
assign a probability to a new message as to whether it should go into one folder or another.

That sort of activity quickly gets beyond the scope of this book, however. We shall delve into topic
models, now that we have enough words and documents to make something sensible. First, while we have
the word cloud, let us take a close look at the most frequent words. Since we have four novels instead of one,
let’s quadruple our low count to 400.

> austen_pesm_DTM = DocumentTermMatrix(austen_pesm)
 
> findFreqTerms(austen_pesm_DTM, low = 400)
 [1] "always" "away" "better" "can" "come" "crawford"
 [7] "day" "dear" "done" "elinor" "elizabeth" "emma"
[13] "enough" "even" "ever" "every" "family" "fanny"
[19] "feelings" "felt" "first" "friend" "give" "good"
[25] "great" "happy" "hope" "house" "however" "indeed"
[31] "jane" "just" "know" "lady" "last" "like"
[37] "little" "long" "love" "made" "make" "man"
[43] "many" "marianne" "may" "might" "mind" "miss"
[49] "mother" "mrs" "much" "must" "never" "nothing"
[55] "now" "one" "quite" "really" "room" "said"

Figure 19-9.  Word cloud of Pride and Prejudice, Emma, Mansfield Park, and Sense and Sensibility

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

315

[61] "saw" "say" "see" "seemed" "shall" "sir"
[67] "sister" "soon" "still" "sure" "thing" "think"
[73] "though" "thought" "time" "two" "upon" "way"
[79] "well" "will" "wish" "without" "young"

Since elizabeth, emma, and miss are frequent words, let’s go ahead and see what sorts of associations
can be made to those words that are both common and perhaps of interest. Before we do that, go back and
rerun our text processing function, this time allowing stemming to occur.

> txttrans = function(text){
+ text = tm_map(text, content_transformer(tolower))
+ text = tm_map(text, removePunctuation)
+ text = tm_map(text, content_transformer(removeNumbers))
+ text = tm_map(text, removeWords, stopwords("english"))
+ text = tm_map(text, content_transformer(stripWhitespace))
+ text = tm_map(text, stemDocument)
+ text
+ }
 
> austen_pesm = txttrans(austen_pesm)
> austen_a = findAssocs(austen_pesm_DTM, terms = c("elizabeth", "emma", "miss"),
+ corlim = c(0.85, 0.90, 0.95))

Even with such a high set of correlations requested for each of these terms (and notice one can ask for
different levels for different terms), the list is fairly long. For brevity’s sake, we only show the correlations
with miss. Even still, we only show some of the words in that one alone—there are many words. Perhaps
more important, Jane Austen appears quite liberal in her use of that word. Notice these are sorted by
correlation, and alphabetically inside a particular correlation.

austen_a$miss
 agreed appears barely bear chances
 1.00 1.00 1.00 1.00 1.00
 communications degree equal exactly five
 1.00 1.00 1.00 1.00 1.00
 flutter never occupy pay peculiarly
 1.00 1.00 1.00 1.00 1.00
 pleasantly putting talked understand warmest
 1.00 1.00 1.00 1.00 1.00
 absolutely anywhere arrange article blessed
 0.99 0.99 0.99 0.99 0.99
 blue came can certainly cheerfully
 0.99 0.99 0.99 0.99 0.99
 clever concurrence decisive encumbrance excepting
 0.99 0.99 0.99 0.99 0.99
 fault feature feels fourandtwenty frightened
 0.99 0.99 0.99 0.99 0.99
 health hear hurry included irish
 0.99 0.99 0.99 0.99 0.99
 little need occupied older penance
 0.99 0.99 0.99 0.99 0.99
 prosperous quite sad sanction seized

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

316

 0.99 0.99 0.99 0.99 0.99
 shake sort south spoken substance
 0.99 0.99 0.99 0.99 0.99
 talents visiting will worst young
 0.99 0.99 0.99 0.99 0.99
 absenting advise agree airy amuses
 0.98 0.98 0.98 0.98 0.98
 apart appealed appropriated approval approved
 0.98 0.98 0.98 0.98 0.98
 arrangement associates augur augusta averted
 0.98 0.98 0.98 0.98 0.98
 basin begin biscuits blended blindness
 0.98 0.98 0.98 0.98 0.98
 breathe commit complains conceived conduce
 0.98 0.98 0.98 0.98 0.98
 convictions council dancer dangers dealings
 0.98 0.98 0.98 0.98 0.98
 decidedly delighted deplore deserve discipline
 0.98 0.98 0.98 0.98 0.98
 doubly elegancies english enlivened escorted
 0.98 0.98 0.98 0.98 0.98
 fasten favouring feasible felicities friendly
 0.98 0.98 0.98 0.98 0.98
 wainscot watercolours well wholesome writingdesk
 0.98 0.98 0.98 0.98 0.98

