R Packages

ORGANIZE, TEST, DOCUMENT AND SHARE YOUR CODE

Hadley Wickham

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

R Packages

Hadley Wickham

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

R Packages

by Hadley Wickham

Copyright © 2015 Hadley Wickham. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

m Editors: Ann Spencer and Marie Beaugureau
m Production Editor: Kara Ebrahim

= Copyeditor: Jasmine Kwityn

m Proofreader: Kim Cofer

= Indexer: Wendy Catalano

m Interior Designer: David Futato

= Cover Designer: Ellie Volckhausen

m [llustrator: Rebecca Demarest

= April 2015: First Edition

www.it-ebooks.info

http://safaribooksonline.com
http://www.it-ebooks.info/

Revision History for the First Edition
m 2015-03-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491910597 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. R Packages, the cover
image of a kaka, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
author disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-491-91059-7
[LSI]

www.it-ebooks.info

http://oreilly.com/catalog/errata.csp?isbn=9781491910597
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

www.it-ebooks.info

http://www.it-ebooks.info/

In This Book

This book will guide you from being a user of R packages to being a creator of R
packages. In Chapter 1, Introduction, you’ll learn why mastering this skill is so important,
and why it’s easier than you think. Next, you’ll learn about the basic structure of a
package, and the forms it can take, in Chapter 2, Package Structure. The subsequent
chapters go into more detail about each component. They’re roughly organized in order of
importance:

Chapter 3, R code

The most important directory is R/, where your R code lives. A package with just this
directory is still a useful package. (And indeed, if you stop reading the book after this
chapter, you’ll have still learned some useful new skills.)

Chapter 4, Package Metadata

The DESCRIPTION lets you describe what your package needs to work. If you’re
sharing your package, you’ll also use the DESCRIPTION to describe what it does,
who can use it (the license), and who to contact if things go wrong.

Chapter 5, Object Documentation

If you want other people (including “future you”!) to understand how to use the
functions in your package, you’ll need to document them. I’ll show you how to use
roxygen2 to document your functions. I recommend roxygen2 because it lets you
write code and documentation together while continuing to produce R’s standard
documentation format.

Chapter 6, Vignettes: Long-Form Documentation

Function documentation describes the nitpicky details of every function in your
package. Vignettes give the big picture. They’re long-form documents that show how
to combine multiple parts of your package to solve real problems. I’ll show you how
to use Rmarkdown and knitr to create vignettes with a minimum of fuss.

Chapter 7, Testing

To ensure your package works as designed (and continues to work as you make
changes), it’s essential to write unit tests that define correct behavior, and alert you
when functions break. In this chapter, I’ll teach you how to use the testthat package
to convert the informal interactive tests that you’re already doing to formal,
automated tests.

Chapter 8, Namespace

To play nicely with others, your package needs to define what functions it makes
available to other packages and what functions it requires from other packages. This
is the job of the NAMESPACE file and I’ll show you how to use roxygen2 to generate
it for you. NAMESPACE is one of the more challenging parts of developing an R
package, but it’s critical to master if you want your package to work reliably.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9, External Data

The data/ directory allows you to include data with your package. You might do this
to bundle data in a way that’s easy for R users to access, or just to provide compelling
examples in your documentation.

Chapter 10, Compiled Code

R code is designed for human efficiency, not computer efficiency, so it’s useful to
have a tool in your back pocket that allows you to write fast code. The src/ directory
allows you to include speedy compiled C and C++ code to solve performance
bottlenecks in your package.

Chapter 11, Installed Files

You can include arbitrary extra files in the inst/ directory. This is most commonly
used for extra information about how to cite your package, and to provide more
details about copyrights and licenses.

Chapter 12, Other Components

This chapter documents the handful of other components that are rarely needed:
demo/, exec/, po/, and tools/.

The final three chapters describe general best practices not specifically tied to one
directory:

Chapter 13, Git and GitHub

Mastering a version control system is vital for collaborating with others, and is useful
even for solo work because it allows you to easily undo mistakes. In this chapter,
you’ll learn how to use the popular Git and GitHub combo with RStudio.

Chapter 14, Automated Checking

R provides useful automated quality checks in the form of R CMD check. Running
them regularly is a great way to avoid many common mistakes. The results can
sometimes be a bit cryptic, so I provide a comprehensive cheat sheet to help you
convert warnings to actionable insight.

Chapter 15, Releasing a Package

The life cycle of a package culminates with release to the public. This chapter
compares the two main options (CRAN and GitHub) and offers general advice on
managing the process.

This is a lot to learn, but don’t feel overwhelmed. Start with a minimal subset of useful
features (e.g., just an R/ directory!) and build up over time. To paraphrase the Zen monk
Shunryii Suzuki: “Each package is perfect the way it is — and it can use a little
improvement.”

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLS, email addresses, filenames, and file extensions.
Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic

Shows text that should be replaced with user-supplied values or by values determined

by context.
TIP
This element signifies a tip or suggestion.
NOTE
This element signifies a general note.
WARNING

This element indicates a warning or caution.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Code Examples

PROD: Please reach out to author to find out if they will be uploading code examples to
oreilly.com or their own site (e.g., GitHub). If there is no code download, delete this whole
section. If there is, when you email digidist with the link, let them know what you filled in
for title_title (should be as close to book title as possible, i.e., learning_python_2e). This
info will determine where digidist loads the files.

Supplemental material (code examples, exercises, etc.) is available for download at
http://r-pkgs.had.co.nz/.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “R Packages by Hadley Wickham (O’Reilly).
Copyright 2015 Hadley Wickham, 978-1-491-91059-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

www.it-ebooks.info

http://r-pkgs.had.co.nz/
mailto:permissions@oreilly.com
http://www.it-ebooks.info/

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert content in both
book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

www.it-ebooks.info

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://www.it-ebooks.info/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

= O’Reilly Media, Inc.

= 1005 Gravenstein Highway North

m Sebastopol, CA 95472

= 800-998-9938 (in the United States or Canada)

m 707-829-0515 (international or local)

= 707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/r-packages.

Don’t forget to update the link above.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

www.it-ebooks.info

http://bit.ly/r-packages
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Acknowledgments

The tools in this book wouldn’t be possible without many open source

contributors. Winston Chang, my coauthor on devtools, spent hours debugging painful S4
and compiled code problems so that devtools can quickly reload code for the vast majority
of packages. Kirill Miiller contributed great patches to many of my package development
packages including devtools, testthat, and roxygen2. Kevin Ushey, JJ Allaire, and Dirk
Eddelbuettel tirelessly answered all my basic C, C++, and Rcpp questions. Peter
Danenburg and Manuel Eugster wrote the first version of roxygen2 during a Google
Summer of Code. Craig Citro wrote much of the code to allow travis to work with R
packages.

Often the only way I learn how to do it the right way is by doing it the wrong way first.
For suffering many package development errors, I’d like to thank all the CRAN
maintainers, especially Brian Ripley, Uwe Ligges, and Kurt Hornik.

This book was written in the open and it is truly a community effort: many people read
drafts, fixed typos, suggested improvements, and contributed content. Without those
contributors, the book wouldn’t be nearly as good as it is, and I’'m deeply grateful for their
help. A special thanks goes to Peter Li, who read the book from cover to cover and
provided many fixes. I also deeply appreciate the time the reviewers (Duncan

Murdoch, Karthik Ram, Vitalie Spinu, and Ramnath Vaidyanathan) spent reading the book
and giving me thorough feedback.

Thanks go to all contributors who submitted improvements via GitHub (in alphabetical
order): @aaronwolen, @adessy, Adrien Todeschini, Andrea Cantieni, Andy Visser,
@apomatix, Ben Bond-Lamberty, Ben Marwick, Brett K, Brett Klamer, @contravariant,
Craig Citro, David Robinson, David Smith, @davidkane9, Dean Attali, Eduardo Arifio de
la Rubia, Federico Marini, Gerhard Nachtmann, Gerrit-Jan Schutten, Hadley Wickham,
Henrik Bengtsson, @heogden, Ian Gow, @jacobbien, Jennifer (Jenny) Bryan, Jim Hester,
@jmarshallnz, Jo-Anne Tan, Joanna Zhao, Joe Cainey, John Blischak, @jowalski, Justin
Alford, Karl Broman, Karthik Ram, Kevin Ushey, Kun Ren, @kwenzig, @kylelundstedt,
@lancelote, Lech Madeyski, @lindbrook, @maiermarco, Manuel Reif, Michael Buckley,
@MikeLeonard, Nick Carchedi, Oliver Keyes, Patrick Kimes, Paul Blischak, Peter
Meissner, @PeterDee, Po Su, R. Mark Sharp, Richard M. Smith, @rmar073, @rmsharp,
Robert Krzyzanowski, @ryanatanner, Sascha Holzhauer, @scharne, Sean Wilkinson,
@SimonPBiggs, Stefan Widgren, Stephen Frank, Stephen Rushe, Tony Breyal, Tony
Fischetti, @urmils, Vlad Petyuk, Winston Chang, @winterschlaefer, @wrathematics, and

@zhaoy.

www.it-ebooks.info

https://github.com/wch/
https://github.com/krlmlr
http://github.com/kevinushey
https://github.com/jjallaire
http://dirk.eddelbuettel.com/
https://github.com/klutometis
http://www.statistik.lmu.de/~eugster/
https://github.com/craigcitro
https://github.com/hadley/r-pkgs/
http://www.stats.uwo.ca/faculty/murdoch/
http://karthik.io/
http://vitalie.spinu.info/
https://ramnathv.github.io/
http://www.it-ebooks.info/

Part I. Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1. Introduction

In R, the fundamental unit of shareable code is the package. A package bundles together
code, data, documentation, and tests, and is easy to share with others. As of January 2015,
there were over 6,000 packages available on the Comprehensive R Archive Network, or
CRAN, the public clearing house for R packages. This huge variety of packages is one of
the reasons that R is so successful: chances are that someone has already solved a problem
that you’re working on, and you can benefit from their work by downloading their
package.

If you’re reading this book, you already know how to use packages:

®» You install them from CRAN with install.packages("x").
= You use them in R with library(x).
= You get help on them with package?x and help(package = "x").

The goal of this book is to teach you how to develop packages so that you can write your
own, not just use other people’s. Why write a package? One compelling reason is that you
have code that you want to share with others. Bundling your code into a package makes it
easy for other people to use it, because like you, they already know how to use packages.
If your code is in a package, any R user can easily download it, install it, and learn how to
use it.

But packages are useful even if you never share your code. As Hilary Parker says in her
introduction to packages: “Seriously, it doesn’t have to be about sharing your code
(although that is an added benefit!). It is about saving yourself time.” Organizing code in a
package makes your life easier because packages come with conventions. For example,
you put R code in R/, you put tests in tests/, and you put data in data/. These conventions
are helpful because:

They save you time

Instead of having to think about the best way to organize a project, you can just
follow a template.

Standardized conventions lead to standardized tools
If you buy into R’s package conventions, you get many tools for free.

It’s even possible to use packages to structure your data analyses, as Robert M. Flight
discusses in a series of blog posts.

www.it-ebooks.info

http://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
http://rmflight.github.io/posts/2014/07/analyses_as_packages.html
http://www.it-ebooks.info/

Philosophy

This book espouses my philosophy of package development: anything that can be
automated should be automated. Do as little as possible by hand. Do as much as possible
with functions. The goal is to spend your time thinking about what you want your package
to do rather than thinking about the minutiae of package structure.

This philosophy is realized primarily through the devtools package, a suite of R functions
that I wrote to automate common development tasks. The goal of devtools is to make
package development as painless as possible. It does this by encapsulating all of the best
practices of package development that I’ve learned over the years. Devtools protects you
from many potential mistakes, so you can focus on the problem you’re interested in, not
on developing a package.

Devtools works hand in hand with RStudio, which I believe is the best development
environment for most R users. The only real competitor is Emacs Speaks Statistics (ESS),
which is a rewarding environment if you’re willing to put in the time to learn Emacs and
customize it to your needs. The history of ESS stretches back over 20 years (predating R!),
but it’s still actively developed and many of the workflows described in this book are also
available there.

Together, devtools and RStudio insulate you from the low-level details of how packages
are built. As you start to develop more packages, I highly recommend that you learn more
about those details. The best resource for the official details of package development is
always the official writing R extensions manual. However, this manual can be hard to
understand if you’re not already familiar with the basics of packages. It’s also exhaustive,
covering every possible package component, rather than focusing on the most common
and useful components, as this book does. Writing R extensions is a useful resource once
you’ve mastered the basics and want to learn what’s going on under the hood.

www.it-ebooks.info

http://ess.r-project.org/
http://bit.ly/1EYWyMy
http://www.it-ebooks.info/

Getting Started

To get started, make sure you have the latest version of R (at least 3.1.2, which is the
version that the code in this book uses), then run the following code to get the packages
you’ll need:

install.packages(c("devtools", "roxygen2", "testthat", "knitr"))

Make sure you have a recent version of RStudio. You can check that you have the right
version by running the following:

install.packages("rstudioapi")
rstudioapi::isAvailable("0.99.149")

If not, you may need to install the preview version. This gives you access to the latest and
greatest features, and only slightly increases your chances of finding a bug.

If you want to keep up with the bleeding edge of devtools development, you can use the
following code to access new functions as I develop them:

devtools::install_github("hadley/devtools")

You’ll need a C compiler and a few command-line tools. If you’re on Windows or Mac
and you don’t already have them, RStudio will install them for you. Otherwise:

= On Windows, download and install Rtools. Nnote: this is not an R package!

= On Mac, make sure you have either XCode (available for free in the App Store) or the
“Command-Line Tools for Xcode”. You’ll need to have a (free) Apple ID.

» On Linux, make sure you’ve installed not only R, but also the R development tools. For
example, on Ubuntu (and Debian) you need to install the Ubuntu r -base-dev package.

You can check that you have everything installed by running the following code:

library(devtools)

has_devel()

#> '/Library/Frameworks/R.framework/Resources/bin/R' --vanilla CMD SHLIB foo.c
#>

#> clang -I/Library/Frameworks/R.framework/Resources/include -DNDEBUG

#> -I/usr/local/include -I/usr/local/include/freetype2 -I/opt/X11/include

#> -fPIC -Wall -mtune=core2 -g -02 -c foo.c -o foo.0

#> clang -dynamiclib -W1l, -headerpad_max_install names -undefined dynamic_lookup

#> -single_module -multiply defined suppress -L/usr/local/lib -o foo.so foo.o0
#> -F/Library/Frameworks/R.framework/.. -framework R -W1l, -framework

#> -W1, CoreFoundation

[1] TRUE

This will print out some code that I use to help diagnose problems. If everything is OK, it
will return TRUE. Otherwise, it will throw an error and you’ll need to investigate the

problem.

www.it-ebooks.info

http://bit.ly/1F93Iha
http://cran.r-project.org/bin/windows/Rtools/
http://developer.apple.com/downloads
http://www.it-ebooks.info/

Conventions

Throughout this book I write foo() to refer to functions, bar to refer to variables and
function parameters, and baz/ to refer to paths. Larger code blocks intermingle input and
output. Output is commented so that if you have an electronic version of the book (e.g.,
http://r-pkgs.had.co.nz), you can easily copy and paste examples into R. Output comments
look like #> to distinguish them from regular comments.

www.it-ebooks.info

http://r-pkgs.had.co.nz/
http://www.it-ebooks.info/

Colophon

This book was written in Rmarkdown inside RStudio. knitr and pandoc converted the raw
Rmarkdown to HTML and PDF. The website was made with jekyll, styled with bootstrap,
and published to Amazon’s S3 by travis-ci. The complete source is available from GitHub.
This version of the book was built with:

library(roxygen2)
library(testthat)
devtools::session_info()

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Session in
setting
version
system
ui
language
collate
tz

Packages
package
bookdown
devtools
digest
evaluate
formatR
htmltools
knitr
Rcpp
rmarkdown
roxygen2
rstudioap
stringr
testthat

fo
value

R version 3.1.2 (2014-10-31)
x86_64, linux-gnu

X11
(EN)
en_US.UTF-8
<NA>

ersion
1

0.
.8
.5

.6

EE I T

i

OCONRFRPRUUORFRONMNOUIO N

9000

date

2015-02-12
2015-02-12
2014-12-31
2014-04-29
2014-08-25
2014-09-08
2015-01-20
2015-01-24
2015-02-12
2014-12-13
2014-12-31
2012-12-06
2014-10-01

source
Github (hadley/bookdown@fde®b07)
Github (hadley/devtools@9415a8a)

CRAN (R 3.1.2)
CRAN (R 3.1.0)
CRAN (R 3.1.1)
CRAN (R 3.1.2)
CRAN (R 3.1.2)
CRAN (R 3.1.2)

Github (rstudio/rmarkdown@0f19584)
CRAN (R 3.1.2)
CRAN (R 3.1.2)
CRAN (R 3.0.0)
CRAN (R 3.1.1)

www.it-ebooks.info

http://rmarkdown.rstudio.com/
http://www.rstudio.com/ide/
http://yihui.name/knitr/
http://johnmacfarlane.net/pandoc/
http://jekyllrb.com/
http://getbootstrap.com/
http://aws.amazon.com/s3/
https://travis-ci.org/
https://github.com/hadley/r-pkgs
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. Package Structure

This chapter will start you on the road to package development by showing you how to
create your first package. You’ll also learn about the various states a package can be in,
including what happens when you install a package. Finally, you’ll learn about the
difference between a package and a library and why you should care.

www.it-ebooks.info

http://www.it-ebooks.info/

Naming Your Package

“There are only two hard things in computer science: cache invalidation and naming
things.”

— Phil Karlton

Before you can create your first package, you need to come up with a name for it. I think
this is the hardest part of creating a package! (Not least because devtools can’t automate it
for you.)

www.it-ebooks.info

http://www.it-ebooks.info/

Requirements for a Name

There are three formal requirements: the name can only consist of letters, numbers, and
periods (i.e., .); it must start with a letter; and it cannot end with a period. Unfortunately,
this means you can’t use either hyphens or underscores (i.e., - or _) in your package name.

I recommend against using periods in package names because it has confusing
connotations (i.e., file extension or S3 method).

www.it-ebooks.info

http://www.it-ebooks.info/

Strategies for Creating a Name

If you’re planning on releasing your package, I think it’s worth spending a few minutes to
come up with a good name. Here are some recommendations for how to go about it:

Choose a unique name that can easily be Googled. This makes it easy for potential
users to find your package (and associated resources) and for you to see who’s using it.
You can also check if a name is already used on CRAN by loading http://cran.r-
project.org/web/packages/[PACKAGE_NAME].

Avoid using both upper- and lowercase letters: doing so makes the package name hard
to type and even harder to remember. For example, I can never remember if it’s Rgtk2
or RGTK2 or RGtk2.

Find a word that evokes the problem and modify it so that it’s unique:

plyr is a generalization of the apply family, and evokes pliers.
lubridate makes dates and times easier.

knitr (knit + r) is “neater” than sweave (s + weave).

testdat tests that data has the correct format.

Use abbreviations:
Rcpp = R + C++ (plus plus).

lvplot = letter value plots.

Add an extra R:

stringr provides string tools.
tourr implements grand tours (a visualization method).

gistr lets you programmatically create and modify GitHub gists.

If you’re creating a package that talks to a commercial service, make sure you check the
branding guidelines to avoid problems down the line. For example, rDrop isn’t called
rDropbox because Dropbox prohibits any applications from using the full trademarked
name.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Package

Once you’ve decided on a name, there are two ways to create the package. You can use
RStudio:

1. Click File - New Project.

2. Choose New Directory, as shown in Figure 2-1.

New Project

Create project from:

R New Directory

Start a project in a brand new working directory

Existing Directory
4 RJ Associate a project with an existing working directory

Version Control
Checkout a project from a version control repository

Cancel

Figure 2-1. Creating a project from a new directory

3. Next, select R Package, which is the second option shown in Figure 2-2.

www.it-ebooks.info

http://www.it-ebooks.info/

New Project

Back Project Type

R Empty Project

Create a new project in an empty directory

R Package
R Create a new R package

(f— ' Shiny Web Application
0, 25\ " -' Create a new Shiny web application

Cancel
Figure 2-2. Creating a new R package

4. Finally, give your package a name and click Create Project (Figure 2-3).

www.it-ebooks.info

http://www.it-ebooks.info/

New Project

Back Create R Package
Type: Package name:
Package [T
R Create package based on source files:
Add...
»
‘,#’f Remove
Create project as subdirectory of:
~/Desktop Browse...
Create a git repository Use packrat with this project
Open in new window Create Project | Cancel

Figure 2-3. Naming the package and creating the project

Alternatively, you can create a new package from within R by running the following:

devtools::create("path/to/package/pkgname")

Whether you use RStudio or the command-line option, the result is the same — the
smallest usable package, one with three components:

1. An R/ directory, which you’ll learn about in Chapter 3
2. A basic DESCRIPTION file, which you’ll learn about in Chapter 4

3. A basic NAMESPACE file, which you’ll learn about in Chapter 8

The package will also include an RStudio project file, pkgname.Rproj, which makes your
package easy to use with RStudio, as described in the next section.

Don’t use package.skeleton() to create a package. Following that workflow requires

extra work because it creates extra files that you’ll need to delete or modify before you
can have a working package.

www.it-ebooks.info

http://www.it-ebooks.info/

RStudio Projects

To get started with your new package in RStudio, double-click the pkgname.Rproj file that
we generated in the previous section using either RStudio’s graphical user interface (GUI)
or the command-line option. This will open a new RStudio project for your package.
Projects are a great way to develop packages because:

m FEach project is isolated; code run in one project does not affect any other project.

= You get handy code navigation tools like F2 to jump to a function definition and Ctrl-.
to look up functions by name.

® You get useful keyboard shortcuts for common package development tasks. You’ll
learn about them throughout the book. But to see them all, press Alt-Shift-K or use the
Help — Keyboard shortcuts menu, shown in Figure 2-4.

Keyboard Shortcut Quick Reference
B Tabs/Panes Source Navigation Source Editor Source Control

Mo Focus o Sourcs =Fa Eack NI Insart Chunk A0 Calf Files
Mowe Foous o Console BF18 Forward £ Insert Seotion._ “UM Comenit....
Move Focws to Help RE Usa Selection for Find UEX Exiract Funciion
Show Hisinry RF Find... X Extract Variable
Sk Fibes e Find Next {#€ Comment/Uncommmend Lines
Shew Ploks &MG Find Previous Reindent Lines
Siwcw Packages Eeplace and Find S Reflow Comment
Sk Ermvlsonment o Go T File fFunction... y Collape Fold
how Gt Go b L. Expind Fold
Show Buthd 40D Josnp To... Collapie All Foldi
Swritch to Tab.., ol Jemip Tor Matching & UHD Expand Al Foldy
Pravious Tab Dubite to Liss End
X Mo Lisss Lip

O HT Test Package

OB Document
b Mo Limes Do

(+MS5 Seurce Acthe File Other

Sounoe with Echo u
o e
Fank Line Up to Cursor g
Source a File... F1 Show Function Help

Ra-Bun B Yank Line After Curior 2 Shorer Funaction Code

+ Rum Linefsh
Rus All
R Frcen Beginning To Line

Indert Yanked Tt - Compleie Code

Teaniposs Lethers f o] Cuit FEStudio...

Indert Aisgasment Operabsr ONFID Restart B
Indart P L o3 BE Pl

R Fron Line ta End P8 Commar et Srevioms Pt

O HPglin K
e Functian Defisition Debug Homt oty "‘:
Run Cods Section I l“”" ""‘w
Runs Previous Code & F% Togghe Breakgpoint o

X Rum Curmnent Chunk F18 Exeouts Hext Ling Chose Directony...
Console Symc FOF View 10 Editor

CHT Run Mewxt Chunk {HFS Comtinue =
AL Clear Comrsale LR Scp Detsmprcl :qmusr:.s::;uu
1 Popup Command Hisbory | Toggle Full Screen

T get started with your new packn

y Eabi & fiiwd HSHAS

Figure 2-4. Keyboard shortcuts menu

(If you want to learn more RStudio tips and tricks, follow @rstudiotips on Twitter.)

Both RStudio and devtools: :create() will make an .Rproj file for you. If you have an
existing package that doesn’t include an .Rproj file, you can use
devtools: :use_rstudio("path/to/package") to add it. If you don’t use RStudio, you

can get many of the benefits by starting a new R session and ensuring the working
directory is set to the package directory.

www.it-ebooks.info

https://twitter.com/rstudiotips
http://www.it-ebooks.info/

What Is an RStudio Project File?
An .Rproj file is just a text file. The project file created by devtools looks like this:

Version: 1.0

RestorewWorkspace: No
SaveWorkspace: No
AlwaysSaveHistory: Default

EnableCodeIndexing: Yes
Encoding: UTF-8

AutoAppendNewline: Yes
StripTrailingWhitespace: Yes

BuildType: Package

PackageUseDevtools: Yes

PackageInstallArgs: --no-multiarch --with-keep.source
PackageRoxygenize: rd,collate,namespace

You don’t need to modify this file by hand. Instead, use the friendly Project Options dialog

box, accessible from the Projects menu in the upper-right corner of RStudio (see Figure 2-
5 and Figure 2-6).

www.it-ebooks.info

http://www.it-ebooks.info/

O New Project...

<" Open Project...

Open Project in New Window...

14-ggvis
adv-r

r-pkgs
testthat
roxygen

pryr

book

ggvis
14-ggvis-intro
tidyr

Close Project

Project Options...

Figure 2-5. Accessing the Project Options dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Project Options

E—':J Use (Default) to inherit the global default setting
A0
General Restore .RData into workspace at startup . (Default) + |
xS Save workspace to .RData on exit . (Default) + |
Code Editing Always save history (even if not saving P————
| (Default) % |
- .RData) B
Rrv (.59
—r
Sweave
S
Build Tools
Git/SVN

[OK] Cancel

Figure 2-6. The general pane of the project options window

www.it-ebooks.info

http://www.it-ebooks.info/

What Is a Package?

To make your first package, all you need to know is what you’ve learned in the preceding
section. To master package development, particularly when you’re distributing a package
to others, it really helps to understand the five states a package can be in across its life
cycle: source, bundled, binary, installed, and in memory. Understanding the differences
between these states will help you form a better mental model of what
install.packages() and devtools: :install_github() do, and will make it easier to
debug problems when they arise.

www.it-ebooks.info

http://www.it-ebooks.info/

Source Packages

So far we’ve just worked with a source package: the development version of a package
that lives on your computer. A source package is just a directory with components like R/,

DESCRIPTION, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Bundled Packages

A bundled package is a package that’s been compressed into a single file. By convention
(from Linux), package bundles in R use the extension .tar.gz. This means that multiple
files have been reduced to a single file (.tar) and then compressed using gzip (.gz). While
a bundle is not that useful on its own, it’s a useful intermediary between the other states. In
the rare case that you do need a bundle, call devtools:: build() to make it.

If you decompress a bundle, you’ll see it looks almost the same as your source package.
The main differences between an uncompressed bundle and a source package are as
follows:

m Vignettes are built so that you get HTML and PDF output instead of Markdown or
LaTeX input.

m Your source package might contain temporary files used to save time during
development, like compilation artifacts in src/. These are never found in a bundle.

m Any files listed in .Rbuildignore are not included in the bundle.

.Rbuildignore prevents files in the source package from appearing in the bundled package.
It allows you to have additional directories in your source package that will not be
included in the package bundle. This is particularly useful when you generate package
contents (e.g., data) from other files. Those files should be included in the source package,
but only the results need to be distributed. This is particularly important for CRAN
packages (where the set of allowed top-level directories is fixed). Each line gives a Perl-
compatible regular expression that is matched, without regard to case, against the path to
each file (i.e., dir (full.names = TRUE) run from the package root directory); if the

regular expression matches, the file is excluded.

If you wish to exclude a specific file or directory (the most common use case), you must
anchor the regular expression. For example, to exclude a directory called notes, use
Anotes$. The regular expression notes will match any filename containing notes (e.g.,

R/notes.R, man/important-notes.R, data/endnotes.Rdata, etc.). The safest way to exclude a
specific file or directory is to use devtools:: use_build_ignore("notes"), which does

the escaping for you.

Here’s a typical .Rbuildignore file from one of my packages:

AL*\.Rproj$ # Automatically added by RStudio,

A\.Rproj\.user$ # used for temporary files.

AREADME\ .Rmd$ # An Rmarkdown file used to generate README.md
Acran-comments\.md$ # Comments for CRAN submission

ANEWS\ .md$ # A news file written in Markdown

M. travis\.yml$ # Used for continuous integration testing with travis

I’ll mention when you need to add files to .Rbuildignore whenever it’s important.

www.it-ebooks.info

http://www.it-ebooks.info/

Binary Packages

If you want to distribute your package to an R user who doesn’t have package
development tools, you’ll need to make a binary package. Like a package bundle, a binary
package is a single file. But if you uncompress it, you’ll see that the internal structure is
rather different from a source package:

m There are no .R files in the R/ directory. Instead, there are three files that store the
parsed functions in an efficient file format. This is basically the result of loading all the
R code and then saving the functions with save(). (In the process, this adds a little
extra metadata to make things as fast as possible.)

m A Meta/ directory contains a number of Rds files. These files contain cached metadata
about the package, like what topics the help files cover and parsed versions of the
DESCRIPTION files. (You can use readRDS() to see exactly what’s in those files.)
These files make package loading faster by caching costly computations.

m An html/ directory contains files needed for HTML help.

m If you had any code in the src/ directory there will now be a libs/ directory that contains
the results of compiling 32-bit (i386/) and 64-bit (x64/) code.

m The contents of inst/ are moved to the top-level directory.

Binary packages are platform specific: you can’t install a Windows binary package on a
Mac or vice versa. Also, while Mac binary packages end in .tgz, Windows binary
packages end in .zip. You can use devtools: :build(binary = TRUE) to make a binary

package.

The diagram in Figure 2-7 summarizes the files present in the root directory for source,
bundled, and binary versions of devtools.

www.it-ebooks.info

http://www.it-ebooks.info/

Important metadata files exist in all
versions

In binary versions, documentation
is compiled into multiple versions.
A parsed version of DESCRIPTION
is cached for performance.

In binary versions, R/ no longer
contains .R files, but instead
contains binary .Rdata files

Compilation results are saved in 1libs/

By default, tests are dropped in
binary packages

Source vignettes are build into
html or pdf in inst/doc, then
installed into doc/

The contents of inst/ are moved into
the top-level directory

Files used only for development are
listed in .Rbuildignore, and only
exist in source package

source bundle
DESCRIPTION = DESCRIPTION >
NAMESPACE = NAMESPACE -
README . md - README .md \:
R/ » R/ >
src/ - src/ -
tests/ P tests/

vignettes/ ———p inst/doc

binary

DESCRIPTION
NAMESPACE

README . md

Meta/
html/

help/

INDEX

R/

libs/

doc/

inst/templates/ ——— ® inst/templates/ ——— » templates/

cran-comments.md
devtools.Rproj
NEWS.md

Figure 2-7. Important files found in source, bundled, and binary packages, and how they are related

www.it-ebooks.info

http://www.it-ebooks.info/

Installed Packages

An installed package is just a binary package that’s been decompressed into a package
library (described momentarily). The diagram in Figure 2-8 illustrates the many ways a
package can be installed. This diagram is complicated! In an ideal world, installing a
package would involve stringing together a set of simple steps: source — bundle, bundle
— binary, binary — installed. In the real world, it’s not this simple because there are often
(faster) shortcuts available.

Source Bundle Binary Installed In memory

Y

install.packages() CRAN

CRAN — type = “source” —»

R CMD install

Y

A

devtools::install()

devtools: :build() —

i

devtools::install_github() github ——»

Figure 2-8. Five ways to install a package

The tool that powers all package installation is the command-line tool R CMD INSTALL,
which can install a source, bundle, or a binary package. Devtools functions provide
wrappers that allow you to access this tool from R rather than from the command line.
devtools::install() is effectively a wrapper for R CMD INSTALL. devtools::build() is
a wrapper for R CMD build that turns source packages into bundles.

devtools::install github() downloads a source package from GitHub, runs build()
to make vignettes, and then uses R CMD INSTALL to do the install.
devtools::install_url(), devtools::install_gitorious(), and devtools::
install_bitbucket () work similarly for packages found elsewhere on the Internet.

install.packages() and devtools::install github() allow you to install a remote

package. Both work by downloading and then installing the package. This makes
installation very speedy. install.packages() is used to download and install binary

packages built by CRAN. install_github() works a little differently — it downloads a
source package, builds it, and then installs it.

You can prevent files in the package bundle from being included in the installed package
using .Rinstignore. This works the same way as .Rbuildignore, described earlier. It’s rarely
needed.

www.it-ebooks.info

http://www.it-ebooks.info/

In-Memory Packages

To use a package, you must load it into memory. To use it without providing the package
name (e.g., install() instead of devtools::install()), you need to attach it to the
search path. R loads packages automatically when you use them. library() and
require() load, then attach an installed package:

Automatically loads devtools
devtools::install()

Loads and _attaches_ devtools to the search path

library(devtools)
install()

The distinction between loading and attaching packages is not important when you’re
writing scripts, but it’s very important when you’re writing packages. You’ll learn more
about the difference and why it’s important in “Search Path”.

library() is not useful when you’re developing a package because you have to install the
package first. In future chapters you’ll learn about devtools: :load_all() and RStudio’s

“Build & Reload,” which allows you to skip install and load a source package directly into
memory (Figure 2-9).

Source Bundle Binary Installed In memory
Build & Reload B (S
devtools::load_all() P
library() e

Figure 2-9. Three ways to load a package into memory

www.it-ebooks.info

http://www.it-ebooks.info/

What Is a Library?

A library is simply a directory containing installed packages. You can have multiple
libraries on your computer. In fact, almost everyone has at least two: one for packages
you’ve installed, and one for the packages that come with every R installation (like base,
stats, etc.). Normally, the directories with user-installed packages vary based on the
version of R that you’re using. That’s why it seems like you lose all of your packages
when you reinstall R — they’re still on your hard drive, but R can’t find them.

You can use .1libPaths() to see which libraries are currently active. Here are mine:

.libPaths()

#> [1] "/Users/hadley/R"

#> [2] "/Library/Frameworks/R.framework/Versions/3.1/Resources/library"
lapply(.libPaths(), dir)

#> [[1]]

#> [1] "AnnotationDbi" "ash" "assertthat"

#>

#> [163] "xtable" "yaml" "zoo"

#>

#> [[2]]

#> [1] "base" "boot" "class" "cluster"
#> [5] "codetools" "compiler" "datasets" "foreign"
#> [9] "graphics" "grDevices" "grid" "KernSmooth"
#> [13] "lattice" ""MASS" "Matrix" "methods"
#> [17] "mgcv" "nlme" "nnet" "parallel"
#> [21] "rpart" "spatial" "splines" "stats"

#> [25] "stats4" "survival" "tcltk" "tools"

#> [29] "translations" "utils"

The first lib path is for the packages I've installed (I’ve installed at lot!). The second is for
so-called “recommended” packages that come with every installation of R.

When you use library(pkg) to load a package, R looks through each path in
.1libPaths() to see if a directory called pkg exists. If it doesn’t exist, you’ll get an error
message:

library(blah)
#> Error in library(blah): there is no package called 'blah'

The main difference between library() and require() is what happens when a package
isn’t found. While library() throws an error, require() prints a message and returns
FALSE. In practice, this distinction isn’t important because when building a package you
should never use either inside a package. See “Dependencies: What Does Your Package
Need?” for what you should do instead.

When you start learning R, it’s easy to get confused between libraries and packages
because you use library() to load a package. However, the distinction between the two
is important and useful. For example, one important application is packrat, which
automates the process of managing project-specific libraries. With packrat, when you
upgrade a package in one project, it only affects that project, not every project on your
computer. This is useful because it allows you to play around with cutting-edge packages
without affecting other projects’ use of older, more reliable packages. This is also useful

www.it-ebooks.info

http://www.it-ebooks.info/

when you’re both developing and using a package.

www.it-ebooks.info

http://www.it-ebooks.info/

Part Il. Package Components

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. R Code

The first principle of using a package is that all R code goes in R/. In this chapter, you’ll
learn about the R/ directory, my recommendations for organizing your functions into files,
and some general tips on good style. You’ll also learn about some important differences
between functions in scripts and functions in packages.

www.it-ebooks.info

http://www.it-ebooks.info/

R Code Workflow

The first practical advantage to using a package is that it’s easy to reload your code. You
can either run devtools::load_all(), or in RStudio press Ctrl/Cmd-Shift-L, which also

saves all open files, saving you a keystroke.
This keyboard shortcut leads to a fluid development workflow:

1. Edit an R file.

2. Press Ctrl/Cmd-Shift-L.

3. Explore the code in the console.
4. Rinse and repeat.

Congratulations! You’ve learned your first package development workflow. Even if you
learn nothing else from this book, you’ll have gained a useful workflow for editing and
reloading R code.

www.it-ebooks.info

http://www.it-ebooks.info/

Organizing Your Functions

While you’re free to arrange functions into files as you wish, the two extremes are bad:
don’t put all functions into one file and don’t put each function into its own separate file.
(It’s OK if some files only contain one function, particularly if the function is large or has
a lot of documentation.) Filenames should be meaningful and end in .R:

Good
fit_models.R
utility functions.R

Bad

foo.r
stuff.r

Pay attention to capitalization, because you, or some of your collaborators, might be using
an operating system with a case-insensitive filesystem (e.g., Microsoft Windows). Avoid
problems by never using filenames that differ only in capitalization.

