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Preface

Big data has become a popular buzzword across many industries. An increasing number of
people have been exposed to the term and are looking at how to leverage big data in their
own businesses, to improve sales and profitability. However, collecting, aggregating, and
visualizing data is just one part of the equation. Being able to extract useful information from
data is another task, and much more challenging.

Traditionally, most researchers perform statistical analysis using historical samples of
data. The main downside of this process is that conclusions drawn from statistical analysis
are limited. In fact, researchers usually struggle to uncover hidden patterns and unknown
correlations from target data. Aside from applying statistical analysis, machine learning has
emerged as an alternative. This process yields a more accurate predictive model with the
data inserted into a learning algorithm. Through machine learning, the analysis of business
operations and processes is not limited to human-scale thinking. Machine-scale analysis
enables businesses to discover hidden values in big data.

The most widely used tool for machine learning and data analysis is the R language. In
addition to being the most popular language used by data scientists, R is open source and is
free for use for all users. The R programming language offers a variety of learning packages
and visualization functions, which enable users to analyze data on the fly. Any user can
easily perform machine learning with R on their dataset without knowing every detail of the
mathematical models behind the analysis.

Machine Learning with R Cookbook takes a practical approach to teaching you how to perform
machine learning with R. Each of the 12 chapters are introduced to you by dividing this topic
into several simple recipes. Through the step-by-step instructions provided in each recipe, the
reader can construct a predictive model by using a variety of machine learning packages.
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Preface

In this book, readers are first directed how to set up the R environment and use simple R
commands to explore data. The next topic covers how to perform statistical analysis with
machine learning analysis and assessing created models, which are covered in detail later on
in the book. There is also content on learning how to integrate R and Hadoop to create a big
data analysis platform. The detailed illustrations provide all the information required to start
applying machine learning to individual projects.

With Machine Learning with R Cookbook, users will feel that machine learning has never been
easier.

What this book covers

Chapter 1, Practical Machine Learning with R, describes how to create a ready-to-use R
environment. Furthermore, we cover all the basic R operations, from reading data into R,
manipulating data, and performing simple statistics, to visualizing data.

Chapter 2, Data Exploration with RMS Titanic, provides you an opportunity to perform
exploratory analysis in R. In this chapter, we walk you through the process of transforming,
analyzing, and visualizing the RMS Titanic data. We conclude by creating a prediction model
to identify the possible survivors of the Titanic tragedy.

Chapter 3, R and Statistics, begins with an emphasis on data sampling and probability
distribution. Subsequently, the chapter demonstrates how to perform descriptive statistics
and inferential statistics on data.

Chapter 4, Understanding Regression Analysis, analyzes the linear relationship between a
dependent (response) variable and one or more independent (predictor) sets of explanatory
variables. You will learn how to use different regression models to make sense of numeric
relationships, and further apply a fitted model to data for continuous value prediction.

Chapter 5, Classification (I) - Tree, Lazy, Probabilistic, teaches you how to fit data into a tree-
based classifier, k-nearest neighbor classifier, logistic regression classifier, or the Naive Bayes
classifier. In order to understand how classification works, we provide an example with the
purpose of identifying possible customer churns from a telecom dataset.

Chapter 6, Classification (Il) - Neural Network, SVM, introduces two complex but powerful
classification methods: neural networks and support vector machines. Despite the complex
nature of these methods, this chapter shows how easy it is to make an accurate prediction
using these algorithms in R.

Chapter 7, Model Evaluation, reveals some measurements that you can use to evaluate the
performance of a fitted model. With these measurements, we can select the optimum model
that accurately predicts responses for future subjects.
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Chapter 8, Ensemble Learning, introduces how to use the power of ensemble learners to
produce better classification and regression results, as compared to a single learner. As an
ensemble learner is frequently the winning approach in many data prediction competitions;
you should know how to apply ensemble learners to your projects.

Chapter 9, Clustering, explores different types of clustering methods. Clustering can group
similar points of data together. In this chapter, we demonstrate how to apply the clustering
technique to segment customers and further compare differences between each clustering
method.

Chapter 10, Association Analysis and Sequence Mining, exposes you to the common methods
used to discover associated items and underlying frequent patterns from transaction data.
This chapter is a must read for those of you interested in finding out how researchers
discovered the famous association between customers that purchase beer and those who
purchase diapers.

Chapter 11, Dimension Reduction, teaches you how to select and extract features from
original variables. With this technique, we can remove the effect from redundant features, and
reduce the computational cost to avoid overfitting. For a more concrete example, this chapter
reveals how to compress and restore an image with the dimension reduction approach.

Chapter 12, Big Data Analysis (R and Hadoop), reveals how you can use RHadoop, which
allows R to leverage the scalability of Hadoop, so as to process and analyze big data. We
cover all the steps, from setting up the RHadoop environment to actual big data processing
and machine learning on big data. Lastly, we explore how to deploy an RHadoop cluster using
Amazon EC2.

Appendix A, Resources for R and Machine Learning, will provide you with all the resources for
R and machine learning.

Appendix B, Dataset — Survival of Passengers on the Titanic, shows you the dataset for
survival of passengers on the Titanic.

What you need for this book

To follow the book's examples, you will need a computer with access to the Internet and
the ability to install the R environment. You can download R from http://www.cran.r-
project.org/. Detailed installation instructions are available in the first chapter.

The examples provided in this book were coded and tested with R Version 3.1.2 on a
computer with Microsoft Windows installed on it. These examples should also work with any
recent version of R installed on either MAC OSX or a Unix-like OS.
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Preface

Who this book is for

This book is ideal for those of you who want to learn how to use R for machine learning and
gain insights from data. Regardless of your level of experience, this book covers the basics
of applying R to machine learning through advanced techniques. While it is helpful if you
are familiar with basic programming or machine learning concepts, you do not require prior
experience to benefit from this book.

In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

g
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Preface

This book contains a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Use the rpart function to build a classification tree model."

A block of code is set as follows:

> churn.rp = rpart(churn ~ ., data=trainset)
Any command-line input or output is written as follows:
$ sudo R CMD INSTALL rmr2 3.3.0.tar.gz

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in text in the following format: "In R, a missing value
is noted with the symbol NA (not available), and an impossible value is NaN (not a number)."

Warnings or important notes appear in a box like this.

Al =

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.it-ebooks.info


www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub . com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info


http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Practical Machine
Learning with R

In this chapter, we will cover the following topics:

» Downloading and installing R

» Downloading and installing RStudio
» Installing and loading packages

» Reading and writing data

» Using R to manipulate data

» Applying basic statistics

» Visualizing data

» Getting a dataset for machine learning

Introduction

The aim of machine learning is to uncover hidden patterns, unknown correlations, and find
useful information from data. In addition to this, through incorporation with data analysis,
machine learning can be used to perform predictive analysis. With machine learning, the
analysis of business operations and processes is not limited to human scale thinking;
machine scale analysis enables businesses to capture hidden values in big data.
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Practical Machine Learning with R

Machine learning has similarities to the human reasoning process. Unlike traditional analysis,
the generated model cannot evolve as data is accumulated. Machine learning can learn from
the data that is processed and analyzed. In other words, the more data that is processed, the
more it can learn.

R, as a dialect of GNU-S, is a powerful statistical language that can be used to manipulate
and analyze data. Additionally, R provides many machine learning packages and visualization
functions, which enable users to analyze data on the fly. Most importantly, R is open source
and free.

Using R greatly simplifies machine learning. All you need to know is how each algorithm

can solve your problem, and then you can simply use a written package to quickly generate
prediction models on data with a few command lines. For example, you can either perform
Naive Bayes for spam mail filtering, conduct k-means clustering for customer segmentation,
use linear regression to forecast house prices, or implement a hidden Markov model to
predict the stock market, as shown in the following screenshot:

[2012-01-03/2015-01-16]

Stock market prediction using R

Moreover, you can perform nonlinear dimension reduction to calculate the dissimilarity
of image data, and visualize the clustered graph, as shown in the following screenshot.
All you need to do is follow the recipes provided in this book.
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Chapter 1

A clustered graph of face image data

This chapter serves as an overall introduction to machine learning and R; the first few recipes
introduce how to set up the R environment and integrated development environment, RStudio.
After setting up the environment, the following recipe introduces package installation and
loading. In order to understand how data analysis is practiced using R, the next four recipes
cover data read/write, data manipulation, basic statistics, and data visualization using R. The
last recipe in the chapter lists useful data sources and resources.

Downloading and installing R

To use R, you must first install it on your computer. This recipe gives detailed instructions on
how to download and install R.

Getting ready

If you are new to the R language, you can find a detailed introduction, language history, and
functionality on the official website (http://www.r-project.org/). When you are ready to
download and install R, please access the following link: http://cran.r-project.org/.

]
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Practical Machine Learning with R

How to do it

Please perform the following steps to download and install R for Windows and Mac users:

1. Gotothe R CRAN website, http://www.r-project.org/, and click on the
download R link, that is, http://cran.r-project.org/mirrors.html):

The R Project for Statistical Computing
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3. Select the correct download link based on your operating system:

The Comprehen R Archive Network

Dewnlosd and Install B

Brecowpitad binary destriburions of the bave cystem and coatributed packages, Windoms and Mae users mast likely wait one of
these versans of

= Dromalond B for Lius
» Dovnlond & for (Maci 05 %
» Domload B for Wendows

R 15 part of many Lamex dastrobumons, yon showld check with your Linm packags management system. m addinon to the lmk
abore

Scurce Code for all Platforms

Windows and M

s £ B b0 e comnpeled Lefore vou ca e e 11 vem do et kasow ofsd thas tiienis, von probals

tavers most ikedy want to download the precompeled binaries listed in the uppes bax. not the source code. The
s it b el

& The barest redense (2004-10-31, Pumphin Hletoser) o3 |2 ta gz, send yhiar's new e the lanese verson
« Sources of F.algha and besn seleqses (dnily snapshiots. created oaly in time pesiods before 2 planued release)

* Dy snapshots of current patched and development versions are grajlsble here Please read about gew feptures apd bag
fiay bedore filg comesponding Eanme requests or bmg reparis

= Source cede of older versons of R 1 avaglnble here

= Contribailed extenmssin packages

Questions About R

® If vou have questions sbout R like how to download and matall the software, or whiat the boense termys are. phease read om
ansmers 1o fequently sked questions before yom send an email

Click on the download link based on your OS

As the installation of R differs for Windows and Mac, the steps required to install R for each
OS are provided here.

For Windows users:

1. Click on Download R for Windows, as shown in the following screenshot, and then
click on base:

R for Windows
Subdiressanes

Busaries far hass d Murdols) Thee s wisar von w10 kbl R fer the fese tie

Sormatien on thund parts soffvar e available

Bunaries of comtribisbed packages (matiaged by Uwe Ligges). There 15 also

cRAY fior CRAN Windoms services and comespondmg esviromment and make varishles

Toals ta build R and B packages (managed by Duscan Murdech). This i what you wanr 1o budd vour awn packages ow
Whar's sen! Lo Wisdhorws, o o benhd B isedf
Tk Vigws

Please dio s subsir bmanes to CRAN . Package developers mughn waes 1o contact Duncrs Musdock ar Uwe Luppes duectiy m case of questons | suggestsens nefared
1o Wisbirws busaries

You way aleo wane 1o read the B FAQ and B for Windows FAQ

Mot CRAN dines somne checks on Shees banirues for virtees. bet canet give gumaitess. Use the normal precainsoms wirh downloaded executablss

Go to "Download R for Windows" and click "base"
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www.it-ebooks.info


http://www.it-ebooks.info/

Practical Machine Learning with R

2. Click on Download R 3.x.x for Windows:

Click "Download R 3.x.x for Windows"

3. The installation file should be downloaded. Once the download is finished, you can
double-click on the installation file and begin installing R:

lgj Setup - R for Windows 3.1.2 = —Z5 ]

Welcome to the R for Windows
3.1.2 Setup Wizard
This will install R. for Windows 3. 1.2 on your computer,

Itis recommended that you close all other applications before
continuing.

Click Mext to continue, or Cancel to exit Setup.

[ MNext = ]| Cancel |

4. The Windows installation of R is quite straightforward; the installation GUI may
instruct you on how to install the program step by step (public license, destination
location, select components, startup options, startup menu folder, and select
additional tasks). Leave all the installation options as the default settings if you do
not want to make any changes.
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5. After successfully completing the installation, a shortcut to the R application will
appear in your Start menu, which will open the R Console:

R File Edit View Misc Packages Windows Help g@

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x£6_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type '"license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'‘citation() ' on how to cite R or R packages in publications.

Type 'demo()' for some demos, ‘'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type "q()' to quit R.

[Previously saved workspace restored)

> |

The Windows R Console
For Mac OS X users:

1. Go to Download R for (Mac) 0OS X, as shown in this screenshot.
2. Click on the latest version (. pkg file extension) according to your Mac OS version:

R for Mac OS5 X

Thas dureciory contauss bizaries for n base distbuizon and packages fo rue on Mac 05 X (release 1006 mnd aboved. Mac 05 26 o2 2 fand Mac 05 X 10 1) are no
lemiger sapported ban you can find the last suppertsd releses of B for thess sysrems (ovtach (e B 17.1) bege. Releases for old Mac 05 X systems (through Mac 08X
10 %) and PowerPC Macs ers be fonnd us the pld dhireerery

Note: CRAN does nct have Mac 05 X systems and cannot check these binaries for viruses. Alihough we take precmtions when assembling binaries, please use the

CRAN vl g e mitons will dowidaaded exscilalie
glml;‘]_m_“_.' R 3,1.2 "Pumpkin Halwet™ relsased on 2814/18/31
auk Views
Search Thas lumary destnbamon of B and the GUT supports §4-bit Iotel based Macs oo Mac 05 X 1006 (Snon Leopard) or hagher:
About R Plesss cheek e M s chonizn of e domvnlonded wnsds to enstiie 1At o has mof besa tmperad wWitls o commupted durmg te il g For sxmmpls vpe
E Homepage . & - i
The B Jovsual 7. o il the MDE checkiisn o the R-3 1 2-mavencka kg soage On Mae 05 X 107 aid |med voi cai alva validite the o gatvs g
Seftwara
B Soanans Files:
E Banages

R 3.1.2 bunary for Maz 05 X 106 (Swow Leopad) and kapher signed package Comtams B3 12
framevvock. .app GUI 165 in 64:ba for fmel Macs. The above fibe is an Installer package which can
e watalled by doubleclickins Depending ce vour browser, you may nesd 10 press the control key
amd chick on thus Tk 10 dovmload the file

bl el EETIN
fea 6L

This package commaiizs the B fenmework, 4-kar GUT (Roapp) and Tel Tk § 60 X11 Bbrasues. The lamer
componsnt 1% ophional and o be comtted niven cheosing “oustom install”, ik 15 ouly needed if you
wast 1o e the velek R package. GNU Forman i NOT incbaded (needed if you wast to compile
packages from sousces tint contas FORTRAN code) plense see the 1o0ls derectony

Zomaercks pke R 3,12 bunary for Mac 05 X 109 [Maverscis) s Iugher, sagned packsge Tt contmny the spne
S-Sl S 601 el sofrwire verssons as above. bat this R buidd has been buih with Xoode 5 to levernge new compilers

g | 2 Functicaalines m Mavernichs noe available i caclier 05 X vesons

Nate: the nse of X11 {mebacing 1c1tk]) requmes XOngez 0o be mstalled smoe o 18 oo longer part of 05
X Abways revinseadl Xuartz when upgrading vour 05 X 10 0 new majos verson
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3. Double-click on the downloaded installation file (. pkg extension) and begin to install
R. Leave all the installation options as the default settings if you do not want to make
any changes:

& = Install R 3.1.2 for Mac OS X 10.9 or higher {(Mavericks build) a

Welcome to the R 3.1.2 for Mac OS X 10.9 or higher (Mavericks build) Installer

This installer will guide you through the steps necessary to setup R 3.1.2
(2014-10-31) -- "Pumpkin Helmet" for Mac OS X 10.9 (Mavericks)
or higher on your machine.

Continue

A —] A ——

4. Follow the onscreen instructions, Introduction, Read Me, License, Destination
Select, Installation Type, Installation, Summary, and click on continue to complete
the installation.

5. After the file is installed, you can use Spotlight Search or go to the application folder
to find R:

QR ®

APPLICATIONS
@® R
£) AStudio

! Reminders

)  iTunes
¥  Microsoft Office Reminders
% RAID Utility R
1: A 3.1.2 GUI 1.85 Mavericks build

FOLDERS

R - software

R - distfiles
R - math Kind Application
Size 3.7 MB
ru_RU.KOIg-R Created 11/1/14
Modified 1/20/15
I janbotde Last opened 1/20/15

SYSTEM DAEEEBENCES

Use "Spotlight Search" to find R

=]
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6. Click on R to open R Console:

@ L ] R Console

QR&sEQO " 12

@

R version 3.1.2 (2014-10-31) -- "Pumpkin Helmet"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl3.4.@ (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
"citation()"' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

As an alternative to downloading a Mac . pkg file to install R, Mac users can also install R
using Homebrew:

1.

Download XQuartz-2.X.X.dmg from https://xquartz.macosforge.org/
landing/.

Double-click on the . dmg file to mount it.
Update brew with the following command line:
$ brew update

Clone the repository and symlink all its formulae to homebrew/science:

$ brew tap homebrew/science

Install gfortran:

$ brew install gfortran

Install R:
$ brew install R

For Linux users, there are precompiled binaries for Debian, Red Hat, SUSE, and Ubuntu.
Alternatively, you can install R from a source code. Besides downloading precompiled binaries,
you can install R for Linux through a package manager. Here are the installation steps for
CentOS and Ubuntu.

s
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Downloading and installing R on Ubuntu:

1.

2.

4.

Add the entry to the /etc/apt/sources.list file:

$ sudo sh -c¢ "echo 'deb http:// cran.stat.ucla.edu/bin/linux/

ubuntu precise/' >> /etc/apt/sources.list"

Then, update the repository:
$ sudo apt-get update

Install R with the following command:

$ sudo apt-get install r-base

Start R in the command line:
$ R

Downloading and installing R on CentOS 5:

1.

Get rpm CentOS5 RHEL EPEL repository of CentOS5:

$ wget http://dl.fedoraproject.org/pub/epel/5/x86 64/epel-
release-5-4.noarch.rpm

Install CentOS5 RHEL EPEL repository:

$ sudo rpm -Uvh epel-release-5-4.noarch.rpm

Update the installed packages:

$ sudo yum update

Install R through the repository:

$ sudo yum install R

Start R in the command line:
$ R

Downloading and installing R on CentOS 6:

1.

=

Get rpm CentOS5 RHEL EPEL repository of CentOS6:

$ wget http://dl.fedoraproject.org/pub/epel/6/x86 64/epel-
release-6-8.noarch.rpm

Install the CentOS5 RHEL EPEL repository:

$ sudo rpm -Uvh epel-release-6-8.noarch.rpm

Update the installed packages:

$ sudo yum update

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

4. Install R through the repository:

$ sudo yum install R

5. Start R in the command line:
$ R

CRAN provides precompiled binaries for Linux, Mac OS X, and Windows. For Mac and Windows
users, the installation procedures are straightforward. You can generally follow onscreen
instructions to complete the installation. For Linux users, you can use the package manager
provided for each platform to install R or build R from the source code.

» For those planning to build R from the source code, refer to R Installation and
Administration (http://cran.r-project.org/doc/manuals/R-admin.
html), which illustrates how to install R on a variety of platforms.

Downloading and installing RStudio

To write an R script, one can use R Console, R commander, or any text editor (EMACS, VIM, or
sublime). However, the assistance of RStudio, an integrated development environment (IDE)
for R, can make development a lot easier.

RStudio provides comprehensive facilities for software development. Built-in features such
as syntax highlighting, code completion, and smart indentation help maximize productivity.
To make R programming more manageable, RStudio also integrates the main interface into
a four-panel layout. It includes an interactive R Console, a tabbed source code editor, a panel
for the currently active objects/history, and a tabbed panel for the file browser/plot window/
package install window/R help window. Moreover, RStudio is open source and is available for
many platforms, such as Windows, Mac OS X, and Linux. This recipe shows how to download
and install RStudio.

Getting ready

RStudio requires a working R installation; when RStudio loads, it must be able to locate a
version of R. You must therefore have completed the previous recipe with R installed on your
OS before proceeding to install RStudio.
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How to do it...

Perform the following steps to download and install RStudio for Windows and Mac users:

1. Access RStudio's official site by using the following URL: http://www.rstudio.
com/products/RStudio/.

@Studid P Resources Pricing Abouils Elog Q

RStudio Desktop

Open Source Edition Commercial License

Overview

Support

License AGPLVE RStudio License Agreement

Pricing Frea 5095 year

DOWNLOAD RSTUDIO DESKTOP m

2. For a desktop version installation, click on Download RStudio Desktop (http://
www.rstudio.com/products/rstudio/download/) and choose the RStudio
recommended for your system. Download the relevant packages:

=
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Oqt,.,ﬁﬁ; Frocucts Resources Pricing Bicg Q

Do you need support or a

s well as tools for plotting. history, debugsing and workspace management commercial license?

Installers for ALL Platforms

Zip/Tarballs

3.

Install RStudio by double-clicking on the downloaded packages. For Windows users,

follow the onscreen instruction to install the application:

- — -
(31 RStudio Setup | = i rm

Welcome to the RStudio Setup
Wizard

This wizard will guide you through the installation of R5tudio.

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Next to continue.

[ MNext = ] [ Cancel

=]
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4. For Mac users, simply drag the RStudio icon to the Applications folder:

[ ] ® RStudio-0.98.1021

Appnlicah [ RStudio)

.

[Rstudio]

5. Start RStudio:

§Rinds " -
Fie fide Code Vew Mot GCewson fuid Debupg Took  Help

0.

0 sl ] )
wepniae | G S - PR ST —_ £ H =mpertDetsse= g o

B Gt Erranmgr -

e Wies Mol Pahuge  ep Vs =l
T LTl L RSP E R —— 3 i ree
Platiorn: s86_S4-whd-mings32/xbd (B4-bit & :-«*rw- O Daiete o Mesams G Mare
o bome
E is free scltware and comes with ABSOLUTELY N0 WARRANTY. it - Mt
You are welcome to redistribute it under certain conditioms.
Type "license{)" or 'licence() for distribution details.

R is a ool labore project with sany comtributers,
Type 'contributors()' for more information and
citation on how to cive R or B packages in public

Trpe "desol)’ for scee demos. “help()’ for on-
help. start()" for an ETAL browser interface to help.
Trpe ") to quit R

Workspace |oaded from -/, Rlmta

The RStudio console

Perform the following steps for downloading and installing RStudio for Ubuntu/Debian and
RedHat/Centos users:

For Debian(6+)/Ubuntu(10.04+) 32-bit:

$ wget http://downloadl.rstudio.org/rstudio-0.98.1091-i386.deb
$ sudo gdebi rstudio-0.98. 1091-i386.deb

For Debian(6+)/Ubuntu(10.04+) 64-bit:

$ wget http://downloadl.rstudio.org/rstudio-0.98. 1091-amdé4.deb
$ sudo gdebi rstudio-0.98. 1091-amd64.deb

=]
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For RedHat/Cent0S(5,4+) 32 bit:

$ wget http://downloadl.rstudio.org/rstudio-0.98. 1091-i686.rpm
$ sudo yum install --nogpgcheck rstudio-0.98. 1091-i686.rpm

For RedHat/Cent0S(5,4+) 64 bit:

$ wget http://downloadl.rstudio.org/rstudio-0.98. 1091-x86 64.rpm
$ sudo yum install --nogpgcheck rstudio-0.98. 1091-x86 64.rpm

The RStudio program can be run on the desktop or through a web browser. The desktop
version is available for Windows, Mac OS X, and Linux platforms with similar operations across
all platforms. For Windows and Mac users, after downloading the precompiled package of
RStudio, follow the onscreen instructions, shown in the preceding steps, to complete the
installation. Linux users may use the package management system provided for installation.

» In addition to the desktop version, users may install a server version to provide
access to multiple users. The server version provides a URL that users can access
to use the RStudio resources. To install RStudio, please refer to the following link:
http://www.rstudio.com/ide/download/server.html. This page provides
installation instructions for the following Linux distributions: Debian (6+), Ubuntu
(10.04+), RedHat, and Cent0S (5.4+).

» For other Linux distributions, you can build RStudio from the source code.

Installing and loading packages

After successfully installing R, users can download, install, and update packages from

the repositories. As R allows users to create their own packages, official and non-official
repositories are provided to manage these user-created packages. CRAN is the official

R package repository. Currently, the CRAN package repository features 6,379 available
packages (as of 02/27/2015). Through the use of the packages provided on CRAN, users
may extend the functionality of R to machine learning, statistics, and related purposes. CRAN
is a network of FTP and web servers around the world that store identical, up-to-date versions
of code and documentation for R. You may select the closest CRAN mirror to your location to
download packages.

Getting ready

Start an R session on your host computer.

e
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How to do it...

Perform the following steps to install and load R packages:

1.

To load a list of installed packages:
> library()

Setting the default CRAN mirror:

> chooseCRANmirror ()

R will return a list of CRAN mirrors, and then ask the user to either type a mirror ID to select it,
or enter zero to exit:

1.

=]

Install a package from CRAN; take package e1071 as an example:
> install.packages("el071")

Update a package from CRAN; take package 1071 as an example:
> update.packages("el071")

Load the package the package:

> library(el071)

If you would like to view the documentation of the package, you can use the help
function:

> help(package ="el071")

If you would like to view the documentation of the function, you can use the help
function:

> help(svm, el071)

Alternatively, you can use the help shortcut, 2, to view the help document for this
function:

> ?el071::svm

If the function does not provide any documentation, you may want to search the

supplied documentation for a given keyword. For example, if you wish to search for
documentation related to svm:

> help.search("svm")
Alternatively, you can use ?? as the shortcut for help.search:
> ??svm

To view the argument taken for the function, simply use the args function. For
example, if you would like to know the argument taken for the 1m function:

> args (1lm)
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10. Some packages will provide examples and demos; you can use example or demo to
view an example or demo. For example, one can view an example of the 1m package
and a demo of the graphics package by typing the following commands:

> example (1m)

> demo (graphics)
11. To view all the available demos, you may use the demo function to list all of them:

> demo ()

This recipe first introduces how to view loaded packages, install packages from CRAN, and
load new packages. Before installing packages, those of you who are interested in the listing
of the CRAN package can referto http://cran.r-project.org/web/packages/
available packages by name.html.

When a package is installed, documentation related to the package is also provided. You are,
therefore, able to view the documentation or the related help pages of installed packages and
functions. Additionally, demos and examples are provided by packages that can help users
understand the capability of the installed package.

» Besides installing packages from CRAN, there are other R package repositories,
including Crantastic, a community site for rating and reviewing CRAN packages,
and R-Forge, a central platform for the collaborative development of R packages. In
addition to this, Bioconductor provides R packages for the analysis of genomic data.

» If you would like to find relevant functions and packages, please visit the list of task
views at http://cran.r-project.org/web/views/, or search for keywords at
http://rseek.org.

Reading and writing data

Before starting to explore data, you must load the data into the R session. This recipe will
introduce methods to load data either from a file into the memory or use the predefined data
within R.

Getting ready

First, start an R session on your machine. As this recipe involves steps toward the file 10, if
the user does not specify the full path, read and write activity will take place in the current
working directory.

s
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You can simply type getwd () in the R session to obtain the current working directory
location. However, if you would like to change the current working directory, you can use
setwd ("<path>"), where <path> can be replaced as your desired path, to specify the
working directory.

How to do it...

Perform the following steps to read and write data with R:

1.

NED

To view the built-in datasets of R, type the following command:
> data()

R will return a list of datasets in a dataset package, and the list comprises the
name and description of each dataset.

To load the dataset iris into an R session, type the following command:

> data(iris)

The dataset iris is now loaded into the data frame format, which is a common
data structure in R to store a data table.

To view the data type of iris, simply use the class function:
> class(iris)

[1] "data.frame"

The data. frame console print shows that the iris dataset is in the structure of
data frame.

Use the save function to store an object in a file. For example, to save the loaded iris
data into myData .RData, use the following command:

> save(iris, file="myData.RData")

Use the load function to read a saved object into an R session. For example, to load
iris data from myData .RData, use the following command:

> load("myData.RData")

In addition to using built-in datasets, R also provides a function to import data from
text into a data frame. For example, the read. table function can format a given
text into a data frame:

> test.data = read.table(header = TRUE, text = "
+ ab
+ 1 2
+ 3 4

+ ll)
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10.

11.

12.
13.

14.

15.

16.

You can also use row.names and col .names to specify the names of columns
and rows:

> test.data = read.table(text = "
+ 1 2

+ 3 4",

+ col.names=c("a","b"),

+ row.names = c("first","second"))

View the class of the test .data variable:
> class(test.data)

[1] "data.frame"

The class function shows that the test . data variable contains a data frame.

In addition to importing data by using the read. table function, you can use the
write.table function to export data to a text file:

> write.table(test.data, file = "test.txt" , sep = " ")

The write.table function will write the content of test .data into test.txt
(the written path can be found by typing getwd () ), with a separation delimiter as
white space.

Similarto write.table, write.csv can also export data to a file. However,
write.csv uses a comma as the default delimiter:

> write.csv(test.data, file = "test.csv")

With the read. csv function, the csv file can be imported as a data frame. However,
the last example writes column and row names of the data frame to the test.csv
file. Therefore, specifying header to TRUE and row names as the first column within
the function can ensure the read data frame will not treat the header and the first
column as values:

> csv.data = read.csv("test.csv", header = TRUE, row.names=1)
> head(csv.data)
ab
112
2 3 4

Generally, data for collection may be in multiple files and different formats. To exchange data
between files and RData, R provides many built-in functions, such as save, 1oad, read.csv,
read.table, write.csv,and write.table.

Es
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This example first demonstrates how to load the built-in dataset iris into an R session.

The iris dataset is the most famous and commonly used dataset in the field of machine
learning. Here, we use the iris dataset as an example. The recipe shows how to save RData
and load it with the save and 1oad functions. Furthermore, the example explains how to

use read.table, write.table, read.csv, and write.csv to exchange data from files
to a data frame. The use of the R |0 function to read and write data is very important as most
of the data sources are external. Therefore, you have to use these functions to load data into
an R session.

For the 1oad, read.table, and read. csv functions, the file to be read can also be a
complete URL (for supported URLs, use ?url for more information).

On some occasions, data may be in an Excel file instead of a flat text file. The WriteXLS
package allows writing an object into an Excel file with a given variable in the first argument
and the file to be written in the second argument:

1. Install the WriteXLS package:

> install.packages ("WriteXLS")

2. Loadthe writeXLS package:
> library ("WriteXLS")

3. Use the writeXLsS function to write the data frame iris into a file named iris.x1s:

> WriteXLS("iris", ExcelFileName="iris.xls")

Using R to manipulate data

This recipe will discuss how to use the built-in R functions to manipulate data. As data
manipulation is the most time consuming part of most analysis procedures, you should
gain knowledge of how to apply these functions on data.

Getting ready

Ensure you have completed the previous recipes by installing R on your operating system.

How to do it...

Perform the following steps to manipulate the data with R.

Subset the data using the bracelet notation:

=
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Load the dataset iris into the R session:

> data(iris)

To select values, you may use a bracket notation that designates the indices of the
dataset. The first index is for the rows and the second for the columns:

> iris[1l,"Sepal.Length"]
[1] 5.1

You can also select multiple columns using c():
> Sepal.iris = iris[, c("Sepal.Length", "Sepal.Width")]

You can then use str () to summarize and display the internal structure of Sepal.
iris:
> str(Sepal.iris)
'data.frame': 150 obs. of 2 wvariables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

To subset data with the rows of given indices, you can specify the indices at the first
index with the bracket notation. In this example, we show you how to subset data
with the top five records with the Sepal . Length column and the Sepal .wWidth
selected:

> Five.Sepal.iris = iris[1:5, c("Sepal.Length", "Sepal.Width")]
> str(Five.Sepal.iris)

'data.frame': 5 obs. of 2 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6

It is also possible to set conditions to filter the data. For example, to filter returned
records containing the setosa data with all five variables. In the following example,
the first index specifies the returning criteria, and the second index specifies the
range of indices of the variable returned:

> setosa.data = iris[iris$Species=="setosa",1:5]
> str(setosa.data)
'data.frame': 50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9
Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1
Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5
2

0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1

$
$
$ Petal.Width : num O0.
$

Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1
11111111

s

www.it-ebooks.info


http://www.it-ebooks.info/

Practical Machine Learning with R

7.

Alternatively, the which function returns the indexes of satisfied data. The following
example returns indices of the iris data containing species equal to setosa:

> which(iris$Species=="setosa")

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The indices returned by the operation can then be applied as the index to select the
iris containing the setosa species. The following example returns the setosa with all
five variables:

> setosa.data = iris[which(iris$Species=="setosa"),1l:5]
> str(setosa.data)
'data.frame': 50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9
Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1
Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5
2

0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1

$
$
$ Petal.Width : num O0.
$

Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1
11111111

Subset data using the subset function:

1.

Besides using the bracket notation, R provides a subset function that enables users
to subset the data frame by observations with a logical statement.

First, subset species, sepal length, and sepal width out of the iris data. To select
the sepal length and width out of the iris data, one should specify the column to be
subset in the select argument:

> Sepal.data = subset(iris, select=c("Sepal.Length", "Sepal.
width"))

> str(Sepal.data)
'data.frame': 150 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

This reveals that Sepal . data contains 150 objects with the Sepal . Length variable and
Sepal.wWidth.

1.

S E

On the other hand, you can use a subset argument to get subset data containing
setosa only. In the second argument of the subset function, you can specify the
subset criteria:
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> setosa.data = subset(iris, Species =="setosa")

> str(setosa.data)

'data.frame': 50 obs. of 5 wvariables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5

$ Petal.wWidth : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1

11111111

2. Most of the time, you may want to apply a union or intersect a condition while
subsetting data. The OR and AND operations can be further employed for this
purpose. For example, if you would like to retrieve data with Petal .Width >=0.2
and Petal.Length < = 1.4:

> example.data= subset(iris, Petal.Length <=1.4 & Petal.Width >=
0.2, select=Species )

> str(example.data)
'data.frame': 21 obs. of 1 variable:

$ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1111
11111

Merging data: merging data involves joining two data frames into a merged data frame by a
common column or row name. The following example shows how to merge the flower. type
data frame and the first three rows of the iris with a common row name within the Species
column:

> flower.type = data.frame(Species = "setosa", Flower = "iris")
> merge (flower.type, iris[1:3,], by ="Species")

Species Flower Sepal.Length Sepal.Width Petal.Length Petal.Width

1 setosa iris 5.1 3.5 1.4 0.2
2 setosa iris 4.9 3.0 1.4 0.2
3 setosa iris 4.7 3.2 1.3 0.2

Ordering data: the order function will return the index of a sorted data frame with a
specified column. The following example shows the results from the first six records with the
sepal length ordered (from big to small) iris data
> head(iris[order(iris$Sepal.Length, decreasing = TRUE),])

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
132 7.9 3.8 6.4 2.0 virginica
118 7.7 3.8 6.7 2.2 virginica

s
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119 7.7 2.6 6.9 2.3 virginica
123 7.7 2.8 6.7 2.0 virginica
136 7.7 3.0 6.1 2.3 virginica
106 7.6 3.0 6.6 2.1 virginica

Before conducting data analysis, it is important to organize collected data into a structured
format. Therefore, we can simply use the R data frame to subset, merge, and order a dataset.
This recipe first introduces two methods to subset data: one uses the bracket notation, while
the other uses the subset function. You can use both methods to generate the subset data
by selecting columns and filtering data with the given criteria. The recipe then introduces the
merge function to merge data frames. Last, the recipe introduces how to use order to sort
the data.

There's more...

The sub and gsub functions allow using regular expression to substitute a string. The sub and
gsub functions perform the replacement of the first and all the other matches, respectively:

> sub("e", "q", names(iris))
[1] "Sgpal.Length" "Sqgpal.Width" "Pgtal.Length" "Pgtal.Width" "Spgcies"
> gsub("e", "q", names(iris))

[1] "Sgpal.Lgngth" "Sgpal.Width" "Pqgtal.Lgngth" "Pgtal.Width" "Spqgcigs"

Applying basic statistics

R provides a wide range of statistical functions, allowing users to obtain the summary statistics
of data, generate frequency and contingency tables, produce correlations, and conduct
statistical inferences. This recipe covers basic statistics that can be applied to a dataset.

Getting ready

Ensure you have completed the previous recipes by installing R on your operating system.

How to do it...

Perform the following steps to apply statistics on a dataset:

1. Load the iris data into an R session:

> data(iris)

NEQ
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Observe the format of the data:
> class(iris)

[1] "data.frame"

The iris dataset is a data frame containing four numeric attributes: petal length,
petal width, sepal width, and sepal length. For numeric values, you can
perform descriptive statistics, such as mean, sd, var, min, max, median, range,
and quantile. These can be applied to any of the four attributes in the dataset:

> mean(iris$Sepal.Length)

[1] 5.843333

> sd(iris$Sepal.Length)

[1] 0.8280661

> var (iris$Sepal.Length)

[1] 0.6856935

> min(iris$Sepal.Length)

[1] 4.3

> max(iris$Sepal.Length)

[1]1 7.9

> median(iris$Sepal.Length)

[1] 5.8

> range(iris$Sepal.Length)

[1] 4.3 7.9

> quantile(iris$Sepal.Length)
0% 25% 50% 75% 100%

4.3 5.1 5.8 6.4 7.9

The preceding example demonstrates how to apply descriptive statistics on a single
variable. In order to obtain summary statistics on every numeric attribute of the
data frame, one may use sapply. For example, to apply the mean on the first four
attributes in the iris data frame, ignore the na value by setting na . rm as TRUE:
> sapply(iris[1:4], mean, na.rm=TRUE)
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.843333 3.057333 3.758000 1.199333

As an alternative to using sapply to apply descriptive statistics on given attributes, R
offers the summary function that provides a full range of descriptive statistics. In the

following example, the summary function provides the mean, median, 25th and 75th

quartiles, min, and max of every iris dataset numeric attribute:

> summary (iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Species

Eis
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Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
setosa :50

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1lst Qu.:0.300
versicolor:50

Median :5.800 Median :3.000 Median :4.350 Median :1.300
virginica :50

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

6. The preceding example shows how to output the descriptive statistics of a single
variable. R also provides the correlation for users to investigate the relationship
between variables. The following example generates a 4x4 matrix by computing the
correlation of each attribute pair within the iris:

> cor(iris([,1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

7. R also provides a function to compute the covariance of each attribute pair within
the iris:
> cov(iris([,1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707
Sepal.Width -0.0424340 0.1899794 -0.3296564 -0.1216394
Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094
Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063

8. Statistical tests are performed to access the significance of the results; here we
demonstrate how to use a t-test to determine the statistical differences between
two samples. In this example, we perform a t.test on the petal width an of an iris in
either the setosa or versicolor species. If we obtain a p-value less than 0.5, we can be
certain that the petal width between the setosa and versicolor will vary significantly:
> t.test(iris$Petal.Width[iris$Species=="setosa"],

+ iris$Petal.Width[iris$Species=="versicolor"])

Welch Two Sample t-test

NED
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data: iris$Petal.Width[iris$Species == "setosa"] and iris$Petal.
Width[iris$Species == "versicolor"]
t = -34.0803, df = 74.755, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.143133 -1.016867
sample estimates:
mean of x mean of y

0.246 1.326

9. Alternatively, you can perform a correlation test on the sepal length to the sepal
width of an iris, and then retrieve a correlation score between the two variables.
The stronger the positive correlation, the closer the value is to 1. The stronger the
negative correlation, the closer the value is to -1:

> cor.test(iris$Sepal.Length, iris$Sepal.Width)
Pearson's product-moment correlation

data: iris$Sepal.Length and iris$Sepal.Width
t = -1.4403, df = 148, p-value = 0.1519
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.27269325 0.04351158
sample estimates:
cor

-0.1175698

R has a built-in statistics function, which enables the user to perform descriptive statistics

on a single variable. The recipe first introduces how to apply mean, sd, var, min, max,
median, range, and quantile on a single variable. Moreover, in order to apply the statistics
on all four numeric variables, one can use the sapply function. In order to determine the
relationships between multiple variables, one can conduct correlation and covariance.

Finally, the recipe shows how to determine the statistical differences of two given samples by
performing a statistical test.
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There's more...

If you need to compute an aggregated summary statistics against data in different groups,
you can use the aggregate and reshape functions to compute the summary statistics of
data subsets:

1. Use aggregate to calculate the mean of each iris attribute group by the species:

> aggregate (x=iris[,1:4],by=1list(iris$Species) , FUN=mean)
2. Use reshape to calculate the mean of each iris attribute group by the species:

> library(reshape)

> iris.melt <- melt(iris,id='Species')

> cast(Species~variable,data=iris.melt,mean,
subset=Species %in% c('setosa', 'versicolor'),
margins='grand row')

For information on reshape and aggregate, refer to the help documents by using ?reshape
or ?aggregate

Visualizing data

Visualization is a powerful way to communicate information through graphical means. Visual
presentations make data easier to comprehend. This recipe presents some basic functions
to plot charts, and demonstrates how visualizations are helpful in data exploration.

Getting ready

Ensure that you have completed the previous recipes by installing R on your operating system.

How to do it...

Perform the following steps to visualize a dataset:

1. Load the iris data into the R session:

> data(iris)

2. Calculate the frequency of species within the iris using the table command:
> table.iris = table(iris$Species)

> table.iris

setosa versicolor wvirginica

50 50 50
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3. Asthe frequency in the table shows, each species represents 1/3 of the iris data. We
can draw a simple pie chart to represent the distribution of species within the iris:

> pie(table.iris)

versicolor

setosa

virginica

The pie chart of species distribution

4. The histogram creates a frequency plot of sorts along the x-axis. The following
example produces a histogram of the sepal length:

5.

> hist(iris$Sepal.Length)

Histogram of iris$Sepal.Length

"5 20 25 30

Frequency
|

10

T T
6 T

ins$Sepal Length

The histogram of the sepal length

In the histogram, the x-axis presents the sepal length and the y-axis presents the
count for different sepal lengths. The histogram shows that for most irises, sepal

lengths range from 4 cm to 8 cm.

@l
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6. Boxplots, also named box and whisker graphs, allow you to convey a lot of information
in one simple plot. In such a graph, the line represents the median of the sample. The
box itself shows the upper and lower quartiles. The whiskers show the range:

> boxplot (Petal.Width ~ Species, data = iris)

20 25

10 185

05
|

|

T T
setosa versicolor virginica

The boxplot of the petal width

7. The preceding screenshot clearly shows the median and upper range of the petal
width of the setosa is much shorter than versicolor and virginica. Therefore, the petal
width can be used as a substantial attribute to distinguish iris species.

8. A scatter plot is used when there are two variables to plot against one another. This
example plots the petal length against the petal width and color dots in accordance
to the species it belongs to:

> plot(x=iris$Petal.Length, y=iris$Petal.Width, col=iris$Species)

us
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= 5o o s}
g o — [sXelo i eTols]
o - Q_Q0Q Qo
— o [sleXeloleloYe]
[T} - Qo o oo 0
E;, . o0 0o
s
=
<
pi o
O Q00 O
[alsleiye]
Q_00QOQQ0 O
0 [sle)
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iris$Petal. Length

The scatter plot of the sepal length
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The preceding screenshot is a scatter plot of the petal length against the petal width.
As there are four attributes within the iris dataset, it takes six operations to plot all
combinations. However, R provides a function named pairs, which can generate
each subplot in one figure:

> pairs(iris[1l:4], main = "Edgar Anderson's Iris Data", pch = 21,
bg = c("red", "green3", "blue") [unclass(iris$Species)])

Edgar Anderson's Iris Data
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Pairs scatterplot of iris data

R provides many built-in plot functions, which enable users to visualize data with different kinds
of plots. This recipe demonstrates the use of pie charts that can present category distribution. A
pie chart of an equal size shows that the number of each species is equal. A histogram plots the
frequency of different sepal lengths. A box plot can convey a great deal of descriptive statistics,
and shows that the petal width can be used to distinguish an iris species. Lastly, we introduced
scatter plots, which plot variables on a single plot. In order to quickly generate a scatter plot
containing all the pairs of iris data, one may use the pairs command.

>

ggplot2 is another plotting system for R, based on the implementation of Leland
Wilkinson's grammar of graphics. It allows users to add, remove, or alter components
in a plot with a higher abstraction. However, the level of abstraction results is slow
compared to lattice graphics. For those of you interested in the topic of ggplot, you
can refer to this site: http://ggplot2.org/.

&1
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Getting a dataset for machine learning

While R has a built-in dataset, the sample size and field of application is limited. Apart from
generating data within a simulation, another approach is to obtain data from external data
repositories. A famous data repository is the UCI machine learning repository, which contains
both artificial and real datasets. This recipe introduces how to get a sample dataset from the
UCI machine learning repository.

Getting ready

Ensure that you have completed the previous recipes by installing R on your operating system.

How to do it...

Perform the following steps to retrieve data for machine learning;:

1. Access the UCI machine learning repository: http://archive.ics.uci.edu/ml/.

Ao Chation Policy Densts 3 Dala Sai Comat

Wiew ALL Data Sels

Machine Learning

Lenlor or Machine Loaming

Rep

Welcoms to the UC Irvine Machine Leamning Repository!

st Wiows Nowest Dt Sutic | Mas Fopuilar Data Sets (i sincn 72007
DAL W f—
| an1a01.02: | L [F=1e
20100 ETeN
P —
i HMA1IE: | Frns Al
I | |
b —
r =
000-03-28; | g | 5 Loz sificalion | amsare
20070 — E
T
Feaiursd Dats Set: Ausiralian Slgn Laoguags sljes |
20141918 | Caopraphical Unigingl of blug 113480, 1ong

UCI data repository
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2. Click on View ALL Data Sets. Here you will find a list of datasets containing field
names, such as Name, Data Types, Default Task, Attribute Types, # Instances, #
Attributes, and Year:

Aboui Chafion Policy Donabe a Dala Sef Contect

— T

e e S S o o
Cxber ) My iy it Classification - . 1 ] 1906
ki s Clas Cotegoricdl e i 1386
dmger
o o et L
Ananymaus Micresoft Wab Daia Fliac commandior- Sy slams Categueic 3T = 1338
wq Burhyihmia Sy by -_;‘:;t\‘_’ il: 457 70 1996
[Aal
Aunificial Charsien Mukiv arais Classification G000 1982
3. Use Ctrl + F to search for Iris:
Mol Tim [ [ S ]
tultsarate, Time-
E Ll - "
| Irna. Muhrariae s Feal A1 1% 10K
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4. Click on Iris. This will display the data folder and the dataset description:

fbout Citation Policy Donate 2 Durla

© Reposiny @ web

View ALL Data Sets

Iris Data Set
Dewnload. Data Folder Data Set Descripion

Abstract Fa

ntabese Sromm Fisher, 1006

| Data set Charactarissics Munmiber of Instances: | 150 | Area

[ Attribute Charactseistics

Number of Ariutes: | Dante Donated

= SRR |
| Assaciated Tazks: Classficatior

1 || Missing Valuss? | Mo || Numsbsr of Wb Hits: || 656040

5. Click on Data Folder, which will display a directory containing the iris dataset:

Index of /ml/machine-learning-databases/iris
Name Lasi modified  Siee Description

o Parent Duectory

) Ludex

z bezdeklris.data

T —

You can then either download iris.data or use the read. csv function to read the
dataset:

> iris.data = read.csv(url("http://archive.ics.uci.edu/ml/machine-

learning-databases/iris/iris.data"), header = FALSE,

c("Sepal.Length", "Sepal.Width", "Petal.Length",
"Species"))

col.names =
"Petal.Width",

> head(iris.data)
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Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 5.0 3.6 1.4 0.2 Iris-setosa
6 5.4 3.9 1.7 0.4 Iris-setosa

Before conducting data analysis, it is important to collect your dataset. However, to collect
an appropriate dataset for further exploration and analysis is not easy. We can, therefore,
use the prepared dataset with the UCI repository as our data source. Here, we first access
the UCI dataset repository and then use the iris dataset as an example. We can find the iris
dataset by using the browser's find function (Ctrl + F), and then enter the file directory. Last,
we can download the dataset and use the R 10 function, read. csv, to load the iris dataset
into an R session.

» KDnuggets (http://www.kdnuggets.com/datasets/index.html) offers
a resourceful list of datasets for data mining and data science. You can explore
the list to find the data that satisfies your requirements.
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Data Exploration with
RMS Titanic

In this chapter, we will cover the following recipes:

» Reading a Titanic dataset from a CSV file

» Converting types on character variables

» Detecting missing values

» Imputing missing values

» Exploring and visualizing data

» Predicting passenger survival with a decision tree

» Validating the power of prediction with a confusion matrix

» Assessing performance with the ROC curve

Introduction

Data exploration helps a data consumer to focus on searching for information, with a view to
forming a true analysis from the gathered information. Furthermore, with the completion of
the steps of data munging, analysis, modeling, and evaluation, users can generate insights
and valuable points from their focused data.

In a real data exploration project, there are six steps involved in the exploration process.
They are as follows:

1. Asking the right questions.

2. Data collection.

3. Data munging.

www.it-ebooks.info


http://www.it-ebooks.info/

Data Exploration with RMS Titanic
4,

5.
6.

Basic exploratory data analysis.
Advanced exploratory data analysis.
Model assessment.

A more detailed explanation of these six steps is provided here:

1.

SNED

Asking the right questions: When the user presents their question, for example
"What are my expected findings after the exploration is finished?", or "What kind of
information can | extract through the exploration?," different results will be given.
Therefore, asking the right question is essential in the first place, for the question
itself determines the objective and target of the exploration.

Data collection: Once the goal of exploration is determined, the user can start
collecting or extracting relevant data from the data source, with regard to the
exploration target. Mostly, data collected from disparate systems appears
unorganized and diverse in format. Clearly, the original data may be from different
sources, such as files, databases, or the Internet. To retrieve data from these sources
requires the assistance of the file 10 function, JDBC/ODBC, web crawler, and so on.
This extracted data is called raw data, which is because it has not been subjected

to processing, or been through any other manipulation. Most raw data is not easily
consumed by the majority of analysis tools or visualization programs.

Data munging: The next phase is data munging (or wrangling), a step to help map
raw data into a more convenient format for consumption. During this phase, there
are many processes, such as data parsing, sorting, merging, filtering, missing value
completion, and other processes to transform and organize the data, and enable it to
fit into a consume structure. Later, the mapped data can be further utilized for data
aggregation, analysis, or visualization.

Basic exploratory data analysis: After the data munging phase, users can conduct
further analysis toward data processing. The most basic analysis is to perform
exploratory data analysis. Exploratory data analysis involves analyzing a dataset by
summarizing its characteristics. Performing basic statistical, aggregation, and visual
methods are also crucial tasks to help the user understand data characteristics,
which are beneficial for the user to capture the majority, trends, and outliers easily
through plots.

Advanced exploratory data analysis: Until now, the descriptive statistic gives

a general description of data features. However, one would like to generate an
inference rule for the user to predict data features based on input parameters.
Therefore, the application of machine learning enables the user to generate an
inferential model, where the user can input a training dataset to generate a predictive
model. After this, the prediction model can be utilized to predict the output value or
label based on given parameters.
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6. Model assessment: Finally, to assess whether the generating model performs the
best in the data estimation of a given problem, one must perform a model selection.
The selection method here involves many steps, including data preprocessing, tuning
parameters, and even switching the machine learning algorithm. However, one thing
that is important to keep in mind is that the simplest model frequently achieves the
best results in predictive or exploratory power; whereas complex models often result
in over fitting.

For the following example, we would like to perform a sample data exploration based on the
dataset of passengers surviving the Titanic shipwreck. The steps we demonstrate here follow
how to collect data from the online source, Kaggle; clean data through data munging; perform
basic exploratory data analysis to discover important attributes that might give a prediction

of the survival rate; perform advanced exploratory data analysis using the classification
algorithm to predict the survival rate of the given data; and finally, perform model assessment
to generate a prediction model.

Reading a Titanic dataset from a CSV file

To start the exploration, we need to retrieve a dataset from Kaggle (https://www.kaggle.
com/). We had look at some of the samples in Chapter 1, Practical Machine Learning with R.
Here, we introduce methods to deal with real-world problems.

Getting ready

To retrieve data from Kaggle, you need to first sign up for a Kaggle account (https://www.
kaggle.com/account/register). Then, log in to the account for further exploration:

Customer Solutions Competitions Community ~ Sign Up Login

Compete as a data scientist for fortune, fame and fun »

FOCUS INDUSTRY The Energy industry uses our
b 4 expertise in machine learning and big data to
drive high-stakes decisions. Find outmore

Kaggle.com

i
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How to do it...

Perform the following steps to read the Titanic dataset from the CSV file:

1.

2.

=

Gotohttp://www.kaggle.com/c/titanic-gettingStarted/data to retrieve
the data list.

You can see a list of data files for download, as shown in the following table:

Filename Available formats
train .csv (59.76 kb)
genderclassmodel .py (4.68 kb)
myfirstforest .csv (3.18 kb)
myfirstforest .py (3.83 kb)
gendermodel .csv (3.18 kb)
genderclassmodel .csv (3.18 kb)
test .csv (27.96 kb)
gendermodel .py (3.58 kb)

Download the training data (https://www.kaggle.com/c/titanic-
gettingStarted/download/train.csv)to alocal disk.

Then, make sure the downloaded file is placed under the current directory. You can
use the getwd function to check the current working directory. If the downloaded file
is not located in the working directory, move the file to the current working directory.
Or, you can use setwd () to set the working directory to where the downloaded files
are located:

> getwd ()
[1] "C:/Users/guest"

Next, one can use read. csv to load data into the data frame. Here, one can use

the read.csv functionto read train.csv to frame the data with the variable
names set as train.data. However, in order to treat the blank string as Na, one can
specify that na . strings equals either "NA" or an empty string:

> train.data = read.csv("train.csv", na.strings=c("NA", ""))
Then, check the loaded data with the str function:

> str(train.data)

'data.frame': 891 obs. of 12 variables:

$ PassengerId: int 1 2 3 4 56 7 8 9 10 ...
$ Survived :int 0111000011 ...
$ Pclass :int 3131331332 ...
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$ Name : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109
191 358 277 16 559 520 629 417 581

$ Sex : Factor w/ 2 levels "female","male": 2 1 11 2 2 2
211

$ Age : num 22 38 26 35 35 NA 54 2 27 14

$ SibsSp :int 1101000301

$ Parch :int 0000000120

$ Ticket : Factor w/ 681 levels "110152","110413",..: 524 597
670 50 473 276 86 396 345 133

$ Fare : num 7.25 71.28 7.92 53.1 8.05

$ Cabin : Factor w/ 148 levels "","Al0","Al4",..: 1 83 1 57

11131111

$ Embarked : Factor w/ 4 levels """, nCw,"Q","S": 4 2 4 4 4 3 4 4
4 2

To begin the data exploration, we first downloaded the Titanic dataset from Kaggle, a website
containing many data competitions and datasets. To load the data into the data frame,

this recipe demonstrates how to apply the read. csv function to load the dataset with the
na.strings argument, for the purpose of converting blank strings and "NA" to NA values.
To see the structure of the dataset, we used the str function to compactly display train.
data; you can find the dataset contains demographic information and survival labels of the
passengers. The data collected here is good enough for beginners to practice how to process
and analyze data.

There's more...

On Kaggle, much of the data on science is related to competitions, which mostly refer to
designing a machine learning method to solve real-world problems.

Most competitions on Kaggle are held by either academia or corporate bodies, such as
Amazon or Facebook. In fact, they create these contests and provide rewards, such as
bonuses, or job prospects (see https://www.kaggle.com/competitions). Thus, there
are many data scientists who are attracted to registering for a Kaggle account to participate
in competitions. A beginner in a pilot exploration can participate in one of these competitions,
which will help them gain experience by solving real-world problems with their machine
learning skills.

To create a more challenging learning environment as a competitor, a participant needs to
submit their output answer and will receive the assessment score, so that each one can
assess their own rank on the leader board.

-
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Converting types on character variables

In R, since nominal, ordinal, interval, and ratio variable are treated differently in statistical
modeling, we have to convert a nominal variable from a character into a factor.

Getting ready

You need to have the previous recipe completed by loading the Titanic training data into the R
session, with the read. csv function and assigning an argument of na . strings equal to NA
and the blank string (""). Then, assign the loaded data from train.csvinto the train.data
variables.

How to do it...

Perform the following steps to convert the types on character variables:

1. Use the str function to print the overview of the Titanic data:
> str(train.data)
'data.frame': 891 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10
$ Survived :int 0111000011

$ Pclass :int 3131331332

$ Name : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109
191 358 277 16 559 520 629 417 581

$ Sex : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2
211

$ Age : num 22 38 26 35 35 NA 54 2 27 14

$ SibSp :int 1101000301

$ Parch :int 0000000120

$ Ticket : Factor w/ 681 levels "110152","110413",..: 524 597
670 50 473 276 86 396 345 133

$ Fare : num 7.25 71.28 7.92 53.1 8.05

$ Cabin : Factor w/ 147 levels "AlO0","Al4","Al6",..: NA 82

NA 56 NA NA 130 NA NA NA ...

$ Embarked : Factor w/ 3 levels "C","Q","S": 3 1 3 3 3 2 3 3 3
1

=
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To transform the variable from the int numeric type to the factor categorical type,
you can cast factor

> train.data$Survived = factor(train.data$Survived)

> train.data$Pclass = factor(train.data$Pclass)

Print out the variable with the str function and again, you can see that Pclass and
Survived are now transformed into the factor as follows:

> str(train.data)
'data.frame': 891 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10
$ Survived : Factor w/ 2 levels "O","1": 1 2 2 2111122

$ Pclass : Factor w/ 3 levels "1","2w",w3m: 3 1 3 13 3 133
2

$ Name : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109
191 358 277 16 559 520 629 417 581

$ Sex : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2
211

$ Age : num 22 38 26 35 35 NA 54 2 27 14

$ SibSp :int 1101000301

$ Parch :int 0000000120

$ Ticket : Factor w/ 681 levels "110152","110413",..: 524 597
670 50 473 276 86 396 345 133

$ Fare : num 7.25 71.28 7.92 53.1 8.05

$ Cabin : Factor w/ 147 levels "AlO0","Al4","Al6",..: NA 82

NA 56 NA NA 130 NA NA NA .

$ Embarked : Factor w/ 3 levels "C","Q","S": 3 1 3 3 3 2 3 3 3
1

Talking about statistics, there are four measurements: nominal, ordinal, interval, and ratio.
Nominal variables are used to label variables, such as gender and name; ordinal variables,
and are measures of hon-numeric concepts, such as satisfaction and happiness. Interval
variables shows numeric scales, which tell us not only the order but can also show the
differences between the values, such as temperatures in Celsius. A ratio variable shows the
ratio of a magnitude of a continuous quantity to a unit magnitude. Ratio variables provide
order, differences between the values, and a true zero value, such as weight and height. In R,
different measurements are calculated differently, so you should perform a type conversion
before applying descriptive or inferential analytics toward the dataset.

s
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In this recipe, we first display the structure of the train data using the str function. From

the structure of data, you can find the attribute name, data type, and the first few values
contained in each attribute. From the Survived and Pclass attribute, you can see the

data type as int. As the variable description listed in Chart 1 (Preface), you can see that
Survived (O = No; 1 =Yes) and Pclass (1 = 1st; 2 = 2nd; 3 = 3rd) are categorical variables.
As a result, we transform the data from a character to a factor type via the factor function.

There's more...

Besides factor, there are more type conversion functions. For numeric types, there are
is.numeric () and as.numeric (); for character, there are: is.character () and
as.character (). For vector, there are: is.vector () and as.vector (); for matrix, there
are is.matrix () and as.matrix (). Finally, for data frame, there are: is.data.frame ()
and as.data.frame ().

Detecting missing values

Missing values reduce the representativeness of the sample, and furthermore, might distort
inferences about the population. This recipe will focus on detecting missing values within the
Titanic dataset.

Getting ready

You need to have completed the previous recipes by the Pclass attribute and Survivedto a
factor type.

In R, a missing value is noted with the symbol NA (not available), and an impossible value is
NaN (not a number).

How to do it...

Perform the following steps to detect the missing value:

1. The is.na function is used to denote which index of the attribute contains the NA
value. Here, we apply it to the Age attribute first:

> is.na(train.data$Age)

2. The is.na function indicates the missing value of the Age attribute. To get a general
number of how many missing values there are, you can perform a sum to calculate
this:
> sum(is.na(train.data$Age) == TRUE)

[11 177

5]
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To calculate the percentage of missing values, one method adopted is to count the
number of missing values against nonmissing values:

> sum(is.na(train.data$Age) == TRUE) / 1length(train.data$Age)

[1] 0.1986532

To get a percentage of the missing value of the attributes, you can use sapply to
calculate the percentage of all the attributes:

> sapply(train.data, function(df) {

+ sum(is.na(df)==TRUE) / length (df);

+ })

PassengerId Survived Pclass Name Sex
Age

0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
0.198653199

Sibsp Parch Ticket Fare Cabin
Embarked

0.000000000 0.000000000 0.000000000 0.000000000 0.771043771
0.002244669

Besides simply viewing the percentage of missing data, one may also use the
Amelia package to visualize the missing values. Here, we use install .packages
and require to install Amelia and load the package. However, before the
installation and loading of the 2me1ia package, you are required to install Repp,
beforehand:

> install.packages ("Amelia")

> require (Amelia)

Then, use the missmap function to plot the missing value map:

> missmap (train.data, main="Missing Map")

Missing Map

Age
Fare
Ticket
Parch
Sibsp
Sex
Name
Pclass

c
=}
©
[&]

Embarked
Survived

Passengerld

Missing map of the Titanic dataset

7}

www.it-ebooks.info


http://www.it-ebooks.info/

Data Exploration with RMS Titanic

In R, a missing value is often noted with the "NA" symbol, which stands for not available.
Most functions (such as mean or sum) may output NA while encountering an NA value in the
dataset. Though you can assign an argument such as na . rm to remove the effect of NA, it is
better to impute or remove the missing data in the dataset to prevent propagating the effect
of the missing value. To find out the missing value in the Titanic dataset, we first sum up all
the NA values and divide them by the number of values within each attribute, Then, we apply

the calculation to all the attributes with sapply.

