R Graph Essentials

Use R's powerful graphing capabilities to design and create
professional-level graphics

PACKT

R Graph Essentials

Use R's powerful graphing capabilities to design and
create professional-level graphics

David Alexander Lillis

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

R Graph Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014
Production reference: 1150914

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-455-3
www . packtpub.com

Cover image by Arvind Shetty (arvindshetty86@gmail . com)

www.packtpub.com

Credits

Author Project Coordinator
David Alexander Lillis Kartik Vedam
Reviewers Proofreaders
Mzabalazo Z. Ngwenya Simran Bhogal
Donato Teutonico Maria Gould
Tengfei Yin Ameesha Green
Commissioning Editor Indexer
Pramila Balan Hemangini Bari
Acquisition Editor Production Coordinator
Reshma Raman Arvindkumar Gupta
Content Development Editor Cover Work
Akashdeep Kundu Arvindkumar Gupta

Technical Editor
Rohit Kumar Singh

Copy Editors
Roshni Banerjee

Adithi Shetty

About the Author

David Alexander Lillis is an experienced researcher and statistician, having
worked in research evaluation, agricultural and forestry statistics, and education
research and statistics. Currently, David delivers lectures in mathematics, statistics,
and research methods at the New Zealand Institute of Sport in New Zealand.

He is the owner and Director of Sigma Statistics and Research Limited, a New
Zealand-based consultancy specializing in training, software development, data
analysis, and statistical modelling using R. David holds an Honor's degree and
Master's degree in Physics and Mathematics, and a PhD from Curtin University

in Perth, Australia.

I wish to thank my family — Anna (my wife), David (my eight-year
old son), and Coral (my mother) for their patience and support
while I worked on this book. In addition, I wish to thank the three
reviewers for their helpful feedback.

About the Reviewers

Mzabalazo Z. Ngwenya has worked extensively in the field of statistical consulting
and currently works as a biometrician. He holds an MSc degree in Mathematical
Statistics from the University of Cape Town, and is currently pursuing a PhD. His
research interests include statistical computing, machine learning, and spatial statistics.
Previously, he was involved in reviewing Learning RStudio for R Statistical Computing,
Mark P.]. van der Loo and Edwin de Jonge, Packt Publishing; R Statistical Application
Development by Example Beginner's Guide, Prabhanjan Narayanachar Tattar, Packt
Publishing; and Machine Learning with R, Brett Lantz, Packt Publishing.

Donato Teutonico has several years of experience in the modeling and simulation
of drug effects and clinical trials in industrial and academic settings. He received his
Pharm.D. degree from the University of Turin, Italy, specializing in Chemical and
Pharmaceutical Technology, and his PhD in Pharmaceutical Sciences from Paris-Sud
University, France.

He is the author of two R packages for Pharmacometrics: CTS template and
panels-for-pharmacometrics; both are available on Google code. He is also
the author of Instant R Starter, Packt Publishing.

Tengfei Yin earned his BS degree in Biological Science and Biotechnology from
Nankai University in China and a PhD in Molecular, Cellular and Developmental
Biology (MCDB) with a focus on computational biology and bioinformatics from
Iowa State University. His research interests include information visualization,
high-throughput biological data analysis, data mining, machine learning, and
applied statistical genetics. He has developed and maintained several software
packages in R and Bioconductor.

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

(C)

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents

Preface 1
Chapter 1: Base Graphics in R — One Step at a Time 5
Learning basic graphics techniques 6
Creating and joining points 10
Creating scatterplots and line plots 12
ColorsinR 14
Passing parameter values to titles and labels 15
Including a regression line 18
Graphing mathematical functions 19
R provides many options 20
Creating graphs with several curves 22
Customizing your axes 23
Creating axis labels 24
Creating multiple graphs on the same page 27
Saving your graphs 28
Including mathematical expressions on your plots 30
Summary 32
Chapter 2: Advanced Functions in Base Graphics 33
Reading datasets into R 34
Including a regression line and residuals 34
A medical dataset to create graphs 41
Creating complex multiple axes 43
Superposing graphs 46
Creating point labels 47
Including a grid on your graph 48
Shading and coloring your graph 50

Using polygon() to shade under a normal curve 55

Table of Contents

Creating bar charts 58
Including a legend 62
Creating histograms 66
Creating boxplots 74
Creating pie charts 76
Creating dotcharts 80

R's color palettes 88

Using smoothers on your graph 88

Creating scatterplot matrices 89
Writing functions to create graphs 91
Including error bars on your graph 92

Summary 94

Chapter 3: Mastering the gplot Function 95

About gplot 95

The gplot syntax 96

Producing scatterplots using gplot 96

Subsetting your data before graphing 98

Mapping aesthetics to categorical variables 100

Controlling colors on your graph 102

Setting up graphs as objects 105

Creating facet plots 106

Creating line graphs using qplot 108

Creating multiple curves simultaneously 11

Including smoothed curves 112

Creating histograms with gplot 118

Creating facet plots for histograms 120

Creating kernel density plots 121

Creating bar charts 124

Creating boxplots 127

Creating graphs with dates 130

Summary 138

Chapter 4: Creating Graphs with ggplot 139

Getting started with ggplot 140

Mapping color, shape, and size to a variable 144
Modifying the plotting background 146
Controlling the legend name and legend labels 148
Modifying the x and y axes 149

Creating attractive color schemes 151

Creating curves for each factor level 152

Creating histograms 154

Lii]

Table of Contents

Creating bar charts 156
Creating a stacked bar chart 158
Creating a grouped bar chart 160
Creating a faceted bar chart 161

Creating boxplots 162

Labeling points with text 164
Mapping color to text 166

Including regression lines 168

Summary 171

Index 173

[iii]

Preface

Reading this book will enable you to learn very quickly how to create wonderful
graphics using R. Since R is based on syntax, the time required to master R can be
considerable. However, creating high quality and attractive graphics is made easy
through the syntax and step-by-step explanations of this book. By reading this
book, you will learn how to introduce attractive color schemes, create headings and
legends, design your own axes and axes labels, create mathematical expressions on
your graphs, and much more.

What this book covers

Chapter 1, Base Graphics in R - One Step at a Time, introduces the basic components
of a graph (headings, symbols, lines, colors, axes, labels, legends, and so on) and
outlines how to use the R syntax to create these components.

Chapter 2, Advanced Functions in Base Graphics, covers the techniques required to
create professional-level graphs in R, including bar charts, histograms, boxplots,
pie charts, and dotcharts. It also covers regression lines, smoothers, and error bars.

Chapter 3, Mastering the qplot Function, explains how to use gplot to create a wide
range of basic but attractive graphs.

Chapter 4, Creating Graphs with ggplot, introduces you to ggplot, which is an even
more powerful graphics tool than gplot. We focus on the main techniques to modify
your plotting background, titles, grid lines, legends, axes, labels, and colors. It also
covers the essential methods to create plots using ggplot. You will learn how to
create all the graph types that were covered in Chapter 1, Base Graphics in R — One Step
at a Time, and Chapter 2, Advanced Functions in Base Graphics, but this time using the
many special and attractive features of ggplot.

Preface

What you need for this book

To make the most of this book, you need to install R. Go to http://cran.r-project.
org/ and click on the relevant download link for either Linux, Mac, or Windows. You
will also need to install a plotting package called ggplot2. You can do so within R by
entering the following syntax on the command line:

install.packages ("ggplot2")

Who this book is for

If you are a senior undergraduate or postgraduate student, professional researcher,
statistician, or analyst, this is the book for you. It is preferable for you to have some
prior experience in R. However, even if you are new to R, you can pick up enough
from this book to create publication-quality graphs.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The legend () command is very powerful and provides many options to create
and place legends."

Any command-line input or output is written as follows:

gplot (HEIGHT, WEIGHT 1, data = T, main = "HEIGHT vs. WEIGHT", xlab =
"HEIGHT (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , geom = "point"
, colour = factor (ETH), size = 2, alpha = I(0.7))

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Note the use of the assigns operator, which consists of the less than sign
followed by a minus sign."

[2]

http://cran.r-project.org/
http://cran.r-project.org/

Preface

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/45530S_ColorGraphics.pdf.

[31]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/4553OS_ColorGraphics.pdf
https://www.packtpub.com/sites/default/files/downloads/4553OS_ColorGraphics.pdf

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Base Graphics in R — One
Step at a Time

The goal of this chapter is to give you a comprehensive introduction to base
graphics in R. By base graphics, I mean graphics created in R without the use of any
additional software or contributed packages. In other words, for the time being, we
are using only the default packages in R. After reading this chapter, you should be
able to create some nice graphs. Therefore, in this chapter I will introduce you to
the basic syntax and techniques used to create and save scatterplots and line plots,
though many of the techniques here will be useful for other kinds of graph. We will
begin with some basic graphs and then work our way to more complex graphs that
include several lines and have axes and axis labels of your choice.

In this chapter, we will cover the following topics:

Basic graphics methods and syntax

Creating scatterplots and line plots

Creating special axes

Adding text—legends, titles, and axis labels

Adding lines —interpolation lines, regression lines, and curves
Graphing several variables, multiple plots, and multiple axes
Saving your graphs as PDF, PostScript, JPG files, and so on

Including mathematical expressions in your graphs

Base Graphics in R - One Step at a Time

Learning basic graphics techniques

In R, we create graphs in steps, where each line of syntax introduces new attributes
to our graph. In R, we have high-level plotting functions that create a complete graph
such as a bar chart, pie chart, or histogram. We also have low-level plotting functions
that add some attributes such as a title, an axis label, or a regression line. We begin
with the plot () command (a high-level function), which allows us to customize our
graphs through a series of arguments that you include within the parentheses. In the
first example, we start by setting up a sequence of x values for the horizontal axis,
running from -4 to +4, in steps of 0.2. Then, we create a quadratic function (y) which
we will plot against the sequence of x values.

Enter the following syntax on the R command line by copying and pasting into R.
Note the use of the assigns operator, which consists of the less than sign followed
by a minus sign. In R, we tend to use this operator in preference to the equals sign,
which we tend to reserve for logical equality.

x <- seq(-4, 4, 0.2)

y <- 2*x™2 + 4*x - 7

Downloading the example code
\ You can download the example code files for all Packt books you
~ have purchased from your account at http: //www.packtpub. com.
Q If you purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files e-mailed
directly to you.

You can enter x and y at the command line to see the values that R has created for us.

Now use the plot () command. This command is very powerful and provides a
range of arguments that we can use to control our plot. Using this command, we
can control symbol type and size, line type and thickness, color, and other attributes.

Now enter the following command:

plot (x, y)

[6]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

You will get the following graph:

40

30
|

20

10

10

This is a very basic plot, but we can do much better. Let's start again and build a nice
plot in steps. Enter the following command, which consists of the plot () command

and two arguments:

plot(x, y, pch = 16, col = "red")

The argument pch controls symbol type. The symbol type 16 gives solid dots. A
very wide range of colors is available in R and are discussed later in this chapter.
The list of available options for symbol type is given in many online sources, but the
Quick-R website (http://www.statmethods.net/advgraphs/parameters.html) is
particularly helpful. Using the previous command, you will get the following graph:

http://www.statmethods.net/advgraphs/parameters.html

Base Graphics in R - One Step at a Time

Now we use the arguments x1im, ylim, xlab, and ylab. Enter the following plotting
syntax on the command line:

plot(x, y, pch

16, col =

"red", xlim

c(-8,

8), ylim

c(-20, 50),

main =

"MY PLOT", xlab =

"X VARIABLE"

, ylab =

"Y VARIABLE")

This command will produce the following graph:

MY PLOT

¥ WARIABLE
L]

K VARIABLE

The arguments x1im and ylim control the axis limits. They are used with the ¢
operator to set up the minimum and maximum values for the axes. The arguments
xlab and ylab let you create labels, but you must include your labels within
quotation marks.

Now, create line segments between the points using the following command:
lines(x, y)

Note that the 1ines () command is used after the plot () command. It will run
provided that the graph produced by the plot () command remains open. Next, we
will use the abline () command, where abline (a, b) draws a line of intercept a
and slope b. The commands abline (h = k) and abline (v = k) draw a horizontal
line at the value k and a vertical line at the value k.

[8]

Chapter 1

We enter each of these commands on a new line as shown:

abline(h = 0)
abline(v = 0)
abline(-10, 2) # Draws a line of intercept -10 and slope 2.

text (4, 20, "TEXT")

legend(-8,36,"This is my Legend")

Your legend begins at the point (-8, 36) and is now centered on the point (-4, 36). The
text () command will be discussed in more detail in Chapter 2, Advanced Functions in
Base Graphics. The 1egend () command is very powerful and provides many options
for creating and placing legends; it is also discussed in Chapter 2, Advanced Functions
in Base Graphics. For now, it is enough to know that you specify the position of your
legend by entering relevant coordinates as the first two arguments, and then enter
your text inside quotation marks.

Consider the following command:
rug (x)

The rug () command indicates the location of points on the horizontal axis.
Here is the resulting graph:

MY PLOT

40
|

This is my Legend

30
|

20
|

TEXT

Y VARIABLE
10

D \
N

=10

T
-5 0 5

KVARIABLE

[o]

Base Graphics in R - One Step at a Time

In just a few lines of syntax, you have learned how to make a fairly complex graph
and you can now use the same techniques to draw your own graphs.

Creating and joining points

Now, let's look at graphing individual points and creating lines that join them. We
start off with a simple plot that has four points. We use the plot () command and
group the x coordinates together and the y coordinates together. To do this job, we
use the ¢ operator to combine the x values and y values independently. Both groups
of coordinates are written within parentheses, inside the plot () command. Enter the
following syntax on the command line to create a graph with four points:

plot(c(1, 2, 3, 6), c(1, 2.5, 3.8, 9.2), pch = 16)

This command gives the following plot:

o{1,2.5,3.8 92

o1, 2 3, 68)

[10]

Chapter 1

Note how the elements of the first vector gave the horizontal axis values, while the
elements of the second vector gave the vertical axis values. Now, we join the four
points using the lines () command, again grouping the horizontal axis values
together and the vertical axis values together:

lines(c(1, 2, 3, 6), c(1, 2.5, 3.8, 9.2))

The following is the resulting graph, in which the points are now connected by
line segments:

c{1,2.5 3.8 9.2)

c(1, 2,3, 8)

When you encounter plotting commands and arguments and want to know more
about them, on the R command line, enter a question mark followed immediately
by the command name (for example, ?plot ()) and you will be taken directly to

an online help page. You can also try several online resources. One of the best is

the Quick-R website (http://statmethods.net/), which I mentioned earlier. Go
straight to the Basic Graphs and Advanced Graphs pages. These pages give you a very
helpful summary of the main plotting parameters (symbol types, line types, and
parameters that control axes, titles, labels, and legends).

Alternatively, you can use a sensible web search (for example, enter R graphs in
Google) and you will find several options.

[11]

http://statmethods.net/

Base Graphics in R - One Step at a Time

Creating scatterplots and line plots

We have just created a basic graph, but we need more practice. Let's create another
plot using the plot () command. First we set up a vector of horizontal axis values
called X, and then a vector of vertical axis values called Y. Enter the following syntax
on the command line:

X <- c¢(1, 2, 3, 4, 5, 6, 7, 8)

Y <- c(2, 6, 7, 10, 17, 19, 23, 29)
Now let's graph Y against X.
plot (X, Y, pch = 16)

You'll get the following graph:

3o

25
1

20
|

10

That was simple! However, our graph is very basic. Note that R has decided to
create axis ticks every five units on the Y axis. Also, note that if you don't provide
horizontal axis values (an x axis), by default R will plot your values against a
running index.

[12]

Chapter 1

Let's start again and enhance the graph. Now, we will plot Y using red points using
the following command:

plot (X, Y, type = "o", col = "red", xlab = "MY X LABEL", ylab = "MY Y
LABEL")

The argument type="0o" produces symbols joined by straight lines. Now, let's create
a title using the title () command and the arguments font .main and col.main to
control the title font and colors.

title(main = "PLOT 3", font.main = 2, col.main = "blue")

Let's look at our graph.

PLOT3

3o

MY ¥ LABEL
14

10

MY X LABEL

As expected, we have created a title in blue and joined each point with a red
line segment.

The font number is an integer between 1 and 5, where 1 is plain, 2 is bold, 3 is italic,
4 is bold italic, and 5 is symbol.

[13]

Base Graphics in R - One Step at a Time

Notice how to create a title. The following are the main font options for graphs:

* font.axis: This option specifies the font for the axis annotations
* font.lab: This option specifies the font for the axis labels
* font.main: This option specifies the font for the (main) title

* font.sub: This option specifies the font for a subtitle

Colors in R

To see the range of colors that are available in R, enter the following command:

colors()

You will see a set (a vector) of 657 colors arranged in alphabetical order. Let's see
what we have at various indices in the vector of colors. Enter the following code. It
contains square brackets, which allow us to identify and include elements of a vector
that has the desired indices.

colors() [c (443,109,635, 548, 201)]
The output you will get is as follows:

1] "lightyellow" "darkslategrayl" "turquoise" "purplel" "gray48"

For more details on the available colors in R, refer to http://research.
S stowers-institute.org/efg/R/Color/Chart/.

However, you can control colors very easily using the codes given in the
Hexadecimal Color Chart (reproduced from http://html-color-codes.com/).

These codes are given as combinations of numerals and alphabetic characters, always
starting with the hash symbol (for example, #FF9966, which is a light orange color,
or #669933, which is a light olive color). I recommend that you keep a copy of this
chart and use the codes to create your own color schemes. You can download it from
several sources simply by searching for Hexadecimal Color Chart. By referring to
this chart, you always know the exact color or hue you are going to get.

[14]

http://research.stowers-institute.org/efg/R/Color/Chart/
http://research.stowers-institute.org/efg/R/Color/Chart/
http://html-color-codes.com/

Chapter 1

2 L
AL (1101

633 300

009 339
00 933
06 338

339 336 QoG
THEH 099 666 699
009 006
999 666

009

9ee

009 006
9FF GOFF

© 2000 VisiBone

g
FFO |
i ﬂn :
A 663
CC
GE0
occ 099 F3FF

0oz
3FF

Passing parameter values to titles and

labels

In the next example, we pass parameter values to the title and the axis labels and
create the labels using the paste () command. This technique can be useful for
creating titles and labelling automatically from within an R program (usually
called a script). Let's create a set of values first using the following commands:

k <- 9
min <- 3
max <- 25

name <- "Mary"

[15]

Base Graphics in R - One Step at a Time

Before we start, try the following code:
paste (name, "'s Mark", sep = "")
You will get the following output:

[1] "Mary's Mark"

The content of the variable name (Mary) was pasted together with the text 's Mark.
Each element of the text is separated by commas, while the argument sep = "
ensures that there are no breaks between the variable and the text. That's the way
the paste () function works.

Let's start again and enhance the plot. Let's create our plot using colors taken from
the Hexadecimal Color Chart. The commands to be used are as follows:

plot (X, Y, type="o", col="#669966", xlab = paste(name, "'s Mark",
sep = ""), ylab = paste("Marks from ", min, " to ", max, sep =
llll))

Now let's create a title:

title(main = paste("Plot ", k, " for ", name, sep = ""),
font.main = 2, col.main = "#CC6600")

The following is our graph, with the appropriate labels and title:

Plot 9 for Mary

an

Marks from 3to 25
15 20
|

10

Mary's Mark

[16]

Chapter 1

The title () command is one way of creating a title. However, by using the main
argument, you can also create a title within the plot () command (as shown in the
next example). In the following example, we pass the same parameter values to the
title and the axis labels. Enter the following syntax on the command line:

plot (X, Y, type = "o", col = "red", main = paste("Plot ", k, " for ",
name, sep = ""), pch = 16, cex = 1.4, font.main = 2, col.main =
"blue", xlab = paste(name, "'s Mark", sep = ""), ylab =
paste("Marks from ", min, " to ", max, sep = ""))

As in the previous example, the cex parameter controls the symbol size (the default
value is 1). The resulting graph is as follows:

Plot 8 for Mary

30

25
|

Marks from 3 to 25
15

10

Mary's Mark

Indeed, we have the correct axis labels and title. You can check out the parameters
pch and 1ty for yourselves.

[17]

Base Graphics in R - One Step at a Time

Including a regression line

In Chapter 2, Advanced Functions in Base Graphics, we will cover Ordinary Least
Squares (OLS) regressions and plotting regression lines. However, if you are
curious as to how to include a regression line, this is how it is done. Use the
abline () command (which draws lines) in conjunction with the 1m () command,
which performs a regression.

The syntax for performing a regression on the two variables is 1m (v ~ X), where the
tilde sign instructs R to perform the regression, with Y as the dependent variable and x
as the independent variable. Now include the following syntax on the command line:

abline (1Im(Y ~ X))

The following is your plot with a regression line:

Plot 8 for Mary
[]
[ar]
Lo —_
o
=
o T
(o]
2
™
E
2 e
2
m
=
= —_
-
I T T T T T T T
1 2 3 4 5 B 7 8
Mary's Mark

We will cover more about regressions in the next chapter.