Rather than look at such a chart, it might be better to connect each word to any related words above a
certain threshold. Figure 19-10 shows the first attempt at such a graph. However, first note that to make this
plot, you will need the Rgraphviz package available. This is not on CRAN, but instead is on another package
repository, Bioconductor. We can install it relatively painlessly using the code that follows, and then make
our graph.

> source("http://bioconductor.org/biocLite.R")
> biocLite("Rgraphviz")
 
> plot(austen_pesm_DTM, terms = findFreqTerms(austen_pesm_DTM, lowfreq = 400),
+ corThreshold = 0.65)

www.it-ebooks.info

http://bioconductor.org/biocLite.R
http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

317

Clearly this is fairly useless. Well, that’s not an entirely fair statement. What one sees is that there is a
great deal of similarity between all these documents. Austen writes on fairly common theme(s), perhaps.
We’re going to have to be much more selective in our choice of both word frequency and correlation cut-off
in order to have something readable. We take a second pass next and see that Figure 19-11 is more legible.
All the same, it is not quite there yet.

> plot(austen_pesm_DTM, terms = findFreqTerms(austen_pesm_DTM, lowfreq = 800),
+ corThreshold = 0.65)

Figure 19-10.  A first attempt at a plot of frequently associated terms

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

318

One last pass, and we see that words actually live in the miniature boxes in Figure 19-12.

> plot(austen_pesm_DTM, terms = findFreqTerms(austen_pesm_DTM, lowfreq = 850),
+ corThreshold = 0.95)

Figure 19-11.  We’ve combed the hairball, and it gets tamer

Figure 19-12.  We can see words that are related in a nice graph

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

319

Our last bit of code is the actual topic model. Again, you may experiment with and on this to see what
sorts of topics you may uncover. Also, again, there is a great deal more that you may do to determine how
many topics might exist in a corpus under stable conditions. That is, it seems sensible that there are likely
a certain number of distinct topics in any collection of texts. There ought to be a mathematical way to
identify what the correct number of topics might be. One such way is using Latent Dirichlet Allocation (LDA,
performed by the function with the same name).

Although we will not go into them in depth, there are many options to control these models and to
assess quality. A common issue is that during optimization when R tries to figure out the “best” answer, the
results you get may depend on where it started searching! One way around this is to have the model repeat
itself many times from different random starts. In the example that follows, we use 100 different starting
points, and R will pick the results that are most likely. You may get different results than we do based on a
different random start set. If these were real analyses, we might keep adjusting the control parameters until
we could get consistent results and be confident we had truly found the “best” solution.

To see all the options, you can (unintuitively) go to the documentation for the class of the object that
the function expects to be used, which can be found by typing ?TopicModelcontrol-class in the R console.
This is where you can find out the names to use in the list to control how to estimate the LDA model, and
how we knew to use the alpha and nstart in arguments. For now, we will simply note that even with 100
starting points, the model can take some time to finish running.

> austen_pesm_DTM
<<DocumentTermMatrix (documents: 4, terms: 16861)>>
Non-/sparse entries: 32951/34493
Sparsity : 51%
Maximal term length: 32
Weighting : term frequency (tf)
 
> rowTotals <- apply(austen_pesm_DTM, 1, sum)
> austen_pesm_DTM <- austen_pesm_DTM[rowTotals>0,]
 
> k <- 2
> austen_pesm_lda <- LDA(austen_pesm_DTM, control = list(alpha=0.2, nstart = 100), k)
 
> topics(austen_pesm_lda)
pg1342.txt pg141.txt pg158.txt pg161.txt
 1 2 2 1
 
> terms(austen_pesm_lda, 5)
 Topic 1 Topic 2
[1,] "mrs" "must"
[2,] "said" "mrs"
[3,] "will" "will"
[4,] "much" "miss"
[5,] "elinor" "much"

