Manipulation with R
Second Edition

Efficiently perform data manipulation using the split-apply-combine
strategy in R

PACKT &

www.it-ebooks.info


http://www.it-ebooks.info/

Data Manipulation with R
Second Edition

Efficiently perform data manipulation using the
split-apply-combine strategy in R

Jaynal Abedin

Kishor Kumar Das

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info


http://www.it-ebooks.info/

Data Manipulation with R
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014
Second edition: March 2015

Production reference: 1250315

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-881-4

www . packtpub. com

www.it-ebooks.info


www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors Copy Editors
Jaynal Abedin Khushnum Mistry
Kishor Kumar Das Karuna Narayanan
Vikrant Phadke
Reviewers Adithi Shetty
Erik M. Rodriguez Pacheco
Dr. Abbass Ismail Sharif Project Coordinator
Dr. Brian J. Spiering Leena Purkait
Jitendra Kumar Yadav
Proofreaders
Commissioning Editor Stephen Copestake
Veena Pagare Maria Gould
Paul Hindle
Acquisition Editor Jonathan Todd
Sonali Vernekar
Indexer
Content Development Editor Monica Ajmera Mehta

Manasi Pandire

Production Coordinator
Technical Editor Nilesh R. Mohite

Utkarsha S. Kadam

Cover Work
Nilesh R. Mohite

www.it-ebooks.info


http://www.it-ebooks.info/

About the Authors

Jaynal Abedin currently holds the position of senior statistician at the Centre for
Communicable Diseases (CCD) at the International Centre for Diarrhoeal Disease
Research, Bangladesh (http://www.icddrb.org/). He attained his bachelor's and
master's degrees in statistics from the University of Rajshahi, Bangladesh. He has
extensive experience in R programming and Stata, and has good leadership qualities.
He has contributed to two books on R and also developed an R package named
edeR, short for e-mail data extraction using R, which is available at CRAN
(http://cran.r-project.org/web/packages/edeR/index.html). He is currently
leading a team of statisticians. He has hands-on experience in developing training
material and facilitating training in R programming and Stata, along with statistical
aspects in public health research. His primary areas of interest in research include
causal inference and machine learning. He is currently involved in several ongoing
public health research projects, and is a coauthor of nine peer-reviewed scientific
papers. Moreover, he is involved in several work-in-progress manuscripts. He works
as a freelance statistician in online marketplaces and has obtained a good reputation
for his work.

Kishor Kumar Das is a statistician at the International Centre for Diarrhoeal
Disease Research, Bangladesh, an internationally recognized organization that
focuses mainly on public health research. He completed his MSc and BSc in applied
statistics from the Institute of Statistical Research and Training, University of Dhaka,
Bangladesh. He has extensively used R for data processing, statistical analysis, and
graphs for more than 10 years. His research interests are survival analysis, machine
learning, and statistical computing.

www.it-ebooks.info


http://www.icddrb.org/
http://cran.r-project.org/web/packages/edeR/index.html
http://www.it-ebooks.info/

About the Reviewers

Erik M. Rodriguez Pacheco works as a manager in the business intelligence unit
at Banco Improsa in San José, Costa Rica. He has 11 years of experience in the finance
industry. He is currently a professor of the Business Intelligence Specialization program
at the Continuing Education Programs of Instituto Tecnolégico de Costa Rica. Erik is
an enthusiast of new technologies, particularly those related to business intelligence,
data mining, and data science. He holds a bachelor's degree in business administration
from Universidad de Costa Rica, a specialization in business intelligence from Instituto
Tecnologico de Costa Rica, a specialization in data mining from Promidat (Programa
Iberoamericano de Formacién en Mineria de Datos), and a specialization in business
intelligence and data mining from Universidad del Bosque, Colombia. He is currently
enrolled in a specialization program in data science from Johns Hopkins University.
He can be reached at http://cr.linkedin.com/in/erikrodriguezp.

Dr. Abbass Ismail Sharif is an assistant professor of clinical data sciences and
operations at the University of Southern California. He holds a PhD in statistics,

an MS in computer science, and an MS in instructional technology and learning
sciences. Abbass does research in the field of statistical computing and data
visualization. For this purpose, he extensively uses the R statistical environment.

He has developed new multivariate visualization techniques for functional data, and
is currently developing visualization techniques to study brain activity data collected
using Near-infrared spectroscopy (NIRS) technology.

Abbass has won a prestigious research award from the American Statistical Society for
his doctoral work. He teaches both graduate and undergraduate statistics courses that
range from introductory statistics and data analysis for decision-making to advanced
modern statistical learning techniques, statistical computing, and data visualization.

www.it-ebooks.info


http://cr.linkedin.com/in/erikrodriguezp
http://www.it-ebooks.info/

Dr. Brian J. Spiering started coding in his elementary school's computer
laboratory, hacking BASIC to make programs that entertained his peers and
annoyed the school authorities. Much later, he earned a PhD in psychology from

the University of California, Santa Barbara, with emphasis on cognition, perception,
and cognitive neuroscience. His research is focused on building mathematical

and computer models of the human brain and behavior. He has taught biological
psychology, data analysis, and statistics. Brian currently works as a data scientist and
resides in San Francisco, California, USA.

Jitendra Kumar Yadav is a senior development architect working in research and
development for product development and innovation. He is an expert in cloud and
big data product development. He has contributed to the open source community in
the form of code development and support for a variety of platforms based on big
data, cloud technologies, virtualization, storage, networking, and cloud security. For
this, he has used programming languages such as C++, Python, R, Java, Go, and Perl.

Jitendra loves to share his knowledge with fellow techies and others. He does so by
publishing papers and books and attending corporate tech events. He has won several
awards for his excellent contributions to product development in the fields of cloud
computing, big data, artificial intelligence, and virtualization. He has over 12 years of
professional experience, and has spent most of his time in research and development.

Occasionally, when Jitendra needs to take a break, he spends his time traveling.

I'd like to thank those who nurtured me, my mom and dad, for

all the hope, faith, love, and wise counseling. I would also like to
thank those from the Packt Publishing team who made this book
happen, especially Leena and Sarah, the reviewers, and the MODX
community for an awesome open source development platform.

www.it-ebooks.info


http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info


www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Preface \'
Chapter 1: Introduction to R Data Types and Basic Operations 1
Getting different versions of R 2
Installing R on different platforms 3
Installing and using R libraries 3
Manually downloading and installing packages 4
Installing packages within the R shell 5
Comparing R with other software 5
R as an enterprise solution 6
Writing commands in R 6
R data types and basic operations 7
Modes and classes of R objects 7
The R object structure and mode conversion 13
Vector 17
Factor and its types 19
Data frame 21
Matrices 24
Arrays 26
List 27
Missing values in R 29
Summary 29
Chapter 2: Basic Data Manipulation 31
Acquiring data 31
Vector and matrix operations 35
Factor manipulation 36
Factors from numeric variables 38
Date processing using lubridate 39
Character manipulation 44

[il

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Subscripting and subsetting 45
Summary 48
Chapter 3: Data Manipulation Using plyr and dplyr 49
Applying the split-apply-combine strategy 50
Introducing the plyr and dplyr libraries 52
plyr's utilities 52
Intuitive function names in the plyr library 53
Inputs and arguments 56
Multiargument functions 57
Comparing base R and plyr 59
Powerful data manipulation with dplyr 62
Filtering and slicing rows 62
Arranging rows 63
Selecting and renaming 63
Adding new columns 63
Selecting distinct rows 64
Column-wise descriptive statistics 64
Group-wise operations 65
Chaining 65
Summary 66
Chapter 4: Reshaping Datasets 67
Typical layout of a dataset 68
Long layout 68
Wide layout 69
New layout of a dataset 70
Reshaping the dataset from the typical layout 7
Reshaping the dataset with the reshape package 72
Melting data 73
Missing values in molten data 74
Casting molten data 75
The reshape2 package 77
Summary 80
Chapter 5: R and Databases 81
R and different databases 82
R and Excel 83

R and MS Access 84
Relational databases in R 84
The filehash package 85
The ff package 87
R and sqldf 89

Lii]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Data manipulation using sqldf 90
Summary 93
Chapter 6: Text Manipulation 95
Text data and its source 95
Getting text data 96
Text processing using default functions 98
Working with Twitter data 101
Summary 103
Index 105

[iii ]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

This book, Data Manipulation with R, is aimed at giving intermediate-to-advanced level
users of R (who have knowledge about datasets) an opportunity to use state-of-the-art
approaches in data manipulation. This book will discuss the types of data that can be
handled using R and different types of operations for those data types. Upon reading
this book, you will be able to efficiently manage and check the validity of your datasets
with the effective use of R programming, including specialized packages for data
management. You will come to know about the split-apply-combine strategy, which is
a state-of-the-art approach in data management. You will also come to know the way
to work with database software through ODBC with the help of very simple examples.
This book ends with an introduction to text processing for text mining using R.

What this book covers

Chapter 1, Introduction to R Data Types and Basic Operations, discusses the way to get R,
how to install it, and how to install various libraries. Upon introducing how to write
commands in R, this chapter discusses different types of data used in R and their basic
operations. Before introducing the data types in this chapter, we will highlight what
an object in R is as well as their modes and classes. The mode of an object could be
either numeric, character, or logical, whereas its class could be vector, factor, list, data
frame, matrix, array, or others. This chapter also highlights how to work with objects
in different modes and how to convert from one mode to another and what caution
should be taken during conversion. Missing values in R and how to represent missing
characters and numeric data types are also discussed here. Along with the data types
and basic operations, this chapter sheds light on another important aspect, which is
almost never mentioned in other textbooks — the object naming convention in R. We
talk about popular object-naming conventions used in R.

[v]
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Chapter 2, Basic Data Manipulation, introduces some special features where we need to
take care during data acquisition. Then, an important aspect of factor manipulation
is discussed, as well as subsetting a factor variable and how to remove unused factor
levels. This chapter also includes coverage of vector and matrix operations. Date
processing has been discussed using an efficient R package: lubridate. Working

with the date variable using the lubridate package is much more efficient than using
any other existing package that is designed to work with the date variable. Also,
string processing has been highlighted, and the chapter ends with a description of
subscripting and subsetting.

Chapter 3, Data Manipulation Using plyr and dplyr, introduces the state-of-the-art
approach called split-apply-combine to manipulate datasets. Data manipulation

is an integral part of data cleaning and analysis. For a large dataset, it is always
preferable to perform operations within the subgroup of a dataset to speed up the
process. In R, this type of data manipulation can be done with base functionality, but
for large datasets, it requires a considerable amount of coding and eventually takes
longer to process. In the case of large datasets, we can split the dataset performing
the manipulation or analysis and then combine them again into a single output. This
chapter contains a discussion of the different functions in the plyr package that are
used for group-wise data manipulation and also for data analysis. This chapter also
contains examples and discussions of the dplyr package to work with data frames.
Working with data frames using dplyr is much more efficient and intuitive. You will
have a very good understanding of data frame processing through the examples of
this chapter.

Chapter 4, Reshaping Datasets, deals with the orientation of datasets. Reshaping data
is a common and tedious task in real-life data manipulation and analysis. A dataset
might come with different levels of grouping, and we need some reorientation to
perform certain types of analysis. To perform statistical analysis, we sometimes
require wide data and sometimes long data, and in this case, we need to be able to
fluently and fluidly reshape data to meet the requirements of statistical analysis.
Important functions from the reshape2 package have been discussed in this chapter
with examples.

Chapter 5, R and Databases, talks about dealing with database software and R. One of
the major problems in R is that its memory is bound by the system virtual memory,
and that is why working with a dataset requires the data to be smaller than its
memory. However, in reality, the dataset is larger than the virtual memory and
sometimes the length of arrays or vectors exceeds the maximum addressable range.
To overcome these two limitations, R can be utilized with databases. Interacting with
databases using R and dealing with large datasets with specialized packages and
data manipulation with sqldf have been discussed with examples in this chapter.

[vil
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Chapter 6, Text Manipulation, covers the processing of text data for text mining. This
chapter introduces various sources of text data and the process of obtaining that
data. This chapter also discusses processing text data for text mining purposes by
using various relevant packages.

What you need for this book

Knowledge about statistical data is required. You are expected to have basic
knowledge of R. To run the examples from this book, R should be installed, and it can
be found at http: //www.r-project.org. The example files are produced on R 3.0.2.

Who this book is for

This book is for intermediate-to-advanced level users of R who have knowledge
about datasets, and also for those who regularly work with different research data,
including but not limited to public health, business analysis, and the machine
learning community.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Once we have an R object, we can easily assess its mode by using mode () ."

A block of code is set as follows:

num.obj <- seq(from=1,to=10,by=2)
logical.obj<-c (TRUE, TRUE, FALSE, TRUE, FALSE)
character.obj <- c("a","b","c")

is.numeric (num.obj)
[1] TRUE

is.logical (num.obj)
[1] FALSE

is.character (num.obj)
[1] FALSE

[ vii ]
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When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

# Calling xlsx library

library (xlsx)

# importing xlsxanscombe.xlsx

anscombe xlsx <- read.xlsx2 ("xlsxanscombe.xlsx", sheetIndex=1)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the Add... button and select an appropriate ODBC driver and then locate the desired
file and give a data source name."

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[ viii ]
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Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit -errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

[ix]
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Introduction to R Data Types
and Basic Operations

R is an object-oriented programming language and an environment that is a
variation of the S language written by Ross Ihaka and Robert Gentlemen (hence, the
name R). What can we do using R? The answer is we can do anything we can think
of that is logical and/or structural. With R, we can perform data processing, write
functions, produce graphs, perform complex data analysis, and also produce our
own customized packages (a collection of functions to perform specified tasks) to
solve specific problems. We can develop up-to-date statistical techniques through r
packages. Most importantly, R is open source and is a freely available software that
will remain free.

Assuming that readers have very preliminary or no knowledge of R, the layout of
this chapter is divided in to two major sections; the first one will be an introduction
to R, and the second major section will relate to data types and basic operations.

The following are the reasons to use R:

* Ris free: [t comes with a license, but we do not have to pay anything to get
it. It is not only free, but also open source. We can see the source code, change
it as per our own requirements, and also distribute it without violating the
license. Academicians across different disciplines around the world reviewed
the core of the R system and also contributed to make it better.

[11]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to R Data Types and Basic Operations

Here is

R is a powerful software: It is used to perform data processing and data
analysis, and to produce a variety of graphs. All the necessary functions for
data processing are available in R. It has a substantial collection of libraries
(a library is a collection of functions to perform certain types of task), which
are written by researchers working in a variety of fields. That is why,
whether you are a statistician, biologist, environmentalist, or data scientist,
you should find a set of functions that serves your purpose. The graphic
system in R is one of the most powerful tools in this era. We have full control
over every part of graphs produced in R.

R is up-to-date: R is now one of the standard platforms to implement our
research work. We should be able to find an R package suitable for the most
recent developments, whatever our field is.

R is a community: R is being developed by a team of volunteers. Also, it
includes large communities that are writing new functions every day and
that can help us out if we face any problem.

R is the language of communication: R is now becoming a prominent way
of sharing new findings with other researchers in this field.

a summary of why we should use R:

R is free, and it will remain free.
It involves up-to-date implementation of recent statistical techniques.

There is flexibility. The user has control over each and every part of a dataset
and each component of each output.

It is customizable based on the user's need.

It has a large number of built-in libraries.

It has a cloud-computing feature.

It has rich graphics.

It has a wide range of flexible data structures.
It intelligently handles missing values.

Getting different versions of R

The source code, documentation, and other related files are maintained in

the Comprehensive R Archive Network (CRAN), which can be found at
http://cran.r-project.org/. CRAN is a collection of websites that contain
identical materials consisting of the R distributions, contributed extensions, and
documentation for R and binaries. The user can select anyone of the CRAN sites to
download the R software. The user can download the software that is compatible to
their computer's platform such as Windows, Mac, and Linux.

[2]

www.it-ebooks.info


http://cran.r-project.org/
http://www.it-ebooks.info/

Chapter 1

To download binaries for different platforms, anyone can use the following links:

e For Linux, http://cran.at.r-project.org/bin/linux/
* ForMacOSX, http://cran.at.r-project.org/bin/macosx/

* For Windows, http://cran.at.r-project.org/bin/windows/

The preceding links are applicable to download the most recent version of R. The
latest R Version 3.1.2 (Pumpkin Helmet) was released on October 31, 2014.

To get the old version of R, Windows users can look at the various releases at
http://cran.r-project.org/bin/windows/base/old/, and Mac users can look at
http://cran.r0-project.org/bin/macosx/o0ld/ to download the desired one.

Installing R on different platforms

To install R on various platforms, the first requirement is to download appropriate
binaries that are compatible with the relevant platform. In this section, we will
briefly discuss installation on the Windows platform and will refer users to
http://cran.r-project.org/doc/manuals/r-release/R-admin.html for the
documentation for alternative platforms.

Installing R under Windows is as easy as installing any other software. After
downloading the binary file for Windows (it comes with an . exe file), the name

is for example, R-3.1.2-win.exe. This executable file contains binaries for a

base distribution and a large number of add-on packages from CRAN. Users can
install it just by double-clicking on the file and following the on-screen instructions.
There is no special care that needs to be taken during installation; just go with the
default selections.

Installing and using R libraries

R comes with a number of default packages, a collection of previously programmed
functions for specific tasks, and with datasets. This is usually known as a library, but
the R community refers to it as a package. There are two types of R packages:

* Default packages that come with the R executable

* Add-on packages that do not come during installation; we need to install
them manually on downloading

[31]
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When we open the R console, it automatically loads its default packages with the
associated functions, and we do not need to load those packages manually. A list of
installed packages can be obtained by typing 1ibrary () in the R console. However,
some of the packages need to load to execute functions. To load a specific package,
the corresponding R command is 1ibrary (package), where package is the name of
any library such as plyr, provided that the package has already been installed.

In some situations, we may require a special type of data processing and analysis.
If the corresponding packages are not available in the default list, we need to install
them. For example, the plyr package is not in the default list, so we need to install
it separately.

There are two different ways to install a package:

* By manually downloading and installing it

* Installing it from within R

Manually downloading and installing

packages
To download a package from CRAN and install it, follow these steps:

1. Gotohttp://www.r-project.org/.
2. Click on CRAN mirror under the Getting Started section.

3. Select any one of the regional servers from the list; for example, select the
server from Austria at http://cran.at.r-project.org/.

4. Click on Contributed extension packages under the Source Code for all
Platforms section.

5. Select Table of available packages, sorted by date of publication or Table
of available packages, sorted by name and then download the desired
package from the list.

6. While downloading, users need to choose the file that matches with the
platform; for example, a Windows user will download the binary zip file.

Once the download is completed, open R.

Go to the Packages menu and select Install packages from local zip files.

[4]

www.it-ebooks.info


http://www.r-project.org/
http://cran.at.r-project.org/
http://www.it-ebooks.info/

Chapter 1

One potential problem with manual downloads is that,
sometimes, particular packages are dependent on other
~ packages that are not included in the manual process
Q of installation. To avoid this problem, we can install
the desired package(s) from the R shell, as installing
package(s) from the R shell resolves dependencies.

Installing packages within the R shell

To install a package from within the R console, we can use the install.packages ()
command; this command will prompt us to select the appropriate server CRAN.
Note that to install packages using this approach, the computer must have active
Internet connection.

For example, to install the plyr package, we can use the following command:
install.packages ("plyr")

The previous command will prompt us to select a regional server and, after selecting
the server from the available list, the package will be installed on the local computer.