[18]

Chapter 1

Graphing mathematical functions

Sometimes, you may wish to plot a mathematical function. We have already seen
how to do that, but the curve () command provides a nice alternative. Let's plot
a cubic curve using the curve () command. To use curve (), you must specify a
function within the parentheses. Enter the following syntax:

curve (5*x**3 + 6*x**2 - 5, -2, 2 , col = "blue", main = "CUBIC
CURVE")

The following is our graph:

CUBIC CURVE
=2 _|
@
=
=
o
o
z
3
* o
=~
+
I}
=
=
s
r=)
o -
=
&
T T T T T
-2 -1 1] 1 2
X

We have a smooth cubic curve and the axis limits we specified within the code.
The curve () command allows you to specify a function as the first argument, the
range of values over which you wish to create your graph, and add your graph to
an already existing graph. See the R help function for the curve () command by
entering ?curve () on the command line.

[19]

Base Graphics in R - One Step at a Time

R provides many options

Often, R provides several ways to achieve what you want. Let's set up 50 values
from -pi to +pi and graph a sine function. We use the seq () command to set up
this sequence. Note that R understands the constant Pi, whose value can be obtained
using the following command:

pi
The following output is obtained:
[1] 3.141593

Now, we create horizontal and vertical axis points for plotting:

X <- seq(-pi, pi, length = 50)
y <- sin(x)
plot(x, y, pch = 17, cex = 0.7, col = "darkgreen")

Then, we add a line that connects the points:

lines(x, y, col = "darkgreen")

Let's take a look at the resulting graph:

1.0

0.5
1

-0.5
1

-1.0

[20]

Chapter 1

Now try the following approach, using 1000 axis values in order to create a
smooth-looking graph:

X <- seqg(-pi, pi, length = 1000)

y <- sin(x)

plot(x, y, type = "1")

The output is as follows:

1.0

0.5
|

-0.5
|

-1.0

-3 -2 -1] 1 2 3

The argument type = "1" produces connecting lines, but here we have so many
points that the graph appears smooth. Other options include the argument type
= "o", which produces symbols joined by straight lines, and type = "p", which
produces points.

[21]

Base Graphics in R - One Step at a Time

Creating graphs with several curves

Let's take an example with two dependent variables and create a nice graph.
Enter the following code:

X <-c(1, 2, 3, 4, 5, 6, 7)
Yl <- c(2, 4, 5, 7, 12, 14, 16)
Y2 <- c(3, 6, 7, 8, 9, 11, 12)

Now, we graph Y1 using a vertical axis from 0 to 20 as follows:

plot (X, Y1, type="o", pch = 17, cex=1.2, col="darkgreen", ylim=c (0,
20))

Now superpose Y2 using the following command:
lines (Y2, type="o", pch=16, 1lty=2, col="blue")

Notice how we plotted the first curve and then added the second using the 1ines ()
command. Let's create a title using the title () command:

title(main="A PLOT OF TWO VARIABLES", col.main="red", font.main=2)

Our graph contains two curves, each with the specified line type and symbols:

A PLOT OF TWO VARIABLES

20

14

Y1
10

Note the default labels for the horizontal and vertical axes.

[22]

Chapter 1

Customizing your axes

In R, you can create your own designer axes. The following is another example in
which we create designer axes and calculate the vertical axis limits. Let's define
three vectors:

Yl <- c(2, 4, 5, 7, 12, 14, 16)

Y2 <- c(3, 6, 7, 8, 9, 11, 12)

Y3 <- c(1, 7, 3, 2, 2, 7, 9)

Now, we calculate the maximum value of Y1, Y2, and v3. Performing this calculation
helps us to set the axis limits before we start. Otherwise, the first vector you plot will
set the default axis limits, but any other data you read may exceed those limits. The
syntax to find the maximum value from the three vectors is as follows:

yaxismax <- max(Yl, Y2, ¥3)

Let's see what the maximum value really is using the following command:
yaxismax

The output is as follows:

[1] 16

We want to plot on a vertical axis from 0 to yaxismax. First, we disable the default
axes and their annotations, using the arguments axes = FALSE and ann=FALSE, so
that we can create our own axes. The approach of disabling the default axes is very
important when creating graphs in R.

The argument axes=FALSE suppresses both x and y axes. The arguments xaxt="n"
and yaxt="n" suppress the x and y axes individually. The argument ann = FALSE
suppresses the axis labels. Now enter the following code:

plot(Yl, pch = 15, type="o", col="blue", ylim=c(0, yaxismax),
axes=FALSE, ann=FALSE)

axis (1, at=1:7, lab=c("A","B", wCn npn, ugn wgn ngn))

[23]

Base Graphics in R - One Step at a Time

What does our graph look like at this stage? It looks like this:

Clearly, we still have work to do to complete the graph by including a vertical axis
and title. In the following sections, we will learn how to complete our graph.

Creating axis labels

The first argument in the axis () command (the number 1) specifies the horizontal
axis. The at argument allows you to specify where to place the axis labels. The vector
called 1ab stores the actual labels. Now we create a y axis with horizontal labels, and
ticks every four units, using the syntax at=4*0: yaxismax as shown:

axis (2, las=1l, at=4*0: yaxismax)

[24]

Chapter 1

Now what does our graph look like?

16

12

Now we have included a vertical axis. The argument 1as controls the orientation of
the axis labels. Your labels can be either parallel (1as=0) or perpendicular (1as=2) to
your axis. Using las=1 ensures horizontal labels, while 1as=3 ensures vertical labels.

Now we create a box around the plot and then we add in the two new curves using
the 1ines () command, using two different symbol types.

box ()

lines (Y2, pch 16, type="o", 1lty=2, col="red")

lines (Y3, pch = 17, type="o", lty=3, col="darkgreen")
Let's create a title using the following command:

title (main="SEVERAL LINE PLOTS", col.main="darkgreen", font.main=2)

[25]

Base Graphics in R - One Step at a Time

Now we label the x and y axes using title (), along with x1ab and ylab.

title(xlab=toupper ("Letters"), col.lab="purple")

title(ylab="Values", col.lab="brown")

Note the toupper () command, which always ensures that text within parentheses is
uppercase. The tolower () command ensures that your text is lowercase.

Finally, we create a legend at the location (1, yaxismax), though the 1egend ()
command allows us to position the legend anywhere on the graph (see Chapter 2,
Advanced Functions in Base Graphics, for more detail). We include the legend keys
using the c operator. We control the colors using col and ensure that the symbol
types match those of the graph using pch. To do this job, we include the legend
colors in the same logical order in which we created the curves:

legend (1, yaxismax, c("Yy1i","y2", "y3"), cex=0.7, col=c("blue", "red",
"darkgreen"), pch=c (15, 16, 17), lty=1:3)

The following is our final plot:

SEVERAL LINE PLOTS

16

12

Walues

LETTERS

[26]

Creating multiple graphs on the same
page

You can create multiple plots on the same page (plotting environment) using the

command par (mfrow= (m, n)), where mis the number of rows and n is the number
of columns. Enter the following four vectors:

X <-c¢(1, 2, 3, 4, 5, 6, 7)

Yl <- c(2, 4, 5, 7, 12, 14, 16)
6, 7, 8, 9, 11, 12)
7 2

I 3’ I 2’ 7' 9)

Y2 <- c(3,
Y3 <- c(ll

In this example, we set the plotting environment at two rows and two columns in
order to produce four graphs together:

par (mfrow=c(2,2))

plot(X,Y1l, pch = 1)
plot(X,Y2, pch = 2)
plot(X,¥Y2, pch = 15)
plot(X,¥3, pch = 16)

Here is the resulting graph:

24 = g =
- o &
o
o4 2 - a
- — [iy
Eolr— g s
@
w - = &
o
T - - T
o iy
T T T T T T T T T T T T T T
1 2 3 4 5 g T 1 2 3 4 5 & T
x x
o L] .
[] o o
o
2 . .
[o 4
@ =
P . g
o - [] Al
.
-+ - oo . -
L] -
T T T T T T T T T T T T T T
1 2 3 4 5 g T 1 2 3 4 5 & T
X X

[27]

Base Graphics in R - One Step at a Time

As expected, we have four graphs arranged in two rows and two columns.

Of course, you can vary the number of graphs by setting different numbers of rows
and columns.

Saving your graphs

Of course, you will need to save many of the graphs that you create. The simplest
method is to click inside the graph and then copy as a metafile or copy as a bitmap. You
can then save your graph in a Word document or within a PowerPoint presentation.
However, you may wish to save your graphs as JPEGS, PDFs, or in other formats.

Now we shall create a PDF of a graph (a histogram that we will create using the
hist () command, which you will come across later in this book). First we get ready
to create a PDF (in R, we refer to this procedure as opening the PDF device driver)
using the command pdf (), and then we plot. Finally, we complete the job (closing
the device driver) using the command dev.off ().

You may wish to save your plot to a particular directory or folder. To do so, navigate
to File | Change Dir in R and select the directory or folder that you wish to use as
your R working directory. For example, I selected a directory called Boox, which is
located within the following filepath on my computer:

C:\Users\David\Documents\BOOK

To confirm that this folder is now my current working folder, I entered the
following command:

getwd ()

The output obtained is as follows:

[1] "C:/Users/David/Documents/BOOK"

R has confirmed that its working folder is the one that I wanted. Note that R uses
forward slashes for filepaths. Now, we create a vector of data and create our histogram
as follows:

y <- c¢(7, 18, 5, 13, 6, 17, 7, 18, 28, 7,17,28)

pdf ("My Histogram.pdf")
hist(y, col = "darkgreen")
dev.off ()

[28]

Chapter 1

A PDF of your histogram should be saved in your R working directory. It is called
My Histogram.pdf and it looks like the following:

Histogram of y

Frequency

The graphing options available in R include postscript (), pdf (), bitmap (), and
jpeg (). For a complete list of options, navigate to Help | Search help and enter the
word devices. The list you need is labelled List of graphical devices.

For example, to create a postscript plot of the histogram, you can use the
following syntax:

postscript (file="myplot.ps")
hist(y, col = "darkgreen")
dev.off ()

To create and save a JPEG image from the current graph, use the dev. copy () command:

dev.copy (device=jpeg, file="picture.jpg")
dev.off ()

Your image is saved in the R working directory.

[29]

Base Graphics in R - One Step at a Time

You can save and recall a plot that is currently displayed on your screen. If you have
a plot on your screen, then try the following commands:
x = recordPlot ()

X

You can delete your plot but get it back again later in your session using the
following command:

replayPlot (x)

Including mathematical expressions on
your plots

Mathematical expressions on graphs are made possible through a combination of
two commands, expression () and paste (), and also through the substitute ()
command.

By itself, the expression () command allows you to include mathematical symbols.
For example, consider the following syntax:

plot(c(1,2,3), c(2,4,9), xlab = expression(phi))
This will create a small plot with the Greek symbol phi as the horizontal axis label.

The combination of expression () and paste () allows you to include mathematical
symbols on your graph, along with letters, text, or numerals. Its syntax is
expression (paste ()). Where necessary (that is, where you need mathematical
expressions as axis labels), you can switch off the default axes and include Greek
symbols by writing them out in English. You can create fractions through the frac ()
command. Note the plus or minus sign, which is achieved though the syntax $+-%.

The following is an example based on a similar example in the excellent book
Statistics: An Introduction using R, Michael]. Crawley, Wiley-Blackwell. I recommend
this book to everyone who uses R —both students and professional researchers alike.

We first create a set of values from -7 to +7 for the horizontal axis. We have 71
such values.

Xx <- seq(-7, 7, len = 71)

[30]

Chapter 1

Now we create interesting x and y axes labels. We will disable the x axis in order to
create our own axis.

plot(x, cos(x),type="1",xaxt="n", xlab=

expression(paste("Angle", theta)), ylab=expression("sin "*beta))

axis(l, at = C(—pi: -Pi/2: 0, Pi/zl pi)'
lab = expression(-alpha, -alpha/2, 0, alpha/2, alpha))

We insert mathematical text at appropriate places on the graph:

text (-pi,0.5,substitute(sigma”2=="37.8"))

text (-pi/16, -0.5, expression(paste(frac(gamma*omega,
sigma*phi*sqrt (3*pi)), " ",

e*{frac (- (3*x-2*mu) "2, S*sigma”2)})))

text (pi, 0,expression (hat(y) %+-% frac(se, alpha)))

The resulting graph is as follows:

= _]
uw
o
= =
= = 7|
w
S
=]
' T T T T T
—a -of2 o of2 o
Angle &

By comparing your own code with that used to produce this graph, you should be
able to work out how to create your own mathematical expressions.

[31]

Base Graphics in R - One Step at a Time

Summary

In this chapter, we covered the basic syntax and techniques to produce graphs

in R. We covered the essential details for creating scatterplots and line plots, and
discussed a range of syntax and techniques that are useful for other kinds of graph.
I hope that you found this chapter a useful start on graphing in R.

In the next chapter, we will cover a range of topics that you will need if you want to
create professional-level graphs for your own research and analysis. It contains very
useful material, so please continue to work through this book by making a start on
the next chapter as quickly as possible. For example, in this chapter, though we saw
how to draw a regression line, in the next chapter we will go a little further on the
topic of graphing regression lines. However, the further chapters have many other
interesting techniques for you to learn.

[32]

Advanced Functions
iIn Base Graphics

The goal of this chapter is to enable you to create different types of graphs in R.

In Chapter 1, Base Graphics in R — One Step at a Time, you created scatterplots and

line plots. Now in this chapter, you will learn how to create other types of graphs,
including bar charts, histograms, boxplots, pie charts, and dotcharts. Topics covered
in this chapter include the following:

Including a regression line and residuals in your graph

Creating complex multiple axes

Including grid lines and point labels

Shading and coloring your graph

Creating bar charts, histograms, boxplots, pie charts, and dotcharts
Adding LOWESS smoothers to your graph

Creating scatterplot matrices

Adding error bars

After working through this chapter, you should understand the principles behind
certain advanced plotting functions and should be able to create a wide range of
graphs for research and analysis.

Advanced Functions in Base Graphics

Reading datasets into R

Several datasets have been created for this book and can be downloaded from the
website for this book as text files. These text files also provide the R code for each
chapter. Alternatively, copy the relevant CSV file into a convenient folder, make
sure that the R working directory matches your folder, and use the read.csv ()
command. For example, to read a CSV file called patients as the object T, enter
the following syntax:

T <- read.csv("Patients.csv", h=T)

Further explanations on reading datasets will be given in this chapter.

Including a regression line and residuals

In the Creating scatterplots and line plots section in Chapter 1, Base Graphics in R - One
Step at a Time, we saw how to use the abline () command and the 1m() command
to include a regression line in your graph. Now, we will take this idea a little further.
The following regression uses a datafile in which a sample of 10 people rated a film
by awarding scores out of 100. These people then viewed the film a second time

1 month later and again awarded scores. We wish to use a regression model to

see how well the first rating scores predicted the second rating.

In an OLS regression with one predictor, we fit a model of the following form:

Yy, = B, + B, X + e

i i

In this form, B, is the intercept, B, is the slope, and e, are the errors (or residuals).

Let's perform the regression on the data and plot the results. Along the way, we will
learn some useful R syntax. Go to the code file of this chapter, and copy and paste
the following syntax into R. It contains the filmrating dataset:

filmrating <- structure(list(Viewl = c(68L, 47L, 63L, 38L, 60L, 89L,
42L, 77L, 32L, 67L), View2 = c(85L, 44L, 69L, 38L, 83L, 93L, 35L,
79L, 91L, 32L)), .Names = c("Viewl", "View2"), class =
"data.frame", row.names = c(NA, -10L))

[34]

Chapter 2

Alternatively, you can copy the Filmratings CSV file to a folder, match R's working
directory to that folder, and use the read.csv () function. The argument h=T in the
following line of code ensures that the column headings are read correctly to the
filmrating object:

filmrating <- read.csv(Filmratings.csv, h=T)

Now, we attach an object using the attach () command. Attaching an object is a
good idea because R can now identify each variable by name.

attach(filmrating)

filmrating

The output is as follows:

filmrating

Viewl View2

1 68 85
2 47 44
3 63 69
4 38 38
5 60 83
6 89 93
7 42 35
8 77 79
9 32 91
10 67 32

Before we perform the regression, we will plot the two sets of scores. We use

the plot () command in conjunction with the main argument to create headings.
We also use the cex argument to control the size of data points and axis labels.
Enter the following syntax, which consists of the plot () command and various
arguments with which you are now familiar:

plot (Viewl, View2,pch=16,xlab="First Viewing",ylab="Second Viewing",
main="FILM RATINGS", cex = 1.5, cex.lab = 1.5, cex.main = 1.6,
xlim=c(0,100), ylim=c(0,100))

[35]

Advanced Functions in Base Graphics

Let's look at the resulting graph.

FILM RATINGS

G0 a0
1

Second Viewing
40
»

20

I T T I T T
0 20 40 60 80 100

First Viewing

We see that the relationship between the two sets of ratings is not very linear, and
a nonlinear model may fit better. However, let's use the 1m () command to perform
the regression on our data. Since R is object-oriented, we can store the results of the
regression as an object, as follows. Let's call the object model.

model <- 1lm(View2 ~ Viewl)

model

The output you get is as follows:

Call:

1m(formula = View2 ~ Viewl)

Coefficients:
(Intercept) Viewl
32.3066 0.5591

[36]

Chapter 2

We see that the intercept is approximately 32.31 and the slope (the coefficient of the
Viewl variable) is approximately 0.56.

Now, we plot the regression line using the abline () command as follows:

plot (Viewl, View2,pch=16,xlab="First Viewing",ylab="Second Viewing",
main="FILM RATINGS", cex = 1.5, cex.lab = 1.5, cex.main = 1.6,
xlim=c(0,100), ylim=c(0,100))

abline (lm(View2 ~ Viewl))

Here is your graph:

FILM RATINGS

=
= —
—

Second Viewing

20

T T T T T T
0 20 40 60 a0 100

First Viewing

[37]

Advanced Functions in Base Graphics

In fact, you could also have used the following syntax:

abline(32.31, 0.56)

This syntax is used to draw the regression line, but the approach involving the
1m() command that we used is more concise.

As an exercise, let's draw the residuals (the lines connecting the fitted data with the
observed data). We use the predict () command to set up the predicted values of
the regression model as a new object called regmodel. Enter the following syntax,
which consists of the predict () command and the 1m() command together:

regmodel <- predict(lm(View2 ~ Viewl))
regmodel

The output is as follows:

7 8 9 10
55.78727 75.35448 50.19664 69.76385

w
(%)
w
[5.]
iy
[=]
S N
=)
w
=)
w
(=]
e
—oen
o
5%
[=]
[=2]
(%)
[5)

70.32291 58.5825

Remember that the predict () command gives us the fitted points from the regression.

Now, we can use the output from the predict () command to draw the residuals in
order to highlight the differences between the observed data and fitted points. We
can use a for loop to do this job (many online sources describe for loops in R very
clearly; for example, http://paleocave.sciencesortof.com/2013/03/writing-
a-for-loop-in-r/). Let's see how it is done.

for(k in 1:10){ lines(c(Viewll[k], Viewl[kl), c(View2I[kl],
regmodel [k])) }

[38]

http://paleocave.sciencesortof.com/2013/03/writing-a-for-loop-in-r/
http://paleocave.sciencesortof.com/2013/03/writing-a-for-loop-in-r/

Chapter 2

Here is the resulting graph with regression line and residuals:

Second Viewing

100

a0

G0

40

20

FILM RATINGS

* *

T T T
40 60 a0

First Viewing

100

Note the syntax involved in creating the for loop. This syntax involves a running
index from 1 to the total number of points and the 1ines () command, which connects
the observed and fitted data. The observed data consists of points defined by (view1,
view2), while the fitted model values consist of points defined by (Viewl, regmodel).

Of course, entering the previous code to draw the residuals is cumbersome, so here
is a function that I wrote to do this job efficiently. It is called drawresid (). First, you
must enter the entire function on the R command line:

drawresid <- function(X, Y, col){

abline(1lm(Y ~ X), col =

col)

regressionmodel <- predict(lm(Y ~ X))

for(k in l:length(X)){ lines(c(X[k], X[kl), c(Y[k],

regressionmodel [k]), col

col) } }

[39]

Advanced Functions in Base Graphics

This function is given in the code file for this chapter. Let's use it on our film scores
dataset. Enter the word drawresid on the command line, and then, for the three
arguments, give the independent variable, the dependent variable, and finally

the color of the residual lines and the regression line. To illustrate the use of this
function, we will draw the regression line and the residuals in red. Enter all of the
following syntax:

plot (Viewl, View2,pch=16,xlab="First Viewing",ylab="Second Viewing",
main="FILM RATINGS", cex = 1.5, cex.lab = 1.5, cex.main = 1.6,
xlim=c(0,100), ylim=c(0,100))

drawresid(Viewl, View2, "red")

The graph with regression line and residuals in red is as follows:

FILM RATINGS
*
L]
f=]
£
= 2
2
=
=
c
o o
[EY =T
]
(7] *
I I I I I I
0 20 40 60 80 100
First Viewing

I hope that you find this function useful.