In the foregoing code, k may be adjusted to various numbers, although from our plot, 2 or 3 looked
about correct. With that, we are done with our brief introduction to text mining.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19 ■ Text Mining

320

19.3 Final Thoughts
For text mining, our final thought is that this is a very exciting and really quite new field of research and
study. Everything from movie reviews to research participant transcripts may be pulled into various corpora,
and from there, you may perform many sorts of analytics. The generalized linear models we met in earlier
chapters are helpful here, as are k nearest-neighbor cross-validation methods. One of the authors recalls
reading an article, not too many years ago, that showed how various historical documents of unknown
authorship could be fairly reliably matched (via comparison with known writings) to precise authors.
More recently, anti-plagiarism methods can be similarly constructed from these sorts of inputs—or, as we
mentioned, sorting spam and ham.

In the last few decades alone, the world of data analytics has undergone enormous changes. The way we
think about data problems is changing. Nonparametric methods, bootstrapping, and text mining methods
were not feasible in the past. Now, even for the large lakes of data we have access to, all of these methods are
suddenly possible. It’s a brave new world. Thank you for exploring it with us.

References
Annau, M. tm.plugin.webmining: Retrieve Structured, Textual Data from Various Web Sources. R package
version 1.3, 2015. http://CRAN.R-project.org/package=tm.plugin.webmining.

Bouchet-Valat, M. SnowballC: Snowball stemmers based on the C libstemmer UTF-8 library. R package
version 0.5.1, 2014. http://CRAN.R-project.org/package=SnowballC.

Feinerer, I., & Hornik, K. tm: Text Mining Package. R package version 0.6-2, 2015. http://CRAN.R-project.
org/package=tm.

Fellows, I. wordcloud: Word Clouds. R package version 2.5, 2014. http://CRAN.R-project.org/
package=wordcloud.

Gruen, B., & Hornik, K. “topicmodels: An R Package for Fitting Topic Models.” Journal of Statistical Software,
40(13), 1-30 (2011).

www.it-ebooks.info

http://cran.r-project.org/package=tm.plugin.webmining
http://cran.r-project.org/package=SnowballC
http://cran.r-project.org/package=tm
http://cran.r-project.org/package=tm
http://cran.r-project.org/package=wordcloud
http://cran.r-project.org/package=wordcloud
http://www.it-ebooks.info/

321

�       � A
Analysis of variance (ANOVA), 169, 193

background, 111
one-way, 112–114
two-way, 114–115

mixed-model, 118, 120
repeated-measures, 115–117

anova(), 169

�       � B
Binomial distribution

choose() function, 54
dbinom function, 54
density curve, 56
histogram like, 55
horizontal reference line, 56
modeling processes, 54
pbinom, 55
proportions, 57
simulation, 56
standardized function, 58
Swiss mathematician Jacob Bernoulli, 54
upper-tailed interval, 55

Bivariate data
2-D and 3-D plots, 89
geom_hex(), 91
geom_point(), 91
ggplot2, 89–90
hexagonal bin plot, 91
regression line, 89
scatterplot, 89

Bootstrapping, 104
boot package, 199
confidence intervals

“basic” bootstrap, 205
bias corrected and

accelerated (BCa), 206, 208
log of variance, 204
“normal” interval, 205

“percentile” method, 203
quantile() function, 203

confidence intervals and standard error
estimates, 106

GSS data
boot() function, 207
btest, histogram, 212
code, basic model, 206–207
data frames, 208–209
final dataset, 209
financial satisfaction plot(s), 210–211

histograms, means and medians, 105, 107
mtcars

histogram, 200
mean, histogram bootres, 201
medians, histogram bootres2, 201–202
Normal Q-Q plot, 200
variance on displacement, 203

principle, 105
resampling methods, 199

Boxplots and stem-and-leaf displays, 78–79

�       � C
cbind() function, 21, 25
CDA. See Confirmatory data analysis (CDA)
cellphonetab.txt, 31
Central limit theorem (CLT), 60
Central tendency

mean, 73, 75
median, 74
mode, 75–76

Chi-square distribution, 64–65
Cloud computing, 15
Coefficient of determination, 124
Comma-separated value (CSV), 12, 30
Confidence and prediction intervals, 135–137
Confidence intervals