Comparing R with other software

A growing number of libraries, currently more than 6,000, is the most noticeable
feature of R, compared to other commercial software such as SAS, Stata, SPSS, and
open source software such as Python and Octave. This feature enables R to have a
huge number of tools for data management and statistical analysis. Data management
capability is very limited in SPSS and Octave. The capability of R's data management
is only comparable with commercial software such as SAS and open source software
such as Python. R has no competitor that gets the most up-to-date packages for
analysis in many areas such as finance, mathematics, data mining, machine learning,
or even astronomy. Recently developed statistical analysis techniques are found in
Python and Octave, but it took a while to get them in SPSS, Stata, and SAS.

R has a more intuitive syntax structure than the previously mentioned software. Its
object-oriented features make it more flexible than SPSS, Stata, SAS, and Octave.
Python shares the object-oriented features too, but it is less flexible than R. Open
source software is designed to be developed by volunteer developers and offer
very easy-to-implement function-writing capabilities. Although it is easy to write a
function in Python and Octave, writing functions in R is even easier.

[51]
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R has one of the best graphics systems among all existing software. The grammar
graphics implemented in the ggplot2 package makes it the most popular library
for producing a variety of graphs with excellent quality. It is comparatively easy to
modify all the components of a graph in R, compared to SPSS, Stata, SAS, Octave,
and Python.

SPSS is very easy to use at first for some basic analysis, but when it comes to data
management, scripting, and complex statistical analysis, sometimes it fails, and
sometimes, it is very hard to implement. Learning Stata is very easy for basic data
management tools, but if we want to do a complex data management function, it
is very hard to implement. R has a very steep learning curve like Python, Octave,
and SAS. However, unlike Octave and SAS, we can find a large number of freely
available resources and tutorials on the Web to get help. These resources can make
our learning easier compared to other software.

R as an enterprise solution

Revolution Analytics (http://www.revolutionanalytics.com/) is a statistical
software company focused on developing open core versions of R, for enterprise,
academic, and analytics customers. This type of enterprise solution supports big data
analytics, various types of complex modeling of real-world problems, and day-to-
day activities in big enterprises.

Writing commands in R

The R programming language is basically command-line (interpreter-type)
programming. We can perform any type of mathematical and statistical calculation,
including data management analysis and graphics in the command line. The r
command window is known as the R console, where the command and the results
are produced upon execution of a given command.

Here is a very basic example of using the R console:

> (44/55) %100
[1] 80

> log(25)

[1] 3.218876
> logl0(25)
[1] 1.39794
> exp(0.23)
[1] 1.2586

[6]
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> 453/365.25

[1] 1.240246

> 1-5%0.2

[1] ©

> 1-0.2-0.2-0.2-0.2-0.2 # An interesting calculation
[1] 5.551115e-17

Using the R console, we can perform any type of calculation, but we always need

to preserve the code to reproduce the result of any scientific analysis. From this
perspective, the R console is not user-friendly when it comes to saving commands.
To save the necessary commands for future use and to ensure reproducibility of
research results, R has a command editor, which is known as the script editor. The
script editor is just like a plain text editor. We can preserve code and comments in r
script files. The R console allows only one line of command at a time, and it executes
as soon as we enter. However, in the script file, we can run a batch of code at a time.
To write any type of comment related to any analysis in R, we can place a # (hash)
sign as the starting character. Here is an example:

# This is a comment line

R data types and basic operations

In this major section of the chapter, we will introduce data types and structure and
how to convert one type to another with very simple functions.

Modes and classes of R objects

Whatever we do in R, is stored as objects. An R object is anything that can be
assigned to a variable of interest. This could be a single number or a set of numbers,
characters, and special characters, for example, TRUE, FALSE, NA, NaN, and Inf.
Also, these can be already defined in R as functions, such as seq (to generate a
sequence of numbers with a specified increment), names (to extract names such as
variable names from a dataset), row.names (to extract the row names of the data, if
any), or col.names (this is equivalent to names, and it extracts column names from a
matrix or data frame).

Some examples of R objects are as shown in the following code:

# Constant
> 2

[1] 2

> "July"

[71
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[1] "July"
> NULL
NULL

> NA

[1] NA

> NaN

[
# Object can be created from existing object

# to make the result reproducible means every time we run the
# following code we will get the same results # we need to set
# a seed value

> set.seed(123)

rnorm(9) +runif (9)

[1] -0.2325549 0.7243262 2.4482476 0.7633118 0.7697945
2.7093348 1.1166220 -0.5565308 -0.1427868

\%

One important thing about objects in R is that, if we do not assign an object to any
variable, we will not be able to reuse it, and it does not store the object internally.
In the preceding example, all are different objects, but they are not assigned to any
variable. So, they are not stored, and we cannot use them later, until we enter the
object's value itself. Thus, whenever we deal with an object, we will assign it to an
appropriate variable; interestingly, the assigned variable is also an object in R!

To assign an object in R to a variable, we can define the variable name in various
ways, such as lowercase, uppercase, a combination of uppercase and lowercase, or
even a combination of uppercase, lowercase, a number, and/or a dot. However,
there are some rules to define variable names. For example, the name cannot start
with numbers; it must start with a character or an underscore. There is no special
character allowed in variable names, such as @, #, $, and *. Though R does not have
a standard guideline for naming conventions, according to Baath (in the paper

The State of Naming Conventions in R, which can be found at http://journal.r-
project.org/archive/2012-2/RJournal 2012-2_Baaaath.pdf), the most popular
naming convention for functions is lowerCamelcCase, while the most popular
naming convention for arguments separates them by a period. For a variable name,
we can use the same naming convention as that of arguments, but again, there is no
strict rule for naming conventions in R.

[8]
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The following table is constructed from the same article by Baath to give you an idea
of the different naming conventions used in R and their popularity:

Object type Naming conventions Percentage
Function lowerCamelCase 55.5
period.separated 51.8
underscore_separated 374
singlelowercaseword 32.2
_OTHER.conventions 12.8
UpperCamelCase 6.9
Parameter period.separated 82.8
(argument) lowerCamelCase 75.0
underscore_separated 70.7
singlelowercaseword 69.6
_OTHER.conventions 9.7
UpperCamelCase 24

Once we store the R object into a variable, it is still treated as an R object. Each

and every object in R has some attributes to describe the nature of the information
contained in it. The mode and class are the most important attributes of an R object.
Commonly encountered modes of an individual R object are numeric, character,
and logical. When we work with data in R, problems may arise due to incorrect
operations in incorrect object modes. So, before working with data, we should study
the mode; we need to know what type of operation is applicable.

The mode function returns the mode of R objects.

The following example code describes how we can investigate the mode of an

R object:

# Storing R object into a variable and then viewing the mode

> num.obj <- seq(from=1,to=10,by=2)

mode (num.obj)
[1] "numeric"

> logical.obj<-c (TRUE, TRUE, FALSE, TRUE, FALSE)

> mode (logical.obj)
[1] "logical™

[o]
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> character.obj <- c("a","b","c")
> mode (character.obj)
[1] "character"

For the numeric mode, R stores all numeric objects into either a 32-bit integer or a
double-precision floating point.

If an R object contains both numeric and logical elements, the mode of that object
will be numeric and, in this case, the logical element automatically gets converted
to a numeric element. The logical element TRUE converts to 1 and FALSE converts to
0. On the other hand, if any R object contains a character element, along with both
numeric and logical elements, it automatically converts to the character mode.

Let's have a look at the following code:

# R object containing both numeric and logical element
> xz <- c(1, 3, TRUE, 5, FALSE, 9)

> XZ

[1] 1315009

> mode (xz)

[1] "numeric™

# R object containing character, numeric, and logical elements
> xw <- c(1,2,TRUE,FALSE, "a")

> Xw

[1] "1n m2n "TRUE" "FALSE" "a"

> mode (xw)

[1] "character"

The mode () function is not the only way to test R object modes. There are alternative
ways too: is.numeric (), is.charater (), and is.logical (), as shown in the
following code. The output of these functions is always logical:

> num.obj <- seq(from=1,to=10,by=2)
> logical.obj<-c (TRUE, TRUE, FALSE, TRUE, FALSE)
> character.obj <- c("a","b","c")

> is.numeric (num.obj)
[1] TRUE

> is.logical (num.obj)
[1] FALSE

> is.character (num.obj)
[1] FALSE

[10]
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Other than these three modes (numeric, logical, and character) of objects, another
frequently encountered mode is function. Here is an example:

> mode (mean)

[1] "function"

# Also we can test whether "mean" is function or not as follows
> is.function (mean)

[1] TRUE

The class () function provides the class information of an R object. The primary
purpose of the class () function is to know how different functions, including
generic functions, work. For example, with the class information, the generic
function print or plot knows what to do with a particular R object. To assess the
class information of the object created earlier, we can use the class () function. Let's
have a look at the following code:

> num.obj <- seqg(from=1,to=10,by=2)
> logical.obj<-c (TRUE, TRUE, FALSE, TRUE, FALSE)
> character.obj <- c("a","b","c")

> class (num.obj)

[1] "numeric"

> class(logical.obj)
[1] "logical™

> class(character.obj)
[1] "character"

Although we can easily assess the mode and class of an R object through mode ()
and class (), there is another collection of R commands that is also used to assess
whether a particular object belongs to a certain class. These functions start with
is.;forexanqﬂe,is.numeric(),is.logical(),is.character(),is.list(L
is.factor(),and is.data. frame (). As R is an object-oriented programming
language, there are many functions (collectively known as generic functions) that
will behave differently depending on the class of that particular object.

[11]
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The mode of an object tells us how it's stored. It could happen that two different
objects are stored in the same mode with different classes. How the two objects are
printed using the print command is determined by its class. Here is an example:

Output omitted due to space limitation
num.obj <- seq(from=1,to=10,by=2)
set.seed(1234) # To make the matrix reproducible
mat.obj <- matrix(runif (9),ncol=3,nrow=3)
mode (num.obj)

mode (mat .obj)

class (num.obj)

class (mat.obj)

prints a numeric object

print (num.obj)

prints a matrix object

v # Vv #F Vv v VvV v v v Vv F

print (mat.obj)

Like character and numeric, there is another method you can use to store data when
the data is categorical in nature. In categorical data, we usually have some unique
values and their corresponding labels. To store this type of object in R, we use the
factor class. This class allows less storage location, because it is required to store
unique levels only once.

Interestingly, once we try to see the mode of a factor object, it always shows as
numeric, even if it displays character data. Here is an example:

> character.obj <- c("a","b","c")
> character.obj
[1] ngn llbll ngn

> is.factor (character.obj)
[1] FALSE

# Converting character object into factor object using as.factor()
> factor.obj <- as.factor(character.obj)

> factor.obj

[1] a b ¢

Levels: a b c

> is.factor (factor.obj)
[1] TRUE

> mode (factor.obj)
[1] "numeric"

[12]
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> class(factor.obj)
[1] "factor"

We have to be careful when dealing with the factor class data in R. The important
thing to remember is that, for vectors (we will discuss vectors in the Vector section in
this chapter), the class and mode will always be numeric, logical, or character.
On the other hand, for matrices and arrays (we will discuss matrices and arrays in
the Factor and its types section in this chapter), a class is always a matrix or array, but
its mode can be numeric, character, or logical.

The R object structure and mode
conversion

When we work with any statistical software, such as R, we rarely use single values

for an object. We need to know how we can handle a collection of data values (for
example, the age of 100 randomly selected diabetic patients), along with what type of
objects are needed to store these data values. In R, the most convenient way to store
more than one data value is vector (a collection of data values stored in a single
object is known as a vector: for example, storing the ages of 100 diabetic patients in a
single object). In fact, whenever we create an R object, it stores the values as a vector. It
could be a single-element vector or a multiple-element vector. The num. obj vector we
created in the previous section is a kind of vector that comprises numeric elements.

One of the simplest ways to create a vector in R is to use the c () function. Here is an
example:

# creating vector of numeric element with "c¢" function
> num.vec <- c¢(1,3,5,7)

> num.vec

[1] 1 3 5 7

> mode (num.vec)

[1] "numeric"

> class (num.vec)

[1] "numeric"

> 1s.vector (num.vec)

[1] TRUE

[13]
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If we create a vector with mixed elements (character and numeric), the resulting
vector will be a character vector. Here is an example:

# Vector with mixed elements

> num.char.vec <- c¢(1,3,"five",7)
> num.char.vec

(1] "1in n3m "five" "7"

> mode (num.char.vec)

[1] "character"

> class (num.char.vec)

[1] "character"

> is.vector (num.char.vec)

[1] TRUE

We can create a big new vector by combining multiple vectors, and the resulting
vector's mode will be character, if any element of any vector contains a character. The
vector can be named, or it can be without a name. In the previous example, vectors
were without names.

The following example shows how we can create a vector with the name of
each element:

# combining multiple vectors

> comb.vec <- c¢(num.vec,num.char.vec)
> mode (comb.vec)

[1] "character"

# creating named vector

> named.num.vec <- c(x1l=1,x2=3,x3=5)
> named.num.vec

x1 x2 x3

1 3 5

The name of the elements in a vector can be assigned separately using the names ()
command. In R, any single constant is also stored as a vector of the single element.

[14]
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Here is an example:

# vector of single element
> unit.vec <- 9

> is.vector (unit.vec)

[1] TRUE

R has six basic storage types of vectors, and each type is known as an atomic vector.

The following table shows the six basic vector types, their mode, and the
storage mode:

Type Mode Storage mode
logical logical logical

integer numeric integer
double numeric double
complex complex complex
character | character | character

raw raw raw

Other than vectors, there are different storage types available in R to handle data
with multiple elements; these are matrix, data frame, and list. We will discuss each of
these types in subsequent sections.

To convert the object mode, R has user-friendly functions that can be depicted as
as.x. Here, x could be numeric, logical, character, list, data frame, and so on. For
example, if we need to perform a matrix operation that requires numeric mode, and
the data is stored in some other mode, the operation cannot be performed. In this
case, we need to convert that data into numeric mode.

In the following example, we will see how we can convert an object's mode:

# creating a vector of numbers and then converting it to logical
# and character

> numbers.vec <- c¢(-3,-2,-1,0,1,2,3)

> numbers.vec

[1] -3 -2 -1 0 1 2 3

> num2char <- as.character (numbers.vec)
> num2char

[1] "-3m n_2m wm_3n wQn mn nan "3n

> num2logical <- as.logical (numbers.vec)

[15]
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> num2logical
[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE

# creating character vector and then convert it to numeric and logical
> char.vec <- c("1","3","five","7")

> char.vec

[1] "1n "3n "five" "7

> char2num <- as.numeric (char.vec)
Warning message:

NAs introduced by coercion

> char2num

[1] 1 3 NA 7

> char2logical <- as.logical (char.vec)
> char2logical

[1] NA NA NA NA

# logical to character conversion

> logical.vec <- c(TRUE, FALSE, FALSE, TRUE, TRUE)
> logical.vec

[1] TRUE FALSE FALSE TRUE TRUE

> logical2char <- as.character (logical.vec)

> logical2char

[1] "TRUE" "FALSE" "FALSE" "TRUE" "TRUE"

Note that, when we convert numeric mode to logical mode, only 0 (zero) gets FALSE,
and all the other values get TRUE. Also, if we convert a character object to numeric,

it produces numeric elements and Na (if any actual character is present), where a
warning will be issued. Importantly, R does not convert a character object into a
logical object but, if we try to do this, all the resulting elements will be NA. However,
logical objects get successfully converted to character objects.

Finally, we can say that any object can be converted to a character without offering
any warning. However, if we want to convert character objects to any other type, we
have to be careful.

[16]
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Vector

R is a domain-specific programming language, specially designed to perform
statistical analysis on data. In statistics, when we analyze data, the first thing that
comes to mind is a variable with hundreds of observations in it. This reminds us
of the picture of a vector. Probably, this is the main reason why, in R, the most
elementary data type is a vector. A vector is a contiguous cell that contains data,
where each cell can be accessed by an index:

> age <- c¢(10,20,30,40)

This is an example of a vector. The age of five individuals is stored in the age

vector. Pay attention to how the vector was formed and stored under the age
variable. Here, ¢ () is a function used to create a vector, but this does not store all the
data in the system. <- is called an assignment operator that is used to store a vector
under a variable.

Now, in the console, let's type the following line and press Enter:

> age
[1] 10 20 30 40

We successfully stored all the ages under the age variable, but what is [1]? This
means that the index of the value 10 is 1.

If you want to see the first values of the vector, type the following command:

> age[3]
[1] 30

Why did R only show the index of the first value and not the other values? This is
only to keep the output clean and informative. Every time R writes a new line, it first
gives the index number of the next value. Pretty soon, you will be familiar with this
convention. We can store a single value under a variable, but it will be a vector with
one element:

> height<- 175

To show you that height is not a scalar but a vector with one element, we will store
one additional value in it:

> height [2]<- 180

[17]
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Pay attention to how we added another value inside an existing vector. Here, we
put 180 in the second cell of the vector. Can you recall how we accessed the value in
the second cell for the age variable? Using age [2], right? Similarly, we can assign a
value to the second cell of the vector using the same syntax. Let's try to put another
value inside the height variable:

> height [3] <- 165
Now, we can see all the values stored inside the height variable:

> height
[1] 175 180 165

Although the basic data structure in R is vectors, there can be different types of
vector. We use a numeric vector to store numeric data such as age, height, weight,
and so on. Character vectors are used to store string data such as name, address, and
so on. The way we can define a character vector in R is simple:

> name<- c("Rob", "Bob", "Jude", "Monica")

When we want to store a character in R, we need to use double quotes, as used in the
previous example. This tells R that this is a string input. We can put numeric values
using double quotes but, if we use a character without double quotes, then it will
return an error message.

Another special type of vector is the logical vector. There are two ways we could
define a logical vector; first, we will show you the more formal way and, second,
we will show you the quick way. There can be two possible elements in a 1ogical
vector: TRUE and FALSE. This logical vector is used in logical operations in R. It
can be used to select specific rows from a dataset.

We can define a 1ogical vector in the following way:
> logical<- c(TRUE, FALSE, TRUE, FALSE)

This 1logical vector can be used as a row selector of the age vector in the following
way:

> age[logicall
[1] 10 30

[18]
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Look closely to find out what we just did. We have seen how we can extract age from
a vector using indexing. A logical vector can be thought of as a vector of an index.
The first element of the 1ogical vector is TRUE, which means that the first element of
the age vector will be selected. The second element of the 1ogical vector is FALSE.
This means that the second element of the age vector will not be selected. So, the
logical vector will select only the elements of the age vector for which the logical
vector is TRUE. So, finally, two elements of the age vector will be selected, and a vector
of two elements will be returned. A question that may come to your mind is, What
can we do with this feature? The answer will be clearer in the Data frame section.

Factor and its types

A factor is another important data type in R, especially when we deal with
categorical variables. In an R vector, there is no limit on the number of distinct
elements but, in factor variables, it takes only a limited number of distinct elements.
This type of variable is usually referred to as a categorical variable during data
analysis and statistical modeling. In statistical modeling, the behavior of a numeric
variable and categorical variable is different, so it is important to store the data
correctly to ensure valid statistical analysis.

In R, a factor variable stores distinct numeric values internally and uses another
character set to display the contents of that variable. In other software, such as Stata,
internal numeric values are known as values, and the character set is known as value
labels. Previously, we saw that the mode of a factor variable is numeric; this is due to
the internal values of the factor variable.