My rule of thumb is that if I can’t remember the name of the file where a function lives, I
need to either separate the functions into more files or give the file a better name.
(Unfortunately, you can’t use subdirectories inside R/. The next best thing is to use a
common prefix — for example, abc-*.R.)

The arrangement of functions within files is less important if you master two important
RStudio keyboard shortcuts that let you jump to the definition of a function:

m (Click a function name in code and press F2.

m Press Ctrl-., and then start typing the name (Figure 3-1).

Co to File/Function

Figure 3-1. The code navigation popup

After navigating to a function using one of these tools, you can go back to where you were
by clicking the back arrow at the upper-left of the editor (), or by pressing Ctrl/Cmd-
F9.

www.it-ebooks.info

http://www.it-ebooks.info/

Code Style

Good coding style is like using correct punctuation. You can manage without it, but it sure
makes things easier to read. As with styles of punctuation, there are many possible
variations. The following guidelines describe the style that I use (in this book and
elsewhere). They are based on Google’s R Style Guide, with a few tweaks.

You don’t have to use my style, but I strongly recommend that you use a consistent style
and document it. If you’re working on someone else’s code, don’t impose your own style.
Instead, read their style documentation and follow it as closely as possible.

Good style is important because while your code only has one author, it will usually have
multiple readers. This is especially true when you’re writing code with others. In that case,
it’s a good idea to agree on a common style up front. Because no style is strictly better
than another, working with others may mean that you’ll need to sacrifice some preferred
aspects of your style.

The formatR package, by Yihui Xie, makes it easier to clean up poorly formatted code. It
can’t do everything, but it can quickly get your code from terrible to pretty good. Make
sure to read the notes on the website before using it. It’s as easy as:

install.packages("formatR")
formatR::tidy_dir("R")

A complementary approach is to use a code linter. Rather than automatically fixing
problems, a linter just warns you about them. The lintr package by Jim Hester checks for
compliance with this style guide and lets you know where you’ve missed something.
Compared to formatR, it picks up more potential problems (because it doesn’t have to fix
them), but you will still see false positives. Here’s how to use it:

install.packages("lintr")
lintr::1lint_package()

www.it-ebooks.info

http://bit.ly/1F96seq
http://yihui.name/formatR/
http://www.it-ebooks.info/

Object Names

Variable and function names should be lowercase. Use an underscore (_) to separate words
within a name (reserve . for S3 methods). Camel case is a legitimate alternative, but be
consistent! Generally, variable names should be nouns and function names should be
verbs. Strive for names that are concise and meaningful (this is not easy!). Here are a few
examples:

Good
day_one
day_1

Bad
first_day_of_the_month
DayOne

dayone

djmi

Where possible, avoid using names of existing functions and variables. This will cause
confusion for the readers of your code. For example:

Bad

T <- FALSE

c <- 10

mean <- function(x) sum(x)

www.it-ebooks.info

http://www.it-ebooks.info/

Spacing

Put spaces around all infix operators (=, +, -, <-, etc.). The same rule applies when using =

in function calls. Always put a space after a comma, and never before (just like in regular
English):

Good
average <- mean(feet / 12 + inches, na.rm = TRUE)

Bad
average<-mean(feet/12+inches, na.rm=TRUE)

There’s a small exception to this rule: :, ::, and ::: don’t need spaces around them. (If
you haven’t seen : : or ::: before, don’t worry — you’ll learn all about them in
Chapter 8.) Here are a couple examples:

Good
X <- 1:10
base: :get

Bad
X <- 1 : 10
base :: get

Place a space before left parentheses, except in a function call:

Good
if (debug) do(x)
plot(x, y)

Bad
if(debug)do(x)
plot (x, y)

Extra spacing (i.e., more than one space in a row) is OK if it improves alignment of equals
signs or assignments (<-). For example:

list(
total
mean

)

a+b+c,
(a+b+c)/n

Do not place spaces around code in parentheses or square brackets (unless there’s a
comma, in which case refer to the previous rule):

Good
if (debug) do(x)
diamonds[5,]

Bad

if (debug) do(x) # No spaces around debug
x[1,] # Needs a space after the comma

x[1 ,] # Space goes after comma not before

www.it-ebooks.info

http://www.it-ebooks.info/

Curly Braces

An opening curly brace should never go on its own line and should always be followed by
a new line. A closing curly brace should always go on its own line, unless it’s followed by
else.

Always indent the code inside curly braces:

Good

if (y < 0 && debug) {
message("Y is negative")

}

if (y == 0) {
log(x)

} else {
y A X

}

Bad

if (y < 0 && debug)
message("Y is negative")

if (y =0) {
log(x)

else {
y M X

}

It’s OK to leave very short statements on the same line:

if (y < 0 && debug) message("Y is negative")

www.it-ebooks.info

http://www.it-ebooks.info/

Line Length

Strive to limit your code to 80 characters per line. This fits comfortably on a printed page
with a reasonably sized font. If you find yourself running out of room, this is a good
indication that you should encapsulate some of the work in a separate function.

www.it-ebooks.info

http://www.it-ebooks.info/

Indentation

When indenting your code, use two spaces. Never use tabs or mix tabs and spaces. Change
these options in the code preferences pane (Figure 3-2).

www.it-ebooks.info

http://www.it-ebooks.info/

Options

A

General

Code

3

Appearance
Pane Layout

Packages
Sweave

ABC

v
Spelling

¥

Git/SVN

Display Completion

Insert spaces for tab

Tab width [2 |

Insert matching parens/quotes

Auto-indent code after paste

Vertically align arguments in auto-indent
Soft-wrap R source files

Ensure that source files end with newline

Strip trailing horizontal whitespace when saving
Focus console after executing from source
Enable vim editing mode

Continue comment when inserting new line

| OK _; Cancel Apply

Y ' LA N EAAA W N LaLSAILRa L F 7 RS RS Ra.

Figure 3-2. RStudio’s code preference pane

The only exception is if a function definition runs over multiple lines. In that case, indent
the second line to where the definition starts:

long_function_name <- function(a

"a long argument",
"another argument",
"another long argument") {

b
c

As usual code is indented by two spaces.

}

www.it-ebooks.info

http://www.it-ebooks.info/

Assignment

Use <-, not =, for assignment:

Good
X <- 5
Bad
X =5

www.it-ebooks.info

http://www.it-ebooks.info/

Commenting Guidelines

Comment your code. Each line of a comment should begin with the comment symbol and
a single space: #. Comments should explain the why, not the what.

Use commented lines of - and = to break up your file into easily readable chunks:

Load data ---------------------------

Plot data

www.it-ebooks.info

http://www.it-ebooks.info/

Top-Level Code

Up until now, you’ve probably been writing scripts, R code saved in a file that you load
with source (). There are two main differences between code in scripts and packages:

m In a script, code is run when it is loaded. In a package, code is run when it is built. This
means your package code should only create objects, the vast majority of which will be
functions.

» Functions in your package will be used in situations that you didn’t imagine. This
means your functions need to be thoughtful in the way that they interact with the
outside world.

The next two sections expand on these important differences.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading Code

When you load a script with source(), every line of code is executed and the results are
immediately made available. Things are different in a package, because it is loaded in two
steps. When the package is built (e.g., by CRAN), all the code in R/ is executed and the
results are saved. When you load a package with library() or require(), the cached

results are made available to you. If you loaded scripts in the same way as packages, your
code would look like this:

Load a script into a new environment and save it
env <- new.env(parent = emptyenv())
source("my-script.R", local = env)

save(envir = env, "my-script.Rdata")

Later, in another R session
load("my-script.Rdata")

For example, take x <- Sys.time(). If you put this in a script, x would tell you when the
script was source()d. But if you put that same code in a package, x would tell you when
the package was built.

This means that you should never run code at the top-level of a package: package code
should only create objects, mostly functions. For example, imagine your foo package
contains this code:

library(ggplot2)

show_mtcars <- function() {
gplot(mpg, wt, data = mtcars)

If someone tries to use it:

library(foo)
show_mtcars()

The code won’t work because ggplot2’s gplot () function won’t be available:
library(foo) doesn’t re-execute library(gpplot2). The top-level R code in a package is
only executed when the package is built, not when it’s loaded.

To get around this problem you might be tempted to do the following:

show_mtcars <- function() {
library(ggplot2)
gplot(mpg, wt, data = mtcars)

That’s also problematic, as you’ll see in a moment. Instead, describe the packages your
code needs in the DESCRIPTION file, as you’ll learn in “Dependencies: What Does Your
Package Need?”.

www.it-ebooks.info

http://www.it-ebooks.info/

The R Landscape

Another big difference between a script and a package is that other people are going to use
your package, and they’re going to use it in situations that you never imagined. This
means you need to pay attention to the R landscape, which includes not just the available
functions and objects, but all the global settings. You have changed the R landscape if
you’ve loaded a package with library(), changed a global option with options(), or
modified the working directory with setwd (). If the behavior of other functions differs
before and after running your function, you’ve modified the landscape. Changing the
landscape is bad because it makes code much harder to understand.

There are some functions that modify global settings that you should never use because
there are better alternatives:

Don’t use 1ibrary() or require()

These modify the search path, affecting what functions are available from the global
environment. It’s better to use DESCRIPTION to specify your package’s
requirements, as described in the next chapter. This also makes sure those packages
are installed when your package is installed.

Never use source() to load code from a file

source() modifies the current environment, inserting the results of executing the
code. Instead, rely on devtools::load_all(), which automatically sources all files
in R/. If you’re using source() to create a dataset, instead switch to data/, as
described in Chapter 9.

Other functions need to be used with caution. If you use them, make sure to clean up after
yourself with on.exit():

» [f you modify global options() or graphics par (), save the old values and reset when
you’re done:

0ld <- options(stringsAsFactors = FALSE)
on.exit(options(old), add = TRUE)

= Avoid modifying the working directory. If you do have to change it, make sure to
change it back when you’re done:

old <- setwd(tempdir())
on.exit(setwd(old), add = TRUE)

m Creating plots and printing output to the console are two other ways of affecting the
global R environment. Often you can’t avoid these (because they’re important!), but
it’s good practice to isolate them in functions that only produce output. This also makes
it easier for other people to repurpose your work for new uses. For example, if you
separate data preparation and plotting into two functions, others can use your data prep
work (which is often the hardest part!) to create new visualizations.

www.it-ebooks.info

http://www.it-ebooks.info/

The flip side of the coin is that you should avoid relying on the user’s landscape, which
might be different than yours. For example, functions like read.csv() are dangerous

because the value of the stringsAsFactors argument comes from the global option

stringsAsFactors. If you expect it to be TRUE (the default), and the user has set it to be
FALSE, your code might fail.

www.it-ebooks.info

http://www.it-ebooks.info/

When You Do Need Side Effects

Occasionally, packages do need side effects. This is most common if your package talks to
an external system — you might need to do some initial setup when the package loads. To
do that, you can use two special functions: .onLoad() and .onAttach(). These are called

when the package is loaded and attached. You’ll learn about the distinction between the
two in Chapter 8. For now, you should always use .onLoad () unless explicitly directed

otherwise.
Some common uses of .onLoad() and .onAttach() include the following:

m To display an informative message when the package loads. This might make usage
conditions clear, or display useful tips. Startup messages is one place where you should
use .onAttach() instead of .onLoad(). To display startup messages, always use
packageStartupMessage(), not message() (this allows
suppressPackageStartupMessages() to selectively suppress package startup
messages):

.onAttach <- function(libname, pkgname) {
packageStartupMessage("Welcome to my package")

}

m To set custom options for your package with options(). To avoid conflicts with other
packages, ensure that you prefix option names with the name of your package. Also be
careful not to override options that the user has already set.

I use the following code in devtools to set up useful options:

.onLoad <- function(libname, pkgname) {
op <- options()
op.devtools <- list(

devtools.path = "~/R-dev",

devtools.install.args = "",

devtools.name = "Your name goes here",

devtools.desc.author = 'person("First", "Last",
"first.last@example.com", role = c("aut", "cre"))'

devtools.desc.license = "What license is it under?",

devtools.desc.suggests = NULL,
devtools.desc = list()

)

toset <- !(names(op.devtools) %in% names(op))
if(any(toset)) options(op.devtools[toset])

invisible()

Then devtools functions can use getOption("devtools.name"), for example, to get
the name of the package author, and know that a sensible default value has already
been set.

= To connect R to another programming language. For example, if you use rJava to talk
to a .jar file, you need to call rJava: : .jpackage(). To make C++ classes available as
reference classes in R with Rcpp modules, you call Rcpp: : loadRcppModules ().

www.it-ebooks.info

http://www.it-ebooks.info/

m To register vignette engines with tools::vignetteEngine().

As you can see in the examples, .onLoad() and .onAttach() are called with two
arguments: 1ibname and pkgname. They’re rarely used (they’re a holdover from the days
when you needed to use library.dynam() to load compiled code). They give the path
where the package is installed (the “library”), and the name of the package.

If you use .onLoad(), consider using .onUnload() to clean up any side effects. By
convention, .onLoad() and friends are usually saved in a file called zzz.R. (Note that
.First.lib() and .Last.lib() are old versions of .onLoad() and .onuUnload() and
should no longer be used.)

www.it-ebooks.info

http://www.it-ebooks.info/

S4 Classes, Generics, and Methods

Another type of side effect is defining S4 classes, methods, and generics. R packages
capture these side effects so they can be replayed when the package is loaded, but they
need to be called in the right order. For example, before you can define a method, you
must have defined both the generic and the class. This requires that the R files be sourced
in a specific order. This order is controlled by the collate field in the DESCRIPTION.

This is described in more detail in “S4”.

www.it-ebooks.info

http://www.it-ebooks.info/

CRAN Notes

If you plan to submit your package to CRAN, you must use only ASCII characters in your
.R files. You can still include Unicode characters in strings, but you need to use the special
Unicode escape format (e.g., "\u1234"). The easiest way to do that is to use
stringi::stri_escape_unicode():

X <- "This is a bullet "

y <- "This is a bullet \u2022"

identical(x, y)

#> [1] TRUE

cat(stringi::stri_escape_unicode(Xx))
#> This is a bullet \u2022

NOTE

Each chapter concludes with some hints for submitting your package to CRAN. If you don’t plan to submit
your package to CRAN, feel free to ignore these notes!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. Package Metadata

The job of the DESCRIPTION file is to store important metadata about your package.
When you first start writing packages, you’ll just use this metadata to record what
packages are needed to run your package. However, as time goes by and you start sharing
your package with others, the metadata file becomes increasingly important because it
specifies who can use it (the license) and whom to contact (you!) if there are any
problems.

Every package must have a DESCRIPTION. In fact, it’s the defining feature of a package
(RStudio and devtools consider any directory containing DESCRIPTION to be a package).
To get you started, devtools: :create("mypackage") automatically adds a bare-bones
description file. This allows you to start writing the package without having to worry
about the metadata until you need to. The minimal description will vary a bit depending
on your settings, but should look something like this:

Package: mypackage

Title: What The Package Does (one line, title case required)

Version: 0.1

Authors@R: person("First", "Last", email = "first.last@example.com",
role = c("aut", "cre"))

Description: What the package does (one paragraph)

Depends: R (>= 3.1.0)

License: What license is it under?

LazyData: true

(If you’re writing a lot of packages, you can set global options via
devtools.desc.author, devtools.desc.license, devtools.desc.suggests, and

devtools.desc. See package?devtools for more details.)

DESCRIPTION uses a simple file format called the Debian control format (DCF). You can
see most of the structure in the simple example shown here. Each line consists of a field
name and a value, separated by a colon. When values span multiple lines, they need to be
indented:

Description: The description of a package is usually long,
spanning multiple lines. The second and subsequent lines
should be indented, usually with four spaces.

This chapter will show you how to use the most important Description fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Dependencies: What Does Your Package Need?

It’s the job of the Description to list the packages necessary for your package to work. R
has a rich set of ways of describing potential dependencies. For example, the following
lines indicate that your package needs both ggvis and dplyr to work:

Imports:
dplyr,
ggvis

Conversely, the lines here indicate that while your package can take advantage of ggvis
and dplyr, they’re not required to make it work:

Suggests:
dplyr,
ggvis,

Both Imports and Suggests take a comma-separated list of package names. I recommend
putting one package on each line, and keeping them in alphabetical order. That makes it
easy to skim.

Imports and Suggests differ in their strength of dependency:
Imports

Packages listed in Imports must be present for your package to work. In fact, any
time your package is installed, those packages will, if not already present, be installed
on your computer (devtools: :load_all() also checks that the packages are
installed).

Adding a package dependency here ensures that it’ll be installed. However, it does
not mean that it will be attached along with your package (i.e., library(x)). The best
practice is to explicitly refer to external functions using the syntax

package: : function(). This makes it very easy to identify which functions live
outside of your package. This is especially useful when you read your code in the
future.

If you use a lot of functions from other packages, this is rather verbose. There’s also a
minor performance penalty associated with : : (on the order of 5ps, so it will only
matter if you call the function millions of times). You’ll learn about alternative ways
to call functions in other packages in “Imports”.

Suggests

Your package can use these packages, but doesn’t require them. You might use
suggested packages for example datasets, to run tests, build vignettes, or maybe
there’s only one function that needs the package.

www.it-ebooks.info

http://www.it-ebooks.info/

Packages listed in Suggests are not automatically installed along with your package.
This means that you need to check if the package is available before using it (use
requireNamespace(x, quietly = TRUE)). There are two basic scenarios:

You need the suggested package for this function
my_fun <- function(a, b) {
if (!requireNamespace("pkg", quietly = TRUE)) {
stop("Pkg needed for this function to work. Please install it.",
call. = FALSE)
}

}

There's a fallback method if the package isn't available
my_fun <- function(a, b) {
if (requireNamespace("pkg", quietly = TRUE)) {
pkg::f()
} else {
g()
}

When developing packages locally, you never need to use Suggests. When releasing your
package, using Suggests is a courtesy to your users. It frees them from downloading
rarely needed packages, and lets them get started with your package as quickly as
possible.

The easiest way to add Imports and Suggests to your package is to use
devtools: :use_package(). This automatically puts them in the right place in your
DESCRIPTION, and reminds you how to use them. For example:

devtools: :use_package("dplyr") # Defaults to imports

#> Adding dplyr to Imports

#> Refer to functions with dplyr::fun()

devtools: :use_package("dplyr", "Suggests")

#> Adding dplyr to Suggests

#> Use requireNamespace("dplyr", quietly = TRUE) to test if package is
#> 1installed, then use dplyr::fun() to refer to functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning

If you need a particular version of a package, specify it in parentheses after the package
name:

Imports:
ggvis (>= 0.2),
dplyr (>= 0.3.0.1)
Suggests:
MASS (>= 7.3.0)

You almost always want to specify a minimum version rather than an exact version (MASS
(== 7.3.0)). Because R can’t have multiple versions of the same package loaded at the
same time, specifying an exact dependency dramatically increases the chance of problems.

Versioning is most important when you release your package. Usually people don’t have
exactly the same versions of packages installed that you do. If someone has an older
package that doesn’t have a function your package needs, they’ll get an unhelpful error
message. However, if you supply the version number, they’ll get an error message that
tells them exactly what the problem is: an out-of-date package.

Generally, it’s always better to specify the version and to be conservative about which
version to require. Unless you know otherwise, always require a version greater than or
equal to the version you’re currently using.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Dependencies

There are three other fields that allow you to express more specialized dependencies:

Depends

Prior to the rollout of namespaces in R 2.14.0, Depends was the only way to “depend”
on another package. Now, despite the name, you should almost always use Imports,
not Depends. You’ll learn why, and when you should still use Depends, in Chapter 8.

You can also use Depends to require a specific version of R (e.g., Depends: R (>=
3.0.1)). As with packages, it’s a good idea to play it safe and require a version
greater than or equal to the version you’re currently using. devtools: :create() will
do this for you.

In R 3.1.1 and earlier, you’ll also need to use Depends: methods if you use S4. This
bug is fixed in R 3.2.0, so methods can go back to Imports where they belong.
LinkingTo
Packages listed here rely on C or C++ code in another package. You’ll learn more
about LinkingTo in Chapter 10.
Enhances
Packages listed here are “enhanced” by your package. Typically, this means you

provide methods for classes defined in other packages (a sort of reverse Suggests).
But it’s hard to define what that means, so I don’t recommend using Enhances.

You can also list things that your package needs outside of R in the SystemRequirements

field. But this is just a plain-text field and is not automatically checked. Think of it as a
quick reference; you’ll also need to include detailed system requirements (and how to
install them) in your README.

www.it-ebooks.info

http://www.it-ebooks.info/

Title and Description: What Does Your Package Do?

The title and description fields describe what the package does. They differ only in length:

m Title is a one-line description of the package, and is often shown in the package
listing. It should be plain text (no markup), and follow headline-style capitalization; it
should not end in a period. Keep it short: listings will often truncate the title to 65
characters.

m Description is more detailed than the title. You can use multiple sentences but you are
limited to one paragraph. If your description spans multiple lines (and it should!), each
line must be no more than 80 characters wide. Indent subsequent lines with four spaces.

The Title and Description for ggplot2 are as follows:

Title: An implementation of the Grammar of Graphics

Description: An implementation of the grammar of graphics in R. It combines
the advantages of both base and lattice graphics: conditioning and shared
axes are handled automatically, and you can still build up a plot step
by step from multiple data sources. It also implements a sophisticated
multidimensional conditioning system and a consistent interface to map
data to aesthetic attributes. See the ggplot2 website for more information,
documentation and examples.

A good title and description are important, especially if you plan to release your package
to CRAN, because they appear on the CRAN download page, shown in Figure 4-1.

www.it-ebooks.info

http://www.it-ebooks.info/

e O O CRAN - Package ggplot2 "

ggplot2: An implementation of the Grammar of Graphics

An implementation of the grammar of graphics in R. It combines the advantages of
both base and lattice graphics: conditioning and shared axes are handled
automatically, and you can still build up a plot step by step from multiple data
sources. It also implements a sophisticated multidimensional conditioning system
and a consistent interface to map data to aesthetic attributes. See the ggplot2
website for more information, documentation and examples.

Version: 1.0.0

Depends: R (= 2.14), stats, methods

Imports: plyr (= 1.7.1), digest, grid, gtable (= 0.1.1), reshape2, scales (=
0.2.3), proto, MASS

Suggests: quantreg, Hmisc, mapproj, maps, hexbin, maptools, multcomp,
nlme, testthat, knitr, mgcv

Enhances: sp

Published: 2014-05-21

Author: Hadley Wickham, Winston Chang

Maintainer: Hadley Wickham <h.wickham at gmail.com>

BugReports: https://github.com/hadley/ggplot2/issues

Figure 4-1. The CRAN download page for ggplot2

Because Description only gives you a small amount of space to describe what your

package does, I also recommend including a README.md file that goes into much more
depth and shows a few examples. You’ll learn about that in “README.md”.

www.it-ebooks.info

http://www.it-ebooks.info/

Author: Who Are You?

To identify the package’s author, and whom to contact if something goes wrong, use the
Authors@R field. This field is unusual because it contains executable R code rather than
plain text. Here’s an example:

Authors@R: person("Hadley", "wickham", email = "hadley@rstudio.com",
role = c("aut", "cre"))

This command says that both the author (aut) and the maintainer (cre) is Hadley
Wickham, and that his email address is hadley@rstudio.com. The person() function has
four main arguments:

m The name, specified by the first two arguments, given and family (these are normally
supplied by position, not name). In Western cultures, given (first name) comes before
family (last name), but this convention does not hold in many Eastern cultures.

m The email address.

m A three-letter code specifying the role. There are four important roles:
cre
The creator or maintainer, the person you should bother if you have problems.
aut
Authors, those who have made significant contributions to the package.
ctb
Contributors, those who have made smaller contributions, like patches.
cph

Copyright holder. This is used if the copyright is held by someone other than the
author, typically a company (i.e., the author’s employer).

(The full list of roles is extremely comprehensive. Should your package have a
woodcutter (wdc), lyricist (1yr), or costume designer (cst), rest comfortably that you
can correctly describe that person’s role in creating your package.)

If you need to add further clarification, you can also use the comment argument and supply
the desired information in plain text.

You can list multiple authors with c():

Authors@R: c(
person("Hadley", "Wickham", email = "hadley@rstudio.com", role
person("Winston", "Chang", email = "winston@rstudio.com", role

"Cre"),
"aut"))

Every package must have at least one author (aut) and one maintainer (cre); they might
be the same person. The creator must have an email address. These fields are used to

www.it-ebooks.info

http://www.loc.gov/marc/relators/relaterm.html
http://www.it-ebooks.info/

generate the basic citation for the package (e.g., citation("pkgname")). Only people
listed as authors will be included in the autogenerated citation. There are a few extra
details if you’re including code that other people have written. This typically occurs when
you’re wrapping a C library, so it’s discussed in Chapter 10.

In addition to your email address, it’s a good idea to list other resources available for help.
You can list URLs in URL. Multiple URLSs are separated with a comma. BugReports is the

URL where bug reports should be submitted. For example, knitr has:

URL: http://yihui.name/knitr/
BugReports: https://github.com/yihui/knitr/issues

You can also use separate Maintainer and Author fields. I prefer not to use these fields
because Authors@R offers richer metadata.

www.it-ebooks.info

http://www.it-ebooks.info/

On CRAN

The most important thing to note is that your email address (i.e., the address of cre) is the
address that CRAN will use to contact you about your package. Make sure you use an
email address that’s likely to be around for a while. Also, because this address will be used
for automated mailings, CRAN policies require that this be for a single person (not a
mailing list) and that it does not require any confirmation or use any filtering.

www.it-ebooks.info

http://www.it-ebooks.info/

License: Who Can Use Your Package?

The License field can be either a standard abbreviation for an open source license, like
GPL-2 or BSD, or a pointer to a file containing more information, file LICENSE. The
license is really only important if you’re planning on releasing your package. If you don't,
you can ignore this section. If you want to make it clear that your package is not open
source, use License: file LICENSE and then create a file called LICENSE, containing,
for example:

Proprietary

Do not distribute outside of Widgets Incorporated.

Open source software licensing is a rich and complex field. Fortunately, in my opinion,
there are only three licenses that you should consider for your R package:

YEAR: <Year or years when changes have been made>
COPYRIGHT HOLDER: <Name of the copyright holder>

MIT

This is a simple and permissive license, similar to the BSD 2- and 3-clause licenses.
It lets people use and freely distribute your code subject to only one restriction: the
license must always be distributed with the code. The MIT license is a “template,” so
if you use it, you need License: MIT + file LICENSE, and a LICENSE file.

jasmine

Production: I reformatted this as a variable list, but it moves the code block that
should be here to before the variable list.

GPL-2 or GPL-3

These are “copy-left” licenses. This means that anyone who distributes your code in a
bundle must license the whole bundle in a GPL-compatible way. Additionally,
anyone who distributes modified versions of your code (derivative works) must also
make the source code available. GPL-3 is a little stricter than GPL-2, closing some
older loopholes.

cCco

This license relinquishes all your rights on the code and data so that it can be freely
used by anyone for any purpose. This is sometimes called putting it in the public
domain, a term that is neither well defined nor meaningful in all countries. This
license is most appropriate for data packages. Data, at least in the United States, is
not copyrightable, so you’re not really giving up much. This license just makes this
point clear.

If you’d like to learn more about other common licenses, GitHub’s choosealicense.com is
a good place to start. Another good resource is tldrlegal.com/, which explains the most

www.it-ebooks.info

https://tldrlegal.com/license/mit-license
http://bit.ly/1F96TW4
http://bit.ly/1F96Vxa
http://bit.ly/1F96Zgp
http://choosealicense.com/licenses/
https://tldrlegal.com/
http://www.it-ebooks.info/

important parts of each license. If you use a license other than the three I suggest, make
sure you consult the “Writing R Extensions” section on licensing.

If your package includes code that you didn’t write, you need to make sure you’re in
compliance with its license. This occurs most commonly when you’re including C source
code, so it’s discussed in more detail in Chapter 10.

www.it-ebooks.info

http://bit.ly/1F972sx
http://www.it-ebooks.info/

On CRAN

If you want to release your package to CRAN, you must choose a standard license.
Otherwise, it’s difficult for CRAN to determine whether or not it’s legal to distribute your
package! You can find a complete list of licenses that CRAN considers valid at
https://svn.r-project.org/R/trunk/share/licenses/license.db.

www.it-ebooks.info

https://svn.r-project.org/R/trunk/share/licenses/license.db
http://www.it-ebooks.info/

Version

Formally, an R package version is a sequence of at least two integers separated by either .
or -. For example, 1.0 and 0.9.1-10 are valid versions, but 1 or 1.0-devel are not. You can
parse a version number with numeric_version:

numeric_version("1.9") == numeric_version("1.9.0")
#> [1] TRUE

numeric_version("1.9.0") < numeric_version("1.10.0")
#> [1] TRUE

For example, a package might have a version 1.9. This version number is considered by R
to be the same as 1.9.0, less than version 1.9.2, and all of these are less than version 1.10
(which is version “one point ten,” not “one point one zero”). R uses version numbers to
determine whether package dependencies are satisfied. A package might, for example,
import package devtools (>= 1.9.2), in which case version 1.9 or 1.9.0 wouldn’t work.

The version number of your package increases with subsequent releases of a package, but
it’s more than just an incrementing counter — the way the number changes with each
release can convey information about what kind of changes are in the package.

I don’t recommend taking full advantage of R’s flexiblity. Instead, always use . to
separate version numbers.

A released version consists of three numbers, <major>.<minor>.<patch>. For version

number 1.9.2, 1 is the major number, 9 is the minor number, and 2 is the patch number.
Never use versions like 1.0; instead, always spell out the three components (i.e., 1.0.0).

An in-development package has a fourth component: the development version. This
should start at 9000. For example, the first version of the package should be 0.0.0.9000.
There are two reasons for this recommendation: first, it makes it easy to see if a package is
released or in-development, and second, the use of the fourth place means that you’re not
limited to what the next version will be. 0.0.1, 0.1.0, and 1.0.0 are all greater than
0.0.0.9000.

Increment the development version (e.g., from 9000 to 9001) if you’ve added an important
feature that another development package needs to depend on.

If you’re using svn, instead of using the arbitrary 9000, you can embed the sequential
revision identifier.

The advice here is inspired in part by Semantic Versioning and by the X.Org versioning
schemes. Read them if you’d like to understand more about the standards of versioning
used by many open source projects.

We’ll come back to version numbers in the context of releasing your package in “Version
Number”. For now, just remember that the first version of your package should be
0.0.0.9000.

www.it-ebooks.info

http://semver.org/
http://www.x.org/releases/X11R7.7/doc/xorg-docs/Versions.html
http://www.it-ebooks.info/

Other Components

A number of other fields are described elsewhere in the book:

m Collate controls the order in which R files are sourced. This only matters if your code
has side effects (most commonly because you’re using S4). This is described in more
depth in “S4”.

m LazyData makes it easier to access data in your package. Because it’s so important, it’s
included in the minimal description created by devtools. It’s described in more detail in
Chapter 9.

There are actually many other rarely used fields. A complete list can be found in the “The
DESCRIPTION file” section of the R extensions manual. You can also create your own
fields to add additional metadata. The only restrictions are that you shouldn’t use existing
names, and that, if you plan to submit to CRAN, the names you use should be valid
English words (so a spell-checking NOTE won’t be generated).

www.it-ebooks.info

http://bit.ly/1F972sx
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Object Documentation

Documentation is one of the most important aspects of a good package. Without it, users
won’t know how to use your package. Documentation is also useful for “future you” (so
you remember what your functions were supposed to do), and for developers extending
your package.

There are multiple forms of documentation. In this chapter, you’ll learn about object
documentation, as accessed by ? or help(). Object documentation is a type of reference
documentation. It works like a dictionary: while a dictionary is helpful if you want to
know what a word means, it won’t help you find the right word for a new situation.
Similarly, object documentation is helpful if you already know the name of the object, but
it doesn’t help you find the object you need to solve a given problem. That’s one of the
jobs of vignettes, which you’ll learn about in the next chapter.

R provides a standard way of documenting the objects in a package: you write .Rd files in
the man/ directory. These files use a custom syntax, loosely based on LaTeX, and are
rendered to HTML, plain text, and PDF for viewing. Instead of writing these files by hand,
we’re going to use roxygen2, which turns specially formatted comments into .Rd files.
The goal of roxygen2 is to make documenting your code as easy as possible. It has a
number of advantages over writing .Rd files by hand:

m Code and documentation are intermingled so that when you modify your code, you’re
reminded to also update your documentation.

= Roxygen2 dynamically inspects the objects that it documents, so you can skip some
boilerplate that you’d otherwise need to write by hand.

m [t abstracts over the differences in documenting different types of objects, so you need
to learn fewer details.

As well as generating .Rd files, roxygen2 can also manage your NAMESPACE and the
Collate field in DESCRIPTION. This chapter discusses .Rd files and the Collate field.

Chapter 8 describes how you can use roxygen2 to manage your NAMESPACE, and why
you should care.

www.it-ebooks.info

http://www.it-ebooks.info/

The Documentation Workflow

In this section, we’ll first go over a rough outline of the complete documentation
workflow. Then, we’ll dive into each step individually. There are four basic steps:

1. Add roxygen comments to your .R files.

2. Run devtools: :document () (or press Ctrl/Cmd-Shift-D in RStudio) to convert
roxygen comments to .Rd files. (devtools: :document () calls
roxygen2: :roxygenise() to do the hard work.)

3. Preview documentation with ?.
4. Rinse and repeat until the documentation looks the way you want.

The process starts when you add roxygen comments to your source file: roxygen
comments start with #' to distinguish them from regular comments. Here’s documentation
for a simple function:

#' Add together two numbers.
#I
#' @param x A number.
#' @param y A number.
#' @return The sum of \code{x} and \code{y}.
#' @examples
#' add(1, 1)
#' add(10, 1)
add <- function(x, y) {
X +y

}

Pressing Ctrl/Cmd-Shift-D (or running devtools: :document ()) will generate a
man/add.Rd that looks like:

% Generated by roxygen2 (4.0.0): do not edit by hand
\name{add}
\alias{add}
\title{Add together two numbers}
\usage{
add(x, y)
}
\arguments{
\item{x}{A number}

\item{y}{A number}

\value{
The sum of \code{x} and \code{y}

}

\description{
Add together two numbers

}

\examples{
add(1, 1)
add(10, 1)
}

If you’ve used LaTeX, this should look familiar, because the .Rd format is loosely based
on it. You can read more about the .Rd format in the R extensions manual. Note the

www.it-ebooks.info

http://cran.r-project.org/doc/manuals/R-exts.html#Rd-format
http://www.it-ebooks.info/

comment at the top of the file: it was generated by code and shouldn’t be modified.
Indeed, if you use roxygen2, you’ll rarely need to look at these files.

When you use ?add, help("add"), or example("add"), R looks for an .Rd file containing
\alias{"add"}. It then parses the file, converts it into HTML, and displays it. Figure 5-1
shows what the result looks like in RStudio.

add {rvest} R Documentation

Add together two numbers

Description

Add together two numbers
Usage

add(x, y)

Arguments

x A number
y A number

Value
The sum of x and y
Examples

add(1, 1)
add(10, 1)

Figure 5-1. The final rendered documentation for add(), as displayed by RStudio

NOTE

You can preview development documentation because devtools overrides the usual help functions to teach
them how to work with source packages. If the documentation doesn’t appear, make sure that you’re using
devtools and that you’ve loaded the package with devtools::load_all().

www.it-ebooks.info

http://www.it-ebooks.info/

Alternative Documentation Workflow

The first documentation workflow is very fast, but it has one limitation: the preview
documentation pages will not show any links between pages. If you’d like to also see
links, use this workflow:

1. Add roxygen comments to your .R files.

2. Click #sussread in the build pane or press Ctrl/Cmd-Shift-B. This completely
rebuilds the package, including updating all the documentation, installs it in your
regular library, then restarts R and reloads your package. This is slow but thorough.

3. Preview documentation with ?.
4. Rinse and repeat until the documentation looks the way you want.

If this workflow doesn’t seem to be working, check your project options in RStudio
(Figure 5-2). Old versions of devtools and RStudio did not automatically update the
documentation when the package was rebuilt.

www.it-ebooks.info

http://www.it-ebooks.info/

Project Options

Code Editing

Sweave

Build Tools

Git/SVN

a

Packrat

Project build tools: Package

Package directory:

(Project Root)

v Use devtools package functions if available

v Generate documentation with Roxygen

Build and Relc

--no-multiarc

Check Packag

Build Source F

Build Binary P

? Developint

Roxygen Options

Browse...

Configure...