means, 93–94
proportions, 94–95
variance, 95

Index

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

322

Confidence intervals (CIs), 171
Confirmatory data analysis (CDA), 73
Control structures

binary operators, 35–36
flow control

explicit loops, 36–38
implicit loops, 38–41

statements
If, 41
ifelse(), 41
If-else, 42

Corpus, 303
Correlation and regression

confidence and prediction
Intervals, 135–137

covariance and correlation, 121–123
extended regression,

stock screener, 129–132, 134–135
linear regression, bivariate

case, 123–126, 128–129
Covariance and correlation, 121

cor.test() function, 122
variance—multiplication, 122
Weight vs. mpgCity scatterplot, 122

CSV. See Comma-separated value (CSV)
Customizing and polishing plots

angled labels, 232–233
axis labels, 226–227
axis scales adjustment, 241–242
boxplots, flipped axis, 242–243
color adjustment, 237
color palette, 238
controlled viewing area, 229–230
coordinates transformation, 235–236
fonts modification, 228–229
gridExtra package, 234–235
histogram, diamonds vs. price, 234
legend

moves, position coordinates, 240–241
orientation modification, 239–240

low-ink graphs, 230–231
mathematical symbols, labels, 228
quantitative data, labels, 231–232

�       � D
3D scatterplot, 274, 276
Data, finding and subsetting

backup copy, 20
data frame, 19–20
histogram

horsepower data, 19
vocabulary test, 25

mpgMan$colors, 21
which() function, 19

Data frames, 12–13, 18
Datasets

DRY principle, 23
GSS, 22–23
lapply, 24
built-in letters function, 23
looping, 24
missing values and outliers, 22
SPSS and STATA format, 22

Data structure manipulation, 21–22
Data visualization cookbook

3D graphs
contour plot, 272–273
scatterplot, 274, 276

boxplot/box-and-whisker plot, 221
cowplot package function, 271
multiple plots

cowplot package, 271
facet_grid() function, 266–267
heatmap, 270
scatterplot matrix, 268–269

packages, 215
plots polishing techniques (see Customizing

and polishing plots)
techniques, 217–218
univariate plots

barplot, 222
density plot, 217
histogram, 216
large datasets, 219
mean and 95% CI, 220
pie charts, 224–225
smaller datasets, 218–219
stacked barplots, 223

date() function, 15
Dates and times, 15–16
Descriptive statistics. See Exploratory

data analysis (EDA)
Discrete probability distributions, 53

�       � E
EDA. See Exploratory data analysis (EDA)
Empty model, 181
Exploratory data analysis (EDA). See also Central

tendency; Variability
bar graphs, 143
boxplots and stem-and-leaf displays, 78–79
coef() and confint() functions, 158
correlations, 143
fBasics package, 79
four plot(m) graphs, 148
geom_jitter(), 144
ggpairs(), 141
ggplot() function, 144

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

323

income vs. age
adjusted education data, 157
execute, code to plot, 156–157
four plot(m3) graphs, 154–155
male/female, 153
quadratic fit, 152

income vs. years of education, jitter, 144–145
iterative model process, 160
linear model, 147–148
male and female income analysis, 149, 151
predicted results view, 150–151
R package ggplot2, 144
scatterplot, 143
standardize() function, 159
texreg package, 160
updated graph, 146

Extended regression, stock screener, 129–131
quadratic model, 131–134
time series, 134–135

�       � F
fBasics package, 79
F distribution, 63
file.exists() function, 27
file.info() function, 27
F distribution, 63
Flow control

explicit loops
for, 36
repeat, 36, 38
while, 36–38

implicit loops
aggregate function, 41
apply function, 38–39
sapply function, 39
tapply function, 40

Frequency polygon
density plot, 88
gallon data, 87
straight-line segments, 87

�       � G
General Social Survey (GSS), 22

EDA (see Exploratory data analysis (EDA))
GSS2012 file, 141
packages, 141
within() function, 141

glob2rx() function, 17
Graphics

ggplot2 package, 81
nominal and ordinal data, 82–83
three-dimensional effects, 82
visual revelation, 81