In addition to this, to display the calculation results using a table, you can utilize the Amelia
package to plot the missing value map of every attribute on one chart. The visualization of
missing values enables users to get a better understanding of the missing percentage within
each dataset. From the preceding screenshot, you may have observed that the missing value
is beige colored, and its observed value is dark red. The x-axis shows different attribute
names, and the y-axis shows the recorded index. Clearly, most of the cabin shows missing
data, and it also shows that about 19.87 percent of the data is missing when counting the
Age attribute, and two values are missing in the Embarked attribute.

There's more...

To handle the missing values, we introduced Amel1ia to visualize them. Apart from typing
console commands, you can also use the interactive GUI of Amelia and AmeliaView,
which allows users to load datasets, manage options, and run Amelia from a windowed

environment.

To start running AmeliaView, simply type AmeliaView () in the R Console:

> AmeliaView()

A AmeliaView

File Variables Options Output Help

Please load a dataset:

Welcome to AmeliaView 1.7.21

&) { fa]
Load R Data | Import CSV

]
Import STATA

AmeliaView

NED
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Imputing missing values

After detecting the number of missing values within each attribute, we have to impute the
missing values since they might have a significant effect on the conclusions that can be drawn
from the data.

Getting ready

This recipe will require train.data loaded in the R session and have the previous recipe
completed by converting Pclass and Survived to a factor type.

How to do it...

Perform the following steps to impute the missing values:

1.

First, list the distribution of Port of Embarkation. Here, we add the useNA =
"always" argument to show the number of NA values contained within train.
data:

> table(train.data$Embarked, useNA = "always")

Assign the two missing values to a more probable port (that is, the most counted
port), which is Southampton in this case:

> train.data$Embarked[which(is.na(train.data$Embarked))] = 'S';
> table(train.data$Embarked, useNA = "always")

(o] Q S <NA>
168 77 646 0

In order to discover the types of titles contained in the names of train.data, we
first tokenize train.data$Name by blank (a regular expression pattern as "\\s+"),
and then count the frequency of occurrence with the table function. After this, since
the name title often ends with a period, we use the regular expression to grep the
word containing the period. In the end, sort the table in decreasing order:

> train.data$Name = as.character(train.data$Name)
> table_words = table(unlist(strsplit(train.data$Name, "\\s+")))

> sort(table words [grep('\\.', names(table words))],
decreasing=TRUE)

s
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Mr. Miss. Mrs. Master.
517 182 125 40
Dr. Rev. Col. Major.
7 6 2 2
Mlle. Capt. Countess. Don.
2 1 1 1
Jonkheer. L. Lady . Mme.
1 1 1 1
Ms. Sir.
1 1

4. To obtain which title contains missing values, you can use str_match provided by
the stringr package to get a substring containing a period, then bind the column
together with cbind. Finally, by using the table function to acquire the statistics of
missing values, you can work on counting each title:

> library(stringr)

> tb = cbind(train.data$Age, str match(train.data$Name, "
[a-zA-Z1+\\."))

> table(tb[is.na(tb[,1]),2])

Dr. Master. Miss. Mr. Mrs.

1 4 36 119 17

5. For atitle containing a missing value, one way to impute data is to assign the mean
value for each title (not containing a missing value):

> mean.mr = mean (train.data$Agelgrepl ("™ Mr\\.", train.data$Name) &
!is.na(train.data$Age)])

> mean.mrs = mean(train.data$Agelgrepl (" Mrs\\.", train.data$Name)
& l!is.na(train.data$Age)])

> mean.dr = mean(train.data$Agelgrepl(" Dr\\.", train.data$Name) &
!is.na(train.data$Age)])

> mean.miss = mean(train.data$Agel[grepl (" Miss\\.", train.
data$Name) & !is.na(train.data$Age)l])

> mean.master = mean(train.data$Agel[grepl (" Master\\.", train.
data$Name) & !is.na(train.data$Age)l])

6. Then, assign the missing value with the mean value of each title:
> train.data$Agelgrepl (" Mr\\.", train.data$Name) & is.na(train.
data$Age)] = mean.mr

> train.data$Agelgrepl (" Mrs\\.", train.data$Name) & is.na(train.
data$Age)] = mean.mrs
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> train.data$Age[grepl (" Dr\\.", train.data$Name) & is.na(train.
data$Age)] = mean.dr

> train.data$Age[grepl (" Miss\\.", train.data$Name) & is.na(train.
data$Age)] = mean.miss

> train.data$Age[grepl (" Master\\.", train.data$Name) &
is.na(train.data$Age)] = mean.master

To impute the missing value of the Embarked attribute, we first produce the statistics of
the embarked port with the table function. The table function counts two NA values in
train.data. From the dataset description, we recognize C, Q, and S(C = Cherbourg, Q =
Queenstown, S = Southampton). Since we do not have any knowledge about which category
these two missing values are in, one possible way is to assign the missing value to the most
likely port, which is Southampton

As for another attribute, Age, though about 20 percent of the value is missing, users can still
infer the missing value with the title of each passenger. To discover how many titles there
are within the name of the dataset, we suggest the method of counting segmented words in
the Name attribute, which helps to calculate the number of missing values of each given title.
The resultant word table shows common titles such as Mr, Mrs, Miss, and Master. You may
reference an English honorific entry from Wikipedia to get the description of each title.

Considering the missing data, we reassign the mean value of each title to the missing value
with the corresponding title. However, for the Cabin attribute, there are too many missing
values, and we cannot infer the value from any referencing attribute. Therefore, we find it does
not work by trying to use this attribute for further analysis.

There's more...

Here we list the honorific entry from Wikipedia for your reference. According to it
(http://en.wikipedia.org/wiki/English honorific):

» Mr: This is used for a man, regardless of his marital status

» Master: This is used for young men or boys, especially used in the UK

» Miss: It is usually used for unmarried women, though also used by married female
entertainers

» Mrs: It is used for married women

» Dr: Itis used for a person in the US who owns his first professional degree
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Exploring and visualizing data

After imputing the missing values, one should perform an exploratory analysis, which involves
using a visualization plot and an aggregation method to summarize the data characteristics.
The result helps the user gain a better understanding of the data in use. The following

recipe will introduce how to use basic plotting techniques with a view to help the user with
exploratory analysis.

Getting ready

This recipe needs the previous recipe to be completed by imputing the missing value in the
age and Embarked attribute.

How to do it...

Perform the following steps to explore and visualize data:

1. First, you can use a bar plot and histogram to generate descriptive statistics for each
attribute, starting with passenger survival:

> barplot(table(train.data$Survived), main="Passenger Survival",
names= c ("Perished", "Survived"))

Passenger Survival

300
|

1C0
|

Perished Sumvived

Passenger survival

&
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2. We can generate the bar plot of passenger class:

> barplot(table(train.data$Pclass), main="Passenger Class",

names= c("first", "second", "third"))

100 200 300 400

0

Passenger Class

first

second third

Passenger class

3. Next, we outline the gender data with the bar plot:

> barplot(table(train.data$Sex), main="Passenger Gender")

300 500

0 100

Passenger Gender

female male

4. We then plot the histogram of the different ages with the hist function:

> hist(train.data$Age, main="Passenger Age", xlab =

Passenger gender

Frequency
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Passenger Age
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Passenger age

Chapter 2
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5.  We can plot the bar plot of sibling passengers to get the following:

> barplot(table(train.data$SibSp), main="Passenger Siblings")

Passenger Siblings

500

300

0 100

Passenger siblings

6. Next, we can get the distribution of the passenger parch:

> barplot(table(train.data$Parch), main="Passenger Parch")

Passenger Parch

500

300

i
l

Passenger parch

7. Next, we plot the histogram of the passenger fares:

> hist(train.data$Fare, main="Passenger Fare", xlab = "Fare")

Passenger Fare
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Passenger fares
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8. Finally, one can look at the port of embarkation:
> barplot(table(train.data$Embarked), main="Port of Embarkation")

Port of Embarkation
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300

0 100

]

c Q S

Port of embarkation

9. Use barplot to find out which gender is more likely to perish during shipwrecks:
> counts = table( train.data$Survived, train.data$Sex)

> barplot (counts, col=c("darkblue","red"), legend = c("Perished",
"Survived"), main = "Passenger Survival by Sex")

Passenger Survival by Sex
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Passenger survival by sex
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10. Next, we should examine whether the Pclass factor of each passenger may affect
the survival rate:

> counts = table( train.data$Survived, train.data$Pclass)

> barplot (counts, col=c("darkblue","red"), legend =c("Perished",
"Survived"), main= "Titanic Class Bar Plot" )

Titanic Class Bar Plot

B Survived
B Perished

100 200 300 400

0

Passenger survival by class

11. Next, we examine the gender composition of each pclass:
> counts = table( train.data$Sex, train.data$Pclass)

> barplot (counts, col=c("darkblue","red"), legend =
rownames (counts), main= "Passenger Gender by Class")

Passenger Gender by Class

B male
B female

100 200 300 400

0

Passenger gender by class
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12. Furthermore, we examine the histogram of passenger ages:

> hist(train.data$Age[which(train.data$Survived == "0")], main=
"Passenger Age Histogram", xlab="Age", ylab="Count", col ="blue",
breaks=seq(0,80,by=2))

> hist(train.data$Age[which(train.data$Survived == "1")], col
="red", add = T, breaks=seq(0,80,by=2))

Passenger Age Histogram
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Passenger age histogram

13. To examine more details about the relationship between the age and survival rate,
one can use a boxplot:

> boxplot (train.data$Age ~ train.data$Survived,
+ main="Passenger Survival by Age",

+ xlab="Survived", ylab="Age")

Passenger Survival by Age
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Passenger survival by age
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14. To categorize people with different ages into different groups, such as children (below
13), youths (13 to 19), adults (20 to 65), and senior citizens (above 65), execute the
following commands:

>train.child = train.data$Survived[train.data$Age < 13]

> length(train.child[which(train.child == 1)] ) / length(train.
child)

[1] 0.5797101

> train.youth = train.data$Survived[train.data$Age >= 15 & train.
datas$Age < 25]

> length(train.youth[which(train.youth == 1)] ) / length(train.
youth)

[1] 0.4285714

> train.adult = train.data$Survived[train.data$Age >= 20 & train.
datas$Age < 65]

> length(train.adult [which(train.adult == 1)] ) / length(train.
adult)

[1] 0.3659218

> train.senior = train.data$Survived[train.data$Age >= 65]
> length(train.senior [which(train.senior == 1)] ) / length(train.
senior)

[1] 0.09090909

Before we predict the survival rate, one should first use the aggregation and visualization
method to examine how each attribute affects the fate of the passengers. Therefore, we begin
the examination by generating a bar plot and histogram of each attribute.

The plots from the screenshots in the preceding list give one an outline of each attribute of
the Titanic dataset. As per the first screenshot, more passengers perished than survived
during the shipwreck. Passengers in the third class made up the biggest number out of

the three classes on board, which also reflects the truth that the third class was the most
economical class on the Titanic (step 2). For the sex distribution, there were more male
passengers than female (step 3). As for the age distribution, the screenshot in step 4 shows
that most passengers were aged between 20 to 40. According to the screenshot in step 5,
most passengers had one or fewer siblings. The screenshot in step 6 shows that most of the
passengers have O to 2 parch.

&)
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In the screenshot in step 7, the fare histogram shows there were fare differences, which may
be as a result of the different passenger classes on the Titanic. At last, the screenshot in step
8 shows that the boat made three stops to pick up passengers.

As we began the exploration from the sex attribute, and judging by the resulting bar plot,
it clearly showed that female passengers had a higher rate of survival than males during
the shipwreck (step 9). In addition to this, the Wikipedia entry for RMS Titanic (http://
en.wikipedia.org/wiki/RMS_ Titanic) explains that ‘A disproportionate number of
men were left aboard because of a "women and children first" protocol followed by some
of the officers loading the lifeboats'. Therefore, it is reasonable that the number of female
survivors outnumbered the male survivors. In other words, simply using sex can predict
whether a person will survive with a high degree of accuracy.

Then, we examined whether the passenger class affected the survival rate (step 10). Here,
from the definition of Pclass, the fares for each class were priced accordingly with the
quality; high fares for first class, and low fares for third class. As the class of each passenger
seemed to indicate their social and financial status, it is fair to assume that the wealthier
passengers may have had more chances to survive.

Unfortunately, there was no correlation between the class and survival rate, so the result
does not show the phenomenon we assumed. Nevertheless, after we examined sex in the
composition of pclass (step 11), the results revealed that most third-class passengers were
male; the assumption of wealthy people tending to survive more may not be that concrete.

Next, we examined the relationship between the age and passenger fate through a histogram
and box plot (step 12). The bar plot shows the age distribution with horizontal columns in
which red columns represent the passengers that survived, while blue columns represent
those who perished. It is hard to tell the differences in the survival rate from the ages of
different groups. The bar plots that we created did not prove that passengers in different age
groups were more likely to survive. On the other hand, the plots showed that most people on
board were aged between 20 to 40, but does not show whether this group was more likely to
survive compared to elderly or young children (step 13). Here, we introduced a box plot, which
is a standardized plotting technique that displays the distribution of data with information,
such as minimum, first quartile, median, third quartile, maximum, and outliers.

Later, we further examined whether age groups have any relation to passenger fates, by
categorizing passenger ages into four groups. The statistics show the the children group
(below 13) was more likely to survive than the youths (13 to 20), adults (20 to 65), and senior
citizens (above 65). The results showed that people in the younger age groups were more
likely to survive the shipwreck. However, we noted that this possibly resulted from the 'women
and children first' protocol.

[}
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There's more...

Apart from using bar plots, histograms, and boxplots to visualize data, one can also apply
mosaicplot in the ved package to examine the relationship between multiple categorical
variables. For example, when we examine the relationship between the Survived and
Pclass variables, the application is performed as follows:

> mosaicplot(train.data$Pclass ~ train.data$Survived,
+ main="Passenger Survival Class", color=TRUE,

+ xlab="Pclass", ylab="Survived")

Passenger Survival Class

1 F

C’-

Survived

I

Pclass

Passenger survival by class

See also

» For more information about the shipwreck, one can read the history of RMS
Titanic (please refer to the entry Sinking of the RMS Titanic in Wikipedia http://
en.wikipedia.org/wiki/Sinking of the RMS Titanic), as some of

the protocol practiced at that time may have substantially affected the passenger
survival rate.

Predicting passenger survival with a

decision tree

The exploratory analysis helps users gain insights into how single or multiple variables may
affect the survival rate. However, it does not determine what combinations may generate a
prediction model, so as to predict the passengers' survival. On the other hand, machine learning
can generate a prediction model from a training dataset, so that the user can apply the model to
predict the possible labels from the given attributes. In this recipe, we will introduce how to use
a decision tree to predict passenger survival rates from the given variables.

[
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Getting ready

We will use the data, train.data, that we have already used in our previous recipes.

How to do it...

Perform the following steps to predict the passenger survival with the decision tree:

1.

First, we construct a data split split .data function with three input parameters:
data, p, and s. The data parameter stands for the input dataset, the p parameter
stands for the proportion of generated subset from the input dataset, and the s
parameter stands for the random seed:

> split.data = function(data, p = 0.7, s = 666){

+ set.seed(s)

+ index = sample(l:dim(data) [1])

+ train = datal[index[l:floor (dim(data) [1] * p)], 1]
+ test = datal[index[((ceiling(dim(data) [1] * p)) +
1) :dim(data) [1]1], 1]

+ return(list(train = train, test = test))

+}

Then, we split the data, with 70 percent assigned to the training dataset and the
remaining 30 percent for the testing dataset:

> allset= split.data(train.data, p = 0.7)

> trainset = allset$train

> testset = allset$test

For the condition tree, one has to use the ctree function from the party package;
therefore, we install and load the party package:

> install.packages('party')

> require('party')

We then use Survived as a label to generate the prediction model in use. After that,
we assign the classification tree model into the train.ctree variable:

> train.ctree = ctree(Survived ~ Pclass + Sex + Age + SibSp + Fare
+ Parch + Embarked, data=trainset)

> train.ctree

Conditional inference tree with 7 terminal nodes

Response: Survived
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Inputs: Pclass, Sex, Age, SibSp, Fare, Parch, Embarked
Number of observations: 623

1) Sex == {male}; criterion = 1, statistic = 173.672
2) Pclass == {2, 3}; criterion = 1, statistic = 30.951
3) Age <= 9; criterion = 0.997, statistic = 12.173
4) SibSp <= 1l; criterion = 0.999, statistic = 15.432
5)* weights = 10
4) Sibsp > 1
6)* weights = 11
3) Age > 9
7)* weights 282
2) Pclass == {1}

8)* weights = 87
1) Sex == {female}
9) Pclass == {1, 2}; criterion = 1, statistic = 59.504
10)* weights = 125
9) Pclass == {3}
11) Fare <= 23.25; criterion = 0.997, statistic = 12.456
12)* weights = 85
11) Fare > 23.25
13)* weights = 23
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5. We use a plot function to plot the tree:

Chapter 2

> plot(train.ctree, main="Conditional inference tree of Titanic
Dataset")
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Conditional inference tree of the Titanic dataset

This recipe introduces how to use a conditional inference tree, ctree, to predict passenger
survival. While the conditional inference tree is not the only method to solve the classification
problem, it is an easy method to comprehend the decision path to predict passenger survival

We first split the data into a training and testing set by using our implemented function,
split.data. So, we can then use the training set to generate a prediction model and later
employ the prediction model on the testing dataset in the recipe of the model assessment.
Then, we install and load the party package, and use ctree to build a prediction model,
with Survived as its label. Without considering any particular attribute, we put attributes

such as Pclass, Sex, Age, SibSp, Parch, Embarked, and Fare as training attributes
except for Cabin, as most of this attribute's values are missing
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After constructing the prediction model, we can either print out the decision path and node
in a text mode, or use a plot function to plot the decision tree. From the decision tree, the
user can see what combination of variables may be helpful in predicting the survival rate.
As per the preceding screenshot, users can find a combination of Pclass and Sex, which
served as a good decision boundary (node 9) to predict the survival rates. This shows
female passengers who were in first and second class mostly survived the shipwreck. Male
passengers, those in second and third class and aged over nine, almost all perished during
the shipwreck. From the tree, one may find that attributes such as Embarked and Parch
are missing. This is because the conditional inference tree regards these attributes as less
important during classification.

From the decision tree, the user can see what combination of variables may be helpful in
predicting the survival rate. Furthermore, a conditional inference tree is helpful in selecting
important attributes during the classification process; one can examine the built tree to see
whether the selected attribute matches one's presumption.

There's more...

This recipe covers issues relating to classification algorithms and conditional inference trees.
Since we do not discuss the background knowledge of the adapted algorithm, it is better

for the user to use the help function to view the documents related to ctree in the party
package, if necessary.

There is a similar decision tree based package, named rpart. The difference between party
and rpart is that ctree in the party package avoids the following variable selection bias of
rpart and ctree in the party package, tending to select variables that have many possible
splits or many missing values. Unlike the others, ctree uses a significance testing procedure
in order to select variables, instead of selecting the variable that maximizes an information
measure.

Besides ctree, one can also use svm to generate a prediction model. To load the svm
function, load the e1071 package first, and then use the svm build to generate this prediction:
> install.packages('el071"')

> require('el071"')

> svimm.model = svm(Survived ~ Pclass + Sex + Age + SibSp + Fare + Parch +

Embarked, data = trainset, probability = TRUE)

Here, we use svm to show how easy it is that you can immediately use different machine
learning algorithms on the same dataset when using R. For further information on how to use
svm, please refer to Chapter 6, Classification (Il) - Neural Network, SVM.

7
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Validating the power of prediction with a

confusion matrix

After constructing the prediction model, it is important to validate how the model performs
while predicting the labels. In the previous recipe, we built a model with ctree and pre-split
the data into a training and testing set. For now, users will learn to validate how well ctree
performs in a survival prediction via the use of a confusion matrix.

Getting ready

Before assessing the prediction model, first be sure that the generated training set and
testing dataset are within the R session.

How to do it...

Perform the following steps to validate the prediction power:
1. We start using the constructed train.ctree model to predict the survival of the
testing set:

> ctree.predict = predict(train.ctree, testset)

2. First, we install the caret package, and then load it:
> install.packages("caret")

> require (caret)

3. After loading caret, one can use a confusion matrix to generate the statistics of the
output matrix:

> confusionMatrix(ctree.predict, testset$Survived)

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 160 25

1 16 66

Accuracy : 0.8464
95% CI : (0.7975, 0.8875)
No Information Rate : 0.6592
P-Value [Acc > NIR] : 4.645e-12
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Kappa : 0.6499
Mcnemar's Test P-Value : 0.2115

Sensitivity : 0.9091
Specificity : 0.7253

Pos Pred Value : 0.8649

Neg Pred Value : 0.8049
Prevalence : 0.6592

Detection Rate : 0.5993
Detection Prevalence : 0.6929
Balanced Accuracy : 0.8172

'Positive' Class : 0

After building the prediction model in the previous recipe, it is important to measure the
performance of the constructed model. The performance can be assessed by whether the
prediction result matches the original label contained in the testing dataset. The assessment
can be done by using the confusion matrix provided by the caret package to generate a
confusion matrix, which is one method to measure the accuracy of predictions.

To generate a confusion matrix, a user needs to install and load the caret package first. The
confusion matrix shows that purely using ctree can achieve accuracy of up to 84 percent.
One may generate a better prediction model by tuning the attribute used, or by replacing the
classification algorithm to SVM, glm, or random forest.

There's more...

A caret package (Classification and Regression Training) helps make iterating and comparing
different predictive models very convenient. The package also contains several functions,
including:

» Data splits

» Common preprocessing: creating dummy variables, identifying zero- and near-zero-
variance predictors, finding correlated predictors, centering, scaling, and so on

» Training (using cross-validation)

» Common visualizations (for example, featurePlot)

7@
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Assessing performance with the ROC curve

Another measurement is by using the ROC curve (this requires the ROCR package), which plots
a curve according to its true positive rate against its false positive rate. This recipe will introduce
how we can use the ROC curve to measure the performance of the prediction model.

Getting ready

Before applying the ROC curve to assess the prediction model, first be sure that the
generated training set, testing dataset, and built prediction model, ctree.predict,
are within the R session.

How to do it...

Perform the following steps to assess prediction performance:

1.

Prepare the probability matrix:

> train.ctree.pred = predict(train.ctree, testset)

> train.ctree.prob = 1- unlist(treeresponse(train.ctree,
testset), use.names=F) [seq(l,nrow(testset) *2,2)]

Install and load the ROCR package:

> install.packages ("ROCR")

> require (ROCR)

Create an ROCR prediction object from probabilities:
> train.ctree.prob.rocr = prediction(train.ctree.prob,

testset$Survived)

Prepare the ROCR performance object for the ROC curve (tpr=true positive
rate, fpr=false positive rate)and the area under curve (AUC):

> train.ctree.perf = performance(train.ctree.prob.rocr,
n tprll , n fprll )

> train.ctree.auc.perf = performance(train.ctree.prob.rocr,
measure = "auc", x.measure = "cutoff")
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5. Plot the ROC curve, with colorize as TRUE, and put AUC as the title:

> plot(train.ctree.perf, col=2,colorize=T, main=paste("AUC:",
train.ctree.auc.perf@y.values))

AUC: 0.857455044955045
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ROC of the prediction model

Here, we first create the prediction object from the probabilities matrix, and then prepare
the ROCR performance object for the ROC curve (tpr=true positive rate, fpr=false
positive rate)and the AUC. Lastly, we use the plot function to draw the ROC curve.

The result drawn in the preceding screenshot is interpreted in the following way: the larger
under the curve (a perfect prediction will make AUC equal to 1), the better the prediction
accuracy of the model. Our model returns a value of 0.857, which suggests that the simple
conditional inference tree model is powerful enough to make survival predictions.

See also

» To get more information on the ROCR, you can read the paper Sing, T., Sander, O.,
Berenwinkel, N., and Lengauer, T. (2005). ROCR: visualizing classifier performance in
R. Bioinformatics, 21(20), 3940-3941.
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R and Statistics

In this chapter, we will cover the following topics:

>

Understanding data sampling in R

Operating a probability distribution in R

Working with univariate descriptive statistics in R
Performing correlations and multivariate analysis
Operating linear regression and a multivariate analysis
Conducting an exact binomial test

Performing student's t-test

Performing the Kolmogorov-Smirnov test
Understanding the Wilcoxon Rank Sum and Signed Rank test
Working with Pearson's Chi-squared test

Conducting a one-way ANOVA

Performing a two-way ANOVA

Introduction

The R language, as the descendent of the statistics language, S, has become the preferred
computing language in the field of statistics. Moreover, due to its status as an active
contributor in the field, if a new statistical method is discovered, it is very likely that this
method will first be implemented in the R language. As such, a large quantity of statistical
methods can be fulfilled by applying the R language.
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To apply statistical methods in R, the user can categorize the method of implementation into
descriptive statistics and inferential statistics:

» Descriptive statistics: These are used to summarize the characteristics of the data.
The user can use mean and standard deviation to describe numerical data, and use
frequency and percentages to describe categorical data.

» Inferential statistics: Based on the pattern within a sample data, the user can infer
the characteristics of the population. The methods related to inferential statistics are
for hypothesis testing, data estimation, data correlation, and relationship modeling.
Inference can be further extended to forecasting, prediction, and estimation of
unobserved values either in or associated with the population being studied.

In the following recipe, we will discuss examples of data sampling, probability distribution,
univariate descriptive statistics, correlations and multivariate analysis, linear regression and
multivariate analysis, Exact Binomial Test, student's t-test, Kolmogorov-Smirnov test, Wilcoxon
Rank Sum and Signed Rank test, Pearson's Chi-squared Test, One-way ANOVA, and Two-way
ANOVA.

Understanding data sampling in R

Sampling is a method to select a subset of data from a statistical population, which can use
the characteristics of the population to estimate the whole population. The following recipe
will demonstrate how to generate samples in R.

Getting ready

Make sure that you have an R working environment for the following recipe.

How to do it...

Perform the following steps to understand data sampling in R:

1. In order to generate random samples of a given population, the user can simply use
the sample function:
> sample(1:10)

2. To specify the number of items returned, the user can set the assigned value to the
size argument:
> sample(1:10, size = 5)

3. Moreover, the sample can also generate Bernoulli trials by specifying replace =
TRUE (default is FALSE):

> sample(c(0,1), 10, replace = TRUE)
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As we saw in the preceding demonstration, the sample function can generate random
samples from a specified population. The returned number from records can be designated
by the user simply by specifying the argument of size. Assigning the replace argument to
TRUE, you can generate Bernoulli trials (a population with 0 and 1 only).

See also

» InR, the default package provides another sample method, sample.int, where
both n and size must be supplied as integers:

> sample.int (20, 12)

Operating a probability distribution in R

Probability distribution and statistics analysis are closely related to each other. For statistics
analysis, analysts make predictions based on a certain population, which is mostly under a
probability distribution. Therefore, if you find that the data selected for prediction does not
follow the exact assumed probability distribution in experiment design, the upcoming results
can be refuted. In other words, probability provides the justification for statistics. The following
examples will demonstrate how to generate probability distribution in R.

Getting ready

Since most distribution functions originate from the stats package, make sure the library
stats are loaded.

How to do it...

Perform the following steps:
1. For a normal distribution, the user can use dnorm, which will return the height of a
normal curve at 0:
> dnorm(0)

[1] 0.3989423

2. Then, the user can change the mean and the standard deviation in the argument:
> dnorm(0,mean=3,sd=5)

[1] 0.06664492

s
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3. Next, plot the graph of a normal distribution with the curve function:

> curve (dnorm, -3, 3)

function(x) dnormix)
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Standard normal distribution

4. In contrast to dnorm, which returns the height of a normal curve, the pnorm function
can return the area under a given value:

> pnorm(1l.5)
[1] 0.9331928
5. Alternatively, to get the area above a certain value, you can specify the option,
lower.tail, to FALSE:
> pnorm(1l.5, lower.tail=FALSE)
[1] 0.0668072

6. To plot the graph of pnorm, the user can employ a curve function:

> curve (pnorm(x), -3,3)
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Cumulative density function (pnorm)
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To calculate the quantiles for a specific distribution, you can use gnorm. The function,
gnorm, can be treated as the inverse of pnorm, which returns the Z-score of a given
probability:

> gnorm(0.5)
[11 O
> gnorm(pnorm(0))

[11 o

To generate random numbers from a normal distribution, one can use the rnorm
function and specify the number of generated numbers. Also, one can define optional
arguments, such as the mean and standard deviation:

> set.seed(50)
> X = rnorm(100,mean=3, sd=5)

> hist (x)

Histogram of x

40

30

Frequency
20

10

Histogram of a normal distribution
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9. To calculate the uniform distribution, the runif function generates random numbers
from a uniform distribution. The user can specify the range of the generated numbers
by specifying variables, such as the minimum and maximum. For the following
example, the user generates 100 random variables from 0 to 5:
> set.seed(50)

>y = runif(100,0,5)

> hist(y)
Histogram of y
w
&
g 2
3
o
2
(1N
w
o
| | | | | |
0 1 2 3 4 5
¥

Histogram of a uniform distribution

10. Lastly, if you would like to test the normality of the data, the most widely used test
for this is the Shapiro-Wilks test. Here, we demonstrate how to perform a test of
normality on both samples from the normal and uniform distributions, respectively:

> shapiro.test (x)
Shapiro-Wilk normality test

data: x

W = 0.9938, p-value = 0.9319

> shapiro.test(y)

Shapiro-Wilk normality test

data: y
W = 0.9563, p-value = 0.002221
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In this recipe, we first introduce dnorm, a probability density function, which returns the height
of a normal curve. With a single input specified, the input value is called a standard score or

a z-score. Without any other arguments specified, it is assumed that the normal distribution is
in use with a mean of zero and a standard deviation of one. We then introduce three ways to
draw standard and normal distributions.

After this, we introduce pnorm, a cumulative density function. The function, pnorm, can
generate the area under a given value. In addition to this, pnorm can be also used to
calculate the p-value from a normal distribution. One can get the p-value by subtracting 1 from
the number, or assigning True to the option, lower.tail. Similarly, one can use the plot
function to plot the cumulative density.

In contrast to pnorm, gnorm returns the z-score of a given probability. Therefore, the example
shows that the application of a gnorm function to a pnorm function will produce the exact
input value.

Next, we show you how to use the rnrom function to generate random samples from a

normal distribution, and the runi f function to generate random samples from the uniform
distribution. In the function, rnorm, one has to specify the number of generated numbers

and we may also add optional augments, such as the mean and standard deviation. Then, by
using the hist function, one should be able to find a bell-curve in figure 3. On the other hand,
for the runi £ function, with the minimum and maximum specifications, one can get a list of
sample numbers between the two. However, we can still use the hist function to plot the
samples. It is clear that the output figure (shown in the preceding figure) is not in a bell-shape,
which indicates that the sample does not come from the normal distribution.

Finally, we demonstrate how to test data normality with the Shapiro-Wilks test. Here, we
conduct the normality test on both the normal and uniform distribution samples, respectively.
In both outputs, one can find the p-value in each test result. The p-value shows the changes,
which show that the sample comes from a normal distribution. If the p-value is higher than
0.05, we can conclude that the sample comes from a normal distribution. On the other hand,
if the value is lower than 0.05, we conclude that the sample does not come from a normal
distribution.

There's more...

Besides the normal distribution, you can obtain a t distribution, binomial distribution, and
Chi-squared distribution by using the built-in functions of R. You can use the help function to
access further information about this:
» For at distribution:
> help (TDist)

&1
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» For a binomial distribution:

>help (Binomial)

» For the Chi-squared distribution:
>help (Chisquare)

To learn more about the distributions in the package, the user can access the help function
with the keyword distributions to find all related documentation on this:

> help(distributions)

Working with univariate descriptive

statistics in R

Univariate descriptive statistics describes a single variable for unit analysis, which is also the
simplest form of quantitative analysis. In this recipe, we introduce some basic functions used
to describe a single variable.

Getting ready

We need to apply descriptive statistics to a sample data. Here, we use the built-in mtcars
data as our example.

How to do it...

Perform the following steps:

1. First, load the mtcars data into a data frame with a variable named mtcars:
> data(mtcars)

2. To obtain the vector range, the range function will return the lower and upper bound
of the vector:
> range (mtcars$mpg)

[1] 10.4 33.9

3. Compute the length of the variable:
> length (mtcarsS$mpg)
[1] 32

4. Obtain the mean of mpg:
> mean (mtcars$mpg)

[1] 20.09062

~[ee]
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12.

13.

Obtain the median of the input vector:
> median (mtcarsS$mpg)

[1] 19.2

To obtain the standard deviation of the input vector:
> sd(mtcars$mpg)
[1] 6.026948

To obtain the variance of the input vector:
> var (mtcars$mpg)

[1] 36.3241

The variance can also be computed with the square of standard deviation:

> sd(mtcars$mpg) ~ 2
[1] 36.3241

To obtain the Interquartile Range (IQR):
> IQR (mtcars$mpg)
[1] 7.375

To obtain the quantile:

> quantile (mtcars$mpg,0.67)
67%

21.4

To obtain the maximum of the input vector:
> max (mtcars$mpg)

[1] 33.9

To obtain the minima of the input vector:
> min (mtcars$mpg)

[1] 10.4

To obtain a vector with elements that are the cumulative maxima:

> cummax (mtcarsS$mpg)

Chapter 3

[1] 21.0 21.0 22.8 22.8 22.8 22.8 22.8 24.4 24.4 24.4 24.4 24.4

24.4 24.4 24.4 24.4

[17] 24.4 32.4 32.4 33.9 33.9 33.9 33.9 33.9 33.9 33.9 33.9 33.9

33.9 33.9 33.9 33.9

www.it-ebooks.info


http://www.it-ebooks.info/

R and Statistics

14. To obtain a vector with elements that are the cumulative minima:
> cummin (mtcarsS$mpg)

[1] 21.0 21.0 21.0 21.0 18.7 18.1 14.3 14.3 14.3 14.3 14.3 14.3
14.3 14.3 10.4 10.4

4

[17] 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4
10.4 10.4 10.4 10.4

15. To summarize the dataset, you can apply the summary function:
> summary (mtcars)

16. To obtain a frequency count of the categorical data, take cyl of mtcars as an
example:

> table (mtcars$cyl)

4 6 8
11 7 14

17. To obtain a frequency count of numerical data, you can use a stem plot to outline the
data shape; stem produces a stem-and-leaf plot of the given values:

> stem(mtcars$mpg)

The decimal point is at the |

10 | 44

12 | 3

14 | 3702258
16 | 438
18 | 17227
20 | 00445
22 | 88

24 | 4

26 | 03

28 |

30 | 44

32 | 49

(e
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18. You can use a histogram of ggplot to plot the same stem-and-leaf figure:

> library(ggplot2)
> gplot (mtcars$mpg, binwidth=2)

=0

mtcarsimpg

Histogram of mpg of mtcars

Univariate descriptive statistics generate the frequency distribution of datasets. Moreover,
they can be used to identify the obvious patterns in the data and the characteristics of the
variates to provide a better understanding of the data from a holistic viewpoint. Additionally,
they can provide information about the central tendency and descriptors of the skewness of
individual cases. Therefore, it is common to see that univariate analysis is conducted at the
beginning of the data exploration process.

To begin the exploration of data, we first load the dataset, mtcars, to an R session. From the

data, we apply range, length, mean, median, sd, var, IQR, quantile, min, max, cumin,

and cumax to obtain the descriptive statistic of the attribute, mpg. Then, we use the summary
function to obtain summary information about mtcars.

Next, we obtain a frequency count of the categorical data (cy1). To obtain a frequency
count of the numerical data, we use a stem plot to outline the data shape. Lastly, we use a
histogram with the binwidth argument in 2 to generate a plot similar to the stem-and-leaf
plot.
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There's more...

One common scenario in univariate descriptive statistics is to find the mode of a vector. In R,
there is no built-in function to help the user obtain the mode of the data. However, one can
implement the mode function by using the following code:

> mode = function(x) {
+ temp = table(x)
+ names (temp) [temp == max (temp) ]

+}

By applying the mode function on the vector, mtcars$mpg, you can find the most frequently
occurring numeric value or category of a given vector:

> X = c(11213l3l3l4l415151516)

> mode (x)

[1] n3n ugn

Performing correlations and multivariate

analysis

To analyze the relationship of more than two variables, you would need to conduct multivariate
descriptive statistics, which allows the comparison of factors. Additionally, it prevents the effect
of a single variable from distorting the analysis. In this recipe, we will discuss how to conduct
multivariate descriptive statistics using a correlation and covariance matrix.

Getting ready

Ensure that mtcars has already been loaded into a data frame within an R session.

How to do it...

Perform the following steps:

1. Here, you can get the covariance matrix by inputting the first three variables in
mtcars to the cov function:

> cov(mtcars[1:3])

mpg cyl disp
mpg 36.324103 -9.172379 -633.0972
cyl -9.172379 3.189516 199.6603

disp -633.097208 199.660282 15360.7998
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2. To obtain a correlation matrix of the dataset, we input the first three variables of
mtcars to the cor function:

> cor (mtcars[1:3])

mpg cyl disp
mpg 1.0000000 -0.8521620 -0.8475514
cyl -0.8521620 1.0000000 0.9020329
disp -0.8475514 0.9020329 1.0000000

In this recipe, we have demonstrated how to apply correlation and covariance to discover the
relationship between multiple variables.

First, we compute a covariance matrix of the first three mtcars variables. Covariance can
measure how variables are linearly related. Thus, a positive covariance (for example, cyl
versus mpg) indicates that the two variables are positively linearly related. On the other

hand, a negative covariance (for example, mpg versus disp) indicates the two variables are
negatively linearly related. However, due to the variance of different datasets, the covariance
score of these datasets is not comparable. As a result, if you would like to compare the
strength of the linear relation between two variables in a different dataset, you should use the
normalized score, that is, the correlation coefficient instead of covariance.

Next, we apply a cor function to obtain a correlation coefficient matrix of three variables
within the mtcars dataset. In the correlation coefficient matrix, the numeric element of the
matrix indicates the strength of the relationship between the two variables. If the correlation
coefficient of a variable against itself scores 1, the variable has a positive relationship against
itself. The cy1 and mpg variables have a correlation coefficient of -0.85, which means they
have a strong, negative relationship. On the other hand, the disp and cy1 variables score
0.90, which may indicate that they have a strong, positive relationship.
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See also

» You can use ggplot to plot the heatmap of the correlation coefficient matrix:

> library (reshape2)

> gplot(x=Varl, y=Var2, data=melt (cor (mtcars([1:3])), fill=value,
geom="tile")

wvalue

1 1
oyl disp mipg

War1

The correlation coefficient matrix heatmap

Operating linear regression and multivariate

analysis

Linear regression is a method to assess the association between dependent and independent
variables. In this recipe, we will cover how to conduct linear regression for multivariate analysis.

Getting ready

Ensure that mtcars has already been loaded into a data frame within an R session.

[
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How to do it...

Perform the following steps:

1.

To fit variables into a linear model, you can use the 1m function:
> lmfit = lm(mtcars$mpg ~ mtcars$cyl)

> lmfit

Call:

1lm(formula = mtcars$mpg ~ mtcars$cyl)

Coefficients:
(Intercept) mtcarsS$cyl
37.885 -2.876

To get detailed information on the fitted model, you can use the summary function:

> summary (lmfit)

Call:

1lm(formula = mtcars$mpg ~ mtcars$cyl)

Residuals:
Min 19 Median 3Q Max
-4.9814 -2.1185 0.2217 1.0717 7.5186

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.8846 2.0738 18.27 < 2e-16 ***
mtcars$cyl -2.8758 0.3224 -8.92 6.11le-10 ***
Signif. codes: 0 '***!' (0,001 '**' Q.01 '*' 0.05 '." 0.1 " ' 1

Residual standard error: 3.206 on 30 degrees of freedom
Multiple R-squared: 0.7262, Adjusted R-squared: 0.7171
F-statistic: 79.56 on 1 and 30 DF, p-value: 6.113e-10

55}
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3.

To create an analysis of a variance table, one can employ the anova function:
> anova (1lmfit)

Analysis of Variance Table

Response: mtcars$mpg

Df Sum Sq Mean Sq F value Pr (>F)
mtcars$cyl 1 817.71 817.71 79.561 6.113e-10 ***
Residuals 30 308.33 10.28

Signif. codes: 0 '***!' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To plot the regression line on a scatter plot of two variables, you first plot cy1 against
mpg in it, then use the abline function to add a regression line on the plot:

> Imfit = lm(mtcars$mpg ~ mtcars$cyl)

> plot (mtcars$cyl, mtcars$mpg)

> abline (1lmfit)
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micars$cyl

The regression plot of cyl against mpg
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In this recipe, we apply the linear model function, 1m, which builds a linear fitted model of two
variables and returns the formula and coefficient. Next, we apply the summary function to
retrieve the detailed information (including F-statistic and P-value) of the model. The purpose
of F-statistic is to test the statistical significance of the model. It produces an F-value, which is
the ratio of the model mean square to the error mean square. Thus, a large F-value indicates
that more of the total variability is accounted for by the regression model. Then, we can use
the F-value to support or reject the null hypothesis that all of the regression coefficients

are equal to zero. In other words, the null hypothesis is rejected if the F-value is large and
shows that the regression model has a predictive capability. On the other hand, P-values of
each attribute test the null hypothesis that the coefficient is equal to zero (no effect on the
response variable). In other words, a low p-value can reject a null hypothesis and indicates
that a change in the predictor's value is related to the value of the response variable.

Next, we apply the anova function on the fitted model to determine the variance. The function
outputs the sum of squares, which stands for the variability of the model's predicted value.
Further, to visualize the linear relationship between two variables, the abline function can
add a regression line on a scatter plot of mpg against cyl. From the preceding figure, it is
obvious that the mpg and cy1 variables are negatively related.

See also

» For more information on how to perform linear and nonlinear regression analysis,
please refer to the Chapter 4, Understanding Regression Analysis

Conducting an exact binomial test

While making decisions, it is important to know whether the decision error can be controlled
or measured. In other words, we would like to prove that the hypothesis formed is unlikely to
have occurred by chance, and is statistically significant. In hypothesis testing, there are two
kinds of hypotheses: null hypothesis and alternative hypothesis (or research hypothesis). The
purpose of hypothesis testing is to validate whether the experiment results are significant.
However, to validate whether the alternative hypothesis is acceptable, it is deemed to be true
if the null hypothesis is rejected.

In the following recipes, we will discuss some common statistical testing methods. First, we
will cover how to conduct an exact binomial test in R.

Getting ready

Since the binom. test function originates from the stats package, make sure the stats
library is loaded.

[55]-
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How to do it...

Perform the following step:

1. Assume there is a game where a gambler can win by rolling the number-six-on a dice.
As part of the rules, gamblers can bring their own dice. If a gambler tried to cheat in a
game, he would use a loaded dice to increase his chance of winning. Therefore, if we
observe that the gambler won 92 out of 315 games, we could determine whether the
dice was fair by conducting an exact binomial test:

> binom.test (x=92, n=315, p=1/6)
Exact binomial test

data: 92 and 315

number of successes = 92, number of trials = 315, p-value =
3.458e-08

alternative hypothesis: true probability of success is not equal
to 0.1666667

95 percent confidence interval:
0.2424273 0.3456598

sample estimates:

probability of success

0.2920635

A binomial test uses the binomial distribution to find out whether the true success rate is likely
to be P for n trials with the binary outcome. The formula of the probability, P, can be defined in
following equation:

P(X =k)= (ijkq"k

Here, X denotes the random variables, counting the number of outcomes of the interest; n
denotes the number of trials; k indicates the number of successes; p indicates the probability
of success; and q denotes the probability of failure.

5]
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After we have computed the probability, P, we can then perform a sign test to determine
whether the success probability is similar to what we expected. If the probability is not equal
to what we expected, we can reject the null hypothesis.

By definition, the null hypothesis is a skeptical perspective or a statement about the
population parameter that will be tested. The null hypothesis is denoted by HO. An alternative
hypothesis is represented by a range of population values, which are not included in the null
hypothesis. The alternative hypothesis is denoted by H1. In this case, the null and alternative
hypothesis, respectively, are illustrated as:

» HO (null hypothesis): The true probability of success is equal to what we expected
» H1 (alternative hypothesis): The true probability of success is not equal to what we
expected

In this example, we demonstrate how to use a binomial test to determine the number of times
the dice is rolled, the frequency of rolling the number six, and the probability of rolling a six
from an unbiased dice. The result of the t-test shows that the p-value = 3.458e-08 (lower than
0.05). For significance, at the five percent level, the null hypothesis (the dice is unbiased) is
rejected as too many sixes were rolled (the probability of success = 0.2920635).

» To read more about the usage of the exact binomial test, please use the help
function to view related documentation on this:

> ?binom.test

Performing student’'s t-test

A one sample t-test enables us to test whether two means are significantly different; a two
sample t-test allows us to test whether the means of two independent groups are different. In
this recipe, we will discuss how to conduct one sample t-test and two sample t-tests using R.

Getting ready

Ensure that mtcars has already been loaded into a data frame within an R session. As the
t.test function originates from the stats package, make sure the library, stats, is loaded.
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How to do it...

Perform the following steps:

1.

First, we visualize the attribute, mpg, against am using a boxplot:

> boxplot (mtcars$mpg, mtcars$mpg[mtcars$am==0], ylab = "mpg",
s=c("overall", "automobile"))

> abline (h=mean (mtcars$mpg) ,lwd=2, col="red")

> abline (h=mean (mtcars$mpg[mtcars$am==0]),1lwd=2, col="blue")
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overall automobile

The boxplot of mpg of the overall population and automobiles

We then perform a statistical procedure to validate whether the average mpg of
automobiles is lower than the average of the overall mpg:

> mpg.mu = mean (mtcars$mpg)
> mpg am = mtcars$mpg[mtcars$am == 0]

> t.test(mpg am,mu = mpg.mu)

One Sample t-test

data: mpg am
t = -3.3462, df = 18, p-value = 0.003595
alternative hypothesis: true mean is not equal to 20.09062

95 percent confidence interval:

name

5]
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15.29946 18.99528
sample estimates:
mean of x

17.14737

We begin visualizing the data by plotting a boxplot:

>boxplot (mtcars$mpg~mtcars$am,ylab="mpg',names=c('automatic', 'manu
al'))

> abline (h=mean (mtcars$mpg[mtcars$am==0]),1lwd=2, col="blue")

> abline (h=mean (mtcars$mpg[mtcars$am==1]),1lwd=2, col="red")
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The boxplot of mpg of automatic and manual transmission cars
The preceding figure reveals that the mean mpg of automatic transmission cars is
lower than the average mpg of manual transmission vehicles:

> t.test (mtcars$mpg~mtcars$am)

Welch Two Sample t-test

data: mtcars$mpg by mtcars$am

t = -3.7671, df = 18.332, p-value = 0.001374

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-11.280194 -3.209684

s
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sample estimates:
mean in group 0 mean in group 1

17.14737 24.39231

Student's t-test is where the test statistic follows a normal distribution (the student's t
distribution) if the null hypothesis is true. It can be used to determine whether there is a
difference between two independent datasets. Student's t-test is best used with the problems
associated with an inference based on small samples.

In this recipe, we discuss one sample student's t-test and two sample student's t-tests. In

the one sample student's t-test, a research question often asked is, "Is the mean of the
population different from the null hypothesis?" Thus, in order to test whether the average
mpg of automobiles is lower than the overall average mpg, we first use a boxplot to view

the differences between populations without making any assumptions. From the preceding
figure, it is clear that the mean of mpg of automobiles (the blue line) is lower than the average
mpg (red line) of the overall population. Then, we apply one sample t-test; the low p-value of
0.003595 (< 0.05) suggests that we should reject the null hypothesis that the mean mpg for
automobiles is less than the average mpg of the overall population.

As a one sample t-test enables us to test whether two means are significantly different,

a two sample t-test allows us to test whether the means of two independent groups are
different. Similar to a one sample t-test, we first use a boxplot to see the differences between
populations and then apply a two-sample t-test. The test results shows the p-value = 0.01374
(p< 0.05). In other words, the test provides evidence that rejects the null hypothesis, which
shows the mean mpg of cars with automatic transmission differs from the cars with manual
transmission.

See also

» To read more about the usage of student's t-test, please use the help function to
view related documents:

> ?t.test
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Performing the Kolmogorov-Smirnov test

A one-sample Kolmogorov-Smirnov test is used to compare a sample with a reference
probability. A two-sample Kolmogorov-Smirnov test compares the cumulative distributions of
two datasets. In this recipe, we will demonstrate how to perform the Kolmogorov-Smirnov test
with R.

Getting ready

Ensure that mtcars has already been loaded into a data frame within an R session. As the
ks.test function is originated from the stats package, make sure the stats library is
loaded.

How to do it...

Perform the following steps:
1. Validate whether the dataset, x (generated with the rnorm function), is distributed
normally with a one-sample Kolmogorov-Smirnov test:
> x = rnorm(50)

> ks.test(x, "pnorm")

One-sample Kolmogorov-Smirnov test

data: x
D = 0.1698, p-value = 0.0994

alternative hypothesis: two-sided

2. Next, you can generate uniformly distributed sample data:
> set.seed(3)

> x = runif (n=20, min=0, max=20)

> y = runif (n=20, min=0, max=20)
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3. We first plot ecdf of two generated data samples:
> plot(ecdf (x), do.points = FALSE, verticals=T, xlim=c(0, 20))

> lines(ecdf(y), lty=3, do.points = FALSE, verticals=T)

ecdf(x)

08 10

Fr(x)
04 08

0.2

0.0

The ecdf plot of two generated data samples

4. Finally, we apply a two-sample Kolmogorov-Smirnov test on two groups of data:

> ks.test(x,y)
Two-sample Kolmogorov-Smirnov test

data: x and y
D = 0.3, p-value = 0.3356

alternative hypothesis: two-sided

The Kolmogorov-Smirnov test (K-S test) is a nonparametric and statistical test, used for
the equality of continuous probability distributions. It can be used to compare a sample with
a reference probability distribution (a one sample K-S test), or it can directly compare two
samples (a two sample K-S test). The test is based on the empirical distribution function
(ECDF). Let x,,x, -~ X, be a random sample of size, n; the empirical distribution function,
F,(x), is defined as:

102

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Here, I {x, <x} is the indicator function. If X; < x, the function equals to 1. Otherwise, the
function equals to O.

The Kolmogorov-Smirnov statistic (D) is based on the greatest (where supx denotes the
supremum) vertical difference between F(x) and Fn(x). It is defined as:

F, (%)= F(x)

H, is the sample follows the specified distribution. H, is the sample does not follow the
specified distribution.

D, =sup,

If Dn is greater than the critical value obtained from a table, then we reject H, at the level of
significance a.

We first test whether a random number generated from a normal distribution is normally
distributed. At the 5 percent significance level, the p-value of 0.0994 indicates that the input
is normally distributed.

Then, we plot an empirical cumulative distribution function (ecdf) plot to show how a two-
sample test calculates the maximum distance D (showing 0.3), and apply the two-sample
Kolmogorov-Smirnov test to discover whether the two input datasets possibly come from the
same distribution.

The p-value is above 0.05, which does not reject the null hypothesis. In other words, it means
the two datasets are possibly from the same distribution.

See also

» To read more about the usage of the Kolmogorov-Smirnov test, please use the help
function to view related documents:

> ?ks.test

» As for the definition of an empirical cumulative distribution function, please refer to
the help page of ecdf:

> ?ecdf
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Understanding the Wilcoxon Rank Sum and

Signed Rank test

The Wilcoxon Rank Sum and Signed Rank test (or Mann-Whitney-Wilcoxon) is a nonparametric
test of the null hypothesis, which shows that the population distribution of two different
groups are identical without assuming that the two groups are normally distributed. This
recipe will show how to conduct the Wilcoxon Rank Sum and Signed Rank test in R.

Getting ready

Ensure that mt cars has already been loaded into a data frame within an R session. As the
wilcox.test function is originated from the stats package, make sure the library, stats,
is loaded.

How to do it...

Perform the following steps:

1. We first plot the data of mtcars with the boxplot function:

> boxplot (mtcars$mpg~mtcars$am,ylab="mpg',names=c('automatic', 'man
ual'))

mpg

|

10

T T
automatic manual

The boxplot of mpg of automatic cars and manual transmission cars

2. Next, we still perform a Wilcoxon Rank Sum test to validate whether the distribution
of automatic transmission cars is identical to that of manual transmission cars:

> wilcox.test (mpg ~ am, data=mtcars)

Wilcoxon rank sum test with continuity correction
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data: mpg by am
W = 42, p-value = 0.001871

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x = c(21.4, 18.7, 18.1, 14.3, 24.4, 22.8,

cannot compute exact p-value with ties

In this recipe, we discuss a nonparametric test method, the Wilcoxon Rank Sum test (also
known as the Mann-Whitney U-test). For student's t-test, it is assumed that the differences
between the two samples are normally distributed (and it also works best when the two
samples are normally distributed). However, when the normality assumption is uncertain, one
can adopt the Wilcoxon Rank Sum Test to test a hypothesis.

Here, we used a Wilcoxon Rank Sum test to determine whether the mpg of automatic and
manual transmission cars in the dataset, mtcars, is distributed identically. From the test
result, we see that the p-value = 0.001871 (< 0.05) rejects the null hypothesis, and also
reveals that the distribution of mpg in automatic and manual transmission cars is not
identical. When performing this test, you may receive the warning message, "cannot compute
exact p-value with ties", which indicates that there are duplicate values within the dataset. The
warning message will be cleared once the duplicate values are removed.

See also

» To read more about the usage of the Wilcoxon Rank Sum and Signed Rank Test,
please use the help function to view the concerned documents:

> ? wilcox.test

Working with Pearson's Chi-squared test

In this recipe, we introduce Pearson's Chi-squared test, which is used to examine whether
the distributions of categorical variables of two groups differ. We will discuss how to conduct
Pearson's Chi-squared Test in R.
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Getting ready

Ensure that mtcars has already been loaded into a data frame within an R session.
Since the chisqg. test function is originated from the stats? package, make sure the
library, stats, is loaded.

How to do it

Perform the following steps:

1.

106

To make the counting table, we first use the contingency table built with the inputs of
the transmission type and number of forward gears:

> ftable = table(mtcars$am, mtcars$gear)
> ftable
3 4 5
015 4 0
1 0 8 5

We then plot the mosaic plot of the contingency table:

> mosaicplot (ftable, main="Number of Forward Gears Within
Automatic and Manual Cars", color = TRUE)

Number of Forward Gears Within Automatic and Manual Cary

0 1

Number of forward gears in automatic and manual cars
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3. Next, we perform the Pearson's Chi-squared test on the contingency table to
test whether the numbers of gears in automatic and manual transmission cars
is the same:

> chisqg.test (ftable)
Pearson's Chi-squared test

data: ftable
X-squared = 20.9447, df = 2, p-value = 2.831le-05

Warning message:

In chisqg.test(ftable) : Chi-squared approximation may be incorrect

Pearson's Chi-squared test is a statistical test used to discover whether there is a relationship
between two categorical variables. It is best used for unpaired data from large samples.

If you would like to conduct Pearson's Chi-squared test, you need to make sure that the

input samples satisfy two assumptions: firstly, the two input variables should be categorical.
Secondly, the variable should include two or more independent groups.

In Pearson's Chi-squared test, the assumption is that we have two variables, A and B; we can
illustrate the null and alternative hypothesis in the following statements:

» H,: Variable A and variable B are independent
» H,:Variable A and variable B are not independent

To test whether the null hypothesis is correct or incorrect, the Chi-squared test takes
these steps.

It calculates the Chi-squared test statistic, X
2
(0.,-E,)

I

i=l j=1 i

Here, r is the number of rows in the contingency table, ¢ is the number of columns in the
contingency table, Oij is the observed frequency count, Eij is the expected frequency count.

www.it-ebooks.info


http://www.it-ebooks.info/

R and Statistics

It determines the degrees of freedom, d£, of that statistic. The degree of freedom is equal to:
df:(r—l)x(c—l)

Here, r is the number of levels for one variable, and c¢ is the number of levels for
another variable.

It compares x” to the critical value from the Chi-squared distribution with the degrees of
freedom.

In this recipe, we use a contingency table and mosaic plot to illustrate the differences in count
numbers. It is obvious that the number of forward gears is less in automatic transmission cars
than in manual transmission cars.

Then, we perform the Pearson's Chi-squared test on the contingency table to determine
whether the gears in automatic and manual transmission cars are the same. The output,
p-value =2.831e-05 (< 0.05), refutes the null hypothesis and shows the number of forward
gears is different in automatic and manual transmission cars. However, the output message
contains a warning message that Chi-squared approximation may be incorrect, which is
because the number of samples in the contingency table is less than five.

There's more...

To read more about the usage of the Pearson's Chi-squared test, please use the help
function to view the related documents:

> ? chisqg.test

Besides some common hypothesis testing methods mentioned in previous examples, there
are other hypothesis methods provided by R:

» The Proportional test (prop. test): It is used to test whether the proportions in
different groups are the same

» The Ztest(simple.z.test inthe UsingR package): It compares the sample mean
with the population mean and standard deviation

» The Bartlett Test (bartlett.test): Itis used to test whether the variance of
different groups is the same

» The Kruskal-Wallis Rank Sum Test (kruskal.test): It is used to test whether the
distribution of different groups is identical without assuming that they are normally
distributed

» The Shapiro-Wilk test (shapiro.test): It is used test for normality

108
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Conducting a one-way ANOVA

Analysis of variance (ANOVA) investigates the relationship between categorical independent
variables and continuous dependent variables. It can be used to test whether the means of
several groups are equal. If there is only one categorical variable as an independent variable,
you can perform a one-way ANOVA. On the other hand, if there are more than two categorical
variables, you should perform a two-way ANOVA. In this recipe, we discuss how to conduct a
one-way ANOVA with R.

Getting ready

Ensure that mtcars has already been loaded into a data frame within an R session. Since the
oneway . test and TukeyHSD functions originated from the stats package, make sure the
library, stats, is loaded.

How to do it...

Perform the following steps:

1. We begin exploring by visualizing the data with a boxplot:

> boxplot (mtcars$mpg~factor (mtcars$gear) ,xlab="'gear',ylab="mpg')

pR—
1
1
a : -
1
i
0 |
o™
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o™ 1 :
—_—
E_ —_
1
:
o | .
- T T T
3 4 5
gear

Comparison of mpg of different numbers of forward gears
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2.

Next, we conduct a one-way ANOVA to examine whether the mean of mpg changes
with different numbers of forward gears. We use the function, oneway. test:

> oneway.test (mtcars$mpg~factor (mtcars$gear))

One-way analysis of means (not assuming equal variances)

data: mtcars$mpg and factor (mtcars$gear)

F = 11.2848, num df = 2.000, denom df = 9.508, p-value = 0.003085

In addition to oneway . test, a standard function, aov, is used for the ANOVA
analysis:

> mtcars.aov = aov(mtcars$mpg ~ as.factor (mtcars$gear))
> summary (mtcars.aov)

Df Sum Sq Mean Sq F value Pr (>F)

as.factor (mtcars$gear) 2 483.2 241.62 10.9 0.000295 ***
Residuals 29 642.8 22.17
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model generated by the aov function can also generate a summary as a fitted
table:

> model.tables (mtcars.aov, "means")
Tables of means

Grand mean

20.09062

as.factor (mtcars$gear)
3 4 5
16.11 24.53 21.38
rep 15.00 12.00 5.00

For the aov model, one can use TukeyHSD for a post hoc comparison test:
> mtcars_posthoc =TukeyHSD (mtcars.aov)
> mtcars posthoc

Tukey multiple comparisons of means

95% family-wise confidence level
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Fit: aov(formula = mtcars$mpg ~ as.factor (mtcars$gear))

$ as.factor (mtcars$gear) -

diff lwr upr p adj
4-3 8.426667 3.9234704 12.929863 0.0002088
5-3 5.273333 -0.7309284 11.277595 0.0937176
5-4 -3.153333 -9.3423846 3.035718 0.4295874

6. Further, we can visualize the differences in mean level with a plot function:

95% family-wise confidence level

43

54
I

T T
5 10

o ]

Differences in mean levels of as factor(mtcars$gear)

The Tukey mean-difference plot of groups with different numbers of gears

In order to understand whether cars with a different number of forward gears have different
means in mpg, we first plot the boxplot of mpg by the numbers of forward gears. This offers
a simple indication if cars with a different number of forward gears have different means of
mpg. We then perform the most basic form of ANOVA, a one-way ANOVA, to test whether the
populations have different means.

In R, there are two functions to perform the ANOVA test: oneway . test and aov. The
advantage of oneway . test is that the function applies a Welch correction to address

the nonhomogeneity of a variance. However, it does not provide as much information as
aov, and it does not offer a post hoc test. Next, we perform oneway.test and aov on the
independent variable, gear, with regard to the dependent variable, mpg. Both test results
show a small p-value, which rejects the null hypothesis that the mean between cars with a
different number of forward gears have the same mpg mean.
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As the results of ANOVA only suggest that there is a significant difference in the means within
overall populations, you may not know which two populations differ in terms of their mean.
Therefore, we apply the TukeyHSD post hoc comparison test on our ANOVA model. The result
shows that cars with four forward gears and cars with three gears have the largest difference,
as their confidence interval is the furthest to the right within the plot.

There's more...

ANOVA relies on an F-distribution as the basis of all probability distribution. An F score is
obtained by dividing the between-group variance by the in-group variance. If the overall F test
was significant, you can conduct a post hoc test (or multiple comparison tests) to measure the
differences between groups. The most commonly used post hoc tests are Scheffé's method,
the Tukey-Kramer method, and the Bonferroni correction.

In order to interpret the output of ANOVA, you need to have a basic understanding of certain
terms, including the degrees of freedom, the sum of square total, the sum of square groups,
the sum of square errors, the mean square errors, and the F statistic. If you require more
information about these terms, you may refer to Using multivariate statistics (Fidell, L. S., &
Tabachnick, B. G. (2006) Boston: Allyn & Bacon.), or refer to the Wikipedia entry of Analysis of
variance (http://en.wikipedia.org/wiki/Analysis of variance#cite ref-31).

Performing a two-way ANOVA

A two-way ANOVA can be viewed as the extension of a one-way ANOVA, for the analysis covers
more than two categorical variables rather than one. In this recipe, we will discuss how to
conduct a two-way ANOVA in R.