[40]

Chapter 2

A medical dataset to create graphs

For many of the examples in this book, we will use the following dataset. It gives
medical data on 45 people: their names; their gender (a two-level categorical
variable); their ethnicity (a four-level categorical variable, labeled 1, 2, and 3); the
medical treatment they received (a three-level categorical variable with levels A, B, or
C); their age band (a three-level categorical variable with levels Y, M, and E, standing
for young, middle-aged, and elderly); their weight (body mass) before treatment (in
kg) and weight (body mass) after treatment (in kg), their heights (in cm); whether
they smoke (a two-level categorical variable with levels Y and N); whether they
perform regular exercise (a two-level categorical variable with levels TRUE and
FALSE); and finally, whether or not they recovered after treatment (a two-level
categorical variable with levels 1 and 0). We read this dataset as an object called T.
The syntax to read this dataset is given in the code file of this chapter. You can either
copy and paste it directly from the text file, or save the patients.csv file in a folder
and read the data into R using read. csv (). Then, use the following command:

head (T)

We get the following output:

PATIENT GENDER ETH TREATMENT AGE WEIGHT 1 WEIGHT 2 HEIGHT SMOKE EXERCISE RECOVER

1 Mary F 1 A Y 79.2 716.6 169 Y TRUE 1
2 Jim M 2 B Y 87.5 84.8 178 Y TRUE 0
3 Bob M 2 A M €5.1 64.6 162 N FALSE 1
4 Dave M1 B M 58.8 59.3 161 s FALSE 0
5 Simon M1 C M 72.0 70.1 175 N FALSE 1
6 Ben M 3 A Y 95.9 94.5 188 N FALSE 1

Again, we attach an object using the attach () command:

attach(T)

Let's now create a similar regression plot for the height and weight variables of our
medical dataset. This job is done using the following syntax:

Plot (WEIGHT 1, HEIGHT,pch=16,xlab="WEIGHT BEFORE TREATMENT
(kg) ",ylab="HEIGHT (cm)", main="HEIGHT VS. WEIGHT", cex = 0.8,
cex.lab = 1.5, cex.main = 1.6, xlim=c(0,150), ylim=c(100,200))

[41]

Advanced Functions in Base Graphics

Here is our graph:

HEIGHT VS. WEIGHT

o
=
o
.
o L
[vett
- ... '
E = | S
;: a L
T .
9 (=1
w I .
I
=
= 4
(=]
=
T T T T
0 50 100 150

WEIGHT BEFORE TREATMENT (kg)

Now, we create the regression model using 1m():

mod <- 1m(HEIGHT ~ WEIGHT 1)

mod

We get the following output:

Call:

lm(formula =

Coefficients:
(Intercept)
119.7836

HEIGHT ~ WEIGHT 1)

WEIGHT 1
0.6737

[42]

Chapter 2

The intercept is approximately 119.78 and the slope (the coefficient of the weight
variable) is approximately 0.67. It gives the change in height for a weight change
of one unit. Now we plot the regression line:

abline (1lm(HEIGHT ~ WEIGHT 1))

The following is the graph with the regression line:

HEIGHT VS. WEIGHT

160 180 200

140

HEIGHT (cm)

120

100
1

T T T T
0 50 100 150

WEIGHT BEFORE TREATMENT (kg)

We will not draw the residuals this time, as this graph would look very cluttered
if we did. However, by now you should know how to draw both regression lines
and residuals.

Creating complex multiple axes

Now we will create a graph with two curves and three axes. First, let's read the
following vectors of data:

X <- c(-25:25)
y <- 1.5*%x + 2

Z <- 0.3*%(x**2) - 20

[43]

Advanced Functions in Base Graphics

In the preceding code, we have a linear function and a quadratic function. As you
will see, we will need some extra room for text on the right-hand margin. This is
because we wish to add some explanatory text there. By default, graphs in R have
margins that are as follows:

* 5-lines wide on the bottom axis

* 4-lines wide on the left-hand axis

* 4-lines wide on the top axis

* 2-lines wide on the right-hand axis

We want to create a right-hand margin 8.1-lines wide on the right axis using the
mar argument, which controls margin widths:

par (mar=c(5, 4, 4, 8) + 0.1)

Note the syntax for changing the default margin width for any axis. You simply
insert the desired line width value in the appropriate position within the mar
argument. Now, we disable the default axes and plot as follows:

plot(x, y,type="o", pch=14, col="red", xaxt="n", yaxt="n", lty=3,
xlab=ll II, ylab=ll Il)

title("MY DESIGNER AXES", xlab=" HORIZONTAL AXIS", ylab="VERTICAL
AXIS")

We now include a plot of z (the quadratic function). To do so, let's use line-type b,
consisting of both points and lines. Let's also use dashes using the argument
1ty = 2. Use the following syntax:

lines(x, z, type="b", pch=16, col="blue", lty=2)
Now, we create a horizontal axis in the usual position using the following syntax:

axis(1l, at=seq(-25,25,5),labels= seq(-25,25,5), col.axis="blue",
las=2)

Now, we create a vertical axis as follows:

axis (2, at=seqg(-25,25,10),labels= seq(-25,25,10), col.axis="red",
las=2)

Next, we create an axis to the right using axis (4, . . .) with value labels at each
point. Also, we will use smaller text and tick marks. If we wanted to create an axis at
the top of the graph, we would use axis (3, . . .) with value labels at each point.

axis (4, at=z, labels=round(z,digits=2), col.axis="blue", las=2,

cex.axis=0.5, tck=-.02)

[44]

Chapter 2

The tck argument controls the length of the tick marks, setting their length as a
fraction of the plotting area. The default value for tck is 0.01. Setting tck = 0 gets
rid of tick marks, while setting tck = 1 creates gridlines. Finally, by including the
syntax cex.axis = 0.5, we have just set the axis labels to half their default size.

You can add text to your graphs using the text () and mtext () commands. The
text () command places text within the graph, while mtext () places text in one
of the four margins.

text (location, "text to include . . . ", pos, ...)
mtext ("text to place", side, line=n, ...)

Finally, we include a title for the right-hand axis using mtext ():
mtext ("An axis for z", side=4, line=3, cex.lab=1.3,las=2, col="blue")

Now, we see that our graph indeed has three axes and that the right-hand axis tick
marks match the data of the quadratic curve:

MY DESIGNER AXES

T
» L] - m=
1) ¢
) i’
1) ¢
L] - - =r
1) 1
.\ i’
25 - / .
I-'A 3
15 "
w
52]
5 5
-]]
3 An axis forz
': [~ <=
h -5 L
=
- =2
- -2
15 o
- -T2
E i
-25 4

15 4
20
26

!
o T = T R =
' -—

HORIZOMNTAL AXIS

You can use the same techniques to create complex axes for your own graphs.

[45]

Advanced Functions in Base Graphics

Superposing graphs

To superpose graphs, the argument add=T can be very useful, but you can use it
only when you have an analytic expression for each curve. Here, we plot three
exponential functions together using curve ():

curve(3 * exp(-x/2), from = 0, to = 10, ylim = c¢(0, 2), ylab = "n,
col = "red", lwd = 2)
curve(4 * exp(-x), add = T, 1lty = 4, col = "blue", lwd = 2)
curve (2.5 * exp(-x/3), add = T, 1lty = 3, col = "darkgreen", lwd = 2)
The syntax ylab = "" ensures that no y axis label is created. Now, add text at the

right places using expression () and paste (), which we saw at the end of Chapter 1,
Base Graphics in R - One Step at a Time. You must determine where to place the text by
examining the graph carefully.

text (3.2, 1.9, expression(paste("My First Exponential: ", 3 * e” (-
x/2))), col = "red")

text (2.8, 0, expression(paste("My Second Exponential: ", 4 * e” (-
x))), col = "blue")

text (7, 0.7, expression(paste("My Third Exponential: ", 2.5 * e” (-
x/3))), col = "darkgreen")

You should get the following graph:

2.0
—

iz)

~} My First Exponential: e’

1.4

1.0

T . My Third Exponential: 2.59":;:"

04a

0.0
1

My Second Exponential: 467
T T T T T T

0 2 4 G 8 10

[46]

Chapter 2

Note that in each case the text is centered on the x value that you provided within
the text () command.

Creating point labels

You can use the text () function to label the points on your graph. To do so, you
create a set of x and y coordinates and include the text as a vector of labels. Let's
work through the following example. The dataset for this example gives the heights
of a group of children of different ages. Again, you can cut and paste this dataset
from the code file this chapter or save the children.csv file and read the data using
read.csv (). We will produce a plot of height against age for each child, labeling
each point according to the child's name.

cheight <-

structure(list (Child = structure(c (4L, 3L, 2L, 1lL), .Label =
c("Anne", "John", "Mary", "Steven"), class = "factor"), Age =
c(13L, 11L, 12L, 17L), Height = c(165L, 145L, 154L, 157L)),
.Names = c("Child", "Age", "Height"), class = "data.frame",
row.names = c(NA, -4L))

As done in previous examples, we attach the object to make the variables visible by
name using the following command:

attach (cheight)

First, we create a basic graph as follows:

plot (Age, Height, main = "Heights of Four Children at Various Ages",
pch = 16, ylab = "Height (cm)", xlab = "Age (yrs)" ,ylim = c(140,
180) ,x1lim = c (10, 18))

Then, we add labels to each point. The argument child (the third argument within
the text () function) ensures that the children's names provide a label for each point.

text (Age, Height, Child, cex=1.2, pos=3, col="red")

[47]

Advanced Functions in Base Graphics

Let's examine our graph:

Heights of Four Children at Various Ages

o

2 4

o

=

Steven
L]
E
= [
= o —
2 = Anne
T L
John
-
=
2 4
Mary
-
=
3
T T T T T
10 12 14 16 18
Age (yrs)

Note that we used the argument pos = 3 to place the text above each point. You can
experiment with the other options: pos = 1 (below the points), pos = 2 (to the left),
and pos = 4 (to the right).

Including a grid on your graph
You can add a grid to your plot using the grid () command. Let's set up a simple
graph and add a grid:

x <- seq(l:5)
y <- X
plot(x, y, pch = 16)

Let's add a default grid with horizontal and vertical grid lines at major units in both
the horizontal and vertical directions:

grid()

[48]

Chapter 2

You get the following graph:

o — "
-+ — o
== M *
o — L
— — %
[[[[[
1 2 3 4 5
X

Now, we omit the horizontal grid lines using ny = Na. Of course, you could do the
same for the vertical grid lines.

plot(x, y, pch = 16)
grid (ny=NA)

[49]

Advanced Functions in Base Graphics

We get the following graph:

L — "
-+ — "
== "
o — o
— — o
[[[[[
1 2 3 4 5
X

Setting the numbers of grid lines to NULL produces the default option of grid lines at
every unit, for example:

plot(x, y, pch = 16)
grid(nx = NULL, ny = NULL)

Shading and coloring your graph

You can shade and color your graphs using the polygon () command. To use the
polygon () command, you must specify the horizontal and vertical axis limits, but
you must also include the x and y variables as the middle arguments.

[50]

Chapter 2

Let's create a quadratic curve and shade under it with a light green selected from the
Hexadecimal Color Chart:

x <- 1:100

y <- 3*x™2 + 2%x + 7

plot(x, y)

lines(x, y)

polygon(cbind(c (min(x), x, max(x)), c(min(y), y, min(y))),
col="#00CC66")

Here is the graph:

W
A000 10000 16000 20000 25000 30000
| | | | | |

a
|

0 20 40 G0 a0 100

Using this approach, the polygon () command shades under the curve, between
the minimum and maximum values of the x variable and below the y variable.
The syntax involving cbind () is an elegant way of including the relevant limits.

[51]

Advanced Functions in Base Graphics

The following example is more complex. It uses the rnorm() command to simulate
values from a normal distribution, with a given mean and standard deviation. By
default, random values with a mean of 0 and a standard deviation of 1 are produced.
For example, to select a sample of 30 values from a normal distribution with a mean
of 12 and standard deviation of 4, use the following syntax:

sample <- rnorm(30, mean=12, sd=4)

OK. Let's proceed with the example, this time choosing a nice light brown color

from the Hexadecimal Color Chart. For this example, we will select a random sample
of 25 from a normal distribution with a mean of two and standard deviation of three
and shade under those points:

X <- 1:25

y <- rnorm(25, mean=2, sd=3)

plot(x, y, pch = 16, cex=0.8)

lines(x, y)

polygon(cbind (¢ (min(x), x, max(x)),c(min(y), y, min(y))),
col="#FF9933")

We get the following graph, with light brown coloring below the curve:

[52]

Chapter 2

Now we shade above the curve with another attractive color from the Hexadecimal
Color Chart:

plot(x, y, pch = 16, cex = 0.8)

lines(x, y)

polygon(cbind(c (min(x), x, max(x)),c(max(y), y, max(y))),
col="#CC66FF")

To shade above the curve, we changed the third argument of the group of y values
from minimum y to maximum y. Let's see the graph, with coloring above the curve,
which is as follows:

Now let's see how to shade between the curve and the x axis.

plot(x, y)

lines(x, y)

polygon (cbind(c (min(x), x, max(x)), c(0, y, 0)), col="#339966")

[53]

Advanced Functions in Base Graphics

Here is our graph.

To shade between the curve and the x axis, we used zeroes for the first and third
vertical axis values. Obviously, you could shade both above and below the curve:

plot(x, y, pch = 16, cex = 0.8)
lines(x, y)

polygon (cbind(c (min(x), x, max(x)),c(max(y), y, max(y))),
col="#66CCCC")

polygon (cbind(c (min(x), x, max(x)),c(min(y), y, min(y))),
col="#339999")

[54]

Chapter 2

We get this graph:

Using polygon() to shade under a normal
curve

We will use the dnorm () command to create a standard normal curve and we will
use polygon () to shade under the normal curve. The syntax is as follows:

dnorm(x, mean = 0, sd = 1)

This creates a set of probabilities from a normal probability distribution with
a mean of 0 and a standard deviation of 1. Thus, the following syntax creates
a normal distribution graph from -5 to 5:

x <- seq(-5, 5, length=1000)

y <- dnorm(x)

plot(x, y, type="1l", lwd=2, col="blue", xlab="Z Value",
ylab="Probability", main="Testing Polygon with a Normal Curve")

[55]

Advanced Functions in Base Graphics

We get the following graph:

Testing Pelygon with a Normal Curve
s
=
™
2
=
2 o
= o
=4
o
; —
=
=
T I T T T
-4 -2] 2 4
ZValue

We have plotted the curve using 1000 points in order to give a smooth appearance, but
we must create an appropriate set of x and y values for polygon (). Let's shade under
the entire curve with a pale lemon yellow color from the Hexadecimal Color Chart:

plot(x, y, type="1", lwd=2, col="blue", xlab="Z Value",
ylab="Probability", main="Testing Polygon with a Normal Curve")

Finally, we invoke polygon () as follows:

polygon(c(-5, x, 5), c¢(0, y, 0), col="#FFFF66")

[56]

Chapter 2

This command will produce the following graph:

Testing Polygon with a Normal Curve
=T
=
(o]
-
=
2 o
=] o
=)
o
; —
=
=
T T T T I
-4 -2 0 2 4
ZValue

Let's start again and shade between two Z values.

plot(x, y, type="1", lwd=2, col="blue", xlab="Z Value",
ylab="Probability", main="Testing Polygon with a Normal Curve")

Next, we create the horizontal axis values. Let's suppose that we wish to shade from
the point -3 to -1.5 on the Z Value axis, again using a large number of points. We
recalculate the probabilities for this set of x values.

x <- seq(-3, -1.5, length=100)

y <- dnorm (x)
Finally, we invoke polygon ():

polygon(c (-5, x, -1.5), c(0, y, 0), col="#669966")

[57]

Advanced Functions in Base Graphics

The output graph is as follows:

Testing Polygon with a Normal Curve

Frobability
0.z 0.3 0.4
|

0.1

0.0

T T T T T
-4 -2 0 2 4

ZValue

You can use polygon () to create many interesting graphs, not only for shading
between curves and axes. To develop your skill in using the polygon () command,
you must read the standard texts and helpful websites and study the worked
examples carefully. Additionally, you can enter ?polygon () on the command line
and you will be taken to a web page that explains the polygon () command.

Creating bar charts

Let's see how to create bar charts in R. We will create a simple bar chart using the
barplot () command, which is easy to use. First, we set up a vector of numbers.
Then we count them using the table () command and plot the counts. The table ()
command creates a simple table of counts of the elements in a dataset. Enter the
following vector into R:

H <- ¢(2,3,3,3,4,5,5,5,5,6)
Now, we count each element using the table () command as follows:

counts <- table (H)

counts

[58]

Chapter 2

The output is as follows:

H
2 3456
13141

Now we plot the counts.

barplot (counts)

Here is the bar chart:

The horizontal axis records the elements in your dataset, while the vertical axis gives
the counts of each element. You will see that the barplot () command does not
perform the count directly, so we used the table () command first.

You can plot your data directly if you omit the table () command. In that case, the
height of the bars will match the actual values of the dataset. This technique is useful
if your data are already in the form of counts or if you wish to plot the magnitudes of
each element.

D <- ¢(3, 7, 12, 2, 0, 5)

barplot (D, col="blue")

[59]

Advanced Functions in Base Graphics

The output graph is as follows:

@

-

) IIII

o - IIII.____

It's that simple! However, this example was not very sophisticated so we will now
create a more complex bar chart. Either download the measurements CSV file

or cut and paste from the book's website. The dataset consists of a set of medical
measurements made on four groups of people over five trials. Next you read the
dataset using the following syntax:

12

10

measurements <- read.csv("Measurements.csv", header=T, sep=",")

Or

measurements <- structure(list(Groupl = c¢(1L, 3L, 6L, 4L, 9L), Group2

= c¢(2L, 5L, 4L, 5L, 12L), Group3 = c(4L, 4L, 6L, 6L, 16L), Group4 =

c(3L, 5L, 6L, 7L, 6L)), .Names = c("Groupl", "Group2", "Group3",
"Group4"), class = "data.frame", row.names = c(NA, -5L))

attach (measurements)

measurements

The output is as follows:

Groupl Group2 Group3 Group4

1 1 2 4 3
2 3 5 4 5
3 6 4 6 6
4 4 5 6 7
5 9 12 16 6

[60]

Chapter 2

Let's create a bar chart for Group3 with labels.

barplot (measurements$Group3, main="Group 3 Measurements",
xlab="TRIAL", ylab="Measurement",
names.arg=c ("T1", "T2","T3","T4","T5"), border="red",
density=c (90, 70, 50, 40, 30))

Here is the graph:

Group 3 Measurements

14

10

Measurement

T T2 T3 T4 5

TRIAL

In the preceding graph, we have labeled each trial with an uppercase T followed by
the trial number.

What did the density parameter achieve? Try other values of the density parameter
and see what you get. The command names . arg enables you to supply your
preferred horizontal axis labels.

We will now create another bar chart, this time using R's rainbow palette. We
continue to use the measurements dataset of the previous example, but we now
wish to graph all of the data. We plot a bar chart with adjacent bars by using the
as.matrix () command and the argument beside = T:

barplot(as.matrix (measurements), main="ALL MEASUREMENTS", ylab =
"Measurements", cex.lab = 1.5, cex.main = 1.4, beside=TRUE,
col=heat.colors(5))

[61]

Advanced Functions in Base Graphics

The output bar chart is as follows:

ALL MEASUREMENTS

14

10

Measurements

Group1 Group2 Group3 Groupd

We created an attractive bar chart using as.matrix () and the heat.colours palette.

Including a legend

In Chapter 1, Base Graphics in R — One Step at a Time, we saw how to create a legend.
Let's look again at creating legends using the grouped bar chart we discussed in
the previous section. Now, we will create a legend at the top-left corner. To create
a legend without a frame, we use bty="n". The bty argument controls borders. We
pass the same color palette to the legend using the £111 argument.

barplot (as.matrix (measurements), main="ALL MEASUREMENTS", ylab =
"Measurements", cex.lab = 1.5, cex.main = 1.4, beside=TRUE,
col=heat.colors(5))

legend ("topleft", c("Measure 1", "Measure 2", "Measure 3", "Measure 4",
"Measure 5"), cex=1l.3, bty="n", fill=heat.colors(5))

[62]

Chapter 2

The output is as follows:

ALL MEASUREMENTS

15

Measure 1
Measure 2
Measure 3
Measure 4
Measure 5

OOODm

10

Measurements

Group1 Groupz2 Group3 Groupd

We used the topleft argument to position the legend towards the top-left corner of
the chart. Other options include the following;:

"bottomright", "bottom", "bottomleft", "left", "topleft", "top",
"topright", "right", "center".

For several of the examples from now on, we will use the medical dataset that you
have already met in this chapter. Let's create a horizontal barplot with labels using
the table () command. We use the TREATMENT variable of the medical dataset, which
you must now read again as the object T. Again, either cut and paste the dataset from
the website or use the read.csv () command on the CSV file.