Greenhouse–Geisser correction, 120

�       � H, I, J
head() function, 18
High-performance computing

datasets
ave() function, 280
data.table package, 281
GitHub, 281
R package nycflights13, 279
system.time()

function, 280
data.table

advantage, 287
columns mean, 290
dplyr package, 292
grouping by

variables, 286
joinings options, 288, 290
making plots, 291
merging options, 288
object, 282–283
setkey() function, 286
variable creation, 283
variable dropping, 284

parallel processing
bootstrapping, 294–295
detectCores()

function, 293
lapply() function, 293
Linux machines, 293
parLapply(), 293

Histograms
bin width, 86
dotplot, 87
gridExtra package, 86
par() function, 86
stem-and-leaf display, 86

Homoscedasticity, 113
Huynh-Feldt correction, 120
Hypothesis tests

one-sample t-test
confidence interval, 97
population, 96
UScrime data, 97

two-sample t-test
default, 100
F test, 100
independent-samples, 99
population, 98
prop.test function, 98
z-test, 99

�       � K
Kruskal-Wallis test one-way analysis

of variance, 196–198

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

324

�       � L
Latent Dirichlet allocation (LDA), 319
Likelihood ratio test (LRT), 169
Linear predictor, 165
Linear regression, bivariate case, 123–126

histogram of residuals, linear model, 128
normal Q-Q plot, linear model, 128
residuals vs. fitted values, linear model, 128
weight vs. mpgCity scatterplot, 124

Logistic function, 164
Logistic regression

chi square, 167
generalized linear models, 164–165
gss2012 dataset, 165
linear model, age, 167
linear scaling, data, 169–170
logit model, rescaled predictor

age vs. frequency, 170
CIs, 171
Fisher scoring iterations, 171
GLM prediction graph, 173
graphing and interpreting, 172
linear transformations, 170
predict() function, 172
predict.glm(), 172
predictor scale, 170

mathematics
algebraic manipulation, 164
dummy-coded quantitative

information, 164
Kentucky Derby, 164
logarithms and exponents, 164
predictor, 164

model
Fisher scoring iterations, 168
log likelihood, 169
LRT, 169
summary() function, 169

multinomial (see Multinomial regression)
multivariate

CIs, 176–177
convenient multiple correlation

coefficient, 175
coord_cartesian(), 178
deviance residuals, 174
Fisher scoring iterations, 175
income and education effects, 179
Income bin vs. probability, 177
income satisfaction and perhaps

education, 174
lower limit (LL), 177
log likelihood ratio, 175
McFadden’s algorithm, 175
ordered (see Logistic regression,

multivariate; Ordered logistic regression)

package, 178
plogis(), 177
plot color-codes, 177
predict() function, 177
predictor variables, 176
pseudo R-squared, 175
theme() command, 178

satfin levels vs. count, 166
LRT. See Likelihood ratio test (LRT)

�       � M
Mathyness, 121
Matrices

cbind()/rbind() functions, 9
character matrix, 10
manipulations, 9
singular matrix, 10
square matrix, inverse, 10
symmetric/asymmetric square matrices, 9

Mean, 101
Median, 101
Modern statistical methods

alternative to traditional t test, 102–104
density plots, 103
Yuen test, 104

bootstrapping, 104–106
need for, 101
permutation tests, 107, 109
pseudo-population, 101
resampling techniques, 101
Spearman rank correlation, 101

Multinomial regression
binary logistic regressions, 188
bootstrapping, 191
coefficients, 188–189
GLM, 191
marital status vs. age, area plot, 191
ordered regression, 187
probability scale, 191
probability vs. age, marital status, 190
summary(), 187
vglm() function, 187
VGLM, 188

Multiple regression
adjusted R-squared values, 140
GSS (see General Social Survey (GSS))
Multiple R-squared, 140
regression equation, 139
summary() function, 140

Multivariate plots
barplot

bootstrapped median error bars, 263
error bars, 261–262

binned data boxplots, 254–255
binned violin plots, 255–256

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

325

bivariate scatterplot, 243
color-coded density, 254
color coding, 245–246
labeled points, 244–245
multivariables display, 247–248
relating mpg to hp, 244
smaller and semitransparent dots, 252–253
smooth fitted regression line, 248

cut() function, 254
gridExtra package, 264
linear model linear regression line, 249–250
line plot

add points, 257–259
Indometh data, 256–257

smooth line, 251–252
stat_summary() function, 258
waterfall plot, 264, 266

myWords[1], 24

�       � N
nchar() function, 17
NHST. See Null hypothesis significance testing

(NHST)
Nonparametric statistics

Kruskal-Wallis test, 196–198
Mann-Whitney test, 194
oneway_test(), 198–199
Spearman’s Rho, 195–196
Wilcoxon-Signed-Rank test, 194–195