Use roxygen to generAte:

v | Rd files
v | Collate field

v NAMESPACE file

Vignettes

Automatica

roxygenize when running:

v Source and binary package builds

v | Build & Reload

([ok)

Cancel

I OK l

Cancel

Figure 5-2. Documentation configuration in RStudio

www.it-ebooks.info

http://www.it-ebooks.info/

Roxygen Comments

Roxygen comments start with #' and come before a function. All the roxygen lines

preceding a function are called a block. Each line should be wrapped in the same way as
your code, normally at 80 characters.

Blocks are broken up into tags, which look like @tagName details. The content of a tag
extends from the end of the tag name to the start of the next tag (or the end of the block).
Because @ has a special meaning in roxygen, you need to write @@ if you want to add a
literal @ to the documentation (this is mostly important for email addresses and for
accessing slots of S4 objects).

Each block includes some text before the first tag. This is called the introduction, and is
parsed specially:

m The first sentence becomes the title of the documentation. That’s what you see when
you look at help(package = mypackage) and is shown at the top of each help file. It
should fit on one line, be written in sentence case, and end in a full stop.

m The second paragraph is the description: this comes first in the documentation and
should briefly describe what the function does.

m The third and subsequent paragraphs go into the details: this is a (often long) section
that is shown after the argument description and should go into detail about how the
function works.

All objects must have a title and description. Details are optional.

Here’s an example showing what the introduction for sum() might look like if it had been
written with roxygen:

#' Sum of vector elements.

#I

#' \code{sum} returns the sum of all the values present in its arguments.

#I

#' This is a generic function: methods can be defined for it directly or via the
#' \code{\link{Summary}} group generic. For this to work properly, the arguments
#' \code{...} should be unnamed, and dispatch is on the first argument.

sum <- function(..., na.rm = TRUE) {}

\code{} and \1ink{} are formatting commands that you’ll learn about in “Text

Formatting Reference Sheet”. I’ve been careful to wrap the roxygen block so that it’s less
than 80 characters wide. You can do that automatically in Rstudio with Ctrl/Cmd-Shift-/
(or from the menu, code — re-flow comment).

You can add arbitrary sections to the documentation with the @section tag. This is a

useful way of breaking a long details section into multiple chunks with useful headings.
Section titles should be in sentence case, must be followed by a colon, and they can only
be one line long:

www.it-ebooks.info

http://www.it-ebooks.info/

#' @section Warning:
#' Do not operate heavy machinery within 8 hours of using this function.
There are two tags that make it easier for people to navigate between help files:

@seealso

@seealso allows you to point to other useful resources, either on the web
(\url{ http://www.r-project.org}), in your package (\code{\link{ functioname}}), or
another package (\code{\link[packagename]{functioname}}).

@family
If you have a family of related functions where every function should link to every
other function in the family, use @family. The value of @family should be plural.

For sum, these components might look like this:

#' @family aggregate functions

#' @seealso \code{\link{prod}} for products, \code{\link{cumsum}} for cumulative
#' sums, and \code{\link{colSums}}/\code{\link{rowSums}} marginal sums over

#' high-dimensional arrays.

Three other tags make it easier for the user to find documentation:

@aliases aliasl alias?.

This adds additional aliases to the topic. An alias is another name for the topic that
can be used with ».

@keywords keywordl keyword?2..

This adds standardized keywords. Keywords are optional, but if present, must be
taken from a predefined list found in file.path(R.home("doc"), "KEYWORDS").

Generally, keywords are not that useful except for @keywords internal. Using the
internal keyword removes the function from the package index and disables some of
their automated tests. It’s common to use @keywords internal for functions that are
of interest to other developers extending your package, but not most users.

Other tags are situational: they vary based on the type of object that you’re documenting.
The following sections describe the most commonly used tags for functions, packages,
and the various methods, generics, and objects used by R’s three object-oriented (OO)
systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Documenting Functions

Functions are the most commonly documented object. As well as the introduction block,
most functions have three tags: @param, @examples, and @return.

@param name description

This tag describes the function’s inputs or parameters. The description should provide
a succinct summary of the type of the parameter (e.g., string, numeric vector), and if
not obvious from the name, what the parameter does.

The description should start with a capital letter and end with a full stop. It can span
multiple lines (or even paragraphs) if necessary. All parameters must be documented.

You can document multiple arguments in one place by separating the names with
commas (no spaces). For example, to document both x and y, you can write @param
X,y Numeric vectors.

@examples

This tag provides executable R code showing how to use the function in practice.
This is a very important part of the documentation because many people look at the
examples first. Example code must work without errors because it is run
automatically as part of R CMD check.

For the purpose of illustration, it’s often useful to include code that causes an error.
\dontrun{} allows you to include code in the example that is not run. (You used to
be able to use \donttest{} for a similar purpose, but it’s no longer recommended
because it actually is tested.)

Instead of including examples directly in the documentation, you can put them in
separate files and use @example path/relative/to/packge/root to insert them into
the documentation.

@return description

This tag describes the output from the function. This is not always necessary, but is a
good idea if your function returns different types of output depending on the input, or
if you’re returning an S3, S4, or RC object.

We could use these new tags to improve our documentation of sum() as follows:

#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I

Sum of vector elements.
\code{sum} returns the sum of all the values present in its arguments.

This is a generic function: methods can be defined for it directly

or via the \code{\link{Summary}} group generic. For this to work properly,
the arguments \code{...} should be unnamed, and dispatch is on the

first argument.

@param.. Numeric, complex, or logical vectors.

@param na.rm A logical scalar. Should missing values (including NaN)
be removed?

@return If all inputs are integer and logical, then the output
will be an integer. If integer overflow
\url{http://en.wikipedia.org/wiki/Integer_overflow} occurs, the output
will be NA with a warning. Otherwise it will be a length-one numeric or

www.it-ebooks.info

http://www.it-ebooks.info/

#! complex vector.

#I

#! Zero-length vectors have sum 0 by definition. See
#' \url{http://en.wikipedia.org/wiki/Empty_sum} for more details.
#' @examples

#' sum(1:10)

#' sum(1:5, 6:10)

#' sum(F, F, F, T, T)

#I

#' sum(.Machine$integer.max, 1L)

#' sum(.Machine$integer.max, 1)

#I

#' \dontrun{

#I sum(llall)

#' 3}

sum <- function(..., na.rm = TRUE) {}

Indent the second and subsequent lines of a tag so that when scanning the documentation
it’s easy to see where one tag ends and the next begins. Tags that always span multiple
lines (e.g., @example) should start on a new line and don’t need to be indented.

www.it-ebooks.info

http://www.it-ebooks.info/

Documenting Datasets

See “Documenting Datasets”.

www.it-ebooks.info

http://www.it-ebooks.info/

Documenting Packages

You can use roxygen to provide a help page for your package as a whole. This is accessed
with package?foo, and can be used to describe the most important components of your

package. It’s a useful supplement to vignettes, as described in the next chapter.

There’s no object that corresponds to a package, so you need to document NULL, and then

manually label it with @docType package and @name <package-name>. This is also an

excellent place to use the @section tag to divide up a page into useful categories:

#I
#I
#I
#I
#I
#I
#I
#I
#I
#I

foo: A package for computating the notorious bar statistic.

The foo package provides three categories of important functions:
foo, bar and baz.

@section Foo functions:
The foo functions..

@docType package
@name foo

NULL

I usually put this documentation in a file called <package-name>.R. It’s also a good place
to put the package-level import statements that you’ll learn about in “Imports™.

www.it-ebooks.info

http://www.it-ebooks.info/

Documenting Classes, Generics, and Methods

It’s relatively straightforward to document classes, generics, and methods. The details vary
based on the object system you’re using. The following sections give the details for the
S3, S4, and RC object systems.

www.it-ebooks.info

http://www.it-ebooks.info/

S3

S3 generics are regular functions, so document them as such. S3 classes have no formal
definition, so document the constructor function. It is your choice whether or not to
document S3 methods. You don’t need to document methods for simple generics like
print (). But if your method is more complicated or includes additional arguments, you
should document it so people know how it works. In base R, you can see examples of
documentation for more complex methods like predict.1m(), predict.glm(), and

anova.glm().

NOTE

Older versions of roxygen required explicit @method generic class tags for all S3 methods. From version
3.0.0 onward, this is no longer needed as roxygen2 will figure it out automatically. If you are upgrading,
make sure to remove these old tags. Automatic method detection will only fail if the generic and class are
ambiguous. For example, is all.equal.data.frame() the equal. data.frame method for all, or the

data.frame method for all.equal? If this happens, you can disambiguate with @method all.equal
data.frame.

www.it-ebooks.info

http://www.it-ebooks.info/

S4

Document S4 classes by adding a roxygen block before setClass(). Use @slot to
document the slots of the class in the same way you use @param to describe the parameters
of a function. Here’s a simple example:

#' An S4 class to represent a bank account.

#I

#' @slot balance A length-one numeric vector

Account <- setClass("Account",
slots = list(balance = "numeric")

)

S4 generics are also functions, so document them as such. S4 methods are a little more
complicated, however. Unlike S3, all S4 methods must be documented. You document
them like a regular function, but you probably don’t want each method to have its own
documentation page. Instead, put the method documentation in one of three places:

In the class

You should use this option if the corresponding generic uses single dispatch and you
created the class.

In the generic

This option is most appropriate if the generic uses multiple dispatch and you have
written both the generic and the method.

In its own file

If the method is complex, or if you’ve written the method but not the class or generic,
you should go with this option.

Use either @rdname or @describelIn to control where method documentation goes. See
“Documenting Multiple Functions in the Same File” for details.

Another consideration is that S4 code often needs to run in a certain order. For example, to
define the method setMethod("foo", c("bar", "baz"), ...), you must already have

created the foo generic and the two classes. By default, R code is loaded in alphabetical

order, but that won’t always work for your situation. Rather than relying on alphabetic
ordering, roxygen2 provides an explicit way of saying that one file must be loaded before
another: @include. The @include tag gives a space-separated list of filenames that should

be loaded before the current file:

#' @include class-a.R
setClass("B", contains = "A")

Often, it’s easiest to put this at the top of the file. To make it clear that this tag applies to
the whole file, and not a specific object, document NULL:

#' @include foo.R bar.R baz.R
NULL

www.it-ebooks.info

http://www.it-ebooks.info/

setMethod("foo", c("bar", "baz"), ...)

Roxygen uses the @include tags to compute a topological sort, which ensures that
dependencies are loaded before they’re needed. It then sets the Collate field in
DESCRIPTION, which overrides the default alphabetic ordering. A simpler alternative to
@include is to define all classes and methods in aaa-classes.R and aaa-generics.R, and
rely on these coming first, as they’re in alphabetical order. The main disadvantage is that
you can’t organize components into files as naturally as you might want.

NOTE

Older versions of roxygen?2 required explicit @usage, @alias, and @docType tags for document S4 objects.
However, as of version 3.0.0, roxygen2 generates the correct values automatically so you no longer need to
use them. If you’re upgrading from an old version, you can delete these tags.

www.it-ebooks.info

http://www.it-ebooks.info/

RC

Reference classes are different than S3 and S4 because methods are associated with
classes, not generics. RC also has a special convention for documenting methods: the
docstring. The docstring is a string placed inside the definition of the method which
briefly describes what it does. This makes documenting RC simpler than S4 because you
only need one roxygen block per class:

#' A Reference Class to represent a bank account.
#I
#' @field balance A length-one numeric vector.
Account <- setRefClass("Account",
fields = list(balance = "numeric"),
methods = list(
withdraw = function(x) {
"Withdraw money from account. Allows overdrafts"
balance <<- balance - x
}
)
)

Methods with docstrings will be included in the “Methods™ section of the class
documentation. Each documented method will be listed with an automatically generated
usage statement and its docstring. Also note the use of @field instead of @slot.

www.it-ebooks.info

http://www.it-ebooks.info/

Special Characters

There are three characters that need special handling if you want them to appear in the
final documentation:

@
This character usually marks the start of a roxygen tag. Use @@ to insert a literal @ in
the final documentation.

%
This character usually marks the start of a LaTeX comment that continues to the end
of the line. Use \% to insert a literal % in the output document. The escape is not
needed in examples.

\

This character usually marks the start of a LaTeX escape. Use \\ to insert a literal \
in the documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Do Repeat Yourself

There is a tension between the DRY (don’t repeat yourself) principle of programming and
the need for documentation to be self-contained. It’s frustrating to have to navigate
through multiple help files in order to pull together all the pieces you need. Roxygen2
provides two ways to avoid repetition in the source, while still assembling everything into
one documentation file:

m The ability to reuse parameter documentation with @inheritParams

m The ability to document multiple functions in the same place with @describelIn or
@rdname

www.it-ebooks.info

http://www.it-ebooks.info/

Inheriting Parameters from Other Functions

You can inherit parameter descriptions from other functions using @inheritParams
source_function. This tag will bring in all documentation for parameters that are
undocumented in the current function, but documented in the source function. The source
can be a function in the current package, via @inheritParams function, or another
package, via @inheritParams package::function. For example, the following
documentation:

#' @param a This is the first argument

foo <- function(a) a + 10

#' @param b This is the second argument

#' @inheritParams foo

bar <- function(a, b) {

foo(a) * 10
}

is equivalent to:

#' @param a This is the first argument
#' @param b This is the second argument
bar <- function(a, b) {

foo(a) * 10
}

Note that inheritance does not chain. In other words, the source_function must always be
the function that defines the parameter using @param.

www.it-ebooks.info

http://www.it-ebooks.info/

Documenting Multiple Functions in the Same File

You can document multiple functions in the same file by using either @rdname or
@describeIn. However, it’s a technique best used with caution: documenting too many
functions in one place leads to confusing documentation. You should use it when functions
have very similar arguments, or have complementary effects (e.g., open() and close()
methods).

@describeln is designed for the most common cases:

= Documenting methods in a generic
= Documenting methods in a class
» Documenting functions with the same (or similar arguments)

It generates a new section, named “Methods (by class),” “Methods (by generic),” or
“Functions.” The section contains a bulleted list describing each function. They’re labeled
so that you know what function or method it’s talking about. Here’s an example,
documenting an imaginary new generic:

#' Foo bar generic

#I

#' @param x Object to foo.

foobar <- function(x) UseMethod("foobar")

#' @describeIn foobar Difference between the mean and the median
foobar.numeric <- function(x) abs(mean(x) - median(x))

#' @describeIn foobar First and last values pasted together in a string.
foobar.character <- function(x) paste@(x[1], "-", x[length(x)])

An alternative to @describeIn is @rdname. It overrides the default filename generated by

roxygen and merges documentation for multiple objects into one file. This gives you the
complete freedom to combine documentation as you see fit.

There are two ways to use @rdname. You can add documentation to an existing function:

#' Basic arithmetic

#I

#' @param x,y numeric vectors.
add <- function(x, y) x + vy

#' @rdname add
times <- function(x, y) X * vy

Or you can create a dummy documentation file by documenting NULL and setting an
informative @name:

#' Basic arithmetic

#I

#' @param X,y numeric vectors.
#' @name arith

NULL

www.it-ebooks.info

http://www.it-ebooks.info/

#' @rdname arith
add <- function(x, y) x + vy

#' @rdname arith
times <- function(x, y) x * vy

www.it-ebooks.info

http://www.it-ebooks.info/

Text Formatting Reference Sheet

Within roxygen tags, you use .Rd syntax to format text. This vignette shows you examples
of the most important commands. The full details are described in R extensions.

Note that \ and % are special characters in the Rd format. To insert a literal % or \, escape
them with a backslash (i.e., use \% or \\, respectively).

www.it-ebooks.info

http://cran.r-project.org/doc/manuals/R-exts.html#Marking-text
http://www.it-ebooks.info/

Character Formatting

m \emph{italics}: italics.
m \strong{bold}: bold.

m \code{r_function_call(with = "arguments")}: r_function_call(with =
"arguments")

www.it-ebooks.info

http://www.it-ebooks.info/

Links

To other documentation:

m \code{\link{function}}: Function in this package

m \code{\1link[MASS]{abbey}}: Function in another package
m \link[=dest]{name}: Link to dest, but show name

m \linkS4class{abc}: Link to an S4 class

To the web:
m \url{http://rstudio.com}: A URL

m \href{http://rstudio.com}{Rstudio}: A URL with custom link text

= \email{hadley@@rstudio.com} (note the doubled @): An email address

www.it-ebooks.info

http://www.it-ebooks.info/

Lists
m Ordered (numbered) lists:

#' \enumerate{

#' \item First item
#' \item Second item
#' }

m Unordered (bulleted) lists:

#' \itemize{

#' \item First item
#' \item Second item
#'}

m Definition (named) lists:

#' \describe{

#' \item{One}{First item}
#' \item{Two}{Second item}
#' 3}

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematics

You can use standard LaTeX math (with no extensions). Choose between either inline or
block display:

m \egn{a + b}: Inline equation

m \degn{a + b}: Display (block) equation

www.it-ebooks.info

http://www.it-ebooks.info/

Tables

Tables are created with \tabular{}. It has two arguments:

m Column alignment, specified by letter for each column (1 = left, r = right, ¢ = center.)

m Table contents, with columns separated by \tab and rows by \cr.

The following function turns an R data frame into the correct format (it ignores column
and row names, but should get you started):

tabular <- function(df,
stopifnot(is.data.frame(df))

}

cat(tabular(mtcars[1:5, 1:

) {

align <- function(x) if (is.numeric(x)) "r" else "1"
col_align <- vapply(df, align, character(1))

cols <- lapply(df, format,
contents <- do.call("paste",

c(cols, list(sep = " \\tab ", collapse = "\\cr\n
paste("\\tabular{", paste(col_align, collapse = ""),
ContentS, Il\n}\nll, Sep = llll)

#> \tabular{rrrrr}{

#>
#>
#>
#>
#>
#>

21
21
22
21
18

}

.0 \tab
.0 \tab
.8 \tab
.4 \tab
.7 \tab

6

6
4
6
8

\tab
\tab
\tab
\tab
\tab

160
160
108
258
360

51))

\tab
\tab
\tab
\tab
\tab

)

110
110

93
110
175

\tab
\tab
\tab
\tab
\tab

3.90\cr
3.90\cr
3.85\cr
3.08\cr
3.15

www.it-ebooks.info

"))
||}{\n

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. Vignettes: Long-Form
Documentation

A vignette is a long-form guide to your package. Function documentation is great if you
know the name of the function you need, but it’s useless otherwise. A vignette is like a
book chapter or an academic paper: it can describe the problem that your package is
designed to solve, and then show the reader how to solve it. A vignette should divide
functions into useful categories, and demonstrate how to coordinate multiple functions to
solve problems. Vignettes are also useful if you want to explain the details of your
package. For example, if you have implemented a complex statistical algorithm, you
might want to describe all the details in a vignette so that users of your package can
understand what’s going on under the hood, and be confident that you’ve implemented the
algorithm correctly.

Many existing packages have vignettes. You can see all the installed vignettes with
browsevignettes(). To see the vignette for a specific package, use the argument
browsevignettes("packagename"). Each vignette provides three things: the original
source file, a readable HTML page or PDF, and a file of R code. You can read a specific
vignette with vignette(x), and see its code with edit(vignette(x)). To see vignettes for
a package you haven’t installed, look at its CRAN page (e.g., http://cran.r-
project.org/web/packages/dplyr).

Before R 3.0.0, the only way to create a vignette was with Sweave. This was challenging
because Sweave only worked with LaTeX, and LaTeX is both hard to learn and slow to
compile. Now, any package can provide a vignette engine, a standard interface for turning
input files into HTML or PDF vignettes. In this chapter, we’re going to use the R
markdown vignette engine provided by knitr. I recommend this engine because:

= You write in Markdown, a plain-text formatting system. Markdown is limited
compared to LaTeX, but this limitation is good because it forces you to focus on the
content.

m [t can intermingle text, code, and results (both textual and visual).

» Your life is further simplified by the rmarkdown package, which coordinates
Markdown and knitr by using pandoc to convert Markdown to HTML and by providing
many useful templates.

Switching from Sweave to R Markdown had a profound impact on my use of vignettes.
Previously, making a vignette was painful and slow and I rarely did it. Now, vignettes are
an essential part of my packages. I use them whenever I need to explain a complex topic,
or to show how to solve a problem with multiple steps.

www.it-ebooks.info

http://cran.r-project.org/web/packages/dplyr
http://yihui.name/knitr/
http://rmarkdown.rstudio.com/
http://johnmacfarlane.net/pandoc
http://www.it-ebooks.info/

Currently, the easiest way to get R Markdown is to use RStudio. RStudio will
automatically install all of the necessary prerequisites. If you don’t use RStudio, you’ll
need to:

1. Install the rmarkdown package with install.packages("rmarkdown").

2. Install pandoc.

www.it-ebooks.info

http://www.rstudio.com/products/rstudio/download/preview/
http://johnmacfarlane.net/pandoc/installing.html
http://www.it-ebooks.info/

Vignette Workflow

To create your first vignette, run:

devtools::use_vignette("my-vignette")

This will:

1. Create a vignettes/ directory.

2. Add the necessary dependencies to DESCRIPTION (i.e., it adds knitr to the
Suggests and VignetteBuilder fields).

3. Draft a vignette, vignettes/my-vignette.Rmd.

The draft vignette has been designed to remind you of the important parts of an R
Markdown file. It serves as a useful reference when you’re creating a new vignette.

Once you have this file, the workflow is straightforward:

1. Modify the vignette.
2. Press Ctrl/Cmd-Shift-K (or click & «nit) to knit the vignette and preview the output.

There are three important components to an R Markdown vignette:

m The initial metadata block
m Markdown for formatting text
» Knitr for intermingling text, code, and results

These are described in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Metadata

The first few lines of the vignette contain important metadata. The default template
contains the following information:

title: "vignette Title"

author: "Vignette Author"

date: "°r Sys.Date()™"

output: rmarkdown::html_vignette

vignette: >
%\VignetteIndexEntry{Vignette Title}
%\VignetteeEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}

This metadata is written in YAML, a format designed to be both human and computer
readable. The basics of the syntax is much like the DESCRIPTION file, where each line
consists of a field name, a colon, then the value of the field. The one special YAML
feature we’re using here is >. It indicates the following lines of text are plain text and
shouldn’t use any special YAML features.

The fields are:
Title, author, and date

This is where you put the vignette’s title, author, and date. You’ll want to fill these in
yourself (you can delete them if you don’t want the title block at the top of the page).
The date is filled in by default: it uses a special knitr syntax (explained later) to insert
today’s date.

Output

This tells rmarkdown which output formatter to use. There are many options that are
useful for regular reports (including HTML, PDF, slideshows, ...), but

rmarkdown: :html_vignette has been specifically designed to work well inside
packages. See ?rmarkdown: :html_vignette for more details.

Vignette

This contains a special block of metadata needed by R. Here, you can see the legacy
of LaTeX vignettes: the metadata looks like LaTeX commands. You’ll need to
modifiy the \VignetteIndexEntry to provide the title of your vignette as you’d like it to
appear in the vignette index. Leave the other two lines as is. They tell R to use knitr
to process the file, and that the file is encoded in UTF-8 (the only encoding you
should ever use to write vignettes).

www.it-ebooks.info

http://www.yaml.org/
http://www.it-ebooks.info/

Markdown

R Markdown vignettes are written in Markdown, a lightweight markup language. John
Gruber, the author of Markdown, summarizes the goals and philosophy of Markdown:

Markdown is intended to be as easy-to-read and easy-to-write as is feasible.

Readability, however, is emphasized above all else. A Markdown-formatted document
should be publishable as-is, as plain text, without looking like it’s been marked up with
tags or formatting instructions. While Markdown’s syntax has been influenced by
several existing text-to-HTML filters — including Setext, atx, Textile, reStructuredText,
Grutatext, and EtText — the single biggest source of inspiration for Markdown’s syntax
is the format of plain text email.

To this end, Markdown’s syntax is comprised entirely of punctuation characters, which
punctuation characters have been carefully chosen so as to look like what they mean.
E.g., asterisks around a word actually look like emphasis. Markdown lists look like,
well, lists. Even blockquotes look like quoted passages of text, assuming you’ve ever
used email.

Markdown isn’t as powerful as LaTeX, reStructuredText, or DocBook, but it’s simple,
easy to write, and easy to read even when it’s not rendered. I find Markdown’s constraints
helpful for writing because it lets me focus on the content, and prevents me from messing
around with the styling.

If you’ve never used Markdown before, a good place to start is John Gruber’s Markdown
syntax documentation. Pandoc’s implementation of Markdown rounds off some of the
rough edges and adds a number of new features, so I also recommend familiarizing
yourself with the pandoc readme. When editing a Markdown document, RStudio presents
a drop-down menu via the question mark icon, which offers a Markdown reference card.

The following sections show you what I think are the most important features of pandoc’s
Markdown dialect. You should be able to learn the basics in under 15 minutes.

www.it-ebooks.info

http://daringfireball.net/projects/markdown/syntax
http://johnmacfarlane.net/pandoc/README.html
http://www.it-ebooks.info/

Sections

Headings are identified by #:

Heading 1
Heading 2
Heading 3

Create a horizontal rule with three or more hyphens (or asterisks):

*kkkkkhk*k

www.it-ebooks.info

http://www.it-ebooks.info/

Lists

Basic unordered lists use *:

* Bulleted list

* Item 2
* Nested bullets need a 4-space indent.
* Item 2b

If you want multiparagraph lists, the second and subsequent paragraphs need additional
indenting:

* It's possible to put multiple paragraphs of text in a list item.
But to do that, the second and subsequent paragraphs must be

indented by four or more spaces. It looks better if the first
bullet is also indented.

Ordered lists use 1.:

1. Item 1
1. Item 2
1. Items are numbered automatically, even though they all start with 1.

You can intermingle ordered and bulleted lists, as long as you adhere to the four space
rule:

1. Item 1.
* Item a
* Item b
1. Item 2.

Definition lists use a colon (:):

Definition
: a statement of the exact meaning of a word, especially in a dictionary.
List
: a number of connected items or names written or printed consecutively,
typically one below the other.
: barriers enclosing an area for a jousting tournament.

www.it-ebooks.info

http://www.it-ebooks.info/

Inline Formatting

Inline format is similarly simple:

italic or *italic*

_ _bold__ or **pold**

[1link text](destination)
<http://this-is-a-raw-url.com>

www.it-ebooks.info

http://www.it-ebooks.info/

Tables

There are four types of tables. I recommend using the pipe table, which looks like this:

| Right | Left Default | Center |
|------ I e T [1------ U

12		12
123	123 123	123
1	1 1	1

Notice the use of the : in the spacer under the heading. This determines the alignment of
the column.

If the data underlying your table exists in R, don’t lay it out by hand. Instead, use
knitr::kable(), or look at printr or pander.

www.it-ebooks.info

http://bit.ly/1F9bisd
https://github.com/yihui/printr
http://rapporter.github.io/pander/
http://www.it-ebooks.info/

Code
For inline code, use “code".

For bigger blocks of code, use "~ . These are known as “fenced” code blocks:

A comment
add <- function(a, b) a + b

To add syntax highlighting to the code, put the language name after the backtick:

e
int add(int a, int b) {
return a + b;

.

(At time of printing, languages supported by pandoc were: actionscript, ada, apache, asn.1,
asp, awk, bash, bibtex, boo, c, changelog, clojure, cmake, coffee, coldfusion, common
lisp, cpp, cs, css, curry, d, diff, djangotemplate, doxygen, doxygenlua, dtd, eiffel, email,
erlang, fortran, fsharp, gnuassembler, go, haskell, haxe, html, ini, java, javadoc, javascript,
json, jsp, julia, latex, lex, literatecurry, literatehaskell, lua, makefile, mandoc, matlab,
maxima, metafont, mips, modula2, modula3, monobasic, nasm, noweb, objectivec,
objectivecpp, ocaml, octave, pascal, perl, php, pike, postscript, prolog, python, r,
relaxngcompact, rhtml, ruby, rust, scala, scheme, sci, sed, sgml, sql, sqlmysql,
sglpostgresql, tcl, texinfo, verilog, vhdl, xml, xorg, xslt, xul, yacc, yaml. Syntax
highlighting is done by the Haskell package highlighting-kate; see the website for a
current list.)

When you include R code in your vignette, you usually won’t use " " "r. Instead, you’ll use
> {r}, which is specially processed by knitr, as described next.

www.it-ebooks.info

http://johnmacfarlane.net/highlighting-kate
http://www.it-ebooks.info/

Knitr

Knitr allows you to intermingle code, results, and text. Knitr takes R code, runs it,
captures the output, and translates it into formatted Markdown. Knitr captures all printed
output, messsages, warnings, errors (optionally), and plots (basic graphics, lattice and
ggplot, and more).

Consider this simple example (note that a knitr block looks similar to a fenced code block,
but instead of using r, you use {r}):

A}

Add two numbers together
add <- function(a, b) a + b
add(10, 20)

This generates the following Markdown:

r
Add two numbers together
add <- function(a, b) a + b
add(10, 20)

[1] 30

Which, in turn, is rendered as:

Add two numbers together
add <- function(a, b) a + b
add(10, 20)

30

Once you start using knitr, you’ll never look back. Because your code is always run when

you build the vignette, you can rest assured knowing that all your code works. There’s no
way for your input and output to be out of sync.

www.it-ebooks.info

http://www.it-ebooks.info/

Options

You can specify additional options to control the rendering:

To affect a single block, add the block settings:

2 {r, optl = vall, opt2 = val2}
code

To affect all blocks, call knitr::opts_chunk$set() in a knitr block:

" {r, echo = FALSE}
knitr::opts_chunk$set(
optl = valil,
opt2 = val2
)

The most important options are:

eval = FALSE prevents evaluation of the code. This is useful if you want to show some
code that would take a long time to run. Be careful when you use this: because the code
is not run, it’s easy to introduce bugs. (Also, your users will be puzzled when they copy
and paste code and it doesn’t work.)

echo = FALSE turns off the printing of the code input (the output will still be printed).
Generally, you shouldn’t use this in vignettes because understanding what the code is
doing is important. It’s more useful when writing reports because the code is typically
less important than the output.

results = "hide" turns off the printing of code output.
warning = FALSE and message = FALSE suppress the display of warnings and
messages.

error = TRUE captures any errors in the block and shows them inline. This is useful if
you want to demonstrate what happens if code throws an error. Whenever you use
error = TRUE, you also need to use purl = FALSE. This is because every vignette is
accompanied by a file code that contains all the code from the vignette. R must be able
to source that file without errors, and purl = FALSE prevents the code from being
inserted into that document.

collapse = TRUE and comment = "#>" are my preferred way of displaying code
output. I usually set these globally by putting the following knitr block at the start of
my document:

" *{r, echo = FALSE}
knitr::opts_chunk$set(collapse = TRUE, comment = "#>")

results = "asis" treats the output of your R code as literal Markdown. This is useful

www.it-ebooks.info

http://www.it-ebooks.info/

if you want to generate text from your R code. For example, if you want to generate a
table using the pander package, you’d do:

"7 {r, results = "asis"}
pander::pandoc.table(iris[1:3, 1:4])

That generates a Markdown table that looks as follows:

5.1 3.5 1.4 0.2
4.9 3 1.4 0.2
4.7 3.2 1.3 0.2

Which makes a table that looks like this:

Sepal.Length Sepal.Width Petal.Length Petal. Width
5.1 3.5 1.4 0.2
4.9 3 1.4 0.2
4.7 3.2 1.3 0.2

m fig.show = "hold" holds all figures until the end of the code block.
m fig.width = 5and fig.height = 5 set the height and width of figures (in inches).

Many other options are described at http://yihui.name/knitr/options.

www.it-ebooks.info

http://yihui.name/knitr/options
http://www.it-ebooks.info/

Development Cycle

Run code a chunk at a time using Cmd-Alt-C. Rerun the entire document in a fresh R
session using Knit (Ctrl/Cmd-Shift-K).

You can build all vignettes from the console with devtools::build_vignettes(), but this
is rarely useful. Instead, use devtools: :build() to create a package bundle with the
vignettes included. RStudio’s “Build & Reload” does not build vignettes to save time.
Similarly, devtools: :install github() (and friends) will not build vignettes by default
because they’re time consuming and may require additional packages. You can force
building with devtools::install github(build_vignettes = TRUE). This will also

install all suggested packages.

www.it-ebooks.info

http://www.it-ebooks.info/

Adyvice for Writing Vignettes

“If you’re thinking without writing, you only think you’re thinking.”
— Leslie Lamport

When writing a vignette, you’re teaching someone how to use your package. You need to
put yourself in the readers’ shoes, and adopt a “beginner’s mind.” This can be difficult
because it’s hard to forget all of the knowledge that you’ve already internalized. For this
reason, I find teaching in person a really useful way to get feedback on my vignettes. In
addition to receiving immediate feedback, it’s also a much easier way to learn what people
already know.

A useful side effect of this approach is that it helps you improve your code. It forces you
to re-see the initial onboarding process and to appreciate the parts that are hard. Every
time that I’ve written text that describes the initial experience, I’ve realized that I’ve
missed some important functions. Adding those functions not only helps my users, but it
often also helps me! (This is one of the reasons that I like writing books.)

You should also check out the following resources:

= | strongly recommend literally anything written by Kathy Sierra. Her old blog Creating
Passionate Users is full of advice about programming, teaching, and how to create
valuable tools. I thoroughly recommend reading through all the older content. Her new
blog, Serious Pony, doesn’t have as much content, but it has some great articles.

m If you’d like to learn how to write better, I highly recommend Style: Lessons in Clarity
and Grace by Joseph M. Williams and Joseph Bizup. It helps you understand the
structure of writing so that you’ll be better able to recognize and fix bad writing.

Writing a vignette also makes a nice break from coding. In my experience, writing uses a
different part of the brain from programming, so if you’re sick of programming, try
writing for a bit. (This is related to the idea of structured procrastination.)

www.it-ebooks.info

http://headrush.typepad.com/
http://seriouspony.com/blog/
http://amzn.com/0321898680
http://www.structuredprocrastination.com/
http://www.it-ebooks.info/

Organization

For simpler packages, one vignette is often sufficient. But for more complicated packages,
you may actually need more than one. In fact, you can have as many vignettes as you like.
I tend to think of them like chapters of a book — they should be self-contained, but still
link together into a cohesive whole.

Although it’s a slight hack, you can link various vignettes by taking advantage of how
files are stored on disk: to link to vignette abc.Rmd, just make a link to abc.html.

www.it-ebooks.info

http://www.it-ebooks.info/

CRAN Notes

Note that because you build vignettes locally, CRAN only receives the HTML/PDF and
the source code. However, CRAN does not rebuild the vignette. It only checks that the
code is runnable (by running it). This means that any packages used by the vignette must
be declared in the DESCRIPTION. But this also means that you can use R Markdown
(which uses pandoc) even though CRAN doesn’t have pandoc installed.

Some common problems include the following:

m The vignette builds interactively, but when checking, it fails with an error about a
missing package that you know is installed. This means that you’ve forgotten to declare
that dependency in the DESCRIPTION (usually it should go in Suggests).

» Everything works interactively, but the vignette doesn’t show up after you’ve installed
the package. One of the following may have occurred. First, because RStudio’s “Build
& Reload” doesn’t build vignettes, you may need to run devtools: :install() instead.
Next, check the following:

Is the directory called vignettes/ and not vignette/?
Have you inadvertently excluded the vignettes with .Rbuildignore?
Do you have the necessary vignette metadata?

m If you use error = TRUE, you must use purl = FALSE.

You’ll need to watch the file size. If you include a lot of graphics, it’s easy to create a very
large file. There are no hard-and-fast rules, but if you have a very large vignette, be
prepared to either justify the file size or to make it smaller.

www.it-ebooks.info

http://www.it-ebooks.info/

Where to Go Next

If you’d like more control over the appearance of your vignette, you’ll need to learn more
about R Markdown. The R Markdown website is a great place to start. There you can
learn about alternative output formats (like LaTex and PDF) and how you can incorporate
raw HTML and LaTeX if you need additional control.

If you write a nice vignette, consider submitting it to the Journal of Statistical Software or
The R Journal. Both journals are electronic only and peer reviewed. Comments from
reviewers can be very helpful for improving the quality of your vignette and the related
software.

www.it-ebooks.info

http://rmarkdown.rstudio.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. Testing

Testing is a vital part of package development. It ensures that your code does what you
want it to do. Testing, however, adds an additional step to your development workflow.
The goal of this chapter is to show you how to make this task easier and more effective by
doing formal automated testing using the testthat package.

Up until now, your workflow probably looked like this:

1. Write a function.

2. Load it with Ctrl/Cmd-Shift-L or devtools::load_all().
3. Experiment with it in the console to see if it works.

4. Rinse and repeat.

Although you are testing your code in this workflow, you’re only doing it informally. The
problem with this approach is that when you come back to this code in three months’ time
to add a new feature, you’ve probably forgotten some of the informal tests you ran the first
time around. This makes it very easy to break code that used to work.

I started using automated tests because I discovered I was spending too much time
refixing bugs that I’d already fixed before. While writing code or fixing bugs, I’d perform
interactive tests to make sure the code worked. But I never had a system that could store
those tests so I could rerun them as needed. I think that this is a common practice among R
programmers. It’s not that you don’t test your code, it’s that you don’t automate your tests.