Getting ready

Ensure that mtcars has already been loaded into a data frame within an R session. Since
the twoway . test, TukeyHSD and interaction.plot functions are originated from the
stats package, make sure the library, stats, is loaded.

How to do it...

Perform the following steps:
1. First we plot the two boxplots of factor gears in regard to mpg, with the plot separated
from the transmission type:
> par (mfrow=c(1,2))

> boxplot (mtcars$mpg~mtcars$gear, subset= (mtcars$am==0) ,xlab="'ge
ar', ylab = "mpg",main='automatic')
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> boxplot (mtcars$mpg~mtcars$gear, subset= (mtcars$am==1) ,xlab="'ge

ar', ylab = "mpg", main='manual')
automatic manual
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The boxplots of mpg by the gear group and the transmission type

Also, you may produce a boxplot of mpg by the number of forward gears *
transmission type, with the use of the * operation in the boxplot function:

> boxplot (mtcars$mpg~factor (mtcars$gear) *
factor (mtcars$am) ,xlab="'gear * transmission', ylab =
"mpg",main="'Boxplot of mpg by gear * transmission')

Boxplot of mpg by gear * transmission
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The boxplot of mpg by the gear * transmission type
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3. Next, we use an interaction plot to characterize the relationship between variables:

> interaction.plot (mtcars$gear, mtcars$am, mtcarsS$mpg,
leg.bg="beige",

col=c(1l:3),leg.bty="0",

xlab="Number of Gears", ylab="Mean Miles Per Gallon",

main="Interaction Plot")

type= npn,
lwd=2, pch=c(18,24,22),

Interaction Plot
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Interaction between the transmission type and the number of gears with the main effects, mpg

4. We then perform a two-way ANOVA on mpg with a combination of the gear and

transmission-type factors:

> mpg_anova2 =
am) )

> summary (mpg anova2)

Df Sum Sq Mean

factor (mtcars$gear) 2
factor (mtcars$am) 1
Residuals 28
Signif. codes: 0 '¥**!

114

Sq F value Pr (>F)

483.2 241.62 11.869 0.000185 ***
72.8 72.80 3.576 0.069001
570.0 20.36

0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

aov (mtcars$mpg~factor (mtcars$gear) *factor (mtcars$

L
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Similar to a one-way ANOVA, we can perform a post hoc comparison test to see the
results of the two-way ANOVA model:

> TukeyHSD (mpg_anova2)
Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = mtcars$mpg ~ factor (mtcars$gear) *
factor (mtcars$am))

$~factor (mtcars$gear) =

diff lwr upr p adj
4-3 8.426667 4.1028616 12.750472 0.0001301
5-3 5.273333 -0.4917401 11.038407 0.0779791
5-4 -3.153333 -9.0958350 2.789168 0.3999532

$ " factor (mtcars$am) ~
diff lwr upr p adj
1-0 1.805128 -1.521483 5.13174 0.2757926

We then visualize the differences in mean levels with the plot function:

> par (mfrow=c(1,2))

> plot (TukeyHSD (mpg anova2))

95% family-wise confidence level 95% family-wise confidence level
] I
3 F—F—
o | | | @ | L |
< | ‘ | wh \ - |
3 | |
T T T T T T T o T T i T
4 5 6 7 8 9 10 -10 -5 0 5
Differences in mean levels of factor(mtcars$am) Differences in mean levels of factor(mtcars$gear)

The comparison plot of differences in mean levels by the transmission type and the number of gears
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In this recipe, we perform a two-way ANOVA to examine the influences of the independent
variables, gear and am, on the dependent variable, mpg. In the first step, we use a boxplot
to examine the mean of mpg by the number of gears and the transmission type. Secondly,
we apply an interaction plot to visualize the change in mpg through the different numbers of
gears with lines separated by the transmission type.

The resulting plot shows that the number of gears does have an effect on the mean of mpg,
but does not show a positive relationship either. Thirdly, we perform a two-way ANOVA with the
aov function. The output shows that the p-value of the gear factor rejects the null hypothesis,
while the factor, transmission type, does not reject the null hypothesis. In other words,
cars with different numbers of gears are more likely to have different means of mpg. Finally,

in order to examine which two populations have the largest differences, we perform a post
hoc analysis, which reveals that cars with four gears and three gears, respectively, have the
largest difference in terms of the mean, mpg.

See also

» For multivariate analysis of variances, the function, manova, can be used to examine
the effect of multiple independent variables on multiple dependent variables. Further
information about MANOVA is included within the help function in R:

> ?MANOVA
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Understanding
Regression Analysis

In this chapter, we will cover the following recipes:

» Fitting a linear regression model with Im

» Summarizing linear model fits

» Using linear regression to predict unknown values

» Generating a diagnostic plot of a fitted model

» Fitting a polynomial regression model with Im

» Fitting a robust linear regression model with rim

» Studying a case of linear regression on SLID data

» Applying the Gaussian model for generalized linear regression
» Applying the Poisson model for generalized linear regression
» Applying the Binomial model for generalized linear regression
» Fitting a generalized additive model to data

» Visualizing a generalized additive model

» Diagnosing a generalized additive model

Introduction

Regression is a supervised learning method, which is employed to model and analyze

the relationship between a dependent (response) variable and one or more independent
(predictor) variables. One can use regression to build a prediction model, which can first be
used to find the best fitted model with minimum squared errors of the fitted values. The fitted
model can then be further applied to data for continuous value predictions.
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There are many types of regression. If there is only one predictor variable, and the relationship
between the response variable and independent variable is linear, we can apply a linear
model. However, if there is more than one predictor variable, a multiple linear regression
method should be used. When the relationship is nonlinear, one can use a nonlinear model to
model the relationship between the predictor and response variables.

In this chapter, we introduce how to fit a linear model into data with the 1m function. Next, for
distribution in other than the normal Gaussian model (for example, Poisson or Binomial), we use
the glm function with an appropriate link function correspondent to the data distribution. Finally,
we cover how to fit a generalized additive model into data using the gam function.

Fitting a linear regression model with Im

The simplest model in regression is linear regression, which is best used when there is
only one predictor variable, and the relationship between the response variable and the
independent variable is linear. In R, we can fit a linear model to data with the 1m function.

Getting ready

We need to prepare data with one predictor and response variable, and with a linear
relationship between the two variables.

How to do it...

Perform the following steps to perform linear regression with 1m:

1. You should install the car package and load its library:
> install.packages("car")

> library(car)

2. From the package, you can load the Quartet dataset:
> data(Quartet)

3. You can use the str function to display the structure of the Quartet dataset:
> str(Quartet)
'data.frame': 11 obs. of 6 variables:
$x : int 10 8 13 9 11 14 6 4 12 7 .
$ yl: num 8.04 6.95 7.58 8.81 8.33 .

$ y2: num 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ..

$ y3: num 7.46 6.77 12.74 7.11 7.81 ..

$ x4: int 8 8 8 8 88 8 19 8 8 .

$ y4: num 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ..
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4. Draw a scatter plot of the x and y variables with plot, and append a fitted line
through the 1m and abline function:
> plot(Quartet$x, Quartet$yl)
> Imfit = lm(yl~x, Quartet)

> abline(lmfit, col="red")

10

Quartet$y1

4 5 6 7 8 9

Quartet$x

A simple regression plot fitted by Im
5. To view the fit model, execute the following:

> Imfit

Call:

Ilm(formula = yl ~ x, data = Quartet)

Coefficients:
(Intercept) x
3.0001 0.5001

The regression model has the response ~ terms form, where response is the response
vector, and terms is a series of terms that specifies a predictor. We can illustrate a simple
regression model in the formula y=a+Bx, where o is the intercept while the slope, 3, describes
the change in y when x changes. By using the least squares method, we can estimate s-1"/]

Var[x]

and @ =y-p% (where ¥ indicates the mean value of yand X denotes the mean value of x).
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To perform linear regression, we first prepare the data that has a linear relationship between
the predictor variable and response variable. In this example, we load Anscombe's quartet
dataset from the package car. Within the dataset, the x and y1 variables have a linear
relationship, and we prepare a scatter plot of these variables. To generate the regression line,
we use the Im function to generate a model of the two variables. Further, we use abline

to plot a regression line on the plot. As per the previous screenshot, the regression line
illustrates the linear relationship of x and y1 variables. We can see that the coefficient of the
fitted model shows the intercept equals 3.0001 and coefficient equals 0.5001. As a result, we
can use the intercept and coefficient to infer the response value. For example, we can infer
the response value when x at 3 is equal to 4.5103 (3 * 0.5001 + 3.0001).

There's more...

Besides the 1m function, you can also use the 1sfit function to perform simple linear
regression. For example:

> plot(Quartet$x, Quartet$yl)

> Imfit2 = 1lsfit(Quartets$x,Quartets$yl)

> abline(lmfit2, col="red")

8 9 10

y1

4 5 6 7

A simple regression fitted by the Isfit function.

Summarizing linear model fits

The summary function can be used to obtain the formatted coefficient, standard errors, degree
of freedom, and other summarized information of a fitted model. This recipe introduces how to
obtain overall information on a model through the use of the summary function.

120
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Getting ready

You need to have completed the previous recipe by computing the linear model of the x and
y1 variables from the quartet, and have the fitted model assigned to the 1mfit variable.

How to do it...

Perform the following step to summarize linear model fits:

1. Compute a detailed summary of the fitted model:

> summary (1mfit)

Call:

Im(formula = yl ~ x)

Residuals:
Min 10 Median 3Q Max
-1.92127 -0.45577 -0.04136 0.70941 1.83882

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0001 1.1247 2.667 0.02573 *
Quartet$x 0.5001 0.1179 4.241 0.00217 **
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217

The summary function is a generic function used to produce summary statistics. In this case,
it computes and returns a list of the summary statistics of the fitted linear model. Here, it will
output information such as residuals, coefficient standard error R-squared, f-statistic, and

a degree of freedom. In the cal1l section, the function called to generate the fitted model

is displayed. In the Residuals section, it provides a quick summary (min, 1Q, median, 3Q,
max) of the distribution.

www.it-ebooks.info


http://www.it-ebooks.info/

Understanding Regression Analysis

In the Ccoefficients section, each coefficient is a Gaussian random variable. Within this
section, Estimate represents the mean distribution of the variable; Std.Error displays
the standard error of the variable; the t value is Estimate divided by Std.Error and the p
value indicates the probability of getting a value larger than the t value. In this sample, the p
value of both intercepts (0.002573) and x (0.00217) have a 95 percent level of confidence.

Residual standard error outputs the standard deviation of residuals, while the degree of
freedom indicates the differences between the observation in training samples and the
number used in the model. Multiple R-squared is obtained by dividing the sum of squares.
One can use R-squared to measure how close the data is to fit into the regression line. Mostly,
the higher the R-squared, the better the model fits your data. However, it does not necessarily
indicate whether the regression model is adequate. This means you might get a good model
with a low R-squared or you can have a bad model with a high R-squared. Since multiple
R-squared ignore a degree of freedom, the calculated score is biased. To make the calculation
fair, an adjusted R-squared (0.6295) uses an unbiased estimate, and will be slightly less than
multiple R-squared (0.6665). F-statistic is retrieved by performing an f-test on the model. A

p value equal to 0.00217 (< 0.05) rejects the null hypothesis (no linear correlation between
variables) and indicates that the observed F is greater than the critical F value. In other words,
the result shows that there is a significant positive linear correlation between the variables.

» For more information on the parameters used for obtaining a summary of the fitted
model, you can use the help function or ? to view the help page:

> ?summary.lm

» Alternatively, you can use the following functions to display the properties of the
model:
> coefficients(lmfit) # Extract model coefficients

> confint(lmfit, level=0.95) # Computes confidence intervals for
model parameters.

> fitted(lmfit) # Extract model fitted values
> residuals(lmfit) # Extract model residuals

> anova(lmfit) # Compute analysis of variance tables for fitted
model object

> vecov(lmfit) # Calculate variance-covariance matrix for a fitted
model object

> influence(lmfit) # Diagnose quality of regression fits
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Using linear regression to predict unknown

values

With a fitted regression model, we can apply the model to predict unknown values. For
regression models, we can express the precision of prediction with a prediction interval and a
confidence interval. In the following recipe, we introduce how to predict unknown values under
these two measurements.

Getting ready

You need to have completed the previous recipe by computing the linear model of the x and
y1 variables from the quartet dataset.

How to do it...

Perform the following steps to predict values with linear regression:

1. Fita linear model with the x and y1 variables:
> lmfit = 1Im(yl~x, Quartet)

2. Assign values to be predicted into newdata:

> newdata = data.frame(x = c(3,6,15))

3. Compute the prediction result using the confidence interval with 1evel setas 0. 95:
> predict(lmfit, newdata, interval="confidence", level=0.95)
fit lwr upr
1 4.500364 2.691375 6.309352
2 6.000636 4.838027 7.163245
3 10.501455 8.692466 12.310443

4. Compute the prediction result using this prediction interval:
> predict(lmfit, newdata, interval="predict")
fit lwr upr
1 4.500364 1.169022 7.831705
2 6.000636 2.971271 9.030002
3 10.501455 7.170113 13.832796
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We first build a linear fitted model with x and y1 variables. Next, we assign values to be
predicted into a data frame, newdata. It is important to note that the generated model is in
the formof y1 ~ x.

Next, we compute the prediction result using a confidence interval by specifying confidence
in the argument interval. From the output of row 1, we get fitted y1 of the x=3 input, which
equals to 4.500364, and a 95 percent confidence interval (set 0.95 in the 1evel argument)
of the y1 mean for x=3 is between 2.691375 and 6.309352. In addition to this, row 2 and 3
give the prediction result of y1 with an input of x=6 and x=15.

Next, we compute the prediction result using a prediction interval by specifying prediction
in the argument interval. From the output of row 1, we can see fitted y1 of the x=3 input
equals to 4.500364, and a 95 percent prediction interval of yv1 for x=3 is between
1.169022 and 7.831705. Row 2 and 3 output the prediction result of y1 with an input of
x=6 and x=15.

See also

» For those who are interested in the differences between prediction intervals
and confidence intervals, you can refer to the Wikipedia entry contrast with
confidence intervals at http://en.wikipedia.org/wiki/Prediction
interval#Contrast with confidence intervals.

Generating a diagnostic plot of a fitted

model

Diagnostics are methods to evaluate assumptions of the regression, which can be used to
determine whether a fitted model adequately represents the data. In the following recipe, we
introduce how to diagnose a regression model through the use of a diagnostic plot.

Getting ready

You need to have completed the previous recipe by computing a linear model of the x and y1
variables from the quartet, and have the model assigned to the 1mfit variable.
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How to do it...

Perform the following step to generate a diagnostic plot of the fitted model:

1. Plot the diagnostic plot of the regression model:
> par (mfrow=c (2,2))

> plot(lmfit)
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Diagnostic plots of the regression model

The plot function generates four diagnostic plots of a regression model:

» The upper-left plot shows residuals versus fitted values. Within the plot, residuals
represent the vertical distance from a point to the regression line. If all points fall
exactly on the regression line, all residuals will fall exactly on the dotted gray line. The
red line within the plot is a smooth curve with regard to residuals, and if all the dots
fall exactly on the regression line, the position of the red line should exactly match
the dotted gray line.

» The upper-right shows the normal of residuals. This plot verifies the assumption that
residuals were normally distributed. Thus, if the residuals were normally distributed,
they should lie exactly on the gray dash line.
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» The Scale-Location plot on the bottom-left is used to measure the square root of
the standardized residuals against the fitted value. Therefore, if all dots lie on the
regression line, the value of y should be close to zero. Since it is assumed that the
variance of residuals does not change the distribution substantially, if the assumption
is correct, the red line should be relatively flat.

» The bottom-right plot shows standardized residuals versus leverage. The leverage is a
measurement of how each data point influences the regression. It is a measurement
of the distance from the centroid of regression and level of isolation (measured by
whether it has neighbors). Also, you can find the contour of Cook's distance, which
is affected by high leverage and large residuals. You can use this to measure how
regression would change if a single point is deleted. The red line is smooth with
regard to standardized residuals. For a perfect fit regression, the red line should be
close to the dashed line with no points over 0.5 in Cook's distance.

There's more...

To see more of the diagnostic plot function, you can use the help function to access further
information:

> ?plot.1lm

In order to discover whether there are points with large Cook's distance, one can use the
cooks.distance function to compute the Cook's distance of each point, and analyze the
distribution of distance through visualization:

> plot (cooks.distance (1lmfit))
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A plot of Cook's distance

In this case, where the point on index 3 shows greater Cook's distance than other points, one
can investigate whether this point might be an outlier.
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Fitting a polynomial regression model with

Some predictor variables and response variables may have a non-linear relationship, and their
relationship can be modeled as an nth order polynomial. In this recipe, we introduce how to
deal with polynomial regression using the 1m and poly functions.

Getting ready

Prepare the dataset that includes a relationship between the predictor and response variable
that can be modeled as an nth order polynomial. In this recipe, we will continue to use the
Quartet dataset from the car package.

How to do it...

Perform the following steps to fit the polynomial regression model with 1m:

1. First, we make a scatter plot of the x and y2 variables:
> plot(Quartet$x, Quartet$y2)
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Scatter plot of variables x and y2
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2. You can apply the poly function by specifying 2 in the argument:
> Imfit = 1lm(Quartet$y2~poly(Quartet$x,2))

> lines(sort (Quartets$x), lmfit$fit[order (Quartets$x)], col = "red")

Quartet$y?2

Quartet$x

A quardratic fit example of the regression plot of variables x and y2

We can illustrate the second order polynomial regression model in formula, y=a + fx+cx?,
where « is the intercept while 3, illustrates regression coefficients.

In the preceding screenshot (step 1), the scatter plot of the x and y2 variables does not fitin a
linear relationship, but shows a concave downward curve (or convex upward) with the turning
point at x=11. In order to model the nonlinear relationship, we apply the poly function with
an argument of 2 to fit the independent x variable and the dependent y2 variable. The red
line in the screenshot shows that the model perfectly fits the data.

There's more...

You can also fit a second order polynomial model with an independent variable equal to the
formula of the combined first order x variable and the second order x variable:

> plot(Quartet$x, Quartet$y2)
> 1mfit = lm(Quartet$y2~ I (Quartets$x)+I(Quartet$x™2))
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Fitting a robust linear regression model with

rim

An outlier in the dataset will move the regression line away from the mainstream. Apart from
removing it, we can apply a robust linear regression to fit datasets containing outliers. In
this recipe, we introduce how to apply r1m to perform robust linear regression to datasets
containing outliers.

Getting ready

Prepare the dataset that contains an outlier that may move the regression line away from the
mainstream. Here, we use the Quartet dataset loaded from the previous recipe.

How to do it...

Perform the following steps to fit the robust linear regression model with r1m:

1. Generate a scatter plot of the x variable against y3:
> plot(Quartet$x, Quartet$y3)

Quartet$y3

Quartet$x

Scatter plot of variables x and y3
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2. Next, you should import the MASS library first. Then, you can apply the r1m function to

fit the model, and visualize the fitted line with the abline function:

> library (MASS)
> Imfit = rlm(Quartet$y3~Quartets$x)

> abline(lmfit, col="red")

12

10

Quartetdy3

Quartet$x

Robust linear regression to variables x and y3

As per the preceding screenshot (step 1), you may encounter datasets that include outliers
away from the mainstream. To remove the effect of an outlier, we demonstrate how to apply
a robust linear regression (r1m) to fit the data. In the second screenshot (step 2), the robust
regression line ignores the outlier and matches the mainstream.

To see the effect of how an outlier can move the regression line away from the mainstream,
you may replace the r1m function used in this recipe to 1m, and replot the graph:

> plot(Quartet$x, Quartet$y3)
> Imfit = 1lm(Quartet$y3~Quartet$x)

> abline (lmfit, col="red")
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12

10

Quartet$y3

Quartet$x

Linear regression on variables x and y3

It is obvious that outlier (x=13) moves the regression line away from the mainstream.

Studying a case of linear regression on SLID

data

To summarize the contents of the previous section, we explore more complex data with linear
regression. In this recipe, we demonstrate how to apply linear regression to analyze the
Survey of Labor and Income Dynamics (SLID) dataset.

Getting ready

Check whether the car library is installed and loaded, as it is required to access the
dataset SLID.

How to do it...

Follow these steps to perform linear regression on SLID data:

1. You can use the str function to get an overview of the data:
> str (SLID)

'data.frame': 7425 obs. of 5 variables:

$ wages :num 10.6 11 NA 17.8 NA ...

$ education: num 15 13.2 16 14 8 16 12 14.5 15 10

$ age : int 40 19 49 46 71 50 70 42 31 56

$ sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 1 1 1
21

$ language : Factor w/ 3 levels "English","French",..: 1 1 3 3 1
11111
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2. First, we visualize the variable wages against language, age, education, and sex:
> par (mfrow=c(2,2))
> plot(SLID$wages ~ SLID$language)
> plot(SLID$wages ~ SLIDS$age)
> plot (SLID$wages ~ SLIDS$education)

\"

plot (SLID$Swages ~ SLIDS$sex)
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Plot of wages against multiple combinations

3. Then, we can use 1m to fit the model:
> lmfit = lm(wages ~ ., data = SLID)

4. You can examine the summary of the fitted model through the summary function:

> summary (1mfit)

Call:
lm(formula = wages ~ ., data = SLID)
Residuals:

Min 1Q Median 3Q Max

-26.062 -4.347 -0.797 3.237 35.908

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.888779 0.612263 -12.885 <2e-16 ***
education 0.916614 0.034762 26.368 <2e-16 ***
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age 0.255137 0.008714 29.278 <2e-16 ***
sexMale 3.455411 0.209195 16.518 <2e-16 **%*
languageFrench -0.015223 0.426732 -0.036 0.972
languageOther 0.142605 0.325058 0.439 0.661
Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '." 0.1 " ' 1
Residual standard error: 6.6 on 3981 degrees of freedom
(3438 observations deleted due to missingness)
Multiple R-squared: 0.2973, Adjusted R-squared: 0.2964
F-statistic: 336.8 on 5 and 3981 DF, p-value: < 2.2e-16
Drop the 1anguage attribute, and refit the model with the 1m function:
> lmfit = lm(wages ~ age + sex + education, data = SLID)
> summary (lmfit)
Call:
1lm(formula = wages ~ age + sex + education, data = SLID)
Residuals:
Min 19 Median 3Q Max
-26.111 -4.328 -0.792 3.243 35.892
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.905243 0.607771 -13.01 <2e-16 **x
age 0.255101 0.008634 29.55 <2e-16 ***
sexMale 3.465251 0.208494 16.62 <2e-16 ***
education 0.918735 0.034514 26.62 <2e-16 ***
Signif. codes: 0 '***!' (0,001 '**' Q.01 '*' 0.05 '." 0.1 " ' 1

Residual standard error: 6.602 on 4010 degrees of freedom
(3411 observations deleted due to missingness)
Multiple R-squared: 0.2972,

565.3 on 3 and 4010 DF,

Adjusted R-squared: 0.2967

F-statistic: p-value: < 2.2e-16
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6. We can then draw a diagnostic plot of Imfit:
> par (mfrow=c(2,2))

> plot(lmfit)
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Diagnostic plot of fitted model

7. Next, we take the log of wages and replot the diagnostic plot:
> Imfit = Im(log(wages) ~ age + sex + education, data = SLID)

> plot(lmfit)
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Diagnostic plot of adjusted fitted model
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Next, you can diagnose the multi-colinearity of the regression model using the vif
function:
> vif (1lmfit)
age sex education
1.011613 1.000834 1.012179
> sqgrt(vif (Imfit)) > 2
age sex education

FALSE FALSE FALSE

Then, you can install and load the 1mtest package and diagnose the
heteroscedasticity of the regression model with the bptest function:

> install.packages ("lmtest")
> library (lmtest)
> bptest (lmfit)

studentized Breusch-Pagan test

data: 1mfit
BP = 29.0311, df = 3, p-value = 2.206e-06

Finally, you can install and load the rms package. Then, you can correct standard
errors with robcov:

> install.packages ("rms")

> library (rms)

> olsfit = ols(log(wages) ~ age + sex + education, data= SLID, x=
TRUE, y= TRUE)

> robcov(olsfit)

Linear Regression Model

ols(formula = log(wages) ~ age + sex + education, data = SLID,

x = TRUE, y = TRUE)

Frequencies of Missing Values Due to Each Variable
log (wages) age sex education

3278 0 0 249
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Model Likelihood Discrimination
Ratio Test Indexes
Obs 4014 LR chi2 1486.08 R2 0.309
sigma 0.4187 d.f. 3 R2 adj 0.309
d.f. 4010 Pr(> chi2) 0.0000 g 0.315
Residuals
Min 10 Median 3Q Max

-2.36252 -0.27716 0.01428 0.28625 1.56588

Coef S.E. t Pr(>|t])
Intercept 1.1169 0.0387 28.90 <0.0001
age 0.0176 0.0006 30.15 <0.0001
sex=Male 0.2244 0.0132 16.96 <0.0001
education 0.0552 0.0022 24.82 <0.0001

This recipe demonstrates how to conduct linear regression analysis on the SLID dataset. First,
we load the SLID data and display its structure through the use of the str function. From the
structure of the data, we know that there are four independent variables that will affect the
wages of the dependent variable.

Next, we explore the relationship of each independent variable to the dependent variable,
wages, through visualization; the visualization result is shown in the preceding screenshot
(step 2). In the upper-left section of this screenshot, you can find the box plot of three
different languages against wages; the correlation between the languages and wages is not
obvious. The upper-right section of the screenshot shows that the age appears to have a
positive relationship with the dependent variable, wages. In the bottom-left of the screenshot,
it is shown that education also appears to have a positive relationship with wages. Finally,

the box plot in the bottom-right section of the screenshot shows that the wages of males are
slightly higher than females.

Next, we fit all the attributes except for wages to the model as predictor variables. By
summarizing the model, it is shown that education, age, and sex show a significance (p-value
< 0.05). As a result, we drop the insignificant 1anguage attribute (which has a p-value greater
than 0.05) and fit the three independent variables (education, sex, and age) with regard to
the dependent variable (wages) in the linear model. This accordingly raises the f-statistic from
336.8 t0 565.3.
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Next, we generate the diagnostic plot of the fitted model. Within the diagnostic plot, all the
four plots indicate that the regression model follows the regression assumption. However,
from residuals versus fitted and scale-location plot, residuals of smaller fitted values are
biased toward the regression model. Since wages range over several orders of magnitude,
to induce the symmetry, we apply a log transformation to wages and refit the data into a
regression model. The red line of residuals versus fitted values plot and the Scale-Location
plot are now closer to the gray dashed line.

Next, we would like to test whether multi-colinearity exists in the model. Multi-colinearity
takes place when a predictor is highly correlated with others. If multi-colinearity exists in

the model, you might see some variables have a high R-squared value but are shown as
variables insignificant. To detect multi-colinearity, we can calculate the variance inflation and
generalized variance inflation factors for linear and generalized linear models with the vif
function. If multi-colinearity exists, we should find predictors with the square root of variance
inflation factor above 2. Then, we may remove redundant predictors or use a principal
component analysis to transform predictors to a smaller set of uncorrelated components.

Finally, we would like to test whether heteroscedasticity exists in the model. Before
discussing the definition of heteroscedasticity, we first have to know that in classic
assumptions, the ordinary regression model assumes that the variance of the error is
constant or homogeneous across observations. On the contrary, heteroscedasticity means
that the variance is unequal across observations. As a result, heteroscedasticity may be
biased toward the standard errors of our estimates and, therefore, mislead the testing of the
hypothes. To detect and test heteroscedasticity, we can perform the Breusch-Pagan test for
heteroscedasticity with the bptest function within the 1mtest package. In this case, the
p-value shows 2.206e-06 (<0.5), which rejects the null hypothesis of homoscedasticity (no
heteroscedasticity). Here, it implies that the standard errors of the parameter estimates are
incorrect. However, we can use robust standard errors to correct the standard error (do not
remove the heteroscedasticity) and increase the significance of truly significant parameters
with robcov from the rms package. However, since it only takes the fitted model from the
rms series as an input, we have to fit the ordinary least squares model beforehand.

» For more information about the SLID dataset, you can use the help function to view
the related documentation:

> ?SLID

www.it-ebooks.info


http://www.it-ebooks.info/

Understanding Regression Analysis

Applying the Gaussian model for generalized

linear regression

Generalized linear model (GLM) is a generalization of linear regression, which can include
a link function to make a linear prediction. As a default setting, the family object for glmis
Gaussian, which makes the glm function perform exactly the same as 1m. In this recipe, we
first demonstrate how to fit the model into the data using the glm function, and then show
that glm with a Gaussian model performs exactly the same as 1m.

Getting ready

Check whether the car library is installed and loaded as we require the SLID dataset from
this package.

How to do it...

Perform the following steps to fit a generalized linear regression model with the
Gaussian model:

1. Fit the independent variables, age, sex, and education, and dependent variable
wages to glm:

> Imfitl = glm(wages ~ age + sex + education, data = SLID,
family=gaussian)

> summary (Imfitl)

Call:
glm(formula = wages ~ age + sex + education, family = gaussian,

data = SLID)

Deviance Residuals:
Min 10 Median 3Q Max
-26.111 -4.328 -0.792 3.243 35.892

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.905243 0.607771 -13.01 <2e-16 ***
age 0.255101 0.008634 29.55 <2e-16 ***
sexMale 3.465251 0.208494 16.62 <2e-16 ***
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education 0.918735 0.034514 26.62 <2e-16 ***

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Gaussian family taken to be 43.58492)

Null deviance: 248686 on 4013 degrees of freedom
Residual deviance: 174776 on 4010 degrees of freedom
(3411 observations deleted due to missingness)

AIC: 26549

Number of Fisher Scoring iterations: 2

Fit the independent variables, age, sex, and education, and the dependent
variable wages to 1m:
> lmfit2 = lm(wages ~ age + sex + education, data = SLID)

> summary (lmfit2)

Call:

1lm(formula = wages ~ age + sex + education, data = SLID)

Residuals:
Min 19 Median 3Q Max
-26.111 -4.328 -0.792 3.243 35.892

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.905243 0.607771 -13.01 <2e-16 **x

age 0.255101 0.008634 29.55 <2e-16 **x
sexMale 3.465251 0.208494 16.62 <2e-16 ***
education 0.918735 0.034514 26.62 <2e-16 ***
Signif. codes: 0 '***!' (0,001 '**' Q.01 '*' 0.05 '." 0.1 " ' 1

Residual standard error: 6.602 on 4010 degrees of freedom
(3411 observations deleted due to missingness)

Multiple R-squared: 0.2972, Adjusted R-squared: 0.2967

F-statistic: 565.3 on 3 and 4010 DF, p-value: < 2.2e-16
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3. Use anova to compare the two fitted models:
> anova (lmfitl, 1lmfit2)
Analysis of Deviance Table
Model: gaussian, link: identity

Response: wages

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 4013 248686
age 1 31953 4012 216733
sex 1 11074 4011 205659
education 1 30883 4010 174776

The glm function fits a model to the data in a similar fashion to the 1m function. The only
difference is that you can specify a different link function in the parameter, family (you
may use ?family in the console to find different types of link functions). In this recipe, we
first input the independent variables, age, sex, and education, and the dependent wages
variable to the glm function, and assign the built model to 1mfit1. You can use the built
model for further prediction.

Next, to determine whether glm with a Gaussian model is exactly the same as 1m, we fit the
independent variables, age, sex, and education, and the dependent variable, wages, to

the 1m model. By applying the summary function to the two different models, it reveals that
the residuals and coefficients of the two output summaries are exactly the same.

Finally, we further compare the two fitted models with the anova function. The result of the
anova function shows that the two models are similar, with the same residual degrees of
freedom (Res.DF) and residual sum of squares (RSS Df).

» For a comparison of generalized linear models with linear models, you can refer to
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer.
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Applying the Poisson model for generalized

linear regression

Generalized linear models allow response variables that have error distribution models other
than a normal distribution (Gaussian). In this recipe, we demonstrate how to apply Poisson as
a family object within glm with regard to count data.

Getting ready

The prerequisite of this task is to prepare the count data, with all the input data values as
integers.

How to do it...

Perform the following steps to fit the generalized linear regression model with the
Poisson model:

1. Loadthe warpbreaks data, and use head to view the first few lines:
> data(warpbreaks)
> head (warpbreaks)

breaks wool tension
26 A
30
54
25
70
52

[< N, T N PR R
L A
| R = N N

2. We apply Poisson as a family object for the independent variable, tension, and the
dependent variable, breaks:
> rsl = glm(breaks ~ tension, data=warpbreaks, family="poisson")

> summary (rsl)

Call:

glm(formula = breaks ~ tension, family = "poisson", data =
warpbreaks)

Deviance Residuals:

Min 1Q Median 3Q Max
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-4.2464 -1.6031 -0.5872 1.2813 4.9366

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.59426 0.03907 91.988 < 2e-16 ***
tensionM -0.32132 0.06027 -5.332 9.73e-08 ***
tensionH -0.51849 0.06396 -8.107 5.21e-16 ***
Signif. codes: 0 "***' 0,001 '**' Q.01 '*' 0.05 '.' 0.1 " " 1

(Dispersion parameter for Poisson family taken to be 1)

Null deviance: 297.37 on 53 degrees of freedom
Residual deviance: 226.43 on 51 degrees of freedom

AIC: 507.09

Number of Fisher Scoring iterations: 4

Under the assumption of a Poisson distribution, the count data can be fitted to a log-linear
model. In this recipe, we first loaded a sample count data from the warpbreaks dataset,
which contained data regarding the number of warp breaks per loom. Next, we applied the
glm function with breaks as a dependent variable, tension as an independent variable,
and Poisson as a family object. Finally, we viewed the fitted log-linear model with the
summary function.

» To understand more on how a Poisson model is related to count data, you can refer
to Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data (No. 53).
Cambridge university press.

Applying the Binomial model for generalized

linear regression

For a binary dependent variable, one may apply a binomial model as the family object in the
glm function.
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Getting ready

The prerequisite of this task is to prepare a binary dependent variable. Here, we use the vs
variable (V engine or straight engine) as the dependent variable.

How to do it...

Perform the following steps to fit a generalized linear regression model with the
Binomial model:

1.

First, we examine the first six elements of vs within mtcars:
> head (mtcars$vs)

[1] 001101
We apply the glm function with binomial as the family object:

> 1lml = glm(vs ~ hp+mpg+gear,data=mtcars, family=binomial)

> summary (1lml)

Call:

glm(formula = vs ~ hp + mpg + gear, family = binomial, data =
mtcars)

Deviance Residuals:
Min 10 Median 3Q Max
-1.68166 -0.23743 -0.00945 0.30884 1.55688

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.95183 8.00322 1.493 0.1353

hp -0.07322 0.03440 -2.129 0.0333 *

mpg 0.16051 0.27538 0.583 0.5600

gear -1.66526 1.76407 -0.944 0.3452

Signif. codes: 0 '#**' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 43.860 on 31 degrees of freedom
Residual deviance: 15.651 on 28 degrees of freedom

AIC: 23.651

Number of Fisher Scoring iterations: 7

Within the binary data, each observation of the response value is coded as either 0 or 1.
Fitting into the regression model of the binary data requires a binomial distribution function.
In this example, we first load the binary dependent variable, vs, from the mt cars dataset.
The vs is suitable for the binomial model as it contains binary data. Next, we fit the model into
the binary data using the glm function by specifying binomial as the family object. Last, by
referring to the summary, we can obtain the description of the fitted model.

See also

» If you specify the family object in parameters only, you will use the default link to fit
the model. However, to use an alternative link function, you can add a link argument.
For example:

> 1lml = glm(vs ~ hp+mpg+gear,data=mtcars,
family=binomial (link="probit"))

» If you would like to know how many alternative links you can use, please refer to the
family document via the help function:

> ?family

Fitting a generalized additive model to data

Generalized additive model (GAM), which is used to fit generalized additive models, can be
viewed as a semiparametric extension of GLM. While GLM holds the assumption that there
is a linear relationship between dependent and independent variables, GAM fits the model
on account of the local behavior of data. As a result, GAM has the ability to deal with highly
nonlinear relationships between dependent and independent variables. In the following
recipe, we introduce how to fit regression using a generalized additive model.

Getting ready

We need to prepare a data frame containing variables, where one of the variables is a
response variable and the others may be predictor variables.
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How to do it...

Perform the following steps to fit a generalized additive model into data:

1.

First, load the mgcv package, which contains the gam function:
> install.packages ("mgcv")

> library (mgcv)

Then, install the MASS package and load the Boston dataset:
> install.packages ("MASS")

> library (MASS)

> attach(Boston)

> str(Boston)

Fit the regression using gam:

> fit = gam(dis ~ s(nox))

Get the summary information of the fitted model:
> summary (fit)
Family: gaussian

Link function: identity

Formula:

dis ~ s(nox)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.79504 0.04507 84.21 <2e-16 **x*

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value
s(nox) 8.434 8.893 189 <2e-16 ***

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sqg. (adj) = 0.768 Deviance explained = 77.2%
GCV = 1.0472 Scale est. = 1.0277 n = 506
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GAM is designed to maximize the prediction of a dependent variable, y, from

various distributions by estimating the nonparametric functions of the predictors

that link to the dependent variable through a link function. The notion of GAM is
g(E(y))=B+1(x)+ £ (x,)+ £, (x,), where an exponential family, E, is specified for y,
along with the g link function; £ denotes the link function of predictors.

The gam function is contained in the mgcv package, so, install this package first and load it
into an R session. Next, load the Boston dataset (Housing Values in the Suburbs of Boston)
from the MASS package. From the dataset, we use dis (the weighted mean of the distance
to five Boston employment centers) as the dependent variable, and nox (nitrogen oxide
concentration) as the independent variable, and then input them into the gam function to
generate a fitted model.

Similar to glm, gam allows users to summarize the gam fit. From the summary, one can find
the parametric parameter, significance of smoothed terms, and other useful information.

» Apart from gam, the mgcv package provides another generalized additive model, bam,
for large datasets. The bam package is very similar to gam, but uses less memory and
is relatively more efficient. Please use the help function for more information on this
model:

> ? bam

» For more information about generalized additive models in R, please refer to Wood, S.
(2006). Generalized additive models: an introduction with R. CRC press.

Visualizing a generalized additive model

In this recipe, we demonstrate how to add a gam fitted regression line to a scatter plot.
In addition, we visualize the gam fit using the plot function.

Getting ready

Complete the previous recipe by assigning a gam fitted model to the £it variable.
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How to do it...

Perform the following steps to visualize the generalized additive model:

1. Generate a scatter plot using the nox and dis variables:

> plot(nox, dis)

™~ ]
I
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;"] E
Toeq R B
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nox

Scatter plot of variable nox against dis

2. Add the regression to the scatter plot:
> x = seq(0, 1, length = 500)
> y = predict(fit, data.frame(nox = x))

> lines(x, y, col = "red", 1lwd = 2)

12
|
o

dis

nox

Fitted regression of gam on a scatter plot
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3. Alternatively, you can plot the fitted model using the plot function:

> plot(fit)

s{nox,843)

IIIH’IIHI g 1 IIHI Wi 1N ] \IHI | I I} 1l 1 1 T ‘k\j

0.4 0.5 0.6 0.7 0.8

nox

Plot of fitted gam

To visualize the fitted regression, we first generate a scatter plot using the dis and nox
variables. Then, we generate the sequence of x-axis, and respond y through the use of the
predict function on the fitted model, £it. Finally, we use the 1ines function to add the
regression line to the scatter plot.

Besides using the lines to add fitted regression lines on the scatter plot, gam has a plot
function to visualize the fitted regression lines containing the confidence region. To shade the
confidence region, we assign shade = TRUE within the function.

The vis.gam function is used to produce perspective or contour plot views of the gam
model predictions. It is helpful to observe how response variables interact with two predictor
variables. The following is an example of a contour plot on the Boston dataset:

> fit2=gam(medv~crim+zn+crim:zn, data=Boston)

> vis.gam(fit2)
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crim

A sample contour plot produced by vis.gam

Diagnosing a generalized additive model

GAM also provides diagnostic information about the fitting procedure and results of the
generalized additive model. In this recipe, we demonstrate how to plot diagnostic plots
through the gam. check function

Getting ready

Ensure that the previous recipe is completed with the gam fitted model assigned to the fit
variable.

How to do it...

Perform the following step to diagnose the generalized additive model:
1. Generate the diagnostic plot using gam. check on the fitted model:

> gam.check (fit)

Method: GCV Optimizer: magic

Smoothing parameter selection converged after 7 iterationms.
The RMS GCV score gradient at convergence was 8.79622e-06
The Hessian was positive definite.

The estimated model rank was 10 (maximum possible: 10)

Model rank = 10 / 10
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Basis dimension (k) checking results. Low p-value (k-index<l) may

indicate that k is too low, especially if edf is close to k'.

k! edf k-index p-value
s (nox) 9.000 8.434 0.397 0

Resids vs. linear pred.
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Diagnostic plot of fitted gam

The gam. check function first produces the smoothing parameter estimation convergence
information. In this example, the smoothing parameter, GCV/UBRE (Generalized Cross
Validation/ Unbiased Risk Estimator) score converges after seven iterations. The mean
absolute gradient of the GCV/UBRE function at the minimum is 8.79622e-06 and the
estimated rank is 10. The dimension check is to test whether the basis dimension for a
smooth function is adequate. From this example, the low p-value indicates that the k is set too
low. One may adjust the dimension choice for smooth by specifying the argument, k, by fitting
gam to the data.

In addition to providing information regarding smoothing parameter estimation convergence,
the function returns four diagnostic plots. The upper-left section of the plot in the screenshot
shows a quantile-comparison plot. This plot is useful to identify outliers and heavy tails. The
upper-right section of the plot shows residuals versus linear predictors, which are useful in
finding nonconstant error variances. The bottom-left section of the plot shows a histogram

of the residuals, which is helpful in detecting non-normality. The bottom-right section shows
response versus the fitted value.
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You can access the help function for more information on gam. check. In particular, this

includes a detailed illustration of smoothing parameter estimation convergence and four
returned plots:

> ?gam.check

In addition, more information for choose .k can be accessed by the following command:

> ?choose.k
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Classification (I) - Tree,
Lazy, and Probabilistic

In this chapter, we will cover the following recipes:

» Preparing the training and testing datasets

» Building a classification model with recursive partitioning trees

» Visualizing a recursive partitioning tree

» Measuring the prediction performance of a recursive partitioning tree
» Pruning a recursive partitioning tree

» Building a classification model with a conditional inference tree

» Visualizing a conditional inference tree

» Measuring the prediction performance of a conditional inference tree
» Classifying data with a k-nearest neighbor classifier

» Classifying data with logistic regression

» Classifying data with the Naive Bayes classifier

Introduction

Classification is used to identify a category of new observations (testing datasets) based on
a classification model built from the training dataset, of which the categories are already
known. Similar to regression, classification is categorized as a supervised learning method
as it employs known answers (label) of a training dataset to predict the answer (label) of the
testing dataset. The main difference between regression and classification is that regression
is used to predict continuous values.
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In contrast to this, classification is used to identify the category of a given observation.

For example, one may use regression to predict the future price of a given stock based on
historical prices. However, one should use the classification method to predict whether the
stock price will rise or fall.

In this chapter, we will illustrate how to use R to perform classification. We first build a training
dataset and a testing dataset from the churn dataset, and then apply different classification
methods to classify the churn dataset. In the following recipes, we will introduce the tree-
based classification method using a traditional classification tree and a conditional inference
tree, lazy-based algorithm, and a probabilistic-based method using the training dataset to
build up a classification model, and then use the model to predict the category (class label) of
the testing dataset. We will also use a confusion matrix to measure the performance.

Preparing the training and testing datasets

Building a classification model requires a training dataset to train the classification model,
and testing data is needed to then validate the prediction performance. In the following
recipe, we will demonstrate how to split the telecom churn dataset into training and testing
datasets, respectively.

Getting ready

In this recipe, we will use the telecom churn dataset as the input data source, and split the
data into training and testing datasets.

How to do it...

Perform the following steps to split the churn dataset into training and testing datasets:

1. You can retrieve the churn dataset from the C50 package:
> install.packages ("C50")
> library(C50)

> data(churn)

2. Use str to read the structure of the dataset:
> str(churnTrain)

3. We can remove the state, area_code, and account length attributes, which
are not appropriate for classification features:

> churnTrain = churnTrainl[,! names(churnTrain) %in% c("state",
"area code", "account length") ]
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4. Then, split 70 percent of the data into the training dataset and 30 percent of the data
into the testing dataset:
> set.seed(2)

> ind = sample(2, nrow(churnTrain), replace = TRUE, prob=c(0.7,

0.3))
> trainset = churnTrain[ind == 1,]
> testset = churnTrain[ind == 2,]

5. Lastly, use dim to explore the dimensions of both the training and testing datasets:
> dim(trainset)
[1] 2315 17
> dim(testset)

[1] 1018 17

In this recipe, we use the telecom churn dataset as our example data source. The dataset
contains 20 variables with 3,333 observations. We would like to build a classification model
to predict whether a customer will churn, which is very important to the telecom company as
the cost of acquiring a new customer is significantly more than retaining one.

Before building the classification model, we need to preprocess the data first. Thus, we load
the churn data from the c50 package into the R session with the variable name as churn. As
we determined that attributes such as state, area_ code, and account_length are not
useful features for building the classification model, we remove these attributes.

After preprocessing the data, we split it into training and testing datasets, respectively. We
then use a sample function to randomly generate a sequence containing 70 percent of the
training dataset and 30 percent of the testing dataset with a size equal to the number of
observations. Then, we use a generated sequence to split the churn dataset into the training
dataset, trainset, and the testing dataset, testset. Lastly, by using the dim function,

we found that 2,315 out of the 3,333 observations are categorized into the training dataset,
trainset, while the other 1,018 are categorized into the testing dataset, testset.

You can combine the split process of the training and testing datasets into the split.data
function. Therefore, you can easily split the data into the two datasets by calling this function
and specifying the proportion and seed in the parameters:

> split.data = function(data, p = 0.7, s = 666){

+ set.seed(s)

+ index = sample(l:dim(data) [1])
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+ train = datal[index[l:floor(dim(data) [1] * p)], 1]
+ test = datal[index[((ceiling(dim(data) [1] * p)) + 1) :dim(data) [1]], 1

+ return(list(train = train, test = test))

Building a classification model with

recursive partitioning trees

A classification tree uses a split condition to predict class labels based on one or multiple
input variables. The classification process starts from the root node of the tree; at each node,
the process will check whether the input value should recursively continue to the right or left
sub-branch according to the split condition, and stops when meeting any leaf (terminal) nodes
of the decision tree. In this recipe, we will introduce how to apply a recursive partitioning tree
on the customer churn dataset.

Getting ready

You need to have completed the previous recipe by splitting the churn dataset into the training
dataset (trainset) and testing dataset (testset), and each dataset should contain exactly
17 variables.

How to do it...

Perform the following steps to split the churn dataset into training and testing datasets:

1. Load the rpart package:
> library(rpart)

2. Use the rpart function to build a classification tree model:

> churn.rp = rpart(churn ~ ., data=trainset)

3. Type churn. rp to retrieve the node detail of the classification tree:
> churn.rp
4. Next, use the printcp function to examine the complexity parameter:

> printcp(churn.rp)

Classification tree:

rpart (formula = churn ~ ., data = trainset)

Variables actually used in tree construction:
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[1]
[31]
[5]
[7]

international plan
total day minutes
total intl calls

voice mail plan

Chapter 5

number customer service calls
total eve minutes

total intl minutes

Root node error: 342/2315 = 0.14773
n= 2315

CP nsplit rel error xerror xstd
1 0.076023 0 1.00000 1.00000 0.049920
2 0.074561 2 0.84795 0.99708 0.049860
3 0.055556 4 0.69883 0.76023 0.044421
4 0.026316 7 0.49415 0.52632 0.037673
5 0.023392 8 0.46784 0.52047 0.037481
6 0.020468 10 0.42105 0.50877 0.037092
7 0.017544 11 0.40058 0.47076 0.035788
8 0.010000 12 0.38304 0.47661 0.035993

5. Next, use the plotcp function to plot the cost complexity parameters:

> plotcp (churn.rp)

10

X-val Relative Error

04 08 08

size of tree
1 3 5 8 9 11 12 13
I ! I ! ! I I !
& 4
‘ [
T T T T T T T T
Inf 0.075 0.064 0.038 0.025 0.022 0.019 0.013
cp

Figure 1: The cost complexity parameter plot

6. Lastly, use the summary function to examine the built model:

> summary (churn.rp)
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In this recipe, we use a recursive partitioning tree from the rpart package to build a
tree-based classification model. The recursive portioning tree includes two processes:
recursion and partitioning. During the process of decision induction, we have to consider a
statistic evaluation question (or simply a yes/no question) to partition the data into different
partitions in accordance with the assessment result. Then, as we have determined the child
node, we can repeatedly perform the splitting until the stop criteria is satisfied.

For example, the data (shown in the following figure) in the root node can be partitioned

into two groups with regard to the question of whether fi is smaller than X. If so, the data

is divided into the left-hand side. Otherwise, it is split into the right-hand side. Then, we can
continue to partition the left-hand side data with the question of whether f2 is smaller than Y:

QOAAO
00 0 A
AAOO
fi<X No
Yes
AO/ \OA
00 A A
AOO
fa<yY
Yes/ \NO
C X X ) AA
000

Figure 2: Recursive partioning tree

In the first step, we load the rpart package with the 1ibrary function. Next, we build a
classification model using the churn variable as a classification category (class label) and the
remaining variables as input features.

After the model is built, you can type the variable name of the built model, churn. rp, to
display the tree node details. In the printed node detail, n indicates the sample size, 1oss
indicates the misclassification cost, yval stands for the classified membership (no or yes, in
this case), and yprob stands for the probabilities of two classes (the left value refers to the
probability reaching label no, and the right value refers to the probability reaching label, yes).
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Then, we use the printcp function to print the complexity parameters of the built tree model.
From the output of printcp, one should find the value of CP, a complexity parameter, which
serves as a penalty to control the size of the tree. In short, the greater the CP value, the

fewer the number of splits there are (nsplit). The output value (the rel error) represents
the average deviance of the current tree divided by the average deviance of the null tree.

A xerror value represents the relative error estimated by a 10-fold classification. xstd
stands for the standard error of the relative error.

To make the CP (cost complexity parameter) table more readable, we use plotcp to
generate an information graphic of the CP table. As per the screenshot (step 5), the x-axis at
the bottom illustrates the cp value, the y-axis illustrates the relative error, and the upper x-axis
displays the size of the tree. The dotted line indicates the upper limit of a standard deviation.
From the screenshot, we can determine that minimum cross-validation error occurs when the
tree is at a size of 12.

We can also use the summary function to display the function call, complexity parameter table
for the fitted tree model, variable importance, which helps identify the most important variable
for the tree classification (summing up to 100), and detailed information of each node.

The advantage of using the decision tree is that it is very flexible and easy to interpret. It works
on both classification and regression problems, and more; it is nonparametric. Therefore, one
does not have to worry about whether the data is linear separable. As for the disadvantage

of using the decision tree, it is that it tends to be biased and over-fitted. However, you can
conquer the bias problem through the use of a conditional inference tree, and solve the
problem of over-fitting through a random forest method or tree pruning.

» For more information about the rpart, printcp, and summary functions, please
use the help function:

> ?rpart
> ?printcp
> ?summary.rpart
» C50 is another package that provides a decision tree and a rule-based model. If you

are interested in the package, you may refer to the document at http://cran.r-
project.org/web/packages/C50/C50.pdf

Visualizing a recursive partitioning tree

From the last recipe, we learned how to print the classification tree in a text format. To make
the tree more readable, we can use the plot function to obtain the graphical display of a
built classification tree.
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Getting ready

One needs to have the previous recipe completed by generating a classification model, and
assign the model into the churn. rp variable.

How to do it...

Perform the following steps to visualize the classification tree:

1. Usethe plot function and the text function to plot the classification tree:
> plot(churn.rp, margin= 0.1)

> text(churn.rp, all=TRUE, use.n = TRUE)

total_day_minutes>=2655
"
o
34211973
voice_mdil_plan=a number_customer_|senvice_calls>=3 5
802

total_eve_meputes>=188.5

"W@Y;Iu_esr?ﬂz T
yes 81 oy 4130

no
76112

S no
total_intl_mifutes>=13 b:;m 24/191

6413 yes 1726 no total_eve_miputes< 1555
136 420
yes Mo 1 ;‘:‘% 38?0 "
6110  yes2572no L
137 12065
yes no
320 6112

Figure 3: The graphical display of a classification tree
2. You can also specify the uniform, branch, and margin parameter to adjust
the layout:

> plot(churn.rp, uniform=TRUE, branch=0.6, margin=0.1)

> text(churn.rp, all=TRUE, use.n = TRUE)

total_day_minutes>=265.5

n
voice_mail_pfan=a 34211973 number_customer_senvice_calls==3.5

total_eve_mines>=FEEE . internatignal_plan=b

yes no ¥
136 4120 137 12/65  38/0

yes no yes no
320 6112 26110 241191

Figure 4: Adjust the layout of the classification tree
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Here, we demonstrate how to use the plot function to graphically display a classification
tree. The plot function can simply visualize the classification tree, and you can then use the
text function to add text to the plot.

In Figure 3, we assign margin = 0.1 as a parameter to add extra white space around the
border to prevent the displayed text being truncated by the margin. It shows that the length
of the branches displays the relative magnitude of the drop in deviance. We then use the text
function to add labels for the nodes and branches. By default, the text function will add a
split condition on each split, and add a category label in each terminal node. In order to add
extra information on the tree plot, we set the parameter as all equal to TRUE to add a label
to all the nodes. In addition to this, we add a parameter by specifying use.n = TRUE to add
extra information, which shows that the actual number of observations fall into two different
categories (no and yes).

In Figure 4, we set the option branch to 0.6 to add a shoulder to each plotted branch. In
addition to this, in order to display branches of an equal length rather than relative magnitude
of the drop in deviance, we set the option uniform to TRUE. As a result, Figure 4 shows a
classification tree with short shoulders and branches of equal length.

» You may use ?plot.rpart to read more about the plotting of the classification
tree. This document also includes information on how to specify the parameters,
uniform, branch, compress, nspace, margin, and minbranch, to adjust the
layout of the classification tree.

Measuring the prediction performance of a

recursive partitioning tree

Since we have built a classification tree in the previous recipes, we can use it to predict the
category (class label) of new observations. Before making a prediction, we first validate the
prediction power of the classification tree, which can be done by generating a classification
table on the testing dataset. In this recipe, we will introduce how to generate a predicted label
versus a real label table with the predict function and the table function, and explain how
to generate a confusion matrix to measure the performance.

Getting ready

You need to have the previous recipe completed by generating the classification model,
churn. rp. In addition to this, you have to prepare the training dataset, trainset,
and the testing dataset, testset, generated in the first recipe of this chapter.
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How to do it...

Perform the following steps to validate the prediction performance of a classification tree:

1. You can use the predict function to generate a predicted label of testing the dataset:

> predictions = predict(churn.rp, testset, type="class")

2. Use the table function to generate a classification table for the testing dataset:

> table(testset$churn, predictions)

predictions
yes no
yes 100 41
no 18 859

3. One can further generate a confusion matrix using the confusionMatrix function

provided in the caret package:

> library(caret)

> confusionMatrix(table(predictions, testset$churn))

Confusion Matrix and Statistics

predictions yes no
yes 100 18
no 41 859

Accuracy
95% CI
No Information Rate

P-Value [Acc > NIR]

Kappa

Mcnemar's Test P-Value

Sensitivity
Specificity
Pos Pred Value
Neg Pred Value

Prevalence
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0

.942

(0.9259, 0.9556)

0

<

o O o o o

.8615
2.2e-16

.7393
.004181

.70922
.97948
.84746
.95444
.13851
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Detection Rate : 0.09823
Detection Prevalence : 0.11591

Balanced Accuracy : 0.84435

'Positive' Class : yes

In this recipe, we use a predict function and built up classification model, churn. rp, to
predict the possible class labels of the testing dataset, testset. The predicted categories
(class labels) are coded as either no or yes. Then, we use the table function to generate
a classification table on the testing dataset. From the table, we discover that there are
859 correctly predicted as no, while 18 are misclassified as yes. 100 of the yes predictions
are correctly predicted, but 41 observations are misclassified into no. Further, we use the
confusionMatrix function from the caret package to produce a measurement of the
classification model.

» You may use ?confusionMatrix to read more about the performance
measurement using the confusion matrix

» Forthose who are interested in the definition output by the confusion matrix, please
refer to the Wikipedia entry, Confusion_matrix (http://en.wikipedia.org/
wiki/Confusion matrix)

Pruning a recursive partitioning tree

In previous recipes, we have built a complex decision tree for the churn dataset. However,
sometimes we have to remove sections that are not powerful in classifying instances to avoid
overfitting, and to improve the prediction accuracy. Therefore, in this recipe, we introduce the
cost complexity pruning method to prune the classification tree.

Getting ready

You need to have the previous recipe completed by generating a classification model, and
assign the model into the churn. rp variable.
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How to do it...

Perform the following steps to prune the classification tree:

1. Find the minimum cross-validation error of the classification tree model:
> min(churn.rp$cptablel[, "xerror"])

[1] 0.4707602

2. Locate the record with the minimum cross-validation errors:
> which.min (churn.rp$cptablel[, "xerror"])

7

3. Get the cost complexity parameter of the record with the minimum cross-validation
errors:

> churn.cp = churn.rp$cptable([7,"CP"]
> churn.cp
[1] 0.01754386
4. Prune the tree by setting the cp parameter to the CP value of the record with
minimum cross-validation errors:

> prune.tree = prune(churn.rp, cp= churn.cp)

5. Visualize the classification tree by using the plot and text function:
> plot(prune.tree, margin= 0.1)

> text(prune.tree, all=TRUE , use.n=TRUE)

total_day_minutes>=265.5
1

no
34211973
voice_mdil_plan=a number_customer_|service_calls==35
total_day_mi —Lulemaﬁoﬂal |_plan=b
yes total_MMll_gals=2.5 total_day mi »=224.1
85/59 tatal_eve_mi
1711832

total_eve_mifutes==188.5

m@ﬁ=282.? 1o
yes 81/2 o 4130

64/3 yes 17126 no
1306 4120

no
7612

. es no
fotal_intl_miputes=>=13.1 2)5;,10 241191

yes no

yes 2810 381112

no
61110 2572

yes no
3210 6/112

Figure 5: The pruned classification tree
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Next, you can generate a classification table based on the pruned classification
tree model:

> predictions = predict (prune.tree, testset, type="class")
> table(testset$churn, predictions)
predictions
yes no
yes 95 46
no 14 863

Lastly, you can generate a confusion matrix based on the classification table:

> confusionMatrix(table(predictions, testset$churn))

Confusion Matrix and Statistics

predictions yes no
yes 95 14
no 46 863

Accuracy : 0.9411
95% CI : (0.9248, 0.9547)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 2.786e-16

Kappa : 0.727

Mcnemar's Test P-Value : 6.279e-05

Sensitivity : 0.67376
Specificity : 0.98404

Pos Pred Value : 0.87156

Neg Pred Value : 0.94939
Prevalence : 0.13851

Detection Rate : 0.09332
Detection Prevalence : 0.10707

Balanced Accuracy : 0.82890

'Positive' Class : yes
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In this recipe, we discussed pruning a classification tree to avoid over-fitting and producing
a more robust classification model. We first located the record with the minimum cross-
validation errors within the cptable, and we then extracted the CP of the record and
assigned the value to churn. cp. Next, we used the prune function to prune the
classification tree with churn. cp as the parameter. Then, by using the plot function,

we graphically displayed the pruned classification tree. From Figure 5, it is clear that the
split of the tree is less than the original classification tree (Figure 3). Lastly, we produced a
classification table and used the confusion matrix to validate the performance of the pruned
tree. The result shows that the accuracy (0.9411) is slightly lower than the original model
(0.942), and also suggests that the pruned tree may not perform better than the original
classification tree as we have pruned some split conditions (Still, one should examine the
change in sensitivity and specificity). However, the pruned tree model is more robust as it
removes some split conditions that may lead to over-fitting.

» For those who would like to know more about cost complexity pruning, please refer to
the Wikipedia article for Pruning (decision_trees): http://en.wikipedia.org/
wiki/Pruning (decision trees

Building a classification model with a

conditional inference tree

In addition to traditional decision trees (rpart), conditional inference trees (ctree)

are another popular tree-based classification method. Similar to traditional decision trees,
conditional inference trees also recursively partition the data by performing a univariate
split on the dependent variable. However, what makes conditional inference trees different
from traditional decision trees is that conditional inference trees adapt the significance test
procedures to select variables rather than selecting variables by maximizing information
measures (rpart employs a Gini coefficient). In this recipe, we will introduce how to adapt
a conditional inference tree to build a classification model.

Getting ready

You need to have the first recipe completed by generating the training dataset, trainset,
and the testing dataset, testset.
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How to do it...

Perform the following steps to build the conditional inference tree:

1. First, we use ctree from the party package to build the classification model:
> library(party)

> ctree.model = ctree(churn ~ . , data = trainset)

2. Then, we examine the built tree model:

> ctree.model

In this recipe, we used a conditional inference tree to build a classification tree. The use of
ctree is similar to rpart. Therefore, you can easily test the classification power using either
a traditional decision tree or a conditional inference tree while confronting classification
problems. Next, we obtain the node details of the classification tree by examining the built
model. Within the model, we discover that ctree provides information similar to a split
condition, criterion (1 - p-value), statistics (test statistics), and weight (the case weight
corresponding to the node). However, it does not offer as much information as rpart does
through the use of the summary function.

» You may use the help function to refer to the definition of Binary Tree Class and
read more about the properties of binary trees:

> help("BinaryTree-class")

Visualizing a conditional inference tree

Similar to rpart, the party package also provides a visualization method for users to plot
conditional inference trees. In the following recipe, we will introduce how to use the plot
function to visualize conditional inference trees.

Getting ready

You need to have the first recipe completed by generating the conditional inference tree
model, ctree.model. In addition to this, you need to have both, trainset and testset,
loaded in an R session.
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How to do it...