A factor variable can be created using the factor command; the only required input
is a vector of values, which will be returned as a vector of factor values. The input
can be numeric or character, but the levels of factor will always be a character. The
following example shows how to create factor variables:

#icreating factor variable with only one argument with factor ()
> factorl <- factor(c(1,2,3,4,5,6,7,8,9))

> factorl

[1] 1 23 456 789

Levels: 1 2 3 456 7 89

> levels (factorl)

[1] m1m m2m n3nm wgn o ngm o wgn o wgn o mgn o ngn

> labels (factor)

(1] "1v

> labels (factorl)

[19]
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[l] mimM o mpmw o oMIN W4AN WM o wgnw o wgn owgn wgn

#icreating factor with user given levels to display

> factor2 <- factor(c(1,2,3,4,5,6,7,8,9),labels=letters[1:9])
> factor2

[1] abcdefghi

Levels: a bcde fghi

> levels (factor2)

[1] mam™ "p" mem ndnm men nwfm nmgm mhn win

> labels(factor2)

[1] mw1im nw2m nw3m wgm wgm o wgn o wgmowgn wgn

In a factor variable, the values themselves are stored as numeric vectors, whereas
the labels store only unique characters, and a label stores only once for each unique
character. Factors can be ordered if the ordered=T command is specified; otherwise,
they inherit the order of the levels specified.

A factor could be numeric with numeric levels, but direct mathematical operations
are not possible with this numeric factor. Special care should be taken if we want to
use mathematical operations.

The following example shows a numeric factor and its mathematical operation:

# creating numeric factor and trying to find out mean
> num. factor <- factor(c(5,7,9,5,6,7,3,5,3,9,7))

> num. factor

[1] 57 956 735397

Levels: 3 56 7 9

> mean (num. factor)

[1] NA

Warning message:

In mean.default (num. factor)

argument is not numeric or logical: returning NA

From the preceding example, we see that we can create a numeric factor, but the
mathematical operation is not possible. When we tried to perform a mathematical
operation, it returned a warning message and produced the result NA. To perform any
mathematical operation, we need to convert the factor to its numeric counterpart. One
can assume that we can easily convert the factor to numeric using the as.numeric ()
function but, if we use the as.numeric () function, it will only convert the internal
values of the factors, not the desired values.

[20]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

So, the conversion must be done with levels of that factor variable; optionally, we
can first convert the factor into a character using as.character () and then use
as.numeric ().

The following example describes this scenario:

> num. factor <- factor(c(5,7,9,5,6,7,3,5,3,9,7))
> num. factor

[1] 57 956 735397

Levels: 3 56 7 9

#as.numeric () function only returns internal values of the factor
> as.numeric (num.factor)

[1] 24523412154

# now see the levels of the factor

> levels (num.factor)

[1] "3m wsw ngn mym wgn

> as.character (num. factor)

[1] "™ w7m wgm wEm wgmw w7m w3w o w5w o w3w o wgm nwyn

# now to convert the "num.factor" to numeric there are two method
# method-1:

> mean (as.numeric (as.character (num.factor)))

[1] 6

# method-2:
> mean (as.numeric (levels (num. factor) [num. factor]))
[1] 6

Data frame

A data frame is a rectangular arrangement of rows and columns of vectors and/

or factors, such as a spreadsheet in MS Excel. The columns represent variables in
the data, and the rows represent observations or records. In other software, such
as a database package, each column represents a field, and each row represents a
record. Dealing with data does not mean dealing with only one vector or factor
variable; it is rather a collection of variables. Each column represents only one type
of data: numeric, character, or logical. Each row represents case information across
all columns. One important thing to remember about R data frames is that all vectors
should be of the same length. In an R data frame, we can store different types of
variables, such as numeric, logical, factor, and character. To create a data frame, we
can use the data. frame () command.

[21]
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The following example shows us how to create a data frame using different vectors

and factors:

#creating
> varl <-
> var2 <-

> var3d <-

vector of different variables and then creating data frame
c(101,102,103,104,105)

c(25,22,29,34,33)

c ("Non-Diabetic", "Diabetic", "Non-Diabetic", "Non-

Diabetic",
"Diabetic")

>
#
#
>
>

g w N R

var4d <-

factor(c("male", "male", "female", "female", "male"))

now we will create data frame using two numeric vectors one

character vector and one factor

diab.dat <-

diab.dat
varl var2
101 25
102 22
103 29
104 34
105 33

var3

Non-Diabetic
Diabetic
Non-Diabetic
Non-Diabetic
Diabetic

data.frame (varl,var2,var3,var4)

var4
male
male
female
female

male

Now, if we look at the class of individual columns of the newly created data frame,

we will see that the first two columns' classes are numeric, and the last two columns

classes are factor, though, initially, the class of var3 was character. One thing is
obvious here —when we create data frames and any one of the column's classes is
character, it automatically gets converted to factor, which is a default R operation.
However, there is one argument, stringsAsFactors=FALSE, that allows us to
prevent the automatic conversion of character to factor during data frame creation.

In the following example, we will see this:

#class of each column before creating data frame

> class(varl)

[1]

"numeric"

> class(var2)

[1]

"numeric"

> class(var3)

[1]

"character"

> class(var4)

[1]

"factor"

# class of each column after creating data frame

[22]
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> class(diab.dats$varl)

[1] "numeric"

> class(diab.dats$var2)

[1] "numeric"

> class(diab.dats$var3)

[1] "factor"

> class(diab.dats$var4)

[1] "factor"

# now create the data frame specifying as.is=TRUE
> diab.dat.2 <- data.frame(varl,var2,var3,var4,stringsAsFactors=FALSE)
> diab.dat.2

varl varz var3 var4

1 101 25 Non-Diabetic male
2 102 22 Diabetic male
3 103 29 Non-Diabetic female
4 104 34 Non-Diabetic female
5 105 33 Diabetic male

> class(diab.dat.2$var3)
[1] "character"

To access individual columns (variables) from a data frame, we can use a dollar ($)
sign, along with the data frame name-for example, diab.dats$varil.

There are some other ways to access variables from a data frame, such as
the following:

* The data frame name followed by double square brackets with variable
names within quotation marks-for example, diab.dat [ ["var1"]]

* The data frame name followed by single square brackets with the column
index-for example, diab.dat [, 1]

Besides these, there is one other way that allows us to access each of the individual
variables as separate objects. The R attach () function allows us to access individual
variables as separate R objects. When we use the attach () command, we need to
use detach () to remove individual variables from the working environment.

Let's have a look at the following code:

# To run the folloing code snipped,
# the code block 16 need to run.
# Especially varl var2 var3 and var4d.
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# After that, from code block 17 "diab.dat.2" object should run

# The following line will remove varl to var4
# object from the workspace
> rm(varl) ;rm(var2) ;rm(var3) ;rm(var4)
# The following command will allow
# us to access individual variables
> attach(diab.dat.2)
# Printing valuse of wvarl
> varl
# checking calss of var3
> class (var3)
# Now to detach the data frame from the workspace
> detach(diab.dat.2)
# Now if we try to print individual varaiable it will give error
> varl
Matrices

A matrix is also a two-dimensional arrangement of data, but it can take only one
class. To perform any mathematical operations, all columns of a matrix should

be numeric. However, in data frames, we can store numeric, character, or factor
columns. To perform any mathematical operation, especially a matrix operation, we
can use matrix objects. However, in data frames, we are unable to perform certain
types of mathematical operation, such as matrix multiplication. To create a matrix,
we can use the matrix () command or convert a numeric data frame to a matrix
using as.matrix().

We can convert the data frame that we created earlier as diab.dat to a matrix using
as.matrix (). However, this is not suitable for performing mathematical operations
as shown in the following example:

’

# data frame to matrix conversion
> mat.diab <- as.matrix(diab.dat)
> mat.diab

varl var2 var3 var4
[1, "101" "25" "Non-Diabetic" "male"
[2, "102" "22" "Diabetic" "male"
[3, "103" "29" "Non-Diabetic" "female"
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[4,] "104" "34" "Non-Diabetic" "female"
[5,] ™105" "33" "Diabetic" "male"

> class (mat.diab)
[1] "matrix"

> mode (mat .diab)
[1] "character"

# matrix multiplication is not possible with this newly created matrix

> t(mat.diab) %*% mat.diab
Error in t(mat.diab) %*% mat.diab
requires numeric/complex matrix/vector arguments

# creating a matrix with numeric elements only
# To produce the same matrix over time we set a seed value
> set.seed(12345)
> num.mat <- matrix(rnorm(9),nrow=3,ncol=3)
> num.mat
[,1] [,21] [,3]
[1,] 0.5855288 -0.4534972 0.6300986
[2,] 0.7094660 0.6058875 -0.2761841
[3,] -0.1093033 -1.8179560 -0.2841597

> class (num.mat)
[1] "matrix"
> mode (num.mat)
[1] "numeric™"

# matrix multiplication
> t(num.mat) %*% num.mat

[,11] [,2] [,3]
[1,] 0.8581332 0.36302951 0.20405722
[2,] 0.3630295 3.87772320 0.06350551
[3,] 0.2040572 0.06350551 0.55404860
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Arrays

An array is a multiply subscripted data entry that allows the storing of data

frames, matrices, or vectors of different types. Data frames and matrices are of two
dimensions only, but an array can be of any number of dimensions. Sometimes, we
need to store multiple matrices or data frames into a single object; in this case, we can
use arrays to store this data.

Here is a simple example to store three matrices of order 2 x 2 in a single array object:

>

#

>

mat.array=array (dim=c(2,2,3))

To produce the same results over time we set a seed value
set.seed (12345)

mat.arrayl[,,l]l<-rnorm(4)
mat.arrayl[,,2]<-rnorm(4)

mat.arrayl[,,3]<-rnorm(4)

mat.array
, 1

[,1] [,2]

[1,] 0.5855288 -0.1093033
[2,] 0.7094660 -0.4534972

[, 1] [,2]

1,1 0.6058875 0.6300986
2,] -1.8179560 -0.2761841

[, 1] [,2]

[1,] -0.2841597 -0.1162478
[2,] -0.9193220 1.8173120
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List
A list object is a generic R object that can store other objects of any type. In a list

object, we can store single constants, vectors of numeric values, factors, data frames,
matrices, and even arrays.

Recalling the var1, var2, var3, and var4 vectors, the data frame created using these
vectors, and also recalling the array created in the Arrays section, we will create a list
object in the following example:

> varl <- c¢(101,102,103,104,105)
> var2 <- c(25,22,29,34,33)

> var3 <- c("Non-Diabetic", "Diabetic", "Non-Diabetic", "Non-
Diabetic", "Diabetic")
> var4 <- factor(c("male","male","female", "female", "male"))

> diab.dat <- data.frame(varl,var2,var3,var4)
> mat.array<-array(dim=c(2,2,3))

> set.seed(12345)

> mat.arrayl[,,l]l<-rnorm(4)

> mat.arrayl[,,2]<-rnorm(4)

> mat.arrayl[,,3]<-rnorm(4)

# creating list

> obj.list <- list(eleml=varl,elem2=var2,elem3=var3,elemd=var4,elem5=d
iab.dat,elemé6=mat.array)

> obj.list
Seleml
[1] 101 102 103 104 105

Selem2
[1] 25 22 29 34 33

Selem3
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[1] "Non-Diabetic" "Diabetic" "Non-Diabetic"
"Diabetic"
Selem4
[1] male male female female male
Levels: female male
Selemb
varl varz2 var3 varé

1 101 25 Non-Diabetic male
2 102 22 Diabetic male
3 103 29 Non-Diabetic female
4 104 34 Non-Diabetic female
5 105 33 Diabetic male
Selemé
PR

[,1] [,2]
[1,] 0.5855288 -0.1093033
[2,] 0.7094660 -0.4534972
;o 2

[,1] [,2]
1,1 0.6058875 0.6300986
[2,] -1.8179560 -0.2761841
;0 3

[,1] [,2]
[1,] -0.2841597 -0.1162478
[2,] -0.9193220 1.8173120

"Non-Diabetic"

To access individual elements from a 1ist object, we can use the name of that
element or use double square brackets with the index of those elements. For

example, obj.1list [[1]] will give the first element of the newly created list object.
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Missing values in R

Missing values are part of the data-manipulation process, and we will encounter
some missing values in almost every dataset. So, it is important to know how R
handles missing values and how they are represented. In R, a numeric missing value
is represented by Na, while character missing values are represented by <Na>. To test
if there is any missing value present in a dataset (data frame), we can use is.na ()
for each column; alternatively, we can use this function in combination with the

any () function.

The following example shows whether there is any missing value present in a
dataset:

> missing dat <- data.frame(vl=c(1,NA,0,1),v2=c("M","F" NA,"M"))
> missing dat

vl v2
1 1 M
2 NA F
3 0 <NA>
4 1 M

> is.na(missing dats$vil)

[1] FALSE TRUE FALSE FALSE
> is.na(missing dats$v2)

[1] FALSE FALSE TRUE FALSE
> any(is.na(missing dat))
[1] TRUE

Summary

In this chapter, we first talked very briefly about what R is, where and how to get it,
and how to install it. We then covered why we should use R and compared it with
other available software. After that, we described what R objects are, their modes,
and classes. We also highlighted how we can convert modes of objects using R
functions, such as as.numeric and as.character. Finally, we discussed different R
objects, such as vector, factor, data frame, matrix, array, and list. The chapter ended
with an introduction to how missing values are represented and dealt with in R.

In the next chapter, we will discuss data manipulation with different R objects in
greater detail.
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When preparing a dataset for statistical analysis, data processing and manipulations,
such as checking, cleaning, and creating new variables, are two important tasks. In
this chapter, the basics of data manipulation will be discussed with examples that
will give us an idea about checking a dataset, and cleaning it, if necessary.

This chapter will deal with the following topics:

* Acquiring data

* Vector and matrix operations

* Factor manipulations

* Factors from numeric variables

* Date processing using lubridate

* Character and string manipulations

* Subscripting and subsetting datasets

Acquiring data
A dataset can be stored in a computer or any other storage device, in different
file formats. R provides the useful facility, to access different file formats through
different commands. Some of the commonly used file formats are as follows:

* Comma separated values (*.csv)

* Text file with tab delimited

* Microsoft Excel file (* . x1s or *.x1lsx)

* R data object (*.RData)
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Other than the file formats mentioned in the preceding list, the dataset can be
stored in another statistical software format; for example, Stata, SPSS, or SAS. In R,
using the foreign library, we can acquire a dataset from other statistical software.
In the following examples, we will see how we can acquire data in R from different
file formats.

Firstly, we will import a . csv file, cSVanscombe . csv. This file contains four pairs
of numeric variables, (x1,y1) to (x4,y4). The noticeable feature of this file is that
the actual data starts from the third row, and the first two rows contain a brief
description about the dataset.

Now, we will use read.csv () function to import the file, and store it in the
anscombe object in R, which will be a data frame, as shown in the following code:

# Before running the following command we need to set the file
# location using setwd(). For example setwd("d:/chap2").
# assuming Windows operating system

anscombe <- read.csv("CSVanscombe.csv"",skip=2)
# if the setwd() has not be used then the code will be as
anscombe <- read.csv("d:chap2/CSVanscombe.csv",skip=2)

Note that in the preceding code, skip=2 argument is used,
s which tells R that the actual data starts from the third row.

If a . csv file contains both numeric and character variables, and we use read.csv (),
the character variables get automatically converted to the factor type.

We can prevent character variables from this automatic conversion to factor, by
specifying stringsAsFactors=FALSE within the read.csv () function, as shown in
the following code:

# import csv file that contains both numeric and character variable
# stored in iris.csv file

# firstly using default and then using stringsAsFactors=FALSE

iris a <- read.csv("iris.csv")
str(iris_a)

'data.frame': 150 obs. of ©5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9
Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ..
Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5
2 0.2 0.2 0.2 0.2 0.4 0.30.20.20.1

Species : Factor w/ 3 levels "setosa", "versicolor",..:

$
$
S Petal.Width : num O.
$
1111111111
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In the following example, we will see the difference if we specify the
stringsAsFactors = FALSE argument:

# Now using stringsAsFactors=FALSE
iris b <- read.csv("iris.csv",stringsAsFactors=F)

'data.frame': 150 obs. of ©5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1
$ Species : chr "setosa" "setosa" "setosa" "setosa"

We see that in the first data frame, the class of the species variable is factor, whereas
in the second data frame the class of the same variable is character. So, we have to
be careful when importing the . csv file with mixed variables.

Sometimes, it could happen that the file extension is * . csv, but the data is not
comma separated; rather, the data supplier has used a semicolon (;) as a separator, or
any other symbol. In that case, we can still use the read.csv () function, but in this
case we have to specify the separator.

Let's look at the example with a semicolon-separated . csv file, of the same iris data:

iris_semicolon <-

read.csv("iris semicolon.csv",stringsAsFactors=FALSE, sep=";")
str(iris_semicolon)
'data.frame': 150 obs. of ©5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ..

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1
$ Species : chr "setosa" "setosa" "setosa" "setosa"

Similarly, if the values are tab separated, we can use read.csv () with sep= "\t".
Alternatively, we can use read. table (). The following is an example:

anscombe tab <- read.csv("anscombe.txt",sep="\t")
anscombe tab 2 <- read.table("anscombe.txt",6 header=TRUE)

Notice that here when we used read.table (), we had to specify whether the
variable name is present or not, using the argument header=TRUE.

If the dataset is stored in the * .x1s or *.x1sx format, we have to use certain R
packages to import those files; one of the packages is x1sx, which is designed to read
files formatted as * .x1sx.
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The following is an example to import the x1sxanscombe .x1sx file:

# Calling xlsx library

library (x1lsx)

# importing xlsxanscombe.xlsx

anscombe xlsx <- read.xlsx2 ("xlsxanscombe.xlsx", sheetIndex=1)

In R, single or multiple data frames or other objects can be stored in the * .RData
format. This file format is convenient to store more than one dataset in a single file.
To acquire a dataset for any other type of object from the * .RData file, we can use the
load () function. The following is an example to load multiple datasets, and

a vector of R objects from a single *.RData file:

# loading robjects.RData file
load ("robjects.RData")
# to see whether the objects are imported correctly

objects ()
"character.obj" "diab.dat" "logical.obj" "num.obj" "varl"
llvar2 n n Var3 n llvar4 n

Note that the objects () command is used to look at all of the objects in the current
R session. Now to see the mode and class of each object, we can easily use the mode ()
and class () function. See the section, Modes and classes of R objects in Chapter 1, for
more details.

To import a Stata file into R, we need to call the foreign library and then use
the read.dta () function. Similarly, if we want to import an spss data file, the
corresponding function will be read. spss () ; the output will always be a data frame.

Here is an example of importing a Stata file:

library (foreign)
iris_stata <- read.dta("iris_stata.dta")

[ R can only read Stata 5-12 version data. ]

In this section, we saw that a dataset can be stored in different formats, and R has
some user friendly functionality to deal with each of them. The noticeable feature of
this section is some of the arguments within the read.csv () function, such as skip,
stringsAsFactors, and sep. To import any data correctly, we have to use these
arguments carefully.
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Vector and matrix operations

Matrix operation is one of the most commonly used mathematical operations that we
perform during data processing and data analysis. All of the matrix operations must
be conformable for the operation, mathematically.