Now, we will create a table.

treatment <- table (TREATMENT)

treatment

[63]

Advanced Functions in Base Graphics

The output is as follows:

TREATMENT
A B C
16 17 12

We set up our colors as a vector:

colours <- c("red", "yellow", "blue")

barplot (treatment, main="Treatment", horiz=TRUE, col= colours,

names.arg=c("An, ngn ucn))

Treatment

L]
(&)
sy
=
—&
i

We obtained a horizontal barplot. For a vertical bar chart, we omit the argument
horiz = T:

barplot(treatment, main="Treatment", col= colours,

na.mes.arg=c(nAu, ngn = ucn))

[64]

Chapter 2

The output is as follows:

Treatment

146

10

Now, we will create a stacked barplot of numbers of smokers, with nice colors and a

legend. To get the stacked barplot, we omit the argument beside =

smoketh <- table(as.numeric (ETH), as.numeric (SMOKE))

smoketh

The output is as follows:

SMOKE
ETH N Y
193
2 99
378

Now, we will create the stacked barplot.

barplot (smoketh, main="Numbers of Smokers by Ethnicity",

xlab="Non-Smoker or Smoker", ylab ="Number of Smokers",
col=c("blue", "red","yellow"), legend = rownames (smoketh))

[65]

Advanced Functions in Base Graphics

We get the following output:

Numbers of Smokers by Ethnicity

l"'-"_
o
o3
| 7
I
D_
o
o
g ¢4
[=]
g
wl
@
[=]
2
@
E =
E 2
=
o

Man-Smaoker or Smoker

Creating histograms

Now, we will create a histogram for patients' weight after treatment. The data
is contained in the WEIGHT 2 variable. Enter the following syntax involving
the hist () command:

hist (WEIGHT 2)

[66]

Chapter 2

The graph is as follows:

Histogram of WEIGHT 2

14

12

10

Frequency

[I I I 1
40 60 80 100 120

WEIGHT_2

It is easy to create a basic histogram in R. Now, let's create a histogram from all the
data in the measurements dataset. First, we transform the four vectors into a single
vector and make a histogram of all elements:

G <- c(Groupl, Group2, Group3, Group4)

Finally, we can create a histogram in a nice purple hue from the Hexadecimal
Color Chart:

hist (G, col="#FF00CC", ylim=c(0,10), main = "HISTOGRAM OF ALL
MEASUREMENTS", xlab ="MEASURE", ylab ="FREQUENCY")

[67]

Advanced Functions in Base Graphics

Our histogram is as follows:

HISTOGRAM OF ALL MEASUREMENTS

10

FREQUENCY

MEASURE

Now, we will create a more complex example using the same dataset. We find the
maximum value in order to set the horizontal axis limits:

max <- max(G)

max

The output is as follows:
[1] 16

The maximum value is 16. We want a histogram bin for every count, so we set the
breaks argument equal to the maximum value of the dataset. We use a light gray
from the Hexadecimal Color Chart. In addition, we make the horizontal axis labels
perpendicular to the axis using 1as = 2. Use the following syntax:

hist (G, col= "#CCCCCC", breaks=max, xlim=c(0,max),

main="HISTOGRAM OF MEASUREMENTS", las=2, xlab = "Values", cex.lab =
1.3)

[68]

Chapter 2

The following bar chart is the output:

HISTOGRAM OF MEASUREMENTS

Freguency

| Wil m p

(=] o (= o
— —

Values

Note the effect of the argument 1as=2 and compare it with the effect of 1as=1.
Of course, the argument cex. 1ab allowed us to set the size of the labels.

The hist () command uses algorithms that calculate the number of bins. Let's try
setting the number of bins to six. We use another color from the Hexadecimal Color
Chart. Use the following syntax:

hist(G, col = "#FF3366", breaks=6, xlim=c(0,max),
main=" HISTOGRAM OF MEASUREMENTS ", las=2, xlab = "Values", cex.lab =
1.3)

[69]

Advanced Functions in Base Graphics

The output is as follows:

HISTOGRAM OF MEASUREMENTS

Frequency
.
|

15 —

Values

Although we wanted six bins, the hist () function has returned eight. However,
setting up histogram bins as a vector gives you more control over the number of
bins. Now, we will set up the bins as a vector (four bins in total), each bin four units
wide. Our vector contains the maximum and minimum values of each bin. Use the

following syntax:

measurebins <- c(0, 4, 8, 12, 16)

hist (G, col = "#9933CC", breaks=measurebins, xlim=c(0,max),

main=" HISTOGRAM OF MEASUREMENTS ", las=2, xlab = "Values", cex.lab =
1.3)

[70]

Chapter 2

The output is as follows:

HISTOGRAM OF MEASUREMENTS

Frequency

Values

We have produced a histogram with the required number of bins.

Sometimes, it is helpful to fit a normal curve to a histogram. If you want to
do so, then use dnorm (). To illustrate the approach, we now create a random
sample of 50 numbers with a mean of 0 and a standard deviation 1 using the
rnorm() command:

Z <- rnorm(50)

Enter z on the command line to see your numbers. We must be precise about our
lower and upper limits for the horizontal axis. Therefore, we eliminate all values
outside four standard deviations from the mean. We use the following command to
do this job. We use square brackets to subset Z and we use the less than and greater
than comparison operators. We also include a vertical line, which is the operator for
logical OR:

Z[Z < -4 | Z2 > 4] <- NA

[71]

Advanced Functions in Base Graphics

Now, set up a sequence of horizontal axis values from -4 to +4 in steps of 0.1
(for plotting):

X <- seqg(-4, 4, 0.1)

hist(Z, breaks=seqg(-4, 4), ylim=c(0, 0.5), col="red", main =
"HISTOGRAM WITH FITTED NORMAL CURVE", freqg=FALSE)

Now the lines () command, along with dnorm (), creates the normal curve:

lines(x, dnorm(x), lwd=2)

Here is the histogram with a fitted normal curve:

HISTOGRAM WITH FITTED NORMAL CURVE
e
(=]
; —
REa—
(=]
=
@
(]
o
(=]
g
=
(=]
T T T T 1
-4 -2 0 2 4
Z

Let's use this technique to fit a histogram of patients' heights and fit a standard
normal curve. We standardize the height data by subtracting the mean and dividing
by the standard deviation. The sd () command returns the standard deviation. Use
the following syntax:

HSTD <- (HEIGHT - mean (HEIGHT))/ sd(HEIGHT)

[72]

Chapter 2

Now, we set up a sequence of horizontal axis values for plotting. To do so, we
examine the range of the standardized data. We use the range () command to do so:

range (HSTD)
We will get the following output from the range () command:
[1] -2.547588 1.883000

Our horizontal axis must include these minimum and maximum values, so let's set
up a horizontal axis running from -3 to 3:

X <- seq(-3, 3, 0.1)
Now, we will plot the histogram of the standardized height.

hist (HSTD, breaks=seq(-3, 3), ylim=c(0, 0.5), col="red", main =
"HISTOGRAM WITH FITTED NORMAL CURVE", freqg=F)

Finally, we create the fitted normal curve using the 1ines () command,
along with dnorm ().

lines (x, dnorm(x), lwd=2)

The output we get is as follows:

HISTOGRAM WITH FITTED NORMAL CURVE

Density

0.1

HSTD

The histogram for height agrees nicely with the standard normal curve.

[73]

Advanced Functions in Base Graphics

Creating boxplots

You can draw boxplots for individual variables or grouped variables. The syntax
for boxplots is boxplot (y~group, data=), where the argument data= refers to the
data object. We use the syntax y~group to create a separate boxplot for each level of
group. We use the argument horizontal=TRUE to reverse the axis.

The Modified Box Plot is the default in R. The Modified Box Plot highlights outliers
while the Standard Box Plot does not. Let's start with a simple boxplot without
specifying any groups. Again we use the medical dataset and create a boxplot

for change in weight before and after treatment (that is, the difference between
WEIGHT 2 and WEIGHT 1). Ensure that the dataset is read into R and attached, as
described earlier.

changewt <- WEIGHT 1 - WEIGHT 2

boxplot (changewt)

We now have a simple boxplot (as shown in the following graph) that gives the
median and upper and lower quartiles of the data, and also indicates outliers:

10

[74]

Chapter 2

The top edge of the box gives the upper quartile (the value pertaining to the top
quarter of the data). The lower edge of the box gives the lower quartile (the value
pertaining to the bottom quarter of the data), and the heavy line gives the median.
We have two outliers.

Note that the boxplot () command includes a range argument. The range argument
determines how far the plot whiskers extend out from the box. If range is positive,
the whiskers extend to the point(s) that is (are) no more than range times the
interquartile range from the box. The argument range = 0 ensures that the whiskers
extend to the extreme points. In the previous graph, we have identified two outliers.

Now we will consider a grouped boxplot. Again we use the medical dataset and
create a boxplot for change in weight for each treatment, using a nice ivory color
from the Hexadecimal Color Chart. We use the formula changewt ~ TREATMENT:

boxplot (changewt ~ TREATMENT, data=T, main=toupper ("WEIGHT CHANGE
(kg) "), font.main=3, cex.main=1.2, xlab="Treatment ", ylab="Weight
Change (kg)", font.lab=3, col="#FFFFCC")

We get the following boxplot for each level of the variable TREATMENT:

WEIGHT CHANGE (KG)

(=]
D_
o -
=]
=]
= w -
@
L=]
% =]
= R E—
O = !
=} - |
2 — i |
o — 1
I 1
o - 1 1
_ 1
1
1
. 1
o 1
. 1
_
T T T
A B c
Treatment

[75]

Advanced Functions in Base Graphics

Now, we will create a notched boxplot of change in weight for each level of
treatment (with different colors for each box). We use the argument notch = T.
This time, we include the argument range = 0 in order to ensure that the whiskers
extend to the extreme points. Copy and paste the following syntax into R:

boxplot (changewt ~ TREATMENT, data=T, main=toupper ("WEIGHT CHANGE
(kg)"), font.main=3, cex.main=1.2, col=c("red","blue", "yellow"),
xlab="Treatment", ylab="Change in Weight (Kg)", font.lab=3,
notch=TRUE, range = 0)

The output is as follows:

WEIGHT CHANGE (KG)

10

Change in Weight (Kg)

-
]
I
I
I
I
I
I
]
I
I
I
I
I
I
]
I
I
I
I
I
I
]
I
i
N ‘
]
I
T
A

e
I

Treatment

If the notches overlap, then there is no evidence for any significant difference in the
medians across the groups. Here the notches overlap, and we conclude that there is
no difference in median change in weight across the three treatments.

Creating pie charts

Let's create a simple pie chart from a vector of data:

J <- c(1, 8, 3, 9, 2, 5, 10)

pie(J)

[76]

Chapter 2

The output is as follows:

That was very easy. Now let's create a pie chart with a heading, using nice colors,

and define our own labels using R's topo. colours palette. We control the number
of colors using length (J). Why? Because length () counts the number of distinct
elements in a vector and we need to count the colors.

We have seven measurements, one for each day of the week. Enter the following

syntax, which includes the labels we wish to include in the pie chart:

pie(J, main="Daily Values",

col=topo.colors(length(J)),

labels=c ("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday

n , llsundayll))

Here is our pie chart with labels:

Daily Values

Tuesday

Thursday

Monday

Friday

Sunday

Saturday

[77]

Advanced Functions in Base Graphics

Let's create a pie chart of the numbers of patients receiving each treatment. First, we
will create a table of counts of patients receiving each treatment:

table (TREATMENT)

The output is as follows:

TREATMENT
A B C
16 17 12

Now, we apply the pie () command on this table of counts:

pie(table (TREATMENT))

Here is our pie chart:

Now, we will create a more complex example, using percentages and a legend. We
continue to use the data object J. We set up nice colors, again from the Hexadecimal
Color Chart. Use the following syntax:

cols <- c("#FFFF33","#FF9999", "#99CC99", "#FF99FF",
n#CCCCCC", "#33FF00", "#3366FF")

First, we calculate the percentage for each day. We round our percentage to one
decimal place using the round () command. The syntax is as follows:

percentlabels <- round(100*J/sum(J), 1)

[78]

Chapter 2

Now, we append a % sign to each percentage value using paste () as follows:

pielabels <- paste(percentlabels, "%", sep="")

pie(J, main="Daily Values", col=cols, labels=pielabels, cex=0.8)
Let's create a legend to the left using the following command:

legend ("topleft", c("Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday"), cex=0.8, fill=cols)

Here is our pie chart:

Daily Values
Monday
Tuesday
‘Wednesday 7.9%
Thursday

Friday
Saturday
Sunday

EooOooon

237%

pa
[a:]
&

As another example, let's create a pie chart from the medical dataset and include
numbers of patients receiving each treatment. We use the same table of counts
as before.

table <- table (TREATMENT)

table

The output is as follows:

TREATMENT
A B C
16 17 12

[79]

Advanced Functions in Base Graphics

Now, we will create labels for each treatment, each consisting of the treatment level
and the numbers of patients:

labs <- paste(names(table), " (",table,")", sep="")

labs

The result is as follows:

[1] "»A (16)"" "WB (17)"® "nC (12)"®

Finally, we create the pie chart, along with labels, using the following syntax:

pie(table, labels = labs, col = c("#339999", "#006666", "#0099CC"),
main="PIE CHART OF NUMBERS OF PATIENTS \nRECEIVING EACH TREATMENT")

Here is our pie chart with the numbers of patients for each treatment:

PIE CHART OF NUMBERS OF PATIENTS
RECEIVING EACH TREATMENT

A(16)

B(17)

Note the use of \n just before the word RECEIVING. This syntax instructed R to write
any following text on a new line.

Creating dotcharts

Again, let's use the medical dataset and create a dotchart of the heights of female
patients. Dotcharts record a single measurement for each element in a dataset.
Let's create the subset first. We will use the subset () command to select only
female patients:

TF <- subset (T, GENDER =="F")

head (TF)

[80]

Chapter 2

The output is as follows:

PATIENT GENDER ETH TREATMENT AGE WEIGHT 1 WEIGHT 2 HEIGHT SMOKE EXERCISE RECOVER

1 Mary F 1 A Y 79.2 T76.6 169 Y TRUE 1
2 Jim M 2 B Y 87.5 84.8 178 Y TRUE 0
3 Bob M 2 A M 65.1 64.6 162 N FALSE 1
4 Dave M 1 B M 58.8 59.3 161 Y FALSE 0
5 Simon M 1 C M 72.0 70.1 175 N FALSE 1
6 Ben M 3 A Y 95.9 94.5 a8 N FALSE 1

Now, we will use the dotchart () command, include title and axis labels, modify the
font sizes of the axis labels, and specify the row labels of the chart:

dotchart (TFSHEIGHT[1:6],1labels=TF$PATIENT,cex=1.4, pch = 16,
main="Female Patient Heights in Centimetres",xlab=toupper ("Height
(cm) "), x1lim = c (130, 200), cex.lab = 0.7)

Our dotchart is as follows:

Female Patient Heights in Centimetres

Ann hd

Frida *

Sue b

Anne b

T T I T T T T T
130 140 150 160 170 180 190 200

HEIGHT
(CM)

Notice that we specified the heights and patient names using the TF object and the
dollar sign. This is because we had already attached the object T, and R has stored
the variables HEIGHT and PATIENT for that object rather than for the new object TF.
Specifying the object name avoids confusion between the two datasets.

[81]

Advanced Functions in Base Graphics

Next, we consider a more complex dataset in which the data is arranged in columns,
but where we want a dotchart of the entire dataset. We use the measurements dataset
again and create another dotchart. This time, we take the transpose of the dataset
using the transpose function t () as follows:

dotchart (t (measurements))

The dotchart obtained is as follows:

Groupd Q
Group3 a
Group2 o
Groupt |- @

Groupd a
Group3 a
Group2 o
Graup Q

Groupd o
Group3 o
Group2 a

Group1 o

Groupd a
Group3 o
Groupz Q
Group1 a

Groupd o

Group3 o
Group2 o

Group Q

Note that R's dotchart () command accepts variables to be arranged in rows rather
than in columns. That's why we took the transpose of the original data. Of course,
you can embellish this dotchart using the usual approaches. We will use three
symbol types and four colors as shown in the following syntax:

dotchart (t (measurements), xlim = c¢(0,20), pch = c¢(15:18), col =

c("red", "blue", "darkgreen", "brown"), main = "Measurements for
Four Groups", font.main = 2, xlab = "Measurements", cex.lab =
1.2)

[82]

Chapter 2

Now, the dotchart looks like this:

Measurements for Four Groups

Groupd -
Group3 4
Groupz .
Group u

Group4 *
Group3 4
Group2 .
Group u

*

Groupd
Group3 -
Group2 .

Group u

Group4 *
Group3 -
Group2 .
Group u

Group4 *
Group3 =
Group2 .
Group =
T T T T T

0 5 10 15 20

Measuremenis

Now, we will create a slightly different dotchart with the same data, but using the
as.matrix () command:

dotchart (as.matrix (measurements), xlim = c(0,20), pch = c(15:18), col
= c¢("red", "blue", "darkgreen", "brown"), main = "Measurements for
Four Groups arranged Differently", font.main = 2, xlab =
"Measurements", cex.lab = 1.2)

[83]

Advanced Functions in Base Graphics

Our dotchart now looks like this:

Measurements for Four Groups arranged Differently

Group

5 -

4 [

3 -

2 |]

1 +
Group2

E re

4 -

3 []

2 -

1 re
Group3

0 -

4 =

3 +*

2 S

1 -
Groupd

A]

4 -+

3 re

2 L]

1

T T T T T
0 5 10 15 20
Measurements

Let's put the two dotcharts together so that you can see the difference. We use par ()
and mfrow = c(1,2) to place them side-by-side. Copy and paste all of the following
syntax together:

par (mfrow=c(1,2))

dotchart (t (measurements), xlim = c¢(0,20), pch = c¢(15:18), col = c("red",
"blue", "darkgreen", "brown"), main = "Scores for Four Groups", font.main
= 2, xlab = "Scores", cex.lab = 1.2)

dotchart (as.matrix (measurements), xlim = c¢(0,20), pch = ¢(15:18), col
= c¢("red", "blue", "darkgreen", "brown"), main = "Scores for Four
Groups arranged Differently", font.main = 2, xlab = "Scores",
cex.lab = 1.2)

[84]

Chapter 2

The dotchart obtained look like this:

Scores for Four Groups

Scores for Four Groups arranged Differently

1 Group
Groupd * 5 -
Group3 -
Group? |-
Groupt |=

=i Pl Ll

Group4 A
Gr-:quE - Group
Group2 .
Group1 L

=5 [e LT
L]

Groupd -
Group3 -~
Group2 . Graoup
Group1 =

Group4 *
Group3 -
Groupz .
Group1 L

=i Pl e LT LD
u

Group

Groupd -

Group3 &
Group2 .
Group1 =

=i D LD e LT P
Ll

Scores Scores

Can you see the difference? The first approach groups the data according to the
measurements, while the second groups the data by the four groups.

Now, we will create a dotchart where the groups have different colors. We will
create a dotchart of weight change by treatment. Let's remind ourselves of the
levels of TREATMENT. We use the levels () command to do so:

levels (TREATMENT)
The output is as follows:

[1] n IIAII n n IIBII n n llcll n

[85]

Advanced Functions in Base Graphics

Of course, we have three different treatments. Now, we wish to graph the change in
body mass for each patient, sorted in order of change, but grouped by treatment. First,
we recalculate weight change for each patient, bind this new variable into the array,
and sort in ascending order of weight change. Use the following syntax to do so:

changewt <- WEIGHT 1 - WEIGHT 2

Next, we bind this variable to the array T. To do so, we use the cbind () function.
We call the new version TCH:

TCH <- cbind (T, changewt)

Enter TCH on the R command line to see that the new variable has indeed been
included in the array.

Now, we sort the entire array in ascending order of the variable changewt. In
general, if A is an array, you can sort A in ascending order by one of the variables
(variablel) as follows:

A <- Alorder(variablel),]

To sort in descending order, use the following syntax:

A <- A[order(-variablel), 1

Let's apply this approach to the array TcH and sort in descending order of changewt:
TCH <- TCH[order (TCHS$changewt),]

Enter TcH on the R command line to see that the array has been sorted in ascending
order of weight change. Now, we will create a factor from the variable TREATMENT:

TCH$TREATMENT <- factor (TREATMENT)

TCH$TREATMENT

The output is as follows:

[11 ABABCAACBBACABAABCABBACCABBBCAABA
ABCCBBACBCCHB

Levels: A B C

[86]

Chapter 2

Let's give a different color to each level of TREATMENT to create our dotchart. We do
this by subsetting with square brackets and reading in the desired colors to a new
variable TCHScolour:

TCHS$colour [TCHSTREATMENT == "A"] <- "darkgreen"
TCHS$colour [TCHSTREATMENT == "B"] <- "red"
TCHS$colour [TCHSTREATMENT == "C"] <- "blue"

Now we create the dotchart as follows:

dotchart (TCH$changewt, labels=TCH$PATIENT, cex=.8, pch = 16, groups =
TCHSTREATMENT, main="DOTCHART OF WEIGHT CHANGE BY TREATMENT",
xlab="Weight Change (Kg)", cex.lab = 0.8, gcolor="black",
color=TCHS$colour)

The resulting graph is as follows:

DOTCHART OF WEIGHT CHANGE BY TREATMENT

=

==
Tt
= =
EEEE =
: Im
*

T

ZO T MO = =
sobhco=

X]

L]

£T

©

—
z
m

-

T T T T T T T
-2 a 2 4 g] 10

Weilgm Crange (Kg)

The dotchart has grouped the patients into an easy-to-understand chart, grouped
by treatment.