Perform the following steps to visualize the conditional inference tree:

1. Use the plot function to plot ctree.model built in the last recipe:

> plot(ctree.model)

3

international_plan
p = 0.001
e 7 (13]
p <0001 p=<0001
=351 =351 =3 >
total_intl_calls total_day_minutes total_day_minutes
_J<0.UU1 p<0.001 p=< 0.001____
<2 =2 <2503 >259.3 [30] ! >1594
total_eve_minutes total_eve_minutes
p <0001 p=0.009

23]
total_eve_charge
p= 0001

total_day_minutes
p <0001

25
total_night_minutes
p=0.001

<1 »1783
lN

Figure 6: A conditional inference tree of churn data

2. To obtain a simple conditional inference tree, one can reduce the built model with
less input features, and redraw the classification tree:

> daycharge.model = ctree(churn ~ total day charge, data =
trainset)

> plot (daycharge.model)
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Figure 7: A conditional inference tree using the total_day_charge variable as only split condition

To visualize the node detail of the conditional inference tree, we can apply the plot function
on a built classification model. The output figure reveals that every intermediate node shows
the dependent variable name and the p-value. The split condition is displayed on the left and
right branches. The terminal nodes show the number of categorized observations, n, and the
probability of a class label of either O or 1.

Taking Figure 7 as an example, we first build a classification model using total day
charge as the only feature and churn as the class label. The built classification tree shows
that when total day charge is above 48.18, the lighter gray area is greater than the
darker gray in node 9, which indicates that the customer with a day charge of over 48.18 has
a greater likelihood to churn (label = yes).

See also

» The visualization of the conditional inference tree comes from the plot.
BinaryTree function. If you are interested in adjusting the layout of the
classification tree, you may use the help function to read the following document:

> ?plot.BinaryTree
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Measuring the prediction performance of a

conditional inference tree

After building a conditional inference tree as a classification model, we can use the
treeresponse and predict functions to predict categories of the testing dataset, testset,
and further validate the prediction power with a classification table and a confusion matrix.

Getting ready

You need to have the previous recipe completed by generating the conditional inference tree
model, ctree.model. In addition to this, you need to have both trainset and testset
loaded in an R session.

How to do it...

Perform the following steps to measure the prediction performance of a conditional
inference tree:

1. You can use the predict function to predict the category of the testing dataset,
testset:

> ctree.predict = predict(ctree.model ,testset)

> table(ctree.predict, testset$churn)

ctree.predict yes no
yes 99 15
no 42 862
2. Furthermore, you can use confusionMatrix from the caret package to generate
the performance measurements of the prediction result:
> confusionMatrix(table(ctree.predict, testset$churn))

Confusion Matrix and Statistics

ctree.predict yes no
yes 99 15
no 42 862

Accuracy : 0.944
95% CI : (0.9281, 0.9573)
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No Information Rate : 0.8615
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7449
Mcnemar's Test P-Value : 0.0005736

Sensitivity 0.70213
Specificity 0.98290

Pos Pred Value 0.86842

Neg Pred Value 0.95354
Prevalence 0.13851

Detection Rate 0.09725
Detection Prevalence 0.11198
Balanced Accuracy 0.84251

'Positive' Class : yes
You can also use the treeresponse function, which will tell you the list of
class probabilities:
> tr = treeresponse(ctree.model, newdata = testset[1l:5,])
> tr
[[11]
[1] 0.03497409 0.96502591

[[2]11
[1] 0.02586207 0.97413793

[[311]
[1] 0.02586207 0.97413793

[[4]1]
[1] 0.02586207 0.97413793

[[511]
[1] 0.03497409 0.96502591
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In this recipe, we first demonstrate that one can use the prediction function to predict the
category (class label) of the testing dataset, testset, and then employ a table function to
generate a classification table. Next, you can use the confusionMatrix function built into

the caret package to determine the performance measurements.

In addition to the predict function, treeresponse is also capable of estimating the

class probability, which will often classify labels with a higher probability. In this example, we
demonstrated how to obtain the estimated class probability using the top five records of the
testing dataset, testset. The treeresponse function returns a list of five probabilities. You
can use the list to determine the label of instance.

» Forthe predict function, you can specify the type as response, prob, or node.
If you specify the type as prob when using the predict function (for example,
predict (.. type="prob")), you will get exactly the same result as what
treeresponse returns.

Classifying data with the k-nearest neighbor

classifier

K-nearest neighbor (knn) is a nonparametric lazy learning method. From a nonparametric
view, it does not make any assumptions about data distribution. In terms of lazy learning,
it does not require an explicit learning phase for generalization. The following recipe will
introduce how to apply the k-nearest neighbor algorithm on the churn dataset.

Getting ready

You need to have the previous recipe completed by generating the training and testing
datasets.

How to do it...

Perform the following steps to classify the churn data with the k-nearest neighbor algorithm:

1. First, one has to install the class package and have it loaded in an R session:
> install.packages("class")

> library(class)
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Replace yes and no of the voice mail planand international plan
attributes in both the training dataset and testing dataset to 1 and O:

> levels(trainset$international plan) = list("0"="no", "l"="yes")
> levels(trainset$voice mail plan) = list("0"="no", "l1l"="yes")

> levels(testset$international plan) = list("0"="no", "l"="yes")
> levels(testset$voice mail plan) = list("O0"="no", "l1l"="yes")

Use the knn classification method on the training dataset and the testing dataset:
> churn.knn = knn(trainset[,! names(trainset) %in% c("churn")],
testset[,! names(testset) %in% c("churn")], trainset$churn, k=3)
Then, you can use the summary function to retrieve the number of predicted labels:
> summary (churn.knn)

yes no

77 941

Next, you can generate the classification matrix using the table function:
> table(testset$churn, churn.knn)
churn.knn
yes no
yes 44 97
no 33 844

Lastly, you can generate a confusion matrix by using the confusionMatrix
function:
> confusionMatrix(table(testset$churn, churn.knn))

Confusion Matrix and Statistics

churn.knn

yes no
yes 44 97
no 33 844

Accuracy : 0.8723
95% CI (0.8502, 0.8922)
0.9244

.

No Information Rate

.

P-Value [Acc > NIR] : 1

Kappa 0.339

.
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Mcnemar's Test P-Value : 3.286e-08

Sensitivity 0.57143
Specificity 0.89692

Pos Pred Value 0.31206

Neg Pred Value 0.96237
Prevalence 0.07564

Detection Rate 0.04322
Detection Prevalence 0.13851
Balanced Accuracy 0.73417

'Positive' Class : yes

knn trains all samples and classifies new instances based on a similarity (distance) measure.
For example, the similarity measure can be formulated as follows:

» Euclidian Distance: Zj;(xi_yi)z

» Manhattan Distance: Z;Kxi — i )|

In knn, a new instance is classified to a label (class) that is common among the k-nearest
neighbors. If k = 1, then the new instance is assigned to the class where its nearest neighbor
belongs. The only required input for the algorithm is k. If we give a small k input, it may lead
to over-fitting. On the other hand, if we give a large k input, it may result in under-fitting. To
choose a proper k-value, one can count on cross-validation.

The advantages of knn are:

» The cost of the learning process is zero

» Itis nonparametric, which means that you do not have to make the assumption
of data distribution

» You can classify any data whenever you can find similarity measures of
given instances
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The main disadvantages of knn are:

» Itis hard to interpret the classified result.
» Itis an expensive computation for a large dataset.

» The performance relies on the number of dimensions. Therefore, for a high dimension
problem, you should reduce the dimension first to increase the process performance.

The use of knn does not vary significantly from applying a tree-based algorithm mentioned

in the previous recipes. However, while a tree-based algorithm may show you the decision
tree model, the output produced by knn only reveals classification category factors. However,
before building a classification model, one should replace the attribute with a string type to
an integer since the k-nearest neighbor algorithm needs to calculate the distance between
observations. Then, we build up a classification model by specifying k=3, which means
choosing the three nearest neighbors. After the classification model is built, we can generate
a classification table using predicted factors and the testing dataset label as the input.

Lastly, we can generate a confusion matrix from the classification table. The confusion matrix
output reveals an accuracy result of (0.8723), which suggests that both the tree-based
methods mentioned in previous recipes outperform the accuracy of the k-nearest neighbor
classification method in this case. Still, we cannot determine which model is better depending
merely on accuracy, one should also examine the specificity and sensitivity from the output.

» There is another package named kknn, which provides a weighted k-nearest
neighbor classification, regression, and clustering. You can learn more about
the package by reading this document: http://cran.r-project.org/web/
packages/kknn/kknn.pdf.

Classifying data with logistic regression

Logistic regression is a form of probabilistic statistical classification model, which can be
used to predict class labels based on one or more features. The classification is done by
using the 1ogit function to estimate the outcome probability. One can use logistic regression
by specifying the family as a binomial while using the glm function. In this recipe, we will
introduce how to classify data using logistic regression.

Getting ready

You need to have completed the first recipe by generating training and testing datasets.
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How to do it...

Perform the following steps to classify the churn data with logistic regression:

1.

176

With the specification of family as a binomial, we apply the glm function on the
dataset, trainset, by using churn as a class label and the rest of the variables as
input features:

> fit = glm(churn ~ ., data = trainset, family=binomial)
Use the summary function to obtain summary information of the built logistic
regression model:

> summary (£it)

Call:

glm(formula = churn ~ ., family = binomial, data = trainset)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.1519 0.1983 0.3460 0.5186 2.1284

Coefficients:

Estimate Std. Error z value
Pr(>|z])
(Intercept) 8.3462866 0.8364914 9.978 < 2e-
16
international planyes -2.0534243 0.1726694 -11.892 < 2e-
16
voice mail planyes 1.3445887 0.6618905 2.031
0.042211
number vmail messages -0.0155101 0.0209220 -0.741
0.458496
total day minutes 0.2398946 3.9168466 0.061
0.951163
total day calls -0.0014003 0.0032769 -0.427
0.669141
total day charge -1.4855284 23.0402950 -0.064
0.948592
total eve minutes 0.3600678 1.9349825 0.186
0.852379
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total eve calls -0.0028484 0.0033061 -0.862
0.388928
total eve charge -4.3204432 22.7644698 -0.190
0.849475
total night minutes 0.4431210 1.0478105 0.423
0.672367
total night calls 0.0003978 0.0033188 0.120
0.904588
total night charge -9.9162795 23.2836376 -0.426
0.670188
total intl minutes 0.4587114 6.3524560 0.072
0.942435
total_ intl calls 0.1065264 0.0304318 3.500
0.000464
total intl charge -2.0803428 23.5262100 -0.088
0.929538

number customer service calls -0.5109077 0.0476289 -10.727 < 2e-
16

(Intercept) * kK
international planyes *k ok
voice mail planyes *

number vmail messages
total day minutes
total day calls
total day charge
total eve minutes
total eve calls
total eve charge
total night minutes
total night calls
total night charge
total intl minutes
total intl calls *hk
total intl charge

number customer service calls ***

www.it-ebooks.info


http://www.it-ebooks.info/

Classification (I) - Tree, Lazy, and Probabilistic

Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1938.8 on 2314 degrees of freedom
Residual deviance: 1515.3 on 2298 degrees of freedom

AIC: 1549.3

Number of Fisher Scoring iterations: 6

3. Then, we find that the built model contains insignificant variables, which would
lead to misclassification. Therefore, we use significant variables only to train the
classification model:

> fit = glm(churn ~ international plan + voice mail plan+total
intl calls+number customer service calls, data = trainset,
family=binomial)

> summary (fit)

Call:
glm(formula = churn ~ international plan + voice mail plan +

total intl calls + number customer service calls, family =
binomial,

data = trainset)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.7308 0.3103 0.4196 0.5381 1.6716

Coefficients:

Estimate Std. Error z value

(Intercept) 2.32304 0.16770 13.852

international planyes -2.00346 0.16096 -12.447

voice mail planyes 0.79228 0.16380 4.837

total intl calls 0.08414 0.02862 2.939

number customer service calls -0.44227 0.04451 -9.937
Pr(>|z])
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(Intercept) < 2e-16 **x*
international planyes < 2e-16 **x*
voice mail planyes 1.32e-06 ***
total intl calls 0.00329 *=*

number customer service calls < 2e-16 ***
Signif. codes:

0 es: des: **rvice calls < '. es: de

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1938.8 on 2314 degrees of freedom
Residual deviance: 1669.4 on 2310 degrees of freedom

AIC: 1679.4

Number of Fisher Scoring iterations: 5

Then, you can then use a fitted model, fit, to predict the outcome of testset. You
can also determine the class by judging whether the probability is above 0.5:

> pred = predict(fit,testset, type="response")

> Class = pred >.5

Next, the use of the summary function will show you the binary outcome count, and
reveal whether the probability is above 0.5:

> summary (Class)
Mode FALSE TRUE NA's
logical 29 989 0

You can generate the counting statistics based on the testing dataset label and
predicted result:

> tb = table(testset$churn,Class)

> tb
Class
FALSE TRUE
yes 18 123
no 11 866
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7. You can turn the statistics of the previous step into a classification table, and then
generate the confusion matrix:

> churn.mod = ifelse(testset$churn == "yes", 1, 0)
> pred class = churn.mod
> pred class[pred<=.5] = 1- pred class[pred<=.5]
> ctb = table(churn.mod, pred class)
> ctb
pred class
churn.mod 0 1
0 866 11
1 18 123
> confusionMatrix (ctb)

Confusion Matrix and Statistics

pred class
churn.mod 0 1

0 866 11

1 18 123

Accuracy : 0.9715

95% CI : (0.9593, 0.9808)
No Information Rate : 0.8684
P-Value [Acc > NIR] : <2e-16

Kappa : 0.8781

Mcnemar's Test P-Value 0.2652
Sensitivity 0.9796
Specificity 0.9179

Pos Pred Value 0.9875

Neg Pred Value 0.8723
Prevalence 0.8684

Detection Rate 0.8507
Detection Prevalence 0.8615
Balanced Accuracy 0.9488

'Positive' Class : 0
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Logistic regression is very similar to linear regression; the main difference is that the
dependent variable in linear regression is continuous, but the dependent variable in logistic
regression is dichotomous (or nominal). The primary goal of logistic regression is to use logit
to yield the probability of a nominal variable is related to the measurement variable. We can
formulate logit in following equation: In(P/(1-P)), where P is the probability that certain event
occurs.

The advantage of logistic regression is that it is easy to interpret, it directs model logistic
probability, and provides a confidence interval for the result. Unlike the decision tree, which
is hard to update the model, you can quickly update the classification model to incorporate
new data in logistic regression. The main drawback of the algorithm is that it suffers from
multicollinearity and, therefore, the explanatory variables must be linear independent. glm
provides a generalized linear regression model, which enables specifying the model in the
option family. If the family is specified to a binomial logistic, you can set the family as a
binomial to classify the dependent variable of the category.

The classification process begins by generating a logistic regression model with the use of
the training dataset by specifying Churn as the class label, the other variables as training
features, and family set as binomial. We then use the summary function to generate the
model's summary information. From the summary information, we may find some insignificant
variables (p-values > 0.05), which may lead to misclassification. Therefore, we should
consider only significant variables for the model.

Next, we use the f£it function to predict the categorical dependent variable of the testing
dataset, testset. The £it function outputs the probability of a class label, with a result
equal to 0.5 and below, suggesting that the predicted label does not match the label of
the testing dataset, and a probability above 0.5 indicates that the predicted label matches
the label of the testing dataset. Further, we can use the summary function to obtain the
statistics of whether the predicted label matches the label of the testing dataset. Lastly, in
order to generate a confusion matrix, we first generate a classification table, and then use
confusionMatrix to generate the performance measurement.

» For more information of how to use the glm function, please refer to Chapter 4,
Understanding Regression Analysis, which covers how to interpret the output of
the glm function
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Classifying data with the Naive Bayes

classifier

The Naive Bayes classifier is also a probability-based classifier, which is based on applying the
Bayes theorem with a strong independent assumption. In this recipe, we will introduce how to
classify data with the Naive Bayes classifier.

Getting ready

You need to have the first recipe completed by generating training and testing datasets.

How to do it...

Perform the following steps to classify the churn data with the Naive Bayes classifier:

1. Loadthe e1071 library and employ the naiveBayes function to build the classifier:
> library(el071)
> classifier=naiveBayes (trainset[, !mnames(trainset) %in%

c("churn")], trainset$churn)

2. Type classifier to examine the function call, a-priori probability, and conditional
probability:

> classifier

Naive Bayes Classifier for Discrete Predictors

Call:

naiveBayes.default(x = trainset[, !names(trainset) %in%
c("churn")],

y = trainset$churn)

A-priori probabilities:
trainset$churn
yes no

0.1477322 0.8522678

Conditional probabilities:

international plan
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trainset$churn no yes
yes 0.70467836 0.29532164
no 0.93512418 0.06487582

Next, you can generate a classification table for the testing dataset:
> bayes.table = table(predict(classifier, testset][,
Inames (testset) %in% c("churn")]), testset$churn)

> bayes.table

yes no
yes 68 45
no 73 832

Lastly, you can generate a confusion matrix from the classification table:

> confusionMatrix (bayes.table)
Confusion Matrix and Statistics

yes no
yes 68 45
no 73 832

Accuracy : 0.8841

95% CI : (0.8628, 0.9031)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 0.01880

Kappa : 0.4701
Mcnemar's Test P-Value : 0.01294

Sensitivity : 0.4823
Specificity : 0.9487

Pos Pred Value : 0.6018

Neg Pred Value : 0.9193
Prevalence : 0.1385

Detection Rate : 0.0668
Detection Prevalence : 0.1110
Balanced Accuracy : 0.7155

'Positive' Class : yes
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Naive Bayes assumes that features are conditionally independent, which the effect
of a predictor(x) to class (c) is independent of the effect of other predictors to class(c).
It computes the posterior probability, P(c|x), as the following formula:

P(x|c)P(c)

P(c|x)= PO

Where P(x|c) is called likelihood, p(x) is called the marginal likelihood, and p(c) is called
the prior probability. If there are many predictors, we can formulate the posterior probability
as follows:

P(c|x)=P(x |c)xP(x,|c)x...P(x,|c)xP(c)

The advantage of Naive Bayes is that it is relatively simple and straightforward to use. It is
suitable when the training set is relative small, and may contain some noisy and missing data.
Moreover, you can easily obtain the probability for a prediction. The drawbacks of Naive Bayes
are that it assumes that all features are independent and equally important, which is very
unlikely in real-world cases.

In this recipe, we use the Naive Bayes classifier from the e1071 package to build a
classification model. First, we specify all the variables (excluding the churn class label) as

the first input parameters, and specify the churn class label as the second parameter in

the naiveBayes function call. Next, we assign the classification model into the variable
classifier. Then, we print the variable classifier to obtain information, such as function call,
A-priori probabilities, and conditional probabilities. We can also use the predict function to
obtain the predicted outcome and the table function to retrieve the classification table of the
testing dataset. Finally, we use a confusion matrix to calculate the performance measurement
of the classification model.
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At last, we list a comparison table of all the mentioned algorithms in this chapter:

probability for a prediction

Algorithm Advantage Disadvantage
Recursive » Very flexible and easy to » Prone to bias and over-
partitioning tree interpret fitting
» Works on both classification
and regression problems
» Nonparametric
Conditional » Very flexible and easy to » Prone to over-fitting
inference tree interpret
» Works on both classification
and regression problems
» Nonparametric
» Less prone to bias than a
recursive partitioning tree
K-nearest » The cost of the learning » Hard to interpret the
neighbor process is zero classified result
classifier » Nonparametric » Computation is expensive
» You can classify any data for a large dataset
whenever you can find » The performance relies on
similarity measures of any the number of dimensions
given instances
Logistic » Easy to interpret » Suffers multicollinearity
regression » Provides model logistic » Does not handle
probability the missing value of
» Provides confidence interval continuous variables
» You can quickly update » Sensitive to ex.treme
the classification model to Va'%’es of continuous
incorporate new data variables
Naive Bayes » Relatively simple and » Assumes all features are
straightforward to use independent and equally
» Suitable when the training set |mportaht, which is very
is relative small unlikely in real-world cases
» Can deal with some noisy and > Proneto t;las yvhen the
missing data pumbero training sets
increase
» Can easily obtain the
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See also

» To learn more about the Bayes theorem, you can refer to the following Wikipedia
article: http://en.wikipedia.org/wiki/Bayes' theorem
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Classification (ll) -
Neural Network
and SVM

In this chapter, we will cover the following recipes:

» Classifying data with a support vector machine

» Choosing the cost of a support vector machine

» Visualizing an SVM fit

» Predicting labels based on a model trained by a support vector machine
» Tuning a support vector machine

» Training a neural network with neuralnet

» Visualizing a neural network trained by neuralnet

» Predicting labels based on a model trained by neuralnet

» Training a neural network with nnet

» Predicting labels based on a model trained by nnet

Introduction

Most research has shown that support vector machines (SVM) and neural networks (NN) are
powerful classification tools, which can be applied to several different areas. Unlike tree-based
or probabilistic-based methods that were mentioned in the previous chapter, the process of
how support vector machines and neural networks transform from input to output is less clear
and can be hard to interpret. As a result, both support vector machines and neural networks
are referred to as black box methods.

[ie7}-
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The development of a neural network is inspired by human brain activities. As such, this type
of network is a computational model that mimics the pattern of the human mind. In contrast
to this, support vector machines first map input data into a high dimension feature space
defined by the kernel function, and find the optimum hyperplane that separates the training
data by the maximum margin. In short, we can think of support vector machines as a linear
algorithm in a high dimensional space.

Both these methods have advantages and disadvantages in solving classification problems.
For example, support vector machine solutions are the global optimum, while neural networks
may suffer from multiple local optimums. Thus, choosing between either depends on the
characteristics of the dataset source. In this chapter, we will illustrate the following:

» How to train a support vector machine

» Observing how the choice of cost can affect the SVM classifier

» Visualizing the SVM fit

» Predicting the labels of a testing dataset based on the model trained by SVM

» Tuning the SVM

In the neural network section, we will cover:

» How to train a neural network
» How to visualize a neural network model
» Predicting the labels of a testing dataset based on a model trained by neuralnet

» Finally, we will show how to train a neural network with nnet, and how to use it to
predict the labels of a testing dataset

Classifying data with a support vector

machine

The two most well known and popular support vector machine tools are 1ibsvm and
SVMLite. For R users, you can find the implementation of 1ibsvmin the e1071 package and
SVMLite in the k1aR package. Therefore, you can use the implemented function of these
two packages to train support vector machines. In this recipe, we will focus on using the svm
function (the 1ibsvm implemented version) from the e1071 package to train a support vector
machine based on the telecom customer churn data training dataset.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source to
train the support vector machine. For those who have not prepared the dataset, please refer
to Chapter 5, Classification () - Tree, Lazy, and Probabilistic, for details.
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How to do it...

Perform the following steps to train the SVM:

1.

Load the e1071 package:

> library(el071)

Train the support vector machine using the svm function with trainset as the input
dataset, and use churn as the classification category:

> model = svm(churn~., data = trainset, kernel="radial", cost=1l,
gamma = 1l/ncol (trainset))

Finally, you can obtain overall information about the built model with summary:

> summary (model)

Call:

svm(formula = churn ~ ., data = trainset, kernel = "radial", cost
= 1, gamma = 1l/ncol(trainset))

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1

gamma: 0.05882353

Number of Support Vectors: 691

( 394 297 )

Number of Classes: 2

Levels:

yes no
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The support vector machine constructs a hyperplane (or set of hyperplanes) that maximize
the margin width between two classes in a high dimensional space. In these, the cases that
define the hyperplane are support vectors, as shown in the following figure:

Hyperplane

t ll‘l\.

X2 Support Vectors

Margin Width

X1

Figure 1: Support Vector Machine

Support vector machine starts from constructing a hyperplane that maximizes the margin
width. Then, it extends the definition to a nonlinear separable problem. Lastly, it maps the
data to a high dimensional space where the data can be more easily separated with a
linear boundary.

The advantage of using SVM is that it builds a highly accurate model through an engineering
problem-oriented kernel. Also, it makes use of the regularization term to avoid overfitting. It
also does not suffer from local optimal and multicollinearity. The main limitation of SVM is its
speed and size in the training and testing time. Therefore, it is not suitable or efficient enough
to construct classification models for data that is large in size. Also, since it is hard to interpret
SVM, how does the determination of the kernel take place? Regularization is another problem
that we need tackle.

In this recipe, we continue to use the telecom churn dataset as our example data source.

We begin training a support vector machine using 1ibsvm provided in the e1071 package.
Within the training function, svm, one can specify the kernel function, cost, and the gamma
function. For the kernel argument, the default value is radial, and one can specify the kernel
to a linear, polynomial, radial basis, and sigmoid. As for the gamma argument, the default
value is equal to (1/data dimension), and it controls the shape of the separating hyperplane.
Increasing the gamma argument usually increases the number of support vectors.
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As for the cost, the default value is set to 1, which indicates that the regularization term is
constant, and the larger the value, the smaller the margin is. We will discuss more on how the
cost can affect the SVM classifier in the next recipe. Once the support vector machine is built,
the summary function can be used to obtain information, such as calls, parameters, number
of classes, and the types of label.

Another popular support vector machine tool is SVMLight. Unlike the e1071 package, which
provides the full implementation of 1ibsvm, the k1aR package simply provides an interface
to SVMLight only. To use SVMLight, one can perform the following steps:

1. Install the k1aR package:
> install.packages ("klaR")
> library(klaR)

2. Download the svMLight source code and binary for your platform from http://
svmlight.joachims.org/. For example, if your guest OS is Windows 64-bit, you
should download the file from http://download. joachims.org/svm_light/
current/svm _light windowsé4.zip.

3. Then, you should unzip the file and put the workable binary in the working directory;
you may check your working directory by using the getwd function:

> getwd ()

4. Train the support vector machine using the svmlight function:

> model.light = svmlight(churn~., data = trainset,
kernel="radial", cost=1l, gamma = 1l/ncol(trainset))

Choosing the cost of a support vector

machine

The support vector machines create an optimum hyperplane that separates the training data
by the maximum margin. However, sometimes we would like to allow some misclassifications
while separating categories. The SVM model has a cost function, which controls training errors
and margins. For example, a small cost creates a large margin (a soft margin) and allows
more misclassifications. On the other hand, a large cost creates a narrow margin (a hard
margin) and permits fewer misclassifications. In this recipe, we will illustrate how the large
and small cost will affect the SVM classifier.
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Getting ready

In this recipe, we will use the iris dataset as our example data source.

How to do it...

Perform the following steps to generate two different classification examples with
different costs:

1.

3.

192

Subset the iris dataset with columns named as Sepal .Length, Sepal .Width,
Species, with species in setosa and virginica:

> iris.subset = subset(iris, select=c("Sepal.Length", "Sepal.
Width", "Species"), Species %in% c("setosa","virginica"))

Then, you can generate a scatter plot with Sepal . Length as the x-axis and the
Sepal.Width as the y-axis:

> plot(x=iris.subset$Sepal.Length,y=iris.subset$Sepal.Width,
col=iris.subset$Species, pch=19)

iris.subset$Sepal Width
25 30 35 40
L )

irs_subset$Sepal Length

Figure 2: Scatter plot of Sepal.Length and Sepal.Width with subset of iris dataset

Next, you can train SVM based on iris.subset with the cost equal to 1:

> svim.model = svm(Species ~ ., data=iris.subset, kernel='linear',
cost=1, scale=FALSE)
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4. Then, we can circle the support vector with blue circles:

> points(iris.subset[svm.model$index,c(1,2)],col="blue",cex=2)

iris subset$Sepal Width
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iris.subset$Sepal Length

Figure 3: Circling support vectors with blue ring

5. Lastly, we can add a separation line on the plot:
> w = t(svm.model$coefs) %*% svm.model$SV
> b = -svm.model$rho
> abline(a=-b/wl[1,2], b=-wl[l,1]/wl[1l,2], col="red", lty=5)
£ . 7
o . P
2 < o« ot
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2 o | .3 ttesd _ 3o g03 ¢
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iris.subset$Sepal.Length

Figure 4: Add separation line to scatter plot
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6. In addition to this, we create another SVM classifier where cost = 10, 000:
> plot(x=iris.subset$Sepal.Length,y=iris.subset$Sepal.Width,
col=iris.subset$Species, pch=19)

> svm.model = svm(Species ~ ., data=iris.subset, type='C-
classification', kernel='linear', cost=10000, scale=FALSE)

> points(iris.subset[svm.model$index,c(1,2)],col="blue",cex=2)
> w = t(svm.model$coefs) %$*% svm.model$SV
> b = -svm.model$rho

> abline(a=-b/w([1,2], b=-w[l,1]/wl[1l,2], col="red", lty=5)
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iris subset$Sepal Length

Figure 5: A classification example with large cost

In this recipe, we demonstrate how different costs can affect the SVM classifier. First, we create
an iris subset with the columns, Sepal.Length, Sepal.Width, and Species containing

the species, setosa and virginica. Then, in order to create a soft margin and allow some
misclassification, we use an SVM with small cost (where cost = 1) to train the support of the
vector machine. Next, we circle the support vectors with blue circles and add the separation
line. As per Figure 5, one of the green points (virginica) is misclassified (it is classified to
setosa) to the other side of the separation line due to the choice of the small cost.

In addition to this, we would like to determine how a large cost can affect the SVM classifier.
Therefore, we choose a large cost (where cost = 10, 000). From Figure 5, we can see that
the margin created is narrow (a hard margin) and no misclassification cases are present. As a
result, the two examples show that the choice of different costs may affect the margin created
and also affect the possibilities of misclassification.
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» The idea of soft margin, which allows misclassified examples, was suggested by
Corinna Cortes and Vladimir N. Vapnik in 1995 in the following paper: Cortes, C., and
Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

Visualizing an SVM fit

To visualize the built model, one can first use the plot function to generate a scatter plot of
data input and the SVM fit. In this plot, support vectors and classes are highlighted through
the color symbol. In addition to this, one can draw a contour filled plot of the class regions to
easily identify misclassified samples from the plot.

Getting ready

In this recipe, we will use two datasets: the iris dataset and the telecom churn dataset. For
the telecom churn dataset, one needs to have completed the previous recipe by training a
support vector machine with SVM, and to have saved the SVM fit model.

How to do it...

Perform the following steps to visualize the SVM fit object:

1. Use SVM to train the support vector machine based on the iris dataset, and use the
plot function to visualize the fitted model:

> data(iris)
> model.iris = svm(Species~., iris)

> plot(model.iris, iris, Petal.Width ~ Petal.Length, slice =
list (Sepal.Width = 3, Sepal.Length = 4))

SVM classification plot
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Figure 6: The SVM classification plot of trained SVM fit based on iris dataset
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2. Visualize the SVM fit object, model, using the plot function with the dimensions of
total day minutesand total intl charge:

> plot (model, trainset, total day minutes ~ total intl charge)

SVM classification plot

no

y_minutes

total_da

total_intl_charge

Figure 7: The SVM classification plot of trained SVM fit based on churn dataset

In this recipe, we demonstrate how to use the plot function to visualize the SVM fit. In the
first plot, we train a support vector machine using the iris dataset. Then, we use the plot
function to visualize the fitted SVM.

In the argument list, we specify the fitted model in the first argument and the dataset

(this should be the same data used to build the model) as the second parameter. The third
parameter indicates the dimension used to generate the classification plot. By default, the
plot function can only generate a scatter plot based on two dimensions (for the x-axis and
y-axis). Therefore, we select the variables, Petal . Length and Petal .Width as the two
dimensions to generate the scatter plot.

From Figure 6, we find Petal.Length assigned to the x-axis, Petal .Width assigned to the
y-axis, and data points with X and 0 symbols scattered on the plot. Within the scatter plot, the
X symbol shows the support vector and the 0 symbol represents the data points. These two
symbols can be altered through the configuration of the svSymbol and dataSymbol options.
Both the support vectors and true classes are highlighted and colored depending on their
label (green refers to viginica, red refers to versicolor, and black refers to setosa). The last
argument, slice, is set when there are more than two variables. Therefore, in this example,
we use the additional variables, Sepal .width and Sepal.length, by assigning a constant
of 3 and 4.
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Next, we take the same approach to draw the SVM fit based on customer churn data. In this
example, we use total day minutes and total intl charge as the two dimensions
used to plot the scatterplot. As per Figure 7, the support vectors and data points in red and

black are scattered closely together in the central region of the plot, and there is no simple

way to separate them.

» There are other parameters, such as £111, grid, symbolPalette, and so on, that
can be configured to change the layout of the plot. You can use the help function to
view the following document for further information:

> ?svm.plot

Predicting labels based on a model trained

by a support vector machine

In the previous recipe, we trained an SVM based on the training dataset. The training process
finds the optimum hyperplane that separates the training data by the maximum margin. We
can then utilize the SVM fit to predict the label (category) of new observations. In this recipe,
we will demonstrate how to use the predict function to predict values based on a model
trained by SVM.

Getting ready

You need to have completed the previous recipe by generating a fitted SVM, and save the
fitted model in model.

How to do it...

Perform the following steps to predict the labels of the testing dataset:

1. Predict the label of the testing dataset based on the fitted SVM and attributes of the
testing dataset:
> svimn.pred = predict (model, testset[, !names(testset) %in%
c("churn")])

2. Then, you can use the table function to generate a classification table with the
prediction result and labels of the testing dataset:

> svm.table=table(svm.pred, testset$churn)

> svm.table
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svm.pred yes no
yes 70 12
no 71 865

3. Next, you can use classAgreement to calculate coefficients compared to the
classification agreement:

> classAgreement (svm. table)
$diag
[1] 0.9184676

$kappa
[1] 0.5855903

$rand

[1] 0.850083

$crand

[1] 0.5260472

4. Now, you can use confusionMatrix to measure the prediction performance based
on the classification table:
> library(caret)
> confusionMatrix(svm.table)

Confusion Matrix and Statistics

svmm.pred yes no
yes 70 12
no 71 865

Accuracy : 0.9185
95% CI : (0.8999, 0.9345)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 1.251e-08

Kappa : 0.5856

Mcnemar's Test P-Value : 1.936e-10
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Sensitivity : 0.49645
Specificity : 0.98632

Pos Pred Value : 0.85366

Neg Pred Value : 0.92415
Prevalence : 0.13851

Detection Rate : 0.06876
Detection Prevalence : 0.08055
Balanced Accuracy : 0.74139

'Positive' Class : yes

In this recipe, we first used the predict function to obtain the predicted labels of the testing
dataset. Next, we used the table function to generate the classification table based on the
predicted labels of the testing dataset. So far, the evaluation procedure is very similar to the
evaluation process mentioned in the previous chapter.

We then introduced a new function, classAgreement, which computes several coefficients
of agreement between the columns and rows of a two-way contingency table. The coefficients
include diag, kappa, rand, and crand. The diag coefficient represents the percentage of
data points in the main diagonal of the classification table, kappa refers to diag, which

is corrected for an agreement by a change (the probability of random agreements), rand
represents the Rand index, which measures the similarity between two data clusters, and
crand indicates the Rand index, which is adjusted for the chance grouping of elements.

Finally, we used confusionMatrix from the caret package to measure the performance

of the classification model. The accuracy of 0.9185 shows that the trained support vector
machine can correctly classify most of the observations. However, accuracy alone is not a good
measurement of a classification model. One should also reference sensitivity and specificity.

There's more...

Besides using SVM to predict the category of new observations, you can use SVM to predict
continuous values. In other words, one can use SVM to perform regression analysis.

In the following example, we will show how to perform a simple regression prediction based on
a fitted SVM with the type specified as eps-regression.
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Perform the following steps to train a regression model with SVM:

1. Train a support vector machine based on a Quartet dataset:
> library(car)
> data(Quartet)
> model.regression = svm(Quartet$yl~Quartet$x, type="eps-
regression")
2. Use the predict function to obtain prediction results:
> predict.y = predict(model.regression, Quartets$x)

> predict.y

1 2 3 4 5 6 7
8
8.196894 7.152946 8.807471 7.713099 8.533578 8.774046 6.186349
5.763689

9 10 11

8.726925 6.621373 5.882946

3. Plot the predicted points as squares and the training data points as circles on the
same plot:

> plot(Quartet$x, Quartet$yl, pch=19)
> points (Quartet$x, predict.y, pch=15, col="red")

10

Quartet$y

4 5 6 7 8B 9
|
L

Quartet$x

Figure 8: The scatter plot contains predicted data points and training data points
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Tuning a support vector machine

Besides using different feature sets and the kernel function in support vector machines, one
trick that you can use to tune its performance is to adjust the gamma and cost configured in
the argument. One possible approach to test the performance of different gamma and cost
combination values is to write a for loop to generate all the combinations of gamma and

cost as inputs to train different support vector machines. Fortunately, SVM provides a tuning
function, tune. svm, which makes the tuning much easier. In this recipe, we will demonstrate
how to tune a support vector machine through the use of tune. svm.

Getting ready

You need to have completed the previous recipe by preparing a training dataset, trainset.

How to do it...

Perform the following steps to tune the support vector machine:

1. First, tune the support vector machine using tune . svm:
> tuned = tune.svm(churn~., data = trainset, gamma = 10" (-6:-1),
cost = 107 (1:2))

2. Next, you can use the summary function to obtain the tuning result:

> summary (tuned)
Parameter tuning of 'svm':
- sampling method: 10-fold cross validation
- best parameters:
gamma cost
0.01 100
- best performance: 0.08077885
- Detailed performance results:
gamma cost error dispersion

1l 1le-06 10 0.14774780 0.02399512
2 1le-05 10 0.14774780 0.02399512
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3
4
5
6
7
8
9

1
1
1

le-04
le-03
le-02
le-01
le-06
le-05
le-04
0 le-03
1 le-02
2 le-01

10
10
10
10
100
100
100
100
100
100

0.14774780
0.14774780
0.09245223
0.09202306
0.14774780
0.14774780
0.14774780
0.11794484
0.08077885
0.12356135

0.02399512
0.02399512
0.02046032
0.01938475
0.02399512
0.02399512
0.02399512
0.02368343
0.01858195
0.01661508

3. After retrieving the best performance parameter from tuning the result, you can
retrain the support vector machine with the best performance parameter:

> model.tuned = svm(churn~., data = trainset, gamma = tuned$best.
parameters$gamma, cost = tuned$best.parameters$cost)

> summary (model. tuned)

Call:

svm(formula = churn ~ ., data = trainset, gamma = 10"-2, cost =

100)

Parameters:

SVM-Type: C-classification
SVM-Kernel: radial
cost: 100
gamma: 0.01

Number of Support Vectors: 547

( 304 243 )

Number of Classes: 2

Levels:

yes no
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Then, you can use the predict function to predict labels based on the fitted SVM:
> svm.tuned.pred = predict (model.tuned, testset[, !names(testset)

%in% c("churn")])

Next, generate a classification table based on the predicted and original labels of the
testing dataset:

> svm.tuned.table=table(svm.tuned.pred, testset$churn)

> svm.tuned.table

svm.tuned.pred yes no
yes 95 24
no 46 853

Also, generate a class agreement to measure the performance:
> classAgreement (svm. tuned. table)

$diag

[1] 0.9312377

$kappa
[1] 0.691678

$rand

[1] 0.871806

$crand

[1] 0.6303615

Finally, you can use a confusion matrix to measure the performance of the
retrained model:

> confusionMatrix (svm.tuned.table)

Confusion Matrix and Statistics

svm. tuned.pred yes no
yes 95 24
no 46 853

Accuracy : 0.9312
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95% CI : (0.9139, 0.946)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 1l.56e-12

Kappa : 0.6917
Mcnemar's Test P-Value : 0.01207

Sensitivity : 0.67376
Specificity : 0.97263

Pos Pred Value : 0.79832

Neg Pred Value : 0.94883
Prevalence : 0.13851

Detection Rate : 0.09332
Detection Prevalence : 0.11690
Balanced Accuracy : 0.82320

'Positive' Class : yes

To tune the support vector machine, you can use a trial and error method to find the best
gamma and cost parameters. In other words, one has to generate a variety of combinations of
gamma and cost for the purpose of training different support vector machines.

In this example, we generate different gamma values from 10™-6 to 10”1, and cost with a
value of either 10 or 100. Therefore, you can use the tuning function, svm. tune, to generate
12 sets of parameters. The function then makes 10 cross-validations and outputs the error
dispersion of each combination. As a result, the combination with the least error dispersion
is regarded as the best parameter set. From the summary table, we found that gamma with

a value of 0.01 and cost with a value of 100 are the best parameters for the SVM fit.

After obtaining the best parameters, we can then train a new support vector machine with
gamma equal to 0.01 and cost equal to 100. Additionally, we can obtain a classification
table based on the predicted labels and labels of the testing dataset. We can also obtain a
confusion matrix from the classification table. From the output of the confusion matrix, you
can determine the accuracy of the newly trained model in comparison to the original model.
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See also

» For more information about how to tune SVM with svm. tune, you can use the help
function to access this document:

> ?svm. tune

Training a neural network with neurainet

The neural network is constructed with an interconnected group of nodes, which involves the
input, connected weights, processing element, and output. Neural networks can be applied to
many areas, such as classification, clustering, and prediction. To train a neural network in R,
you can use neuralnet, which is built to train multilayer perceptron in the context of regression
analysis, and contains many flexible functions to train forward neural networks. In this recipe,
we will introduce how to use neuralnet to train a neural network.

Getting ready

In this recipe, we will use an iris dataset as our example dataset. We will first split the iris
dataset into a training and testing datasets, respectively.

How to do it...

Perform the following steps to train a neural network with neuralnet:

1. Firstload the iris dataset and split the data into training and testing datasets:
> data(iris)
> ind = sample(2, nrow(iris), replace = TRUE, prob=c(0.7, 0.3))
> trainset = iris[ind == 1,]

> testset = iris[ind == 2,]

2. Then, install and load the neuralnet package:
> install.packages ("neuralnet")
> library(neuralnet)

3. Add the columns versicolor, setosa, and virginica based on the name matched value
in the Species column:

> trainset$setosa = trainset$Species == "setosa"
> trainset$virginica = trainset$Species == "virginica"
> trainset$versicolor = trainset$Species == "versicolor"
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4. Next, train the neural network with the neuralnet function with three hidden
neurons in each layer. Notice that the results may vary with each training, so you
might not get the same result. However, you can use set.seed at the beginning, so
you can get the same result in every training process
> network = neuralnet(versicolor + virginica + setosa~ Sepal.
Length + Sepal.Width + Petal.Length + Petal.Width, trainset,
hidden=3)

> network

5. Now, you can view the summary information by accessing the result .matrix

attribute of the built neural network model:
> network$result.matrix

1
error 0.815610017474
reached. threshold 0.009994274769
steps 11063.000000000000
Intercept.to.llayhidl 1.686593311644
Sepal.Length.to.llayhidl 0.947415215237
Sepal.Width.to.llayhidl -7.220058260187
Petal.Length.to.llayhidl 1.790333443486
Petal.Width.to.llayhidl 9.943109233330
Intercept.to.llayhid2 1.411026063895
Sepal.Length.to.llayhid2 0.240309549505
Sepal.Width.to.llayhid2 0.480654059973
Petal.Length.to.llayhid2 2.221435192437
Petal.Width.to.llayhid2 0.154879347818
Intercept.to.llayhid3 24.399329878242
Sepal.Length.to.llayhid3 3.313958088512
Sepal.Width.to.llayhid3 5.845670010464
Petal.Length.to.llayhid3 -6.337082722485
Petal.Width.to.llayhid3 -17.990352566695
Intercept.to.versicolor -1.959842102421
llayhid.l.to.versicolor 1.010292389835
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Call: neuralnet(formula = versicolor + virginica + setosa ~ Sepal.
Length + Sepal.Width + Petal.Length + Petal.Width, data =
trainset, hidden = 3)

1l repetition was calculated.

Error Reached Threshold Steps

1 0.8156100175

0.009994274769 11063
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llayhid.2.to.versicolor 0.936519720978
llayhid.3.to.versicolor 1.023305801833
Intercept.to.virginica -0.908909982893
llayhid.l.to.virginica -0.009904635231
llayhid.2.to.virginica 1.931747950462
llayhid.3.to.virginica -1.021438938226
Intercept.to.setosa 1.500533827729
llayhid.l.to.setosa -1.001683936613
llayhid.2.to.setosa -0.498758815934
llayhid.3.to.setosa -0.001881935696

6. Lastly, you can view the generalized weight by accessing it in the network:

> head(network$generalized.weights[[1]])

The neural network is a network made up of artificial neurons (or nodes). There are three
types of neurons within the network: input neurons, hidden neurons, and output neurons.

In the network, neurons are connected; the connection strength between neurons is called
weights. If the weight is greater than zero, it is in an excitation status. Otherwise, it is in an
inhibition status. Input neurons receive the input information; the higher the input value, the
greater the activation. Then, the activation value is passed through the network in regard to
weights and transfer functions in the graph. The hidden neurons (or output neurons) then
sum up the activation values and modify the summed values with the transfer function. The
activation value then flows through hidden neurons and stops when it reaches the output
nodes. As a result, one can use the output value from the output neurons to classify the data.

Artificial Neural Network

Input Hidden Output
NeUrons nNeurons neurons

Figure 9: Artificial Neural Network
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The advantages of a neural network are: first, it can detect nonlinear relationships between
the dependent and independent variable. Second, one can efficiently train large datasets
using the parallel architecture. Third, it is a nonparametric model so that one can eliminate
errors in the estimation of parameters. The main disadvantages of a neural network are that
it often converges to the local minimum rather than the global minimum. Also, it might over-fit
when the training process goes on for too long.

In this recipe, we demonstrate how to train a neural network. First, we split the iris dataset
into training and testing datasets, and then install the neuralnet package and load the
library into an R session. Next, we add the columns versicolor, setosa, and virginica
based on the name matched value in the Species column, respectively. We then use the
neuralnet function to train the network model. Besides specifying the label (the column
where the name equals to versicolor, virginica, and setosa) and training attributes in the
function, we also configure the number of hidden neurons (vertices) as three in each layer.

Then, we examine the basic information about the training process and the trained network
saved in the network. From the output message, it shows the training process needed
11,063 steps until all the absolute partial derivatives of the error function were lower than
0.01 (specified in the threshold). The error refers to the likelihood of calculating Akaike
Information Criterion (AIC). To see detailed information on this, you can access the result.
matrix of the built neural network to see the estimated weight. The output reveals that the
estimated weight ranges from -18 to 24.40; the intercepts of the first hidden layer are 1.69,
1.41 and 24.40, and the two weights leading to the first hidden neuron are estimated as 0.95
(Sepal.Length), -7.22 (Sepal .Width), 1.79 (Petal.Length), and 9.94 (Petal.Width).
We can lastly determine that the trained neural network information includes generalized
weights, which express the effect of each covariate. In this recipe, the model generates

12 generalized weights, which are the combination of four covariates (Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width) to three responses (setosa, virginica,
versicolor).

» For a more detailed introduction on neuralnet, one can refer to the following paper:
Gunther, F., and Fritsch, S. (2010). neuralnet: Training of neural networks. The R
journal, 2(1), 30-38.
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Visualizing a neural network trained by

neuralnet

The package, neuralnet, provides the plot function to visualize a built neural network and
the gwplot function to visualize generalized weights. In following recipe, we will cover how to
use these two functions.

Getting ready

You need to have completed the previous recipe by training a neural network and have all
basic information saved in the network.

How to do it...

Perform the following steps to visualize the neural network and the generalized weights:

1. You can visualize the trained neural network with the plot function:
> plot (network)

Sepal.Length

O versicolor
Sepal Width
virginica
Petal.l ength
setosa

Petal Width

Error: 1.645119 Steps: 9399

Figure 10: The plot of the trained neural network
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2. Furthermore, you can use gwplot to visualize the generalized weights:

> par (mfrow=c(2,2))

> gwplot (network, selected.covariate="Petal.Width")
> gwplot (network, selected.covariate="Sepal.Width")
> gwplot (network, selected.covariate="Petal.Length")

> gwplot (network, selected.covariate="Petal.Width")

Response: versicolor Response: versicolor
= _00008003ogoogoooo @
| o 4
=z =] = .
(L] o [U] —
o —0300 @ 8000@0000000000 o
o -
I T T I o 1 T T I
05 1.0 15 20 25 30 35 4.0
Petal Width Sepal Width
Response: versicolor Response: versicolor
g g
Z T z =
(] ) (] I+]
o — sl o £ CONDNCLNONGINO0NNNNNC 00 & o —else o 8000@0000000000
<O
T I T T T = T I T T T
1 2 3 4 5 6 05 1.0 15 20
Petal Length Petal Width

Figure 11: The plot of generalized weights

In this recipe, we demonstrate how to visualize the trained neural network and the generalized
weights of each trained attribute. As per Figure 10, the plot displays the network topology of
the trained neural network. Also, the plot includes the estimated weight, intercepts and basic
information about the training process. At the bottom of the figure, one can find the overall
error and number of steps required to converge.

Figure 11 presents the generalized weight plot in regard to network$generalized.weights.
The four plots in Figure 11 display the four covariates: Petal .Width, Sepal .Width, Petal.
Length, and Petal .Width, in regard to the versicolor response. If all the generalized weights
are close to zero on the plot, it means the covariate has little effect. However, if the overall
variance is greater than one, it means the covariate has a nonlinear effect.
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See also

» For more information about gwplot, one can use the help function to access the
following document:

> ?gwplot

Predicting labels based on a model trained

by neurainet

Similar to other classification methods, we can predict the labels of new observations based
on trained neural networks. Furthermore, we can validate the performance of these networks
through the use of a confusion matrix. In the following recipe, we will introduce how to use
the compute function in a neural network to obtain a probability matrix of the testing dataset
labels, and use a table and confusion matrix to measure the prediction performance.

Getting ready

You need to have completed the previous recipe by generating the training dataset, trainset,
and the testing dataset, testset. The trained neural network needs to be saved in the network.

How to do it...

Perform the following steps to measure the prediction performance of the trained neural
network:

1. First, generate a prediction probability matrix based on a trained neural network and
the testing dataset, testset:

> net.predict = compute (network, testset[-5])3%net.result

2. Then, obtain other possible labels by finding the column with the greatest probability:

> net.prediction = c("versicolor", "virginica", "setosa")
[apply (net.predict, 1, which.max)]

3. Generate a classification table based on the predicted labels and the labels of the
testing dataset:

> predict.table = table(testset$Species, net.prediction)
> predict.table
prediction

setosa versicolor virginica
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setosa 20 0 0
versicolor 0 19 1
virginica 0 2 16

4. Next, generate classAgreement from the classification table:
> classAgreement (predict.table)
$diag
[1] 0.9444444444

$kappa
[1] 0.9154488518

$rand

[1] 0.9224318658

$crand

[1] 0.8248251737
5. Finally, use confusionMatrix to measure the prediction performance:
> confusionMatrix (predict.table)

Confusion Matrix and Statistics

prediction

setosa versicolor virginica

setosa 20 0 0
versicolor 0 19 1
virginica 0 2 16

Overall Statistics

Accuracy 0.9482759
95% CI (0.8561954, 0.9892035)
No Information Rate 0.362069

P-Value [Acc > NIR]

Kappa

Mcnemar's Test P-Value

< 0.00000000000000022204

0.922252

: NA
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virginica
Sensitivity
0.9411765
Specificity
0.9512195

Pos Pred Value
0.8888889

Neg Pred Value
0.9750000

Prevalence
0.2931034

Detection Rate
0.2758621

Detection Prevalence
0.3103448

Balanced Accuracy
0.9461980

In this recipe, we demonstrate how to predict labels based on a model trained by neuralnet.
Initially, we use the compute function to create an output probability matrix based on the
trained neural network and the testing dataset. Then, to convert the probability matrix to class
labels, we use the which.max function to determine the class label by selecting the column
with the maximum probability within the row. Next, we use a table to generate a classification
matrix based on the labels of the testing dataset and the predicted labels. As we have

created the classification table, we can employ a confusion matrix to measure the prediction
performance of the built neural network.

See also

In this recipe, we use the net . result function, which is the overall result of

the neural network, used to predict the labels of the testing dataset. Apart from
examining the overall result by accessing net . result, the compute function also
generates the output from neurons in each layer. You can examine the output of
neurons to get a better understanding of how compute works:

>

Class: setosa Class:

1.0000000

1.0000000

1.0000000

1.0000000

0.3448276

0.3448276

0.3448276

1.0000000

> compute (network, testset[-5])

versicolor Class:

0.9047619

0.9729730

0.9500000

0.9473684

0.3620690

0.3275862

0.3448276

0.9388674

Chapter 6
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Training a neural network with nnet

The nnet package is another package that can deal with artificial neural networks. This
package provides the functionality to train feed-forward neural networks with traditional
back propagation. As you can find most of the neural network function implemented in
the neuralnet package, in this recipe we provide a short overview of how to train neural
networks with nnet.

Getting ready

In this recipe, we do not use the trainset and trainset generated from the previous step;
please reload the iris dataset again.

How to do it...

Perform the following steps to train the neural network with nnet:

1. First, install and load the nnet package:
> install.packages ("nnet")

> library (nnet)

2. Next, split the dataset into training and testing datasets:
> data(iris)
> set.seed(2)
> ind = sample(2, nrow(iris), replace = TRUE, prob=c(0.7, 0.3))
> trainset = iris[ind == 1,]

> testset = iris[ind == 2,]

3. Then, train the neural network with nnet:
> iris.nn = nnet(Species ~ ., data = trainset, size = 2, rang =
0.1, decay = 5e-4, maxit = 200)

# weights: 19

initial wvalue 165.086674
iter 10 value 70.447976
iter 20 value 69.667465
iter 30 value 69.505739
iter 40 value 21.588943
iter 50 value 8.691760
iter 60 value 8.521214
iter 70 value 8.138961
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iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter

final

80

90
100
110
120
130
140
150
160
170
180

value 6.

value
value
value
value
value
value
value
value
value
value

value

converged

7.291365
7.039209
6.570987
6.355346
6.345511
6.340208
6.337271
6.334285
6.333792
6.333578
6.333498
333471

4. Use the summary to obtain information about the trained neural network:

> summary (iris.nn)
a 4-2-3 network with 19 weights

options were - softmax modelling decay=0.0005
b->hl il->hl i2->hl i3->hl i4->hl
-0.38 -0.63 -1.96 3.13 1.53
b->h2 il->h2 i2->h2 i3->h2 i4->h2
8.95 0.52 1.42 -1.98 -3.85
b->0l hl->0l1l h2->01
3.08 -10.78 4.99
b->02 hl->02 h2->02
-7.41 6.37 7.18
b->03 hl->03 h2->03
4.33 4.42 -12.16

In this recipe, we demonstrate steps to train a neural network model with the nnet package.
We first use nnet to train the neural network. With this function, we can set the classification
formula, source of data, number of hidden units in the size parameter, initial random
weight in the rang parameter, parameter for weight decay in the decay parameter, and the
maximum iteration in the maxit parameter. As we set maxit to 200, the training process
repeatedly runs till the value of the fitting criterion plus the decay term converge. Finally, we
use the summary function to obtain information about the built neural network, which reveals
that the model is built with 4-2-3 networks with 19 weights. Also, the model shows a list of
weight transitions from one node to another at the bottom of the printed message.
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See also

For those who are interested in the background theory of nnet and how it is made, please
refer to the following articles:

» Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge

» Venables, W. N., and Ripley, B. D. (2002). Modern applied statistics with S. Fourth
edition. Springer

Predicting labels based on a model trained

by nnet

As we have trained a neural network with nnet in the previous recipe, we can now predict
the labels of the testing dataset based on the trained neural network. Furthermore, we can
assess the model with a confusion matrix adapted from the caret package.

Getting ready

You need to have completed the previous recipe by generating the training dataset,
trainset, and the testing dataset, testset, from the iris dataset. The trained neural
network also needs to be saved as iris.nn.

How to do it...

Perform the following steps to predict labels based on the trained neural network:

1. Generate the predictions of the testing dataset based on the model, iris.nn:
> iris.predict = predict(iris.nn, testset, type="class")
2. Generate a classification table based on the predicted labels and labels of the testing
dataset:
> nn.table = table(testset$Species, iris.predict)
iris.predict

setosa versicolor virginica

setosa 17 0 0
versicolor 0 14 0
virginica 0 1 14
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3.

Lastly, generate a confusion matrix based on the classification table:

> confusionMatrix(nn.table)

Confusion Matrix and Statistics

iris.predict

setosa versicolor virginica

setosa 17 0
versicolor 0 14
virginica 0 1

Overall Statistics

Accuracy : 0.9782609
95% CI : (0.8847282,
No Information Rate : 0.3695652

0
0

14

0.9994498)

P-Value [Acc > NIR] : < 0.00000000000000022204

Kappa : 0.9673063

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: setosa Class:

Sensitivity 1.0000000
Specificity 1.0000000
Pos Pred Value 1.0000000
Neg Pred Value 1.0000000
Prevalence 0.3695652
Detection Rate 0.3695652
Detection Prevalence 0.3695652
Balanced Accuracy 1.0000000

Class: virginica

Sensitivity 1.0000000
Specificity 0.9687500
Pos Pred Value 0.9333333

versicolor
0.
1.0000000
1.0000000
0.9687500
0.
0
0
0

9333333

3260870

.3043478
.3043478
.9666667
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Classification (ll) - Neural Network and SVM

Neg Pred Value 1.0000000
Prevalence 0.3043478
Detection Rate 0.3043478
Detection Prevalence 0.3260870
Balanced Accuracy 0.9843750

Similar to other classification methods, one can also predict labels based on the neural
networks trained by nnet. First, we use the predict function to generate the predicted
labels based on a testing dataset, testset. Within the predict function, we specify the
type argument to the class, so the output will be class labels instead of a probability matrix.
Next, we use the table function to generate a classification table based on predicted labels
and labels written in the testing dataset. Finally, as we have created the classification table,
we can employ a confusion matrix from the caret package to measure the prediction
performance of the trained neural network.

See also

» Forthe predict function, if the type argument to class is not specified,
by default, it will generate a probability matrix as a prediction result, which is
very similar to net . result generated from the compute function within the
neuralnet package:

> head(predict(iris.nn, testset))
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Model Evaluation

In this chapter, we will cover the following topics:

» Estimating model performance with k-fold cross-validation
» Performing cross-validation with the e1071 package

» Performing cross-validation with the caret package

» Ranking the variable importance with the caret package

» Ranking the variable importance with the rminer package
» Finding highly correlated features with the caret package
» Selecting features using the caret package

» Measuring the performance of a regression model

» Measuring the prediction performance with the confusion matrix
» Measuring the prediction performance using ROCR

» Comparing an ROC curve using the caret package

» Measuring performance differences between models with the caret package

Introduction

Model evaluation is performed to ensure that a fitted model can accurately predict responses
for future or unknown subjects. Without model evaluation, we might train models that over-fit
in the training data. To prevent overfitting, we can employ packages, such as caret, rminer,
and rocr to evaluate the performance of the fitted model. Furthermore, model evaluation can
help select the optimum model, which is more robust and can accurately predict responses
for future subjects.
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In the following chapter, we will discuss how one can implement a simple R script or use one of
the packages (for example, caret or rminer) to evaluate the performance of a fitted model.

Estimating model performance with k-fold

cross-validation

The k-fold cross-validation technique is a common technique used to estimate the
performance of a classifier as it overcomes the problem of over-fitting. For k-fold cross-
validation, the method does not use the entire dataset to build the model, instead it splits the
data into a training dataset and a testing dataset. Therefore, the model built with a training
dataset can then be used to assess the performance of the model on the testing dataset. By
performing n repeats of the k-fold validation, we can then use the average of n accuracies

to truly assess the performance of the built model. In this recipe, we will illustrate how to
perform a k-fold cross-validation.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source to
train the support vector machine. For those who have not prepared the dataset, please refer
to Chapter 5, Classification (1) - Tree, Lazy, and Probabilistic, for detailed information.

How to do it...

Perform the following steps to cross-validate the telecom churn dataset:

1. Split the index into 10 fold using the cut function:

> ind = cut(l:nrow(churnTrain), breaks=10, labels=F)

2. Next, use for loop to perform a 10 fold cross-validation, repeated 10 times:
> accuracies = c()
> for (i in 1:10) {
+ fit = svm(churn ~., churnTrain[ind != 1i,])

+ predictions = predict(fit, churnTrain[ind == i, !
names (churnTrain) %in% c("churn")])

+ correct count = sum(predictions == churnTrain[ind ==
i,e("churn")])

+ accuracies = append(correct count / nrow(churnTrain[ind ==
i,]1), accuracies)

+}
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3. You can then print the accuracies:
> accuracies

[1] 0.9341317 0.8948949 0.8978979 0.9459459 0.9219219 0.9281437
0.9219219 0.9249249 0.9189189 0.9251497

4. Lastly, you can generate average accuracies with the mean function:
> mean (accuracies)

[1] 0.9213852

In this recipe, we implement a simple script performing 10-fold cross-validations. We first
generate an index with 10 fold with the cut function. Then, we implement a for loop to
perform a 10-fold cross-validation 10 times. Within the loop, we first apply svm on 9 folds
of data as the training set. We then use the fitted model to predict the label of the rest
of the data (the testing dataset). Next, we use the sum of the correctly predicted labels
to generate the accuracy. As a result of this, the loop stores 10 generated accuracies.
Finally, we use the mean function to retrieve the average of the accuracies.

If you wish to perform the k-fold validation with the use of other models, simply replace the
line to generate the variable fit to whatever classifier you prefer. For example, if you would like
to assess the Naive Bayes model with a 10-fold cross-validation, you just need to replace the
calling function from svm to naiveBayes:

> for (i in 1:10) {

+ fit = naiveBayes(churn ~., churnTrain[ind != i,])

+ predictions = predict(fit, churnTrain[ind == i, ! names (churnTrain)
%in% c("churn")])

+ correct count = sum(predictions == churnTrain[ind == i,c("churn")])
+ accuracies = append(correct count / nrow(churnTrainl[ind == i,]),
accuracies)
+}
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Performing cross-validation with the

e1071 package

Besides implementing a 1oop function to perform the k-fold cross-validation, you can use the
tuning function (for example, tune .nnet, tune.randomForest, tune.rpart, tune.
svm, and tune.knn.) within the e1071 package to obtain the minimum error value. In this
recipe, we will illustrate how to use tune . svm to perform the 10-fold cross-validation and
obtain the optimum classification model.

Getting ready

In this recipe, we continue to use the telecom churn dataset as the input data source to
perform 10-fold cross-validation.

How to do it...