Normal distribution
histograms, 60
mound-shaped symmetrical distributions, 58
non-zero value, 58
one-tailed test, 59
sample distributions, 61
z score, 59

Null hypothesis significance testing (NHST), 17
Null model, 180

�       � O
One-way ANOVA, 112

Bartlett test of homogeneity of variances, 113
Box-and-whisker plots, 112
numerical methods, 113
TukeyHSD, 114

One-way tables
ABO blood types, 70
chi-square tests, 70
hsb data, 68

Ordered logistic regression
non-parallel, 184–186
parallel

age vs. probability, financial satisfaction, 184
cumulative(), 180

empty model, 181
financial satisfaction, 180
ggplot, 183
marginal effect, 183
melt(), 182
null model, 180
ordered logistic models, 180
plogis(), 181
predict() function, 182
predictor variable, 182
summary() function, 180
VGAM package, 180
vglm() function, 180

�       � P, Q
Packages and software, text mining

3 R packages, 305
corpus, 305
Java, 304
PDF software, 305
working directory, 305–306

Parallel processing
bootstrapping

boot() function, 295
cluster approach, 295
clusterEvalQ() function, 295

cross-validation, 299
detectCores() function, 293
foreach package

foreach() function, 296
iterators package, 297–298
registerDoMC(), 296

Linux machines, 293
sequential and parallel processing,

histograms results, 297
stopCluster() command, 301

paste0 function, 23
PDF. See Portable document format (PDF)
Pearson product-moment correlation

coefficient, 122
Permutation tests, 107

permutational central limit
theorem, 107

p values, 109
Pie charts, 82
Poisson distribution

binomial distribution, 57
lower-tailed probability, 57
mean number, 57

Portable document format (PDF), 311
predQuad, 132
Probability density

function (PDF), 58
Probability mass

function (PMF), 58

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

326

�       � R
rbind() function, 24
R command prompt, 2
R console, 2–3
readLines() function, 16, 28
rear axle ratio, 18
regular expressions, R funtions, 17
rep() function, 21
response variable, 123
R graphics device, 33
R input

BMI calculation, 30–31
CSV, 30
data frame, 29
read data, 31
Rstudio data editor, 29–30
Rstudio editor, 28
scan() function, 27
string data reading, 27–28
web data, 31, 33

R language
anonymous function, 44
command-line interpreted language, 3
CRAN website, 1
eclipsed S-PLUS, 1
functions, 47

arguments, 46, 48
BMI, 47
components, 43
number guess, 47–48

left-pointing assignment operator, 2
mad() function, 43–44
matrix manipulations, 9
matrix operators, 10–11
missing data, 7–8
NULL, 6
object, value assigning, 2
open-source implementation, 1
Python/C++, 2
refclasses, 49
reserved names, 45
Rstudio, 2
S3 class, 49

class()/attr() function, 49
generic function, 50
plot() methods, 51
plot rewrite graph, 52
t-test output, 51

S4 class, 49
scoping rules

closures, 45
static/lexical, 44

= sign, 2
syntactically correct names, 45

transparency, 43
vectors and vectorization, 8–9

R output, file save, 33
R session

basic calculator, 3
character strings, 4
cloud save, 4
colon operator, 3
command typing, 3
comparison operators, 5–6
getwd(), 4
indexing, 6–7
mathematical operators and functions, 5
missing information, 6
ragged data arrays, 11
RData, 5
R functions and codes, 7
sapply function, 12
scalar value, 4
setwd(), 4
unary and binary generic functions, 5
workspace and launching, 6