In this chapter, you’ll learn how to graduate from using informal ad hoc testing, done at
the command line, to formal automated testing (aka unit testing). While turning casual
interactive tests into reproducible scripts requires a little more work up front, it pays off in
four ways:

Fewer bugs

Because you’re explicit about how your code should behave, you will have fewer
bugs. The reason why is a bit like the reason double entry bookkeeping works:
because you describe the behavior of your code in two places, both in your code and
in your tests, you are able to check one against the other. By following this approach
to testing, you can be sure that bugs that you’ve fixed in the past will never come
back to haunt you.

Better code structure

www.it-ebooks.info

http://www.it-ebooks.info/

Code that’s easy to test is usually better designed. This is because writing tests forces
you to break up complicated parts of your code into separate functions that can work
in isolation. This reduces duplication in your code. As a result, functions will be
easier to test, understand, and work with (it’ll be easier to combine them in new
ways).

Easier restarts

If you always finish a coding session by creating a failing test (e.g., for the next
feature you want to implement), testing makes it easier for you to pick up where you
left off: your tests will let you know what to do next.

Robust code

If you know that all the major functionality of your package has an associated test,
you can confidently make big changes without worrying about accidentally breaking
something. For me, this is particularly useful when I think I have a simpler way to
accomplish a task (usually the reason my solution is simpler is that I’ve forgotten an
important use case!).

If you’re familiar with unit testing in other languages, you should note that there are some
fundamental differences with testthat. This is because R is, at heart, more a functional
programming language than an object-oriented (OO) programming language. For instance,
because R’s main OO systems (S3 and S4) are based on generic functions (i.e., methods
belong to functions not classes), testing approaches built around objects and methods
don’t make much sense.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Workflow

To set up your package to use testthat, run the following:
devtools::use_testthat()

This will:
1. Create a tests/testthat directory.

2. Add testthat to the Suggests field in the DESCRIPTION.

3. Create a file tests/testthat.R that runs all your tests are when R CMD check runs.
(You’ll learn more about that in Chapter 14.)

Once you’re set up, the workflow is simple:

1. Modify your code or tests.
2. Test your package with Ctrl/Cmd-Shift-T or devtools: :test().
3. Repeat until all tests pass.

The testing output looks like this:

Expectation :
rv: ...
Variance :123.45.

Each line represents a test file. Each . represents a passed test. Each number represents a
failed test. The numbers index into a list of failures that provides more details:

1. Failure(@test-variance.R#22): Variance correct for discrete uniform rvs -----
VAR(dunif (@, 10)) not equal to var_dunif(0, 10)
Mean relative difference: 3

2. Failure(@test-variance.R#23): Variance correct for discrete uniform rvs -----

VAR(dunif (@, 100)) not equal to var_dunif(0, 100)
Mean relative difference: 3.882353

Each failure gives a description of the test (e.g., “Variance correct for discrete uniform
rvs”), its location (e.g., “@test-variance.R#22”), and the reason for the failure (e.g.,
“VAR(dunif(0, 10)) not equal to var_dunif(0, 10)”). The goal is to pass all the tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Structure

A test file lives in tests/testthat. Its name must start with test. Here’s an example of a test
file from the stringr package:

library(stringr)
context("String length")

test_that("str_length is number of characters", {
expect_equal(str_length("a"), 1)
expect_equal(str_length("ab"), 2)
expect_equal(str_length("abc"), 3)

1)

test_that("str_length of factor is length of level", {
expect_equal(str_length(factor("a")), 1)
expect_equal(str_length(factor("ab")), 2)
expect_equal(str_length(factor("abc")), 3)

1)

test_that("str_length of missing is missing", {
expect_equal(str_length(NA), NA _integer_)
expect_equal(str_length(c(NA, 1)), c(NA, 1))
expect_equal(str_length("NA"), 2)

1)

Tests are organized hierarchically: expectations are grouped into tests, which are
organized in files:

m An expectation is the atom of testing. It describes the expected result of a computation:
Does it have the right value and right class? Does it produce error messages when it
should? An expectation automates visual checking of results in the console.
Expectations are functions that start with expect_.

m A test groups together multiple expectations to test the output from a simple function,
a range of possibilities for a single parameter from a more complicated function, or
tightly related functionality from across multiple functions. This is why they are
sometimes called unit, as they test one unit of functionality. A test is created with
test_that().

m A file groups together multiple related tests. Files are given a human-readable name
with context ().

Expectations are described in detail in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Expectations

An expectation is the finest level of testing. It makes a binary assertion about whether or
not a function call does what you expect. All expectations have a similar structure:

m They start with expect_.
m They have two arguments: the first is the actual result, the second is what you expect.
m [f the actual and expected results don’t agree, testthat throws an error.

While you’ll normally put expectations inside tests inside files, you can also run them
directly. This makes it easy to explore expectations interactively. There are almost 20
expectations in the testthat package. The most important are discussed here.

There are two basic ways to test for equality: expect_equal() and expect_identical().
expect_equal() is the most commonly used; it uses all.equal() to check for equality
within a numerical tolerance:

expect_equal(10, 10)

expect_equal(10, 10 + le-7)

expect_equal(10, 11)

#> Error: 10 not equal to 11
#> Mean relative difference: 0.09090909

If you want to test for exact equivalence, or need to compare a more exotic object like an
environment, use expect_identical(). It’s built on top of identical():

expect_equal(10, 10 + le-7)

expect_identical(10, 10 + 1le-7)

#> Error: 10 is not identical to 10 + 1e-07. Differences:
#> Objects equal but not identical

expect_match() matches a character vector against a regular expression. The optional all

argument controls whether all elements or just one element needs to match. This is
powered by grepl() (additional arguments like ignore.case = FALSE or fixed = TRUE

are passed on down):

string <- "Testing is fun!"

expect_match(string, "Testing")

Fails, match is case-sensitive

expect_match(string, "testing")

#> Error: string does not match 'testing'. Actual value: "Testing is fun!"

Additional arguments are passed to grepl:
expect_match(string, "testing", ignore.case = TRUE)

Three variations of expect_match() let you check for other types of result:
expect_output () inspects printed output; expect_message() inspects messages;
expect_warning() inspects warnings; and expect_error () inspects errors. For example:

a <- list(1:10, letters)

www.it-ebooks.info

http://www.it-ebooks.info/

expect_output(str(a), "List of 2")
expect_output(str(a), "int [1:10]", fixed = TRUE)

expect_message(library(mgcv), "This is mgcv")

With expect_message (), expect_warning(), and expect_error() you can leave the
second argument blank if you just want to see if a message, warning, or error is created.
However, it’s normally better to be explicit, and provide some text from the message:

expect_warning(log(-1))
expect_error(1 / "a")

But always better to be explicit
expect_warning(log(-1), "NaNs produced")
expect_error(1 / "a", "non-numeric argument")

Failure to produce a warning or error when expected is an error
expect_warning(log(0))

#> Error: log(®) no warnings given

expect_error(1 / 2)

#> Error: 1/2 code did not generate an error

expect_is() checks that an object inherit()s from a specified class:

model <- lm(mpg ~ wt, data = mtcars)
expect_is(model, "1m")

expect_is(model, "glm")

#> Error: model inherits from 1m not glm

expect_true() and expect_false() are useful catchalls if none of the other expectations
do what you need.

Sometimes you don’t know exactly what the result should be, or it’s too complicated to
easily re-create in code. In that case, the best you can do is check that the result is the
same as last time. expect_equal_to_reference() caches the result the first time it’s run,
and then compares it to subsequent runs. If for some reason the result does change, just
delete the cache (*) file and retest.

Running a sequence of expectations is useful because it ensures that your code behaves as
expected. You could even use an expectation within a function to check that the inputs are
what you expect. However, they’re not so useful when something goes wrong. All you
know is that something is not as expected. You don’t know the goal of the expectation.
Tests, described next, organize expectations into coherent blocks that describe the overall
goal of a set of expectations.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Tests

Each test should have an informative name and cover a single unit of functionality. The
idea is that when a test fails, you’ll know what’s wrong and where in your code to look for
the problem. You create a new test using test_that (), with the test name and code block
as arguments. The test name should complete the sentence “Test that ...”. The code block
should be a collection of expectations.

It’s up to you how to organize your expectations into tests. The main thing is that the
message associated with the test should be informative so that you can quickly narrow
down the source of the problem. Try to avoid putting too many expectations in one test —
it’s better to have many smaller tests than a small handful of larger tests.

Each test is run in its own environment and is self-contained. However, testthat doesn’t
know how to clean up after actions affect the R landscape:

m The filesystem: Creating and deleting files, changing the working directory, and so on
m The search path: library(), attach()
= Global options: options() and par()

When you use these actions in tests, you’ll need to clean up after yourself. While many
other testing packages have setup and teardown methods that are run automatically before
and after each test, these are not so important with testthat because you can create objects
outside of the tests and you can rely on R’s copy-on-modify semantics to keep them
unchanged between test runs. To clean up other actions, you can use regular R functions.

www.it-ebooks.info

http://www.it-ebooks.info/

What to Test

“Whenever you are tempted to type something into a print statement or a debugger
expression, write it as a test instead.”

— Martin Fowler

There is a fine balance to writing tests. Each test that you write makes your code less
likely to change inadvertently; but it also can make it harder to change your code on
purpose. It’s hard to give good general advice about writing tests, but you might find these
points helpful:

m Focus on testing the external interface to your functions — if you test the internal
interface, then it’s harder to change the implementation in the future because as well as
modifying the code, you’ll also need to update all the tests.

m Strive to test each behavior in one and only one test. If a particular behavior changes at
a later point, you only need to update a single test.

m Avoid testing simple code that you’re confident will work. Instead, focus your time on
code that you’re not sure about, and code that is fragile or has complicated
interdependencies. That said, I often find I make the most mistakes when I falsely
assume that the problem is simple and doesn’t need any tests.

= Always write a test when you discover a bug. You may find it helpful to adopt the test-
first philosophy. There you always start by writing the tests, and then write the code
that makes them pass. This reflects an important problem-solving strategy: start by
establishing your success criteria, how you know if you’ve solved the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Skipping a Test

Sometimes it’s impossible to perform a test — you may not have an Internet connection or
you may be missing an important file. Unfortunately, another likely reason follows from
this simple rule: the more machines you use to write your code, the more likely it is that
you won’t be able to run all of your tests. In short, there are times when, instead of getting
a failure, you just want to skip a test. To do that, you can use the skip() function — rather

than throwing an error it simply prints an S in the output:

check_api <- function() {
if (not_working()) {
skip("API not available")

3
3

test_that("foo api returns bar when given baz", {
check_api()

})

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Own Testing Tools

As you start to write more tests, you might notice duplication in your code. For example,

the following code shows one test of the floor_date() function from

library(lubridate). There are seven expectations that check the results of rounding a

date down to the nearest second, minute, hour, and so on. There’s a lot of duplication
(which increases the chance of bugs), so we might want to extract common behavior into a

new function:

library(lubridate)
test_that("floor_date works for different units", {

base <- as.POSIXct("2009-08-03 12:01:59.23", tz = "UTC")

expect_equal(floor_date(base, "second"),
as.POSIXct("2009-08-03 12:01:59", tz = "UTC"))
expect_equal(floor_date(base, "minute"),
as.POSIXct("2009-08-03 12:01:00", tz = "UTC"))
expect_equal(floor_date(base, "hour"),
as.POSIXct("2009-08-03 12:00:00", tz = "UTC"))
expect_equal(floor_date(base, "day"),
as.POSIXct("2009-08-03 00:00:00", tz = "UTC"))
expect_equal(floor_date(base, "week"),
as.POSIXct("2009-08-02 00:00:00", tz = "UTC"))
expect_equal(floor_date(base, "month"),
as.POSIXct("2009-08-01 00:00:00", tz = "UTC"))
expect_equal(floor_date(base, "year"),
as.POSIXct("2009-01-01 00:00:00", tz = "UTC"))
1)

I’d start by defining a couple of helper functions to make each expectation more concise.
That allows each test to fit on one line, so you can line up actual and expected values to

make it easier to see the differences:

test_that("floor_date works for different units", {

base <- as.P0SIXct("2009-08-03 12:01:59.23", tz = "UTC")

floor_base <- function(unit) floor_date(base, unit)
as_time <- function(x) as.POSIXct(x, tz = "UTC")

expect_equal(floor_base("second"), as_time("2009-08-03
expect_equal(floor_base("minute"), as_time("2009-08-03
expect_equal(floor_base("hour"), as_time("2009-08-03
expect_equal(floor_base("day"), as_time('"2009-08-03
expect_equal(floor_base("week"), as_time('"2009-08-02
expect_equal(floor_base("month"), as_time("2009-08-01
expect_equal(floor_base("year"), as_time("2009-01-01
1)

12
12
12

00:
00:
00:
00:

101:
101:
100:
00:
00:
:00")
00:

00

59"))
00"))
00"))
00"))
00"))

)

)

00")

We could go a step further and create a custom expectation function:

base <- as.POSIXct("2009-08-03 12:01:59.23", tz = "UTC")

expect_floor_equal <- function(unit, time) {
expect_equal(floor_date(base, unit), as.POSIXct(time,
}

expect_floor_equal("year", "2009-01-01 00:00:00")

tz = "UTC"))

However, if the expectation fails, this doesn’t give very informative output:

expect_floor_equal("year", "2008-01-01 00:00:00")

#> Error: floor_date(base, unit) not equal to as.POSIXct(time,

#> Mean absolute difference: 31622400

www.it-ebooks.info

tz = "UTC")

http://www.it-ebooks.info/

Instead, you can use a little nonstandard evaluation to produce something more
informative. The key is to use bquote() and eval(). In the following bquote() call, note

the use of . (x) — the contents of () will be inserted into the call:

expect_floor_equal <- function(unit, time) {
as_time <- function(x) as.POSIXct(x, tz = "UTC")
eval(bquote(expect_equal(floor_date(base, .(unit)), as_time(.(time)))))
}
expect_floor_equal("year", "2008-01-01 00:00:00")
#> Error: floor_date(base, "year") not equal to as_time("2008-01-01 00:00:00")
#> Mean absolute difference: 31622400

This sort of refactoring is often worthwhile because removing redundant code makes it
easier to see what’s changing. Readable tests give you more confidence that they’re
correct:

test_that("floor_date works for different units", {
as_time <- function(x) as.POSIXct(x, tz = "UTC")
expect_floor_equal <- function(unit, time) {
eval(bquote(expect_equal(floor_date(base, .(unit)), as_time(.(time)))))

3

base <- as_time("2009-08-03 12:01:59.23")

expect_floor_equal("second", "2009-08-03 12:01:59")
expect_floor_equal("minute", '"2009-08-03 12:01:00")
expect_floor_equal("hour", "2009-08-03 12:00:00")
expect_floor_equal("day", "2009-08-03 00:00:00")
expect_floor_equal("week", "'2009-08-02 00:00:00")
expect_floor_equal("month", "2009-08-01 00:00:00")
expect_floor_equal("year", "'2009-01-01 00:00:00")

})

www.it-ebooks.info

http://adv-r.had.co.nz/Computing-on-the-language.html
http://www.it-ebooks.info/

Test Files

The highest-level structure of tests is the file. Each file should contain a single context ()
call that provides a brief description of its contents. Just like the files in the R/ directory,
you are free to organize your tests any way that you like. But again, the two extremes are
clearly bad (all tests in one file, one file per test). You need to find a happy medium that
works for you. A good starting place is to have one file of tests for each complicated
function.

www.it-ebooks.info

http://www.it-ebooks.info/

CRAN Notes

CRAN will run your tests on all CRAN platforms: Windows, Mac, Linux, and Solaris.
There are a few things to bear in mind:

m Tests need to run relatively quickly — aim for under a minute. Place skip_on_cran()
at the beginning of long-running tests that shouldn’t be run on CRAN — they’ll still be
run locally, but not on CRAN.

= Note that tests are always run in the English language (LANGUAGE=EN) and with C sort
order (LC_COLLATE=C). This minimizes spurious differences between platforms.

m Be careful about testing things that are likely to be variable on CRAN machines. It’s
risky to test how long something takes (because CRAN machines are often heavily
loaded) or to test parallel code (because CRAN runs multiple package tests in parallel,
multiple cores will not always available). Numerical precision can also vary across
platforms (it’s often less precise on 32-bit versions of R), so use expect_equal() rather
than expect_identical().

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. Namespace

The package namespace (as recorded in the NAMESPACE file) is one of the more
confusing parts of building a package. It’s a fairly advanced topic, and by and large, not
that important if you’re only developing packages for yourself. However, understanding
namespaces is vital if you plan to submit your package to CRAN. This is because CRAN
requires that your package plays nicely with other packages.

When you first start using namespaces, it’ll seem like a lot of work for little gain.
However, having a high-quality namespace helps encapsulate your package and makes it
self-contained. This ensures that other packages won’t interfere with your code, that your
code won’t interfere with other packages, and that your package works regardless of the
environment in which it’s run.

www.it-ebooks.info

http://www.it-ebooks.info/

Motivation

As the name suggests, namespaces provide “spaces” for “names.” They provide a context
for looking up the value of an object associated with a name.

Without knowing it, you’ve probably already used namespaces. For example, have you
ever used the : : operator? It disambiguates functions with the same name. For example,
both plyr and Hmisc provide a summarize() function. If you load plyr, then Hmisc,
summarize () will refer to the Hmisc version. But if you load the packages in the opposite
order, summarize() will refer to the plyr version. This can be confusing. Instead, you can
explicitly refer to specific functions: Hmisc: : summarize() and plyr::summarize(). Then
the order in which the packages are loaded won’t matter.

Namespaces make your packages self-contained in two ways: the imports and the exports.
The imports defines how a function in one package finds a function in another. To
illustrate, consider what happens when someone changes the definition of a function that
you rely on — for example, the simple nrow() function in base R:

nrow
#> function (x)

#> dim(x)[1L]

#> <bytecode: 0x1f681a0>

#> <environment: namespace:base>

It’s defined in terms of dim(). So what will happen if we override dim() with our own
definition? Does nrow() break?

dim <- function(x) c(1, 1)
dim(mtcars)

#> [1] 1 1

nrow(mtcars)

#> [1] 32

Surprisingly, it does not! That’s because when nrow() looks for an object called dim(), it
uses the package namespace, so it finds dim() in the base environment, not the dim() we
created in the global environment.

The exports helps you avoid conflicts with other packages by specifying which functions
are available outside of your package (internal functions are available only within your
package and can’t easily be used by another package). Generally, you want to export a
minimal set of functions; the fewer you export, the smaller the chance of a conflict.
Although conflicts aren’t the end of the world (because you can always use : : to
disambiguate), they’re best avoided where possible because it makes the lives of your
users easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Path

To understand why namespaces are important, you need a solid understanding of search
paths. To call a function, R first has to find it. R does this by first looking in the global
environment. If R doesn’t find it there, it looks in the search path, the list of all the
packages you have attached. You can see this list by running search(). For example,
here’s the search path for the code in this book:

search()

#> [1] ".GlobalkEnv" "package:methods" "package:bookdown"
#> [4] "package:rmarkdown" "package:stats" "package:graphics"
#> [7] "package:grDevices" "package:utils" "package:datasets"
#> [10] "Autoloads" "package:base"

There’s an important difference between loading and attaching a package. Normally when
you talk about loading a package you think of 1ibrary(), but that actually attaches the

package.

Loading an installed package will load code, data, and any DLLs; register S3 and S4
methods; and run the .onLoad() function. After loading, the package is available in
memory, but it’s on the search path. That means you can’t access its components without
using : :. There are two ways to load a package. The most common is to use : :, which
automatically loads a package if needed. It’s also possible to explicitly load a package
with requireNamespace() or loadNamespace(), but this is rarely needed.

Attaching a loaded package puts it in the search path. The most common way to attach a
package is with library() or require(), which automatically load the package if needed.

You can see the currently attached packages with search().

If a package isn’t installed, loading (and hence attaching) will fail with an error.

To see the differences more clearly, consider two ways of running expect_that () from
the testthat package. If we use library(), testthat is attached to the search path. If we use
: 1, 1t’s not:

o0ld <- search()

testthat::expect_equal(1, 1)

setdiff(search(), old)

#> character(0)

expect_true(TRUE)

#> Error in eval(expr, envir, enclos): could not find function "expect_true"

library(testthat)
expect_equal(1, 1)
setdiff(search(), old)

#> [1] "package:testthat"
expect_true(TRUE)

There are four functions that make a package available, as listed in the following table.
They differ based on whether they load or attach, and what happens if the package is not
found (i.e., throws an error or returns FALSE):

www.it-ebooks.info

http://www.it-ebooks.info/

Throws error Returns FALSE
Load 1loadNamespace("x") requireNamespace("x", quietly = TRUE)

Attach library(x) require(x, quietly = TRUE)

Of the four, you should only ever use two:

m Use library(x) in data analysis scripts. It will throw an error if the package is not
installed, and will terminate the script. You want to attach the package to save typing.
Never use library() in a package.

m Use requireNamespace(x, quietly = TRUE) inside a package if you want a specific
action (e.g., throw an error) depending on whether or not a suggested package is
installed.

You never need to use require() (requireNamespace() is almost always better), or
loadNamespace () (which is only needed for internal R code). You should never use
require() or library() in a package: instead, use the Depends or Imports fields in the
DESCRIPTION.

Now’s a good time to come back to an important issue that we glossed over earlier. What’s
the difference between Depends and Imports in the DESCRIPTION? When should you

use one or the other?

Listing a package in either Depends or Imports ensures that it’s installed when needed.
The main difference is that where Imports just loads the package, Depends attaches

it. There are no other differences. The rest of the advice in this chapter applies whether or
not the package is in Depends or Imports.

Unless there is a good reason otherwise, you should always list packages in Imports, not
Depends. That’s because a good package is self-contained, and minimizes changes to the

global environment (including the search path). The only exception is if your package is
designed to be used in conjunction with another package. For example, the analogue
package builds on top of vegan. It’s not useful without vegan, so it has vegan in Depends
instead of Imports.

Now that you understand the importance of the namespace, let’s dive into the nitty-gritty
details. The two sides of the package namespace, imports and exports, are both described
by the NAMESPACE file. You’ll learn what this file looks like in the next section. In the
section after that, you’ll learn the details of exporting and importing functions and other
objects.

www.it-ebooks.info

https://github.com/gavinsimpson/analogue
https://github.com/vegandevs/vegan
http://www.it-ebooks.info/

The NAMESPACE
The following code is an excerpt of the NAMESPACE file from the testthat package:

Generated by roxygen2 (4.0.2): do not edit by hand
S3method(as.character, expectation)
S3method(compare, character)
export(auto_test)
export(auto_test_package)
export(colourise)

export(context)
exportClasses(ListReporter)
exportClasses(MinimalReporter)
importFrom(methods, setRefClass)
useDynLib(testthat,duplicate_)
useDynLib(testthat, reassign_function)

You can see that the NAMESPACE file looks a bit like R code. Each line contains a
directive: S3method(), export(), exportClasses(), and so on. Each directive describes

an R object, and says whether it’s exported from this package to be used by others, or if
it’s imported from another package to be used locally.

In total, there are 10 namespace directives. Five describe exports:
export()

Export functions (including S3 and S4 generics)

exportPattern()
Export all functions that match a pattern
exportClasses() and exportMethods ()

Export S4 classes and methods
S3method()

Export S3 methods
And five describe imports:
import()

Import all functions from a package
importFrom()

Import selected functions (including S4 generics)
importclassesFrom() and importMethodsFrom()

Import S4 classes and methods

useDynLib()
Import a function from C (this is described in more detail in Chapter 10)

I don’t recommend writing these directives by hand. Instead, in this chapter, you’ll learn
how to generate the NAMESPACE file with roxygen2. There are three main advantages to
using roxygen2:

www.it-ebooks.info

http://www.it-ebooks.info/

m Namespace definitions live next to their associated functions, so when you read the
code it’s easier to see what’s being imported and exported.

m Roxygen2 abstracts away some of the details of NAMESPACE. You only need to learn
one tag, @export, which will automatically generate the right directive for functions,
S3 methods, S4 methods, and S4 classes.

= Roxygen2 keeps NAMESPACE tidy. No matter how many times you use @importFrom
foo bar, you’ll only get one importFrom(foo, bar) in your NAMESPACE. This
makes it easy to attach import directives to every function that needs them, rather than
trying to manage in one central place.

Note that you can choose to use roxygen?2 to generate just NAMESPACE, just man/*.Rd, or
both. If you don’t use any namespace-related tags, roxygen2 won’t touch NAMESPACE. If
you don’t use any documentation-related tags, roxygen2 won’t touch man/.

www.it-ebooks.info

http://www.it-ebooks.info/

Workflow

Generating the namespace with roxygen?2 is just like generating function documentation
with roxygen2. You use roxygen2 blocks (starting with #') and tags (starting with @). The
workflow is the same:

1. Add roxygen comments to your .R files.

2. Run devtools: :document () (or press Ctrl/Cmd-Shift-D in RStudio) to convert
roxygen comments to .Rd files.

3. Look at NAMESPACE and run tests to check that the specification is correct.

4. Rinse and repeat until the correct functions are exported.

www.it-ebooks.info

http://www.it-ebooks.info/

Exports

For a function to be usable outside of your package, you must export it. When you create a
new package with devtools: :create(), it produces a temporary NAMESPACE that
exports everything in your package that doesn’t start with . (a single period). If you’re just
working locally, it’s fine to export everything in your package. However, if you’re
planning on sharing your package with others, it’s a really good idea to only export needed
functions. This reduces the chances of a conflict with another package.

To export an object, put @export in its roxygen block. For example:

#' @export
foo <- function(x, y, z) {

)

This will then generate export (), exportMethods(), exportClass(), or S3method()
depending on the type of the object.

You export functions that you want other people to use. Exported functions must be
documented, and you must be cautious when changing their interface — other people are
using them! Generally, it’s better to export too little than too much. It’s easy to export
things that you didn’t before; it’s hard to stop exporting a function because it might break
existing code. Always err on the side of caution, and simplicity. It’s easier to give people
more functionality than it is to take away stuff they’re used to.

I believe that packages that have a wide audience should strive to do one thing and do it
well. All functions in a package should be related to a single problem (or a set of closely
related problems). Any functions not related to that purpose should not be exported. For
example, most of my packages have a utils.R file that contains many small functions that
are useful for me, but aren’t part of the core purpose of those packages. I never export
these functions:

Defaults for NULL values
“%| 1% <- function(a, b) if (is.null(a)) b else a

Remove NULLs from a list

compact <- function(x) {
x[!'vapply(x, is.null, logical(1))]

}

That said, if you’re creating a package for yourself, it’s far less important to be so
disciplined. Because you know what’s in your package, it’s fine to have a local “misc”
package that contains a passel of functions that you find useful. But I don’t think you
should release such a package.

The following sections describe what you should export if you’re using S3, S4, or RC.

www.it-ebooks.info

http://www.it-ebooks.info/

S3

If you want others to be able to create instances of an S3 class, @export the constructor
function. S3 generics are just regular R functions, and you can @export them like
functions.

S3 methods represent the most complicated case, because there are four different
scenarios:

A method for an exported generic
In this case, export every method.
A method for an internal generic

Technically, you don’t need to export these methods. However, I recommend
exporting every S3 method you write, because it’s simpler and makes it less likely
that you’ll introduce hard-to-find bugs. Use devtools: :missing_s3() to list all S3
methods that you’ve forgotten to export.

A method for a generic in a required package

You’ll need to import the generic (described in “Imports”), and export the method.

A method for a generic in a suggested package

Namespace directives must refer to available functions, so they cannot reference
suggested packages. It’s possible to use package hooks and code to add this at
runtime, but this is sufficiently complicated that I currently wouldn’t recommend it.
Instead, you’ll have to design your package dependencies in a way that avoids this
scenario.

www.it-ebooks.info

http://www.it-ebooks.info/

S4

For S4 classes, if you want others to be able to extend your class, @export it. If you want
others to create instances of your class but not to extend it, @export the constructor
function, not the class. For example:

Can extend and create with new("A", ...)

#' @export

setClass("A")

Can extend and create with new("B", ...). You can use B()

to construct instances in your own code, but others cannot

#' @export

B <- setClass("B")

Can create with C(...) and new("C", ...), but can't create

a subclass that extends C

#' @export C

C <- setClass("C")

Can extend and create with D(...) or new("D", ...)

#' @export D

#' @exportClass D
D <- setClass("D")

For S4 generics, @export if you want the generic to be publicly usable.

Finally, for S4 methods, you only need to @export methods for generics that you did not
define. But I think it’s a good idea to @export every method: that way you don’t need to
remember whether or not you created the generic.

www.it-ebooks.info

http://www.it-ebooks.info/

RC

The principles used for S4 classes also apply for RC. Note that due to the way that RC is
currently implemented, it’s typically impossible for your classes to be extended outside of
your package.

www.it-ebooks.info

http://www.it-ebooks.info/

Data

As you’ll learn in Chapter 9, files that live in data/ don’t use the usual namespace
mechanism and don’t need to be exported .

www.it-ebooks.info

http://www.it-ebooks.info/

Imports

NAMESPACE also controls which external functions can be used by your package without
having to use : :.

It’s confusing that both DESCRIPTION (through the Imports field) and NAMESPACE
(through import directives) seem to be involved in imports. This is just an unfortunate
choice of names. The Imports field really has nothing to do with functions imported into
the namespace: it just makes sure the package is installed when your package is. It doesn’t
make functions available. You need to import functions in exactly the same way regardless
of whether or not the package is attached.

Depends is just a convenience for the user: if your package is attached, it also attaches all
packages listed in Depends. If your package is loaded, packages in Depends are loaded, but
not attached, so you need to qualify function names with : : or specifically import them.

It’s common for packages to be listed in Imports in DESCRIPTION, but not in
NAMESPACE. In fact, this is what I recommend: list the package in DESCRIPTION so
that it’s installed, then always refer to it explicitly with pkg: : fun(). Unless there is a
strong reason not to, it’s better to be explicit. It’s a little more work to write, but a lot
easier to read when you come back to the code in the future. The converse is not true.
Every package mentioned in NAMESPACE must also be present in the Imports or

Depends fields.

www.it-ebooks.info

http://www.it-ebooks.info/

R Functions

If you are using just a few functions from another package, my recommendation is to note
the package name in the Imports: field of the DESCRIPTION file and call the function(s)
explicitly using :: (e.g., pkg::fun()).

If you are using functions repeatedly, you can avoid : : by importing the function with
@importFrom pgk fun. This also has a small performance benefit, because : : adds
approximately 5 ps to function evaluation time.

Alternatively, if you are repeatedly using many functions from another package, you can
import all of them using @import package. This is the least recommended solution
because it makes your code harder to read (you can’t tell where a function is coming
from), and if you @import many packages, it increases the chance of conflicting function
names.

www.it-ebooks.info

http://www.it-ebooks.info/

S3

S3 generics are just functions, so the same rules for functions apply. S3 methods always
accompany the generic, so as long as you can access the generic (either implicitly or
explicitly), the methods will also be available. In other words, you don’t need to do
anything special for S3 methods. As long as you’ve imported the generic, all the methods
will also be available.

www.it-ebooks.info

http://www.it-ebooks.info/

S4

To use classes defined in another package, place @importClassesFrom package ClassA
ClassB.. next to the classes that inherit from the imported classes, or next to the methods
that implement a generic for the imported classes.

To use generics defined in another package, place @importMethodsFrom package
GenericA GenericB.. next to the methods that use the imported generics.

Because S4 is implemented in the methods package, you need to make sure it’s available.
This is easy to overlook because while the method package is always available in the
search path when you’re working interactively, it’s not automatically loaded by Rscript,
the tool often used to run R from the command line. There are two ways to do so based on
the version of R you’re targeting:

m Pre R 3.2.0: Depends: methods in DESCRIPTION
m Post R 3.2.0: Imports: methods in DESCRIPTION

You’ll be using a lot of functions from methods, so you’ll probably also want to import the
complete package with:

#' @imports methods
NULL

Or you might just want to import the most commonly used functions:

#' @importFrom methods setClass setGeneric setMethod setRefClass
NULL

Here I’'m documenting NULL to make it clear that these directives don’t apply to just one
function. It doesn’t matter where they go, but if you have package docs, as described in
“Documenting Packages”, that’s a natural place to put them.

www.it-ebooks.info

http://www.it-ebooks.info/

Compiled Functions

To make C/C++ functions available in R, see Chapter 10.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9. External Data

It’s often useful to include data in a package. If you’re releasing the package to a broad
audience, it’s a way to provide compelling use cases for the package’s functions. If you’re
releasing the package to a more specific audience, interested either in the data (e.g., NZ
census data) or the subject (e.g., demography), it’s a way to distribute that data along with
its documentation (as long as your audience is R users).

There are three main ways to include data in your package, depending on what you want
to do with it and who should be able to use it:

m If you want to store binary data and make it available to the user, put it in data/. This is
the best place to put example datasets.

» If you want to store parsed data, but not make it available to the user, put it in
R/sysdata.rda. This is the best place to put data that your functions need.

» If you want to store raw data, put it in inst/extdata.

A simple alternative to these three options is to include it in the source of your package,
either creating by hand, or using dput () to serialize an existing dataset into R code.

Each possible location is described in more detail in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Exported Data

The most common location for package data is (surprise!) data/. Each file in this directory
should be an .RData file created by save() containing a single object (with the same name

as the file). The easiest way to adhere to these rules is to use devtools: :use_data():

X <- sample(1000)
devtools::use_data(x, mtcars)

It’s possible to use other types of files, but I don’t recommend it because .RData files are
already fast, small, and explicit. Other options are described in data(). For larger datasets,
you may want to experiment with the compression setting. The default is bzip2, but
sometimes gzip or xz can create smaller files (typically at the expense of slower loading
times).

If the DESCRIPTION contains LazyData: true, then datasets will be lazily loaded. This
means that they won’t occupy any memory until you use them. The following example
shows memory usage before and after loading the nycflights13 package. You can see that
memory usage doesn’t change until you inspect the flights dataset stored inside the
package:

pryr::mem_used()

#> 23.9 MB
library(nycflightsi13)
pryr::mem_used()

#> 24.1 MB

invisible(flights)
pryr::mem_used()
#> 59.4 MB

I recommend that you always include LazyData: true in your DESCRIPTION.
devtools::create() does this for you.

Often, the data you include in data/ is a cleaned-up version of raw data you’ve gathered
from elsewhere. I highly recommend taking the time to include the code used to do this in
the source version of your package. This will make it easy for you to update or reproduce
your version of the data. I suggest that you put this code in data-raw/. You don’t need it in
the bundled version of your package, so also add it to .Rbuildignore. You can do all this in
one step with:

devtools: :use_data_raw()

You can see this approach in practice in some of my recent data packages. I’ve been
creating these as packages because the data will rarely change, and because multiple
packages can then use them for examples:

= babynames

www.it-ebooks.info

https://github.com/hadley/babynames
http://www.it-ebooks.info/

fueleconomy
nasaweather
nycflights13

usdanutrients

www.it-ebooks.info

https://github.com/hadley/fueleconomy
https://github.com/hadley/nasaweather
https://github.com/hadley/nycflights13
https://github.com/hadley/usdanutrients
http://www.it-ebooks.info/

Documenting Datasets

Objects in data/ are always effectively exported (they use a slightly different mechanism
than NAMESPACE’s but the details are not important). This means that they must be
documented. Documenting data is like documenting a function, with a few minor
differences. Instead of documenting the data directly, you document the name of the
dataset. For example, the roxygen2 block used to document the diamonds data in ggplot2
looks something like this:

#' Prices of 50,000 round cut diamonds

#I

#' A dataset containing the prices and other

#' attributes of almost 54,000 diamonds

#I

#' @format A data frame with 53940 rows and 10 variables:
#' \describe{

#' \item{price}{price, in US dollars}

#' \item{carat}{weight of the diamond, in carats}
#'

#' }

#' @source \url{http://www.diamondse.info/?}
"diamonds"

There are two additional tags that are important for documenting datasets:
@format

This gives an overview of the dataset. For data frames, you should include a
definition list that describes each variable. It’s usually a good idea to describe
variables’ units here.

@source

This provides details of where you got the data, often a \ur1{}.

Never @export a dataset.

www.it-ebooks.info

http://www.it-ebooks.info/

Internal Data

Sometimes functions need precomputed data tables. If you put these in data/, they’ll also
be available to package users, which is not appropriate. Instead, you can save them in
R/sysdata.rda. For example, two color-related packages, munsell and dichromat, use
R/sysdata.rda to store large tables of color data.

You can use devtools: :use_data() to create this file with the argument internal =

TRUE:

X <- sample(1000)
devtools::use_data(x, mtcars, internal = TRUE)

Again, to make this data reproducible, it’s a good idea to include the code used to generate
it. Put it in data-raw/.