Perform the following steps to retrieve the minimum estimation error using cross-validation:

1. Apply tune.svmon the training dataset, trainset, with the 10-fold cross-validation
as the tuning control. (If you find an error message, such as could not find
function predict.func, please clear the workspace, restart the R session and
reload the e1071 library again):

> tuned = tune.svm(churn~., data = trainset, gamma = 10"-2, cost =
10”2, tunecontrol=tune.control (cross=10))
2. Next, you can obtain the summary information of the model, tuned:

> summary (tuned)

Error estimation of 'svm' using 10-fold cross validation:
0.08164651

3. Then, you can access the performance details of the tuned model:

> tuned$performances
gamma cost error dispersion
1 0.01 100 0.08164651 0.02437228

4. Lastly, you can use the optimum model to generate a classification table:

> svmfit = tuned$best.model
> table(trainset[,c("churn")], predict(svmfit))

yes no
yes 234 108
no 13 1960
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The e1071 package provides miscellaneous functions to build and assess models, therefore,
you do not need to reinvent the wheel to evaluate a fitted model. In this recipe, we use the
tune . svm function to tune the svm model with the given formula, dataset, gamma, cost, and
control functions. Within the tune . control options, we configure the option as cross=10,
which performs a 10-fold cross validation during the tuning process. The tuning process will
eventually return the minimum estimation error, performance detail, and the best model
during the tuning process. Therefore, we can obtain the performance measures of the tuning
and further use the optimum model to generate a classification table.

» Inthe e1071 package, the tune function uses a grid search to tune parameters.
For those interested in other tuning functions, use the help function to view the
tune document:

> ?el071::tune

Performing cross-validation with the

caret package

The caret (classification and regression training) package contains many functions in regard
to the training process for regression and classification problems. Similar to the e1071
package, it also contains a function to perform the k-fold cross validation. In this recipe,

we will demonstrate how to the perform k-fold cross validation using the caret package.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source to
perform the k-fold cross validation.

How to do it...

Perform the following steps to perform the k-fold cross-validation with the caret package:
1. First, set up the control parameter to train with the 10-fold cross validation in 3
repetitions:

> control = trainControl (method="repeatedcv", number=10,
repeats=3)
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2. Then, you can train the classification model on telecom churn data with rpart:

> model = train(churn~.,
preProcess="scale",

data=trainset, method="rpart",
trControl=control)

3. Finally, you can examine the output of the generated model:

> model

CART

2315 samples
16 predictor
Inol

2 classes: 'yes',

Pre-processing: scaled

Resampling: Cross-Validated (10 fold,

Summary of sample sizes:

Resampling results across

cp Accuracy Kappa
0.0556 0.904 0.531
0.0746 0.867 0.269
0.0760 0.860 0.212

Accuracy was used to select the optimal model using the largest

value.

The final value used for the model was cp =

In this recipe, we demonstrate how convenient it is to conduct the k-fold cross-validation using
the caret package. In the first step, we set up the training control and select the option to
perform the 10-fold cross-validation in three repetitions. The process of repeating the k-fold
validation is called repeated k-fold validation, which is used to test the stability of the model. If
the model is stable, one should get a similar test result. Then, we apply rpart on the training
dataset with the option to scale the data and to train the model with the options configured in

the previous step.

224

2084,

repeated 3 times)

2083, 2082, 2084, 2083, 2084,

tuning parameters:

Accuracy SD Kappa SD

0.0236 0.155
0.0153 0.153
0.0107 0.141

0.05555556.
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After the training process is complete, the model outputs three resampling results. Of these
results, the model with cp=0.05555556 has the largest accuracy value (0.904), and is
therefore selected as the optimal model for classification.

» You can configure the resampling function in trainControl, in which you can
specify boot, boot632, cv, repeatedcv, LOOCV, LGOCV, none, oob, adaptive_
cv, adaptive boot, or adaptive LGOCV. To view more detailed information of
how to choose the resampling method, view the trainControl document:

> ?trainControl

Ranking the variable importance with the

caret package

After building a supervised learning model, we can estimate the importance of features.
This estimation employs a sensitivity analysis to measure the effect on the output of a given
model when the inputs are varied. In this recipe, we will show you how to rank the variable
importance with the caret package.

Getting ready

You need to have completed the previous recipe by storing the fitted rpart object in the
model variable.

How to do it...

Perform the following steps to rank the variable importance with the caret package:

1. First, you can estimate the variable importance with the varImp function:
> importance = varImp (model, scale=FALSE)
> importance

rpart variable importance

Overall

number customer_service_calls 116.015

total day minutes 106.988
total day charge 100.648
international planyes 86.789
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voice mail planyes 25.974
total eve charge 23.097
total eve minutes 23.097
number vmail messages 19.885
total intl minutes 6.347
total eve calls 0.000
total day calls 0.000
total night charge 0.000
total intl calls 0.000
total intl charge 0.000
total night minutes 0.000
total night calls 0.000

2. Then, you can generate the variable importance plot with the plot function:

> plot (importance)

number_customer_service_calls

total_dsy_minutes

total_day_charge

international_planyes

voice_mail_planyes "
total_eve_minutes —
total_sve_charge —
number_vmail_messages ——————=*
total_intl_minutes =

total_day_calls
total_intl_charge
total_night_charge
total_night_calls
total_night_minutes

total_intl_cslls

totsl_sve_calls

T T T T T T
0 20 40 (1] 80 100 120

Importance

Figure 1: The visualization of variable importance using the caret package

In this recipe, we first use the varImp function to retrieve the variable importance and obtain
the summary. The overall results show the sensitivity measure of each attribute. Next, we
plot the variable importance in terms of rank, which shows that the number customer_
service calls attribute is the most important variable in the sensitivity measure.
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There's more...

In some classification packages, such as rpart, the object generated from the training model
contains the variable importance. We can examine the variable importance by accessing the

output object:

> library(rpart)

> model.rp = rpart(churn~., data=trainset)

> model.rp$variable.importance
total day minutes

111.645286

number customer service calls
58.486651

total intl charge

47.698379

total eve minutes

47.166646

total intl calls

36.730344

voice mail plan

19.884863

total eve_calls

3.553423

total night minutes

1.754547

total day charge
110.881583
total intl minutes
48.283228
total eve charge
47.166646
international plan
42.194508
number vmail messages
19.884863

total night calls
7.195828

total night charge
1.754547
total day calls
1.494986

Ranking the variable importance with the

rminer package

Besides using the caret package to generate variable importance, you can use the rminer
package to generate the variable importance of a classification model. In the following recipe,
we will illustrate how to use rminer to obtain the variable importance of a fitted model.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source to
rank the variable importance.
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How to do it...

Perform the following steps to rank the variable importance with rminer:

1.

Install and load the package, rminer:
> install.packages ("rminer")

> library(rminer)

Fit the svm model with the training set:

> model=fit (churn~.,trainset,model="svm")

Use the Importance function to obtain the variable importance:

> VariableImportance=Importance (model, trainset,method="sensv")

Plot the variable importance ranked by the variance:

> L=list(runs=1,sen=t(VariableImportance$imp),h sresponses=Variablel
mportance$sresponses)

> mgraph (L,graph="IMP", leg=names (trainset),col="gray",Grid=10)
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Figure 2: The visualization of variable importance using the rminexr package

Similar to the caret package, the rminer package can also generate the variable
importance of a classification model. In this recipe, we first train the svm model on the
training dataset, trainset, with the £it function. Then, we use the Importance function
to rank the variable importance with a sensitivity measure. Finally, we use mgraph to plot the
rank of the variable importance. Similar to the result obtained from using the caret package,
number customer service calls is the mostimportant variable in the measure of

sensitivity.
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See also

>

The rminer package provides many classification models for one to choose from. If
you are interested in using models other than svm, you can view these options with
the following command:

> ?rminer::fit

Finding highly correlated features with the

caret package

When performing regression or classification, some models perform better if highly correlated
attributes are removed. The caret package provides the findCorrelation function, which
can be used to find attributes that are highly correlated to each other. In this recipe, we will
demonstrate how to find highly correlated features using the caret package.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source to
find highly correlated features.

How to do it...

Perform the following steps to find highly correlated attributes:

1.

Remove the features that are not coded in numeric characters:

> new_train = trainset[,! names(churnTrain) %in% c("churn",
"international plan", "voice mail plan")]

Then, you can obtain the correlation of each attribute:

>cor_mat = cor(new_train)

Next, we use findCorrelation to search for highly correlated attributes with a cut
off equal to 0.75:

> highlyCorrelated = findCorrelation(cor mat, cutoff=0.75)

We then obtain the name of highly correlated attributes:

> names (new train) [highlyCorrelated]

[1] "total intl minutes" "total day charge" "total eve
minutes" "total night minutes"
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In this recipe, we search for highly correlated attributes using the caret package. In order

to retrieve the correlation of each attribute, one should first remove nonnumeric attributes.
Then, we perform correlation to obtain a correlation matrix. Next, we use findCorrelation
to find highly correlated attributes with the cut off set to 0.75. We finally obtain the names of
highly correlated (with a correlation coefficient over 0.75) attributes, which are total intl
minutes, total day charge, total eve minutes, and total night minutes. You
can consider removing some highly correlated attributes and keep one or two attributes for
better accuracy.

» In addition to the caret package, you can use the leaps, genetic, and anneal
functions in the subselect package to achieve the same goal

Selecting features using the caret package

The feature selection method searches the subset of features with minimized predictive
errors. We can apply feature selection to identify which attributes are required to build an
accurate model. The caret package provides a recursive feature elimination function,
rfe, which can help automatically select the required features. In the following recipe,
we will demonstrate how to use the caret package to perform feature selection.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source
for feature selection.

How to do it...

Perform the following steps to select features:

1. Transform the feature named as international plan of the training dataset,
trainset,to intl yesand intl no:

> intl plan = model.matrix(~ trainset.intermational plan - 1,
data=data.frame(trainset$international_plan))

> colnames (intl_plan) = c("trainset.international planno"="intl
no", "trainset.international planyes"= "intl yes")
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Transform the feature named as voice mail plan of the training dataset,
trainset, to voice yes and voice no:

> voice_plan = model.matrix(~ trainset.voice mail plan - 1,
data=data.frame(trainset$voice_mail plan))

> colnames (voice plan) = c("trainset.voice mail planno" ="voice_

no", "trainset.voice mail planyes"="voidce yes")

Remove the international planand voice mail plan attributes and
combine the training dataset, trainset with the data frames, int1l plan
and voice plan:

> trainset$international plan = NULL

> trainset$voice mail plan = NULL

> trainset = cbind(intl plan,voice plan, trainset)

Transform the feature named as international plan of the testing dataset,
testset,to intl yesand intl no:

> intl plan = model.matrix(~ testset.international plan - 1,
data=data.frame(testset$international plan))

> colnames (intl _plan) = c("testset.international planno"="intl

no", "testset.international planyes"= "intl yes")

Transform the feature named as voice mail plan of the training dataset,
trainset, to voice yes and voice no:

> voice_plan = model.matrix(~ testset.voice mail plan - 1,
data=data.frame(testset$voice mail plan))

> colnames (voice_plan) = c("testset.voice mail planno" ="voice_

no", "testset.voice mail planyes"="voidce yes")

Remove the international planand voice mail plan attributes and
combine the testing dataset, testset with the data frames, intl plan and
voice plan:

> testset$international plan = NULL
> testset$voice mail plan = NULL

> testset = cbind(intl plan,voice plan, testset)

We then create a feature selection algorithm using linear discriminant analysis:

> ldaControl = rfeControl (functions = ldaFuncs, method = "cv")
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8.

232

Next, we perform a backward feature selection on the training dataset, trainset
using subsets from 1 to 18:

> ldaProfile

> ldaProfile

Recursive feature selection

rfe (trainset|[,
trainset[,c("churn")],sizes

c(l:18),

!names (trainset) %in% c("churn")],
rfeControl = ldaControl)

Outer resampling method: Cross-Validated (10 fold)

Resampling performance over subset size:

Variables Accuracy

1

W 0 N a0 U A W N

[
o

11
12
13
14
15
16
17
18

0.
0.8523
0.8423
0.8462
0.8466
0.8466
0.8458
0.8458
0.8475
0.
0
0
0
0
0
0
0
0

8523

8514

.8518
.8544
.8544
.8531
.8527
.8531
.8531
.8531

Kappa AccuracySD

.0000
.0000
.1877
.2285
.2384
.2364
.2315
.2284
.2430
.2577
.2587
.2702
.2721
.2663
.2652
.2684
.2684
.2684

0.
0.001325
0.015468
0.016593
0.020710
0.019612
0.017551
0.016608
0.016882
0.
0
0
0
0
0
0
0
0

001325

014281

.014124
.015078
.015352
.018428
.017958
.017897
.017897
.017897

The top 5 variables (out of 12):

KappaSD Selected

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

total day charge, total day minutes,

service_calls, total_eve_charge

.00000
.00000
.09787
.09610
.09970
.09387
.08670
.09536
.10147
.08076
.08075
.09208 *
.09421
.11022
.10850
.10884
.10884
.10884

intl no, number customer
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9. Next, we can plot the selection result:
> plot(ldaProfile, type = c("o", "g"))

=
=)
o
=
|
T

0.845 r

Accuracy (Cross-validation)

0.840 r

T T T T
10 15

Yariables

Figure 3: The feature selection result

10. We can then examine the best subset of the variables:
> ldaProfile$optVariables
[1] "total day charge"
[2] "total day minutes"
[3] "intl no"
[4] "number customer service calls"
[5] "total eve charge"
[6] "total eve minutes"
[7] "voidce_yes"
[8] "total intl calls"
[9] "number vmail messages"
[10] "total intl charge"
[11] "total_ intl minutes"

[12] "total night minutes"

11. Now, we can examine the fitted model:
> ldaProfile$fit
Call:
lda(x, y)
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Prior probabilities of groups:

yes no

0.1477322 0.8522678

Group means:

yes

no

yes

no

yes

no

yes

no

yes

no

total day charge total day minutes intl no
35.00143 205.8877 0.7046784
29.62402 174.2555 0.9351242

number customer service calls total eve charge
2.204678 18.16702
1.441460 16.96789
total eve minutes voidce yes total intl calls
213.7269 0.1666667 4.134503
199.6197 0.2954891 4.514445
number vmail messages total intl charge
5.099415 2.899386
8.674607 2.741343
total intl minutes total night minutes
10.73684 205.4640
10.15119 201.4184

Coefficients of linear discriminants:

LDl
total day charge 0.715025524
total day minutes -0.130486470
intl no 2.259889324

number customer service calls -0.421997335

total eve charge -2.390372793
total eve minutes 0.198406977
voidce yes 0.660927935
total intl calls 0.066240268
number vmail messages -0.003529233
total intl charge 2.315069869
total intl minutes -0.693504606
total night minutes -0.002127471
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12. Finally, we can calculate the performance across resamples:

> postResample (predict (ldaProfile, testset[, !names(testset) %in%
c("churn")]), testset[,c("churn")])

Accuracy Kappa

0.8605108 0.2672027

In this recipe, we perform feature selection using the caret package. As there are
factor-coded attributes within the dataset, we first use a function called model .matrix to
transform the factor-coded attributes into multiple binary attributes. Therefore, we transform
the international plan attribute to intl yes and intl no. Additionally, we transform
the voice mail plan attribute to voice yes and voice no.

Next, we set up control parameters for training using the cross-validation method, cv, with
the linear discriminant function, 1daFuncs. Then, we use the recursive feature elimination,
rfe, to perform feature selection with the use of the control function, 1daFuncs. The
rfe function generates the summary of feature selection, which contains resampling a
performance over the subset size and top variables.

We can then use the obtained model information to plot the number of variables against
accuracy. From Figure 3, it is obvious that using 12 features can obtain the best accuracy.

In addition to this, we can retrieve the best subset of the variables in (12 variables in total)
the fitted model. Lastly, we can calculate the performance across resamples, which yields an
accuracy of 0.86 and a kappa of 0.27.

» In order to specify the algorithm used to control feature selection, one can change
the control function specified in rfeControl. Here are some of the options you can

use:

caretFuncs SVM (caret)
1lmFuncs 1m (base)
rfFuncs RF (randomForest)
treebagFuncs DT (ipred)
ldaFuncs lda (base)
nbFuncs NB (klaR)
gamFuncs gam (gam)
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Measuring the performance of the

regression model

To measure the performance of a regression model, we can calculate the distance from
predicted output and the actual output as a quantifier of the performance of the model. Here,
we often use the root mean square error (RMSE), relative square error (RSE) and R-Square
as common measurements. In the following recipe, we will illustrate how to compute these
measurements from a built regression model.

Getting ready

In this recipe, we will use the Quartet dataset, which contains four regression datasets, as
our input data source.

How to do it...

Perform the following steps to measure the performance of the regression model:

1. Load the Quartet dataset from the car package:
> library(car)

> data(Quartet)

2. Plot the attribute, y3, against x using the 1m function:
> plot(Quartet$x, Quartet$y3)
> Ilmfit = 1lm(Quartet$y3~Quartet$x)

> abline(lmfit, col="red")

12

Quartet$y3

Quartet$x

Figure 4: The linear regression plot

3. You can retrieve predicted values by using the predict function:

> predicted= predict(lmfit, newdata=Quartet[c("x")])
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Now, you can calculate the root mean square error:

> actual = Quartet$y3

> rmse = (mean((predicted - actual)”2))”0.5
> rmse

[1] 1.118286

You can calculate the relative square error:

> mu = mean(actual)

> rse = mean((predicted - actual)”2) / mean((mu - actual)”2)
> rse

[1] 0.333676

Also, you can use R-Square as a measurement:

> rsquare = 1 - rse

> rsquare

[1] 0.666324

Then, you can plot attribute, y3, against x using the r1m function from the
MASS package:

> library (MASS)

> plot(Quartet$x, Quartet$y3)

> rlmfit = rlm(Quartet$y3~Quartets$x)

> abline(rlmfit, col="red")

Quartet$y3

12

10

Quartet$x

Figure 5: The robust linear regression plot on the Quartet dataset
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8. You can then retrieve the predicted value using the predict function:

> predicted = predict(rlmfit, newdata=Quartet[c("x")])

9. Next, you can calculate the root mean square error using the distance of the
predicted and actual value:
> actual = Quartet$y3
> rmse = (mean((predicted - actual)”2))”"0.5
> rmse

[1] 1.279045

10. Calculate the relative square error between the predicted and actual labels:
> mu = mean(actual)
> rse =mean( (predicted - actual)”2) / mean((mu - actual)*2)
> rse

[1] 0.4365067

11. Now, you can calculate the R-Square value:
> rsquare = 1 - rse
> rsquare

[1] 0.5634933

The measurement of the performance of the regression model employs the distance between
the predicted value and the actual value. We often use these three measurements, root
mean square error, relative square error, and R-Square, as the quantifier of the performance
of regression models. In this recipe, we first load the Quartet data from the car package.
We then use the 1m function to fit the linear model, and add the regression line on a scatter
plot of the x variable against the y3 variable. Next, we compute the predicted value using the
predict function, and begin to compute the root mean square error (RMSE), relative square
error (RSE), and R-Square for the built model.

As this dataset has an outlier at x=13, we would like to quantify how the outlier affects

the performance measurement. To achieve this, we first train a regression model using

the r1m function from the MASS package. Similar to the previous step, we then generate a
performance measurement of the root square mean error, relative error and R-Square. From
the output measurement, it is obvious that the mean square error and the relative square
errors of the 1m model are smaller than the model built by r1m, and the score of R-Square
shows that the model built with 1m has a greater prediction power. However, for the actual
scenario, we should remove the outlier at x=13. This comparison shows that the outlier may
be biased toward the performance measure and may lead us to choose the wrong model.
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There's more...

If you would like to perform cross-validation on a linear regression model, you can use the
tune function within the e1071 package:

> tune(lm, y3~x, data = Quartet)

Error estimation of 'lm' using 10-fold cross validation: 2.33754

Other than the e1071 package, you can use the train function from the caret package to

perform cross-validation. In addition to this, you can also use cv.1m from the DAAG package
to achieve the same goal.

Measuring prediction performance with a

confusion matrix

To measure the performance of a classification model, we can first generate a classification
table based on our predicted label and actual label. Then, we can use a confusion matrix
to obtain performance measures such as precision, recall, specificity, and accuracy. In this
recipe, we will demonstrate how to retrieve a confusion matrix using the caret package.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as our example dataset.

How to do it...

Perform the following steps to generate a classification measurement:

1. Train an svm model using the training dataset:

> svm.model= train(churn ~ .,
+ data = trainset,
+ method = "svmRadial")

2. You can then predict labels using the fitted model, svm.model:
> svim.pred = predict(svmm.model, testset[,! names(testset) %in%
c("churn")])
3. Next, you can generate a classification table:
> table(svm.pred, testset[,c("churn")])
svmm.pred yes no

yes 73 16
no 68 861
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4. Lastly, you can generate a confusion matrix using the prediction results and the
actual labels from the testing dataset:

> confusionMatrix(svm.pred, testset[,c("churn")])

Confusion Matrix and Statistics

Reference
Prediction yes no
yes 73 16
no 68 861

Accuracy : 0.9175
95% CI : (0.8989, 0.9337)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 2.273e-08

Kappa : 0.5909

Mcnemar's Test P-Value 2.628e-08
Sensitivity 0.51773
Specificity 0.98176

Pos Pred Value 0.82022

Neg Pred Value 0.92680
Prevalence 0.13851

Detection Rate 0.07171
Detection Prevalence 0.08743
Balanced Accuracy 0.74974

'Positive' Class : yes

In this recipe, we demonstrate how to obtain a confusion matrix to measure the performance
of a classification model. First, we use the train function from the caret package to

train an svm model. Next, we use the predict function to extract the predicted labels of
the svm model using the testing dataset. Then, we perform the table function to obtain

the classification table based on the predicted and actual labels. Finally, we use the
confusionMatrix function from the caret package to a generate a confusion matrix to
measure the performance of the classification model.
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See also

» If you are interested in the available methods that can be used in the train function,
you can refer to this website: http://topepo.github.io/caret/modelList.
html

Measuring prediction performance using

ROCR

A receiver operating characteristic (ROC) curve is a plot that illustrates the performance of
a binary classifier system, and plots the true positive rate against the false positive rate for
different cut points. We most commonly use this plot to calculate the area under curve (AUC)
to measure the performance of a classification model. In this recipe, we will demonstrate
how to illustrate an ROC curve and calculate the AUC to measure the performance of a
classification model.

Getting ready

In this recipe, we will continue using the telecom churn dataset as our example dataset.

How to do it...

Perform the following steps to generate two different classification examples with
different costs:

1. First, you should install and load the ROCR package:
> install.packages ("ROCR")
> library (ROCR)

2. Train the svm model using the training dataset with a probability equal to TRUE:
> svmfit=svm(churn~ ., data=trainset, prob=TRUE)

3. Make predictions based on the trained model on the testing dataset with the
probability set as TRUE:
>pred=predict (svmfit, testset[, !names(testset) %in% c("churn")],
probability=TRUE)

4. Obtain the probability of labels with yes:
> pred.prob = attr(pred, "probabilities")
> pred.to.roc = pred.probl[, 2]

241

www.it-ebooks.info


http://topepo.github.io/caret/modelList.html
http://topepo.github.io/caret/modelList.html
http://www.it-ebooks.info/

Model Evaluation

5. Use the prediction function to generate a prediction result:

> pred.rocr = prediction(pred.to.roc, testset$churn)

6. Use the performance function to obtain the performance measurement:

> perf.rocr = performance (pred.rocr, measure = "auc", x.measure =
"cutoff")

> perf.tpr.rocr = performance(pred.rocr, "tpr","fpr")

7. Visualize the ROC curve using the plot function:

> plot(perf.tpr.rocr, colorize=T,main=paste("AUC:", (perf.rocr@y.
values)))

AUC: 0.925495523908875

I
I
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True positive rate
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| I
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False positive rate

Figure 6: The ROC curve for the svm classifier performance

In this recipe, we demonstrated how to generate an ROC curve to illustrate the performance

of a binary classifier. First, we should install and load the library, ROCR. Then, we use svm,

from the e1071 package, to train a classification model, and then use the model to predict
labels for the testing dataset. Next, we use the prediction function (from the package, ROCR) to
generate prediction results. We then adapt the performance function to obtain the performance
measurement of the true positive rate against the false positive rate. Finally, we use the plot
function to visualize the ROC plot, and add the value of AUC on the title. In this example, the AUC
value is 0.92, which indicates that the svm classifier performs well in classifying telecom user
churn datasets.

» For those interested in the concept and terminology of ROC, you can refer to
http://en.wikipedia.org/wiki/Receiver operating characteristic
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Comparing an ROC curve using the

caret package

In previous chapters, we introduced many classification methods; each method has its own
advantages and disadvantages. However, when it comes to the problem of how to choose
the best fitted model, you need to compare all the performance measures generated from
different prediction models. To make the comparison easy, the caret package allows us to
generate and compare the performance of models. In this recipe, we will use the function
provided by the caret package to compare different algorithm trained models on the same
dataset.

Getting ready

Here, we will continue to use telecom dataset as our input data source.

How to do it...

Perform the following steps to generate an ROC curve of each fitted model:

1. Install and load the library, pROC:
> install.packages ("pROC")
> library ("pROC")

2. Set up the training control with a 10-fold cross-validation in 3 repetitions:

> control = trainControl (method = "repeatedcv",

+ number = 10,

+ repeats = 3,

+ classProbs = TRUE,

+ summaryFunction = twoClassSummary)

3. Then, you can train a classifier on the training dataset using glm:

> glm.model= train(churn ~ .,

+ data = trainset,

+ method = "glm",

+ metric = "ROC",

+ trControl = control)

4. Also, you can train a classifier on the training dataset using svm:
> svm.model= train(churn ~ .,

+ data = trainset,
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+ method = "svmRadial",
+ metric = "ROC",
+ trControl = control)

5. To see how rpart performs on the training data, we use the rpart function:

> rpart.model= train(churn ~ .,

+ data = trainset,

+ method = "rpart",

+ metric = "ROC",

+ trControl = control)

6. You can make predictions separately based on different trained models:

> glm.probs = predict(glm.model, testset[,! names(testset) %in%
c("churn")], type = "prob")

> svm.probs = predict(svm.model, testset[,! names(testset) %in%
c("churn")], type = "prob")

> rpart.probs = predict(rpart.model, testset[,! names(testset)
%in% c("churn")], type = "prob")

7. You can generate the ROC curve of each model, and plot the curve on the

same figure:

> glm.ROC = roc(response = testset[,c("churn")],

+ predictor =glm.probs$yes,

+ levels = levels(testset[,c("churn")]))

> plot(glm.ROC, type="S", col="red")

Call:
roc.default (response = testset[, c("churn")], predictor = glm.
probs$yes, levels = levels(testset[, c("churn")]))

Data: glm.probs$yes in 141 controls (testset[, c("churn")] yes) >
877 cases (testset[, c("churn")] no).

Area under the curve: 0.82

> svm.ROC = roc(response = testset[,c("churn")],
+ predictor =svm.probs$yes,
+ levels = levels(testset[,c("churn")]))

> plot(svm.ROC, add=TRUE, col="green")
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Call:
roc.default (response = testset[, c("churn")], predictor = svm.
probs$yes, levels = levels(testset[, c("churn")]))

Data: svm.probs$yes in 141 controls (testset[, c("churn")] yes) >
877 cases (testset[, c("churn")] no).

Area under the curve: 0.9233

> rpart.ROC = roc(response = testset[,c("churn")],

+ predictor =rpart.probsS$yes,
+ levels = levels(testset[,c("churn")]))
> plot(rpart.ROC, add=TRUE, col="blue")

Call:
roc.default (response = testset[, c("churn")], predictor = rpart.
probs$yes, levels = levels(testset[, c("churn")]))

Data: rpart.probs$yes in 141 controls (testset[, c("churn")] yes)
> 877 cases (testset[, c("churn")] no).

Area under the curve: 0.7581
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Figure 7: The ROC curve for the performance of three classifiers
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Here, we demonstrate how we can compare fitted models by illustrating their ROC curve in
one figure. First, we set up the control of the training process with a 10-fold cross validation

in 3 repetitions with the performance evaluation in twoClassSummary. After setting up
control of the training process, we then apply glm, svm, and rpart algorithms on the training
dataset to fit the classification models. Next, we can make a prediction based on each
generated model and plot the ROC curve, respectively. Within the generated figure, we find
that the model trained by svm has the largest area under curve, which is 0.9233 (plotted in
green), the AUC of the g1lm model (red) is 0.82, and the AUC of the rpart model (blue) is
0.7581. From Figure 7, it is obvious that svm performs the best among all the fitted models
on this training dataset (without requiring tuning).

See also

» We use another ROC visualization package, pROC, which can be employed to display
and analyze ROC curves. If you would like to know more about the package, please
use the help function:

> help (package="pROC")

Measuring performance differences between

models with the caret package

In the previous recipe, we introduced how to generate ROC curves for each generated model,
and have the curve plotted on the same figure. Apart from using an ROC curve, one can

use the resampling method to generate statistics of each fitted model in ROC, sensitivity

and specificity metrics. Therefore, we can use these statistics to compare the performance
differences between each model. In the following recipe, we will introduce how to measure
performance differences between fitted models with the caret package.

Getting ready

One needs to have completed the previous recipe by storing the glm fitted model, svm fitted
model, and the rpart fitted model into glm.model, svm.model, and rpart .model,
respectively.
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How to do it...

Perform the following steps to measure performance differences between each fitted model:

1.

Resample the three generated models:

> cv.values = resamples(list(glm = glm.model, svm=svm.model, rpart
= rpart.model))

Then, you can obtain a summary of the resampling result:

> summary (cv.values)

Call:

summary.resamples (object = cv.values)

Models: glm, svm, rpart

Number of resamples: 30

ROC

Min. lst Qu. Median Mean 3rd Qu. Max. NA's
glm 0.7206 0.7847 0.8126 0.8116 0.8371 0.8877 0
svm 0.8337 0.8673 0.8946 0.8929 0.9194 0.9458 0

rpart 0.2802 0.7159 0.7413 0.6769 0.8105 0.8821 0

Sens
Min. lst Qu. Median Mean 3rd Qu. Max. NA's
glm 0.08824 0.2000 0.2286 0.2194 0.2517 0.3529 0
svm 0.44120 0.5368 0.5714 0.5866 0.6424 0.7143 0
rpart 0.20590 0.3742 0.4706 0.4745 0.5929 0.6471 0
Spec
Min. 1lst Qu. Median Mean 3rd Qu. Max. NA's
glm 0.9442 0.9608 0.9746 0.9701 0.9797 0.9949 0
svm 0.9442 0.9646 0.9746 0.9740 0.9835 0.9949 0
rpart 0.9492 0.9709 0.9797 0.9780 0.9848 0.9949 0
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3. Use dotplot to plot the resampling result in the ROC metric:

> dotplot(cv.values, metric = "ROC")

vm —_—s
glm —
rpart I 1
T T T T
0.8 a7 ] ]
ROC
Confidence Level: 0.95
Figure 8: The dotplot of resampling result in ROC metric
4. Also, you can use a box-whisker plot to plot the resampling result:
> bwplot (cv.values, layout = c(3, 1))
0.2 0.4 0g R 1.0
| | | | 1 1 | | | | 1 1 1 | | |
ROC Sens Spec
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Figure 9: The box-whisker plot of resampling result
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In this recipe, we demonstrate how to measure the performance differences among three
fitted models using the resampling method. First, we use the resample function to generate
the statistics of each fitted model (svm.model, glm.model, and rpart .model). Then,

we can use the summary function to obtain the statistics of these three models in the ROC,
sensitivity and specificity metrics. Next, we can apply a dotplot on the resampling result to
see how ROC varied between each model. Last, we use a box-whisker plot on the resampling

results to show the box-whisker plot of different models in the ROC, sensitivity and specificity
metrics on a single plot.

See also

» Besides using dotplot and bwplot to measure performance differences, one can
use densityplot, splom, and xyplot to visualize the performance differences of
each fitted model in the ROC, sensitivity, and specificity metrics.
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In this chapter, we will cover the following topics:

» Classifying data with the bagging method

» Performing cross-validation with the bagging method

» Classifying data with the boosting method

» Performing cross-validation with the boosting method

» Classifying data with gradient boosting

» Calculating the margins of a classifier

» Calculating the error evolution of the ensemble method
» Classifying the data with random forest

» Estimating the prediction errors of different classifiers

Introduction

Ensemble learning is a method to combine results produced by different learners into one
format, with the aim of producing better classification results and regression results. In
previous chapters, we discussed several classification methods. These methods take different
approaches but they all have the same goal, that is, finding an optimum classification

model. However, a single classifier may be imperfect, which may misclassify data in certain
categories. As not all classifiers are imperfect, a better approach is to average the results by
voting. In other words, if we average the prediction results of every classifier with the same
input, we may create a superior model compared to using an individual method.
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In ensemble learning, bagging, boosting, and random forest are the three most
common methods:

» Bagging is a voting method, which first uses Bootstrap to generate a different training
set, and then uses the training set to make different base learners. The bagging
method employs a combination of base learners to make a better prediction.

» Boosting is similar to the bagging method. However, what makes boosting different is
that it first constructs the base learning in sequence, where each successive learner
is built for the prediction residuals of the preceding learner. With the means to create
a complementary learner, it uses the mistakes made by previous learners to train the
next base learner.

» Random forest uses the classification results voted from many classification trees.
The idea is simple; a single classification tree will obtain a single classification result
with a single input vector. However, a random forest grows many classification trees,
obtaining multiple results from a single input. Therefore, a random forest will use the
majority of votes from all the decision trees to classify data or use an average output
for regression.

In the following recipes, we will discuss how to use bagging and boosting to classify data.
We can then perform cross-validation to estimate the error rate of each classifier. In addition
to this, we'll introduce the use of a margin to measure the certainty of a model. Next, we
cover random forests, similar to the bagging and boosting methods, and introduce how to
train the model to classify data and use margins to estimate the model certainty. Lastly,
we'll demonstrate how to estimate the error rate of each classifier, and use the error rate

to compare the performance of different classifiers.

Classifying data with the bagging method

The adabag package implements both boosting and bagging methods. For the bagging
method, the package implements Breiman's Bagging algorithm, which first generates
multiple versions of classifiers, and then obtains an aggregated classifier. In this recipe,
we will illustrate how to use the bagging method from adabag to generate a classification
model using the telecom churn dataset.

Getting ready

In this recipe, we continue to use the telecom churn dataset as the input data source for
the bagging method. For those who have not prepared the dataset, please refer to Chapter 5,
Classification (1) - Tree, Lazy, and Probabilistic, for detailed information.
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How to do it...

Perform the following steps to generate a classification model for the telecom churn dataset:

1. First, you need to install and load the adabag package (it might take a while to install

adabag):
> install.packages ("adabag")
> library(adabag)

2. Next, you can use the bagging function to train a training dataset (the result may

vary during the training process):

> set.seed(2)

> churn.bagging = bagging(churn -~

data=trainset,

3. Access the variable importance from the bagging result:

> churn.bagging$importance

international plan number customer service calls

10.4948380
number vmail messages
0.5319143
total day charge
0.0000000
total eve calls
0.1463585
total eve minutes
14.2366754
total intl charge
0.0000000

total night calls
0.4349952

total night minutes

2.3379622

4. After generating the classification model, you can use the predicted results from the

testing dataset:

16.4260510
total day calls
0.3774190
total day minutes
28.7545042
total eve charge
0.0000000

total intl calls
8.7733895
total intl minutes
9.7838256

total night charge
0.0000000

voice mail plan

7.7020671

> churn.predbagging= predict.bagging(churn.bagging,

newdata=testset)
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5. From the predicted results, you can obtain a classification table:

> churn.predbagging$confusion

Observed Class

Predicted Class yes no
no 35 866
yes 106 11

6. Finally, you can retrieve the average error of the bagging result:

> churn.predbagging$error

[1] 0.0451866

Bagging is derived from the name Bootstrap aggregating, which is a stable, accurate, and
easy to implement model for data classification and regression. The definition of bagging
is as follows: given a training dataset of size n, bagging performs Bootstrap sampling and
generates m new training sets, Di, each of size n. Finally, we can fit m Bootstrap samples
to m models and combine the result by averaging the output (for regression) or voting

(for classification):

Training Data (size = n)

¢

(

o

(size =n’ <n)

D1

D2

(size =n’ <n)

Dm

(size=n"<n)

\

|

Averaging or Voting

The advantage of using bagging is that it is a powerful learning method, which is easy to
understand and implement. However, the main drawback of this technique is that it is

hard to analyze the result.

An illustration of bagging method
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In this recipe, we use the boosting method from adabag to classify the telecom churn data.
Similar to other classification methods discussed in previous chapters, you can train a
boosting classifier with a formula and a training dataset. Additionally, you can set the number
of iterations to 10 in the m£inal argument. Once the classification model is built, you can
examine the importance of each attribute. Ranking the attributes by importance reveals that
the number of customer service calls play a crucial role in the classification model.

Next, with a fitted model, you can apply the predict .bagging function to predict the labels
of the testing dataset. Therefore, you can use the labels of the testing dataset and predicted
results to generate a classification table and obtain the average error, which is 0.045 in

this example.

There's more...

Besides adabag, the ipred package provides a bagging method for a classification tree.
We demonstrate here how to use the bagging method of the ipred package to train a
classification model:
1. First, you need to install and load the ipred package:
> install.packages ("ipred")

> library (ipred)

2. You can then use the bagging method to fit the classification method:
> churn.bagging = bagging(churn ~ ., data = trainset, coob = T)

> churn.bagging
Bagging classification trees with 25 bootstrap replications

Call: bagging.data.frame (formula = churn ~ ., data = trainset,
coob = T)

Out-of-bag estimate of misclassification error: 0.0605

3. Obtain an out of bag estimate of misclassification of the errors:
> mean (predict (churn.bagging) != trainset$churn)

[1] 0.06047516

4. You can then use the predict function to obtain the predicted labels of the
testing dataset:

> churn.prediction = predict(churn.bagging, newdata=testset,
type="class")
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5. Obtain the classification table from the labels of the testing dataset and
prediction result:

> prediction.table = table(churn.prediction, testset$churn)

churn.prediction yes no
no 31 869
yes 110 8

Performing cross-validation with the

bagging method

To assess the prediction power of a classifier, you can run a cross-validation method to
test the robustness of the classification model. In this recipe, we will introduce how to use
bagging. cv to perform cross-validation with the bagging method.

Getting ready

In this recipe, we continue to use the telecom churn dataset as the input data source to
perform a k-fold cross-validation with the bagging method.

How to do it...

Perform the following steps to retrieve the minimum estimation errors by performing cross-
validation with the bagging method:

1. First, we use bagging. cv to make a 10-fold classification on the training dataset
with 10 iterations:

> churn.baggingcv = bagging.cv(churn ~ ., v=10, data=trainset,
mfinal=10)
2. You can then obtain the confusion matrix from the cross-validation results:
> churn.baggingcv$confusion
Observed Class

Predicted Class yes no

no 100 1938

yes 242 35

3. Lastly, you can retrieve the minimum estimation errors from the cross-validation results:
> churn.baggingcv$error

[1] 0.05831533
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The adabag package provides a function to perform the k-fold validation with either the
bagging or boosting method. In this example, we use bagging. cv to make the k-fold cross-
validation with the bagging method. We first perform a 10-fold cross validation with 10
iterations by specifying v=10 and mf inal=10. Please note that this is quite time consuming
due to the number of iterations. After the cross-validation process is complete, we can obtain
the confusion matrix and average errors (0.058 in this case) from the cross-validation results.

See also

» For those interested in tuning the parameters of bagging. cv, please view the
bagging.cv document by using the help function:

> help(bagging.cv)

Classifying data with the boosting method

Similar to the bagging method, boosting starts with a simple or weak classifier and gradually
improves it by reweighting the misclassified samples. Thus, the new classifier can learn from
previous classifiers. The adabag package provides implementation of the AdaBoost.M1
and SAMME algorithms. Therefore, one can use the boosting method in adabag to perform
ensemble learning. In this recipe, we will use the boosting method in adabag to classify the
telecom churn dataset.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source to
perform classifications with the boosting method. Also, you need to have the adabag package
loaded in R before commencing the recipe.

How to do it...

Perform the following steps to classify the telecom churn dataset with the boosting method:
1. You can use the boosting function from the adabag package to train the
classification model:
> set.seed(2)

> churn.boost = boosting(churn ~.,data=trainset,mfinal=10,
coeflearn="Freund", boos=FALSE , control=rpart.
control (maxdepth=3))
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2. You can then make a prediction based on the boosted model and testing dataset:

> churn.boost.pred = predict.boosting(churn.boost,newdata=testset)

3. Next, you can retrieve the classification table from the predicted results:
> churn.boost.pred$confusion
Observed Class
Predicted Class yes no
no 41 858
yes 100 19

4. Finally, you can obtain the average errors from the predicted results:
> churn.boost.pred$error

[1] 0.0589391

The idea of boosting is to "boost" weak learners (for example, a single decision tree) into
strong learners. Assuming that we have n points in our training dataset, we can assign a
weight, Wi (O <= i <n), for each point. Then, during the iterative learning process (we assume
the number of iterations is m), we can reweigh each point in accordance with the classification
result in each iteration. If the point is correctly classified, we should decrease the weight.
Otherwise, we increase the weight of the point. When the iteration process is finished, we

can then obtain the m fitted model, f(x) (O <= i <n). Finally, we can obtain the final prediction
through the weighted average of each tree's prediction, where the weight, 3, is based on the

quality of each tree:
{w, M} ][ {w, 2} ] {w,(m}

e

1
)= Bf,
i=1

An illustration of boosting method

Both bagging and boosting are ensemble methods, which combine the prediction power of
each single learner into a strong learner. The difference between bagging and boosting is
that the bagging method combines independent models, but boosting performs an iterative
process to reduce the errors of preceding models by predicting them with successive models.
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In this recipe, we demonstrate how to fit a classification model within the boosting method.
Similar to bagging, one has to specify the formula and the training dataset used to train

the classification model. In addition, one can specify parameters, such as the number of
iterations (mfinal), the weight update coefficient (coeflearn), the weight of how each
observation is used (boos), and the control for rpart (a single decision tree). In this recipe,
we set the iteration to 10, using Freund (the AdaBoost.M1 algorithm implemented method)
as coeflearn, boos set to false and max depth set to 3 for rpart configuration.

We use the boosting method to fit the classification model and then save it in churn.boost.
We can then obtain predicted labels using the prediction function. Furthermore, we can
use the table function to retrieve a classification table based on the predicted labels and
testing the dataset labels. Lastly, we can get the average errors of the predicted results.

There's more...

In addition to using the boosting function in the adabag package, one can also use the
caret package to perform a classification with the boosting method:

1. First, load the mboost and pROC package:

> library (mboost)
> install.packages ("pROC")
> library (pROC)

2. We can then set the training control with the trainControl function and use the
train function to train the classification model with adaboost:

> set.seed(2)

> ctrl = trainControl (method = "repeatedcv", repeats = 1,
classProbs = TRUE, summaryFunction = twoClassSummary)

> ada.train = train(churn ~ ., data = trainset, method = "ada",
metric = "ROC", trControl = ctrl)

3. Use the summary function to obtain the details of the classification model:

> ada.trainS$result

nu maxdepth iter ROC Sens Spec ROCSD
SensSD SpecSD
10.1 1 50 0.8571988 0.9152941 0.012662155 0.03448418
0.04430519 0.007251045
4 0.1 2 50 0.8905514 0.7138655 0.006083679 0.03538445
0.10089887 0.006236741
7 0.1 3 50 0.9056456 0.4036134 0.007093780 0.03934631
0.09406015 0.006407402
2 0.1 1 100 0.8550789 0.8918487 0.015705276 0.03434382
0.06190546 0.006503191
5 0.1 2 100 0.8907720 0.6609244 0.009626724 0.03788941
0.11403364 0.006940001
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. 3 100 0.9077750 0.3832773 0.005576065 0.03601187
.09630026 0.003738978

1

6

1 1 150 0.8571743 0.8714286 0.016720505 0.03481526
198773 0.006767313
1
3
1
5

2 150 0.8929524 0.6171429 0.011654617 0.03638272
83803 0.006777465

. 3 150 0.9093921 0.3743697 0.007093780 0.03258220
9504202 0.005446136
4. Use the plot function to plot the ROC curve within different iterations:

> plot(ada.train)
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The repeated cross validation plot

5. Finally, we can make predictions using the predict function and view the
classification table:

> ada.predict = predict(ada.train, testset, "prob")

> ada.predict.result = ifelse(ada.predict[l] > 0.5, "yes", "no")

> table(testset$churn, ada.predict.result)
ada.predict.result
no yes
yes 40 101
no 872 5
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Performing cross-validation with the

boosting method

Similar to the bagging function, adabag provides a cross-validation function for the
boosting method, named boosting. cv. In this recipe, we will demonstrate how to
perform cross-validation using boosting. cv from the package, adabag.

Getting ready

In this recipe, we continue to use the telecom churn dataset as the input data source to
perform a k-fold cross-validation with the boost ing method.

How to do it...

Perform the following steps to retrieve the minimum estimation errors via cross-validation
with the boost ing method

1. First, you can use boosting. cv to cross-validate the training dataset:
> churn.boostcv = boosting.cv(churn ~ ., v=10, data=trainset,
mfinal=5,control=rpart.control (cp=0.01))
2. You can then obtain the confusion matrix from the boosting results:
> churn.boostcv$confusion
Observed Class
Predicted Class yes no
no 119 1940
yes 223 33

3. Finally, you can retrieve the average errors of the boosting method:
> churn.boostcv$error

[1] 0.06565875

Similar to bagging. cv, we can perform cross-validation with the boosting method using
boosting.cv.If vissetto 10 and mfinal is set to 5, the boost ing method will perform
10-fold cross-validations with five iterations. Also, one can set the control of the rpart fit
within the parameter. We can set the complexity parameter to 0.01 in this example. Once
the training is complete, the confusion matrix and average errors of the boosted results

will be obtained.
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See also

» For those who require more information on tuning the parameters of boosting.cv,
please view the boosting. cv document by using the help function:

> help (boosting.cv)

Classifying data with gradient boosting

Gradient boosting ensembles weak learners and creates a new base learner that maximally
correlates with the negative gradient of the loss function. One may apply this method on
either regression or classification problems, and it will perform well in different datasets.

In this recipe, we will introduce how to use gbm to classify a telecom churn dataset.

Getting ready

In this recipe, we continue to use the telecom churn dataset as the input data source for the
bagging method. For those who have not prepared the dataset, please refer to Chapter 5,
Classification (I) - Tree, Lazy, and Probabilistic, for detailed information.

How to do it...

Perform the following steps to calculate and classify data with the gradient boosting method:

1. First, install and load the package, gbm:
> install.packages ("gbm")
> library (gbm)

2. The gbm function only uses responses ranging from 0 to 1; therefore, you should
transform yes/no responses to numeric responses (0/1):

> trainset$churn = ifelse(trainset$churn == "yes", 1, 0)

3. Next, you can use the gbm function to train a training dataset:
> set.seed(2)

> churn.gbm = gbm(formula = churn ~ .,distribution =
"bernoulli",data = trainset,n.trees = 1000,interaction.depth =
7,shrinkage = 0.01, cv.folds=3)
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Then, you can obtain the summary information from the fitted model:

> summary (churn.gbm)

total day minutes

total eve minutes

var rel
total day minutes 28.121

total eve minutes

.inf
7147
16.8097151

number customer service calls number customer service calls

12.7894464
total intl minutes
total_ intl calls
international plan
total night minutes
number vmail messages
voice mail plan
total night_calls
total day calls
total_eve_calls
total eve charge
total night charge
total day charge
total_intl charge

total intl minutes
total_intl calls
international plan
total night minutes
number vmail messages
voice mail plan 2
total night calls 2
total day calls
total_eve_calls

total eve charge
total night charge
total day charge 0
total_intl charge

9.4515822
8.1379826
8.0703900
4.0805153
3.9173515

.5501480

.1357970
1.7367888
1.4398047

0.5457486

0.2130152
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Relative influence plot of fitted model
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5. You can obtain the best iteration using cross-validation:

> churn.iter = gbm.perf (churn.gbm,method="cv")

06 08
| |

04

Bernoulll deviance
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|
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lteration

The performance measurement plot

6. Then, you can retrieve the odd value of the log returned from the Bernoulli
loss function:

> churn.predict = predict (churn.gbm, testset, n.trees = churn.
iter)

> str(churn.predict)

num [1:1018] -3.31 -2.91 -3.16 -3.47 -3.48 ...

7. Next, you can plot the ROC curve and get the best cut off that will have the maximum
accuracy:

> churn.roc = roc(testset$churn, churn.predict)

> plot(churn.roc)

Call:

roc.default (response = testset$churn, predictor = churn.predict)

Data: churn.predict in 141 controls (testset$churn yes) > 877
cases (testset$churn no).

Area under the curve: 0.9393

Sensitivity
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The ROC curve of fitted model
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8. You can retrieve the best cut off with the coords function and use this cut off to
obtain the predicted label:
> coords (churn.roc, "best")
threshold specificity sensitivity
-0.9495258 0.8723404 0.9703535
> churn.predict.class = ifelse(churn.predict > coords(churn.roc,
"best") ["threshold"], "yes", "no")
9. Lastly, you can obtain the classification table from the predicted results:
> table( testset$churn,churn.predict.class)
churn.predict.class
no yes
yes 18 123
no 851 26

The algorithm of gradient boosting involves, first, the process computes the deviation of
residuals for each partition, and then, determines the best data partitioning in each stage.
Next, the successive model will fit the residuals from the previous stage and build a new
model to reduce the residual variance (an error). The reduction of the residual variance
follows the functional gradient descent technique, in which it minimizes the residual variance
by going down its derivative, as show here:

Xo

Gradient descent method
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In this recipe, we use the gradient boosting method from gbm to classify the telecom churn
dataset. To begin the classification, we first install and load the gbm package. Then, we use
the gbm function to train the classification model. Here, as our prediction target is the churn
attribute, which is a binary outcome, we therefore set the distribution as bernoulli in the
distribution argument. Also, we set the 1000 trees to fit in the n. tree argument, the
maximum depth of the variable interaction to 7 in interaction.depth, the learning rate
of the step size reduction to 0.01 in shrinkage, and the number of cross-validations to 3 in
cv.folds. After the model is fitted, we can use the summary function to obtain the relative
influence information of each variable in the table and figure. The relative influence shows
the reduction attributable to each variable in the sum of the square error. Here, we can find
total day minutes is the mostinfluential one in reducing the loss function.

Next, we use the gbm.perf function to find the optimum iteration. Here, we estimate the
optimum number with cross-validation by specifying the method argument to cv. The function
further generates two plots, where the black line plots the training error and the green one
plots the validation error. The error measurement here is a bernoulli distribution, which

we have defined earlier in the training stage. The blue dash line on the plot shows where the
optimum iteration is.

Then, we use the predict function to obtain the odd value of a log in each testing case
returned from the Bernoulli loss function. In order to get the best prediction result, one can
set the n. trees argument to an optimum iteration number. However, as the returned value is
an odd value log, we still have to determine the best cut off to determine the label. Therefore,
we use the roc function to generate an ROC curve and get the cut off with the maximum
accuracy.

Finally, we can use the function, coords, to retrieve the best cut off threshold and use
the ifelse function to determine the class label from the odd value of the log. Now, we
can use the table function to generate the classification table and see how accurate the
classification model is.

There's more...

In addition to using the boosting function in the gbm package, one can also use the mboost
package to perform classifications with the gradient boosting method:
1. First, install and load the mboost package:
> install.packages ("mboost™")
> library (mboost)
2. The mboost function only uses numeric responses; therefore, you should transform
yes/no responses to numeric responses (0/1):

> trainset$churn = ifelse(trainset$churn == "yes", 1, 0)
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Also, you should remove nonnumerical attributes, such as voice mail plan and
international plan:

> trainset$voice mail plan = NULL

> trainset$international plan = NULL

We can then use mboost to train the classification model:

> churn.mboost = mboost(churn ~ ., data=trainset, control =
boost control (mstop = 10))

Use the summary function to obtain the details of the classification model:

> summary (churn.mboost)

Model-based Boosting

Call:

mboost (formula = churn ~ ., data = trainset, control = boost
control (mstop = 10))

Squared Error (Regression)

Loss function: (y - £)”"2

Number of boosting iterations: mstop = 10
Step size: 0.1
Offset: 1.147732

Number of baselearners: 14

Selection frequencies:

bbs (total_day minutes) bbs(number customer_ service_
calls)

0.6 0.4
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6. Lastly, use the plot function to draw a partial contribution plot of each attribute:
> par (mfrow=c(1,2))

> plot (churn.mboost)
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The partial contribution plot of important attributes

Calculating the margins of a classifier

A margin is a measure of the certainty of classification. This method calculates the difference
between the support of a correct class and the maximum support of an incorrect class. In this
recipe, we will demonstrate how to calculate the margins of the generated classifiers.

Getting ready

You need to have completed the previous recipe by storing a fitted bagging model in the
variables, churn.bagging and churn.predbagging. Also, put the fitted boosting classifier
in both churn.boost and churn.boost .pred.

How to do it...

Perform the following steps to calculate the margin of each ensemble learner:

1. First, use the margins function to calculate the margins of the boosting classifiers:
> boost.margins = margins (churn.boost, trainset)

> boost.pred.margins = margins (churn.boost.pred, testset)
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You can then use the plot function to plot a marginal cumulative distribution graph
of the boosting classifiers:

> plot(sort (boost.margins[[1]]), (1l:length(boost.margins([[1]]1))/
length(boost.margins[[1]]), type="1",xlim=c(-1,1),main="Boosting:
Margin cumulative distribution graph", xlab="margin", ylab="%
observations", col = "blue")

> lines(sort(boost.pred.margins[[1]]), (1l:length(boost.pred.
margins[[1]1])) /length(boost.pred.margins[[1]]), type="1", col =
"green")

> abline(v=0, col="red",1lty=2)

Boosting: Margin cumulative distribution graph
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The margin cumulative distribution graph of using the boosting method

You can then calculate the percentage of negative margin matches training errors
and the percentage of negative margin matches test errors:

> boosting.training.margin = table(boost.margins[[1]] > 0)

> boosting.negative.training = as.numeric (boosting.training.
margin[l] /boosting.training.margin[2])

> boosting.negative.training

[1] 0.06387868

> boosting.testing.margin = table(boost.pred.margins[[1]] > 0)

> boosting.negative.testing = as.numeric (boosting.testing.
margin[l] /boosting.testing.margin[2])

> boosting.negative.testing

[1] 0.06263048
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4.

270

Also, you can calculate the margins of the bagging classifiers. You might see the
warning message showing "'no non-missing argument to min". The message
simply indicates that the min/max function is applied to the numeric of the O

length argument:

> bagging.margins = margins (churn.bagging, trainset)

> bagging.pred.margins = margins (churn.predbagging, testset)

You can then use the plot function to plot a margin cumulative distribution graph of
the bagging classifiers:

> plot(sort(bagging.margins[[1]]), (1:length(bagging.
margins[[1]1])) /length(bagging.margins[[1]]), type="1",xlim=c (-
1,1) ,main="Bagging: Margin cumulative distribution graph",
xlab="margin", ylab="% observations", col = "blue")

> lines(sort(bagging.pred.margins[[1]]), (1:length(bagging.pred.
margins[[1]1])) /length(bagging.pred.margins[[1]]), type="1", col =
"green")

> abline(v=0, col="red",1lty=2)

Bagging: Margin cumulative distribution graph
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The margin cumulative distribution graph of the bagging method

Finally, you can then compute the percentage of negative margin matches training
errors and the percentage of negative margin matches test errors:

> bagging.training.margin = table(bagging.margins[[1]] > 0)

> bagging.negative.training = as.numeric(bagging.training.
margin[1l] /bagging.training.margin[2])

> bagging.negative.training

[1] 0.1733401
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> bagging.testing.margin = table(bagging.pred.margins[[1]] > 0)

> bagging.negative.testing = as.numeric(bagging.testing.margin[1]/
bagging.testing.margin[2])

> bagging.negative.testing

[1] 0.04303279

A margin is the measurement of certainty of the classification; it is computed by the support
of the correct class and the maximum support of the incorrect class. The formula of margins
can be formulated as:

margin (x;) = support, (x;) —max support  (x; )

Here, the margin of the xi sample equals the support of a correctly classified sample (¢
denotes the correct class) minus the maximum support of a sample that is classified to class
j (where j#c and j=1...k). Therefore, correctly classified examples will have positive margins
and misclassified examples will have negative margins. If the margin value is close to one,

it means that correctly classified examples have a high degree of confidence. On the other
hand, examples of uncertain classifications will have small margins.

The margins function calculates the margins of AdaBoost.M1, AdaBoost-SAMME, or the
bagging classifier, which returns a vector of a margin. To visualize the margin distribution, one
can use a margin cumulative distribution graph. In these graphs, the x-axis shows the margin
and the y-axis shows the percentage of observations where the margin is less than or equal to
the margin value of the x-axis. If every observation is correctly classified, the graph will show a
vertical line at the margin equal to 1 (where margin = 1).

For the margin cumulative distribution graph of the boosting classifiers, we can see that there
are two lines plotted on the graph, in which the green line denotes the margin of the testing
dataset, and the blue line denotes the margin of the training set. The figure shows about 6.39
percent of negative margins match the training error, and 6.26 percent of negative margins
match the test error. On the other hand, we can find that 17.33% of negative margins match
the training error and 4.3 percent of negative margins match the test error in the margin
cumulative distribution graph of the bagging classifiers. Normally, the percentage of negative
margins matching the training error should be close to the percentage of negative margins
that match the test error. As a result of this, we should then examine the reason why the
percentage of negative margins that match the training error is much higher than the negative
margins that match the test error.
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See also

» If you are interested in more details on margin distribution graphs, please refer to the
following source: Kuncheva LI (2004), Combining Pattern Classifiers: Methods and
Algorithms, John Wiley & Sons.

Calculating the error evolution of the

ensemble method

The adabag package provides the errorevol function for a user to estimate the ensemble
method errors in accordance with the number of iterations. In this recipe, we will demonstrate
how to use errorevol to show the evolution of errors of each ensemble classifier.

Getting ready

You need to have completed the previous recipe by storing the fitted bagging model in the
variable, churn.bagging. Also, put the fitted boosting classifier in churn.boost.

How to do it...

Perform the following steps to calculate the error evolution of each ensemble learner:

1. First, use the errorevol function to calculate the error evolution of the
boosting classifiers:

> boosting.evol.train = errorevol (churn.boost, trainset)
> boosting.evol.test = errorevol (churn.boost, testset)
> plot(boosting.evol.test$error, type = "1", ylim = c(0, 1),

+ main = "Boosting error versus number of trees", xlab =
"Iterations",

+ ylab = "Error", col = "red", lwd = 2)
> lines(boosting.evol.train$error, cex = .5, col = "blue", 1lty =
2, lwd = 2)

> legend("topright", c("test", "train"), col = c("red", "blue"),
lty = 1:2, 1lwd = 2)
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Next, use the errorevol function to calculate the error evolution of the

bagging classifiers:

> bagging.evol.train = errorevol (churn.bagging, trainset)

> bagging.evol.
> plot(bagging.

+ main =
"Iterations",

+ ylab = "Error", col = "red", lwd = 2)
> lines (bagging.evol.train$error, cex = .5, col = "blue",
lwd = 2)

> legend("topright", c("test", "train"), col = c("red",

lty = 1:2, 1wd

Boosting error versus number of trees

test = errorevol (churn.bagging, testset)
evol.test$error, type = "1", ylim = c(O,

"Bagging error versus number of trees", xlab

2)

Bagging error versus number of trees
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The errorest function calculates the error evolution of AdaBoost.M1, AdaBoost-SAMME,
or the bagging classifiers and returns a vector of error evolutions. In this recipe, we use the
boosting and bagging models to generate error evolution vectors and graph the error versus
number of trees.

The resulting graph reveals the error rate of each iteration. The trend of the error rate can help
measure how fast the errors reduce, while the number of iterations increases. In addition to
this, the graphs may show whether the model is over-fitted.

See also

» If the ensemble model is over-fitted, you can use the predict .bagging and
predict .boosting functions to prune the ensemble model. For more information,
please use the help function to refer to predict .bagging and predict .boosting:

> help (predict.bagging)
> help(predict.boosting)

Classifying data with random forest

Random forest is another useful ensemble learning method that grows multiple decision
trees during the training process. Each decision tree will output its own prediction results
corresponding to the input. The forest will use the voting mechanism to select the most voted
class as the prediction result. In this recipe, we will illustrate how to classify data using the
randomForest package.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source to
perform classifications with the random forest method.

How to do it...

Perform the following steps to classify data with random forest:

1. First, you have to install and load the randomForest package;
> install.packages ("randomForest")

> library(randomForest)
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You can then fit the random forest classifier with a training set:

> churn.rf = randomForest (churn ~ ., data = trainset, importance =
T)

> churn.rf

Call:

randomForest (formula = churn ~ ., data = trainset, importance =
T)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 4

OOB estimate of error rate: 4.88%
Confusion matrix:
yes no class.error
yes 247 95 0.277777778
no 18 1955 0.009123163

Next, make predictions based on the fitted model and testing dataset:

> churn.prediction = predict(churn.rf, testset)

Similar to other classification methods, you can obtain the classification table:

> table(churn.prediction, testset$churn)

churn.prediction yes no
yes 110 7
no 31 870
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5. You can use the plot function to plot the mean square error of the forest object:

> plot(churn.rf)

churn.rf
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The mean square error of the random forest

6. You can then examine the importance of each attribute within the fitted classifier:

> importance (churn.rf)

yes no
international plan 66.55206691 56.5100647
voice mail plan 19.98337191 15.2354970
number vmail messages 21.02976166 14.0707195
total day minutes 28.05190188 27.7570444

7. Next, you can use the varImpPlot function to obtain the plot of variable importance:

> varImpPlot (churn.rf)

churn.rf

number_customer_service_calls S total_day charge 9
international plan o total_day_minutes o
total_intl_calls © number_customer_service_calls <
fotal_day_charge o international_plan o
fotal_day_minules ° fotal_eve_charge @
total"intl_tharge o total“eve_minutes o
total"eve_charge o total"intl calls o
total"intl_Tninutes o total_int_charge ©
total_eve_minutes o total_intl_minutes @
number_vmail_messages o total“night_minutes °
volce_mail_plan o total_night_charge o
total_night charge < total_day_calls ©
tota_night_minutes © total"night_calls ©
total_night_calls © number_vmail_messages ©
total_day_calls o total_eve_calls o
total_eve_calls < voice_mail_plan ©

T T T T T T T T T T

0 20 40 60 80 0 20 40 860 80

MeanDecreaseAccuracy MeanDecreaseGini

The visualization of variable importance
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You can also use the margin function to calculate the margins and plot the margin
cumulative distribution:

> margins.rf=margin(churn.rf, trainset)

> plot (margins.rf)

1.0

0.0

-0.5

10
|
..