Rstudio, 1–2, 5
Rstudio data editor, 29–30

�       � S
Scale data

boxplots revisited, 84–85
ggplot2, 84
side-by-side boxplots, 84

Scoping rules
closures, 45
lexical scoping, 44–45
packages, 44

Statistics methods
data parameterization, 193
EDA, 193
nonparametric tests (see Nonparametric

statistics)
Strings manipulation, 16–17
Sys.Date() function, 15

�       � T, U
table() function, 24
Tables

HairEyeColor data, 67
one-way, 68–71
two-way, 71–72

t distribution, 62–63
Text mining

corpus(), 306
exploratory data analysis (EDA), 303
getwd(), 307

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

327

google news input, 312–313
PDF text input, 311–312
pride and prejudice VCorpus, 307
RStudio, 307
software (see Packages and software,

text mining)
topic models

control parameters, 319
hairball, 318
latent Dirichlet allocation (LDA), 319
Ms Austen’s novels, 313
nice graph, 318
novels, 314
plot, frequently associated terms, 317
R console, 319
Rgraphviz package, 316
set of correlations, 315–316
word cloud, 314

word clouds and transformations
corpus, 307, 311
findFreqTerms, 311
operations and package, 310
snowballC package, 309
TermDocumentMatrix(), 310
tm_map(), 308

unprocessed corpus text, 308
word stemming, 310

t distribution, 61
Two-way ANOVA, 114–115

mixed-model ANOVA, 118–120
repeated measures ANOVA, 115–117

Two-way tables, 71–72

�       � V
Variability

range, 76
variance and standard deviation, 77

Vectorization, 8–9

�       � W, X
Waterfall plot, 264–266
Welch t-test, 108
which() function, 19
Wilcoxon-Signed-Rank test, 194–195

�       � Y, Z
yvector.txt, 28

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	In Memoriam
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Star ted
	 1.1 What is R, Anyway?
	 1.2 A First R Session
	 1.3 Your Second R Session
	 1.3.1 Working with Indexes
	 1.3.2 Representing Missing Data in R
	 1.3.3 Vectors and Vectorization in R
	 1.3.4 A Brief Introduction to Matrices
	 1.3.5 More on Lists
	 1.3.6 A Quick Introduction to Data Frames

	Chapter 2: Dealing with Dates, Strings, and Data Frames
	 2.1 Working with Dates and Times
	 2.2 Working with Strings
	 2.3 Working with Data Frames in the Real World
	 2.3.1 Finding and Subsetting Data

	 2.4 Manipulating Data Structures
	 2.5 The Hard Work of Working with Larger Datasets

	Chapter 3: Input and Output
	 3.1 R Input
	 3.1.1 The R Editor
	 3.1.2 The R Data Editor
	 3.1.3 Other Ways to Get Data Into R
	 3.1.4 Reading Data from a File
	 3.1.5 Getting Data from the Web

	 3.2 R Output
	 3.2.1 Saving Output to a File

	Chapter 4: Control Structures
	 4.1 Using Logic
	 4.2 Flow Control
	 4.2.1 Explicit Looping
	 4.2.2 Implicit Looping

	 4.3 If, If-Else, and ifelse( ) Statements

	Chapter 5: Functional Programming
	 5.1 Scoping Rules
	 5.2 Reserved Names and Syntactically Correct Names
	 5.3 Functions and Arguments
	 5.4 Some Example Functions
	 5.4.1 Guess the Number
	 5.4.2 A Function with Arguments

	 5.5 Classes and Methods
	 5.5.1 S3 Class and Method Example
	 5.5.2 S3 Methods for Existing Classes

	Chapter 6: Probability Distributions
	 6.1 Discrete Probability Distributions
	 6.2 The Binomial Distribution
	 6.2.1 The Poisson Distribution
	 6.2.2 Some Other Discrete Distributions

	 6.3 Continuous Probability Distributions
	 6.3.1 The Normal Distribution
	 6.3.2 The t Distribution
	 6.3.3 	The F distribution
	 6.3.4 	The Chi-Square Distribution

	 References

	Chapter 7: Working with Tables
	 7.1 Working with One-Way Tables
	 7.2 Working with Two-Way Tables

	Chapter 8: Descriptive Statistics and Exploratory Data Analysis
	 8.1 Central Tendency
	 8.1.1 The Mean
	 8.1.2 The Median
	 8.1.3 The Mode

	 8.2 Variability
	 8.2.1 The Range
	 8.2.2 The Variance and Standard Deviation

	 8.3 Boxplots and Stem-and-Leaf Displays
	 8.4 Using the fBasics Package for Summary Statistics
	 References

	Chapter 9: Working with Graphics
	 9.1 Creating Effective Graphics
	 9.2 Graphing Nominal and Ordinal Data
	 9.3 Graphing Scale Data
	 9.3.1 Boxplots Revisited
	 9.3.2 Histograms and Dotplots
	 9.3.3 Frequency Polygons and Smoothed Density Plots
	 9.3.4 Graphing Bivariate Data