Objects in R/sysdata.rda are not exported (they shouldn’t be), so they don’t need to be
documented. They’re only available inside your package.

www.it-ebooks.info

https://github.com/cwickham/munsell
http://cran.r-project.org/web/packages/dichromat/index.html
http://www.it-ebooks.info/

Raw Data

If you want to show examples of loading/parsing raw data, put the original files in
inst/extdata. When the package is installed, all files in inst/ are moved to the top-level
directory (so they can’t have names like R/ or DESCRIPTION). To refer to files in
inst/extdata (whether installed or not), use system.file(). For example, the testdat

package uses inst/extdata to store a UTF-8 encoded CSV file for use in examples:

system.file("extdata", "2012.csv", package = "testdat")
#> [1] "/usr/local/lib/R/site-library/testdat/extdata/2012.csv"

Beware: if the file does not exist, system.file() does not return an error — it just returns
the empty string:

system.file("extdata", "2010.csv", package = "testdat")
#> [1] mn

www.it-ebooks.info

https://github.com/ropensci/testdat
http://www.it-ebooks.info/

Other Data

Two other uses of data are:

Data for tests

It’s OK to put small files directly in your test directory. But remember unit tests are
for testing correctness, not performance, so keep the size small.

Data for vignettes

If you want to show how to work with an already loaded dataset, put that data in
data/. If you want to show how to load raw data, put that data in inst/extdata.

www.it-ebooks.info

http://www.it-ebooks.info/

CRAN Notes

Generally, package data should be smaller than a megabyte — if it’s larger, you’ll need to
argue for an exemption. This is usually easier to do if the data is in its own package and
won’t be updated frequently. You should also make sure that the data has been optimally

compressed:

1. Run tools::checkRdaFiles() to determine the best compression for each file.

2. Rerun devtools::use_data() with compress set to that optimal value. If you’ve
lost the code for re-creating the files, you can use tools::resaveRdaFiles() to

resave in place.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10. Compiled Code

R is a high-level, expressive language. But that expressivity comes at a price: speed.
That’s why incorporating a low-level, compiled language like C or C++ can powerfully
complement your R code. Although C and C++ often require more lines of code (and
more careful thought) to solve the same problem, they can be orders of magnitude faster
than R.

Teaching you how to program in C or C++ is beyond the scope of the book. If you’d like
to learn, start with C++ and the Rcpp package. Rcpp makes it easy to connect C++ to R.
I’d also recommend using RStudio because it has many tools that facilitate the entire
process. Start by reading my “High Performance Functions with Rcpp”, a freely available
book chapter from Advanced R: it gently introduces the language by translating examples
of familiar R code into C++. Next, check out the Rcpp book and the other resources listed
in learning more.

www.it-ebooks.info

http://adv-r.had.co.nz/Rcpp.html
http://amzn.to/1F9d6RW
http://www.rcpp.org/book
http://bit.ly/1F9d9x4
http://www.it-ebooks.info/

C++
To set up your package with Rcpp, run the following:

devtools: :use_rcpp()

This will:
m Create an src/ directory to hold your .cpp files.

m Add Rcpp to the LinkingTo and Imports fields in the DESCRIPTION.

m Set up a .gitignore file to make sure you don’t accidentally check in any compiled files
(learn more about this in Chapter 13).

= Tell you the two roxygen tags you need to add to your package:

#' @useDynLib your-package-name
#' @importFrom Rcpp sourceCpp
NULL

www.it-ebooks.info

http://www.it-ebooks.info/

Workflow

Once you’re set up, the basic workflow should now be familiar:

1. Create a new C++ file, as illustrated in Figure 10-1.
m Edit Code View Plots Session Build Debug T

 NewFile > RV O %N

New Project...

R Markdown...

Open File... #0
Reopen with Encoding... Text File
Recent Files -
Open Project... R Sweave
Open Project in New Window... R HTML
Recent Projects > R Presentation
R Documentation
Save 3bS

Figure 10-1. Creating a new C+ + file

The default template looks like this:

#include <Rcpp.h>
using namespace Rcpp;

// Below is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar)

// For more on using Rcpp click the Help button on the editor toolbar

// [[Rcpp::export]]
int timesTwo(int x) {
return x * 2;

}

It includes a basic function and some instructions to get started. The two most
important parts are the header #includes, and the special attribute //

[[Rcpp::export]].

2. Generate the necessary modifications to your NAMESPACE by documenting them
with Ctrl/Cmd-Shift-D.

3. Click Build & Reload in the build pane, or press Ctrl/Cmd-Shift-B. You can continue
to use the standard devtools: :load_all() process, but it is more risky. Because
you’re loading and unloading C code, the chances of corrupting memory are high,
and you’re better off with the safer, but slower, Build & Reload, which installs the

www.it-ebooks.info

http://www.it-ebooks.info/

package and then restarts R.

4. Run timesTwo(10) from the console to check that it works.

Behind the scenes, Build & Reload is doing a lot of work for you. Specifically, it does the
following:

m Sets up your R environment to compile code and warn you if you’re missing necessary
pieces.

m Calls Rcpp: :compileAttributes(). This inspects your .cpp functions looking for
attributes of the form // [[Rcpp: :export]]. When it finds one, it generates the code
needed to make the function available in R, and creates src/RcppExports.cpp and
R/RcppExports.R. You should never modify these files by hand.

m Builds a dynamically linked library (DLL) and makes it available to R.

www.it-ebooks.info

http://www.it-ebooks.info/

Documentation

Each exported C++ function automatically gets a wrapper function (it will be located in
R/RcppExports.R). For example, the R timesTwo() function looks as follows:

timesTwo <- function(x) {
.Call('timesTwo', PACKAGE = 'mypackage', Xx)
}

This uses the base function .call() to execute the C function timesTwo provided by
mypackage. You can use roxygen2 to document this like a regular R function. But instead
of using #' for comments, use //"', the C++ convention:

//' Multiply a number by two
/7"
//"' @param x A single integer.
//"' @export
// [[Rcpp::export]]
int timesTwo(int x) {

return x * 2;

}

That generates roxygen comments in R/RcppExports.R:

#' Multiply a number by two
#I
#' @param x A single integer.
#' @export
timesTwo <- function(x) {
.Call('timesTwo', PACKAGE = 'mypackage', Xx)
}

The distinctions between the two export directives is important:

m [[Rcpp::export]] makes the C++ function available to R. If you have trouble
remembering the exact details, note that everything comes in twos: two \s, two [s, two
:s, and two]s.

= @export makes the R wrapper function available outside your package by adding it to
the NAMESPACE.

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting C++ Code

To make your C++ code callable from C++ code in other packages, add the following:

// [[Rcpp::interfaces(r, cpp)]]

This will generate a header file called inst/include/mypackage.h that can be included by
other packages (the low-level details are described in “Exporting C Code”). See “Rcpp
Attributes” for more details, including how to combine handwritten and automatically
generated header files.

www.it-ebooks.info

http://bit.ly/1F9dQXe
http://www.it-ebooks.info/

Importing C++ Code
To use C++ code from another package, follow these steps:

1. In DESCRIPTION, add LinkingTo: otherPackage. Confusingly, this has nothing to
do with the linker. It’s called LinkingTo because it adds otherPackage/include to the
include path, allowing you to dynamically “link to” other code via the headers.

2. In the C++ file, add the following:

#include <otherPackage.h>

3. C++ functions from otherPackage will be included in the otherPackage namespace.
Use otherPackage: : foo() to access functions, or make them available globally
with using namespace otherPackage.

www.it-ebooks.info

http://www.it-ebooks.info/

Best Practices

Here are some best practices to keep in mind:

To print output, use Rcout << ... (not cout << ...). This prints to the right place,
which might be a GUI console or a file (if sink() is active).

In long-running loops, regularly run Rcpp: : checkUserInterrupt(). This aborts your
C++ if the user has pressed Ctrl-C or Escape in R.

Use the .h extension for headers and include files. (If you don’t, R CMD check will
complain.)

Follow Martyn Plummer’s recommendations on Portable C++ for R Packages.

Whenever you use C++ code in your package, you need to clean up after yourself when
your package is unloaded. Do this by writing an .onuUnload() function that unloads the
DLL:

.onUnload <- function (libpath) {
library.dynam.unload("mypackage", libpath)

}

Use clang instead of gcc to compile your C++ code: it gives much better error
messages. You can make clang the default by creating an .R/Makevars file (Linux and
Mac) or an .R/Makevars.win file (Windows) in your home directory that contains:

CXX=clang++

(If you don’t know where your home directory is, path.expand("~") will tell you.)

To speed up compilation on Linux or Mac, install ccache, then replace ~/.R/Makevars
with the following:

CC=ccache clang -Qunused-arguments
CXX=ccache clang++ -Qunused-arguments
CCACHE_CPP2=yes

www.it-ebooks.info

http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Plummer.pdf
http://www.it-ebooks.info/

C

If you’re writing new compiled code, it’s almost always better to use Rcpp. It’s less work,
more consistent, better documented, and it has better tools. However, there are some
reasons to choose C:

m You’re working with an older package that already uses the C API.
= You're binding to an existing C library.

There are two ways to call C functions from R: .c() and .call(). .c() is a quick-and-
dirty way to call a C function that doesn’t know anything about R, because .c()
automatically converts between R vectors and the corresponding C types. .Call() is more
flexible, but more work: your C function needs to use the R API to convert its inputs to
standard C data types.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with .Call()

To call a C function from R, you first need a C function! In an R package, C code lives in
.c files in src/. You’ll need to include two header files:

#include <R.h>
#include <Rinternals.h>

(Yes, including <Rinternals.h> seems like bad form. On top of that, doing so doesn’t
actually give you access to the “internal” internal API unless you set some additional
flags. The default just gives you access to the “public” internal API, which is both
necessary and done for safety’s sake. Yes, this is confusing.)

These headers allow you to access R’s C API. Unfortunately, this API is not well
documented. I’d recommend starting with my notes at R’s C interface. After that, read
“The R API” in “Writing R Extensions.” A number of exported functions are not
documented, so you’ll also need to read the R source code to figure out the details.

Here’s the bare minimum you need to know: C functions that talk to R must use the SEXP
type for both inputs and outputs. SEXP, short for S expression, is the C struct used to
represent every type of object in R. A C function typically starts by converting SEXPs to
atomic C objects, and ends by converting C objects back to a SEXP. (The R API is

designed so that these conversions often don’t require copying.) The following table lists
the functions that convert length one R vectors to and from C scalars:

R type C type R->C C->R

Integer int asInteger(x) ScalarInteger(x)
Numeric double asReal(x) ScalarReal(x)
Logical int asLogical(x) ScalarlLogical(x)

Character const char* CHAR(asChar(x)) mkString(x)

We now have enough information to write a simple C function that can add two numbers:

#include <R.h>
#include <Rinternals.h>

SEXP add_(SEXP x_, SEXP y_) {
double x asReal(x_);
double y asReal(y_);

double sum = x + y;

return ScalarReal(sum);

We call this from R with .call():

#' @useDynLib mypackage add_
add <- function(x, y) .Call(add_, X, y)

www.it-ebooks.info

http://adv-r.had.co.nz/C-interface.html
http://bit.ly/1F9dY9l
https://github.com/wch/r-source
http://www.it-ebooks.info/

Where does the first argument to .Call(), add_, come from? It comes from @useDynLib,
which creates a line in the NAMESPACE that looks like this:

useDynLib(mypackage, add_)

This directive instructs R to create an object called add_, which describes a C function
pointer:

mypackage: ::add_

#> $name

#> [1] "add_"

#>

#> $address

#> <pointer: 0x107be3f40>

#> $package

#> NULL

#>

#> attr(,"class")
#> [1] "NativeSymbolInfo"

.Call() takes the pointer to a C function and calls it. All R objects have the same C type
(the SExP); you need to make sure the arguments are of the type you expect. Either do that
in the R function, in the C function, or just accept that R will crash every time you
accidentally supply the wrong type of input.

The most complicated part of working with the .call() interface is memory management.
Whenever you create an R-level data structure, you must PROTECT() it so the garbage
collector doesn’t try and free it, then UNPROTECT () it at the end of the function. This topic
is beyond the scope of this chapter, but you can learn more about it at the “Creating and
modifying vectors” section of “R’s C interface”.

www.it-ebooks.info

http://bit.ly/1F9e7cQ
http://www.it-ebooks.info/

Getting Started with .C()

.C() is simpler than .call() and can be useful if you already have standard C code.
Because you never create R objects in .C(), you never need to worry about memory
management. To use it, you first write a void C function, using in-place modification of
function parameters to return values:

void add_(double* x, double* y, double* out) {
out[@] = x[0] + y[0];
}

Then like .Ccall(), you create an R wrapper:

#' @mypackage src.c add_
add <- function(x, y) {

.C(add_, x, y, numeric(1))[[3]]
}

(Here we extract the third element of the result because that corresponds to the out
parameter.)

.C() automatically converts back and forth between R vectors and their C equivalents.
The following table shows the R types and their C equivalents:

R type C type
Logical int*
Integer int*
Double double*
Character char**

Raw unsigned char*

Note that .c() assumes your function doesn’t know how to deal with missing values and

will throw an error if any arguments contain an NA. If it can correctly handle missing
values, set NAOK = TRUE in the call to .c().

You can learn more about .c() in its help, ?.cC, or in R-extensions.

www.it-ebooks.info

http://bit.ly/1F9ehRt
http://www.it-ebooks.info/

Workflow
The usual workflow still applies:

1. Modify the C code.
2. Build and reload the package with Ctrl/Cmd-Shift-B.
3. Experiment at the console.

The first time you add @useDynLib, you’ll also need to run devtools: :document ()
(Ctrl/Cmd-Shift-D) and reload the package.

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting C Code

R packages need to provide DLLs that can be relocated (i.e., DLLs that work regardless of
where they live on disk). This is because most R users don’t build packages from source.
Instead, they get binaries from CRAN that can get installed in many different places. This
need for relocatable DLLs adds a few more steps to the job of importing and exporting C
code for R packages (the same problem arises for C++, but Rcpp attributes automate the
manual steps described here).

R solves this problem using function registration. To export a .call() C function, you
register it with R_Registerccallable(). To importa .call() C function, you get a
pointer to it with R_GetCCallable(). Similar techniques are available for .c() C

functions, but are beyond the scope of this book. As we’ll see momentarily, a user-friendly
package will do both these tasks, so users of the package can ignore the details and simply
include a header file.

NOTE

Confusingly, there’s another type of function registration. Instead of registering C functions using the
namespace (i.e., @useDynLib pkg fun), you can register them with R_registerRoutines() and
@useDynLib mypackage, .registration = TRUE. To learn the details, read the “Registering native
routines” section of “Writing R extensions”.

To register a function, call R_RegisterccCallable(), defined in <R_ext/Rdynload.h>.
Function registration should be done in a function called R_init_<mypackage>. This

function is called automatically when the “mypackage” DLL is loaded.
R_RegistercCallable() has three arguments:

= A pointer to the DLL

» The name of the function

= A pointer to the function, cast as DL_FUNC (i.e., a dynamically loaded function)
The following code registers the add () function defined earlier:

#include "add.h"
#include <R_ext/Rdynload.h>

void R_init_mypackage(D1llInfo *info) {

R_RegisterCCallable(info, "add_", (DL_FUNC) &add_)
}

It doesn’t matter where this code lives, but it’s usually put in a file called src/mypackage-
Init.c.
To access a registered function from another package, call R_Getccallable(). It has two

arguments, the function name and the package name. It returns a function pointer. The
function pointer has no type information, so it should always be wrapped in a helper
function that defines the inputs:

www.it-ebooks.info

http://bit.ly/1F9flEO
http://www.it-ebooks.info/

#include <R_ext/Rdynload.h>
#include <R.h>
#include <Rinternals.h>

SEXP add_(SEXP x, SEXP y) {
static SEXP(fun*)(SEXP, SEXP) = NULL;
if (fun == NULL)
fun = (SEXP(*)(SEXP, SEXP)) R_GetCCallable("add", "mypackage");
return fun(x, y);

}

Rather than relying on each package that imports your C code to do this correctly, you
should instead do it for them. Write inst/include/mypackageAPI.h, which provides a
wrapper function for each exported function. A popular package that does that is xts.
Download the source package and look in the include/ directory to see what it does.

www.it-ebooks.info

http://cran.r-project.org/web/packages/xts/
http://www.it-ebooks.info/

Importing C Code
Using C code from another package varies based on how the package is implemented:

m If it uses the system described previously, all you need is LinkingTo: otherPackage in
the DESCRIPTION, and #include otherPackageAPI.h in the C file. (Remember
LinkingTo is not about the linker, but actually affects the include path.)

m If it registers the functions, but doesn’t provide a header file, you’ll need to write the
wrapper yourself. Because you’re not using any header files from the package, use
Imports and not LinkingTo. You also need to make sure the package is loaded. You
can do this by importing any function with @importFrom mypackage foo, or by adding
requireNamespace("mypackage", quietly = TRUE) to .onLoad().

m If it doesn’t register the functions, you can’t use them. You’ll have to ask the
maintainer nicely or even provide a pull request.

www.it-ebooks.info

http://www.it-ebooks.info/

Best Practices

Writing C code in R is a little different from writing C code outside of R. Here are some
best practices to keep in mind:

Avoid calls to assert (), abort(), and exit(): these will kill the R process, not just
your C code. Instead, use error (), which is equivalent to calling stop() in R.

To print output, use Rprintf(), not printf(). Doing so always prints to the right
place, whether it’s the GUI console or a file (if sink() is active).

In long-running loops, regularly call R_CheckUserInterrupt() to allow the user to
interrupt the C code.

Don’t use C’s random number generators (like rand() or random()). Instead, use the C
API to R’s rngs: unif_rand(), norm_rand(), etc. Note the caveats in “Random
number generation” — you must call GetRNGstate() before and PutRNGstate() after.

Use the R macros ISNAN(x) and R_FINITE(x) to check for NaNs and infinite values.
These work on more platforms than the C99 isnan() and isfinite().

Like with C++, whenever you use C code in your package, you should unload the DLL
when the package is unloaded:

.onUnload <- function (libpath) {
library.dynam.unload("mypackage", libpath)
}

Use clang instead of gcc to compile your C code: it gives much better error messages.
You can make clang the default by creating an ~/.R/Makevars file that contains the
following:

C=clang

www.it-ebooks.info

http://bit.ly/1F9fwQD
http://www.it-ebooks.info/

Debugging Compiled Code

It’s possible, with a little extra work, to use an interactive debugger to debug your C/C++
in the same way that you can use browser () and debug() to debug your R code.
Unfortunately, you won’t be able to use RStudio; you’ll have to run R from the command
line.

Open a shell (e.g., with Tools — Shell...) and start R by typing:

If you compile with clang
R --debugger=11db

If you compile with gcc

R --debugger=gdb

This will start either 1ldb or gdb, the debuggers that work with code produced by clang or
gcc, respectively. Like R, 11db and gdb provide a run-eval-print loop (REPL) in which
you enter commands and then look at the results. In the examples that follow, I’ll show the
results of 11db, which is what I use (the output from gdb is similar). For each interactive
command, I’ll tell you the explicit, but long, 11db command and the short, but cryptic, gdb
command. Because 11db understands all gdb commands, you can choose to be explicit or
terse.

Once you’ve started the debugger, start R by typing process start (11db) or run (gdb).
Now when your C/C++ code crashes, you’ll be dumped into an interactive debugger
instead of getting a cryptic error message and a crash.

Let’s start with a simple C++ function that writes to memory it doesn’t “own”:

Rcpp: :cppFunction("
bool mistake() {
NumericVector x(1);
int n = INT_MAX;
x[n] = 0;
return true;
}
", plugins = "debug", verbose = TRUE, rebuild = TRUE)
mistake()

Use devtools::load_all() to load the current package. Then copy and paste the code
that creates the bug. Here’s a crash report from a package that I was working on:

Process 32743 stopped
* thread #1: tid = 0x1f79f6, 0Ox.. gggeom.so.."

frame #0: Ox0.. gggeom.so vw_distance(x=..., y=...) + ... at vw-distance.cpp:54
51 int prev_idx = prev[idx];
52
53 next[prev[idx]] = next_idx;
-> 54 prev[next[idx]] = prev_idx;
55 prev[idx] = -1;
56 next[idx] = -1;
57

It tells us that the crash occurred because of an EXC_BAD_ACCESS — this is one of the most
common types of crash in C/C++ code. Helpfully, 11db shows exactly which line of C++

www.it-ebooks.info

http://lldb.llvm.org/
http://www.gnu.org/software/gdb/
http://www.it-ebooks.info/

code caused the problem: vw-distance.cpp:54. Often, just knowing where the problem
occurs is enough to fix it. But we’re also now at an interactive prompt. There are many
commands you can run here to explore what’s going on. These are the most useful:

m See a list of all commands: help.

m Show your location on the callstack with thread backtrace or bt. This will print a list
of calls leading up to the error, much like traceback() does in R. Navigate the
callstack with frame select <n>or frame <n>, or up and down.

= Evaluate the next expression with thread step-over or next, or step into it with
thread step-in or step. Continue executing the rest of the code with thread step-
out or finish.

m Show all variables defined in the current frame with frame variable or info locals,
or print the value of a single variable with frame variable <var>orp <var>.

Instead of waiting for a crash to occur, you can also set breakpoints in your code. To do so,
start the debugger and run R. Then follow these steps:

1. Press Ctrl-C.
2. Type breakpoint set --file foo.c --line 12 or break foo.c:12.

3. Type process continue or c to go back to the R console. Now run the C code
you’re interested in, and the debugger will stop when it gets to the specified line.

Finally, you can also use the debugger if your code is stuck in an infinite loop. Press Ctrl-
C to break into the debugger and you’ll see which line of code is causing the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Makefiles

Although makefiles are beyond the scope of this book, they are a useful tool. A good,
gentle introduction with a focus on reproducible research is Karl Broman’s “minimal
make”.

Generally, R packages should avoid a custom Makefile. Instead, use Makevars. Makevars

is a makefile that overrides the default makefile generated by R (which is located at
file.path(R.home("etc"), "Makeconf")). This allows you to take advantage of R’s

default behavior (it’s over 150 lines, and battle tested across many years and many
systems, so you want to!) while being able to set the flags you need. These are the most
commonly used flags:

PKG_LIBS

Linker flags. A common use is PKG_LIBS = $(BLAS_LIBS). This allows you to use
the same BLAS library as R.

PKG_CFLAGS and PKG_CXXFLAGS

C and C++ flags. Most commonly used to set define directives with -D.
PKG_CPPFLAGS
Preprocessor flags (not C++ flags!). Most commonly used to set include directories

with -I. Any package listed in the LinkingTo field in the DESCRIPTION will be
automatically included — you do not need to explicitly add it.

To set flags only on Windows, use Makevars.win. To build a Makevars with configure,
use Makevars.in.

By default, R will use the system make, which is not always GNU compatible (i.e., on
Solaris). If you want to use GNU extensions (which are extremely common), add
SystemRequirements: GNU make to DESCRIPTION. If you’re not sure if you’re using

GNU extensions, play it safe and add it to the system requirement.

www.it-ebooks.info

http://kbroman.org/minimal_make/
http://www.it-ebooks.info/

Other Languages

It is possible to connect R to other languages, but the interfaces are not as nice as the one
for C++:

Fortran

It’s possible to call Fortran subroutines directly with .Fortran(), or via C or C++
with .call(). See ?.Fortran and the R extensions manual for more details.

Java
The rJava package makes it possible to call Java code from within R. Note that unlike
with C and C++, passing an R object to a Java call will involve a copy operation,
something that has serious performance implications.

www.it-ebooks.info

https://github.com/s-u/rJava
http://www.it-ebooks.info/

Licensing

Because it’s common to use other people’s libraries when writing compiled code, you
need to make sure that your package license is compatible with the licenses of all included
code:

m The simplest solution is to use the same license as the included code. You can’t
relicense someone else’s code, so you may need to change your license.

» If you don’t want to use the same license, it’s best to stick with common cases where
the interactions are well known. For example, Various Licenses and Comments about
Them describes what licenses are compatible with the GPL license.

In this case, your description should contain License: <main license> + FILE license
where <main license> is a license that is valid for the entire package (both R and
compiled code), and the license file describes the licenses of individual components.

For nonstandard cases, you’ll need to consult a lawyer.

In all cases, make sure you include copyright and license statements from the original
code.

www.it-ebooks.info

https://www.gnu.org/licenses/license-list.html
http://www.it-ebooks.info/

Development Workflow

When developing C or C++ code, it’s usually better to use RStudio’s Build & Reload
instead of devtools::load_all(). Your C objects persist between reloads with
“load_all() ", so if you change the way that data is stored in memory, then the old objects
won’t work with new code, and you’re likely to crash R.

www.it-ebooks.info

http://www.it-ebooks.info/

CRAN Issues

Packages with compiled code are much more likely to have difficulties getting on CRAN
than those without. The reason? Your package must build from source on all major
platforms (Linux, Mac, and Windows). This is hard! Here are some tips:

m CRAN provides an automated service for checking R packages on Windows: win-
builder. You can easily access this by running devtools: :build_win(), which builds
and uploads a package bundle.

m [’ve tried to include the most important advice in this chapter, but I’d recommend
reading the entire section on writing portable C and C++ code in “Writing R
Extensions”.

m In exceptional circumstances, like binding to Windows-only functionality, you may be
able to opt out of the cross-platform requirement, but be prepared
to make a strong case for it.

The interface between CRAN’s automated and manual checking can be particularly
frustrating for compiled code. Requirements vary from submission to submission, based
on which maintainer you get and how much free time they have. The rules are
inconsistently applied, but if your package doesn’t pass, it’s better to bite the bullet and
make the change rather than trying to argue about it:

m Sometimes you will need to list all authors and copyright holders of included code in
the DESCRIPTION.

m Sometimes your package will need to work on Solaris. But due to the difficulty of
accessing a computer running Solaris, fixing Solaris issues can be hard. However, you
will be in a stronger negotiating position if the package has no problems on other

platforms.
One common gotcha: the gcc/clang flags -wall, -pedantic, and -00, do not work with
the default compiler on Solaris.

www.it-ebooks.info

http://win-builder.r-project.org/
http://bit.ly/1F9gnAL
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11. Installed Files

When a package is installed, everything in inst/ is copied into the top-level package
directory. In some sense inst/ is the opposite of .Rbuildignore — where .Rbuildignore lets
you remove arbitrary files and directories to the top level, inst/ lets you add them. You are
free to put anything you like in inst/ with one caution: because inst/ is copied into the top-
level directory, you should never use a subdirectory with the same name as an existing
directory. This means that you should avoid inst/build, inst/data, inst/demo, inst/exec,
inst/help, inst/html, inst/inst, inst/libs, inst/Meta, inst/man, inst/po, inst/R, inst/src,
inst/tests, inst/tools, and inst/vignettes.

This chapter discusses the most common files found in inst/:

m inst/AUTHOR and inst/COPYRIGHT: If the copyright and authorship of a package is
particularly complex, you can use plain-text files inst/COPYRIGHTS and
inst/AUTHORS to provide more information.

m inst/CITATION: How to cite the package, see “Package Citation” for details.

m jnst/docs: This is an older convention for vignettes, and should be avoided in modern
packages.

m inst/extdata: Additional external data for examples and vignettes. See “Raw Data” for
more detail.

m inst/java, inst/python, etc.: See “Other Languages”.

To find a file in inst/ from code use system.file(). For example, to find
inst/extdata/mydata.csv, you’d call system.file("extdata", "mydata.csv", package
"mypackage"). Note that you omit the inst/ directory from the path. This will work if the
package is installed, or if it’s been loaded with devtools: :load_all().

www.it-ebooks.info

http://www.it-ebooks.info/

Package Citation

The CITATION file lives in the inst/ directory and is intimately connected to the
citation() function, which tells you how to cite R and R packages. Calling citation()
without any arguments tells you how to cite base R:

citation()

#>

#> To cite R in publications use:

#>

#> R Core Team (2014). R: A language and environment for

#> statistical computing. R Foundation for Statistical Computing,
#> Vienna, Austria. URL http://www.R-project.org/.

#>

#> A BibTeX entry for LaTeX users 1is

#>

#> @Manual{,

#> title = {R: A Language and Environment for Statistical Computing},
#> author =,

#> organization = {R Foundation for Statistical Computing},
#> address = {Vienna, Austria},

#> year = {2014},

#> url = {http://www.R-project.org/},

#> 3}

#>

#> We have invested a lot of time and effort in creating R, please
#> cite it when using it for data analysis. See also
#> 'citation("pkgname")' for citing R packages.

Calling it with a package name tells you how to cite that package:

citation("lubridate")

#>

#> To cite lubridate in publications use:

#>

#> Garrett Grolemund, Hadley Wickham (2011). Dates and Times Made
#> Easy with lubridate. Journal of Statistical Software, 40(3),
#> 1-25. URL http://www.jstatsoft.org/v40/i03/.

#>
#> A BibTeX entry for LaTeX users is

#>

#> @Article({,

#> title = {Dates and Times Made Easy with {lubridate}},
#> author = {Garrett Grolemund and Hadley Wickham},

#> journal = {Journal of Statistical Software},

#> year = {2011},

#> volume = {40},

#> number = {3},

#> pages = {1--25},

#> url = {http://www.jstatsoft.org/v40/i03/}%},

#> }

To customize the citation for your package, add an inst/CITATION that looks like this:

citHeader("To cite lubridate in publications use:")

citEntry(entry = "Article",
title = "Dates and Times Made Easy with {lubridate}",
author = personList(as.person("Garrett Grolemund"),
as.person("Hadley Wickham")),
journal = "Journal of Statistical Software",
year = "2011",
volume = "40",
number = "3",
pages = "1--25",
url = "http://www.jstatsoft.org/v40/i03/",

www.it-ebooks.info

http://www.it-ebooks.info/

textVersion =

paste("Garrett Grolemund, Hadley Wickham (2011).",
"Dates and Times Made Easy with lubridate.",
"Journal of Statistical Software, 40(3), 1-25.",
"URL http://www.jstatsoft.org/v40/103/.")

You need to create inst/CITATION. As you can see, it’s pretty simple: you only need to
learn one new function, citEntry(). The most important arguments are:

entry

This is the type of citation — for example, “Article,” “Book,” “PhDThesis,” and so
on.

The standard bibliographic information

This includes information like title, author (which should be a personList()),
year, journal, volume, issue, pages, and So on.

A complete list of arguments can be found in ?bibentry.

Use citHeader () and citFooter () to add additional exhortations.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Languages

Sometimes a package contains useful supplementary scripts in other programming
languages. Generally, you should avoid these, because it adds an extra dependency, but it
may be useful when wrapping substantial amounts of code from another language. For
example, gdata wraps the Perl module Spreadsheet::ParseExcel to read Excel files into R.

The convention is to put scripts of this nature into a subdirectory of inst/ (e.g., inst/python,
inst/perl, inst/ruby, etc.). If these scripts are essential to your package, make sure you also
add the appropriate programming language to the SystemRequirements field in the
DESCRIPTION. (This field is for human reading, so don’t worry about exactly how you
specify it.)

Java is a special case because you need to include both the source code (which should go
in java/ and be listed in .Rinstignore), and the compiled .jar files (which should go in
inst/java). Make sure to add rJava to IMPORTS.

www.it-ebooks.info

http://cran.r-project.org/web/packages/gdata/index.html
http://search.cpan.org/~dougw/Spreadsheet-ParseExcel-0.65/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12. Other Components

There are four other directories that are valid, top-level directories. They are rarely used:

demo/

For package demos. These were useful prior to the introduction of vignettes, but are
no longer recommended. See the following section for more information.

exec/

For executable scripts. Compared to other directories, files in exec/ are automatically
flagged as executable.

po/

Translations for messages. This is useful but beyond the scope of this book. See the
Internationalization chapter of “R extensions” for more details.

tools/

Auxiliary files needed during configuration, or for sources that need to generate
scripts.

www.it-ebooks.info

http://bit.ly/1F9gTyI
http://www.it-ebooks.info/

Demos

A demo is an .R file that lives in demo/. Demos are like examples but tend to be longer.
Instead of focusing on a single function, they show how to weave together multiple
functions to solve a problem.

You list and access demos with demo():

m To show all available demos, use demo().
m To show all demos in a package, use demo(package = "httr").
m To run a specific demo, use demo("oauthl-twitter", package = "httr").

m To find a demo, use system.file("demo", "oauthl-twitter.R", package =
"httr!).

Each demo must be listed in demo/00Index in the following form: demo-name Demo
description. The demo name is the name of the file without the extension (e.g.,
demo/my-demo.R becomes my-demo).

By default, the demo asks for human input for each plot: “Hit to see next plot:” This
behavior can be overridden by adding devAskNewPage (ask = FALSE) to the demo file.

You can add pauses by adding readline("press any key to continue").

Generally, I do not recommend using demos. Demos are not automatically tested by R CMD
check. This means that they can easily break without your knowledge. Instead, consider

writing a vignette. Vignettes have both input and output, so readers can see the results
without having to run the code themselves. Longer demos need to mingle code with
explanation, and R Markdown is better suited to that task than R comments. Vignettes are
listed on the CRAN package page, which makes it easier for new users to discover them.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IIl1. Best Practices

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13. Git and GitHub

If you’re serious about software development, you need to learn about Git. Git is a version
control system, a tool that tracks changes to your code and shares those changes with
others. Git is most useful when combined with GitHub, a website that allows you to share
your code with the world, solicit improvements via pull requests, and track issues.
Git/GitHub is the most popular version control system for developers of R packages
(witness the thousands of R packages hosted on GitHub).

Git and Github are generally useful for all software development and data analysis, not
just R packages. I’ve included it here because it is so useful when you’re making a
package. There’s no way I could be as productive without Git and GitHub at my back,
enabling me to rapidly spot mistakes and easily collaborate with others.

Why use Git/GitHub?

m It makes sharing your package easy. Any R user can install your package with just two
lines of code:

install.packages("devtools")
devtools::install github("username/packagename")

m GitHub is a great way to make a bare-bones website for your package. Readers can
easily browse code and read documentation (via Markdown). They can report bugs,
suggest new features with GitHub issues, and propose improvements to your code with
pull requests.

= Have you ever tried to collaboratively write code with someone by sending files back
and forth via email or a Dropbox folder? It takes a lot of effort just to make sure that
the two of you aren’t working on the same file and overwriting each other’s changes.
With Git, both of you can work on the same file at the same time. Git will either
combine your changes automatically, or it will show you all the ambiguities and
conflicts.

= Have you ever accidentally pressed S instead of Cmd-S to save your file? I do it all the
time! It’s very easy to accidentally introduce a mistake that takes a few minutes to track
down. Git makes this problem easy to spot because it allows you to see exactly what’s
changed and undo any mistakes.

You can do many of these same things with other tools (like Subversion or Mercurial) and
other websites (like GitLab and Bitbucket). Git is most useful in conjunction with GitHub,
and vice versa, so I’ll make no effort to distinguish between features that belong to Git and
those that belong to GitHub. But I think Git/GitHub is the most user-friendly system
(especially for new developers), not least because its popularity means that the answer or
solution to every possible question or problem can be found on StackOverflow.

www.it-ebooks.info

http://github.com/
https://guides.github.com/features/issues/
https://subversion.apache.org/
http://mercurial.selenic.com/
https://about.gitlab.com/
https://bitbucket.org/
http://www.it-ebooks.info/

This is not to say that Git is easy to learn. Your initial experiences with Git will be
frustrating and you will frequently curse at the strange terminology and unhelpful error
messages. Fortunately, there are many tutorials available online, and although they aren’t
always well written (many provide a lot of information but little guidance about what to
do with it or why you need to care), you can absolutely master Git with a little practice.
Don’t give up! Persevere and you’ll unlock the super power of code collaboration.

www.it-ebooks.info

http://www.it-ebooks.info/

RStudio, Git, and GitHub

RStudio makes day-to-day use of Git simpler. Once you’ve set up a project to use Git,
you’ll see a new pane and toolbar icon. These provide shortcuts to the most commonly
used Git commands. However, because only a handful of the 150+ Git commands are
available in RStudio, you also need to be familiar with using Git from the shell (aka the
command line or the console). It’s also useful to be familiar with using Git in a shell
because if you get stuck, you’ll need to search for a solution with the Git command names.

The easiest way to get to a shell from RStudio is Tools — Shell. This will open a new
shell located in the root directory of your project. (Note: on Windows, this opens up a
bash shell, the standard Linux shell, which behaves a little differently from the usual
cmd.exe shell.)

Don’t worry if you’ve never used the shell before, because it’s very similar to using R.
The main difference is that instead of functions, you call commands, which have a slightly
different syntax. For example, in R you might write f(x, y = 1), where in the shell you’d
write f x --y=1orf x -yi. Also, while shell commands are even less regular than R
functions, you fortunately only need to be familiar with a few. In this chapter, you won’t
be doing much in the shell apart from running Git commands. However, it’s a good idea to
learn the three most important shell commands:

pwd

Stands for print working directory. This command tells you which directory you’re
currently in.

cd <name>
This command changes the directory. Use cd .. to move up the directory hierarchy.
1s

This command lists all the files in the current directory.

If you’ve never used the shell before, I recommend playing Terminus. It’s a fun way to
learn the basics of the shell. I also recommend taking a look at Philip Guo’s Basic Unix-
like command line tutorial videos, Michael Stonebank’s Unix tutorial, and Brennen
Bearnes’s Userland.

www.it-ebooks.info

http://bit.ly/1GyJI4R
http://pgbovine.net/command-line-tutorial.htm
http://bit.ly/1GyJNp7
https://p1k3.com/userland-book/
http://www.it-ebooks.info/

Initial Setup

If you’ve never used Git or GitHub before, start by installing Git and creating a GitHub
account. Then, link the two together:

1. Install Git:

m Windows: http://git-scm.com/download/win.