0 500 1000 1500 2000

Index

The margin cumulative distribution graph for the random forest method

Furthermore, you can use a histogram to visualize the margin distribution of the
random forest:

> hist (margins.rf,main="Margins of Random Forest for churn
dataset")

Margins of Random Forest for churn dataset

1500

Frequency
1000

500

i —

T T T T 1
-1.0 05 0.0 0.5 1.0

margins.rf

The histogram of margin distribution
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10. You can also use boxplot to visualize the margins of the random forest by class:

> boxplot (margins.rf~trainset$churn, main="Margins of Random
Forest for churn dataset by class")

Margins of Random Forest for churn dataset by class

10

05

00
1

05

-1.0

yes no

Margins of the random forest by class

The purpose of random forest is to ensemble weak learners (for example, a single decision
tree) into a strong learner. The process of developing a random forest is very similar to the
bagging method, assuming that we have a training set containing N samples with M features.
The process first performs bootstrap sampling, which samples N cases at random, with the
replacement as the training dataset of each single decision tree. Next, in each node, the
process first randomly selects m variables (where m << M), then finds the predictor variable
that provides the best split among m variables. Next, the process grows the full tree without
pruning. In the end, we can obtain the predicted result of an example from each single tree.
As a result, we can get the prediction result by taking an average or weighted average (for
regression) of an output or taking a majority vote (for classification):

Training Data (size = n)

A ¢

D1 D2
(size=n"<n) (size=n"<n)

-

\ J
Y

Averaging or Voting

-

Dm

(size=n"<n)
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A random forest uses two parameters: ntree (the number of trees) and mtry (the number
of features used to find the best feature), while the bagging method only uses ntree as

a parameter. Therefore, if we set mtry equal to the number of features within a training
dataset, then the random forest is equal to the bagging method.

The main advantages of random forest are that it is easy to compute, it can efficiently process
data, and is fault tolerant to missing or unbalanced data. The main disadvantage of random
forest is that it cannot predict the value beyond the range of a training dataset. Also, it is
prone to over-fitting of noisy data.

In this recipe, we employ the random forest method adapted from the randomForest
package to fit a classification model. First, we install and load randomForest into an R
session. We then use the random forest method to train a classification model. We set
importance = T, which will ensure that the importance of the predictor is assessed.

Similar to the bagging and boosting methods, once the model is fitted, one can perform
predictions using a fitted model on the testing dataset, and furthermore, obtain the
classification table.

In order to assess the importance of each attribute, the randomForest package provides
the importance and varImpPlot functions to either list the importance of each attribute in
the fitted model or visualize the importance using either mean decrease accuracy or mean
decrease gini.

Similar to adabag, which contains a method to calculate the margins of the bagging and
boosting methods, randomForest provides the margin function to calculate the margins of
the forest object. With the plot, hist, and boxplot functions, you can visualize the margins
in different aspects to the proportion of correctly classified observations.

There's more...

Apart from the randomForest package, the party package also provides an
implementation of random forest. In the following steps, we illustrate how to use the cforest
function within the party package to perform classifications:

1. First, install and load the party package:

> install.packages ("party")
> library (party)

2. You can then use the cforest function to fit the classification model:

> churn.cforest = cforest(churn ~ ., data = trainset,
controls=cforest unbiased(ntree=1000, mtry=5))

> churn.cforest
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Random Forest using Conditional Inference Trees
Number of trees: 1000

Response: churn

Inputs: international plan, voice mail plan, number vmail
messages, total day minutes, total day calls, total day charge,
total eve minutes, total eve calls, total eve charge, total
night minutes, total night calls, total night charge, total intl
minutes, total intl calls, total intl charge, number customer
service calls

Number of observations: 2315

3. You can make predictions based on the built model and the testing dataset:

> churn.cforest.prediction

= predict(churn.cforest, testset,
OOB=TRUE, type = "response")

4. Finally, obtain the classification table from the predicted labels and the labels of the
testing dataset:

> table(churn.cforest.prediction, testset$churn)

churn.cforest.prediction yes no
yes 091 3
no 50 874

Estimating the prediction errors of different

classifiers

At the beginning of this chapter, we discussed why we use ensemble learning and how

it can improve the prediction performance compared to using just a single classifier. We
now validate whether the ensemble model performs better than a single decision tree by
comparing the performance of each method. In order to compare the different classifiers,
we can perform a 10-fold cross-validation on each classification method to estimate test
errors using erroreset from the ipred package.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source to
estimate the prediction errors of the different classifiers.
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How to do it...

Perform the following steps to estimate the prediction errors of each classification method:

1. You can estimate the error rate of the bagging model:

> churn.bagging= errorest(churn ~ ., data = trainset, model =
bagging)

> churn.bagging

Call:

errorest.data.frame(formula = churn ~ ., data = trainset, model =
bagging)

10-fold cross-validation estimator of misclassification error

Misclassification error: 0.0583

2. You can then estimate the error rate of the boosting method:
> install.packages("ada")
> library(ada)

> churn.boosting= errorest(churn ~ ., data = trainset, model =
ada)

> churn.boosting

Call:

errorest.data.frame(formula = churn ~ ., data = trainset, model =
ada)

10-fold cross-validation estimator of misclassification error

Misclassification error: 0.0475

3. Next, estimate the error rate of the random forest model:

> churn.rf= errorest(churn ~ ., data = trainset, model =
randomForest)

> churn.rf

Call:
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errorest.data.frame(formula = churn ~ ., data = trainset, model =
randomForest)

10-fold cross-validation estimator of misclassification error

Misclassification error: 0.051

4. Finally, make a prediction function using churn.predict, and then use the function
to estimate the error rate of the single decision tree:

> churn.predict = function(object, newdata) {predict(object,
newdata = newdata, type = "class")}

> churn.tree= errorest(churn ~ ., data = trainset, model =
rpart,predict = churn.predict)

> churn.tree

Call:

errorest.data.frame(formula = churn ~ ., data = trainset, model =
rpart,

predict = churn.predict)
10-fold cross-validation estimator of misclassification error

Misclassification error: 0.0674

In this recipe, we estimate the error rates of four different classifiers using the errorest
function from the ipred package. We compare the boosting, bagging, and random forest
methods, and the single decision tree classifier. The errorest function performs a 10-fold
cross-validation on each classifier and calculates the misclassification error. The estimation
results from the four chosen models reveal that the boosting method performs the best with
the lowest error rate (0.0475). The random forest method has the second lowest error rate
(0.051), while the bagging method has an error rate of 0.0583. The single decision tree
classifier, rpart, performs the worst among the four methods with an error rate equal to
0.0674. These results show that all three ensemble learning methods, boosting, bagging,
and random forest, outperform a single decision tree classifier.

See also

» Inthis recipe we mentioned the ada package, which contains a method to perform
stochastic boosting. For those interested in this package, please refer to: Additive
Logistic Regression: A Statistical View of Boosting by Friedman, et al. (2000).
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In this chapter, we will cover the following topics:

» Clustering data with hierarchical clustering

» Cutting a tree into clusters

» Clustering data with the k-means method

» Drawing a bivariate cluster plot

» Comparing clustering methods

» Extracting silhouette information from clustering
» Obtaining optimum clusters for k-means

» Clustering data with the density-based method
» Clustering data with the model-based method

» Visualizing a dissimilarity matrix

» Validating clusters externally

Introduction

Clustering is a technique used to group similar objects (close in terms of distance) together
in the same group (cluster). Unlike supervised learning methods (for example, classification
and regression) covered in the previous chapters, a clustering analysis does not use any label
information, but simply uses the similarity between data features to group them into clusters.

Clustering can be widely adapted in the analysis of businesses. For example, a marketing
department can use clustering to segment customers by personal attributes. As a result of
this, different marketing campaigns targeting various types of customers can be designed.
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The four most common types of clustering methods are hierarchical clustering, k-means
clustering, model-based clustering, and density-based clustering:

» Hierarchical clustering: It creates a hierarchy of clusters, and presents the hierarchy
in a dendrogram. This method does not require the number of clusters to be specified
at the beginning.

» k-means clustering: It is also referred to as flat clustering. Unlike hierarchical
clustering, it does not create a hierarchy of clusters, and it requires the number of
clusters as an input. However, its performance is faster than hierarchical clustering.

» Model-based clustering: Both hierarchical clustering and k-means clustering
use a heuristic approach to construct clusters, and do not rely on a formal model.
Model-based clustering assumes a data model and applies an EM algorithm to find
the most likely model components and the number of clusters.

» Density-based clustering: It constructs clusters in regard to the density measurement.
Clusters in this method have a higher density than the remainder of the dataset.

In the following recipes, we will discuss how to use these four clustering techniques to cluster
data. We discuss how to validate clusters internally, using within clusters the sum of squares,
average silhouette width, and externally, with ground truth.

Clustering data with hierarchical clustering

Hierarchical clustering adopts either an agglomerative or divisive method to build a hierarchy
of clusters. Regardless of which approach is adopted, both first use a distance similarity
measure to combine or split clusters. The recursive process continues until there is only

one cluster left or you cannot split more clusters. Eventually, we can use a dendrogram

to represent the hierarchy of clusters. In this recipe, we will demonstrate how to cluster
customers with hierarchical clustering.

Getting ready

In this recipe, we will perform hierarchical clustering on customer data, which involves
segmenting customers into different groups. You can download the data from this Github
page: https://github.com/ywchiu/ml R cookbook/tree/master/CH9.

How to do it...

Perform the following steps to cluster customer data into a hierarchy of clusters:

1. First, you need to load data from customer.csv and save it into customer:

> customer= read.csv('customer.csv', header=TRUE)
> head (customer)

www.it-ebooks.info


https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9
http://www.it-ebooks.info/

Chapter 9
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You can then examine the dataset structure:

> str(custome
'data.frame':
$ ID

$ Visit.Time

$ Average.Expense:

5.3
$ Sex
$ Age

r)

60 obs.

int
int

num

int

int

of

10
27
32
30
23
15

5 variables:
12345617829 10
3516 516 3 12 14 6 3
5.7 14.5 33.5 15.9 24.9 12 28.5 18.8 23.8

000O0O0O0O0OO0OODO
10 27 32 30 23 15 33 27 16 11

Next, you should normalize the customer data into the same scale:

> customer =

scale(customer|[,-1]1)

You can then use agglomerative hierarchical clustering to cluster the customer data:

> hc = hclust(dist (customer,

D2")

> hc

Call:

hclust(d = dist(customer,

D2")

Cluster method

Distance

Number of objects:

method =

: ward.D2
euclidean

60

"euclidean"), method =

method="euclidean"), method="ward.

"ward.
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5. Lastly, you can use the plot function to plot the dendrogram:
> plot(hc, hang = -0.01, cex = 0.7)

Cluster Dendrogram
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dist(customer, method = "euclidean™)
hclust (*, "ward.D2")

The dendrogram of hierarchical clustering using "ward.D2"
6. Additionally, you can use the single method to perform hierarchical clustering and see
how the generated dendrogram differs from the previous:

> hc2 = hclust(dist(customer), method="single")
> plot(hc2, hang = -0.01, cex = 0.7)

Cluster Dendrogram
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dist(customer)
hclust (*, "single")

The dendrogram of hierarchical clustering using "single"
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Hierarchical clustering is a clustering technique that tries to build a hierarchy of clusters
iteratively. Generally, there are two approaches to build hierarchical clusters:

» Agglomerative hierarchical clustering: This is a bottom-up approach.
Each observation starts in its own cluster. We can then compute the similarity
(or the distance) between each cluster and then merge the two most similar
ones at each iteration until there is only one cluster left.

» Divisive hierarchical clustering: This is a top-down approach. All observations
start in one cluster, and then we split the cluster into the two least dissimilar
clusters recursively until there is one cluster for each observation:

9 Divisive

MJF_hIIjm = | &1 A P

An illustration of hierarchical clustering

Agglomerative 1 o O

Before performing hierarchical clustering, we need to determine how similar the two clusters
are. Here, we list some common distance functions used for the measurement of similarity:

» Single linkage: This refers to the shortest distance between two points in each cluster:

dist(C,,C,)= min dist(a,b)

aeC;,beC;

» Complete linkage: This refers to the longest distance between two points in
each cluster:

dist(C,,C,)= max dist(a,b)

aeC;,beC;
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» Average linkage: This refer to the average distance between two points in each
cluster (where |C,»| is the size of cluster C; and |Cj| is the size of cluster C,):

: 1 :
(66 ], 4
i j| a€C;i,beC;

» Ward method: This refers to the sum of the squared distance from each point to the
mean of the merged clusters (where 1 is the mean vector of C, qu ):

dist(C.C,)= 2 fla=u]

aeCu C;

In this recipe, we perform hierarchical clustering on customer data. First, we load the data
from customer. csv, and then load it into the customer data frame. Within the data, we
find five variables of customer account information, which are ID, number of visits, average
expense, sex, and age. As the scale of each variable varies, we use the scale function to
normalize the scale.

After the scales of all the attributes are normalized, we perform hierarchical clustering using
the hclust function. We use the Euclidean distance as distance metrics, and use Ward's
minimum variance method to perform agglomerative clustering.

Finally, we use the plot function to plot the dendrogram of hierarchical clusters. We specify
hang to display labels at the bottom of the dendrogram, and use cex to shrink the label to
70 percent of the normal size. In order to compare the differences using the ward.D2 and
single methods to generate a hierarchy of clusters, we draw another dendrogram using
single in the preceding figure (step 6).

There's more...

You can choose a different distance measure and method while performing hierarchical
clustering. For more details, you can refer to the documents for dist and hclust:

> ? dist
> ? hclust

In this recipe, we use hclust to perform agglomerative hierarchical clustering; if you would
like to perform divisive hierarchical clustering, you can use the diana function:

1. First, you can use diana to perform divisive hierarchical clustering:

> dv = diana(customer, metric = "euclidean")

288

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

2. Then, you can use summary to obtain the summary information:

> summary (dv)

3. Lastly, you can plot a dendrogram and banner with the plot function:
> plot(dv)

If you are interested in drawing a horizontal dendrogram, you can use the dendextend
package. Use the following procedure to generate a horizontal dendrogram:

1. First, install and load the dendextend and magrittr packages (if your R version is
3.1 and above, you do not have to install and load the magrittr package):

install.packages ("dendextend")

library (dendextend)

install.packages ("margrittr")

library (magrittr)

V V VvV V

2. Set up the dendrogram:

> dend = customer %>% dist %>% hclust %>% as.dendrogram

3. Finally, plot the horizontal dendrogram:

dend %>% plot (horiz=TRUE, main = "Horizontal Dendrogram")

Horizontal Dendrogram

'—,—|——'=
,—F'E..:
E
D S ———————

R
I T T T T T 1
B 5 4 3 2 1 0

The horizontal dendrogram
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Cutting trees into clusters

In a dendrogram, we can see the hierarchy of clusters, but we have not grouped data
into different clusters yet. However, we can determine how many clusters are within the
dendrogram and cut the dendrogram at a certain tree height to separate the data into
different groups. In this recipe, we demonstrate how to use the cutree function to
separate the data into a given number of clusters.

Getting ready

In order to perform the cutree function, you need to have the previous recipe completed by
generating the hclust object, hc.

How to do it...

Perform the following steps to cut the hierarchy of clusters into a given number of clusters:

1. First, categorize the data into four groups:
> fit = cutree(hc, k = 4)

2. You can then examine the cluster labels for the data:
> fit
[1] 1 1 2
[30] 4 4 3
[59] 4 3

12122111221112122343433443414
3344344444443 344434334443414

3. Count the number of data within each cluster:
> table(fit)
fit
1 2 3 4
11 8 16 25

4. Finally, you can visualize how data is clustered with the red rectangle border:

> plot (he)
> rect.hclust(hc, k = 4 , border="red")
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Cluster Dendrogram

o |
"ol (e i e T

dist(customer, method = "euclidean")
heclust (%, "ward.D2")

Using the red rectangle border to distinguish different clusters within the dendrogram

We can determine the number of clusters from the dendrogram in the preceding figure. In this
recipe, we determine there should be four clusters within the tree. Therefore, we specify the
number of clusters as 4 in the cutree function. Besides using the number of clusters to cut
the tree, you can specify the height as the cut tree parameter.

Next, we can output the cluster labels of the data and use the table function to count the
number of data within each cluster. From the counting table, we find that most of the data
is in cluster 4. Lastly, we can draw red rectangles around the clusters to show how data is
categorized into the four clusters with the rect .hclust function.
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Besides drawing rectangles around all hierarchical clusters, you can place a red rectangle
around a certain cluster:

> rect.hclust(hc, k = 4 , which =2, border="red")

Cluster Dendrogram

15

10

Height

- R £ e TR
R e e e TRERE R

dist{customer, method = "euclidean”)
hclust (7, "ward.D2")

Drawing a red rectangle around a certain cluster.

Also, you can color clusters in different colors with a red rectangle around the clusters by
using the dendextend package. You have to complete the instructions outlined in the
There's more section of the previous recipe and perform the following steps:
1. Color the branch according to the cluster it belongs to:
> dend %>% color branches(k=4) %>% plot (horiz=TRUE, main =
"Horizontal Dendrogram")
2. You can then add a red rectangle around the clusters:

> dend %>% rect.dendrogram(k=4,horiz=TRUE)
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Horizontal Dendrogram

Drawing red rectangles around clusters within a horizontal dendrogram

Finally, you can add a line to show the tree cutting location:

> abline(v = heights per k.dendrogram(dend) ["4"] + .1, 1lwd = 2,
lty = 2, col = "blue")

Horizontal Dendrogram

Drawing a cutting line within a horizontal dendrogram
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Clustering data with the k-means method

k-means clustering is a flat clustering technique, which produces only one partition with

k clusters. Unlike hierarchical clustering, which does not require a user to determine the
number of clusters at the beginning, the k-means method requires this to be determined first.
However, k-means clustering is much faster than hierarchical clustering as the construction of
a hierarchical tree is very time consuming. In this recipe, we will demonstrate how to perform
k-means clustering on the customer dataset.

Getting ready

In this recipe, we will continue to use the customer dataset as the input data source to
perform k-means clustering.

How to do it...

Perform the following steps to cluster the customer dataset with the k-means method:

1. First, you can use kmeans to cluster the customer data:

> set.seed(22)

> fit = kmeans (customer, 4)

> fit

K-means clustering with 4 clusters of sizes 8, 11, 16, 25

Cluster means:

Visit.Time Average.Expense Sex Age
1 1.3302016 1.0155226 -1.4566845 0.5591307
2 -0.7771737 -0.5178412 -1.4566845 -0.4774599
3 0.8571173 0.9887331 0.6750489 1.0505015
4 -0.6322632 -0.7299063 0.6750489 -0.6411604

Clustering vector

[1] 2 2 1 2
[29] 4 4 4 3
[57] 3 4 4 3

121122211222121343433443
3344344444443 344434334%4 4

Within cluster sum of squares by cluster:
[1] 5.90040 11.97454 22.58236 20.89159
(between SS / total SS = 74.0 %)

Available components:

[1] "cluster™" "centers" "totss"
[4] "withinss" "tot.withinss" "betweenss"
[7] "size" "iter" "jfault
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You can then inspect the center of each cluster using barplot:

> barplot(t(fit$centers), beside = TRUE,xlab="cluster",
ylab="value")

1.0

00 05

value

10

cluster

The barplot of centers of different attributes in four clusters

Lastly, you can draw a scatter plot of the data and color the points according to
the clusters:

> plot(customer, col = fit$cluster)
— o] [s]
[Ty
1 o]
a - ° o @ =
& — 2 o s o ©
[T, @ s}
¥ - o o
i o ° o
& - o ° °
g o 8 [SEE
[i}] [ B
= 7 3 o
< i g © @ !
o | 8 o
[ T T T T
-1 0 1 2
Visit. Time

The scatter plot showing data colored with regard to its cluster label
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k-means clustering is a method of partitioning clustering. The goal of the algorithm is to partition
n objects into k clusters, where each object belongs to the cluster with the nearest mean. The
objective of the algorithm is to minimize the within-cluster sum of squares (WCSS). Assuming x
is the given set of observations, S = {SI,S2 ---Sk} denotes k partitions, and 4, is the mean of S,
, then we can formulate the WCSS function as follows:

=Y 3 fv-u

i=1 xes;

2

The process of k-means clustering can be illustrated by the following five steps:

1. Specify the number of k clusters.

Randomly create k partitions.

Calculate the center of the partitions.
Associate objects closest to the cluster center.

ok 0N

Repeat steps 2, 3, and 4 until the WCSS changes very little (or is minimized).

In this recipe, we demonstrate how to use k-means clustering to cluster customer data. In
contrast to hierarchical clustering, k-means clustering requires the user to input the number
of K. In this example, we use K=4. Then, the output of a fitted model shows the size of each
cluster, the cluster means of four generated clusters, the cluster vectors with regard to each
data point, the within cluster sum of squares by the clusters, and other available components.

Further, you can draw the centers of each cluster in a bar plot, which will provide more details
on how each attribute affects the clustering. Lastly, we plot the data point in a scatter plot and
use the fitted cluster labels to assign colors with regard to the cluster label.

See also

» In k-means clustering, you can specify the algorithm used to perform clustering
analysis. You can specify either Hartigan-Wong, Lloyd, Forgy, or MacQueen as the
clustering algorithm. For more details, please use the help function to refer to the
document for the kmeans function:

>help (kmeans)
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Drawing a bivariate cluster plot

In the previous recipe, we employed the k-means method to fit data into clusters. However,
if there are more than two variables, it is impossible to display how data is clustered in two
dimensions. Therefore, you can use a bivariate cluster plot to first reduce variables into two
components, and then use components, such as axis and circle, as clusters to show how
data is clustered. In this recipe, we will illustrate how to create a bivariate cluster plot.

Getting ready

In this recipe, we will continue to use the customer dataset as the input data source to draw
a bivariate cluster plot.

How to do it...

Perform the following steps to draw a bivariate cluster plot:

1. Install and load the cluster package:
> install.packages ("cluster")
> library(cluster)
2. You can then draw a bivariate cluster plot:
> clusplot(customer, fit$cluster, color=TRUE, shade=TRUE)

CLUSPLOT( customer )

05
|

Component 2
05

-15

Component 1
These two components explain 85.01 % of the point variability.

The bivariate clustering plot of the customer dataset
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3. You can also zoom into the bivariate cluster plot:

> par (mfrow= c(1,2))
> clusplot (customer, fit$cluster, color=TRUE, shade=TRUE)
> rect(-0.7,-1.7, 2.2,-1.2, border = "orange", lwd=2)
> clusplot (customer, fit$cluster, color = TRUE, xlim = c(-
0.7,2.2), ylim = ¢(-1.7,-1.2))
CLUSPLOT( customer) CLUSPLOT( customer )
(o] (]
T =
18] ik}
C [
(=] (=]
[s% [s N
= =
o L=}
[ @] @]
05 05 10 15 20
Component 1 Component 1
These two components explain §5.01 % These two components explain §5.01 9

The zoom-in of the bivariate clustering plot

In this recipe, we draw a bivariate cluster plot to show how data is clustered. To draw a
bivariate cluster plot, we first need to install the cluster package and load it into R. We

then use the clusplot function to draw a bivariate cluster plot from a customer dataset.

In the clustplot function, we can set shade to TRUE and color to TRUE to display a
cluster with colors and shades. As per the preceding figure (step 2) we found that the bivariate
uses two components, which explains 85.01 percent of point variability, as the x-axis and
y-axis. The data points are then scattered on the plot in accordance with component 1 and
component 2. Data within the same cluster is circled in the same color and shade.

Besides drawing the four clusters in a single plot, you can use rect to add a rectangle around
a specific area within a given x-axis and y-axis range. You can then zoom into the plot to
examine the data within each cluster by using x1imand ylim in the clusplot function.
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There's more

The clusplot function uses princomp and cmdscale to reduce the original feature
dimension to the principal component. Therefore, one can see how data is clustered in
a single plot with these two components as the x-axis and y-axis. To learn more about

princomp and cmdscale, one can use the help function to view related documents:

> help(cmdscale)
> help (princomp)

For those interested in how to use cmdscale to reduce the dimensions, please perform the
following steps:

> mds = cmdscale(dist (customer), k = 2)
> plot(mds, col = fit$cluster)

_ o 5 © ©
o @ o @ o
puk R Ry @ 2 oo 05 &0 o™ o0 0 P
o
ﬁ- —
€ w
E <9
o o
o o o o
— o oOo o Do % o@
L}
T T T T T T
-2 -1 0 1 2 3

mds[,1]

The scatter plot of data with regard to scaled dimensions

Comparing clustering methods

After fitting data into clusters using different clustering methods, you may wish to measure
the accuracy of the clustering. In most cases, you can use either intracluster or intercluster
metrics as measurements. We now introduce how to compare different clustering methods
using cluster.stat from the fpc package.

Getting ready

In order to perform a clustering method comparison, one needs to have the previous recipe
completed by generating the customer dataset.
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How to do it...

Perform the following steps to compare clustering methods:

1.

300

First, install and load the fpc package:

> install.packages ("fpc")
> library (fpc)

You then need to use hierarchical clustering with the single method to cluster
customer data and generate the object hc_single:

> single ¢ = hclust(dist(customer), method="single")

> hc _single = cutree(single ¢, k = 4)

Use hierarchical clustering with the complete method to cluster customer data and
generate the object hc_complete:

> complete ¢ = hclust(dist(customer), method="complete")
> hc complete = cutree(complete ¢, k = 4)

You can then use k-means clustering to cluster customer data and generate the
object km:

> set.seed(22)
> km = kmeans (customer, 4)

Next, retrieve the cluster validation statistics of either clustering method:

> ¢s8 = cluster.stats(dist (customer), km$cluster)

Most often, we focus on using within.cluster.ss and avg.silwidthto
validate the clustering method:

> cs[c("within.cluster.ss","avg.silwidth")]
$within.cluster.ss
[1] 61.3489

$avg.silwidth
[1] 0.4640587

Finally, we can generate the cluster statistics of each clustering method and list them
in a table:

> sapply(list (kmeans = km$cluster, hc single = hc single, hc
complete = hc complete), function(c) cluster.stats(dist(customer),
c) [e("within.cluster.ss","avg.silwidth")])

kmeans hc single hc complete
within.cluster.ss 61.3489 136.0092 65.94076
avg.silwidth 0.4640587 0.2481926 0.4255961
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In this recipe, we demonstrate how to validate clusters. To validate a clustering method,

we often employ two techniques: intercluster distance and intracluster distance. In these
techniques, the higher the intercluster distance, the better it is, and the lower the intracluster
distance, the better it is. In order to calculate related statistics, we can apply cluster.stat
from the fpc package on the fitted clustering object.

From the output, the within.cluster.ss measurement stands for the within clusters sum of
squares, and avg.silwidth represents the average silhouette width. The within.cluster.ss
measurement shows how closely related objects are in clusters; the smaller the value, the more
closely related objects are within the cluster. On the other hand, a silhouette is a measurement
that considers how closely related objects are within the cluster and how clusters are separated
from each other. Mathematically, we can define the silhouette width for each point x as follows:

Silhouette(x ) = b(x)~a(x)

In the preceding equation, a(x) is the average distance between x and all other points within
the cluster, and b(x) is the minimum of the average distances between x and the points in the
other clusters. The silhouette value usually ranges from O to 1; a value closer to 1 suggests
the data is better clustered.

The summary table generated in the last step shows that the complete hierarchical clustering
method outperforms a single hierarchical clustering method and k-means clustering in
within.cluster.ss and avg.silwidth

» The kmeans function also outputs statistics (for example, withinss and
betweenss) for users to validate a clustering method:

> set.seed(22)

> km = kmeans (customer, 4)

> km$withinss

[1] 5.90040 11.97454 22.58236 20.89159
> km$betweenss

[1] 174.6511
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Extracting silhouette information from

clustering

Silhouette information is a measurement to validate a cluster of data. In the previous recipe,
we mentioned that the measurement of a cluster involves the calculation of how closely the
data is clustered within each cluster, and measures how far different clusters are apart from
each other. The silhouette coefficient combines the measurement of the intracluster and
intercluster distance. The output value typically ranges from O to 1; the closer to 1, the better
the cluster is. In this recipe, we will introduce how to compute silhouette information.

Getting ready

In order to extract the silhouette information from a cluster, you need to have the previous
recipe completed by generating the customer dataset.

How to do it...

Perform the following steps to compute the silhouette information:

1. Use kmeans to generate a k-means object, km:

> set.seed(22)
> km = kmeans (customer, 4)

2. You can then compute the silhouette information:

> kms = silhouette (km$cluster,dist (customer))
> summary (kms)
Silhouette of 60 units in 4 clusters from silhouette.default(x =
km$cluster, dist = dist (customer))
Cluster sizes and average silhouette widths:
8 11 16 25
0.5464597 0.4080823 0.3794910 0.5164434
Individual silhouette widths:
Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.1931 0.4030 0.4890 0.4641 0.5422 0.6333

3. Next, you can plot the silhouette information:
> plot (kms)
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Silhouette plot of (x = km$cluster, dist = dist(customer))
n=60 4 clusters C;
jonylavecg s
1: 301040
2: 13027
3: 101030
4: 71041
T T T T T 1
0.0 0.2 04 06 0.8 1.0
Silhouette width s;
Average silhouette width : 0.35

The silhouette plot of the k-means clustering result

In this recipe, we demonstrate how to use the silhouette plot to validate clusters. You can first
retrieve the silhouette information, which shows cluster sizes, the average silhouette widths,
and individual silhouette widths. The silhouette coefficient is a value ranging from O to 1; the
closer to 1, the better the quality of the cluster.

Lastly, we use the plot function to draw a silhouette plot. The left-hand side of the plot shows
the number of horizontal lines, which represent the number of clusters. The right-hand column
shows the mean similarity of the plot of its own cluster minus the mean similarity of the next
similar cluster. The average silhouette width is presented at the bottom of the plot.

» For those interested in how silhouettes are computed, please refer to the
Wikipedia entry for Silhouette Value: http://en.wikipedia.org/wiki/
Silhouette_ %28clustering%29

Obtaining the optimum number of clusters

for k-means

While k-means clustering is fast and easy to use, it requires k to be the input at the beginning.
Therefore, we can use the sum of squares to determine which k value is best for finding the
optimum number of clusters for k-means. In the following recipe, we will discuss how to find
the optimum number of clusters for the k-means clustering method.
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Getting ready

In order to find the optimum number of clusters, you need to have the previous recipe
completed by generating the customer dataset.

How to do it...

Perform the following steps to find the optimum number of clusters for the k-means clustering;:

1. First, calculate the within sum of squares (withinss) of different numbers of clusters:

nk = 2:10
set.seed(22)
WSS = sapply(nk, function(k) {
kmeans (customer, centers=k)$tot.withinss

+ + v v Vv

H

> WSS

[1] 123.49224 88.07028 61.34890 48.76431 47.20813
[6] 45.48114 29.58014 28.87519 23.21331

2. You can then use a line plot to plot the within sum of squares with a different number

of k:

> plot(nk, WSS, type="1", xlab= "number of k", ylab="within sum of

squares")

" |
fod
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w
T 2
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c ©7
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1 1 1 1 1
2 4 6 8 10
number of k
The line plot of the within sum of squares with regard to the different number of k
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3. Next, you can calculate the average silhouette width (avg.silwidth) of different
numbers of clusters:
> SW = sapply(nk, function(k) {

+ cluster.stats(dist (customer), kmeans (customer,
centers=k) $cluster) $avg.silwidth

+ })

> SW

[1] 0.4203896 0.4278904 0.4640587 0.4308448 0.3481157
[6] 0.3320245 0.4396910 0.3417403 0.4070539

4. You can then use a line plot to plot the average silhouette width with a different
number of k:

> plot(nk, SW, type="1l", xlab="number of clusers", ylab="average
silhouette width")
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number of clusers

The line plot of average silhouette width with regard to the different number of k

5. Retrieve the maximum number of clusters:

> nk[which.max (SW) ]
[1] 4

In this recipe, we demonstrate how to find the optimum number of clusters by iteratively
getting within the sum of squares and the average silhouette value. For the within sum of
squares, lower values represent clusters with better quality. By plotting the within sum of
squares in regard to different number of k, we find that the elbow of the plot is at k=4.
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On the other hand, we also compute the average silhouette width based on the different
numbers of clusters using cluster.stats. Also, we can use a line plot to plot the average
silhouette width with regard to the different numbers of clusters. The preceding figure (step 4)
shows the maximum average silhouette width appears at k=4. Lastly, we use which.max

to obtain the value of k to determine the location of the maximum average silhouette width.

» For those interested in how the within sum of squares is computed, please refer to
the Wikipedia entry of K-means clustering: http://en.wikipedia.org/wiki/
K-means_clustering

Clustering data with the density-based

method

As an alternative to distance measurement, you can use a density-based measurement
to cluster data. This method finds an area with a higher density than the remaining area.
One of the most famous methods is DBSCAN. In the following recipe, we will demonstrate
how to use DBSCAN to perform density-based clustering.

Getting ready

In this recipe, we will use simulated data generated from the mlbench package.

How to do it...

Perform the following steps to perform density-based clustering:

1. First, install and load the fpc and ml1bench packages:
install.packages ("mlbench")

library (mlbench)

install.packages ("fpc")

V V VvV V

library (fpc)

2. You can then use the mlbench library to draw a Cassini problem graph:

> set.seed(2)
> p = mlbench.cassini (500)
> plot (p$x)
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The Cassini problem graph

Next, you can cluster data with regard to its density measurement:
> ds = dbscan(dist(p$x),0.2, 2, countmode=NULL, method="dist")
> ds
dbscan Pts=500 MinPts=2 eps=0.2
1 2 3
seed 200 200 100
total 200 200 100

Plot the data in a scatter plot with different cluster labels as the color:
> plot(ds, p$x)
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data[,1]

The data scatter plot colored with regard to the cluster label
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5. You can also use dbscan to predict which cluster the data point belongs to. In this
example, first make three inputs in the matrix p:

> y = matrix(0,nrow=3,ncol=2)
> y[1,] = ¢(0,0)
> yl[2,] = c(0,-1.5)
> yI[3,] = ¢(1,1)
>y
[,11 [,2]
1,1 0 0.0
[2,1 0 -1.5
[3,1 1 1.0

6. You can then predict which cluster the data belongs to:

> predict(ds, p$x, y)
[1] 3 1 2

Density-based clustering uses the idea of density reachability and density connectivity, which
makes it very useful in discovering a cluster in nonlinear shapes. Before discussing the
process of density-based clustering, some important background concepts must be explained.
Density-based clustering takes two parameters into account: eps and MinPts. eps stands for
the maximum radius of the neighborhood; MinPts denotes the minimum number of points
within the eps neighborhood. With these two parameters, we can define the core point as
having points more than MinPts within eps. Also, we can define the board point as having
points less than MinPts, but is in the neighborhood of the core points. Then, we can define
the core object as if the number of points in the eps-neighborhood of p is more than MinPts.

Furthermore, we have to define the reachability between two points. We can say that a point,
p, is directly density reachable from another point, g, if g is within the eps-neighborhood of p
and p is a core object. Then, we can define that a point, p, is generic and density reachable
from the point g, if there exists a chain of points, p,,p,....0, where p, =q, p, = p,and p+1is
directly density reachable from pi with regard to Eps and MinPts for 1 <=i<=n:

d ..\\" . \\
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Point p and q is density reachable
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With a preliminary concept of density-based clustering, we can then illustrate the process of
DBSCAN, the most popular density-based clustering, as shown in these steps:

1. Randomly select a point, p.

2. Retrieve all the points that are density-reachable from p with regard to Eps and
MinPts.

3. Ifpisa core point, then a cluster is formed. Otherwise, if it is a board point and no
points are density reachable from p, the process will mark the point as noise and
continue visiting the next point.

4. Repeat the process until all points have been visited.

In this recipe, we demonstrate how to use the DBSCAN density-based method to cluster
customer data. First, we have to install and load the ml1bench and £pc libraries. The m1bench
package provides many methods to generate simulated data with different shapes and sizes.
In this example, we generate a Cassini problem graph.

Next, we perform dbscan on a Cassini dataset to cluster the data. We specify the reachability
distance as 0.2, the minimum reachability number of points to 2, the progress reporting as
null, and use distance as a measurement. The clustering method successfully clusters data
into three clusters with sizes of 200, 200, and 100. By plotting the points and cluster labels
on the plot, we see that three sections of the Cassini graph are separated in different colors.

The fpc package also provides a predict function, and you can use this to predict the
cluster labels of the input matrix. Point ¢(0,0) is classified into cluster 3, point ¢(0, -1.5)
is classified into cluster 1, and point ¢(41,1) is classified into cluster 2.

» The £pc package contains flexible procedures of clustering, and has useful
clustering analysis functions. For example, you can generate a discriminant
projection plot using the plotcluster function. For more information,
please refer to the following document:

> help(plotcluster)

Clustering data with the model-based

method

In contrast to hierarchical clustering and k-means clustering, which use a heuristic approach
and do not depend on a formal model. Model-based clustering techniques assume varieties of
data models and apply an EM algorithm to obtain the most likely model, and further use the
model to infer the most likely number of clusters. In this recipe, we will demonstrate how to
use the model-based method to determine the most likely number of clusters.

309

www.it-ebooks.info


http://www.it-ebooks.info/

Clustering

Getting ready

In order to perform a model-based method to cluster customer data, you need to have the
previous recipe completed by generating the customer dataset.

How to do it...

Perform the following steps to perform model-based clustering:

1. First, please install and load the library mclust:

> install.packages ("mclust")
> library (mclust)

2. You can then perform model-based clustering on the customer dataset:

> mb = Mclust (customer)
> plot (mb)

3. Then, you can press 1 to obtain the BIC against a number of components:
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Plot of BIC against number of components
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4. Then, you can press 2 to show the classification with regard to different combinations

of features:
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Plot showing classification with regard to different combinations of features
5. Press 3 to show the classification uncertainty with regard to different combinations
of features:
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6. Next, press 4 to plot the density estimation:
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A plot of density estimation
7. Then, you can press O to plot density to exit the plotting menu.
Lastly, use the summary function to obtain the most likely model and number
of clusters:
> summary (mb)
Gaussian finite mixture model fitted by EM algorithm
Mclust VII (spherical, varying volume) model with 5 components:
log.likelihood n df BIC ICL
-218.6891 60 29 -556.1142 -557.2812
Clustering table:
1 2 3 4 5
11 8 17 14 10
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Instead of taking a heuristic approach to build a cluster, model-based clustering uses a
probability-based approach. Model-based clustering assumes that the data is generated

by an underlying probability distribution and tries to recover the distribution from the data.
One common model-based approach is using finite mixture models, which provide a flexible
modeling framework for the analysis of the probability distribution. Finite mixture models are
a linearly weighted sum of component probability distribution. Assume the data y=(y,,y,...y,)
contains n independent and multivariable observations; G is the number of components; the
likelihood of finite mixture models can be formulated as:

L (0-0,19) =T [T 12/, (3116,)

i=l k=l

Where f; and 6, are the density and parameters of the kth component in the mixture, and 7
G
(r, 20 and ZH 7, =1)is the probability that an observation belongs to the kth component.

The process of model-based clustering has several steps: First, the process selects the
number and types of component probability distribution. Then, it fits a finite mixture model
and calculates the posterior probabilities of a component membership. Lastly, it assigns the
membership of each observation to the component with the maximum probability.

In this recipe, we demonstrate how to use model-based clustering to cluster data. We first
install and load the Mclust library into R. We then fit the customer data into the model-based
method by using the Mclust function.

After the data is fit into the model, we plot the model based on clustering results. There are
four different plots: BIC, classification, uncertainty, and density plots. The BIC plot shows the
BIC value, and one can use this value to choose the number of clusters. The classification plot
shows how data is clustered in regard to different dimension combinations. The uncertainty
plot shows the uncertainty of classifications in regard to different dimension combinations.
The density plot shows the density estimation in contour.

You can also use the summary function to obtain the most likely model and the most possible
number of clusters. For this example, the most possible number of clusters is five, with a BIC
value equal t0 -556.1142.

» Forthose interested in detail on how Mclust works, please refer to the following
source: C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4
for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and
Density Estimation. Technical Report No. 597, Department of Statistics, University
of Washington.
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Visualizing a dissimilarity matrix

A dissimilarity matrix can be used as a measurement for the quality of a cluster. To visualize
the matrix, we can use a heat map on a distance matrix. Within the plot, entries with

low dissimilarity (or high similarity) are plotted darker, which is helpful to identify hidden
structures in the data. In this recipe, we will discuss some techniques that are useful to
visualize a dissimilarity matrix.

Getting ready

In order to visualize the dissimilarity matrix, you need to have the previous recipe completed by
generating the customer dataset. In addition to this, a k-means object needs to be generated
and stored in the variable km.

How to do it...

Perform the following steps to visualize the dissimilarity matrix:

1. First, install and load the seriation package:
> install.packages ("seriation")
> library(seriation)
2. You can then use dissplot to visualize the dissimilarity matrix in a heat map:

> dissplot(dist (customer), labels=km$cluster,
options=1list (main="Kmeans Clustering With k=4"))

Kmeans Clustering With k=4
1 27 3 4

m—

A dissimilarity plot of k-means clustering
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3. Next, apply dissplot on hierarchical clustering in the heat map:

> complete ¢ = hclust(dist(customer), method="complete")
> hc complete = cutree(complete c, k = 4)

> dissplot(dist(customer), labels=hc complete,
options=1list (main="Hierarchical Clustering"))

Hierarchical Clustering
2 3 4 1

0 1 2 3 4 5

A dissimilarity plot of hierarchical clustering

In this recipe, we use a dissimilarity plot to visualize the dissimilarity matrix. We first install
and load the package seriation, and then apply the dissplot function on the k-means
clustering output, generating the preceding figure (step 2).

It shows that clusters similar to each other are plotted darker, and dissimilar combinations are
plotted lighter. Therefore, we can see clusters against their corresponding clusters (such as
cluster 4 to cluster 4) are plotted diagonally and darker. On the other hand, clusters dissimilar
to each other are plotted lighter and away from the diagonal.

Likewise, we can apply the dissplot function on the output of hierarchical clustering. The
generated plot in the figure (step 3) shows the similarity of each cluster in a single heat map.
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There's more...

Besides using dissplot to visualize the dissimilarity matrix, one can also visualize a
distance matrix by using the dist and image functions. In the resulting graph, closely
related entries are plotted in red. Less related entries are plotted closer to white:

> image (as.matrix(dist (customer)))

00 02 04 06 0B 10

0.0 0.2 0.4 06 08 1.0

A distance matrix plot of customer dataset

In order to plot both a dendrogram and heat map to show how data is clustered, you can use
the heatmap function:

cd=dist (customer)

hc=hclust (cd)

cdt=dist (t (customer))

hce=hclust (cdt)

heatmap (customer, Rowv=as.dendrogram(hc), Colv=as.dendrogram(hcc))

V V. V V VvV

o

——

Sex

Age

Visit. Time
erage. Expense

A heat map with dendrogram on the column and row side

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Validating clusters externally

Besides generating statistics to validate the quality of the generated clusters, you can use
known data clusters as the ground truth to compare different clustering methods. In this recipe,
we will demonstrate how clustering methods differ with regard to data with known clusters.

Getting ready

In this recipe, we will continue to use handwriting digits as clustering inputs; you can find the
figure on the author's Github page: https://github.com/ywchiu/ml_ R cookbook/
tree/master/CHO.

How to do it...

Perform the following steps to cluster digits with different clustering techniques:

1.

First, you need to install and load the package png:

> install.packages ("png")
> library (png)

Then, please read images from handwriting.png and transform the read data into
a scatter plot:

> img2 = readPNG("handwriting.png", TRUE)

> img3 = img2[,nrow(img2) :1]

> b = cbind(as.integer (which(img3 < -1) %% 28), which(img3 < -1) /
28)

> plot(b, xlim=c(1,28), ylim=c(1,28))

bl,2]

5 10 15 20 25
| | |
COODO0H00
0000000000
00000
0o
000
000000
00000000
00000000
0000 O0O000
00000 0000
CODOONO0 000
COTDOOOEE00 oo

0

A scatter plot of handwriting digits
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3. Perform a k-means clustering method on the handwriting digits:

> set.seed(18)

> fit = kmeans (b, 2)

> plot(b, col=fit$cluster)

> plot(b, col=fit$cluster, xlim=c(1,28), ylim=c(1,28))

bl2]

5 10 15 20 25
| | |
[ e e]
COOBO0D00G
[zl
o0
[eees)
000000
00000H0
000EO00D
oCo0 [Eosese]
000000 00000
00C00C000 00
fesvesawowes] 00

0

k-means clustering result on handwriting digits

4. Next, perform the dbscan clustering method on the handwriting digits:

> ds = dbscan(b, 2)
> ds
dbscan Pts=212 MinPts=5 eps=2
1 2
seed 75 137
total 75 137
> plot(ds, b, xlim=c(1,28), ylim=c(1,28))

data[ 2]
15

o
—
o
-
(53]
[}
o

25

data[,1]

DBSCAN clustering result on handwriting digits
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In this recipe, we demonstrate how different clustering methods work in regard to a
handwriting dataset. The aim of the clustering is to separate 1 and 7 into different clusters.
We perform different techniques to see how data is clustered in regard to the k-means and
DBSCAN methods.

To generate the data, we use the Windows application paint . exe to create a PNG file with
dimensions of 28 x 28 pixels. We then read the PNG data using the readPNG function and
transform the read PNG data points into a scatter plot, which shows the handwriting digits
in 17.

After the data is read, we perform clustering techniques on the handwriting digits. First, we
perform k-means clustering, where k=2 on the dataset. Since k-means clustering employs

distance measures, the constructed clusters cover the area of both the 1 and 7 digits. We

then perform DBSCAN on the dataset. As DBSCAN is a density-based clustering technique,
it successfully separates digit 1 and digit 7 into different clusters.

» If you are interested in how to read various graphic formats in R, you may refer to the
following document:

> help (package="png")
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Association Analysis
and Sequence Mining

In this chapter, we will cover the following topics:

» Transforming data into transactions

» Displaying transactions and associations

» Mining associations with the Apriori rule

» Pruning redundant rules

» Visualizing associations rules

» Mining frequent itemsets with Eclat

» Creating transactions with temporal information

» Mining frequent sequential patterns with cSPADE

Introduction

Enterprises accumulate a large amount of transaction data (for example, sales orders from
retailers, invoices, and shipping documentations) from daily operations. Finding hidden
relationships in the data can be useful, such as, "What products are often bought together?"
or "What are the subsequent purchases after buying a cell phone?" To answer these two
questions, we need to perform association analysis and frequent sequential pattern mining
on a transaction dataset.

Association analysis is an approach to find interesting relationships within a transaction dataset.
A famous association between products is that customers who buy diapers also buy beer. While
this association may sound unusual, if retailers can use this kind of information or rule to cross-
sell products to their customers, there is a high likelihood that they can increase their sales.
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Association analysis is used to find a correlation between itemsets, but what if you want to
find out the order in which items are frequently purchased? To achieve this, you can adopt
frequent sequential pattern mining to find frequent subsequences from transaction datasets
with temporal information. You can then use the mined frequent subsequences to predict
customer shopping sequence orders, web click streams, biological sequences, and usages
in other applications.

In this chapter, we will cover recipes to create and inspect transaction datasets, performing
association analysis with an Apriori algorithm, visualizing associations in various graph
formats, and finding frequent itemsets using the Eclat algorithm. Lastly, we will create
transactions with temporal information and use the cSPADE algorithm to discover frequent
sequential patterns.

Transforming data into transactions

Before creating a mining association rule, you need to transform the data into transactions.
In the following recipe, we will introduce how to transform either a list, matrix, or data frame
into transactions.

Getting ready

In this recipe, we will generate three different datasets in a list, matrix, or data frame. We can
then transform the generated dataset into transactions.

How to do it...

Perform the following steps to transform different formats of data into transactions:

1. First, you have to install and load the package arule:

> install.packages ("arules")
> library(arules)

2. You can then make a list with three vectors containing purchase records:

> tr list = list(c("Apple", "Bread", "Cake"),

+ c("Apple", "Bread", "Milk"),

+ c("Bread", "Cake", "Milk"))

> names (tr list) = paste("Tr",c(1l:3), sep = "")

3. Next, you can use the as function to transform the data frame into transactions:

> trans = as(tr list, "transactions")
> trans
transactions in sparse format with

3 transactions (rows) and

4 items (columns)
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4. You can also transform the matrix format data into transactions:

> tr matrix = matrix(
+ c(1,1,1,0,

+ 1,1,0,1,

+ 0,1,1,1), ncol = 4)

> dimnames (tr_matrix) = 1list(

+ paste("Tr",c(1:3), sep = ""),

+ c("Apple", "Bread", "Cake", "Milk")

+ )

> trans2 = as(tr matrix, "transactions")
> trans2

transactions in sparse format with
3 transactions (rows) and
4 items (columns)

5. Lastly, you can transform the data frame format datasets into transactions:

> Tr_df = data.frame(

+ TrID= as.factor(e(1,2,1,1,2,3,2,3,2,3)),

+ Item = as.factor(c("Apple","Milk", "Cake", "Bread",
+ "Cake", "Milk", "Apple", "Cake",
+ "Bread", "Bread"))

+ )

> trans3 = as(split(Tr df[,"Item"], Tr d4df[,"TrID"]),
"transactions") a a
> trans3
transactions in sparse format with
3 transactions (rows) and
4 items (columns)

Before mining frequent itemsets or using the association rule, it is important to prepare
the dataset by the class of transactions. In this recipe, we demonstrate how to transform
a dataset from a list, matrix, and data frame format to transactions. In the first step, we
generate the dataset in a list format containing three vectors of purchase records. Then,
after we have assigned a transaction ID to each transaction, we transform the data into
transactions using the as function.

Next, we demonstrate how to transform the data from the matrix format into transactions.

To denote how items are purchased, one should use a binary incidence matrix to record the
purchase behavior of each transaction with regard to different items purchased. Likewise, we
can use an as function to transform the dataset from the matrix format into transactions.
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Lastly, we illustrate how to transform the dataset from the data frame format into transactions.
The data frame contains two factor-type vectors: one is a transaction ID named TrID, while the
other shows purchased items (named in Ttem) with regard to different transactions. Also, one
can use the as function to transform the data frame format data into transactions.

» The transactions class is used to represent transaction data for rules or frequent
pattern mining. It is an extension of the itemMatrix class. If you are interested in
how to use the two different classes to represent transaction data, please use the
help function to refer to the following documents:

> help (transactions)
> help(itemMatrix)

Displaying transactions and associations

The arule package uses its own transactions class to store transaction data. As such,
we must use the generic function provided by arule to display transactions and association
rules. In this recipe, we will illustrate how to display transactions and association rules via
various functions in the arule package.

Getting ready

Ensure that you have completed the previous recipe by generating transactions and storing
these in the variable, trans.

How to do it...

Perform the following steps to display transactions and associations:

1. First, you can obtain a LIST representation of the transaction data:

> LIST(trans)
$Trl
[1] "Apple" "Bread" "Cake"

$Tr2
[1] "Apple" "Bread" "Milk"

$Tr3
[1] "Bread" "Cake" "Milk™"
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Next, you can use the summary function to show a summary of the statistics and
details of the transactions:

> summary (trans)

transactions as itemMatrix in sparse format with
3 rows (elements/itemsets/transactions) and
4 columns (items) and a density of 0.75

most frequent items:
Bread Apple Cake Milk (Other)
3 2 2 2 0

element (itemset/transaction) length distribution:

sizes
3
3
Min. 1lst Qu. Median Mean 3rd Qu. Max.

3 3 3 3 3 3

includes extended item information - examples:

labels
1 Apple
2 Bread
3 Cake

includes extended transaction information - examples:

transactionID
1 Trl
2 Tr2
3 Tr3

You can then display transactions using the inspect function:

> inspect (trans)

items transactionID
1 {apple,

Bread,

Cake} Trl
2 {apple,

Bread,

Milk} Tr2
3 {Bread,

Cake,

Milk} Tr3
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4. In addition to this, you can filter the transactions by size:

> filter trains = trans[size(trans) >=3]
> inspect(filter trains)

items transactionID
1 {apple,

Bread,

Cake} Trl
2 {apple,

Bread,

Milk} Tr2
3 {Bread,

Cake,

Milk} Tr3

5. Also, you can use the image function to visually inspect the transactions:

> image (trans)

Transactions (Rows)

1 2 3 4

ltems (Columns)

Visual inspection of transactions

6. To visually show the frequency/support bar plot, one can use itemFrequenctPlot:

> itemFrequencyPlot (trans)
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Item frequency bar plot of transactions

As the transaction data is the base for mining associations and frequent patterns, we have

to learn how to display the associations to gain insights and determine how associations are
built. The arules package provides various methods to inspect transactions. First, we use
the LIST function to obtain the list representation of the transaction data. We can then use
the summary function to obtain information, such as basic descriptions, most frequent items,
and the transaction length distribution.

Next, we use the inspect function to display the transactions. Besides displaying all
transactions, one can first filter the transactions by size and then display the associations by
using the inspect function. Furthermore, we can use the image function to visually inspect
the transactions. Finally, we illustrate how to use the frequency/support bar plot to display the
relative item frequency of each item.

» Besides using itemFrequencyPlot to show the frequency/bar plot, you can use
the itemFrequency function to show the support distribution. For more details,
please use the help function to view the following document:

> help (itemFrequency)
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Mining associations with the Apriori rule

Association mining is a technique that can discover interesting relationships hidden in
transaction datasets. This approach first finds all frequent itemsets, and generates strong
association rules from frequent itemsets. Apriori is the most well-known association mining
algorithm, which identifies frequent individual items first and then performs a breadth-first
search strategy to extend individual items to larger itemsets until larger frequent itemsets
cannot be found. In this recipe, we will introduce how to perform association analysis using
the Apriori rule.

Getting ready

In this recipe, we will use the built-in transaction dataset, Groceries, to demonstrate how to
perform association analysis with the Apriori algorithm in the arules package. Please make
sure that the arules package is installed and loaded first.

How to do it...

Perform the following steps to analyze the association rules:

1. First, you need to load the dataset Groceries:

> data(Groceries)

2. You can then examine the summary of the Groceries dataset:
> summary (Groceries)

3. Next, you can use itemFrequencyPlot to examine the relative item frequency
of itemsets:

> itemFrequencyPlot (Groceries, support = 0.1, cex.names=0.8,
topN=5)
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The top five item frequency bar plot of groceries transactions

Use apriori to discover rules with the support over 0.001 and confidence over 0.5:
> rules = apriori(Groceries, parameter = list(supp = 0.001, conf =
0.5, target= "rules"))

> summary (rules)

set of 5668 rules

rule length distribution (lhs + rhs) :sizes
2 3 4 5 6
11 1461 3211 939 46

Min. 1lst Qu. Median Mean 3rd Qu. Max.
2.00 3.00 4.00 3.92 4.00 6.00

summary of quality measures:

support confidence 1ift
Min. :0.001017 Min. :0.5000 Min. : 1.957
1st Qu.:0.001118 1st Qu.:0.5455 1st Qu.: 2.464
Median :0.001322 Median :0.6000 Median 2.899
Mean :0.001668 Mean :0.6250 Mean : 3.262
3rd Qu.:0.001729 3rd Qu.:0.6842 3rd Qu.: 3.691
Max. :0.022267 Max. :1.0000 Max. :18.996

mining info:
data ntransactions support confidence
Groceries 9835 0.001 0.5
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5. We can then inspect the first few rules:

330

>

inspect (head (rules))
lhs

lift

N NDUTL DS DNDNWDNDNDDNDR

{honey} =>

.870009

{tidbits} =>

.836542

{cocoa drinks} =>

.312611

{pudding powder} =>

.212062

{cooking chocolate} =>

.035097

{cereals} =>

.515917

rhs

{whole milk}

{rolls/buns}

{whole milk}

{whole milk}

{whole milk}

{whole milk}

support confidence

.001118454

.001220132

.001321810

.001321810

.001321810

.003660397

0.7333333

0.5217391

0.5909091

0.5652174

0.5200000

0.6428571

You can sort rules by confidence and inspect the first few rules:

> rules=sort(rules, by="confidence",

> inspect (head(rules))
lhs

rhs

decreasing=TRUE)

support

confidence 1ift

1

1
2

N

ul

[+

{rice,

sugar} =>
3.913649

{canned fish,

hygiene articles} =>
3.913649

{root vegetables,
butter,

rice} =>
3.913649

{root vegetables,
whipped/sour cream,
flour} =>
3.913649

{butter,

soft cheese,

domestic eggs} =>
3.913649

{citrus fruit,

root vegetables,

soft cheese} =>
5.168156

{whole

{whole

{whole

{whole

{whole

{other

milk}

milk}

milk}

milk}

milk}

vegetables} 0.

0.001220132

0.001118454

0.001016777

0.001728521

0.001016777

001016777
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The purpose of association mining is to discover associations among items from the
transactional database. Typically, the process of association mining proceeds by finding
itemsets that have the support greater than the minimum support. Next, the process uses
the frequent itemsets to generate strong rules (for example, milk => bread; a customer
who buys milk is likely to buy bread) that have the confidence greater than minimum the
confidence. By definition, an association rule can be expressed in the form of X=>Y, where
Xand Y are disjointed itemsets. We can measure the strength of associations between
two terms: support and confidence. Support shows how much of the percentage of a rule
is applicable within a dataset, while confidence indicates the probability of both X and Y
appearing in the same transaction:

o(xuy)

» Support = N

o(xu
> Conﬁdence=M
o(x)

Here, O refers to the frequency of a particular itemset; N denotes the populations.

As support and confidence are metrics for the strength rule only, you might still obtain many
redundant rules with a high support and confidence. Therefore, we can use the third measure,
lift, to evaluate the quality (ranking) of the rule. By definition, lift indicates the strength of a
rule over the random co-occurrence of X and Y, so we can formulate lift in the following form:

___o(xvy)
Lift = o(x)xa(y)

Apriori is the best known algorithm for mining associations, which performs a level-wise,
breadth-first algorithm to count the candidate itemsets. The process of Apriori starts by finding
frequent itemsets (a set of items that have minimum support) level-wisely. For example, the
process starts with finding frequent 1-itemsets. Then, the process continues by using frequent
1-itemsets to find frequent 2-itemsets. The process iteratively discovers new frequent k+1-
itemsets from frequent k-itemsets until no frequent itemsets are found.
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Finally, the process utilizes frequent itemsets to generate association rules:

TiD Items ltemset  Support
100 ACD {agj 1 Candidate 2
200 BCE [AC) 2
300 ABCE [AE} 1
400 BE B C} 2
LS e a3
i

' {CE}

Itemset  Support

B 3
c 3 lternset Support
E 3 {BCE} 2
Candidate 1 | Candidate 3

An illustration of Apriori algorithm (Where support = 2)

In this recipe, we use the Apriori algorithm to find association rules within transactions.
We use the built-in Groceries dataset, which contains one month of real-world point-of-
sale transaction data from a typical grocery outlet. We then use the summary function to
obtain the summary statistics of the Groceries dataset. The summary statistics shows
that the dataset contains 9,835 transactions, which are categorized into 169 categories.
In addition to this, the summary shows information, such as most frequent items, itemset
distribution, and example extended item information within the dataset. We can then use
itemFrequencyPlot to visualize the five most frequent items with support over 0.1.

Next, we apply the Apriori algorithm to search for rules with support over 0.001 and
confidence over 0.5. We then use the summary function to inspect detailed information

on the generated rules. From the output summary, we find the Apriori algorithm generates
5,668 rules with support over 0.001 and confidence over 0.5. Further, we can find the rule
length distribution, summary of quality measures, and mining information. In the summary
of the quality measurement, we find descriptive statistics of three measurements, which are
support, confidence, and lift. Support is the proportion of transactions containing a certain
itemset. Confidence is the correctness percentage of the rule. Lift is the response target
association rule divided by the average response.

To explore some generated rules, we can use the inspect function to view the first six
rules of the 5,668 generated rules. Lastly, we can sort rules by confidence and list rules
with the most confidence. Therefore, we find that rich sugar associated to whole
milk is the most confident rule with the support equal to 0.001220132, confidence
equal to 1, and lift equal to 3.913649.
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For those interested in the research results using the Groceries dataset, and how the support,
confidence, and lift measurement are defined, you can refer to the following papers:

» Michael Hahsler, Kurt Hornik, and Thomas Reutterer (2006) Implications of
probabilistic data modeling for mining association rules. In M. Spiliopoulou,
R. Kruse, C. Borgelt, A

» Nuernberger, and W. Gaul, editors, From Data and Information Analysis
to Knowledge Engineering, Studies in Classification, Data Analysis, and
Knowledge Organization, pages 598-605. Springer-Verlag

Also, in addition to using the summary and inspect functions to inspect association rules,
you canh use interestMeasure to obtain additional interest measures:

> head(interestMeasure (rules, c("support", "chiSquare", "confidence",
"conviction", "cosine", "coverage", "leverage", "lift","oddsRatio"),
Groceries))

Pruning redundant rules

Among the generated rules, we sometimes find repeated or redundant rules (for example,
one rule is the super rule or subset of another rule). In this recipe, we will show you how to
prune (or remove) repeated or redundant rules.

Getting ready

In this recipe, you have to complete the previous recipe by generating rules and have it stored
in the variable rules.

How to do it...

Perform the following steps to prune redundant rules:

1. First, follow these steps to find redundant rules:

rules.sorted = sort(rules, by="1ift")
subset.matrix = is.subset(rules.sorted, rules.sorted)
subset.matrix[lower.tri (subset.matrix, diag=T)] = NA

V V V V

redundant = colSums (subset.matrix, na.rm=T) >= 1

2. You can then remove redundant rules:

> rules.pruned = rules.sorted[!redundant]
> inspect (head (rules.pruned))
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lhs rhs support
confidence lift

1 {Instant food products,

soda} => {hamburger meat} 0.001220132
0.6315789 18.99565

2 {soda,

popcorn} => {salty snack} 0.001220132
0.6315789 16.69779
3 {flour,

baking powder} => {sugar} 0.001016777
0.5555556 16.40807

4 {ham,

processed cheese} => {white bread} 0.001931876
0.6333333 15.04549
5 {whole milk,

Instant food products} => {hamburger meat} 0.001525165
0.5000000 15.03823

6 {other vegetables,

curd,

yogurt,

whipped/sour cream} => {cream cheese } 0.001016777
0.5882353 14.83409

The two main constraints of association mining are to choose between the support and
confidence. For example, if you use a high support threshold, you might remove rare item
rules without considering whether these rules have a high confidence value. On the other
hand, if you choose to use a low support threshold, the association mining can produce
huge sets of redundant association rules, which make these rules difficult to utilize and
analyze. Therefore, we need to prune redundant rules so we can discover meaningful
information from these generated rules.