[87]

Advanced Functions in Base Graphics

R's color palettes

R's color palettes include the following: Rainbow, heat .colors, terrain.colors,
topo.colors, and cm.colors.

You have already seen some of these palettes. For information on palettes in R, insert
a question mark in front of the palette name, for example, ?terrain.colors.

Using smoothers on your graph

Often it is useful to see a smooth version of your dataset that highlights trends or
variations in the data that are not evident by examining the data directly. LOWESS
(locally weighted scatterplot smoothing) is often used for this purpose. Here is an
example of smoothing using LOWESS. We plot HEIGHT against WEIGHT 2 and add a
LOWESS smoother using the 1ines () and lowess () commands:

plot (WEIGHT 2, HEIGHT, main="LOWESS SMOOTHING EXAMPLE",

xlab="WEIGHT (kg) ", ylab="HEIGHT (cm)", pch=19)

lines(lowess (WEIGHT 2, HEIGHT), lwd=2, col="red")

Let's see the data with a smooth curve, as shown in the following graph:

LOWESS SMOOTHING EXAMPLE

HEIGHT (cm)
170
I

160
I

140
I

40 60 80 100 120

WEIGHT (kg)

[88]

Chapter 2

The smoother suggests some curvature to the data, which in this case was already
evident in the raw data. In other cases, any trends or curvature might not be so
apparent from the raw data, so a smoother might be very helpful.

Creating scatterplot matrices

Scatterplot matrices of bivariate data are helpful to identify relationships between
variables in a dataset. We can create scatterplot matrices using pairs () and the tilde
sign, along with plus signs that instruct R to include the desired variables:

pairs (~-WEIGHT 1 + WEIGHT 2 + HEIGHT, data=T,

main="Scatterplot Matrix of Medical Data")

This syntax gives the following matrix:

Scatterplot Matrix of Medical Data
40 =] 1) 100 120
1 1 1 1 = = i E
=1 =1 | E
> =1 aDO -
WEIGHT_1 e i |m
] 03
=) 28
&‘ﬁ g C:Om) L =
o -] - 2
--Hi % o o
E_ -1 -1 -]
o o
] -l
i
B - i WEIGHT 2 oo
L i er
g
Z 1 @'ﬁ ® zoﬁi‘”
g | 0
a ? i oo °° B E—
& &
oﬁ“ﬁj - E
f=n) =1=]
Lo gt HEIGHT [-
o
o & '
o - i E_
a o B -g-
T T T T T T T T T T T
40] al 100 120 140 150 160 170 180 120

[89]

Advanced Functions in Base Graphics

If we want a smooth curve (LOWESS) in each bivariate plot, we include the
argument panel=panel.smooth:

pairs (~WEIGHT 1 + WEIGHT 2 + HEIGHT, data=T,

main="Scatterplot Matrix of Medical Data", panel = panel.smooth)

The matrix obtained is as follows:

Scatterplot Matrix of Medical Data
woom ®m 1
i ! ! ! o el ,R;
- B8
WEIGHT_1 o L 5
o F 2
B —
B
B 1 WEIGHT_2
g -
-2
-2
HEIGHT | E
¥
-2
t::l E:II &IZI 1-:IrII 12I‘-:I 1;-] 1;-3 1EI::I 1.:-3 1;3 1‘;]

We see a strong linear relationship between WEIGHT 1 and WEIGHT 2, and curved
relationships between those variables and HEIGHT.

[90]

Chapter 2

Writing functions to create graphs

Why not create functions to draw graphs? Here's a function for histograms of vectors
of data with standard titles and labels. It allows you to add numbers to the title

and axis labels and choose the color. We use the function () command to set up

a function that provides the attributes of our choice (for example, labels and title
colors). Enter the following function on the R command line:

nicehist <- function(x, k, col) {

hist(x, main = paste("HISTOGRAM ", k, sep = ""),
xlab = paste("VALUES ", k, sep = ""),
ylab = paste("COUNTS ", k, sep = ""), col = col) }

f <- e(3,2,5,4,3,2,7,6,5,7,8,6,4,5,6)

Let's include 3 in the title and create a red histogram. Enter the following syntax:

nicehist (£, 3, "red")

The histogram obtained is as follows:

HISTOGRAM_3

COUMTS_3
2
|

VALUES_3

[91]

Advanced Functions in Base Graphics

Let's include 99 in the title and create a light purple histogram.

nicehist (£, 99, "#FFCCFF")

The histogram now looks like this:

HISTOGRAM_93

COUNTS 99
2

VALUES_99

You can see that creating a function is a good idea if you have to create many similar
plots and need to save time. Of course, you can create more complex function to
create other types of graph.

Including error bars on your graph

Here is a function that I wrote to plot error bars on your graphs. Copy and paste it
into R.

ploterrors <- function(w, z, err) {

zmin <- z - err

zmax <- 2 + err

HATWIDTH <- 0.012

[92]

Chapter 2

HAT <- HATWIDTH *(max(w) - min(w))

for(k in l:length(z)) {

lines(c(wlkl, wlk]), c(z[k]l, zmin[k]) , lwd
lines(c(wlkl, wlk]), c(z[k]l, zmax[k]) , lwd

0.8)
0.8)

0.8)
0.8)

lines(c(w[k] - HAT, wl[k] + HAT), c(zmin[k], zmin[k]), lwd
lines(c(w[k] - HAT, wl[k] + HAT), c(zmax[k], zmax[k]), lwd

Y}

Note that you can change the width parameter of the hat from my preferred value of
0.012 to some other number that gives you your preferred width. You can also vary
the line width by changing 1wd from 0.8 to your chosen value. Now, we will set up
some data and a set of errors, and then we will plot:

X <- c(1,2,3,4,5,6,7,8)

Y <- ¢(1,2,3.4,5.6,7.8,10.3, 15.7, 18.3)

ERROR <- c¢(0.5, 1.2, 0.23, 2.21, 1.43, 1.28 , 2.18, 1.41)
plot(X, Y, xlab = "X VALUES", ylab = "Y VALUES", pch = 16)
lines (X, Y)

Now, we include the error bars using the function by including the horizontal and
vertical axis variables and including the vector of errors as follows:

ploterrors (X, ¥, ERROR)

[93]

Advanced Functions in Base Graphics

We get the following graph that includes the data and error bars:

14

Y WALUES
10

KVALUES

Summary

In this chapter, you learned some more of the basic syntax and techniques of
producing graphs in R. We discussed more on regression lines and residuals —
creating complex multiple axes, superposing graphs, labeling points on your graph,
creating grid lines, shading and coloring graphs using the polygon () command, and
so on. I hope this chapter provided a range of useful techniques in addition to those
that you learned in the previous chapter.

The next chapter will continue from where we left off in this chapter. In the next
chapter, we will learn how to create graphs using gplot, a very powerful graphics
command that is available through the ggplot package.

[94]

Mastering the gplot Function

This chapter provides a step-by-step introduction to creating graphs using gplot
(a graphics tool within the ggplot2 package), and gives examples of functioning
gplot code that can be adapted for many applications. The topics covered in this
chapter are as follows:

* Loading the ggplot2 package in order to use gplot

* Using basic gplot graphics techniques and syntax

* Creating scatterplots and line graphs

* Mapping symbol size, type, and color to categorical data

* Including regressions and confidence intervals in your graphs

* Creating bar charts, histograms, boxplots, pie charts, and dotcharts

* Creating time series graphs with dates
It is not possible to give a complete account of gplot in this book. However, by the

end of this chapter, you should be able to use gplot to create a wide range of graphs
for research and analysis.

About qgplot

The gplot (quick plot) system is a subset of the ggplot2 (grammar of graphics)
package, which you can use to create nice graphs easily. To use gplot, first install
ggplot2. On the R command line, enter the following command:

install.packages ("ggplot2")
Then load ggplot2 using this command:

library (ggplot2)

Mastering the gplot Function

The gplot syntax

Let's assume that your data is loaded into R and now you wish to create a graph
using the gplot () command. The generic gplot syntax is as follows:

gplot(x = X1, y = X2, data = X3, color = X4, shape = X5, size = X6,
geom = X7, main = "Title")

Here, X represents the variables you wish to graph and the attributes you choose for
your graph. You now have either univariate (one variable) or bivariate data (two
variables), and you must provide instructions through the geom argument in order
to create your graph. Now, let's explore some of the arguments in the gplot syntax:

* data: This argument refers to the dataset.

* color: This argument maps the color scheme onto a factor or numeric
variable. Note that gplot selects default colors for each level of the variable.
However, you can use special syntax to set your own colors.

* shape: This argument maps symbol shapes on to factor variables, and gplot
uses different shapes for different levels of the factor variable. You can use
special syntax to set your own shapes.

* geom: This argument allows you to select the type of graph, including: "bar",
"histogram", "line", and "point".

* main: This argument allows you to provide a title.

In ggplot2 (and therefore in gplot), color, size, and shape are known as aesthetic
attributes. In gplot, you can set the aesthetics you like using the I () operator. For
example, if you want symbols or lines in red, use color = I("red").If you want
to control the size of the symbols, use size = I (N), where a value of N greater than
1 increases the size of the symbols. For example, size = I(5) produces very big
symbols. On the other hand, you may wish to map color, size, and shape to levels of
a factor variable. Shortly, you will see how this is done.

Producing scatterplots using gplot

Let's start with a simple example where we use the medical dataset that we saw in
Chapter 2, Advanced Functions in Base Graphics. Again we cut and paste from the code
file for this chapter. We invoke the ggplotz2 library, set up a simple scatterplot using
red symbols, and save it as a PNG file. The syntax for invoking the library is as follows:

library (ggplot2)

[96]

Chapter 3

Now let's plot HEIGHT against WEIGHT 1, using I () for color and symbol size.
We choose red and a symbol size three times the gplot default size. Enter this
syntax on the R command line:

gplot (HEIGHT, WEIGHT 1, data = T, xlab = "HEIGHT (cm)", ylab =
"WEIGHT BEFORE TREATMENT (kg)" , color = I("red"), size = I(3))

After running the preceding command, you will get the following graph:

LA
— *
o]
=
E 0
& *
E **
& .
*
o
= ‘s
w 1
0 - . '
2) < *
m -
* . *
'_
5 * ., . *
= * *
i * $ s *
=
i * .
* e -
a0-
1 I 1
HEIGHT (cm)

We get a scatterplot by default (that is, without specifying any geom argument). We
see a plotting background that is gray in color and includes a grid. This is the default
plotting background for gplot. Now let's save the graph as a PNG file with filename
fig 1.png. You probably want to save your graph in a particular directory. To do
so, you must ensure that this directory becomes your R "working directory".

[97]

Mastering the gplot Function

You can set your R working directory by navigating to File | Change Dir and
selecting the directory you wish to use. Now, enter these commands on the R
command line:

png(filename = "fig 1l.png")

gplot (HEIGHT, WEIGHT 1, data = T, xlab = "HEIGHT (cm)", ylab =
"WEIGHT BEFORE TREATMENT (kg)" , color = I("red"), size = I(3))

dev.off ()

Check your working directory to see whether the graph has been saved there.

Subsetting your data before graphing

Of course, you can subset before creating your graph. Let's subset T to include only
females over 165 cm and then graph the height against weight. We use the subset ()
command and the logical operator &.

TF <- subset (T, GENDER == "F" & HEIGHT > 165)
TF

The dataset you get is as follows:

PATIENT GENDER ETH TREATMENT AGE WEIGHT 1 WEIGHT 2 HEIGHT SMOKE EXERCISE RECOVER

1 Mary F o1 A Y 79.2 76.6 169 Y TRUE 1
9 Anne F 3 B Y 77.1 76.1 171 Y TRUE]
15 Sue F 1 A M 79.6 79.8 179 N TRUE 1
17 Frida F 1 B M 83.1 82.3 177 N FALSE 0
21 Mike F 2 B E 72.2 71.0 168 Y TRUE 1
28 Merril F 2 B M 75.3 74.3 173 N FALSE 0
29 Beth F o1 C E 67.6 67.4 170 N TRUE 1
42 Irina F 1 B M 64.7 65.3 170 N FALSE 0

Now let's create a graph of height against weight for this smaller dataset using the
following syntax:

gplot (HEIGHT, WEIGHT 1, data = TF, geom = c("point"), xlab =
"HEIGHT", ylab = "WEIGHT")

[98]

Chapter 3

Here is our graph:

[=-]
L=

i
in
1

WEIGHT

HEIGHT

b]

1
L=
=]
L=

T

As an exercise, you can create another scatterplot that is similar to the preceding
scatterplot, again using the argument geom = "point". Enter the following syntax
and create the graph for yourself:

"HEIGHT
I (llredll) ,

gplot (HEIGHT, WEIGHT 1, data = T, geom = "point", xlab
(cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , color
size = I(3))

[99]

Mastering the gplot Function

Mapping aesthetics to categorical
variables

Now let's map both symbol size and shape to GENDER. To map symbol size to
levels of a categorical variable, it is helpful to set the variable as a factor using
the factor () command.

Then you set up your plot as before, but control your symbol size by adding a new
layer using the plus sign: + scale_size manual (values = c(a, b)).

The parameters a and b have a minimum value of 0 and can be as large as you like.
You must select values of a and b to produce symbols of the desired size. In the

next example, I have chosen symbol sizes of 5 and 7. You may select different sizes,
depending on your preferences. You will gain experience very quickly and select the
symbol sizes that suit your graphs best. In this case, I introduced some transparency
using the alpha = I() syntax. Transparency assists in the interpretation of graphs
that involve a large number of points. Enter the following syntax:

gplot (HEIGHT, WEIGHT 1, data = T, xlab = "HEIGHT (cm)", ylab =
"WEIGHT BEFORE TREATMENT (kg)" , size = factor (GENDER), color =
factor (GENDER), alpha = I(0.7)) + scale size manual(values = c(5,
7))

You get this graph:

factor{GENDER)
L] F
M

WEIGHT BEFORE TREATMENT (kg)

HEIGHT (cm)

[100]

Chapter 3

Our graph looks good, but the legend title includes the word factor. We shall see
how to fix this problem in a later example. For now, enter the following syntax:

gplot (HEIGHT, WEIGHT 1, data = T, xlab = "HEIGHT (cm)", ylab =
"WEIGHT BEFORE TREATMENT (kg)" , size = factor (GENDER), color =
factor (GENDER), alpha = I(0.7))

We mapped the size and color to one variable (in this case GENDER), but we can map
each of these aesthetics to a different factor variable. Let's map the symbol size to one
variable (GENDER) and color to another variable (EXERCISE) using the arguments
size and color.

gplot (HEIGHT, WEIGHT 1, data = T, geom = c("point"), xlab = "HEIGHT
(cm) ", ylab = "WEIGHT BEFORE TREATMENT (kg)" , size =
factor (GENDER), color = factor (EXERCISE)) +
scale size manual(values = c(5, 7))

Now you get a graph like this one:

[=]
[=]
1

factor{GENDER)

&r
'. $u

80 - & factor{EXERCISE}
L FALSE
[] . * TRUE
[]

WEIGHT BEFORE TREATMENT (k)

4

1 1
440 480

HEIGHT (cm)

[
=]

[101]

Mastering the gplot Function

Controlling colors on your graph

Now let's map the symbol size to GENDER and the symbol color to EXERCISE. To
control your symbol colors, use the layer scale_color_manual () and select your
desired colors. We choose red and blue and symbol sizes 3 and 7, as shown in the
following syntax:

gplot (HEIGHT, WEIGHT 1, data = T, geom = c("point"), xlab = "HEIGHT
(cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , size =
factor (GENDER), color = factor (EXERCISE)) +
scale size manual(values = c(3, 7)) +
scale color manual (values = c("red", "blue"))

Here is our graph with red and blue points:

. factor[GENDER)

@ .r

* =

0 - . factor[EXERCISE)
- * FALSE

* * TRUE
PR

e

WEIGHT BEFORE TREATMENT (kq)

HEIGHT (cm)

[102]

Chapter 3

Now you know how to choose you own color scheme for your gplot graphs.
Mapping color to categorical data can give us additional insight into the
relationships that exist between variables.

Now let's see how to control the legend title (the title that sits directly above the
legend). For this example, we control the legend title through the name argument
within the two functions scale size manual () and scale color manual ().
Enter the following syntax:

gplot (HEIGHT, WEIGHT 1, data = T, geom = c("point"), xlab = "HEIGHT
(cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , size =
factor (GENDER), color = factor (EXERCISE)) +
scale size manual(values = c(3, 7), name="Gender") +
scale color manual (values = c("red", "blue"),name="Exercise")

Our graph now includes a better legend title:

=

L

E 0

% . Gender
E ‘ * F

LU

o @
= L]

L

% 50 - * Exercise
e ©a * FALSE
jun) * -

= . i .z TRUE
2 @ 0o

L

< @

? o

HEIGHT (cm)

[103]

Mastering the gplot Function

By including the arguments name="Gender" and name="Exercise" in the relevant
function, we were able to control the legend title and include the variable names
without the word factor. In the examples of the remainder of this chapter, we will
omit this technique in order to simplify the syntax presented with each example.

Now let's create a similar graph, but including transparency using alpha = I().
We choose a value of 0.3 to illustrate the effect of transparency quite clearly.
Enter the following syntax:

gplot (HEIGHT, WEIGHT 1, data = T, alpha = I(0.3), geom = c("point"),

xlab = "HEIGHT (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , size
= factor (GENDER), color = factor (EXERCISE)) +
scale size manual(values = c(3, 7), name="Gender") +

scale color manual (values = c("red", "blue"),name="Exercise")

The output is as follows:

=
e
10
=
g Gender
= * F
0
o '-un-. it
(= LY
LU
o &0- Exercise
E - A
0 FALSE
m TRUE
T
9 *
]
E -
L]
1 1 I
HEIGHT (cm)

[104]

Chapter 3

We can control transparency using either decimals or fractions. Rather than 1 (0.7),
we could use I (7/10).

Setting up graphs as objects

We can set up the initial graphing syntax as an object. In the next example, we call
this object Y. We can use any object name, as long as it starts with an alphabetic
character. We map the symbol color to ETH, a categorical variable of three levels.
Then, we impose our own colors by adding the new colors as a layer to the object v:

Y <- gplot (HEIGHT, WEIGHT_l, data = T, main = "HEIGHT vs. WEIGHT",
xlab = "HEIGHT (cm)", ylab = "WEIGHT BEFORE TREATMENT (kg)" , geom
= "point" , color = factor(ETH), size = 2, alpha = I(0.7))

Y + scale color manual (values = c("darkgreen","red", "yellow"))

The output is as follows:

HEIGHT vs. WEIGHT
.
= L]
=
= 100 -
&
= factor[ETH}
5 “ 4
= 2
L * 2
& 20-
& . .
5 . :
m ™ » * 2
= * *
] *
m . $t L.
g 7 L] ..
* &
- @
HEIGHT (cm)

[105]

Mastering the gplot Function

Setting up graphs as objects can be very useful. Using your initial object, you can
try out different color schemes, symbol types, and other attributes until you get the
appearance you want.

Creating facet plots

If you have a large dataset that includes a categorical variable, you can use the
facets command to produce multiple graphs: one for each level of the categorical
variable. In the following example, we will create a graph for each level of ETH (1, 2,
and 3) using facets = ETH ~ . Note the tilde sign followed by the period. Enter
this syntax:

gplot (HEIGHT, WEIGHT 1, data = T, geom = "point", main = "HEIGHT
VS. WEIGHT BY ETHNICITY", xlab "WEIGHT BEFORE TREATMENT (Kg)",
ylab = "HEIGHT (cm)", facets ETH ~ .)

Our facet plot is as follows:

HEIGHT VS. WEIGHT BY ETHNICITY
o . 0
% o - o. . i. -
. LT []
_ WEIGHT BEFORE TREATMENT (Kg)

[106]

Chapter 3

Indeed, we have three scatterplots arranged vertically: one for each level of
ETHNICITY. We can also create facet plots across the levels of two factor variables. In
the following code, we will create a scatterplot of HEIGHT against WEIGHT_1 for each
combination of SMOKE and EXERCISE in each facet, where the two levels of gender
are represented by shape and color. Here is the required command:

gplot (HEIGHT, WEIGHT 1, data=T, shape=factor (GENDER),
color=factor (GENDER) , facets=SMOKE ~ EXERCISE, size=I(3),
xlab="HEIGHT", ylab="WEIGHT BEFORE TREATMENT", main = "HEIGHT vs.
WEIGHT")

You will get the following output:

HEIGHT vs. WEIGHT
FALSE TRUE
F
Wil — "
Y
s

20 - A =
'_
Z ry
u ah A
= |
= i
LLI
o
= factor{GENDER)

An -k
LIJ W
o F
E A My ‘.i ‘I h1
w120 -
o
'_
I
2 100 -
= a

ry
on "‘. h‘ =
ol =
ry
Yy
0 - ah
o 1 1 1 1 1 1
40 0 180 140 80 180
HEIGHT

[107]

Mastering the gplot Function

Since SMOKE and EXERCISE are both categorical variables of two levels, we ended
up with four graphs —one for each combination of the two levels. Note the syntax
facets=SMOKE ~ EXERCISE.