= OS X: http://git-scm.com/download/mac.

m Debian/Ubuntu: sudo apt-get install git-core.

m Other Linux distros: http://git-scm.com/download/linux.

2. Tell Git your name and email address. These are used to label each commit so that
when you start collaborating with others, it’s clear who made each change. In the
shell, run the following:

git config --global user.name "YOUR FULL NAME"
git config --global user.email "YOUR EMAIL ADDRESS"

(You can check if you’re set up correctly by running git config --global --
list.)

3. Create an account on GitHub. (The free plan is fine.) Use the same email address as
before.

4. If needed, generate an SSH key. SSH keys allow you to securely communicate with
websites without a password. There are two parts to an SSH key: one public, one
private. People with your public key can securely encrypt data that can only be read
by someone with your private key.

You can check if you already have an SSH key pair by running:

file.exists("~/.ssh/id_rsa.pub")

If that returns FALSE, you’ll need to create a new key. You can either follow the
instructions on GitHub or use RStudio. To use RStudio, go to the RStudio options,
choose the Git/SVN panel, and click “Create RSA key...” (Figure 13-1).

www.it-ebooks.info

http://git-scm.com/download/win
http://git-scm.com/download/mac
http://git-scm.com/download/linux
https://github.com/
https://help.github.com/articles/generating-ssh-keys
http://www.it-ebooks.info/

Options

= v | Enable version control interface for RStudio projects
R
General Git executable:
| : /usr/bin/git Browse...
Code Editing SVN executable:
vj Jusr/bin/svn Browse...
Appearance . .
SSH RSA Key: View public key
~/.sshfid_rsa
Pane Layout Create RSA Key...
l ? Using Version Control with RStudio
Packages
Sweave
ABC
Spelling
Git/SVN

| oK l Cancel Apply

Figure 13-1. RStudio’s Git options

5. Give GitHub your SSH public key: https://github.com/settings/ssh. The easiest way
to find the key is to click “View public key” in RStudio’s Git/SVN preferences pane.

www.it-ebooks.info

https://github.com/settings/ssh
http://www.it-ebooks.info/

Creating a Local Git Repository

Now that you have installed and configured Git, you can use it! To use GitHub with your
package, you’ll need to initialize a local repository, or repo for short. This creates a .git

directory that stores configuration files and a database that records changes to your code.
A new repo exists only on your computer; you’ll learn how to share it with others shortly.

To create a new repo:

1. In RStudio, go to project options, then to the Git/SVN panel. Change “Version
control system” from “None” to “Git” (Figure 13-2).

Project Options

E , Version control system: Git o

l General Origin: git@github.com:hadley/r-pkgs.git

[T — e

? Using Version Control with RStudio

Code Editing

Sweave

F=="TT ==

“
Build Tools
Git/SVN

-
Packrat

OK Cancel

[= L ANL LACETICS. § O NITS LATLSRFTLALIVW R D

Figure 13-2. Creating a new repo in RStudio

2. You’ll then be prompted to restart RStudio. In a shell, run git init. Restart RStudio
and reopen your package.

Once Git has been initialized, you’ll see two new components: the Git pane, at the upper
right, shows you what files have changed and includes buttons for the most important Git

www.it-ebooks.info

http://www.it-ebooks.info/

commands (Figure 13-3).

Environment History Git

. Diff . Commit <4 Pull 4} Push L History .f More~ master =

Staged Status « Path
M git.rmd
screenshots/git-config.png
screenshots/git-proj-config.png

Figure 13-3. RStudio’s Git pane

The Git drop-down menu, found in the toolbar, includes Git and GitHub commands that
apply to the current file (Figure 13-4).

www.it-ebooks.info

http://www.it-ebooks.info/

GH

[

Diff "git.rmd" ~“XD
Log of "git.rmd"

Revert "git.rmd"...

9

View "git.rmd" on GitHub

Blame "git.rmd" on GitHub
<. Commit... “\M

Pull Branches

D

Push Branch

History

i Project Setup...

Figure 13-4. RStudio’s Git options

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing What’s Changed

The first benefit of Git is that you can easily see the changes you’ve made. I find this
really helpful, as I often accidentally mistype keyboard shortcuts, leaving stray characters
in my code. The RStudio Git pane lists every file that’s been added, modified, or deleted.
The icon describes the change:

M)

m , Modified. You’ve changed the contents of the file.

u , Untracked. You’ve added a new file that Git hasn’t seen before.

u EI , Deleted. You’ve deleted a file.

You can get more details about modifications with a “diff” by clicking =B . This

opens a new window showing the detailed differences (Figure 13-5).

. Show Staged) Unstaged Context 5 line < Stage All % Discard All

how to solve, SO should be your first resource. It's highly likely that some one
has had exactly the same problem as you, and there will be a variety of approaches
f to choose from.

69 RStudio provides many tools to make your day-to-day use of git as easy as possible.
However, there are a huge number of git commands, and they're not at all available
in the IDE. That means you'll need to run a handful of commands from a shell (aka a

] console), especially when you're setting up, dealing with merge conflicts and

1 getting out of jams. The easiest way to get to a shell is Tools > Shell.

69 RStudio provides many tools to make your day-to-day use of git as easy as possible.

1 However, there are a huge number of git commands, and they're not at all available
in the IDE. That means you'll need to run a handful of commands from a shell (aka a
console), especially when you're setting up, dealing with merge conflicts and
getting out of jams. The easiest way to get to a shell is Tools > Shell. It's also
important to be familiar with using git from the command line because if you're
searching for problems, you'll need to know what the standard commands are.

70| 70
1 75] ## Initial set up

71 ## Initial set up {#git-init}

72| 72

73 73 If you've never used git or github before, you'll need to do a little initial
i setup:

74 74
§V 75 75 1. Install git:

76 76

7 * Windows: <http://msysgit.github.io/>

78 * 0S X: <http://code.google.com/p/git-osx-installer/>

Figure 13-5. An example diff (additions in red, deletions in green)

www.it-ebooks.info

http://www.it-ebooks.info/

The background colors tell you whether the text has been added (green) or removed (red).
(If you’re colorblind, you can use the line numbers in the two columns at the far left as a
guide: a number in the first column identifies the old version, a number in the second
column identifies the new version.) The gray lines of code above and below the changes
give you additional context.

In the shell, use git status to see an overview of changes and git diff to show detailed
differences.

www.it-ebooks.info

http://www.it-ebooks.info/

Recording Changes

The fundamental unit of work in Git is a commit. A commit takes a snapshot of your code
at a specified point in time. Using a Git commit is like using anchors and other protection
when rock climbing. If you’re crossing a dangerous rock face, you want to make sure
there’s protection in case you fall. Commits play a similar role: if you make a mistake, you
can’t fall past the previous commit. Coding without commits is like free climbing: you can
travel much faster in the short term, but in the long term, the chances of catastrophic
failure are high! Like rock climbing protection, you want to be judicious in your use of
commits. Committing too frequently will slow your progress; use more commits when
you’re in uncertain or dangerous territory. Commits are also helpful to others, because
they show your journey, not just the destination.

There are five key components to every commit:

» A unique identifier called a secure hash algorithm (SHA)
m A changeset that describes which files were added, modified, and deleted
= A human-readable commit message

m A parent, the commit that came before this one (there are two exceptions to this rule:
the initial commit, which doesn’t have a parent, and merges, which have two parents;
you’ll learn about merges later)

= An author

You create a commit in two stages:

1. You stage files, telling Git which changes should be included in the next commit.
2. You commit the staged files, describing the changes with a message.

In RStudio, staging and committing are done in the same place, the commit window,

: . Commit : :
which you can open by clicking or by pressing Ctrl-Alt-M (Figure 13-
6).

www.it-ebooks.info

http://www.it-ebooks.info/

0O RStudio: Review Changes

Changes History master~ < Stage “ Revert ' Ignore (= Refresh | 4 Pull 4F Push

Staged Status ~ Path Commit message
) I gitrmd
screenshots/arrows2.png
screenshots/git-added.png

screenshots/git-commit-
window.png

screenshots/git-commit.png
screenshots/git-config.png
screenshots/git-deleted.png
screenshots/git-diff.png
screenshots/git-dropdown.png

Amend previous commit Commit

Show Staged @) Unstaged Context 5 line 7 Stage All % Discard All

find that coding in the open is tremendously empowering as it helps other people help
you.

35 35

36 Yes, you can do many of the same things with tools other than git (like svn or bazaar or
mercurial) and other websites (like gitlab and bitbucket). But the majority of the R
community uses git and github, and I think it's the friendliest system for new developers
(and being the most popular means that it's more likely that someone has solved the same
problem as you in the past).

36 You can do many of the same things with other tools (like svn or bazaar or mercurial) and
other websites (like gitlab and bitbucket). But I think git and github is the friendliest
system for new developers, not least because it's the most popular, which means every
possible problem has already been asked and answered on StackOverflow. Indeed,
StackOverflow is a vital part of git - when you have a problem that you don't know how to
solve, SO should be your first recourse.

37| 37

38 This chapter describes git and github together, making no attempt to separate the
T

Figure 13-6. RStudio’s commit window shows you what files have been modified, and exactly what’s changed in the
seclted file

The commit window is made up of three panes:

m The upper-left pane shows the current status of each file. It’s the same as the Git pane
in the main RStudio window.

» The bottom pane shows the diff of the currently selected file.

m The upper-right pane is where you’ll enter the commit message, a human-readable
message summarizing the changes made in the commit. We’ll discuss that in more
detail momentarily.

— Diff

(Yes, this is exactly the same window you see when clicking D
To create a new commit:

1. Save your changes.

www.it-ebooks.info

http://www.it-ebooks.info/

2. Open the commit window by clicking /il Commit or pressing Ctrl-Alt-M.

3. Select files. To stage (select) a single file for inclusion, tick its checkbox. To stage all

Stage
files, press Ctrl/Cmd-A, then click
As you stage each file, you’ll notice that its status changes The icon will change
columns from right (unstaged status) to left (staged status), and you might see one of
two new icons:

A
Added: ™
After staging an untracked file, Git now knows that you want to add it to the
repo.

Renamed: m

If you rename a file, Git initially sees it as a deletion and addition. Once you
stage both changes, Git will recognize that it’s a rename.

Sometimes you’ll see a status in both columns (e.g., MM). This means that you
have both staged and unstaged changes in the same file. This happens when you’ve
made some changes, staged them, and then made some more. Clicking the staged
checkbox will stage your new changes, clicking it again will unstage both sets of
changes.

4. Stage files, as before.

5. Write a commit message (upper-right panel) that describes the changes you’ve made.
The first line of a commit message is called the subject line and should be brief (50
characters or less). For complicated commits, you can follow it with a blank line and
then a paragraph or bulleted list providing more detail. Write messages in
imperative, like you’re telling someone what to do: “fix this bug,” not “fixed this
bug” or “this bug was fixed.”

6. Click Commit.

Staging files is a little more complicated in the shell. You use git add to stage new and
modified files, and git rm to stage deleted files. To create the commit, use git commit -

m <message>.

www.it-ebooks.info

http://www.it-ebooks.info/

Best Practices for Commits

Ideally, each commit should be minimal but complete:
Minimal

A commit should only contain changes related to a single problem. This will make it
easier to understand the commit at a glance, and to describe it with a simple message.
If you happen to discover a new problem, you should do a separate commit.

Complete

A commit should solve the problem that it claims to solve. If you think you’ve fixed a
bug, the commit should contain a unit test that confirms you’re right.

Each commit message should:

Be concise, yet evocative

At a glance, you should be able to see what a commit does. But there should be
enough detail so you can remember (and understand) what was done.

Describe the why, not the what

You can always retrieve the diff associated with a commit, so the message doesn’t
need to say exactly what changed. Instead, it should provide a high-level summary
that focuses on the reasons for the change.

If you follow these best practices, you’ll benefit in the following ways:

m [t will be easier to work with others. For example, if two people have changed the same
file in the same place, it will be easier to resolve conflicts if the commits are small and
it’s clear why each change was made.

m Project newcomers can more easily understand the history by reading the commit logs.

® You can load and run your package at any point along its development history. This can
be tremendously useful for tools like bisectr, which allows you to use binary search to
quickly find the commit that introduced a bug.

» [f you can figure out exactly when a bug was introduced, you can easily understand
what you were doing (and why!).

You might think that because no one else will ever look at your repo, writing good commit
messages is not worth the effort. But keep in mind that you have one very important
collaborator: “future you”! If you spend a little time now polishing your commit
messages, “future you” will thank you if and when it’s necessary to do a postmortem on a
bug.

Remember that these directives are aspirational. You shouldn’t let them get in your way. If
you look at the commit history of my repositories, you’ll notice a lot of them aren’t that
good, especially when I start to get frustrated that I still haven’t managed to fix a bug.

www.it-ebooks.info

https://github.com/wch/bisectr
http://www.it-ebooks.info/

Strive to follow these guidelines, and remember it’s better to have multiple bad commits
than to have one perfect commit.

www.it-ebooks.info

http://www.it-ebooks.info/

Ignoring Files

Often, there are files that you don’t want to include in the repository. They might be
transient (like LaTeX or C build artifacts), very large, or generated on demand. Rather
than carefully not staging them each time, you should instead add them to .gitignore. This
will prevent them from ever being added. The easiest way to do this is to right-click the
file in the Git pane and select Ignore (Figure 13-7).

=, Diff

| &

Revert...

- Ignore...

Open File

Figure 13-7. Access the ignore files dialog by right-clicking a filename

If you want to ignore multiple files, you can use a wildcard “glob” like *.png. To learn
more about the options, see Ignoring Files in Pro-Git.

Some developers never commit derived files (i.e., files that can be generated
automatically). For an R package, this would mean ignoring the files in the NAMESPACE
and man/ directories because they’re generated from comments. From a practical
perspective, it’s better to commit these files: R packages have no way to generate .Rd files
on installation, so ignoring derived files means that users who install your package from
GitHub will have no documentation.

www.it-ebooks.info

http://bit.ly/1F9hxMw
http://www.it-ebooks.info/

Undoing Mistakes

The best thing about using commits is that you can undo mistakes. RStudio makes it
particularly easy:

= To undo the changes you’ve just made, right-click the file in the Git pane and select
“revert.” This will roll any changes back to the previous commit. Beware: you can’t
undo this operation!
You can also undo changes to just part of a file in the diff window. Look for a “Discard
chunk” button above the block of changes that you want to undo:

Stage chunk | | Discard chunk . You can also discard changes to individual lines or

selected text.

m If you committed changes too early, you can modify the previous commit by staging
the extra changes. Before you click commit, select
Amend previous commit
v P . (Don’t do this if you’ve pushed the previous
commit to GitHub — you’re effectively rewriting history, which should be done with
care when you’re doing it in public.)

If you didn’t catch the mistake right away, you’ll need to look backwards in history and
find out where it occurred:

L =
1. Open the history window by clicking - History

8).

in the Git pane (Figure 13-

www.it-ebooks.info

http://www.it-ebooks.info/

RStudio: Review Changes

Changes History = master~ (all commits)~ Refresh < Pull
‘ More git writing. hadley <h.wickhar 2014-12-04 leflb330
Add hint from @jennybc hadley <h.wickhar 2014-12-03 cbc29305
More git rewriting hadley <h.wickhar 2014-12-03 acc83457
Add parts to book hadley <h.wickhar 2014-12-03 59935c4d
Fix minor wrapping probs hadley <h.wickhar 2014-12-03 f7eS5fcbc
Commits 1-100 of 524 (» (»» M
SHA leflb330
Author hadley <h.wickham@gmail.com>
Date 2014-12-04 16:56
Subject More git writing.
Parent cbc29305
@7 git.rmd
@7 gitrmd View file @ 1ef1b330
@@ -159,27 +159,27 @@ The background colour tells you whether the text has
been added (green) or remov
159159
160 160 In the shell, use “git status® to show an overview of changes and “git diff"
to see detailed differences.
161 161
162 ## Add and commit files {#git-stage-commit}
162 ## Record changes {#git-commit}
163 | 163
le4 The fundamental unit of work in git is a __commit__. A commit takes snapshot

Figure 13-8. The history pane shows all the commits in your at top, and the details of the selected commit at

The history window is divided into two parts. The top part lists every commit to your
repo. The bottom part shows you the commit: the SHA (the unique id), the author,

of your code at a specified point in time. If you make a mistake, you can

bottom

the date, the parent, and the changes in the commit.

2. Navigate back in time until you find the commit where the mistake occurred. Write
down the parent SHA: that’s the commit that occurred before the mistake, so it will

be good.

Now you can use that SHA in the shell:

m See what the file looked like in the past so you can copy and paste the old code:

git show <SHA> <filename>

= Or copy the version from the past back in to the present:

git checkout <SHA> <filename>

www.it-ebooks.info

http://www.it-ebooks.info/

In both cases, you’ll need to finish by staging and committing the files.

NOTE

It’s also possible to use Git as if you went back in time and prevented the mistake from happening in the
first place. This is an advanced technique called rebasing history. As you might imagine, going back in time
to change the past can have a profound impact on the present. It can be useful, but it needs to be done with
extreme care.

If you’re still stuck, try Seth Robertson’s “On undoing, fixing, or removing commits in
git” or Justin Hileman’s “Git pretty”. They give step-by-step approaches to fixing many
common (and not so common!) problems.

www.it-ebooks.info

http://sethrobertson.github.io/GitFixUm/fixup.html
http://bit.ly/1GyK4s6
http://www.it-ebooks.info/

Synchronizing with GitHub

So far we’ve only been working locally, using commits to track the progress of a project
and to provide safe checkpoints. However, Git really shines when you start sharing your
code with others on GitHub. While there are other choices, I recommend GitHub because
it is free for open source projects, it has all the features you’ll need, and is a popular
choice in the R world.

To publish, or push, your code to GitHub:

1. First, create a new repo on GitHub. Give it the same name as your package, and
include the package title as the repo description. Leave all the other options as is,
then click Submit.

2. Open a shell, then follow the instructions on the new repo page. They’ll look
something like this:

git remote add origin git@github.com:hadley/r-pkgs.git
git push -u origin master

The first line tells Git that your local repo has a remote version on GitHub, and calls
it “origin.” The second line pushes all your current work to that repo.

Now let’s make a commit and verify that the remote repo updates:

1. Modify DESCRIPTION to add URL and BugReports fields that link to your new
GitHub site. For example, dplyr has:

URL: http://github.com/hadley/dplyr
BugReports: http://github.com/hadley/dplyr/issues

2. Save the file and commit (with the message “Updating DESCRIPTION to add links
to GitHub site”).

ﬁ Push

3. Push your changes to GitHub by clicking . (This is the same as

running git push in the shell).
4. Go to your GitHub page and look at the DESCRIPTION.

Usually, each push will include multiple commits. This is because you push much less
often than you commit. How often you push versus commit is completely up to you, but
pushing code means publishing code. So strive to push code that works.

To ensure your code is clean, I recommend always running R CMD check before you push

(a topic you’ll learn about in Chapter 14, which covers automated checking). If you want
to publish code that doesn’t work (yet), I recommend using a branch, as you’ll learn about
later in “Branches™.

www.it-ebooks.info

http://github.com/
https://github.com/new
http://www.it-ebooks.info/

Once you’ve connected your repo to GitHub, the Git pane will show you how many
commits you have locally that are not on GitHub:
€) Your branch is ahead of 'origin/master' by 1 commit. i
is
message indicates that I have one commit locally (my branch) that is not on GitHub
(“origin/master”).

www.it-ebooks.info

http://www.it-ebooks.info/

Benefits of Using GitHub

Here’s a quick rundown of the benefits of using GitHub:

You get a decent website. The GitHub page for your project — that is, the GitHub repo
for testthat (e.g., https://github.com/hadley/testthat) — lists all the files and directories
in your package. .R files will be formatted with syntax highlighting, and .md/.Rmd files
will be rendered as HTML. And, if you include a README.md file in the top-level
directory, it will be displayed on the home page. You’ll learn more about the benefits of
creating this file in “README.md”.

It makes it easy for anyone to install your package (and to benefit from your hard
work):

devtools::install github("<your_username>/<your_package>")

You can track the history of the project in the commit view (e.g.,
https://github.com/hadley/testthat/commits/master). When I’'m working on a package
with others, I often keep this page open so I can see what they’re working on.
Individual commits show the same information that you see in the Commit/Diff
window in RStudio.

It’s easy to see the history of a file. If you navigate to a file and click History, you’ll see
every commit that affected that file. Another useful view is Blame; it shows the last
change made to each line of code, who made the change, and the commit the change
belongs to. This is tremendously helpful when you’re tracking down a bug.

You can jump directly to these pages from RStudio with the Git drop-down in the main
toolbar (Figure 13-9).

= v
= Diff "git.rmd" “XD
Log of "git.rmd"

Revert "git.rmd"...

) view "ait rmd" an GitHuh

www.it-ebooks.info

https://github.com/hadley/testthat
https://github.com/hadley/testthat/commits/master
http://www.it-ebooks.info/

Blame "git.rmd" on GitHub
<. Commit... XM

% Pull Branches
' Push Branch

L

History
3 Project Setup...

Figure 13-9. The RStudio git dropdown shows actions related to the current file

= You can comment on commits. To comment on the commit as a whole, use the
comment box at the bottom of the page. To comment on an individual line, click the

plus sign that appears when you mouse over a line number, ' . This is a great
way to let your collaborators know if you see a mistake or have a question. It’s better
than email because it’s public so anyone working on the repo (both present and future)
can see the conversation.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Others

You use push to send your changes to GitHub. If you’re working with others, they also
push their changes to GitHub. But to see their changes locally, you’ll need to pull their
changes from GitHub. In fact, to make sure everyone is in sync, Git will only let you push
to a repo if you’ve retrieved the most recent version with a pull.

When you pull, Git first downloads (fetches) all of the changes and then merges them with
the changes that you’ve made. A merge is a commit with two parents. It takes two
different lines of development and combines them into a single result. In many cases, Git
can do this automatically: for example, when changes are made to different files, or to
different parts of the same file. However, if changes are made to the same place in a file,
you’ll need to resolve the merge conflict yourself.

In RStudio, you’ll discover that you have merge conflict when:

m A pull fails with an error.

= In the Git pane, you see a status like

RStudio currently doesn’t provide any tools to help with merge conflicts, so you’ll need to
use the command line. I recommend starting by setting your merge conflict “style” to
diff3. The diff3 style shows three things when you get a merge conflict: your local

changes, the original file, and the remote changes. The default style is diff2, which only

shows your changes and the remote changes. This generally makes it harder to figure out
what’s happened.

m [f you’ve encountered your first merge conflict, do the following:

Abort this merge

git merge --abort

Set the conflict style

git config --global merge.conflictstyle diff3
Retry the merge

git pull

m [f you’re not in the middle of a merge conflict, just run this:

git config --global merge.conflictstyle diff3

To resolve a merge conflict, you need to open every file with the status .In
each file, you’ll find a conflict marker that looks like this:

<<<<<<< HEAD

|11]]||] merged common ancestors

>>>>>>> remote

www.it-ebooks.info

http://www.it-ebooks.info/

This shows all three versions of the conflicting code:

= At the top, your local code.

» In the middle, the code from the last commit before the split between the two lines of
development. (This is missing in the default conflict style, so if you don’t see it, follow
the instructions from before.)

= At the bottom, the remote code that you pulled down from GitHub.

You need to work through each conflict and decide either which version is better, or how
to combine both versions. Then, before you stage the file, make sure you’ve deleted all the
conflict markers. Once you’ve fixed all conflicts, make a new commit and push to GitHub.

A couple of pointers when fixing text generated by roxygen:

» Don’t fix problems in man/*.Rd files. Instead, resolve any conflicts in the underlying
roxygen comments and redocument the package.

= Merge conflicts in the NAMESPACE file will prevent you from reloading or
redocumenting a package. Resolve them enough so that the package can be loaded,
then redocument to generate a clean and correct NAMESPACE.

Handling merge conflicts is one of the trickier parts of Git. You may need to read a few
tutorials before you get the hang of it. Google and StackOverflow are great resources. If
you get terribly confused, you can always abort the merge and try again by running git
merge --abort then git pull.

www.it-ebooks.info

http://www.it-ebooks.info/

Issues

Every GitHub repo comes with a page for tracking issues. Use it! If you encounter a bug
while working on another project, jot down a note on the issues page. When you have a
smaller project, don’t worry too much about milestones, tags, or assigning issues to
specific people. Those are more useful once you get over a page of issues (>50). Once you
get to that point, read the GitHub guide on issues.

A useful technique is closing issues from a commit message. Just put Closes #<issue
number> somewhere in your commit message and GitHub will close the issue for you

when you next push. The best thing about closing issues this way is that it makes a link
from the issue to the commit. This is useful if you ever have to come back to the bug and
want to see exactly what you did to fix it. You can also link to issues without closing
them; just refer to #<issue number>.

As you’ll learn about in “NEWS.md”, it’s a good idea to add a bullet to NEWS.md
whenever you close an issue. The bullet point should describe the issue in terms that users
will understand, as opposed to the commit message, which is written for developers.

www.it-ebooks.info

https://guides.github.com/features/issues/
http://www.it-ebooks.info/

Branches

Sometimes you want to make big changes to your code without having to disturb your
main stream of development. Maybe you want to break it up into multiple simple commits
so you can easily track what you’re doing. Maybe you’re not sure what you’ve done is the
best approach and you want someone else to review your code. Or, maybe you want to try
something experimental (you can merge it back only if the experiment succeeds).
Branches and pull requests provide powerful tools to handle these situations.

Although you might not have realized it, you’re already using branches. The default
branch is called master; it’s where you’ve been saving your commits. If you synchronize
your code to GitHub, you’ll also have a branch called origin/master: it’s a local copy of all
the commits on GitHub, which gets synchronized when you pull. git pull is shorthand
for two actions:

m git fetch origin master to update the local origin/master branch with the latest
commits from GitHub.

m git merge orgin/master to combine the remote changes with your changes.

It’s useful to create your own branches when you want to (temporarily) break away from
the main stream of development. You can create a new branch with git checkout -b

<branch-name>. Names should be in lowercase letters and numbers, with - used to
separate words.

Switch between branches with git checkout <branch-name>. For example, to return to
the main line of development, use git branch master. You can also use the branch
switcher at the upper-right of the Git pane (Figure 13-10).

master~

{ master

origin/master

Figure 13-10. In Rstudio, you can switch between branches using the drop-down at the upper-right of the Git pane

If you’ve forgotten the name of your branch in the shell, you can use git branch to list all
existing branches.

If you try to synchronize this branch to GitHub from inside RStudio, you’ll notice that

@ Pull | ‘ﬁ Push

push and pull are disabled: . To enable them, you’ll need to
first tell Git that your local branch has a remote equivalent:

git push --set-upstream origin <branch-name>

After you’ve done that once, you can use the pull and push buttons as usual.

www.it-ebooks.info

http://www.it-ebooks.info/

If you’ve been working on a branch for a while, other work might have been going on in
the master branch. To integrate that work into your branch, run git merge master. You

will need to resolve any merge conflicts (discussed earlier). It’s best to do this fairly
frequently — the less your branch diverges from the master, the easier it will be to merge.

Once you’re done working on a branch, merge it back into the master, then delete the
branch:
git checkout master

git merge <branch-name>
git branch -d <branch-name>

NOTE

Git won’t let you delete a branch unless you’ve merged it back into the master branch. If you do want to
abandon a branch without merging it, you’ll need to force delete with -D instead of -d. If you accidentally

delete a branch, don’t panic. It’s usually possible to get it back.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Pull Request

A pull request is a tool for proposing and discussing changes before merging them into a
repo. The most common use for a pull request is to contribute to someone else’s code: it’s
the easiest way to propose changes to code that you don’t control.

Here you’ll learn about pull requests to make changes to your own code. This may seem a
bit pointless because you don’t need them, as you can directly modify your code. But pull
requests are surprisingly useful because they allow you to get feedback on proposed
changes. We use them frequently in RStudio to get feedback before merging major
changes.

GitHub has some good documentation on using pull requests. In this chapter, I’ll focus on
the basics you need to know to use pull requests effectively, and show you how they fit in
with the Git commands you’ve learned so far.

To create a pull request, you create a branch, commit code, then push the branch to
GitHub. When you next go to the GitHub website, you’ll see a header that invites you to
submit a pull request. You can also do it by following these steps:

1. Switching branches (Figure 13-11).

P branch: bigquery v | dplyr / +

Switch branches/tags

L

| (] L L i
EinAd Aar frrantes a lBhiranmnh
A WA il rCAl' QL BRI CAD IRl e s

Branches Tags

l :

€ _ ile
+ bigquery

Figure 13-11. On GitHub, switch between branches using the Branches drop-down on the upper-left

i) Pull Request
2. Clicking .

www.it-ebooks.info

https://help.github.com/articles/using-pull-requests/
http://www.it-ebooks.info/

This will create a page that looks like Figure 13-12.

Point out trifle.

)M uribo wants to merge 1 commit into hadley:master from uribo:patch-1

#® Conversation 0 -0- Commits 1 [#) Files changed 1

i uribo commented 7 days ago

Note that shortcuts for Mac. | think that it good to put a link to RStudio
Support. unification for symbol (& -> and... in this document).

‘ Point out trifle. -

The Travis Cl build passed Details

This pull request can be automatically merged.
You can also merge branches on the command line.

Figure 13-12. Sample issue page on GitHub

This pull request, which fixes a couple of small problems, is one that was submitted to this
book’s GitHub site.

There are three parts to a pull request:

s® Conversation 1

= A conversation, , where you can discuss the changes
as a whole.

-O- Commits 2

m The commits view, , where you can see each individual
commit.

[} Files changed 2

m The file changes, , where you see the overall diff of
the commits, and you can comment on individual lines.

Once you’re done discussing a pull request, you either choose to merge it or delete it.
Merging it is equivalent to running git merge <branchname> from the shell; deleting is

equivalent to git branch -r <branchname>.

www.it-ebooks.info

http://www.it-ebooks.info/

Submitting a Pull Request to Another Repo

To submit a pull request to a repo that you don’t own, you first need to create a copy of the
repo that you can own, called a fork, and then clone that fork on your own computer:

1. Fork the original repo by going to the repo on GitHub and clicking
Y Fork 27

. This creates a copy of the repo that belongs to you.

2. Clone the forked repo to create a local copy of the remote repo. It’s possible to do
this within RStudio (using “Create New Project” from “Version Control”) but I think
it’s easier to do it from the shell:

git clone git@github.com:<your-name>/<repo>.git
cd <repo>

A fork is a static copy of the repo: once you’ve created it, GitHub does nothing to keep it
in sync with the upstream repo. This is a problem because while you’re working on a pull
request, changes might occur in the original repo. To keep the forked and the original repo
in sync, start by telling your repo about the upstream repo:

git remote add upstream git@github.com:<original-name>/extrafont.git
git fetch upstream

Then you can merge changes from the upstream repo to your local copy:

git merge upstream/master

When working on a forked repo, I recommend that you don’t work on the master branch.
Because you’re not really working on the main line of development for that repo, using
your master branch makes things confusing.

If you always create pull requests in branches, you can make it a little easier to keep your
local repo in sync with the upstream repo by running:

git branch -u upstream/master

Then you can update your local repo with the following code:

git checkout master
git pull

Changes may occur while you’re working on the pull request, so remember to merge them
into your branch with:

git checkout <my-branch>
git merge master

www.it-ebooks.info

http://www.it-ebooks.info/

A pull request (PR) is a one-to-one mapping to a branch, so you can also use this
technique to make updates based on the pull request discussion. Don’t create a new pull
request each time you make a change; instead, you just need to push the branch that the
PR is based on and the PR web page will automatically update.

The diagram in Figure 13-13 illustrates the main steps of creating a pull request and
updating the request as the upstream repo changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Updating

o You can’t change this P
Original repo repoidlirsctiyiaoiinatead Original repo
upstream/master you make a pull request upstream/master
"Fork" \
Forked repo ngerklg%;”fma?ter ofa git checkout master
T po will never i+ 11
origin/master change git pu
See below /
You should never make
Local master any changes in the Local master
master master of a forked repo master

git checkout my-pr

git checkout -b my-pr git merge master

Instead, always make a
Local branch branch for your Local branch
my-pr changes to go in my=pr
git push --set-upstream origin my-pr git push
A /
Remote branch FBYOUFCNANGES 99 Remote branch
S github can see them Zm
origin/my-pr origin/my-pr
“Pull request” v
After you've created it,
Pull malest a pull request tracks Pull request
q your branch, updating
automatically

Initial setup

git clone git@github.com:<your-name>/extrafont.git

git remote add upstream git@github.com:<original-name>/extrafont.git
git fetch upstream

git branch -u upstream/master

Figure 13-13. Workflows for creating a new pull request and updating an existing pull request

www.it-ebooks.info

http://www.it-ebooks.info/

Reviewing and Accepting Pull Requests

As your package gets more popular, you're likely to receive pull requests. Receiving a pull
request is fantastic. Someone not only cares about your package enough to use it, but
they’ve actually read the source code and made an improvement!

When you receive a pull request, I recommend reviewing it using the three-step approach
described by Sarah Sharp. I’ve summarized the three phases here, but I highly recommend
reading the full article:

Is it a good idea?

If you don’t think the contribution is a good fit for your project, it’s polite to let the
contributor know as quickly as possible. Thank them for their work, and refocus them
on a better area to work on.

Is the overall approach sound?

At this point, you want to focus on the big picture: have they modified the right
functions in the right way? Avoid nitpicking minor style problems (that’s the final
phase); instead, just provide a pointer to your style preferences (e.g., http://r-
pkgs.had.co.nz/style.html).

Is it polished?

In the final review phase, make sure that the noncode parts of the PR are polished.
Prompt the contributor to update the documentation, point out spelling mistakes, and
suggest better wording. I recommend asking the contributor to include a bullet point
in NEWS.md, briefly describing the improvement and thanking themselves with their
GitHub username. More details to follow in “Prepare for Next Version”.

After discussion is complete, you can incorporate the changes by clicking the merge
button. If the button doesn’t work, GitHub provides some instructions on how to do it
from the command line. Although you’ve seen all the pieces before, it’s useful to read
through this just so you understand what exactly is happening:

Create a new branch, and sync it with the pull request
git checkout -b <branch> master
git pull https://github.com/<user>/<branch>.git patch-3

Merge the changes into the main line of development
git checkout master

git merge --no-ff <branch>

Resolve conflicts, stage and add.

Sync your local changes with GitHub
git push origin master

www.it-ebooks.info

http://sarah.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/
http://r-pkgs.had.co.nz/style.html
http://www.it-ebooks.info/

Learning More

Git and GitHub are a rich and powerful set of tools, and there’s no way this chapter has
taught you everything you need to know. However, you should now have the basic
knowledge to be effective, and you should be in a good position to learn more. Some good
resources are:

m GitHub help not only teaches you about GitHub, but also has good tutorials on many
Git features.

m If you’d like to learn more about the details of Git, read Pro Git by Scott Chacon and
Ben Straub (Apress).

Finally, StackOverflow is a vital part of Git — when you have a problem that you don’t
know how to solve, StackOverflow should be your first resource. It’s highly likely that
someone has already had the same exact problem as you, and that there will be a variety of
approaches and solutions to choose from.

www.it-ebooks.info

https://help.github.com
http://git-scm.com/book/en/v2
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14. Automated Checking

An important part of the package development process is R CMD check, which

automatically checks your code for common problems. It’s essential if you’re planning on
submitting to CRAN, but it’s useful even if you’re not because it automatically detects
many commons problems that you’d otherwise discover the hard way.

R CMD check will be frustrating the first time you run it — you’ll discover many problems
that need to be fixed. The key to making R CMD check less frustrating is to actually run it
more often: the sooner you find a problem, the easier it is to fix. The upper limit of this
approach is to run R CMD check every time you make a change. If you use GitHub, you’ll
learn precisely how to do that with “Checking After Every Commit with Travis™.

www.it-ebooks.info

http://www.it-ebooks.info/

Workflow

R CMD check is the name of the command you run from the terminal. I don’t recommend
calling it directly. Instead, run devtools::check(), or press Cmd-Shift-E in RStudio. In
contrast to R CMD check, devtools: :check():

m Ensures that the documentation is up to date by running devtools: :document().

» Bundles the package before checking it. This is the best practice for checking packages
because it makes sure the check starts with a clean slate: because a package bundle
doesn’t contain any of the temporary files that can accumulate in your source package
(e.g., artifacts like .so and .o files that accompany compiled code), you can avoid the
spurious warnings such files will generate.

m Sets the NOT_CRAN environment variable to TRUE. This allows you to selectively skip
tests on CRAN. (See ?testthat::skip_on_cran for details.)
The workflow for checking a package is simple, but tedious:

1. Run devtools: :check(), or press Ctrl/Cmd-Shift-E.
2. Fix the first problem.
3. Repeat until there are no more problems.