The following are the rules that must be followed for matrix operations:

e Addition or subtraction rule: There should be at least two vectors, or
matrices with the same dimensions

*  Multiplication rule: There should be at least two vectors or matrices with
number of columns of first matrix should be same as the number of rows in
second one

* Element wise multiplication: For element wise multiplication, both matrices
must be of the same dimension

The following is the R code to perform matrix operations:

# Creating random matrix with two 3x3 and one 4x3 dimension

# we will use runif () function to generate random number from
# standard uniform distribution

set.seed(1234) # To make the result reproducible

matA <- matrix (rnorm(1l2),ncol=3)

matB <- matrix (rnorm(9),ncol=3)

matB2 <- matrix(runif (9),ncol=3)

# Matrix addtion addition
matB + matB2# both has dimension 3x3

[,1] [,2] [,31]
[1,] -0.4644296 0.3917120 -0.5932429
[2,] 0.6862780 0.1660850 3.1812950
[3,] 1.2892642 -0.4262042 0.2078681

In matrix addition, the default plus (+) symbol works well, but the dimensions of the
matrices should be the same. The resultant matrix will also have the same dimensions.

In the following example, we will see if two matrices have different dimensions then
matrix addition cannot be performed:

# Matrix addtion addition with varying dimension
matA + matB
Error in matA + matB : non-conformable arrays

If the matrices are not of same dimensions, then matrix addition will not work.

# Matrix multiplication
matA %$*% matB
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[,1] [,2] [,3]

[1,] 0.4230620 0.4281611 1.9715294
[2,] -1.0367218 0.5218026 0.8709481
[3,] -1.3367123 0.6089153 -2.3603264
[4,] 0.8276759 1.4477557 0.5093074

In matrix multiplication, the important thing to note is that the symbol is not the
default multiplication symbol asterisk (*), rather it is $*%. If we do not use this
symbol, then it will try to perform element wise multiplication. But if the matrix does
not have the same dimensions, then the element wise multiplication will not happen,
and in that case, an error report will come in.

# Multiplication with default multiplication symbol *
matA * matB
Error in matA * matB : non-conformable arrays

# Element wise multiplication
matB * matB2

[,1] [,2] [,31]
[1,] -0.24205483 -0.05536304 -0.204210306
[2,1] 0.04008173 -0.34600174 1.849224683
[3,1] 0.31641252 -0.44192179 0.009893013

# Matrix multiplication with two 3x3 matrix
# with proper use of symbols %*%
matB %$*% matB2
[,1] [,21] [,3]
[1,] -0.5867067 -0.87037213 -0.3355362
[2,1] 0.4990147 0.85801532 -0.1971938
[3,] -0.2231869 -0.07027022 -0.4535422

Factor manipulation

A variable that takes only a limited number of distinct values is usually known

as a categorical variable, and in R, this is known as a factor. During data analysis,
sometimes the factor variable plays an important role, particularly in studying the
relationship between two categorical variables. In this section, we will see some
important aspects of factor manipulation. When a factor variable is first created,

it stores all its levels, along with the factor. But if we take any subset of that

factor variable, it inherits all its levels from the original factor levels. This feature
sometimes creates confusion in understanding the results.

Let's now see an example of this feature.
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We will firstly create a factor variable from the datamanipulation character string,
with the English alphabet in lowercase as levels. Each letter of this string represents a
value of that factor variable. Then, we will display the data with the table () function,
where we will see lots of zero frequency corresponding to the letters that did not
appear in the factor variable, as shown in the following code. We then drop those
levels that are not part of the original factor variable, and will display the data again:

# creating an R object whose value is "datamanipulation"
char.obj <- "datamanipulation"

# creating a factor variable by extracting each single letter from
# the character string. To extract each single letter the substring()
# function has been used. Note: nchar() function gives number of
# character count in a character type R object

factor.obj <- factor (substring(char.obj,1l:nchar (char.obj),

1l:nchar (char.obj)),levels=letters)

# Displaying levels of the factor variable

levels (factor.obj)

[1] llall llbll llcll lldll llell llfll llgll llhll llill lljll llkll lllll llmll llnll
lloll llpll llqll n rll n s n n t n llull llvll llwll llxll ll-y-ll n z n

# Displaying the data using the table() function
table (factor.obj)

factor.obj
abcdefgh
40010000

tuvwxyz

klmnopgrs
0112110002100000

i3
20
Notice that there are only a few nonzero values in the table, because the original

factor variable does not have the entire alphabet as its value. Now, we will drop the
levels that do not appear in the original factor variable.

To do so, we will create another factor variable from the original factor variable,
as shown in the following code:

# re-creating factor variable from existing factor variable
factor.objl <- factor(factor.obj)

# Displaying levels of the new factor variable
levels (factor.objl)
[1] Ilall Ildll Ilill Illll Ilmll Ilnll Iloll Ilpll Iltll Ilull

# displaying data using table() function
table (factor.objl)

factor.objl

adilmnoptu

4121121121
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The important feature to notice here is that we can drop unused factor levels by
recreating factor variables from the original factor variable. This is most useful
when we use a subset of a factor variable.

Factors from numeric variables

Numeric variables are convenient during statistical analysis, but sometimes we
need to create categorical (factor) variables from numeric variables. We can create

a limited number of categories from a numeric variable using a series of conditional
statements, but this is not an efficient way to perform this operation. In R, cut

is a generic command to create factor variables from numeric variables. In the
following example, we will see how we can create factors from a numeric variable,
using a series of conditional statements. We will also use the cut command to
perform the same task.

# creating a numeric variable by taking 100 random numbers
# from normal distribution

set.seed(1234) # setting seed to reproduce the example
numvar <- rnorm(100)

# creating factor variable with 5 distinct category

num2factor <- cut (numvar,breaks=5)

class (num2factor)

[1] "factor"

levels (num2factor)

[1] "(-2.35,-1.37]" "(-1.37,-0.389]" "(-0.389,0.592]"

"(0.592,1.57]" "(1.57,2.55]"

table (num2factor)

num2factor

(-2.35,-1.37] (-1.37,-0.389] (-0.389,0.592] (0.592,1.57] (1.57,2.55]
7 43 29 13 8

By default, the levels are produced using the actual range of values. Sometimes,
the range of values is given a specific name for convenience. For example, the five
categories of the preceding factor might be called the lowest group, lower-middle
group, middle group, upper-middle group, and highest group, as shown in the
following code:

# creating factor with given labels

num2factor <- cut (numvar,breaks=5,labels=c("lowest group", "lower
middle group", "middle group", "upper middle", "highest group"))
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# displaying the data is tabular form

data.frame (table (num2factor))
num2factor Freq
lowest group 7
lower middle group 43
middle group 29
upper middle 13

(S VT \O I

highest group 8
# creating factor variable using conditional statement

num2factor <- factor(ifelse (numvar<=-1.37,1,
ifelse (numvar<=-0.389,2,ifelse (numvar<=0.592,3,ifelse

(numvar<=1.57,4,5)))),labels=c("(-2.35,-1.37]",
"(-1.37,-0.389]", "(-0.389,0.592]™",
"(0.592,1.57]", "(1.57,2.55]"))

# displaying data using table function
table (num2factor)
num2factor
(-2.35,-1.37] (-1.37,-0.389] (-0.389,0.592] (0.592,1.57] (1.57,2.55]
7 43 29 13 8

Once we have converted the numeric variable to the factor variable and discarded
the numeric variable, we cannot go back to the original numeric variable. Therefore,
we should be careful when converting the numeric variable to the factor variable.

Date processing using lubridate

R can handle date variables in several ways. There are built-in R functions available
to process date variables, and there are also some useful contributed packages
available. The built-in R function as.Date () can handle only dates but not time,
whereas the chron package, contributed by James and Hornik in 2008, can handle
both date and time. However, it cannot work with time zones. Using the PoSIXct
and POSIX1t class objects, we can work with time zones. But there is another r
package, lubridate, contributed by Grolemund and Wickham in 2011, that has

a much more user friendly functionality to process date and time, with time zone
support. In this section, we will see how we can easily process date and time using
the lubridate package, and compare it with built-in R functions.
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Like other statistical software, R also has a base date, and using that base date, r
internally stores date objects. In R, dates are stored as the number of days elapsed
since January 1, 1970. So if we convert any date object to its internal number, it will
show the number of days. We can reformat the number into a date using the date
class. The following are some examples:

# creating date object using built in as.Date() function
as.Date("1970-01-01")
[1] "1970-01-01"

# looking at the internal value of date object
as.numeric (as.Date("1970-01-01"))
[1] o

# Second January 1970 is showing number of elapsed day is 1.
as.Date("1970-01-02")

[1] "1970-01-02"

as.numeric (as.Date("1970-01-02"))

[1] 1

Using the as.Date () function, we can easily create the date object; the typical format
of the date object in this function is year, month, and then day. But we can also
create a date object with other formats by specifying the format argument within the
as.Date () function, as shown in the following example:

# creating date object specifying format of date
as.Date("Jan-01-1970", format="%b-%d-%Y")
[1] "1970-01-01"

Note that when specifying the format of the date, we have to give the format that is
aligned with the input string. For the complete list of code that is used to specify date
formats, users are directed to the help documentation of the strptime function. Users
can access the complete list by just typing in help (strptime) in the R console.

The lubridate package provides intuitive functionality to work with the date object
in R. The following are some of the examples to create the date object using the
lubridate package:

# loading lubridate package
library (lubridate)

# creating date object using mdy () function
mdy ("Jan-01-1970")
"1970-01-01 UTC"
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Note that the default time zone in the mdy, dmy, or ymd function is Coordinated
Universal Time (UTC). One of the most interesting and important features of the
lubridate package is that it can process date variables in heterogeneous formats.
Heterogeneous formats means users can store date information in various ways; for
example, the second chapter due on 2013, August, 24, the first chapter submitted
on 2013, 08, 18, or 2013 August 23. From this heterogeneous date, we can extract

the valid date object that can be processed further within R using the 1ubridate
package, as shown in the following code:

# creating heterogeneous date object

hetero date <- c("second chapter due on 2013, august, 24",
"first chapter submitted on 2013, 08, 18", "2013 aug 23")

# parsing the character date object and convert to valid date
ymd (hetero_date)

[1] "2013-08-24 UTC" "2013-08-18 UTC" "2013-08-23 UTC"

Although the 1ubridate package can handle heterogeneous dates, the sequence

of year, month, and day should be similar across all values within the same object,
otherwise during date extraction there will be a missing value that will be generated,
along with a warning message. For example, if we alter the last date to 23 aug 2013,
it will not get converted into a valid date, as shown in the following code:

hetero date <- c("second chapter due on 2013, august, 24",
"first chapter submitted on 2013, 08, 18", "23 aug 2013")
ymd (hetero_date)

[1] "2013-08-24 UTC" "2013-08-18 UTC" NA

Warning message:

1 failed to parse.

During the date manipulation, sometimes we need to change the month, only within
an existing R date object. The following is an example of doing this, using the core R
function, and also using the lubridate package:

# Creating date object using base R functionality

date <- as.POSIXct ("23-07-2013",format = "%d-%m-%Y", tz = "UTC")
date

[1] "2013-07-23 UTC"

# extracting month from the date object

as.numeric (format (date, "%m"))

(1] 7

# manipulating month by replacing month 7 to 8

date <- as.POSIXct (format (date,"%Y-8-%d"), tz = "UTC")
date

[1] "2013-08-23 UTC"

# The same operation is done using lubridate package
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date <- dmy("23-07-2013")
date

[1] "2013-07-23 UTC"
month (date)

(1] 7

month (date) <- 8

date

[1] "2013-08-23 UTC"

In a dataset, the variable might have both date and time information, and we
need to round them to the nearest day or month. The following example shows
the date-rounding functionality; this example also displays how to convert the
time zone:

# accessing system date and time

# the output of this section will be vary for the readers
current time <- now()

current time

[1] "2013-08-23 23:43:01 BDT"

# changing time zone to "GMT"

current time gmt <- with tz(current time, "GMT")
current time gmt

[1] "2013-08-23 17:43:01 GMT"

# rounding the date to nearest day
round date (current time gmt, "day")
[1] "2013-08-24 GMT"

# rounding the date to nearest month
round date (current time gmt, "month")
[1] "2013-09-01 GMT"

# rounding date to nearest year
round date (current time gmt, "year")
[1] "2014-01-01 GMT"

In this section, we saw that dealing with dates using the 1ubridate package is really
user friendly and intuitive.

Sometimes we need to change the time zone in date variables for data analysis
purposes. For example, we might need to change the time zone from GMT to EST.
Using the _tz () function in the lubridate package made this easy and intuitive
to change the time zone. Here is a simple example:

date <- ymd("20141221")
date
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[1] "2014-12-21 UTC"
with tz(date, "EST")
[1] "2014-12-20 19:00:00 EST"

Sometimes we need to access individual components of a date and time variable,
such as accessing year, month, and day, as well as the days of week, and many more.
The following is a list of available easy functions from the 1ubridate packages.
These functions are easy to use, and easy to understand.

* To get the year part from a date time variable: year ()

* To get the month only: month ()

* To get the week number of a particular date: weak ()

* To get the day from a date variable (day of month): day () or mday ()
* To get the day number between 1 and 365 (day of year): yday ()

* To get the day of week: wday ()

* To get the hour, min, and second: hour (), minute (), second ()

e To access the time zone: tz ()

Here is an example for each of the functions we just listed:

date <- ymd("20141221")

year (date)

[1] 2014

month (date)

[1] 12

month (date, label=T)

[1] Dec

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct <
Nov < Dec

month (date, label=T, abbr=F)

[1] December

Levels: January < February < March < April < May < June < July <
August < September < October < November < December

week (date)

[1] 51
day (date)
[1] 21
mday (date)
[1] 21
yday (date)
[1] 355
wday (date)
(1] 1

wday (date, label=T)
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[1] Sun
Levels: Sun < Mon < Tues < Wed < Thurs < Fri < Sat
hour (date)

[1] O
minute (date)
[1] O
second (date)
[1] o

tz (date)

[1] "UTC"

Now, we will draw attention to the reader on the output of hour (), minute (), and
second () ; the output of these functions is zero, which means that the date object
contains only the date part, and as a result, the time part is set to zero. So, the results
indicate that the date is recorded at 12:00 AM. At the point we change the time zone
of the date object, the value will be different; here is an example:

hour (with tz(date, "EST"))
[1] 19

Character manipulation

In any statistical software, all the data is expected to be either numeric or at least

a factor, but sometimes we have to work with character data. In the area of text
mining, character, or string, manipulation is the most important. R has complete
functionality to manipulate character (string) data for further analysis. Besides default
R functionality, there is one contributed package to deal with character data, which

is more user friendly and intuitive, compared to the base R counterpart. Wickham
developed the stringr package in 2010 to manipulate character data with some

user friendly functions. In this section, we will introduce different functions and

their counterparts in a table, so that the readers are able to use the functions from the
stringr package easily:

Base R functions stringr functions
paste () : This function is used to str_c () : This has a functionality similar to
concatenate a vector of characters, paste (), but it uses empty as the default separator.
with a default separator as a space. It also silently removes zero-length arguments.
nchar () : This returns the number str_ length (): This is the same as nchar (), but
of characters in a character string. it preserves NA. For example:
For NA, it returns 2, which is not str_length(c("x","y",NA))
expected. For example: [1] 1 1 NA

nchar (c("x","y",NA))

[1] 11 2
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Base R functions stringr functions
substr () : This extracts or replaces str_sub (): This is the equivalent of substr (),
substrings in a character vector. but it returns a zero-length vector if any of its

inputs are of zero length. It also accepts negative
positions, which are calculated from the left of
the last character. The end position defaults to -1,
which corresponds to the last character.

Unavailable str dup (): This is used to duplicate the
characters within a string.

Unavailable str_trim(): This is used to remove the leading
and trailing whitespaces.

Unavailable str_pad () : This is used to pad a string with extra
whitespaces on the left, right, or both sides.

Other than the functions listed in the preceding table, there are some other user
friendly functions for pattern matching. Those functions are str_detect, str_locate,
str_extract, str_match, str_replace, and so on. To get more details about these
functions, readers should refer to the stringr: modern, consistent string processing
paper, by Wickham, which can be found at http://journal.r-project.org/
archive/2010-2/RJournal 2010-2 Wickham.pdf.

Subscripting and subsetting

Subscripting and subsetting a dataset is an integral part of data manipulation. If

we need to extract a smaller part of any R object (vector, data frame, matrix, or list)
that contains more than one element, we need to use subscripts. Subscripting is

an approach to access individual elements of an R object; for example, accessing a
particular element of a vector. Usually, numeric integers are used for subscripting, but
logical vectors can also be used for the same purposes. In R, the subscript starts from 1,
and if we specify any negative subscript, it omits that position from the source object.

The following is an example of an R vector with 10 elements, and the effect of
positive and negative subscripting:

# creating a 10 element vector
numl0 <- c¢(3,2,5,3,9,6,7,9,2,3)
# accessing fifth element
numlo [5]

(11 9

# checking whether there is any value of numlO object greater
# than 6

numlO0>6
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[1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE

# keeping only values greater than 6
numl0 [numl0>6]
[1] 9 7 9

# use of negative subscript removes first element "3"
numl0 [-1]
[1] 253 96 7923

Note that the subscripted indexes are written within square brackets. For
one-dimensional vectors, we use a single index to access elements, but for
two-dimensional objects, such as data frames or matrices, we have to use
two-dimensional subscripts. In that case, we have to use double square brackets
for indexing. The first index is for representing rows, and the second is for
representing columns; for example:

# creating a data frame with 2 variables
data_2variable <- data.frame(xl=c(2,3,4,5,6),x2=c(5,6,7,8,1))

data 2variable

x1l x2
1 2 5
2 3 6
3 4 7
4 5 8
5 6 1

# accessing only first row
data 2variable[1,]

x1 x2
1 2 5

# accessing only first column
data 2variablel[,1]
[1] 2 3 456

# accessing first row and first column
data 2variable[1,1]
(1] 2

Similar indexing is used for matrices. For the list object, the indexing is different than
that of data frames, or matrices. To get access to a list object, we have to use [ []]

for indexing; for example, the index [[1]] gets the first element of a list. If the list is
nested within another list, we need to use a series of double square brackets, within
double square brackets.
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The following example creates a list object and accesses its elements:

list obj<- list (dat=data 2variable,vec.obj=c(1,2,3))
list obj
Sdat

x1 x2

g s W N
o Ul B W N
P 00 J o Uu

$vec.obj

[1] 1 2 3

# accessing second element of the list obj objects
list_obj[[2]]

[1] 1 2 3

Now, if we want to get access to the individual elements of 1ist_obj [[2]], we have
to use the following command:

list_obj[[2]] [1]
[1] 1

If the list object is named, we can get access to the elements of that list, using the
name as follows:

# accessing dataset from the list object
list objsdat

x1 x2

1 2 5
2 3 6
3 4 7
4 5 8
5 6 1

Subsetting is just storing subscripted objects. Once we extract any subscripted R
object, and store it in another variable, the newly created object is the subset of the
original variable.

Downloading the example code

You can download the example code files for all
~ Packt books you have purchased from your account
Q athttp://www.packtpub. com. If you purchased
this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the
- files e-mailed directly to you. -
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Summary

In this chapter, we have covered some of the special features that we need to
consider during data acquisition. We also discussed the important aspect of factor
manipulation, especially when subsetting a factor variable, and how to remove
unused factor levels. The processing of date variables was covered with the use of
the lubridate package, with its user friendly and intuitive functions, and also string
processing has been highlighted. The chapter ended with an explanation of the
concepts of subscripting and subsetting. For more details on date processing and
string manipulation readers should refer to the stringr: modern, consistent string
processing paper by Wickham, which can be found at http://journal.r-project.
org/archive/2010-2/RJournal 2010-2 Wickham.pdf, and the dates and times
made easy with lubridate journal, by Grolemund and Wickham, which can be found at
http://www.jstatsoft.org/v40/103/paper.