Creating line graphs using qplot

You can create line graphs using geom = "line". The methods for mapping size and
color that you have just seen still apply when you include both lines and symbols on
the same graph. In the following code, we will map line color to the three levels of
the variable ETH to produce three curves on the same graph:

gplot (HEIGHT, WEIGHT 1, data = T, geom = "line", color =
factor (ETH) , main = "Height vs. Weight before Treatment")

Here is the resulting graph:

Height vs. Weight before Treatment

factor[ETH)
1

WEIGHT 1

2
3

 HEIGHT

[108]

Chapter 3

Use the 1inetype = argument to vary your line types. Try the following
examples:

gplot (HEIGHT, WEIGHT 1, data=T, geom="line",
% group=TREATMENT)
- gplot (HEIGHT, WEIGHT 1, data=T, geom="line",
linetype=as.factor (TREATMENT))
gplot (HEIGHT, WEIGHT 1, data=T, geom="line", linetype=
as.factor (TREATMENT), color= as.factor (TREATMENT))

Let's take a look at the last of the graphs obtained using the above syntax:

B as.factor[TREATMENT)

WEIGHT 1
m

[}

HEIGHT

[109]

Mastering the gplot Function

We see a different line type and color for each level of treatment. Now let's create a
graph similar to the previous one, but include both points and lines using geom =
c("point", "line").

gplot (HEIGHT, WEIGHT 1, data = T, geom = c("line", "point"), color =
factor (ETH) , main = "Height vs. Weight before Treatment")

Here is the resulting graph:

Height vs. Weight before Treatment

=
L=l
1

factor[ETH)
1

B
80 - <

WEIGHT 1

-3

 HEIGHT

The graph now includes both points and lines.

[110]

Chapter 3

Creating multiple curves simultaneously

Now let's learn how to create several curves in one graph, provided that the data is
arranged correctly. Read the children dataset from the code file of this chapter.

It gives the heights and ages of four children. We want to produce a graph of
Height against Age for each child, including both points and lines. Enter the
following command:

attach(cheight)

Let's see the first eight rows of this dataset:
head (cheight, 8)

We get the following output:

Child Age Height

1 John 13 165
2 John 14 172
3 John 15 174
4 John 16 177
5 John 17 179
6 John 18 181
7 Mary 13 145
8 Mary 14 153

Note that the data is arranged in columns so that several measurements for each

child appear in a single column. This format is ideal for creating multiple curves
simultaneously. Before we start, let's remind ourselves of the names of each child. Since
Child is a categorical variable, we can see each name using the levels () command:

levels (Child)
Their names are:

[1] "Anne" "Joe" "John" "Mary"

Let's plot all curves together in the same graph, mapping color to child with the
following command:

gplot (Age, Height, data = cheight, geom = c("line","point"),

color = Child, main = "Growth Patterns of Four Children")

[111]

Mastering the gplot Function

We get the following graph:

Growth Patterns of Four Children

Le=]
(=)

Height

[==]

Age

Child
Anne

= Joe

—* John

Mary

We now have a colored curve and colored points for each child.

Including smoothed curves

Let's create a scatterplot relating height and weight before treatment, along with
both points and a smooth curve using geom = c("point", "smooth").In gplot,
the default smoother is LOWESS, and the gray band represents a standard error
confidence interval. LOWESS fits models to local subsets of the variables to produce

a smoothed version of the data.

[112]

Chapter 3

You can read further about LOWESS in various texts and online sources. For this
example, we set up the graph as an object (Y) and plot it by entering the object name
on the command line:

Y <- gplot (HEIGHT, WEIGHT 1, data = T, xlab = "HEIGHT (cm)", ylab =
"WEIGHT BEFORE TREATMENT (kg)", geom = c("point", "smooth"))

Y

Our graph now looks like this:

(=]
1]
1

=
L=l
1

1
in
1

WEIGHT BEFORE TREATMEMT (k)

4 A4 4 & 40
o

"HEIGHT (cm)

L=]

[113]

Mastering the gplot Function

We have the smoothed curve and the confidence interval. Let's graph the same data,
but map color to ethnicity. We add transparency in order to make the curves easy to
interpret. The syntax is as follows:

Y <- gplot (HEIGHT, WEIGHT 1, data = T, xlab = "HEIGHT (cm)", ylab =
"WEIGHT BEFORE TREATMENT (kg)" , geom = c("point", "smooth"), color =
factor (ETH), alpha = I(0.2))

Y

Here is the resulting graph:

ha
n
1

L=
L=
1

factor[ETH)
1

=

1
en
1

— 3

WEIGHT BEFORE TREATMEMT (k)

1 I
44N 4 &

HEIGHT (cm)

(=]
(=]

[114]

Chapter 3

As before, to select your own colors for the smoothed curves, add the scale_color_
manual () layer, for example:

Y + scale color manual (values = c("darkgreen", "red", "yellow"))

The graph now looks like this:

factor[ETH)
1

=

3

]
n
1

WEIGHT BEFORE TREATMENT (kg)

en
1

HEIGHT (cm)

As we saw in the previous example, gplot often provides several ways of achieving
the same graph. Here we set up the graph first, and then specify geom later using the
plus sign. Here, we plot weight before treatment against weight after treatment using
the following syntax:

gplot (WEIGHT 1, WEIGHT 2, data = T, xlab = "BEFORE", ylab = "AFTER")
+ geom_smooth ()

[115]

Mastering the gplot Function

The graph looks like this:

AFTER

BEFORE

Another approach is to set up the graph as an object. The syntax is as follows:

P <- gplot (WEIGHT 1, WEIGHT 2, data = T, geom = c("point", "smooth"),
xlab = "BEFORE", ylab = "AFTER")

p
Notice that these approaches produced the same graph. Now let's use a linear

regression model to obtain the smooth curve (in this case, a straight line). To fit
a linear regression model, use the argument method = "1m", as follows:

gplot (WEIGHT 1, WEIGHT 2, data = T, geom = c("point", "smooth"),
xlab = "BEFORE", ylab = "AFTER", method = "lm")

[116]

Chapter 3

Here is the graph:

AFTER

BEFORE

The regression shows a highly linear relationship between the two measurements,
so that the standard error confidence band is very narrow.

In fact, gplot provides various smoothers, of which LOWESS is the default. Other
options include OLS regression and generalized additive models. You can control the
width of the smoother using the span argument. For example, span = 0.2 givesa
wider band and span = 1 (the maximum value of span) gives a narrower band. You
can modify the smoothed curve by varying the span value between 0 (not smooth)
and 1 (smooth).

[117]

Mastering the gplot Function

Creating histograms with qgplot

Now, let's learn how to create a histogram using geom = "histogram" and control the
bin width using the argument binwidth. In this example, we will create a histogram of
the heights of the patients and select a bin width of 10 cm. The syntax is as follows:

gplot (HEIGHT, geom = "histogram", ylab = "COUNT", xlab = "HEIGHT",
binwidth = 10)

Here is our histogram:

COUNT

Le= T
L=}

I

L=

[=

A q A 4 &

HEIGHT

[118]

Chapter 3

Our histogram has a rather chunky appearance, and we may wish to change
the color and other attributes of the default histogram. By the way, note what
happens if we use the syntax color = I("blue"):

gplot (HEIGHT, geom = "histogram", ylab = "COUNT", xlab = "HEIGHT",
binwidth = 10, color = I("blue"), fill = I ("wheat"))

Now the histogram looks like this:

COUNT

HEIGHT

We get blue outlines for the bars and the axes. Remember that, for histograms, the
color argument controls the color of the histogram outlines, while the argument
£i11 controls the color of the bars.

[119]

Mastering the gplot Function

Creating facet plots for histograms

As with scatterplots, we can create facet plots for histograms. This technique is useful
when we have one or more categorical variables and wish to obtain histograms for
each level or combination of levels. Let's create a histogram facet plot of weight
before treatment for each level of treatment. First, we turn TREATMENT into a factor.
To create facet plots across the levels of a categorical variable, first turn the variable
into a factor using the following syntax:

TRC <- factor (TREATMENT)

Now, let's create the facet plot using the syntax facets = TREATMENT -~

gplot (WEIGHT 1, data = T, geom = "histogram", binwidth = 5, xlab =
"WEIGHT", ylab = "FREQUENCY", £fill = I("red"), facets = TREATMENT ~
.)

The facet plot is shown as follows:

e

9 -

: L |

_ H |

9 -

: 1 |
I 1

n
d

| il
1

FREQUEMNCY

[=J

WEIGHT

[120]

Chapter 3

We now have a histogram for each level of TREATMENT. Facet plots provide additional
detail about the variability of the critical variables.

Creating kernel density plots

Let's create a kernel density plot for patient height. The kernel density plot is
essentially a smoothed version of a histogram. A full discussion of kernel density
plots is beyond the scope of this book, but for many applications they provide a
viable alternative to the histogram. We use a bin width of 5 cm, though we could
try other bin widths. Enter the following syntax:

gplot (HEIGHT, data = T, geom = "density", binwidth = 5, xlab =
"HEIGHT (cm)", ylab = "DENSITY")

The kernel density plot looks like this:

DENSITY

HEIGHT (cm)

[121]

Mastering the gplot Function

In a kernel density plot, the height of the curve gives an estimate of the probability
density at the given value along the horizontal axis.

To shade underneath a density plot, you can use the polygon () command. In the
following example, we will illustrate how this is done in base graphics. Here, we
select a light green color and use the default smoothing (that is, we do not specify
a bin width). Enter the following syntax:

plot (density (HEIGHT), xlab = "HEIGHT (cm)", ylab = "DENSITY", main =
"HEIGHT DENSITY PLOT")

polygon (density (HEIGHT), col="#66FF99", border="darkgreen")

We get this graph:

HEIGHT DENSITY PLOT

0.025
|

DEMSITY
0.015 0.0zo
|

0.01o
|

0.005
|

0.000

! ! I ! !
120 140 160 180 200

HEIGHT (cm)

The polygon () command has shaded under the curve exactly as we wished.

[122]

Chapter 3

Now let's see how shading is done in gplot. We create a kernel density plot

for height, grouped by gender and mapped to our own choice of color. We add
transparency in order to make the plot easy to interpret. The £111 argument gives
a second method of shading under a density plot. Enter the following syntax:

Y <- gplot (HEIGHT, data=T, geom="density", fill=factor (GENDER),
alpha=I(0.5), main="Height by Gender", xlab="Height (cm)",
ylab="Density ")

Y + scale fill manual(values = c("red", "yellow"))

Now the graph looks like this:

Height by Gender

0.05-

0.04-

0.03
= factor{GENDER)
2 F
k]
O M

0.02-

0.01-

0.00 -

1 1 1
140 180 180
Height (cm)

Note that the overlapping area of the two plots has its own color. In this case, the
overlapping area is colored orange.

[123]

Mastering the gplot Function

Creating bar charts

Now, let's use gplot to produce a frequency bar chart; in this case, for the categorical
variable TREATMENT. The heights of the bars give the counts of patients receiving each

treatment. We choose a nice hue of brown from the Hexadecimal Color Chart. To

create a bar chart, we use geom = "bar". Enter the following syntax:
gplot (TREATMENT, data = T, geom = "bar", binwidth = 5, xlab =
"HEIGHT (cm)", ylab = "FREQUENCY", £ill = I("#CC6600"), color =
I("blue"))

Here is our bar chart:

=
1

FREQUENCY

o-
! ! :
A B c

HEIGHT (cm})

The following is a more complex example involving bar charts. We set up a new
dataset relating to dinners purchased by two people at fast food outlets during
one week. Enter the following syntax into R:

dinners = data.frame (person=c("Thomas", "Thomas", "Thomas", "James",
"James"), meal = c("curry", "stew", "salad", "fish", "stir-fry"),
price = c(15, 18, 12, 25, 13))

dinners

[124]

Chapter 3

The output is as follows:

person meal price
1 Thomas curry 15
2 Thomas stew 18
3 Thomas salad 12
4 James fish 25
5 James stir-fry 13

Let's plot the number of dinners each person purchased that week. We choose a nice
hue of purple from the Hexadecimal Color Chart. Enter the following syntax:

gplot (person, data = dinners, geom = "bar", ylab = "Meals", fill =
I("#9999cc"))

Here is our bar chart of the number of dinners:

9 -

Meals

0-
1 1
James Thomas

person

[125]

Mastering the gplot Function

By default, the height of each bar gives a count of the number of dinners purchased
by each person. However, if we want to graph the total cost of each person's dinners,
we must provide a different weight; in this case, the price variable. The weight is
simply the variable that we wish to evaluate and plot on our bar graph. We choose a
nice hue of green. Enter the following syntax:

gplot (person, weight
geom = "bar", ylab

price, data = dinners, fill = I("#009933"),
"Total Cost ($)")

The bar chart now looks like the following;:

30 -

Total Cost (5

10 -

James Thomas
person

Now the height of each bar represents the total cost of each person's dinners.

[126]

Chapter 3

Creating boxplots

In this section, we will learn how to create boxplots. Using the medical dataset, let's
produce a simple boxplot of patient weight before treatment, grouped by the three
levels of treatment. We use the syntax geom = "boxplot" and again we choose a
nice color from the Hexadecimal Color Chart. Enter the following syntax:

gplot (TREATMENT, WEIGHT 2, data = T, geom = "boxplot", xlab = "
TREATMENT", ylab = "WEIGHT (kg)", £ill = I ("#99CCFF"))

Here is the boxplot:

WEIGHT (kg)

TREATMENT

[127]

Mastering the gplot Function

If we do not wish to create a grouped boxplot and want a boxplot of all of the data
taken together, we simply omit the categorical variable from the gplot () command.
Anyway, within any boxplot, we can include the data as points — positioned according
to the levels of the factor variable. Simply include "point" within geom as follows:

gplot (TREATMENT, WEIGHT 2, data = T, geom = c("boxplot","point"),
xlab = "TREATMENT", ylab = "WEIGHT (kg)", £fill =
I("#669900"))

The boxplot, along with the raw data, looks like this:

120 -

100 -

WEIGHT (kg)

440 -
1 1 1
A B C

TREATMEMNT

[128]

Chapter 3

Including the data gives us additional insight into the variation of weight across the
three levels. Now, let's create a box for each level of ethnicity using as. factor (), or
simply factor (cyl). Again, we use the Hexadecimal Color Chart to give a different
color to each box. To do this, we use the ¢ () operator to include three colors within
£i11 = 1().Enter the following syntax into R:

gplot(as.factor (ETH), WEIGHT 2, data = T, geom = "boxplot", xlab =
"ETHNICITY", ylab = "WEIGHT (kg)", £fill = I(c("#66CC99", "#9999cCC",
"#CC6666")))

Now the boxplot looks like this:

120 -

100 -

WEIGHT (ka)

40 -
1 1 1
1 2 3

ETHNICITY

We have produced an attractive boxplot with different colors for each box.
Remember that if the categorical variable is not initially a factor, then you

can turn it into a factor using either as. factor () or factor (). Then, you

can proceed to create your grouped boxplot.

[129]

Mastering the gplot Function

Creating graphs with dates

Sometimes, you may wish to create a time series graph that involves dates along
the horizontal axis. We can create such graphs using gplot. Let's try plotting a time
series graph. We use the built-in economics dataset (see http://docs.ggplot2.
org/current/economics.html) and plot the population against the date. Let's see
the first six rows using head () :

head (economics)

Here are the first six rows of the data:

date pce pop psavert uempmed unemploy
1 1967-06-30 507.8 198712 9.8 4.5 2944
2 1967-07-31 510.9 198911 9.8 4.7 2945
3 1967-08-31 516.7 199113 9.0 4.6 2958
4 1967-09-30 513.3 199311 9.8 4.9 3143
5 1967-10-31 518.5 199498 9.7 4.7 3066
6 1967-11-30 526.2 199657 9.4 4.8 3018

Now we look at the last six rows using the following command:

tail (economics)

The output is as follows:

date wariable walue

11 2006-06-30 pop 299801
12 2006-07-31 pop 300065
13 2006-08-31 pop 300326
14 2006-09-30 pop 300592
15 2006-10-31 pop 300836
16 2006-11-30 pop 301070
17 2006-12-31 pop 301296
18 2007-01-31 pop 301481
19 2007-02-28 pop 301684
20 2007-03-31 pop 301913

41 2006-06-30 unemploy 7228
42 2006-07-31 unemploy 7116
43 2006-08-31 unemploy 6912
44 2006-09-30 unemploy 6715
45 2006-10-31 unemploy €826
46 2006-11-30 unemploy 6849
47 2006-12-31 unemploy 7017
48 2007-01-31 unemploy 6865
49 2007-02-28 unemploy €724
50 2007-03-31 unesmploy 6801

[130]

http://docs.ggplot2.org/current/economics.html
http://docs.ggplot2.org/current/economics.html

Chapter 3

We can see that the economics dataset runs from the year 1967 to 2007 and

contains dates in a particular format (hyphens separate the year, month, and day).
We wish to plot certain variables by date. However, before we plot, note that R likes
dates in the format year-month-day. For example, let's extract the first date in the
economics dataset:

economics$date[1]

The output is as follows:
[1] "1967-06-30"

You can use the as.Date () function to ensure that R understands a particular
format. For example, November 3, 2011 may be expressed as 03/11/2011.
However, R does not yet understand this format. Let's read this format into R.

datel <- "03/11/2011"
datel

The output obtained is as follows:

[1] "03/11/2011"

We cannot use this format directly, but we can express the date in the format in
which R likes dates. Enter the following syntax:

datelB <- as.Date(datel, "%d/%m/%Y")
datelB

Now the output is:
[1] "2011-11-03"

Note the percentage signs. The lowercase m stands for the month, the lowercase d
stands for the day of the month, and finally the uppercase Y stands for the year.
Other examples may involve the lowercase b (an abbreviation of the name of the
month; for example, Mar) or the uppercase B, which refers to the full name of the
month. You can convert other formats to the necessary format using as.Date ()
and percentage signs. For example, you can use the following syntax:

as.Date('12MAR89', format="'%d%b%y"')
[1] "1989-03-12"
Now use the following syntax:

as.Date('August 11, 1987',format='%B %d, %Y')
[1] "1987-08-11"

[131]

Mastering the gplot Function

In these examples, you can see that we recast the given date to the preferred format
for R by instructing R how to interpret each component of the given date.

Let's create our graph, placing date as the first argument inside the gplot ()

command. Enter the following syntax:

gplot (date, pop, data=economics, geom="line",
I(2))

You will get this graph:

col = I("red"), size

[132]

Chapter 3

The graph has horizontal axis labels for every decade. For datasets spanning
shorter periods of time, gplot may produce default axis labels for each year
or even for each month.

Now, let's plot against a particular set of dates that are labeled appropriately.
We will select only data pertaining to 2006-6-1 and after. We use the subset ()
command and the comparison operator > to select our set of dates:

econdata <- subset(economics, date > as.Date("2006-6-1"))

econdata

We get the following output:

date pce pop psavert uempmed unemploy
469 2006-06-30 9338.9 299801 -1.7 8.2 7228
470 2006-07-31 9352.7 300065 -1.5 8.4 7116
471 2006-08-31 9348.5 300326 -1.0 8.1 6912
472 2006-09-30 9376.0 300592 -0.8 8.0 6715
473 2006-10-31 9410.8 300836 -0.9 8.2 6826
474 2006-11-30 9478.5 301070 -1.1 7.3 6849
475 2006-12-31 9540.3 301296 -0.9 8.1 7017
476 2007-01-31 9610.6 301481 -1.0 8.1 6865
477 2007-02-28 9653.0 301684 -0.7 8.5 6724
478 2007-03-31 9705.0 301913 -1.3 8.7 6801

Now let's create our graph, a line graph in red and twice the default line width, using
the following syntax:

gplot (date, pop, data=econdata, geom="line", col = I("red"), size =
I(2))

[133]

Mastering the gplot Function

Here is the output graph:

uuuuuu

uuuuu

uuuuuu

[
(%]
¥
7
1
1

date

So far, we have plotted one variable (pop). However, the variables are configured

in separate columns (one variable to each column), whereas gplot needs all of the
variables we wish to plot in a single column. So, how do we plot two or more of

the variables on the same graph? To create graphs of one or more variables in our
dataset (pce, pop, psavert, and so on), we use the melt () function (provided within
the reshape package) in order to configure the data into a format that gplot can use.
The reshape package provides functions that enable you to recast data into formats
that are suitable for gplot and ggplot. The melt () function creates a new column
that stores the variables. To use the functions provided within reshape, first install
the reshape package by entering install.packages ("reshape") on the command
line. Then, load the reshape library using the library () command:

library (reshape)

[134]

Chapter 3

Now we use the melt () command:

dat <- melt (econdata,

head (dat)

The output is as follows:

1
2
3
4
5
6

date
2006-06-30
2006-07-31
2006-08-31
2006-09-30
2006-10-31
2006-11-30

id =

variable value

pce
pce
pce
pce
pce

pce

9338.9
9352.7
9348.5
9376.0
9410.8
9478.5

ndate")

Note that all of the variables are now arranged column-wise and given the column
name variable. It makes sense to plot both population and unemployment together,
because they are related variables and because the other variables exist on completely
different scales. Therefore, we subset for these two variables only. We use the logical
operator for OR (the vertical line) to include data for pop and unemploy together:

datsub <-

datsub

subset (dat, wvariable ==

You will get the following output:

11
12
13
14
15
16
17
18
19
20
41
42
43

date
2006-06-30
2006-07-31
2006-08-31
2006-09-30
2006-10-31
2006-11-30
2006-12-31
2007-01-31
2007-02-28
2007-03-31

variable value

pop
pop
pop
pop
pop
pop
pop
pop
pop
pop

2006-06-30 unemploy
2006-07-31 unemploy
2006-08-31 unemploy

299801
300065
300326
300592
300836
301070
301296
301481
301684
301913
7228
7116
6912

n pop n

variable == "unemploy")

[135]

Mastering the gplot Function

44 2006-09-30 unemploy 6715
45 2006-10-31 unemploy 6826
46 2006-11-30 unemploy 6849
47 2006-12-31 unemploy 7017
48 2007-01-31 unemploy 6865
49 2007-02-28 unemploy 6724
50 2007-03-31 unemploy 6801

Now we make the variables of this object visible to R by name using attach():
attach(datsub)

Now let's use gplot to plot the two series, mapping a color to each variable:

gplot (date, value, data = datsub, type = "point", size = I(3), id =
variable, color = variable)

Here is our graph:

wariable
pop
* unemploy

value

[
8]

date

[136]

Chapter 3

These two series are of different magnitudes, but at least we have included them on
the same graph. Note that the date axis includes labels (giving the month) in quarters
(that is, where the calendar year is divided into four quarters).