R CMD check returns three types of messages:

ERRORS

Severe problems that you should fix regardless of whether or not you’re submitting to
CRAN.

WARNINGS

Likely problems that you must fix if you’re planning to submit to CRAN (and a good
idea to look into even if you’re not).

NOTES

Mild problems. If you are submitting to CRAN, you should strive to eliminate all
NOTESs, even if they are false positives. If you have no NOTEs, human intervention is
not required, and the package submission process will be easier. If it’s not possible to
eliminate a NOTE, you’ll need to describe why it’s OK in your submission comments,
as described in “The Submission Process”. If you’re not submitting to CRAN,
carefully read each NOTE, but don’t go out of your way to fix things that you don’t
think are problems.

www.it-ebooks.info

http://www.it-ebooks.info/

Checks

R CMD check is composed of over 50 individual checks, described in the following
sections. For each check, I briefly describe what it does, what the most common problems
are, and how to fix them. When you have a problem with R CMD check and can’t
understand how to fix it, use this list to help figure out what you need to do. To make it
easier to understand how the checks fit together, I’ve organized them into sections roughly
corresponding to the chapters in this book. This means they will be in a somewhat
different order to what you’ll see when you run check().

This list includes every check run in R 3.1.1. If you’re using a more recent version, you
may want to consult the most recent online version of this chapter: http://r-
pkgs.had.co.nz/check.html. Please let me know if you encounter a problem that this
chapter doesn’t help with: hadley@rstudio.com.

www.it-ebooks.info

http://r-pkgs.had.co.nz/check.html
mailto:hadley@rstudio.com
http://www.it-ebooks.info/

Check Metadata

R CMD check always starts by describing your current environment. I’m running R 3.1.1
on OS X with a UTF-8 charset:

m Using log directory ‘/Users/hadley/Documents/web/httr.Rcheck’
= Using R version 3.1.1 (2014-07-10)

m Using platform: x86_64-apple-darwin13.1.0 (64-bit)

m Using session charset: UTF-8

Next, the description is parsed and the package version is printed. Here I’'m checking httr
version 0.5.0.9000 (you learned about that weird version number in “Version”):

m Checking for file ‘httr/DESCRIPTION’

m This is package ‘httr’ version ‘0.5.0.9000’

www.it-ebooks.info

http://www.it-ebooks.info/

Package Structure

The package structure checks ensure that the files and directories inside the package are
organized correctly. If you’ve been following the advice in this book, you’re unlikely to
see these problems:

Checking package directory.

The directory you’re checking must exist; devtools: :check() protects you against
this problem.

Checking if this is a source package.

You must check a source package, not a binary or installed package. This should
never fail if you use devtools: :check().

Checking for executable files.

You must not have executable files in your package: they’re not portable, they’re not
open source, and they are a security risk. Delete any executables files from your
package. (If you’re not submitting to CRAN, you can silence this warning by listing
each executable file in the BinaryFiles field in your DESCRIPTION.)

Checking for hidden files and directories.

On Linux and OS X, files with a name starting with . are hidden by default, and
you’ve probably included them in your package by mistake. Either delete them, or if
they are important, use .Rbuildignore to remove them from the package bundle. R
automatically removes some common directories like .git and .svn.

Checking for portable filenames.

R packages must work on Windows, Linux, and OS X, so you can only use filenames
that work on all platforms. The easiest way to do this is to stick to letters, numbers,
underscores, and dashes. Avoid non-English letters and spaces. Fix this check by
renaming the listed files.

Checking for sufficient/correct file permissions.

If you can’t read a file, you can’t check it. This check detects the unlikely occurrence
that you have files in the package that you don’t have permission to read. Fix this
problem by fixing the file permissions.

Checking whether package ‘XYZ’ can be installed.

R CMD check runs R CMD install to make sure that it’s possible to install your
package. If this fails, you should run devtools: :install() or RStudio’s Build &
Reload and debug any problems before continuing.

Checking installed package size.

www.it-ebooks.info

http://www.it-ebooks.info/

It’s easy to accidentally include large files that blow up the size of your package. This
check ensures that the whole package is less than 5 MB and each subdirectory is less
than 1 MB. If you see this message, check that you haven’t accidentally included a
large file.

If submitting to CRAN, you’ll need to justify the size of your package. First, make
sure the package is as small as it possibly can be: try recompressing the data and
minimizing vignettes. If it’s still too large, consider moving data into its own
package.

Checking top-level files.

Only specified files and directories are allowed at the top level of the package (e.g.,
DESCRIPTION, R/, src/). To include other files, you have two choices:

m If they don’t need to be installed (i.e., they’re only used in the source package),
add them to .Rbuildignore with devtools: :use_build_ignore().

m If they need to be installed, move into inst/. They’ll be moved back to the top-
level package directory when installed.

Checking package subdirectories.

= Don’t include any empty directories. These are usually removed automatically by
R CMD build so you shouldn’t see this error. If you do, just delete the directory.

m The case of files and directories is important. All subdirectories should be
lowercase, except for R/. A citation file, if present, should be in inst/CITATION.
Rename as needed.

m The contents of inst/ shouldn’t clash with top-level contents of the package (like
build/, R/, etc.). If they do, rename your files/directories.

Checking for leftover files.

Remove any files listed here. They’ve been included in your package by accident.

www.it-ebooks.info

http://www.it-ebooks.info/

Description

When submitting your package to CRAN, it’s important that the metadata about your
package (as recorded in the DESCRIPTION)), is correct. It’s not possible to check all of the
data automatically, but R CMD check at least looks for the most common problems:

Checking DESCRIPTION meta-information.

The DESCRIPTION must be valid. You are unlikely to see this error, because
devtools::load_all() runs the same check each time you reload the package.

If you use any non-ASCII characters in the DESCRIPTION, you must also specify
an encoding. There are only three encodings that work on all platforms: Latin 1,
Latin 2, and UTF-8. I strongly recommend UTF-8: Encoding: UTF-8.

The License must refer to either a known license (a complete list can be found at
https://svn.r-project.org/R/trunk/share/licenses/license.db), or it must use file
LICENSE and that file must exist. Errors here are most likely to be typos.

You should either provide Authors@r or Authors and Maintainer. You’ll get an
error if you’ve specified both, which you can fix by removing the one you didn’t
want.

Checking package dependencies.

All packages listed in Depends, Imports, and LinkingTo must be installed, and
their version requirements must be met; otherwise, your package can’t be checked.
An easy way to install any missing or outdated dependencies is to run
devtools::install_deps(dependencies = TRUE).

Packages listed in Suggests must be installed, unless you’ve set the environment
variable _R_CHECK_FORCE_SUGGESTS_ to a false value (e.g., with
check(force_suggests = FALSE). This is useful if some of the suggested
packages are not available on all platforms.

R packages cannot have a cycle of dependencies (i.e., if package A requires B,
then B cannot require A; otherwise, which one would you load first?). If you see
this error, you’ll need to rethink the design of your package. One easy fix is to
move the conflicting package from Imports or Depends to Suggests.

Any packages used in the NAMESPACE must be listed in one of Imports (most
commonly) or Depends (only in special cases). See “Search Path” for more details.

Every package listed in Depends must also be imported in the NAMESPACE or
accessed with pkg: : foo. If you don’t do this, your package will work when
attached to the search path (with 1ibrary(mypackage)) but will not work when
only loaded (e.g., mypackage: : foo()).

www.it-ebooks.info

https://svn.r-project.org/R/trunk/share/licenses/license.db
http://www.it-ebooks.info/

Checking CRAN incoming feasibility.

These checks only apply if you’re submitting to CRAN:

If you’re submitting a new package, you can’t use the same name as an existing
package. You’ll need to come up with a new name.

If you’re submitting an update, the version number must be higher than the current
CRAN version. Update the version field in DESCRIPTION.

If the maintainer of the package has changed (even if it’s just a change in email
address), the new maintainer should submit to CRAN, and the old maintainer
should send a confirmation email.

You must use a standard open source license, as listed in https://svn.r-
project.org/R/trunk/share/licenses/license.db. You cannot use a custom license, as
CRAN does not have the legal resources to review custom agreements.

The Title and Description must be free from spelling mistakes. The title of the
package must be in title case. The title and description should not include the
name of your package or the word “package.” Reword your title and description
as needed.

If you’re submitting a new package, you’ll always get a NOTE. This reminds the
CRAN maintainers to do some extra manual checks.

Avoid submitting multiple versions of the same package in a short period of time.
CRAN prefers at most one submission per month. If you need to fix a major bug,
be apologetic.

www.it-ebooks.info

https://svn.r-project.org/R/trunk/share/licenses/license.db
http://www.it-ebooks.info/

Namespace

Working with the namespace by hand is a painful experience, and it’s easy to accidentally
introduce errors. Fortunately, you’re using roxygen2 to generate your NAMESPACE, so
you’ll never see most of these problems:

Checking if there is a namespace.

You must have a NAMESPACE file. Roxygen2 will create this for you as described in
Chapter 8.

Checking package namespace information.

The NAMESPACE should be parseable by parseNamespaceFile() and valid. If this
check fails, it’s a bug in roxygen2.

Checking whether the package can be loaded with stated dependencies.

Runs library(pkg) with R_DEFAULT_PACKAGES=NULL, so the search path is empty
(i.e., stats, graphics, grDevices, utils, datasets, and methods are not attached like
usual). Failure here typically indicates that you’re missing a dependency on one of
those packages.

Checking whether the namespace can be loaded with stated dependencies.

Runs loadNamespace (pkg) with R_DEFAULT_PACKAGES=NULL. Failure usually
indicates a problem with the namespace.

www.it-ebooks.info

http://www.it-ebooks.info/

R Code
Problems in this section represent likely problems with your R code:
Checking R files for non-ASCII characters.

For maximum portability (i.e., so people can use your package on Windows) you
should avoid using non-ASCII characters in R files. It’s OK to use them in
comments, but object names shouldn’t use them, and in strings you should use
unicode escapes. See “CRAN Notes” for more deatils.

Checking R files for syntax errors.

Obviously your R code must be valid. You’re unlikely to see this error if you’re been
regularly using devtools::load_all().

Checking dependencies in R code.

Errors here often indicate that you’ve forgotten to declare a needed package in the
DESCRIPTION. Remember that you should never use require() or library()
inside a package — see “Imports” for more details on best practices.

Alternatively, you may have accidentally used : : : to access an exported function
from a package. Switch to : : instead.

Checking S3 generic/method consistency.

S3 methods must have a compatible function signature with their generic. This means
that the method must have the same arguments as its generic, with one exception. If
the generic includes . .. the method can have additional arguments.

A common cause of this error is defining print methods, because the print () generic
contains. . .:

BAD
print.my_class <- function(x) cat("Hi")

GOOD

print.my_class <- function(x, ...) cat("Hi")

Also ok

print.my_class <- function(x, ..., my_arg = TRUE) cat("Hi")

Checking replacement functions.

Replacement functions (e.g., functions that are called like foo(x) <- y), must have
value as the last argument.

Checking R code for possible problems.
This is a compound check for a wide range of problems:

m Calls to 1library.dynam() (and library.dynam.unload()) should look like
library.dynam("name"), not library.dynam("name.d11"). Remove the
extension to fix this error.

www.it-ebooks.info

http://www.it-ebooks.info/

m Put library.dynam() in .onLoad(), not .onAttach(); put
packageStartupMessage() in .onAttach(), not .onLoad(). Put
library.dynam.unload() in .onUnload(). If you use any of these functions,
make sure they’re in the right place.

m Don’t use unlockBinding() or assignInNamespace() to modify objects that
don’t belong to you.

m codetools: :checkUsagePackage() is called to check that your functions don’t
use variables that don’t exist. This sometimes raises false positives with functions
that use nonstandard evaluation (NSE), like subset () or with(). Generally, I
think you should avoid NSE in package functions, and hence avoid this note, but
if you cannot, see ?globalvariables for how to suppress it.

= You are not allowed to use .Internal() in a package. Either call the R wrapper
function, or write your own C function. (If you copy and paste the C function
from base R, make sure to maintain the copyright notice, use a GPL-2 compatible
license, and list R-core in the Author field.)

» Similarly, you are not allowed to use : : : to access nonexported functions from
other packages. Either ask the package maintainer to export the function you need,
or write your own version of it using exported functions. Alternatively, if the
licenses are compatible, you can copy and paste the exported function into your
own package. If you do this, remember to update Authors@R.

m Don’t use assign() to modify objects in the global environment. If you need to
maintain state across function calls, create your own environment with e <-
new.env(parent = emptyenv()) and set and get values in it:

e <- new.env(parent = emptyenv())

add_up <- function(x) {
if (is.null(e$last_x)) {
old <- 0
} else {
old <- e$last_x
}

new <- old + x
e$last_x <- new
new

}
add_up(10)
#> [1] 10

add_up(20)
#> [1] 30

= Don’t use attach() in your code. Instead, refer to variables explicitly.

= Don’t use data() without specifying the envir argument. Otherwise, the data will
be loaded in the global environment.

www.it-ebooks.info

http://www.it-ebooks.info/

m Don’t use deprecated or defunct functions. Update your code to use the latest
versions.

® You must use TRUE and FALSE in your code (and examples), not T and F.

Checking whether the package can be loaded.

R loads your package with library(). Failure here typically indicates a problem
with .onLoad() or .onAttach().

Checking whether the package can be unloaded cleanly.

Loads with 1ibrary() and then detach()es. If this fails, check .onunload() and
.onDetach().

Checking whether the namespace can be unloaded cleanly.

Runs loadNamespace("pkg"); unloadNamespace("pkg"). Check .onunload() for
problems.

Checking loading without being on the library search path.

Calls library(x, lib.loc = ...). Failure here indicates that you are making a
false assumption in .onLoad() or .onAttach().

www.it-ebooks.info

http://www.it-ebooks.info/

Data
There are a handful of checks related to data in the data/ directory:
Checking contents of data/ directory.
m The data/ directory can only contain file types described in “Exported Data”.
m Data files can only contain non-ASCII characters if the encoding is not correctly
set. This usually shouldn’t be a problem if you’re saving .Rdata files. If you do
see this error, look at the Encoding() of each column in the data frame, and ensure

none are “unknown.” (You’ll typically need to fix this somewhere in the import
process.)

m If you’ve compressed a data file with bzip2 or xz you need to declare at least
Depends: R (>= 2.10) in your DESCRIPTION.

m If you’ve used a suboptimal compression algorithm for your data, recompress with
the suggested algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Documentation

You can run the most common of these outside devtools: :check() with

devtools: :check_doc() (which automatically calls devtools: :document () for you). If
you have documentation problems, it’s best to iterate quickly with check_doc (), rather
than running the full check each time.

Checking Rd files.

This checks that all man/*.Rd files use the correct Rd syntax. If this fails, it indicates
a bug in roxygen2.

Checking Rd metadata.

Names and aliases must be unique across all documentation files in a package. If you
encounter this problem you’ve accidentally used the same @name or @aliases in
multiple places; make sure they’re unique.

Checking Rd line widths.

Lines in Rd files must be less than 90 characters wide. This is unlikely to occur if you
wrap your R code, and hence roxygen comments, to 80 characters. For very long
URLSs, use a link-shortening service like bit.ly.

Checking Rd cross-references.

Errors here usually represent typos. Recall the syntax for linking to functions in other
packages: \1link[package_name]{function_name}. Sometimes I accidentally switch
the order of \code{} and \1ink{}: \1link{\code{function}} will not work.

Checking for missing documentation entries.
All exported objects must be documented. See ?tools: :undoc for more details.
Checking for code/documentation mismatches.

This check ensures that the documentation matches the code. This should never fail
because you’re using roxygen2, which automatically keeps them in sync.

Checking Rd \usage sections.

All arguments must be documented, and all @params must document an existing
argument. You may have forgotten to document an argument, forgotten to remove the
documentation for an argument that you’ve removed, or mispelled an argument
name.

S3 and S4 methods need to use special \S3method{} and \S4method{} markup in the
Rd file. Roxygen2 will generate this for you automatically.

Checking Rd contents.

This checks for autogenerated content made by package.skeleton(). Because
you’re not using package.skeleton() you should never have a problem here.

Checking for unstated dependencies in examples.

www.it-ebooks.info

http://bit.ly/
http://www.it-ebooks.info/

If you use a package only for an example, make sure it’s listed in the Suggests field.
Before running example code that depends on it, test to see if it’s available with
requireNamespace("pkg", quietly = TRUE):

#' @examples

#' if (requireNamespace("dplyr", quietly = TRUE)) {
#! Ces

#' 3}

Checking examples.

Every documentation example must run without errors, and must not take too long.
Exclude failing or slow tests with \donttest{}. See “Documenting Functions” for
more details.

Examples are one of the last checks run, so fixing problems can be painful if you
have to run devtools: :check() each time. Instead, use devtools: :run_examples():
it only checks the examples, and has an optional parameter that tells it which function
to start at. That way once you’ve discovered an error, you can rerun from just that
file, not all the files that lead up to it.

Note: you can’t use unexported functions and you shouldn’t open new graphics
devices or use more than two cores. Individual examples shouldn’t take more than 5s.

Checking PDF version of manual.

Occasionally, you’ll get an error when building the PDF manual. This is usually
because the PDF is built by LaTeX and you’ve forgotten to escape something.
Debugging this is painful — your best bet is to look up the LaTeX logs and combined
tex file and work back from there to .Rd files then back to a roxygen comment. I
consider any such failure to be a bug in roxygen2, so please let me know.

www.it-ebooks.info

http://www.it-ebooks.info/

Demos
If you use demos, you need to make sure every demo is listed in an index file:
Checking index information.

If you’ve written demos, each demo must be listed in demos/00Index. The file should
look like this:

demo-name-without-extension Demo description
another-demo-name Another description

www.it-ebooks.info

http://www.it-ebooks.info/

Compiled Code

R CMD check includes some checks to make sure that your compiled code is as portable as
possible:

Checking foreign function calls.

.call(), .Cc(), .Fortran(), and .External() must always be called either with a
NativeSymbolInfo object (as created with @useDynLib) or use the .package
argument. See ?tools: :checkFF for more details.

Checking line endings in C/C++/Fortran sources/headers.
Always use LF as a line ending.
Checking line endings in Makefiles.
As above.
Checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS).
Errors here indicate an issue with your use of BLAS and LAPACK.
Checking compiled code.

Checks that you’re not using any C functions that you shouldn’t. See details in “Best
Practices”.

www.it-ebooks.info

http://www.it-ebooks.info/

Tests

R CMD check must be able to run the tests (i.e., you’ve listed all the dependencies they
need), and all tests must succeed:

Checking for unstated dependencies in tests.
Every package used by tests must be included in the dependencies.
Checking tests.

Each file in tests/ is run. If you’ve followed the instructions in Chapter 7, you’ll have
at least one file: testthat.R. The output from R CMD check is not usually that helpful,
so you may need to look at the logfile package.Rcheck/tests/testthat.Rout. Fix any
failing tests by iterating with devtools: :test().

Occasionally, you may have a problem where the tests pass when run interactively
with devtools: :test(), but fail when in R cMD check. This usually indicates that
you’ve made a faulty assumption about the testing environment, and it’s often hard to
figure it out.

www.it-ebooks.info

http://www.it-ebooks.info/

Vignettes

Obviously R cMD check can’t check the contents of your vignettes, but it does its best to
check the code in them:

Checking build directory.

build/ is used to track vignette builds. I’m not sure how this check could fail unless
you’ve accidentally used .Rbuildignore on the build/ directory.

Checking installed files from inst/doc.
Don’t put files in inst/doc; vignettes now live in vignettes/.
Checking files in vignettes.

Problems here are usually straightforward — you’ve included files that are already
included in R (e.g., jss.cls, jss.bst, or Sweave.sty), or you have leftover LaTeX
compilation files. Delete these files.

Checking for sizes of PDF files under inst/doc.

If you’re making PDF vignettes, you can make them as small as possible by running
tools: :compactPDF().

Checking for unstated dependencies in vignettes.

As with tests, every package that you use in a vignette must be listed in the
DESCRIPTION. If a package is used only for a vignette, and not elsewhere, make
sure it’s listed in Suggests.

Checking package vignettes in inst/doc.

This checks that every source vignette (i.e., .Rmd) has a built equivalent (i.e., .html)
in inst/doc. This shouldn’t fail if you’ve used the standard process outlined in
Chapter 6. If there is a problem, start by checking your .Rbuildignore.

Checking running R code from vignettes.

The R code from each vignette is run. If you want to deliberately execute errors (to
show the user what failure looks like), make sure the chunk has error = TRUE, purl
= FALSE.

Checking rebuilding of vignette outputs.

Each vignette is reknit to make sure that the output corresponds to the input. Again,
this shouldn’t fail in normal circumstances.

To run vignettes, the package first must be installed. That means check():

1. Builds the package.
2. Installs the package without vignettes.

3. Builds all the vignettes.

www.it-ebooks.info

http://www.it-ebooks.info/

4. Reinstalls the package with vignettes.

If you have a lot of compiled code, this can be rather slow. You may want to add - -no-
build-vignettes to the commands list in the Build Source Packages field in the project
options (Figure 14-1).

Build Source Package — R CMD build additional options:
--no-build-vignettes

Figure 14-1. You can save time by not building vignettes when you build the package; see this option in project options

www.it-ebooks.info

http://www.it-ebooks.info/

Checking After Every Commit with Travis

If you use Git and GitHub, as described in Chapter 13, I highly recommend learning about
Travis. Travis is a continuous integration service, which means that it runs automated
testing code every time you push to GitHub. For open source projects, Travis provides 50
minutes of free computation on an Ubuntu server for every push. For an R package, the
most useful code to run is devtools: :check().

To use Travis, follow these steps:

1. Run devtools::use_travis() to set up a basic .travis.yml config file.

2. Navigate to your Travis account and enable Travis for the repo you want to test.
3. Commit and push to GitHub.

4. Wait a few minutes to see the results in your email.

With this setup in place, every time you push to GitHub, and every time someone submits
a pull request, devtools: :check() will be automatically run. You’ll find out about
failures right away, which makes them easier to fix. Using Travis also encourages me to
check more often locally, because I know if it fails I’ll find out about it a few minutes
later, often once I’ve moved on to a new problem.

www.it-ebooks.info

https://travis-ci.org/
https://travis-ci.org/profile
http://www.it-ebooks.info/

Basic Config

The Travis config is stored in yaml file called .travis.yml. The default config created by
devtools looks like this:

yaml
language: r
warnings_are_errors: true

R has recently become a community supported language on Travis and you can read the
documentation at http://docs.travis-ci.com/user/languages/r/.

There are two particularly useful options:

r_github_packages
A list of R packages to install from github. This allows you to test against the
development version of your depedencies.

r_binary_packages

A list of precompiled R packages to install from ubuntu. This allows you to reduce
your the build time. You can see if a binary version of a package is available by
searching on http://packages.ubuntu.com for r-cran-lowercasename. For example,
searching for r-cran-xml reveals that you can get a binary version of XML package.

www.it-ebooks.info

http://docs.travis-ci.com/user/languages/r/
http://packages.ubuntu.com
http://www.it-ebooks.info/

Other Uses

Because Travis allows you to run arbitrary code, there are many other things that you can
use it for:

m Republishing a book website every time you make a change to the source (like this
book!).

» Building vignettes and publishing them to a website.
m Automatically building a documentation website for your package.

To learn more, read about the many deployment options provided by Travis.

www.it-ebooks.info

http://docs.travis-ci.com/user/deployment/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15. Releasing a Package

If you want your package to have significant traction in the R community, you need to
submit it to CRAN. Submitting to CRAN is a lot more work than just providing a version
on GitHub, but the vast majority of R users do not install packages from GitHub, because
CRAN provides discoverability, ease of installation, and a stamp of authenticity. The
CRAN submission process can be frustrating, but it’s worthwhile, and this chapter will
make it as painless as possible.

To get your package ready to release, follow these steps:

1.

2.

Choose a version number.

Run and document R CMD check.

Check that you’re aligned with CRAN policies.

Update README.md and NEWS.md.

Submit the package to CRAN.

Prepare for the next version by updating version numbers.

Publicize the new version.

www.it-ebooks.info

http://www.it-ebooks.info/

Version Number

If you’ve been following the advice in “Version”, the version number of your in-
development package will have four components, major.minor.patch.dev, where dev is
at least 9000. The number 9000 is arbitrary, but provides a strong visual signal there’s
something different about this version number. Released packages don’t have a dev
component, so now you need to drop that and pick a version number based on the changes
you’ve made. For example, if the current version is 0.8.1.9000, will the next CRAN
version be 0.8.2, 0.9.0, or 1.0.07 Use this advice to decide:

For a patch, increment patch (e.g., 0.8.2)

A patch is used when you’ve fixed bugs without adding any significant new features.
I’ll often do a patch release if, after release, I discover a showstopping bug that needs
to be fixed ASAP. Most releases will have a patch number of 0.

For a minor release, increment minor (e.g., 0.9.0)

A minor release can include bug fixes, new features, and changes in backward
compatibility. This is the most common type of release. It’s perfectly fine to have so
many minor releases that you need to use two (or even three!) digits (e.g., 1.17.0).

For a major release, increment major (e.g., 1.0.0)

This is best reserved for changes that are not backward compatible and that are likely
to affect many users. Going from 0.b.c to 1.0.0 typically indicates that your
package is feature complete with a stable API.

In practice, backward compatibility is not an all-or-nothing threshold. For example, if
you make an API-incompatible change to a rarely used part of your code, it may not
deserve a major number change. But if you fix a bug that many people depend on, it
will feel like an API breaking change. Use your best judgment.

www.it-ebooks.info

http://www.it-ebooks.info/

Backward Compatibility

The big difference between major and minor versions is whether or not the code is
backward compatible. This difference is a bit academic in the R community because the
way most people update packages is by running update.packages(), which always
updates to the latest version of the package, even if the major version has changed,
potentially breaking code. While more R users are becoming familiar with tools like
packrat, which capture package versions on a per-project basis, you do need to be a little
cautious when making big backward-incompatible changes, regardless of what you do
with the version number.

The importance of backward compatibility is directly proportional to the number of people
using your package: you are trading your time for your users’ time. The harder you strive
to maintain backward compatibility, the harder it is to develop new features or fix old
mistakes. Backward-compatible code also tends to be harder to read because of the need to
maintain multiple paths to support functionality from previous versions. Be concerned
about backward compatibility, but don’t let it paralyze you.

There are good reasons to make backward-incompatible changes — if you made a design
mistake that makes your package harder to use, it’s better to fix it sooner rather than later.
If you do need to make a backward-incompatible change, it’s best to do it gradually.
Provide interim version(s) between where you are now and where you’d like to be, and
provide advice about what’s going to change. Depending on what you’re changing, use
one of the following techniques to let your users know what’s happening:

= Don’t immediately remove a function. Instead, deprecate it first. For example, imagine
your package is version 0.5.0 and you want to remove fun(). In version 0.6.0, you’d
use .Deprecated() to display a warning message whenever someone uses the function:

0.1.0

fun <- function(x, vy, z) {
.Deprecated("sum")
X +y+z

}

fun(1, 2, 3)

#> Warning: 'fun' is deprecated.
#> Use 'sum' instead.

#> See help("Deprecated")

#> [1] 6

Then, remove the function once you get to 0.7.0 (or if you are being very strict, once
you get to 1.0.0 since it’s a backward-incompatible change).

m Similarly, if you’re removing a function argument, first warn about it:

bar <- function(x, y, z) {
if (!'missing(y)) {
warning("argument y is deprecated; please use z instead.",
call. = FALSE)
zZ <-y

}

www.it-ebooks.info

http://rstudio.github.io/packrat/
http://www.it-ebooks.info/

}

bar(1, 2, 3)
#> Warning: argument y is deprecated; please use z instead.

m If you’re deprecating a lot of code, it can be useful to add a helper function. For
example, ggplot2 has gg_dep, which automatically displays a message, warning, or
error, depending on how much the version number has changed:

gg_dep <- function(version, msg) {
Vv <- as.package_version(version)
cv <- packageVersion('"ggplot2")

If current major number is greater than last-good major number, or if
current minor number is more than 1 greater than last-good minor number,
return an error.
if (ev[[1,1]1] > v[[1,1]11 |l ev[[1,2]] > v[[1,2]] + 1) {
stop(msg, " (Defunct; last used in version ", version, ")",
call. = FALSE)

If minor number differs by one, give a warning

else if (cv[[1,2]] > v[[1,2]]) {

warning(msg, " (Deprecated; last used in version ", version, ")",
call. = FALSE)

w3

If only subminor number is greater, provide a message
} else if (cv[[1,3]] > v[[1,3]]) {

message(msg, " (Deprecated; last used in version ", version, ")")
}

invisible()

m Significant changes to an existing function requires planning, including making gradual
changes over multiple versions. Try to develop a sequence of transformations where
each change can be accompanied by an informative error message.

m [f you want to use functionality in a new version of another package, don’t make it a
hard install-time dependency in the DESCRIPTION (forcing your users to upgrade that
package might break other code). Instead, check for the version at runtime:

if (packageVersion("ggplot2") < "1.0.0") {
stop("ggplot2 >= 1.0.0 needed for this function.", call. = FALSE)

This is also useful if you’re responding to changes in one of your dependencies —
you’ll want to have a version that will work both before and after the change. This will
allow you to submit it to CRAN at any time, even before the other package. Doing this
may generate some R CMD check notes. For example:

if (packageVersion("foo" > "1.0.0")) {
foo::baz()

} else {
foo::bar()

}

If baz doesn’t exist in foo version 1.0.0, you’ll get a note that it doesn’t exist in foo’s

www.it-ebooks.info

http://www.it-ebooks.info/

namespace. Just explain that you’re working around a difference between versions in
your submission to CRAN.

www.it-ebooks.info

http://www.it-ebooks.info/

The Submission Process

To manually submit your package to CRAN, you create a package bundle (with
devtools::build()) then upload it to http://cran.r-project.org/submit.html, along with
some comments that describe the process you followed. This section shows you how to
make submission as easy as possible by providing a standard structure for those
comments. Later, in “Release”, you’ll see how to actually submit the package with
devtools::release().

When submitting to CRAN, remember that CRAN is staffed by volunteers, all of whom
have other full-time jobs. In a typical week, there are over 100 submissions and only three
volunteers to process them all. The less work you make for them, the more likely you are
to have a pleasant submission experience.

I recommend that you store your submission comments in a file called cran-comments.md.
This file should be checked into Git (so you can track it over time), and listed in
.Rbuildignore (so it’s not included in the package). As the extension suggests, I
recommend using Markdown because it gives a standard way of laying out plain text.
However, because the contents will never be rendered to another format, you don’t need to
worry about sticking to it too closely. Here is the cran-comments.md file from a recent
version of httr:

Test environments

* local 0S X install, R 3.1.2

* ubuntu 12.04 (on travis-ci), R 3.1.2
* win-builder (devel and release)

R CMD check results
There were no ERRORs or WARNINGS.

There was 1 NOTE:

* checking dependencies in R code.. NOTE
Namespace in Imports field not imported from: 'R6'

R6 is a build-time dependency.
Downstream dependencies
I have also run R CMD check on downstream dependencies of httr
(https://github.com/wch/checkresults/blob/master/httr/r-release).
All packages that I could install passed except:
* Ecoengine: this appears to be a failure related to config on
that machine. I couldn't reproduce it locally, and it doesn't

seem to be related to changes in httr (the same problem exists
with httr 0.4).

This layout is designed to be easy to skim, and easy to match up to the R CMD check
results seen by CRAN maintainers. It includes three sections:

Test environments

This describes where I checked the package. I always check on three platforms: my
Mac, “Checking After Every Commit with Travis”, and win-builder.

Check results

www.it-ebooks.info

http://cran.r-project.org/submit.html
http://www.it-ebooks.info/

I always state that there were no errors or warnings. Any NOTES go in a bulleted list.
For each NOTE, I include the message from R CMD check and a brief description of
why I think it’s OK. If there were no NOTEs, I’d say “There were no ERRORSs,
WARNINGsS, or NOTEs.”

Downstream dependencies

If there are downstream dependencies, I run R CMD check on each package and
summarize the results. If there are no downstream dependencies, keep this section,
but say: “There are currently no downstream dependencies for this package.”

These are described in more detail in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Environments

When checking your package you need to make sure that it passed with the current
development version of R and it works on at least two platforms. R CMD check is

continuously evolving, so it’s a good idea to check your package with the latest
development version, R-devel. You can install R-devel on your own machine:

m For Mac, install from http://r.research.att.com.
» For Windows, install from http://cran.r-project.org/bin/windows/base/rdevel.html.

m For Linux, either build it from source, or better, learn about Docker containers and run
the R-devel container from https://github.com/rocker-org/rocker.

It’s painful to manage multiple R versions, especially because you’ll need to reinstall all
your packages. Instead, you can run R CMD check on CRAN’s servers with

devtools: :build_win(). This builds your package and submits it to the CRAN win-
builder. Approximately 10—20 minutes after submission, you’ll receive an email telling
you the check results.

CRAN runs on multiple platforms: Windows, Mac OS X, Linux, and Solaris. You don’t
need to run R CMD check on every one of these platforms, but it’s a really good idea to do
it on at least two. This increases your chances of spotting code that relies on the
idiosyncrasies of a specific platform. If you’re on Linux or the Mac, use
devtools::build_win() to check on Windows. If you’re on Windows, use Travis, as
described in “Checking After Every Commit with Travis”, to run checks on Linux.

Debugging code that works on your computer but fails elsewhere is painful. If that
happens to you, either install a virtualization tool so that you can run another operating
system locally, or find a friend to help you figure out the problem. Don’t submit the
package and hope CRAN will help you figure out the problem.

www.it-ebooks.info

http://r.research.att.com/
http://cran.r-project.org/bin/windows/base/rdevel.html
https://github.com/rocker-org/rocker
http://www.it-ebooks.info/

Check Results

You’ve already learned how to use R CMD check and why it’s important in Chapter 14.
Compared to running R CMD check locally, there are a few important differences when
running it for a CRAN submission:

® You must fix all ERRORs and WARNINGs. A package that contains any errors or warnings
will not be accepted by CRAN.

» Eliminate as many NOTESs as possible. Each note requires human oversight, which is a
precious commodity. If there are notes that you do not believe are important, it is
almost always easier to fix them (even if the fix is a bit of a hack) than to persuade
CRAN that they’re OK. See “Checks” for details on how to fix individual problems.

If you have no NOTEs, it is less likely that your package will be flagged for additional
human checks. These are time consuming for both you and CRAN, so are best avoided
if possible.

m If you can’t eliminate a NOTE, document it in cran-comments.md, describing why you
think it is spurious. Your comments should be easy to scan, and easy to match up with
R CMD check. Provide the CRAN maintainers with everything they need in one place,
even if it means repeating yourself.

NOTE

There will always be one NOTE when you first submit your package. This reminds CRAN that this is a new

submission and that they’ll need to do some extra checks. You can’t eliminate this, so just mention in cran-
comments.md that this is your first submission.

www.it-ebooks.info

http://www.it-ebooks.info/

Reverse Dependencies

Finally, if you’re releasing a new version of an existing package, it’s your responsibility to
check that downstream dependencies (i.e., all packages that list your package in the
Depends, Imports, Suggests, or LinkingTo fields) continue to work. To help you do this,
devtools provides devtools: : revdep_check(). This:

1. Sets up a temporary library so it doesn’t clobber any existing packages you have
installed.

2. Installs all of the dependencies of the downstream dependencies.
3. RunsR CMD check on each package.
4. Summarizes the results in a single file.

Run use_revdep() to set up your package with a useful template.

If any packages fail R CMD check, you should give package authors at least two weeks to
fix the problem before you submit your package to CRAN (you can easily get all
maintainer email addresses with revdep_maintainers()). After the two weeks is up,
rerun the checks, and list any remaining failures in cran-comments.md. Each package
should be accompanied by a brief explanation that either tells CRAN that it’s a false
positive in R CMD check (e.g., you couldn’t install a dependency locally) or that it’s a
legitimate change in the API (which the maintainer hasn’t fixed yet).

Inform CRAN of your release process: “I advised all downstream packages maintainers of
these problems two weeks ago.” Here’s an example from a recent release of dplyr:

Important reverse dependency check notes (full details at
https://github.com/wch/checkresults/tree/master/dplyr/r-release);

* COPASutils, fregweights, qdap, simPH: fail for various reasons. All package
authors were informed of the upcoming release and shown R CMD check issues
over two weeks ago.

* ggvis: You'll be receiving a submission that fixes these issues very shortly
from wWinston.

* repra, rPref: uses a deprecated function.

www.it-ebooks.info

http://www.it-ebooks.info/

CRAN Policies

As well as the automated checks provided by R CMD check, there are a number of CRAN
policies that must be checked manually. The CRAN maintainers will typically look at this
very closely on a package’s first submission.

I’ve summarized the most common problems in the following list:

It’s vital that the maintainer’s email address is stable, because this is the only contact
information CRAN has for you, and if there are problems and they can’t get in touch
with you, they will remove your package from CRAN. So make sure it’s something
that’s likely to be around for a while, and that it’s not heavily filtered.