In the next chapter, we will discuss data manipulation with the plyr package, where
we will focus on the split-apply-combine strategy and a state-of-the-art approach in
the group-wise data manipulation using R.

[48]

www.it-ebooks.info


http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf
http://www.jstatsoft.org/v40/i03/paper
http://www.it-ebooks.info/

Data Manipulation Using
plyr and dplyr

We often collect data across different places and time points and across human
characteristics. A census collects data across different states. In a longitudinal study,
we collect information over different time points. Those individuals could be male
or female, and their occupation could be different. All individuals under any study
could be split into different groups based on these geographical, temporal, and
occupational characteristics. We usually analyze data as a whole, but sometimes it is
useful to perform some tasks separately among different groups.

As an example, if we collect details of the income of different individuals from six
different regions, then we might be interested in seeing the income distribution
among different professions (considering five different professions), across six regions.
This income could vary depending on whether the person is a male or female. In

this situation, we can conceptualize this problem by splitting the dataset based on
profession, gender, and region. There should be 5 x 6 x 2=60 different groups, and
we need to calculate the average income separately for each groups. Finally, we want
to combine the result to see all the information side by side. This group-wise operation
is often termed as the split-apply-combine approach of data analysis.

In this approach, first we split the dataset into some mutually exclusive groups. We
then apply a task on each group and combine all the results to get the desired output.
This group-wise task could be generating new variables, summarizing existing
variables, or even performing regression analysis on each group. Finally, combining
approaches helps us get a nice output to compare the results from different groups.
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This chapter will deal with the following topics:

* Applying the split-apply-combine strategy

» Utilities of the plyr library

* Different functions in the plyr package for handling different data structures
* Comparing base R and plyr

* Powerful data manipulation with the dplyr library

Applying the split-apply-combine
strategy

For the purpose of demonstration, we will use an iris flower dataset, which is readily
available in R. The iris flower has three different species: iris setosa, iris virginica,
and iris versicolor. Fifty samples from each species were collected and, for each
sample, four variables were measured: the length and width of the sepals and

petals. The name of each flower is stored under the species column, and the length
and width of sepal is stored under the Sepal.Length and Sepal.wWidth columns,
respectively. Similarly, the length and width of the petal are stored under the petal.
Length and petal.Width columns, respectively. The following command shows the
first few rows from the iris data frame:

> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Now we will use the split-apply-combine strategy to find the average width and length
of sepal and petal for three different species of iris. The strategy will be as follows:

1. First we will split the dataset into three subsets according to the species of
the flower.

2. Next, for each subset, we will compute the average width and length of the
sepal and petal.
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3. Finally, we will combine all the results to compare them with each other.

# Step 1: Splitting dataset
iris.setosa <- subset(iris, Species=="setosa",
select=c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))

iris.versicolor <- subset(iris, Species=="versicolor",
select=c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))

iris.virginica <- subset(iris, Species=="virginica",
select=c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))

# Step 2: Applying mean function to calculate mean
setosa <- colMeans (iris.setosa)

versicolor <- colMeans (iris.versicolor)

virginica <-colMeans (iris.virginica)

# Step 3: Combining results
rbind (setosa=setosa,versicolor=versicolor,virginica=virginica)

This is the detailed code to implement the split-apply-combine approach. We could
implement the strategy with less code, as follows:

# Step 1: Splitting dataset
iris.split <- split(iris,as.factor(irisS$Species))

# Step 2: Applying mean function to calculate mean
iris.apply <- lapply(iris.split, function (x)colMeans (x[-5]))

# Step 3: Combining results
iris.combine <- do.call(rbind,iris.apply)
iris.combine
Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

In later sections in this chapter, we will see how the plyr package comes in handy
for implementing the split-apply-combine approach on all kind of data structures.
Using the plyr package, one line of code would be sufficient to implement these
three steps.
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Introducing the plyr and dplyr libraries

We have seen how we can implement the split-apply-combine approach on a data
frame using three lines of code. The plyr package helps us to implement the approach
in one line. Since R has multiple data structures, we need multiple functions to work
on different data structures. R has three main data structures: list, array, and data
frames. So, there could be three different types of input, and the output could produce
three different types of data structures. There could be 3 x 3 = 9 possible input-
output combinations, and for this reason, plyr has 9 functions to incorporate all the
input-output combinations. In addition, we have three additional functions that take
six different types of input but display only one type of output.

The plyr package works on every type of data structure, whereas the dplyr package
is designed to work only on data frames. The dplyr package offers a complete set

of functions to perform every kind of data manipulation we need in the process of
analysis. These functions take a data frame as the input and also produce a data frame
as output; hence the name: dplyr. There are two different types of function in the
dplyr package: a single-table function and an aggregate function. The single-table
function takes a data frame as input and takes an action, such as subsetting the data
frame, generating new columns in the data frame, or rearranging the data frame. The
aggregate function takes a column as input, and produces a single value as output,
which is mostly used for summarizing columns. These functions do not allow us to
perform any group-wise operation, but let's combine these functions with the
group_by () function. This allows us to implement the split-apply-combine approach.

plyr's utilities

The most important utility of the plyr package is that a single line of code can perform
all the split, apply, and combine steps. What we have done using three lines of code in
the first section can be implemented in just one line using the plyr package:

library (plyr)
ddply(iris, . (Species), function(x) colMeans(x[-5]))

Here, ddply () is a function from the plyr package, which takes a data frame as
input and produces a data frame as output. Hence, the name of the function is ddply.
Here, the argument works as follows:

* The first argument is the name of the data frame. We put iris, since the iris
dataset is in the data frame structure and we want to work on it.

* The second argument is for a variable or variables, according to which we
want to split our data frame. In this case, we have sSpecies.

* The third argument is a function that defines what kind of task we want to
perform on each subset.
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One question that should come into our mind is how the function takes data as
input. Here, we will split the data frame into three different groups as follows:

* The first subset, which is also a data frame, will be considered as an input
of the function. The function will calculate all the column means and store
them somewhere.

* The second subset will be considered as input for the function, and so on.
* All the outputs will be combined to form a single data frame.

This is like the bysort command in Stata, but with a lot more flexibility. Since there
are different types of data structure in R, one single function cannot handle all types
of data structure. That is why we have multiple functions in the plyr package that
have a very similar naming convention. It is very easy to remember all the functions,
and it is easy to apply them when we need.

Intuitive function names in the plyr library

To perform any kind of data processing, we need to know the type of input that we
have to provide and the expected output format. In most R functions, it is difficult

to understand from function names what types of input they accept and what the
expected types of output are. Function names in the plyr package are much more
intuitive and instructive about their input and output types, compared to any other
available packages. Each function is named according to the type of input it takes,
and the type of output it produces. The first letter of the function name specifies the
input, and the second letter specifies the output type; a represents array, d represents
data frame, 1 represents 1ist, and _ (underscore) represents the output discarded.
For example, the function name adply () takes input as an array and produces
output as a data frame. The following table gives us a complete idea about function-
naming conventions used in the plyr package:

Input Output

Array Data frame List Discarded
Array Aaply () adply () alply () a_ply()
Data frame | daply () ddply () dlply () d ply()
List laply () ldply () llply () 1 ply()

We can see that there are three types of input and four types of output. Users can
easily get an idea of the types of input and output from the function names.

Another interesting feature is that we do not need to learn all 12 functions. Instead, it
is sufficient to learn the three types of input and four types of output.
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Other than the function names in the table, there are some special cases involving
operating on arrays that correspond to the mapply () function in base R. In base R,
mapply () can take multiple inputs as separate arguments, whereas a*ply () takes
only a single array argument. However, the separate argument in mapply () should
be of the same length. The mapply () functions that are equivalent to plyr are
maply(),mdply(),mlply(),andwn_ply().

Note that, whenever a function name is written using a star symbol, such as *ply (),
it indicates that the input is an array. The output can be in any format: array, data
frame, or list. Optionally, the output can be discarded.

To explain the intuitive nature of the input and output, we will now provide an
example using the iris data that we used in an earlier example. This time, we will use
iris3 dataset; this is the same data, but it is stored in a three-dimensional array
format. We will calculate the mean of each variable for each species, as shown in the
following code:

# class of iris3 dataset is array

class (iris3)

[1] "array"

# dimension of iris3 dataset

dim(iris3)

[1] 50 4 3

The following code snippet, calculates the column mean for each
species, with the input as an array, and the output as a data frame:
# Calculate column mean for each species and output will be

# data frame

iris mean <- adply(iris3,3,colMeans)

class(iris_mean)

[1] "data.frame"

iris_mean

X1 Sepal L. Sepal W. Petal L. Petal W.

1 Setosa 5.006 3.428 1.462 0.246

2 Versicolor 5.936 2.770 4.260 1.326

3 Virginica 6.588 2.974 5.552 2.0266

Since iris3 is an array, we need to specify according to which dimension we will
split the array. We specify this using the .margins parameter, in the adply function.
We put .margins=3 in adply function as: adply (iris3, .margins=3, colMeans) to
tell the adply function that we want the splitting according to the third dimension of
a three dimensional array object. If we wanted to split the data according to row or
column, we would put 1 or 2, respectively. It is also legitimate to use a combination
of dimensions. In that case, ¢ (1, 2) could be a choice.
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The following code snippet calculates the column mean for each species, with the
input as an array as well as the output as arrays:

# again we will calculate the mean but this time output will be an #
array

iris_mean <- aaply(iris3,3,colMeans)
class(iris_mean)

[1] "matrix"

iris_mean

X1l Sepal L. Sepal W. Petal L. Petal W.

Setosa 5.006 3.428 1.462 0.246

Versicolor 5.936 2.770 4.260 1.326

Virginica 6.588 2.974 5.552 2.026

# note that here the class is showing "matrix",

# since the output is a # two dimensional array which represents
# matrix. Now calculate mean again with output as list

iris mean <- alply(iris3,3,colMeans)

class(iris_mean)

[1] "list™
iris_mean
$l1l

Sepal L. Sepal W. Petal L. Petal W.
5.006 3.428 1.462 0.246

$121

Sepal L. Sepal W. Petal L. Petal W.
5.936 2.770 4.260 1.326

$l3l

Sepal L. Sepal W. Petal L. Petal W.
6.588 2.974 5.552 2.026

attr(, "split_type")

[1] "array"

attr(,"split labels")

X1

1 Setosa

2 Versicolor

3 Virginica
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Inputs and arguments

The functions in the plyr package accept various input objects: data frames, arrays,
and lists. Each input object has its own rule to split the process. In this section, we
will discuss inputs and arguments. The rules of splitting are described shortly in
this section.

Arrays are sliced by dimension into lower dimensional pieces. The corresponding
common function is a*ply (), where the array is the common input, and the output
can be an array, data frame, or list.

Data frames are sliced and subset by a combination of variables from the input
dataset. The corresponding common function is d*ply (), where the data frame is the
common input, and the output can be one among an array, data frame, or list.

The elements of a list are processed separately, and the common function is 1*ply (),
where the common input is a list, and the output can be an array, data frame, or list.

Depending on the input type, there are two or three main arguments for the common
functions: a*ply (), d*ply (), and 1*ply (). The following are the main arguments
for these common functions:

® a*ply(.data, .margins, .fun, ..., .progress = "none")
e d*ply(.data, .variables, .fun, ..., .progress = "none")
¢ 1l#*ply(.data, .fun, ..., .progress = "none")

The first argument, .data, is the input dataset that needs to be processed by being
split, and the output will be combined from each split. The .margins or .variables
argument specifies how the data should be split up into smaller pieces. The . fun
argument specifies the processing task; this can be any function that is applicable to
each split of the input. If we omit the . fun argument, the input data is just converted
into the output structure specified by the function. If we want to monitor the
progress of the processing task, the progress argument should be specified. It will
not show the progress status by default.

In the following example, we will see what will happen if we do not specify the . fun
argument in any function of the plyr package. If we give the input as an array and
want the output as a data frame, but we haven't given a . fun argument, the adply ()
function will just convert the array object into a data frame. Here is an example:

# converting 3 dimensional array to a 2 dimensional data
#frame

iris dat <- adply(iris3, .margins=3)

class(iris_dat)
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[1] "data.frame"

str(iris dat)

'data.frame': 150 obs. of 5 variables:

$ X1 : Factor w/ 3 levels "Setosa","Versicolor",..: 1 1 1 111111
1 ...

$ Sepal L.: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ..

$ Sepal W.: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

S Petal L.: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5

$ Petal W.: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1

The .margins argument works in a manner similar to the apply () function in base
R. It does the following;:

* Slices up a row by specifying .margins = 1
* Slices up a column by specifying.margins = 2

* Slices up the individual cells by specifying.margins = c(1,2)

The .margins argument works correspondingly for higher dimensions, with a
combinatorial explosion in the number of possible ways to slice up the array.

Multiargument functions

Sometimes, we have to deal with functions that take multiple arguments, and the
values of each argument can come from a data frame, a list, or an array. The plyr
package has intuitive and user-friendly functions to work with multiargument
functions. In this section, we will see an example of generating random numbers
from a normal distribution, with various combinations of mean and standard
deviation. The values of mean and standard deviation are stored in a data frame.
Now, we will generate random numbers using default R functions, such as the for
loop, and also using the ml1ply () function from the plyr package. The parameter
combinations are given in the following table:

Sample Mean Standard
size (n) deviation
25 0 1

50 2 1.5

100 3.5 2

200 25 5

500 0.1 2
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With these parameter combinations, we will generate normal random numbers using
default r and plyr, as shown in the following code:

# define parameter set

parameter.dat <- data.frame(n=c(25,50,100,200,400),
mean=c(0,2,3.5,2.5,0.1),
sd=c(1,1.5,2,5,2))

# displaying parameter set

parameter.dat

mean sd

25 0.0 1.0

50 2.0 1.5

100 3.5 2.0

200 2.5 5.0

400 0.1 2.0

random normal variate generate using base R

HF H 01w N R B

set seed to make the example reproducible
set.seed (12345)

# initialize blank list object to store the generated variable
dat <- 1list ()

for(i in 1l:nrow(parameter.dat))

{

dat[[i]] <- rnorm(n=parameter.dat[i,1],
mean=parameter.dat [i, 2], sd=parameter.dat [i,3])

}

# estimating mean from the newly generated data
estmean <- lapply(dat,mean)

estmean

(111

1] -0.001177287

(211

1] 2.417842

[311]

1] 3.667193

(411

1] 2.999662

[511]

1] 0.1765926

# Performing same task as above but this time use plyr package

[
[
[
[
[
[
[
[
[
[

dat _plyr <- mlply(parameter.dat, rnorm)
estmean plyr <- llply(dat plyr,mean)
estmean plyr

$'y

[1] 0.4252469
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$l2l

[1] 2.037528
$l3l

[1] 3.070231
$l4l

[1] 2.144276
$151

[1] 0.05399488

Comparing base R and plyr

In this section, we will compare the code side by side to solve the same problem
using both default r and plyr. Reusing the iris3 data, we are now interested in
producing five-number summary statistics for each variable group by species. The
five numbers will be minimum, mean, median, maximum, and standard deviation.
The output will be a list of data frames.

To calculate the five-number summary statistics, follow these steps:

1. Define a function that will calculate five-number summary statistics for a
given vector.

Produce the output of this function in a data frame object.
Apply this function in the iris3 dataset using a for loop.

Apply the same function using the apply () function of the plyr package.

An example that explains the calculation of the five-number summary statistics
is as follows:

# Function to calculate five number summary
fivenum.summary <- function (x)

{

results <-data.frame (min=apply(x,2,min),
mean=apply (x,2,mean) ,

median=apply (x,2,median),

max=apply (x,2,max) ,

sd=apply(x,2,sd))

return (results)

}
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Here, you can see how we calculate the summaries for the five numbers using a for
loop, with default R:

# initialize the output list object

all stats <- list()

# the for loop will run for each species
for(i in 1:dim(iris3) [3])

{

sub data <- iris3[,,1il

all stat species <- fivenum.summary (sub data)
all stats[[i]] <- all stat species

}

# class of the output object
class(all_stats)

[1] m"list™

all_stats

[[11]

min mean median max sd

Sepal L. 4.3 5.006 5.0 5.8 0.3524897

Sepal W. 2.3 3.428 3.4 4.4 0.3790644

Petal L. 1.0 1.462 1.5 1.9 0.1736640

Petal W. 0.1 0.246 0.2 0.6 0.1053856

[[2]]

min mean median max sd

Sepal L. 4.9 5.936 5.90 7.0 0.5161711

Sepal W. 2.0 2.770 2.80 3.4 0.3137983

Petal L. 3.0 4.260 4.35 5.1 0.4699110

Petal W. 1.0 1.326 1.30 1.8 0.1977527

[[31]

min mean median max sd

Sepal L. 4.9 6.588 6.50 7.9 0.6358796

Sepal W. 2.2 2.974 3.00 3.8 0.3224966

Petal L. 4.5 5.552 5.55 6.9 0.5518947

Petal W. 1.4 2.026 2.00 2.5 0.2746501
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Let's calculate the same statistics, but this time using the alply () function from the

plyr package:

all stats <- alply(iris3, 3, fivenum.summary)

class(all_stats)

[1] "list"
all_stats
$'1
min mean median max sd
Sepal L. 4.3 5.006 5.0 5.8 0.3524897
Sepal W. 2.3 3.428 3.4 4.4 0.3790644
Petal L. 1.0 1.462 1.5 1.9 0.1736640
Petal W. 0.1 0.246 0.2 0.6 0.1053856
$'2!
min mean median max sd
Sepal L. 4.9 5.936 5.90 7.0 0.5161711
Sepal W. 2.0 2.770 2.80 3.4 0.3137983
Petal L. 3.0 4.260 4.35 5.1 0.4699110
Petal W. 1.0 1.326 1.30 1.8 0.1977527
$'3!
min mean median max sd
Sepal L. 4.9 6.588 6.50 7.9 0.6358796
Sepal W. 2.2 2.974 3.00 3.8 0.3224966
Petal L. 4.5 5.552 5.55 6.9 0.5518947
Petal W. 1.4 2.026 2.00 2.5 0.2746501
attr(, "split_type")
[1] "array"
attr(,"split labels")
X1
1 Setosa
2 Versicolor
3 Virginica
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Powerful data manipulation with dplyr

Mostly, in real-life situations, we usually start our analysis with a data frame-
type structure. What do we do after getting a dataset and what are the basic
data-manipulation tasks we usually perform before starting modeling? They are
explained here:

1. We check the validity of a dataset based on conditions.

2. We sort the dataset based on some variables, in ascending or
descending order.

3. We create new variables based on existing variables.

Finally, we summarize them.

This is a list of tasks we usually perform over full datasets. The dplyr package has
all the necessary functions to perform all the tasks listed and some more additional
tasks that come in handy in the data-manipulation process. Group-wise operation is
also possible using the dplyr package. In the dplyr package, every task is performed
using a function that is called a verb. We may need to use multiple verbs on the same
data frame. This could force us to write either a very long line or multiple lines of
code. Chaining is a powerful feature of dplyr that allows the output from one verb
to be piped into the input of another verb using a short, easy-to-read syntax.