In this recipe, we demonstrate how to prune redundant rules. First, we search for redundant
rules. We sort the rules by a lift measure, and then find subsets of the sorted rules using the
is.subset function, which will generate an itemMatrix object. We can then set the lower
triangle of the matrix to NA. Lastly, we compute colSums of the generated matrix, of which
colSums >=1 indicates that the specific rule is redundant.
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After we have found the redundant rules, we can prune these rules from the sorted rules.
Lastly, we can examine the pruned rules using the inspect function.

» In order to find subsets or supersets of rules, you can use the is.superset and
is.subset functions on the association rules. These two methods may generate
an itemMatrix object to show which rule is the superset or subset of other rules.
You can refer to the help function for more information:

> help(is.superset)
> help(is.subset)

Visualizing association rules

Besides listing rules as text, you can visualize association rules, making it easier to find
the relationship between itemsets. In the following recipe, we will introduce how to use
the aruleviz package to visualize the association rules.

Getting ready

In this recipe, we will continue using the Groceries dataset. You need to have completed
the previous recipe by generating the pruned rule rules.pruned.

How to do it...

Perform the following steps to visualize the association rule:

1. First, you need to install and load the package arulesviz:

> install.packages ("arulesViz")
> library(arulesViz)
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2. You can then make a scatter plot from the pruned rules:

> plot(rules.pruned)

Scatter plot for 3958 rules
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The scatter plot of pruned association rules

3. Additionally, to prevent overplotting, you can add jitter to the scatter plot:

> plot(rules.pruned, shading="order", control=list(jitter=6))

Scatter plot for 3958 rules

1 =
B order 6
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° M order 5
c 08 -
5 M order 4
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The scatter plot of pruned association rules with jitters

4. We then produce new rules with soda on the left-hand side using the Apriori algorithm:

> soda rule=apriori(data=Groceries, parameter=1list (supp=0.001,conf
= 0.1, minlen=2), appearance = list(default="rhs",lhs="soda"))
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5. Next, you can plot soda_rule in a graph plot:

> plot(sort(soda rule, by="1lift"), method="graph",

control=list(type="items"))

Graph for 11 rules

tropical fiyiiad water
ogurt
vea ¢ @ rolls/buns
® o
soda
0.
@

sausage shopping bags
pastry

fruitivegetable jui ce
@Lervegetables

whole milk
@ @ rootvegetables

size: support (0.018 - 0.04)|
color: lift (0.899 - 1.504)

Graph plot of association rules

6. Also, the association rules can be visualized in a balloon plot:

> plot(soda rule, method="grouped")

Chapter 10

Grouped matrix for 11 rules

1 (soda +0)

LHS

= RHS
bottled water}
sausage}

® ffruit/vegetable juice}
shopping bagsj}

ast

Eolls.lfrf\j(ans}
tropical fruit}
vogurt}

root vegetables}
other vegetables}
whole milk}

size: support

Balloon plot of association rules
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Besides presenting association rules as text, one can use arulesViz to visualize association
rules. The arulesViz is an arules extension package, which provides many visualization
techniques to explore association rules. To start using arulesViz, first install and load the
package arulesViz. We then use the pruned rules generated in the previous recipe to make
a scatter plot. As per the figure in step 2, we find the rules are shown as points within the
scatter plot, with the x-axis in support and y-axis in confidence. The shade of color shows the
lift of the rule; the darker the shade, the higher the lift. Next, in order to prevent overplotting
points, we can include the jitter as an argument in the control list. The plot with the jitter
added is provided in the figure in step 3.

In addition to plotting the rules in a scatter plot, arulesViz enables you to plot rules in a
graph and grouped matrix. Instead of printing all the rules on a single plot, we choose to
produce new rules with soda on the left-hand side. We then sort the rules by using the lift
and visualize the rules in the graph in the figure in step 4. From the graph, every itemset is
presented in a vertex and their relationship is presented in an edge. The figure (step 4) shows
it is clear that the rule with soda on the left-handside to whole milk on the right-handside
has the maximum support, for the size of the node is greatest. Also, the rule shows that soda
on the left-hand side to bottled water on the right-hand side has the maximum lift as the
shade of color in the circle is the darkest. We can then use the same data with soda on the
left-handside to generate a grouped matrix, which is a balloon plot shown in the figure in step
5, with the left-handside rule as column labels and the right-handside as row labels. Similar to
the graph plot in the figure in step 4, the size of the balloon in the figure in step 5 shows the
support of the rule, and the color of the balloon shows the lift of the rule.

» Inthis recipe, we introduced three visualization methods to plot association
rules. However, arulesViz also provides features to plot parallel coordinate
plots, double-decker plots, mosaic plots, and other related charts. For those
who are interested in how these plots work, you may refer to: Hahsler, M.,
and Chelluboina, S. (2011). Visualizing association rules: Introduction to the
R-extension package arulesViz. R project module.

» In addition to generating a static plot, you can generate an interactive plot by
setting interactive equal to TRUE through the following steps:

> plot(rules.pruned, interactive=TRUE)
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Scatter plot for 3958 rules

1 =
o 09 1%° 15
(&) [
é 08 - =
€ 07 4% " 10
€0
(&)

05 - T T T T _

0.005 0.01 0.015 0.02 "
support

inspect filter zoomin zoom out end

The interactive scatter plots

Mining frequent itemsets with Eclat

In addition to the Apriori algorithm, you can use the Eclat algorithm to generate frequent
itemsets. As the Apriori algorithm performs a breadth-first search to scan the complete database,
the support counting is rather time consuming. Alternatively, if the database fits into the memory,
you can use the Eclat algorithm, which performs a depth-first search to count the supports.

The Eclat algorithm, therefore, performs quicker than the Apriori algorithm. In this recipe, we
introduce how to use the Eclat algorithm to generate frequent itemsets.

Getting ready

In this recipe, we will continue using the dataset Groceries as our input data source.

How to do it...

Perform the following steps to generate a frequent itemset using the Eclat algorithm:
1. Similar to the Apriori method, we can use the eclat function to generate the
frequent itemset:
> frequentsets=eclat (Groceries,parameter=1list (support=0.05,maxl
en=10))
2. We can then obtain the summary information from the generated frequent itemset:

> summary (frequentsets)
set of 31 itemsets
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most frequent items:

whole milk other vegetables yogurt
4 2 2
rolls/buns frankfurter (Other)
2 1 23

element (itemset/transaction) length distribution:sizes

1 2
28 3
Min. 1lst Qu. Median Mean 3rd Qu. Max.

1.000 1.000 1.000 1.097 1.000 2.000

summary of quality measures:
support
Min. :0.05236
1st Qu.:0.05831
Median :0.07565
Mean :0.09212
3rd Qu.:0.10173
Max. :0.25552

includes transaction ID lists: FALSE

mining info:
data ntransactions support
Groceries 9835 0.05
3. Lastly, we can examine the top ten support frequent itemsets:
> inspect (sort (frequentsets,by="support") [1:10])

items support
1 {whole milk} 0.25551601
2 {other vegetables} 0.19349263
3 {rolls/buns} 0.18393493
4 {soda} 0.17437722
5 {yogurt} 0.13950178
6 {bottled water} 0.11052364
7 {root vegetables} 0.10899847
8 {tropical fruit} 0.10493137
9 {shopping bags} 0.09852567
10 {sausage} 0.09395018
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In this recipe, we introduce another algorithm, Eclat, to perform frequent itemset generation.
Though Apriori is a straightforward and easy to understand association mining method, the
algorithm has the disadvantage of generating huge candidate sets and performs inefficiently
in support counting, for it takes multiple scans of databases. In contrast to Apriori, Eclat uses
equivalence classes, depth-first searches, and set intersections, which greatly improves the
speed in support counting.

In Apriori, the algorithm uses a horizontal data layout to store transactions. On the other
hand, Eclat uses a vertical data layout to store a list of transaction IDs (tid) for each
item. Then, Eclat determines the support of any k+1-itemset by intersecting tid-lists of
two k-itemsets. Lastly, Eclat utilizes frequent itemsets to generate association rules:

Horizontal Data Layout Vertical Data Layout

TID Items A B C D E
100 ACD 100 200 100 100 200
200 BCE 300 300 200 300

400 300 400
300 ABCE ¢
400 BE

TID-list

An illustration of Eclat algorithm

Similar to the recipe using the Apriori algorithm, we can use the eclat function to generate a
frequent itemset with a given support (assume support = 2 in this case) and maximum length.

A C AC

10 () w00 = 100

300 200 300
300

Generating frequent itemset

We can then use the summary function to obtain summary statistics, which include: most
frequent items, itemset length distributions, summary of quality measures, and mining
information. Finally, we can sort frequent itemsets by the support and inspect the top ten
support frequent itemsets.

» Besides Apriori and Eclat, another popular association mining algorithm is FP-
Growth. Similar to Eclat, this takes a depth-first search to count supports. However,
there is no existing R package that you can download from CRAN that contains this
algorithm. However, if you are interested in knowing how to apply the FP-growth
algorithm in your transaction dataset, you can refer to Christian Borgelt's page at
http://www.borgelt.net/fpgrowth.html for more information.
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Creating transactions with temporal

information

In addition to mining interesting associations within the transaction database, we can mine
interesting sequential patterns using transactions with temporal information. In the following
recipe, we demonstrate how to create transactions with temporal information.

Getting ready

In this recipe, we will generate transactions with temporal information. We can use the
generated transactions as the input source for frequent sequential pattern mining.

How to do it...

Perform the following steps to create transactions with temporal information:

1. First, you need to install and load the package arulesSequences:

> install.packages ("arulesSequences")
> library(arulesSequences)

2. You can first create a list with purchasing records:

> tmp data=list(c("A"),
+ c(man, "B, ncn),
+ c("av,ncm),

+ c("p"),

+ c(ncn, "F"),

+ c("av,"p"),

+ c("cn),

+ c("B","C"),

+ c("av,"E"),

+ c("E","F"),

+ c("av,"B"),

+ c("p","F"),

+ c("cn),

+ c("B"),

+ c("E"),

+ c("e"),

+ c("ar,"F"),

+ c("cn),

+ c("B"),

+ c("c"))
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You can then turn the list into transactions and add temporal information:

>names (tmp data) = paste("Tr",c(1:20), sep = "")

>trans = as(tmp data,"transactions")
>transactionInfo (trans) $sequenceID
=c(1,1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4)

>transactionInfo (trans) $eventID=c(10,20,30,40,50,10,20,30,40,10,20
,30,40,50,10,20,30,40,50,60)

> trans

transactions in sparse format with

20 transactions (rows) and

7 items (columns)

Next, you can use the inspect function to inspect the transactions:

> inspect (head(trans))
items transactionID sequencelID eventID

1 {a} Trl 1 10
2 {a,

BI

c} Tr2 1 20
3 {a,

c} Tr3 1 30
4 {D} Tr4 1 40
5 {c,

F} Tr5 1 50
6 {a,

D} Tré 2 10

You can then obtain the summary information of the transactions with the
temporal information:

> summary (trans)

transactions as itemMatrix in sparse format with
20 rows (elements/itemsets/transactions) and
7 columns (items) and a density of 0.2214286

most frequent items:
c A B F D (Other)

8 7 5 4 3 4

element (itemset/transaction) length distribution:

sizes
1 2 3
10 9 1
Min. 1lst Qu. Median Mean 3rd Qu. Max.
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includes extended item information - examples:

labels
1 A
2 B
3 c

includes extended transaction information - examples:
transactionID sequenceID eventID

1 Trl 1 10
2 Tr2 1 20
3 Tr3 1 30

6. You can also read the transaction data in a basket format:

> zaki=read baskets(con = system.file("misc", "zaki.txt", package
"arulesSequences"), info = c("sequenceID","eventID","SIZE"))

> as(zaki, "data.frame")

transactionID.sequenceID transactionID.eventID transactionID.

SIZE items

1 1 10
2 {c,p}

2 1 15
3 {a,B,C}

3 1 20
3 {a,B,F}

4 1 25
4 {a,c,D,F}

5 2 15
3 {a,B,F}

6 2 20
1 {e}

7 3 10
3 {a,B,F}

8 4 10
3 {D,G,H}

9 4 20
2 {B,F}

10 4 25
3 {a,q,H}
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Before mining frequent sequential patterns, you are required to create transactions with
the temporal information. In this recipe, we introduce two methods to obtain transactions
with temporal information. In the first method, we create a list of transactions, and assign
a transaction ID for each transaction. We use the as function to transform the list data into
a transaction dataset. We then add eventID and sequenceID as temporal information;
sequencelID is the sequence that the event belongs to, and eventID indicates when the
event occurred. After generating transactions with temporal information, one can use this
dataset for frequent sequential pattern mining.

In addition to creating your own transactions with temporal information, if you already have
data stored in a text file, you can use the read basket function from arulesSequences
to read the transaction data into the basket format. We can also read the transaction dataset
for further frequent sequential pattern mining.

» The arulesSequences function provides two additional data structures,
sequences and timedsequences, to present pure sequence data and
sequence data with the time information. For those who are interested in these
two collections, please use the help function to view the following documents:

> help("sequences-class")

> help("timedsequences-class")

Mining frequent sequential patterns

with cSPADE

In contrast to association mining, which only discovers relationships between itemsets,
we may be interested in exploring patterns shared among transactions where a set of
itemsets occurs sequentially.

One of the most famous frequent sequential pattern mining algorithms is the Sequential
PAttern Discovery using Equivalence classes (SPADE) algorithm, which employs the
characteristics of a vertical database to perform an intersection on an ID list with an
efficient lattice search and allows us to place constraints on mined sequences. In this
recipe, we will demonstrate how to use cSPADE to mine frequent sequential patterns.

Getting ready

In this recipe, you have to complete the previous recipes by generating transactions with
the temporal information and have it stored in the variable trans.
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How to do it...

Perform the following steps to mine the frequent sequential patterns:

1. First, you can use the cspade function to generate frequent sequential patterns:
> s result=cspade(trans,parameter = list(support = 0.75),control =
list (verbose = TRUE))

2. You can then examine the summary of the frequent sequential patterns:
> summary (s_result)

set of 14 sequences with

most frequent items:
C A B D E (Other)
8 5 5 2 1 1

most frequent elements:

{c} {a} {B} {p} {E} (Other)

8 5 5 2 1 1

element (sequence) size distribution:
sizes
123
6 6 2

sequence length distribution:
lengths

123

6 6 2

summary of quality measures:

support
Min. :0.7500
1st Qu.:0.7500
Median :0.7500
Mean :0.8393
3rd Qu.:1.0000
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Max. :1.0000

includes transaction ID lists: FALSE

mining info:
data ntransactions nsequences support

trans 20 4 0.75

3. Transform a generated sequence format data back to the data frame:
> as(s_result, "data.frame")

sequence support

1 <{a}> 1.00
2 <{B}> 1.00
3 <{c}> 1.00
4 <{Dp}> 0.75
5 <{E}> 0.75
6 <{F}> 0.75
7 <{a},{c}> 1.00
8 <{B},{c}> 0.75
9 <{c},{c}> 0.75
10 <{D},{c}> 0.75
11 <{a},{c},{c}> 0.75
12 <{a},{B}> 1.00
13 <{c},{B}> 0.75
14 <{a},{c},{B}> 0.75

The object of sequential pattern mining is to discover sequential relationships or patterns in
transactions. You can use the pattern mining result to predict future events, or recommend
items to users.
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One popular method of sequential pattern mining is SPADE. SPADE uses a vertical data

layout to store a list of IDs. In these, each input sequence in the database is called SID, and
each event in a given input sequence is called EID. The process of SPADE is performed by
generating patterns level-wisely by an Apriori candidate generation. In detail, SPADE generates
subsequent n-sequences from joining (n-1)-sequences from the intersection of ID lists. If the
number of sequences is greater than the minimum support (minsup), we can consider the
sequence to be frequent enough. The algorithm stops until the process cannot find more
frequent sequences:

Database | Frequent Sequences (minsup 2] |
SID EID Items Frequent 1-Sequentces  Frequent 3-5equences
1 100 cp A i ABF 3
B i BF-=& F
1 150 ABC o 5 O->BF 2
1 200 ABF E 4 D-»B->8 2
1 250 ACDF Frequent 2-5equences D->F->A 2
AB 3
2 150 ABF
AF 3 Frequent 4-Sequences
2 200 3 BsA 2 D->BF-»A 2
3 100 ABF BF 4
4 100 DGH DA 2
D=8 2
4 200 BF
D-»F 2
4 250 AGH Esh 2

An illustration of SPADE algorithm

In this recipe, we illustrate how to use a frequent sequential pattern mining algorithm,
c¢SPADE, to mine frequent sequential patterns. First, as we have transactions with temporal
information loaded in the variable trans, we can use the cspade function with the support
over 0.75 to generate frequent sequential patterns in the sequences format. We can then
obtain summary information, such as most frequent items, sequence size distributions,

a summary of quality measures, and mining information. Lastly, we can transform the
generated sequence information back to the data frame format, so we can examine

the sequence and support of frequent sequential patterns with the support over 0.75.

See also

» If you are interested in the concept and design of the SPADE algorithm, you can refer
to the original published paper: M. J. Zaki. (2001). SPADE: An Efficient Algorithm for
Mining Frequent Sequences. Machine Learning Journal, 42, 31-60.
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Dimension Reduction

In this chapter, we will cover the following topics:

» Performing feature selection with FSelector

» Performing dimension reduction with PCA

» Determining the number of principal components using a scree test

» Determining the number of principal components using the Kaiser method
» Visualizing multivariate data using biplot

» Performing dimension reduction with MDS

» Reducing dimensions with SVD

» Compressing images with SVD

» Performing nonlinear dimension reduction with ISOMAP

» Performing nonlinear dimension deduction with Local Linear Embedding

Introduction

Most datasets contain features (such as attributes or variables) that are highly redundant.
In order to remove irrelevant and redundant data to reduce the computational cost and
avoid overfitting, you can reduce the features into a smaller subset without a significant loss
of information. The mathematical procedure of reducing features is known as dimension
reduction.

The reduction of features can increase the efficiency of data processing. Dimension reduction
is, therefore, widely used in the fields of pattern recognition, text retrieval, and machine learning.
Dimension reduction can be divided into two parts: feature extraction and feature selection.
Feature extraction is a technique that uses a lower dimension space to represent data in a
higher dimension space. Feature selection is used to find a subset of the original variables.
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The objective of feature selection is to select a set of relevant features to construct the model.
The techniques for feature selection can be categorized into feature ranking and feature
selection. Feature ranking ranks features with a certain criteria and then selects features
that are above a defined threshold. On the other hand, feature selection searches the optimal
subset from a space of feature subsets.

In feature extraction, the problem can be categorized as linear or nonlinear. The linear method
searches an affine space that best explains the variation of data distribution. In contrast, the
nonlinear method is a better option for data that is distributed on a highly nonlinear curved
surface. Here, we list some common linear and nonlinear methods.

Here are some common linear methods:

» PCA: Principal component analysis maps data to a lower dimension, so that the
variance of the data in a low dimension representation is maximized.

» MDS: Multidimensional scaling is a method that allows you to visualize how near
(pattern proximities) objects are to each other and can produce a representation of
your data with lower dimension space. PCA can be regarded as the simplest form of
MDS if the distance measurement used in MDS equals the covariance of data.

» SVD: Singular value decomposition removes redundant features that are linear
correlated from the perspective of linear algebra. PCA can also be regarded as a
specific case of SVD.

Here are some common nonlinear methods:

» ISOMAP: ISOMAP can be viewed as an extension of MDS, which uses the distance
metric of geodesic distances. In this method, geodesic distance is computed by
graphing the shortest path distances.

» LLE: Locally linear embedding performs local PCA and global eigen-decomposition.
LLE is a local approach, which involves selecting features for each category of the
class feature. In contrast, ISOMAP is a global approach, which involves selecting
features for all features.

In this chapter, we will first discuss how to perform feature ranking and selection. Next, we will
focus on the topic of feature extraction and cover recipes in performing dimension reduction
with both linear and nonlinear methods. For linear methods, we will introduce how to perform
PCA, determine the number of principal components, and its visualization. We then move on
to MDS and SVD. Furthermore, we will introduce the application of SVD to compress images.
For nonlinear methods, we will introduce how to perform dimension reduction with ISOMAP
and LLE.
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Performing feature selection with FSelector

The FSelector package provides two approaches to select the most influential features
from the original feature set. Firstly, rank features by some criteria and select the ones that
are above a defined threshold. Secondly, search for optimum feature subsets from a space
of feature subsets. In this recipe, we will introduce how to perform feature selection with the
FSelector package.

Getting ready

In this recipe, we will continue to use the telecom churn dataset as the input data source to
train the support vector machine. For those who have not prepared the dataset, please refer
to Chapter 5, Classification (1) - Tree, Lazy, and Probabilistic, for detailed information.

How to do it...

Perform the following steps to perform feature selection on a churn dataset:

1. First, install and load the package, FSelector:
> install.packages ("FSelector")

> library (FSelector)

2. Then, we can use random. forest . importance to calculate the weight for each
attribute, where we set the importance type to 1:

> weights = random.forest.importance(churn~., trainset,
importance.type = 1)

> print (weights)

attr importance

international plan 96.3255882
voice mail plan 24.8921239
number vmail messages 31.5420332
total day minutes 51.9365357
total day calls -0.1766420
total day charge 53.7930096
total eve minutes 33.2006078
total eve calls -2.2270323
total eve charge 32.4317375
total night minutes 22.0888120
total night calls 0.3407087
total night charge 21.6368855
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total intl minutes 32.4984413
total intl calls 51.1154046
total intl charge 32.4855194
number customer service calls 114.2566676

3. Next, we can use the cutof £ function to obtain the attributes of the top five weights:
> subset = cutoff.k(weights, 5)
> £ = as.simple.formula(subset, "Class")
> print (£f)
Class ~ number customer service calls + international plan +
total day charge + total day minutes + total intl calls
<environment: 0x00000000269a28e8>

4. Next, we can make an evaluator to select the feature subsets:

> evaluator = function(subset) {

+ k=5

+ set.seed(2)

+ ind = sample(5, nrow(trainset), replace = TRUE)

+ results = sapply(l:k, function(i) ({

+ train = trainset[ind ==i,]

+ test = trainset[ind !=i,]

+ tree = rpart(as.simple.formula(subset, "churn"), trainset)
+ error.rate = sum(test$churn != predict(tree, test,

type="class")) / nrow(test)

+ return(l - error.rate)
+ b

+ return (mean (results))
+}

5. Finally, we can find the optimum feature subset using a hill climbing search:
> attr.subset = hill.climbing.search(names (trainset)
[!names (trainset) %in% "churn"], evaluator)
> £ = as.simple.formula(attr.subset, "churn")
> print (£f)

churn ~ international plan + voice mail plan + number vmail
messages +

total day minutes + total day calls + total eve minutes +
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total eve charge + total intl minutes + total intl calls +
total intl charge + number customer service calls

<environment: 0x000000002224d3d0>

In this recipe, we present how to use the FSelector package to select the most influential
features. We first demonstrate how to use the feature ranking approach. In the feature
ranking approach, the algorithm first employs a weight function to generate weights for each
feature. Here, we use the random forest algorithm with the mean decrease in accuracy
(where importance.type = 1) asthe importance measurement to gain the weights of
each attribute. Besides the random forest algorithm, you can select other feature ranking
algorithms (for example, chi.squared, information.gain) from the FSelector
package. Then, the process sorts attributes by their weight. At last, we can obtain the top
five features from the sorted feature list with the cuto£f £ function. In this case, number
customer service calls, international plan, total day charge, total
day minutes, and total intl calls are the five most important features.

Next, we illustrate how to search for optimum feature subsets. First, we need to make a five-
fold cross-validation function to evaluate the importance of feature subsets. Then, we use the
hill climbing searching algorithm to find the optimum feature subsets from the original feature
sets. Besides the hill-climbing method, one can select other feature selection algorithms

(for example, forward. search) from the FSelector package. Lastly, we can find that
international plan + voice mail plan + number_ vmail messages + total_
day minutes + total day calls + total eve minutes + total eve charge
+ total intl minutes + total intl calls + total intl charge + number
customer_ service calls are optimum feature subsets.

» You can also use the caret package to perform feature selection. As we have
discussed related recipes in the model assessment chapter, you can refer to Chapter
7, Model Evaluation, for more detailed information.

» For both feature ranking and optimum feature selection, you can explore the
package, FSelector, for more related functions:

> help (package="FSelector")
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Performing dimension reduction with PCA

Principal component analysis (PCA) is the most widely used linear method in dealing with
dimension reduction problems. It is useful when data contains many features, and there is
redundancy (correlation) within these features. To remove redundant features, PCA maps high
dimension data into lower dimensions by reducing features into a smaller number of principal
components that account for most of the variance of the original features. In this recipe, we
will introduce how to perform dimension reduction with the PCA method.

Getting ready

In this recipe, we will use the swiss dataset as our target to perform PCA. The swiss dataset
includes standardized fertility measures and socio-economic indicators from around the year
1888 for each of the 47 French-speaking provinces of Switzerland.

How to do it...

Perform the following steps to perform principal component analysis on the swiss dataset:

1. First, load the swiss dataset:

> data(swiss)

2. Exclude the first column of the swiss data:

> swiss = swiss|[,-1]

3. You can then perform principal component analysis on the swiss data:
> swiss.pca = prcomp (swiss,
+ center = TRUE,
+ scale = TRUE)
> swiss.pca
Standard deviations:

[1] 1.6228065 1.0354873 0.9033447 0.5592765 0.4067472

Rotation:

PC1l PC2 PC3 PC4
PC5
Agriculture 0.52396452 -0.25834215 0.003003672 -0.8090741
0.06411415
Examination -0.57185792 -0.01145981 -0.039840522 -0.4224580
-0.70198942
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Education -0.49150243 0.19028476 0.539337412 -0.3321615
0.56656945

Catholic 0.38530580 0.36956307 0.725888143 0.1007965
-0.42176895

Infant.Mortality 0.09167606 0.87197641 -0.424976789 -0.2154928
0.06488642

4. Obtain a summary from the PCA results:
> summary (swiss.pca)
Importance of components:
PC1l PC2 PC3 PC4 PC5
Standard deviation 1.6228 1.0355 0.9033 0.55928 0.40675
Proportion of Variance 0.5267 0.2145 0.1632 0.06256 0.03309
Cumulative Proportion 0.5267 0.7411 0.9043 0.96691 1.00000

5. Lastly, you can use the predict function to output the value of the principal
component with the first row of data:

> predict(swiss.pca, newdata=head(swiss, 1))
PC1l PC2 PC3 PC4 PC5
Courtelary -0.9390479 0.8047122 -0.8118681 1.000307 0.4618643

Since the feature selection method may remove some correlated but informative features, you
have to consider combining these correlated features into a single feature with the feature
extraction method. PCA is one of the feature extraction methods, which performs orthogonal
transformation to convert possibly correlated variables into principal components. Also, you
can use these principal components to identify the directions of variance.

The process of PCA is carried on by the following steps: firstly, find the mean vector,

u=%2;x1, where X; indicates the data point, and n denotes the number of points. Secondly,
compute the covariance matrix by the equation, C =122;(x,- —u)(x,~ #)". Thirdly, compute the
eigenvectors,®, and the corresponding eigenvalues.nln the fourth step, we rank and choose
the top k eigenvectors. In the fifth step, we construct a d x k dimensional eigenvector matrix, U.
Here, d is the number of original dimensions and k is the number of eigenvectors. Finally, we
can transform data samples to a new subspace in the equation, y = U x.
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In the following figure, it is illustrated that we can use two principal components, ?1, and @,, to
transform the data point from a two-dimensional space to new two-dimensional subspace:

x?"

Xq

A sample illustration of PCA

In this recipe we use the prcomp function from the stats package to perform PCA on the
swiss dataset. First, we remove the standardized fertility measures and use the rest of the
predictors as input to the function, prcomp. In addition to this, we set swiss as an input
dataset; the variable should be shifted to the zero center by specifying center=TRUE; scale
variables into the unit variance with the option, scale=TRUE, and store the output in the
variable, swiss.pca.

Then, as we print out the value stored in swiss.pca, we can find the standard deviation

and rotation of the principal component. The standard deviation indicates the square root of
the eigenvalues of the covariance/correlation matrix. On the other hand, the rotation of the
principal components shows the coefficient of the linear combination of the input features.
For example, PC1 equals Agriculture * 0.524 + Examination * -0.572 + Education * -0.492 +
Catholic* 0.385 + Infant.Mortality * 0.092. Here, we can find that the attribute, Agriculture,
contributes the most for PC1, for it has the highest coefficient.

Additionally, we can use the summary function to obtain the importance of components. The
first row shows the standard deviation of each principal component, the second row shows the
proportion of variance explained by each component, and the third row shows the cumulative
proportion of the explained variance. Finally, you can use the predict function to obtain
principal components from the input features. Here, we input the first row of the dataset, and
retrieve five principal components.

There's more...

Another principal component analysis function is princomp. In this function, the calculation
is performed by using eigen on a correlation or covariance matrix instead of a single value
decomposition used in the prcomp function. In general practice, using prcomp is preferable;
however, we cover how to use princomp here:
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1. First, use princomp to perform PCA:
> swiss.princomp = princomp (swiss,
+ center = TRUE,
+ scale = TRUE)
> swiss.princomp
Call:

princomp (x = swiss, center = TRUE, scale = TRUE)

Standard deviations:
Comp.1l Comp. 2 Comp.3 Comp. 4 Comp.5
42.896335 21.201887 7.587978 3.687888 2.721105

5 variables and 47 observations.

2. You can then obtain the summary information:
> summary (swiss.princomp)
Importance of components:

Comp.1l Comp. 2 Comp.3
Comp . 4 Comp.5

Standard deviation 42.8963346 21.2018868 7.58797830
3.687888330 2.721104713

Proportion of Variance 0.7770024 0.1898152 0.02431275
0.005742983 0.003126601

Cumulative Proportion 0.7770024 0.9668177 0.99113042
0.996873399 1.000000000

3. You can use the predict function to obtain principal components from the input
features:

> predict(swiss.princomp, swiss[1,])
Comp.1 Comp. 2 Comp.3 Comp . 4 Comp.5
Courtelary -38.95923 -20.40504 12.45808 4.713234 -1.46634

In addition to the prcomp and princomp functions from the stats package, you can use the
principal function from the psych package:
1. First, install and load the psych package:
> install.packages ("psych")
> install.packages ("GPArotation")

> library (psych)
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2.

358

You can then use the principal function to retrieve the principal components:
> swiss.principal = principal(swiss, nfactors=5, rotate="none")
> swiss.principal

Principal Components Analysis

Call: principal(r = swiss, nfactors = 5, rotate = "none")

Standardized loadings (pattern matrix) based upon correlation
matrix

PC1l PC2 PC3 PC4 PC5 h2 u2
Agriculture -0.85 -0.27 0.00 0.45 -0.03 1 -6.7e-16
Examination 0.93 -0.01 -0.04 0.24 0.29 1 4.4e-16
Education 0.80 0.20 0.49 0.19 -0.23 1 2.2e-16
Catholic -0.63 0.38 0.66 -0.06 0.17 1 -2.2e-16
Infant.Mortality -0.15 0.90 -0.38 0.12 -0.03 1 -8.9e-16

PCl PC2 PC3 PC4 PC5

SS loadings 2.63 1.07 0.82 0.31 0.17
Proportion Var 0.53 0.21 0.16 0.06 0.03
Cumulative Var 0.53 0.74 0.90 0.97 1.00

Proportion Explained 0.53 0.21 0.16 0.06 0.03
Cumulative Proportion 0.53 0.74 0.90 0.97 1.00

Test of the hypothesis that 5 components are sufficient.

The degrees of freedom for the null model are 10 and the objective
function was 2.13

The degrees of freedom for the model are -5 and the objective
function was 0

The total number of observations was 47 with MLE Chi Square = 0
with prob < NA

Fit based upon off diagonal values = 1
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Determining the number of principal

components using the scree test

As we only need to retain the principal components that account for most of the variance of
the original features, we can either use the Kaiser method, scree test, or the percentage of
variation explained as the selection criteria. The main purpose of a scree test is to graph the
component analysis results as a scree plot and find where the obvious change in the slope
(elbow) occurs. In this recipe, we will demonstrate how to determine the number of principal
components using a scree plot.

Getting ready

Ensure that you have completed the previous recipe by generating a principal component
object and save it in the variable, swiss.pca.

How to do it...

Perform the following steps to determine the number of principal components with the
scree plot:

1. First, you can generate a bar plot by using screeplot:

> screeplot(swiss.pca, type="barplot")

swiss.pca

Variances

05

[ —

0.0

The scree plot in bar plot form
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2. You can also generate a line plot by using screeplot:

> screeplot (swiss.pca, type="line")

swiss.pca

15 20 25

Variances

1.0
o

/

The scree plot in line plot form

In this recipe, we demonstrate how to use a scree plot to determine the number of principal
components. In a scree plot, there are two types of plots, namely, bar plots and line plots. As
both generated scree plots reveal, the obvious change in slope (the so-called elbow or knee)
occurs at component 2. As a result, we should retain component 1, where the component is
in a steep curve before component 2, which is where the flat line trend commences. However,
as this method can be ambiguous, you can use other methods (such as the Kaiser method) to
determine the number of components.

By default, if you use the plot function on a generated principal component object, you can
also retrieve the scree plot. For more details on screeplot, please refer to the following
document:

> help (screeplot)
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You can also use nfactors to perform parallel analysis and nongraphical solutions to the
Cattell scree test:

> install.packages ("nFactors")

> library (nFactors)

> ev = eigen(cor(swiss))

> ap parallel (subject=nrow(swiss) ,var=ncol (swiss) ,rep=100,cent=.05)
> nS = nScree(x=ev$values, aparallel=ap$eigen$gevpea)

> plotnScree (nS)

Non Graphical Solutions to Scree Test

W o(OC}) ]
o T © Eigenvalues (*mean = 2)
£ Parallel Analysis (n= 2)
g - Optimal Coordinates (n= 1)
§ Acceleration Factor(n= 1)
i u
g <7
C
[ih]
o
i _
9]
g

Components

Non-graphical solution to scree test

Determining the number of principal

components using the Kaiser method

In addition to the scree test, you can use the Kaiser method to determine the number of
principal components. In this method, the selection criteria retains eigenvalues greater than
1. In this recipe, we will demonstrate how to determine the number of principal components
using the Kaiser method.
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Getting ready

Ensure that you have completed the previous recipe by generating a principal component
object and save it in the variable, swiss.pca.

How to do it...

Perform the following steps to determine the number of principal components with the Kaiser
method:
1. First, you can obtain the standard deviation from swiss.pca:
> swiss.pca$sdev

[1] 1.6228065 1.0354873 0.9033447 0.5592765 0.4067472

2. Next, you can obtain the variance from swiss.pca:
> swiss.pca$sdev * 2

[1] 2.6335008 1.0722340 0.8160316 0.3127902 0.1654433

3. Select components with a variance above 1:
> which(swiss.pca$sdev " 2> 1)
[11 1 2

4. You can also use the scree plot to select components with a variance above 1:

> screeplot(swiss.pca, type="line")

> abline(h=1, col="red", lty= 3)

swiss.pca

15 20 25

Variances

1.0
o

/

Select component with variance above 1
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You can also use the Kaiser method to determine the number of components. As the
computed principal component object contains the standard deviation of each component,
we can compute the variance as the standard deviation, which is the square root of variance.
From the computed variance, we find both component 1 and 2 have a variance above 1.
Therefore, we can determine the number of principal components as 2 (both component 1
and 2). Also, we can draw a red line on the scree plot (as shown in the preceding figure) to
indicate that we need to retain component 1 and 2 in this case.

See also

In order to determine which principal components to retain, please refer to:

» Ledesma, R. D., and Valero-Mora, P. (2007). Determining the Number of Factors to
Retain in EFA: an easy-to-use computer program for carrying out Parallel Analysis.
Practical Assessment, Research & Evaluation, 12(2), 1-11.

Visualizing multivariate data using biplot

In order to find out how data and variables are mapped in regard to the principal component,
you can use biplot, which plots data and the projections of original features on to the first
two components. In this recipe, we will demonstrate how to use biplot to plot both variables
and data on the same figure.

Getting ready

Ensure that you have completed the previous recipe by generating a principal component
object and save it in the variable, swiss.pca.
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How to do it...

Perform the following steps to create a biplot:

1. You can create a scatter plot using component 1 and 2:
> plot(swiss.pca$x[,1l], swiss.pca$x[,2], xlim=c(-4,4))
> text(swiss.pca$x[,1], swiss.pca$x[,2], rownames(swiss.pca$x),
cex=0.7, pos=4, col="red")
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The scatter plot of first two components from PCA result
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2. If you would like to add features on the plot, you can create biplot using the
generated principal component object:

> biplot (swiss.pca)
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The biplot using PCA result

In this recipe, we demonstrate how to use biplot to plot data and projections of original
features on to the first two components. In the first step, we demonstrate that we can
actually use the first two components to create a scatter plot. Furthermore, if you want to add
variables on the same plot, you can use biplot. In biplot, you can see the provinces with
higher indicators in the agriculture variable, lower indicators in the education variable, and
examination variables scores that are higher in PC1. On the other hand, the provinces with
higher infant mortality indicators and lower agriculture indicators score higher in PC2.
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There's more...

Besides biplot in the stats package, you can also use ggbiplot. However, you may not
find this package from CRAN; you have to first install devtools and then install ggbiplot

from GitHub:

> install.packages ("devtools")

> library(ggbiplot)
> g = ggbiplot(swiss.pca, obs.scale = 1, var.scale = 1,
+ ellipse = TRUE,

+ circle = TRUE)

> print(g)
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The ggbiplot using PCA result
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Performing dimension reduction with MDS

Multidimensional scaling (MDS) is a technique to create a visual presentation of similarities
or dissimilarities (distance) of a number of objects. The muilti prefix indicates that one can
create a presentation map in one, two, or more dimensions. However, we most often use MDS
to present the distance between data points in one or two dimensions.

In MDS, you can either use a metric or a nonmetric solution. The main difference between
the two solutions is that metric solutions try to reproduce the original metric, while nonmetric
solutions assume that the ranks of the distance are known. In this recipe, we will illustrate
how to perform MDS on the swiss dataset.

Getting ready

In this recipe, we will continue using the swiss dataset as our input data source.

How to do it...

Perform the following steps to perform multidimensional scaling using the metric method:

1. First, you can perform metric MDS with a maximum of two dimensions:
> swiss.dist =dist(swiss)

> swiss.mds = cmdscale(swiss.dist, k=2)

2. You can then plot the swiss data in a two-dimension scatter plot:

> plot(swiss.mds[,1], swiss.mds[,2], type = "n", main = "cmdscale
(stats)")

> text(swiss.mds[,1l], swiss.mds[,2], rownames(swiss), cex = 0.9,
xpd = TRUE)

cmdscale (stats)
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The 2-dimension scatter plot from cmdscale object
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3. Inaddition, you can perform nonmetric MDS with isoMDS:
> library (MASS)
> swiss.nmmds = isoMDS (swiss.dist, k=2)
initial wvalue 2.979731
iter 5 value 2.431486
iter 10 value 2.343353
final value 2.338839

converged

4. You can also plot the data points in a two-dimension scatter plot:
> plot(swiss.nmmds$points, type = "n", main = "isoMDS (MASS)")

> text (swiss.nmmds$points, rownames (swiss), cex = 0.9, xpd = TRUE)

isoMDS (MASS)
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The 2-dimension scatter plot from isoMDS object
5. You can then plot the data points in a two-dimension scatter plot:

> swiss.sh = Shepard(swiss.dist, swiss.mds)
> plot(swiss.sh, pch = ".")

> lines(swiss.sh$x, swiss.shS$yf, type = "S")
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The Shepard plot from isoMDS object

MDS reveals the structure of the data by providing a visual presentation of similarities among
a set of objects. In more detail, MDS places an object in an n-dimensional space, where the
distances between pairs of points corresponds to the similarities among the pairs of objects.
Usually, the dimensional space is a two-dimensional Euclidean space, but it may be non-
Euclidean and have more than two dimensions. In accordance with the meaning of the input
matrix, MDS can be mainly categorized into two types: metric MDS, where the input matrix is
metric-based, nonmetric MDS, where the input matrix is nonmetric-based.

Metric MDS is also known as principal coordinate analysis, which first transforms a distance
into similarities. In the simplest form, the process linearly projects original data points to a
subspace by performing principal components analysis on similarities. On the other hand,

the process can also perform a nonlinear projection on similarities by minimizing the stress
value, S =Y _[d(k.)~d'(k.1)]’, where d(k.I) is the distance measurement between the two
points, X, and X, , and d’(k,l) is the similarity measure of two projected points, x;( and x',. As
a result, we can represent the relationship among objects in the Euclidean space.

In contrast to metric MDS, which use a metric-based input matrix, a nonmetric-based
MDS is used when the data is measured at the ordinal level. As only the rank order of the
distances between the vectors is meaningful, nonmetric MDS applies a monotonically
increasing function, f, on the original distances and projects the distance to new

values that preserve the rank order. The normalized equation can be formulated as

1 , 2
e
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In this recipe, we illustrate how to perform metric and nonmetric MDS on the swiss dataset.
To perform metric MDS, we first need to obtain the distance metric from the swiss data.

In this step, you can replace the distance measure to any measure as long as it produces

a similarity/dissimilarity measure of data points. You can use cmdscale to perform metric
multidimensional scaling. Here, we specify k = 2, so the maximum generated dimensions
equals 2. You can also visually present the distance of the data points on a two-dimensional
scatter plot.

Next, you can perform nonmetric MDS with 1soMDS. In nonmetric MDS, we do not match
the distances, but only arrange them in order. We also set swiss as an input dataset with
maximum dimensions of two. Similar to the metric MDS example, we can plot the distance
between data points on a two-dimensional scatter plot. Then, we use a Shepard plot, which
shows how well the projected distances match those in the distance matrix. As per the figure
in step 4, the projected distance matches well in the distance matrix.

Another visualization method is to present an MDS object as a graph. A sample code is
listed here:
> library(igraph)

> swiss.sample = swiss[1:10,]

> g = graph. full (nrow(swiss.sample))
> V(g)$label = rownames (swiss.sample)
> layout = layout.mds (g, dist = as.matrix(dist(swiss.sample)))

> plot(g, layout = layout, vertex.size = 3)
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The graph presentation of MDS object
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You can also compare differences between the generated results from MDS and PCA. You can
compare their differences by drawing the projected dimensions on the same scatter plot. If
you use a Euclidean distance on MDS, the projected dimensions are exactly the same as the
ones projected from PCA:

> swiss.dist = dist(swiss)

> swiss.mds = cmdscale(swiss.dist, k=2)

> plot(swiss.mds[,1], swiss.mds[,2], type="n")

> text(swiss.mds[,1l], swiss.mds[,2], rownames(swiss), cex = 0.9, xpd =
TRUE)

> swiss.pca = prcomp (swiss)
> text(-swiss.pca$x[,1],-swiss.pca$x[,2], rownames (swiss),

+ ,col="blue", adj = ¢(0.2,-0.5),cex = 0.9, xpd = TRUE)
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The comparison between MDS and PCA

Reducing dimensions with SVD

Singular value decomposition (SVD) is a type of matrix factorization (decomposition), which
can factorize matrices into two orthogonal matrices and diagonal matrices. You can multiply
the original matrix back using these three matrices. SVD can reduce redundant data that is
linear dependent from the perspective of linear algebra. Therefore, it can be applied to feature
selection, image processing, clustering, and many other fields. In this recipe, we will illustrate
how to perform dimension reduction with SVD.
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Getting ready

In this recipe, we will continue using the dataset, swiss, as our input data source.

How to do it...

Perform the following steps to perform dimension reduction using SVD:

1. First, you can perform svd on the swiss dataset:
> swiss.svd = svd(swiss)

2. You can then plot the percentage of variance explained and the cumulative variance
explained in accordance with the SVD column:

> plot (swiss.svd$d"2/sum(swiss.svd$d”2), type="1l", xlab=" Singular
vector", ylab = "Variance explained")

Variance explained
04

1 1 1 1 1
1 2 3 4 5

Singular vector

The percent of variance explained

> plot (cumsum(swiss.svd$d”2/sum(swiss.svd$d”2)), type="1l",
xlab="Singular vector", ylab = "Cumulative percent of wvariance
explained")
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Next, you can reconstruct the data with only one singular vector:
> swiss.recon = swiss.svd$ul,1l] %*% diag(swiss.svds$dl[1],
length(1l), length(l)) %*% t(swiss.svd$vlI[,1])

Lastly, you can compare the original dataset with the constructed dataset in an
image:

> par (mfrow=c(1,2))

> image (as.matrix(swiss), main="swiss data Image")

> image (swiss.recon, main="Reconstructed Image")

swiss data Image Reconstructed Image
o o
«© «©
o o
w w
o o
= =
o o
o™ o™
O O
o o
o o
00 04 03 00 04 0.8

The comparison between original dataset and re-constructed dataset

373

www.it-ebooks.info


http://www.it-ebooks.info/

Dimension Reduction

SVD is a factorization of a real or complex matrix. In detail, the SVD of m x n matrix, A, is

the factorization of A into the product of three matrices, 4 = UDV . Here,Uisan m x m
orthonormal matrix, D has singular values and is an m x n diagonal matrix, and VTisan n x n
orthonormal matrix.

In this recipe, we demonstrate how to perform dimension reduction with SVD. First, you can
apply the svd function on the swiss dataset to obtain factorized matrices. You can then
generate two plots: one shows the variance explained in accordance to a singular vector, the
other shows the cumulative variance explained in accordance to a singular vector.

The preceding figure shows that the first singular vector can explain 80 percent of variance.
We now want to compare the differences from the original dataset and the reconstructed
dataset with a single singular vector. We, therefore, reconstruct the data with a single singular
vector and use the image function to present the original and reconstructed datasets side-by-
side and see how they differ from each other. The next figure reveals that these two images
are very similar.

See also

» As we mentioned earlier, PCA can be regarded as a specific case of SVD. Here, we
generate the orthogonal vector from the swiss data from SVD and obtained the
rotation from prcomp. We can see that the two generated matrices are the same:
> svd.m = svd(scale(swiss))
> svd.m$v

[,1] [,21] [,3] [,4] [,5]
[1,] 0.52396452 -0.25834215 0.003003672 -0.8090741 0.06411415
[2,] -0.57185792 -0.01145981 -0.039840522 -0.4224580 -0.70198942
[3,] -0.49150243 0.19028476 0.539337412 -0.3321615 0.56656945
[4,] 0.38530580 0.36956307 0.725888143 0.1007965 -0.42176895
[5,]1] 0.09167606 0.87197641 -0.424976789 -0.2154928 0.06488642
> pca.m = prcomp (swiss,scale=TRUE)

> pca.m$rotation

PCl PC2 PC3 PC4
PC5
Agriculture 0.52396452 -0.25834215 0.003003672 -0.8090741
0.06411415
Examination -0.57185792 -0.01145981 -0.039840522 -0.4224580
-0.70198942
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Education -0.49150243 0.19028476 0.539337412 -0.3321615
0.56656945
Catholic 0.38530580 0.36956307 0.725888143 0.1007965
-0.42176895

Infant.Mortality 0.09167606 0.87197641 -0.424976789 -0.2154928
0.06488642

Compressing images with SVD

In the previous recipe, we demonstrated how to factorize a matrix with SVD and then
reconstruct the dataset by multiplying the decomposed matrix. Furthermore, the application of
matrix factorization can be applied to image compression. In this recipe, we will demonstrate
how to perform SVD on the classic image processing material, Lenna.

Getting ready

In this recipe, you should download the image of Lenna beforehand (refer to http://www.
ece.rice.edu/~wakin/images/lena512.bmp for this), or you can prepare an image of
your own to see how image compression works.

How to do it...

Perform the following steps to compress an image with SVD:

1. First, install and load bmp:
> install.packages ("bmp")
> library (bmp)

2. You can then read the image of Lenna as a numeric matrix with the read . bmp
function. When the reader downloads the image, the default name is 1ena512.bmp:
> lenna = read.bmp("lena512.bmp")
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3.

376

Rotate and plot the image:
> lenna = t(lenna) [,nrow(lenna) :1]

> image (lenna)

1.0

00 02 04 06 08

The picture of Lenna

Next, you can perform SVD on the read numeric matrix and plot the percentage of
variance explained:

> lenna.svd = svd(scale(lenna))

> plot(lenna.svd$d”"2/sum(lenna.svd$d”2), type="1l", xlab=" Singular

vector", ylab = "Variance explained")
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Singular vector

The percentage of variance explained

Next, you can obtain the number of dimensions to reconstruct the image:

> length(lenna.svds$d)

[1] 512

Obtain the point at which the singular vector can explain more than 90 percent
of the variance:

> min (which (cumsum(lenna.svd$d”*2/sum(lenna.svd$d”2))> 0.9))

[1] 18
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You can also wrap the code into a function, lenna_compression, and you can then
use this function to plot compressed Lenna:

> lenna compression = function (dim){

+ u=as.matrix(lenna.svd$ul, 1l:dim])

+ v=as.matrix(lenna.svd$v([, 1l:dim])

+ d=as.matrix(diag(lenna.svd$d) [1:dim, 1l:dim])
+ image (u%*%d%*%t (v))

+}

Also, you can use 18 vectors to reconstruct the image:

> lenna_ compression(18)

The reconstructed image with 18 components

You can obtain the point at which the singular vector can explain more than 99
percent of the variance;

> min (which (cumsum(lenna.svd$d”2/sum(lenna.svd$d”2))> 0.99))
[1] 92

> lenna compression(92)

00 02 04 06 08 10

The reconstructed image with 92 components
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In this recipe, we demonstrate how to compress an image with SVD. In the first step, we use
the package, bmp, to load the image, Lenna, to an R session. Then, as the read image is
rotated, we can rotate the image back and use the plot function to plot Lenna in R (as shown
in the figure in step 3). Next, we perform SVD on the image matrix to factorize the matrix. We
then plot the percentage of variance explained in regard to the number of singular vectors.

Further, as we discover that we can use 18 components to explain 90 percent of the variance,
we then use these 18 components to reconstruct Lenna. Thus, we make a function named
lenna_compression with the purpose of reconstructing the image by matrix multiplication.
As a result, we enter 18 as the input to the function, which returns a rather blurry Lenna
image (as shown in the figure in step 8). However, we can at least see an outline of the image.
To obtain a clearer picture, we discover that we can use 92 components to explain 99 percent
of the variance. We, therefore, set the input to the function, lenna compression, as 92.
The figure in step 9 shows that this generates a clearer picture than the one constructed
using merely 18 components.

See also

» The Lenna picture is one of the most widely used standard test images for
compression algorithms. For more details on the Lenna picture, please refer to
http://www.cs.cmu.edu/~chuck/lennapg/.

Performing nonlinear dimension reduction

with ISOMAP

ISOMAP is one of the approaches for manifold learning, which generalizes linear framework to
nonlinear data structures. Similar to MDS, ISOMAP creates a visual presentation of similarities
or dissimilarities (distance) of a number of objects. However, as the data is structured in

a nonlinear format, the Euclidian distance measure of MDS is replaced by the geodesic
distance of a data manifold in ISOMAP. In this recipe, we will illustrate how to perform a
nonlinear dimension reduction with ISOMAP.

Getting ready

In this recipe, we will use the digits data from RnavGraphImageData as our input source.
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How to do it...

Perform the following steps to perform nonlinear dimension reduction with ISOMAP:

1.

First, install and load the RnavGraphImageData and vegan packages:

> install.packages ("RnavGraphImageData")
> install.packages ("vegan")
> library (RnavGraphImageData)

> library(vegan)

You can then load the dataset, digits:
> data(digits)

Rotate and plot the image:

> sample.digit = matrix(digits[,3000],ncol = 16, byrow=FALSE)

> image (t (sample.digit) [,nrow(sample.digit) :1])

00 02 04 06 08 10

I I
0.0 02 04 06 08 1.0

A sample image from the digits dataset

Next, you can randomly sample 300 digits from the population:
> set.seed(2)

> digit.idx = sample(l:ncol(digits),size = 600)

> digit.select = digits[,digit.idx]

Transpose the selected digit data and then compute the dissimilarity between objects

using vegdist:

> digits.Transpose = t(digit.select)

> digit.dist = vegdist(digits.Transpose, method="euclidean")
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6. Next, you can use isomap to perform dimension reduction:

> digit.isomap = isomap(digit.dist,k = 8, ndim=6, fragmentedOK =
TRUE)

> plot(digit.isomap)
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A 2-dimension scatter plot from ISOMAP object

7. Finally, you can overlay the scatter plot with the minimum spanning tree, marked
in red;
> digit.st = spantree(digit.dist)
> digit.plot = plot(digit.isomap, main="isomap k=8")

> lines(digit.st, digit.plot, col="red")

isomap k=8
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A 2-dimension scatter plot overlay with minimum spanning tree
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ISOMAP is a nonlinear dimension reduction method and a representative of isometric
mapping methods. ISOMAP can be regarded as an extension of the metric MDS, where
pairwise the Euclidean distance among data points is replaced by geodesic distances induced
by a neighborhood graph.

The description of the ISOMAP algorithm is shown in four steps. First, determine the neighbor
of each point. Secondly, construct a neighborhood graph. Thirdly, compute the shortest
distance path between two nodes. At last, find a low dimension embedding of the data by
performing MDS.

In this recipe, we demonstrate how to perform a nonlinear dimension reduction using ISOMAP.
First, we load the digits data from RnavGraphImageData. Then, after we select one digit
and plot its rotated image, we can see an image of the handwritten digit (the numeral 3, in the
figure in step 3).

Next, we randomly sample 300 digits as our input data to ISOMAP. We then transpose the
dataset to calculate the distance between each image object. Once the data is ready, we
calculate the distance between each object and perform a dimension reduction. Here, we use
vegdist to calculate the dissimilarities between each object using a Euclidean measure. We
then use ISOMAP to perform a nonlinear dimension reduction on the digits data with the
dimension set as 6, number of shortest dissimilarities retained for a point as 8, and ensure
that you analyze the largest connected group by specifying fragmentedOK as TRUE.

Finally, we can use the generated ISOMAP object to make a two-dimension scatter plot (figure
in step 6), and also overlay the minimum spanning tree with lines in red on the scatter plot
(figure in step 7).

There's more...

You can also use the RnavGraph package to visualize high dimensional data (digits in
this case) using graphs as a navigational infrastructure. For more information, please refer
to http://www.icesi.edu.co/CRAN/web/packages/RnavGraph/vignettes/
RnavGraph.pdf.

Here is a description of how you can use RnavGraph to visualize high dimensional data
in a graph:
1. First, install and load the RnavGraph and graph packages:
> install.packages ("RnavGraph")
> source("http://bioconductor.org/biocLite.R")
> biocLite("graph")
> library (RnavGraph)
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2. You can then create an NG_data object from the digit data:
> digit.group = rep(c(l1:9,0), each = 1100)
> digit.ng data = ng data(name = "ISO digits",
+ data = data.frame(digit.isomap$points),
+ shortnames = paste('i',1:6, sep = ''),
+ group = digit.groupl[digit.idx],

+ labels = as.character(digits.groupl[digit.idx]))

3. Create an NG_graph object from NG_data:
> V = shortnames(digit.ng data)

> G

completegraph (V)

> LG =linegraph(G)

> LGnot = complement (LG)

> ng.LG = ng graph(name = "3D Transition", graph = LG)

> ng.LGnot = ng graph(name = "4D Transition", graph = LGnot)

4. Finally, you can visualize the graph in the tk2d plot:
> ng.i.digits = ng image array gray('USPS Handwritten Digits',
+ digit.select,16,16,invert = TRUE,

+ img in row = FALSE)

> vizDigitsl = ng 2d(data
ng.i.digits)

digit.ng data, graph = ng.LG, images =

> vizDigits2 = ng 2d(data
images = ng.i.digits)

digit.ng data, graph = ng.LGnot,

> nav = navGraph(data = digit.ng data, graph = list(ng.LG,
ng.LGnot), viz = list(vizDigitsl, vizDigits2))

74 Session 3, RnavGraph Version 0.1.8 == Py

File Graph Toals

[LXF]

46

i5:i6

i1i2

A 3-D Transition graph plot
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5. One can also view a 4D transition graph plot:

74 Session 3, data: ISO_digits, graph: 3D Transition =T

World View

Zoom: 1
ﬁf“ o

Plot Type
" dots

* images
" text

Select
Brush: [ color: [l

Selection: none all invert

Maodify
color: bg:
EENE | |

size: abs: |- [+ rel: -+

deactivate reactivate

A 4D transition graph plot

Performing nonlinear dimension reduction

with Local Linear Embedding

Locally linear embedding (LLE) is an extension of PCA, which reduces data that lies on a
manifold embedded in a high dimensional space into a low dimensional space. In contrast to
ISOMAP, which is a global approach for nonlinear dimension reduction, LLE is a local approach
that employs a linear combination of the k-nearest neighbor to preserve local properties of
data. In this recipe, we will give a short introduction of how to use LLE on an s-curve data.

Getting ready

In this recipe, we will use digjt data from 11e scurve_ data within the 11e package as our
input source.
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How to do it...

Perform the following steps to perform nonlinear dimension reduction with LLE:

1.

384

First, you need to install and load the package, 11e:
> install.packages("lle")
> library(lle)

You can then load 11_scurve data from 1le:

> data( lle scurve data )

Next, perform 11e on 1le scurve_ data:

> X = lle scurve data

> results = lle( X=X , m=2, k=12, id=TRUE)
finding neighbours

calculating weights

intrinsic dim: mean=2.47875, mode=2

computing coordinates

Examine the result with the str and plot function:

> str( results )

List of 4
$Y : num [1:800, 1:2] -1.586 -0.415 0.896 0.513 1.477
$ X : num [1:800, 1:3] 0.955 -0.66 -0.983 0.954 0.958

$ choise: NULL
$ id : num [1:800] 3 3 2 3 22 2 3 3 3

>plot( results$Y, main="embedded data", xlab=expression(yI[1l]),
ylab=expression(y[2]) )

embedded data
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A 2-D scatter plot of embedded data
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5. Lastly, you can use plot_1lle to plot the LLE result:
> plot lle( results$Y, X, FALSE, col="red", inter=TRUE )

5 RGL device 9 [Focus] Iﬂlﬂl—?‘v_hj

200400600800
T

=k

A LLE plot of LLE result

LLE is a nonlinear dimension reduction method, which computes a low dimensional,
neighborhood, preserving embeddings of high dimensional data. The algorithm of LLE can be
illustrated in these steps: first, LLE computes the k-neighbors of each data point, X;. Secondly,
it computes a set of weights for each point, which minimizes the residual sum of errors, which
can best reconstruct each data point from |ts neighbors. The residual sum of errors can be

described as RSS ”x —Z WX, where wy, = 0if X, is not one of X,'s k-nearest

neighbor, and for each i Z w, =1 Finally, find the vector Y, WhICh is best reconstructed by

the weight, W. The cost functlon can be illustrated as (p( “y, w, ;| » with the
J#i

constraintthat )" ¥, =0,and Y7y — J.

In this recipe, we demonstrate how to perform nonlinear dimension reduction using LLE. First,
we load 11e_scurve data from 11le. We then perform 11e with two dimensions and 12
neighbors, and list the dimensions for every data point by specifying id =TRUE. The LLE has
three steps, including: building a neighborhood for each point in the data, finding the weights
for linearly approximating the data in that neighborhood, and finding the low dimensional
coordinates.

Next, we can examine the data using the str and plot functions. The str function returns
XY, choice, and ID. Here, X represents the input data, Y stands for the embedded data, choice
indicates the index vector of the kept data, while subset selection and ID show the dimensions
of every data input. The plot function returns the scatter plot of the embedded data. Lastly,
we use plot_11le to plot the result. Here, we enable the interaction mode by setting the inter
equal to TRUE.
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See also

» Another useful package for nonlinear dimension reduction is RDRToolbox, which is
a package for nonlinear dimension reduction with ISOMAP and LLE. You can use the
following command to install RDRToolbox:
> source ("http://bioconductor.org/biocLite.R")
> biocLite ("RDRToolbox")

> library (RDRToolbox)
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Big Data Analysis
(R and Hadoop)

In this chapter, we will cover the following topics:

» Preparing the RHadoop environment

» Installing rmr2

» Installing rhdfs

» Operating HDFS with rhdfs

» Implementing a word count problem with RHadoop

» Comparing the performance between an R MapReduce program and a standard R
program

» Testing and debugging the rmr2 program

» Installing plyrmr

» Manipulating data with plyrmr

» Conducting machine learning with RHadoop

» Configuring RHadoop clusters on Amazon EMR

Introduction

RHadoop is a collection of R packages that enables users to process and analyze big data
with Hadoop. Before understanding how to set up RHadoop and put it in to practice, we have
to know why we need to use machine learning to big-data scale.
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In the previous chapters, we have mentioned how useful R is when performing data analysis
and machine learning. In traditional statistical analysis, the focus is to perform analysis on
historical samples (small data), which may ignore rarely occurring but valuable events and
results to uncertain conclusions.

The emergence of Cloud technology has made real-time interaction between customers and
businesses much more frequent; therefore, the focus of machine learning has now shifted to
the development of accurate predictions for various customers. For example, businesses can
provide real-time personal recommendations or online advertisements based on personal
behavior via the use of a real-time prediction model.

However, if the data (for example, behaviors of all online users) is too large to fit in the
memory of a single machine, you have no choice but to use a supercomputer or some other
scalable solution. The most popular scalable big-data solution is Hadoop, which is an open
source framework able to store and perform parallel computations across clusters. As a
result, you can use RHadoop, which allows R to leverage the scalability of Hadoop, helping to
process and analyze big data. In RHadoop, there are five main packages, which are:

» rmr: This is an interface between R and Hadoop MapReduce, which calls the Hadoop
streaming MapReduce API to perform MapReduce jobs across Hadoop clusters. To
develop an R MapReduce program, you only need to focus on the design of the map
and reduce functions, and the remaining scalability issues will be taken care of by
Hadoop itself.