	 References

	Chapter 10: Traditional Statistical Methods
	 10.1 Estimation and Confidence Intervals
	 10.1.1 Confidence Intervals for Means
	 10.1.2 Confidence Intervals for Proportions
	 10.1.3 Confidence Intervals for the Variance

	 10.2 Hypothesis Tests with One Sample
	 10.3 Hypothesis Tests with Two Samples
	 References

	Chapter 11: Modern Statistical Methods
	 11.1 The Need for Modern Statistical Methods
	 11.2 A Modern Alternative to the Traditional t Test
	 11.3 Bootstrapping
	 11.4 Permutation Tests
	 References

	Chapter 12: Analysis of Variance
	 12.1 Some Brief Background
	 12.2 One-Way ANOVA
	 12.3 Two-Way ANOVA
	 12.3.1 Repeated-Measures ANOVA
	 > results <- aov (fitness ~ time + Error (id / time), data = repeated)
	 12.3.2 Mixed-Model ANOVA

	 References

	Chapter 13: Correlation and Regression
	 13.1 Covariance and Correlation
	 13.2 Linear Regression: Bivariate Case
	 13.3 An Extended Regression Example: Stock Screener
	 13.3.1 Quadratic Model: Stock Screener
	 13.3.2 A Note on Time Series

	 13.4 Confidence and Prediction Intervals
	 References

	Chapter 14: Multiple Regression
	 14.1 The Conceptual Statistics of Multiple Regression
	 14.2 GSS Multiple Regression Example
	 14.2.1 Exploratory Data Analysis
	 14.2.2 Linear Model (the First)
	 14.2.3 Adding the Next Predictor
	 14.2.4 Adding More Predictors
	 14.2.5 Presenting Results

	 14.3 Final Thoughts
	 References

	Chapter 15: Logistic Regression
	 15.1 The Mathematics of Logistic Regression
	 15.2 Generalized Linear Models
	 15.3 An Example of Logistic Regression
	 15.3.1 What If We Tried a Linear Model on Age?
	 15.3.2 Seeing If Age Might Be Relevant with Chi Square
	 15.3.3 Fitting a Logistic Regression Model
	 15.3.4 The Mathematics of Linear Scaling of Data
	 15.3.5 Logit Model with Rescaled Predictor
	 15.3.6 Multivariate Logistic Regression

	 15.4 Ordered Logistic Regression
	 15.4.1 Parallel Ordered Logistic Regression
	 15.4.2 Non-Parallel Ordered Logistic Regression

	 15.5 Multinomial Regression
	 References

	Chapter 16: Modern Statistical Methods II
	 16.1 Philosophy of Parameters
	 16.2 Nonparametric Tests
	 16.2.1 Wilcoxon-Signed-Rank Test
	 16.2.2 Spearman’s Rho
	 16.2.3 Kruskal-Wallis Test
	 16.2.4 One-Way Test

	 16.3 Bootstrapping
	 16.3.1 Examples from mtcars
	 16.3.2 Bootstrapping Confidence Intervals
	 16.3.3 Examples from GSS

	 16.4 Final Thought
	 References

	Chapter 17: Data Visualization Cookbook
	 17.1 Required Packages
	 17.2 Univariate Plots
	 17.3 Customizing and Polishing Plots
	 17.4 Multivariate Plots
	 17.5 Multiple Plots
	 17.6 Three-Dimensional Graphs
	 References

	Chapter 18: High-Performance Computing
	 18.1 Data
	 18.2 Parallel Processing
	 18.2.1 Other Parallel Processing Approaches

	 References

	Chapter 19: Text Mining
	 19.1 Installing Needed Packages and Software
	 19.1.1 Java
	 19.1.2 PDF Software
	 19.1. 3 R Packages
	 19.1.4 Some Needed Files

	 19.2 Text Mining
	 19.2.1 Word Clouds and Transformations
	 19.2.2 PDF Text Input
	 19.2.3 Google News Input
	 19.2.4 Topic Models

	 19.3 Final Thoughts
	 References

	Index