Filtering and slicing rows

Sometimes, it is more important to subset the data frame based on values of a
variable or multiple variables. The filter () function allow us to perform this task.
If we want to just see all the observations under the virginica species, then we need
to use the following code:

filter(iris, Species=="virginica")

We could also create a data frame with sepal length less than 6 cm and sepal width
less than or equal to 2.7 cm:

filter(iris, Species=="virginica" & Sepal.Length<6 & Sepal.
Width<=2.7)

We could also extract the subset of a data frame using the slice () function. If we
want to subset the first 10 observations, the last 10 observations, or even the 95% to
105™ observation, then we could use the following code, respectively:

slice(iris, 1:10)
slice(iris, 140:150)
slice(iris, 95:105)
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Arranging rows

To sort the whole data frame based on a single variable or multiple variables, we
could use the arrange () function. We could sort the dataset according to the lowest
length of sepal to the highest length of sepal:

arrange (iris, Sepal.Length)

We could also sort the dataset by sorting the data frame for sepal length and then for
sepal width:

arrange (iris, Sepal.Length, Sepal.Width)

If we want to sort the data frame in ascending order for sepal length, but descending
order for sepal width, we can use the desc () function from this package:

arrange (iris, Sepal.Length, desc(Sepal.Width))

It seems that the arrange () function in the dplyr package is very similar to the
order () function, but it has a lot more flexibility and an intuitive structure of
input arguments.

Selecting and renaming

Most of the time, we do not work on all the variables in a data frame. Selecting a few
columns could make the analysis process less complicated. We could easily select a
smaller number of columns from a data frame. In our example, we selected the Sepal.
Length and Sepal.width species of the iris data frame using the select () function:

select (iris, Species, Sepal.Length, Sepal.Width)

We could also change the column name using the rename () function:

rename (iris, SL=Sepal.Length, SW= Sepal.Width, PL=Petal.Length, PW=
Petal.Width )

Adding new columns

Very often, we need to create new columns for the purpose of analysis. In the iris
data frame, if we want to convert the width and length of sepal and petal from
centimeter to meter, we could use the mutate () function as follows:

mutate (iris, SLm=Sepal.Length/100, SWm= Sepal.Width/100, PLm=Petal.
Length/100, PWm= Petal.Width/100 )
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Also, we could standardize these variables in the following way:

mutate (iris, SLsd=(Sepal.Length-mean (Sepal.Length))/sd(Sepal.Length),
SWsd= (Sepal.Width-mean (Sepal.Width)) /sd(Sepal.

Width) ,

PLsd= (Petal.Length-mean (Petal.Length)) /sd(Petal.
Length) ,

PWsd= (Petal.Width-mean (Petal.Width))/sd(Petal.
Width) )

If we want to keep only the new variables and drop the old ones, we could easily use
the transmute () function:

transmute (iris, SLsd=(Sepal.Length-mean (Sepal.Length)) /sd(Sepal.

Length) ,

SWsd= (Sepal.Width-mean (Sepal.Width)) /sd(Sepal.
Width) ,

PLsd= (Petal.Length-mean (Petal.Length)) /sd(Petal.
Length) ,

PWsd= (Petal.Width-mean (Petal.Width))/sd(Petal.
Width) )

Selecting distinct rows

We can extract distinct values of a variable or multiple variables using the
distinct () function. Sometimes, we might encounter duplicate observations in a
data frame. The distinct () function helps eliminates these observations:

distinct (iris, Species, Petal.Width)

Column-wise descriptive statistics

We could summarize different variables based on different summary statistics using
the summarise () function. Here, we summarized the length and width of sepal and
petal by calculating their average:

summarise (iris, meanSL=mean (Sepal.Length),
meanSW=mean (Sepal.Width) ,
meanPL=mean (Petal.Length),
meanPW=mean (Petal .Width))
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Group-wise operations

The functions we discussed in previous sections from the dplyr package work on the
whole data frame. If we want to use a group-wise operation on different columns,
we need to use a combination of the group by () function and the other functions:

iris.grouped<- group by (iris, Species)

summarize (iris.grouped, count=n(),
meanSL= mean (Sepal.Length),
meanSW=mean (Sepal .Width) ,
meanPL=mean (Petal.Length),
meanPW=mean (Petal .Width))

Here, the combination of the group by () and summarise () functions could be
considered as an implementation of the split-apply-combine approach on a data
frame. Here, group_by () takes the data frame as an input and produces a data
frame too. However, this data frame is a special type of data frame where grouping
information is stored inside it. When this special type of data frame is supplied as an
input of the summarise () function, it knows that the calculation should be group-
wise. Here, all the calculations using n (), mean () are performed group-wise.

Chaining

Sometimes, it could be necessary to use multiple functions to perform a single task.
From the iris data, we may want to use the group_by () operation to get a special
data frame. Then we may want to use the select () function to select only the
sepal length and width. It would then be interesting to see location and dispersion
summary statistics. Finally, we might want to see species with maximum average
sepal length and maximum average sepal width:

iris
iris.grouped<- group by (iris, Species)
iris.grouped.selected<- select (iris.grouped, Sepal.Length, Sepal.
width)
iris.grouped.selected.summarised<- summarise (iris.grouped.selected,
meanSL=mean (Sepal.Length),
sdSL=sd (Sepal.Length),
meanSW= mean (Sepal.Width),
sdSW= sd(Sepal.Width))
filter (iris.grouped.selected.summarised, meanSL==max (meanSL) |
meanSW==max (meanSw) )
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The workflow is very intuitive but, each time we applied a function, we saved a new
data frame. The dplyr package has a nice operator that prevents us from saving a
new data frame each time we perform an action on it. This operator is called the %>%
chain operator; it is similar to the pipe operation in shell scripting. The $>% operator
turns x %% f (y) into £ (x,y). This operator not only allow us to save storage, but
also makes the code cluster more intuitive for other people to understand, It also
helps you read your code in future:

iris %>%

group by ( Species) %>%

select (Sepal.Length, Sepal.Width) $>%

summarise ( meanSL=mean (Sepal.Length),
sdSL=sd (Sepal.Length),
meanSW= mean (Sepal.Width),
sdSW= sd(Sepal.Width)) %>%

filter (meanSL==max (meansSL) | meanSW==max (meansSw) )

When we have a script file with a huge number of lines, this feature comes in handy.
A cluster of these lines of code in a script file will help us understand that these lines
of code were written to perform one task. This also saves us the effort of writing an
additional data frame name each time.

Summary

In this chapter, we discussed the importance of the split-apply-combine strategy.
We understood what the split-apply-combine strategy is and why it is important in
data manipulations. The split-apply-combine strategy can be implemented using
base R, but it requires a large amount of code and is not memory or time efficient.
To overcome this limitation, we discussed the plyr package in which group-wise
data manipulation can be implemented efficiently. The functions within plyr are
intuitive and instructive in terms of input and output types. A large variety of data
processing can be done using only a few functions with common input and various
types of output. For further reading, an interested user can refer to the paper The
Split-Apply-Combine Strategy for Data Analysis by Wickham, which can be found at
http://www.jstatsoft.org/v40/101/paper. We also discussed how we can use
dplyr as a powerful tool to manipulate data frame.

In the following chapter, you will learn about reshaping a dataset, which is another
important aspect of group-wise data manipulation.
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Reshaping data is a common and tedious task in real-life data manipulation and
analysis. A dataset might come with different levels of grouping, and we need

to implement a reorientation to perform certain types of analysis. The layout of
datasets could be long or wide. In a long layout, multiple rows represent a single
subject's record, whereas, in a wide layout, a single row represents a single subject's
record. Statistical analysis sometimes requires wide data and sometimes long data.
In such cases, we need to be able to fluently and fluidly reshape the data to meet
the requirements of statistical analysis. Data reshaping is just a rearrangement of
the form of the data—it does not change the content of the dataset. In this chapter,
we will show you different layouts of the same dataset and see how they can be
transferred from one layout to another. This chapter mainly highlights the melt and
cast paradigms of reshaping datasets, melt and cast is implemented in the reshape
contributed package. Later on, this same package is reimplemented with a new
name, reshape2, which is much more time-and memory-efficient (refer to Reshaping
Data with the reshape Package paper by Hadley Wickham, which can be found at
http://www.jstatsoft.org/v21/i12/paper). In this chapter, we will discuss the
layout of a dataset and understand how we can change the layout using the new
paradigm of reshaping datasets with melt and cast. To run the example of this
chapter, you need to install both the reshape and reshape2 packages.
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Typical layout of a dataset

A single dataset can be rearranged in many different ways but, before going into
this rearrangement, let's look at how we usually perceive a dataset. Whenever we
think about any dataset, we think of a two-dimensional arrangement, where a row
represents a subject's (a subject could be a person and is typically the respondent in
a survey) information for all the variables in a dataset, and a column represents the
information for each characteristic for all subjects. This means rows indicate records,
and columns indicate variables, characteristics, or attributes. This is the typical
layout of a dataset. In this arrangement, one or more variables might play the role of
an identifier, and others are measured characteristics. For the purpose of reshaping,
we could group the variables into two groups: identifier variables and measured
variables. They are explained here:

* Identifier variables: These help identify the subject from whom we took
information on different characteristics. Typically, identifier variables are
qualitative in nature and take a limited number of unique values. In database
terms, an identifier is termed as the primary key, and this can be a single
variable or a composite of multiple variables.

* Measured variables: These are those characteristics whose information we
took from a subject of interest. These can be qualitative, quantitative, or a mix
of both.

Long layout

In this layout, the dataset is arranged in such a way that a single subject's
information is stored in multiple rows. We need a composite identification variable
to identify a unique row. This type of layout is usually seen in a longitudinal dataset.
The following is an example of this type of dataset:

sid exmterm | math literature | language
1 1 50 40 70
1 2 65 45 80
2 1 75 55 75
2 2 69 59 78
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Notice that in the dataset, we repeated sid but, if we consider both sid and exmterm,
each row can be identified uniquely. This layout is known as the long layout. The
following is the R code to produce this data frame:

# Example of typical two dimensional data

# A demo dataset "students" with typical layout. This data
# contains two students' exam score of "math", "literature"
# and "language" in different term exam.

students <- data.frame(sid=c(1,1,2,2),
exmterm=c(1,2,1,2),
math=c (50,65,75,69),
literature=c(40,45,55,59),
language=c(70,80,75,78))
students

sid exmterm math literature language

Wide layout

1 1 1 50 40 70
2 1 2 65 45 80
3 2 1 75 55 75
4 2 2 69 59 78

In this layout, each row represents all the information of a single subject. Usually,
only one identification variable is enough to identify a unique subject, but a
composite identification variable can be used. The main difference between a

wide layout and a long layout is that the wide layout contains all the measured
information in different columns. The following is the wide layout of the same data
that we initially stored in the long layout:

sid | math.1 | literature.l | language.l | math.2 | literature.2 | language.2
1 50 40 70 65 45 80
2 75 55 75 69 59 78

Notice that, in this layout, each row contains all the information corresponding to a
single value of sid. This layout is known as the wide form. In a later section, we will
see how we can convert a long layout to a wide one and vice versa using R.

[69]

www.it-ebooks.info


http://www.it-ebooks.info/

Reshaping Datasets

New layout of a dataset

In R, the layout of a dataset is known to be different from the typical layout that we
discussed in the previous section. This new layout consists of only the identification
variables and a value per variable. The identification variable identifies a subject,
along with which measured variable the value represents and which is the long
layout in this paradigm. In this new paradigm, each row represents one observation
of one variable. Interestingly, the typical long and wide layouts are both known as
wide layout in this new paradigm. In the new paradigm, long data is also known as
molten data, and the process of producing molten data is known as melting from
the wide layout. The difference between this new layout of the data and the typical
layout is that it now contains only the 1D variable and a new column value, which
represents the value of that observation. The following is an example of molten data
that comes from the typical long layout:

sid exmterm variable value
1 1 math 50
1 2 math 65
2 1 math 75
2 2 math 69
1 1 literature 40
1 2 literature 45
2 1 literature 55
2 2 literature 59
1 1 language 70
1 2 language | 80
2 1 language 75
2 2 language 78

In this dataset, we see that each row contains all the information of one student,
which is known as the wide data. The following is the R code to generate this
molten data:

# Example of molten data

library (reshape)

molten students <- melt.data.frame
(stuaents, id.vars=c("sid", "exmterm") )"
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The melt.data. frame function converts the wide data to a long (molten) form,

and the new layout will contain only the identification variables, along with two
other columns named variable and value. In the new layout, each row contains
the observation of a single variable, which is also known as the long form. The
variable column represents the identification information, along with what is being
measured, and the value column contains the measurement itself.

Reshaping the dataset from the typical
layout

In this section, we will see how we can convert a typical long layout to a typical wide
layout, and vice versa. To perform this conversion, we will use the built-in reshape ()
function. This takes several arguments, but we will use the following arguments:

* data: This argument specifies the dataset that we want to change the
layout of.

* direction: This argument specifies whether the data is long or wide.
Note that, here, long and wide indicate the typical layout.

* idvar: This argument specifies the identification variable. It could be
a single variable or multiple variables.

* timevar: This argument specifies how many times the values of idvar repeat
for each subject.

The following example converts the students' data that was created earlier from a
long layout to a wide layout:

# Reshaping dataset using reshape function

wide students <- reshape
(students,direction="wide", idvar="sid", timevar="exmterm")

wide students
sid math.1l literature.l language.l math.2 literature.2 language.2

1 50 40 70 65 45 80
2 75 55 75 69 59 78
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After reshaping the data, we see that the rows contain each student's exam record.
Now, we will change the layout from wide to long using the same function:

# Now again reshape to long format

long students <- reshape
(wide_students,direction="long", idvar="id")

long students

sid exmterm math.l literature.l language.l

1 1 50 40 70
2 1 75 55 75
1 2 65 45 80
2 2 69 59 78

The limitation of this default reshape function is that it can only deal with the long
and wide structures. In reality, data might contain multiple nested levels. To deal
with complex data structures, the reshape function is not useful; we should use the
reshape package instead.

Reshaping the dataset with the reshape
package

As we have seen, there are two different paradigms to define the layout of a dataset.
To change the layout of a dataset, here are the steps of a new paradigm. We need

to use the reshape package, where all the functions are implemented following the
new layout. The main idea of the reshape package is melting a dataset and then
casting it to a suitable layout. In the section, New layout of a dataset, we talked about
melting a dataset and what it looks like. Just to recall, in molten data each row
represents a single observation of a single variable in the dataset. Also, it contains
only the identifier variables and a value variable to represent what is being
measured. In this section, we will discuss melting with more examples and casting
with molten datasets.
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Melting data

In R, melting is a generic operation and can be applied to various data types,
including data frames, arrays, and matrices. Though melting can be applied to
different R objects, the most common use is to melt a data frame. To perform melting
operations using the melt function, we need to know what the identification
variables and measured variables in the original input dataset are.

If we do not specify the identification variables and measured variables, by
default any factor variables are assumed as the ID variables, and any numeric
variables are assumed as measured variables. To avoid this ambiguous operation, it
would be good to specify it explicitly. If we specify only one type of variable, either
identification or measured, the function assumes that the remaining variable is
of the other category. For example, if we specify only the 1D variables, the remaining
variables will be considered as measured variables, and vice versa. The following
example will clarify these points:

# original data

students
sid exmterm math literature language

1 1 1 50 40 70
2 1 2 65 45 80
3 2 1 75 55 75
4 2 2 69 59 78

# Melting by specifying both id and measured variables

melt (students,id=c("sid", "exmterm") ,
measured=c ("math","literature", "language"))

sid exmterm variable value

1 1 1 math 50
2 1 2 math 65
3 2 1 math 75
4 2 2 math 69
5 1 1 literature 40
6 1 2 literature 45
7 2 1 literature 55
8 2 2 literature 59
9 1 1 language 70
10 1 2 language 80
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11 2 1 language 75
12 2 2 language 78

# Melting by specifying only id variables

melt (students, id=c ("sid", "exmterm") )

sid exmterm variable value

1 1 1 math 50
2 1 2 math 65
3 2 1 math 75
4 2 2 math 69
5 1 1 literature 40
6 1 2 literature 45
7 2 1 literature 55
8 2 2 literature 59
9 1 1 language 70
10 1 2 language 80
11 2 1 language 75
12 2 2 language 78

In the melting process, the melt function does not assume the ID or measured
variables; there could be any number of variables in any order. This gives the
flexibility to deal with complex dataset. One important thing to note is that, whenever
we use the melt function, all the measured variables should be of the same type: that
is, the measured variables should be either numeric, factor, character, or date.

Missing values in molten data

There could be two types of missing value in practice: sampling zero (that is, no
response) and structural missing. The sampling zero values are explicitly coded
and represented in the dataset, but the structural missing values depend on the
structure of the dataset. Structural missing value are implicit in the dataset; they are
represented by the absence of a certain combination of the 1D variable. If we change
the structure of a dataset from nested to crossed, the implicit missing no longer
exists in the data. Rather, it explicitly appears in the new structure, and care should
be taken to deal with that data. The following simple example is taken from the
Reshaping Data with the reshape Package paper by Hadley Wickham, which can be
found at http://www.jstatsoft.org/v21/i12/paper. It clearly explains implicit
and explicit missing values in two different data structures.
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Consider a dataset with two 1D variables: sex (male or female) and pregnant (yes or
no). When the variables are nested, the missing value pregnant male is represented
by its absence in the dataset, as shown in the following table. However, in a crossed
view, we need to add the explicit missing value, as there will now be a cell that must
be filled with a value.

Sex Pregnant | Value
Male No 10
Female | No 14
Female | Yes 4

The cross view of this table can be represented as follows:

Sex Pregnant | Not Pregnant
Male 10
Female | 4 14

To deal with the implicit missing value, it is good to use na. rm=TRUE with the melt
function to remove the structural missing value. If we do not specify na.rm=TRUE
during melting, we have to specify this during data analysis.

Casting molten data

Once we have molten data, we can rearrange it in any layout using the cast function
from the reshape package. There are two main arguments required to cast molten
data. They are as follows:

* data: This is the molten data that we want to reshape.

* formula: This is the casting formula to determine the layout of the output
data; for example, which variable should go into columns and which should
go into rows. If we do not specify a formula, the cast will return the classic
data frame.

There are other argument options to perform certain types of operations, if required.
The basic casting formula is col_var 1+col_var 2 ~ row_var_l+ row_var_ 2,
which describes the variables to appear in columns and rows. The following example
shows how the cast function works:

# Melting students data
molten students <- melt (students,id.vars=c("sid", "exmterm"))
molten students
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sid exmterm variable value

1 1 math 50
2 1 2 math 65
3 2 1 math 75
4 2 2 math 69
5 1 1 literature 40
6 1 2 literature 45
7 2 1 literature 55
8 2 2 literature 59
9 1 1 language 70
10 1 2 language 80
11 2 1 language 75
12 2 2 language 78

Now use the cast function to return to the original data structure by specifying both
row and column variables as follows:

cast (molten students, sid+exmterm~variable)
sid exmterm math literature language

1 1 1 50 40 70
2 1 2 65 45 80
3 2 1 75 55 75
4 2 2 69 59 78

The following is the same operation, but specifying only row variables:

cast (molten students, ...~variable)
sid exmterm math literature language

1 1 1 50 40 70
2 1 2 65 45 80
3 2 1 75 55 75
4 2 2 69 59 78

We will now rearrange the data in such a way that sid is now a separate column for
each student, as follows:

cast (molten students, ...~sid)
exmterm variable 1 2

1 1 math 50 75

2 1 literature 40 55
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1 language 70 75
2 math 65 69
2 literature 45 59
2 language 80 78

o Ul oW

We will rearrange the data again in such a way that exmterm is now a separate
column for each term, as follows:

cast (molten students, ...~exmterm)
sid variable 1 2
math 50 65
literature 40 45
language 70 80
math 75 69
literature 55 59
language 75 78

o Ul W N R
NN R R R

Note that the column names of the last two examples are
not valid column names because they contain numbers.
This is a limitation of R.
/<~~~ R cannot automatically label row or column names
unambiguously, so we have to be careful about column
names during analysis.