» rhdfs: This is an interface between R and HDFS, which calls the HDFS API to access
the data stored in HDFS. The use of rhdfs is very similar to the use of the Hadoop
shell, which allows users to manipulate HDFS easily from the R console.

» rhbase: This is an interface between R and HBase, which accesses Hbase and is
distributed in clusters through a Thrift server. You can use rhbase to read/write data
and manipulate tables stored within HBase.

» plyrmr: This is a higher-level abstraction of MapReduce, which allows users to
perform common data manipulation in a plyr-like syntax. This package greatly lowers
the learning curve of big-data manipulation.

» ravro: This allows users to read avro files in R, or write avro files. It allows R to
exchange data with HDFS.

In this chapter, we will start by preparing the Hadoop environment, so that you can install
RHadoop. We then cover the installation of three main packages: rmr, rhdfs, and plyrmr.
Next, we will introduce how to use rmr to perform MapReduce from R, operate an HDFS file
through rhdfs, and perform a common data operation using plyrmr. Further, we will explore
how to perform machine learning using RHadoop. Lastly, we will introduce how to deploy
multiple RHadoop clusters on Amazon EC2.

388

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 12

Preparing the RHadoop environment

As RHadoop requires an R and Hadoop integrated environment, we must first prepare an
environment with both R and Hadoop installed. Instead of building a new Hadoop system, we
can use the Cloudera QuickStart VM (the VM is free), which contains a single node Apache
Hadoop Cluster and R. In this recipe, we will demonstrate how to download the Cloudera
QuickStart VM.

Getting ready

To use the Cloudera QuickStart VM, it is suggested that you should prepare a 64-bit guest 0S
with either VMWare or VirtualBox, or the KVM installed.

If you choose to use VMWare, you should prepare a player compatible with WorkStation 8.x or
higher: Player 4.x or higher, ESXi 5.x or higher, or Fusion 4.x or higher.

Note, 4 GB of RAM is required to start VM, with an available disk space of at least 3 GB.

How to do it...

Perform the following steps to set up a Hadoop environment using the Cloudera QuickStart VM:

1. Visit the Cloudera QuickStart VM download site (you may need to update the link
as Cloudera upgrades its VMs , the current version of CDH is 5.3) at http://www.
cloudera.com/content /cloudera/en/downloads/quickstart vms/cdh-
5-3-x.html.

Support Developers Signin  Register  ContactUs Downloads

Q

c'oudera PRODUCTS & SERVICES TRAINING SOLUTIONS CUSTOMERS PARTNERS RESOURCES BLOGS

Downleads > QuickStart VMs | Cloudera Manager = CDH | Connectors

QuickStart VMs for CDH 5.2.x

CDH4 Components

A Single-Node Hadoop Cluster and Examples for Easy Learning!

Start testing Hadoop with Cloudera's QuickStart VMs. The QuickStart VMs
contain a single-node Apache Hadoop cluster, complete with example data
queries. scripts, and Cloudera Manager to manage your cluster

The VMs run CentOS 6.2 and are available for VMware, VirtualBox, and
KVM.

All require a B4-bit host OS.

Version:  quick startvi with COH52x v

Please Note: Cloudera QuickStart VMs are for demo purposes only and are
not to be used as a starting point for clusters

Download System Requirements nstalled Products Getting Started

A screenshot of the Cloudera QuickStart VM download site
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2. Depending on the virtual machine platform installed on your OS, choose the
appropriate link (you may need to update the link as Cloudera upgrades its VMs) to
download the VM file:

o To download VMWare: You can visit https://downloads.cloudera.
com/demo_vm/vmware/cloudera-quickstart-vm-5.2.0-0-
vmware.7z

o To download KVM: You can visit https://downloads.cloudera.com/
demo_vm/kvm/cloudera-quickstart-vm-5.2.0-0-kvm.7z

o To download VirtualBox: You can visit https://downloads.cloudera.
com/demo_vm/virtualbox/cloudera-quickstart-vm-5.2.0-0-
virtualbox.7z

3. Next, you can start the QuickStart VM using the virtual machine platform installed on
your OS. You should see the desktop of Centos 6.2 in a few minutes.

& Applicatio] = [ Fl= Edit View VM Tabs Help | [ - | ) | © © G | O wd B & ||| cloudera-quickstart-vm-4.4.0-1vmware @ B | — 3% 12 cloudera
@ Cloudera VM - Hadoop, made easy. - Mozilla Firefox - o x

File Edit View History Bookmarks Tools Help

£} Cloudera VM - Hadoop, made e... | d |

[ & fileyhomejcloudera/Documents/quick-hadoop/index. htmi v &) 3 co @] &

Most Visited v

{iCloudera { [Cloudera Manager { 'Hue { !HDFS NameNode

{"iHadoop JobTracker [ |HBase Master [ iSolr

cloudera

Hadoop,made easy.

Use Hadoop Administer Hadoop

Query Apache Hive and Cloudera Impala, Setup and monitor the health of the
search and customize Apache Solr, browse cluster, start and stop services like HDFS,
and manipulate files and directories in the Job Tracker, update and deploy
Hadoop Distributed File System (HDFS), configurations, search logs, perform
create and run Apache ipts, B audits, analyse performance graphs and
visually manage Apact e metrics.

dinator/bundle

eate, submit and browse

duce jobs...

[Z Cloudera Manager

The screenshot of Cloudera QuickStart VM.
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4. You can then open a terminal and type hadoop, which will display a list of functions
that can operate a Hadoop cluster.

[cloudera@quickstart ~]$ hadoop
Usage: hadoop [--config confdir] COMMAND
where COMMAND is one of:

fs run a generic filesystem user client

version print the version

jar <jar> run a jar file

checknative [-a|-h] check native hadoop and compression libraries availa
bility

distcp <srcurl> <desturl> copy file or directories recursively
archive -archiveName NAME -p <parent path> <src>* <dest> create a hadoop

archive
classpath prints the class path needed to get the
Hadoop jar and the required libraries
daemonlog get/set the log level for each daemon
or
CLASSNAME run the class named CLASSNAME

Most commands print help when invoked w/o parameters.
[cloudera@quickstart ~1%

The terminal screenshot after typing hadoop

5. Open a terminal and type R. Access an R session and check whether version 3.1.1 is
already installed in the Cloudera QuickStart VM. If you cannot find R installed in the
VM, please use the following command to install R:

$ yum install R R-core R-core-devel R-devel

Instead of building a Hadoop system on your own, you can use the Hadoop VM application
provided by Cloudera (the VM is free). The QuickStart VM runs on CentOS 6.2 with a single
node Apache Hadoop cluster, Hadoop Ecosystem module, and R installed. This helps you to
save time, instead of requiring you to learn how to install and use Hadoop.

The QuickStart VM requires you to have a computer with a 64-bit guest OS, at least 4 GB of
RAM, 3 GB of disk space, and either VMWare, VirtualBox, or KVM installed. As a result, you
may not be able to use this version of VM on some computers. As an alternative, you could
consider using Amazon's Elastic MapReduce instead. We will illustrate how to prepare a
RHadoop environment in EMR in the last recipe of this chapter.

Setting up the Cloudera QuickStart VM is simple. Download the VM from the download site
and then open the built image with either VMWare, VirtualBox, or KVM. Once you can see
the desktop of CentOS, you can then access the terminal and type hadoop to see whether
Hadoop is working; then, type R to see whether R works in the QuickStart VM.
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» Besides using the Cloudera QuickStart VM, you may consider using a Sandbox VM
provided by Hontonworks or MapR. You can find Hontonworks Sandbox at http://
hortonworks.com/products/hortonworks-sandbox/#install and mapR
Sandbox at https://www.mapr.com/products/mapr-sandbox-hadoop/
download.

The rmr2 package allows you to perform big data processing and analysis via MapReduce on
a Hadoop cluster. To perform MapReduce on a Hadoop cluster, you have to install R and rmr2
on every task node. In this recipe, we will illustrate how to install rmr2 on a single node of a
Hadoop cluster.

Getting ready

Ensure that you have completed the previous recipe by starting the Cloudera QuickStart
VM and connecting the VM to the Internet, so that you can proceed with downloading and
installing the rmr2 package.

How to do it...

Perform the following steps to install rmr2 on the QuickStart VM:

1. First, open the terminal within the Cloudera QuickStart VM.
2. Use the permission of the root to enter an R session:

$ sudo R

3. You can then install dependent packages before installing rmr2:
> install.packages(c("codetools", "Rcpp", "RJSONIO", "bitops",
"digest", "functional", "stringr", "plyr", "reshape2", "rJava",
"caTools"))

4. Quit the R session:
> q()

5. Next, you can download rmr-3.3.0 to the QuickStart VM. You may need to update
the link if Revolution Analytics upgrades the version of rmr2:

$ wget --no-check-certificate https://raw.githubusercontent.com/
RevolutionAnalytics/rmr2/3.3.0/build/rmr2 3.3.0.tar.gz
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6. You can then install rmr-3.3.0 to the QuickStart VM:

$ sudo R CMD INSTALL rmr2_ 3.3.0.tar.gz

7. Lastly, you can enter an R session and use the 1ibrary function to test whether the
library has been successfully installed:

$ R

> library (rmr2)

In order to perform MapReduce on a Hadoop cluster, you have to install R and RHadoop on
every task node. Here, we illustrate how to install rmr2 on a single node of a Hadoop cluster.
First, open the terminal of the Cloudera QuickStart VM. Before installing rmr2, we first access
an R session with root privileges and install dependent R packages.

Next, after all the dependent packages are installed, quit the R session and use the wget
command in the Linux shell to download rmr-3. 3.0 from GitHub to the local filesystem.
You can then begin the installation of rmr2. Lastly, you can access an R session and use the
library function to validate whether the package has been installed.

» To see more information and read updates about RHadoop, you can refer
to the RHadoop wiki page hosted on GitHub: https://github.com/
RevolutionAnalytics/RHadoop/wiki

Installing rhdfs

The rhdfs package is the interface between R and HDFS, which allows users to access HDFS
from an R console. Similar to rmr2, one should install rhdfs on every task node, so that one
can access HDFS resources through R. In this recipe, we will introduce how to install rhdfs
on the Cloudera QuickStart VM.

Getting ready

Ensure that you have completed the previous recipe by starting the Cloudera QuickStart
VM and connecting the VM to the Internet, so that you can proceed with downloading and
installing the rhdfs package.
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How to do it...

Perform the following steps to install rhdfs:

1. First, you can download rhdfs 1.0.8 from GitHub. You may need to update the link
if Revolution Analytics upgrades the version of rhdfs:

$wget --no-check-certificate https://raw.github.com/
RevolutionAnalytics/rhdfs/master/build/rhdfs 1.0.8.tar.gz

2. Next, you can install rhdfs under the command-line mode:
$ sudo HADOOP_CMD=/usr/bin/hadoop R CMD INSTALL rhdfs 1.0.8.tar.
gz

3. You can then set up JAVA HOME. The configuration of JAVA HOME depends on the
installed Java version within the VM:
$ sudo JAVA HOME=/usr/java/jdkl.7.0 67-cloudera R CMD javareconf

4. Last, you can set up the system environment and initialize rhdfs. You may need to
update the environment setup if you use a different version of QuickStart VM:
$ R
> Sys.setenv (HADOOP CMD="/usr/bin/hadoop")

> Sys.setenv (HADOOP STREAMING="/usr/lib/hadoop-mapreduce/hadoop-
streaming-2.5.0-cdh5.2.0.jar")

> library(rhdfs)
> hdfs.init ()

The package, rhdfs, provides functions so that users can manage HDFS using R. Similar to
rmr2, you should install rhdfs on every task node, so that one can access HDFS through the
R console.

To install rhdfs, you should first download rhdfs from GitHub. You can then install rhdfs
in R by specifying where the HADOOP_CMD is located. You must configure R with Java support
through the command, javarecont.

Next, you can access R and configure where HADOOP_CMD and HADOOP_STREAMING are
located. Lastly, you can initialize rhdfs via the rhdfs. init function, which allows you to
begin operating HDFS through rhdfs.
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>

>

To find where HADOOP CMD is located, you can use the which hadoop command
in the Linux shell. In most Hadoop systems, HADOOP_CMD is located at /usr/bin/
hadoop.

As for the location of HADOOP_STREAMING, the streaming JAR file is often located in
/usr/lib/hadoop-mapreduce/. However, if you cannot find the directory, /usr/
lib/Hadoop-mapreduce, in your Linux system, you can search the streaming JAR
by using the 1ocate command. For example:

$ sudo updatedb

$ locate streaming | grep jar | more

Operating HDFS with rhdfs

The rhdfs package is an interface between Hadoop and R, which can call an HDFS APl in
the backend to operate HDFS. As a result, you can easily operate HDFS from the R console
through the use of the rhdfs package. In the following recipe, we will demonstrate how to
use the rhdfs function to manipulate HDFS.

Getting ready

To proceed with this recipe, you need to have completed the previous recipe by installing
rhdfs into R, and validate that you can initial HDFS via the hdfs. init function.

How to do it...

Perform the following steps to operate files stored on HDFS:

1.

Initialize the rhdfs package:
> Sys.setenv (HADOOP CMD="/usr/bin/hadoop")

> Sys.setenv (HADOOP STREAMING="/usr/lib/hadoop-mapreduce/hadoop-
streaming-2.5.0-cdh5.2.0.jar")

> library(rhdfs)
> hdfs.init ()

You can then manipulate files stored on HDFS, as follows:

o hdfs.put: Copy a file from the local filesystem to HDFS:
> hdfs.put ('word.txt', './")

o hdfs.1s: Read the list of directory from HDFS:
> hdfs.1ls('./")
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[m]

hdfs.copy: Copy a file from one HDFS directory to another:
> hdfs.copy('word.txt', 'wordcnt.txt')

hdfs.move : Move a file from one HDFS directory to another:

> hdfs.move ('wordent.txt', './data/wordecnt.txt')

hdfs.delete: Delete an HDFS directory from R:
> hdfs.delete('./data/")

hdfs.rm: Delete an HDFS directory from R:
> hdfs.rm('./data/')

hdfs.get: Download a file from HDFS to a local filesystem:
> hdfs.get (word.txt', '/home/cloudera/word.txt')

hdfs.rename: Rename a file stored on HDFS:
hdfs.rename('./test/ql.txt','./test/test.txt")

hdfs.chmod: Change the permissions of a file or directory:
> hdfs.chmod('test', permissions= '777')

hdfs.file.info: Read the meta information of the HDFS file:

> hdfs.file.info('./")

3. Also, you can write stream to the HDFS file:

> f

hdfs.file("iris.txt","w")

> data(iris)

> hdfs.write(iris, £)
> hdfs.close (f)

4. Lastly, you can read stream from the HDFS file:

>

dfserialized = hdfs.read(f)
df
df
hdfs.close(f)

hdfs.file("iris.txt", "r")

unserialize (dfserialized)

In this recipe, we demonstrate how to manipulate HDFS using the rhdfs package. Normally,
you can use the Hadoop shell to manipulate HDFS, but if you would like to access HDFS from
R, you can use the rhdfs package.

396

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 12

Before you start using rhdfs, you have to initialize rhdfs with hdfs.init (). After
initialization, you can operate HDFS through the functions provided in the rhdfs package.

Besides manipulating HDFS files, you can exchange streams to HDFS through hdfs.read
and hdfs.write. We, therefore, demonstrate how to write a data frame in R to an HDFS file,
iris.txt, using hdfs.write. Lastly, you can recover the written file back to the data frame
using the hdfs . read function and the unserialize function.

» Toinitialize rhdfs, you have to set HADOOP CMD and HADOOP STREAMING in the
system environment. Instead of setting the configuration each time you're using
rhdfs, you can put the configurations in the . rprofile file. Therefore, every time
you start an R session, the configuration will be automatically loaded.

Implementing a word count problem with

RHadoop

To demonstrate how MapReduce works, we illustrate the example of a word count, which
counts the number of occurrences of each word in a given input set. In this recipe, we will
demonstrate how to use rmr2 to implement a word count problem.

Getting ready

In this recipe, we will need an input file as our word count program input. You can download
the example input from https://github.com/ywchiu/ml R cookbook/tree/
master/CH12.

How to do it...

Perform the following steps to implement the word count program:

1. First, you need to configure the system environment, and then load rmr2 and
rhdfs into an R session. You may need to update the use of the JAR file if you use a
different version of QuickStart VM:

> Sys.setenv (HADOOP CMD="/usr/bin/hadoop")

> Sys.setenv (HADOOP STREAMING="/usr/lib/hadoop-mapreduce/hadoop-
streaming-2.5.0-cdh5.2.0.jar ")

> library (rmr2)
> library(rhdfs)
> hdfs.init ()
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2. You can then create a directory on HDFS and put the input file into the newly created
directory:

> hdfs.mkdir ("/user/cloudera/wordcount/data")

> hdfs.put("wc_input.txt", "/user/cloudera/wordcount/data")

3. Next, you can create a map function:
> map = function(.,lines) { keyval(

+ unlist(

+ strsplit(

+ x = lines,

+ split = " +")),
+ 1)}

4. Create a reduce function:

> reduce = function(word, counts) {
+ keyval (word, sum(counts))
+}

5. Call the MapReduce program to count the words within a document:

> hdfs.root = 'wordcount'
> hdfs.data file.path(hdfs.root, 'data')

> hdfs.out = file.path(hdfs.root, 'out')
> wordcount = function (input, output=NULL) {

+ mapreduce (input=input, output=output, input.format="text",
map=map,

+ reduce=reduce)
+}

> out = wordcount (hdfs.data, hdfs.out)

6. Lastly, you can retrieve the top 10 occurring words within the document:

> results = from.dfs (out)

> results$key[order (results$val, decreasing = TRUE)] [1:10]

In this recipe, we demonstrate how to implement a word count using the rmr2 package. First,
we need to configure the system environment and load rhdfs and rmr2 into R. Then, we
specify the input of our word count program from the local filesystem into the HDFS directory,
/user/cloudera/wordcount/data, via the hdfs.put function.
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Next, we begin implementing the MapReduce program. Normally, we can divide the
MapReduce program into the map and reduce functions. In the map function, we first use the
strsplit function to split each line into words. Then, as the strsplit function returns a
list of words, we can use the unlist function to character vectors. Lastly, we can return key-
value pairs with each word as a key and the value as one. As the reduce function receives
the key-value pair generated from the map function, the reduce function sums the count and
returns the number of occurrences of each word (or key).

After we have implemented the map and reduce functions, we can submit our job via the
mapreduce function. Normally, the mapreduce function requires four inputs, which are the
HDFS input path, the HDFS output path, the map function, and the reduce function. In this
case, we specify the input as wordcount /data, output as wordcount /out, map function
as map, reduce function as reduce, and wrap the mapreduce call in function, wordcount.
Lastly, we call the function, wordcount and store the output path in the variable, out.

We can use the from.dfs function to load the HDFS data into the results variable, which
contains the mapping of words and number of occurrences. We can then generate the top 10
occurring words from the results variable.

» Inthis recipe, we demonstrate how to write an R MapReduce program to solve a
word count problem. However, if you are interested in how to write a native Java
MapReduce program, you can refer to http://hadoop.apache.org/docs/
current /hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html.

Comparing the performance between an

R MapReduce program and a standard R
program

Those not familiar with how Hadoop works may often see Hadoop as a remedy for big data
processing. Some might believe that Hadoop can return the processed results for any size
of data within a few milliseconds. In this recipe, we will compare the performance between
an R MapReduce program and a standard R program to demonstrate that Hadoop does not
perform as quickly as some may believe.

Getting ready

In this recipe, you should have completed the previous recipe by installing rmr2 into
the R environment.
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How to do it...

Perform the following steps to compare the performance of a standard R program and an R
MapReduce program:

1. First, you can implement a standard R program to have all numbers squared:
> a.time = proc.time()
> small.ints2=1:100000
> result.normal = sapply(small.ints2, function(x) x"2)

> proc.time() - a.time

2. To compare the performance, you can implement an R MapReduce program to have
all numbers squared:

> b.time = proc.time()
> small.ints= to.dfs(1:100000)

> result = mapreduce(input = small.ints, map = function(k,v)
cbind (v,v"2))

> proc.time() - b.time

In this recipe, we implement two programs to square all the numbers. In the first program, we
use a standard R function, sapply, to square the sequence from 1 to 100,000. To record the
program execution time, we first record the processing time before the execution in a. time,
and then subtract a . t ime from the current processing time after the execution. Normally, the
execution takes no more than 10 seconds. In the second program, we use the rmr2 package
to implement a program in the R MapReduce version. In this program, we also record the
execution time. Normally, this program takes a few minutes to complete a task.

The performance comparison shows that a standard R program outperforms the MapReduce
program when processing small amounts of data. This is because a Hadoop system often
requires time to spawn daemons, job coordination between daemons, and fetching data

from data nodes. Therefore, a MapReduce program often takes a few minutes to a couple of
hours to finish the execution. As a result, if you can fit your data in the memory, you should
write a standard R program to solve the problem. Otherwise, if the data is too large to fit in the
memory, you can implement a MapReduce solution.
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In order to check whether a job will run smoothly and efficiently in Hadoop, you can
run a MapReduce benchmark, MRBench, to evaluate the performance of the job:

$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/hadoop-test.jar
mrbench -numRuns 50

Testing and debugging the rmr2 program

Since running a MapReduce program will require a considerable amount of time, varying from
a few minutes to several hours, testing and debugging become very important. In this recipe,
we will illustrate some techniques you can use to troubleshoot an R MapReduce program.

Getting ready

In this recipe, you should have completed the previous recipe by installing rmr2 into an R
environment.

How to do it...

Perform the following steps to test and debug an R MapReduce program:

1.

First, you can configure the backend as local in rmr . options:

> rmr.options (backend = 'local')

Again, you can execute the number squared MapReduce program mentioned in the
previous recipe:

> b.time = proc.time()
> small.ints= to.dfs(1:100000)

> result = mapreduce(input = small.ints, map = function(k,v)
cbind (v,v"2))

> proc.time() - b.time

In addition to this, if you want to print the structure information of any variable in the
MapReduce program, you can use the rmr . str function:

> out = mapreduce(to.dfs(1l), map = function(k, v) rmr.str(v))
Dotted pair list of 14

$ : language mapreduce(to.dfs(l), map = function(k, v) rmr.
str(v))
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$ : language mr (map = map, reduce = reduce, combine =
combine, vectorized.reduce, in.folder = if (is.list(input)) {
lapply (input, to.dfs.path)

$ : language c.keyval(do.call(c, lapply(in.folder,

function (fname) { kv = get.data(fname)

$ : language do.call(c, lapply(in.folder, function (fname) {
kv = get.data(fname)

$ : language lapply(in.folder, function (fname) { kv = get.
data (fname)

$ : language FUN("/tmp/Rtmp813BFJ/file25af6e85cfde" [[1L]], ...)

$ : language unname (tapply(l:1lkv, ceiling((1:1kv)/(1kv/ (object.
size(kv)/10%6))), function(r) ( kvr = slice.keyval (kv, r)

$ : language tapply(l:1lkv, ceiling((1l:1kv)/(lkv/(object.
size(kv)/10%6))), function(r) ( kvr = slice.keyval (kv, r)

$ : language lapply(X = split (X, group), FUN = FUN, ...)
language FUN(X[[1L]], ...)
language as.keyval (map (keys (kvr), values(kvr)))

$

$

$ : language is.keyval (x)

$ language map (keys (kvr), values(kvr))
$

:length 2 rmr.str(v)

.- attr(*, "srcref")=Class 'srcref' atomic [1:8] 1 34 1 58 34
58 1 1

. .- attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile'
<environment: 0x3£984£f0>

v

num 1

In this recipe, we introduced some debugging and testing techniques you can use while
implementing the MapReduce program. First, we introduced the technique to test a
MapReduce program in a local mode. If you would like to run the MapReduce program in a
pseudo distributed or fully distributed mode, it would take you a few minutes to several hours
to complete the task, which would involve a lot of wastage of time while troubleshooting your
MapReduce program. Therefore, you can set the backend to the local mode in rmr . options
so that the program will be executed in the local mode, which takes lesser time to execute.

Another debugging technique is to list the content of the variable within the map or reduce
function. In an R program, you can use the str function to display the compact structure of a
single variable. In rmr2, the package also provides a function named rmr . str, which allows
you to print out the content of a single variable onto the console. In this example, we use

rmr . str to print the content of variables within a MapReduce program.
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» For those who are interested in the opt ion settings for the rmr2 package, you can
refer to the help document of rmr . options:

> help(rmr.options)

Installing plyrmr

The plyrmr package provides common operations (as found in plyr or reshape?2) for users
to easily perform data manipulation through the MapReduce framework. In this recipe, we will
introduce how to install plyrmr on the Hadoop system.

Getting ready

Ensure that you have completed the previous recipe by starting the Cloudera QuickStart VM
and connecting the VM to the Internet. Also, you need to have the rmr2 package installed
beforehand.

How to do it...

Perform the following steps to install plyrmr on the Hadoop system:

1. First, you should install 1ibxml2-devel and curl-devel in the Linux shell:
$ yum install libxml2-devel

$ sudo yum install curl-devel

2. You can then access R and install the dependent packages:
sudo R

Install.packages(c(" Rcurl", "httr"), dependencies = TRUE

$
>
> Install.packages ("devtools", dependencies = TRUE)
> library(devtools)

> install github("pryr", "hadley")

>

install.packages(c (" R.methodsS3", "hydroPSO"), dependencies =
TRUE)

> q()
3. Next, you can download plyrmr 0.5.0 and install it on Hadoop VM. You may need
to update the link if Revolution Analytics upgrades the version of plyrmr:

$ wget -no-check-certificate https://raw.github.com/
RevolutionAnalytics/plyrmr/master/build/plyrmr 0.5.0.tar.gz

$ sudo R CMD INSTALL plyrmr 0.5.0.tar.gz
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4. Lastly, validate the installation:

$ R
> library(plyrmr)

Besides writing an R MapReduce program using the rmr2 package, you can use the plyrmr
to manipulate data. The plyrmr package is similar to hive and pig in the Hadoop ecosystem,
which is the abstraction of the MapReduce program. Therefore, we can implement an R

MapReduce program in plyr style instead of implementing the map f and reduce functions.

To install plyrmr, first install the package of 1ibxml2-devel and curl-devel, using
the yum install command. Then, access R and install the dependent packages. Lastly,
download the file from GitHub and install plyrmr in R.

» To read more information about plyrmr, you can use the help function to refer to
the following document:

> help (package=plyrmr)

Manipulating data with plyrmr

While writing a MapReduce program with rmr2 is much easier than writing a native Java
version, it is still hard for nondevelopers to write a MapReduce program. Therefore, you can
use plyrmr, a high-level abstraction of the MapReduce program, so that you can use plyr-like
operations to manipulate big data. In this recipe, we will introduce some operations you can
use to manipulate data.

Getting ready

In this recipe, you should have completed the previous recipes by installing plyrmr and rmr2
inR.

How to do it...

Perform the following steps to manipulate data with plyrmr:

1. First, you need to load both plyrmr and rmr2 into R:
> library (rmr2)

> library(plyrmr)
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2. You can then set the execution mode to the local mode:

> plyrmr.options (backend="local")

3. Next, load the Titanic dataset into R:
> data(Titanic)

> titanic = data.frame(Titanic)

4. Begin the operation by filtering the data:
> where (
+ Titanic,

+ Freq >=100)

5. You can also use a pipe operator to filter the data:

> titanic %|% where(Freq >=100)

6. Putthe Titanic data into HDFS and load the path of the data to the variable, tidata:
> tidata = to.dfs(data.frame(Titanic), output = '/tmp/titanic')
> tidata

7. Next, you can generate a summation of the frequency from the Titanic data:

> input(tidata) %|% transmute (sum(Freq))

8. You can also group the frequency by sex:
> input(tidata) %|% group(Sex) %|% transmute (sum(Freq))

9. You can then sample 10 records out of the population:
> sample (input(tidata), n=10)

10. In addition to this, you can use plyrmr to join two datasets:
> convert tb = data.frame(Label=c("No","Yes"), Symbol=c(0,1))
ctb = to.dfs(convert_tb, output = 'convert')

> as.data.frame (plyrmr: :merge (input (tidata), input(ctb),
by.x="Survived", by.y="Label"))

> file.remove ('convert')

In this recipe, we introduce how to use plyrmr to manipulate data. First, we need to load
the plyrmr package into R. Then, similar to rmr2, you have to set the backend option of
plyrmr as the local mode. Otherwise, you will have to wait anywhere between a few minutes
to several hours if plyrmr is running on Hadoop mode (the default setting).
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Next, we can begin the data manipulation with data filtering. You can choose to call the
function nested inside the other function call in step 4. On the other hand, you can use the
pipe operator, % | %, to chain multiple operations. Therefore, we can filter data similar to step 4,
using pipe operators in step 5.

Next, you can input the dataset into either the HDFS or local filesystem, using to.dfs in
accordance with the current running mode. The function will generate the path of the dataset
and save it in the variable, tidata. By knowing the path, you can access the data using the
input function. Next, we illustrate how to generate a summation of the frequency from the
Titanic dataset with the transmute and sum functions. Also, plyrmr allows users to sum up
the frequency by gender.

Additionally, in order to sample data from a population, you can also use the sample function
to select 10 records out of the Titanic dataset. Lastly, we demonstrate how to join two
datasets using the merge function from plyrmr.

Here we list some functions that can be used to manipulate data with plyrmr. You may refer
to the help function for further details on their usage and functionalities:
» Data manipulation:
o bind.cols: This adds new columns
o select: Thisis used to select columns
o where: This is used to select rows

o transmute: This uses all of the above plus their summaries

» From reshape2:
o melt and dcast: It converts long and wide data frames

» Summary:
0 count
o quantile

o sample
» Extract:

o top.k
0 bottom.k
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Conducting machine learning with RHadoop

In the previous chapters, we have demonstrated how powerful R is when used to solve
machine learning problems. Also, we have shown that the use of Hadoop allows R to process
big data in parallel. At this point, some may believe that the use of RHadoop can easily solve
machine learning problems of big data via numerous existing machine learning packages.
However, you cannot use most of these to solve machine learning problems as they cannot
be executed in the MapReduce mode. In the following recipe, we will demonstrate how to
implement a MapReduce version of linear regression and compare this version with the one
using the 1m function.

Getting ready

In this recipe, you should have completed the previous recipe by installing rmr2 into the R
environment.

How to do it...

Perform the following steps to implement a linear regression in MapReduce:

1. First, load the cats dataset from the MASS package:
> library (MASS)
> data(cats)
> X = matrix(cats$Bwt)

> y = matrix(cats$Hwt)

2. You can then generate a linear regression model by calling the 1m function:
> model = lm(y~X)

> summary (model)

Call:

Im(formula = y ~ X)

Residuals:
Min 19 Median 3Q Max
-3.5694 -0.9634 -0.0921 1.0426 5.1238

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -0.3567 0.6923 -0.515 0.607
X 4.0341 0.2503 16.119 <2e-16 ***
Signif. codes:

0 '#*%%x' 0,001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

Residual standard error: 1.452 on 142 degrees of freedom
Multiple R-squared: 0.6466, Adjusted R-squared: 0.6441
F-statistic: 259.8 on 1 and 142 DF, p-value: < 2.2e-16

3. You can now make a regression plot with the given data points and model:
> plot (y~X)

> abline (model, col="red")

20
\

20 25 3.0 35

X

Linear regression plot of cats dataset
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Load rmr2 into R:
> Sys.setenv (HADOOP CMD="/usr/bin/hadoop")

> Sys.setenv (HADOOP STREAMING="/usr/lib/hadoop-mapreduce/hadoop->
streaming-2.5.0-cdh5.2.0.jar")

> library (rmr2)

> rmr.options (backend="1local")

You can then set up X and y values:
> X = matrix(cats$Bwt)
> X.index = to.dfs(cbind(l:nrow(X), X))

> y = as.matrix(cats$Hwt)

Make a sum function to sum up the values:
> Sum =
+ function(., YY)

+ keyval(l, list(Reduce('+', YY)))

Compute Xtx in MapReduce, Job1:

> XtX =

+ values (

+ from.dfs (

+ mapreduce (

+ input = X.index,

+ map =

+ function(., Xi) {

+ Xi = Xil[,-11]

+ keyval(1l, list(t(Xi) %*% Xi))},
+ reduce = Sum,

+ combine = TRUE))) [[1]]
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8. You can then compute Xty in MapReduce, Job2:

Xty =

+ values (

+ from.dfs (

+ mapreduce (

+ input = X.index,

+ map = function(., Xi) {
+ yi = yI[Xil[,11,]

+ Xi = Xil[,-1]

+ keyval(1l, list(t(Xi) %*% yi))},
+ reduce = Sum,

+ combine = TRUE))) [[1]]

9. Lastly, you can derive the coefficient from xtX and Xty:

> solve (XtX, Xty)
[,1]
[1,]1 3.907113

In this recipe, we demonstrate how to implement linear logistic regression in a MapReduce
fashion in R. Before we start the implementation, we review how traditional linear models
work. We first retrieve the cats dataset from the MASS package. We then load X as the body
weight (Bwt) and y as the heart weight (Hwt).

Next, we begin to fit the data into a linear regression model using the 1m function. We can
then compute the fitted model and obtain the summary of the model. The summary shows
that the coefficient is 4.0341 and the intercept is -0.3567. Furthermore, we draw a scatter
plot in accordance with the given data points and then draw a regression line on the plot.

As we cannot perform linear regression using the 1m function in the MapReduce form,

we have to rewrite the regression model in a MapReduce fashion. Here, we would like to
implement a MapReduce version of linear regression in three steps, which are: calculate the
Xtx value with the MapReduce, job1, calculate the Xty value with MapReduce, job2, and
then derive the coefficient value:

» Inthe first step, we pass the matrix, X, as the input to the map function. The map
function then calculates the cross product of the transposed matrix, X, and, X. The
reduce function then performs the sum operation defined in the previous section.
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» Inthe second step, the procedure of calculating Xty is similar to calculating XtX.
The procedure calculates the cross product of the transposed matrix, X, and, y.
The reduce function then performs the sum operation.

» Lastly, we use the solve function to derive the coefficient, which is 3.907113.

As the results show, the coefficients computed by 1m and MapReduce differ slightly. Generally
speaking, the coefficient computed by the 1m model is more accurate than the one calculated
by MapReduce. However, if your data is too large to fit in the memory, you have no choice but
to implement linear regression in the MapReduce version.

» You can access more information on machine learning algorithms at: https://
github.com/RevolutionAnalytics/rmr2/tree/master/pkg/tests

Configuring RHadoop clusters on Amazon

Until now, we have only demonstrated how to run a RHadoop program in a single Hadoop
node. In order to test our RHadoop program on a multi-node cluster, the only thing you need to
do is to install RHadoop on all the task nodes (nodes with either task tracker for mapreduce
version 1 or node manager for map reduce version 2) of Hadoop clusters. However, the
deployment and installation is time consuming. On the other hand, you can choose to

deploy your RHadoop program on Amazon EMR, so that you can deploy multi-node clusters
and RHadoop on every task node in only a few minutes. In the following recipe, we will
demonstrate how to configure RHadoop cluster on an Amazon EMR service.

Getting ready

In this recipe, you must register and create an account on AWS, and you also must know how
to generate a EC2 key-pair before using Amazon EMR.

For those who seek more information on how to start using AWS, please refer to the tutorial
provided by Amazon at http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
EC2 GetStarted.html.
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How to do it...

Perform the following steps to configure RHadoop on Amazon EMR:

1. First, you can access the console of the Amazon Web Service (refer to https://us-
west-2.console.aws.amazon.com/console/) and find EMR in the analytics
section. Then, click on EMR.

Services v v

Amazon Web Services
Compute

‘ EC2
Virtual Servers in the Cloud

Lambda PREVIEW
Run Code in Response to Events

Storage & Content Delivery
53
Scalable Storage in the Cloud

Storage Gateway

Integrates On-Premises IT Environments with
Cloud Storage

Glacier

Archive Storage in the Cloud

o CloudFront
"g® Global Content Delivery Network

Database

. RDS
MySQL, Postgres, Oracle, SQL Server, and
Amazon Aurora

DynamoDB
Predictable and Scalable NoSQL Data Store
ElastiCache
= In-Memory Cache
Redshift

Managed Petabyte-Scale Data Warehouse
Service

Networking

Administration & Security

Directery Service
Managed Directories in the Cloud

Identity & Access Mlanagement
Access Control and Key Management

Trusted Advisor
WS Cloud Optimization Expert

CloudTrail

User Activity and Change Tracking
Config PREVIEW

Resource Configurations and Inventory

CloudWatch

Resource and Application Monitoring

W & 4 < B

Deployment & Management

Elastic Beansfalk
WS Application Container

‘ OpsWorks
DevOps Application Management Service

CloudFormation
Templated AWS Resource Creation

CodeDeploy

Analytics

o EMR
L e

ed Hadoop Framework

r RLOES
== Realtime Processing of Streaming Big Data

Application Services

&= SQS
Message Queue Service

ull SWF
Workflow Service for Coordinating Application
Components

. AppStream

Low Latency Application Streaming

I3

Elastic Transcoder
» Easy-to-use Scalable Media Transcoding

SES
‘l\, Email Sending Service

CloudSearch
Managed Search Service

Mobile Services

F Cognito
&1 Gser (aentity and App Data Synchronization
= [Vlobile Analytics
[ Understand App Usage Data at Scale
' SNS
Push Notification Service

Enterprise Applications

WorkSpaces
Desktops in the Cloud

B Zocalo
Bl socure Enterprise Storage and Sharing Service

Access EMR service from AWS console.

2. You should find yourself in the cluster list of the EMR dashboard (refer to
https://us-west-2.console.aws.amazon.com/elasticmapreduce/
home?region=us-west-2#cluster-1list: :); click on Create cluster.

g‘g Services v

Elastic MapReduce v Cluster List

| Create cluster View details ne ‘erminate

Filter: | All clusters v |Filt

Name

8 clusters (all loaded)

D Status

Creation time (UTC+8)

David Chiu v Oregon v Support v

EMR Help

Normalized
instance hours

Elapsed time
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3. Then, you should find yourself on the Create Cluster page (refer to https://us-
west-2.console.aws.amazon.com/elasticmapreduce/home?region=us-
west-2#create-cluster:).

4. Next, you should specify Cluster name and Log folder S3 location in the cluster
configuration.

Cluster Configuration
Cluster name |rhadoop

Termination protection @ Yes
Mo

Logging @ Enabled

Log folder S3 location

Debugging @ Enabled

Cluster configuration in the create cluster page

5. You can then configure the Hadoop distribution on Software Configuration.

Software Configuration

Hadoop distribution @ Amazon Use Amazon's Hadoop distribution. Learn more
AMI version
\ 331 v | Determines the base configuration of the instances in

your cluster, including the Hadoop version. Learn more

MapR Use MapR’s Hadoop distribution. Learn more
Applications to be installed Version
Hive: 0131 S X O
Pig 0.12.0 S X0
Hue 3.6.0 S X O
Additional applications | Select an application v

Configure the software and applications
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6. Next, you can configure the number of nodes within the Hadoop cluster.

Hardware Configuration

@ Specify the networking and hardware configuration for your cluster. If you need more than 20 EC2 instances, complete this form
Request Spot instances (unused EC2 capacity) to save money.

Network | vpc-9d5d39f5 (172.31.0.0/16) (default) v | Use aVirtual Private Cloud (VPC) to process sensitive
’ ’ data or connect to a private network.  Create a VPC
EC2 Subnet |No preference (random subnet) v | CreateaSubnet
Type Name EC2 instance type Count Request spot Bid price
IMaster Master instance group - | | m3.xlarge v (2]
Core Core instance group - 2 m1 large M (2]
Task Task instance group - 3 m1.medium Yo b4 9

Add task instance group

Configure the hardware within Hadoop cluster

7. You can then specify the EC2 key-pair for the master node login.

Security and Access

EC2 key pair | ec2-startup v | Use an existing EC2 key pair to SSH into the master node
ofthe Amazon EMR cluster. Learn more

IAM user access @ All other IAM users Control the visibility o this cluster to other IAM
users. Learn more
No other 1AM users

Security and access to the master node of the EMR cluster

8. To set up RHadoop, one has to perform bootstrap actions to install RHadoop on
every task node. Please write a file named bootstrapRHadoop . sh, and insert the
following lines within the file:

echo 'install.packages (c("codetools", "Rcpp", "RJSONIO", "bitops",
"digest", "functional", "stringr", "plyr", "reshape2", "rJava'",
"caTools"), repos="http://cran.us.r-project.org")' > /home/hadoop/
installPackage.R

sudo Rscript /home/hadoop/installPackage.R

wget --no-check-certificate https://raw.githubusercontent.com/
RevolutionAnalytics/rmr2/master/build/rmr2 3.3.0.tar.gz

sudo R CMD INSTALL rmr2_3.3.0.tar.gz

wget --no-check-certificate https://raw.github.com/
RevolutionAnalytics/rhdfs/master/build/rhdfs 1.0.8.tar.gz

sudo HADOOP_CMD=/home/hadoop/bin/hadoop R CMD INSTALL
rhdfs_1.0.8.tar.gz
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9. You should upload bootstrapRHadoop.sh to S3.

10. You now need to add the bootstrap action with Custom action, and add
s3://<location>/bootstrapRHadoop . sh within the S3 location.

Bootstrap Actions

@ Bootstrap actions are scripts that are executed during setup before Hadoop starts on every cluster node. You can use them fo install
additional software and customize your applications. Learn more

Bootstrap action type Name §3 location Optional arguments
Custom action Custom action s3:llpceprojectbootstrapRita PR
doop.sh
Add bootstrap action | Custom action M

Configure and add

Set up the bootstrap action

11. Next, you can click on Create cluster to launch the Hadoop cluster.

Steps

© Astepis a unit of work you submit to the cluster. A step might contain one or more Hadoop jobs, or contain instructions to install or
configure an application. You can submit up to 256 steps to a cluster. Learn more

Name Action on failure JAR location Arguments
Add step  Select a step v
Auto-terminate Yes Automatically terminate cluster after the last step is
completed.
@® No Keep cluster running until you terminate it

oo CERIEED

Create the cluster
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12. Lastly, you should see the master public DNS when the cluster is ready. You can now
access the terminal of the master node with your EC2-key pair:

7] Services v  Edit v David Chiu ~ Oregon v  Support v
Elastic MapReduce ~ Cluster List > Cluster Details EMR Help
Add step Clone Terminate
Cluster: rhadoop  Waiting waiting after step completed c

Connections: Enable Web Connection — Hue, Resource hanager ... (View All)
Master public DNS: Gcas 193—253.usﬂﬁ72 compute.amazonaws.com 853 l
Tags: - View All f Edit
Summary Configuration Details Security/Network Hardware
ID: -2CL38XT295NL2 AMI version: 3.3.1 Availability us-west-2a Master: Running 1 m3.xlarge
Creation date: 2014-12-17 19:41 (UTC+8) Hadoop Amazon 2.4.0 zone: Core: -
Elapsed time: 18 minutes distribution: Subnet ID: subnet-7d04f818 Task: —
Auto-terminate: No Applications: Hive 0.12.1, Pig 0.12.0, Hue Key hame: DSP-EC2
Termination On Change Log URI: s3./rhadoop/ Ber EC2 instance
protection: EMRFS Disabled profile:
consistent EMR role: -
view: Visible to all All Change

users:

A screenshot of the created cluster

In this recipe, we demonstrate how to set up RHadoop on Amazon EMR. The benefit of this is
that you can quickly create a scalable, on demand Hadoop with just a few clicks within a few
minutes. This helps save you time from building and deploying a Hadoop application. However,
you have to pay for the number of running hours for each instance. Before using Amazon EMR,
you should create an AWS account and know how to set up the EC2 key-pair and the S3. You
can then start installing RHadoop on Amazon EMR.

In the first step, access the EMR cluster list and click on Create cluster. You can see a list of
configurations on the Create cluster page. You should then set up the cluster name and log
folder in the S3 location in the cluster configuration.

Next, you can set up the software configuration and choose the Hadoop distribution you would
like to install. Amazon provides both its own distribution and the MapR distribution. Normally,
you would skip this section unless you have concerns about the default Hadoop distribution.

You can then configure the hardware by specifying the master, core, and task node. By
default, there is only one master node, and two core nodes. You can add more core and task
nodes if you like. You should then set up the key-pair to login to the master node.

You should next make a file containing all the start scripts named bootstrapRHadoop.

sh. After the file is created, you should save the file in the S3 storage. You can then specify
custom action in Bootstrap Action with bootstrapRHadoop . sh as the Bootstrap script.
Lastly, you can click on Create cluster and wait until the cluster is ready. Once the cluster
is ready, one can see the master public DNS and can use the EC2 key-pair to access the
terminal of the master node.
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Beware! Terminate the running instance if you do not want to continue using the EMR service.
Otherwise, you will be charged per instance for every hour you use.

See also

» Google also provides its own cloud solution, the Google compute engine. For those
who would like to know more, please refer to https://cloud.google.com/
compute/.
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Resources for R and
Machine Learning

The following table lists all the resources for R and machine learning;:

R introduction

Title Link Author
R in Action http://www.amazon.com/R-Action- Robert Kabacoff
Robert-Kabacoff/dp/1935182390
The Art of R http://www.amazon.com/The-Art- Norman Matloff
Programming: A Programming-Statistical-Software/
Tour of Statistical dp/1593273843
Software Design
An Introductionto R | http://cran.r-project.org/doc/ W. N. Venables, D.
manuals/R-intro.pdf M. Smith, and the R
Core Team
Quick-R http://www.statmethods.net/ Robert I. Kabacoff,
PhD
Online courses
Title Link Instructor
Computing for Data | https://www.coursera.org/course/ Roger D. Peng, Johns
Analysis (with R) compdata Hopkins University
Data Analysis https://www.coursera.org/course/ Jeff Leek, Johns
dataanalysis Hopkins University
Data Analysis and https://www.coursera.org/course/ Mine Cetinkaya-
Statistical Inference | statistics Rundel, Duke
University
419
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Machine learning

Title

Link

Author

Machine Learning
for Hackers

http://www.amazon.com/dp/144930371
4?tag=inspiredalgor-20

Drew Conway and
John Myles White

Machine Learning
with R

http://www.packtpub.com/machine-
learning-with-r/book

Brett Lantz

Online blog

Title

Link

R-bloggers

http://www.r-bloggers.com/

The R Journal

http://journal.r-project.org/

CRAN task view

Title

Link

Learning

CRAN Task View: Machine
Learning and Statistical

MachineLearning.html

http://cran.r-project.org/web/views/
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Dataset - Survival
of Passengers on
the Titanic

Before the exploration process, we would like to introduce the example adopted here. It is
the demographic information on passengers aboard the RMS Titanic, provided by Kaggle
(https://www.kaggle.com/, a platform for data prediction competitions). The result we
are examining is whether passengers on board would survive the shipwreck or not.

There are two reasons to apply this dataset:

» RMS Titanic is considered as the most infamous shipwreck in history, with a death
toll of up to 1,502 out of 2,224 passengers and crew. However, after the ship sank,
the passengers' chance of survival was not by chance only; actually, the cabin class,
sex, age, and other factors might also have affected their chance of survival.

» The dataset is relatively simple; you do not need to spend most of your time on data
munging (except when dealing with some missing values), but you can focus on the
application of exploratory analysis.
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Dataset - Survival of Passengers on the Titanic

The following chart is the variables' descriptions of the target dataset:

Variable descriptions:

survival Survival
(0=No; 1="7Yes)

pclass Passenger class
(1=1st;2=2nd;3=31d)

name Name

sex Sex

age Age

sichsp Number of siblings/spouses aboard

parch Number of parents/children aboard

ticket Ticket number

fare Passenger fare

cabin Cabin

embarked Portofembarkation
(C = Cherbourg; Q = Queenstown; S = Southampton)

Special notes:

Pclass is a proxy for socio-economic status (SES)
1st~ Upper; 2nd~ Middle; 3rd ~ Lower

Age is in vears;itis fractional if the age is less than one (1), and if the age is estimated, it is in the form, xx. 5.

With respect to the family relation variables (thatis, s ibsp and parch), some relations were ignored. The
following are the definitionsused forsibsp and parch:

Sibling: Brother, sister, stepbrother, or stepsister ofa passenger aboard the Titanic

Spouse: Husband or wife of a passenger aboard the Titanic (mistresses and fiancés are ignored)
Parent: Mother or father ofa passenger aboard the Titanic

Child: Son, daughter, stepson, or stepdaughter of a passenger aboard the Titanic

Other family relatives excluded from this study include. cousins. nephews/nieces, aunts/uncles, and in-laws. Some
children travelled only with a nanny, therefore, parch=0 for them. Also, some travelled with very close friends or
neighbors from the same village; however, the definitions do not support such relations.

Judging from the description of the variables, one might have some questions in mind,

such as, "Are there any missing values in this dataset?", "What was the average age of the
passengers on the Titanic?", "What proportion of the passengers survived the disaster?",
"What social class did most passengers on board belong to?". All these questions presented
here will be answered in Chapter 2, Data Exploration with RMS Titanic.

Beyond questions relating to descriptive statistics, the eventual object of Chapter 2, Data
Exploration with RMS Titanic, is to generate a model to predict the chance of survival given
by the input parameters. In addition to this, we will assess the performance of the generated
model to determine whether the model is suited for the problem.
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A

adabag package 252
AdaBoost.M1 algorithm 257
advanced exploratory data analysis 50
agglomerative hierarchical clustering 287
aggregate function 40
Akaike Information Criterion (AIC) 208
alternative hypothesis (H1) 97
Amazon EMR

reference link 412

RHadoop, configuring 411-416
analysis of variance (ANOVA)

about 109

one-way ANOVA, conducting 109-112

reference link 112

two-way ANOVA, performing 112-116
area under curve (AUC) 241
association analysis 321, 322
associations

displaying 324-327

mining, with Apriori rule 328-333

rules, visualizing 335-338
AWS

reference link 411

bagging method
about 252
used, for classifying data 252-255
used, for performing
cross-validation 256, 257
bam package
using 146
Bartlett Test 108

Index

basic exploratory data analysis 50
basic statistics
applying 36-39
Bayes theorem
reference link 186
Binary Tree Class 167
Binomial model
applying, for generalized linear
regression 142-144
binomial test
alternative hypothesis (H1) 97
conducting 95, 96
null hypothesis (HO) 97
biplot
used, for visualizing multivariate
data 363-365
bivariate cluster plot
drawing 297, 298
boosting method
about 252
used, for classifying data 257-260
used, for performing cross-validation 261
Breusch-Pagan test 137

C

C50
about 159
URL 159
caret package
about 76, 216
features, selecting 230-235
highly correlated features,
searching 229, 230
k-fold cross-validation, performing 223-225
used, for comparing ROC curve 243-246
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used, for measuring performance differences
between models 246-249
variable importance, ranking 225-227
character variables
converting 54, 55
classification
about 153
margin, calculating of classifier 268-271
versus regression 153
classification model
building, with conditional inference
tree 166, 167
building, with recursive partitioning
tree 156-159
testing dataset, preparing 154, 155
training dataset, preparing 154, 155
Cloudera QuickStart VM
about 389
references 390
URL 389
used, for preparing RHadoop
environment 389-391
clustering
about 283
clustering methods, comparing 299-301
density-based clustering 284
hierarchical clustering 284
k-means clustering 284
model-based clustering 284
silhouette information, extracting 302, 303
clusters
validating, externally 317-319
conditional inference tree
advantages 185
classification model, building 166, 167
disadvantages 185
prediction performance, measuring 170-172
visualizing 167-169
confidence intervals
reference link 124
confusion matrix
reference link 163
used, for measuring prediction
performance 239, 240
used, for validating survival prediction 75, 76
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correlations
performing 90, 91
CP (cost complexity parameter) 159
CRAN
about 27
URL 16, 29
Crantastic 29
cross-validation
performing, with bagging method 256, 257
performing, with boosting method 261
cSPADE algorithm
used, for mining frequent sequential
patterns 345-348
cutree function
used, for separating data into
clusters 290-293

D

data
classifying, with K-nearest neighbor (knn)
classifier 172-174
classifying, with logistic regression 175-181
classifying, with Naive Bayes
classifier 182-186
exploring 62-70
manipulating 32-34
manipulating, subset function used 34
merging 35
ordering, with order function 35
reading 29-32
transforming, into transactions 322, 323
visualizing 40-43, 62-70
writing 29-32
data exploration
about 49
advanced exploratory data analysis 50
basic exploratory data analysis 50
data collection 50
data munging 50
model assessment 51
right questions, asking 50
data exploration, with RMS Titanic
character variables, converting 54, 55
data, exploring 62-70
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dataset, reading from CSV file 51-53
data, visualizing 62-70
missing values, detecting 56-58
missing values, imputing 59-61
passenger survival, predicting with
decision tree 70-74
survival prediction, assessing with ROC
curve 77,78
survival prediction, validating with
confusion matrix 75, 76
data sampling 80, 81
dataset
obtaining, for machine learning 44-47
DBSCAN
about 306
used, for performing density-based
clustering 306-309
decision tree
used, for predicting passenger survival 70-74
density-based clustering
about 284
performing, with DBSCAN 306-309
used, for clustering data 306-309
descriptive statistics
about 80
univariate descriptive statistics 86-89
diagnostic plot
generating 124-126
dimension reduction
about 349
feature extraction 349
feature selection 349
performing, MDS used 367-371
performing, PCA used 354-357
performing, SVD used 371-374
dissimilarity matrix
about 314
visualizing 314-316
distance functions
average linkage 288
complete linkage 287
single linkage 287
ward method 288
divisive hierarchical clustering 287

e1071 package

k-fold cross-validation, performing 222, 223
Eclat algorithm

used, for mining frequent itemsets 339-341
ensemble learning

about 251

bagging method 252

boosting method 252

random forest 252
erroreset function 280
error evolution

calculating, of ensemble method 272-274

F

feature extraction 349
feature selection

about 349

performing, FSelector package used 351-353
FP-Growth

about 341

reference link 341

G

generalized addictive model (GAM)
about 144
diagnosing 149-151
fitting, to data 144-146
visualizing 146-148
Generalized Cross Validation (GCV) 150
generalized linear model (GLM) 138
ggplot2
about 43
URL 43
generalized linear regression
fitting, with Binomial model 142-144
fitting, with Gaussian model 138-140
fitting, with Poisson model 141, 142
Google compute engine
URL 417
gradient boosting
about 262
used, for classifying data 262-268
gsub function 36
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H

HDFS
operating, rhdfs package used 395, 396
heteroscedasticity 137
hierarchical clustering
about 284
agglomerative hierarchical clustering 287
divisive hierarchical clustering 287
used, for clustering data 284-289
honorific entry
reference link 61
Hontonworks Sandbox
URL 392
hypothesis methods
Bartlett Test 108
Kruskal-Wallis Rank Sum Test 108
Proportional test 108
Shapiro-Wilk test 108
Z-test 108

images

compressing, SVD used 375-378
inferential statistics 80
installation

integrated development environment (IDE) 23

packages 27-29

plyrmr package 403, 404

rhdfs package 393, 394

rmr2 package 392, 393

RStudio 23-27
installation, R

about 15, 16, 23

on Cent0OS 5 22

on Cent0OS 6 22

on Mac OS X 19-21

on Ubuntu 22

on Windows 17, 18
Interquartile Range (IQR) 87
interval variables 55
ipred package 255, 280
ISOMAP

about 350

nonlinear dimension reduction,

performing 378-382

itemsets 322
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K

Kaggle
URL 51
Kaiser method
used, for determining number of principal
components 361-363
KDnuggets
about 47
URL 47
k-fold cross-validation
performing, with caret package 223-225
performing, with e1071 package 222, 223
used, for estimating model
performance 220, 221
k-means clustering
about 284
optimum number of clusters,
obtaining 303-306
reference link 306
used, for clustering data 294-296
K-nearest neighbor (knn) classifier
about 172-174
advantages 174, 185
data, classifying 172-174
disadvantages 175, 185
URL 175
Kolmogorov-Smirnov test (K-S test)
about 102
performing 101-103
Kruskal-Wallis Rank Sum Test 108

L

labels
predicting, of trained neural network by
neuralnet 211-213
predicting, of trained neural network by
nnet package 216-218
predicting, of trained neural network by
SVM 197-199
libsvm 188
linear methods
MDS 350
PCA 350
SVD 350
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linear regression model
case study 131-137
conducting, for multivariate analysis 92-95
fitting, with Im function 118, 119
information obtaining, summary function
used 120-122
used, for predicting unknown
values 123, 124
LLE (locally linear embedding)
about 350
nonlinear dimension reduction,
performing 383-385
Im function
used, for fitting linear regression
model 118, 119
used, for fitting polynomial regression
model 127,128
logistic regression
advantages 185
disadvantages 185
used, for classifying data 175-181

M
machine learning
about 13

dataset, obtaining 44-47

reference link, for algorithms 411

with R 13-15

with RHadoop 407-410
Mann-Whitney-Wilcoxon. See Wilcoxon

Signed Rank test

mapR Sandbox

URL 392
margin

about 268

calculating, of classifier 268-271
mboost package 266
MDS

about 350

used, for performing dimension

reduction 367-371

minimum support (minsup) 348
missing values

detecting 56-58

imputing 59-61

model assessment 51
model-based clustering

about 284

used, for clustering data 309-313
model evaluation 219
multidimensional scaling. See MDS
multivariate analysis

linear regression, conducting 92-95

performing 90, 91
multivariate data

visualizing, biplot used 363-365

Naive Bayes classifier
advantages 185
data, classifying 182-186
disadvantages 185
NaN (not a number) 56
NA (not available) 56
neuralnet
labels, predicting of trained neural
networks 211-213
neural networks (NN), training 205-208
neural networks (NN), visualizing 209, 210
neural networks (NN)
about 187
advantages 208
training, with neuralnet 205-208
training, with nnet package 214, 215
versus SVM 188
visualizing, by neuralnet 209, 210
nnet package
about 214
labels, predicting of trained neural
network 216-218
used, for training neural
networks (NN) 214, 215
nominal variables 55
nonlinear dimension reduction
performing, with ISOMAP 378-382
performing, with LLE 383-385
nonlinear methods
ISOMAP 350
LLE 350
null hypothesis (H0O) 97
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0

one-way ANOVA
conducting 109-112
order function
using 35
ordinal variables 55

P

packages
installing 27-29
loading 27-29
party package 74, 279
PCA
about 350
used, for performing dimension
reduction 354-357
Pearson's Chi-squared test
about 105
conducting 105-108
plyrmr package
about 388
installing 403, 404
used, for manipulating data 404-406
Poisson model
applying, for generalized linear
regression 141, 142
poly function
using 127
polynomial regression model
fitting, with Im function 127, 128
prediction errors
estimating, of different classifiers 280-282
principal component analysis. See PCA
probability distribution
about 81
generating 81-85
Proportional test 108
Pruning (decision_trees)
reference link 166

Q

quantile-comparison plot 150
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R
about 14
data, manipulating 32-36
downloading 15-23
installing 15-17, 23
installing, on CentOS 5 22
installing, on CentOS 6 22
installing, on Mac OS X 19-21
installing, on Ubuntu 22
installing, on Windows 17, 18
URL 15
using, for machine learning 14, 15
random forest
about 252
advantages 279
mtry parameter 279
ntree parameter 279
used, for classifying data 274-280
ratio variables 55
raw data 50
receiver operating characteristic (ROC)
about 241
reference link 242
recursive partitioning tree
advantages 185
disadvantages 185
prediction performance, measuring 161-163
pruning 163-166
used, for building classification
model 156-159
visualizing 159-161
redundant rules
pruning 333-335
regression
about 117
types 118
versus classification 153
regression model
performance, measuring 236-238
relative square error (RSE) 236, 238
reshape function 40
R-Forge 29
RHadoop
about 387, 388
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configuring, on Amazon EMR 411-416
input file, URL 397
integrated environment, preparing 389-391
Java MapReduce program, URL 399
machine learning 407-410
plyrmr package 388
ravro package 388
rhbase package 388
rhdfs package 388
rmr package 388
word count problem, implementing 397-399
rhdfs package
installing 393, 394
used, for operating HDFS 395, 396
rim function
used, for fitting robust linear regression
model 129-131
R MapReduce program
comparing, to standard R program 399, 400
debugging 401, 402
testing 401, 402
rminer package
variable importance, ranking 227-229
rmr2 package
installing 392, 393
RnavGraph package
about 381
URL 381
robust linear regression model
fitting, with rim function 129-131
ROC curve
used, for assessing survival prediction 77, 78
ROCR package
installing 241
used, for measuring prediction
performance 241, 242
root mean square error (RMSE) 236, 238
rpart package 74
RStudio
downloading 23-27
installing 23-27
URL 24,27

S

SAMME algorithm 257
Scale-Location plot 126

scree test
used, for determining number of principal
components 359, 360
Sequential PAttern Discovery using Equiva-
lence classes (SPADE) 345, 348
Shapiro-Wilk test 108
silhouette information
about 302
extracting, from clustering 302, 303
Silhouette Value
reference link 303
singular value decomposition. See SVD
standard R program
comparing, to R MapReduce
program 399, 400
statistical methods
descriptive statistics 80
inferential statistics 80
student's t-test
about 100
performing 97-100
sub function 36
subset function 34
summary function
used, for obtaining information of linear
regression model 120-122
Survey of Labor and Income Dynamics
(SLID) dataset 131
SVD
about 350, 371
used, for compressing images 375-378
used, for performing dimension
reduction 371-374
SVM (support vector machines)
about 187
advantages 190
cost, selecting 191-194
data, classifying 188-191
labels, predicting of testing dataset 197-199
tuning 201-204
versus neural networks (NN) 188
visualizing 195, 196
SVMLight
about 191
reference link 191
SVMLite 188
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T

training data, Kaggle
URL 52
transactions
creating, with temporal information 342-345
data, transforming 322, 323
displaying 324-327
two-way ANOVA
performing 112-116

U

UCI machine learning repository
URL 44
Unbiased Risk Estimator (UBRE) 150
univariate descriptive statistics
about 86
working with 86-89

'}

visualization, data 40-43
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w

Wilcoxon Rank Sum test
about 104
performing 104, 105
Wilcoxon Signed Rank test
about 104
performing 104, 105
within-cluster sum of squares (WCSS) 296

X

XQuartz-2.X.X.dmg
URL, for downloading 21

y4
Z-test 108
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