Navigate to http://docs.ggplot2.org/current/, and refer to scale_x_ date for
examples of plotting multiple times series on a single graph.

One last example will suffice to illustrate the formatting options available through
gplot. We load the scales library in order to access various date formatting
functions. The scales library enables us to choose the format we want for labels
on our time series graphs. For example, we may wish to provide axis labels in the
format month/day. We use scale_x_date () to do this job:

library(scales)

W <- gplot(date, value, data = datsub, type = "point", size = I(3),
id = variable, color = variable)

W + scale x date(labels = date format ("%m/%d"))

The graph looks like this:

wariable
pop

* unemploy

walue

date

[137]

http://docs.ggplot2.org/current/

Mastering the gplot Function

Our graph includes dates (quarterly) according to the required format: month/day.

Summary

In this chapter, you learned a variety of useful techniques to produce high-quality
graphs using gplot. You also learned how to create scatterplots, line graphs, and
many other types of graph. You also saw how useful gplot can be when you want to
map symbol size, shape, and color (or 1inetype) to levels of a categorical variable. In
a book of this scope, it is impossible to cover all of the possibilities available through
gplot, but I hope you found that this chapter provided helpful approaches that you
can use to create your own graphs. Many books and online sources on gplot are
available for you to develop your gplot skills even further.

In the next chapter, you will learn how to create graphs using the ggplot function,
an even more powerful graphics command.

[138]

Creating Graphs with ggplot

In the previous chapter, you learned a variety of useful techniques to produce
high-quality graphs using gplot. In this chapter, you will learn how to create graphs
using ggplot, an even more powerful graphics tool than gplot. In a book of this
scope, it is impossible to cover all that ggplot has to offer. Thus, here we learn only
the basic methods of ggplot. After reading this chapter, you should be able to create
interesting graphics using ggplot. If you wish to read further about ggplot, links to
other literature are given in this chapter. The topics covered in this chapter include
the following;:

* Setting up variables for plotting
* Adding color, symbol type, size, and shape as layers
* Controlling plotting backgrounds and margins
* Creating line graphs, histograms, bar chats, and boxplots
* Using attractive color schemes
By the end of this chapter, you should understand the basic principles behind

the creation of graphics in ggplot, and will be able to create professional graphs
with ggplot.

_ Toassist you in mastering ggplot, I recommend the website
% http://docs.ggplot2.org/current/.
L

This website provides links that assist you in a wide range of
ggplot techniques.

http://docs.ggplot2.org/current/

Creating Graphs with ggplot

Getting started with ggplot

You may find that gplot is sufficient to create most of the graphics you want.
However, you may need even more options than are provided within gplot, and
ggplot may provide those options. Mastering ggplot is somewhat more difficult
than gplot, but ggplot does provide more options to control plotting backgrounds,
axes and axis labels, legends, grids, and color schemes.

In ggplot, we set up an initial graphing object and then add attributes in steps
(which we call layers). Let's start by creating a scatterplot of patient height versus
weight before treatment using the medical dataset, which you can copy and paste
from the code file for this chapter (available in the code bundle of this book). First
note the aes () function (aes is short for the word aesthetics) in which we identify
the variables that we wish to include in our graph and in which we set up mappings
for color, size, and shape. Also, note the geom point () function that creates points.
Thus, we now set up HEIGHT and WEIGHT 1 as the variables we wish to graph using
aes () and then we add the layer geom_point () to create a scatterplot. Later, we
can add symbol types (colors, shapes, and sizes, and so on) as new layers. Enter the
following syntax, which creates a graphics object:

library (ggplot2)

P <- ggplot(T, aes(x = HEIGHT, y = WEIGHT 1)) + geom point()
P

Here is the scatterplot of patients' height versus weight:

WEIGHT 1

 HEIGHT

[140]

Chapter 4

The two variables you wished to plot were included within the aes () function
and the instruction to plot points (rather than a line) was provided though the
geom_point () function. We can include axis labels that record the units of
measurement using xlab () and ylab (). We can use this syntax:

P + xlab ("HEIGHT (cm)") + ylab("WEIGHT 1 (Kg)")

However, we will use the 1abs () function instead and we now include a title using
labs(title...):

P + labs(x = "HEIGHT (cm)", y = "WEIGHT 1 (Kg)") + labs(title =
"WEIGHT vs. HEIGHT 1")

Here is our scatterplot:

WEIGHT vs. HEIGHT _1

G .
é - -
= P
T ...
o ° - -
w Y e
g - . -

-] . A -

"HEIGHT (cm)

Again, the horizontal and vertical axis labels and the title were added as layers. Let's
update the graphics object P so that from now on our graph has a title and axis labels
that give the units of measurement. Enter the following syntax:

P <- P + labs(x = "HEIGHT (cm)", y = "WEIGHT 1 (Kg)") + labs(title =
"WEIGHT vs. HEIGHT")

[141]

Creating Graphs with ggplot

At this stage, we may wish to modify the title. Let's set the title to twice the default
size and set its color to blue. To do so, we make use of plot.title within the
theme () function, which allows you to modify theme settings. We also make use
of the function element_text (), which allows you to modify color, size, font, and
other attributes of your text. In the following syntax, we increase the font size using

size = rel():

P + theme(plot.title = element text(size = rel(2), color = "blue"))

This syntax gives us the following scatterplot:

WEIGHT vs. HEIGHT

WEIGHT _1 (Ka)

'HEIGHT (cm)

You can see that some complex syntax was required. However, now that you know
the syntax, you can use it to modify titles in your own graphs. Further information
on the themes available in ggplot is given in various texts and online sources. A very
good resource is available at http: //docs.ggplot2.org/current /theme.html.

[142]

http://docs.ggplot2.org/current/theme.html

Chapter 4

In the Producing scatterplots using qplot section in Chapter 3, Mastering the qplot Function,
we saw how to set aesthetics in gplot. In ggplot, the aesthetics are set within a
function that also controls the graph type. For example, we have geom_point () for
scatterplots, geom_bar () for bar graphs, and geom_histogram() for histograms.

In the following syntax, we use points, and then set the symbol color to dark green
and the symbol size to the value 5:

P + geom point(color = "darkgreen", size = 5)

Here is the resulting scatterplot:

WEIGHT vs. HEIGHT

® 0
20 -
&
]
] «°
=
b o0 ®
9 80 -
2 ° &
L N)
] [] o ©
® ' &
] [] 9
D - ..
: @ 9
w- @

I 1
4 A 180

"HEIGHT (cm)

[== I
[=]

[143]

Creating Graphs with ggplot

Mapping color, shape, and size to a
variable

We saw how to map a color to a categorical variable using gplot. Now we map
symbol color to the three levels of ETH using ggplot. In ggplot, we map color, size,
and shape within aes () ; also, as we did in gplot, we select our own color scheme
using scale_color_manual (), as follows:

P + geom point (aes(color = factor (ETH)), size=I(5)) +
scale color manual (values = c("red", "yellow", "blue"))

Now the scatterplot looks like this:

WEIGHT vs. HEIGHT

L
@
=
= factor{ETH}
— . 1
lf .
— Z
9 o3
: e
[}]
[' o @
® ®

HEIGHT (cm)

[144]

Chapter 4

Each level of ETH now has a different color. In ggplot, we can also map symbol size
and shape to factor levels, again using aes () . Try the following code yourself:

P + geom point(aes(size = factor (ETH)))

You will get this scatterplot:

WEIGHT vs. HEIGHT
*®
>
®
_Qi ol
: . fa.-:'.tl::r{ETH}
T "i » *>
g o - - *
g .o ® ®:
L . .
. . , » *
» 3 .
i . .
® .
_ HEIGHT (cm)

Another way of mapping symbol size is through scale_size_area().Try the
following code yourself:

P + geom point(aes(size = WEIGHT 2)) + scale size area()

[145]

Creating Graphs with ggplot

The scale_size_area() layer maps symbol area onto continuous variables by
dividing the continuous variable into levels. Try the following syntax yourself.
It uses another function called scale_shape (). In this example, we create a nice
effect by including two sets of symbols:

P + geom point (aes(shape = factor (TREATMENT)), size = 3) +
scale shape(solid = FALSE)

Modifying the plotting background

You can change the appearance of the plotting background using various themes.
The default theme is theme_grey (), which gives a gray background with white grid
lines. Let's create a white background using theme_bw (), which by default produces
black grid lines:

P + theme bw()

Here is the resulting scatterplot:

WEIGHT vs. HEIGHT

il

20 - . *

WEIGHT _1 (Kg)

140 180 120
HEIGHT (cm)

You can change both your panel and plot attributes using theme (). For example,
if you want the ivory color for the background, you can get it using theme (panel.
background = element rect(fill = "ivory")), as shown:

P + theme(panel.background = element rect(fill = "ivory"))

[146]

Chapter 4

This syntax gives us the following scatterplot:

WEIGHT 1 (Kq)

WEIGHT vs. HEIGHT

"HEIGHT (cm)

Again, you require some complex syntax, but you can use this syntax to provide any
color you like for your plotting background. Of course, ggplot allows you to control
almost every aspect of a graph. For example, you can perform the following actions:

Color the plotting margin using plot .background.

Modify gridlines using panel.grid.major and panel.grid.minor.

Introduce transparency using the alpha argument within the geom function.

Control the legend position using theme (legend.position...).

Change your legend keys using theme (legend.key. . .). For example, you
can change the legend labels, create a nice box around your legend, color the
legend space, or write the legend title in italics.

Modify tick marks and tick labels using theme (axis.text...).

Create horizontal and vertical lines using geom_hline () and geom vline ().

The website given in the introduction to this chapter (http://docs.ggplot2.org/
current/) provides links that assist you with all of the previous techniques and
many others.

[147]

http://docs.ggplot2.org/current/
http://docs.ggplot2.org/current/

Creating Graphs with ggplot

Controlling the legend name and legend
labels

As we saw with gplot, mapping an aesthetic to a factor variable can change the
legend name by introducing the word factor. To fix this problem, use the name
argument in one or other of the many scale options. We can also modify the legend
labels using 1abels. In the next example, we create our own legend name and assign
particular ethnicities to the levels of ETH. At the same time, we encounter a very
useful function, scale color_ brewer (). This function allows you to select from a
wide range of color palettes (the default option is a range of blue hues). The syntax is
as follows:

P + geom point(aes(color = factor (ETH)), size= I(4)) +
scale color brewer (name = "Ethnicity",
labels=c ("European", "Asian", "Other"))

The scatterplot looks as follows:

WEIGHT vs. HEIGHT

=
= Ethnicity
- .. Eurcpean
- . e o
I ... Asian
ol
i . . * Other
=
+
+* F *
*
* *
1 1 1
HEIGHT {cm})

[148]

Chapter 4

We have succeeded in naming our legend as we wished, and we have met a new
function that allows you to choose attractive color schemes. Note that we used
scale_color_brewer () only after mapping color to ETH within aes.

Modifying the x and y axes

Both scale_x_continuous () and scale_y continuous () are very useful functions.
They provide many options for modifying axes. For example, you can use these
functions to control axis limits, reverse the axes, and introduce logarithmic or other
axis scales. In addition, they provide yet another way of creating axis labels. Try the
following syntax yourself:

P + scale x continuous("Centimetres") +
scale y continuous("Kilograms")

However, these two functions can do a lot more. For example, let's use scale_x_
continuous and scale_y continuous to modify our axis limits.

P + scale y continuous(limits=c (60, 100)) +
scale x continuous(limits=c (140, 180))

We get this graph:

WEIGHT vs. HEIGHT

WEIGHT 1 (Ka)
*

HEIGHT (cm)

[149]

Creating Graphs with ggplot

Within these two functions, you can select locations for tick marks using breaks.
Try this syntax yourself:

P + scale x continuous(breaks=c (150, 160, 180)) +
scale y continuous(breaks=c (70, 90, 120))

You can label the ticks as you wish using labels:

P + scale x continuous(breaks=c (150, 160, 180), labels=c("SMALL",
"MEDIUM", "LARGE"))

Here is the resulting graph:

WEIGHT vs. HEIGHT

(=1
[=]

= »
< .
= R
I on-
9 =1 L] . L]
L -
g - -
-] o . -
- . T !
- b .
0- . . *
* - .
SMALL VEDIUN LARGE
HEIGHT (cm)

[150]

Chapter 4

Creating attractive color schemes

You saw how to use scale_color_ brewer to create various color schemes, starting
with a range of blues (the default color scheme). While using this function, you must
select the palette you wish to use. The scale_color_ brewer () function uses syntax
like this:

scale color brewer(..., type = , palette =)

You can select either seq (sequential), div (diverging), or qual (qualitative). Within
those options, you can then select a particular palette, where the available palettes
control color schemes. Further information on scale color brewer () can be found
athttp://docs.ggplot2.org/current/scale brewer.html.

Try all of the following lines of syntax yourself:
P + geom point(aes(color = factor(ETH)), size=I(4)) +

scale color brewer (type="div")

P + geom point(aes(color = factor (ETH)), size=I(4)) +
scale color brewer (palette="Greens")

P + geom point(aes(color = factor (ETH)), size=I(4)) +
scale color brewer (type="seq", palette=3)

P + geom point(aes(color = factor (ETH)), size=I(4)) +
scale color brewer (type="seq", palette=4)

P + geom point(aes(color = factor (ETH)), size=I(4)) +
scale color brewer (type="seq", palette=6)

P + geom point(aes(color = factor (ETH)), size=I(4)) +
scale color brewer (type="seq", palette=7)

P + geom point(aes(color = factor (ETH)), size=I(4)) +
scale color brewer (palette="Reds")

P + geom point(aes(color = factor (ETH)), size=I(4)) +
scale color brewer (palette="Setl")

[151]

http://docs.ggplot2.org/current/scale_brewer.html

Creating Graphs with ggplot

You can devise many other combinations of type and palette. Let's see the graph of
the last command:

WEIGHT vs. HEIGHT
L
™
-
g - ‘ factor[ETH)
- -
T ot . l
g 80" - *e =
= o 3
* 58
* @ s *
N [] »h
* o,
a0- W
' HEIGHT (cm)

We have mapped attractive colors to each level of ethnicity.

Creating curves for each factor level

Let's see how to produce multiple curves in ggplot. We use the Children dataset
(refer to the Creating multiple curves simultaneously section in Chapter 3, Mastering

the gplot Function) to produce a line graph of height against age for each child. We
created this particular graph in gplot and now we create it in ggplot, but we amend
it a little. You can cut and paste the data directly from the code file for this chapter.
Remember that the data for each child is arranged in a single column that holds six
measurements of height for each child. We will include large points (size = 3)

and slightly heavier lines (lwd = 1.2) using geom point () and geom_line(),
respectively. We will also map a color to the variable child, so that both points

and lines have a unique color for each child.

[152]

Chapter 4

Finally, we impose our own color scheme using scale_color _manual ():

ggplot (cheight, aes(x=Age, y=Height, color = factor(Child))) +
= 0.7) + labs(title =

geom point(size = 3) + geom line(lwd =
"Childrens' Growth Patterns") + labs(x = "Age (years)", y =

"HEIGHT (cm)") + scale color manual (values = c("red",

"yellow", "blue", "darkgreen"))

Now we get this graph:

Childrens’ Growth Patterns

180 -
/)
- Anne

E

=

E Joe

2 -+

m John
I+ ~* Nary

in
L=
1

Ba

.Jige (years}-

The arrangement of the data within a single column made it easy to create a graph

with all four curves at once.

[153]

Creating Graphs with ggplot

Creating histograms

In ggplot, we can create histograms using geom_histogram (). Histograms record
frequencies for a continuous variable by dividing it into bins of a particular width.
Using the medical dataset, use the following syntax to create a basic histogram

of patient height, setting the bin width to 10 cm. Again, you can read the data by
copying and pasting it from the code file for this chapter. The syntax is as follows:

ggplot (T, aes(x=HEIGHT)) + geom histogram(binwidth=10)

Within a histogram, we may wish to identify subgroups of the population using
different colors. In our example, we can include a different color for each gender
using a color scheme from scale_fill brewer (). Again, we use a bin width

of 10 cm:

ggplot (T, aes(x=HEIGHT, fill=GENDER)) + geom histogram(binwidth=10) +
scale fill brewer (type = "div", palette = 4)

Here is what the histogram looks like:

GENDER
F

M

count

HEIGHT

[154]

Chapter 4

Essentially, we have two histograms together. This information is very useful, but

perhaps a better alternative is to produce a grouped histogram using the argument
position = "dodge":
ggplot (T, aes(x=HEIGHT, £fill=GENDER)) +

geom histogram(position="dodge", binwidth=10) +

scale fill brewer (type = "qual", palette = 2)

This syntax gives the following histogram:

8-
.
GENDER
4- F
M
a- I
1 1 1 1

I
120 140 180 180 200
HEIGHT

count

This grouped histogram has an attractive appearance and presents the information
effectively. However, the bins look as though they represent 5 cm each. In fact, each
bin represents 10 cm, but the histogram includes bars for both genders within each
bin. Let's try a similar example, this time partitioning by ETH (a three-level categorical
variable) and using a different color palette from scale_£fill brewer (). To achieve
this graph, we include factor (ETH) to force a grouped histogram for three levels:

ggplot (T, aes(x=HEIGHT, fill=factor (ETH))) +
geom histogram(position="dodge", binwidth=10) +
scale fill brewer (type = "qual", palette = 6)

[155]

Creating Graphs with ggplot

Our histogram looks like this:

e

count

ma

D-

factor[ETH)
1
2
3
1 1

120 140 160 180 200
HEIGHT

Again, the bin width remains at 10 cm, but now we have three bars within each bin.
The use of scale color brewer () has allowed us to make effective and attractive
histograms in which subgroups are identified by color.

Creating bar charts

Bar charts are useful for comparing the numbers of elements within subgroups of a
population. However, they can be used for other purposes, such as comparing the
means of a continuous variable across the levels of a categorical variable. You can
create bar charts in ggplot using geom_bar (). As an exercise, create a bar chart of
numbers of patients by ethnicity by turning the variable ETH into a factor by using
factor (). The syntax is as follows:

W <- ggplot (T, aes(factor(ETH))) + geom bar()
w

[156]

Chapter 4

The height of each bar gives the number of patients within each ethnicity. As an
exercise, you can create a horizontal bar chart by adding the layer coord_f1lip ().
The coord_f£1lip () layer also works for other types of graph, including scatterplots
and bar charts.

Now we insert our choice of color and border color using £i11 and color. Let's have
an ivory color for the bars, along with dark green borders. The syntax is as follows:

W + geom bar(fill="ivory", color="darkgreen")

This syntax gives the following bar chart:

count

factor(ETH)

[157]

Creating Graphs with ggplot

Creating a stacked bar chart

Now we will see how to create a stacked bar chart of a categorical variable,
partitioned by the levels of another categorical variable. Let's plot the numbers of
patients receiving each treatment, partitioned by the two levels of RECOVER. Simply
insert both variables within aes (), mapping a color to one of them using £i11 and
choosing our own colors using scale_fill manual (). This time, we choose colors
by entering colors (distinct = FALSE) on the command line and selecting from
the list returned by R:

ggplot (T, aes (TREATMENT, fill=factor (RECOVER))) + geom bar() +
scale fill manual (values = c("springgreen3", " lightsalmonl"))

Here is the resulting bar chart:

a
£n
|

factor|RECOVER)

count

B
TREATMEMNT

1 1
A i~
Ll L

[158]

Chapter 4

The label 0 represents patients who did not recover and the label 1 represents those
who did recover. Thus, the stacked bar chart suggests that treatment A was the most
effective, while treatment B was the least effective.