The reshape2 package

Though the reshape package has various functions to perform, there are various
tasks that cannot be done using built-in R functions; this package is slow. To make
this more time-and memory-efficient, Wickham reimplemented this package and
developed another package, reshape2. The reason behind the development of the
new reshape2 package is to keep the functionality of the original reshape package
so that users do not get confused. Some important new features of the reshape2
package are as follows:

* Itis much better than the original reshape package in terms of memory and
time efficiency
* It uses several functions instead of only the cast function

* The multidimensional marginal total can be calculated
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The melt function in the reshape2 package works the same as the melt function in
the reshape package. The only difference is that the melt function in the reshape2
package is faster and more memory-efficient than the melt function in the reshape
package. The melt function is pretty efficient at converting all data structures to
molten data frames. The next step is to reshape the molten data frame into either a
data frame or array structure. In the reshape package, this task is done using only
the cast function. The output of the cast function, whether a data frame or array,
depends on how we put the formula. In the reshape2 package, we have the dcast
function to produce the data frame as output and acast to produce an array from a
molten data frame.

We will also use the students dataset here. First, we will melt the dataset using the
melt function in the reshape2 package, and then we will illustrate how we can use
the dcast and acast functions to reshape the data:

library (reshape?2)
molten students <- melt (students, id.vars=c("sid", "exmterm"))

The basic casting formulais x variable + x 2 ~ y variable + y 2 ~ z_
variable ~.For the purpose of illustration, consider x_variable, x_2 as the first
set of variables, y variable,y 2 as the second set of variables, z variable ,z 2
as the third set of variables, and so on. The first set of variables is used to make
the row uniquely identifiable. For the molten dataset molten_students we are
considering sid as first set of variable and variable as second set of variable in the
following example:

> dcast (molten students, sid~variable)

Aggregation function missing: defaulting to length
sid math literature language

1 1 2 2 2

2 2 2 2 2

Here, we can see that we have only two rows, although we do not have all the data
here. This happened because the sid variable has only two unique values. To make
the column uniquely identifiable using just the sid variable, we only need two rows:

> dcast (molten students, sid+exmterm~variable)
sid exmterm math literature language

1 1 1 50 40 70
2 1 2 65 45 80
3 2 1 75 55 75
4 2 2 69 59 78
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Now we have four rows, because the sid and exmterm variables together can create
only four unique rows. We have complete data here. So, in the process of data
analysis, we should use the entire identification variable as the first set of variables.
This is also true for the acast function:

> acast (molten students, sid~variable)

Aggregation function missing: defaulting to length
math literature language

1 2 2 2

2 2 2 2

Here, there is no sid variable in the data, because acast produces an array and the
value of the sid variable is used as the row index for this data:

> acast (molten students, sid+exmterm~variable)
math literature language

11 50 40 70
12 65 45 80
21 75 55 75
2.2 69 59 78

This sheds light on how the combination of the sid and exmterm variables is
considered as an index of the output array.

The second set of variables is used to produce column name. The combination of the
values of the second set of variables is used as the column name of the output data
frame in the dcast and acast functions:

> dcast (molten students, sid~variable+exmterm)
sid math 1 math 2 literature 1 literature 2 language 1 language 2
1 50 65 40 45 70 80
2 75 69 55 59 75 78

> acast (molten students, sid~variable+exmterm)

math 1 math 2 literature 1 literature 2 language 1 language 2
1 50 65 40 45 70 80
2 75 69 55 59 75 78

Here, we can see that the combination of the second set of variables is considered as
the column name of the output data frame and array.
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The third set of variables is only applicable for the acast function since an array
could go beyond two dimensions, but data frame is strictly restricted to two
dimensions. This is why we could not use the third set of variables in the formula for
the dcast function:

> acast (molten students, sid~exmterm~variable)
, , math

1 2
1 50 65
2 75 69

, , literature

1 2
1 40 45
2 55 59

, . language

1 2
1 70 80
2 75 78

Summary

This chapter introduced a theoretical framework for reshaping a dataset. The
limitations of conventional approaches were pointed out, and the new paradigm of
data layout was highlighted. In the new paradigm, employing only two functions
allows users to rearrange datasets into various layouts as required. This chapter
also discussed structural missing, sampling zero values, and how to deal with these
missing values during the melting process. For faster and large data rearrangement,
you were redirected to the reshape2 package.

In the next chapter, we will discuss how R can be connected with databases and
handle large-scale data.

[80]

www.it-ebooks.info


http://www.it-ebooks.info/

R and Databases

We noticed earlier that a dataset can be stored in any format using different software
as well as relational databases. Usually, large-scale datasets are stored in database
software. In data mining and statistical learning, we need to process large-scale
datasets. One of the major problems in R is memory usage. R is RAM intensive, and
for that reason, the size of a dataset should be much smaller than its RAM. Also, one
of the major drawbacks of R is its inability to deal with large datasets.

This chapter introduces how to deal with large datasets that are bigger than

the computer's memory and dealing with a dataset by interacting with database
software. In the first few sections, we describe how to interact with database software
with Open Database Connectivity (ODBC) and import datasets. This chapter will
present an example of memory issues and then describe ODBC using an example of
MS Excel and MS Access, dealing with large datasets with specialized contributed R
packages. This chapter ends with an introduction to data manipulation using SQL
through the sqldf package.

The first are two examples demonstrating memory problems in R:

* The following example explains the memory limitation of a computer
system. R stores everything in RAM, and a typical personal computer
consists of limited RAM (depending on the computer's operating system,
that is, 32-bit or 64--bit).

# Trying to create a vector of zero with length 2%32-1.

# Note that the RAM of the computer on we are generating
# this example is 8 GB with 64-bit Windows-7

# Professional edition. Processor core i5.

x <- rep(0, 2731-1)
Error: cannot allocate vector of size 16.0 Gb
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In addition: Warning messages:

1: Reached total allocation of 8078Mb: see help (memory.size)
2: Reached total allocation of 8078Mb: see

help (memory.size)

3: Reached total allocation of 8078Mb: see

help (memory.size)

4: Reached total allocation of 8078Mb: see

help (memory.size)

* The preceding example clarifies that R cannot allocate a vector that has size
larger than the RAM. Now we will see another example that is related to the
maximally addressable range of different types of numbers. The maximum
addressable range for integers is 2°!-1.

# Maximum addressable range of inter vector
as.integer(2%31-1)
[1] 2147483647

# If we try to assign a vector of length greater than
# maximum addressable length then that will produce NA

as.integer(2731)

[1] NA

Warning message:

NAs introduced by coercion

The topic of database administration is beyond the scope of this book, but we can
easily discuss connectivity with databases using R.

R and different databases

Before going on to discuss large-scale data handling using R, we will discuss how R
can interact with database software through ODBC. There are two principal ways to
connect to a database: the first uses the ODBC facility available on many computers
and the second uses the DBI package of R along with a specialized package for the
particular database needed to be accessed. If there is a specialized package available
for a database, we may find that the corresponding DBI-based package gives better
performance than the ODBC approach. On the other hand, if a database does not
have a specialized package to access, using ODBC may be the only option.
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R and Excel

An Excel file can be imported into R using ODBC. We will now create an ODBC
connection with an MS Excel file with the connection string x1open.

To create an ODBC connection string with an MS Excel file, we need to open the
control panel of the operating system and then open Administrative Tools and then
choose ODBC. A dialog box will now appear. Click on the Add... button and select
an appropriate ODBC driver and then locate the desired file and give a data source
name. In our case, the data source name is x1lopen. The name of the Excel file can be
anything, and in our case the file name is x1sxanscombe . x1sx. The following R code
will import the corresponding Excel file into the R environment:

# calling ODBC library into R
library (RODBC)

# creating connection with the database using odbc package.
# We created the connection following the steps outlined in the
# preceding paragraph

x1ldb<- odbcConnect ("xlopen")

# In the odbcConnect () function the minimum argument required
# is the ODBC connection string.

# Now the connection created, using that connection we will import data
xldata<- sqglFetch(xldb, "CSVanscombe")

# Note here that "CSVanscombe'"is the Excel worksheet name.

We can use other packages to import an Excel file, but at the same time R has

the facility to import data using the ODBC approach. To use the ODBC approach
on an Excel file, we firstly need to create the connection string using the system
administrator. The process of creating a connection is beyond the scope of this
book, but we will learn about the topic briefly.
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R and MS Access

To import data from the MS Access database, the procedure is the same as with
Excel. First, we need to create a connection string from the system administrator
and then connect with the database from R using the RODBC package.

Let us consider the Access database containing three different tables: coveragepage,
questionnairel, and questionnaire2. The connection string to access this
database is accessdata. The following command can be used to import all the

three tables as separate data frames in R:

# calling odbc library
library (RODBC)

# connecting with database
access_con<- odbcConnect ("accessdata")

# import separate table as separate R data frame
coverage page<- sglFetch(access _con, "coverpage")
quesl <- sglFetch(access_con, '"questionnairel")
ques2 <- sglFetch(access_con, "questionnaire2")

Using MS Excel and MS Access, we can deal with fairly large datasets, but sometimes
it so happens that the dataset is too large and handling with Excel or Access is difficult.
Also, Excel cannot deal with relational databases. To overcome this limitation, R has
another functionality, which we will discuss in the following sections.

Relational databases in R

In this section, we will try to provide a concise overview of different packages in R
for handling massive data and illustrate some of them.

A popular approach to dealing with bigger datasets is the use of SQL, a different
programming language. It might not be difficult for someone to learn another
programming language, but as we are dealing with and talking about using R,
the community of R users try to develop specialized packages to deal with large
datasets. Those contributed packages successfully create interfaces between R and
different database software packages that use relational database management
systems, such as MySQL (rRMysQL), PostgreSQL (rRPgsoL), and Oracle (Roracle).
To get the full benefit of these specialized packages, we have to install third-party
software, and one of the most popular packages is RMysQL. This package allows
us to make connections between R and the MySQL server.
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MySQL, which can deal with a mid-size, multi-platform RDBMS is a popular software
in the open source community. Some of its advantages include high-performance,
being open source, and being free for non-commercial use. In order to install this
package properly, we need to download both the MySQL server and RMySQL.

There are several R packages available that allow direct interactions with large
datasets within R, such as filehash, £f, and bigmemory. The idea is to avoid
loading the whole dataset into memory.

The filehash package

The £ilehash package, which is used for solving large-data problems, was contributed
by Roger Peng (The Interacting with Data using the filehash Package for R paper, available
at http://cran.r-project.org/web/packages/filehash/vignettes/filehash.
pdf). The idea behind the development of this package was to avoid loading the
dataset into a computer's virtual memory. We must rather dump the large dataset into
the hard drive and then assign an environment name for the dumped objects. Once

a dataset is dumped into the hard drive, we can access the data using the assigned
environment. In this way, we can deal with larger datasets and avoid the use of the
computer's virtual memory and allow faster data manipulation. We will now discuss
the basic steps of using this package through some examples.

Firstly, create a database that can be accessed later on. To create a database, we have
to use the dbCreate function, which needs to be initialized (via dbInit) in order

to be accessed, as shown in the following code. The dbInit function returns an S4
object that inherits from the £ilehash class.

library (filehash)
dbCreate ("exampledb")
filehash db<- dbInit ("exampledb")

The primary interface of £ilehash databases consists of the functions dbFetch,
dbInsert, dbExists, dbList, and dbDelete. All of these functions are generic in
nature and specific methods exist for the database that work in the backend. The
first argument that is taken by the functions within this package is an object of the
filehash class. To insert some data into the database, we can simply call dbInsert.
We retrieve those data values with dbFetch, as shown in the following code:

dbInsert (filehash db, "xx", rnorm(50))
value<- dbFetch(filehash db, "xx")
summary (value)
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The dbList function lists all of the keys that are available in the database, the
dbExists function tests to see if a given key is in the database, and the dbDelete
function deletes a key-value pair from the database, as shown in the following code:

dbInsert (filehash db, "y", 4709)
dbDelete(filehash db, "xx")
dbList (filehash db)

dbExists (filehash db, "xx")

There is another very useful command, dbLoad (), that works in a similar way to the
attach () function. Using the filehash package, the objects are attached but stored
on the local hard disk. We may also assess the objects in the filehash database
using the usual standard R subset and accessor functions such as $, [ [, and [, as
shown in the following code:

filehash db$x<- runif (100)
summary (filehash dbs$x)
summary (filehash db[["x"]])
filehash db$y<- rnorm(100, 2)
dbList (filehash db)

After initializing a database using the default DB1 format, it opens a file connection
for reading and writing to the database file on the disk. This file connection will
remain open until the database is closed via dbDisconnect or the database object in
R is removed. There is a limit on the number of file connections that can be open at
the same time, so to protect any database from unexpected results, we need to make
sure the file connections are closed properly.

Just like save . image in base R, there are some utilities included in the filehash
package and two of them are dumpObjects and dumpImage. The dumpObjects utility
saves an object into the filehash database so that it can be accessed in the future

if required. It does not save objects into R itself, which allows faster processing.
Similarly, dumpImage saves the entire workspace to a £ilehash database. The
dumpList function takes a list and creates a filehash database with values from the
list. The list must have a non-empty name for every element in order for dumpList
to succeed. The dumpDF utility creates a £ilehash database from a data frame where
each column of the data frame is an element in the database. Essentially, dumpDF
converts the data frame to a list and then calls dumpList. The following example
shows how we can use dumpDF:

dumpDF (read.table ("anscombe.txt", header=T), dbName="massivedata")
massive environment<- db2env(db="massivedata")
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The first element of dumpDF () is a data object. R will read the data within dumpDF (),
so its memory does not have a copy of it. Space saved! So now the large dataset,
large.dat, can be accessed through the envo1 environment. To access it, we use
with (). Suppose we want to perform a linear regression of y on x and access the
data using the variable names. In such cases, if you assign an object name for the
read.table command, the memory will have a copy of the data, which is not
desirable. Using the with () function, we can fit a model or compute summary
statistics as usual as follows:

fit<- with(massive environment, 1m(Y1~X1))
with (massive environment, summary(Y1l))

with (massive environment, Y1[1] <- 99))

The ff package

As we have seen in the example in the introductory section of this chapter, R can
only address objects that fit within the memory limits of its RAM and the maximally
addressable range of 2°!-1 bytes. To overcome this limitation, Adler and Glaser, in
2010, developed the £ £ package. This package extends the R system and stores data
in the form of native binary flat files in persistent storage such as hard disks, CDs,
or DVDs rather than in the RAM. This package enables users to work on several
large datasets simultaneously. It also allows the allocation of vectors or arrays that
are larger than the RAM. The package comprises of two parts: one is the low-level
layer written in C++ and the other is the high-level layer in R. This package is
designed for convenient access to large datasets.

As users will only deal with the high-level layer, the following are the tasks we
do in this layer:

* Opening/creating flat files: There are two basic functions, ££ and £ £m, to deal
with opening and creating flat files. If we specify the 1ength argument or the
dimargument, a new file is created, otherwise R will open an existing file.

* I/O operations: These operations are controlled by the [ (for reading)
and the [ <- (for writing) operators.

* Generic functions and methods for the ff and ffm objects: Methods
for dim and length are provided and the sample function is converted
to a generic function.
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The primary argument for the functions £f and ffm require a filename in the file
argument to specify the flat file. Whenever length (for ££) or dim (for ££m) is
specified, as shown in the following code, a new flat file is created, otherwise

an existing file is opened:

# A flat file with a length 10 is created

library (ff)
filel <- ff(filename="filel", length=10,vmode="double")
str(filel)
list ()
- attr(*, "physical")=Class 'ff pointer' <externalptr>
- attr(*, "vmode")= chr "double"
- attr(*, "maxlength")= int 10
- attr(*, "pattern")= chr "/"
- attr(*, "filename")= chr "D:/Book on R/Writing/outline/data_ch2/
filel"
- attr(*, "pagesize")= int 65536
- attr(*, "finalizer")= chr "close"
- attr(*, "finonexit")= logi TRUE
- attr(*, "readonly")= logi FALSE
..- attr(*, "caching")= chr "mmnoflush"
- attr(*, "virtual")= list()
.- attr(*, "Length")= int 10
.- attr(*, "Symmetric")= logi FALSE
- attr(*, "class") = chr [1:2] "ff vector" "ff"

The entries of filel can be modified with the []<- operator. For example, the first
10 entries of the rivers dataset that contains the length of the 141 rivers in North
America can be stored in an ££ object, as shown in the following code:

# calling rivers data

data (rivers)
filel[1:10]

<- rivers[1:10]

# Note that here filel is an ff object whereas
# filel[...]

str(filel)

returns default R vector
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If required, we can perform sampling on the ££ objects as follows:

# set seed to reproduce the example
set.seed (1337)
sample(filel, 5, replace=FALSE)

[1] 735 392 524 450 600

Flat file objects are referenced when forming R objects using external pointers.
In order to clear the references, the garbage collector, gc (), can be used as follows:

gc ()

Calling gc () clears the reference to the file, but does not delete the file from the hard
drive. Since the data is still present, the flat file can be opened again at a later stage.

R and sqldf

The sqldf package is an R package that allows users to run SQL statements
within R. SQL is the popular programming language for manipulating data
from relational databases, and the sqldf package creates an opportunity to
work directly with SQL statements on an R data frame. With this package,
the user can do the following tasks easily:

*  Write alternate syntax for data frame manipulation, particularly for purposes
of faster processing, since using sqldf (with SQLite as the underlying
database) is often faster compared to performing the same manipulations
in built-in R functions

* Read portions of large files into R without reading the entire file
The user need not perform the following tasks once they use sqldf because
these are automatically done:

* Database setup

* Writing the create table statement, which defines each table

* Importing and exporting to and from the database

* The coercing of the returned columns to the appropriate class in
common cases
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Data manipulation using sqldf

We can perform any type of data manipulation to an R data frame either in memory
or during import. The following example shows the selection of a portion of the iris
dataset using the sqldf package:

# Selecting the rows from iris dataset where sepal length > 2.5
# and store that in subiris data frame

library (sqgldf)
subiris<- sgldf("select * from iris where Sepal Width> 3")
head (subiris)

Sepal Length Sepal Width Petal Length Petal Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
5 5.4 3.9 1.7 0.4 setosa
6 4.6 3.4 1.4 0.3 setosa

nrow (subiris)
[1] 67

We can also select a smaller number of columns while filtering out some of the rows
with a specified condition. The following example selects only sepal length, petal
length, and species; however, this time, rows are filtered by values for petal length
greater than 1.4:

subiris2<-
sqgldf ("select Sepal Length,Petal Length,Species from iris where Petal
Length> 1.4")

nrow (subiris?2)
[1] 126

head (subiris?2)

Sepal Length Petal Length Species
1 4.6 1.5 setosa
2 5.4 1.7 setosa
3 5.0 1.5 setosa
4 4.9 1.5 setosa
5 5.4 1.5 setosa
6 4.8 1.6 setosa
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If the dataset is too large and cannot entirely be read into the R environment,

we can import a portion of that dataset using sqldf. The following example shows
how we can import a portion of a csv file using the sqldf functionality. We will use
the read.csv.sql () function to perform this task. This is an interface to sqldf that
works like read. csv in R, except that it also provides a sql= argument. Not all of
the other arguments of read. csv are supported.