You must have clearly identified the copyright holders in DESCRIPTION: if you have
included external source code, you must ensure that the license is compatible. See
“License: Who Can Use Your Package?” and “Licensing” for more details.

You must “make all reasonable efforts” to get your package working across multiple
platforms. Packages that don’t work on at least two will not normally be considered.

Do not make external changes without explicit user permission. Don’t write to the
filesystem, change options, install packages, quit R, send information over the Internet,
open external software, or make other similar changes.

Do not submit updates too frequently. The policy suggests a new version once every 1—
2 months at most.

I recommend following the CRAN Policy Watch Twitter account, which tweets whenever
there’s a policy change. You can also look at the GitHub repository that powers it.

www.it-ebooks.info

http://cran.r-project.org/web/packages/policies.html
https://twitter.com/CRANPolicyWatch
https://github.com/eddelbuettel/crp/commits/master/texi
http://www.it-ebooks.info/

Important Files

You now have a package that’s ready to submit to CRAN. But before you do, there are
two important files that you should update: README.md, which describes what the
package does, and NEWS.md, which describes what’s changed since the previous version.
I recommend using Markdown for these files, because it’s useful for them to be readable
as both plain text (e.g., in emails) and HTML (e.g., on GitHub or in blog posts). I
recommend using GitHub-flavored Markdown for these files.

www.it-ebooks.info

https://help.github.com/articles/GitHub-flavored-Markdown/
http://www.it-ebooks.info/

README.md
The goal of the README.md is to answer the following questions about your package:
m» Why should I use it?

m How do I use it?
m How do I get it?

On GitHub, the README.md will be rendered as HTML and displayed on the repository
home page.

I normally structure my README as follows:
1. A paragraph that describes the high-level purpose of the package.

2. An example that shows how to use the package to solve a simple problem.
3. Installation instructions, giving code that can be copied and pasted into R.

4. An overview that describes the main components of the package. For more complex
packages, this will point to vignettes for more details.

www.it-ebooks.info

http://www.it-ebooks.info/

README.Rmd

If you include an example in your README (a good idea!) you may want to generate it
with R Markdown. The easiest way to get started is to use devtools: :
use_readme_rmd(). This creates a template README.Rmd and adds it to .Rbuildignore.
The template looks like:
é&iput:
md_document :
variant: markdown_github

<!-- README.md is generated from README.Rmd. Please edit that file -->
" {r, echo = FALSE}
knitr::opts_chunk$set(

collapse = TRUE,

comment = "#>",
fig.path = "README-"

).

This:
m Qutputs Github-flavored Markdown.

m Includes a comment in README.md to remind you to edit README.Rmd, not
README.md.

= Sets up my recommended knitr options, including saving an image to README-
chunkname.png (which is automatically .Rbuildignored.)

You’ll need to remember to re-knit README.Rmd each time you modify it. If you use Git,
use_readme_rmd() automatically adds the following “pre-commit” hook:

#!1/bin/bash

if [[README.Rmd -nt README.md]]; then
echo "README.md is out of date; please re-knit README.Rmd"
exit 1

fi

This prevents git commit from succeeding unless README.md is more recent than
README.Rmd. If you get a false positive, you can ignore the check with git commit --
no-verify. Note that Git commit hooks are not stored in the repository, so every time you
clone the repo, you’ll need to run devtools: :use_readme_rmd() to set it up again.

www.it-ebooks.info

http://www.it-ebooks.info/

NEWS.md

The README.md is aimed at new users. The NEWS.md is aimed at existing users: it
should list all the API changes in each release. There are a number of formats you can use
for package news, but I recommend NEWS.md. It’s not supported by CRAN (so you’ll
need to run devtools: :use_build_ignore("NEWS.md")), but it’s well supported by
GitHub and is easy to repurpose for other formats.

Organize your NEWS.md as follows:

m Use a top-level heading for each version (e.g., # mypackage 1.0). The most recent
version should go at the top.

m FEach change should be included in a bulleted list. If you have a lot of changes, you
might want to break them up using subheadings (e.g., ## Major changes, ## Bug
fixes, etc.). I usually stick with a simple list until just before releasing the package,
when I’ll reorganize into sections, if needed. It’s hard to know in advance exactly what
sections you’ll need.

m If an item is related to an issue in GitHub, include the issue number in parentheses
(e.g., (#10)). If an item is related to a pull request, include the pull request number and
the author (e.g., (#1061, @hadley)). Doing this makes it easy to navigate to the relevant
issues on GitHub.

The main challenge with NEWS.md is getting into the habit of noting a change as you
make a change.

www.it-ebooks.info

http://www.it-ebooks.info/

Release

You’re now ready to submit your package to CRAN. The easiest way to do this is to run
devtools: :release(). This:

m Builds the package and runs R CMD check one last time.

m Asks you a number of yes/no questions to verify that you followed the most common
best practices.

= Allows you to add your own questions to the check process by including an unexported
release_questions() function in your package. This should return a character vector
of questions to ask. For example, httr has:

release_questions <- function() {
c(
"Have you run all the OAuth demos?",
"Is inst/cacert.pem up to date?"

)
}

This is useful for reminding you to do any manual tasks that can’t otherwise be
automated.

m Uploads the package bundle to the CRAN submission form including the comments in
cran-comments.md.

Within the next few minutes, you’ll receive an email notifying you of the submission and
asking you to approve it (this confirms that the maintainer address is correct). Next, the
CRAN maintainers will run their checks and get back to you with the results. This
normally takes around 24 hours, but occasionally can take up to 5 days.

www.it-ebooks.info

http://cran.r-project.org/submit.html
http://www.it-ebooks.info/

On Failure

If your package does not pass R CMD check or is in violation of CRAN policies, a CRAN
maintainer will email you and describe the problem(s). Failures are frustrating, and the
feedback may be curt and may feel downright insulting. Arguing with CRAN maintainers
will likely waste both your time and theirs. Instead:

Breathe. A rejected CRAN package is not the end of the world. It happens to everyone.
Even members of R-core have to go through the same process and CRAN is no
friendlier to them. I have had numerous packages rejected by CRAN. I was banned
from submitting to CRAN for two weeks because too many of my existing packages
had minor problems.

If the response gets you really riled up, take a couple of days to cool down before
responding. Ignore any ad hominem attacks, and strive to respond only to technical
issues.

If a devtools problem causes a CRAN maintainer to be annoyed with you, I am deeply
sorry. If you forward me the message along with your address, I’ll send you a
handwritten apology card.

Unless you feel extremely strongly that discussion is merited, don’t respond to the email.
Instead:

Fix the identified problems and make recommended changes. Rerun
devtools::check() to make sure you didn’t accidentally introduce any new problems.

Add a “Resubmission” section at the top of cran-comments.md (this should clearly
identify that the package is a resubmission, and list the changes that you made):

Resubmission
This is a resubmission. In this version I have:

* Converted the DESCRIPTION title to title case.

* More clearly identified the copyright holders in the DESCRIPTION
and LICENSE files.

If necessary, update the check results and downstream dependencies sections.

Run devtools::submit_cran() to resubmit the package without working through all
the release() questions a second time.

www.it-ebooks.info

http://www.it-ebooks.info/

Binary Builds

After the package has been accepted by CRAN it will be built for each platform. It’s
possible this may uncover further errors. Wait 48 hours until all the checks for all
packages have been run, then go to the check results package for your package (Figure 15-
1).

devtools: Tools to make developing R code easier

Collection of package development tools.

Version: 1.6.1

Depends: R(=3.0.2)

Imports: httr (= 0.4), RCurl, utils, tools, methods, memoise, whisker,
evaluate, digest, rstudioapi, jsonlite

Suggests: testthat (= 0.7), roxygen2 (= 4.0.2), Bioclnstaller, Rcpp (=
0.10.0), MASS, rmarkdown, knitr

Published: 2014-10-07

Author: Hadley Wickham [aut, cre], Winston Chang [aut], RStudio [cph],

R Core team [ctb] (Some namespace and vignette code extracted
from base R)

Maintainer: Hadley Wickham <hadley at rstudio.com>
License: GPL-2 | GPL-3 [expanded from: GPL (= 2)]
NeedsCompilation: yes

Materials: README

CRAN checks: devtools results

Figure 15-1. To find the check results for your package, go to its CRAN page and click “[packagename] results”

Prepare a patch release that fixes the problems and submit using the same process as
before.

www.it-ebooks.info

http://www.it-ebooks.info/

Prepare for Next Version

Once your package has been accepted by CRAN, you have a couple of technical tasks to
do:

» If you use GitHub, go to the repository release page. Create a new release with tag
version v1.2.3 (i.e., “v” followed by the version of your package). Copy and paste the
contents of the relevant NEWS.md section into the release notes.

m If you use Git, but not GitHub, tag the release with git tag -a vi1.2.3.

m Add the . 9000 suffix to the Version field in the DESCRIPTION to indicate that this is
a development version. Create a new heading in NEWS.md and commit the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Publicizing Your Package

Now you’re ready for the fun part: publicizing your package. This is really important. No
one will use your helpful new package if they don’t know that it exists.

Start by writing a release announcement. This should be an R Markdown document that
briefly describes what the package does (so people who haven’t used it before can
understand why they should care), and what’s new in this version. Start with the contents
of NEWS.md, but you’ll need to modify it. The goal of NEWS.md is to be comprehensive;
the goal of the release announcement is to highlight the most important changes. Include a
link at the end of the announcement to the full release notes so people can see all the
changes. Where possible, I recommend showing examples of new features: it’s much
easier to understand the benefit of a new feature if you can see it in action.

There are a number of places you can include the announcement:

m If you have a blog, publish it there. I now publish all package release announcements
on the RStudio blog.

m If you use Twitter, tweet about it with the #rstats hashtag.

= Send it to the r-packages mailing list. Messages sent to this list are automatically
forwarded to the R-help mailing list.

www.it-ebooks.info

http://blog.rstudio.org/author/hadleywickham/
https://twitter.com/search?q=%23rstats&src=typd
https://stat.ethz.ch/mailman/listinfo/r-packages
http://www.it-ebooks.info/

Congratulations!

You have released your first package to CRAN and made it to the end of the book!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A
ad hoc testing, Testing

attaching packages, Search Path-Search Path
author identification, Author: Who Are You?-On CRAN
automated checking (see R CMD check)

auxiliary files, Other Components

B
backward compatibility, Backward Compatibility-Backward Compatibility

binary builds, Binary Builds

binary data, External Data

binary packages, Binary Packages

Bizup, Joseph, Advice for Writing Vignettes
branches, Synchronizing with GitHub
bugs, minimizing, Testing

Build & Reload, Workflow

bundled packages, Bundled Packages

C
C

.C(), Getting Started with .C()-Getting Started with .C()
.Call(), Getting Started with .Call()-Getting Started with .Call()

best practices, Best Practices-Best Practices

www.it-ebooks.info

http://www.it-ebooks.info/

C API, Getting Started with .Call()

development workflow, Development Workflow
exporting code, Exporting C Code-Exporting C Code
importing code, Importing C Code

workflow, Workflow

C++, C++-Best Practices

best practices, Best Practices

development workflow, Development Workflow

documentation, Documentation

exporting code, Exporting C++ Code

importing code, Importing C++ Code

workflow, Workflow-Workflow
CCO license, License: Who Can Use Your Package?
check results, The Submission Process-Check Results

check types, Checks-Vignettes
compiled code, Compiled Code

data directory, Data

demos, Demos

description information, Description-Description
documentation, Documentation-Documentation
metadata, Check Metadata

namespaces, Namespace

package structure, Package Structure-Package Structure

www.it-ebooks.info

http://www.it-ebooks.info/

R code, R Code-R Code
tests, Tests
vignette code, Vignettes-Vignettes
checking code (see R CMD check)
citation, Package Citation-Package Citation
CITATION file, Package Citation-Package Citation
classes, documenting, Documenting Classes, Generics, and Methods-RC
code linters, Code Style
code structure, Testing

code style, Code Style-Commenting Guidelines

assignment, Assignment
commenting guidelines, Commenting Guidelines
curly braces, Curly Braces
indentation, Indentation
line length, Line Length
object names, Object Names
spacing, Spacing
code, robust, Testing
collate controls, Other Components
command line testing, Testing

commits, Recording Changes-Best Practices for Commits

best practices, Best Practices for Commits-Best Practices for Commits

undoing mistakes, Undoing Mistakes-Undoing Mistakes

www.it-ebooks.info

http://www.it-ebooks.info/

compiled code, In This Book, Compiled Functions, Compiled Code-CRAN Issues

C, C-Best Practices
C++, C++-Best Practices
checking, Compiled Code
CRAN issues, CRAN Issues-CRAN Issues
debugging, Debugging Compiled Code-Debugging Compiled Code
development workflow, Development Workflow
licensing, Licensing
makefiles, Makefiles
and other languages, Other Languages
contributor information, Author: Who Are You?
copyright holder information, Author: Who Are You?

CRAN checks

and automated testing, CRAN Notes

and bundled packages, Bundled Packages

and compiled code, CRAN Issues-CRAN Issues
and email addresses, On CRAN

and licenses, On CRAN

and namespace, Namespace

and package data, CRAN Notes

and R code, CRAN Notes

and vignettes, CRAN Notes-CRAN Notes

CRAN, submitting to, Releasing a Package-Reverse Dependencies

www.it-ebooks.info

http://www.it-ebooks.info/

(see also release process)
creating packages, Creating a Package-Creating a Package

creator information, Author: Who Are You?

D
data, In This Book, External Data-CRAN Notes

compression, Exported Data
CRAN notes, CRAN Notes
exported, Exported Data-Documenting Datasets
internal, Internal Data
raw, Raw Data
test, Other Data
vignette, Other Data
data directory, In This Book, Data
data, documenting (see documentation)
Debian control format (DCF), Package Metadata

debugging, Debugging Compiled Code-Debugging Compiled Code, Test
Environments

demos, Other Components-Demos

dependencies, Dependencies: What Does Your Package Need?-Other Dependencies

depends, Other Dependencies, Search Path, Imports

enhances, Other Dependencies

imports, Dependencies: What Does Your Package Need?-Versioning
linking to, Other Dependencies

suggests, Dependencies: What Does Your Package Need?-Versioning

www.it-ebooks.info

http://www.it-ebooks.info/

versioning, Versioning
Depends, Other Dependencies, Search Path, Imports

DESCRIPTION, Package Metadata

(see also metadata)

checking, Description-Description

Depends versus Imports in, Search Path

LazyData: true, Exported Data
description (see title and description)
devtools, Philosophy, Installed Packages, Package Metadata, Workflow
docstring, RC

documentation, In This Book, Object Documentation-Tables

avoiding repetition, Do Repeat Yourself-Text Formatting Reference Sheet
checking, Documentation-Documentation

classes and generics, Documenting Classes, Generics, and Methods-RC
comments, Roxygen Comments-Roxygen Comments

data, Documenting Datasets

functions, Documenting Functions-Documenting Functions

long-form (see vignettes)

methods, RC

multiple functions, Documenting Multiple Functions in the Same File-Text
Formatting Reference Sheet

packages, Documenting Packages

parameter inheritance, Documenting Multiple Functions in the Same File

www.it-ebooks.info

http://www.it-ebooks.info/

special characters, Special Characters

text formatting, Text Formatting Reference Sheet-Tables

(see also text formatting)
workflow alternative, Alternative Documentation Workflow
workflow overview, The Documentation Workflow-The Documentation Workflow
downstream dependencies, The Submission Process-Reverse Dependencies

DRY (don’t repeat yourself) principle of programming, Do Repeat Yourself-Text
Formatting Reference Sheet

E
Emacs Speaks Statistics (ESS), Philosophy

enhances, Other Dependencies

@examples tag, Documenting Functions

executable scripts, Other Components

expectations, Test Structure-Expectations

@export, The NAMESPACE-S4, Documentation
exported data, Exported Data-Documenting Datasets
exports, Motivation, The NAMESPACE-Data

external data (see data)

F

filenames, Organizing Your Functions
formatr, Code Style
Fortran, Other Languages

functions, documenting, Documenting Functions-Documenting Functions

G

www.it-ebooks.info

http://www.it-ebooks.info/

getting started, Getting Started

Git/GitHub, In This Book, Git and GitHub-Learning More

advantages overview, Git and GitHub-Git and GitHub
automated checking, Synchronizing with GitHub
branches, Synchronizing with GitHub, Branches-Branches
collaborating, Working with Others-Working with Others
commenting, Benefits of Using GitHub

commits, Recording Changes-Best Practices for Commits

creating a local Git repo, Creating a Local Git Repository-Creating a Local Git
Repository

GitHub benefits, Benefits of Using GitHub-Benefits of Using GitHub

ignoring files, Ignoring Files

initial setup, Initial Setup-Initial Setup

issues, Issues

merges/merge conflicts, Working with Others-Working with Others, Branches
project history, Benefits of Using GitHub

pull requests, Working with Others, Making a Pull Request-Reviewing and
Accepting Pull Requests

push (publish), Synchronizing with GitHub-Synchronizing with GitHub
recording changes, Recording Changes-Best Practices for Commits
RStudio and, RStudio, Git, and GitHub

synchronizing with GitHub, Synchronizing with GitHub-Synchronizing with
GitHub

Travis, Checking After Every Commit with Travis-Other Uses

www.it-ebooks.info

http://www.it-ebooks.info/

undoing mistakes, Undoing Mistakes-Undoing Mistakes

using from the shell, RStudio, Git, and GitHub

viewing changes, Seeing What’s Changed-Seeing What’s Changed
gitignore file, C++
GPL-2 or GPL-3 license, License: Who Can Use Your Package?

I
@import, The NAMESPACE, R Functions-S4

imports, Dependencies: What Does Your Package Need?-Versioning, Motivation,
Search Path, The NAMESPACE, Imports

in-memory packages, In-Memory Packages
informal testing, Testing
inheritance, parameters, Inheriting Parameters from Other Functions

installed files, In This Book, Installed Files-Other Languages

in other languages, Other Languages
package citation, Package Citation-Package Citation
installed packages, Installed Packages

internal data, Internal Data

J
Java, Other Languages, Other Languages

K
keyboard shortcuts, RStudio Projects, R Code Workflow-Organizing Your Functions

@keywords, Roxygen Comments

knitr, Vignettes: Long-Form Documentation, Knitr-Options

L

www.it-ebooks.info

http://www.it-ebooks.info/

lazily loaded datasets, Exported Data

LazyData, Other Components

lib paths, What Is a Library?-What Is a Library?
libraries, What Is a Library?-What Is a Library?

licenses, License: Who Can Use Your Package?-On CRAN
licensing, Licensing

LinkingTo, Other Dependencies, Importing C Code

lintr, Code Style

loading code, Loading Code-Loading Code

loading packages, Search Path-Search Path

long-form documentation (see vignettes)

M

makefiles, Makefiles

Markdown, Markdown-Code
code, Code

inline formatting, Inline Formatting

knitr and, Knitr-Options

lists, Lists

Markdown syntax documentation, Markdown
overview of, Markdown

pandoc-supported languages, Code

sections, Sections

tables, Tables

www.it-ebooks.info

http://www.it-ebooks.info/

merge conflicts, Working with Others-Working with Others, Branches

metadata, In This Book, Package Metadata-Other Components

author information, Author: Who Are You?-On CRAN

checking, Check Metadata

collate controls, Other Components

dependencies, Dependencies: What Does Your Package Need?-Other Dependencies
LazyData, Other Components

license, License: Who Can Use Your Package?-On CRAN

title and description, Title and Description: What Does Your Package Do?-Title
and Description: What Does Your Package Do?

version numbers, Version-Version

in vignettes, Metadata
methods, RC, Documenting Multiple Functions in the Same File
MIT license, License: Who Can Use Your Package?

N

namespaces, Namespace-S4

benefits of, Motivation-Motivation

checking, Namespace

exports, Motivation, The NAMESPACE-Data

generating with roxygen2, The NAMESPACE

imports, Motivation, Imports-S4

NAMESPACE file, In This Book, Search Path-The NAMESPACE
search paths and, Search Path-Search Path

workflow, Workflow

www.it-ebooks.info

http://www.it-ebooks.info/

naming

objects, Object Names
packages, Requirements for a Name-Strategies for Creating a Name

(0

other components, Other Components-Demos

P

package metadata, In This Book (see metadata)

package states, What Is a Package?-In-Memory Packages

binary packages, Binary Packages
bundled packages, Bundled Packages
installed packages, Installed Packages
source packages, Source Packages

package structure, Package Structure-What Is a Library?

checking, Package Structure-Package Structure

creating packages, Creating a Package-Creating a Package

naming packages, Requirements for a Name-Strategies for Creating a Name
RStudio projects, RStudio Projects-What Is a Package?

types of packages (see package states)

packages

distinction from libraries, What Is a Library?

documenting, Documenting Packages

loading versus attaching, In-Memory Packages, Search Path-Search Path
naming, Requirements for a Name-Strategies for Creating a Name
overview, Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

side effects, When You Do Need Side Effects-When You Do Need Side Effects
versus scripts, Top-Level Code-The R Landscape

packrat, What Is a Library?, Backward Compatibility

pandoc, Vignettes: Long-Form Documentation, Markdown

@param tag, Documenting Functions

parameters, inheriting, Inheriting Parameters from Other Functions

Parker, Hilary, Introduction

parsed data, External Data

prerequisites, Getting Started

preview version, Getting Started

publicity, Publicizing Your Package

pull requests, Making a Pull Request-Reviewing and Accepting Pull Requests

reviewing and accepting, Reviewing and Accepting Pull Requests

submitting to another repo, Submitting a Pull Request to Another Repo-
Submitting a Pull Request to Another Repo

R
R API], Getting Started with .Call()

R CMD check, In This Book, Synchronizing with GitHub, Automated Checking-
Other Uses

devtools::check(), Workflow

errors, Workflow

notes, Workflow

Travis, Checking After Every Commit with Travis-Other Uses

types of checks, Checks-Vignettes

www.it-ebooks.info

http://www.it-ebooks.info/

(see also check types)
warnings, Workflow
workflow, Workflow-Workflow

R code, In This Book, R Code-CRAN Notes
checking, R Code-R Code

code style, Code Style-Commenting Guidelines

(see also code style)
functions to avoid, The R Landscape
lintr, Code Style
loading, L.oading Code-Loading Code
naming files, Organizing Your Functions
organizing functions, Organizing Your Functions
side effects, When You Do Need Side Effects-When You Do Need Side Effects
top-level, Top-Level Code-S4 Classes, Generics, and Methods
workflow, R Code Workflow
R extensions manual, Philosophy
R functions, R Functions
R landscape, The R Landscape-The R Landscape

R Markdown vignettes, Vignettes: Long-Form Documentation-Code, Where to Go
Next

(see also Markdown)
(see also vignettes)

R-devel, Test Environments

www.it-ebooks.info

http://www.it-ebooks.info/

raw data, External Data, Raw Data

Rbuildignore, Bundled Packages, Bundled Packages, Installed Packages

RC, exporting, RC

Rcpp, C++, C

Rd files, Object Documentation

@rdname, S4, Do Repeat Yourself-Documenting Multiple Functions in the Same File
README files, Benefits of Using GitHub, Important Filess-README.Rmd

rebasing history, Undoing Mistakes

reference classes (RC), RC

release process, Releasing a Package-Publicizing Your Package

backward compatibility, Backward Compatibility-Backward Compatibility
binary builds, Binary Builds

check results, The Submission Process-Check Results, CRAN Policies-CRAN
Policies

CRAN policies, CRAN Policies

downstream dependencies, The Submission Process

next version preparation, Prepare for Next Version

publicizing, Publicizing Your Package

README updates, Important Files-README.Rmd

release and rejection, Release-On Failure

submission process overview, The Submission Process-The Submission Process
test environments, The Submission Process-Test Environments

version number, Version Number-Version Number

www.it-ebooks.info

http://www.it-ebooks.info/

restarts, Testing

@return tag, Documenting Functions

reverse dependencies (see downstream dependencies)
Rinstignore, Installed Packages

rJava, Other Languages, Other Languages

rmarkdown package, Vignettes: Long-Form Documentation
robust code, Testing

roxygen2, In This Book, Namespace

(see also object documentation)
and .Rd files, Object Documentation
blocks, Roxygen Comments

comments, The Documentation Workflow, Roxygen Comments-Roxygen
Comments

documentation workflows, The Documentation Workflow-Alternative
Documentation Workflow

formatting codes, Roxygen Comments

generating namespaces with, The NAMESPACE

introduction, Roxygen Comments

parameter inheritance, Inheriting Parameters from Other Functions
tags, Roxygen Comments-Roxygen Comments

RStudio, In This Book, Philosophy

commit window, Recording Changes-Recording Changes
with Git/GitHub, RStudio, Git, and GitHub-RStudio, Git, and GitHub

keyboard shortcuts, RStudio Projects, R Code Workflow-Organizing Your

www.it-ebooks.info

http://www.it-ebooks.info/

Functions
project files, What Is an RStudio Project File?-What Is a Package?
for R Markdown, Vignettes: Long-Form Documentation
undoing mistakes, Undoing Mistakes-Undoing Mistakes
versions, Getting Started
RStudio projects, RStudio Projects-What Is a Package?

S

S3 object system, documenting, Documenting Classes, Generics, and Methods, S3, S3

S4 object system, documenting, S4 Classes, Generics, and Methods, Documenting
Classes, Generics, and Methods-S4, S4

scripts versus packages, Top-Level Code-The R Landscape
search paths, Search Path-Search Path

secure hash algorithm (SHA), Recording Changes

shell, RStudio, Git, and GitHub

Sierra, Kathy, Advice for Writing Vignettes

source packages, Source Packages

special characters, Special Characters

SRC directory, In This Book

SSH key, Initial Setup

StackOverflow, Git and GitHub, Working with Others, Learning More
staged files, Recording Changes

submitting to CRAN, The Submission Process-Reverse Dependencies

(see also release process)

www.it-ebooks.info

http://www.it-ebooks.info/

suggests, Dependencies: What Does Your Package Need?-Versioning

Sweave, Vignettes: Long-Form Documentation

T
tags

in functions documentation, Documenting Functions
test environments, The Submission Process-Test Environments

testing, Testing-CRAN Notes

(see also testthat)

building your own, Building Your Own Testing Tools-Building Your Own Testing
Tools

code duplication , Building Your Own Testing Tools-Building Your Own Testing
Tools

CRAN notes, CRAN Notes

data for, Other Data

expectations, Test Structure-Expectations
file, Test Structure

informal, Testing

skipping a test, Skipping a Test

test files, Test Files

unit testing, Test Structure

what to test, What to Test

workflow, Test Workflow-Test Workflow
writing tests , Writing Tests-Building Your Own Testing Tools

tests, In This Book, Tests

www.it-ebooks.info

http://www.it-ebooks.info/

testthat, In This Book, Testing

(see also testing)

benefits of, Testing

setting up, Test Workflow-Test Workflow

test structure, Test Structure-Expectations

writing tests in, Writing Tests-Building Your Own Testing Tools

text formatting, Text Formatting Reference Sheet-Tables

characters, Links

links, Links

lists, Lists

mathematics, Mathematics
tables, Tables

title and description, Title and Description: What Does Your Package Do?-Title and
Description: What Does Your Package Do?

top-level code, Top-Level Code-S4 Classes, Generics, and Methods
translations, Other Components

Travis, Automated Checking, Checking After Every Commit with Travis-Other Uses

\%

version control system, Git and GitHub

(see also Git/GitHub)
version numbers, Version-Version
versioning, Versioning

vignettes, In This Book, Vignettes: Long-Form Documentation-Where to Go Next,
Demos

www.it-ebooks.info

http://www.it-ebooks.info/

CRAN notes, CRAN Notes-CRAN Notes

data for, Other Data

development cycle, Development Cycle

knitr and, Knitr-Options

metadata, Metadata

organizing, Organization

workflow, Vignette Workflow

writing advice, Advice for Writing Vignettes-Organization

W
Williams, Joseph M., Advice for Writing Vignettes

working directory, The R Landscape-The R Landscape, Writing Tests, RStudio, Git,
and GitHub

Y
YAML, Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Hadley Wickham is Chief Scientist at RStudio. He’s interested in building tools
(computational and cognitive) that make data ingest, preparation, manipulation,
visualization and analysis easier. He’s developed over 30 R packages, for data analysis
(ggplot2, dplyr, tidyr), making frustrating parts of R easier to use (lubridate for dates,
stringr for strings, httr for accessing web APIs), and for streamlining the R package
development (devtools, roxygen2, and testthat).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Colophon

The animal on the cover of R Packages is a kaka, or nestor parrot (Nestor meridionalis),
found in native forests of New Zealand. Generally heard before they are seen, kaka are
very gregarious and move in large flocks.

Kaka are obligate forest birds that obtain all their food from trees. They are adept fliers,
capable of weaving through trunks and branches, and can cover long distances, including
over water. They consume seeds, fruit, nectar, sap, honeydew, and tree-dwelling
invertebrates.

Although forest clearance has destroyed all but a fraction of the kaka’s former habitat, the
biggest threat to their survival is introduced mammalian predators, particularly the stoat,
but also the brush-tailed possum.

Many of the animals on O’Reilly covers are endangered; all of them are important to the
world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://animals.oreilly.com
http://www.it-ebooks.info/

Preface
In This Book

Conventions Used in This Book
Using Code Examples
Safari® Books Online
How to Contact Us
Acknowledgments

I. Getting Started

1. Introduction

Philosophy
Getting Started
Conventions
Colophon

2. Package Structure
Naming Your Package

Requirements for a Name
Strategies for Creating a Name
Creating a Package

RStudio Projects
What Is an RStudio Project File?

What Is a Package?

Source Packages
Bundled Packages
Binary Packages
Installed Packages

In-Memory Packages

www.it-ebooks.info

http://www.it-ebooks.info/

What Is a Library?
I1. Package Components

3. R Code
R Code Workflow

Organizing Your Functions

Code Style
Object Names

Spacing

Curly Braces

Line Length

Indentation

Assignment
Commenting Guidelines

Top-Level Code
Loading Code

The R Landscape

When You Do Need Side Effects

S4 Classes, Generics, and Methods
CRAN Notes

4. Package Metadata
Dependencies: What Does Your Package Need?

Versioning
Other Dependencies
Title and Description: What Does Your Package Do?

Author: Who Are You?
On CRAN

License: Who Can Use Your Package?

www.it-ebooks.info

http://www.it-ebooks.info/

On CRAN
Version
Other Components

5. Object Documentation

The Documentation Workflow
Alternative Documentation Workflow
Roxygen Comments

Documenting Functions
Documenting Datasets

Documenting Packages

Documenting Classes, Generics, and Methods
S3

S4
RC
Special Characters

Do Repeat Yourself

Inheriting Parameters from Other Functions
Documenting Multiple Functions in the Same File

Text Formatting Reference Sheet

Character Formatting
Links

Lists

Mathematics

Tables

6. Vignettes: Long-Form Documentation
Vignette Workflow

www.it-ebooks.info

http://www.it-ebooks.info/

Metadata

Markdown

Sections

Lists

Inline Formatting
Tables

Code

Knitr
Options

Development Cycle

Advice for Writing Vignettes

Organization
CRAN Notes
Where to Go Next

7. Testing
Test Workflow

Test Structure

Expectations

Writing Tests
What to Test

Skipping a Test

Building Your Own Testing Tools
Test Files
CRAN Notes

8. Namespace

Motivation

Search Path

www.it-ebooks.info

http://www.it-ebooks.info/

The NAMESPACE
Workflow

Exports
S3

S4
RC
Data

Imports

R Functions

S3

S4

Compiled Functions

9. External Data
Exported Data

Documenting Datasets
Internal Data
Raw Data
Other Data
CRAN Notes

10. Compiled Code

C++

Workflow
Documentation
Exporting C++ Code
Importing C++ Code

Best Practices

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with .Call()
Getting Started with .C()
Workflow
Exporting C Code
Importing C Code
Best Practices
Debugging Compiled Code
Makefiles
Other Languages
Licensing
Development Workflow
CRAN Issues

11. Installed Files
Package Citation

Other Languages

12. Other Components

Demos
I1I. Best Practices

13. Git and GitHub
RStudio, Git, and GitHub

Initial Setup

Creating a Local Git Repository
Seeing What’s Changed
Recording Changes

Best Practices for Commits

Ignoring Files

www.it-ebooks.info

http://www.it-ebooks.info/

Undoing Mistakes

Synchronizing with GitHub

Benefits of Using GitHub

Working with Others

Issues

Branches

Making a Pull Request

Submitting a Pull Request to Another Repo
Reviewing and Accepting Pull Requests
Learning More

14. Automated Checking
Workflow

Checks
Check Metadata

Package Structure
Description
Namespace

R Code

Data
Documentation
Demos

Compiled Code
Tests

Vignettes

Checking After Every Commit with Travis
Basic Config

www.it-ebooks.info

http://www.it-ebooks.info/

Other Uses

15. Releasing a Package

Version Number
Backward Compatibility

The Submission Process

Test Environments

Check Results

Reverse Dependencies
CRAN Policies

Important Files
README.md

README.Rmd
NEWS.md

Release

On Failure

Binary Builds
Prepare for Next Version
Publicizing Your Package
Congratulations!

Index

www.it-ebooks.info

http://www.it-ebooks.info/

	Preface
	In This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	I. Getting Started
	1. Introduction
	Philosophy
	Getting Started
	Conventions
	Colophon

	2. Package Structure
	Naming Your Package
	Requirements for a Name
	Strategies for Creating a Name

	Creating a Package
	RStudio Projects
	What Is an RStudio Project File?

	What Is a Package?
	Source Packages
	Bundled Packages
	Binary Packages
	Installed Packages
	In-Memory Packages

	What Is a Library?

	II. Package Components
	3. R Code
	R Code Workflow
	Organizing Your Functions
	Code Style
	Object Names
	Spacing
	Curly Braces
	Line Length
	Indentation
	Assignment
	Commenting Guidelines

	Top-Level Code
	Loading Code
	The R Landscape
	When You Do Need Side Effects
	S4 Classes, Generics, and Methods

	CRAN Notes

	4. Package Metadata
	Dependencies: What Does Your Package Need?
	Versioning
	Other Dependencies

	Title and Description: What Does Your Package Do?
	Author: Who Are You?
	On CRAN

	License: Who Can Use Your Package?
	On CRAN

	Version
	Other Components

	5. Object Documentation
	The Documentation Workflow
	Alternative Documentation Workflow
	Roxygen Comments
	Documenting Functions
	Documenting Datasets
	Documenting Packages
	Documenting Classes, Generics, and Methods
	S3
	S4
	RC

	Special Characters
	Do Repeat Yourself
	Inheriting Parameters from Other Functions
	Documenting Multiple Functions in the Same File

	Text Formatting Reference Sheet
	Character Formatting
	Links
	Lists
	Mathematics
	Tables

	6. Vignettes: Long-Form Documentation
	Vignette Workflow
	Metadata
	Markdown
	Sections
	Lists
	Inline Formatting
	Tables
	Code

	Knitr
	Options

	Development Cycle
	Advice for Writing Vignettes
	Organization

	CRAN Notes
	Where to Go Next

	7. Testing
	Test Workflow
	Test Structure
	Expectations

	Writing Tests
	What to Test
	Skipping a Test
	Building Your Own Testing Tools

	Test Files
	CRAN Notes

	8. Namespace
	Motivation
	Search Path
	The NAMESPACE
	Workflow
	Exports
	S3
	S4
	RC
	Data

	Imports
	R Functions
	S3
	S4
	Compiled Functions

	9. External Data
	Exported Data
	Documenting Datasets

	Internal Data
	Raw Data
	Other Data
	CRAN Notes

	10. Compiled Code
	C++
	Workflow
	Documentation
	Exporting C++ Code
	Importing C++ Code
	Best Practices

	C
	Getting Started with .Call()
	Getting Started with .C()
	Workflow
	Exporting C Code
	Importing C Code
	Best Practices

	Debugging Compiled Code
	Makefiles
	Other Languages
	Licensing
	Development Workflow
	CRAN Issues

	11. Installed Files
	Package Citation
	Other Languages

	12. Other Components
	Demos

	III. Best Practices
	13. Git and GitHub
	RStudio, Git, and GitHub
	Initial Setup
	Creating a Local Git Repository
	Seeing What’s Changed
	Recording Changes
	Best Practices for Commits
	Ignoring Files
	Undoing Mistakes
	Synchronizing with GitHub
	Benefits of Using GitHub
	Working with Others
	Issues
	Branches
	Making a Pull Request
	Submitting a Pull Request to Another Repo
	Reviewing and Accepting Pull Requests
	Learning More

	14. Automated Checking
	Workflow
	Checks
	Check Metadata
	Package Structure
	Description
	Namespace
	R Code
	Data
	Documentation
	Demos
	Compiled Code
	Tests
	Vignettes

	Checking After Every Commit with Travis
	Basic Config
	Other Uses

	15. Releasing a Package
	Version Number
	Backward Compatibility
	The Submission Process
	Test Environments
	Check Results
	Reverse Dependencies

	CRAN Policies
	Important Files
	README.md
	README.Rmd
	NEWS.md

	Release
	On Failure
	Binary Builds

	Prepare for Next Version
	Publicizing Your Package
	Congratulations!

	Index