We can try faceting this bar chart to create separate charts for those who recover
and those who do not. We use the syntax facet_wrap (~ RECOVER) in order to
create separate graphs for each level of RECOVER. The facet_wrap () function is
covered in more detail in the section entitled Creating a faceted bar chart. We choose
our colors from the Hexadecimal Color Chart using scale_£fill manual (). Here,
we subset for smokers only. The syntax is as follows

ggplot (subset (T, SMOKE == "Y"), aes(TREATMENT, fill=
factor (RECOVER))) + geom bar()+ facet wrap(~ RECOVER) +
scale fill manual(values = c("#669933", "#FFCC33"))

Now the bar chart looks like this:

factor[RECOVER)
0
1

count

A B c A B C
TREATMENT

[159]

Creating Graphs with ggplot

This bar chart gives us the required information, partitioned into two separate
charts —one for each level of RECOVER.

Creating a grouped bar chart

We can present the same information using grouped bar chart. To do so, we use the
argument position = "dodge" argument, again within geom_bar (). Again, we
choose our colors from the Hexadecimal Color Chart using scale fill manual ().
We subset for those who exercise. The syntax is as follows:

ggplot (subset (T, EXERCISE == "TRUE"), aes(TREATMENT, fill-=
factor (RECOVER))) + geom bar (position="dodge") +
scale fill manual(values = c("#6666FF", "#669900"))

You will get this bar chart:

factor{RECOVER}
0

count

1

ha

B C
TREATMEMT

1
A
fa)

[160]

Chapter 4

All patients who exercised and received treatment A eventually recovered. You can
verify this result by examining this particular subset, as follows:

subset (T, EXERCISE == "TRUE" & TREATMENT == "A")

The output is as follows:

PATIENT GENDER ETH TREATMENT AGE WEIGHT 1 WEIGHT 2 HEIGHT SMOKE EXERCISE RECOVER

1 Mary F 1 A Y 79.2 76.6 169 Y TRUE 1
7 Charles M 3 A E 76.2 74.7 176 N TRUE 1
11 Stuart M 2 A Y 67.7 65.3 170 N TRUE 1
15 Sue F 1 A M 79.6 79.8 179 N TRUE 1
33 Peter M 1 A M 79.1 76.8 177 N TRUE 1

Creating a faceted bar chart

As a more complex example in which we include even more information, let's try a
faceted bar chart of the numbers of patients receiving each treatment. However, the
bar chart is now partitioned by both gender and stacked according to whether or not
the patient recovered.

In fact, ggplot provides two functions to create facet plots. We use facet _grid() to
split a variable by the levels of one or more categorical variables so that the graphs
for each level are placed together, arranged either horizontally or vertically. We use
facet_wrap () to position the facet plots together in your chosen number of rows and
columns. For further information on these two functions, visit the following websites:

* To find helpful material on creating wrapped facet plots, refer to
http://docs.ggplot2.0org/0.9.3.1/facet wrap.html

* To find out more about creating grid plots, refer to http://docs.ggplot2.
org/0.9.3.1/facet_grid.html

Let's use facet_grid() on TREATMENT, faceted by the two levels of RECOVER:

ggplot (T, aes (TREATMENT, fill=factor (RECOVER))) + geom bar() +
facet grid(. ~ GENDER) + scale fill manual (values =
c("#339999", "#CC9900"))

[161]

http://docs.ggplot2.org/0.9.3.1/facet_wrap.html
http://docs.ggplot2.org/0.9.3.1/facet_grid.html
http://docs.ggplot2.org/0.9.3.1/facet_grid.html

Creating Graphs with ggplot

This syntax produces the following faceted bar chart:

count

[

A B

o-
1 1 1 1

factor[RECOVER)
0
1

1
-
L

C A B
TREATMEMT

This graph presents a lot of useful information at once. Partitioning by gender allows
us to compare patient recovery within and across the two genders and also within

and across treatment levels.

Creating boxplots

In ggplot, we create boxplots using geom_boxplot (). Here, you will create a
boxplot of the heights of female patients, partitioned by ethnicity. As in previous
examples, we use the subset () command to include only females. We can create
the subset either before we use ggplot, or within ggplot, as follows:

H <- ggplot (subset (T, GENDER == "F"), aes(factor (ETH), HEIGHT))

[162]

Chapter 4

You can create a basic boxplot yourself by entering the following syntax:

H + geom boxplot ()

You should have got a basic boxplot of height, partitioned by ethnicity. For the
remainder of this section, we will embellish our basic boxplot.

Try the following boxplots for yourself:
H + geom boxplot() + geom jitter()
H + geom boxplot() + coord flip()

%‘ H + geom boxplot(outlier.color = "red", outlier.size =
5)

H + geom boxplot(aes(fill = SMOKE))
H + geom boxplot (£ill= "#99CCFF" , color="#990000")

Next we set our choice of fill color and outline color from the Hexadecimal Color
Chart, using the following syntax:

H + geom boxplot(aes(fill = factor(ETH))) + scale fill manual (values
= c("#CCCC99", "#FFCCCC", "#99CCFF"))

You will get this boxplot:

‘ factor(ETH}

=
=F}
=F}

HEIGHT

factor(ETH)

[163]

Creating Graphs with ggplot

Labeling points with text

Now we will see how to label points with text. Suppose that we want a graph of

the heights of treatment A female patients against their weight before treatment, in
which each point is labeled by the patient's name and where the text is in red. First
we subset using the subset () command, but we include two criteria (gender and
treatment). We include the text using the function geom_text (). Remember that the
variable PATIENT gave the names of each patient. Enter the following syntax:

F <- subset (T, GENDER == "F" & TREATMENT == "A")
S <- ggplot(F, aes(x=HEIGHT, y=WEIGHT 1, label=PATIENT))

Finally, we add the required text, but we do not include the points as yet:
S + geom text(size = 6, col = "red")

The following graph shows the names of the patients:

Mary Sue

Lesley

WEIGHT 1

Robin
Ann

HEIGHT

[164]

Chapter 4

In the preceding graph, the patients' names appeared without any points. Of course,
we can set text aesthetics to our chosen values. As an exercise, use the following
syntax to create a graph with point labels. You use blue text and position the text
underneath and to the left of the points using hjust= 1 and vjust= 1:

S + geom point() + geom text(hjust=1, vjust=1l, size = 6, col =
llbluell)

Note that one name was cut off (Ann). We will learn how to fix that problem in the
next example. The arguments hjust and vjust vary the position of the text relative
to the points; hjust allows you to control horizontal justification, while vjust allows
you to control vertical justification. Both hjust and vjust range between 0 and

1, where 0 gives left-justified text and 1 produces right-justified text. Try different
values of hjust and vjust yourself. For example, using the value zero places the text
above and to the right.

You can also experiment with the text size and angle. In the following example, you
set hjust and vjust to zero:

S + geom point() + geom text(angle = 45, hjust=0, vjust=0, size = 6,
col = "darkgreen")

If you created this graph, you will have noticed that two names were cut off (Mary
and Sue). To fix this problem, we can reset the axis limits to include both names
using scale_x_continuous () and scale_y_continuous (). We choose axis limits
that ensure the inclusion of both names. For the vertical axis, we can choose 50 Kg to
100 Kg, and for the horizontal axis we can choose 140 cm to 200 cm.

S + geom point() + geom text(angle = 45, hjust=0, vjust=0, size = 6,
col = "darkgreen") + scale y continuous(limits=c (50, 100)) +
scale x continuous(limits=c (140, 200))

[165]

Creating Graphs with ggplot

Here is our graph:

WEIGHT 1

HEIGHT

Now each name appears in full. Of course, we could have chosen other axis limits
that included all of the patients' names.

Mapping color to text

Next, we will learn how to map color to text for categorical variables. In this
example, you map text color to the variable ETH. Again, you do so within aes ()
by turning ETH into a factor:

S + geom text (aes(color=factor (ETH)))

[166]

Chapter 4

You will see that the patient's names now appear in a different color for each
ethnicity. For the next example, we put the text at an angle of 35 degrees and justify
the text. We retain suitable axis limits to include all names in full. We also choose

a color scheme using scale_color_brewer (). Finally, we rename and relabel the
legend entries appropriately using name and labels. The syntax is as follows:

S + geom point() + geom text(aes(color=factor (ETH), angle = 35,
hjust=1, vjust=1l)) + scale y continuous(limits=c(50, 90)) +
scale x continuous(limits=c (140, 190)) +
scale color brewer (palette= "Setl" , name =
"Ethnicity",labels=c ("European", "Asian", "Other"))

This syntax will give the following graph:

ol — L]
L]
1 2
3 o
\&\'3-
— Ethnicity
E_ & Eurcpean
% i = Asian
L]
= \@'.’ A Other
W &
7] L
A
- ?_Q‘c
pi
1 1 1 1 1 1
HEIGHT

Mapping text color to the categorical variable ETH has conveyed additional
information about these patients.

[167]

Creating Graphs with ggplot

Including regression lines

In ggplot, you can include regression lines using geom_abline (). For the next
example, we set up the same graph of patient height against weight that we have
used several times before:

P <- ggplot(T, aes(x = HEIGHT, y = WEIGHT 1)) + geom point()

As a start, let's calculate the slope and intercept of the line of best fit (regression line)
for height against weight before treatment. In Chapter 1, Base Graphics in R - One Step
at a Time, in the section entitled Including a regression line, we saw how to include

a linear regression line on a graph. Now, we use the 1m () command again to fit a
linear regression model by using the following syntax:

1m(WEIGHT 1 ~ HEIGHT, data = T)
Here is the output that you will see on your screen:

Call:
Im(formula = WEIGHT 1 ~ HEIGHT, data = T)

Coefficients:
(Intercept) HEIGHT
-123.611 1.166

So, the intercept is approximately -123.61 and the slope is approximately 1.17. You
can now include the regression line in the ggplot graph, as follows:

P + geom abline(intercept = -123.61, slope = 1.17)

Now we will recreate the graph with regression line, but we also add some
descriptive text about the regression using geom_text (). We will center the text on
the point (170, 110).

P + geom abline(intercept = -123.61, slope = 1.17, col = "red") +
geom text(data = T, aes (170, 110, label = "Slope = 1.17"))

[168]

Chapter 4

The graph with regression line looks like the following one:

Slope = 1.17

(=]
[=]

(=]
[=]

WEIGHT 1

1 1
4 A0 T-nl
ol

==
=

HEIGHT

Your text is indeed centered on the point (170, 110). The approach we used to create
the regression line was quite straightforward, but it is easier to use stat_smooth ().
This function allows you to use smoothers on your graph, including OLS regressions,
generalized linear models, and LOWESS smoothers. You can read further about this

function on http://docs.ggplot2.0org/0.9.3.1/stat_smooth.html.

[169]

http://docs.ggplot2.org/0.9.3.1/stat_smooth.html

Creating Graphs with ggplot

In the final examples of this book, we try an OLS regression using the argument
method="1m". This approach is more efficient than the previous approach, because
we can implement it in a single step. First, let's try switching off the standard error
using the following command:

P + stat smooth(method="1lm", se=FALSE)

This syntax will give you the following graph:

(=
L=

WEIGHT 1

4 B
ol

L=
L=

HEIGHT

Next, we switch on the standard error:

P + stat smooth(method="1lm", se=TRUE)

[170]

Chapter 4

We get the following graph:

WEIGHT 1

HEIGHT

Our graph now includes a confidence band whose width is determined by the
standard error. The stat_smooth () function provides a range of smoothers that
can be implemented easily using the method argument.

Summary

In this chapter, you encountered ggplot for the first time. You learned how to set
up your variables for plotting and how to control symbol type, color, size, and
shape. You learned how to create bar charts, histograms, and boxplots using ggplot.
You also learned about a range of methods for customizing lines, point labels and
smoothers. These methods should enable you to create a wide range of graphs that
are suitable for publication. Perhaps you found that ggplot is more difficult to
master than gplot. However, you should also have found that ggplot offers great
scope for creating high-quality graphs.

[171]

A

abline() command 8, 37
aes() function 140
aesthetics

about 140

mapping, to categorical variables 100, 101
arguments, qplot syntax

color 96

data 96

geom 96

main 96

shape 96
as.Date() function 131
as.matrix() command 83
assigns operator 6
at argument 24
attach() command 35, 41
axes

customizing 23, 24
axis() command 24
axis labels

creating 24-26

B

bar charts
boxplots, creating 74-76
creating 58-61
creating, qplot used 124-126
dotcharts, creating 80-87
histograms, creating 66-73
legend, including 62-65
pie charts, creating 76-80
bar charts, graphs with ggplot
creating 156, 157

Index

faceted bar chart, creating 161, 162
grouped bar chart, creating 160, 161
stacked bar chart, creating 158, 159
barplot() command 58
basic graphics techniques 6-9
boxplot() command 75
boxplots, bar charts
creating 74-76
boxplots, qplot
creating 127-129
boxplots, graphs with ggplot
creating 162, 163

C

categorical variables
aesthetics, mapping to 100, 101
cbind() function 86
color, graphs with ggplot
mapping to text 166
color palettes 88
colors
controlling, on graph 102-105
color schemes, graphs with ggplot
creating 151, 152
colors, of R 14
complex multiple axes
creating 43-45
graphs, superposing 46
point labels, creating 47, 48
curve() command 19
curves
graphs, creating with 22
curves, graphs with ggplot
creating 152

D

data
subsetting, before graphing 98, 99
dev.copy()command 29
dev.off() command 28
dnorm() command 55, 71
dotchart() command 81
dotcharts
creating 80-87
drawresid() function 39

E

element_text() function 142
error bars

including, on graph 92, 93
expression() command 30

F

facet_grid() function 161
facet plots

creating 106-108

creating, for histograms 120, 121
facet_wrap() function 161
factor() command 100
font options, for graphs

font.axis 14

font.main 14

font.sub 14

font.tab 14
function() command 91

G

geom_abline() 168
geom_histogram() 154
geom_point() function 140
ggplot 140
ggplot2
installing 95
graph
coloring 51-53
colors, controlling 102-105
creating, with curves 22

creating, with dates 130-138
grid, adding 48-50
medical dataset 41, 43
saving 28-30
setting up, as object 105
shading 50, 54
smoothers, using 88, 89
superposing 46, 47
graphing options
bitmap() 29
jpeg() 29
pdf() 29
postscript() 29
graphs, with ggplot

attractive color schemes, creating 152

bar charts, creating 156

boxplots, creating 162, 163

color, mapping 144-146

color, mapping to text 167

color schemes, creating 151
creating 140-143

curves, creating 152, 153
histograms, creating 154-156
legend labels, controlling 148, 149
legend name, controlling 148, 149

plotting background, modifying 146, 147

points, labeling with text 164, 165

regression lines, including 168-171

shape, mapping 144-146

size, mapping 144-146

x and y axes, modifying 149, 150
grid

adding, on graph 48-50

H

Height against Age graph 111
Hexadecimal Color Chart
URL 14
hist() command 28, 66
histograms
creating 66-73
creating, qplot used 118, 119
facet plots, creating for 120, 121
histograms, graphs with ggplot
creating 154-156

[174]

K

kernel density plots
creating 121-123

L

labs() function

using 141
las argument 25
legend

creating 62
levels() command 85
line graphs

creating, qplot used 108-110
line plots

creating 12,13
lines() command 8§, 72
Im() command 38

LOWESS (locally weighted scatterplot

smoothing) 88

mathematical expressions
including, on plots 30, 31
mathematical functions
graphing 19
medical dataset
for creating graphs 41-43
melt() function 134
mtext() command 45
multiple curves
creating simultaneously 111, 112
multiple graphs
creating, on same page 27, 28

O

objects
graphs, setting up as 105, 106
Ordinary Least Squares (OLS)
regressions 18

P

parameter values
passing, to labels 15-17

passing, to titles 15-17
paste() command 15, 30
pdf() command 28
pie charts

creating 76-80
pie() command 78
plot() command 6, 35
point labels

creating 47, 48
points

creating 10, 11

joining 10, 11
points, graphs with ggplot

labeling with text 164, 165
polygon() command

about 51,122

used, for shading normal curve 55-58
predict() command 38

Q

qplot
about 95

used, for creating histograms 118, 119
used, for creating line graphs 108-110
used, for producing scatterplots 96-98
qplot syntax
about 96
arguments 96
Quick-R
URL 7

R

R
bar charts, creating 58-61
basic graphics techniques 6-9
color palettes 88
colors 14
datasets, reading 34
options 20, 21
range() command 73
read.csv() command 63
regression line
including 18, 34-40
regression lines, graphs with ggplot
including 168-171

[175]

reshape package 134
residuals

including 34-40
rnorm() command 71
round() command 78
rug() command 9

S

scale_color_brewer() function 151
scale_color_manual() function 153
scale_size_area() layer 146
scatterplot matrices

about 89

creating 89, 90

error bars, including on graph 92, 93

functions, writing 91, 92
scatterplots

creating 12,13

producing, gplot used 96-98
sd() command 72

seq() command 20
smoothed curves

including 112-117
smoothers

using, on graph 88, 89
stat_smooth() 169,171
subset() command 80, 98, 164
substitute() command 30

T

table() command 58
text() command 45
theme() function 142
title() command

about 17

using 22
tolower() command 26
toupper() command 26
t() transpose function 82

[176]

open source

community experience distilled

PUBLISHING

Thank you for buying
R Graph Essentials

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

R Graphs
Cookbook

R Graphs Cookbook
ISBN: 978-1-84951-306-7 Paperback: 272 pages

Detailed hands-on recipes for creating the most useful
types of graphs in R — starting from the simplest
versions to more advanced applications

1. Learn to draw any type of graph or visual data
representation in R.

2. Filled with practical tips and techniques for
creating any type of graph you need; not just
theoretical explanations.

3. All examples are accompanied with the
corresponding graph images, so you know
what the results look like.

3

Statistical Analysis
with R

Statistical Analysis with R
ISBN: 978-1-84951-208-4 Paperback: 300 pages

Take control of your data and produce superior
statistical analyses with R

1. An easy introduction for people who are new
to R, with plenty of strong examples for you to
work through.

2. This book will take you on a journey to learn
R as the strategist for an ancient Chinese
kingdom!

3. A step-by-step guide to understand R, its
benefits, and how to use it to maximize the
impact of your data analysis.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Learning RStudio for R Statistical
Computing
ISBN: 978-1-78216-060-1 Paperback: 126 pages

Learn to effectively perform R development, statistical
analysis, and reporting with the most popular R IDE

1. A complete practical tutorial for RStudio,
designed keeping in mind the needs of analysts

Learning RStudio for and R developers alike.

R Statistical Computing 2. Step-by-step examples that apply the

principles of reproducible research and good
programming practices to R projects.

3. Learn to effectively generate reports, create
graphics, and perform analysis, and even build
R-packages with RStudio.

Instant Heat Maps in R How-to
ISBN: 978-1-78216-564-4 Paperback: 72 pages

Learn how to design heat maps in R to enhance your
data analysis

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

‘i

£

L

Short | Fast | Focused 2

Create heat maps in R using different
Heat Maps in R How-to file formats.

3. Learn how to make choropleth maps and
contour plots.

gl PACKT 4. Generate your own customized heat maps and
add interactivity for displaying on the web.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Base Graphics in R – One Step at a Time
	Learning basic graphics techniques
	Creating and joining points
	Creating scatterplots and line plots
	Colors in R
	Passing parameter values to titles and labels
	Including a regression line
	Graphing mathematical functions
	R provides many options
	Creating graphs with several curves
	Customizing your axes
	Creating axis labels
	Creating multiple graphs on the same page
	Saving your graphs
	Including mathematical expressions on your plots
	Summary

	Chapter 2: Advanced Functions
in Base Graphics
	Reading datasets into R
	Including a regression line and residuals
	A medical dataset to create graphs
	Creating complex multiple axes
	Superposing graphs
	Creating point labels

	Including a grid on your graph
	Shading and coloring your graph
	Using polygon() to shade under a normal curve

	Creating bar charts
	Including a legend
	Creating histograms
	Creating boxplots
	Creating pie charts
	Creating dotcharts

	R's color palettes
	Using smoothers on your graph
	Creating scatterplot matrices
	Writing functions to create graphs
	Including error bars on your graph

	Summary

	Chapter 3: Mastering the qplot Function
	About qplot
	The qplot syntax
	Producing scatterplots using qplot
	Subsetting your data before graphing
	Mapping aesthetics to categorical variables
	Controlling colors on your graph
	Setting up graphs as objects
	Creating facet plots
	Creating line graphs using qplot
	Creating multiple curves simultaneously
	Including smoothed curves
	Creating histograms with qplot
	Creating facet plots for histograms
	Creating kernel density plots
	Creating bar charts
	Creating boxplots
	Creating graphs with dates
	Summary

	Chapter 4: Creating Graphs with ggplot
	Getting started with ggplot
	Mapping color, shape, and size to a variable
	Modifying the plotting background
	Controlling the legend name and legend labels
	Modifying the x and y axes

	Creating attractive color schemes
	Creating curves for each factor level
	Creating histograms
	Creating bar charts
	Creating a stacked bar chart
	Creating a grouped bar chart
	Creating a faceted bar chart

	Creating boxplots
	Labeling points with text
	Mapping color to text

	Including regression lines
	Summary

	Index