In the following example, we will import the iris.csv file. We will import only
sepal width and petal width along with the species information where petal width
is greater than 0.4:

iriscsv<-read.csv.sql ("iris.csv",sgl="select
Sepal Width, Petal Width, Species from file where Petal Width>0.4")

head (iriscsv)
Sepal Width Petal Width Species
.3 "setosa"
"setosa"
"versicoloxr"
"versicoloxr"

"vergicolor"

o Ul W N R
N W W W W W]
w Rk NN U

R B P R o o
w U o U

"vergicolor"

An important thing to note is that in the original iris.csv file, the variable
names were dot separated, but when we pass a SQL statement, we need to use
an underscore as the variable name, otherwise it will output an error as follows:

iriscsv<-read.csv.sqgl ("iris.csv",sgl="select Sepal.Width, Petal.
Width, Species from file where Petal.Width>0.4")

Error in sgliteExecStatement (con, statement, bind.data)
RS-DBI driver: (error in statement: no such column: Sepal.Width)

We sometimes need to draw a random sample from a dataset but the original data
file might be too large. In the following example, we will show how we can draw a
random sample size of 10 from the iris data that is stored in the iris. csv file:

iris sample<-
read.csv.sgl ("iris.csv",sqgl="select * from file order by random(*)
limit 10")

iris sample
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Sepal Length Sepal Width Petal Length Petal Width Species
1 6.5 3.0 5.2 2.0 "virginica"
2 5.0 3.5 1.3 0.3 "setosa"
3 6.0 2.2 4.0 1.0 "versicolor"
4 6.9 3.1 5.4 2.1 "virginica"
5 6.2 2.8 4.8 1.8 "virginica"
6 5.1 3.8 1.9 0.4 "setosa"
7 5.8 2.6 4.0 1.2 "versicolor"
8 5.9 3.2 4.8 1.8 "versicolor"
9 6.4 2.9 4.3 1.3 "versicolor"
10 6.4 3.1 5.5 1.8 "virginica"

We can perform group-wise processing and aggregation using sqldf, whichis a
faster alternative to the aggregate function. For example, if we want to calculate
the mean of each variable in the iris data for each species, the following is the code:

# Calculate group wise mean from iris data

iris avg<-sqgldf ("select Species, avg(Sepal Length),avg(Sepal
Width) ,avg(Petal Length),avg(Petal Wid

th) from iris group by Speciesg")

colnames (iris_avg) <- c("Species","Sepal L","Sepal W","Petal L","Peta

l_w n )
iris_avg

Species Sepal L Sepal W Petal L Petal W
1 setosa 5.006 3.428 1.462 0.246

2 versicolor 5.936 2.770 4.260 1.326
3 virginica 6.588 2.974 5.552 2.026

The base R counterpart for performing the same operation is as follows:

aggregate (iris[,-5],1list (iris$Species) ,mean)

Group.l Sepal.Length Sepal.Width Petal.Length Petal.Width

1 setosa 5.006 3.428 1.462 0.246
2 versicolor 5.936 2.770 4.260 1.326
3 virginica 6.588 2.974 5.552 2.026

Though both functions give us the same results, for larger datasets, sqldf is much
faster than base R.
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Summary

At the beginning of this chapter, we showed you how we can deal with an MS Excel
file as a database and how an MS Access database table can be imported into R.

One of the major problems in R is that its memory is bound by the system virtual
memory, and that is why the data should be smaller in size than the memory of

a dataset to be able to work with it. But in reality, datasets are often larger than

the virtual memory and sometimes the length of the array or vector exceeds the
maximum addressable range. To overcome these two limitations, R can be utilized
with relational databases. Contributed R packages exist to help in dealing with such
large datasets, and they have been highlighted in this chapter, particularly £ilehash
and ££. We also discussed sqldf for faster data manipulation.
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Text data is one of the most important areas in the field of data analytics. Every
day, we are producing a huge amount of text data through various media. For
example, Twitter posts, blog writing, and Facebook posts are major sources of text
data. Text data can be used to retrieve information in sentiment analysis and even
entity recognition. In this chapter, we will discuss how R can be used to process
text data, which we can utilize in any text analytics areas. These types of data can
also be used in text categorization, predictive analytics, lexical analysis, document
summarization, and even in natural language processing. First, we will discuss the
default functions of R for processing text data. Then, we will introduce a stringr
library to work with text data. We will cover the following topics in this chapter:

*  What is text data?

* Sources of text data

* Obtaining text data

* Text processing using default functions

* Text processing using stringr

* Structuring text data for text mining

Text data and its source

Text data is any type of text on any topic. Here is a list of text data and its sources:

* Tweets from any individual, or from any company
* Facebook status updates
* RSSfeeds from any news site

* Blog articles
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e Journal articles
* Newspapers

* Verbatim transcripts of an in-depth interview

These are the most common sources of text data. In the area of text analytics, Twitter
data has been used frequently to find topic trends through topic modeling. Text data
has also been used to predict certain diseases from tweets. The HTML web file are
also a great source of text data.

Getting text data

Text data can be embedded into any dataset as a string variable. Also, text data can
be stored as plain text files even in the HTML file format. In this section, we will see
how we can read or import text data into the R environment for further processing.

The easiest way to get text data is to import from a . csv file where some of the
variables contain character data. For example, the tweets. csv file contains 50
Twitter statuses on a certain topic. Since this is a . csv file, we can import it using
the read.csv () function, but we have to protect automatic factor conversion by
specifying the stringsAsFactors=FALSE argument. An example of importing text
data from the tweets.csv file is as follows:

textData <- read.csv("tweets.csv",stringsAsFactors=FALSE)
str (textData)

''data.frame'': 50 obs. of 2 variables:

$ ID :int 123 456 7 8 9 10

$ TWEETS: chr "Sohum Spa at Movenpick HotelSpa Bangalore reveals
Indian traditions for relaxation" "Sohum Spa at Movenpick HotelSpa
Bangalore reveals Indian traditions for relaxation" "SalesMarketing
Manager at Prestige Leisure Resorts Pvt Ltd" "Assistant Front Office
Manager at The LEELA PalaceBangalore"

So, this is just as simple as importing any other data in R. Now, let's look at an
example of obtaining text data from a plain text file. The tweets. txt file is the plain
text file. We will import this file using the generic readLines () function:

textDatal<-readLines ("tweets.txt")"")
str (textDatal)

chr [1:51] "ID\tTWEETS " "1\tSohum Spa at Movenpick HotelSpa
Bangalore reveals Indian traditions for relaxation"
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If we see the structure of the textData and textDatal objects, there is a difference.
The textData object, which is imported by read.csv (), is a data frame, whereas
the textDatal object imported by readLines () is just a vector of characters. To
convert the character vector into a data frame, we need some basic processing. We
will talk about this in a later section. Importing text data from an HTML page, which
is technically known as web scraping, is one of the widely used sources of text data.
In this example, we will see how we can import data from the web. Interestingly, the
readLines () generic function can be used to read an HTML file too, but later on, we
need to process it to have a structured database. Here is an example to importing a
Wikipedia article:

# Creating object with the URL
conURL <- "http://en.wikipedia.org/wiki/R_%28programming language$%29"

# Establish the connection with the URL
1ink2URL <- url (conURL)

# Reading html code
htmlCode <- readLines (1ink2URL)

# Closing the connection
close (1ink2URL)

# Printing the result
htmlCode

Like the previous textDatal object. This is also a character string, but this time it
contains the HTML code. From this HTML code, we are able to generate structured
data for further use.

To obtain text data from social networking sites such as Twitter and Facebook, there
are designated R libraries. To extract Twitter data, we can use tweetR and, to extract
data from Facebook, we could use facebookRr. In the section Working with Twitter
data, we will discuss this in detail.

The tm text mining library has some other functions to import text data from various
files such as PDF files, plain text files, and even from doc files. Readers are advised to
look into the tm library for further information. Discussing the tm library in detail is
beyond the scope of this chapter.
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Text processing using default functions

Some of you might not be interested in text mining, but you still need to process text
data in your day-to-day activities. In this section, we will try to give some examples
that will be helpful for your daily needs. The following are the general tasks that we
need to perform frequently:

* Removing certain characters or words from a string

* Splitting the character string to get structured information

* Matching certain parts of the characters to find out some patterns
* Changing lowercase to uppercase, and vice versa

* Calculating the number of characters in a string

* Extracting a certain part from a string

* Extracting only digits from a string

We will see an example for each case listed previously. First, we will remove a
certain word from a string. To do so, we will use the textData object. This object has
two variables, and one of them contains text data. We will use the first observation
from that text variable:

# Extracting first observation

text2process <- textData$TWEET [1]

text2process

[1] "Sohum Spa at Movenpick HotelSpa Bangalore reveals Indian
traditions for relaxation"

Now, we are interested in removing the prepositions, such as for and at, from the
text. To do so, we will use the gsub function, which replaces certain text based
on pattern matching. The important arguments of the gsub function are pattern,
replacement, and the string is as follows:

prepRemovedText <- gsub(pattern="for",replacement="",x=text2process)
prepRemovedText

[1] "Sohum Spa at Movenpick HotelSpa Bangalore reveals Indian
traditions relaxation"

This example shows that the word for has been removed from the original string.

We can also split the string so that it has a different data structure. For example, if we
split the text2process object using the splitting character as a blank space, then it
will be a vector of the character, with each word separated. Here is an example:

splittedText <- strsplit (text2process,split=" ")
splittedText
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[[1]1]

[1] "Sohum" "Spa" "at" "Movenpick" "HotelSpa"
"Bangalore" '"reveals" "Indian" "traditions" "for"
"relaxation"

The strsplit function takes a character string as input and the character in split
argument specifies the location of split. The output is initially stored in a list object,
but to get the output as a vector, we can remove the object from the list in the
following way:

unlist (splittedText)

[1] "Sohum" "Spa" "at" "Movenpick" "HotelSpa"
"Bangalore" '"reveals" "Indian" "traditions" "for"
"relaxation"

Converting lowercase and uppercase strings is another important function
when we work with text data. Since R is case-sensitive, the words Spa and spa are
different, though, in fact, they are the same word. So, to remove ambiguity, we can
convert either all the words to lowercase or change them all to uppercase.

To convert into lowercase and then to uppercase, let's take a look at the
following example:

tolower (text2process)
[1] "sohum spa at movenpick hotelspa bangalore reveals indian
traditions for relaxation"

toupper (text2process)
[1] "SOHUM SPA AT MOVENPICK HOTELSPA BANGALORE REVEALS INDIAN
TRADITIONS FOR RELAXATION"

During data analysis and in text processing, we need to know the number of characters
in a character string. For example, in some databases, the id variable could be text, and
it should contain a certain number of characters. In this case, we need to count whether
the required number of characters is present or not. In this example, we will see how to
calculate the number of characters from a string. The total number of characters in the
text2process string can be found using the nchar () function. This function counts
each character, including a blank space:

nchar (text2process)
[1] 82

Now, we will pass the same function, but this time the input will be the unlisted split
character vector:

nchar (unlist (splittedText))
[1] 5 3 2 9 8 9 7 6 10 3 10
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This time, we have a vector of an integer because the input of the nchar () function,
here, is a vector of the character object. So, it returns the number of characters for
each component of that input vector.

In some cases, the text variable contains both date and time information. For
example, 02Feb2015:11:15PM is a character string. We need to extract only the
date part for further processing. To do the task, take a look at this example:

# Creating the character string with date and time information
dateTimeobject <- "02Feb2015:11:15PM"

# Extracting only the character between 1 to 9
# including 1st and 9th

substr (dateTimeobject, 1, 9)

[1] "02Feb2015"

So, the substr function can be used to extract a portion of text from a character string.

During text processing, sometimes, we need to extract only the digits from a
character string. In the example, we will see how we can do this task. In R, we have
default color names that can be accessed through the color () function. Some of the
color names contains digits such as red1, red2, and so on. In this example, we will
extract only the digits from color names:

# to see the color names

colors ()

# Now to extract the digit from the color names
as.integer (gsub ("\\D", "", colors()))

This table gives us an idea about the facilities in the stringr library and its link with
the default R functions:

Base R functions stringr functions

paste () : This function is used to str_c (): This has a functionality similar to
concatenate a vector of characters, paste (), but it uses empty as the default separator.
with a default separator as a space. | It also silently removes zero-length arguments.

nchar () : This returns the number str length(): This is the same as nchar (), but it
of characters in a character string. preserves NA. Here is an example:
For N3, it returns 2, which is not

. str_length(c("x","y", NA))
expected. Here is an example:

[1] 1 1 NA
nchar (c("x","y",NA))
[1] 1 1 2
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substr () : This extracts or replaces | str_sub () : This is the equivalent of substxr (),
substrings in a character vector. but it returns a zero-length vector if any of its inputs
are of zero length. It also accepts negative positions,
which are calculated from the left-hand side of

the last character. The end position defaults to -1,
which corresponds to the last character.

Unavailable str_dup () : This is used to duplicate the characters
within a string.

Unavailable str_trim(): This is used to remove the leading
and trailing white spaces.

Unavailable str_pad (): This is used to pad a string with extra
white spaces on the left-hand side, right-hand side,
or both sides.

Other than the functions listed in the preceding table, there are some other
user-friendly functions for pattern matching. These functions are str_detect,
str_locate, str_extract, str_match, str_replace, and so on. To get more details
about these functions, you should refer to the stringr: . It is a modern, consistent
string-processing paper by Hadley Wickham, which can be found at http://
journal.r-project.org/archive/2010-2/RJournal 2010-2 Wickham.pdf.

Working with Twitter data

Twitter is one of the best sources of text data. In this section, we will extract text data
from Twitter using the #rstats hashtag. After extracting the text, we will clean it
and then produce a wordcloud. The required libraries for this particular section are
as follows:

b twitteR
b tm

®* wordcloud

To extract data from Twitter, first, we need to connect with the Twitter account
through a valid authentication process. The code to authenticate the R session with
Twitter to extract data, is as follows:

library (twitteR)
# need to provide actual string for each key by replacing xxxx
setup twitter oauth(consumer key="xxxx",

consumer secret="xxxx",

access_ token="xxxx", access_secret="xxxx")
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Once the authentication process is complete, we can extract text data. In the following
code, we extracted data for 500 tweets with a #rstats hashtag. We restricted the
tweets to English only. The results of this section will be changed over time.

# Extracting 500 recent tweets with #rstats hashtag
# and language of the tweets is English
tweets<-searchTwitter ("#rstats", n=500,lang='en')

The object will be listed in nature with lots of information related to tweets. We
can easily check the structure of the newly created objects using the following
str () function:

str (tweets)

To prepare a word cloud, we will use only the status text from the extracted tweets.
To do so, we need to convert the list object into a data frame and then take only the
text column. The code chunk to get only the text column is as follows:

datTweet<-plyr::1ldply (tweets,as.data.frame)
vecStatus <- datTweetStext

The next step is to clean the text by removing HTML tags, retweets tags (RT), and
punctuation symbols:

#Clean Text

vecStatus = gsub (" (RT|via) ((?2:\\b\\W*@\\w+)+)","", vecStatus)
vecStatus = gsub("http[”[:blank:]1]1+", "", vecStatus)
vecStatus = gsub("@\\w+", "", vecStatus)

vecStatus = gsub("[ \t]{2,}", "", vecStatus)

vecStatus = gsub (""\\s+|[\\s+$", "", vecStatus)

vecStatus <- gsub('\\d+', '', vecStatus)

vecStatus = gsub("[[:punct:]]1", " ", vecStatus)

# additional cleaning by tm library
library (tm)

corpus = Corpus (VectorSource (vecStatus))

corpus = tm_map (corpus, removePunctuation)

corpus = tm_map (corpus, stripWhitespace)

corpus = tm_map (corpus, tolower)

corpus = tm_map (corpus, removeWords, stopwords ("english"))
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Once we clean the text, it is now ready to produce a word cloud of the texts. To make
a word cloud, we will call the wordclund library and then use the wordcloud ()

function, as shown in the following example:

library (wordcloud)
wordcloud (corpus)

The following screenshot shows the wordcloud corresponding to the 500 extracted

tweets using rstats hashtag:
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Summary

In this chapter, we tried to disc

uss the source of text data and how plain text can be

handled using R. We also compared functions from the stringr library with the
default R functions to process text data. In the final section, we showed you how to
extract text data from Twitter posts and then clean the data to produce a word cloud.

The processed text data can be

used in other text-mining applications, such as topic

modeling and sentiment analysis.
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A

array 36

B

Base R functions
about 54
nchar() 54
paste() 54
substr() 55

C

character manipulation 54, 55
columns, dplyr

adding 73, 74
column-wise descriptive statistics 74
Comprehensive R Archive Network

(CRAN)

URL 12

Coordinated Universal Time (UTC) 51

D

data
acquiring 41-44
manipulating, sqldf package used 100-102
melting 83, 84
data frame 31-33
data reshaping 77
dataset
about 77
layout 78-81
reshaping, from typical layout 81, 82
reshaping, reshape package used 82

Index

dataset layout

identifier variables 78
long layout 78
measured variables 78
wide layout 79

default functions

used, for text processing 108-111

dplyr

about 62

chaining 75, 76

columns, renaming 73
columns, selecting 73
column-wise descriptive statistics 74
data manipulation 72
distinct rows, selecting 74
group-wise operations 75
new columns, adding 73, 74
rows, arranging 73

rows, filtering 72

rows, slicing 72

dumpObijects utility 96
dumplImage utility 96

E
Excel file

about 93
ODBC connection string, creating 93

F

factor

about 29, 30
manipulation 46-48
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ff package
about 97, 98

high-level layer, dealing with 97 R
parts 97 and Excel 93
filehash package 95, 96 and plyr, comparing 69-71
as enterprise solution 16
G Basic Operations 17
commands, writing 16, 17
group-wise operations 75 comparing, with other software 15,16
Data Types 17
L features 11,12

for Linux, URL 13
for Mac OS X, URL 13
for Windows, URL 13
installing, on different platforms 13
M libraries, installing 13, 14
libraries, using 13, 14
matrix operation memory problems, examples 91, 92
about 34, 45, 46 missing values 39
rules 45 MS Access 94
molten data objects, classes 17-23
casting 85-87 objects, mode conversion 23-26
missing values 84, 85 Ob].ECtS, modes 17-23
MS Access objects, structure 23-26
data, importing from 94 package, installing from within
MS Excel file. See Excel file R console 15

multi-argument functions 67, 68 packages, installation 14, 15
packages, manual download 14, 15

list object 37, 38
lubridate
used, for processing date 49-54

N relational databases 94
sqldf package 99
numeric variables versions, getting 12, 13
factors 48 relational databases, R
about 94
O ff package 97,98
filehash package 95, 96
Open Database Connectivity (ODBC) 91 reshape2 package 87-89
reshape package
P paper, URL 84
! used, for reshaping dataset 82
Pyt Revolution Analytics
about 62
. URL 16
and R, comparing 69-71 .
R objects
arguments 66, 67 .
. objects, modes 22
function names 63-65
rows, dplyr

inputs 66, 67
multi-argument functions 67
utilities 62, 63

arranging 73
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S \'

split-apply-combine strategy vector
applying 60, 61 about 27-29
sqldf package operation 45, 46
tasks, performing 99
used, for data manipulation 100-102 W
stringr functions
about 54 Wickham
str_c() 54 URL 111
str_dup() 55
str_length() 54
str_pad() 55

str_sub() 55

str_trim() 55
subscripting 55-57
subsetting 55-57

T

text
processing, default functions used 109-111
data 105, 106
data, getting 106, 107
Twitter data
working with 111-113
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